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Abstract

A vast amount of gene expression data is available to biological researchers. As of

October 2010, the GEO database has 45,777 chips of publicly available gene expression

profiling data from the Affymetrix (HGU133v2) GeneChip platform, representing 2.5

billion numerical measurements. Given this wealth of data, ‘meta-analysis’ methods

allowing inferences to be made from combinations of samples from different experiments

are critically important. This thesis explores the application of localized pattern-mining

approaches, as exemplified by biclustering, for large-scale gene expression analysis.

Biclustering methods are particularly attractive for the analysis of large compendia

of gene expression data as they allow the extraction of relationships that occur only

across subsets of genes and samples. Standard correlation methods, however, assume

a single correlation relationship between two genes occurs across all samples in the

data. There are a number of existing biclustering methods, but as these did not prove

suitable for large scale analysis, a novel method named ‘IslandCluster’ was developed.

This method provided a framework for investigating the results of different approaches

to biclustering meta-analysis.

The biclustering methods used in this work involve preprocessing of gene expression

data into a unified scale in order to assess the significance of expression patterns. A

novel discretisation approach is shown to identify distinct classes of genes’ expression

values more appropriately than approaches reported in the literature. A Gene Ex-

pression State Transformation (‘GESTr’) introduced as the first reported modelling of

the biological state of expression on a unified scale and is shown to facilitate effective

meta-analysis. Localised co-dependency analysis is introduced, a paradigm for identi-

fying transcriptional relationships from gene expression data. Tools implementing this

analysis were developed and used to analyse specificity of transcriptional relationships,

to distinguish related subsets within a set of transcription factor (TF) targets and to

tease apart combinatorial regulation of a set of targets by multiple TFs. The state of

pluripotency, from which a mammalian cell has the potential to differentiate into any

cell from any of the three adult germ layers, is maintained by forced expression of Nanog

and may be induced from a non-pluripotent state by the expression of Oct4, Sox2, Klf4

and cMyc. Analysis of cMyc regulatory targets shed light on a recent proposition that

cMyc induces an ‘embryonic stem cell like’ transcriptional signature outside embryonic

stem (ES) cells, revealing a cMyc-responsive subset of the signature and identifying

ES cell expressed targets with evidence of broad cMyc-induction. Regulatory targets

through which cMyc, Oct4, Sox2 and Nanog may maintain or induce pluripotency were

identified, offering insight into transcriptional mechanisms involved in the control of

pluripotency and demonstrating the utility of the novel analysis approaches presented

in this work.
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Over the past 20 years, technologies for simultaneous measurement of the abundance

of large numbers of transcripts have been widely used in biological research. The de-

velopment and adoption of standardised measurement platforms has led to the public

availability of comparable datasets reporting expression levels of tens of thousands of

genes in tens of thousands of biological samples, all measured in the same way. There is

a wealth of transcriptional information contained in these massed datasets with billions

of data points, but study of the application of pattern-mining techniques for the extrac-

tion of information relevant to a particular biological query is in its infancy. This thesis

concerns the study of the application of pattern-mining techniques to large collections

of gene expression data, with focused application to the elucidation of transcriptional

mechanisms involved in the control of pluripotency.

This work could be considered multidisciplinary in that it draws heavily on theory

from traditionally distinct fields of research. The context of this work is described

via the general background information provided in the following chapter covering

pluripotency and ES cell biology, transcriptomics, single study- and meta-analysis of

gene expression data, clustering approaches and heuristic search techniques for function

optimisation. Chapters 3-6 each introduce, describe and discuss a particular aspect

of the work carried out, namely: investigation of a biclustering approach to large-

scale meta-analysis of gene expression data, universal modelling of biological states

of gene expression, gene expression co-dependency analysis tools, and investigation of

transcriptional mechanisms of the control of pluripotency with the developed tools. A

final discussion and general summary of the work is given in Chapter 7.
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2.1 Pluripotent Stem Cells

As the work described in this thesis relates to pluripotent stem cells, at this point I

clarify for the reader my interpretation of the definition of the terms ‘pluripotent’ and

‘stem cell.’

In brief, a stem cell is a cell which can self-renew indefinitely or differentiate into

a cell(s) of a specified lineage. Pluripotency is the ability of a cell to give rise to

differentiated cells from any of the three primary germ layers (and primordial germ

cells). Therefore, a pluripotent stem cell is a cell which can self-renew indefinitely or

differentiate into any cell from any of the three primary germ layers (and primordial

germ cells).

As the definition of a pluripotent stem cell refers to differentiation and lineage specifi-

cation, an overview of this developmental context is provided in the remainder of Section

(2.1.1). Sections (2.1.2-2.1.4) provide descriptions of specific examples of pluripotent

stem cells.

2.1.1 Early Development of the Mammalian Embryo

While an animal develops continuously throughout its life cycle, it is the earliest stages

of development that are most relevant to the work presented in this thesis, where there

are still single cells present that can give rise to all adult tissues, and the first steps in

which these cells become specified in their lineage and thus undergo restriction of their

developmental potential. In these stages of development the animal is referred to as

an embryo. Two stages post-fertilization are especially important here, cleavage and

gastrulation. A more detailed description of the processes mentioned here is provided

in [Gilbert, 2006].

Cleavage

The zygote (fertilised egg) is a large diploid cell with a high volume of cytoplasm.

The first steps towards generating a complex organism (such as a mammal) from this

single cell involve a number of rapid mitotic cell divisions with little or no synthesis

of new organic material (other than DNA), thereby dividing the volume of the zygotic

cytoplasm amongst a large number of early embryonic cells (‘blastomeres’). These

divisions form a 2-,4- or 8-cell structures and later, following ‘compaction’ by formation

of cell adhesion complexes, a structure (referred to as a morula) comprising an internal

group of cells surrounded by a larger, external group [Barlow and Sherman, 1972]. The

embryo’s ‘inner cell mass’ arises from the internal cells of the 16-cell morula, along

with some cells dividing from the outer cells during its transition to a 32-cell stage.

By the 64-cell stage, the outer cells have specialised into trophoblast cells which have

become a separate compartment layer from the inner cell mass (with correspondibly

4



different developmental potential). Figure 2.1 (from [Gilbert, 2006]) shows the process

of cleavage in a single mouse embryo, from 2-cell stage (A) through to morula (E) and

blastocyst (F).

Figure 2.1: Cleavage of a mouse embryo, taken from [Gilbert, 2006]

The end result of cleavage in mammals is a ‘blastocyst’ comprising an outer layer

(trophectoderm) of epithelial-like cells surrounding a fluid-filled cavity (blastocoel) and

an inner cell mass (ICM). This is formed through secretion of fluid into the morula from

the trophoblast cells during a process known as ‘cavitation.’ A diagram representing a

blastocyst is shown in Figure 2.2 (taken from [Arnold and Robertson, 2009]).

Figure 2.2: Diagram of an E3.5 mouse blastocyst, from [Arnold and Robertson, 2009].
Trophectoderm labelled TE and inner cell mass labelled ICM.
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Gastrulation and Further Embryonic Development

Following formation of the blastocyst, observable structures begin to form as different

cells in the embryo begin to specialise and segregate during the course of gastrulation.

Through organised specification of the epiblast cells, the ICM segregates into three

‘germ’ layers that will later give rise to all the tissues of the adult organism. These are:

• Ectoderm: outer layer of the ICM, will eventually form skin and nervous system

• Mesoderm: middle layer, will give rise to bone, muscle, cartilage and blood

• Endoderm: interior layer of ICM, gives rise to internal organs and gut

2.1.2 Teratomas, Teratocarcinomas and Embryonal Carcinoma Cells

Teratomas are naturally occurring benign tumours that contain structures representing

all three germ layers. Teratocarcinomas are their malignant counterparts, which will

invade host tissue, metastasize and may continue to grow until the host organism dies.

In a landmark study [Kleinsmith and Pierce, 1964] a single cell of origin was isolated

that can give rise to these tumours. Given that there is a single cell responsible for

generating tissues from all germ layers, it would suggest that these cells are pluripotent,

and thus if these cells can be clonally expanded in culture they make a potentially useful

tool to study developmental processes. For a review discussing these tumours and their

potential as a model by which to study developmental processes, see [Martin, 1975].

However, it should be considered that these undifferentiated stem cells responsible

for teratocarcinoma formation and propagation, known as embryonal carcinoma (EC)

cells, are clearly some way removed from their counterpart pluripotent cells present in

normal development. For example, these EC cells typically do not differentiate well

in vitro, fail to contribute to chimaeras upon blastocyst injection and commonly show

aneuploidy [Chambers and Smith, 2004].

2.1.3 Embryonic Stem Cells

Embryonic stem (ES) cells are pluripotent cells, derived from cells of the ICM of

a blastocyst (prior to specification into the germ layers), that can be expanded in-

definitely in culture. They were first derived in the mouse by Evans & Kaufman

[Evans and Kaufman, 1981] and Martin [Martin, 1981], and from human embryos by

Thomson et al [Thomson, 1998]. An important characteristic of ES cells is that they

can contribute to chimeras when injected into blastocysts and reimplanted into the

womb of a surrogate mother.
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Uses of ES Cells

Considerable interest in ES cells has been shown from fields of biological and medical

research, owing to their wide range of potential uses. To the end of outlining the

motivation for studying ES cells, there follows a brief summary of three such areas in

which ES cells have application:

Genetically Modified Animals With the ability of ES cells to contribute to the

germ cells of chimeric offspring, ES cells that are genetically altered in vitro and sub-

sequently implanted into a blastocyst at the appropriate stage of development can give

rise to viable offspring carrying the desired genetic modification. When such (heterozy-

gous) chimeric offspring are mated, inbred strains of animals can be cultivated that

carry this genetic modification through their progeny. ‘Transgenic’ strains of mice aris-

ing from the introduction of genetic material from another organism have proven to be

one of the most useful tools for biological research in recent years [Lewandowski, 2001].

Models of Development and Disease The potential of ES cells to be used to study

developmental processes, due to their ability to be expanded in vitro and differentiated

into any adult lineage, is discussed in [Rossant, 2008]. Additionally, in conjunction

with their use to generate transgenic strains of animals, their application to study the

development of diseases is reviewed in [Murray and Keller, 2008].

Drug Development Drug development often involves the use of cell cultures to test

the effectiveness of therapies. The capacity for clonal expansion of ES cells means that

derivation of target cells from ES cells via defined in vitro differentiation protocols

provides an easier alternative than accessing primary tissue. For a review of some of

the ways in which ES cells have been used in drug discovery, see [McNeish, 2004].

Regenerative Medicine ES cells have potential application in the field of regener-

ative medicine, owing to the fact that many human diseases arise from a deficiency of

certain critical cell populations. As a result, the derivation and expansion of such de-

fined cell populations in vitro from ES cells would give the potential to cure such

diseases with ex vivo growth and subsequent transplantation of the relevant cells

[Murray and Keller, 2008].

2.1.4 Transcriptional Control of Pluripotency

ES cells must maintian a state that is transitory in normal embryonic development by

carefully balancing a large number of transcriptional events and signalling pathways

that can serve as cues to drive the cells either to proliferate via self-renewal or to

differentiate into more specified lineages with restricted developmental potential.
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For maintainance of the pluripotent state of mouse ES cells in culture (in the ab-

sence of feeder cells or genetic modification), they require either stimulation by LIF

(Leukemia Inhibitory Factor) [Smith et al., 1988] and Bmp4 (a ‘Bone Morphogenic

Protein’) [Ying et al., 2003] or by a set of inhibitor molecules that block autonomously-

generated stimuli to differentiate [Ying et al., 2008]. LIF stimulates the Stat3 signalling

pathway while Bmp4 activates transcription of Id (‘Inhibitor of Differentiation’) genes.

The ‘3i’ ES cell culture medium [Ying et al., 2008] works by blocking the Fgf4-mediated

activation of Erk signalling and Gsk3β. A diagram showing proposed mechanisms of

action is shown in Fig 2.3 (from [Ying et al., 2008]).

Figure 2.3: Diagram showing proposed inhibitory action of ‘3i’ culture medium, from
[Ying et al., 2008]

A number of transcription factors have been shown to be critical for efficient main-

tainance of ES cell identity, particularly Oct4, Nanog and Sox2. Of these, both

Oct4 [Nichols et al., 1998] and Nanog [Chambers et al., 2003, Mitsui et al., 2003] are

required during mouse development for specification of pluripotent cell identity. It has

been suggested that the reason Sox2 is not required could be due to persistence of

the maternal sox2 protein [Chambers and Tomlinson, 2009]. A summary of the bal-

ance of intrinsic and extrinsic factors required to maintain pluripotency of ES cells in

self-renewal is shown in Fig 2.4 (from [Chambers and Smith, 2004]).

Forced over-expression of Nanog [Chambers et al., 2003], Klf2 [Hall et al., 2009],

Esrrb [Zhang et al., 2008] but not Oct4 [Niwa et al., 2000] have been shown to drive

LIF-independent self-renewal of ES cells.

Nanog is a transcription factor specifically expressed in ES cells, and binds to DNA

through a single homeodomain. It was demonstrated in [Chambers et al., 2003] that

over-expression of Nanog confers LIF-independent self-renewal of ES cells. It was shown

in [Chambers et al., 2007] that ES cells express Nanog at varying levels, and those with

lower Nanog expression have a higher propensity for differentiation. Interestingly, in

this study it was also established that ES cell self-renewal is not dependent on the

expression of Nanog.
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Figure 2.4: Diagrammatic representation of core ES cell self-renewal signalling, taken
from [Chambers and Smith, 2004]

Oct4 is a transcription factor that interacts with DNA through both a low-affinity

DNA-binding domain (specific to ‘Pit,’ ‘Oct’ and ‘Unc’ (POU) TFs) and a higher

affinity homeodomain [Klemm and Pabo, 1996].

Sox2 interacts with DNA through its high mobility group (HMG) box domain. Sox2

is known to bind DNA co-operatively with Oct4 [Ambrosetti et al., 1997], with mecha-

nisms of co-operative Oct4/Sox2/DNA binding proposed in [Remenyi et al., 2003] and

[Williams et al., 2003].

It has been shown that Fgf4 is required for ES cells to differentiate, via activation of

the Erk signalling that seems to drive differentiation [Kunath et al., 2007].

Identifying the targets of those transcription factors critical to maintainance of the

pluripotent ES cell state will be a crucial step in understanding the underlying biolog-

ical mechanisms involved in regulating this state and making those cell fate decisions

undertaken during early embryonic development.

2.1.5 Induction Of Pluripotency

In a reversal of the uniderictional progression through states with restricted develop-

mental potential that is encountered in normal development1, adult cells can be shown

to have been ‘reprogrammed’ through experimental techniques into states resembling

those of the early embryo. This reprogramming has been achieved through a number

of different processes:

1An exception to this ‘rule’ occurs during germ cell development [Hajkova et al., 2002]

9



• somatic cell nuclear transfer

• cell fusion

• cell explantation

• forced expression of defined factors

In addition to offering potential avenues for developing therapeutics such as patient-

derived transplants (avoiding immune-related incompatibility and issues of transplant

rejection), these in vitro reprogramming techniques present an opportunity to study

the mechanisms by which different transcriptional programs are activated, maintained

and deactivated.

Each of the methods of induction of pluripotency have their own issues, but a great

deal of effort over the last few years has been put into improving the efficiency and

understanding of the process of inducing pluripotency in somatic cells via induction

of specified transcription factors. For this reason, the following section provides a

brief overview of methods for induction of pluripotency by defined factors and theories

regarding their mechanisms of operation.

From a set of 24 predominantly ES-specifically expressed genes (identified by ‘digital

differential expression’ in [Mitsui et al., 2003]), Takahashi and Yamanaka identified 4

factors (Oct4, Sox2, Klf4 and cMyc) whose retrovirally-induced expression was sufficient

to reprogram adult mouse fibroblasts into an ES-like state [Takahashi and Yamanaka, 2006].

Successful reprogramming occurrs in a very low proportion of those cells that are trans-

fected with the viral vectors in this way, which necessitates some sort of selection cri-

terion. Selection based on reactivation of transcription of endogenous Nanog or Oct4

appears to give rise to induced-pluripotent stem (iPS) cells that are similar to ES cells

[Okita et al., 2007]. However, selection of cells based on expression of the embryonic

marker SSEA1 results in cells that may not have been fully reprogrammed to an induced

pluripotent state, as SSEA1 expression occurs prior to expression of Oct4 and Nanog

during the reprogramming process [Brambrink et al., 2008]. Even selection based on

the ES-cell expressed (but non-essential) gene Fbxo15 results in iPS cells that, while

able to give rise to teratomas, are unable to contribute to chimeras and thus do not have

the full potential of ES cells [Okita et al., 2007]. Some such reprogramming experiments

have identified ‘partially-reprogrammed’ cell lines that have neither entirely silenced

expression of their differentiated cell specific genes nor activated expression of pluripo-

tency genes, possibly explained by incomplete demethylation of the endogenous pluripo-

tency genes that has been observed in [Mikkelsen et al., 2008, Bhutani et al., 2010].

These findings seem to suggest that there are certain barriers that must be overcome

before the origin cells’ differentiated program can be fully silenced and the complete ES
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cell transcriptional state reactivated by reversal of the pre-existing (epigenetic) silencing

[Hochedlinger and Plath, 2009].

In vitro reprogramming experiments provide an opportunity to study the processes

of cell fate specification (both in terms of a cell becoming more specialised or with the

increase in potential seen as a ‘reversal’ of differentiation process) as well as a more

detailed look at the transcriptional requirements of the pluripotent cell state. For ex-

ample, as forced expression of Nanog in ES cells is sufficient to maintain pluripotent

identity, but in somatic cells it is not sufficient to ‘regain’ pluripotency (unless in com-

bination with other factors[Yul et al., 2007] (in human ES cells)), this indicates that it

will be important for us to understand what barriers to Nanog’s transcriptional targets

are in place in differentiated cells and how these might be overcome in the reprogram-

ming process. Additionally, for iPS cells to be used for clinical (therapeutic) purposes,

the reprogramming process will need to be optimised so that it is more efficient and

better-controlled, and this will be greatly assisted by a deeper understanding of the

precise mechanisms involved.

2.2 Transcriptomics

The majority of the cells of an organism have the same genetic information encoding

all the proteins the organism may use, but contain vastly different sets of proteins,

mediated by the differences in which genes are transcribed into RNA. Measurement of

the levels of the different mRNAs in a cell (or population of cells) offers a representation

of the functional state of the cell given the (approximately) consistent information

within.

In the advent of the sequencing of organisms’ entire genomes, it has been possible

to predict possible transcripts that the organism may produce in the expression of

its genome, which in turn has led to the development of platforms with the ability

to measure the entire state of transcription within cells. This state of transcription

includes both the abundance of different trancripts within the cell and the precise

state of the transcriptional apparatus (e.g. organisation of DNA into accessible or

inaccessible chromatin, binding of transcriptional enhancers or repressors to DNA, etc.)

that determines which genes can and will be transcribed. Analogous to the study of

an organism’s entire genetic content being referred to as ‘genomics,’ the study of the

entire transcriptional state of a sample is referred to as ‘transcriptomics.’

The remainder of this chapter discusses some of the transcriptomic technologies

widely used in biological research, and approaches to the analysis in which the measure-

ments they produce can be harnessed to further our understanding of the mechanims

and consequences of transcriptional regulation in different biological samples.
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2.2.1 Microarrays

Microarray technology involves using utilizing hybridization (or binding) properties of

a large number of specifically designed ‘probes’ that are located on some surface in such

a way that the corresponding targets can be identified after hybridization. It also relies

on the labelling of prepared sample material with fluorescent dyes and quantification

of fluorescence on the array by imaging and computer-based image processing. Due to

the large numbers of probes used, microarrays have enabled measurements to be made

on a ‘whole-genome’ scale.

Since its introduction in the 1990’s[Schena et al., 1995], microarray technology has

been adapted to a range of biological applications, including:

• measuring mRNA levels (‘gene expression microarrays’)

• identifying locations of DNA bound by transcription factors (‘ChIP-on-chip’)

• detecting chromosomal copy-number variation

• identifying single-nucleotide polymorphisms in genomic DNA

• identifying DNA methylation

Due to their ability to measure levels of transcription of all (protein-coding) genes in

an organism’s genome, gene expression microarrays have been widely used in biological

research as a screening tool to identify genes (or transcripts) that may be responsible

for observed phenomena, or for identifying markers of a particular process or cell type.

This has resulted in a vast body of data reflecting measurements of whole-genome

transcription in hundreds of thousands of biological samples.

Gene Expression Microarrays

Microarrays can be used to quantify the abundance of a large number of specified

transcripts (mRNAs) through probes designed to hybridise uniquely to a particular

sequence, which are positioned on the array at known locations. One of the most

widely used gene expression microarray technologies has been the Affymetrix GeneChip,

originally described in [Lockhart et al., 1996]. The GeneChips each feature in the order

of 500,000 probe oligonucleotides that are synthesised onto the array at specified grid

co-ordinates. Until the most recent platforms based on this technology, probes were

designed in pairs with identical sequences aside from a central base, which on one of

the probes in the pair was swapped for its complementary base. Thus one probe is a

perfect match to the target sequence and the other is a mismatch probe included on

the array to estimate cross-hybridisation to transcripts other than the target. Perfect

match probe sequences are chosen so that the target sequences of a set of 10-20 probe

pairs (perfect match & mismatch) map (ideally uniquely) to subsequences within a
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consensus sequence for a transcript, derived from public annotation databases (see

[Stalteri and Harrison, 2007] for more details). Each set of probe pairs is known as a

probe set. The measurements from the individual probe pairs are summarised to obtain

an expression level estimate for the transcript represented by the probeset.

The intensity measurements from a microarray can depend on features of the sample

preparation process, the manufacture of the array, the hybridization process and the

fluorescence quantification, in addition to the property of interest: the abundance of

each transcript in the sample [Hartemink et al., 2001]. When comparing expression

measurements from different arrays it is therefore appropriate to ‘normalize’ the mea-

surements to reduce as much of the variation due to technical reasons (rather than

biological differences between the samples). A demonstration of the need for normal-

ization of Affymetrix GeneChip data is given in [Irizarry et al., 2003], along with the

description of the widely-used robust multi-array average (RMA) measure of expres-

sion from GeneChips. RMA corrects for array-specific background intensity, performs

quantile normalization to ensure that the distribution of intensity values across each

array is the same, then uses a simple additive linear model to estimate the expression

level of each transcript based on the normalized measurements from each probe in the

corresponding probe set and each probe’s specific hybridization affinity estimates. Ow-

ing to the normalization of probe-level measurements, RMA can only be applied to

normalize measurements from different arrays of the same platform (so that the same

probes are present on all arrays to be normalized). For a full description of RMA in

the context of alternative GeneChip measurement strategies, see [Irizarry et al., 2003].

2.2.2 Data Warehouses

Proliferation of the use of microarrays in biological research has resulted in the publi-

cation of thousands of datasets, often releasing into the public domain the raw mea-

surement values from these experiments. A number of databases have been created to

store and make available the data from these experiments, some of which have grown

into vast repositories. Two of the largest are the NCBI’s GEO [Edgar et al., 2002] and

the EBI’s ArrayExpress [Brazma et al., 2003].

2.2.3 High-Throughput ChIP

As we currently do not have a general understanding of the ways in which TFs influence

the transcription of target genes, especially when combinations of multiple TFs are con-

sidered, it is helpful to identify the locations of DNA-binding of the TFs. To achieve

this, microarray technology has been adapted to work in concert with chromatin-

immunoprecipitation techniques. When a biological sample is cultured with a tagged

form of the TF in question, the DNA in the sample can be fragmented after cross-

linking of protein-DNA binding. Using antibodies that bind to the tag on the TF,
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Figure 2.5: Diagrammatic representation of the chIP-on-chip assay for identifying
genome-wide DNA binding sites of a transcription factor of interest (here labelled
‘POI’). Protein-DNA binding is cross-linked and DNA fragmented. An antibody to
the TF of interest is used to isolate DNA fragments bound by that TF, and following
purification, amplification and flourescent labelling the DNA fragments are hybridised
to a microarray with predicted promoter oligonucleotides fixed to known locations.
The location of flourescence can be used to determine the sequences that were isolated
through the antibody-purification, and thus assumed to be bound by the TF of interest.

DNA which is bound by the TF in question can be isolated, then purified after reversal

of cross-linking. To identify these target DNA fragments, a ‘promoter array’ can be

used: a microarray with fragments of promoter DNA (typically 8kb upstream to 2kb

downstream of predicted transcription initiation sites) of some subset of the genes in

the genome. This process is commonly referred to as ‘chIP-on-chip’ or ‘ChIP-Chip.’ A

diagram representing the process is shown in Fig. 2.5.

The establishment of conclusions drawn from genome-wide DNA-binding studies such

as ChIP-Chip approaches must be carefully considered [Li et al., 2008], as it is has been

shown that binding of a TF to a gene’s regulatory element does not necessarily result

in functional regulation of the target gene’s expression [Thanos and Maniatis, 1995].

2.2.4 Next-Generation Sequencing

A discussion of tools to study transcriptomics (that is, the levels of expression of the

complete set of transcripts in a cell) would not be up-to-date if it failed to mention

techniques based on high-throughput sequencing. Recent advances in DNA sequencing

technologies have resulted in the ability to obtain hundreds of millions of sequencing

reads (that can be aligned to a reference genome) in times and costs feasible for ap-
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plication to profiling a number of samples prepared by an individual laboratory. A

discussion of these technologies is presented in [Shendure and Hanlee, 2008].

Two applications of this technology are especially relevant here: the sequencing of

genomic fragments following chIP-based isolation to identify DNA-binding sites of a TF

of interest (chIP-seq), and the use of this sequencing technology to identify the abun-

dance of all RNA transcripts in a sample (RNA-seq). The technology affords a number

of advantages over microarray-based equivalents for each of the previously mentioned

applications. The ability to detect any transcript (not limited to those represented

by pre-specified probes) is advantageous both for measurement of unknown transcripts

and DNA-binding throughout the genome. Sequencing-based transcriptional profiling

(RNA-seq) offers the (theoretical) ability to quantify the absolute numbers of molecules

in a sample, clearly advantageous over the essentially arbitrary measurements provided

by gene expression microarrays. An example application of this technology to the study

of transcription in ES cells is described in [Cloonan et al., 2008].

This technology clearly presents a great opportunity for gathering useful transcrip-

tional data. Although the current status is that there exist data from vastly more

samples profiled using microarrays in the public domain, and thus large-scale meta-

analysis of gene expression data is only really appropriate for data from microarray

platforms, due to the projected expansion of RNA-seq technologies referred to in

[Wang et al., 2009] it may be pertinent to consider such data for incorporation into

gene expression data mining analyses in the future.

2.3 Gene Expression Data Mining

The enormous number of measurements made with microarray (and other transcrip-

tional profiling) technology presents an invaluable resource for studying the control of

biological processes [Li et al., 2004], but comes with the challenge of identifying pat-

terns in the data that can help us better understand gene function and the processes

that regulate transcription.

It may be especially useful to study patterns of gene expression across wide ranges of

cellular conditions as, while simple approaches may be applied to find genes with statis-

tically significant differential expression across small sets of related experiments, greater

insight into the biological functions of genes may be yielded by identifying patterns in

the expression of groups of genes across many experiments [Quackenbush, 2001].

This section includes a reiteration of some motivation for analysing collections of

independent microarray datasets together, followed by an outline of the wide range of
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existing approaches to mining gene expression data resources to gain insight into the

mechanisms of biological processes.

2.3.1 Meta-Analysis

The concept of ‘meta-analysis’ refers to the process of combining results from mul-

tiple, independent studies through the use of statistical techniques. In the context

of using gene-expression microarray data to make inferences regarding transcriptional

regulation, this involves the use of multiple datasets for a combined analysis. By con-

sidering data from multiple studies, one can theoretically reduce the impact on the

overall conclusions of the particular experimental practices used in each experiment

and the specific conditions in which the samples were cultivated and prepared. In this

way, confidence that the observed patterns and their inferred biological implications

are generally applicable can be increased. A discussion of some of the advantages of a

meta-analytic approach is presented in [Ng et al., 2003] in the context of machine learn-

ing, and in [Ramasamy et al., 2008], which refers to a large collection of applications

of meta-analysis of gene expression microarray data.

As most statistical tests used in analysis of gene expression data are designed for ap-

plication within an individual dataset, complications may arise in trying to combine the

results from repeated application of such statistical tests to multiple datasets in isola-

tion. For example, three independent studies, [Miura et al., 2004], [Sperger et al., 2003]

and [Sato et al., 2003] performed transcriptional profiling experiments on ES cells to

identify sets of ‘stemness’ genes associated with pluripotency, but only 7 genes (out of

a total of 2226 listed) were found to be common to the genelists published by the three

studies. It was demonstrated in [Suarez-Farinas et al., 2005] that repeatedly applying

the same statistical tests to identify genes with significant differential expression in each

of a number of datasets results in overly conservative assessment of overall significance,

and by combining the datasets together and performing a unified analysis of the in-

tegrated data considerably greater correspondance was shown between the individual

studies. The effect of repeatedly applying statistical tests to the same genes across dif-

ferent datasets was described in [Suarez-Farinas et al., 2005] as the ‘small intersection

problem.’ An admission that this problem was observed in a specific meta-analysis of

microarray data [Assou et al., 2007] attempting to study ES cell transcriptional regu-

lation provided further motivation for taking an approach in which the same analysis

method may be applied to the full collection of data at once.

A number of approaches have been designed to get around this so-called ‘small in-

tersection problem,’ with most involving statistical techniques specially designed for

meta-analysis so that results from independent studies can be integrated, and a re-

view of such approaches can be found in [Hong and Breitling, 2008]. A further de-

scription is given in [Moreau et al., 2003] and additional examples are presented in
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[Choi et al., 2003] and [Conlon et al., 2006]. There are also a number of methods

based on identifying a set of individual datasets that are ‘relevant’ to a particular

question, based on some query input (e.g. [Hibbs et al., 2007, Caldas et al., 2009,

Baughman et al., 2009]). These provide some advantage over choosing experiments

purely based on annotations [Caldas et al., 2009], but still restrict the data available

for making inferences. It has been demonstrated that, if possible, it is especially advan-

tageous to collect the (multiple) datasets together and use methods that can achieve a

‘unified’ meta-analysis of the combined data [Suarez-Farinas et al., 2005].

The goal of such ‘unified’ meta-analysis methods applied to integrated collections of

data is to increase the power to identify genes that are expressed at significantly different

levels between defined sets of biological conditions [Engelmann et al., 2008]. However,

to assist in our understanding of the transcriptional regulation of pluripotency, we are

especially interested in identifying relationships in gene expression between a set of

known transcription factors and any genes2 (potentially without known roles in our

processes of interest) in the genome. In order to pursue this goal with only methods

that apply tests to independent datasets in isolation, multiple independent datasets are

required, each involving significant differential expression of a combination of the tran-

scription factors of interest. It would also be required that this significant differential

expression be observed across cells with generally similar transcriptional programs, so

that gene expression patterns associated with the expression of the TF of interest can be

distinguished from gene expression patterns associated with different general biological

contexts. It would therefore seem advantagous to adopt alternative strategies for the

analysis of microarray data in order to identify transcriptional relationships between a

set of TFs and their potential regulatory targets. This reinforces the statement that

there is no single approach to analysis of microarray data, including large-scale meta-

analyses, that is appropriate for every application. It is clearly important to define the

biological question one wishes to answer by interrogation of the data, and use this to

decide upon the analysis approach taken.

An example application of meta-analysis of gene expression data to the study of

transcriptional regulatory mechanisms in ES cells is given in [Campbell et al., 2007].

In this study, a large and diverse collection of samples from adult and embryonic

stem cells as well as differentiated cells were profiled using gene expression microarrays

[Perez-Iratxeta et al., 2005]. The data was utilised in a series of correlation analyses

to identify genes that had expression profiles correlated to that of Oct4 across a large

proportion of randomly-sampled subsets of the whole collection of samples. A selection

of putative targets obtained via this correlation analysis were validated using ChIP to

confirm Oct4 binding to DNA proximal to the genes in question.

2or at least the representation of genes by probesets on a microarray platform
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2.3.2 Correlation & Clustering

An intuitive approach to the task of extracting biologically relevant information from

a whole set of gene expression data involves grouping together genes that share similar

expression patterns, as discussed in [Quackenbush, 2001]. There exist a great many ap-

proaches to gene expression data analysis based on the principle that, if the expression

of a number of genes is changing in similar ways across a group of microarrays, they are

likely to be involved together in some sort of biological process(es) that are occurring.

This is colloquially known as ‘guilt-by-association.’ One of the simplest ways of assess-

ing similarity in expression pattern is by calculating the Pearson correlation coefficient

between the expression profiles of each possible pair chosen from genes represented in

the dataset.

Based on this principle, the most widely used method (and some consider it too

widely used, as mentioned in [Allison et al., 2006a]) of illuminating order from a set of

gene expression data is that of clustering. Its goal is to classify genes into (unspecified)

groups based on their expression profiles. Clustering is generally a from of ‘unsupervised

learning’ in which a ‘distance metric’ (such as the correlation coefficient) is used to

group together the most similar entities, and these groupings are refined without any

feedback. Some forms of supervised clustering exist, but as our prior knowledge of

what the gene expression profiles should be across a number of samples is severly

limited [Eisen et al., 1998], such supervised methods are not especially appropriate for

our desired analysis tasks. There now follows a description of each of the two most

widespread clustering methods, and a short discussion of problems associated with the

clustering paradigm (and therefore common to all simple clustering methods).

Hierarchical clustering was applied to microarray data analysis in [Eisen et al., 1998]

and has since become one of the most widely used methods to analyse microarray

datasets. It works toward a goal of producing a ‘binary tree’ representation of the

genes and/or samples in the dataset. For example, a binary tree for the samples in the

dataset might be produced on the basis of a similarity score between each sample and

the others. This consists of a recursive organisation of the elements being clustered into

pairs. An example of such a hierarchical clustering of the samples from a microarray

dataset is shown in Fig. 2.6. One advantage of the hierarchical clustering technique

is that the tree structure enables examination of different levels of clustering, which

can lead to visualisations of the data that are both intuitive and useful for exploration

[Eisen et al., 1998].

Hierarchical clustering is not the only clustering approach that has been applied to the

analysis of gene expression data. ‘K-means’ clustering, as used in [Tavazoie et al., 1999],

works on the principle that a number (‘k’) of groups are pre-specified, and the genes

are subsequently classified into one of these groups through an iterative refinement
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Figure 2.6: Hierarchical clustering of samples in a microarray dataset, with each sample
represented by a column of the heatmap. Connected lines above the heatmap form the
sample dendrogram, with the dissimilarity between two samples reflected by the height
above the heatmap at which respective branches of the tree join.
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process. As with hierarchical clustering, this approach is based on a distance metric.

‘Self-Organising Maps’ (SOMs) are also used for the clustering of gene expression data,

and are essentially an extension of the k-means clustering approach, but with a prede-

fined structure relating the clusters to one another. An application of SOMs to gene

expression data analysis is described in [Tamayo et al., 1999].

The major shortcoming of the clustering paradigm when applied meta-analysis of

gene expression data is that groups of genes with expression profiles that are correlated

across the entirety of a large and diverse dataset may not represent groups of genes

that may be working together to cause an observed biological effect. A discrepancy

between these two types of groupings can arise from the fact that one gene can af-

fect the transcription of numerous others, and numerous other genes may affect the

expression of the gene in question. In addition, genes may have different roles and

different transcriptional relationships under different cellular conditions. For example,

Sox2 was shown in [Avilion et al., 2003] to be required in the mouse embryo for the

formation of epiblast but in neural lineages it was shown in [Ferri et al., 2004] to have

independent roles in neurogenesis and the proliferation of neural precursor cells. Sox2

is known to interact with Oct4 in the developing embryo (e.g. see [Masui et al., 2007])

but as Oct4 is not expressed in neural lineages the neural function of Sox2 must nec-

essarily involve a different network of transcriptional interactions. The existence of

such context-dependent transcriptional relationships imply that, especially when mi-

croarray experiments involve a large number samples covering a range of experimental

conditions, potential relationships within the data are missed because the clustering

method extracts only those groups of genes with ubiquitous, simple relationships (see

[Zhang et al., 2007, Li, 2002]). In addition, when we are concerned with large-scale

meta-analysis, as the number of samples in the dataset increases, the likelihood of

finding genes with strongly-correlated expression patterns across all samples decreases.

This disruption of correlation patterns will limit the potential to make confident infer-

ences regarding relationships within the data.

2.3.3 Non Cluster-Based Approaches

While the clustering-based methods make up the majority of cases of the type of meta-

analysis of gene expression data relevant here, a few alternative approaches have been

developed in attempt to avoid the limitations of clustering or the complexity of biclus-

tering.

One alternative to clustering approaches to data mining is the application of ‘pro-

jection’ methods (such as PCA [Massy, 1965], which is widely used in data analysis).

These aim to reduce the dimensionality of the dataset into a few weighted combinations

of gene profiles that explain the greater proportion of the overall variation in the dataset
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(eg. [Alter et al., 2000, Lee and Batzoglou, 2003, Liebermeister, 2002]). As the result-

ing components are weighted combinations of the genes in the dataset, it can be difficult

to translate these into any corresponding biological meaning [Hibbs et al., 2007]. An

approach known as ‘gene shaving’ was introduced in [Hastie et al., 2000] to use PCA

to identify clusters of genes with correlated expression profiles and a high level of vari-

ation across a dataset. Projection approaches have been demonstrated to be useful for

classification purposes (eg. [Nguyen and Rocke, 2002]).

Visualization of gene expression data can be used as a way of identifying structure

within the dataset, although this has primarily been performed in conjunction with

clustering (e.g. [Eisen et al., 1998]). Visualisations of the relationships between certain

elements represented in the data (e.g. genes), might have the potential for assisting

in the identification of the organisational nature of different transcriptional relation-

ships represented in gene expression data. However, those based on correlation (e.g.

[Jupiter and VanBuren, 2008]) still suffer from the same critical drawbacks that af-

fect any other approach based on the global correlation of the expression profiles, as

described in Section (2.3.2).

An interesting approach to studying gene co-expression relationships is taken in

[Li, 2002] and [Li et al., 2004], searching for ‘liquid associations’ between genes. These

are essentially groups of genes whose correlation dynamics across a certain range (in

the above studies, this range is the entire dataset) of samples can be explained by (i.e.

is correlated with) the expression of another gene or group of genes. This approach may

well be worth further study, but as yet these methods have not been applied to gene

expression data collections with thousands of samples (and so the order of a billion,

rather than a few million, measurements). Their feasibility for this scale of analysis

task is yet to be demonstrated.

A further approach, known as ‘Gene Recommender’ is presented in [Owen et al., 2003]

which uses a scoring system to weight individual datasets in a compendium according

to proposed relevance to a given set of query genes. This scoring is based on the

correlation between the query genes across each individual dataset. A number of sim-

ilar gene expression data mining methods based on this principle have been presented

[Hibbs et al., 2007, Baughman et al., 2009]. While in [Hibbs et al., 2007] (which looks

at gene function prediction), the authors state that restricting the analysis to con-

sider only whole datasets ‘utilises the diverse data in a biologically meaningful way,’

such approaches lose the ability to identify relationships in diverse biological contexts

as they are restricted to those relationships consistent across individual studies and,

critically, any patterns which may be evident across a group of samples comprising a

subset of samples in each of a number of individual datasets will be rejected. This

approach was employed to identify transcriptional regulatory candidates involved in

21



the oxidative phosphorylation system [Baughman et al., 2009]. Additionally, these ap-

proaches are dependent on the concept of a ‘dataset’ representing a concise biological

context, when in fact there is no precise definition of such a concept and as a result, in

practise an individual microarray dataset uploaded to a data warehouse may represent

transcriptional profiling used to identify differences across many biological contexts.

2.3.4 Biclustering

In an attempt to bypass the major problems associated with clustering, ‘biclustering’

formalises the approach of searching for groups of genes with expression profiles that

are correlated across some subset of the samples in the dataset. This allows potentially

more complex relationships to be elucidated [Cheng and Church, 2000], such as those

involved in the transcriptional regulation of many biological processes, even when the

dataset contains a large and diverse enough set of samples that a high level of correlation

across the whole dataset is only observed for genes with ubiquitous transcriptional re-

lationships. This ‘two-way’ clustering in which both rows and columns of a data matrix

are clustered simultaneously was introduced as a concept in the 1970’s [Hartigan, 1972],

but received relatively little attention until Cheng & Church applied it to the analysis

of gene expression data (in [Cheng and Church, 2000]), using the term ‘biclustering’

(introduced in [Mirkin, 1989]) to describe the approach. This section contains a de-

scription of the biclustering problem, the challenges arising from its application to the

analysis of gene expression data, and a summary of the types of available (existing)

methods.

The biclustering problem formulation given here is based on that given in the [Madeira and Oliveira, 2004]

survey of biclustering algorithms. Assume that a matrix of normalized gene expression

values has ‘n’ rows and ‘m’ columns. With the rows representing genes and columns

representing samples from which the data was obtained, a bicluster is a subset of rows

that exhibit similar behaviour across a subset of columns. That is, a bicluster repre-

sents a group of genes with correlated expression profiles over a subset of the samples

in the dataset.

To aid visualisation of the concept of a bicluster, the artificial example shown below

represents a matrix of gene expression levels for a number of genes in a number of

samples (‘conditions’). In Fig. 2.7(a), genes are grouped together in a ‘cluster’ when

they share similar expression patterns across the whole range of conditions, in a similar

way to the traditional clustering methods described in Section (2.3.2). Fig. 2.7(b)

demonstrates the premise of biclustering, grouping genes into a ‘bicluster’ from a subset

of conditions in which the genes share similar expression patterns.

With the condition that biclusters should be neither exclusive (as would be the case

if a gene could belong to only one cluster) nor exhaustive (as would be the case if
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(a) Traditional clustering method

(b) Biclustering method

Figure 2.7: Illustration of biclustering principle, with hypothetical gene expression
matrices for a number of genes (g1-g6) in a number of samples (c1-c8). Say a value of
1 represents up-regulated expression of a gene relative to a background expression level
and a value of 0 represents the background expression of the gene. In this case, global
correlation methods will identify genes that are up-regulated in a shared, exclusive
set of samples (as illustrated in (a)). Biclustering, however, enables the identification
of relationships involving shared up-regulation of a set of genes in a set of samples,
without considering other samples in which those genes may not display co-ordinated
up-regulation (as illustrated in (b)).
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every gene had to belong to at least one cluster) in regard to the data, there are many

possible ways of interpreting the statement “exhibiting similar behaviour” referring to

what constitutes a bicluster pattern. Correspondingly, there is a variety of the types

of biclusters that existing approaches may find. Whether or not it is desirable to find

biclusters of a particular type depends on the context of the problem, and so there

is no general ‘best approach’. However, considering the particular context is always

important in determining the type of biclusters to find, as well as in determining the

various optimisation techniques that may be employed by the algorithm to identify the

best biclusters according to the chosen criteria. As a given bicluster may span any

number of genes and any number of samples, in any data matrix there are enormous

numbers of potential biclusters from which to choose the ones that represent the ‘best

patterns’ in the data. To choose any bicluster over another, there must be some method

of scoring each individual bicluster. This score may be based on the size of the bicluster,

the degree of correlation of the values in the bicluster, or any other criteria (that may or

may not have some biological motivation). Again, as the bicluster scoring function may

be chosen to utilise characteristics of the samples or genes in the expression matrix, it

can be important to consider the particular context of the problem before deciding on

a scoring function. The survey of [Madeira and Oliveira, 2004] contains mathematical

descriptions of a range of possible approaches.

The problem of finding a set of biclusters (whether they are exclusive or overlapping)

to cover a data matrix is known to be NP-hard [Cheng and Church, 2000], as it is a

generalisation of the problem of finding a minimum set of bicliques to cover a bipartite

graph. ‘NP-hard’ is a class of computational complexity, with the significance that find-

ing all the exact solutions for an NP-hard problem is intractable. A detailed description

of NP-hardness and the theory of finding approximate solutions to such problems is

provided in [Hochbaum, 1996]. The complexity of the biclustering problem lends it-

self to the application of heuristics, techniques from the field of artificial intelligence

based on identifying a good solution to a given optimisation problem in a reasonable

time, when identification of the best solution is computationally impractical. Heuristic

techniques are discussed in detail in the following section.

A further point worth noting concerns normalization methods for gene expression

data, which are data transformation approaches applied to measurements from gene

expression microarrays in order to reduce technical variation between samples and

improve the comparability of data. A range of normalization algorithms exist for data

from a range of microarray technologies, with the performance of a number of the

most widely used methods for data from the Affymetrix GeneChip platforms assessed

in [Gyorffy et al., 2009]. Through the application of different normalization techniques

to a given set of gene expression data, it may be possible for a particular biclustering

algorithm to find biclusters of different types in the same dataset, corresponding to the
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particular normalization technique used. Therefore, the combination of normalization

method and biclustering approach to use should be considered in the context of the

particular dataset and the purpose of the bicluster analysis of the data.

2.3.5 Heuristics

In computer science, a ‘heuristic’ approach to solving a problem involves adopting

methods that aren’t guaranteed to find the best possible solution or aren’t guaranteed

to find a solution within a desirable limit of computation time, but find a ‘good’ solution

within ‘reasonable’ time in the vast majority of cases that are confronted. Finding the

solutions to many real-life problems can be seen as searching for cases that result in

the optimisation of given properties in a mathematical model, and many such real-life

problems are particularly appropriate for the application of heuristic techniques. For

example, finding the best possible bicluster in the biclustering problem defined above

with a ‘brute force’ search technique (that evaluates every possible solution) can involve

computation time exponential in the number of inputs, which would become infeasibly

large for any real application of biclustering. As biclustering can be formulated as

an optimisation problem, where the optimal solutions are those biclusters with the

highest score according to the defined evaluation function, the theory of heuristics can

be applied to biclustering to avoid the problems associated with the application of

‘brute force’ methods.

A ‘heuristic’ itself is a rule or guideline used to determine how to proceed with the

search for a solution to the problem in question. In searching for the best biclusters in a

dataset, the desirability of biclusters must be assessed according to some model reflect-

ing how well a bicluster captures an idealised transcriptional relationship in the data.

Owing to the fact that this idealised transcriptional relationship can only be expressed

in terms of numerical trends in the measured expression values, and yet the utility of a

discovered bicluster pattern in terms of guiding experimental research or answering a

particular biological question may depend on unavailable prior knowledge concerning

the genes and samples involved, the best bicluster according to the model may not be

the best bicluster in terms of the conclusions that can be drawn or predictions that can

be made on the basis of the uncovered relationships. As a consequence, heuristics are

particularly appropriate in the problem of biclustering, as it simply may not be worth

the considerable computational cost in order to guarantee that a given solution is the

best solution according to the specified model of bicluster desirability.

Local Search Heuristics

A ‘local search heuristic’ is a heuristic that guides the searching procedure based on the

current and ‘next-step’ states of the model. A local search heuristic does not take into

account general properties of the solution as a whole. All ‘greedy’ search techniques are
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examples of local search heuristics. A particularly relevant example of such a heuristic

is the greedy node-deletion technique employed in [Cheng and Church, 2000]. This al-

gorithm to find biclusters in gene expression data uses a node-based representation of

the bicluster which starts with a bicluster covering the entire gene expression matrix.

The algorithm proceeds by ‘pruning’ nodes from the bicluster until the bicluster’s con-

sistency score passes a threshold, δ. The heuristic employed determines the order to

remove entries from the bicluster, identifying the node responsible for the greatest dis-

ruption in the consistency across the bicluster. This heuristic is a typical greedy search

technique, at each step choosing the one that most improves the score. The advantage

of such greedy search techniques is that they reduce the search space explored by the

algorithm and thus speed up the optimisation process.

Problems with using local search heuristics arise when the ‘solution space’ is irreg-

ularly shaped - this corresponds to situations in which the best solution is not found

by taking every single step in the direction of the goal. In essence, this problem is the

fact that ‘local optima’ are not always ‘global optima’ - if a solution space is a land-

scape where a lower position corresponds to a better solution, a local search algorithm

proceeds analogously to moving downhill at every step. When the algorithm moves to

the bottom of a basin it will return the corresponding solution, rather than checking

to see if a deeper basin lies on the other side of the current basin’s lip. Examples of

this behaviour occur in complex optimisation problems, where local search techniques

are inapplicable [De Jong, 1975]. In the Cheng and Church biclustering algorithm, a

corresponding possible scenario would be removing a node that is present in a number

of good biclusters because there are a number of other nodes that are each present in

mutually exclusive biclusters but have lower dissimilarity. This would therefore exclude

any biclusters that include the removed node, regardless of the fact that removing a

number of other nodes first could result in biclusters with much improved score.

Global Search Heuristics

A ‘global search heuristic,’ in contrast to the local heuristics, takes into account proper-

ties of the solution as a whole. Generally this means the approach taken is not based on

constructing solutions in a stepwise manner, but forming whole solutions at each step

and improving these by various methods. The advantage of global search heuristics over

local search heuristics is that they can avoid the tendency to converge on locally opti-

mal solutions that are in fact far from the best solution [Mitchell et al., 1992]. Global

heuristic methods tend to be more sophisticated (and thus more complex) than local

search techniques [Toern and Zilinskas, 1989].

A relevant example of a global search heuristic is that of ‘simulated annealing’ ap-

plied to biclustering in [Bryan et al., 2005]. Such techniques can also be referred to as

‘stochastic search techniques’, as they incorporate a random element into the procedure
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that allows an equivalent of ‘backtracking’ through locally inferior solutions that lead

to eventual solutions that are superior. Another example of a global search heuristic

is the process of evolving solutions by means of a ‘genetic algorithm’ [Holland, 1975],

described in detail in [Goldberg, 1989]. In a genetic algorithm, possible solutions are

encoded as ‘chromosomes’ - as far as the algorithm is concerned, this is just a type

of data structure that is usually a string of bits, integers or characters. It is essen-

tial for the process to define a function in terms of the elements of the chromosome

which results in a score that reflects the desirability of the solution. This function is

called the ‘fitness function’. An initial ‘population’ of chromosomes is generated ran-

domly, or by any quick and arbitrary method, from which an intermediate population

is selected from members of this initial population (based on the fitness scores of each

chromosome). A ‘fitter’ chromosome will have more copies passed into the intermediate

population. Finally, ‘genetic operators’ are applied to the intermediate population in

order to create the next generation of the population, for which the processes from

selection to creating the next generation are repeated until either the best solutions

are found or a given number of iterations (generations) is exceeded. These genetic

operators include ‘reproduction,’ ‘crossover’ and ‘mutation,’ by which a chromosome is

passed straight into the next generation, two chromosomes are randomly combined and

then passed into the next generation, and every element of every chromosome is altered

with a given (low) probability, respectively. There is much potential for customising

the mechanisms of genetic algorithms, and potential application to biclustering (e.g.

[Chakraborty and Maka, 2005]).

2.3.6 Biclustering Algorithms

Since Cheng & Church’s initial paper on biclustering of gene expression data, there have

been a great many different methods developed to find biclusters in gene expression

data matrices. As the motivation behind the development of any bioinformatic data

analysis method should be to facilitate biological research, the ultimate demonstration

of effectiveness of such a method would surely be a body of biological research publica-

tions presenting significant findings identified through the application of the method.

However, owing to the time taken for such a body of evidence to emerge and the doc-

umented tendency in the bioinformatics research community towards development of

new analysis methods (particularly regarding clustering methods for microarray data

[Allison et al., 2006b]) over the application [Hibbs et al., 2009] of methods, few biclus-

tering algorithms are supported by results of application to biological research problems.

Therefore, it is important to consider how to assess the applicability of a biclustering

method to a given analysis task or biological research question.
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Evaluation of Biclustering Algorithms

In the two most widely-cited surveys of biclustering methods, Madeira & Oliveira

[Madeira and Oliveira, 2004] present a review of different types of model used to iden-

tify biclusters in expression data and algorithms used to find them, although present

no comparison in terms of performance, while Prelic et al [Prelic et al., 2006] evaluate

the performance of a small selection of the most popular biclustering algorithms by

examining recovery of implanted biclusters in artificial data and enrichment of Gene

Ontology (GO) [Ashburner et al., 2000] terms associated with the genes in each biclus-

ter retrieved from yeast microarray datasets. An examination of these surveys (and

many of the individual publications presenting novel methods) highlights the under-

lying cause for the confusion regarding biclustering methods: determining the degree

of success with which a biclustering algorithm fulfils its desired role in biological re-

search, through the analysis of gene expression data, is fundamentally difficult. Myers

et al remark on the lack of appropriate evaluation frameworks for gene function pre-

diction via analysis of gene expression data [Myers et al., 2006], pointing out critical

flaws in the prevalent approaches (used in those cases where such evaluation is not

ignored altogether), but their evaluation framework is based solely on the task of gene

function prediction and may not be appropriate to evaluate any of the other potential

applications of biclustering. This hints at the root of the evaluation problem, which is

that meaningful evaluation of the application of a biclustering method to a biological

research problem depends on the problem in question. As a gene expression bicluster

is a pattern in expression data and not an answer to a specific biological question in

itself, such meaningful evaluations ought also to take into account the ways in which

the information contained in a set of biclusters might be harnessed to provide an answer

to specific biological questions.

Therefore, evaluation of the biological application of a biclustering algorithm can be

considered in two separate parts:

1. How effectively does the algorithm find the intended patterns of interest in gene

expression data, within feasible limits of time and computational resources?

2. How do those patterns in the data assist in the answering of the specific biological

question?

Again, this reinforces the statement made earlier that the best approach to take for

a given task may depend on the particular task at hand, and in this case, identifying the

most suitable biclustering algorithm for utilisation of large datasets to provide insight

into transcriptional regulation of expression of key pluripotency genes would require a

demonstration of comparitive successes of available algorithms in being used for similar

problems.
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Biclustering Algorithms for Meta-Analysis

The majority of biclustering methods available have been developed and tested for

application to individual, (relatively) small microarray datasets. This is primarily

due to the complexity of the biclustering problem, but as a result of this limitation,

many potential pitfalls of applying this promising approach to mining very large col-

lections of microarray data have not been studied. Some problems are mentioned in

[Hibbs et al., 2007], such as ‘sensitivity to noise, inability to work with data from di-

verse conditions’ and that the methods are ‘prohibitively slow.’ These are all problems

that have the potential to affect biclustering algorithms, and should be considered when

identifying approaches which may be suitable for the task at hand, but are by no means

insurmountable.

The fundamental motivation of whole-data biclustering is that we are interested in

any significant patterns in relationships between the levels of transcription of groups of

genes as they co-vary across samples within the data. This interest in related expression

patterns of genes is retained across any subset of the samples from a collection of

gene expression data on the grounds that the covarying pattern itself represents some

interesting (and potentially useful) transcriptional signature shared by those samples.

This is a statement of the principle that the presence of a significant bicluster in the

data is effectively an association of that set of genes to a common biological process or

state shared across those samples. At the very least, the identified set of genes, sharing

an expression pattern across the subset of samples, represents a signature from which

the biological significance of the grouping may be inferred.

Where searching for patterns across large numbers of samples, there is a higher

chance of observing apparently significant expression patterns out of random fluctua-

tions in measurement values. This issue, referred to as finding patterns in noise, must

be considered when applying biclustering to large collections of data. Provided the sig-

nificance of any pattern can be evaluated in terms of how unlikely that pattern could

have arisen purely by chance, the scale of the datasets used for inference ought to be

irrelevent. However, it may become significant when a pattern of interest occurs in

such a small subset of the data that it is indistinguishable from random fluctuations in

measurements that occur throughout the data. A similar problem applies in principle

to any method attempting to use a large amount of data to reinforce the ability to make

inferences. For example, when using a dataset-selection approach, the more datasets

included in the analysis, the more important it becomes to consider the number of

datasets deemed significant and the proportion of all the datasets in which a given co-

expression relationship is observed. This in turn results in the same problem mentioned

earlier in this paragraph, where a significant biological pattern is only present in a small

set of those experiments included, and is no more likely to have been observed than

one by chance. As a result of this potential problem, it is always useful to have data
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concerning the relevant biological context that is not included in the analysis, so that

observations made can be tested for generalisability beyond the original data matrix

queried.

Finally, the complexity of the biclustering problem results in a critical limitation

regarding the suitability of biclustering algorithms to the task of meta-analysis of large

collections of gene expression data. As mentioned above, the time taken to identify

the optimal solution to the problem of finding a given set of biclusters in a dataset

through exhaustive search can increase exponentially with each additional row or col-

umn included in the dataset. The large collections of gene expression data available

for the proposed meta-analysis result in data matrices containing tens of thousands

of rows and tens of thousands (or even more) of columns to search through to find

relevant biclusters. As the application of a biclustering approach to meta-analysis of

large collections of gene expression data is yet to be reported, computational optimi-

sation of existing biclustering algorithms has been limited to consideration of tens of

thousands of genes but only rarely as many as a few hundred samples and, until two

recent publications describing more efficient biclustering approaches ([Li et al., 2009]

and [Huttenhower et al., 2009]), never more than a few hundred samples.

2.3.7 Data Integration

As a final comment on analysis of transcriptomic data, it should be mentioned that

attempting to gain a full understanding of transcriptional regulatory processes by in-

ference from gene expression data alone may result in incomplete conclusions (eg.

[Husmeier, 2003]). In order to improve upon that part of our understanding gained

from inferences from gene expression data, it would be pertinent to incorporate evi-

dence obtained from different experimental approaches and that may capture different

aspects of the behaviour of these biological systems.

The transcriptional control of biological processes can be influenced by sets of tran-

scription factors which bind to regulatory sequences in DNA, individually or in com-

plexes, and combinatorially affect the transcription of target genes. A key to gaining

an understanding of the combinatorial actions of various TFs, and thus the transcrip-

tional control of biological processes of interest, may lie in the use of genome-wide

DNA-binding information to identify which genes may be regulated by TFs of interest

(and in what combinations) in concert with gene expression data to determine the tran-

scriptional effects of the observed combinations of the TFs binding to DNA proximal

to certain ‘target’ genes.

To this end, a number of techniques have been developed for integrating results from

gene expression datasets and TF binding data, such as from high-throughput chIP ex-

periments as described in [Bar-Joseph et al., 2003], [Wu et al., 2007], [Chen and Stoeckert, 2007],
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[Lemmens et al., 2006] and [Li et al., 2008]. Integrated computational approaches to

predicting gene function or for predicting transcriptional regulators have recently been

shown to succesfully provide candidates for experimental investigation in both [Hibbs et al., 2009]

and [Baughman et al., 2009].

These results suggest that, when a biclustering algorithm has been used to identify

co-expression relationships involving TFs of interest, additional insight into the action

of these TFs and the mechanisms by which they regulate processes of interest may

be gained by utilising the bicluster patterns in conjunction with genome-wide binding

information (available through high-throughput ChIP experiments).

2.4 Research Objectives

In the context of the potential for the wealth of publicly available gene expression

data to be utilised in the study of transcriptional regulation of biological processes (as

discussed in Section (2.3)) the major objectives of the work presented in this thesis

were as follows:

1. Produce a means of performing biclustering analysis on large collections of gene

expression data involving thousands of samples, and to use this to investigate

the impact of taking different approaches to bicluster analysis of datasets on this

scale.

2. Identify data preprocessing techniques and bicluster evaluation approaches that

improve upon naive biclustering approaches, in terms of the utility of output from

large-scale meta-analysis of gene expression data for the study of the transcrip-

tional control of biological processes.

3. Produce a data mining approach to identify localised transcriptional regulatory

patterns of relevance to a particular biological research question, from large col-

lections of gene expression data.

4. Utilise large-scale gene expression meta-analysis to investigate the transcriptional

mechanisms of control of pluripotency by the key transcriptional regulators Oct4,

Sox2, Nanog and cMyc.
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Chapter 3

Development Of Biclustering For

Large-Scale Gene Expression

Data Mining
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This chapter begins with a restatement of the motivation for finding an algorithm

capable of performing biclustering on such a large scale, followed by an explanation of

the unsuitability of all algorithms available at the time this work was carried out. A

novel approach to the biclustering problem is presented that overcomes the main issue

in applicability to large-scale meta-analysis of gene expression data: the significant

increase in the time and memory required to find the desired solution(s). An approach

to evaluation of such an algorithm is described and the success of this novel approach is

demonstrated in terms of its ability to recover biclusters in large datasets under feasible

time-constraints, contrasting with the best-performing existing alternatives.

A study was performed to investigate the consequences of taking different approaches

to biclustering for meta-analysis of gene expression data from up to thousands of sam-

ples. Pitfalls discovered in the application of biclustering to meta-analysis of large

collections of gene expression data are presented along with ways in which certain

approaches to biclustering can be used to circumvent these problems.

3.1 Motivation

It has been demonstrated for a number of cases of whole-genome gene expression data

analysis that the reliability (in the form of general, repeatable results) of conclusions

attained through performing inferences based on this data can be increased by ex-

amining trends in multiple datasets. For examples, see [Suarez-Farinas et al., 2005],

[Wennmalm et al., 2005], [Sohal et al., 2008] and [Cahan et al., 2005]. Intuitively, this

can be explained by the fact that such in-depth assays as measure transcriptomic expres-

sion levels capture an incredibly detailed state of transcription in those cells assayed,

which may reflect precise environmental (not to mention culture and sample prepara-

tion) conditions in addition to the biological state of the cells in a broader sense that is

being studied. It is also true that the majority of samples with publicly available tran-

scriptional profiles represent populations of cells, which may have varying degrees of

heterogeneity. By searching for expression patterns consistent across multiple different

sets of biological samples, this increases the power to look over more specific environ-

mental effects and measurement noise [Warnat et al., 2005] & [Hong et al., 2006].

As an extension to the concept of selecting multiple datasets and searching for pat-

terns consistent across these individual datasets, the biclustering paradigm may be

applied to large collections of data from potentially heterogeneous biological samples,

in order to identify coherent co-expression patterns that are consistent across subsets

of all those samples represented in the data. As the number of samples used in the col-

lection of data increases, the biological heterogeneity across these samples increases. A

consequence of this is that unless the expression association is truly ubiquitous across all

aspects of biology represented in the data, the chance of any desired co-expression pat-
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tern being observed across all samples decreases. The availability of increasingly large

and heterogeneous collections of gene expression data therefore implies that discovering

‘local’ structures within data, as identified through biclustering, becomes increasingly

more appropriate for the meta-analysis of this data than search for ‘global’ patterns

that are uniform and consistent across all the data.

Biclustering analysis provides the opportunity for automated discovery of localised

expression patterns within a dataset, indicating transcriptional relationships that are

reflected in the data available for certain genes and certain biological contexts. The

ability to infer transcriptional relationships between sets of genes, and to identify bio-

logical context(s) across which these relationships are observed to be consistent, would

therefore be improved by including data from as many samples and as wide a range

of biological conditions as is possible. Therefore, an algorithm capable of performing

biclustering across as large and diverse gene expression datasets as can be appropriately

assembled was required.

3.2 Challenges

The first major challenge in applying biclustering to very large collections of gene ex-

pression data is the computational complexity of the problem. Let us generalise the

definition of the biclustering problem given in Section (2.3.4) to that of finding some

specified pattern across subsets of the genes and subsets of the samples in the dataset,

and in order to have some practical usefulness, identifying the submatrices (genes &

samples) within the whole data that reflect the best instances of this specified pattern.

Without further restrictions on the structure of a bicluster, every single submatrix in

the data has the potential to be a bicluster that shows the pattern of interest. In order

to find which were the best biclusters in a dataset with n rows and m columns, one

would have to evaluate the bicluster-pattern for each of the O(n!m!) possible biclus-

ters. Obviously, as the data matrices involved grow to contain thousands of rows and

thousands of columns, this makes such exhaustive searches impractical.

This major challenge influences the design of all algorithms for biclustering of gene ex-

pression data. As described in Section (2.3.6), there have been a number of approaches

taken to applying heuristic search methods to biclustering, such as those utilised

in [Cheng and Church, 2000], [Bryan et al., 2005] and [Chakraborty and Maka, 2005].

BiMax [Prelic et al., 2006] and SAMBA [Tanay et al., 2002] perform exhaustive search

after preprocessing of the data according to a simple model, which has the effect al-

lowing quick reductions of the solution search space. Other techniques involve both

preprocessing and heuristic search techniques, such as ISA [Bergmann et al., 2003].

The work presented in Sections (3.4-3.5) was performed in 2006-2007, shortly after the
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publication of a study comparing the performance of a number of the most widely-used1

biclustering algorithms [Prelic et al., 2006]. The [Prelic et al., 2006] study was used as

a starting point for assessment of the suitability of existing biclustering algorithms for

large-scale meta-analysis.

Those biclustering algorithms available at the time of performing this work were

searched to find those designed for scalability and computational efficiency, so that

the best candidates for application to large collections of microarray data could be

identified. In testing the performance of such algorithms, it quickly became apparent

that none had been designed for application to data collections involving very large

numbers of samples. Even those which were reported to be efficient and apply to large

datasets (that is: BiMax, OPSM [Ben-Dor et al., 2004] and SAMBA) were unable to

process microarray datasets involving more than a few hundred samples (in fact, not

more than 20, 100 and 200 samples, respectively) when the arrays had approximately

45,000 probes.

A relatively recently published paper reported a “lack of effective and efficient al-

gorithms for reliable solving the general biclustering problem” [Li et al., 2009]. The

authors presented a novel biclustering algorithm and make the claim that no other

algorithms could identify biclusters in a dataset containing 1,000 samples when the

number of genes in the dataset increased beyond 12,000. However, due to the fact that

the work described in this chapter was performed over 2 years prior to the publication

of the only feasible approaches to large-scale biclustering analysis, it was essential to

develop a novel method for identifying biclusters of interest in vast data matrices before

the potential benefits of the application of biclustering approaches to meta-analysis of

gene expression data could be explored.

3.3 Creation Of A Large Gene Expression Dataset For

Meta-Analysis

In order to perform large-scale meta-analysis of gene expression data from as com-

prehensive a collection of data as possible, a large number of individual microarray

samples would have to be obtained. At the time of performing the work presented in

the remainder of this chapter (in 2008), the GEO repository listed over 9, 000 samples’

worth of data available from the Affymetrix MOE430v2 platform, which represented

the largest collection of mouse gene expression data from a single platform that could

be obtained. The mouse (Mus musculus) was chosen to be the focus of study through

the course of this work, as it is in the mouse that the majority of mammalian ES cell

1this use has primarily been restricted to validation and comparison with other biclustering methods
as there has been little reported application of biclustering approaches to biological problems

35



experimentation has been performed (due to the (until recently unique) ability to de-

rive germline-competent mouse ES cells [Buehr et al., 2008]) and thus for which most

data is available for study of the transcriptional control of pluripotency.

Raw data in the form of .CEL files were obtained from the GEO repository and a

list of available files for a large data compendium was created by filtering out those

files incompatible for normalization with the others or those files that represented du-

plicates of samples uploaded under alternative filenames. Following this filtering step,

raw data from 7, 990 samples was available to be collated into one gene expression data

matrix. Given that the samples came from microarrays processed in a large number

of different laboratories, technical variation in the measured intensity values between

each experimental set would have to be ‘normalized out’ by some quantile normaliza-

tion process. Given the success of the RMA normalization approach applied to large

collections of data (as mentioned in [Goldstein, 2006, Katz et al., 2006]), this approach

would be desirable for application to the collection of data described here. However,

computational limitations required a sampling-based approach (such as Extrapolation

Averaging [Goldstein, 2006] or RefRMA [Katz et al., 2006]) to calculate required nor-

malization parameters on a number of randomly-sampled subsets of the data. The

RefPlus [Harbron et al., 2007] package in R provides a means for calculating RMA pa-

rameter sets from a given set of .CEL files and subsequently using those parameters to

apply RMA normalization to any other set of .CEL files. Using the functions provided

in the RefPlus R package, RMA normalization parameter sets were calculated for each

of 5 randomly-sampled subsets of 100 .CEL files from the list of all available samples, as

illustrated in Fig. 3.1. These numbers were chosen as the largest feasible for the imple-

mentations provided with the computational resources available at the time. Evidence

from [Katz et al., 2006] suggests that any more than 4 subsets of 50 randomly-chosen

samples ought to be sufficient for a large, diverse dataset of similar size to the one

utilised here. The complete set of raw data from the 7, 990 samples was normalized by

RMA using each of these parameter sets in turn, creating 5 complete data matrices.

The final dataset was obtained through calculation of the average expression value (for

each gene in each sample) across these 5 single parameter set normalized data matrices,

as illustrated in Fig. 3.2. Annotations were obtained for all the samples in this dataset,

including the GEO accession number corresponding to each sample so that full details

could be looked up as required.

The dataset normalization approach described above provides an additional ad-

vantage, so long as the normalization parameter sets are kept available. These pre-

computed parameter sets may be applied to any additional data in isolation, allowing

it to be examined in the context of the existing compendium without need to re-

normalize this large dataset. This allows for extendability of a large data compendium,

with relatively straightforward incremental updating of the compendium as and when
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new datasets become available.

37



F
ig

u
re

3.
1:

G
en

er
at

io
n

of
R

M
A

n
or

m
al

iz
at

io
n

p
ar

am
et

er
se

ts
fo

r
su

b
se

ts
of

a
la

rg
e

d
a
ta

se
t

38



F
ig

u
re

3.
2:

N
o
rm

a
li

za
ti

o
n

o
f

a
la

rg
e

d
at

as
et

th
ro

u
gh

ex
tr

ap
ol

at
io

n
av

er
ag

in
g

w
it

h
a

n
u

m
b

er
o
f

p
re

-c
om

p
u

te
d

R
M

A
n

o
rm

al
iz

a
ti

on
p

a
ra

m
et

er
se

ts

39



3.4 Development Of An Efficient Biclustering Approach

Given the lack of available algorithms that could be used for taking a biclustering

approach to large-scale meta-analysis of gene expression data, in order to explore the

possible benefits of such an approach to this type of data analysis it was necessary to

develop novel biclustering methods optimised for efficiency in terms of the number of

samples represented in the data matrix. This section describes a reformulation of the

biclustering problem for the intended meta-analysis tasks that enable a scalably-efficient

algorithm to be devised.

An illustration of this reformulation of the biclustering problem in terms of a maximal-

geneset biclustering principle is given below as part of the description of a proposed

exhaustive combinatorial approach. The resulting search space of O(m!) biclusters be-

comes so large that such an exhaustive approach becomes infeasible as the number of

samples in the data matrix increases significantly. For this reason, elements of the com-

binatorial approach were incorporated into a global search heuristic framework based

on genetic algorithms. The final part of this section describes the efficient genetic

algorithm for large-scale meta-analysis of gene expression data.

3.4.1 Reformulation Of Biclustering Problem

Utilising a property of the desired solutions from the intended biclustering analysis, it

was possible to reduce dramatically the number of potential bicluster solutions that an

algorithm would have to search through. As any bicluster in a gene expression data

matrix involves an expression pattern that holds across some subset of the available

genes across a subset of the available samples, it would always be desired to identify

the maximal subset of the genes for which that bicluster pattern holds across the

given subset of samples. Therefore, provided the maximal subset of appropriate genes

could be identified (easily) for any subset of the samples represented in the data, the

‘gene dimension’ of the bicluster search could be disregarded. Correspondingly, for any

specified bicluster pattern definition that allows the maximal subset of genes fitting the

bicluster pattern for any subset of samples, the search through all potential biclusters

in a data matrix of n genes and m samples is reduced from O(n!m!) to O(m!).

3.4.2 Identifying Biologically-Relevant Gene Expression Patterns

The patterns we are hoping to reveal through biclustering analysis relate to levels of

gene expression, ideally in terms of the biological consequences associated with given

levels of expression for a particular set of genes. As the most comprehensive resources

of genome-scale expression data at present (that is, GEO and ArrayExpress) come

from gene expression microarrays that tend to measure accurately only relative (not

absolute) levels of gene expression (as described in [Draghici et al., 2006]), large-scale
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meta-analyses of this data intended to uncover biologically relevant information regard-

ing relationships in the expression of certain genes in samples under certain conditions

will require some way of expressing the gene expression measurements in a manner

that is suitable for comparison across different samples. Typical analysis of individual

microarray datasets aims to identify patterns of differential gene expression between

different groups of samples. For a full meta-analysis that considers every combination

of samples in a data matrix (such as the biclustering proposed here) to identify blocks

of differential expression patterns, it would then be necessary to have all measurements

in terms of a biological state of differential expression compared to some reference level.

As noted in [Madeira and Oliveira, 2004], most biclustering algorithms involve a pre-

processing or normalization step to convert the expression measures into a form or scale

that enables such comparisons to be implicitly incorporated into the pattern-mining.

Furthermore, even in a situation where the technical considerations of gene expres-

sion measurement described above did not apply and a comprehensive and completely

reliable compendium of absolute mRNA concentrations existed (such as if a ‘perfect’

microarray data normalization were to exist or if a perfect measurement platform were

used widely enough to produce such a body of data), the fact that a particular variation

in expression level of different genes can have different biological consequences motivates

us to take an approach in which the variation in expression level of tens of thousands

of genes can be considered simultaneously in terms of a unified scale capturing the

biological significance of such variation. Therefore, the novel biclustering approaches

presented in this chapter have been developed for application to a gene expression data

matrix that has already been pre-processed so that the values of the matrix represent

a biological ‘state’ of expression as opposed to some numerical intensity value.

In order to retain the focus of this chapter on the development of efficient biclustering

algorithms suitable for meta-analysis on the desired scale, it is assumed here that there

exist such pre-processing or normalization step as those described above. A comprehen-

sive treatment of the study of such methods is the focus of Chapter 4 of this thesis. The

assumption taken here is that we have a pre-processed gene expression dataset where

the measured expression values have been converted to symbols representing a biological

state of expression of the respective gene in the respective sample. This is analogous to

a call of differential expression with respect to some uniformly-applied biological base-

line of expression for that gene. Examples of methods for such pre-processing steps can

be found in [Tanay et al., 2002, Prelic et al., 2006, Li et al., 2009].

3.4.3 Resulting Optimisation Problem

If we have a gene expression data matrix with values representing the biological ex-

pression ‘state’ of a particular gene (row) in a particular biological sample (column),

criteria for bicluster membership that can be applied to all genes represented for any
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given subset of the samples represented in the data matrix, and a measure of desirabil-

ity of any bicluster, then we can search through the space of all biclusters (that is, all

possible subsets of the set of all samples) to find those that are maximal in terms of

the desirability measure.

The biclustering paradigm is presented as an optimisation problem where we search

for optimal biclusters in a dataset according to definitions of bicluster-membership (for

genes) and overall bicluster desirability. In this framework, assuming good solutions

to the optimisation problem can be found, it is clear that the precise definition of

bicluster desirability that is used will be crucial in determining the success of the whole

approach. As the majority of publications regarding biclustering methods tend to focus

on the search mechanism for finding optimal biclusters in a data matrix, rather than

the effect of the scoring system used to evaluate bicluster desirability, this is an aspect

of the application of biclustering to gene expression data that appears to have received

relatively little attention.

The major technical focus of the remainder of this chapter deals with, in some form or

another, the development of different measures of bicluster desirability and evaluation

of the success of application of the resulting algorithm to tasks in meta-analysis of gene

expression data. However, the following section assumes a straightforward approach

(described below) to measuring bicluster desirability in order to establish the potential

for using the above optimisation problem as a framework for applying biclustering to

large-scale gene expression datasets.

3.4.4 Exhaustive Combinatorial Approach

As a framework from which more efficient heuristic methods could be developed, an

exhaustive approach to the optimisation problem described in Section (3.4.3) was imple-

mented, termed ComBiclust2. The ComBiclust implementation enabled a preliminary

demonstration of the feasibility of application of the defined bicluster optimisation task

to meta-analysis of gene expression data. The principal motivation for adopting an

exhaustive enumeration approach was to provide a platform upon which global search

heuristics could be implemented for large-scale application of biclustering, avoiding the

use of greedy local search heuristics (see Section (2.3.4) for a discussion of these different

approaches).

The ComBiclust algorithm consists of three components that are described below.

Firstly, a data discretisation approach is taken to satisfy the pre-processing assumptions

discussed in Section (3.4.2), then the algorithm proceeds the possible combinations of

samples (and thus, all possible biclusters) by pairwise combination of genelists in a

2from ‘combinatorial biclustering’
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‘generational’ cycle until all combinations have been evaluated. Both the generational

cycle and the mechanism for combining lists are described below. A summary of results

of application of this algorithm is given following the algorithm description.

Discretisation

As discussed in Section (3.4.2), the aim of ComBiclust (and of all the biclustering

methods introduced in this chapter) is to perform biologically-motivated meta-analysis

of gene expression data by identifying sets of genes with consistent expression states

across a set of samples. A number of established biclustering algorithms take the

approach of classifying genes as ‘upregulated’, ‘downregulated’ or neither in each sample

represented in the data matrix. The approach taken in SAMBA [Tanay et al., 2002] and

XMotif [Murali and Kasif, 2003] is to assume that all genes’ expression levels across all

samples in the data matrix are normally-distributed, and so any values lying outside the

range of µ±σ are significantly ‘differentially expressed’ according to the assumed general

reference expression level: those values greater than µ+ σ are classed as ‘upregulated’

and those values lower than µ− σ are classed as ‘downregulated.’ As is demonstrated

in Chapter 4 of this thesis, individual genes have widely varying distributions across

large collections of gene expression data and the assumption that all genes’ expression

values are normally distributed is clearly far from accurate. However, this approach is

undoubtedly simple and effective to the extent that both SAMBA and XMotif report

biologically significant biclusters in their results.

As an improvement upon discretisation based on applying a normal distribution

threshold, the approach taken for ComBiclust was to use a ‘cluster-based discretisa-

tion’ that assigns expression states to gene expression values. This entails, for each

gene, performing n k-means clusterings (see [Hartigan, 1975] for description) of the

expression values for k = 1, ..., n. A cluster statistic is used to evaluate the cluster

assignments and choose the best k: either the ‘gap’ statistic [Tibshirani et al., 2001]

or a less computationally intensive custom clustering statistic, defined in the following

paragraph. To initialize each k-means clustering, the k centroids are placed at the mean

of the values separated by the k − 1 largest inter-value distances.

A custom clustering statistic is calculated for each gene to give a quick guideline of

whether or not to assign the gene one cluster or two. It takes into account the range of

values and mean value for the gene, in relation to the average range and mean of each

gene in the entire dataset. This is motivated by the fact that genes with less variation

across the samples are less likely to correspond to differences in the transcriptionally-

regulated processes occurring in those samples, and the fact that intensity-dependent

effects tend to result in wider variability at high levels of measured gene expression.

The clustering statistic for a given gene, si, is given in Equation (3.1).
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si =
(ri
r̄

)
/

(
µi
µ̄

)
(3.1)

Where ri and µi are the range of values and mean value for gene i. r̄ and µ̄ are

the average range and mean value of each gene across the dataset. Calculation of r̄ is

shown in Equation (3.2).

r̄ =
1

n

n∑
i=1

ri.∀ genes i ∈ {1...n} (3.2)

The cluster statistics and assignments are calculated for each gene, ignoring any

missing values. The missing values are then assigned to the cluster representing ‘back-

ground’ expression of that gene. This avoids impution of non-measured values or ig-

noring the gene altogether. If a matrix of Present/Absent flags is available, this can

be used to mark as missing any values flagged as Absent. The discretisation process is

summarised in Algorithm 1.

Input: Matrix of gene expression values, M

Output: Matrix of discretised expression levels, D

Create empty discretised matrix, D ;

foreach Gene i do

Calculate cluster statistic si ;

if si < θ then

Set all values M(i, ...) = 0 ;

else

Perform k-means clustering of M(i, ...) with k = 2 ;

foreach Sample j do

if ClusterAssignments(i, j) = 1 then

Set D(i, j) = 0 ;

else

Set D(i, j) = 1 ;

end

end

end

end
Algorithm 1: discretisation of gene expression matrix

Generational Cycle

Once the data has been discretised, a combinatorial approach is taken to finding the

submatrices within the whole data matrix that contain consistent expression patterns.

In this combinatorial approach, all possible biclusters are enumerated by considering

the data in terms of ‘Consensus Lists.’ Such a Consensus List describes a subset of
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all the samples and all those genes that contain consistent patterns across the given

subset of samples. In this way, a Consensus List represents a bicluster within the data.

If each column of the discretised data matrix is used to create a population of ‘sample

lists’ (i.e. Consensus Lists containing only one sample) then all the possible biclusters

can be found by combining these sample lists in every possible way.

Using a fast method of combining two Consensus Lists, a bounded procedure for

evaluating all possible biclusters is possible using a generational approach to the com-

binations. In this generational approach, a collection of consensus lists is created and

then iteratively expanded and refined using non-redundant pairwise combinations of

the consensus lists in the collection and each of the sample lists. In order to keep

track of the best biclusters, a maxbiclusters list is created that contains bicluster

objects for the highest scoring biclusters according to the bicluster desirability crite-

rion. An example of such a bicluster desirability criterion, and in fact the most widely

used measure, is simply the product of the number of genes and number of samples

in that bicluster. This is motivated by the simple assumption that a larger bicluster

is less likely to exist in the data purely by chance. The topic of assessing bicluster

desirability will be revisited later in this chapter, but the early work on development

of efficient biclustering algorithms presented here used this simple method based on a

näıve model of the probabilities of biclusters appearing in data by chance. Each time a

new consensus list is created, if its score is higher than one of the maxbiclusters then

that bicluster is replaced by a new bicluster corresponding to the new consensus list.

This expansion/refinement to form each subsequent generation is iterated nsamples-1

times, where nsamples is the number of samples in the dataset (i.e. the number of

columns in the expression matrix). The approach outlined here saves the procedure

from having to explore every single combination of samples when the situation arises

that there are no common patterns across a particular combination of samples. When

such combinations are found, they are not passed into the subsequent generation and

therefore any further expansion of those consensus lists is ignored. If the generation

size ever reaches zero, the iterative loop is terminated. Once the loop has terminated

(either due to a zero-sized generation or due to the iterative procedure having run its

course), the list of the best biclusters is returned.

Combining Genelists

The combinatorial approach to the biclustering problem described above requires a

fast method for combining lists of patterns associated with the relevant genes and

samples. This method is implemented as the combine lists function in the novel

algorithm, which uses the set inclusion operator to determine the list of genes common

to both lists and then those genes with identical ‘patterns’ (i.e. those assigned to the

same expression class) in both lists. The lists of samples from both consensus lists are

combined (ignoring duplicates) and sorted. The resulting consensus list object is a
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list of vectors with three components: those common genes with identical patterns, the

patterns associated with those genes, and the samples whose sample lists have been

combined in the process of building this consensus list.

Overall Procedure

The components described through Section (3.4.4) were incorporated into a combina-

torial biclustering algorithm described in Algorithm 2.

Input: Gene expression data matrix, M
Output: Set of biclusters, B, maximising some desirability score
Calculate discretised data matrix, D (as in algorithm 3.1) ;
Initialise set of optimal biclusters, B ;
Initialise set of sample lists, SL, to the individual columns of D ;
Initialise set of consensus lists, CL, to SL ;
foreach Generation n from 1 to |SL| do

Create (empty) set of new consensus lists, NL, for generation n ;
foreach Consensus list CL(i) do

foreach Sample list SL(j) do
Combine (CL(i), SL(j)) to give NL(i, j) ;
Evaluate bicluster desirability score, F (NL(i, j)) ;
if ∃k.F (NL(i, j)) > F (B(k)) then

Set B(k) = NL(i, j) ;
end

end

end
Replace CL with NL ;

end
Algorithm 2: ComBiclust: exhaustive combinatorial biclustering algorithm

Application Results

The ComBiclust algorithm was tested alongside SAMBA [Tanay et al., 2002] to give

some reference for assessing the performance of the novel algorithm in terms of state-

of-the-art approaches. The ComBiclust algorithm is featured here only as a starting

point for development of further methods which have been evaluated more comprehen-

sively, so only a brief summary of the evaluation results for the ComBiclust algorithm

are presented here. First, artificial datasets were generated and analysed to test the

algorithms’ ability to recover known implanted biclusters. Second, biclustering was

performed on a subset of the GNF Gene Atlas mouse gene expression compendium

dataset [Su et al., 2002] so that the biological relevance of biclusters discovered by each

of the algorithms in a real dataset could be examined. The consistency of the bi-

clusters found by ComBiclust are demonstrated with expression data heatmaps shown

in Figures (3.3-3.5). In each case highly-specific biclusters were found for meaningful

subsets of samples and with consistent gene expression patterns. Furthermore, the
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highest-scoring bicluster found in the noiseless artificial data (Figure 3.3) coincided

exactly with the implanted bicluster, and the highest-scoring bicluster found in the

noisy artificial data (Figure 3.4) was a component of the implanted bicluster (but also

included genes that were consistently differentially expressed by chance). It may also

be worth noting that in analysis of the real gene expression dataset, the bicluster of

genes consistently differentially expressed in a particular subset of neural tissues (Fig-

ure 3.5) includes many genes associated with neural function (e.g. glutamate receptors,

synaptosomal-associated protein and ‘brain abundant’ genes), whereas those shown

from the application of SAMBA to the same subset of the GNF data contain fewer

obviously neurally-associated genes yet contain ‘housekeeping’ genes such as tubulinα1

that will be expressed at a relatively high level in all samples.

Figure 3.3: Heatmap showing hypothetical expression levels across a bicluster recov-
ered from noiseless artificial data using ComBiclust. This was exactly the implanted
bicluster.
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Figure 3.4: Heatmap showing hypothetical expression levels across a bicluster from
noisy artificial data using ComBiclust. This was a subset of the whole implanted
bicluster.

Figure 3.5: Heatmaps showing expression level of genes from a bicluster discovered in
a subset of the GNF mouse gene expression dataset [Su et al., 2002] using the novel
combinatorial biclustering algorithm.
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3.4.5 Genetic Algorithm Approach

As introduced briefly in Section (2.3.4) (under ‘Global Search Heuristics’), Genetic al-

gorithms (GAs) are complex adaptive systems that can be used as effective function

optimisers in certain domains, and are widely used for problems with especially large

solution spaces that have irregular characteristics resulting in a computationally com-

plex search task to find optimal solutions. In particular, they find most application in

finding solutions to problems where local search heuristics have a tendency to result in

relatively poor solutions.

In Whitley’s tutorial on GAs [Whitley, 1994], he defines a GA as ‘a population-based

model that uses selection and recombination operators to generate new sample points

in a search space.’ The ‘canonical’ GA introduced by Holland [Holland, 1975] consists

of a population of ‘chromosomes’ (strings of bits) that each represent a position in the

search space and therefore a potential solution to the problem being tackled by the GA.

These chromosomes are ‘selected’ to contribute to the next generation of chromosomes,

which they do through reproduction operators: the details of these operators may vary,

but they typically create chromosomes for the next generation’s population of candidate

solutions by ‘crossover’ and ‘mutation.’ In crossover, parts of each ‘parent’ chromosome

are swapped with the other, and in mutation, each bit (element) of all the ‘offspring’

chromosomes is flipped with a low probability those offspring are passed into the next

generation. The choice of which chromosomes are selected to be parents for producing

the next generation’s population is related in some way to the evaluation of success of

each chromosome’s corresponding solution, given by a ‘fitness function.’ Clearly, the

precise nature of the fitness function is crucial to the success of the algorithm as, if the

search mechanism implemented by the GA is successful, it will find those potential so-

lutions that give the best values of the fitness function. A simple and effective selection

mechanism is ‘fitness proportional selection,’ in which each chromosome contributes a

number of offspring to the subsequent generation in proportion to its relative fitness

score compared to the average fitness score across the whole of the current generation’s

population of chromosomes.

The motivation for taking a GA approach to the optimisation problem presented

in Section (3.4.3) comes from the manner in which reformulation of the biclustering

problem results in a natural approach to building solutions through combinations of

samples, as demonstrated by the exhaustive combinatorial algorithm presented earlier

in this section. As good biclusters are likely to be composed of smaller, good biclusters

with similar patterns across different subsets of the large bicluster’s samples, it would

be likely that the GA mechanism of exploring the solution space through recombination

of small, good solutions would prove to be successful. In this way, the nature of the

biclustering problem presented here is similar to the ideal GA problems discussed in

[Holland, 1975] and [Goldberg, 1989]. Furthermore, the fact that addition of a sample
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to an existing, good bicluster can result in a far inferior (or non-existent) pattern of

consistency of gene expression across the new bicluster means that ‘gradient-based’ local

search heuristics are unlikely to perform so well due to the greater chance of adding

a sample that doesn’t fit the bicluster pattern (and therefore results in an inferior

bicluster) than one that fits the bicluster pattern and results in a better bicluster.

Representation While GAs have already been applied to the biclustering problem,

in most other GAs for biclustering (eg. [Chakraborty and Maka, 2005], [Mitra and Banka, 2006]),

both genes and conditions are represented on the chromosomes and these are jointly

evolved to search through the space of possible biclusters. However, as discussed in Sec-

tion (3.4.1) on the reformulation of the biclustering problem, directly encoding the genes

in the bicluster may be redundant as, given a subset of samples, it is relatively straight-

forward to find those genes (if they exist) that are consistently expressed at particular

levels across those samples. By encoding only samples, the size of the chromosomes

and thus the search space can be kept to a minimum while providing a framework in

which those chromosomes representing small biclusters will have a tendency to combine

with others sharing consistent gene expression patterns, forming progressively better

solutions as the population evolves.

Fitness Function The fitness function is the mechanism by which desirability of

solutions is encoded into the GA. Bearing in mind the fact that every potential solution

will have to be evaluated by the fitness function in every generation of the algorithm’s

progress, practical constraints require the desirability of a solution to be expressed in

the fitness function in such a way that the value may be calculated very quickly.

As mentioned in Section (3.4.3), the remainder of this chapter following this descrip-

tion and evaluation of an efficient novel biclustering algorithm focuses on theoretical

and experimental work advancing definitions of bicluster desirability so that resulting

biclusters found by the algorithm in large collections of gene expression data are useful

for answering particular biological research questions. From the point of view of testing

a novel efficient biclustering algorithm, and given the apparent success of the exhaus-

tive combinatorial algorithm described above (in Section (3.4.4)), the initial GA for

biclustering meta-analysis described here took the same, simple approach to evaluating

bicluster desirability as that implemented in the exhaustive combinatorial algorithm.

That is, the fitness of a chromosome x (a string with a bit for every sample in the

dataset: 1 represents ‘sample in bicluster’ and 0 represents ‘sample not in bicluster’)

is directly proportional to the ‘volume’ (the number of genes multiplied by the number

of samples) of the corresponding bicluster, as shown in Equation (3.4).

f(x) =

( ∑
g∈genes

δg,x

)
∗
(∑

x
)

(3.3)
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δg,x =

{
1 if row g is consistent across columns for which x = 1

0 otherwise
(3.4)

Efficient Biclustering Algorithm With a data matrix that has been preprocessed

according to the assumptions defined in Section (3.4.2) and with those points detailed

previously in this section, we can define a GA for finding biclusters in large collections

of gene expression data. The algorithm proceeds by creating an initial population of

a specified number (popsize) of chromosomes, each a bit string of the same length as

the number of columns in the data matrix, with 2 randomly chosen bits set to 1 and

all other bits set to 0. The population is evaluated to obtain fitness scores by applying

the fitness function to each chromosome, chromosomes are selected to contribute to the

next generation with frequency in proportion to their relative fitness score, and the next

generation of chromosomes is created through applying crossover to randomly selected

pairs of parent chromosomes followed by flipping each bit in the offspring chromosomes

with a low probability specified by the mutation frequency parameter mfreq. This

process of evaluation, selection and reproduction is applied iteratively over a specified

maximum number (ngens) of generations or until algorithm convergence is detected.

Convergence occurs when the fitness of the best solution in the population doesn’t

improve over a specified number of generations. The biclusters encoded by the best

chromosomes in the final population are returned as lists of the samples encoded in the

chromosome and the genes that have consistent patterns across the subset of the data

defined by those samples. A summary of this process is given in Algorithm 3.
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Input: Gene expression data matrix, M

Output: Set of biclusters, B achieving good desirability scores

Calculate discretised data matrix, D (as in algorithm 3.1);

Initialise population to matrix of 0’s (popsize rows and same number of

columns as D);

foreach Chromosome (row of population) i do

Select two randomly-chosen elements to set to 1;

end

foreach Generation g do

foreach Chromosome i do

Calculate Fitnesses(i) = f(Chromosomei) (f(x) as Equation (3.4);

end

Create pop2 by sampling rows of population with freq. ∝ Fitnesses(i)
mean(Fitnesses) ;

foreach pair of Chromosomes (i,j) ∈ pop2 do

if random# < xfreq then
Create random integer crossoverPoint between 1 and

|Chromosomei|;
Swap elements of Chromosomei and Chromosomej with indices

> crossoverPoint;

end

foreach element of Chromosomes (i,j) do

if random# < mfreq then

Flip bit representing that element;

end

end

Insert resulting chromosome pair into two rows of population;

end

end

Create (empty) list of solutions S;

foreach Chromosome i do

Calculate Fitnesses(i) = f(Chromosomei) (f(x) as Equation (3.4);

if ∃k.f(Chromosomei) > f(S(k)) then

Set S(k) = Chromosomei;

end

end

foreach Solution Sk do
Create bicluster Bk with empty lists of biclusterSamples and

biclusterGenes;

foreach Element i do

if Bki = 1 then

Add i to biclusterSamples for Bk;

end

end

foreach Gene g do

if mean(D(g, biclusterSamples)) > threshold then

Add g to biclusterGenes for Bk;

end

end

end
Algorithm 3: GA for fast biclustering of large collections of data
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It was discovered through application of this fast genetic algorithm to discovery of

biclusters in large collections of gene expression that the population had a tendency

to converge rapidly on biclusters involving only two or three samples. In an attempt

to avoid this premature convergence, the biclustering approach given in Algorithm 3

was adapted to incorporate an ‘Island Model’ of population evolution. The island

model is described in [Whitley, 1994], and involves the separation of the population

of chromosomes into subpopulations or ‘demes.’ By limiting exchange of solutions

from one deme to another, premature convergence of the algorithm’s population of

chromosomes can be avoided. The biclustering genetic algorithm effectively avoided

premature convergence when the population of chromosomes was divided into 4 demes

that exchanged one chromosome every 10 generations of the GA iteration. The resulting

genetic algorithm for biclustering was called ‘IslandCluster’ on account of this island-

based population isolation within the GA mechanism.
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3.5 Evaluation Of Efficient Biclustering Approach

IslandCluster is a novel biclustering method developed to enable the application of

a biclustering analysis approach for meta-analysis of large collections of gene expres-

sion data. Meta-analysis of gene expression data based on biclustering represents an

approach to biological data analysis that might provide opportunities to gain insight

into the transcriptional mechanisms governing control of biological processes, but has

not previously been studied. Following the development of this analysis method, it is

clearly essential to demonstrate that the IslandCluster method performs as intended.

As the impracticality of application of existing biclustering methods to large-scale meta-

analysis of gene expression data is due to the computational complexity of the task in

terms of the number of samples represented in the dataset, this is clearly an issue that

must be dealt with by any algorithm proposed for this task. Therefore, including the

criteria described in Section (2.3.4), there are three principal areas in which such an

algorithm must succeed if it is to facilitate the types of analysis described above:

1. Efficiency: the method must be able to perform its analysis of large datasets in

a practically useful time frame, and that this holds true for datasets of the future

that may have data from dramatically more samples

2. Effective bicluster discovery: the method must be able to discover biclusters

in the data, regardless of how fast its execution times may be

3. Biological significance of discovered biclusters: the biclusters in the data

must relate to some biological signature within the data, as opposed to some

random (or systematic but biologically irrelevant) measurement variation

This section describes the experimental frameworks used to evaluate the IslandCluster

algorithm’s performance in terms of each of the above criteria for success. Firstly, the

feasibility of IslandCluster as a method to discover biclusters in datasets of increas-

ing size is compared with those for existing biclustering algorithms. Secondly, artifi-

cial dataset testing is used to demonstrate successful recovery of the desired bicluster

patterns by IslandCluster. Thirdly, biological significance of biclusters discovered by

IslandCluster in real data is demonstrated through functional enrichment analysis with

comparison to performance of existing biclustering algorithms. Finally, this section

concludes with a discussion of the significance of these performance evaluation results

for the IslandCluster algorithm.

3.5.1 Computational Efficiency

The amount of data available in repositories of gene expression data in the public do-

main is ever-increasing, at a near-exponential rate [Ball et al., 2003] as the application

of high-throughput measurement assay technologies becomes more widespread. With

the potential advantages of having more data representing a wider range of biological
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conditions comes the computational (not to mention analytical) challenge of finding rel-

evant patterns and sub-structures within a vast array of measurements. As discussed

in Section (2.3.4), the potential of biclustering methods for application to analysis of

such large datasets is hindered by the complexity of the biclustering problem. A few

publications have proposed biclustering approaches with claims for applicability on a

large scale (such as [Tanay et al., 2002], and [Li et al., 2009]), although in order to per-

form the biclustering meta-analysis proposed in this chapter it was necessary to employ

a method that could analyse, as one, collections of whole-genome transcriptional data

involving thousands to tens of thousands of samples (and for future potential, even

more than this).

To demonstrate the potential of any biclustering approach to be used as a basis for

large-scale meta-analysis, variously sized subsets of samples from a large collection of

gene expression microarray data were constructed so that the efficiency of performance

of each biclustering approach could be assessed in terms of the feasibility of executing

biclustering analysis on a range of dataset sizes, with a focus on the number of samples

represented in the dataset. This focus on the number of samples as opposed to number

of genes in the dataset comes from the fact that, no matter how many measurements

are taken for each sample, the number of unique genes is constant for a given organism

(and even the number of uniquely transcribed sequences is likely to remain constant at

a similar order of magnitude). Therefore, as technologies advance and the use of high-

throughput transcriptome measurement platforms increases, the number of samples

available for meta-analysis will continue to increase while the number of genes remains

(approximately) the same.

Experimental Procedure

In order to evaluate the potential of different algorithms to be applied to large-scale

meta-analysis tasks, it was necessary to determine whether or not each algorithm could

feasibly complete execution on datasets of a range of sizes. As described above, the par-

ticular concern is the growth of execution time as the number of samples in the dataset

increases. Therefore, one very large data matrix was assembled from nearly 8,000

microarray samples (from the Affymetrix MOE430v2 platform) downloaded from the

NCBI’s Gene Expression Omnibus [Edgar et al., 2002] and compiled into one dataset

according to the description given in Section (3.4). A number of submatrices with in-

creasing numbers of columns were sampled from this whole data matrix: submatrices

were created with 10, 20, 50, 100, 200, 500, 1000, 1500, 2000, 3000, 5000 and 7990

columns. All submatrices included all 45,101 probesets included on the microarray

platform.

Each algorithm was used in turn to perform biclustering analysis on each of the sub-

matrices. Those biclustering methods with available implementations that appear to be
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most widely used, and those in the literature reporting to be fast enough for large-scale

application were used for comparitive purposes. This list of algorithms included: XMo-

tif [Murali and Kasif, 2003], Bimax [Prelic et al., 2006], ISA [Bergmann et al., 2003,

Ihmels et al., 2004], OPSM [Ben-Dor et al., 2004] and SAMBA [Tanay et al., 2002].

All algorithms were run on the same computer with a quad-core processor and 24GB

of RAM, running Centos Linux. The results of all of these algorithm execution runs

are presented in Fig. 3.6.

Subsequent to the development of the IslandCluster algorithm and the majority

of the following work presented in this thesis, two biclustering algorithms have been

published reporting applicability to such large-scale analysis: Qubic [Li et al., 2009]

and COALESCE [Huttenhower et al., 2009].

Results

It is clear from the indication of completion of biclustering runs by each of the tested

algorithms given in Fig. 3.6 that only IslandCluster could return output from datasets

involving thousands of samples within feasible analysis times.

The implementation of Bimax provided in the R package Biclust returns a set num-

ber of biclusters discovered in combinations of the genes and samples across only as

large a subset of the dataset as is required to identify the specified number of biclus-

ters. This implementation was able to return a set number (100) of biclusters for all

datasets evaluated. However, the implementation of Bimax provided in the tool Bi-

cAT [Barkow et al., 2006], which performs exhaustive biclustering analysis of the input

dataset, did not terminate within 24hrs when run on a dataset comprising only 100 sam-

ples. This method would not therefore be appropriate for investigation of large-scale

biclustering meta-analysis.

Figure 3.6: Table indicating success or failure of different biclustering methods at
processing collections of gene expression data made with increasing numbers of samples
(from left to right in table). Successful processing of a dataset by a method is indicated
with a green box, failure to process dataset indicated with a red box. It is obvious that
any methods unable to process these datasets will be unsuitable for large-scale gene
expression data meta-analysis.
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The results presented here agree with the report given in [Li et al., 2009] that no

existing algorithms in 2009 were capable of performing biclustering on datasets with

over 12,000 genes and 1,000 samples. However, the IslandCluster algorithm was able

to return a result for datasets with 45,101 probesets and nearly 8,000 samples, demon-

strating that it was clearly efficient enough to perform large-scale meta-analysis of gene

expression data, and was thus the first biclustering method to achieve this property.

3.5.2 Artificial Dataset Testing

As discussed above, in order to demonstrate a method’s potential applicability to a task

it is essential to prove that the implementation successfully discovers the patterns it

is intended to find. For pattern-mining methods this is most commonly demonstrated

using artificially-generated datasets with known structure, containing deliberately im-

planted patterns of interest in known locations within the dataset. Such datasets enable

a situation ideal for validation purposes in that the ‘truth’ (i.e. the perfect solution)

is known, so the success of a method can be easily measured by comparing the output

from the method with the ideal solutions and summarising the overlaps. Further anal-

ysis of true positive, false positive, true negative and false negative rates can also be

performed if necessary.

The drawback of such artificial dataset testing stems from the fact that the datasets

tend to be generated from the same model of the real data that is used (either explicitly

or implicitly) by the method to identify patterns of interest. In the case here, this means

assuming that there exist bicluster patterns within the data and that these have the

same (or at least a similar) definition to the biclusters the algorithm is supposed to find.

Additionally, whatever model is used to generate the artificial data, the model will be

inaccurate in some way and there is always a chance that equivalent results would not be

observed in a real application of the method. For these reasons, a thorough evaluation

of a pattern-mining method’s performance must also include an assessment of some

related desirable property of the output from its application to real data, but artificial

dataset testing provides an important basis for proving that the implementation of the

algorithm succeeds in finding the patterns it is supposed to find, regardless of whether

or not the discovery of such patterns solves the task at hand.

In order to demonstrate the novel algorithm’s ability to discover biclusters in data

matrices, artificial gene expression datasets were created with implanted biclusters in

known locations, and the recovery of these implanted biclusters through use of the novel

biclustering method was examined.
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Experimental Procedure

A simple program was developed to construct data matrices with specified ranges of

‘background’ values for each row. A number of artificial biclusters were implanted into

the data by setting the data matrix values for a specified number of randomly sampled

rows across a specified numbers of randomly sampled columns to a specified multiple

of the other values. A record of the rows and columns modified for each bicluster

is provided in the program’s output. Finally, uniformly-distributed random ‘noise’ is

applied to the matrix by multiplying each value in the data matrix by a factor randomly

sampled from a specified range. Using this program, 50 datasets with 5000 rows and

50 columns were created with 1 to 5 biclusters varying in dimensions from 500 rows

by 2 columns to 2000 rows by 20 columns. Noise across these datasets ranged from

0 (resulting in discrete levels for each row corresponding to whether a value is in a

bicluster or not) to 1 (potentially eradicating the effect of bicluster implanting).

These datasets were analysed with each of a panel of biclustering algorithms: Island-

Cluster, ISA [Bergmann et al., 2003, Ihmels et al., 2004], Bimax [Prelic et al., 2006],

Cheng & Church’s algorithm [Cheng and Church, 2000], XMotif [Murali and Kasif, 2003]

and Plaid [Lazzeroni and Owen, 2002]. Algorithm implementations provided in the R

packages Biclust and isa2 were used for the evaluation. The biclusters returned

by each of the algorithms were tested against each of the implanted biclusters from

the corresponding dataset. An F-measure was obtained for each {recovered biclus-

ter,implanted bicluster} pair to summarise the ability of the recovered bicluster to

specifically and accurately match the implanted bicluster. The F-measure incorporates

both precision and recall, as shown in Equations (3.5-3.7) which give the formula for

the F-measure for overlap of two sets A and B. In this case, A and B represent the

genes of the recovered and implanted biclusters, respectively. To get an overall measure

of the overlap between a recovered bicluster and an implanted bicluster, the F-measure

for the genes was multiplied by the F-measure for the samples.

precision =
|A ∩B|
|A|

(3.5)

recall =
|A ∩B|
|B|

(3.6)

F = 2 ∗ precision ∗ recall
precision+ recall

(3.7)

As each recovered bicluster could represent any one of the implanted biclusters (or

none at all), the best F-measure for each recovered bicluster with any of the implanted

biclusters in the respective dataset was taken as representative of that bicluster’s suc-

cess.
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Figure 3.7: Distribution of overall implanted bicluster recovery scores for biclusters
identified by each of a panel of algorithms in a set of 50 artificially-generated gene
expression datasets. IslandCluster method is labelled in the plot as ‘fastIC’.

Results

With scores for each bicluster returned by each biclustering algorithm from each ar-

tificial dataset, the success of the algorithms could be compared overall and for each

dataset. As various properties of the datasets were varied, such as the number of

biclusters implanted and the level of noise obscuring the implanted biclusters, the ef-

fect of these properties on the success of each algorithm could also be demonstrated.

Fig. 3.7 shows the overall distribution of scores for biclusters found by each algorithm,

demonstrating that IslandCluster recovers the implanted patterns with a similar degree

of effectiveness to that of BiMax and better than the remaining algorithms, with the

exception of ISA, which performs the best. Fig. 3.8 shows the distribution of bicluster

scores for each dataset as the level of noise increases, which seems to indicate that

the ability of most of the algorithms to recover implanted patterns is reduced with

increasing noise in the data.
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These results demonstrate that, despite being sufficiently scalable to return bi-

clusters from datasets with thousands of samples, the IslandCluster algorithm re-

covers implanted biclusters in artificial datasets better than many existing biclus-

tering algorithms. It did not perform quite as well as ISA, which is consistently

among the best performing algorithms in a number of published comparative eval-

uations [Prelic et al., 2006, Ihmels et al., 2004], but it still achieves a high degree of

success when compared with existing algorithms reported to perform effectively in

[Prelic et al., 2006],[Cheng and Church, 2000],[Murali and Kasif, 2003] and [Ihmels et al., 2004].

From this it can be inferred that the fast IslandCluster algorithm is not only able to

perform biclustering analysis on collections of gene expression data on a scale impos-

sible with existing biclustering methods, but is also able to find the intended localised

differential expression patterns within data matrices. However, it remains to be demon-

strated that such patterns in real gene expression data correspond to biological signa-

tures.

3.5.3 Biclusters in Collections Of Real Data

While it is useful to be able to demonstrate that an algorithm finds the desired patterns

when these are implanted into artificially-constructed datasets, this does not show that

the given algorithm represents a successful approach to performing the desired analysis

task on real data. In addition to showing that the algorithm finds the patterns of

interest effectively, it is also necessary to demonstrate that those patterns of interest,

when found in real data, provide some useful insight into a real problem. That is,

it remains essential to provide evidence that the approach to the given analysis task,

involvding the application of the algorithm in question, is of some worth (in a real

situation).

Given the nature of the systems being studied in this work (i.e. mammalian tran-

scription), in particular the complexity involved and the amount that is not known

about the system, an evaluation approach similar to that taken with artificial datasets

is infeasible: the body of knowledge is not sufficiently complete to be able to confirm

that a transcriptional association between two genes predicted by a method but not

previously reported as having strong (or indeed any) experimental evidence is a failure

in the application of the method. Bearing this in mind, it is necessary to find a way of

evaluating the success of the algorithm at performing the desired meta-analysis task.

In the case studied here, there is a wide range of possible applications (in terms

of inferring useful information regarding biological systems) of any gene expression

patterns identified through biclustering, and this further complicates the evaluation

process through a lack of availability of a clear application scenario wherein a failure to

infer any known information corresponds to an obvious failure of the algorithm. The

goal of evaluation therefore becomes, in a general sense, to provide evidence that the
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discovered biclusters have some biological significance, and in more specific cases this

can be demonstrated through the successful application of information inferred from

discovered biclusters to particular prediction or association tasks.

A group of potential approaches to suggesting biological significance of biclusters in-

volves identifying statistically significant sets of genes that are implicated in the same

biological processes. Such a signature within a bicluster suggests that the gene ex-

pression pattern revealed by the bicluster represents the transcriptional regulation of

some (set of) biological process(es). As a relatively comprehensive resource of annota-

tions of biological processes associated to individual genes, the Gene Ontology (GO)

[Ashburner et al., 2000] represents a tool with which this annotation-based evaluation

could be performed. The use of statistical enrichment of GO terms to identify biological

patterns in gene lists is widespread, with examples of tools for performing such anal-

ysis including: DAVID [Huang et al., 2009b], FuncAssociate [Berriz et al., 2003] and

GOstats [Falcon and Gentleman, 2007]. Following the precedent set in the [Prelic et al., 2006]

review of biclustering algorithms, many biclustering methods use the proportion of bi-

clusters enriched for any GO terms at a given statistical significance threshold as a

measure of success of an algorithm’s ability to discover biologically significant (and

some go as far as to say ‘relevant’) gene expression patterns. However, as pointed

out in [Myers et al., 2006], there are situations in which such assessment of biological

significance can be flawed: not least because it is not usually interesting to know that

a particular gene list is statistically enriched for genes associated with some especially

broad category such as ‘transcription.’ For example, it may be very well knowing that

you have associated a transcription factor, say, to a number of other transcription

factors, but unless these are involved in regulating the transcriptional activation of

related biological processes then this doesn’t indicate any (functionally) significant as-

sociation and therefore biologically relevant or significant signature represented by the

gene list. Additionally, a particular problem was demonstrated in [Myers et al., 2006]

regarding the dataset used in the [Prelic et al., 2006] (and many subsequent) GO eval-

uations. Gene function prediction analysis based on the yeast microarray dataset from

[Gasch et al., 2000] has been shown to be heavily dependent on a single GO category,

‘ribosome biogenesis.’ As the comparative evaluation presented in [Prelic et al., 2006]

did not consider which GO terms were being enriched, it is possible that the ribosomal

signature from this dataset may bias the evaluation results. While a true demonstra-

tion of success of a bioinformatics pattern-mining algorithm ought to come from the

use of the algorithm as part of a research project to find answers to a particular bio-

logical question, as a preliminary indication that the novel biclustering algorithm could

find biologically significant gene expression patterns in large datasets it seemed that

demonstration of the consistent presence of relevant biological process signatures within

bicluster gene lists would suffice. This allows for comparison with other biclustering or

meta-analysis gene-association methods using the same datasets. The IslandCluster al-
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gorithm was used, along with a number of methods included for comparitive purposes,

to identify gene expression patterns within real datasets. The gene lists arising from

the discovered patterns were evaluated for enrichment of relevant GO terms, and the

distribution of such enrichments over a set of genelists for each method was calculated.

A full description of these analysis methods is given below, followed by presentation of

the results.

Experimental Procedure

For assessment of the IslandCluster algorithm’s ability to discover biologically signif-

icant biclusters in large collections of data, bicluster analysis was performed on the

dataset described in Section (3.4), containing data from 7,990 microarrays measuring

whole-genome gene expression levels in mouse samples from a wide range of biological

contexts and conditions. For each bicluster found by the algorithm, those genes (best)

fitting the bicluster expression pattern were tested for enrichment of relevant GO term

associations using the ‘conditioned’ testing provided by the GOstats tool and described

in [Falcon and Gentleman, 2007]. The distribution of enrichment scores across each of

the biclusters is presented in Fig. 3.9. The scores given in Fig. 3.9 represent − log p-

values, so the greater the score the higher the enrichment. Only GO term enrichments

with p-values smaller than 0.01 are included in this analysis.

In order to compare the performance of IslandCluster with that of other biclustering

algorithms, smaller datasets had to be used as no existing algorithm could perform

biclustering on the whole dataset used in the above analysis. Therefore, a smaller

subset of this compendium of mouse microarray data was used, with only 500 samples

selected. Biclustering analysis was performed on this dataset using ISA, Plaid, Bimax,

Cheng & Church’s algorithm and IslandCluster. For each algorithm, the proportion of

biclusters showing enrichment of any GO terms from the biological process ontology to

different minimum significance thresholds is shown in Fig. 3.10, similar to the figure

provided in [Prelic et al., 2006].

Results

The enrichment of GO biological process terms across biclusters discovered by the Is-

landCluster algorithm in the 7,990 microarray mouse gene expression dataset is demon-

strated in Fig. 3.9. It is clear from Fig. 3.9 that the biclusters discovered by the

IslandCluster algorithm in large gene expression datasets generally appear to represent

some biological signature extracted from the data, given that all biclusters enrich some

GO categories with a p-value less than 0.01 and a large number of biclusters enrich at

least some GO categories with a p-value of less than 1∗10−16, which equates to a − log

score of greater than approximately 53.
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To provide comparative evaluation against existing biclustering algorithms widely

cited in the literature, Fig. 3.10 shows the proportions of biclusters, discovered in

the same 500-sample subset of the dataset described in Section (3.3) by each of the

algorithms mentioned through Section (3.4.5), with genelists enriched for GO biological

process terms to a range of minimum significance thresholds.

Figure 3.10: Proportions of biclusters enriched for any GO terms to a range of minimum
significance thresholds. Each panel reflects the results for biclusters discovered using a
different biclustering method.

It was noted that the calculated enrichments were highly significantly correlated

with the number of genes in the bicluster, regardless of the method used to calculate

the biclusters, with Pearson ρ = 0.51 and significance p-value from correlation test

p < 2.2 ∗ 10−16. The typical numbers of genes in biclusters were found to vary between

the biclustering methods used, as illustrated in Fig. 3.11.

As the GO enrichments were found to be highly dependent on the numbers of genes in

biclusters, and the distribution of numbers of genes in biclusters varied across different

methods, this might bias the comparison presented in Fig. 3.10 toward methods that

return biclusters with large numbers of genes (i.e. Bimax and ISA). Therefore, a similar

comparative evaluation was performed for only biclusters with 250 or fewer genes. The

results of this comparative evaluation are shown in Fig. 3.12. The results presented
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Figure 3.11: Histograms showing distribution of numbers of genes in biclusters found
by each biclustering method when applied to the 500 sample subset of the large gene
expression data matrix. Histogram bar heights represent the relative proportion of
biclusters discovered by the algorithm in question that include a number of genes within
the specified range. The horizontal axis indicates the numbers of genes in the biclusters,
ranging from 0 (left) to 10,000 (right) in each panel.
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Figure 3.12: Proportions of biclusters enriched for any GO terms to a range of minimum
significance thresholds. Each panel reflects the results for biclusters discovered using a
different biclustering method and containing no more than 250 genes.

here indicate that in terms of recovering biclusters that represent functional biolog-

ical signatures within a gene expression dataset, the IslandCluster algorithm seems

to perform at least as well as a number of the most widely-used existing biclustering

methods.

3.5.4 Discussion: Implications Of Efficient Biclustering Method

The immediate impact of this demonstration of a novel biclustering algorithm capable

of being used for large-scale meta-analysis of gene expression data is that, for the first

time, this application of the biclustering paradigm could be studied. It became possible,

as a consequence of the development of the IslandCluster algorithm, to identify meta-

analysis tasks in which using a biclustering approach to discover locally-significant

patterns in gene expression data could provide useful insight into biological research

problems.

This approach presented above could be used as a starting point for refinement and

optimisation of the biclustering approach when applied to specific meta-analysis tasks,

taking into account specific structures identified within the data and their relevance (or

lack of it) to particular biological processes involving an element of transcriptional regu-
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lation. Given that the datasets represent such complexity as the whole transcriptome of

a given organism’s cells in a vast collection of conditions, there ought to be a great deal

of scope in adapting the subtle pattern-mining paradigm of biclustering to identification

of specific locally-significant patterns in the data that can answer particular biological

questions. It is only the development of methods capable of performing this analysis

on such a large scale that enabled the potential of specifically adapted (biclustering-

based) pattern mining approaches to be realised. A clearly useful application of such

an efficient approach involves the assessment of how biclustering-based approaches to

large scale gene expression meta-analysis may yield results with application to particu-

lar biological investigations, and the reasons why certain biclustering-based approaches

may not provide results with application to particular biological questions.
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3.6 Further Development Of Biclustering Approaches For

Improved Meta-Analysis Of Gene Expression Data

As referred to in Section (2.3), different methods of analysis will best suit different

applications. The efficient biclustering algorithm presented above constitutes a general

approach for identification of biclusters in very large gene expression datasets, where

the discovered biclusters represent groups of genes that are consistently expressed at a

relatively high level over a particular group of samples. When the goal of the analysis

to be performed is something other than finding any such groups of genes consistently

expressed across any (given) group of samples, this novel approach may be adapted

to find some other patterns of interest based on the biclustering principle that will be

more useful in helping to provide insight into the particular biological question being

studied. For example, the definition of the bicluster evaluation function (i.e. the GA’s

fitness function) allows for relatively straightforward encoding of alternative ideas of

ideal bicluster patterns for the algorithm to identify within the data.

The following sections of this chapter present alterations of the general method rep-

resented by the IslandCluster algorithm, the motivation behind each alteration and

the consequences of the corresponding development of the approach in the form of

comparative analysis of the biclusters discovered using the method with and without

the alteration. With each of these approaches, the desired meta-analysis task remains,

as a general concept, inference of possible transcriptional relationships between genes.

In this area the utility of the relationships it might be possible to infer as a result of

the discovered biclusters is considered, and is often the motivation behind the speci-

fied alteration to the method. The first alteration considered presents improvement in

the GA mechanism underlying the algorithm, while the subsequent alterations concern

the definition of ideal bicluster solutions and affect the properties of the discovered

biclusters.

3.6.1 Modification Of Genetic Algorithm Approach

The canonical GA [Holland, 1975] provides a mechanism for finding a good solution

to a difficult function optimization problem. While this mechanism is often successful

[Whitley, 1994], when applied to problems with many good solutions a canonical GA

will typically find only one of these good solutions [Cedeno et al., 1994]. In the case of

the IslandCluster algorithm described in Section (3.4.3), the ‘Island’ population model

goes some way to ensuring a diversity of solutions across the distinct subpopulations.

However, to guarantee finding multiple distinct biclusters in a dataset, biclusters dis-

covered in a previous run of the GA must be ‘masked out’ so that any subsequent runs

identify distinct solutions. This approach has two obvious drawbacks:

1. As a component (bicluster) is removed from the data, this prevents any biclusters
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with overlapping regions from being discovered

2. The execution time for discovering biclusters increases with the number of biclus-

ters discovered, presenting a clear trade-off between completeness of discovery of

biclusters and time taken for analysis to complete

If the goal of the biclustering analysis to be performed is to identify distinct biclus-

ters simultaneously, the problem can be considered an attempt to find optima of all

significant modes of a multi-modal function. That is, the bicluster discovery becomes

a multimodal function optimization problem. Multi-modal search spaces (such as the

sample-set space involved in the biclustering problem as defined in Section (3.4.3)) can

exhibit the property that there may be a number of distinct, good solutions.

Multi-Niche Crowding

A family of alternative GA methods based on the ‘crowding’ principle has been devel-

oped to avoid these problems encountered in the application of GAs to multi-modal

function optimization problems. The principle of crowding, as introduced by De Jong

in [De Jong, 1975], provides an alternative approach to the replacement of solutions in

the current generation with offspring solutions destined for the next generation. Rather

than replacing all solutions in the current generation with all the offspring solutions

(as in the canonical GA), for each offspring in turn a random sampling of a specified

number of solutions is taken from the current generation and the most similar of these

to the given offspring solution is replaced. This replacement of similar individuals in

the population will delay the convergence of the population onto only one optimum of

the function being optimized, by maintaining stable subpopulations. However, when

this is combined with the fitness-proportional selection of the canonical GA, one of the

subpopulations will almost inevitably dominate the population [Cedeno et al., 1994]

and thus the ability to identify different local optima of the multi-modal search space

is not achieved.

Such multi-modal optimization is the goal of the ‘multi-niche crowding’ (MNC)

method developed by Cedeno [Cedeno, 1995] This method aims to evolve subpopu-

lations by encouraging reproduction and replacement to occur among similar solutions.

First, the selection process uses ‘crowding selection’ in which a random solution is se-

lected for reproduction: a ‘mating pair’ is selected as the most similar from a group

of solutions randomly sampled (with replacement) from the population. Second, the

replacement procedure known as ‘worst among most similar’ is used, in which a num-

ber of separate crowding factor groups are created through random sampling (with

replacement) across the population. A candidate for replacement is chosen from each

crowding factor group by picking the solution in the group that is most similar (in terms

of the eventual output corresponding from the solution) to the offspring in question,
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and the candidate with the lowest fitness is replaced by the offspring. The improved

performance of the MNC GA when compared to other methods of multi-modal function

optimization is demonstrated in [Cedeno et al., 1995, Cedeno and Vemuri, 1996]. The

MNC GA approach was adopted to produce a biclustering algorithm, termed the MNC

BGA. The MNC BGA is based on the bicluster evaluation performed by IslandClus-

ter, but better suited to the multi-modal search involved in finding multiple distinct

biclusters in a large gene expression dataset.

3.6.2 Revisiting Bicluster Definition 1: Probabilistic Biclustering

In some sense, the enrichment of GO terms in biclusters discovered using the Island-

Cluster algorithm demonstrates some biological significance of the discovered biclusters

through co-annotation of the gene. However, a simple analysis of the distribution of

‘dimensions’ (the numbers of genes and samples represented by the bicluster) of the

discovered biclusters reveal startling observations that also apply to the existing biclus-

tering algorithms used for comparison in the evaluations in Section (3.5). The majority

of the biclusters found by any of these methods tend to cover a relatively large propor-

tion of the genome, making any specific functional inference regarding the regulatory

activity of any of the included genes practically impossible. The result of this analysis

of a set of biclusters discovered by the MNC BGA is shown in Fig. 3.13. A further

problem comes from the fact that in any of the biclustering methods described so far in

this thesis, there is no prioritisation or ranking of the genes belonging to a bicluster. If a

bicluster includes over 1000 equally-ranked genes, as is the case for 63% of the biclusters

shown in Fig. 3.13, it will not have much utility in suggesting suitable candidates to

follow up with experimental investigation. Such utility would be greatly increased with

some measure of how well a gene characterises the transcriptional pattern represented

by a bicluster.

One possible explanation for this problem where existing biclustering approaches tend

to return large unranked genelists relates to the naivety of the model used to evaluate

bicluster desirability. While based on the principle of entropy (from information theory)

that a bicluster that is less likely to appear by chance is a more informative bicluster,

the assumption that the bicluster ‘volume’ (number of samples ∗ number of genes) is

in directly inverse proportion to the probability that those samples and genes would be

present in a random bicluster purely by chance is clearly far from accurate. Inaccuracies

in the estimation of probability of a bicluster’s genes and samples being included in the

bicluster by chance might lead to difficulties in the interpretation of biclustering results.

Consequently, it was hypothesised that improving these probability estimates might

lead to improvements in the utility of biclusters discovered with the MNC BGA. The

remainder of Section (3.6.2) therefore considers the development of a more sophisticated

model for the information content of a bicluster and the effect of incorporating such a

model into the MNC BGA.
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Figure 3.13: Histogram showing the distribution of numbers of genes across a set of 205
biclusters discovered using the MNC BGA, applied to the dataset described in Section
(3.4). The height of the bars represent the number of biclusters with genelist length
lying in the given range.
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Recently a biclustering algorithm called FABIA was proposed in [Hochreiter et al., 2010].

This method for bicluster discovery considers ranking biclusters according to informa-

tion content, described as the proportion of variance in the whole dataset explained

by the bicluster, and therefore makes some progress towards the objectives described

here in Section (3.6.2). However, the FABIA approach does not involve explicit models

of the different distribution patterns of expression of different genes, and thus inter-

pretability of the measures of bicluster information content is restricted to ranking of

the biclusters and can not be used to infer the significance an observation of a particular

gene belonging to a particular bicluster. Furthermore, the FABIA method has not been

used to perform bicluster analysis on datasets from more than a few hundred samples,

and is unsuitable for meta-analysis of gene expression data on the scale considered in

this thesis.

Entropy-Based Biclustering

A number of observations regarding general properties of biclusters discovered using

the IslandCluster and MNC BGA methods led to specific areas in which the naive

model for estimating bicluster desirability, as implemented in IslandCluster and the

MNC BGA, could be improved. For a start, as the number of samples in the dataset is

typically significantly smaller than the number of genes, the presence of any additional

sample fitting the bicluster pattern will in these cases be less likely to occur by chance

than an additional gene. Therefore, the number of samples and number of genes in the

bicluster ought to be appropriately weighted in terms of significance to the calculation

of bicluster desirability, in accordance with the dimensions of the dataset.

In the biclusters discovered by the MNC BGA that utilised this naive model of

bicluster probability, it was observed that some genes were more likely to occur by

chance in a randomly selected bicluster pattern than others. This situation arises due

to the fact that different genes had different proportions of ‘high’ and ‘low’ expression

states in the dataset. Inspection of the distributions of expression values for a panel of

genes (as in Fig. 3.14) indicates that this observation of different proportions of ‘high’

and ‘low’ expression states for different genes reflects the underlying expression values.

Each gene would be equally likely to occur in any bicluster by chance if and only if all

genes had the same proportion of ‘high’ and ‘low’ expression states across the dataset.

As this could not accurately reflect the underlying distribution of expression values of

all genes, as illustrated by Fig. 3.14, it seems pertinent to address the probabilistic

modelling issues arising from the situation in which some genes may be more likely

than others to occur by chance in any bicluster.

A more accurate model for bicluster-pattern occurrence by chance would therefore be

based on the probabilities for each particular gene and each particular sample consid-

ered separately, as demonstrated in Equation (3.8), where Dg,s represents the element of
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Figure 3.14: Distributions of expression levels of each of a panel of genes measured
across a large number of microarray samples. The height of the graph in each panel
represents the relative abundance of samples in which the gene had the normalized
intensity value denoted by position along the horizontal axis.
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the discretised matrix of expression levels calculated from the dataset indexed by gene

g and sample s, and genes and samples represent the genes and samples, respectively,

included in the bicluster pattern bicluster.

P (bicluster) =
∏

g∈genes

 ∏
s∈samples

P (Dg,s = hi)

 (3.8)

If we consider that the overall distribution of expression levels across all genes will

be approximately consistent in each of the samples in the dataset, due to the quantile-

normalization process applied to ensure each sample’s measurements are comparable

to any other’s (this may not always be the case, but will typically be so when the gene

expression data come from microarrays, especially when these data are obtained from

different experimental datasets), then the probability of a particular gene being highly

expressed in any randomly chosen sample can be assumed to be the same. As a result,

the expression for bicluster probability can be simplified from that given in Equation

(3.8) to Equation (3.9) in which Dg represents the row of the discretised matrix of

expression levels corresponding to all measurements of gene g.

P (bicluster) =
∏

g∈genes
P (Dg = hi)|samples| (3.9)

As we are interested in the information content of a given bicluster, this is in

proportion to the negative logarithm of the probability of the observation occuring by

chance. This simplifies the bicluster probability into a natural expression for bicluster

desirability based on the information content, this expression is given in Equation

(3.10).

− log(P (bicluster)) = −|samples|
∑

g∈genes
log (P (Dg = hi)) (3.10)

This definition of an entropy-based bicluster score is clearly flexible in terms of

the definitions used for P (Dg = hi). If the input matrix D is discretised, a simple

estimation for the probability that a given gene will be found in a high expression state

in any randomly chosen sample (i.e. P (Dg = hi)) can be obtained by dividing the

number of samples in which the given gene is assigned a high expression state by the

total number of samples in the dataset.

By incorporating the features discussed above into a probabilistic measure of bicluster

desirability, the evaluation of bicluster score moves from the simplistic expression given

in Equation (3.11) to the expression in Equation (3.12) that incorporates features of the

datatset being processed to help identify biclusters that carry more information (from

an information theory perspective) in that they are less likely to occur by chance. In

Equation (3.12) S represents the set of all samples.
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f(x) = |samples| ∗ |genes| (3.11)

f(x) = −|samples| ∗
∑

g∈genes
log


∑
s∈S

δg,s

|S|

 (3.12)

δg,s =

{
1 if Dg,s = hi

0 otherwise
(3.13)

An additional feature of this more sophisticated entropy-based bicluster scoring is

that it provides a natural means of scoring and ranking the genes within a bicluster,

based on the negative logarithm of their probability of appearing in the bicluster. This is

essentially a measure of the bicluster-specificity of a gene expression pattern (i.e. a gene

that is expressed consistently highly across the samples of a bicluster but not elsewhere

will have a higher rank in that bicluster than a gene expressed consistently across a

large subset of the samples in the dataset, of which the bicluster samples represent only

a relatively small component). As discussed earlier in Section (3.6.3), other biclustering

algorithms seem not to offer the ability to rank genes within a bicluster, yet this might

be particularly important in improving the utility of biclusters where the number of

genes in a bicluster is greater than a practically useful number for the intended inference

task.

The following section demonstrates the results in practical terms of incorporating

this more sophisticated measure of bicluster probability by comparing the biclusters

discovered by the MNC BGA using the naive model for bicluster desirability and the

more sophisticated entropy-based model described in this section. A further demon-

stration of the improvement afforded by this model is provided through evaluation of

the success of application of the discovered biclusters to meta-analysis tasks.

Bicluster Properties: Comparing Naive And Entropy-Based Biclusters

As a means of assessing the practical impact of adopting the improved estimator of

bicluster information content in the entropy-based biclustering framework, the MNC

BGA was used to discover biclusters in real datasets of gene expression data using

fitness functions based on each of the bicluster desirability expressions given in Equa-

tions (3.11 & 3.12). The resulting sets of biclusters discovered by each algorithm were

analysed in order to demonstrate the improvement arising from the adoption of the

more sophisticated entropy-based method, in terms of a number of desirable bicluster

characteristics.

In a collection of biclusters discovered in a particular dataset, certain properties

stand out as being particularly desirable or undesirable. The inclusion in a bicluster
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of genes that would be shared across many biclusters involving distinct subsets of the

samples in the dataset is generally less informative than genes that are more specific to

the bicluster in question. Additionally, a bicluster has more statistical ‘support’ if the

observed patterns are consistent across a greater number of samples. For these reasons,

distributions were obtained for the numbers of samples and the pairwise proportional

overlap across a set of biclusters discovered by the algorithm incorporating each method

of evaluating bicluster desirability.

Figure 3.15: Distributions of numbers of samples in biclusters for sets of biclusters
discovered by the MNC BGA using the naive bicluster desirability model (left panel)
and the more sophisticated entropy-based model (right panel)

From the plots shown in Fig. 3.15 it is clear that the incorporation of the more

sophisticated model for bicluster entropy into the novel biclustering algorithm results

in a general increase in the number of samples in the discovered biclusters. Especially

noticeable is the number of biclusters involving hundreds of samples: the more sophis-

ticated entropy-based algorithm finds a number of such large biclusters (with more

significant support from the data) whereas the naive algorithm finds none.
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Figure 3.16: Distribution of the numbers of samples with high expression of bicluster
genes, for all genes in a number of biclusters discovered by the MNC BGA using the
naive bicluster desirability model (left panel) and for top ranking 200 genes in a number
of biclusters discovered by the MNC BGA using the entropy-based bicluster desirability
model (right panel).
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The plots in Fig. 3.16 demonstrate that a significant proportion of the genes in

biclusters discovered with the naive algorithm are expressed across the majority of all

the samples in the dataset. However, due to the ranking provided by the entropy-based

algorithm, bicluster genes can be prioritised to those that tend to be expressed across

a smaller proportion of the samples in the dataset. This would imply that the biclus-

ters discovered using the entropy-based method can represent more specific expression

components (i.e. ‘local’ data patterns) within the dataset than the expression patterns

represented by the naive MNC BGA biclusters.

Examining the impact of incorporating the more sophisticated entropy-based mea-

sure of bicluster desirability on the general properties of the biclusters discovered using

the MNC BGA reveals that, in the terms laid out in the previous two paragraphs,

the resulting set of biclusters will be more reliable and convey more useful information

for inferring context-specific transcriptional relationships between genes. This demon-

strates that the entropy-based model of bicluster desirability presented in this section

represents an improvement over the naive approach that is commonly adopted amongst

other biclustering algorithms (as described in Sections (3.4.3 & 3.4.5)). However, this

comparison of bicluster properties is not really a measurement of success of the biclus-

tering algorithm as a tool for meta-analysis of gene expression datasets. For a more

conclusive demonstration of the improvement afforded to the biclustering process by

adopting this more sophisticated scoring approach it would be necessary to show an im-

provement in performance of the discovered biclusters at some practical meta-analysis

task for which application of the algorithms is intended.

Evaluation For Meta-Analysis

In order to assess the improvement in practical applicability of results afforded by

the adoption of the more sophisticated entropy-based bicluster desirability score into

the MNC GA biclustering algorithm, it was necessary to evaluate the utility of the

biclusters in terms of their successful application to meta-analysis tasks. As a result

of the availability of reference data, the tasks chosen were based on either function

prediction through co-association or prediction of genomic binding of a transcription

factor (TF).

One potentially useful application of meta-analysis of gene expression data is in the

prediction of the regulatory activity of particular TFs. If we believe that a particular TF

is involved in a certain biological process of interest, it may help in the understanding

of the molecular mechanisms involved in that process if we can identify genes whose

expression is regulated by the TF in question. This can be applied to the evaluation of

biological signifiance of biclusters if we have lists of genes proximal to genomic regions

bound by particular TFs. A statistical enrichment in a bicluster of the target genes

of a given TF provides an indication that the bicluster represents some transcriptional
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regulatory component involving the TF in question. To this end, for a number of

TFs for which genome-scale binding data is available, biclusters were identified in the

submatrix of the dataset described in Section (3.3) corresponding to those samples with

high expression of the TF in question (thus ensuring that the biclusters all include

the TF). For each of these sets of biclusters, overlap of each bicluster’s genelist to

the corresponding TF’s list of bound genes were calculated. The average number of

overlaps in a list of up to 200 genes taken from an individual bicluster are shown in Fig.

3.17 for each TF used, for both the naive MNC BGA and the BGA adopting entropy-

based bicluster desirability evaluation. A genelist length of 200 was arbitrarily chosen

as a means of demonstrating the impact of the ranking provided by the entropy-based

measure of bicluster desirability, especially in terms of the highest-ranking observations.

For the case of the entropy-based bicluster, the top ranking genes from each bicluster

were always taken in order to demonstrate the impact of a ranking on the biological

signature represented by a bicluster.

These plots show that adopting the more sophisticated entropy-based biclustering

approach generally results in a greater chance of discovering biclusters that are strongly

statistically enriched for the presence of genes bound by a particular TF. While it is

true that the lack of such a signature doesn’t imply that the corresponding gene list

does not represent some biologically significant transcriptional signature, the consistent

appearance of more biclusters having greater such enrichments does provide evidence

to suggest that the entropy-based GA method of bicluster discovery is more likely to

identify real transcriptional signatures within a large dataset and thus be a more useful

tool for predicting transcriptional activity than the naive biclustering GA.

As mentioned in Section (3.5.3), the Gene Ontology (GO) can be used as a tool for

assessing functional signatures statistically over-represented in a given gene list. While

the approach of examining enrichment of any GO terms in gene lists has some limita-

tions (as discussed in Section (3.5.3)) for evaluating biological relevance of biclusters, it

can serve as a potentially useful means of indicating whether discovered biclusters seem

to match some functional biological signature. In conjunction with a demonstration of

improved overlap to genome-binding targets of TFs, an increase in enrichment of GO

terms within the same bicluster gene lists provides a further indication of improved

biological significance of a given set of biclusters. Therefore, the biclusters discov-

ered using the MNC BGA incorporating each of the naive and entropy-based methods

of bicluster desirability scoring were tested for all statistically enriched GO term an-

notations. The distribution of GO term enrichment values for each of the biclusters

discovered by each of these methods is shown in Fig. 3.18. GO term enrichments

were calculated using the conditional enrichment testing implemented in the GOstats

[Falcon and Gentleman, 2007] R package available through Bioconductor.
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Figure 3.17: Average overlap of bicluster genelists of varying length with DNA-binding
targets for each of a number of TFs. Ranking for genelists from biclusters discovered
using the MNC BGA with entropy-based bicluster model is provided by the bicluster
model, and corresponding overlaps are shown in red. Overlaps for biclusters discovered
using MNC BGA with naive bicluster model are representative of expected overlap for
a randomly sampled genelist of the given length from any of the relevant biclusters.
These overlaps are shown in black.
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Figure 3.18: Enrichments of GO terms in bicluster genelists for MNC BGA using
entropy-based (red) and naive (blue) models of bicluster desirability. Each panel shows
-log GO term enrichment p-value distribution for biclusters found in a different subset
of the data collection, corresponding to the samples with a high level of expression of
the indicated gene.
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The generally increased levels of enrichment of GO terms in biclusters discovered by

the entropy-based GA compared to those from the naive GA method provides further

evidence that the more sophisticated entropy-based approach results in improved dis-

covery of biologically significant biclusters. In conjunction with the results of analysis

of enrichment in biclusters for TF binding targets presented above, this evaluation of

biclustering meta-analysis demonstrates that adopting the more sophisticated entropy-

based model of bicluster desirability presented in this section results in an improved

method for discovering biologically significant biclusters in large collections of gene

expression data. Furthermore, enrichment analysis of the biclusters discovered using

the entropy-based MNC BGA demonstrate practical utility of adopting this bicluster-

ing approach for the meta-analysis tasks of gene function prediction and prediction of

genomic binding of a TF.

3.6.3 Revisiting Bicluster Definition 2:

Localised Co-dependency Analysis

In many questions involved in biological research, we are interested in identifying infor-

mation in relation to particular genes of interest. The methods mentioned so far in this

chapter involve searching in a general sense for any transcriptional patterns, regardless

of the particular biological context or genes involved. These methods could potentially

be used to identify patterns of particular interest to a given biological question by

searching through all the patterns discovered to find those that best suit the context

in question. However, such an approach would necessarily imply that the patterns

discovered are all of the same structure, as there is no consideration of the particular

biological question in the specification of the desired patterns. There is therefore an

implicit assumption that the general pattern (in this case, the concept of a bicluster

under whichever definition is used) is a universally applicable piece of information that

can help provide an answer to any potential question for which the meta-analysis of

gene expression data might be intended.

This universal approach to bicluster analysis was found to be particularly problem-

atic when applied to large, heterogeneous collections of gene expression data for the

purposes of investigating mechanisms of transcriptional regulation. If a gene of inter-

est is relatively specifically expressed in a few cell or tissue types, the most significant

bicluster patterns in the data involving that gene tend to correspond to the cohort

of genes with characteristic expression in the biological context represented by the bi-

cluster samples. This observation is reflected in the dominance of sample-dependent

bicluster patterns discovered by all widely-used biclustering methods, demonstrated in

[Chia and Karuturi, 2010]. The sample-dependent bicluster pattern referred to here

corresponds to a bicluster representing any set of samples across which a given set of

genes show highly correlated expression. Simply identifying sets of genes with consis-
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tent expression specific to a particular biological context does not provide any insight

into transcriptional regulatory mechanisms over and above those that drive the pre-

dominant transcriptional profile that characterises the biological context in question.

To investigate transcriptional regulatory mechanisms within any biological context, it

is therefore essential to consider the overall similarity of transcriptional program of the

bicluster samples so that gene expression patterns reflecting transcriptional regulation

can be separated from the general transcriptional profile characterising the biologi-

cal context of each bicluster sample. The remainder of Section (3.6.3) describes this

concept, termed ‘localised gene expression co-dependency analysis,’ which is based on

the dissociation of transcriptional regulatory effects from characteristic transcriptional

profiles. An implementation of this analysis approach in the MNC BGA framework is

described and the results of application to large scale gene expression meta-anlaysis are

demonstrated.

Localised Co-dependency Analysis: Guidegene-Dependent Biclusters

The localised gene expression co-dependency analysis introduced in the previous para-

graph involves the identification of gene expression patterns relating to changes in

expression of a gene of interest in a particular biological context, by querying a large

collection of gene expression datasets. For this task it would be especially useful to

find a collection of subsets of samples with consistently high expression of the genes

of interest and a collection of associated subsets of samples each with generally similar

expression programs to a corresponding subset in the first collection but with signif-

icantly lower expression of the genes of interest. As this search for gene expression

patterns occurring across subsets of the samples in a dataset it is essentially a biclus-

tering problem, a strategy was devised to utilise the MNC BGA to implement gene

expression co-dependency analysis. By implementing gene expression co-dependency

analysis with biclustering it should be possible to extract from large collections of gene

expression data information regarding mechanisms of transcriptional regulation of a

particular gene or set of genes of interest, with biclusters separating co-dependency

observations into biological contexts across which they are observed. The implication

of taking this approach to biclustering would be for evaluation of bicluster desirability

to incorporate not only the unlikelihood of a given bicluster pattern being discovered in

the data by chance, but also the perceived relevance of the bicluster’s gene expression

patterns to the genes being investigated. This perceived relevance of a bicluster must

distinguish a gene expression pattern related to the particular gene or set of genes of

interest from general differences in the characteristic gene expression programs across

different biological contexts represented in the dataset.
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The biclustering approach used to perform gene expression co-dependency analysis

is referred to here as ‘guidegene-dependent biclustering3.’ With a guidegene-dependent

bicluster, any genes that share a similar pattern of expression with the gene of interest

within the biological context of the bicluster would be especially interesting as they

would be more likely to be regulated by a shared transcriptional mechanism than any

randomly-selected gene specifically expressed in a cell type that always expresses the

gene of interest (as is typically the result of applying any of the biclustering methods

mentioned so far in this chapter to large and diverse collections of gene expression

data).

It is proposed here that guidegene-dependent biclustering could provide an improved

method for inferring transcriptional relationships involving particular genes of interest

by querying large collections of gene expression data. To investigate the impact of tak-

ing this approach to biclustering based meta-analysis, a modified MNC BGA was cre-

ated implementing guidegene-dependent biclustering. This guidegene-dependent BGA

(GDepBGA) was used to identify biclusters in the same datasets as were presented in

the evaluation of the entropy-based BGA described in Section (3.6.2).

Guidegene-Dependent Biclustering Algorithm

The MNC biclustering BGA could be adapted to discover guidegene-dependent bi-

clusters through incorporation of an appropriate fitness function, as the principles of

exploring the bicluster search space with a GA (as described earlier in this chapter)

remain. The guidegene-dependent bicluster, in contrast to the naive or entropy-based

biclusters defined earlier in this chapter, would have to be evaluated not only on the

basis of the samples in the bicluster and the consistency or specificity of each gene’s

expression across the bicluster but also on the expression patterns of those genes across

samples defined as relevant by their overall similarity to the bicluster samples and their

contrasting level of expression of the ‘guide’ gene. Therefore, the ensuing bicluster

scoring function must incorporate the notion of relevance of non-bicluster samples in

determining guidegene-dependent expression patterns and an assessment of appropriate

variation of each bicluster gene across such samples.

Given that the principles of bicluster information content relating to entropy, as

calculated in the scoring function given by Equations (3.11 & 3.12), apply to the concept

of guidegene-dependent biclusters, this is taken as the basis for calculating desirability

of guidegene-dependent biclusters. In addition to this, the contribution of each gene in

the bicluster to the score is scaled by a term estimating the relative co-dependence of

that gene’s expression with the query gene in the biological context represented by the

bicluster and the samples used for comparison.

3This name comes from the fact that the transcriptional patterns represented by the biclusters aim
to capture the co-dependency of expression level of each bicluster gene with the given ‘guide’ gene
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The co-dependence of expression of a bicluster gene with the guidegene could be

estimated from the consistency of that gene’s adherence to a pattern of high expression

across the bicluster samples and low expression across the comparison samples (with

low expression of the guidegene), scaled somehow by the relevance of those comparison

samples to the bicluster.

The relevance of non-bicluster samples to be used as comparison-samples is deter-

mined by the overall similarity of the sample in question to those in the bicluster and

in terms of the contrast of the expression level of the guidegene in the sample and the

(presumably high) expression level across the bicluster. Assuming that the comparison

samples used have a low level of expression of the guidegene, the relevance of the com-

parison can be expressed in terms of the inverse of the overall dissimilarity (according

to some distance metric) between that sample and the bicluster samples. Taking a

simple approach to the calculation of such similarity-based relevance, the Euclidean

distance between the column of the data matrix representing the sample and each of

those columns representing the bicluster samples can be calculated and normalized to a

(0,1) range by linear transformation from the range defined by the minimum and max-

imum such pairwise sample distances observed from the whole set of possible pairs of

samples. It is desired that very similar samples should have dramatically greater signif-

icance than those comparisons involving more distant samples. In order to achieve this

effect, a scoring term was developed that weighted a gene’s comparison observations

used to determine the guidegene-dependence of expression by the negative logarithm

of the mean normalized Euclidean distance of the sample used to obtain that obser-

vation and each of the bicluster samples. Of course, it is worth noting that a variety

of such scaling functions might be appropriate here, attaching a different degree of

significance of the similarity of comparison samples to bicluster samples. Therefore,

at this stage, this method of evaluating guidegene-dependence is essentially arbitrary,

although chosen on the basis of preliminary testing of alternatives and exploration of

the results.

The resulting guidegene-dependent bicluster scoring function is defined by Equations

(3.14-3.17). In Equation (3.14) Sc represents the set of (non-bicluster) samples used for

evaluation of contrast of expression, coincident with that of the guidegene, to the bi-

cluster samples. Sb represents the bicluster samples and S in Equation (3.15) represents

the set of all samples in the dataset.

f(x) = −|Sb|
∑

g∈genes
log(P (g))

∑
c∈Sc

(δg,c log(H(c, Sb))) (3.14)

P (g) =

∑
s∈S

δg,s

|S|
(3.15)
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H(x, samples) =
1

|samples|
∑

s∈samples

√∑
g∈G

(Dg,x −Dg,s)
2 (3.16)

δg,s =

{
1 if Dg,s = hi

0 otherwise
(3.17)

A similar analysis as that presented in Section (3.6.2) was performed and is de-

scribed below for the guidegene-dependent BGA to evaluate the specificity of biclus-

tering results to the query guidegene and the biological significance of those discovered

biclusters.

Bicluster Properties: Comparing Guidegene-Dependent Biclusters And Entropy-

Based Biclusters

As discussed in Section (3.6.2), certain properties are especially desirable in collections

of biclusters discovered by a given algorithm. Of particular interest in a guidegene-

dependent biclustering framework is the specificity of results to each query gene. Unlike

the other biclustering algorithms mentioned in this chapter, the guidegene-dependent

biclustering algorithm can return different genelists for the same set of bicluster samples,

depending on the guide gene used to evaluate the expression patterns. To illustrate

this effect on overall biclustering results, a rank-based overlap analysis was performed

on genelists from biclusters arising from analysis of the dataset used in Section (3.6.2)

with the guidegene-dependent BGA described above, using the guidegenes Oct4, Sox2,

cMyc, Myod1, Esrrb, Casp3 and Vamp1. Average rank scores were calculated for all

genes across the set of biclusters discovered by the GDepBGA, for each of guidegenes

in turn. Standard deviation of the averaged rank scores for each of the bicluster sets

was calculated for every gene. The distribution of these standard deviations of average

rank scores for genes being associated through biclusters to each of the guidegenes is

shown in Fig. 3.19. For comparison, the equivalent rank-based overlap scores were

calculated between biclusters discovered by application of the entropy-based BGAs

presented earlier in this chapter to different ‘guidegene-expressing subsets’ of the whole

dataset are shown alongside.

The plot in Fig. 3.19 show that there is less correspondence between genelists from

biclusters discovered using the GDepBGA with different guidegenes than those from

the entropy-based MNC BGA across the same set of guidegenes. This indicates that

the transcriptional information represented by biclusters discovered by the guidegene-

dependent BGA are more specific to the gene of interest provided as a query than

even the sophisticated entropy-based MNC BGA. Measurement of the specificity of

bicluster genes to a particular guidegene revealed a similar pattern when using an

alternative score to indicate high rank in biclusters specifically from one guidegene

(data not shown). This specificity suggests that the gene expression patterns identified

using the GDepBGA are more likely to be relevant to a particular biological question
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Figure 3.19: Distributions of guidegene specificity scores for genes in biclusters dis-
covered by each of the entropy-based MNC BGA (left-hand box) and the GDepBGA
(right-hand box). The specificity score for a gene represents the standard deviation
across the set of averaged rank scores for that gene appearing in the set of biclusters
corresponding to each guidegene. A higher value indicates more variability in aver-
age bicluster genelist ranks for the given gene across the different guidegenes, and so
indicates a more specific association to an individual guidegene.
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than those represented by biclusters discovered through the traditional biclustering

framework, even those containing the gene of interest.

Provided that these query-specific biclusters represent transcriptional associations

with biological significance to at least as clear an extent as those biclusters discov-

ered using the best alternative biclustering strategies (in this case represented by the

entropy-based MNC BGA, as demonstrated in Section (3.6.2)), this specificity and rel-

evance to a particular query makes the GDepBGA a clearly superior tool for prediction

of the transcriptional activity of particular genes of interest (when considered against

other biclustering-based analysis approaches). An evaluation of this essential biological

significance of guidegene-dependent biclusters is given below.

Evaluation For Meta-Analysis

In order to evaluate the biological significance and utility (for answering biological

questions) of biclusters discovered using the GDepBGA, the analysis approaches used

in Section (3.6.2) to evaluate the success of the entropy-based MNC BGA were applied

to output from applying the guidegene-dependent BGA to the dataset used above,

with a selection of guidegenes used as queries to identify different sets of patterns

within the data. Statistical enrichment of GO terms within these biclusters are shown

in Fig 3.20 alongside corresponding enrichments achieved through application of the

entropy-based and naive MNC BGA. For a subset of the guidegenes (Oct4, Sox2, cMyc

and Esrrb) lists of predicted targets were available from high-throughput chIP data.

Overlaps to each gene’s binding-targets from the genelists from guidegene-dependent

biclusters using the appropriate TF as a guidegene are shown in Fig 3.21 alongside

corresponding enrichments of each TF’s binding targets within biclusters discovered

using the entropy-based BGA on each TF-expressing subset of the whole dataset.

These collections of enrichments demonstrate that the GDepBGA discovers biclusters

representing gene expression patterns within the data that, while specific to a particular

gene of interest, are highly statistically enriched for the present of consistent biological

process signatures and for relevant DNA-binding targets of particular TFs. This com-

bination of features suggests a clear advantage of the guidegene-dependent biclustering

approach described above over other biclustering-based approaches, in terms of meta-

analysis of large collections of gene expression data for prediction of transcriptional

regulatory mechanisms involving particular genes of interest (or any process for which

such genes might be biological markers). It is proposed that the specificity demon-

strated by the GDepBGA, whilst still capturing significant biological signatures within

the data, indicates the utility of the concept of localised gene expression co-dependency

analysis introduced in this section.
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Figure 3.20: Enrichments of GO terms in bicluster genelists for MNC BGA using
entropy-based (red) and naive (blue) models of bicluster desirability compared to GDep-
BGA (green). Vertical axis represents -log GO term enrichment p-value distribution
for biclusters found by the corresponding method. Around 200 biclusters were analysed
for each method.
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Figure 3.21: Average overlap of bicluster genelists of varying length with DNA-binding
targets for each of a number of TFs. Ranking for genelists from biclusters discovered
using the MNC BGA with entropy-based and guidegene-dependent bicluster models
is according to the bicluster model, and corresponding overlaps are shown in red and
green, respectively. Overlaps for biclusters discovered using MNC BGA with naive
bicluster model are representative of expected overlap for a randomly sampled genelist
of the given length from any of the relevant biclusters. These expected overlaps are
shown in black.
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3.7 Discussion

This chapter describes the motivation behind application of a biclustering approach to

the meta-analysis of large collections of gene expression data, principally being that as

the diversity within the collection of data increases the overall correlation in expression

between genes with all but the most universal transcriptional relationships tends to

disappear. In addition, the necessity for development of novel biclustering approaches

for application to meta-analysis of very large collections of gene expression data was

demonstrated through analysis of the growth of execution times of existing biclustering

algorithms with the size of meta-analysis datasets, with the results presented in Section

(3.5.1) illustrating the infeasibility of existing biclustering algorithms’ application to

gene expression datasets involving thousands of samples. As the chances of a particular

transcriptional regulatory signature being differentially present in the data and reliably

recovered through some pattern-mining method increase with the size of the dataset,

it would clearly be advantageous to be able to analyse data from as many samples

as possible. As there are thousands of gene expression datasets publicly available the

observed lack of extendability of the feasible scale of biclustering possible with existing

algorithms is clearly a severe limitation in terms of the potential for useful application

of the biclustering paradigm to meta-analysis of gene expression data.

A reformulation of the standard biclustering problem was developed so that the

complexity of the task when applied to mining gene expression datasets for transcrip-

tional patterns was reduced. Based on this reformulation, which is presented in Section

(3.4.1), novel biclustering algorithms were developed. The exhaustive biclustering al-

gorithm presented in Section (3.4.4) was shown to identify consistent gene expression

patterns through biclustering, although was infeasible for application to large-scale

meta-analysis. To this end, a genetic algorithm was developed to explore efficiently the

combinatorial search space of possible biclusters arising from the biclustering problem

as defined in Section (3.4.1). This novel biclustering algorithm (IslandCluster) was

shown through application to artificial datasets and large collections of gene expression

data to successfully discover biclusters with a comparative level of biological signifi-

cance to those discovered using existing state-of-the-art algorithms but to be able to

achieve this on the desired scale for meta-analysis, which (at the time of development

of IslandCluster) was impossible with any existing method.

The development of IslandCluster enabled the application of biclustering to meta-

analysis on a previously unreported scale. This in turn enabled, for the first time, the

study of application of biclustering to such large-scale meta-analysis of gene expression

data. Through evaluation of the properties of biclusters discovered by IslandCluster,

modifications were proposed for improving the practical impact of this biclustering ap-

proach to meta-analysis of gene expression data in terms of answering specific questions
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in biological research. A theoretical advance regarding the entropy-based estimation

of bicluster desirability was developed. This framework is presented in Section (3.6.2)

and the practical benefits of incorporating such an approach to estimation of bicluster

desirability into a biclustering algorithm are illustrated through various examples in

the application of these algorithms to meta-analysis of gene expression data (also in

Section (3.6.2)).

It was noted that the traditional biclustering approach results in a prevalence of bi-

clusters representing expression profiles generally characteristic of the biological context

reflected in the bicluster. This results in a lack of ability to distinguish specific transcrip-

tional regulatory relationships from general context-dependent expression programs.

To avoid this problem, and to identify transcriptional relationships between genes even

within an individual biological context, the concept of localised gene expression co-

dependency analysis was developed. Crucial to this concept is the consideration of the

overall similarity of transcriptional programs between samples with observed expression

patterns involving a gene or set of genes of interest. Guidegene-dependent biclustering

was developed as a means of implementing localised gene expression co-depedendency

analysis, adapting the biclustering paradigm to the prediction of transcriptional rela-

tionships involving particular genes of interest. The development of this concept into

an alternative bicluster definition and corresponding estimator of bicluster desirability

is presented in Section (3.6.3). This novel biclustering concept led to the development

of a guidegene-dependent biclustering algorithm that was applied to the meta-analysis

of gene expression data. The success of this application of the GDepBGA, as demon-

strated in Section (3.6.3), indicates that a tool has been developed as a result of the

work presented in this chapter that provides a means to estimating transcriptional reg-

ulatory information regarding particular genes of interest through the application of

biclustering to meta-analysis of gene expression data on a previously unreported scale.

The scale of the datasets analysed in this work result in this constituting a novel appli-

cation of biclustering. The practical considerations identified in this work as necessary

for biclustering algorithms to be successfully applied to this task represent unique in-

sight offered into large scale gene expression data mining. The concept of localised

gene expression co-dependency analysis as a means of inferring transcriptional rela-

tionships from large and diverse collections of gene expression data has not previously

been considered, thus its introduction in this thesis creates considerable opportunity for

further work on gene expression data mining for inference of transcriptional regulatory

mechanisms.

As discussed in Section (3.4.2), the novel algorithms presented in this chapter (along

with many of the existing algorithms mentioned) require some preprocessing of raw

gene expression measurements into a scale indicating the relative expression level of

each gene in each sample in the dataset. The evaluations of application of these algo-
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rithms presented throughout this chapter demonstrate that the approaches taken here

were successful to some degree in facilitating discovery of biologically significant (and

relevant) biclusters. However, the precise nature of these preprocessing methods and

the manner in which they transform the underlying data is interesting. The study of

such methods for the biological interpretation of gene expression data may yield possi-

ble improvements in the applicability of biclustering meta-analysis of gene expression

data to real problems in biological research. This is the topic of the next chapter.
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Chapter 4

Development of a Framework for

Biological Interpretation of Gene

Expression Data
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The biological implications of the expression of a given gene at a given level may be

difficult to assess from a single measurement without prior knowledge relating to the

gene in question. For example, can any regulatory activity be inferred from establish-

ing that a constitutively-expressed ‘housekeeping’ gene is expressed with a particular

concentration of mRNA? As a result, standard analyses of gene expression datasets

tend to be based on the identification of genes that are differentially-expressed be-

tween some samples of interest and a control set (as described in [Dudoit et al., 2002,

Slonim and Yanai, 2009]). For any pattern mining approaches not based on a straight-

forward comparison between defined groups of samples to be applied to meta-analysis

of large collections of gene expression data, a differential expression framework is in-

sufficient. To facilitate application of a wider range of pattern mining techniques to

gene expression meta-analysis, this chapter concerns the study, development, evalua-

tion and application of methods for transformation of gene expression measurements

in large collections of data into a standardised scale, offering straightforward biological

interpretation of any measurement taken in isolation of all others.

First, such methods for transformation of gene expression data are discussed in terms

of providing the ability to discover absolute gene expression patterns on a large scale.

Existing approaches involving discretisation of data are discussed and evaluated along-

side the novel discretisation approach described in Section (3.4.4). Owing to the lim-

itations inherent to all discretisation approaches, continuous data transformations are

introduced and attempts to use ‘spike-in’ datasets to calibrate data are presented. A

novel framework for modelling the biological state of expression corresponding to mea-

sured intensity levels is presented and the results of application of this method to real

data are also presented. This novel data transformation is evaluated in terms of its

measurement of non-biological variation of expression and its impact on improving the

performance of a biclustering algorithm (both in recovering implanted patterns in arti-

ficial datasets and increasing the biological significance of biclusters discovered in real

data). An application of this data transformation outside the context of large-scale

data mining is discussed, regarding the interpretation of individual (small-scale) gene

expression datasets. Finally, the implications of the development of these novel data

transformations are discussed.

4.1 Facilitating Large-Scale Data Mining

In the meta-analysis of gene expression data, most methods attempt to identify genes

that are consistently differentially-expressed across certain groups of samples (e.g.

[Owen et al., 2003, Hong et al., 2006]) or to identify associations between genes through

the analysis of general trends in expression patterns across the available data (e.g.

[Campbell et al., 2007, Day et al., 2009]). If, however, the goal is to identify absolute

patterns of the expression of groups of genes (as is the case in the biclustering analy-
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sis discussed in the previous chapter), then it becomes especially useful to be able to

make some inference regarding the biological significance of a particular gene expression

measurement. The motivations for developing methods to enable such inference are de-

scribed in greater detail below, and various approaches to transforming gene expression

data with this objective are discussed, including the presentation of novel approaches.

4.1.1 Motivation

For the discovery of patterns in large datasets, some model of the structure of the

desired patterns must be defined. A survey of various models of bicluster struc-

ture used by a range of algorithms is included in Madeira & Oliveira’s 2004 review

[Madeira and Oliveira, 2004]. Where the algorithms searching for biclusters with the

given structures attempt to identify those patterns in data matrices of measured gene

expression levels, but consider only localised structure within the data (as is the nature

of the biclustering paradigm), a particular measurement of a given gene’s expression is

taken out of the context of the overall distribution of expression levels for that gene.

As mentioned in Section (3.4.2), this may be problematic for the following reasons:

Firstly, the most comprehensive resources of genome-scale gene expression data con-

tain data from gene expression microarrays. If cross-platform data analysis issues are

to be avoided, it is particular Affymetrix microarray platforms that have by far the

greatest coverage of different samples profiled in the public domain: the HGU133plus2

and MOE430v2 array platforms have data from approximately 46, 000 and 17, 000 sam-

ples (respectively) in the GEO repository at the time of writing (in 2010). It is well

known that microarray platforms tend not to yield accurate absolute measurements

of transcript abundance, owing to limitations of the array hybridization and imaging

technologies [Draghici et al., 2006, Zilliox and Irizarry, 2007]. As a result, any meta-

analyses of collections of this microarray-derived gene expression data require some way

of transforming the measurements from different samples into a scale that enables ap-

propriate comparison of a particular gene in one sample with that of any other sample.

In addition, and possibly more importantly, the measurements obtained by microarray

profiling are arbitrary intensity values, not necessarily corresponding directly to mRNA

concentrations. In order to relate these (arbitrary) intensity values to biological signifi-

cance of gene expression, analysis of microarray data tends to involve the identification

of genes with high differential expression between particular groups of samples (usu-

ally a sample-type of interest and a control group). For meta-analysis of this data

considering every possible combination of samples to retain the concept of differential

expression, every potential pattern would have to be described in terms of the samples

involved and the direction of all comparisons within those samples (i.e. which samples

to compare with which others). This additional order of complexity in the search space

of possible solutions to such a pattern-mining problem might explain why the majority

of biclustering algorithms involve a preprocessing step to transform the data into a
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scale that leads to a particular interpretation of any given value without requiring the

specification of reference samples (as noted in [Madeira and Oliveira, 2004]).

In addition to the issues arising from considering large-scale meta-analysis of arbi-

trary measurement values such as those arising from gene expression microarrays, there

remain further possible advantages to adopting a transformation of the data. For ex-

ample, even if a large compendium of mRNA concentrations of every transcript across

a comprehensive range of biological samples were to exist, there still remains the issue

that an interpretation of the biological consequences of a particular concentration of

mRNA would depend on knowledge relating to that gene, as the biological significance

of a given concentration of mRNA differs from gene to gene. However, a comprehen-

sive collection of gene expression data offers the potential to interpret any given gene

expression measurement in the context of the distribution of that gene’s expression

measurements across all the samples in the dataset. This chapter concerns methods

that attempt to utilise the whole range of biological contexts represented in a large

gene expression data compendium and in doing so provide a means of transforming all

the measurements in the collected dataset into a unified scale where a particular value

implies a particular biological ‘state’ of gene expression, independent of the particular

gene or sample that value concerns.

4.1.2 Discretisation Approaches

Discretisation of microarray data is a widely used preprocessing step for simplifica-

tion of the computation challenge involved in performing biclustering (discussed in

[Madeira and Oliveira, 2004]). In addition to simplification of the computational as-

pect of biclustering, discretisation of gene expression data is a means of achieving the

objectives described above, in that a particular discrete value has a particular biological

interpretation (i.e. high/low expression of the gene) regardless of which gene the value

is measuring in which sample.

The availability of a discretised form of the underlying gene expression data enables

a bicluster model to be proposed in such a way that it can be immediately and straight-

forwardly evaluated across any submatrix of the data. This discretisation is referred

to in [Tanay et al., 2002] as the identification of a significant change in expression of a

gene ‘with respect to its normal level,’ allowing the identification through the bicluster-

ing process of genes that are in a consistent state of extraordinary expression across the

bicluster samples. A similar approach is taken in the Bimax algorithm, described as the

identification of groups of genes in a bicluster that are displaying consistently significant

‘change with respect to a control experiment’ [Prelic et al., 2006], although the control

experiment referred to here is a non-specific reference derived from the overall distribu-

tion of each gene’s expression values. As these algorithms (particularly SAMBA) have

often been demonstrated to be among the best-performing biclustering algorithms in
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terms of various evaluation criteria ([Tanay et al., 2002, Prelic et al., 2006]) it would

suggest that a meta-analysis approach based on discretisation of a large gene expression

dataset has potential to be successful.

While the discretisation of gene expression datasets has useful applications (such as

facilitating the bicluster pattern-mining approaches mentioned above), there is little

discussion in the literature of the relative merits of different approaches to this task.

Such a discussion of the relative merits of a number of reported approaches is given

below, including the motivation for development of a novel approach and assessment

of the results of applying these various methods.

Approaches to discretisation of gene expression data that are reported in the liter-

ature tend to belong to one of two categories. Those that fit a standard statistical

distribution to each gene’s expression values and apply thresholds corresponding to in-

terpretation of the fitted distribution, and those that set a threshold at a fixed (relative

or absolute) magnitude above each gene’s minimum or average level.

Any discretisation based on ranking can be seen as fitting an empirical distribution

across that gene’s expression values so that there is an equal probability associated

with each of the measure values. Then applying a statistical threshold calling values

with P (val = ‘high′) = p ‘significantly upregulated’ results in selecting the highest

(1−p)∗100% of the values. This is the default approach taken by the Bimax algorithm

as implemented in BicAT [Barkow et al., 2006], using the top 10% of values. The

approach taken by the SAMBA and xMotif algorithms involves assuming a normal

distribution of each gene’s expression values and classifying those outside a standard

deviation of the mean as ‘significantly changed’ in the respective direction.

When examining the distributions of expression values across a large collection of

samples for a number of genes, an immediate observation is that there is a high degree

of variation in the shape of the distributions (as shown in Fig. 3.14). This variation

in distribution clearly suggests that any particular standard distribution might not be

an appropriate assumption to apply universally to all genes’ expression values. In the

case of the normal distribution assumption (as taken for the discretisation approaches in

xMotif and SAMBA, and for the continuous z-score transformation utilised in ISA), the

application of a Shapiro-Wilk normality test1 to each gene’s expression values across a

large collection of data suggests that only 0.51% of the genes show a normal distribution

across the dataset (to a confidence level of P (values ∼ N(µ, σ)) ≥ 0.5), even when the

number of samples in the dataset is very large.

1Shapiro-Wilk values averaged over 10 appropriately-sized random samplings of each gene’s values,
due to the fact that the Shapiro-Wilk test tends to underestimate the likelihood of data being normally
distributed for large sample sizes
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Similar issues apply to rank-based approaches, where different genes may have dif-

ferent proportions of their measured values corresponding to particular states of ex-

pression. To illustrate this concept, Fig 4.1 shows the distributions of values across a

large dataset for three different genes. The first (albumin) shows a large proportion

of low values but a still significant proportion with very high values. By contrast, the

second (insulin) has only a few values with high expression, but these are still clearly

distinct from the other, low values. Finally, the third example shows values for a gene

(β−actin) that is constitutively expressed across the entire dataset. Such examples

demonstrate that there is no standard approach to discretisation that will yield con-

sistently accurate representation of biological states of expression when applied in the

same way to expression values for different genes. As this is likely to be due to under-

lying differences in the biological mechanisms of activity of different genes, this point

applies to the discretisation of gene expression data regardless of the technology used

to generate the data or the normalization procedures applied prior to discretisation.

An alternative approach to this discretisation task that avoids the main issue de-

scribed above is that of applying a fixed differential expression criterion to each value

in turn for a given gene, using the remaining values as a collection of reference sam-

ples. This could potentially be achieved through a statistical approach to measuring

differential expression or by applying a fold-change cut-off (e.g. classifying all values

greater than 2∗ the median value as representing significantly high expression). The

fact that the statistical approaches might run into problems estimating significance of

a single measurement’s difference to a large collection of reference values (as this is

not what the widely-used methods for detecting differential expression were designed

to do) might explain why this approach appears not to have been taken by any meth-

ods published in the literature. While the application of a fold-change threshold for

classification is often successful as a means of detecting significant differential expres-

sion [Pearson, 2008] and avoids the issues described above for invalid assumptions on

the distributions of each gene’s expression values, it fails to take into account the fact

that (as demonstrated in Fig. 3.14) the widely varying distributions of gene expres-

sion values result in a situation where a given fold-change threshold that appropriately

separates distinct groups of expression for one gene may lie in the middle of a group

of similar values for another gene. This is illustrated by the examples shown in Fig.

4.2, where the distribution of expression values for each of a set of genes are shown

in terms of fold-change to the median. A consistent fold-change threshold would be

indicated by a horizontal line drawn at the same height across all the plots. While

subjective, suggested ‘ideal’ cut-off points have been drawn by hand in Fig. 4.2 with

horizontal red lines, which illustrate that a threshold that is best for one gene may be

inappropriate for another. This is further demonstrated in Fig 4.3, where panel (a)

shows the scatter of measured expression values for each of the genes shown in Fig.

4.2, separated into ‘high’ and ‘low’ states of expression based on a median fold-change
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threshold appropriate for Sox2. Panel (b) shows the same expression values separated

into expression states based on a median fold-change threshold appropriate for alb. It

is clear that the different shapes of expression value distribution for each gene mean

that it is highly unlikely any universally-appropriate threshold will exist.

Figure 4.2: Distribution of expression values for a set of genes shown in terms of fold-
change to median value (for each gene). Ideal classification thresholds were estimated
for each gene, with position indicated by the horizontal red lines.

As a means of performing biological interpretation of gene expression data through

discretisation, whilst avoiding the problems discussed regarding those commonly used

approaches described above, a novel cluster-based discretisation method was developed

to classify expression measurements for a given gene as in a significantly active tran-

scriptional state or not, adapting to the particular characteristics of the distribution

of expression measurements available for that particular gene. The key theoretical

advantage of such an approach is that no structure is assumed on the distribution a

priori, other than that for each gene there may be an interesting state of transcrip-

tional activity indicated by a group of measurements of similar values, separated from

the remaining measurements.

This cluster-based (binary) discretisation approach was described briefly in Section

(3.4.4) as it was used for preprocessing of datasets in all BGA applications presented

throughout Chapter 3. For quick binary discretisation, a statistic was developed to

assess whether a gene has significant variation across a dataset, based on the range of

values and the mean value in relation to the average range and mean of each gene across
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(a) Low median fold-change threshold

(b) High median fold-change threshold

Figure 4.3: Classification of gene expression values on the basis of alternative median
fold-change thresholds. Expression level measurement values for each gene are sepa-
rated into low expression class (blue) and high expression class (red) on the basis of a
median fold-change threshold. The same measurements are shown in both panels for
the same genes, but each panel represents a different classification threshold, indicating
that different thresholds are suitable for different genes.
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the entire dataset. For genes with a relatively small range but high mean expression

(i.e. a low value of si in Equation 3.1), it is determined that it is unlikely there is

much variation with biological significance in terms of the expression of those genes

as measured across the dataset. As the cluster statistic takes an essentially arbitrary

value, an appropriate threshold (smin for which si < smin implies gene i has little

significant variation) should be chosen through empirical analysis of a carefully chosen2

sample of genes from the dataset. For those genes classified by this method as having

significant differential expression across the dataset, discretisation proceeds through

binary classification according to k-means clustering (see [Hartigan, 1975]) with two

cluster means (i.e. k = 2) initialised to the mean of each group of values either side of

the greatest pairwise separation of any values.

To compare the performance of these various discretisation approaches in practical

terms, evaluation of the results of applying each approach to the same datasets was

required. An obvious approach to such evaluation involves the visual inspection of

appropriateness of the assigned groupings, and for this purpose Figs. 4.4 - 4.6 show

examples of gene distributions from the dataset described in Section (3.3), with classi-

fication boundaries from each of three discretisation approaches:

• Normal distribution:

val =

{
1 if val > µ+ σ

0 otherwise
(4.1)

• Fold-change:

val =

{
1 if val > median(V als) ∗ 2

0 otherwise
(4.2)

• Cluster-based discretisation: as performed by Algorithm (1) given in Section

(3.4.4)

These figures illustrate that the adaptive approach taken by the novel cluster-based

discretisation better fits the distributions of a variety of genes’ expression values. How-

ever, such an evaluation is potentially subjective and certainly incomplete: the sam-

pling of genes shown here is too small to represent the full range of > 40, 000 such

distributions across the dataset used in the above analysis.

For more complete and objective evaluation of the relative performance of each of

the above discretisation approaches, simple measurements were devised to assess the

2chosen to represent the extremes of distribution patterns as well as those that are more commonly
observed
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degree to which each method fits the underlying data. For this evaluation, the appro-

priateness of the partitioning performed by each method was assessed by calculating

the ratio of the sum of within-cluster distances for the two clusters to the total sum

of distances for each gene, as shown in Equation (4.3). In Equation (4.3) x represents

the vector of expression values for the given gene, C1 and C2 are the sets of indices

representing membership of low and high expression classes. The distributions of these

inter-cluster distances for each of the above methods (and one additional method in-

volving classifying the top 10% of each gene’s values as representing high expression)

are shown in Fig. 4.7, from 1000 genes chosen randomly from the set assigned 2 classes

by all methods used.

d =

∑
i∈C1

∑
j∈C1,j 6=i

(xi − xj)2

1
2
∗(|C1|2−|C1|)

+

∑
i∈C2

∑
j∈C2,j 6=i

(xi − xj)2

1
2
∗(|C2|2−|C2|)∑

i

∑
j 6=i

(xi − xj)2

1
2
∗((|C1|+|C2|)2−(|C1|+|C2|))

(4.3)

This evaluation clearly demonstrates that the novel cluster-based discretisation ap-

proach introduced in Section (3.4.4) outperforms other discretisation approaches with

reported application to gene expression data as a preprocessing step prior to biclus-

ter analysis, as it reliably provides more tightly-grouped clusters than the alternative

approaches whilst still defining only 2 classes of expression (‘high’ or ‘low’).

The main advantage afforded by all the above discretisation approaches is that a large

gene expression dataset is transformed from numerical measurements into symbols with

an immediate biological interpretation: one value implies that a gene is either expressed

significantly above its ‘background’ level, another implies that it isn’t. However, this

simplicity has the potential to limit the success of any analysis method employing a

discretisation approach, due to the fact that a threshold must be placed at some point

in the distribution of expression values and, unless every gene (or at least the majority

of genes) has clear separation between different groups of values, this may result in some

values only marginally higher than those considered to be at a background expression

level being classified as significantly highly expressed. An illustration of the practical

problems that can result from this situation is presented below.

It was discovered in biclusters found in real datasets using the entropy-based and

guidegene-dependent BGAs described in Section (3.6) that there was an enrichment

in a range of biclusters for genes with particular distribution patterns. Across a set

of biclusters discovered using the BGA with a range of different (and uncorrelated)

guidegenes, bicluster genes appeared to be more likely to have a threshold towards the

upper limit of the lower group of expression values (according to visual inspection)
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Figure 4.7: Distribution of scaled within-cluster distance to overall-distance ratios for a
range of discretisation approaches. The distance ratios shown were calculated according
to Equation (4.3). This measure represents the dissimilarity between the gene’s mea-
surement values that are classified as high, added to the dissimilarity between the gene’s
measurement values that are classified as low, and scaled by the overall dissimilarity
between all of that gene’s measurements. A lower score represents a better separation
of highly-expressed and lowly-expressed measurements for the gene in question. Meth-
ods used, from left to right, are the novel cluster-based discretisation, discretisation
based on the normal distribution as described in Equation (4.1), discretisation by me-
dian fold-change as described in Equation (4.2), and a universal threshold assigning
the top 10% of a gene’s measurements to the high-expression class and the rest to the
low-expression class.
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than by chance. In order to assess the generality of this observation, a quantitative

measure was devised to provide an indication of a gene’s presence in a bicluster on the

basis of the distance from the mean of that gene’s expression within the bicluster to

the greatest value of the gene’s expression when the discretisation process has assigned

it to a ‘low’ class of expression, scaled by the distance between that gene’s mean ex-

pression values for each of the ‘high’ and ‘low’ expression classes. The effectiveness of

each discretisation method at facilitating effective bicluster discovery was evaluated by

applying this measure (shown in Equation (4.4)) to a large set of biclusters discovered

by the BGA (as described in Section (3.6.2 & 3.6.3)) and comparing the distribution of

the resulting scores to a reference distribution obtained from applying the measure to

a large number of randomly sampled genes for randomly chosen samples belonging to

that gene’s ‘high’ expression class set. These distributions are shown in Fig. 4.8, along

with the distribution of scores for only the top ranking 200 genes in each bicluster’s

genelist. From these distribution plots it is clear that biclusters discovered in discre-

tised data (preprocessed by a method shown in Section (4.1.2) to be more appropriate

for preprocessing large gene expression datasets than any existing methods) using a

probabilistic biclustering algorithm are more likely than would be expected by chance

to involve genes which are included in the bicluster on the basis of consistently high

expression and yet show poor separation from values classified as low expression, and

that this observed effect applies across the top ranking genes (based on probabilistic

bicluster-inclusion score) across each bicluster.

d =

∑
i∈Bicluster

xi

|Bicluster| − max
i∈LowClass

(xi)∑
i∈HighClass

xi

|HighClass| −

∑
i∈LowClass

xi

|LowClass|

(4.4)

In the entropy-based framework for biclustering, this observed effect would be par-

ticularly problematic as it would result in genes being considered highly specifically

expressed in a bicluster due to relatively insignificant expression level fluctuations ei-

ther side of a discretisation threshold (akin to measurement noise). It is proposed that

these genes might be confounding the attempt through application of the BGA to iden-

tify relevant transcriptional relationships involving particular genes of interest. This

may explain why, although the enrichments of TFs’ DNA-binding targets in biclus-

ters shown in Section (3.6.3) was statistically significant, the actual number of known

targets discovered in the bicluster lists was fairly low. At an average proportion of

bicluster genes with DNA-binding evidence only 1% for Oct4 and Sox2, up to 10% for

Esrrb and cMyc, a 1/10 to 1/100 chance of a bicluster gene being is probably too low

to be very useful in guiding primary biological research.
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Figure 4.8: Distribution of scores for ‘borderline’ bicluster genes when compared with
a randomly-sampled set of reference genes, with a lower value indicating a less clear
distinction of a gene’s expression between values assigned a ‘low’ expression class and
values assigned a ‘high’ expression class (a necessary condition for membership of a
bicluster.)
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It therefore seems that it might be advantageous to produce a data transformation

approach that can generate immediately biologically interpretable values on some con-

tinuous scale from underlying (potentially arbitrary) gene expression measurements.

The remainder of this chapter deals with the development, evaluation and application

of such continuous transformations for biological interpretability of gene expression

measurement values.
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4.1.3 Calibration with ‘Spike-In’ Datasets

To avoid the problems observed when applying pattern mining techniques to discretised

gene expression data, it was deemed necessary to develop a continuous-scale data trans-

formation approach that could provide biological interpretation of numerical expression

values in isolation of any other information regarding the gene or sample involved.

One possible approach envisaged to achieve this transformation was to find a means

of transforming median fold-change values (as in Equation (4.2)) into some standard-

ised scale where a given fold-change measurement has a given biological interpretation,

regardless of the context of that measurement. The proposed method of transforma-

tion involved using ‘spike-in’ reference datasets (e.g. [Choe et al., 2005]) to calibrate

measured fold-changes into a scale representing the probability of a significant change

in expression level. This could be achieved through estimation of false-positive rates

of declaring significant biological variation at observed fold-changes. While spike-in

datasets do not offer a direct estimation of biological significance, they do provide ref-

erence measurements from microarray platforms for known concentrations of mRNA.

With a relatively simple assumption, such as that a doubling of the concentration of

mRNA is always going to be biologically significant, this approach could however be

applied to the task discussed here.

To assess the feasibility of such a false-positive calibration approach to the re-

quired data transformation, a predictor was created that could act as a transformation

function to give estimated probability of significant change for any measured level of

gene expression (in terms of fold-change to the median of all reference samples). In

essence, such an approach aims to model the measurement errors of microarray plat-

forms. Unfortunately, as there was not a spike-in dataset available for the microar-

ray platform from which the majority of the data analysed in this work, a dataset

[Choe et al., 2005] from a related platform (Affymetrix DrosGenome1 GeneChip) was

used in lieu. Spike-in datasets on Affymetrix platforms are available for Drosophila

melanogaster [Choe et al., 2005] and Homo sapiens3 microarrays. The cyclic ‘latin

square’ design of the human dataset did not provide a sufficient reference set of genes

without differential expression between the dataset’s samples. This rendered it impossi-

ble to derive the desired calibration from this dataset and the ’Golden Spike’ Drosophila

dataset of [Choe et al., 2005] was used. As the measurements from this dataset were

on a different scale to those in the large meta-analysis dataset for which the transfor-

mations were intended, any results from analysis of this spike-in dataset would have

to be transformed into the appropriate range. The spike-in dataset contains data from

‘spiked-in’ samples with mRNAs injected at known concentrations, each paired with

a ‘control’ sample with all the mRNAs injected at a reference (lower) concentration.

3available online from http://www.affymetrix.com
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From the measurements corresponding to each of these differentially injected (‘spiked-

in’) mRNAs, measured fold-changes to median reference level were calculated for known

fold-changes of mRNA concentration injected into the different samples. Fig. 4.9 shows

the distribution of measured fold-changes for known changes in the spiked-in concentra-

tion. Interestingly, for samples with some higher levels of injected mRNA concentration

the corresponding gene expression measurement on the microarray was lower than for

samples with less mRNA injected. This observation suggests that there may be issues

with attempting to use this data for estimation of false-positive rates arising from mea-

sured fold-changes: many negative measure fold-changes correspond to a false-positive

rate of less than 1 in terms of representing real change in gene expression level (this

observation is repeated in [Irizarry et al., 2006]).

Figure 4.9: Distributions of measured fold-changes to median for different levels of dif-
ferential mRNA spike-in. Value on the vertical axis represents fold-change of measured
level of ‘spiked-in’ mRNA compared to median (non spiked-in) value for that gene. A
box plot is given for each conentration at which mRNAs were spiked into the samples.

To continue with this approach, the measured fold-changes were transformed into the

appropriate range for the meta-analysis dataset through quantile-alignment. An esti-

mator of false-positive rates, corresponding to the probability that a given measurement

doesn’t represent at least a two-fold change in mRNA concentration was produced by

creating a table of the measurements observed in the quantile-aligned spike-in dataset
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and the probabilities that any given measured fold-change arises without there having

been at least a two-fold increase in the injected mRNA in that sample (when com-

pared to the median of others). Quantile-alignment was performed using the glm and

predict functions available in the glm package within R. This false-positive rate esti-

mator is shown in Fig.4.10, with the output of the predictor plotted against the input

fold-change value.

Figure 4.10: Estimates of false-positive rate for classifying given fold-changes as repre-
senting significant variation of expression level.

Finally, an estimator for true-positive rates of a given measured fold-change repre-

senting at least a 2-fold change in corresponding mRNA concentrations was created by

fitting a sigmoid predictor to the (1 − FP ) values from the above table (for positive

fold-change values only). A model of the form given in Equation (4.5) was fitted using

the nls function in R, implementing a nonlinear least-squares model-fitting approach.

The resulting predictor is shown as the red line in the plot in Fig. 4.11, which also shows

the underlying (1− FP ) values obtained from the quantile-aligned measurements.

P (x) =
1

1 + e−x
(4.5)

It is clear from the inspection of this predictor that this calibration approach would

not be appropriate for the desired data transformation task, due to the fact that a
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Figure 4.11: Predictor of probability of significant variation for given values of fold-
change to median reference level

measurement at precisely the median value for that gene has an estimated probability

of > 0.5 of being at a significantly higher expression level than the general reference

‘background.’ The plot in Fig. 4.11 shows that this calibration would result in a scale

where nearly half the measurements for every gene are considered to be expressed at

a significantly higher level than a general background level, with very little variation

of estimated significance corresponding to very large (and presumably significant) dif-

ferences in measured fold-changes: for example, an increase in fold-change above the

reference level from 1x to 5x results in an increase in the estimate of significantly high

expression of only approximately 0.8 to 1.0. In addition, this calibration was based

on the assumption that a two-fold increase in mRNA concentration would always be

significant, regardless of the gene involved. Owing to the obvious failing of this method,

and potentially also of this assumption, an alternative approach was taken to attempt

to utilise all the data available within the large meta-analysis dataset to model the

biological significance of measure gene expression levels, and this alternative approach

to the data transformation is the subject of the following section.
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4.1.4 Expression-State Modelling

As the results of attempting to calibrate gene expression measurements using spike-in

datasets (described above) were clearly inappropriate, an alternative approach to such

calibration was sought. If the goal of such a calibration is to provide estimates for the

probability that a given expression measurement (that is to say, both an intensity value

and fold-change to some reference) corresponds to a significant change in expression

level of that gene (compared to the reference level), this could be achieved through

fitting an appropriate error model such as the Rocke-Durbin model for measurement

error on microarray platforms [Rocke and Durbin, 2001]. This model, described in

Equations (4.6-4.8), estimates a distribution of measured values, Y , likely to arise from

a single underlying value, x.

y = α+ xeη + ε (4.6)

η ∼ N(0, ση) (4.7)

ε ∼ N(0, σε) (4.8)

By appropriately fitting the model parameters to the observed data, a probability

can be estimated that any two measured values might arise from the same underlying

expression level, and thus a predictor of the significance of any given difference in mea-

sured values can be obtained. However, this ‘significance’ refers only to the probability

that there is a real difference in the expression levels represented by the given measure-

ments. While an assumption such as that a 2-fold change in underlying expression level

is biologically significant could be incorporated into this framework so that estimates

for P (x > 2X̄|y, Ȳ )4 could represent a probability of biologically significant variation,

such an approach is still dependent on an essentially arbitrary and universally applied

assumption of significance of differential expression. In order to get around this issue,

more involved models of the biological significance of particular expression levels of

each gene would have to be constructed individually.

Motivation

Given that the meta-analysis proposed in this work is intended to involve as compre-

hensive a collection of gene expression data as is possible, this ought to imply that as

the datasets involved cover more samples from a given organism, so the set of all (com-

parable) measurements of each gene tend towards a complete distribution representing

the full range of expression levels that gene may take. Providing that this assumption

holds, it would then be possible to analyse these distributions of expression values for

4where x and y are an expression value and measurement, respectively, and X̄ and Ȳ are the
averages across the distribution of expected underlying expression values and the observed distribution
of measurements
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each gene to identify natural (or in rare cases forced) ‘states’ of expression, represented

by groups of samples with similar values.

One possible confounding factor to such an analysis arises from the fact that the gene

expression data come from (sometimes heterogeneous) mixtures of cells. As a result,

even if a hypothetical gene is only ever expressed at one of two levels (0 or 1, say),

owing to a complete range of possible proportions of cells expressing the gene at either

level in every measured sample, the observed measurements could lie anywhere in the

range (0, 1). This principle is illustrated in Fig. 4.12, where distributions are shown for

the expression levels of the hypothetical gene across a set of individual cells and across

a set of mixtures of cells (it is assumed that all measurements are amplified/normalized

to the same scale).

(a) Individual cells (b) Mixtures of cells

Figure 4.12: Hypothetical distributions of measurements from individual cells and from
mixtures of cells

However, unless the mixing of cells in the input samples is uniformly distributed (over

the range of expression levels the gene in question may take) across all the samples

in the (assumed to be comprehensive) dataset, and such a situation would imply no

discernable link between the expression level and the biological context, the different

states of expression of that gene will emerge as components of the overall distribution

of measured expression values. Therefore, by modelling the underlying components of

the distribution of measured expression levels for each gene, it is proposed that the

biological significance of any given measurement could be inferred from the estimated

contribution of different expression ‘states’ of that gene constituting the given sample’s

measurement.

Of course, some genes may have biological consequences based on a finely-controlled

quantitative level of the abundance of transcript, but the proposed modelling approach
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doesn’t preclude such cases being considered appropriately: as the intended output of

the modelling proposed here is a set of values on a standard numerical scale indicating

the biological significance of expression, those corresponding values will vary accord-

ingly across the spectrum of observed values while conforming to any structure implied

by the distribution of these measurements over the whole data.

It may also be worth noting that such an approach involving component-based mod-

elling of gene expression distributions over large collections of data has been applied

to other tasks: the estimation of gene expression variance in improved statistical mea-

sures of differential expression [Kim et al., 2010b] and the discretisation of large-scale

microarray datasets as a precursor to sample classification [Zilliox and Irizarry, 2007].

However, there are no known reports in the literature of attempts to model the biolog-

ical significance of gene expression measurements given a compendium of data, aside

from that implicitly modelled in discretisation approaches, so the work presented below

represents exciting novel developments in the theory and potential practical applica-

tions of the analysis of large-scale gene expression datasets.

Approach and Implementation

As described above, the goal of the intended modelling approach is to identify structural

components within the distributions of measurements for a particular gene across the

whole collection of samples profiled in the dataset. Once these structural components

have been discovered (if they exist), a classifier can be constructed to compute proba-

bilities that any observed measurement arose from each underlying distribution: that

is, the likely contribution of each component can be estimated for any value. From this

general modelling framework, a biological interpretation can be afforded by combining

the component classification probabilities into a linear scale representing the probabil-

ity of a high-active transcriptional state of the given gene (with intermediate values

quite possibly representing intermediary biological states of expression). If preferred,

the proposed framework is flexible enough to allow the output to be expressed in terms

of classification probabilities for any number of distinct biological states of expression

that appear to emerge from the pattern of distribution of measurements for the given

gene across the dataset.

An implementation of the data transformation approach based on the proposed mod-

elling framework requires the performance of a number of constituent tasks, described

below in terms of the implementations used in this work.

Model Construction and Fitting To model any component-based structure within

the distribution of expression values for a gene, a Gaussian mixture model (GMM) ap-

proach was taken. GMMs provide a flexible framework for modelling data distributions

involving different component distributions: this is especially useful when applied to
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multi-modal distributions [Fraley and Raftery, 2002] such as the example in Fig. 4.13.

A GMM models a given data distribution as a weighted sum of component Gaussian

distributions, as in Equations (4.9-4.10). The examples here concern only univariate

data, as is the case with the data to be modelled, although the GMM framework is

extendable to data of multiple dimensions. According to the definition in Equations

(4.9-4.10), the GMM is parameterized by a set of weights, means and standard devi-

ations for each distribution, and implicitly parameterized by the number of mixture

components specified.

p(x|θ) =
m∑
i=1

wig(x|µi, σi) (4.9)

g(x|µ, σ) =
1√
2π
e−

(x−µ)2

2σ2 (4.10)

Figure 4.13: Illustration of Gaussian components (red, brown and green) from a multi-
modal distribution (black line)

In this modelling of the distribution of gene expression values, the number of compo-

nents in the distribution is not known in advance, in fact the estimation of this property

is often one of the key steps in specification of the appropriate model (and is indirectly

one of the key outcomes of the modelling process). The Bayes Information Criterion

(BIC) [Schwarz, 1978] provides a means of assessing different parameterizations of a

model, through calculating maximised loglikelihood whilst penalising increasing num-
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bers of parameters in the model. Fitting a number of GMMs with different specified

numbers of mixture components, then selecting the model with the best BIC score

provides a natural means of selecting the most appropriate model for the observed

data. The mclust package in R provides a function Mclust that implements the above

procedure for fitting a number of GMMs to the data given (with parameter estimation

for model fitting performed by expectation-maximization (EM) algorithm) and select-

ing the model that best fits the data according to the BIC. For further details of the

procedures implemented in Mclust, see [Fraley and Raftery, 1999]. An illustration of

this GMM-fitting procedure is given in Fig 4.14, in which a (bimodal) gene expression

value distribution is modelled by GMMs with 1,2 and 3 components. The overall data

distribution is shown in black, the component distributions in green and the overall

model distribution in red. Fig 4.15 shows the BIC scores for each of the models (and

up to 5 Gaussian components), illustrating that the model with 2 Gaussian components

did indeed best fit the data according to this criterion.

A potential problem that arose from this application of Mclust to the modelling task

at hand is illustrated in Figs. 4.16 & 4.17. These show similar plots to those in Figs.

4.14 & 4.15, although the (clearly bimodal) distribution is best fitted by a higher-order

model (one with more components than appear to be present in the underlying data).

In addition, two of the components of the model clearly map to the same component in

the data, presumably due to the fact that this component in the data is not Gaussian

in shape. However, this ‘over-specified’ model does fit the underlying data better, so

it was deemed appropriate to use Mclust to fit a GMM whether over-specified or not,

and use the individually fitted components non-naively to produce the desired scale of

biological significance.
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Figure 4.15: Bayes Information Criterion scores for models fitted in Fig. 4.14

Figure 4.16: Distribution plots for a GMM (blue) with five individual Gaussian compo-
nents (shown in green), fitted to a clearly bimodal data distribution (shown in black).
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Figure 4.17: Bayes Information Criterion scores for models fitted in Fig. 4.16
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Construction of Biological Significance Predictor In order to use the output

from Mclust GMM-fitting to produce an estimator for biological significance of any

measurement of a given gene, firstly a heuristic was developed to merge highly over-

lapping Gaussian components in the model. This merging heuristic proceeds on the

basis that if a number of components each contribute a significant proportion of the

overall density to a number of values (i.e. the Gaussians overlap) but have little or

no such overlap with any other components, it is likely that these overlapping model

components represent different features of a single structural component in the data

and should therefore be merged. The result of merging becomes apparent in the cre-

ation of the estimator for biological significance, where classification confidences from

the e-step of the EM algorithm are used to generate biological significance values ac-

cording to the probabilities that a given measurement belongs to each of the biological

states of expression represented by the structural components within that gene’s ex-

pression data distribution. In this process, the confidences of classification for each of

the merged components are added together to give a probability that the measurement

belonged to the expression state corresponding to the structural feature represented by

the combined modelling component.

Another issue remains in the development of a universally interpretable scale of bi-

ological significance from a series of fitted GMMs, due to the fact that these GMMs

may have different numbers of components, owing to differences in the characteristic

expression patterns of the genes they represent. To provide a means of unifying the clas-

sification confidences for each of the components of these different models, it was noted

that there will always exist such confidences for values to be classified as belonging to

the lowest and highest components of any model with more than a single component.

For models with a single component, the cumulative probabilities of each measured

value provide a confidence score for classification to the high state of expression, and

can be subtracted from 1 to give a classification confidence score for a low state of gene

expression. If the unified scale concerns the confidences of a gene being in its highest

or lowest observed expression state, values on such a unified scale can be obtained

regardless of the number of components in the respective fitted GMM by producing a

monotonically decreasing classification score for values belonging to the lowest expres-

sion state through subtracting all higher components from the classification confidence

of the value arising from the lowest component in the model (with a minimum classifi-

cation score of 0 and maximum 1). Similarly, a monotonically increasing classification

score can be obtained for values belonging to the highest expression state, regardless

of the number of components in the fitted model (assuming that number is at least

2). This approach additionally means that, assuming monotonicity of the classifica-

tion scores is appropriately ensured, it is not so great a problem to have overlapping

model components (such as if the merging heuristic fails) due to the fact that from the

point that the most extreme (highest or lowest) model components contribute most to
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the overall distribution, this and any other components will be combined to produce

the appropriate score. An illustration of this behaviour is shown in Fig. 4.18, with

a hypothetical gene expression value distribution plotted, including the fitted model

components (brown) and the resulting classification scores for low expression (green)

and high expression (red). A straightforward linear combination of these two compo-

nent scores, given in Equation (4.11), results in a unified scale for biological significance

of expression level, illustrated in blue in Fig. 4.19. It should be noted that this scale

does not enforce bimodality (all values being either ‘high’ or ‘low’) due to the interme-

diary components reducing the confidence of classification to the nearer of the extreme

components. Therefore, intermediate states of expression will appear as values on this

unified scale of around 0.5 (with confidence of not being in either a high or a low

expression state).

Figure 4.18: Classification scores GMM from a multi-modal distribution (black line)

scoreoverall =
1 + scorehi − scorelo

2
(4.11)

The above findings are based on the assumption that monotonicity of the respective

high- and low-class classification scores is ensured appropriately. This is not necessar-

ily straightforward, but a successful approach was implemented finding the points (if

such points exist) at which classification scores for the most extreme components revers

(e.g. lower expression values have lower classification scores for the lowest component)

and adding to those incorrect classification scores the classification scores for all other

classes, weighted by mixture proportions derived from a cumulative normal distribu-
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Figure 4.19: Unified expression state values for hypothetical gene with a multi-modal
distribution (black line)

tion. This ensures that the additional intermediary components do not contribute too

greatly to the classification score for the extreme class when the value may well have a

significant change of belonging to an intermediate expression state.

The above discussion concerns only the distributions of the measured expression

values. However, as mentioned at the beginning of this section, it is possible to fit

measurement error models to obtain (from the measured values) estimates of underlying

expression level.

Error Model Incorporation As described at the beginning of this section, the

Rocke-Durbin error model provides a method of estimating the range of measure-

ments (and their corresponding probabilities) that might arise from a given under-

lying value. This incorporates a general background level (α in Equation (4.6)),

an intensity-dependent error term proportional to the logarithm of the underlying

value (η in Equation (4.6)) and a constant measurement error term (ε in Equation

(4.6)). For further details regarding the motivations for this form of error model,

see [Rocke and Durbin, 2001]. Appropriate estimation of the error model parameters

therefore results in a method to estimate, for any given measurement, the distribu-

tion of underlying values likely to give rise to such a measurement. An expression

corresponding to this method is given in Equations (4.12-4.14).
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x =
y − α− ε

eη
(4.12)

η ∼ N(0, ση) (4.13)

y − α− ε ∼ N(y − α, σε) (4.14)

Derivation of an analytical expression for the resulting distribution of x in terms of

y, ση, α and σε is not clear, however values from this distribution can be generated by

computer simulation.

This error model can be incorporated into the data transformation by providing, for

every measurement, ranges of possible underlying values that could be mapped onto

the biological significance scale for that gene. The calculation of the expected biolog-

ical significance value for the underlying expression value additionally incorporates a

notion of the expected measurement error involved in each value. Therefore, while the

transformed values for a given gene will always lie in the range (0, 1), the incorporation

of the error model would mean that both genes with generally low expression levels and

those with a low expression range would have expected variation in the measurements

covering a significant part of their overall distribution. This in turn would mean that

less confidence could be assigned to the prediction of a value being in a particularly

high or low expression state. This expected effect was confirmed by measuring the

range in expression state scores across the dataset for each gene in turn and calculat-

ing the correlation to the range in expression values across the dataset for each gene

and the average expression values across the dataset for each gene. Pearson correla-

tion tests (applied using cor.test in R) revealed high statistically significant positive

correlation with coefficients ρ = 0.58 and ρ = 0.22, respectively (for both correlation

tests p < 2.2 ∗ 10−16). As the Pearson correlation coefficient of the association between

the ranges of transformed expression state scores and the untransformed gene expres-

sion value ranges was higher than that between the ranges of transformed expression

state scores and the untransformed gene expression value means, the range in expres-

sion appears to be the dominant effect for reduction of confidence in expression state

assignments as a result of the incorporation of the Rocke-Durbin error model.

Additionally, the availability of such an estimator as that provided by the Rocke-

Durbin error model (Equation (4.6)) results in the ability to test the distributions

of each gene’s expression values against a ‘constant expression reference distribution’

representing the distribution of measurements that would be expected to arise from

repeated measurement of the same value. If the observed distribution is sufficiently close

to the expected distribution for constant expression (e.g. according to a Kolmogorov-

Smirnov test (KS-test) against the reference distribution) the gene can be classified as

invariant across the whole dataset.
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The above discussion concerns a Rocke-Durbin error model with appropriate param-

eters. These parameters must be estimated from the data, and suggested methods for

performance of this parameter estimation are described in [Rocke and Durbin, 2001].

The implementation used here revolves around the identification of groups of ‘expected

replicate samples’ according to overall similarity of the samples’ profiles across all genes.

For each replicate group identified (with a very high degree of overall similarity), esti-

mates for the model parameters α, σε and ση are calculated and then combined in an

average weighted by the relative numbers of samples in each corresponding replicate

group. For each replicate group, sets of ‘low-expression genes’ and ‘high-expression

genes’ are obtained (as suggested in [Rocke and Durbin, 2001]). The α parameter is

estimated as the mean value of the low-expression genes, σε is estimated as the square

root of the average variance of each of the low-expression genes, and ση is estimated as

the square root of the average variance of each of the high-expression genes.

It should be noted that, while the precise form and parameter estimation methods

for the error model are specific to data from gene expression microarrays, the whole

data transformation as presented in this section would be applicable to gene expression

data from any source, provided an appropriate error model can be specified. This

data transformation process, as described through Section (4.1.4) is called the Gene

Expression State Transform (GESTr). There follows an illustration of the results of

applying the GESTr to real gene expression datasets.

Discussion

As the GESTr method attempts to perform a task not previously reported in the liter-

ature, a general and straightforward comparitive evaluation is not obvious. Attempts

to evaluate the method more fully in terms of a demonstration that expected patterns

within the data are not disrupted and, critically, the fact that the existence of method

enables improved biclustering performance on large-scale meta-anlaysis (for which the

transformation was developed in the first place) are left to the following section of this

chapter. As a first illustration of the success of the transformation in terms of modelling

the observed variation of each gene’s expression, a series of plots are presented in Fig.

4.20 to show that the transformation reliably adapts to structures within each gene’s

expression level distribution, despite there being considerable differences between these

distribution patterns.

The notion of a biologically significant scale of expression level is presented here

as a concept based on the observed pattern of distribution of each gene’s expression

levels across a data compendium that is assumed to provide a comprehensive (and ide-

ally representative) sampling of all possible (at least physiological) biological contexts.

Even when the dataset is insufficient to make such an assumption, or if the modelling

assumptions were to turn out to be invalid from a biological perspective, the methods

129



F
ig

u
re

4.
20

:
G

E
S

T
r

ou
tp

u
ts

fo
r

p
an

el
of

ra
n

d
o
m

ly
ch

os
en

ge
n

es

130



presented here still provide a means of transforming potentially arbitrary gene expres-

sion measurements into a unified scale that takes into account the precise patterns of

variation of expression observed for each gene across all the available data. This pro-

vides a means of accurately estimating a confidence of ‘relatively high’ or ‘relatively

low’ (etc.) levels of expression of a gene according to a single measurement, as com-

pared to a full reference distribution. The utility of such a transformation is potentially

widespread, but in the least case it provides a method for facilitating large-scale pattern

mining across gene expression datasets, such as biclustering methods adapted from the

MNC BGA presented in Chapter 3.

4.2 Evaluation of Expression-State Modelling

Following the above demonstration that the novel gene expression state modelling trans-

formation (GESTr) presented above effectively produces a unified, continuous scale

representing a biologically significant expression level, accounting for differences in the

distributions of expression levels of different genes, a more objective and comprehensive

evaluation of this GESTr would be helpful for demonstration of the validity of this ap-

proach and, by extension, any methods that utilise it. The GESTr introduced in Section

(4.1.4) is the first reported approach for transformation of gene expression measure-

ments into a unified scale for universal interpretation of the biological significance of

any measurement. As no standard evaluation criteria exist for this task, novel evalua-

tion methods had to be devised. Two such evaluations are proposed here: one based on

demonstrating that expected features in the data are not distorted (i.e. the transforma-

tion doesn’t introduce non-biological variation), and another based on demonstrating

the improved performance of a large-scale pattern mining approach afforded by the

incorporation of the transformation as a data preprocessing step.

4.2.1 Redundant Probeset Variation

On the Affymetrix MOE430v2 microarray platform, for which a large amount of mouse

gene expression data is publicly available, a number of genes are represented on the

array with multiple probesets. These sets of multiple, redundant probesets provide

an opportunity to measure non-biological variation of gene expression measurements,

under the assumption that in all samples measured, multiple probesets mapping to the

same gene ought to result in a similar measurement of gene expression level. This in turn

provides a means of evaluating the treatment of non-biological variation by the trans-

formation, at least in comparison to the raw data measurements. If the transformation

does indeed map gene expression measurements to a biological state of expression, and

there is variation in the responsive range of each of a set of redundant probesets, it

might be expected that the GESTr would reduce the overall differences within each set

of redundant probesets. At least a demonstration that the GESTr doesn’t increase the

131



within-replicate set variation over that observed in the raw (un-transformed) expres-

sion measurements would be important to illustrate that the transformation doesn’t

introduce non-biological variation in its transformation of each gene’s expression mea-

surements into a unified scale for assisting interpretation of the measurements from

different genes.

An important caveat to consider in this evaluation is the fact that some probe-

sets annotated as measuring the same gene may in fact detect different transcripts

[Stalteri and Harrison, 2007]. As variation between the levels of expression measured

for the same gene by different probesets might reflect the abundances of different tran-

scripts, as opposed to measurement errors, the GESTr might accurately map gene ex-

pression measurements into a biological state of expression without reducing variation

between ‘replicate’ probesets.

Sets of redundant probesets (defined here as multiple probesets annotated as mapping

to the same gene) on the Affymetrix MOE430v2 microarray platform were identified.

The list of redundant sets included 12,607 probesets mapping to 5,182 unique genes.

For each of these redundant sets of probesets, the pairwise Euclidean distances across

the whole meta-analysis dataset described in Section (3.3) (for all possible pairs of

probesets mapping to the same gene) for both the untransformed data and the dataset

resulting from application of the GESTr to the data. As the transformed and untrans-

formed values clearly vary on different scales, a reference set of measurements for each

dataset was provided by measuring the pairwise Euclidean distances across the respec-

tive datasets of 10, 000 randomly-chosen probeset pairs (that do not map to the same

gene), so that performance could be assessed (in terms of non-biological variation intro-

duced) on the basis of the reduction in observed distances from the respective reference

set of probeset pairs to that of the set of redundant probeset pairs. The distributions

of such distances are shown in Fig. 4.21 for both the untransformed values and for the

corresponding values after application of the GESTr.

As the plots are very similar, it is clear that, while the GESTr doesn’t appear to in-

crease the non-biological variation observed in the dataset, it doesn’t reduce it from the

untransformed measurements. It was critical to demonstrate that the GESTr doesn’t

introduce non-biological variation into the unified scale of gene expression values, and

as such this objective is achieved. However, the observed results may disappoint some-

what on the grounds that the transformation might have been expected to reduce the

non-biological variation observed in the dataset. A possible explanation for this ob-

servation is suggested by investigating the respective distributions of values for the

untransformed and transformed datasets (across redundant probesets only), as illus-

trated by the histograms shown in Fig. 4.22. These histograms show that the majority
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Figure 4.21: Distributions of Euclidean distances for within redundant probesets and
reference probeset pairs for untransformed data (top 3 panels) and GESTr-transformed
data (bottom 3 panels). For each row of panels, redundant probeset variation is mea-
sured across all samples in the dataset (leftmost panel), only those samples in the
dataset with low values of expression for all the probesets (middle panel) and only those
samples in the dataset with high expression values for any of the probesets (rightmost
panel). Within each panel, distances between pairs of redundant probeset are shown
in the left-hand box and distances between random probeset pairs are shown in the
right-hand box. The greater the difference between the two distributions shown in any
panel, the less variation is observed across probesets mapping to the same gene.
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of the untransformed values lie towards the lower end of the range of values, whereas a

greater proportion of the transformed values lie at the upper end of the range of values.

This relative preponderance of values at the upper end of the numerical range for the

transformed dataset would have the expected consequence that the differences between

similar values would be greater for the transformed datset. To take this into account,

a relative measure of distance between replicate measurements (those from redundant

probesets from the same sample) was used to create a fairer basis for comparison. This

scaled distance metric is given in Equation (4.15), and results of its application to the

redundant probesets for each of the untransformed and transformed datasets are shown

in Fig. 4.23.

dist(x, y) =

√
(x− y)2

x+y
2

(4.15)

(a) Raw expression values (b) Transformed expression-state val-
ues

Figure 4.22: Distributions of values across each of the raw and transformed datasets.
A far greater proportion of untransformed expression values lie towards the lower end
of the measured range than for the transformed values, thus the sum of the distances
between pairs of values will tend to be a lesser proportion of the measured range for
the untransformed values than it will be for the GESTr-transformed values.

While these results go some way towards demonstrating the biological relevance of

the novel transformation at least in terms of a reduction of the non-biological variation

observed across probesets with varying dynamic ranges, its motivation for existence

was based on the idea of facilitating large-scale gene expression data mining. Therefore,

another potentially useful evaluation of the novel GESTr would be a demonstration that

it does indeed facilitate such large-scale pattern mining of gene expression datasets as

intended. An evaluation of this desired property of the GESTr approach follows.
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Figure 4.23: Distributions of scaled Euclidean distances for within redundant probe-
sets and reference probeset pairs for untransformed data (top 3 panels) and GESTr-
transformed data (bottom 3 panels). For each row of panels, redundant probeset varia-
tion is measured across all samples in the dataset (leftmost panel), only those samples
in the dataset with low values of expression for all the probesets (middle panel) and
only those samples in the dataset with high expression values for any of the probesets
(rightmost panel). Within each panel, distances between pairs of redundant probeset
are shown in the left-hand box and distances between random probeset pairs are shown
in the right-hand box. The greater the difference between the two distributions shown
in any panel, the less variation is observed across probesets mapping to the same gene.
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4.2.2 Improving Biclustering Performance

As the primary purpose for developing a method of transformation of gene expression

measurements to a unified, continuous scale representing relative transcriptional state

for each gene was to facilitate large-scale pattern mining, it seemed that a demonstra-

tion of this ability afforded by the GESTr would be appropriate. The idea behind

developing such a transformation for this purpose was to avoid situations where dis-

cretisation of gene expression levels, performed to facilitate comparability of expression

variation of different genes, results in probabilistic pattern mining approaches being

misled by small measurement variations (such as those due to noise) resulting in in-

significant observations being classed as rare and significant due to the positioning

of an absolute threshold. Therefore, it would be pertinent to provide a validation

scenario that demonstrates the ability of the GESTr to overcome this problem, and

that provides an indication of the corresponding improvement in results afforded by

the adoption of this novel transformation as a preprocessing step applied before data

analysis. Such an evaluation procedure was developed based on using ‘semi-artificial’

datasets: real datasets with carefully-chosen permutations applied to result in known

implanted structures with desired properties.

By using permutations of real datasets, the overall distributions of values for each

gene would precisely reflect those observed in real data, but particular bicluster struc-

ture could be imposed on chosen subsets of the data matrix. By enforcing certain genes

to be as consistently high across all the chosen bicluster samples as their respective dis-

tributions of values allow, and ensuring that all other genes showed random variation

across the whole dataset (including the bicluster samples), individual datasets could

be constructed with known biclusters through which effective discovery rates could be

evaluated. In addition, various bicluster properties could be enforced (if not completely

controlled), and the effect of variation of each of these properties on the impact on im-

planted bicluster recovery rates of the application of different preprocessing methods

could be investigated. In addition to varying the numbers of genes and samples in the

biclusters, one property that was controlled was the average specificity of expression

of bicluster genes in the bicluster samples: that is, for each gene chosen to be in the

bicluster, the number of bicluster samples with high expression of that gene expressed

as a proportion of all the samples in the dataset with high expression of that gene. This

was determined by evaluating the difference in the average expression value across the

bicluster samples to the average expression value across the non-bicluster samples. For

each artificial dataset to be created, a permutation matrix was created by selecting a

specified number of samples to be in the bicluster, then evaluating the bicluster speci-

ficity scores for each gene as described above (after re-ordering of samples so that the

top-ranking expression levels corresponded to the bicluster samples) and selecting those

genes with specificity scores closest matching the desired level specified. Those genes
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not selected to be in the bicluster each had random permutations applied to remove

the enforced structure where not appropriate.

With ‘semi-artificial’ datasets generated with desired properties (as described above),

it was possible to use simple bicluster discovery algorithms to return scored (and

ranked) genelists for the specified bicluster samples (known for each dataset), using

datasets generated by applying permutation matrices to each of: the untransformed

data, the dataset as discretised by the cluster-based discretisation method described

in Section (4.1.2), and data transformed by the GESTr method. The simple bicluster

discovery algorithms identify genes with consistently high expression across the spec-

ified samples (defined by specifying median value thresholds in the continuous data)

and ranking those genes that pass the consistency filter according to specificity of ex-

pression to the bicluster samples (as defined above for the continuous data, and as the

proportion of all the gene’s ‘high’ values that are in the bicluster for the discrete data).

Given the known sets of ‘truth’ genes that were implanted in the bicluster structure

for each dataset, a Receiver Operating Characteristic (ROC) curve could be calculated

for the ranked genelist discovered for each implanted bicluster in each type of dataset

(preprocessed or not). A ROC measures the ability of a classification (ranking) system

to reliably rank known positive cases above known negative cases. For a full discussion

of ROC applications in evaluation of the performance of classification algorithms, see

[Fawcett, 2006]. A useful property of the ROC is that the area under the ROC curve

(the ROC-AUC) generated by plotting the number of false-positives (i.e. classification

errors) against the number of classifications made (i.e. the length of the ranked list)

evaluated for each possible length of ranked list as output from the classification al-

gorithm, provides a numerical measure of success of the classification algorithm with

a value of 1 representing a perfect classification (where all ‘truth’ inputs are ranked

above all non-truth inputs) and a value of 0.5 representing a wholly uninformative clas-

sification (i.e. the expectation of the performance of a completely random ordering).

ROC-AUC measures were computed for the ranked genelists produced by evaluating

the implanted bicluster samples in each semi-artificial dataset, for each data type. A

plot comparing these ROC-AUC scores for GESTr processed data to those for discre-

tised data is given in Fig. 4.24, showing the dependency of the results from each data

type on the number of samples in a bicluster.

The results shown in Fig. 4.24 clearly demonstrate that the GESTr method results in

improved discovery of implanted biclusters when compared with a discretisation-based

method, with this improvement becoming more pronounced as the number of samples

in the biclusters decreases. The significance of this discrepancy becomes apparent when

considering the distribution of numbers of samples forming bicluster-like groups in real
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Figure 4.24: ROC-AUC recovery scores from semi-artificial datasets with implanted bi-
clusters of varying size. Note contrast between scores for GESTr processed data (shown
in orange) compared to scores from data processed with a cluster-based discretisation
approach (shown in blue)
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Figure 4.25: Density plot showing distribution of numbers of samples in bicluster across
a set of groups of samples from a large collection of gene expression data, where each
group comprises a significantly greater number of samples within a specified dissimilar-
ity threshold than would be expected by chance (for a range of such thresholds). These
sample groups approximate ‘natural’ biclusters within the dataset.

data5, as illustrated in Fig. 4.25. This shows that the vast majority of biclusters likely

to occur in a dataset will involve sample numbers where the GESTr method results in

the greatest improvement over discretisation.

As an additional means of evaluating the effect of incorporating the GESTr as a pre-

processing step to large-scale gene expression data mining, desirable bicluster properties

were measured and compared for biclusters across the same sets of samples evaluated

on different versions of the same dataset (i.e. with different preprocessing methods, or

none at all, applied). For this evaluation, the same simple bicluster discovery algorithms

mentioned above were used to evaluated genes corresponding to bicluster expression

patterns across groups of highly similar samples. Highly-similar sample groups were

used to represent cell-type- or tissue-specific patterns in the data. Details for the con-

5These bicluster-like sample groups were identified using the similar-sample modelling heuristic
approach taken to identify potential biclusters, described in detail in Section (5.1.4)
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struction of these sample groups are given in the following chapter (Section 5.1.4). It

is sufficient for the purposes of the evaluation presented here to know that the sample

groups each consist of a set of highly similar samples (according to overall Euclidean

distance). The same set of sample groups was applied for bicluster evaluation with each

data type to allow fair comparison of the discovered bicluster properties. This approach

based on specified sample groups avoids confounding the comparison due to differences

in the effect of the data transformation on the precise mechanism of any biclustering

algorithm’s implementation. For each type of input dataset, distributions across the

biclusters of the mean difference in level of expression of each bicluster gene between

bicluster and non-bicluster samples and the mean consistency of high expression of

bicluster genes across bicluster samples are shown in Fig. 4.26.

The plot shown in Fig. 4.26 (a) indicates that processing data with the GESTr

method results in prioritization of bicluster genes with a clearer pattern of expression

level difference between the bicluster samples and non-bicluster samples (which is re-

lated to the specificity of the genes to that bicluster) than compared to data processed

with the cluster-based discretisation method described in Section (3.4.4), and by this

metric the GESTr method appears to improve biclustering performance over applica-

tion of the same gene prioritization approach to raw expression data. Additionally,

Fig. 4.26 (b) shows that application of the GESTr method results in prioritization of

genes with better consistency of expression level across the respective bicluster than

when compared with results on data processed using the cluster-based discretisation

approach, and results in consistency close to that of untransformed expression data.

The results of the evaluations presented above demonstrate that the GESTr method

of transforming gene expression measurements from a large, heterogeneous collection of

data facilitates complex large-scale pattern mining (such as with biclustering methods)

in a superior manner to a successful discretisation-based transformation method. As

this was the principal motivation behind the development of the GESTr method, these

results indicate that it was successful at performing its desired task, and thus the

development of this novel data transformation method has been justified at least on

account of providing the opportunity for improved large-scale pattern-mining in gene

expression data. While the development of the GESTr method enabled the continuation

of the study of large-scale meta-analysis of gene expression data through biclustering

and ultimately led to the development of effective meta-analysis approaches based on

biclustering (as shown in the following chapter), the benefits of applying this novel

gene expression data transformation method may extend beyond this pattern-mining

context.
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(a) Distribution of magnitude of expression differences for top bicluster genes between bicluster
samples and non-bicluster samples

(b) Distribution of consistency of expression level (as a proportion of maximum) of top bicluster
genes across bicluster samples

Figure 4.26: Comparison of properties of biclusters (gene prioritisations for specified
groups of samples) identified in data processed by no method (1), GESTr (2) and
cluster-based discretisation (3).
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4.3 Interpretation of Microarray Datasets

As the GESTr presents a means of inferring a biologically-relevant state of transcription

of a gene in a sample on the basis of any single gene expression measurement (provided

a comprehensive reference dataset of comparable measurements is available), this may

have a range of potential uses outside application to large-scale pattern mining such

as the biclustering case given above. One particular such use is related to the idea

presented in [Kim et al., 2010b], where estimates of gene expression variation across

all available data from a given microarray platform are used to ‘regularise’ t-tests for

differential expression across small datasets for which estimates of sample variance

(required for the t-test) are liable to be inaccurate. As an extension of this idea, if

it is possible to map expression values from a novel dataset to equivalent values in

the reference dataset that have been supplied as input to the GESTr, it would also be

possible to infer biological significance of the observed expression measurements from

the novel dataset.

As the novel datasets intended for this reference-mapped GESTr interpretation will

typically involve relatively few samples from a restricted biological domain, it may

well be that typical differential-expression analyses across this restricted domain miss

biological information regarding each gene’s expression range and distribution pattern

across a broader spectrum of biological contexts. This information would be provided

by mapping the novel dataset’s measurements to the GESTr scale, on the basis of the

models fitted to the reference dataset.

In order to utilise the gene expression models provided by application of the GESTr

to a reference dataset for interpretation of a novel dataset, first the novel dataset’s

values must be brought into the same scale as those of the reference dataset. Due

to this critical step, it is highly recommended that this mapping only be performed

using a reference dataset from the same gene expression measurement platform as that

used for the novel dataset, unless normalization methods capable of providing uni-

versally comparable values exist for all platforms involved. In the normalization of

the large gene expression dataset used for the redundant probeset evaluation of the

GESTr presented in the previous section, normalization parameter sets for the RMA

algorithm [Irizarry et al., 2003] were generated (through use of the RefPlus package

[Harbron et al., 2007] in R that implements the RefRMA method [Katz et al., 2006] of

normalization of very large microrarray datasets). As described in Section (3.3), these

normalization parameter sets could be used to apply an identical normalization process

to a novel dataset obtained from the same platform (Affymetrix MOE430v2 microar-

ray), thereby mapping the novel dataset’s measurements onto the same scale as that

used to apply the GESTr. Following this mapping, the expression values from the novel

dataset can be used to obtain appropriate transformed values for the novel dataset’s
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measurements through interpolation of the GESTr models (presumed to be available

from the relationship of the reference dataset’s GESTr-transformed values with the

corresponding untransformed values). An example of this process is illustrated in Fig.

4.27, which shows the distribution of GESTr-transformed values across the reference

dataset’s expression distribution for one gene (Pou5f1) and points corresponding to five

measurements from a novel dataset6 not included in the reference dataset, interpolated

onto the GESTr output value scale with the vertical lines shown linking the expression

values on the x-axis to the GESTr scores on the y-axis.

Figure 4.27: Interpolation of GESTr scores from mapped expression measurements from
a novel dataset. Black vertical lines indicate expression values of Pou5f1 measured in a
time series experiment described in [Hall et al., 2009], intersecting with GESTr scores
for confidence of low expression state (green curve) and confidence of high expression
state (red curve) as derived from the distribution of Pou5f1 expression across a large
reference compendium of gene expression data (black curve).

As an illustration of a way in which this information provided by the interpretation

of a novel dataset in the context of a broader reference of expression patterns (through

the application of the reference-mapped GESTr as described above) could be useful, an

example is given from the novel dataset used in the previous illustration (the Pou5f1

knock-down time-series from [Hall et al., 2009]) obtained from Affymetrix MOE430v2

6an experiment profiling gene expression during a time series knock-down of Pou5f1 expression in
mouse ES cells, described in [Hall et al., 2009]
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microarrays, in which two genes were identified with similar fold-changes and differential

expression levels (and statistical scores of differential expression) across two groups

of samples of interest in this novel dataset. The respective low and high expression

values for each gene are shown in Fig. 4.28 in the context of the respective gene

expression distributions across the reference dataset. It is clear from this illustration

that the differential expression observed in the novel dataset for the gene shown on

the left (Foxp1) spans a greater proportional range of that gene’s observed expression

levels, whereas the gene shown on the right (Prss23) varies across the novel dataset

a smaller proportion of its overall expression range. The information gained from

mapping the novel observations to the reference dataset and applying the GESTr shows

that the expression distribution pattern for one of the genes Foxp1) implies that the

observed levels in the novel dataset represent significant differences in terms of the

range of expression levels of that gene across a broad range of biological contexts,

whereas the other gene appears to show only variation within one component of its

general distribution of expression levels and so this observed variation is less likely to

be as significant from a biological point of view. Interestingly, Foxp1 was identified as

a novel candidate pluripotency gene in a recent screen performed in mouse ES cells

[Ding et al., 2009] and was shown to be a DNA-binding of Oct4 in [Loh et al., 2006].

This demonstration is not intended as proof that the suggested application of the

GESTr is valid, rather to illustrate the motivation for this application and to show

that it offers an interesting, novel means of interpreting individual gene expression

datasets in relation to observed patterns of gene expression distribution across a broader

biological context. The above illustration serves to show that there is potential merit

in this interpretation through supplying additional information that can be used to

distinguish biological differences between sets of observed expression measurements

that would otherwise be unavailable.

As previously mentioned, due to the fact that this novel approach to interpretation

of gene expression datasets appears to be the first of its kind reported (or even sug-

gested), a means of critical evaluation is not obvious. Some means toward an evaluation

of the GESTr-based approach to interpretation of gene expression data can be provided

through demonstration of a successful practical application of the method. In utilising

this transformation of a novel dataset to a unified scale of biologically significant ex-

pression levels, novel approaches to the identification of differentially-expressed genes

can be developed to identify genes with expression differences across sample groups in

a novel dataset that span a significant range of the gene’s expression distribution across

the whole reference dataset.
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4.3.1 Identification of Differentially-Expressed Genes

As mentioned in Sections (3.4.2 & 4.1.1), typical transcriptome-profiling experiments

involving genome scale gene expression measurement technologies (such as microar-

rays) tend to involve the identification of differentially expressed genes (DEGs) be-

tween groups of (replicate) samples. While a commonly used pragmatic approach of

identifying genes with the greatest relative (fold-) change in measured expression level

between the groups is often successful [Pearson, 2008], a large number of methods exist

for the identification of genes with statistically significant differential expression be-

tween groups of interest among the experimental samples (e.g. LIMMA [Smyth, 2004],

SAM [Tusher et al., 2001], GEOMixBayes [Kim et al., 2010b], etc.). However, by ap-

plying the GESTr models (calculated from a comprehensive reference dataset) to a

novel dataset, it may be possible to attempt to identify genes with biologically signifi-

cant differential expression between the sample groups of interest.

An immediate (and simple) approach would be to identify genes with the largest

change (either absolute or in a particular direction) between the GESTr-transformed

values of the sample groups of interest. This approach is similar to extending the idea

of fold-change, where one of the sample groups is implicitly used to establish a reference

level of expression of each gene, to utilising the distribution of expression across a broad

range of biological contexts to establish a reference pattern of expression of each gene.

It was proposed that a method be developed to assess the measure of biologically

significant differential expression provided by the GESTr-transformed data on a sta-

tistical basis. Statistical measures of differential expression take into account, as well

as the magnitude of the observed change between the sample groups, the variation of

the gene’s measurements within each sample group. Both the level of change and the

consistency are important, particularly as the analysis tends to be performed on very

small sets of replicates [Kim et al., 2010b]. While a large number of methods exist for

estimating the statistical significance of differential expression of genes, attempts to

use these on data after GESTr-transformation proved unsuccessful due to the prepon-

derance of zero-values for fold-change reference and estimates of zero variance, which

result in t-tests (and any variants of this approach, which make up the majority of

statistical tests for differential expression [Dudoit et al., 2002]) evaluate to infinity.

To avoid these problems, an approach based on that taken by SAM [Tusher et al., 2001]

was taken. In SAM, ‘balanced’ permutations of the dataset are created so that an even

distribution of samples from each experimental group is maintained in each permuted

group, and the ‘expected’ variation of each gene is calculated based on the values

obtained from analysing these balanced permutation groups (where no differential ex-

pression ought to be significant). Based on the observed differences between each

set of balanced permutations, an estimate for the proportion (and absolute number)
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of false-positives can be produced for any setting of an otherwise arbitrary differen-

tial expression threshold. An implementation of this SAM approach was created for

application to GESTr-transformed data, here referred to as ‘TranSAM’ (transformed

significance analysis of microarrays). Balanced permutation groups are generated in

this implementation using the combinations function from the R package gtools to

find all combinations of b(n2 ) samples from each group (where n is the size of the smaller

group) and these combinations are combined to form all unique sets of partitionings

of the experimental groups’ samples into two groups with an even number of samples

from each experimental group in each of the resulting partition groups.

As a further demonstration of the utility afforded by the GESTr in conjunction with

the TranSAM method for identification of genes with biologically significant differential

expression, a comparison is shown in Fig. 4.29 of the numbers of Pou5f1 DNA-binding

targets (as used in the enrichment analysis above) found in top-ranking genelists of

various size obtained from each of a standard SAM analysis on the RMA-normalized

data from the Pou5f1 knock-down time-series dataset used in the analysis presented

earlier in this section and an analysis using TranSAM on the GESTr-transformed values

from the same dataset (obtained as described above). This plot (similar to a ROC)

shows that the TranSAM approach involving GESTr-transformed data is better (in this

example) at predicting DNA-binding from analysis of expression in a single dataset.

Again, while this is by no means a conclusive evaluation of the novel data transformation

approach presented in this chapter7, it suggests both a utility over and above that which

the GESTr transformation was designed to provide, and that these novel approaches

to interpretation and analysis of gene expression datasets may prove useful for future

biological research.

4.4 Discussion

For pattern mining in large-scale gene expression datasets, where numerical measure-

ment values for different genes may not be directly comparable in a biological context

(as discussed in Section (3.3.2)), it simplifies the complexity of the pattern mining task

to have a representation of the data values in some unified scale. With a unified scale

of values, a particular defined pattern of interest can immediately be assessed in any

submatrix of the whole dataset, regardless of which genes’ measurements are involved.

When the pattern mining task involved is sufficiently complex, as is the case with bi-

clustering, the simplicity of assessment of a particular pattern in any given submatrix

of the dataset enables construction of more efficient algorithms for discovery of such

patterns that, in turn, enable application of computationally complex analysis tasks to

especially large collections of data. Owing to this, a number of biclustering algorithms

7Further evaluation was left for future work, on the grounds that work on large-scale meta-analysis
of gene expression data could progress as a result of the development of the GESTr transformation.
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Figure 4.29: Comparison of prediction rates of DNA-binding from lists of genes with
significant differential expression in a single Oct4 knock-down dataset as identified by
SAM (blue) and the novel TranSAM method (red).

incorporate a data preprocessing step to bring all measurements into a comparable

scale.

As common approaches to this preprocessing revolve around the discretisation of

the data from measured values to symbols representing some state of expression (e.g.

‘high’,‘low’ or ‘insignificant’ in relation to background expression for the gene in ques-

tion), and a novel discretisation approach had been developed for the implementation

of biclustering algorithms presented in the previous chapter, a comparison of a number

of alternative approaches to discretisation of large collections of gene expression data

was performed to provide an evaluation of the relative merits of different approaches.

Examples given in Section (4.1.2) illustrate the advantages of the novel cluster-based

discretisation method that was used for the biclustering analysis of the previous chap-

ter and described in Sections (3.4.2 & 4.1.2). However, owing to trends discovered in

the output of biclustering performed using discretised data, where genes were classified

as significant in a bicluster due to small measurement variations either side of a dis-

cretisation threshold, it was considered appropriate to evaluate the effect of adopting

a continuous (rather than discrete) unified scale of expression measurement.

A novel data transformation, the Gene Expression-State modelling Transformation

(GESTr) was developed, based on inference of biological states of expression from mod-
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els of the distribution of each gene’s expression values across a large reference dataset

(assumed to represent a comprehensive range of biological contexts for the organism in

question). This GESTr method is described in Section (4.1.4) and demonstrations of

the results produced by the method are provided towards the end of that section. The

supposed biological significance of this method was evaluated using redundant sets of

microarray probesets as a means of measuring non-biological variation across a large

dataset. The results given in Section (4.2.1) show that the transformation provides a

unified scale for interpretation of gene expression measurements without introducing

non-biological variation.

As the data transformation methods described in this chapter were developed with

the aim of facilitating large-scale gene expression data mining through biclustering,

the effects of applying a number of the methods described in this chapter (including

both the novel cluster-based discretisation algorithm and the GESTr method) were

evaluated in terms of the results of applying equivalent bicluster evaluation algorithms

to recover known gene expression patterns in ‘semi-artificial’ datasets and to discover

biologically significant groupings of (cell-type- and tissue-specific) genes. The results of

these evaluations, shown in Section (4.2.2), demonstrate that the novel GESTr method

improves the performance of biclustering, allowing the identification of transcriptional

relationships with greater biological significance.

Additionally, the potential utility of the novel GESTr method outside the context

of large-scale gene expression data mining was demonstrated through its application

to provide a novel means of interpreting gene expression datasets. A novel approach

to interpretation of individual gene expression datasets was developed, based on using

the GESTr (as performed on a large reference collection of gene expression data) to

relate measurement observations from a novel dataset to the general gene expression

patterns observed across a broad range of biological contexts. An illustration of the

conceptual value of the information gained through this interpretation of data in terms

of a broader biological reference, and in particular, in terms of the modelled biologi-

cal significance of each gene’s measured expression levels as calculated in the GESTr

method, is given in Section (4.3). A further utility of this interpretation to discover

genes with biologically significant differential expression between sample groups of in-

terest in individual gene expression datasets was revealed through the development of

tools (e.g. ‘TranSAM’ described in Section (4.3.1)) to identify such genes, given a novel

dataset that has been mapped onto the GESTr output scale. An example where such a

method has been used to predict DNA-binding of a TF from a knock-down time-series

microarray profiling experiment to greater effect than a standard statistical method for

detecting differentially-expressed genes applied to the same dataset is given in Section

(4.3.1). Further applications of the output of GESTr transformation of gene expression

compendia are currently being explored in a number of ongoing research projects.
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In summary, novel data transformations have been developed through the course of

this work, to provide a unified scale representing biologically significant levels of expres-

sion from gene expression measurements where the significance of a given measurement

may vary from gene to gene. The GESTr method of performing such a transformation

provides a novel means of interpreting gene expression measurements in a wider bio-

logical context, in addition to facilitating improved large-scale pattern mining of gene

expression data. This method has potential implications for providing improved means

of interpreting gene expression datasets which, it is hoped, will be revealed through

successful application to future problems in biological research. However, the fact that

the GESTr method enabled improved bicluster discovery in large collections of gene

expression data resulted in the possibility to develop and apply novel meta-analysis

methods that could answer particular biological questions regarding transcriptional re-

lationships involving genes of interest in specific biological contexts. The development

of such a meta-analysis method is described in the next chapter.
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Chapter 5

A Probabilistic Approach To

Localised Co-Dependency

Analysis

151



With the availability of the GESTr method, capable of transforming whole-genome scale

measurements of transcription across large collections of biological samples, comes a

simplification of gene expression data mining tasks as discussed (specifically for biclus-

tering) in Section (4.1.1). Although the biclustering algorithms presented in Chapter 3

demonstrated an ability to find biologically significant localised expression patterns in

very large datasets (with the GDepBGA of Section (3.6.3) being particularly successful)

there still seemed to be some limitations of these approaches in terms of the desired

output for application to real problems in biological research.

As it was noted in Section (4.1.2), biclusters from the BGA had a tendency to include

genes that did not appear to have the significant gene expression patterns reflected in

the non-discretised data that would have been expected due to their inclusion in the bi-

cluster. Owing to the fact that it was established that this observed problem appeared

to be due to discretisation thresholds positioned in-between similar measurement val-

ues, and inspection of gene expression distributions suggest that this problem would

remain for any discretisation-based approach, a novel transformation method was de-

veloped (as described in Section (4.1.4)) to provide a mapping from measurements to

a unified, continuous scale based on patterns in each gene’s distribution of expression

measurements across a large number of samples spanning a broad range of biological

contexts.

The biclustering algorithms presented in Chapter 3 had to be adapted to utilise input

data mapped to this continuous, unified scale. This chapter describes these necessary

modifications, along with subsequent alterations and improvements that were involved

in adapting the biclustering framework into a meta-analysis approach suitable for appli-

cation to real questions in biological research. This meta-analysis approach is termed

HBLCA, Heuristic Biclustering for Localised Co-Dependency Analysis. One crucial

stage in development of the HBLCA approach was the formulation of a probabilistic

framework for gene expression co-dependency analysis, which is described in Section

(5.1.2)

Evaluations of the success of the HBLCA approach are presented in Section (5.2),

comparing performance on meta-analysis tasks with that of alternative approaches to

large-scale meta-analysis of gene expression data. A description of the way in which this

novel approach can be used in conjunction with data from genome-wide DNA-binding

studies to provide further insight into transcriptional mechanisms is given in Section

(5.3.1).
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5.1 Description of Co-Dependency Meta-Analysis Approach

To take advantage of the novel GESTr transformation (described in Section (4.1.4)) of

gene expression measurements into a unified, continuous scale representing the likely

biological significance of the measured level of transcription for each gene, the bicluster-

ing methods developed for large-scale meta-analysis of discretised gene expression data

would have to be altered. In the very least, the probabilistic framework for biclustering

upon which the BGA presented in Section (3.6.3) was based would have to be modified

to take into account distributions of continuous (as opposed to binary) values. This

section provides details of the necessary modifications to the GDepBGA, including the

adoption of a probabilistic framework for localised gene expression co-dependency anal-

ysis, followed by the description of a heuristic employed to bypass problems affecting

the resulting biclustering GA, giving rise to the HBLCA method that provides practi-

cally useful results from the application of biclustering to large-scale meta-analysis of

gene expression data.

5.1.1 Biclustering with Expression-State Confidences

The notion of probabilistic assessment of bicluster desirability through modelling the

entropy of a particular bicluster pattern in a given dataset was presented in Section

(3.6.2), and results of application suggest that the adoption of this probabilistic ap-

proach resulted in a more successful biclustering algorithm than an equivalent algo-

rithm using a naive model of bicluster desirability. Given that the GESTr output is

intended to represent biological significance of a measured expression level in terms of a

confidence of the respective gene being in a high or low state of expression, this measure

of confidence of expression across the bicluster can be used to introduce a quantitative

element to the scoring of consistency across a bicluster.

Using the GESTr output, the desirability of a bicluster can be assessed in terms of the

confidence of consistently high/low expression of each gene across the bicluster and the

unlikelihood of the observation of consistent expression of that gene across a randomly-

chosen set of samples of the same size as the bicluster. The GESTr output values

provide a straightforward way to estimate the confidence of high/low expression of any

given gene in any sample in the dataset, so all that need be considered regarding the

confidence of consistent expression of a gene across a bicluster is the method employed

to summarise those values across the bicluster. This could be the mean, median or

some other function of the individual values. However, modelling the probability of

a gene’s consistency of expression to a given (summary of) confidence across a given

number of randomly-chosen samples is less straightforward and is in fact dependent on

the summary function used.
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Fundamentally, in order to model this probability of consistency of a gene’s expression

across any number of random samples, it would be ideal to obtain an expression (or at

least an estimate) for the cumulative distribution function for every number of samples

that could be combined. That is, if there are values xi sampled from biclusters with

numbers of samples ranging from 2 to n, and the CDF of the distribution of values

across all the samples in the dataset is Y = P (X < x), then the probability of that

gene’s expression pattern in any observed bicluster could be estimated if Y 2, Y 3, ..., Y n

were all available. A number of approaches to modelling this probability of observed

bicluster-expression for any gene were investigated for applicabilty within a biclustering

algorithm.

Resampling

To model the probabilities of observing any particular set of bicluster values for each

gene, it would be possible to use a resampling-based approach to generate estimates for

the distribution of the given summary statistic over large numbers of random samplings

from that gene’s values in the dataset with each possible bicluster-size as the number

of values taken in each sampling. As a result, sample distributions of the probabilities

of a range of values for each gene, for each bicluster size could be estimated. Given a

large enough sample-size (i.e. large biclusters), it can be assumed from the central limit

theorem (CLT) that the distribution of the means of any set of values will approximately

follow a normal distribution [Tijms, 2004]. Therefore, if the summary statistic used

is the mean of the gene’s observed bicluster values, the distributions of observation

probabilities of each gene for each size of bicluster could therefore be represented with

a value for each of the mean and standard deviation of the characterised (normal)

distribution of summarised random-bicluster scores.

This approach provides a means for fast evaluation of individual bicluster scores

through evaluation of normal distributions, but requires a very large number of sim-

ulation runs as a preprocessing step to estimate the distribution parameters for each

gene’s summarised GESTr values over differently-sized subsets of the data. This pre-

processing step may be prohibitively time-consuming: for example, to evaluate these

distributions over all possible bicluster sizes up to, say, half of a 10, 000-sample dataset

involving 10, 000 genes with 10, 000 resampling samples to estimate each value would

involve 1012 generations of random samplings and computation of means. In addition,

the validity of the CLT-driven assumption of normality of distribution of means may

not be appropriate for estimating the probabilities of observations when the number of

bicluster samples is small. Owing to these possible limitations, alternative approaches

to the estimation of the desired probabilities were sought.
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Fast Hypergeometric Approach

Another possible approach to modelling the probability of a gene’s expression pattern

across a bicluster is to evaluate the probability of observing a random combination of

n samples, where n is the bicluster size, taken from the dataset that would have a

summarised consistency score at least as great as that observed in the bicluster. A fast

means of estimating the probability of observing at least (n2 c+1) values1 from a random

sampling of n values from a given gene’s distribution can be obtained through evaluation

of the appropriate hypergeometric distribution. As the hypergeometric distribution

can be used to evaluate probabilities for sampling at least x values with a particular

property out of a sample of k values (taken without replacement, as is the case here)

from a total population of t values, of which m display the given property and (t−m)

don’t, it is possible to estimate the probability of observing at least n/2 values above the

median summary score for the bicluster out of a random sampling of n values from the

distribution of all the given gene’s GESTr-transformed values across the dataset (from

which the number of values above the bicluster’s median summary score for expression

of that gene can be obtained trivially), where n is the size of the bicluster. This provides

a fast and accurate means of estimating the bicluster observation probabilities for each

gene, providing that the summary statistic used is the median. For fast estimation of

the desired probabilities of bicluster observations for summary statistics other than the

median, an alternative approach would have to be taken.

Fast Approximate Approach

As the distribution of observed GESTr-transformed values for any given gene is discrete,

it is relatively straightforward to produce for each gene a sample cumulative distribution

function (CDF) for the probabilities of observing greater than any given value. A simple

heuristic approach to estimating a gene’s bicluster observation probabilities might be

to estimate an overall, indicative probability of observing greater than each measured

value. This presents a situation similar to that observed for the discrete data bicluster

entropy estimates such as that given in Equation (3.10), where each gene’s contribution

to bicluster information is estimated as a product of the number of samples in the

bicluster and the negative logarithm of the indicative per-sample probability estimate

of an observation relevant to the bicluster regarding the gene in question. Using the

mean of the CDF-derived probabilities of each observed measurement in the bicluster

as an indicative estimate of per-sample probability of significance of expression for

the gene in question as observed across the bicluster, the simple bicluster information

content estimator becomes the expression given in Equations (5.1-5.2).

1in this expression, n
2
c denotes the integer part of the fraction n

2
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f(x) = −n
∑

g∈genes
log(means∈samples(Fg(Dg,s))) (5.1)

Fg = P (Dg > Dg,s) (5.2)

In this fast method of estimating an approximate probabilistic score for information

content of a bicluster, the mean summary function may be replaced with any other

summary to estimate the probability of the observation of expression across the bicluster

for each gene.

In summary, a number of different methods for evaluating the significance of a given

bicluster in terms of the probabilities of observing such consistently significant expres-

sion scores (for the genes in the bicluster) from the GESTr-transformation of the dataset

across a random subset of samples of the same size. One of these approaches, based on

resampling of the summary-statistic of the given gene across different possible biclus-

ters provides an accurate estimate of the above probabilities but requires a (possibly

prohibitively) time-consuming pre-computation step and may not in fact be accurate

for small-sized biclusters. An estimate for the exact probabilities calculated for the

median summary score distribution was provided by utilisation of analysis of the hy-

pergeometric sampling distribution to evaluate the probability of obtaining a random

sample of values at least as good as the bicluster (according to a median summary

statistic). Finally, a quick approximate estimator was developed to provide a means of

estimating the desired probabilities when a summary statistic other than the median is

desired, when speed of evaluation is critical and no limits to bicluster size are desired.

The precise method of probabilistic bicluster evaluation using GESTr-transformed ex-

pression values will therefore depend on the context of bicluster evaluation and the

desired properties entailed with that context.

5.1.2 Probabilistic Modelling of Gene Expression Co-Dependency

In addition to the entropy and confidence of expression based measure of bicluster de-

sirability described above that utilise GESTr output values, the other component of the

GDepBGA’s bicluster evaluation function (Equations (3.14-3.17)), that of estimating

the expected degree of co-dependency of expression of each bicluster gene with a guide

gene of interest, would have to be modified to utilise GESTr output values. As dis-

cussed in Section (3.6.3), it is impossible to distinguish between co-dependency and de-

pendency of expression using only (steady-state) gene expression measurements. Given

the essentially arbitrary nature of the guide gene-dependency evaluation approach given

in Section (3.6.3), it would be advantageous to have a means of providing estimates

of the probability of co-dependency of expression, given available GESTr-transformed

gene expression data. Such a means of evaluation would provide a clear interpretation
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of the resulting scores for each genes. Furthermore, with a fully probabilistic means of

evaluating a bicluster it may be possible to produce a (p-value) significance estimate

for each gene in a bicluster based on the probability of observing such an expression

pattern as that observed with the bicluster in question if the gene were not expected

to share co-dependence of expression with the guide gene.

A measure of localised gene expression co-dependency as introduced in Section (3.6.3)

an attempt to dissect the multitude of gene expression patterns within even a small

subset of a large dataset, in order to distinguish trends in expression level across certain

samples that associate any gene’s expression level to one particular gene (or set of genes)

of interest from other transcriptional effects. The ability to distinguish such patterns

will clearly be dependent on the degree of change of the rest of the transcriptome across

the samples in which the given pattern is observed, therefore it would be helpful to be

able to estimate the expected variation in expression level of a gene between any two

samples based on the overall difference in the general transcriptional program between

those samples. With a model to estimate the expected variation of a gene’s expression

between any two samples, probabilities for co-dependency of expression of any pair of

genes can be estimated through some measure of coincident variation in expression of

those genes that is unlikely to be observed as a consequence of the general differences

between the samples involved. Following the above ideas, the first part of this section

describes a model for estimating the expected variation of expression of a gene between

a pair of samples as a function of the overall Euclidean distance between the expression

profiles of those samples, and the second part of this section presents methods for

utilising these estimates of probability of observed variation being explained by general

differences between the samples involved to produce probability estimates of context-

specific co-dependency of gene expression based on bicluster-related observations.

Modelling Expected Gene Expression Variation

In order to estimate the expected variation in expression level (as a GESTr-transformed

value) between any pair of samples, it may be possible to measure the differences in

all genes’ expression levels between sampled pairs of samples and to construct a model

of the corresponding distributions of expression differences for each pair of samples, in

such a way that the parameters of this model can be predicted from the overall Eu-

clidean distance between the samples. If such a modelling process could be performed

successfully, it would then be possible to estimate probabilities of observing a given

gene expression difference between two particular samples in a randomly-chosen gene

(and additionally the expected number of genes with at least that difference in ex-

pression level) through analysis of the expected gene expression difference distribution

model using the (pairwise) Euclidean distance between the samples as a hyperparam-

eter by which the parameters of the underlying probability model are specified. To set

about this task of identifying a possible model with which to estimate gene expression
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difference distributions for arbitrary sample pairs, a large number of such expression

difference distributions were inspected (via plots using the density probability density

estimation function provided in R).

From inspection of a large selection of such distributions and comparison to a num-

ber of standard statistical distributions, it appeared that the general expected gene

expression difference distribution might be effectively modelled by a Laplace (double-

exponential) distribution. The probability density function of the Laplace distribution

(for zero-centred distributions) is shown in Equation (5.3). The shape of the Laplace

distribution and its correspondence to the shape of differences for gene expression dif-

ference between two samples can be seen in Fig. 5.1

f(x) =
e
−| x

β
|

2β
(5.3)

To test the applicability of the Laplace distribution as a model of the gene expression

difference distributions, such distributions could be fitted (through estimation of the

parameter β in Equation (5.3)) to a number of sample distributions and the goodness of

fit of these fitted distributions to the target sample distributions evaluated. As a means

of estimating appropriate values of the parameter β for the Laplace distribution, there

exists a closed-form maximum-likelihood (ML) estimator which is given in Equation

(5.4). An alternative approach that could be taken if the MLE were to prove inaccurate

would be to use the nonlinear least-squares estimate as calculated using the nls function

in R.

β̂ =

N∑
i=1

|Xi − X̄|

N
(5.4)

An example of a fitted Laplace distribution using the MLE for β is given in Fig.

5.1, with plots showing the underlying (observed) distribution in black and the fitted

Laplace distribution in blue. As these plots appear to indicate that the MLE β̂ is

a consistent over-estimate for the underlying distributions, alternative estimation of

the β parameter through nonlinear least-squares optimisation was attempted using the

MLE β̂ as an initial value. As this approach repeatedly failed to improve upon the ML

estimate, it can be assumed that better estimates of this β are not readily obtainable. A

particularly relevant observation regarding the Laplace model fits (such as that shown

in Fig. 5.1) is that the fitted Laplace distributions generally seem to underestimate the

density at the tails of the distribution, especially when the overall distance between

the samples (and hence the parameter β) increase: this would entail underestimates of

probabilities and therefore overestimates of the significance of all observations of large

expression value differences.
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Figure 5.1: Fitted Laplace distribution to underlying gene expression difference dis-
tribution. Observed distribution of expression differences for all genes between two
selected samples is plotted in black. Laplace distribution fitted with MLE to the ob-
served values is plotted in blue.
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Given that these consistent errors occur in the most critical parts of the distributions,

and also the fundamental difference between the support of the observed distribution

(on the scale of the GESTr-value input differences −2 ≤ x ≤ 2) and the models using

the Laplace distribution (for which −∞ < x < ∞), an alteration to the model from

the Laplace distribution was sought that could account for these critical differences and

hopefully obtain a better fit to the observed values.

To create a distribution more appropriate than the Laplace distribution for modelling

the desired gene expression difference distributions, alterations would be required to

increase the values in the tails of the distribution (that appear to be more linear in the

observed distributions than the Laplace distribution, particularly as distance between

the samples increases). A method was proposed for this alteration in the form of adding

a parameter-dependent linear decay term into the function that would be proportional

to a parameter based on the distance between the samples and inversely proportional to

the magnitude of the difference value. Incorporating appropriate bounds to the support

of the distribution would be trivial, although scaling of the resulting density function

would be required to maintain the essential property for any probability distribution

that the integral of the density function evaluated across its whole range of inputs must

equal 1. The resulting function on which the PDF would be based is given in Equation

(5.5).

f(x|α, β) =



0 if x < −2

e
x
β

β(2+4α) + α(x+ 2) if − 2 ≤ x < 0

e
−x
β

β(2+4α) + α(2− x) if 0 ≤ x ≤ 2

0 if x > 2

(5.5)

Evaluating this as an integral gives a CDF (which is required for the evaluation

of the resulting distributions) as shown in Equation (5.6). In order to scale the CDF

appropriately, the value used is F ∗ as given in Equation (5.7).

F (x|α, β) =



e
x
β

2+4α if x < −2

e
x
β

2+4α + α(x
2

2 + 2x+ 2) if − 2 ≤ x < 0

(1− e
−x
β

2+4α) + α(2x− x2

2 ) if 0 ≤ x ≤ 2

(1− e
−x
β

2+4α) if x > 2

(5.6)

F ∗(x|α, β) =
F (x|α, β)

F (2|α, β)− F (−2|α, β)
(5.7)

With this adjusted distribution, attempts were made to model the observed gene ex-

pression value difference distributions by fitting α and β parameters to each observed

distribution through simultaneous nonlinear least-squares optimisation of initial esti-

mates β = β̂ and α = dist2

2 . An examples of such a fitted model distribution with
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underlying observed distribution is shown in Fig. 5.2, similar to the equivalent shown

for the Laplace distribution in Fig. 5.1.

Figure 5.2: Fitted adapted model distribution to underlying gene expression difference
distribution. LiTAL model fitted to observed gene expression differences by NLS re-
gression and plotted in red. This clearly fits the observed distribution (black) better
than the Laplace distribution shown in Fig. 5.1.

In order to provide an objective means of testing whether these alterations improved

the modelling accuracy or not, χ2 goodness of fit tests were employed to assess com-

parative goodness of fit. A χ2 goodness of fit test was performed for each model fit to

the appropriate underlying distribution by generating empirical discrete distributions

for each of the observed difference distributions, the fitted Laplace distributions and

the fitted linear-adjusted model distributions with a fixed number of discrete ‘bins,’

then computing a χ2 statistic for each fit as the sum of the squared errors in bin totals

as predicted by the model (and compared to the observed distribution) divided by the

predicted totals for each bin. Owing to the large number of observations (approxi-

mately 45, 000), goodness of fit tests will tend not to provide any useful insight into

significance testing for model fitting, but can be used effectively for comparative pur-

poses [Ajiferuke et al., 2006]. According to such χ2 goodness of fit comparisons, 66%

of approximately 5000 randomly selected sample-pair gene expression value difference

distributions were modelled better using the ‘linear-tail adjusted Laplace’ (LiTAL) dis-

tribution than the standard Laplace distribution. In addition to this, the observation

that errors in the (critical) tail regions of the model distributions tended to be less for

the LiTAL models than the Laplace models further motivates the use of the LiTAL

distribution model.
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Given the motivation for adopting the LiTAL distribution to attempt to model ex-

pected gene expression value difference distributions, a crucial step towards practical

application of these models lay in the formulation of predictors for the individual α and

β parameter values based on the observed sample distance. As a first step to carrying

out this task, fitted parameter values were obtained for a large number of sample pairs

spanning the range of possible distances, and the values for each of the parameters

were plotted against the sample distances from the observations used to fit each of the

parameters. These plots are shown in Fig. 5.3.

Figure 5.3: Dependency of each LiTAL model parameter on sample distance: fitted
values of each LiTAL model parameter (α in left-hand panel, β in right-hand panel)
plotted against the dissimilarity of each sample-pair analysed to obtain underlying
distribution of gene expression differences to which LiTAL model was fitted.

While the β parameter appears to be clearly dependent on the sample distance, the

relationship is less obvious for the α parameter. However, a similar plot is shown in

Fig. 5.4 showing only the parameter values for those models with (an arbitrarily defined

threshold of) good fit to the underlying data, according to the χ2 values. From these

models with good fit, an approximately linear relationship of both parameters to the

sample distance emerges.

A series of linear (polynomial) models were fitted to each of the parameters’ dis-

tributions as a function of the sample distance, using the lm function in R. ANOVA

was used to compare the models to identify polynomial terms that failed to contribute

significantly to the accuracy of the predictor model (given that an additional term was

added). The resulting models are given in Equations (5.8-5.9) where a,b,c,d and g
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Figure 5.4: Dependency of each LiTAL model parameter on sample distance. After
filtering out poorly-fitted distributions a clear linear relationship emerges between fitted
values of each LiTAL model parameter and the dissimilarity of the samples analysed
to obtain the gene expression difference distributions.

represent parameters ‘learned’ from the respective parameter distributions.

α = a ∗ dist (5.8)

β = b+ c ∗ dist+ d ∗ dist2 + g ∗ dist3 (5.9)

A final remaining test was to ensure that the resulting ‘typical’ distributions were

good predictors of the underlying values even when using the sample distance as a

hyperparameter to determing the models’ parameter values, rather than fitting the pa-

rameters directly to each distribution. A comparison of χ2 values for model fits of these

predicted LiTAL models based on the sample distance hyperparameter and equivalent

predicted Laplace models (using a similarly learned hyperparameter-dependent distri-

bution of the β parameter of the Laplace distribution) is shown in Fig. 5.5, with the

χ2 values plotted against sample distances for each of the tested model fits for the

LiTAL models (red) and Laplace models (blue). This shows a clear improvement in

the LiTAL model fits compared to those of the predicted Laplace models, as a lower χ2

value corresponds to a better fit. It was also observed that the goodness of fit tended

to decrease (χ2 values increase) with increasing sample distance as shown in Fig. 5.6, a

point that will be referred to in the description of guide gene co-dependency probability

estimates that follows.
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Figure 5.5: χ2 goodness of fit scores for different models of ‘typical’ gene expression
difference distributions. Goodness of fit scores for Laplace models fitted to gene ex-
pression difference distributions are shown in blue. Scores for the LiTAL model fitted
through hyperparameter-based estimation of model parameters is shown in red. Scores
for LiTAL model fitted through NLS regression shown in green. Lower values represent
a better fit to the observed gene expression differences, indicating that the fitted LiTAL
models more accurately describe the observed differences than the Laplace model, even
when model parameters estimated from hyperparameters fitted according to Equations
(5.8 & 5.9).

Figure 5.6: Dependency of goodness of fit of predicted LiTAL model on sample distance
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It should also be noted that this process of fitting expected gene expression difference

models may be dependent on the dataset. It is assumed that the general form of models

used (but not the precise sample distance dependency functions for prediction of indi-

vidual parameter values) will be consistent across other gene expression datasets2, but

as this is not known (especially for data from other types of gene expression measure-

ment technologies) it is suggested that these steps are implemented with caution and

with regard to alterations that may be required in the models described above when

this process is applied to other datasets.

Estimating Probabilities of Gene Expression Co-Dependency

With a model to estimate expected distributions of the differences in gene expression

level between any pair of samples, it may be possible to use such a model in conjunction

with observed gene expression values across bicluster samples and appropriate compar-

ison samples to provide an estimate of the probability of co-dependency of expression

of two genes in the biological context represented by the bicluster samples. As with the

case for evaluation of guide gene dependency using binary gene expression data (as pre-

sented in Section (3.6.3)), a crucial step in estimating context-specific co-dependency of

expression involves the identification of samples with similar transcriptional programs

to the samples in the bicluster but with contrasting levels of expression of the guide

gene of interest. The aim of using such samples for comparison is to identify genes with

expression patterns that appear to be dependent on some feature represented by the

expression pattern of the guide gene of interest and not dependent on any other fea-

ture in the data, and to provide a measure of the confidence of each given observation

of expression co-dependency based on the degree of correspondence of the respective

expression profiles and the specificity implied by the appropriateness of the samples

available for comparison with the bicluster.

The model for expected gene expression differences provides a means to assess the

significance of any potential sample for use as a comparison with a set of bicluster

samples, simply through calculating (from the expected distribution of differences) the

probability of observing by chance a contrast equal to or greater than the difference in

expression value of the guide gene between the bicluster samples and the given poten-

tial comparison sample. This probability estimate provides the ability to distinguish

the guide gene’s expression pattern from expected transcriptional differences between

the samples in question. An additional point to consider is the fact that, with large

datasets, a potentially large number of samples may be evaluated (or be available for

evaluation) for comparison in this way, which introduces the chance that some insignif-

icant comparisons would be evaluated as significant purely by chance, because a large

number of such comparisons might be evaluated. It is therefore important to account

2especially as the GESTr transformation ought to make the values from different sources similar to
those presented here
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for such errors by considering the Family-Wise Error Rate (FWER), that is, the chance

of any insignificant case being evaluated as significant, as opposed to the chance of a

particular individual insignificant case being evaluated as significant. There is a range

of multiple testing correction techniques available to deal with this situation, and ad-

justment of significance p-values can be performed by any of a number of these methods

with the p.adjust function in R.

With an estimate for the probability of a given pair of samples involving a (signifi-

cant) change in expression level of a guide gene of interest not simply as expected due

to the overall differences between the samples, the probability of co-dependence of ex-

pression observed in that individual comparison could be estimated by multiplying this

probability of significance of observation with an estimate of the probability that the

expression levels are changing in a related manner. This would overall give an estimate

for the probability that the expression level of a given gene is changing in a similar

and significant manner with that of the guide gene, between the two selected samples.

As there is a large number of genes that may be evaluated for significance in this way,

multiple testing correction will again need to be applied to control FWER.

A clear way to estimate the probability that the expression levels of two genes are

changing in a related manner between two samples purely by chance (due to general

transcriptional differences between the samples) would be to evaluate the difference in

the CDF for expected expression level differences between the two samples between

bounds defined by the observed expression level differences for the two genes in ques-

tion. In this way, the expected proportion of all genes in the dataset to have more

similar expression level differences purely by chance is represented by the integral of

the expected difference density function for the samples in question, evaluated between

the two observed differences. These two properties described are equivalent. Such an

approach means that genes with expression differences greater than that of the guide

gene will be considered more significant (that is, less likely to occur by chance) than

those with expression differences less than the guide gene, according to the estimated

distribution’s expected proportion of genes with lower expression level differences by

chance. This property is illustrated in Fig. 5.7, showing two such integrals (area under

probability density curve) for a hypothetical distribution of gene expression differences:

the difference observed for the guide gene is indicated with a black vertical line, and

estimates for probability of similarity of expression pattern occuring by chance for two

different genes, one with higher difference in expression than the guide gene (area shown

in red) and one with an equally lower difference in expression than the guide gene (area

shown in green). Additionally, this formulation of probability estimate provides the de-

sired property that a guide gene’s estimated probability of similar change of expression

with itself will evaluate to 1 (as should obviously be the case).
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Figure 5.7: Estimates for probability that similar expression differences occur by
chance, with a hypothetical distribution of gene expression differences between two
samples, a hypothetical observed change in guide gene expression (black vertical line)
and areas indicating the probability estimates for each of two hypothetical genes with
lower and higher expression difference (green and red areas, respectively) than the guide
gene
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In the event that the expression of a gene under investigation varies along with

other known transcriptional regulators in most situations in which the gene of interest

varies, and the desired outcome of the investigation is to identify genes with exclusive

expression co-dependency relationships with the gene of interest and not the other

known regulators, it may be desirable to allow specification of ‘contrast genes’ in the

analysis for which patterns discovered by the meta-analysis approach are specifically

penalised if co-dependency is observed. A straightforward implementation in terms of

expression co-dependency estimation involves estimation of co-dependency likelihood

for all potential bicluster genes with the gene of interest and each of the specified

contrast genes, with final co-dependency estimates provided by Equation (5.10). In

Equation (5.10) G is the set of guide genes, C is the set of contrast genes, t is the

potential target gene being evaluated and P (dep(a, b)) denotes the probability that

genes a and b are observed to be co-dependently expressed in the given comparison.

P (dep(t, G) & dep(t, C)) =

∏
gi∈G

P (dep(t, gi))

 ∗
∏
ci∈C

1− P (dep(t, ci))

 (5.10)

The manner in which the available estimates of similar and significant change in

expression level with the guide gene between a range of pairs of samples might be

utilised to produce an estimate for probability of co-dependency of expression in the

biological context represented by the bicluster (on the strength of the available gene

expression data), is not obvious. At least, there may be a range of possible approaches

with different motivations and characteristics that might suit generation of output

most useful for different biological questions. The examples given below by no means

constitute an exhaustive list of options, but provide possible implementations with

certain advantages (and drawbacks).

One such approach to generating a summary guide gene dependency probability

is to estimate the probability that over a set of relevant comparisons, the whole set

of observations all indicate similar and significant change in expression level of the

guide gene and the gene in question. In such a way, the cumulative product of the

estimates of probability of a significant comparison for the most significant comparisons

may be evaluated to find the largest set of observations that is considered entirely

significant (to a given significance threshold). Subsequently, the product of all the

estimated probabilities of similar and significant change may be evaluated to obtain an

estimate for the probability that the full set of observations entail significant and similar

expression changes between the guide gene and the gene in questions, and therefore

indicate likely co-dependence of expression. This approach has the advantage of being

less dependent on the number of significant comparisons available to a bicluster for

a given guide gene than other potential significance combination approaches (such as
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taking all comparisons significant to a given threshold and applying a χ2 combination

to the set of resulting p-values), but tends to result in the undesirable situation in

which good sets of comparisons (i.e. large ones) are penalised due to the fact that a

gene’s observations are less likely to be consistently similar to those of the guide gene

across a large number of observations than across a smaller number of observations.

This effect may be balanced by including a term to represent the probability of the

collection of observations of similarity of expression arising by chance, resulting in an

overall estimate for a gene i over a set of comparison samples j ∈ ComparisonSamples

as given in Equations (5.11-5.18).

scorei = e

∑
j

log(1− xij)wj∑
wj (5.11)

wj =
log(v†j)∑
∀k

log(v†k)
(5.12)

v = {Csig(ggV arj , dj)).∀j ∈ ComparisonSamples} (5.13)

v∗ = {..., vi, vj , ...}∀i, j.vi ≤ vj (5.14)

v† = {v∗1, ..., v∗n}.
n∏
k=1

v∗i ≤ θ (5.15)

xij = Cpval(gV arij , ggV arj , dj) (5.16)

Csig(v, d) = P (X ≥ v|d) . X ∼ LiTAL(α(d), β(d)) (5.17)

Cpval(v1, v2, d) = |Csig(v1, d)− Csig(v2, d)| (5.18)

An alternative approach is based on limiting the maximum allowed distance between

comparison samples and the bicluster samples, to take into consideration both the fact

that (as shown in Fig. 5.6) the accuracy of the models of the expected distribution of

gene expression differences between two samples decreases as the distance between the

samples increases, and the general chance of observing gene expression patterns due

to differences in biological context becomes greater as the distance between samples

increases. With a restriction on the maximum distance allowed between a compari-

son sample and the bicluster samples, the number of potential samples for comparison

may be significantly reduced. While in general a smaller maximum distance implies

that closer (and therefore more appropriate, for a given significance level) compar-

isons will be used to assess gene expression codependencies, there may be a trade-off

between the availability of similar samples for comparison and the significance of dif-

ference in guide gene expression between the bicluster and comparison samples. As

such, it would be wise to examine the precise expression patterns used as evidence

for expression co-dependency estimates for each bicluster, as these may provide insight

into what constitutes appropriate (and inappropriate) settings of maximum sample dis-
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tance and minimum significance level thresholds for each (set of) bicluster(s). As it is

desirable to have as many highly significant observations as possible and especially un-

desirable to have observations of clearly dissimilar expression patterns across significant

comparisons, the individual observation probabilities can be combined through a prod-

uct weighted by each comparison’s significance (the exponential of an appropriately

weighted sum of logarithms) into an overall estimate of probability of co-dependent

gene expression, given the observations available. Due to the fact that this weighted

product is more likely to contain low values (and thus evaluate to a low value overall) if

there are more significant comparisons available, this resulting estimate is scaled by the

overall significance of the observations, as calculated through a χ2 combination of the

significance p-values (where the p-values are given by 1 − P , P being the probability

estimate) for each observation (demonstrated in Equation (5.20)). The overall esti-

mate for the probability of guide gene dependence for a gene i over a set of comparison

samples j ∈ Csamples is given in Equations (5.21-5.25).

overallp = F (−2 ∗
∑

log p|p) (5.19)

F (x|p) =
1

Γ(2∗length(p)2 )
γ(

2 ∗ length(p)

2
,
x

2
) (5.20)

scorei = (1− (1− zi)(1− yi))(overallp|p = Csig(ggV arj , dj)∀j) (5.21)

zi = e

∑
j

log(1− xij)wj∑
wj (5.22)

wj =
log(Csig(ggV arj , dj))∑
∀k

log(Csig(ggV ark, dk))
(5.23)

yi = |genes|
∏
j

xij (5.24)

xij = Cpval(gV arij , ggV arj , dj) (5.25)

With the combined effect of the methods presented in this section, there exist meth-

ods to estimate the probability of co-dependency of expression between any given gene

and a guide gene of interest, as evidenced by the gene expression patterns across a set

of bicluster samples and appropriate comparison samples in the dataset. Used together

with the estimates of entropy-based bicluster desirability, biclusters and genes can be

evaluated for significance and those observations most appropriate for providing an

answer to particular biological questions through analysis of bicluster-based patterns

in gene expression data can be identified using an appropriate search algorithm.
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5.1.3 Practical Limitations of Genetic Algorithm Approach

Practical application of a GA approach to biclustering, for identification of those poten-

tial biclusters in a large dataset that involve gene expression patterns that best provide

answers to questions regarding transcriptional relationships involving a gene of interest

in particular biological contexts, requires a very fast method of evaluating the score of

a bicluster as the GA approach involves a very large number of such evaluations (the

entire population of candidate solutions must be evaluated in every generation). Un-

fortunately, as the bicluster evaluation procedures described above involve evaluating

models of expected distributions of differences for every comparison, for every gene,

for every bicluster, even if the number of comparisons allowed is restricted (to increase

evaluation speed) the typical evaluation time for an individual bicluster is of the or-

der of a few minutes (fully utilising a single 2GHz core of a server’s 8-core processor).

Even for a relatively small GA run with 100 chromosomes in a population evolved over

100 generations, this would take weeks to obtain a set of biclusters for a single query.

Using application to the dataset described in Section (3.3) as an example, for a target

execution time of 10hrs and with the additional computation of the GA taken into con-

sideration, the bicluster evaluation step must take no more than 3s. Assuming the sort

of time frame described above is impractical for the desired application of the bicluster-

ing algorithms, a simpler approach to evaluation of guide gene expression dependencies

would be required for a BGA to utilise GESTr-transformed values in performing large

scale meta-analysis of gene expression data.

Reverting from the probabilistic evaluation of guide gene co-dependency analysis

described in Section (5.1.2) to an approach more similar to the essentially arbitrary

guide gene dependency scoring presented in Section (3.6.3), patterns of expression co-

dependency represented in a bicluster can be assessed on the basis of the significance of

available samples to use for comparison with the bicluster samples and the significance

of each gene’s observed expression variation between the bicluster samples and the com-

parison samples. However, in taking arbitrary bicluster scoring approaches, a number

of problematic situations arose when considering the complex and subtle pattern min-

ing task involved in implementing localised gene expression co-dependency analysis.

Owing to time constraints for the completion of this work, it was necessary to produce

a means for obtaining results from applying localised co-dependency analysis to large

collections of gene expression data that were reliable enough to use to generate suitable

biological hypotheses regarding research questions of interest. As such a point had not

been reached with the GAs, and a route to obtaining such results with GAs was not

immediately apparent, any further study and development of this family of methods

had to be left for future work and an alternative approach to obtaining satisfactorily

reliable results had to be implemented.
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5.1.4 Sample-Grouping Heuristic

If the goal of bicluster-based meta-analysis of a large gene expression dataset is to iden-

tify expression patterns across particular (specific) biological contexts, it may simplify

the bicluster search to restrict the search space to involve only potential biclusters with

samples that are generally similar (for some definition of similarity). Such an approach

would provide the additional advantage that interpretation of biological relevance of

each bicluster to any particular context would be straightforward through inspection of

the bicluster sample annotations (which would presumably reflect a consistent biologi-

cal context as enforced through the pre-specified overall transcriptional similarities). If

a set existed containing all subsets of the samples in the dataset that each represented

a homogenous group of biological samples, bicluster search would involve screening of

each of these groups to identify those with consistently high expression of the guide

gene of interest and a set of associated samples available to enable significant (and

relevant) comparisons of expression level. Following screening of sample groups to

identify those that would make suitable biclusters, the guide gene-dependent expres-

sion patterns based around the maximal biclusters specified by each group’s particular

samples could be evaluated to obtain a full set of relevant bicluster-based expression

patterns involving homogenous biclusters, and should involve sufficiently few bicluster

evaluations to enable utilisation of the fully probabilistic approach to assessing both

bicluster entropy-based significance (as described in Section (5.1.1)) and guide gene co-

dependency of expression (as described in Section (5.1.2)). However, such an approach

requires a set of potential bicluster sample groups and a means of assessing which

of these are likely to result in a good bicluster for identification of context specific

expression patterns involving a particular gene of interest.

The task of generating a set of groups of similar samples is similar to producing a

full hierarchical clustering of the samples in the dataset (based on pairwise Euclidean

distances) and selecting those groups of samples that appear ‘appropriately connected’

through similarity in the corresponding tree. This is therefore akin to finding clusters

of high similarity within the matrix of all pairwise sample distances. However, deter-

mining what constitutes an appropriate level of similarity between samples may not

be trivial, not least because it may be desired to have a number of different sample

groups involving a particular sample but representing different degrees of specificity

(e.g. a group involving replicates, a group involving all samples of that cell type and

a group involving samples from tissues containing that cell type, etc.). One approach

devised was to construct a probability model to estimate the expected number of sam-

ples sharing pairwise distances of no more than a particular threshold for a range of

such thresholds, and to use these estimates to identify groups at each similarity thresh-

old with significantly more samples similar (to the specified degree of similarity) than

expected by chance according to the probability model. Thus, the task presented is
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first to develop an appropriate probability model for the expected numbers of samples

with a particular degree of similarity to a randomly chosen sample, for any similarity

threshold.

For a given set of samples to constitute a group of similar samples as defined above,

all pairwise distances between each of the samples must be below the specified similarity

threshold. That is, the submatrix of the full matrix of all pairwise distances between

the samples of the dataset for those samples in the given set must contain no values

greater than the similarity threshold. In order to evaluate the probability of such

observations occurring by chance, the conditional probabilities of two given samples

being similar to each other (according to a given definition of similarity) taking into

account the set of all those shared samples to which it is known both of the given

samples are similar would have to be considered. It is unlikely that knowing that two

samples are both similar to a third sample would not influence the probability that

those two samples are similar. Measurements of observed numbers of similar samples

shared between each pair of a large number of randomly chosen sample pairs and the

corresponding distance between the samples of each sample pair were generated and

linear models to predict distance based on number of similar samples shared were fitted

to these measurements. Significance analysis of the fitted models through ANOVA

suggested that the number of similar samples could indeed be used to predict inter-

sample pairwise distances (data not shown), although the impact on accuracy of such

a predictor of each shared sample considered diminished with each successive shared

sample after the first. This implies that knowing that a few (or at least one) samples

are shared between two randomly chosen samples strongly influences the probability

that those two samples will be similar. The full conditional probability of similarity

to a given threshold of a random pair of samples given a particular number of shared

samples known to be similar to both will be different for increasing numbers of shared

samples, but the significance tests of fitted linear models suggest that these will tend to

converge as the numbers of shared samples increase. Given the suspected convergence

of such conditional probabilities, the number of conditional probabilities necessary to

evaluate in order to predict overall probability of a given observation of similarity can

be limited without significantly affecting accuracy of the resulting estimations.

Despite the possible considerations for producing a probability model for such sam-

ple similarities based on available data, it was relatively straightforward to estimate

(through a sampling approach) the cumulative probabilities of observing each of a given

number of similar samples by recording numbers of observed samples in a similar-sample

group involving each of a large number of randomly selected samples (with replace-

ment), using a fast method to find ‘dense’ regions of similarity above the set threshold

within the submatrix of pairwise sample distance involving all those samples similar (to

the specified level) to the randomly chosen sample. With such cumulative probabilities
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of observing a given number of samples in a group (with each similar to all of the others)

estimated for a range of numbers of samples, for a range of thresholds, the significance

of observing any group of samples in the dataset for which each is similar to all the

others (i.e. the sample groups intended to be identified) to a given similarity threshold

can be trivially obtained through looking up the estimated cumulative probability of

observing by chance at least as large a group of interconnectedly similar samples as

the one being evaluated. Due to the fact that these probabilities are estimated entirely

from properties of the data, the software produced to estimated such probabilities is

equally applicable to any dataset without any necessary alteration.

With significance tables available (through the above sampling-based method) for

any group of similar samples at a range of pre-specified similarity thresholds, all po-

tential groups of samples can be screened for statistical significance by finding for each

sample in the dataset the group of samples with fully interconnected similarity accord-

ing to each similarity threshold, then comparing the corresponding p-value (obtained

from the pre-computed significance tables) to a set significance level. Those groups

with sufficiently low significance p-values can be added to a set of significantly similar

sample groups. To demonstrate the results of application of this approach to obtain a

set of sample groups from the large collection of gene expression data from microarrays

described in Section (3.3), Fig. 5.8 shows a sample tree (hierarchical clustering den-

drogram) of the samples from a number of different sample groups at different levels of

similarity. Highlighted in the left-most branch of the tree is an example of the hierarchi-

cal structure of the sample groups: three statistically significant sample groups (shown

in red, blue and green) are also part of a larger statistically significant sample group

(shown in purple). This creation of statistically significantly similar sample groups,

some of which being subsets of larger groups, extends across the entire sample tree for

all samples in the dataset. The full sample tree for the dataset is shown in Fig. 5.9,

illustrating the fact that there are too many possible combinations for an exhaustive

search. The sample grouping algorithm presented here is a means of defining a subset of

distinct groups from this full tree that represent the similarity structure of the dataset.

A concise description of this approach is provided in Algorithm (4), which features the

‘pingpong’ algorithm for finding submatrices of 1s within binary matrices as described

in [Oyanagi et al., 2001].
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Input: Distance matrix for all samples, D, similarity thresholds, θ, significance

table for sample group sizes at each threshold, P

Output: Set of groups of similar samples, S, set of significance p-values for each

sample group, Sp

Initialise sPool = Samples ;

while |sPool| > 0 do

Set s = sPool1 ;

foreach θi ∈ θ do

Find similar samples sSim = {Samplesj}∀j.Dsj ≤ θi ;

Find consistently similar samples cs = pingpong(DsSim,sSim < θi) ;

Look up pvalue pv = Pθi,|cs| ;

if pv ≤ 0.5 then

Add cs to S ;

Add pv to Sp ;

end

end

Remove s from sPool ;

end

Remove redundant groups from S ;
Algorithm 4: Creation of a set of groups of similar samples

Once such a set of sample groups is created, guide gene-dependent biclustering can

be performed by evaluating each group of samples for its potential as an informative

bicluster regarding the guide gene in question and then performing full bicluster analysis

on the subset of the set of all groups corresponding to those samples predicted to result

in informative biclusters. In order to filter the set of all ‘potential bicluster’ groupings

of samples to find those that would be likely to give rise to informative biclusters, both

consistency of high expression of the guide gene across the bicluster and availability

of samples to provide appropriate comparison with the bicluster samples should be

considered (as mentioned earlier in this section).

In principle, a bicluster will be particularly informative regarding expression patterns

involving a given gene if the bicluster represents a group of samples from a particular

biological context with consistently high expression of the gene of interest and an as-

sociated group of samples that are generally similar to the bicluster samples (from a

global transcriptional perspective) but with significantly lower expression of the gene

of interest than in the bicluster samples. Full evaluation of biclusters can be performed

as described in Sections (5.1.1 & 5.1.2) although it would be useful to perform a quick

pre-evaluation screening to filter out those potential biclusters unlikely to provide any

useful results from evaluation. Therefore, if a potential bicluster (i.e. a sample group

from the set created as described above) has both consistently high expression of the
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guide gene and appropriately similar samples with significant contrast in the guide gene

expression when compared to the bicluster, it should be evaluated as an informative

bicluster.

For filtering sample groups on consistency of guide gene expression, a criterion based

on mean or median (or some other specified quantile) of GESTr-transformed expression

values for the guide gene across the bicluster samples being above a set threshold

is appropriate, provided the threshold represents a minimum required confidence of

consistently high expression across the bicluster. The use of the GESTr-transformed

values ensures a clear interpretation of any threshold applied.

The filtering of informative biclusters additionally requires evaluation of the avail-

ability of appropriate comparison samples. The modelling of gene expression variation

developed for probabilistic modelling of co-dependency of expression, as presented in

Section (5.1.2), could be used to estimate significance of variation of a guide gene be-

tween bicluster samples and potential comparison samples (in fact this is as described

for part of the probabilistic guide gene co-dependency evaluation of biclusters presented

in Section (5.1.2)). If the maximum allowed overall Euclidean distance between biclus-

ter samples and comparison samples is restricted (as in the second bicluster guide gene

dependency evaluation method described in Section (5.1.2)), sample groups can be fil-

tered for availability of samples for appropriate guide gene expression comparison on the

basis of the existance of samples within the specified maximum allowed distance to the

‘median profile’ of the bicluster that have statistically significant (to some significance

level threshold) variation of expression level of the guide gene, given overall similarity.

In fact, this approach would also work in the case where no maximum allowed distance

was specified.

While the filtering methods above require specification of absolute thresholds, as

both the confidence of gene expression level and the significance of guide gene variation

involve values with a clear interpretation, these thresholds can be set to filter sam-

ple groups on the basis of known criteria. It is accepted that absolute thresholding is

not completely desirable, but as the bicluster passing the filters will be evaluated and

the properties on which the sample groups were filtered contribute to bicluster (and

bicluster-gene) scores, setting thresholds to a minimum acceptable level will speed

up the biclustering process without sacrificing accuracy of results. Using the above

described approach to obtain a set of groups of (statistically) significantly similar sam-

ples, then filtering this set of groups to find the subset likely to give rise to informative

biclusters for a particular guide gene (or set of genes) and evaluating the bicluster aris-

ing from each group of samples in the subset, a fast heuristic method is provided for

identification of statistically significant local gene expression patterns involving a gene

of interest, and estimating the significance of each such pattern for every gene identified
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as following a similar expression pattern to that of the guide gene(s) in each localised

context. This method is termed Heuristic Biclustering for Localised Co-Dependency

Analysis, or HBLCA.

5.1.5 Integration of Biclusters

For the originally proposed task of utilising relevant gene expression data from as wide

a range of sources as possible, the HBLCA framework described above identifies a

number of supposed significant patterns that may each involve only small numbers of

samples. While this approach utilises the full range of the data in a sense by identifying

localised patterns across different subset of the whole dataset in the context of the

overall gene expression distributions (as determined by the GESTr process), the ability

to identify patterns which appear to be consistent across a number of the biclusters

obtained for a single guide gene would give the potential for improved reliability and

generalisability of inferred expression patterns (as discussed in Section (2.3.1) regarding

the benefits afforded by meta-analysis of multiple datasets). An approach developed

for the integration of results from multiple biclusters is described in the remainder of

Section (5.1.5).

Bayesian Integration of Probabilistic Biclusters

An approach was desired for integration of results across a set of biclusters that would

provide useful output, prioritising genes that score particularly highly in some biclusters

(especially if scoring highly in many biclusters). The goal of applying such a method

would be to identify particularly reliable observations, incorporating all evidence from

a set of biclusters. If each bicluster provides a list of estimates of probability for each

gene that the expression data available appears to be consistent with a co-dependency

of expression of that gene and the guide gene in the biological context represented by the

bicluster and a set of biclusters is available, assumed to represent a consistent biological

context (for some desired degree of specificity), a bayesian integration approach can be

taken to obtain estimates for each gene for the probability that gene is co-dependently

expressed with the guide gene, in the biological context represented by the given set of

biclusters, given the available evidence (i.e. the set of biclusters).

In a bayesian framework for integrating probability estimates for a particular event

from multiple evidence source, given prior probability estimates for the event occuring

and for the event not occuring (P (E) and P (F ), respectively) the posterior probability

estimate for that event occurring given the available evidence is defined in Equation

(5.19), where O = {O1, ..., On} is the set of available evidence sources (that is, the

data).
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P (E|O) =

n∏
i=1

P (Oi|E)P (E)

n∏
i=1

P (Oi|E)P (E) +

n∏
i=1

P (Oi|F )P (F )

(5.26)

In the case at hand, the event considered is that the gene in question is codepen-

dently expressed with the guide gene in the biological context represented by the set of

biclusters, which are the separate evidence sources. A prior probability was estimated

through the proportion of genes with expression values (across all the samples of the

dataset) that have a Pearson correlation coefficient with those of the guide gene of at

least some set threshold (e.g. ρ = 0.6). The correlation of each gene’s expression profile

with that of the guide gene could be used to obtain a different prior probability for each

gene, although that would require development of a probability model for estimation

of likelihood of gene expression co-dependency based on correlation coefficient values,

which is not attempted here.

One important point to note regarding the adoption of the above approach is that

the Bayesian integration model specifically includes estimates for the likelihood of each

given bicluster pattern if the gene in question is not co-dependently expressed with

the guide gene. This results in the estimates that a given gene is not co-dependently

expressed with the guide gene because of a poor (or absent) estimate in a single bi-

cluster proving crucial. If there is an assumption that the biclusters all represent the

same context and that if an expression pattern is absent from any one bicluster then it

should not be considered reliable, then this case should be treated differently to one in

which it is assumed that the biclusters may reflect different underlying expression pat-

terns or that some may be unreliable, meaning that genes will be considered especially

reliably co-dependently expressed with the guide gene if they have high co-dependency

probability estimates in a number of the available biclusters even if completely absent

from the patterns represented by some of the other biclusters in the set being inte-

grated. Due to the possible range of desired treatments of such cases, a minimum

allowed likelihood for a single bicluster observation given a gene being codependently

expressed with the guide gene and a corresponding maximum allowed likelihood for a

bicluster observation given the gene not being codependently expressed with the guide

gene should be specified in the particular case of integration.

An additional consideration of the integration of results across a set of biclusters is

the possibility that there may exist subsets of biclusters within that set, with each sub-

set representing a different underlying gene expression pattern. Therefore, it would be

useful to have a means of identifying such structure within a given set of biclusters. In

order to achieve this, a method was developed to identify clusters in a matrix of bicluster

observation scores for each gene. Firstly, a matrix of likelihood scores for each gene for
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each bicluster is created, setting scores to 0 for genes not in a bicluster. Principal Com-

ponent Analysis (PCA) is used to reduce the dimensionality of this bicluster-attribute

matrix from a possible O(10, 000) attributes down to a number more appropriate for

clustering analysis to find general structure - the fewest number of characteristic ‘prin-

cipal components’ that together explain at least a set proportion of the overall variation

observed in the matrix (say 95%). Using the prcomp function (in the stats package)

in R, PCA is performed using singular value decomposition of the input matrix and

proportion of variation of the input matrix explained by the given number (say n) of

principal components can be calculated by dividing the sum of the largest n eigenvalues

by the sum of all the eigenvalues obtained through eigenvalue decomposition of the ma-

trix (the eigenvalues corresponding to each of the principal components as eigenvectors

of the matrix are provided in the output of prcomp). A series of k-means clusterings

([Hartigan, 1975]) of the resulting reduced-dimensionality bicluster-attribute matrix

were performed, with the gap statistic [Tibshirani et al., 2001] calculated for each clus-

tering performed and the optimal number of clusters selected as that resulting in the

best gap statistic score of clusters calculated through k-means clustering. These steps

are performed in the R functions kmeansGap and gapStat, available from the package

SLmisc.

Using the method described in the previous paragraph, a set of biclusters may be

separated into a number of subsets reflecting structure within the collection of gene

expression patterns represented by the given set of biclusters. Following this decompo-

sition, each subset of biclusters may be integrated individually to identify reliable gene

expression co-dependency patterns (involving the guide gene) across each context (as

reflected in the underlying structure of the collection of bicluster expression patterns).

Additionally, it may be interesting to identify (if present) any genes with consistent

guide gene expression co-dependency patterns across all biological contexts represented

by the set of all biclusters, in which case integration of probability estimates can be

performed across the full set of biclusters available for the guide gene, before being

performed across each subset identified through the decomposition method described

above.

It should also be noted that the gene association list clustering approach described

here may be useful for applications other than that presented here, such as the de-

composition of a heterogeneous genelist into groups with similar bicluster patterns

(represented by the results of bicluster genelist integration), as is utilised in Sections

(5.4 & 5.6).

The method described in this section provides a means to obtain estimates of co-

dependency of gene expression for each gene represented in a dataset with a guide gene

(or set of guide genes) of interest, incorporating evidence from multiple biclusters: first
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from a (global) set of all available biclusters for the guide gene and subsequently from

individual subsets of these biclusters, each representing a different component of the

expression co-dependency patterns observed across the full set of available biological

contexts. This reflects a natural decomposition of the full range of biological contexts

into those displaying similar expression patterns involving the guide gene.

5.1.6 Implementation of HBLCA Algorithm

The HBLCA approach provides a means to identify genes with co-dependent expression

patterns across individual biological contexts, through meta-analysis of large collections

of gene expression data. An implementation of the HBLCA approach, combining the

components described through Section (5.1), is outlined below:

1. Apply GESTr method (of Section (4.1.4)) to generate a matrix of universal gene

expression state confidence values for all available data

2. Create a set of similar sample groups through estimation of significance values for

a range of possible sizes of similar sample groups at each of a number of specified

similarity thresholds, as described in Section (5.1.4)

3. Optionally, select a subset of the sample groups to perform biclustering across, if

only certain biological contexts are to be considered in the meta-analysis

4. Obtain a filtered subset of sample groups evaluated as likely to give rise to infor-

mative biclusters for a given query gene (or set of genes), as described in Section

(5.1.4)

5. Evaluate the bicluster formed by each sample group in the filtered subset, com-

bining the component probabilistic bicluster evaluation methods described in Sec-

tions (5.1.1 & 5.1.2)

6. Create a bicluster-attribute matrix for all biclusters evaluated and perform clus-

tering as described in Section (5.1.5) to identify grouping of observed expression

patterns within the set of returned biclusters

7. Perform bayesian integration of each gene’s probability scores evaluated for each

bicluster, as described in Section (5.1.5), firstly for the set of all biclusters then

for each individual group of biclusters identified in the previous step

A suite of R functions was created to provide a usable implementation of the HBLCA

approach. With the development of the HBLCA procedure to identify and evaluate the

evidence for gene expression co-dependency patterns provided by a large collection of

gene expression data, some demonstration of the success of this approach is important

in order to make the case for its application to problems in biological research.
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5.1.7 Visualisation of Output from HBLCA Algorithm

The HBLCA approach presented above provides a means of identifying patterns of

gene expression co-dependency across samples within a consistent biological context,

involving a given gene (or set of genes) of interest. Information represented in each

bicluster output object (through the calculations involved in the biclustering process)

includes similarity of samples used for comparison of expression profiles, expression

level contrast of the gene(s) of interest, expression level contrast of identified genes

with relevant expression patterns, and a likelihood of each codependent expression ob-

servation. In order to assess the validity of a particular result obtained using this novel

HBLCA approach, it would be helpful to have a means of scrutinising simultaneously

each aspect of the information represented by a particular bicluster output object. As

many biclusters with relevant expression patterns may be discovered for a single meta-

analysis query, it would be especially useful to be able to visualise these many aspects of

the meta-analysis output so that patterns identified through the meta-analysis (or pat-

terns involving any given set of genes) can be assessed through inspection across a set

of biclusters and in such a way, the magnitude and consistency of predicted expression

co-dependency patterns can be evaluated.

To achieve this aim, a bicluster plotting tool was developed. This tool utilises plot-

ting capabilities of R to provide a means of simultaneous visualization of all the aspects

of useful information captured by the HBLCA approach, as described above. An ex-

ample plot produced by this visualization tool is shown in Fig. 5.10, with the various

components of the plot described as follows:

1. Expression profile of guide gene across bicluster samples and relevant comparison

samples, shown with dotted red line. Expression levels are by default shown

in the unified GESTr-transformed scale from 1 (high expression state) to 0 (low

expression state), but may also be shown in terms of the untransformed expression

measurement values.

2. Expression profiles of genes under investigation (also shown across bicluster sam-

ples and relevant comparison samples), shown with non-dotted lines of colour

varying from red to blue.

3. Assessment of likelihood of each expression profile representing codependent ex-

pression with the guide gene, encoded in the colour of each line along a (purple)

spectrum from red (likelihood=1) to blue (likelihood=0).

4. Indication of which samples shown are in the bicluster and which are the com-

parison samples. Bicluster samples have a black bar shown underneath.

5. Similarity of comparison samples to bicluster samples. For each comparison sam-

ple, Euclidean distances are calculated between that sample and each of the bi-
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Figure 5.10: Illustration of output of HBLCA through a novel bicluster visualization
tool. Numbers refer to points in enumerated description of the visualization tool output
provided in Section (5.1.7)

cluster samples. These distances are averaged and the average distance is trans-

formed to the negative logarithm of the probability of observing at least as similar

samples purely by chance, evaluated from the cumulative normal distribution.

The normal quantile plot (data not shown) illustrated that this is a fair approx-

imation for the probability estimate. The resulting similarity-significance values

are shown in the bicluster plot by the height of the bars underneath each non-

bicluster sample included in the plot. The similarity significance p-values can be

read from the axis on the right hand side of the plot, as the height of the bars

are given in terms of the similarity significance of the bicluster samples to one

another.

6. The significance of each comparison, as evaluated through the method described

in Section (5.1.2), is indicated by the colour of the bars underneath the compari-

son samples, with a more intense green representing a more significant comparison

(relative to the best comparison shown), fading to whiter bars for less significant

comparisons. This information can also be inferred through inspection of the

magnitude of expression level change of the guide gene between the bicluster
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samples and each comparison sample in turn, considering the similarity signif-

icance of each comparison sample to the bicluster samples shown as described

above.

This visualization tool provides the opportunity to apply any (arbitrary) post hoc

filtering of the biclusters generated through the HBLCA approach so that only those

with desired properties are used for further analysis. In this way it also provides a means

for validation of the bicluster patterns discovered by the HBLCA algorithm, through

inspection of the expression profiles and the comparison distances and significances

shown in the plots. With any high-throughput statistical data mining approach, it is

important to check that the patterns discovered do indeed have the desired properties.

Additionally, the visualization tool (in conjunction with the implementation of the

HBLCA algorithm) enables intuitive assessment of context-specific expression patterns

involving any given gene list and a guide gene of interest, in any specified set of samples.

Following evaluation of the bicluster properties based on gene expression co-dependency

patterns with the guide gene in the samples of interest, the bicluster expression patterns

representing the input genelist can be plotted by the visualization tool and shown in

relation to the expression of the guide gene and the overall similarity of the samples

identified by the meta-analysis algorithm as best illustrating a contrast in level of

expression of the guide gene within the appropriate biological context. As an example

of this application, Fig. 5.11 shows two bicluster plots produced by the visualization

tool, illustrating differences in Oct4-dependent expression in iPS cells between two

genelists: one (top) identified through subset-integrated biclustering performed using

the novel meta-analysis approach (from results presented in more detail in Section

(5.7)), and the other (bottom) identified as genes with greatest Pearson correlation

coefficients with Oct4 across a large collection of gene expression data.

Visualization of biclusters in an area of research that has attracted some attention

(e.g. [Grothaus et al., 2006, Cheng et al., 2007, Santamaria et al., 2008]) due to the

fact that visual approaches to analysis can complement statistical approaches applied

to large datasets. However, the guide gene-dependent bicluster model utilised by the

novel meta-analysis approach presented and used in this work incorporates a number

of features not considered by other biclustering approaches, and therefore a novel vi-

sualization tool was required in order to show this additional information regarding

global similarities between bicluster samples and chosen ‘contrast samples,’ and sig-

nificance estimates for each given comparison for the ‘guide’ gene of interest. This

visualization tool is useful for confirmation of expression patterns of interest identified

through HBLCA, application of arbitrary filtering of biclusters for meta-analysis and

investigation of context-specific expression codependencies involving genes of interest.
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(a) iPS-specific Oct4 codependent genes

(b) Oct4 correlated genes

Figure 5.11: Illustration of the differences in Oct4-dependent expression patterns in iPS
cells only between a set of genes identified as iPS-specifically Oct4 codependent and a
set of genes whose expression is generally correlated with that of Oct4. Visualisation
tool clearly shows genes in top panel more closely follow the level of Oct4 expression
(dotted red line) in this comparison, involving iPS cells, than the more general set of
Oct4-correlated genes shown across the same samples in the bottom panel.
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5.2 Evaluation of Similarity-Biclustering Approach

As discussed in Section (2.3.6) any method developed for identification of transcrip-

tional relationships between genes through the analysis of gene expression data must

be shown to identify known relationships with biological relevance in order for novel

findings through application of the method to real problems in biological research to

be trusted. To this end, example tasks were performed through meta-analysis of a gene

expression dataset using the HBLCA approach presented in Section (5.1), in such a

way that the results could be evaluated for the ability of the method to recover known

transcriptional relationships. The results from application of the HBLCA approach are

compared with those of existing meta-analysis approaches to give an indication of the

significance of each observed result.

5.2.1 Prediction of Differentially-Expressed Genes

A significant part of the motivation for performing meta-analysis of large collections of

gene expression data comes from the desire to make more generally applicable infer-

ences regarding transcriptional mechanisms, as discussed in Section (2.3.1). A widely

adopted application of microarray technology has been to perform transcriptional pro-

filing of a biological sample type of interest with and without some forced alteration of

the expression level of a gene of interest. From the resulting data, genes most responsive

to forced change in expression level of the gene of interest can be identified. This has

proven to be an effective means of identifying transcriptional targets of genes of inter-

est (e.g. [Hall et al., 2009, Levy and Hill, 2005, Loh et al., 2006, Ivanova et al., 2006]).

Due to this application, data from a number of controlled transcriptional profiling ex-

periments involving genetic or chemical alteration of the expression level of a TF were

available to assess the generalisability of inferences of gene expression relationships

performed by the HBLCA approach. Lists of genes differentially expressed along with

a gene of interest in controlled, targeted differential expression transcriptional profil-

ing experiments that were not included in the meta-analysis dataset were obtained.

These genelists were obtained through application of statistical tests for differential

expression using the affy and limma packages within Bioconductor, as described in

[Smyth, 2004]. It would be expected that a list of genes with reliable transcriptional

relationships involving a particular gene of interest would include genes differentially

expressed in experiments involving targeted alteration of the expression of that gene of

interest.

Comparative enrichments of such lists of genes differentially expressed in individual

experiments were evaluated for genelists resulting from meta-analysis performed by

the HBLCA approach presented earlier in this chapter and for genelists from an es-

tablished correlation-based method. This simple correlation-based approach to meta-

analysis of gene expression data involves obtaining a ranked list of correlated genes
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based on Pearson correlation coefficients for each gene’s RMA-normalized gene expres-

sion values with those of the gene of interest, across the dataset used for HBLCA.

The effectiveness of this approach was demonstrated in [Day et al., 2009], where it

was used to infer transcriptional associations between genes that were shown to be in-

volved together in the same disease processes. Furthermore, applications of hierarchical

clustering to gene expression data tend to use Pearson correlation as the measure of

similarity [Eisen et al., 1998], making this one of the most widely-used means of infer-

ring associations between genes from expression data. Plots of these enrichments for

each meta-analysis approach for each of a number of genes for which targeted differen-

tial expression studies were available are shown in Figs. 5.12 & 5.13. The respective

targeted expression studies used to obtain ‘target’ gene lists were as follows:

• Oct4: Hall [Hall et al., 2009], GSE8617 [Sharov et al., 2008], GSE4679 [Ivanova et al., 2006]

• Nanog: GSE4679 [Ivanova et al., 2006], Chambers (personal communication),

GSE8617 [Sharov et al., 2008]

• Sox2: GSE4679 [Ivanova et al., 2006], GSE5895 [Masui et al., 2007]

• Ppara: GSE6864 [van den Bosch et al., 2007]

• Srf: GSE7412 [Fleige et al., 2007]

• Klf9: GSE6443 [Simmen et al., 2007]

The plots shown in Figs. 5.12 & 5.13 indicate that the HBLCA approach identi-

fies genes with reliable expression patterns involving the gene of interest used in the

analysis, at least as well as an effective established method. Although, it should be

noted that using lists of genes obtained from analysis of gene expression datasets from

individual targeted experiments may be a distorted proxy for representing the desired

transcriptional relationships, owing to the dependency of each experiment’s results on

the particular cells involved (which may differ significantly from the general biologi-

cal context in which gene expression relationships are sought to be identified) and the

precise conditions in which that experiment was performed, or due to experimental

measurement error or stochastic ‘transcriptional noise’ [Li et al., 2008]. The identi-

fication of genes with differential expression in individual targeted experiments will

therefore not represent a perfect validation scenario for methods for predicting tran-

scriptional relationships. However, the results presented in this section do indicate that

the HBLCA approach identifies gene expression patterns that are likely to be observed

in novel experimental datasets, at least as well as and often considerably better than

an effective existing meta-analysis approach.
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5.2.2 Enrichment of Targets Identified From ChIP Studies

As with data from high-throughput gene expression studies (such as those involving

microarrays), data from high-throughput DNA-binding studies (such as those based

on chromatin immunoprecipitation (ChIP) assays) are being released into the public

domain following publication of the original findings from the study in question. The

publication of data from high throughput ChIP assays from an increasing range of

transcription factors (TFs) provides lists of genes with known DNA-binding by those

assayed TFs. Lists of genes with known DNA-binding identified through ChIP as-

says therefore provide an opportunity to assess the effectiveness of a gene expression

data meta-analysis approach for predicting transcriptional interactions. This section

presents observations from analysis of genome-wide ChIP data with relevance to the

application of ChIP data to evaluate gene expression data meta-analysis approaches,

followed by the results of comparative evaluation of the HBLCA method against estab-

lished techniques for predicting transcriptional relationships between genes, in terms of

the identification of TF DNA-binding targets.

DNA-Binding Data From Genome-Wide ChIP Studies

With increasing numbers of ChIP datasets released into the public domain comes firstly

an increased chance that DNA-binding data is available for a particular TF of interest

and secondly, the opportunity to perform meta-analysis by investigating together data

from multiple platforms, laboratories and TFs.

In performing such meta-analyses it is worth bearing in mind the differences in exper-

imental techniques for generating high-throughput ChIP data. The chromatin immuno-

precipitation (ChIP) technique involves cross-linking DNA (chromatin) to all proteins

bound to it, followed by fragmentation of the DNA, use of an antibody to the protein

of the TF of interest to ‘pull down’ those fragments of DNA bound by the TF, then

reversal of the DNA-protein cross-linkages and purification of the DNA fragments. The

results of this procedure will be a collection of DNA fragments thought to be bound by

the TF in question, so somehow the original genomic location of these fragments must

be identified and (optionally) associated to ‘target’ genes. It is in this step that the vari-

ety of high-throughput technologies tend to differ the most: two main families exist, one

based on microarray technology to identify target genes through hybridisation of the

purified, pulled-down DNA fragments to probes with complementary sequences to pre-

dicted promoter regions for all (or some subset) of the genes in the relevant organism’s

genome; the other is based on sequencing each of the individual DNA fragments followed

by computational alignment to a reference genome and identification of genomic fea-

tures (in particular, genes) associated to each of the unambiguously aligned sequences.

Obviously, the so-called ChIP-chip technologies may only identify binding to particular,

pre-specified regions of the genome, whereas those based on sequencing (ChIP-PET,

191



ChIP-seq) are not restrained in this manner. Therefore, it would be expected that

ChIP-seq studies of DNA-binding of a given TF would identify many potential targets

not identified by an equivalent ChIP-chip study, as is the case with example studies

for Oct4 [Chen et al., 2008, Kim et al., 2008, Marson et al., 2008, Sharov et al., 2008]

shown in Fig. 5.14 (data from S. Morfopoulou, personal communication).

Figure 5.14: Overlaps between Oct4 ChIP studies: ’kim’ targets from ChIP-chip study
[Kim et al., 2008], ’chen’ ’marson’ and ’sharov’ targets from sequencing-based ChIP
studies [Chen et al., 2008, Marson et al., 2008, Sharov et al., 2008]

An additional consideration when performing meta-analysis of ChIP studies is that

the methods used to generate results from the raw measurements obtained in the exper-

iment may differ from study to study (e.g. in [Chen et al., 2008, Sharov et al., 2008]).

A number of factors may influence the output of such data analysis (e.g. measure-

ment intensity thresholds for calling positive binding, genome build used to determine

alignments, models of the expected measurement observations corresponding to certain

underlying DNA-binding, methods of association of sequences to genes, etc.), and may

obstruct fair comparison or effective integration of data from multiple studies. Bear-

ing this in mind, for effective meta-analysis of data from multiple ChIP studies such

approaches should be standardised (performed in the same way) as far as is possible

from the data available. Some differences will tend to remain due to the methods of

obtaining sequences of bound DNA fragments from the particular experimental plat-

form, but if these sequences are available then alignment to the genome and association

to genes can be performed in a standardised manner to remove some of the (possibly

systematic) discrepancies in the results from different studies. However, even when

this is done, an interesting result is illustrated in Fig. 5.15 emerging from comparative

analysis of DNA-binding data from different studies. Data from a number of ChIP

studies from different laboratories, using different technologies to predict DNA-binding
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of a number of key pluripotency TFs (in mouse ES cells), were assembled and analysed

using a standardised method to obtain lists of predicted targets corresponding to each

TF from each study (this standardised analysis was performed by S. Morfopoulou).

From these lists, a target inclusion matrix was created with each study represented by

a (column) vector of binary values for each gene: 1 representing the gene was identified

as a predicted target of the appropriate TF in the study, 0 representing the gene wasn’t

identified as such a predicted target. For a closer comparison, only genes represented

on the ChIP-chip promoter array were included in the target inclusion matrix. Hierar-

chical clustering of this matrix was performed using Euclidean distance as the distance

metric, resulting in the dendrogram shown in Fig. 5.15.

It is particularly interesting to note that the target lists from the ChIP studies for

Oct4 and Nanog as published in [Sharov et al., 2008] are more similar to one another

than the respective target lists for Oct4 and Nanog from other studies [Kim et al., 2008,

Chen et al., 2008]. This is especially interesting because the Sharov and Chen studies

([Sharov et al., 2008, Chen et al., 2008] respectively) use ChIP-seq technology but the

Kim study [Kim et al., 2008] uses ChIP-chip technology: it would probably be expected

therefore that the Kim studies would be further from the other two (for each TF), but

that is clearly not the case. Additionally, it is interesting to note that there is a

relatively high degree of similarity between the target lists from Oct4, Nanog and (the

one study with) Sox2, while those for cMyc and Klf4 are clearly distinct (despite coming

from different platforms). Precisely what these discrepancies represent (and their likely

causes) is left for further study as it is not so relevant to the main theme of this work, but

the results shown in Fig. 5.15 and discussed here demonstrate some of the motivation

for meta-analysis of data from multiple ChIP studies and for integration with reliable

expression data observations to predict likely transcriptional targets of particular TFs

of interest. Further motivation for such integrative analysis is provided, with analysis

of gene expression patterns of predicted DNA-binding target lists from ChIP studies

and the corresponding TFs.

Gene Expression Dependencies of ChIP Targets on Associated Transcription

Factors

It has been reported in the literature (e.g. [Li et al., 2008, Chambers and Tomlinson, 2009])

that individual ChIP studies tend to report DNA-binding of the corresponding TF to

large numbers of genes. It has been proposed (in [Li et al., 2008]) that some of this

DNA-binding may be due to stochastic chemical ‘noise’ (protein happening to be at-

tached to DNA by chance, as opposed to being drawn to attach through electrostatic

forces) or to a relatively high degree of non-specific, non-functional binding. Even with

scepticism regarding these proposed features of the measured binding, it is clear that

for many TFs, binding to DNA proximal to a predicted target gene does not necessarily

have a direct impact on the expression of that gene. To illustrate this, correlations of
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expression profiles of predicted binding-targets (from ChIP studies) to their respective

TFs were calculated across the large collection of gene expression data described in

Section (3.5). Histograms of these correlations across the full set of targets for each of

a number of TFs are shown in Fig. 5.16.

Figure 5.16: Distribution of Pearson correlation coefficients between expression of pre-
dicted binding targets and their respective TFs across large collection of gene expression
data.

If a gene’s expression were to be directly and exclusively regulated by one particular

TF, it would be expected that the expression profiles (across any dataset) of that target

gene and its regulating TF would be perfectly correlated (or anti-correlated), indicated

by a correlation coefficient of 1 (or −1). It is clear from the distributions of correlation

coefficients for target genes and binding TFs shown in Fig. 5.16 that such cases are

extremely rare, if they exist at all (and it should be noted that proteins of each of Oct4,

Sox2 and Nanog bind to their own respective promoters and auto-regulate).

It is clear from the plots in Fig. 5.16 that the majority of ‘target’ genes identified as

having proximal DNA bound by a given TF have expression patterns almost completely

uncorrelated to those of the respective TF (as indicated by the histogram peaks around

ρ = 0 for each TF analysed in this way). However, this does not imply that such

195



target genes are not transcriptionally regulated in any way by the TF in question, just

that they are not directly and exclusively regulated by that TF. There may be many

reasons for such an observation to arise: the target gene may be expressed in certain

contexts where the TF is not expressed, and in such circumstances its expression will

necessarily be regulated by other TFs; or the TF in question may be one of a number

of TFs that combinatorially regulate the expression of the target in such a way that

different combinations of TFs have different transcriptional consequences, resulting in

observations in which the expression of the target gene is directly dependent on that of

the TF in question in only the subset of samples without expression of any redundant

TFs; and there may be many other explanations not mentioned here. In fact, the

distribution of correlations of expression of predicted targets to their binding TFs that

are (near) specifically expressed in ES cells (Oct4 and Nanog) when evaluated across

ES cells only shift significantly away from the ρ = 0 peak, as illustrated in Fig. 5.17.

Figure 5.17: Distribution of Pearson correlation coefficients between ES cell expression
levels of predicted binding targets and that of their respective TFs.
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Therefore, in order to further understand the mechanisms of activity of a TF of

interest, it would be useful to identify any relevant circumstances in which each target

gene’s expression appears to be dependent on that of the TF in question, or to identify

expression patterns of targets known to be bound by a set of TFs that might be thought

to interact in regulating gene expression that correspond to different combinations of

expression of that set of TFs. As such circumstances may involve subsets of all the

samples with gene expression data available (even if requiring expression of the TF), a

meta-analysis approach based on biclustering applied to the available gene expression

data would seem to be particularly appropriate for these tasks.

Comparative Enrichment of ChIP Targets

The identification of genes with a relationship in gene expression patterns to a given

TF and known DNA-binding by that TF presents a real application of gene expression

data meta-analysis by which approaches for such meta-analysis can be evaluated. The

principle of this evaluation is that, as discussed in Section (3.6.2), if a meta-analysis

of gene expression data is intended to identify transcriptional relationships involving

a particular TF of interest it would be expected that a significant proportion of those

genes identified with predicted transcriptional relationships on the basis of expression

patterns would be bound by the TF in question, due to the fact that this will be a

prerequisite for the TF actively regulating the expression of the ‘related’ gene.

A range of TFs for which DNA-binding data is publicly available were given as

individually applied guide genes for the HBLCA approach. Ranked gene lists were

obtained for each TF through integration of results from biclusters involving ES cells, as

this was the biological context in which the ChIP assays were performed. Additionally,

for each TF used to obtain a genelist through biclustering, a ranked list of correlated

genes was obtained based on Pearson correlation coefficients for each gene’s RMA-

normalized gene expression values with those of the TF.

Comparative rates of recovery of the known DNA-bound targets were assessed through

generating lists of the number of the top ranking genes in each list known to have prox-

imal DNA bound by the TF in question for each increasing length of list. Plots of these

increasing numbers of known DNA-binding targets identified by each method for each

TF are shown in Fig. 5.18.

The comparative enrichment plots shown in Fig. 5.18 demonstrate that the genes

identified by the HBLCA approach as having expression co-dependency patterns with

each of a number of genes of interest seem to be generally more likely to have proximal

DNA bound by the relevant gene of interest (and therefore likely to be transcriptional

targets) than those identified as having similar expression patterns with each gene

of interest through a large-scale correlation approach that has been shown to reveal
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transcriptional relationships between genes (as described in the previous paragraph

and demonstrated in [Day et al., 2009]).

To provide additional evidence to support the claim that the enrichment of TFs’

binding targets shown in the lists of associated genes obtained through application

of the HBLCA approach represents an ability to discover real transcriptional rela-

tionships between genes, enrichments for the genelists identified using the HBLCA ap-

proach were compared with those for genelists obtained through application of LIMMA

[Smyth, 2004] to individual gene expression datasets involving controlled alteration of

expression of the corresponding TF. Comparison datasets used for Oct4 were con-

structed from those relevant microarray samples from each of [Hall et al., 2009, Ivanova et al., 2006]

(obtained privately and through GEO accession numbers GSE4679). Comparison

datasets used for Nanog were from each of [Ivanova et al., 2006, Sharov et al., 2008]

(obtained privately and through GEO accession numbers GSE4679 and GSE8617, re-

spectively). Comparison datasets used for Sox2 were from each of [Ivanova et al., 2006,

Masui et al., 2007] (obtained through GEO accession numbers GSE4679 and GSE5895,

respectively). All individual datasets were normalized prior to differential expression

analysis using the RMA method [Irizarry et al., 2003] as implemented in Bioconductor

[Gentleman et al., 2004], and statistical tests for differential expression were performed

using the affy and limma packages within Bioconductor, as described in [Smyth, 2004].

Plots showing the comparative enrichments calculated for each of these TFs are given in

Fig. 5.19 (as in Fig. 5.18) for comparison of genelists from the HBLCA approach with

those from an existing successful approach based on analysis of individual expression

datasets. These plots show that the HBLCA approach generally identifies more genes

with DNA-binding by the relevant TF through its evaluation of gene expression than

standard differential expression analysis performed on data from individual, targeted

transcriptional profiling experiments.

Enrichments of a TFs binding targets in the bicluster genelists suggest that real tran-

scriptional relationships are being identified through this meta-analysis approach and

as a result provide more useful validation data than many of the less transcriptionally

relevant evaluations discussed in Section (2.3.6). However, they should not be taken as

a direct and absolute measure of success of such an approach as it is expected both that

some genes bound by a given TF would have expression profiles seemingly unrelated to

that of the TF due to dependency on additional TFs (it is known that certain groups

of TFs regulate the transcription of some target genes in a combinatorial manner, as

discussed in [Chambers and Tomlinson, 2009]), and that some DNA-binding inferred

from high-throughput ChIP data may be non-functional [Li et al., 2008]. Additionally,

it is likely that some genes showing co-dependent expression patterns with the gene of

interest will not be direct transcriptional targets of that gene, but may either be targets

of a gene that is a direct target of the gene of interest or of a gene that regulates the
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expression of both the gene of interest and the gene(s) with co-dependent expression

with the gene of interest. Therefore, some genes that are bound by a TF may not

have related expression patterns (across a large dataset) to that TF, and some genes

with clearly corresponding expression patterns (and some underlying transcriptional

relationship) with the TF may not show binding by the TF. Despite this possibility of

being a distorted proxy to representing a target set of known transcriptional relation-

ships involving a TF of interest, the DNA-binding lists obtained from publicly available

high throughput ChIP data do at least provide a means of testing some direct tran-

scriptional relevance of the resulting genelists created through directed meta-analysis of

gene expression data. And by such measures, the HBLCA approach presented in Sec-

tion (5.1) does appear to result in lists of associated genes (for a given TF of interest)

with estimated expression co-dependency scores reflecting some transcriptionally rele-

vant patterns even more clearly than alternative approaches involving meta-analysis or

controlled transcriptional profiling experiments involving genetically altered expression

of the gene of interest, methods that have been shown to be effective tools in biological

research.

5.2.3 Discussion

The results presented in Section (5.2) indicate that the HBLCA approach to meta-

analysis successfully identifies genes with known DNA-binding or consistent gene ex-

pression patterns in relevant biological contexts, and thus likely transcriptional rela-

tionships, in its lists of genes identified as displaying gene expression co-dependency

patterns involving a gene of interest in particular biological contexts. The HBLCA

method achieves this at least as effectively as, and often considerably more effectively

than well-established methods of generating similar predictions based on analysis of

gene expression data. The levels of enrichment of respective target lists shown in this

section suggest that the identification of genes with the desired expression patterns

performed by the HBLCA method forms a useful tool for inferring transcriptional rela-

tionships between genes, and thus to utilise existing gene expression data for the study

of biological processes.

Motivations for integrating DNA-binding data and gene expression data in order

to predict transcriptional regulatory targets of particular TFs have been discussed,

and a number of observations relating to the similarities between DNA-binding results

obtained for the same TF in different experiments have been presented. These ob-

servations (especially those shown in Figs. 5.14 & 5.15) support the case for taking

a meta-analysis approach to data from ChIP studies, in addition to taking such an

approach with gene expression studies. The lack of correlation of expression across a

large gene expression dataset of the majority of DNA-binding targets of a number of

TFs with the respective binding TF is illustrated in Fig. 5.16, with the implication this

has regarding the identification of relevant transcriptionally regulated targets of a given
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TF in particular biological contexts being that an integrated meta-analysis approach

incorporating meta-analysis of ChIP datasets as discussed above and a gene expression

meta-analysis method based on a biclustering approach would appear to be ideally

suited to utilise the available data for this target prediction task. Following on from

the demonstration (in Section (5.2.2)) of the effectiveness of the HBLCA meta-analysis

approach for the identification of genes with DNA-binding by a given TF on the basis

of patterns observed in gene expression data, the following section presents the results

of taking an integrated meta-analysis approach to identify regulatory targets of TFs

particularly relevant to the transcriptional control of pluripotency.

5.3 Integration of ChIP Data with Gene Expression Meta-

Analysis Results

High-throughput ChIP assay technologies have enabled the study of genome-wide DNA-

binding of any given TF. The knowledge obtained through such study is potentially use-

ful in the elucidation of mechanisms of regulation of gene expression involved in certain

biological processes. However, for a number of reasons (mentioned in Sections (3.5.2)

and (5.2)) DNA-binding information does not provide a complete picture explaining all

aspects of the mechanisms of transcriptional control of biological processes. In order

to identify predicted targets of a given TF, a number of studies reported in the lit-

erature (e.g. [Sharov et al., 2008, Loh et al., 2006, Chen et al., 2008, Kim et al., 2008,

Marson et al., 2008]) have performed whole genome scale ChIP and gene expression

assays and integrated the results to obtain lists of predicted target genes with both

DNA-binding of the TF in question and correlated gene expression patterns with those

of the TF. Following this approach, the HBLCA meta-analysis tool presented in Section

(5.1.6) may be utilised in conjunction with (meta-) analysis of data from ChIP studies,

resulting in an integrated meta-analysis approach for predicting transcriptional mech-

anisms of biological processes known to involve TFs of interest. This section presents

data supporting the statement of motivation for this integrated approach and providing

some insight into DNA-binding as assessed by ChIP assays, followed by the description

of a number of possible methods for performing such integrated meta-analysis and, fi-

nally, results of the application of this integrated meta-analysis approach to TF-target

prediction are shown.

Motivated by the observations outlined in the previous section, and by the fact that

HBLCA approach presented in Section (5.1.6) has been demonstrated to be able to

identify significant gene expression (co-)dependency patterns involving TFs and their

DNA-binding targets (as shown in Section (5.2.2)), it was proposed that this approach

be used in conjunction with meta-analysis of ChIP data to identify predicted targets

of a TF: genes with both reliable DNA-binding by the TF in question and significant

patterns of codependent expression with the TF across relevant subsets of samples
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from a large collection of gene expression data. Examples of such integrated analysis

are presented in this section, and applications of a related integrated meta-analysis

approach to the identification of gene expression patterns associated with different

combinations of interacting TFs are described in Section (6.3), with significant results

concerning the study of transcriptional control of pluripotency.

There may be a number of ways of integrating data from multiple ChIP studies

and gene expression datasets, however the simplest approach involves generating lists

of high-confidence DNA-binding targets of a TF and finding which of those targets

have significant expression co-dependency patterns with the TF in question, across

samples representing a biological context relevant to the particular question. If there

are multiple ChIP datasets available for the TF in question from relevant biological

samples, again there may be a number of ways of utilising these to obtain a single list

through meta-analysis, but one straightforward option is to take the intersection of the

lists of targets identified by each of the individual studies available. While this will

inevitably be very stringent, discounting a larger proportion of possible targets with

some binding evidence as the number of available (ChIP) datasets increases, those

targets that have evidence in all of the studies available ought to be high-confidence

binding targets (especially as the number of datasets available increases). Given that

the desired stringency and number of available studies may vary for different tasks,

target lists can be obtained by ranking all those targets in any study and selecting

a threshold that balances stringency and confidence against the number of targets

pursued for further investigation. This approach is taken partly because the results

from ChIP studies tend to be expressed as a binary output (e.g. as in [Kim et al., 2008,

Marson et al., 2008]): that is, a gene is either bound by a TF in a sample or not.

Especially when analysing data from multiple different technologies, this may be the

best possible approach: it would be difficult to compare relative abundances of binding

in samples based on essentially arbitrary measurements from different platforms.

If only a single study is available, there still may be methods to rank potential

targets based on the measurements obtained. For example, a method has been devel-

oped for ChIP-seq data to rank targets according to a Transcription Factor Associa-

tion Score (TFAS) [Ouyang et al., 2009]. Using a study with Oct4 DNA-binding data

[Chen et al., 2008] as an example, ranking according to this TFAS results in greater

correspondence to a list of ‘reliable targets’ obtained through the intersection of target

lists from all available Oct4 ChIP studies than that expected from a random ranking of

those genes identified as binding targets in the study, as demonstrated with the ROC

curve plotted in Fig. 5.20.

This would suggest that the application of such approaches may prove to be effective

when raw ChIP-seq data is available, especially when such raw data becomes available
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Figure 5.20: ROC for TFAS-ranked ChIP targets in a single study [Chen et al., 2008]
belonging to a set of targets consistently bound in multiple studies. The pro-
portion of consistently-bound genes present in the TFAS-ranked genelist from the
[Chen et al., 2008] study is plotted against the length of genelist (corresponding to the
proportion of those genes specifically identified as Oct4-bound in the [Chen et al., 2008]
study that appear in the ranked genelist).
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from multiple relevant studies (allowing new meta-analysis methods to be developed

to take advantage of the information in the raw data). However, for the investigation

of the roles of Oct4, Sox2 and Nanog in transcriptional control of pluripotency, and

particularly for the prediction of regulatory targets of Oct4 presented in the following

section, target lists were available from multiple studies from different platforms and

so the application of a TFAS or similar scoring system to meta-analysis target lists was

irrelevant.

Taking the approach described above to obtain lists of Oct4 DNA-binding targets

at different confidence levels (from data from multiple ChIP studies [Kim et al., 2008,

Chen et al., 2008, Sharov et al., 2008, Marson et al., 2008]), the HBLCA approach was

applied to identify significant gene expression co-dependency patterns between Oct4

and any of the high-confidence Oct4 DNA-binding targets. As a (fairly arbitrary)

means of obtaining a list of the highest-confidence targets, genes were identified as

likely Oct4 targets (in ES cells) if they were in both the set of genes with the 100

highest scoring co-dependency probabilities as evaluated by the gene expression meta-

analysis algorithm using Oct4 as a guide gene and the set of genes identified as Oct4

binding targets in all the available ChIP studies. As an illustration of the results of

this simple integrated meta-analysis method for target prediction, heatmaps showing

the expression levels of the resulting predicted Oct4 targets in two Oct4 knock-down

experiments [Hall et al., 2009, Ivanova et al., 2006] (not included in the dataset used

for gene expression meta-analysis) are presented in Fig. 5.21.

These expression heatmaps show clearly that the high-confidence predicted targets

obtained with the method described above, incorporating meta-analysis of multiple

ChIP studies and the HBLCA method for assessing co-dependent gene expression pat-

terns in a biological context of interest from a large collection of gene expression data,

appear to be reliably transcriptionally responsive to forced changes in expression of the

supposed regulating TF of interest.

To provide a further indication of the reliability of the expression co-dependency

patterns identified with the HBLCA approach, lists of differentially expressed genes

in a number of targeted transcriptional profiling experiments were obtained, ranked

according to statistical significance of differential expression as calculated with the

Empirical Bayes method from LIMMA (as described in the Section (5.2.1)). Lists

of high-confidence predicted targets for Oct4 and Nanog were obtained through in-

tegrated meta-analysis as described above, although for Oct4 a larger list was ob-

tained through selecting those genes with Oct4 DNA-binding in a particular individ-

ual study [Chen et al., 2008] featuring in the list of the 100 highest scoring genes ac-

cording to the HBLCA meta-analysis approach. For one Nanog knock-down exper-

iment [Ivanova et al., 2006] and two Oct4 knock-down experiments [Hall et al., 2009,
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(a) Oct4 knock-down time-series [Hall et al., 2009]

(b) Oct4 shRNA knock-down [Ivanova et al., 2006]

Figure 5.21: Heatmaps showing expression of predicted Oct4 targets in Oct4 knock-
down experiments (each predicted target has a row of values across all replicates in the
experiments, with red squares indicating relatively high expression of that gene in that
sample and green samples relatively low expression)
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Ivanova et al., 2006], the differential-expression significance rankings in each experi-

ment were obtained for the relevant predicted target list and the list of genes with

consistent DNA-binding across the relevant ChIP studies. Box plots are shown in Fig.

5.22 to illustrate the differences in the distribution of such rankings when the list of re-

liable DNA-binding targets is filtered on the basis of gene expression patterns observed

in a different, large dataset (as is the case with the procedure performed here).

The differential expression ranking distributions shown in Fig. 5.22 show that, as

expected, identification of DNA-binding targets that show patterns of expression co-

dependency with the binding TF across relevant samples in a large dataset are likely to

be more significantly differentially expressed upon forced alteration of the expression

of that TF than those DNA-binding targets without such expression co-dependency

observations.

As a further demonstration of the effectiveness of this integrated meta-analysis ap-

proach, predicted targets of another TF (Klf2) were identified through obtaining a

list of genes with patterns of codependent expression with Klf2 in ES cells and select-

ing those genes with the strongest apparent expression co-dependency patterns that

additionally showed binding by Klf4 (a related TF for which ChIP data was avail-

able). It was expected that Klf2 would share a significant proportion of targets with

Klf4 due to their similarity in protein structure/function [Pearson et al., 2008], with

redundancy noted in [Jiang et al., 2008]. It was noted that the level of Klf2 expres-

sion dropped significantly in two Oct4 knock-down time series microarray experiments

[Hall et al., 2009, Sharov et al., 2008], therefore it was proposed that it would be in-

teresting to see whether any of the predicted Klf2 targets also showed differential ex-

pression in these experimental datasets, especially if that differential expression corre-

sponded to the differential expression of Klf2. Fig. 5.23 shows the expression levels of

the Klf2 predicted targets (obtained using the novel integrated meta-analysis approach)

throughout each time series (in terms of fold-change to the median of the control set

of replicates for that experiment), with the colour of each line (gene) dependent on the

final expression level of the gene. Fewer genes are shown for the plot on the right hand

side, as this experiment [Sharov et al., 2008] was performed on a custom microarray

platform and not all predicted targets could be mapped to appropriate probesets on

this platform (conversion between the Affymetrix probeset IDs and the custom array

of [Sharov et al., 2008] was performed by mapping respective identifiers to official gene

symbols, as this provided greater overlap than any other available annotation).

The expression profile plots shown in Fig. 5.23 indicate that the integrated meta-

analysis approach may be able to identify transcriptional targets of a given TF that

respond even to relatively minor fluctuations in the expression level of the TF. In addi-

tion, the examples of differential expression in distinct datasets shown with Klf2 targets
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(a) Oct4 knock-down time-series [Hall et al., 2009]

(b) Oct4 knock-down time-series [Sharov et al., 2008]

Figure 5.23: Profile plots showing fold-change of predicted Klf2 targets in Oct4 knock-
down experiments
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predicted using DNA-binding data for Klf4 indicate that this novel target prediction

method using integrated meta-analysis may be robust to inaccuracies in the underlying

data (as represented by using DNA-binding data from a different TF in the same fam-

ily). The demonstrations provided above are intended to illustrate the potential for the

integrated meta-analysis approach described in this section to be applied to prediction

of relevant transcriptional targets of TFs of interest in particular biological contexts

so that the roles of such genes in biological processes of interest may be investigated

experimentally, and that this target prediction may be performed utilising data already

existent in the public domain.

5.3.1 Discussion

An integrated meta-analysis approach to the identification of a TF’s regulatory targets

relevant to a given biological context is described in Section (5.3.3), along with the

results of its application to target prediction tasks involving Oct4 and Klf2. This novel

approach has been demonstrated (in Fig. 5.22) to improve the likely significance of

differential expression of predicted targets in response to a change in expression of the

TF expected to regulate their expression, compared to the lists obtained by using ei-

ther data source (DNA-binding or gene expression) in isolation. In addition, examples

of successful application of this integrated meta-analysis approach to transcriptional

target prediction are illustrated with Figs. 5.21 & 5.23, showing how high-confidence

targets predicted through the integrated meta-analysis approach display differential

expression in response to differential expression of the relevant TF expected to regu-

late their expression, even when the differential expression of the TF is not especially

pronounced (as in the examples shown in Fig. 5.23).

The integrated meta-analysis approach proposed in this section has been demon-

strated to be an effective means of utilising the HBLCA approach presented in Section

(5.1.6) in conjunction with data from DNA-binding studies in order to predict tran-

scriptional regulatory relationships involving TFs of interest. Such a method may have

many potential applications in biological research, where prediction of transcriptional

regulation of one set of genes by another may guide experimental investigation of the

transcriptional control of a given biological process in such a way that expenditure of

time and resources may be reduced without compromising the impact of the results of

the research.

Additionally, the investigation of DNA-binding data from multiple ChIP studies

presents further opportunities for the HBLCA approach to be applied to identify poten-

tially interesting relationships between expression levels of certain TFs or combinations

of TFs and the consequences in terms of expression level of genes with proximal DNA

bound by these TFs. In the case of study of the transcriptional control of pluripo-

tency, this would be especially useful as a relatively large number of TFs have been
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implied to have roles in the transcriptional control of pluripotency but the precise roles

of each and therefore the consequences of expression of different combinations of these

TFs is largely unknown [Chambers and Tomlinson, 2009]. Sections (6.2-6.4) present

such investigations of gene expression patterns involving DNA-binding targets of TFs

of interest, using the HBLCA approach to meta-analysis of gene expression data.

5.4 Chapter Summary

Building on the work presented in the previous two chapters, a novel biclustering-based

meta-analysis approach, HBLCA, was developed and is described in Section (5.1). This

approach to meta-analysis of gene expression data focuses on the identification of ex-

pression co-dependency patterns within consistent biological contexts (as defined by

the global transcriptional profile of a sample), made possible by the introduction of

a probabilistic framework for estimating the significance of observed expression vari-

ations of any genes between any two sets of samples in a dataset. This represents a

probabilistic framework for the concept of localised gene expression co-dependency that

was introduced in Section (3.6.3). By implementing such a localised gene expression

co-dependency analysis approach, the HBLCA method enables the prediction of tran-

scriptional relationships of particular biological relevance involving genes of interest, as

demonstrated in Sections (5.2 & 5.3). Additionally, this approach enables investigation

of the dependence on biological contexts of observed transcriptional relationships be-

tween particular genes and of the transcriptional mechanisms by which TFs of interest

may influence a characteristic phenotype, yielding insight into transcriptional relation-

ships that is not provided by any existing gene expression data analysis tools, which

is to be demonstrated in the following chapter. This novel analysis tool exists as a

set of R programs that incorporate the dataset compilation and novel gene expression-

state modelling transformation tools described in Sections (3.3 & 4.1.4) respectively. A

bicluster visualization tool has been developed to assist with interpretation and confir-

mation of predicted relationships discovered by this novel analysis approach, and can

be used in conjunction with the analysis approach as an additional analysis tool for

investigating transcriptional relationships involving genes of interest, as demonstrated

in Section (5.1.7).

It was shown through analysis of data from a number of genome-wide ChIP studies

that there may be considerable between-study variation in terms of conclusions relating

to target genes bound by individual TFs, and that the majority of even those genes

reliably identified as targets of a given TF across multiple studies do not show clear

correlation of expression with the TF in question across a large collection of gene

expression data. By integrating analysis of genome-wide DNA-binding data with the

output of the HBLCA tool, it was demonstrated that high-confidence regulatory targets

of a TF of interest could be identified that display relevant expression patterns in ‘held-
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out’ datasets coinciding with a change in expression level of the binding TF.

After the development of a set of gene expression analysis approaches described

in this chapter, and demonstration of the success of these approaches in identifying

relevant transcriptional relationships from large collections of gene expression data, the

following chapter presents a number of investigations of the transcriptional control of

pluripotency carried out using the analysis approaches introduced in this chapter. The

results of these investigations provide further evidence for the value of the contribution

to the repertoire of tools available to a biologist represented by the novel analysis

approaches described in this chapter.
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Chapter 6

Transcriptomic Analysis Of

Pluripotency
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In this final chapter describing work performed in the course of the research project, a

number of examples are given to show successful application of the HBLCA approach

to open problems in biological research regarding investigation of the transcriptional

control of pluripotency. The results presented constitute findings that would not have

been obtainable without the development and application of the analysis approaches

presented in the previous chapter (for which development was, in turn, dependent on

the work presented in Chapters 3 & 4).

6.1 Functional Decomposition of a List of Genes Differ-

entially Expressed Upon Pou5f1 Knockdown

As mentioned in Section (2.1.4), Oct4 (Pou5f1) is a transcription factor that is essen-

tial for establishment and maintainance of the pluripotent state that is characteristic of

mouse ES cells [Nichols et al., 1998, Niwa et al., 2000]. As part of a study performed

to investigate the mechanisms involved in Oct4’s transcriptional control of pluripo-

tency, motivated partly by the observation that the majority of well-characterised Oct4

targets appear not to be essential for derivation or maintainance of ES cells, a tran-

scriptional profiling experiment was performed by [Hall et al., 2009] using Affymetrix

MOE430v2 microarrays to measure genome-wide expression levels in replicate samples

obtained from Zhbtc4.1 ES cells [Niwa et al., 2000] following treatment with doxycy-

cline (inducing rapid downregulation of Oct4 mRNA and protein in these cells) and

from untreated samples. As described in [Hall et al., 2009], for Zhbtc4.1 ES cell cultures

grown for 0hrs, 5hrs, 10hrs and 30hrs with doxycycline treatment, three RNA samples

were extracted using the QIAGEN RNeasy Mini Kit then labelled and hybridised to

separate microarrays according to the 5µg standard Genechip protocol. Following ar-

ray scanning, normalized log-intensity gene expression measurements were obtained

through application of RMA [Irizarry et al., 2003]. Relative expression levels as mea-

sured by the arrays were confirmed through qRT-PCR for a number of genes, as shown

in [Hall et al., 2009]. This gene expression dataset provides a resource for obtaining

valuable insight into the transcriptional mechanisms of control of the pluripotent state,

particularly in terms of the role of Oct4.

Standard statistical analysis approaches can be used to identify genes with significant

expression variation between one time point and another (or the untreated control).

In order to identify genes with an immediate transcriptional response to a drop in the

level of Oct4 expression, a list was obtained of the genes with the greatest measured

change in expression level between the samples profiled 10hrs following dox treatment

and those profiled without dox treatment (i.e. 0hr time point). This list of genes is

included in Table 6.1. As a means of exploring a possible functional interpretation of

this list of targets and identifying shared involvement of any of these targets in par-

ticular biological processes, Gene Ontology (GO) analysis was performed by using the
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DAVID [Huang et al., 2009b] functional annotation tool to test statistical enrichment

of Biological Process ontology terms within the genelist. Such GO-based functional

enrichment analysis is a widely used technique for investigating functional implications

of a given genelist [Huang et al., 2009a], however, such analysis is dependent on the

availability of accurate and up-to-date annotations. Due to structure of the GO anno-

tations, there is no context-specific annotation. That is to say, there is no distinction

between those processes in which a given gene may be involved in only one particular

biological context and those processes in which that gene may be universally involved.

Additionally, these analyses test for statistical enrichment of annotation terms within

a whole list of genes, which may in fact involve a heterogenous composition of smaller

groups of genes associated with distinct but co-occurring biological processes. Possibly

arising as a consequence of these features of standard GO enrichment analysis, there

were no biological process annotation terms enriched below a FDR threshold (after

Benjamini-Hochberg correction [Benjamini and Hochberg, 1995]) of 0.1 in the list of

Oct4 early targets given in Table 6.1.

It was proposed that the HBLCA tool presented in Section (5.1.6) could be used to

provide some means of counteracting the complicating features of functional enrichment

analysis described above. HBLCA could be used to identify lists of genes with appar-

ent expression co-dependency with each of the predicted targets in the original genelist,

across relevant biological contexts (in this case, ES cells and some very similar non-ES

samples). These bicluster-associated genelists for each of the targets in the original

genelist could be used to provide more context-specific functional annotation through

enrichment analysis of each of the associated genelists, which would additionally be

more robust to inaccuracies of annotation due to the increased number of annotations

from which relevant functional association is determined. Additionally, the associated

genelists could be used as a means of separating the possibly heterogenous input genelist

into groups of genes with similar expression patterns within the relevant biological con-

text(s), in a similar manner to the clustering of individual bicluster genelists involved in

the bicluster-evidence integration procedure described in Section (5.1.5). This section

describes in further detail the way in which these steps may be performed to counteract

the complicating features of functional enrichment analysis of a genelist, along with the

results of application of the procedure to analysis of the Oct4 early-target genelist men-

tioned above. Results from similar application of the procedure to associated genelists

identified using a related correlation-based method are presented for comparison, with

the advantages of the biclustering-based meta-analysis approach for gene association

highlighted.

6.1.1 Discovering Structure Within a Genelist Through Biclustering

If a genelist is insufficiently annotated using standard functional enrichment analysis,

as was the case with the list of early Oct4 targets given in Table 6.1, lists of bicluster-
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associated genes for each target in the original list can be obtained by performing

HBLCA meta-analysis as described in Section (5.1.6) using each target in turn as the

guide gene for the analysis. In the case of the list of early Oct4 targets, this analysis

was performed using the large collection of microarray data presented in Section (3.3),

across only those sample groups (pre-calculated as in Section (5.1.4)) in the dataset

involving samples with high levels of expression of Oct4 or Nanog (to represent ES cell

samples or similar), as this was the biological context of interest in the investigation.

From each such meta-analysis with a predicted target as a guide gene, a list of target-

associated genes was selected as the highest-scoring 100 genes in the ‘globally’ integrated

gene set (those from Bayesian integration performed across the full set of biclusters)

given that all biclusters identified by the algorithm were deemed to be relevant. It was

observed that for some of the predicted targets no significant biclusters were identified,

indicating that there was not sufficient data in the dataset to distinguish a drop in the

expression level of that gene in ES cells or similar samples from a general loss of the

ES cell transcriptional profile. For those genes in the original target list that did give

rise to biclusters and resulting associated genelists, these genelists could be used for

further investigation of the original list of targets.

Functional Analysis of Bicluster Genelists

To provide an alternative to standard functional enrichment analysis of the input

genelist (using statistical testing as performed by DAVID [Huang et al., 2009b]) that

provides a more context-specific functional annotation and is more robust to erroneous

(or missing) annotations in the GO database, the associated genelists calculated as de-

scribed in the previous paragraph can be tested using standard functional enrichment

analysis to identify any GO terms significantly enriched in the list of associated genes

(based on gene expression patterns observed across relevant biological contexts). This

was performed for the bicluster-associated genelists for the Oct4 early-response target

list, resulting significant annotation associations for each gene are shown in Table 6.3.

Using those GO biological process terms associated to each of the genes in the

original target genelist, statistical enrichment p-values were calculated from the hy-

pergeometric distribution (with the number of probesets annotated with each term

obtained from Affymetrix annotation data in NetAffx [Affymetrix, ]). The results of

enrichment analysis of bicluster-associated GO terms (as opposed to the GO-annotated

biological process terms for each gene, which yielded no significant enrichments) are

shown in Table 6.4. As such p-values were not obtained for all GO terms, multi-

ple testing correction through the FDR family of methods (e.g. Benjamini-Hochberg

[Benjamini and Hochberg, 1995]) was not possible, but multiple testing correction may

be desired as the number of categories that each gene may have been annotated with is

large (approximately 10, 000). As it is therefore unclear whether multiple testing correc-

tion is strictly necessary here (and has already been taken into account in the individual
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Table 6.2:
ProbesetID GeneSymbol GO Category Enrichment FDR

1416157 at Vcl RNA localization 2.20E-004

1416515 at Fscn1 RNA localization 5.90E-003

1416516 at Fscn1 RNA localization 6.00E-003

1417752 at Coro1c RNA processing 1.10E-002

1417945 at Pou5f1 stem cell differentiation 3.40E-006

1418078 at Psme3 chromatin organization 8.70E-003

1420647 a at Krt8 Calcium-independent cell-cell adhesion 6.00E-002

1421313 s at Cttn cell cycle 3.80E-003

1421811 at Thbs1 cell adhesion 8.00E-007

1423691 x at Krt8 regulation of cell proliferation 1.30E-004

1427385 s at Actn1 cell cycle 3.60E-002

1427408 a at Thrap3 M phase of mitotic cell cycle 2.20E-005

1427550 at Peg10 cell cycle 1.90E-002

1427739 a at Trp53 stem cell differentiation 2.80E-005

1427770 a at Slc2a3 M phase of mitotic cell cycle 2.30E-004

1429338 a at Nol9 RNA processing 1.10E-004

1429802 at Hsd17b14 embryonic morphogenesis 7.80E-002

1432004 a at Dnm2 M phase 5.10E-002

1434357 a at Kpnb1 nuclear transport 3.70E-005

1435989 x at Krt8 Calcium-independent cell-cell adhesion 6.60E-002

1448169 at Krt18 negative regulation of cell proliferation 5.20E-002

1449578 at Supt16h RNA localization 6.30E-002

1449898 at Sept1 blood vessel development 3.70E-003

1450576 a at Sf3a2 chromatin organization 1.40E-002

1450929 at Zfp57 chromosome organization 8.10E-002

1451782 a at Slc29a1 response to DNA damage stimulus 5.10E-003

1451927 a at Mapk14 RNA processing 5.10E-003

1452811 at Atic RNA processing 3.30E-002

M phase 6.20E-002

Table 6.3: Bicluster-associated GO annotations for Oct4 early-response targets, ob-
tained for each target by analysis in DAVID of top ranking 100 genes most associated
with the corresponding probeset according to HBLCA output.
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enrichment calculations for each bicluster-associated genelist), and it was only possible

to perform the highly conservative Holm method of p-value adjustment [Holm, 1979]

(which may well be overly conservative [Hochberg and Benjamini, 1990]), both adjusted

and un-adjusted p-values from the hypergeometric distribution enrichment calculations

are given in Table 6.4 for each bicluster-associated GO term statistically enriched in

the list given in Table 6.3.

It is clear from the enriched category list given in Table 6.4 that by using the HBLCA

meta-analysis tool to obtain lists of genes with relevant expression pattern associations

for each of the genes in an input genelist and performing functional enrichment analy-

sis on each of these lists of associated genes to annotate the original input list, certain

biological processes were identified as having significantly enriched association to the

input gene list where no such enrichments were identified using a standard functional

enrichment analysis technique. This application of HBLCA has resulted in signifi-

cant functional signatures being identified in a target list that would not have been

discovered using existing functional analysis techniques. This analysis indicates that

transcriptional regulation of RNA localization, cellular response to stress and the cell

cycle (M-phase), chromatin organisation and stem cell differentiation occurs when the

level of Oct4 mRNA in ES cells drops. Oct4-based transcriptional regulation of cell

adhesion, cytoskeletal organization and proliferation is also suggested.

Clustering List of Differentially Expressed Genes

The functional enrichment analysis approach described above resulted in significant bi-

ological process signatures being identified in a genelist where standard methods failed,

due to the ability to associate genes to processes they appear to be involved in even

if those annotations are not available. However, this approach does not address the

other significant issue regarding standard functional enrichment analysis techniques: a

genelist may well be functionally heterogeneous and as a result, biological process terms

associated to a significant subset of the genes in a genelist may not be evaluated as

significant due to the size of the remaining genelist not in that subset. If there is struc-

ture within the genelist involving multiple components comprising genes with similar

functional associations that are linked to expression pattern similarities of those genes,

it may be possible to use the bicluster-associated genelists to identify such structure

and evaluate biological process signatures individually for each subset of the original

list. In addition to the possible benefits in terms of the identification of functional

signatures in heterogeneous genelists, it may be useful to identify structure based on

expression patterns of genes in a potentially heterogeneous genelist for other purposes

(such as identifying potential co-regulators for targets of a given TF, as demonstrated

in Section (6.2)).
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In a manner similar to that used in the identification of structure within a possibly

heterogenous set of biclusters described in Section (5.1.5), a gene-association matrix can

be constructed from the integrated biclustering results obtained through application of

the HBLCA tool to an appropriate dataset, with each gene in the input list being used

in turn as a guide gene. Such a gene-association matrix can be constructed with each

column containing the co-dependency scores for all genes, for each gene in the original

target list. Using PCA as described in Section (5.1.5), the dimensionality of this matrix

with a large number of rows can be reduced to a more manageable number of principal

components. To illustrate the structure that may be apparent in a list when taking

this approach, the values of the first two principal components of the gene-association

matrix were calculated for each gene in the Oct4 early-response target list, with the

gene-association matrix created as described above from the output of the HBLCA

tool. Fig. 6.1 shows each gene in the Oct4 early-response target list plotted with these

values for each of the first two principal components used as x and y co-ordinates.

Following dimensionality reduction to the minimum number of principal components

that explain at least a set proportion of the variation across the matrix, k-means clus-

tering can be used in conjunction with the gap statistic (using kmeansGap from the

R package SLmisc) to identify optimal clustering of the input genelist based on the

gene expression meta-analysis results observed. When this process was performed on

the Oct4 early-response target list, 3 significant clusters of genes were identified in the

original input list. One immediately interesting observation was that even though the

clustering was performed on the basis of gene expression data from the large meta-

analysis compendium, each of the clusters appears to represent distinct components of

expression pattern within the dataset used for the original differential expression anal-

ysis to identify the early-response targets. Fig. 6.2 shows the expression profiles across

this dataset (the dataset from [Hall et al., 2009]) both in terms of the raw expression

values and the GESTr-transformed expression state confidence values. It would ap-

pear that the first cluster (in green) represents a component whose expression levels

are restored at the final time point, the second cluster (in blue) involves genes with

expression levels that appear to stabilise after the original drop at the 10hr time point,

and the third cluster (in red) seems to involve genes whose expression level continues

to drop between the final two (15hr and 30hr) time points.

While this identification of structure within the Oct4 early-response target list is

interesting in itself, it would also be useful to be able to associate functional character-

istics (as well as the expression characteristics observed in Fig. 6.2) with each of the

clusters within the input genelist.
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(a) Raw expression values for early-response targets in Oct4 knock-
down time series

(b) GESTr-transformed values for early-response targets in
Oct4 knock-down time series

Figure 6.2: Profile plots showing expression patterns in [Hall et al., 2009] Oct4 knock-
down time series dataset for early-response target clusters. Chip index in plot (a)
indicates which of the 15 samples from the experiment the measurements correspond
to: chips 1-3 represent the parental cell line (no Oct4 knock-down), chips 4-6 repre-
sent Zhbtc4 cells without dox treatment, chips 7-9 represent Zhbtc4 cells after 5h dox
treatment, chips 10-12 represent Zhbtc4 cells after 10h dox treatment, and chips 13-15
represent Zhbtc4 cells after 30h dox treatment.
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Functional Enrichment Analysis of Decomposed Genelist Subsets

By re-calculating the enrichment of bicluster-associated GO Biological Process terms

in the Oct4 early-response target list for each cluster individually, it was apparent that

genes in the target list that seemed to have similar gene expression associations (as

determined by meta-analysis) were more likely to have similar functional associations

(according to functional enrichment analysis of the set of bicluster-associated genes for

each predicted target). The first cluster seemed to be associated with cell adhesion,

chromatin organisation and regulation of proliferation; the second cluster seemed to be

associated with RNA localization, cellular response to stress and M phase (cell cycle);

the third cluster seemed to be associated with stem cell differentiation and gastrulation.

The bicluster-associated functional enrichments calculated individually for each cluster

(as opposed to the list as a whole) is given in Table 6.5.

The results given in Table 6.5 show that this approach has not only increased the

significance of the biological process associations to the Oct4 early-response target

genelist, it has also provided a means of associating different functions to different

components within the original target list. Taken as a whole, this novel approach to

functional enrichment analysis based on utilising the HBLCA approach presented in

Section (5.1.6) provides an improved method for identifying biological processes associ-

ated with a genelist, and further offers a means of identifying structure within a genelist

comprising heterogeneous functional components and identifying biological processes

(or similar annotation terms) significantly associated with any of these components.

6.1.2 Comparison with Correlation-Based Approach

It has been demonstrated that the novel functional enrichment analysis approach pre-

sented in Section (6.1.1) has the ability to provide a number of interesting results where

standard functional enrichment analysis approaches fail to offer any insight in to the

biological significance of a genelist, and as such this represents a useful application

of HBLCA to a real biological research problem (the investigation of functional com-

ponents involved in the early transcriptional response to a drop in Oct4 expression

level). However, it was proposed that the success of the novel functional enrichment

analysis approach may not depend exclusively on the existence of the HBLCA tool,

and that it may still be successful using a simpler correlation-based meta-analysis ap-

proach. In order for a correlation-based meta-analysis approach to be appropriate for

the novel functional enrichment analysis approach, pairwise correlations between genes

would have to be evaluated across only those samples in the large gene expression

dataset that reflect the relevant biological context. In the case of the analysis presented

here, the relevant samples involved those samples involved in the ES cell and ‘near-ES’

sample-groups used for the biclustering-based meta-analysis above. Having identified

a relevant gene expression ‘context,’ associated genelists were obtained for each of the
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members of the Oct4 early-response genelist analysed above by taking the 100 genes

with the highest Pearson correlation coefficients with the input gene across the relevant

samples. Unlike the biclustering-based meta-analysis approach, this correlation-based

meta-analysis identifies associated genes for all inputs regardless of whether there is suf-

ficient contrast across the provided gene expression context to distinguish the desired

relationships from any other expression patterns. The DAVID functional association

tool was used to identify GO Biological Process terms significantly enriched in each

correlation-associated genelist. These significant correlation-associated GO terms for

each of the genes in the Oct4 early-response list are given in Table 6.6.

It was noted that, although some of the input genes were associated with a number of

biological processes, a markedly lower proportion of the correlation-associated genelists

resulted in any significant annotations than with the bicluster-associated genelists. This

is partly due to the implicit prediction by the HBLCA approach that requisite data

to be able to identify the desired gene expression pattern associations is not available.

The contrast between these methods is demonstrated by the proportions of ‘associ-

ated genelists’ obtained through each meta-analysis method that resulted in significant

functional annotation, as shown in Fig. 6.3.

Figure 6.3: Proportion of successful functional annotation through gene expression
meta-analysis associations

Having noted this less desirable property of using calculation of Pearson correlation

coefficients as a meta-analysis approach in place of the HBLCA tool as incorporated

into the novel functional enrichment analysis technique described in Section (6.1.1),

obtaining functional associations with the list of Oct4 early-response targets was still

successful, albeit to a lesser degree than demonstrated for the co-dependency analysis

approach. A list of the significantly enriched biological process terms identified through

statistical enrichment analysis of correlation-associated GO terms is given in Table 6.7.
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Probeset Genesymbol GO category FDR

1415812 at Gsn wound healing 1.90E-002

1416157 at Vcl protein localization 2.60E-003

1416515 at Fscn1 protein localization 7.70E-003

cell cycle 1.30E-002

1417945 at Pou5f1 stem cell development 5.00E-004

embryonic pattern specification 1.90E-002

embryonic morphogenesis 6.70E-002

gastrulation 7.30E-002

1418078 at Psme3 RNA splicing 1.60E-002

1419018 at Rhox6 placenta development 8.30E-003

1421313 s at Cttn protein localization 1.70E-005

cell division 6.20E-002

1421811 at Thbs1 cell adhesion 5.20E-005

gland morphogenesis 2.00E-003

blood vessel development 2.30E-002

tube development 2.50E-002

negative regulation of cell proliferation 6.40E-002

1421813 a at Psap protein localization 1.50E-003

1421924 at Slc2a3 protein localization 1.70E-002

M phase 4.20E-002

cell division 4.60E-002

1422450 at Ctnnd1 actin cytoskeleton organization 9.10E-002

regulation of phosphoinositide 3-kinase activity 3.10E-002

1425329 a at Cyb5r3 protein localization 6.10E-003

1425711 a at Akt1 lamellipodium assembly 7.10E-002

1426313 at Bre protein localization 1.40E-002

1426538 a at Trp53 response to DNA damage stimulus 6.40E-002

cell cycle 6.50E-002

protein localization 7.20E-002

1427550 at Peg10 placenta development 1.60E-007

1430162 at 3830417A13Rik placenta development 1.10E-006

1432004 a at Dnm2 protein localization 4.00E-004

1434357 a at Kpnb1 protein localization 6.20E-003

1438133 a at Cyr61 cell adhesion 7.40E-004

1449578 at Supt16h M phase 4.00E-002

RNA splicing 4.90E-002

1450929 at Zfp57 negative regulation of cell proliferation 8.10E-003

lymphocyte differentiation 2.00E-002

positive regulation of apoptosis 6.10E-002

embryonic morphogenesis 6.30E-002

1451897 a at Nbr1 protein localization 2.60E-002

cell cycle 3.80E-002

M phase 4.90E-002

1451927 a at Mapk14 protein localization 1.40E-003

M phase 5.00E-002

cell division 6.20E-002

1452811 at Atic M phase 7.00E-002

1456080 a at Serinc3 protein localization 1.10E-003

1459897 a at Sbsn placenta development 1.00E-002

Table 6.6: Correlation-associated GO annotations for Oct4 early-response targets, ob-
tained for each target by analysis in DAVID of top ranking 100 genes most correlated
with the probeset in question across the subset of the reference gene expression dataset
corresponding to ES cells and the most-similar non-ES cell samples (with similarity
defined by the Euclidean distance across all probesets represented in the dataset).
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It is interesting to note that each gene expression meta-analysis approach results in

different biological processes being associated with this list of Oct4 early-response tar-

gets, indicating that these different methods may identify different signatures within the

input data. The same gene-association based clustering approach as described above

was also applied to the correlation-associated genelists, resulting in 4 different clusters

being identified within the original genelist. The results of functional enrichment anal-

ysis of each of these individual clusters in terms of the correlation-associated GO terms

shown above is given in Table 6.8.

Again, this functional enrichment analysis approach involving a correlation-based

meta-analysis approach to identify GO terms significantly enriched in associated genelists

for each of the members of the input Oct4 early-response target list identifies some func-

tional components not identified when using HBLCA as described in Section (6.1.1).

However, when the expression patterns in the original time series dataset are observed

for each of the clusters of the input list identified on the basis of correlation-associations,

it would appear that there is less of a clear expression pattern representing each cluster

than was the case for the clusters identified using gene association lists provided by

HBLCA. Expression plots (equivalent to those shown in Fig. 6.2) are given in Fig. 6.4

for each of the 4 correlation-association based clusters.

As a quantitative assessment of a similar feature, the within-group correlations across

the original Oct4 knock-down dataset were calculated for each of the clusters of Oct4

early-response targets as separated through HBLCA-based associations or through

correlation-based meta-analysis associations. Even though there were fewer clusters

in the input list identified through the HBLCA-based associations than through the

correlation-based associations, which would result in an expectation of lower within-

cluster correlations for the HBLCA-based association clusters, the within-cluster corre-

lations suggest that the clusters obtained through HBLCA-based associations mapped

better back to the input experiment than those obtained through correlation-based

associations (see Fig. 6.5).

The results presented here suggest that a simple correlation-based meta-analysis

approach may also be appropriate for the functional enrichment analysis approach

proposed in this section, although it appears to be less successful for this purpose (in

the case of the example analysis performed on a list of predicted Oct4 early-response

targets) than the HBLCA approach.

6.1.3 Discussion

A novel approach to functional enrichment analysis has been proposed to avoid some

of the potentially confounding features of standard functional enrichment analysis
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(a) Raw expression values for early-response targets
in Oct4 knock-down time series

(b) GESTr-transformed values for early-response targets in Oct4
knock-down time series

Figure 6.4: Profile plots showing expression patterns in [Hall et al., 2009] Oct4 knock-
down time series dataset for early-response target clusters. Chip index in plot (a)
indicates which of the 15 samples from the experiment the measurements correspond
to: chips 1-3 represent the parental cell line (no Oct4 knock-down), chips 4-6 repre-
sent Zhbtc4 cells without dox treatment, chips 7-9 represent Zhbtc4 cells after 5h dox
treatment, chips 10-12 represent Zhbtc4 cells after 10h dox treatment, and chips 13-15
represent Zhbtc4 cells after 30h dox treatment.

231



Figure 6.5: Within-cluster correlations across input dataset (from [Hall et al., 2009])
for clusters identified within a list of Oct4 early-response targets by clustering of asso-
ciated genelists calculated through the HBLCA approach (left) and through a Pearson
correlation-based meta-analysis approach (right). Despite there being more clusters re-
sulting from the correlation meta-analysis approach, the genes within each cluster are
not better-correlated than the genes within corresponding clusters from the HBLCA de-
rived genelist. This indicates that the clusters from the HBLCA approach better reflext
related components of the Oct4-induced transcriptional network in pluripotency.

techniques. This functional enrichment analysis approach uses gene expression meta-

analysis to find associated genesets for each member of an input genelist, identifying

clusters within the input genelist based on similarities between the meta-analysis gene-

associations, and calculating statistical enrichments across each cluster of the input

genelist in terms of functional annotation terms significantly enriched in the associ-

ated genesets for each of the members of that cluster. This analysis approach has

been demonstrated to identify biological processes associated with a list of Oct4 early-

response genes when standard functional enrichment analyses failed. This approach

appears to be particularly successful when using the HBLCA approach presented in

Section (5.1.6), identifying clusters of genes with related expression patterns in an

Oct4 knock-down dataset (from which the original target list was obtained) in addition

to having distinct functional association signatures. Therefore, as well as present-

ing the development of an improved approach to function enrichment analysis (which

constitutes a significant result in its own right), this work demonstrates a successful ap-

plication of HBLCA in which existing meta-analysis approaches (predominantly based

on correlation and/or global expression analysis) would either be unsuitable or unable

to identify the same significant biological signatures. In addition, the analysis of Oct4

early-response targets presented above has identified groups of biological processes that

may be dependent in mouse ES cells on the transcriptional activity of Oct4.
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6.2 Identification and Explanation of Structure Within a

List of Oct4 DNA-Binding Targets

It has been observed that the majority of putative target genes with DNA-binding evi-

dence from a given transcription factor (TF) are not directly and exclusively regulated

by the TF in question, as discussed in Section (5.3.2) and reported in [Li et al., 2008].

This may be expected due at least in part to co-operative or redundant regulation of

the expression of a target gene by multiple TFs, in addition to any epigenetic regulatory

mechanisms that may affect the ability of the TF in question to activate transcription

of the target.

Given the known significance of Oct4 in establishing and maintaining the pluripotent

state [Niwa et al., 2000, Takahashi and Yamanaka, 2006, Chambers and Tomlinson, 2009],

but the general lack of knowledge regarding mechanisms of regulation of genes involved

in the pluripotent state, an investigation of genes bound by Oct4 was proposed in order

to predict possible co-regulating partners for different subsets of Oct4’s DNA-binding

targets, and in such a way provide further insight into the Oct4-centred transcriptional

regulatory network responsible for controlling pluripotency. This section presents the

results of adopting a similar approach to that taken for functional analysis described

in Section (6.1.1), with the HBLCA algorithm presented in Section (5.1.6) being used

to discover groupings within a list of Oct4 DNA-binding targets on the basis of gene

expression co-dependency associations.

6.2.1 Discovering Structure Within Target List Through Biclustering

Following application of the HBLCA algorithm to obtain lists of bicluster-associated

genes with expression co-dependency patterns observed for each of the ‘input’ list of

Oct4 DNA-binding targets, a gene association matrix was created similar to that de-

scribed in Section (6.1.1) (although in this case a rank-based score was used). PCA

was applied to the matrix of gene-association scores for the set of Oct4 consensus chIP

targets in order to reduce dimensionality to a suitable input matrix for robust k-means

clustering. Following PCA dimensionality reduction, the resulting gene association

component score matrix was clustered using k-means clustering with the Gap Statistic

to determine the optimum number of clusters. It should be noted that not all the input

Oct4 DNA-binding targets were clustered in this way as a significant proportion (72%)

failed to result in biclusters passing ad hoc filtering criteria based on visual inspection

of any co-dependency patterns identified by the algorithm. This failure to result in ap-

propriate biclusters for some of the input genes was due to a lack of suitable samples in

the expression dataset that were suitably similar to ES cells but showed significant con-

trasts of expression of those ‘failed’ input genes. That some of the Oct4 DNA-binding

targets were not included further in this analysis due to lack of appropriate biclusters
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in no way affects the validity or interpretability of results of the subsequent analysis for

those input targets that did result in identification of appropriate expression biclusters.

An initial observation of the results from this analysis of the list of consistently

bound Oct4 regulatory targets was that there appear to be groups of targets that each

share distinct patterns of gene expression co-dependency associations across ES cells.

A graphical representation of the clustering in terms of the most significant 2 principal

components of gene-association scores is given in Fig. 6.6.

Figure 6.6: Representation of Oct4 chIP targets with satisfactory biclusters in terms
of 2 principal components, coloured by group classification on the basis of k-means
clustering (with gap statistic) performed on plotted principal component representation
only

The clustering demonstrated in Fig. 6.6 seems to indicate that there exist clear

groups of targets, each comprising genes with apparently similar expression association

patterns in the reference compendium. The colours of the probeset IDs representing

each Oct4 target show which of the clusters (determined by k-means clustering with

gap statistic) from the PCA representation of the gene association matrix that target

belongs to. A list of the genes and the corresponding grouping is provided in Table 6.9.
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Probeset ID Gene Group

1422057 at Nodal 1

1422058 at Nodal 1

1425922 a at Mycn 1

1431416 a at Jam2 1

1417945 at Pou5f1 1

1429490 at Rif1 1

1416967 at Sox2 1

1440739 at Vegfc 1

1419417 at Vegfc 1

1448890 at Klf2 1

1417022 at Slc7a3 1

1418225 at Orc2l 2

1449408 at Jam2 2

1435324 x at Hmgb1 2

1436979 x at Rbm14 2

1456566 x at Rbm14 2

1430117 a at Zfp64 2

1424153 s at Sall4 2

1425960 s at Pax6 2

1419123 a at Pdgfc 2

1424531 a at Tcea3 2

1437085 at D630039A03Rik 2

1424490 at Zfp428 2

1420847 a at Fgfr2 2

1421940 at Stag1 2

1427739 a at Trp53 3

1426538 a at Trp53 3

1417155 at Mycn 3

1437779 at Foxh1 3

1422213 s at Foxh1 3

1424152 at Sall4 3

1423212 at Phc1 3

Table 6.9: List of MOE430v2 probeset IDs corresponding to those genes with Oct4
DNA-binding evidence in all of 5 individual genome-wide chIP studies [Kim et al., 2008,
Chen et al., 2008, Marson et al., 2008, Sharov et al., 2008, Loh et al., 2006] and suffi-
cient variation in expression across ES cells for identification of co-dependently ex-
pressed genes using the HBLCA approach.
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6.2.2 Association of Target Subsets With Different TFs

Although the identification of subsets within the set of Oct4 DNA-binding targets is an

interesting observation in itself, and suggests that the methods employed may combine

to form a useful tool for the investigation of complex transcriptional regulatory mech-

anisms, it would be especially interesting if some biological function or transcriptional

event could be associated with each of the clearly-defined subsets in order to offer some

explanation of why the observed structure appears. To progress towards this goal, an

approach was developed to identify the individual genes providing greatest predictive

power in classifying the Oct4 targets into the subsets identified as reported above. This

approach involved the use of linear discriminant analysis (LDA) to identify the principal

components of the gene association matrix that best separate the identified clusters,

followed by analysis of the weightings of the discriminating principal components to find

the genes with greatest contribution and finally evaluation of the discriminating power

of each of those predicted discriminatory genes. A full description of this approach

follows, using the Oct4 target list investigation as an example.

Linear Discriminant Analysis

LDA is similar to PCA, with the main difference between the methods being that in

PCA the subspaces identified as principal components are those explaining the greatest

variation observed between all the data objects, whereas in LDA the subspaces identified

as linear discriminants are those explaining the greatest variation between specified

subsets of the data objects. Given that it was a PCA representation of the gene

association matrix that had been used to perform the clustering to identify classes

within the set of all Oct4 targets, LDA could be performed on this PCA representation

of the matrix in order to identify which of the principal components best separate the

specified clusters (as this may differ from the ordering of the principal components as

provided by PCA). LDA was performed using the lda function from the R package

‘MASS’ and the contribution of each principal component to discrimination between

the input classes was evaluated through inspection of the scaling weights in the first

linear discriminants (provided as output of the lda function).

This LDA of the PCA representation of the gene association matrix for Oct4 tar-

gets revealed that principal components ranked 24 and 22 in PCA showed greater

discrimination between the classes than principal components 2 and 3, although the

first principal component provided most discriminatory power (corresponding to obser-

vations from Fig. 6.6). Visual inspection of representations of the Oct4 targets in each

combination of any 2 of the top-ranking principal components from PCA and LDA

of the gene association score matrices revealed that only representations involving the

first principal component resulted in separation of the input probesets into the distinct

cluster groups calculated through k-means clustering using each of 2, 3 and 4 clusters
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(data not shown). Therefore, if the listed Oct4 target genes are to be considered as

belonging to one of only 2 classes, it is most likely that any genes discriminating be-

tween these classes will have a high weighting (either positive or negative) in the first

principal component.

Principal Component and Class-Discriminating Genes

Having identified principal components of the Oct4 targets’ gene association matrix

that discriminate between subsets of the targets sharing similar gene association pat-

terns, in order to obtain any biologically meaningful predictions regarding explanatory

factors for the identified target subsets the discriminatory association patterns must

be expressed in terms of (sets of) individual genes. If a particular principal compo-

nent discriminates effectively between each subset of interest then genes with a highly

significant contribution to that principal component (indicated by a high weighting,

positive or negative, of that gene in the principal component) will be more likely to

discriminate (on the basis of association scores) between the subsets than other genes.

Such genes with the highest contributions to the best discriminating principal compo-

nents can therefore be used as a starting point for the prediction of gene association

classification rules on the basis of the underlying gene association scores.

As a further step towards identification of genes effectively discriminating between

target subsets on the basis of expression association patterns, the gene association

scores from the targets to each of a panel of potential discriminatory genes were ob-

tained and averaged over each subset. When these average subset-association scores

for each class are used as bases for a coordinate system, likely discriminatory genes will

appear significantly off-diagonal. With a panel of 16 potential discriminatory genes se-

lected on the basis of contribution to discriminatory principal components for the three

subsets of Oct4 targets shown in Fig. 6.6, each of the panel genes were plotted using

average association scores to the three subsets as coordinates, with the corresponding

3D scatterplot shown in Fig. 6.7.

While such a plot as that shown in Fig. 6.7 provides guidance into which genes

may be effective discriminants between subsets of a gene list (in this case the list of

Oct4 targets), for any biological conclusions to be made regarding co-association of a

particular subset to any particular gene, that gene must be clearly associated to at least

some of the genes in one subset of the gene list and not to any of the members of the

input gene list belonging to one of the other subsets. If such discriminatory genes can be

identified, a final analysis step is required in which any subsets with explanatory genes

are pruned by removing those members of the subset without a clear association to

the explanatory gene(s). While possibly somewhat protracted, the series of procedures

described in this section provide a means of associating unknown genes with subsets

of an input gene list, such that if an association to identified ‘discriminatory genes’
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is observed for any gene in the input list then that gene can be assumed to share

similarities in expression pattern with the other genes in the subset ‘marked’ by that

discriminatory gene. Furthermore, when a strong association to a single discriminatory

gene is observed for each of a number of genes in a subset of the input list, sharing

similar gene association patterns and therefore similar gene expression patterns, it is

proposed that such a discriminatory gene will be likely to be of functional significance

to that subset and to provide insight into either the consequences or the causes of that

subset’s separation in expression pattern from the rest of the genes in the input list.

Oct4 Target Subsets With Explanatory Genes

Following the analysis procedure described above, two subsets of Oct4 targets were

identified, each showing clear similarity of gene association patterns (and therefore

implicitly sharing similar expression patterns), for which individual genes served as

clear discriminants in that strong associations were observed to all those targets within

a particular subset and none of the other targets. As the genes in the first subset belong

exclusively to the group of probesets plotted in blue in Fig. 6.6, and the genes in the

first subset belong exclusively to the group of probesets plotted in green in Fig. 6.6

it can be seen that each of these subsets share overall similarity of gene association

patterns and not just a shared association to the discriminatory gene. The subsets are

given, along with their association scores to the discriminatory genes, in Table 6.10.

Interestingly, the best discriminatory genes for the two subsets are both Oct4 targets

and thus in the subsets themselves. However, an additional gene that was not on the

original target list (dnmt3b) was found to show particularly strong associations to each

of the members of the first subset and not to other Oct4 targets.

To demonstrate that the discriminatory genes identified through the above procedure

correspond to real expression patterns of the targets, correlations of expression profile

to each of the discriminatory genes were evaluated across ES and near-ES samples in a

large gene expression dataset (described in Section (3.3)) for the respective subsets of

Oct4 targets in comparison to all other targets. As a further observation, correlations

were evaluated across the whole dataset for each of the target subsets compared with

the remaining Oct4 targets to a composite expression profile based on expression of

both Oct4 and the respective discriminatory gene. Plots for target subset 1 showing

correlation to Foxh1 are presented in Fig. 6.8, and plots for target subset 2 showing

correlation to Fgf4 are presented in Fig. 6.9.

The plots in Fig. 6.8 indicate that the genes in subset 1 are generally better correlated

with Foxh1 across Oct4-expressing samples than the other Oct4 targets, and show

significantly better correlation across the entire reference dataset to a composite profile

based on required expression of Oct4 & Foxh1. Similar effects are shown in Fig. 6.9 for

the expression association of Oct4 targets in subset 2 with Fgf4 (and Oct4 & Fgf4).
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(a) Foxh1 (b) Foxh1 & Oct4

Figure 6.8: Illustration of expression correlation of Oct4 target group 1 to Foxh1. Panel
(a) shows the Pearson correlation coefficients across Oct4-expression samples for the
two Foxh1 probesets to each of the probesets listed in Table 6.10 as belonging to Group
1 (boxes 1 & 2) and to all of the other Oct4 targets (boxes 3 & 4). Panel (b) shows
equivalent Pearson correlation coefficients for a composite profile scoring simultaneously
high expression of both Oct4 and Foxh1 (on the GESTr scale), using each of the Foxh1
probesets in turn. As in panel (a), boxes (1 & 2) show Pearson correlation coefficients
to Oct4 targets belonging to group 1 (listed in Table 6.10) and boxes (3 & 4) show the
correlation coefficients to all other Oct4 targets from the list given in Table 6.9.

(a) Fgf4 (b) Fgf4 & Oct4

Figure 6.9: Illustration of expression correlation of Oct4 target group 2 to Fgf4. Panel
(a) shows the Pearson correlation coefficients across Oct4-expression samples for the
two Fgf4 probesets to each of the probesets listed in Table 6.10 as belonging to Group
2 (boxes 1 & 2) and to all of the other Oct4 targets (boxes 3 & 4). Panel (b) shows
equivalent Pearson correlation coefficients for a composite profile scoring simultaneously
high expression of both Oct4 and Fgf4 (on the GESTr scale), using each of the Fgf4
probesets in turn. As in panel (a), boxes (1 & 2) show Pearson correlation coefficients
to Oct4 targets belonging to group 2 (listed in Table 6.10) and boxes (3 & 4) show the
correlation coefficients to all other Oct4 targets from the list given in Table 6.9.
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In order to confirm these associations, a comparison of correlations was performed

using the respective discriminatory genes and Oct4 (the binding TF) for the targets

in subset2 across a curated group of samples representing ES cells, but including Oct4

samples with knock-down. Plots are given in Fig. 6.10 to show the distributions of

the correlations to each ‘explanatory gene’ for the probesets in the relevant subset,

excluding the explanatory gene probesets as these might skew the distribution plots.

As the target subset 2 contains Oct4, this presumably represents a set of targets whose

expression in ES cells is predominantly regulated by Oct4. This is reflected in the corre-

lation comparison plots in Fig. 6.10 (b), which show a roughly equal correlation across

ES cells (including those with Oct4 knock-down) to Fgf4 and Oct4 for the probesets

in subset 2. However, Fig 6.10 (a) shows that the probesets in subset 2 correlate to

Foxh1 across ES cells, even with Oct4 knock-down, whereas only one of the subset 2

probesets (representing Phc2) correlates significantly to Oct4 across the same samples.

This might imply that although Oct4 targets, this subset (comprising Foxh1, Trp53,

Dnmt3b and Sall4) are regulated by some other transcription factor (possibly Foxh1

itself) that acts in conjunction with (or redundantly to) Oct4.

(a) Distribution of correlation scores for
‘subset 1’ probesets (excluding Foxh1) to
each of two Foxh1 probesets and Oct4, eval-
uated across ES cells but including Oct4
knock-down samples

(b) Distribution of correlation scores for
‘subset 2’ probesets (excluding Fgf4) to
each of two Fgf4 probesets and Oct4, eval-
uated across ES cells but including Oct4
knock-down samples

Figure 6.10: Comparison of expression correlation across ES cell samples for Oct4 target
subset 1 to Foxh1 and Oct4 and for Oct4 target subset 2 to Fgf4 and Oct4

6.2.3 Discussion

A method has been developed for the identification of structures of gene expression

association groupings within a list of genes, utilising the HBLCA approach described in

Section (5.1). This method has been described through demonstration of its application

to the investigation of a list of Oct4 DNA-binding targets, for which subsets of genes

with different expression profiles were identified. One of these subsets involves a group
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of genes with expression level in ES cells seemingly exclusively dependent on that of

Oct4, and the other subset appears to be well characterised by an association with Foxh1

expression in ES cells. These results demonstrate a way in which novel tools developed

through the course of this work can be utilised to gain insight into the mechanisms of

transcriptional regulatory activity of a TF of interest. Furthermore, this analysis has

revealed a potentially interesting observation regarding the transcriptional regulation of

Oct4 DNA-binding targets in ES cells, highlighting targets with clear Oct4 expression

dependency and targets with expression level seemingly dependent on Foxh1 rather

than Oct4, which may suggest a role for Foxh1 as a co-regulator for a set of Oct4

targets in ES cells. Further investigation of these proposed relationships could lead

to insight into the mechanisms of transcriptional regulation of maintenance and/or

acquisition of pluripotency.

6.3 Investigation of Combinatorial Activity of Key Pluripo-

tency TFs

It is widely agreed that Oct4, Sox2 and Nanog are fundamental regulators of the

pluripotent state [Chambers and Tomlinson, 2009, Loh et al., 2006, Ivanova et al., 2006],

but the precise mechanisms by which they control maintenance or acquisition of pluripo-

tency are unknown [Chambers and Tomlinson, 2009]. Through genome-wide DNA-

binding studies for each of these TFs, potential targets have been identified [Chen et al., 2008,

Kim et al., 2008, Marson et al., 2008, Sharov et al., 2008, Loh et al., 2006]. An inter-

esting observation has been made that the sets of DNA-binding targets for each of these

TFs overlap considerably, as illustrated in Fig. 6.11 (and discussed in [Chambers and Tomlinson, 2009,

Chen et al., 2008]). For example, approximately only one-third of the most consistently

Oct4-bound genes across multiple chIP studies are not also reliably bound by either

Sox2 or Nanog.

However, as reported in Section (5.3.2), the majority of these identified DNA-binding

targets do not show clear expression patterns in relation to the binding TF, even within

a restricted biological context of only ES cells. Given that the 3 TFs in question

are known to bind common subsets of targets (including each other), it would be

especially interesting not just to identify targets with binding evidence and expression

co-dependency evidence for each TF (as described in Section (5.3.3)), but to utilise the

HBLCA approach in concert with meta-analysis of data from multiple genome-wide

DNA-binding studies to identify target genes that appear to be regulated by different

combinations of Oct4, Sox2 and Nanog in order to obtain a deeper understanding of

the mechanisms involved in transcriptional regulation of pluripotency.

While the HBLCA meta-analysis tool provides a unique opportunity to identify genes

with biologically significant expression co-dependency patterns with unique combina-
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Figure 6.11: Overlap between lists of genes found to be consistently bound by each of
Oct4, Sox2 and Nanog through meta-analysis of chIP experiments.

tions of Oct4, Sox2 and Nanog, in order for this to be possible it requires data with

variation of expression of each combination of the controlling TFs within the biological

context of interest (pluripotent cells and their immediate derivatives). The dataset

used in the previous analyses and described in Section (3.3) contained insufficient data

to investigate any combinations of regulation through Oct4, Sox2 and Nanog aside

from Oct4 alone and all 3 TFs together. Therefore, additional data was required from

samples that are near to ES cells (in terms of global transcriptional profile) but with

variation of additional combinations of the 3TFs. Data was gathered from a number

of studies for which the data was made available subsequent to the compilation of

the dataset described in Section (3.3) and from one unpublished study (I. Chambers,

personal communication). The meta-analysis dataset was augmented with these sam-

ples through the preprocessing and linear interpolation procedures described in Section

(4.3). An illustration of the capacity for combinatorial expression co-dependency anal-

ysis of Oct4, Sox2 and Nanog afforded by this augmented dataset is given in Fig. 6.12

with ES cell samples and their transgenic derivatives plotted in three dimensions of

Oct4, Sox2 and Nanog expression levels. It can be observed in Fig. 6.12 that there

exist points in the four ‘distant’ corners of the scatterplot, representing each combina-

tion of high and low expression of each of Oct4 and Nanog, whilst maintaining high
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Sox2 expression. This would suggest that the dataset offers potential for dissecting

gene expression co-dependencies with different combinations of Oct4 and Nanog in ES

cells. However, there appears to be only limited potential for discovering expression

patterns involving contrasts in Sox2 expression level independent of Nanog and Oct4.

Gene expression analysis was performed using HBLCA, using each combination of

the 3 TFs as guide genes, with the other TFs specified as ‘contrast genes’ in order to

evaluate co-dependency to the unique combination (as described in Section (5.1.3)).

6.3.1 Identification of Genes with Expression Patterns Associated to

Independent Combinations of Pou5f1, Sox2 and Nanog

Application of the HBLCA approach to this augmented dataset with different combi-

nations of Oct4, Sox2 and Nanog specified as ‘guide’ genes and ‘contrast’ genes resulted

in lists of genes ranked according to consistency of co-dependency of expression to each

of the specified combinations. As suggested by Fig. 6.12 the dataset analysed did not

include extensive collections of samples with a sufficient degree of overall similarity to

ES cell samples yet covering the full range of combinations of expression levels of each

of these three key pluripotency TFs. As a consequence, it would be expected that if

the meta-analysis were run with low enough stringency so as to utilise contrasts in-

volving each of these combinations, there would be some overlap between the genelists

from analysis with each combination. Lists of top-scoring probesets from integration

of co-dependency patterns across sets of biclusters filtered by visual inspection as de-

scribed in the previous section are provided in Tables 6.11, 6.12 & 6.13, with overlaps

between the lists summarised in Fig. 6.13. An illustration of the effectiveness of this

approach is given in Fig. 6.14, which shows plots (generated by the visualisation tool

described in Section (5.1.7)) for the biclusters identified by the meta-analysis algorithm

as displaying contrasts in Nanog expression, contrasting the genes identified through

HBLCA (panel on top) with those most correlated with Nanog across the whole gene

expression dataset (panel on bottom). Of particular note is the fact that the genes

identified by the HBLCA approach follow the general trend of Nanog in the expression

levels across ‘contrast’ samples that are largely similar to the normal ES cell samples

of the biclusters far better than the genes obtained through correlation analysis.

The overlaps in lists of genes showing expression co-dependency to each of Oct4,

Nanog and Sox2 are further illustrated in Fig. 6.15, which plots the top-ranking genes

from each list in three dimensions representing rank-based score in the lists of Oct4

co-dependent genes, Sox2 co-dependent genes and Nanog co-dependent genes (x,y and

z axes, respectively). From this plot it is evident that the majority of the top-ranking

genes in the list for any one of the TFs are also present in the lists for the other TFs, and

typically at a fairly high rank. Those genes that lie near the vertices of the cube formed

by the axes of Oct4, Sox2 and Nanog co-dependency may be especially interesting, as
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Figure 6.12: 3D representation in terms of Oct4, Sox2 and Nanog expression levels
(x,y and z axes respectively) of ES cell samples and their derivatives in the augmented
dataset described in Section (6.3).
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Probe Set ID Gene Symbol Codependency Probability Nanog Binding Site

1429388 at Nanog 1 Kim,Marson,Sharov

1420086 x at Fgf4 2.64E-005 Kim,Marson,Sharov

1417760 at Nr0b1 1.67E-005 Chen,Kim,Marson,Sharov

1449064 at Tdh 1.09E-005 Chen,Kim,Marson,Sharov

1416043 at Nasp 4.44E-006

1432207 a at Toe1 4.36E-006

1451158 at Trip12 3.56E-006

1431430 s at Trim59 2.32E-006

1426653 at Mcm3 2.12E-006 Chen,Kim

1418027 at Exo1 2.07E-006

1431252 a at Zfp655 1.63E-006

1418470 at Yes1 1.46E-006

1423430 at Mybbp1a 1.24E-006

1416915 at Msh6 9.40E-007 Chen,Kim,Marson,Sharov

1453604 a at Hbs1l 8.31E-007 Chen,Marson

1434279 at NA 7.21E-007

1436020 at Zfp828 7.18E-007

1435379 at Urb2 7.09E-007 Sharov

1426810 at Kdm3a 4.04E-007 Chen,Marson,Sharov

1448777 at Mcm2 1.94E-007

Table 6.11: Genes displaying greatest and most consistent co-dependency of expression
with Nanog, independent of Sox2 and Oct4 fluctuations. Binding evidence column gives
studies reporting binding of Nanog to target: Chen, Kim, Marson and Sharov indicate
[Chen et al., 2008], [Kim et al., 2008], [Marson et al., 2008] and [Sharov et al., 2008],
respectively.
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Probe Set ID Gene Symbol Codependency Probability Sox2 Binding Site

1416967 at Sox2 1 Chen,Kim,Liu,Marson

1421749 at Lin28 1E-004

1424008 a at Rbpms2 2.82E-006 Marson

1417945 at Pou5f1 8.53E-007 Chen,Kim,Liu,Marson

1440085 at Eda2r 4.27E-007

1419706 a at Akap12 3.88E-007 Marson

1428142 at Etv5 2.89E-007 Kim,Marson

1425416 s at Psrc1 2.38E-007

1434280 at NA 1.91E-007

1425042 s at Pelp1 1.36E-007 Marson

1438237 at Rex2 1.30E-007

1424801 at Enah 8.93E-008

1454904 at Mtm1 7.13E-008

1420731 a at Csrp2 7.04E-008

1425565 at Rest 5.07E-008 Chen,Kim,Liu,Marson

1449064 at Tdh 4.64E-008 Chen,Marson

1418362 at Zfp42 4.45E-008 Marson

1423925 at Dhx16 3.50E-008

1426645 at Hsp90aa1 1.31E-008 Chen,Marson

1448692 at Ubqln4 4.01E-009

Table 6.12: Genes displaying greatest and most consistent co-dependency of expres-
sion with Sox2, independent of Nanog and Oct4 fluctuations. Binding evidence column
gives studies reporting binding of Sox2 to target: Chen, Kim, Liu and Marson indi-
cate [Chen et al., 2008], [Kim et al., 2008], [Liu et al., 2008] and [Marson et al., 2008],
respectively.
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Probe Set ID Gene Symbol Codependency Probability Oct4 Binding Site

1417945 at Pou5f1 1 Chen,Kim,Liu,Marson,Sharov

1420086 x at Fgf4 3.72E-010 Chen,Kim,Marson,Sharov

1449064 at Tdh 2.17E-010 Chen,Kim,Marson,Sharov

1417760 at Nr0b1 4.29E-011 Liu,Marson,Sharov

1419418 a at Morc1 5.11E-013 Chen,Marson,Sharov

1449288 at Gdf3 3.50E-013 Chen,Liu,Marson,Sharov

1420085 at Fgf4 6.72E-015 Chen,Marson,Sharov

1422697 s at Jarid2 3.92E-017

1430139 at Hells 3.58E-017

1423424 at Zic3 1.90E-017 Liu,Marson,Sharov

1448562 at Upp1 2.11E-019 Chen,Marson

1421151 a at Epha2 1.96E-019 Chen,Marson

1427953 at Fanci 2.79E-020 Liu,Marson

1424008 a at Rbpms2 1.16E-020 Marson,Sharov

1438237 at Rex2 9.02E-021

1456515 s at Tcfl5 8.80E-021

1422058 at Nodal 6.97E-021 Chen,Kim,Liu,Marson,Sharov

1427238 at Fbxo15 4.99E-021

1439065 x at Gm13152 3.04E-021

1419234 at Helb 1.86E-021 Chen,Marson

Table 6.13: Genes displaying greatest and most consistent co-dependency of expression
with Oct4, independent of Nanog and Sox2 fluctuations. Binding evidence column
gives studies reporting binding of Oct4 to target: Chen, Kim, Liu, Marson and Sharov
indicate [Chen et al., 2008], [Kim et al., 2008], [Liu et al., 2008], [Marson et al., 2008]
and [Sharov et al., 2008], respectively.
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Figure 6.13: Overlaps between lists of genes displaying co-dependency on each of Oct4,
Nanog and Sox2 independent of the other two TFs.
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these would be hypothesised to be associated with expression of a particular combina-

tion of the TFs. A summary of these genes is presented in Table 6.14, also including

genes arising uniquely from application of the HBLCA approach using a combination

of multiple ‘guide’ genes.

Probe Set ID Gene Symbol TF Dependency

1449266 at Mecp2 Oct4

1456515 s at Tcfl5 Oct4

1426645 at Hsp90aa1 Sox2

1416967 at Sox2 Sox2

1421749 at Lin28 Sox2

1431252 a at Zfp655 Nanog

1422697 s at Jarid2 Oct4 (Nanog)

1438237 at Rex2 Oct4, Sox2

1439065 x at Gm13152 Oct4, Sox2

1419706 a at Akap12 Oct4, Sox2

1451158 at Trip12 Sox2, Nanog

1418027 at Exo1 Sox2, Nanog

1454904 at Mtm1 Sox2, Nanog

Table 6.14: Genes displaying co-dependency to unique combinations of Oct4, Sox2 and
Nanog.

Owing to the overlap seen in the lists of genes with co-dependency observed by

HBLCA to each of Oct4, Sox2 and Nanog independent of the other two TFs, an asso-

ciation score was produced for each TF for each potential target gene appearing in any

of the target lists. Using the resulting TF-target association scores, lists of TF-specific

targets were produced to identify genes that are likely to be regulated uniquely by one

of Oct4, Sox2 or Nanog. Lists of genes most uniquely associated to particular combina-

tions are provided in Tables 6.15, 6.16 & 6.17. The unique co-dependency of the genes

in each of these lists is illustrated in Fig. 6.16, in which the genes are plotted in three

co-dependency-score dimensions as Fig. 6.15.

It would be expected that the TFs would regulate the expression of their targets

primarily through DNA-binding dependent mechanisms, and therefore the most in-

teresting predictions of expression dependency (and thus critical transcriptional regu-

latory relationships) would be those involving particular combinations of Oct4, Sox2

and Nanog with expression association to genes which are bound by (at least, but not

necessarily exclusively) those TFs displaying the expression co-dependency with the

potential target. It may be possible that the mechanism of regulation might involve

inhibition of binding of another TF to the target gene’s promoter or enhancer regions,

but as there is presently no data available to support such a hypothesis, genes with

these associations are left out of the final target list. This final list of targets implicated
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Probe Set ID Gene Symbol Oct4 Binding Site

1436837 at Mael

1429154 at Slc35f2 Chen,Marson

1457314 at L1td1 Kim,Marson

1430134 a at Yars2 Chen,Marson

1424784 at Gm13139 Kim,Marson

1423465 at Frrs1

1452098 at Chtf18

1423289 a at 1810029B16Rik

1433478 at Parl

1416492 at Ccne1

1434239 at Rrp12

1418435 at Mkrn1 Chen,Marson,Sharov

1436728 s at Rtel1 Marson

1433789 at Snhg3

1416687 at Plod2

1420113 s at 2410022L05Rik Kim

1428315 at Ebna1bp2

1422922 at Recql4

1423064 at Dnmt3a

1433692 at Nat10 Chen,Marson,Sharov

Table 6.15: Genes displaying unique co-dependency to Oct4. Binding evidence column
gives studies reporting binding of Oct4 to target: Chen, Kim, Liu, Marson and Sharov
indicate [Chen et al., 2008], [Kim et al., 2008], [Liu et al., 2008], [Marson et al., 2008]
and [Sharov et al., 2008], respectively.
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Probe Set ID Gene Symbol Sox2 Binding Site

1426645 at Hsp90aa1 Chen,Marson

1417845 at Cldn6 Kim

1433651 at Wtip

1451320 at Arhgap8 Kim,Marson

1422418 s at Supt4h1

1417656 at Mybl2 Chen,Kim,Marson

1418488 s at Ripk4

1456615 a at Bptf

1416364 at Hsp90ab1 Kim,Marson

1438957 x at Cds2

1418761 at Igf2bp1

1454159 a at Igfbp2 Kim,Marson

1429291 at Psmd1

1434328 at Rpl15

1435448 at Bcl2l11 Marson

1416967 at Sox2 Chen,Kim,Liu,Marson

1432393 a at Thg1l

1426953 at Hmgxb4

1418351 a at Dnmt3b Marson

1460325 at Pum1

Table 6.16: Genes displaying unique co-dependency to Sox2. Binding evidence column
gives studies reporting binding of Sox2 to target: Chen, Kim, Liu and Marson indi-
cate [Chen et al., 2008], [Kim et al., 2008], [Liu et al., 2008] and [Marson et al., 2008],
respectively.
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Probe Set ID Gene Symbol Nanog Binding Site

1423325 at Pnn

1422967 a at Tfrc

1422994 at Pikfyve Sharov

1422135 at Zfp146 Kim,Sharov

1423234 at Psmd5

1421462 a at Lepre1

1426370 at Far1

1433897 at AI597468

1452220 at Dock1 Kim,Marson

1420475 at Mtpn

1431096 at Ints8

1448399 at Tax1bp1 Sharov

1453949 s at Lypla1 Marson,Sharov

1416423 x at Ssb

1424569 at Ddx46

1449504 at Kpna1

1430575 a at Tpp2

1440894 at Tmtc3 Sharov

1420251 at NA

1421940 at Stag1 Kim,Marson,Sharov

Table 6.17: Genes displaying unique co-dependency to Nanog. Binding evidence
column gives studies reporting binding of Nanog to target: Chen, Kim, Marson
and Sharov indicate [Chen et al., 2008], [Kim et al., 2008], [Marson et al., 2008] and
[Sharov et al., 2008], respectively.
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in the pluripotency network through association with particular combinations of Oct4,

Sox2 and Nanog is given in Table 6.18.

Probe Set ID Gene Symbol TF Dependency

1429154 at Slc35f2 Oct4

1457314 at L1td1 Oct4

1430134 a at Yars2 Oct4

1424784 at Gm13139 Oct4

1418435 at Mkrn1 Oct4

1436728 s at Rtel1 Oct4

1420113 s at 2410022L05Rik Oct4

1433692 at Nat10 Oct4

1449266 at Mecp2 Oct4

1419706 a at Akap12 Oct4&Sox2

1426645 at Hsp90aa1 Sox2

1417845 at Cldn6 Sox2

1451320 at Arhgap8 Sox2

1417656 at Mybl2 Sox2

1416364 at Hsp90ab1 Sox2

1454159 a at Igfbp2 Sox2

1435448 at Bcl2l11 Sox2

1416967 at Sox2 Sox2

1418351 a at Dnmt3b Sox2

1422994 at Pikfyve Nanog

1422135 at Zfp146 Nanog

1452220 at Dock1 Nanog

1448399 at Tax1bp1 Nanog

1453949 s at Lypla1 Nanog

1440894 at Tmtc3 Nanog

1421940 at Stag1 Nanog

Table 6.18: Genes with TF binding and unique expression co-dependency to combina-
tions of Oct4, Sox2 and Nanog.

As a final interesting observation, it was noted that in the cluster analysis of Oct4

biclusters, one bicluster had a significantly different targets to the others. This biclus-

ter involved only iPS cell samples, as opposed to ES cells. The genes that appear to be

Oct4 dependent in iPS cells but not ES cells might be specifically involved in the re-

programming process and yet not directly involved in the maintenance of pluripotency.

A list of such genes is provided in Table 6.19. It is predicted that those genes identified

in this list that additionally have Oct4 binding sites may have an Oct4-dependent role

in the acquisition of pluripotency arising from the reprogramming process.
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Probe Set ID Gene Symbol Oct4 Binding Site

1426936 at Gm6958

1429932 at 4930566F21Rik

1430368 s at 1700019D03Rik Chen,Kim,Marson,Sharov

1431865 a at Zfp819 Kim,Liu,Marson,Sharov

1434917 at Cobl Chen,Kim,Marson,Sharov

1436419 a at 1700097N02Rik

1436799 at Enox1

1438861 at Bnc2

1444051 at 1700019D03Rik

1452004 at Calca Marson,Sharov

1452063 at Zbtb8a Marson,Sharov

Table 6.19: Genes displaying expression co-dependency with Oct4 uniquely to iPS
samples. Binding evidence column gives studies reporting binding of Oct4 to target:
Chen, Kim, Liu, Marson and Sharov indicate [Chen et al., 2008], [Kim et al., 2008],
[Liu et al., 2008], [Marson et al., 2008] and [Sharov et al., 2008], respectively.
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6.3.2 Discussion

Through application of meta-analysis approaches developed through the course of this

work, using large collections of gene expression data together with collections of genome

binding data, it has been possible to identify genes that appear to be targets of Oct4,

Sox2 and Nanog with expression dependency on different combinations of these key

regulators of pluripotency. Such genes are likely to be involved in the acquisition of

phenotypes (which may involve a loss of pluripotency) associated with loss of expression

of each of these key TFs that are typically expressed at high levels in all pluripotent

cells. This analysis also reveals targets whose expression in cells that have gained

pluripotency through reprogramming would be expected to be critically dependent on

expression of each of Oct4 and Sox2. Thus, this analysis has provided insight into

possible transcriptional mechanisms through which pluripotency may be maintained,

and provides a basis for guiding the design of functional studies to investigate the roles

of these key TFs and their predicted targets in the acquisition, maintenance and loss

of pluripotency, which may have implications regarding the utility of pluripotent cells

as tools underpinning the study of developmental biology and disease, drug screening

or for regenerative medical therapies.

6.4 Investigation of Myc-Activated Gene Expression Pro-

gram

cMyc is an important transcription factor involved in the development of a number

of cancers [Chang et al., 2008, Lutz et al., 2002]. It was one of the 4 factors shown to

induce pluripotency in mouse fibroblasts [Takahashi and Yamanaka, 2006] and subse-

quent studies have demonstrated its relevance to the transcriptional control of pluripo-

tency through evidence suggesting it greatly enhanced rates of reprogramming of so-

matic cells to an induced-pluripotent state [Nakagawa et al., 2008]. Despite being a

transcription factor of considerable interest, much of the mechanisms responsible for

these important biological roles of cMyc are as yet unknown. For example, it has

been proposed that the role of cMyc in reprogramming involves facilitating binding

of the other reprogramming factors (Oct4, Sox2 and Klf4) through modification of the

epigenome of the somatic origin cells prior to induction of pluripotency [Sridharan et al., 2009],

consistent with observation that Myc proteins (and cMyc in particular) have global

effects increasing the accessibility of chromatin [Knoepfler et al., 2006]. Under such

assumptions of a mechanism that has the capacity to reverse existing epigenetic modi-

fications, it would be expected that at least some of the regulatory targets of such a TF

would show similar expression dependencies on the TF regardless of biological context.

With a large compendium of gene expression data, the novel meta-analysis ap-

proaches developed through this work offer the opportunity to investigate the likely
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validity of such claims regarding the mechanisms of cMyc transcriptional regulation, in

terms of differences in gene expression co-dependencies of cMyc’s DNA-binding targets

as observed across different biological contexts. An investigation of gene expression

dependencies of the DNA-binding targets of cMyc using the HBLCA meta-analysis

approach is described in the following section, with expression observations shown to

provide some insight into the mechanisms of the transcriptional regulatory activity of

cMyc.

Recently, considerable interest has been shown in the association of gene expression

signatures between ES cells and cancers, and the influence of cMyc on these signatures.

Examples of this work are provided in [Ben-Porath et al., 2008] and [Wong et al., 2008],

which both use the ‘module map’ approach based on gene set expression analysis de-

scribed in [Segal et al., 2004]. A very recently published study investigates this re-

lationship between cMyc and gene expression in ES cells and cancer in further detail

[Kim et al., 2010a]. As the relationship between cMyc and pluripotency is of particular

interest, an investigation into the expression patterns of predicted cMyc targets and

ES cell expressed genes in cMyc-expressing and ES cell samples was carried out using

the HBLCA technique.

6.4.1 Integrated Analysis to Identify Myc Targets

Using an implementation of HBLCA with cMyc as a guide gene, a set of biclusters

involving similar samples with expression contrasts of cMyc were obtained. This set

of biclusters was filtered on the basis of visual inspection of the discovered expression

patterns displayed by the bicluster visualisation tool described in Section (5.1.7). The

resulting set of reliable biclusters was grouped according to similarity of resulting gene-

associations of each bicluster, with the gap statistic being used to identify the optimal

number of clusters of biclusters, in a similar manner to the clustering performed on the

list of Oct4 differential expression targets described in Section (6.1.1). A bayesian inte-

gration approach was used to identify genes with consistent expression co-dependency

patterns observed across multiple biclusters from the whole set of all reliable biclusters,

in addition to genes with such patterns consistent across each subset of the biclus-

ters identified through the similarity-based clustering. Each of these processes was

performed as described in Section (5.1).

A set of genes with proximal cMyc-binding was obtained from publicly available

high-throughput chIP datsets (mapping of bound sequences to genes was performed by

S. Morfopoulou). This set of putative binding targets of cMyc was used to obtain a set

of high-confidence cMyc targets through integration with the results of gene expression

meta-analysis, as described in Section (5.3.3).
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Distribution of cMyc Targets’ Expression

As a preliminary step towards analysis of cMyc target expression patterns, samples in

the large collection of gene expression data described in Section (3.3) were assigned sam-

ple type classifications on the basis of thorough investigation of the records associated

with the individual datasets from which the raw data had been obtained. Using these

sample type classifications as the basis for a colour-coded annotation bar, heatmaps

could be produced to show the expression level of any gene represented on the dataset’s

microarray platform across all the samples in the dataset, with quick inference of the

biological context represented by any particular measurement. Just such a heatmap,

showing the expression level of the bound cMyc targets with most highly correlated

expression profiles to cMyc, is presented in Fig. 6.17.

The expression profiles shown in Fig. 6.17 show that some of the genes bound by

cMyc are also well correlated with its expression across this large dataset. While corre-

lation across large datasets has been shown to be an effective means of identifying genes

with related biological roles [Day et al., 2009], such correlations may arise from genes

being expressed in the same biological contexts, analogous to the sample-specific expres-

sion effects discussed in Section (3.6.3). As this class of expression relationship does not

provide any direct information regarding expected dependency of gene expression (and

thus transcriptional relationships) with the gene of interest, the investigation of cMyc

target distribution presented here focuses on targets with expression co-dependencies

in different biological contexts, even if the overall correlation of these targets’ profiles

to that of cMyc is not particularly pronounced. This effect is demonstrated in Fig.

6.18, showing expression profiles for cMyc binding targets with clear cMyc expression

co-dependency in at least some biological contexts, that are relatively poorly correlated

with cMyc in terms of the global expression profile across the dataset.

While the expression heatmaps shown in Figs. 6.17 & 6.18 illustrate effectively the

biological contexts in which particular cMyc binding targets are expressed, it is difficult

to explore expression dependencies in such a plot, owing to the fact that that would

require detailed examination of the expression trends within subsets of the dataset

that may appear too small for effective scrutiny. However, this information is the

basis of the bicluster evaluation employed in HBLCA. Therefore, to investigate the

distribution of cMyc target dependencies on cMyc, and therefore likely transcriptional

relationships, across different biological contexts, more detailed analysis of the output

from the biclustering meta-analysis was performed.

Distribution of Targets’ cMyc Co-Dependency Across Biological Contexts

As a means of providing some insight into the specificity of high-confidence observa-

tions of expression co-dependency with cMyc, across a range of biological contexts, a
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specificity measure was defined for each gene that achieves at least a specified rank

in any bicluster as the proportion of the other biclusters in which that gene is again

observed to achieve at least that rank. This specificity level was evaluated for a range

of maximum-rank thresholds, and the distribution of the proportions of biclusters con-

taining each gene is shown in Fig. 6.19 (first with all significant bicluster genes and

then with only those significant bicluster genes for which there exists DNA-binding

evidence from cMyc) for the significance thresholds corresponding to particular rank

thresholds. Significance levels were evaluated from rankings by the discrete cumulative

distribution of the ranks (i.e. probability that a randomly chosen gene would have

better rank) and scaled to account for multiple testing by multiplying the resulting

p-value by the number of lists considered minus one.

An immediate observation from Fig. 6.19 is that in general, it appears rare for genes

with clear cMyc expression co-dependency in one bicluster to show a clear cMyc ex-

pression co-dependency in many other biclusters, with genes even at low ranks rarely

appearing in more than 3% of the discovered biclusters. This may not be particularly

surprising, on account of the fact that cMyc is expressed in a wide range of biological

contexts for which the epigenetic landscapes and the sets of expressed TFs may differ

considerably, and so this observation would not necessarily be inconsistent with the hy-

pothesis that cMyc acts to increase chromatin availability, as the resulting dependently

expressed genes would also depend on which TFs are expressed in those contexts. These

findings suggest that there is not a significant cohort of ubiquitously cMyc-dependent

genes, although it does not rule out the chance that there might exist cMyc binding

targets which are transcriptionally active wherever cMyc is expressed but are not de-

pendent on cMyc for expression. Owing to the fact that there would be no evidence to

support any proposed role of cMyc in regulation of transcription of such targets, with

the datasets and analysis tools currently available it would be more interesting to focus

on those genes which show a clear expression co-dependency with cMyc (which can be

identified through HBLCA).

In order to explore further the observed expression-association distribution patterns,

a large collection of randomly sampled pairs of biclusters was created and the rank

in each bicluster genelist of a randomly chosen gene present in at least one of the

lists was recorded. This set of ranking-pairs was used to establish the effectiveness

of a gene’s rank in one bicluster being used to predict the same gene’s rank in any

other (randomly chosen) bicluster. Predictive models such as this were used to assess

the impact on bicluster distribution of different effects such as the difference between

biological contexts represented by the two randomly chosen biclusters, whether or not

there is evidence for cMyc binding the gene, or the level of expression of the gene in

ES cells. The first approach taken for this predictive analysis was to classify the genes’

ranks in each of the two biclusters into bins, for each pair observation, and to plot the
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(a) Proportion of biclusters including significant cMyc ex-
pression co-dependency of genes significant in any biclus-
ter

(b) Proportion of biclusters including significant cMyc ex-
pression co-dependency of genes with cMyc DNA-binding
and significant expression co-dependency in any bicluster

Figure 6.19: Bicluster-specificity of genes with significant cMyc expression co-
dependency observed. Distribution of numbers of genes which appear significantly
highly ranked (to a threshold determined by ‘sigLevel’) in any bicluster, separated into
different ‘universality’ categories with the proportion of biclusters in which those genes
are significantly ranked given by the number at the top of the corresponding panel.
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distribution of the numbers of genes from the random sample with rank classification for

the first bicluster across the different rank classifications for the second bicluster. Fig.

6.20 shows these results, which reinforce the initial observation made in the previous

paragraph that genes with a clear cMyc expression co-dependency in one bicluster (or

biological context) are unlikely to show a similar co-dependency in any other bicluster

(or biological context).

Figure 6.20: Binned distributions of cMyc-associated genes from pairs of biclusters,
rank in first bicluster indicated by the colour of histogram, rank in second bicluster
indicated by the panel in the plot. A lower bin number represents a better rank, with
the exception of bin number ‘0’ which indicates that the gene wasn’t in the second
bicluster’s corresponding genelist.

Following the removal of the bicluster rank pairs for which the gene was absent from

one of the biclusters, a correlation between the ranks of each bicluster did emerge.

Fig. 6.21 shows the distribution of ranks in the second bicluster of a pair for bins into

which a gene is classified on the basis of rank in the first bicluster of the corresponding

bicluster pair. This shows a general trend for genes with a better rank in the first

bicluster to have a better rank in the second bicluster. It might therefore be inferred

that there is a class of targets for which a cMyc expression dependency is consistent

across different biological contexts, but in order to rule out the possibility that the

267



observed correspondence between bicluster genelist ranks of this class of cMyc targets

might solely be caused by measurements from pairs of near-identical biclusters, and to

relate the observed effect to some biological meaning regarding the distribution of cMyc

transcriptional regulatory activity, the bicluster-pair rank relationships would have to

be stratified according to the similarity of the two biclusters in the pair. When this is

performed, as shown in Fig 6.22, the trend becomes less obvious as the dissimilarity

between biclusters increases, indicated in the plot by less clear diagonal progression of

higher histogram bars from top-left to bottom-right of each column of panels as the

column is further to the right of the figure (representing greater dissimilarity between

the two biclusters of each pair). It is difficult to draw any concrete conclusions from

this plot, particularly given the low numbers of genes involved that were found in

the genelists for both biclusters of a randomly-sampled pair, but the output from this

analysis does seem to support the earlier observation that cMyc does not appear to

have a substantial cohort of target genes for which it will always activate transcription.

Figure 6.21: Distributions of ranks in the genelist from a randomly chosen bicluster for
genes with given classes of rank in the genelist from another randomly chosen bicluster.
Each coloured area under a curve represents the distribution of ranks in the secondly
randomly chosen bicluster for a class of gene from the first randomly chosen bicluster,
where lower class numbers represent better ranks of the gene in question as appearing
in the first randomly chosen bicluster’s genelist.
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In an attempt to identify any cMyc target genes with evidence for cMyc expression

dependency across a broad range of biological contexts and to evaluate further the

extent to which such expression patterns can be found across existing data, a novel vi-

sualisation approach was adopted. Following the identification of a set of reliable cMyc

biclusters (as described at the beginning of this section), this set of biclusters was used

as the basis for analysis of the range and strength of cMyc co-dependency of any set of

genes of interest. Visualisation of co-dependency patterns was performed by creating

a heatmap of cMyc co-dependency likelihood estimates from each bicluster, for each of

the genes in the genelist. Interpretation of the biological significance of the displayed

patterns was enhanced through association of a biological context label with each of

the biclusters and inclusion of a colourbar above the heatmap in a similar manner to

that described for the expression level heatmaps shown earlier in this section. Fig. 6.23

provides an example of such a visualisation, here showing the cMyc co-dependency es-

timates for cMyc targets identified using HBLCA. To provide a contrast, an equivalent

visualisation for genes that have the most strongly correlated expression profiles to that

of cMyc is given in Fig. 6.24. These plots show that the HBLCA approach helped to

identify a set of genes with cMyc expression co-dependency across a broad range of bio-

logical contexts, that would not be identified through simple correlation approaches (as

demonstrated with expression profile heatmaps shown in Figs. 6.17 & 6.18). To obtain

sets of high-confidence targets, the results of gene expression meta-analysis approaches

were integrated with results from DNA-binding studies. Distributions of cMyc expres-

sion co-dependency scores for these high-confidence targets based on HBLCA and on

correlation meta-analysis are shown in Figs. 6.25 & 6.26, respectively. Bicluster visu-

alisations (produced by the tool described in Section (5.1.7)) are given in Fig. 6.27 for

the set of relatively broadly cMyc co-dependently expressed genes identified through

application of HBLCA, confirming the presence of expression patterns suggested by

the co-dependency heatmaps. It may be worth noting that these broad targets do not

display notable cMyc-dependent expression in a number of the biclusters, yet these

biclusters do show such dependency for other genes as illustrated in Fig. 6.28. This

further supports the claim that those cMyc targets with expression most dependent on

expression levels of cMyc differ across biological contexts.

A further observation regarding the distribution of cMyc expression co-dependency

of targets of cMyc DNA-binding was revealed through the ‘subset-integration’ of bi-

clusters performed as part of the HBLCA approach. Three subsets of biclusters were

identified, and the consistency of the top-ranking targets according to cMyc expression

co-dependency scores is illustrated in Fig. 6.29. This further demonstrates the ability

of the HBLCA approach to discover relationships in the expression levels of genes and

to associate these with relevant biological contexts.
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Figure 6.27: Bicluster plots of cMyc targets with relatively broad range of cMyc ex-
pression co-dependency, as shown in Fig. 6.25. cMyc expression level is shown with
red dotted line, for additional information regarding these plots see Section (5.1.7).
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Figure 6.28: Bicluster plots of cMyc targets with most cMyc-dependent expression for
each bicluster. Each panel corresponds to a bicluster, and each involves a different set
of genes. cMyc expression level is shown with red dotted line, for additional information
regarding these plots see Section (5.1.7).
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(a) Genes consistently co-dependent across first subset of cMyc
biclusters

(b) Genes consistently co-dependent across second subset of cMyc
biclusters

(c) Genes consistently co-dependent across third subset of cMyc
biclusters

Figure 6.29: Heatmaps showing context-dependent cMyc co-dependency of expression
of cMyc targets identified as consistently co-dependent across subsets of cMyc biclus-
ters. 277



6.4.2 A Myc-Dependent ‘Stem Cell-Like’ Expression Program

It has been proposed that cMyc promotes an ‘ES cell-like transcription pattern’ in

[Sridharan et al., 2009], and a more concretely defined ‘core ES cell program’ was pro-

posed in [Wong et al., 2008] to be induced by cMyc expression in cancer cells. It was

considered pertinent to apply the novel analysis approaches applied in Section (6.4.1)

to investigate the relationship between ES cell expression and cMyc co-dependency,

for those genes predicted to be regulated by cMyc as a result of DNA-binding and

gene expression co-dependency evidence, and for the proposed cMyc-induced ES cell

associated transcriptional signature.

Firstly, investigation of the link between cMyc expression and ES cell associated

expression of genes is explored using localised co-dependency analysis. A set of genes is

identified as being co-dependently expressed with cMyc in a range of biological contexts,

show DNA-binding by cMyc and show higher expression in ES cells than most other

biological contexts. Secondly, cMyc expression co-dependency of the genes from the

cMyc-induced ‘core ES cell module’ proposed in [Wong et al., 2008] is analysed. This

proposed module is separated into apparently cMyc-responsive and cMyc-unresponsive

subsets, and the ES cell associated expression of these subsets is shown.

Expression of Myc Targets in Embryonic Stem Cells

For a trivial examination of the ES cell expression patterns of cMyc targets, the distri-

butions of both low and high expression state values were calculated across ES samples

and non-ES cMyc-expressing samples, for those high confidence cMyc targets identified

as described above. Fig. 6.30 shows a comparison of these distributions, from which

it is clear that genes with proximal cMyc binding sites are generally expressed at a

higher level in ES cells than other cMyc-expressing samples. This observed effect may

be an artefact due to the fact that the cMyc binding data come from chIP experiments

performed in ES cells, and so would be guaranteed to be in accessible chromatin (and

thus available to be expressed) in ES cells but not necessarily any other contexts. This

observation is not inconsistent with the view that cMyc might promote an ES cell-like

transcriptional program, but owing to this potential bias and the incompleteness of this

result in explaining ES cell related cMyc-induced expression, further investigation of

this hypothesis was warranted.

Global Expression of Myc Stem Cell Targets

If cMyc activated an ES cell-like transcription pattern as suggested in [Sridharan et al., 2009],

it would be expected that genes commonly associated with the ES cell (pluripotent)

phenotype would have a tendency to be expressed in non-ES cell samples where cMyc

was expressed. For a given set of genes that characterise the proposed ES cell-like

transcription pattern, it is relatively straightforward to investigate the presence of the
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Figure 6.30: Distributions of expression-state confidences for genes with cMyc DNA-
binding evidence from chIP studies, shown across ES samples only and across all other
cMyc-expressing samples.
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expected expression patterns by examining an annotated heatmap (with a row showing

cMyc expression level) such as those shown in Figs. 6.17 & 6.18. However, defining a

priori a list of genes that characterise an ES cell-like expression program is not obvi-

ous: it may be only a certain component of the set of genes commonly associated with

pluripotency that is the target of cMyc-induced expression. Therefore, a number of

different sets of genes with different ES cell and cMyc related expression characteristics

are explored in this analysis.

Firstly, a simple definition of ES cell associated genes involves those which show ES

cell specific expression. The theory that such genes are likely to be associated with the

pluripotent phenotype has been demonstrated through characterisation of the ‘ECATs’

(Embryonic stem Cell Associated Transcripts) [Mitsui et al., 2003]. Thus, a panel of

genes was selected through identifying probesets that show the greatest difference be-

tween the mean expression level across samples from the large gene expression dataset

described in Section (3.3) annotated as ES cells and the mean expression level across all

other samples in the dataset. The expression profiles for this panel of genes are shown

in Fig. 6.31. The heatmap in Fig. 6.31 confirms that the genes with expression most

specifically limited to ES cells, and therefore likely to be associated to the pluripotent

phenotype, do not seem to show any cMyc-dependent expression outside ES cells.

For cMyc to induce the expression of a set of genes, it may be hypothesised that it

would be more likely for those genes to have evidence of proximal cMyc DNA-binding.

Therefore, an alternative panel of cMyc-bound ES cell associated genes was defined

as those with probesets showing greatest ES cell specific expression and requiring a

cMyc binding site association in the chIP list. It may be noted that this panel of

genes includes the key pluripotency gene Sox2. The expression patterns of these genes

are shown in Fig. 6.32, where it can again be observed that the majority of these

genes do not show any cMyc-associated expression. However, a number of these genes

(Dis3, Igf2bp1 & Igf2bp3) are clearly expressed outside ES cells only when cMyc is

expressed. It is not obvious how these genes would be characterised in terms of the

continuous spectrum representing the trade-off between ES cell specific expression and

cMyc-expressing sample expression. At the opposite end of this spectrum are the

genes with consistently high expression in ES cells, cMyc binding evidence and high

correlation to cMyc expression. Expression profiles for a panel comprising genes best

meeting these criteria is shown in Fig. 6.33.

The examples shown in Figs. 6.32 & 6.33 highlight a critical issue regarding the

definition and characterisation of a cMyc-induced ES cell transcriptional program from

gene expression data. As cMyc is expressed in ES cells at consistently high levels, there

is nothing to distinguish genes with expression that is consistently coincident with

cMyc from genes whose expression in ES cells is critical to the pluripotent phenotype
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of ES cells and whose expression outside ES cells may be induced by cMyc. However,

the HBLCA approach provides some opportunity for investigation of cMyc-dependent

expression of pluripotency-associated genes, especially when used in conjunction with

the DNA-binding data.

Given that genes typically associated with pluripotency (ECATs) did not appear

to show cMyc-dependent expression, even those with cMyc binding sites, an alterna-

tive set of ES cell specific cMyc target candidates was identified through simultaneous

optimisation of evidence for broad cMyc expression co-dependency, consistently high

expression relatively specific to ES cells, and evidence for proximal cMyc binding sites.

It is hypothesised that this list would constitute cMyc regulatory targets that are as-

sociated with the pluripotent phenotype.

As utilised earlier in this section, the biclustering meta-analysis approach described

in Section (5.1) provides a means for exploration of the range of biological contexts

in which a set of genes display expression co-dependency with a particular gene of

interest. Firstly, application of the novel visualisation technique demonstrated in Figs.

6.23 & 6.24 was used to confirm that the most ES-specifically expressed cMyc-bound

genes do not display any significant cMyc expression co-dependency outside ES cells,

as shown in Fig. 6.34. This approach was also used to visualise cMyc dependency

of the genes in the panel of cMyc regulatory targets associated with the pluripotent

phenotype (described in the previous paragraph), with the heatmap shown in Fig.

6.35. This figure illustrates that the majority of these ES cell associated cMyc target

candidates do show cMyc co-dependency in a range of biological contexts, most notably

in ES cells, blood (macrophages and B cells), liver and placenta. To demonstrate the

ES cell association of these genes, their expression level distributions across ES cells

and all other samples in the collection of gene expression data used for meta-analysis

are shown in Figs. 6.36 (for GESTr transformed expression state values) & 6.37 (for

RMA-normalized expression values). The expression of these candidate genes in ES

cells is shown to be consistently towards the top of their range of expression levels

across a large collection of data, and it is relatively rare for these genes to be expressed

at such high levels outside ES cells. However, from Fig. 6.35 it can be seen that these

genes show cMyc dependency in a range of biological contexts, therefore in addition to

the fact that there is evidence to suggest that there exist cMyc binding sites proximal

to each of these genes, these may well constitute the best available set of cMyc target

genes associated with pluripotency.

284



F
ig

u
re

6.
34

:
H

ea
tm

a
p

o
f

cM
y
c

co
-d

ep
en

d
en

cy
p

ro
b

ab
il

it
y

es
ti

m
at

es
fo

r
cM

y
c-

b
ou

n
d

ge
n

es
m

os
t

sp
ec

ifi
ca

ll
y

ex
p

re
ss

ed
in

E
S

ce
ll

s.
C

o
d

ep
en

-
d

en
cy

sc
o
re

s
a
re

sh
ow

n
ac

ro
ss

a
se

t
o
f

re
li

ab
le

b
ic

lu
st

er
s,

w
h

er
e

ea
ch

b
ic

lu
st

er
d

is
p

la
y
s

cl
ea

r
cM

y
c

ex
p

re
ss

io
n

co
n
tr

as
t

w
it

h
in

a
gi

ve
n

b
io

lo
gi

ca
l

co
n
te

x
t.

285



F
ig

u
re

6.
35

:
H

ea
tm

a
p

of
cM

y
c

co
-d

ep
en

d
en

cy
p
ro

b
ab

il
it

y
es

ti
m

at
es

fo
r

ge
n

es
w

it
h

D
N

A
-b

in
d

in
g

b
y

cM
y
c,

b
ro

ad
cM

y
c

co
-d

ep
en

d
en

cy
a
n

d
h

ig
h

ex
p

re
ss

io
n

re
la

ti
v
el

y
sp

ec
ifi

c
to

E
S

ce
ll

s.
C

o
d

ep
en

d
en

cy
sc

or
es

ar
e

sh
ow

n
ac

ro
ss

a
se

t
o
f

re
li

ab
le

b
ic

lu
st

er
s,

w
h

er
e

ea
ch

b
ic

lu
st

er
d

is
p

la
y
s

cl
ea

r
cM

y
c

ex
p

re
ss

io
n

co
n
tr

as
t

w
it

h
in

a
g
iv

en
b

io
lo

gi
ca

l
co

n
te

x
t.

286



F
ig

u
re

6.
36

:
D

is
tr

ib
u
ti

on
s

o
f

G
E

S
T

r-
tr

a
n

sf
o
rm

ed
ex

p
re

ss
io

n
st

at
e

va
lu

es
fo

r
p

lu
ri

p
o
te

n
cy

-a
ss

o
ci

at
ed

cM
y
c

ta
rg

et
ca

n
d

id
a
te

s,
sh

ow
n

in
th

e
to

p
p

a
n

el
a
cr

o
ss

E
S

ce
ll

s
on

ly
a
n

d
in

th
e

b
ot

to
m

p
an

el
ac

ro
ss

al
l

ot
h

er
sa

m
p

le
s

in
th

e
d

at
a
se

t.

287



F
ig

u
re

6.
37

:
D

is
tr

ib
u

ti
o
n

s
of

R
M

A
-n

or
m

al
iz

ed
ex

p
re

ss
io

n
m

ea
su

re
m

en
ts

fo
r

p
lu

ri
p

ot
en

cy
-a

ss
o
ci

at
ed

cM
y
c

ta
rg

et
ca

n
d

id
a
te

s,
sh

ow
n

in
th

e
to

p
p

a
n

el
a
cr

o
ss

E
S

ce
ll

s
on

ly
a
n

d
in

th
e

b
ot

to
m

p
an

el
ac

ro
ss

al
l

ot
h

er
sa

m
p

le
s

in
th

e
d

at
a
se

t.

288



cMyc Co-dependency of ‘ES Cell-Like’ Transcriptional Module

It was proposed in [Wong et al., 2008] that cMyc was responsible for activating an ES

cell like expression program, defined by a ‘module map.’ An ‘ES cell module’ was

created in [Wong et al., 2008] based on each of a mouse and a human gene expression

data compendium, with each set consisting of a set of genes belonging to gene sets

consistently expressed at a higher level in ES cell studies compared to differentiated

cells, as determined by gene set expression analysis described in [Segal et al., 2004]. A

‘core ES cell module’ was defined in [Wong et al., 2008] as the intersection of the mouse

and human modules, that is the genes belonging to both lists, although it was noted

that this core ES cell module did not include the critical pluripotency genes Oct4 and

Nanog. The ES cell module was reported to be enriched in cancer datasets with liver,

breast, prostate and gastric cancers generally showing higher expression of a number

of the module’s genes when compared with their respective normal counterpart tissues.

However, it is apparent from the data shown in [Wong et al., 2008] that none of the

proposed set of ES cell like genes appear to be consistently differentially expressed

across the majority of the cancers (compared to their normal counterpart tissues),

nor was the general over-expression of the module consistently observed within any

one cancer type. Interestingly, no analysis was performed on the gene level across

different datasets to see whether or not it was different components of the module that

were responsible for the enrichment signature in different datasets. Interestingly, it

was shown in [Wong et al., 2008] that expression of the majority of the ES cell like

module genes increased in mouse epidermis with forced expression of cMyc and that

expression of the majority of the ES cell like module genes were expressed at a higher

level in explanted human keratinocytes expressing cMyc (in addition to Ras and IκB)

than E2F3 or GFP. To investigate further the results of the [Wong et al., 2008] study,

localised co-dependency meta-analysis was proposed to investigate the association of

cMyc expression with expression of each of the genes in the ES cell like module, across

a wide range of biological contexts.

Applying the analysis approach used in the previous part of Section (6.4.2), cMyc

co-dependency was evaluated for each of the genes in the ES cell like module across

a range of biological contexts. The co-dependency heatmap corresponding to cMyc

co-dependency scores for the ES cell like module genes is provided in Fig. 6.38. It can

be observed from the cMyc co-dependency estimates given in Fig. 6.38 that some of

the genes in the core ES cell like module show cMyc co-dependent expression in some

biological contexts, but a large proportion of the genes in the module show almost no

cMyc co-dependency in any of the biological contexts analysed. It should also be noted

that there seems to be relatively little consistent cMyc co-dependency observed for any

genes across the range of biological contexts shown.

289



F
ig

u
re

6
.3

8
:

H
ea

tm
ap

o
f

cM
y
c

co
-d

ep
en

d
en

cy
p

ro
b

ab
il

it
y

es
ti

m
at

es
fo

r
ge

n
es

in
th

e
‘c

or
e

E
S

ce
ll

-l
ik

e
m

o
d

u
le

.’
C

o
d

ep
en

d
en

cy
sc

or
es

ar
e

sh
ow

n
a
cr

os
s

a
se

t
of

re
li

a
b

le
b

ic
lu

st
er

s,
w

h
er

e
ea

ch
b

ic
lu

st
er

d
is

p
la

y
s

cl
ea

r
cM

y
c

ex
p

re
ss

io
n

co
n
tr

as
t

w
it

h
in

a
gi

ve
n

b
io

lo
g
ic

al
co

n
te

x
t.

290



Based on the cMyc co-dependency analysis, the core ES cell like module was di-

vided into subsets of cMyc-responsive and cMyc-unresponsive genes. The subset of

cMyc-responsive genes from the module were ranked according to the degree to which

consistent co-dependency with cMyc was observed across a range of biological contexts.

Co-dependency heatmaps are presented in Figs. 6.39 & 6.40 for the top ranking genes

from the cMyc-responsive subset of the core ES cell like module and for the whole

cMyc-unresponsive subset, respectively. These plots demonstrate that it was possible

to extract a component of the proposed core ES cell module that appeared to be more

reliably co-dependently expressed with cMyc than the module as a whole, however this

analysis reveals that there were no genes from the module (other than cMyc itself)

with evidence for co-dependent expression across a particularly broad range of biolog-

ical contexts. It should be noted that, in a recent study, expression of the core ES cell

module proposed in [Wong et al., 2008] was shown in a collection of mouse leukaemia

models to be consistently related to neither the expression of ES cell associated genes

nor the expression of a set of of cMyc-interacting genes [Kim et al., 2010a].

Following on from the co-dependency analysis, Pearson correlation with expression

levels of cMyc across a large collection of gene expression data was calculated for each

gene from the two defined subsets of the core ES cell like module. Shown in Fig.

6.41, this correlation analysis confirmed that the genes with more cMyc co-dependent

expression also showed generally better-correlated expression with that of cMyc. In-

terestingly, the genes in the cMyc-responsive subset of the module seem in general to

be more specifically expressed at a high level in ES cells than the cMyc-unresponsive

subset, as shown in Fig. 6.42. As the sample groups used for this comparison have

very similar average levels of cMyc expression, it is highly unlikely that the observed

difference in specificities between the cMyc-responsive and cMyc-unresponsive subsets

is due only to cMyc-induced expression. So, not only has the core ES cell like mod-

ule proposed in [Wong et al., 2008] as being cMyc induced been shown to include only

a minority of genes with evidence for cMyc co-dependent expression across a large,

diverse collection of gene expression data, but it has also been shown that this mi-

nority of genes is generally more specifically expressed in ES cells than the rest of the

genes in the module. Additionally, there is statistically significant (hypergeometric test

p = 1.07 ∗ 10−7) overlap between the genes from cMyc-responsive subset of the ES cell

like module and genes from the broad cMyc-induced ES cell associated candidate genes

shown in Fig. 6.35, indicating some correspondence between the ES cell associated

cMyc candidate analysis presented earlier in Section (6.4.2) and the narrowing down

of the [Wong et al., 2008] cMyc-induced ES cell like module described here.

6.4.3 Discussion

The results presented in Section (6.4) demonstrate a number of ways in which HBLCA

can be utilised to study the specificity of the expression of a TF’s targets on the ex-
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Figure 6.41: Distribution of cMyc Pearson correlation coefficients across each subset of
the core ES cell like module. Correlation coefficients calculated for each gene in each
subset of the module, comparing expression level of the gene to that of cMyc across all
samples in the meta-analysis gene expression dataset used throughout this chapter.

pression levels of that TF, and to gain insight into possible transcriptional mechanisms

through which a TF may influence observed phenotypes of interest in different bio-

logical contexts. The distribution of cMyc target dependencies was assessed across

biclusters showing clear cMyc expression variation amongst globally transcriptionally

similar sets of samples, ultimately suggesting that targets regulated by cMyc appear to

be largely context-specific and that no global cMyc-dependent targets (that is, genes

that are ubiquitously dependent on cMyc for expression) were identified. The dif-

ference between genes with globally correlated expression profiles across a large and

diverse dataset and genes showing repeatedly associated expression within a restricted

biological context was highlighted in Figs. 6.17 & 6.26, the latter utilising a novel

visualization tool introduced for the evaluation of the distribution of co-dependencies

in expression levels observed between a panel of genes and a gene (or particular com-

bination of genes) of interest. Furthermore, it was demonstrated that the HBLCA

approach was used to identify a set of cMyc targets whose expression was more likely

to be dependent on cMyc within any of the examined biological contexts than those

targets whose expression is most correlated with that of cMyc across a large collection

of gene expression data.

In light of the proposition that cMyc may initiate an ‘ES cell-like transcriptional pro-

gram’ [Sridharan et al., 2009], the novel meta-analysis approach was used in conjunc-

tion with other novel tools that utilise the output of this meta-analysis to investigate

the relationship between expression levels in ES cells and cMyc dependent expression
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Figure 6.42: Distribution of ES cell expression specificity scores shown for each subset
of the core ES cell like module. Specificity scores calculated as difference between mean
GESTr-transformed expression state value of gene across ES cells and mean value across
all cMyc expressing non-ES cell samples, from large collection of gene expression data.
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in other cells/tissues. It was demonstrated that genes with high expression levels most

specifically associated with the pluripotent state (i.e. ‘ECAT’ like genes1) did not seem

to show much expression association with cMyc outside ES cells, even for those genes

bound by cMyc. However, HBLCA was used to identify a set of cMyc targets with

relatively broad cMyc expression dependency and high expression relatively specific

to ES cells. It may be interesting to explore the functional roles of these putative

pluripotency-associated cMyc targets and the phenotypic consequences of their expres-

sion outside ES cells.

Additionally, the ‘core ES cell like module’ presented in [Wong et al., 2008] was fil-

tered according to localised co-dependency analysis into cMyc-responsive and cMyc-

unresponsive subsets. The cMyc-responsive subset was shown to display evidence for

cMyc co-dependent expression in some biological contexts, was shown to be better cor-

related with cMyc expression across a large and diverse collection of gene expression

data. Interestingly, this cMyc-responsive subset of the [Wong et al., 2008] ES cell like

module was shown to be more specifically expressed at a high level in ES cells than the

remainder of the module, and to overlap significantly with the set of ES cell associated

and relatively broadly cMyc co-dependent cMyc targets. While there does not appear

to be a universal cMyc-induced transcriptional signature evident in the large gene ex-

pression data collection analysed, the localised co-dependency meta-analysis approach

performed here, using the tools described in Chapter 5, has been shown to highlight

more reliably induced components from within proposed transcriptional signatures.

1genes with high levels of expression relatively specific to ES cells, although these are not necessarily
the ECATs proposed in [Mitsui et al., 2003]
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6.5 Chapter Summary

A number of investigations into the transcriptional control of pluripotency were per-

formed using the novel analysis tools, summarised in the following paragraphs numbered

1-4. These investigations offer insights into the transcriptional regulation of pluripo-

tency that may be tested experimentally in the future, and further demonstrated ways

in which these tools may be applied to the utilisation of publicly available data for

gaining insight into transcriptional mechanisms involved in the control of biological

processes of interest.

1) By applying functional enrichment analysis to the output of the HBLCA approach

with a list of genes differentially expressed in ES cells upon Oct4 knock-down provided

as input ‘guide’ genes, a number of biological processes were identified as being signif-

icantly affected on a transcriptional level by the knock-down of Oct4. Of particular

significance is the fact that no such significantly affected biological processes were iden-

tified when the same functional enrichment analysis techniques were applied directly

to the list of input ‘guide’ genes. Additionally, the output of the HBLCA tool was

used to identify subsets of related genes within the input list, each of which showed a

characteristic expression pattern in the original Oct4 knock-down dataset and was as-

sociated with specific biological processes. This analysis therefore implicated a number

of sets of genes as each possibly representing a different Oct4-induced transcriptional

component controlling particular biological processes including cell adhesion, which has

not previously been demonstrated to have an Oct4-dependent role in the maintenance

of pluripotency.

2) Using the output of the HBLCA tool applied with a list of reliably Oct4-bound

target genes as inputs, subsets of targets with related gene expression patterns across ES

cells were identified. A list of genes clearly dependent on Oct4 in ES cells was produced,

suggesting that these genes may be key Oct4-dependent pluripotency-associated genes.

Another list of genes was identified with expression levels in ES cells seemingly unrelated

to those of Oct4, but which showed correspondance of expression level with that of

Foxh1. These genes may represent a novel component of Oct4 target genes for which

transcription is redundantly or dominantly co-dependent on another factor.

3) The HBLCA approach was used to investigate combinatorial transcriptional reg-

ulation in ES cells involving the key pluripotency TFs Oct4, Sox2 and Nanog. These

TFs show considerable overlap of DNA-binding target genes, but it was possible to

identify genes with apparent dependencies on particular combinations of these TFs.

These lists may help provide a basis for the decomposition of complex transcriptional

regulatory mechanisms involved in the maintenance and acquisition of pluripotency.
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4) The association of levels of expression of the reprogramming factor and oncogene

cMyc and its DNA-binding targets was investigated across a broad range of biological

contexts using HBLCA and co-dependency heatmaps. It was demonstrated in Section

(6.4.1) that the cMyc DNA-binding targets with most cMyc-dependent expression in

any given biological context are unlikely to show cMyc-dependent expression in any

other biological context. However, HBLCA was used to identify cMyc-bound targets

with apparent cMyc-dependent expression across a broad range of biological contexts. It

was demonstrated that these genes were not typically associated with pluripotency (or

stem cells), in contrast to the hypothesis presented in [Wong et al., 2008] and alluded

to in [Sridharan et al., 2009]. To investigate this hypothesis further, cMyc-dependency

of expression of ES cell specific cMyc-bound targets (and of the genes suggested in

[Wong et al., 2008] as representing a cMyc-induced ‘stem cell-like’ signature) was eval-

uated across a broad range of cMyc-expressing biological contexts, which revealed that

these genes do not appear to represent a universal cMyc-induced ‘stem cell-like’ expres-

sion program.

The previous chapter described a novel framework developed for analysis of tran-

scriptional regulation using large collections of existing gene expression data. This

chapter demonstrates the way in which this framework provided a platform for the

development of a number of tools for the investigation of transcriptional regulatory

mechanisms of TFs (or biological processes) of interest. These tools have been utilised

to offer insights into mechanisms of transcriptional control of pluripotency, which pro-

vide hypotheses for experimental verification and demonstrate the utility of these novel

tools for biological research.
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Chapter 7

Final Discussion
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Following the work presented throughout this thesis a discussion is given in this chapter

summarising the work that has been performed and the results obtained, both in terms

of significance and relevance to the fields of computational biology, transcriptomics

and stem cell research. Following a recap of the motivations for meta-analysis of gene

expression data and for the adaptation of the biclustering paradigm to this task, the

first section below presents conclusions of research carried out to investigate practical

considerations and limitations of the application of biclustering to the study of tran-

scriptional relationships through meta-analysis of large collections of gene expression

data. The second section of this chapter provides a summary of the novel methods for

transcriptional pattern mining through gene expression data meta-analysis that have

been developed through the course of this work. The third section presents the find-

ings of a number of investigations into real biological questions relevant to current state

of the art theory in stem cell research that were carried out using the approaches to

study transcriptional relationships that were developed through the course of this work.

The results of these investigations are discussed in terms of insights provided into the

transcriptional control of pluripotency, in addition to the context of providing demon-

strations of the relevance of successful application of these tools for biological research.

The fourth section of this chapter, preceeding an overall summary to conclude this the-

sis, discusses open questions that remain despite the work carried out and those that

have arisen as a direct consequence of this work. Further work plans are outlined as

recommendations for investigations that might effectively explore the remaining open

questions and provide more detailed insight into the topics discussed in this thesis.

7.1 Study Of Application Of Biclustering To Meta-Analysis

Of Gene Expression Data

At the outset, the primary goals of this research were to find ways of utilising large col-

lections of gene expression data to gain insight into the mechanisms of transcriptional

regulation of mammalian biological processes and apply effective techniques to investi-

gate the transcriptional control of pluripotency. While simple global correlation-based

methods have been shown to be effective tools for prediction of some transcriptional

relationships through the analysis of large gene expression datasets [Day et al., 2009],

it is expected that as the biological domains represented in expression data compendia

diversify, the range of transcriptional relationships remaining possible to identify with

such methods will decrease to a point where it is only possible to infer relationships

between genes that are simultaneously and/or exclusively regulated by particular TFs

regardless of biological context and epigenetic state reflected in that biological context

(the necessary biological conditions to give rise to ubiquitously correlated expression

profiles).
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It has therefore been proposed by a range of source (e.g. [Cheng and Church, 2000,

Tanay et al., 2002, Owen et al., 2003, Prelic et al., 2006]) that as the range of biologi-

cal contexts and conditions represented in whole-genome expression datasets increases

(as is expected to be the case when more and more data is accumulated) it becomes

increasingly more appropriate to apply data mining techniques that attempt to identify

localised patterns in gene expression datasets, in which certain patterns in expression

levels of a set of genes (assumed to imply transcriptional relationships of a particular

nature between those genes) are observed across only a subset of the samples in the

whole dataset. This principle of localised pattern mining in datasets is the fundamental

principle behind the paradigm of two-way clustering [Hartigan, 1975], first applied to

analysis of gene expression datasets as ‘biclustering’ [Cheng and Church, 2000]. Al-

though a large number (hundreds) of methods for identification of biclusters in gene

expression datasets have been described in the literature, there have been very few such

methods intended for application to large datasets due to the computational complex-

ity of the general bicluster search problem. It is important to consider when discussing

biclustering methods that there are two components to the biclustering process: the

definition of a suitable bicluster (that is, the nature of the localised patterns intended

to be identified with the analysis) and the search mechanism employed to find the best

such biclusters in the dataset. While the search mechanism is predominantly a practical

consideration for which there may be a wide range of satisfactory solutions, it is the

manner in which biclusters are defined that will have a dramatic impact on the tran-

scriptional relationships uncovered through a biclustering analysis of gene expression

data (and therefore the practical utility of the results of such an analysis) and yet this

seems to have received relatively little emphasis in the enormous number of published

research articles concerning biclustering of gene expression data. Therefore, the study

of biclustering that was carried out for this work had two principal points of focus:

1. implementation of a flexible framework to identify customarily-defined biclusters

in very large collections of gene expression data

2. investigation of different bicluster definitions in the context of large-scale gene

expression meta-analysis and the transcriptional relationships represented by such

biclusters when discovered in real data

7.1.1 Flexible Biclustering On A Large Scale

Through a reformulation of the general biclustering problem that was possible due to

assumptions applicable to the application of biclustering to discovery of transcriptional

regulatory patterns in gene expression data, it was possible to reduce significantly the

complexity of the biclustering problem so that applications to large scale meta-analysis

might be feasible (as described in Section (3.4)). After a combinatorial biclustering

approach was developed for identification of customarily defined biclusters but shown

to be impractically slow for large scale application, a heuristic search approach was
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implemented using a genetic algorithm, resulting in an algorithm (described in Section

(3.4.4)) for identification of customarily-defined biclusters in especially large collections

of gene expression data. Part of the motivation for developing such a framework for

biclustering analysis was that existing biclustering approaches were not suitable for

large scale application due to computational limitations. As demonstrated in Section

(3.5.1), the IslandCluster approach was scalable for application to the largest collections

of data available at the time (and considerably beyond this scale), unlike any existing

biclustering methods in common use. This result indicated that IslandCluster could

be used to provide the first real insights into the practical considerations of adopting

a biclustering principle for the investigation of transcriptional relationships through

meta-analysis of large collections of gene expression data.

Following the evaluation of scalability of IslandCluster, it was considered essential to

evaluate the success of the algorithm in identifying the intended patterns in datasets.

For this reason, artificial datasets were constructed and rates of successful recovery of

known bicluster patterns implanted into data were measured. Section (3.5.2) presents

the findings of this evaluation, showing that IslandCluster does indeed identify the in-

tended bicluster patterns with a high rate of success. While it is impossible to have an

analogous evaluation scenario where all suitable biclusters in real data are known, in

order to test the ability to recover biclusters in real data, comparitive enrichment anal-

ysis was performed on the IslandCluster method. This enrichment analysis (presented

in Section (3.5.3)) demonstrated that even with a naive model of bicluster desirability,

IslandCluster identifies biclusters with functional biological significance to a similar

degree to the best existing alternative biclustering methods, but has the unique ad-

vantages of scalability to very large datasets and flexible definition of the bicluster

expression patterns to be identified.

After a modification of the search mechanism of IslandCluster to adopt a multi-niche

crowding [Cedeno and Vemuri, 1996] approach that enables simultaneous identification

of diverse biclusters, this MNC-BGA was used to evaluate the manner in which bicluster

definitions are reflected in the transcriptional relationships it is possible to predict using

the results of the biclustering meta-analysis of gene expression data.

7.1.2 Investigating The Impact Of Bicluster Definition On Utility Of

Gene Expression Meta-Analysis Results

With a method to implement discovery of biclusters of different definitions and a naive

bicluster model to provide a baseline for performance evaluations, the consequences

of adopting particular definitions of bicluster model were evaluated in terms of the

practical output of meta-analysis of large gene expression datasets for the study of

transcriptional regulation of biological processes.
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It was observed that a naive model of bicluster tends to result in discovery of bi-

clusters comprising a very large number of genes, with considerable overlap between

the genelists corresponding to different biclusters. It was therefore considered advan-

tageous to provide a means of modelling the probability of discovering any particular

bicluster by chance and to score each gene’s contribution to the bicluster pattern ac-

cording to its chance of being present in a randomly-chosen bicluster (thus offering a

greater degree of specificity for the uncovered expression patterns). An entropy-based

bicluster definition was introduced in Section (3.6.2) to address these issues, and sub-

sequent evaluation demonstrated that incorporating this more sophisticated model of

bicluster desirability offers a greater degree of specificity of discovered relationships

and provides a means of ranking component genes in these relationships that results

in a significant improvement in terms of the ability of the biclustering meta-analysis

approach to predict functional association and TF binding relationships between genes.

A further observation made as a result of application of the entropy-based MNC

BGA to the investigation of transcriptional regulation of biological processes was that

while most useful questions in this research involve the identification of expression pat-

terns involving particular genes of interest in particular biological contexts, in many

cases involved in the control of pluripotency, the most significant biclusters concerning

the relevant biological context involve the same groups of genes with little to distin-

guish between the roles of a large number of TFs. As a response to these observations,

an alternative bicluster model was proposed for directed biclustering to identify genes

with apparent co-dependency of expression with a gene of interest across the biological

context represented in the bicluster, thereby distinguishing (as far as possible) between

expression patterns relating to particular genes in a particular context, rather than

only identifying compnonents of context-specific expression programs. The advantages

in practical terms of adopting such a bicluster model were demonstrated through com-

paritive enrichment analysis for functional annotation association and for prediction

of DNA-binding by a TF of interest. These results are shown in Section (3.6.3) along

with illustrations that the directed guide gene-dependent bicluster models result in im-

provement in the rate of specifically-relevant relationships being uncovered for genes

with similar context-specific expression.

7.2 Methods Developed

The development of a tool for prediction of transcriptional relationships of interest,

led by progressive evaluation in terms of applicability to real problems in biological re-

search, involved the conception and implementation of a number of component methods

that could be applied together in a novel meta-analysis approach in order to achieve the

desired analysis. As some of these components may have application outwith the con-

text of meta-analysis of gene expression data to predict transcriptional relationships,
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these components are summarised individually below, along with the tools developed

for investigation of mechanisms of transcriptional control of biological processes.

7.2.1 Expression-State Modelling

To assist the comparability of expression measurements for different genes, a method

was developed that transforms gene expression measurement values from a large ref-

erence dataset into a unified scale based on inference of biological states of expression

from models of the distribution of each gene’s expression values. This transformation

(GESTr, described in Section (4.1.4)) provides the first reported means of considering

expression levels of different genes on a unified scale representing biological states of

expression that adapts to the different distribution patterns of each gene.

Through analysis of the variation within sets of multiple probesets on an Affymetrix

GeneChip platform (with each set mapping to the same gene), it was demonstrated

that the GESTr method successfully transforms gene expression measurements into

a unified scale without introducing additional non-biological variation. These results

were presented in Section (4.2.1).

The primary purpose of introducing the GESTr approach was to improve biclustering

meta-analysis tools through preprocessing of the data into a form from which any single

value (representing expression of a particular gene in a particular sample) can be used

to make an inference regarding the biological significance of that expression level, and

that such an inference could be universally applicable for a given value regardless of

which gene’s expression was being measured in which sample. ‘Semi-artificial’ datasets

were created through calculated permutations of a real dataset in order to evaluate the

effect of adopting different preprocessing methods on recovery of implanted ‘genes of in-

terest’ using a simple bicluster model. Results of this analysis (given in Section (4.2.2))

demonstrated that the GESTr improves biclustering performance over a discretization-

based preprocessing method shown (in Section 4.1.2) to be superior to those adopted by

a number of successful biclustering methods, and even improves upon a related biclus-

ter discovery (gene prioritization) approach using the raw expression values as input.

Additionally, a large number of biclusters were produced from real datasets using raw

data, discretized data and GESTr-transformed data as input for equivalent bicluster

evaluation methods: examination of the properties of these biclusters revealed that the

GESTr facilitated effective large-scale bicluster-based gene expression data mining.

It was noted that this data transformation may have applications other than the

improvement of large-scale biclustering approaches, for example to provide a means

of interpreting data from individual gene expression studies in the context of all pro-

filed expression levelsof each gene in a large reference collection of data. An approach

was developed (TranSAM, described in Section (4.3.1)) for discovery of genes that are
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significantly differentially expressed in a novel dataset in the context of their profiled

expression range across a large collection of biologically diverse samples. In an exam-

ple application, this approach was shown to identify targets in an Oct4 knock-down

dataset with DNA-binding by Oct4 with greater success than the widely used SAM

approach to identification of differentially expressed genes, supporting the claim that

the GESTr data preprocessing method may have utility in the interpretation of gene ex-

pression measurements from individual experiments and the identification of genes with

biologically (rather than purely statistically) significant changes in expression between

samples of interest. At the time of writing, a number of research projects are being

carried out involving work utilising the output of GESTr processing of large gene ex-

pression datasets, further supporting the claim that this data transformation may have

applications outside the realm of biclustering. However, the main goal of this work was

to perform large-scale meta-analysis of gene expression data for prediction of transcrip-

tional relationships between genes involved in the control of pluripotency, and in this

context the GESTr method successfully enabled the development of biclustering-based

approaches to such meta-analysis that achieved this goal.

7.2.2 Grouping of Microarray Samples to Represent Distinct Biolog-

ical Contexts

For the identification of context-specific gene expression patterns in large datasets, it

was considered helpful to have a pre-computed set of groups of samples, each reflecting

a particular biological context. By grouping similar samples on the basis of global

transcriptional profiles, the notion of a consistent biological context could be determined

solely on the basis of data actually present in the dataset, the same values that will

be used to generate any hypotheses on the basis of observed results of large-scale

meta-analysis. Furthermore, as these groups have generally consistent annotations

(as shown in Section (5.1.4)) it becomes relatively straightforward to interpret the

biological contexts across which any discovered pattern can be observed.

An approach was developed to obtain such a set of groups of similar samples via es-

timation of a cumulative probability function for the distribution of number of samples

with fully interconnected similarity from each of a large number of random samplings

from the dataset. With such distributions calculated for a range of similarity thresh-

olds, sample groups involving a sufficiently large number of similar samples to have

an estimated probability of occurring by chance below a set significance threshold can

be identified for the given set of similarity thresholds. The results of this process are

essentially hierarchical groups of similar samples, some of which are subsets of others

(as illustrated in Section (5.1.4)). This approach is adaptable to any dataset (with no

prerequisites) as the probability models are derived exclusively from the data itself.
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While this approach has a clear application for dramatically reducing the search

space for any biclustering-based application for meta-analysis of large gene expression

datasets, there may be other potential uses for a method to identify a comprehensive

set of groups of similar samples from a large dataset. For example, these groups might

be used in conjunction with annotations to find samples that are not only described

as coming from similar biological contexts, but for which it is known that the data

reflect such similarity. In such a way, misannotations can clearly be corrected and

unknown relationships of samples on the basis of global transcriptional programs may

be discovered. However, the real advantage of such a method is that of providing the

ability to search through the groups (or any relevant subset of the groups) in order

to identify some desired gene expression pattern of interest in samples known to share

consistent general transcriptional programs. Examples of such applications include

general marker discovery and discriminant analysis to find marker profiles distinguishing

between biological contexts of interest, although many other potential uses for the

output of this method may exist.

7.2.3 Localised Co-Dependency Analysis For Gene Expression Data

As the primary goal of this work was to perform large-scale meta-analysis of gene

expression data for the prediction of context-specific transcriptional relationships, mo-

tivating a biclustering based approach, but no existing biclustering algorithms were

appropriate for this purpose (as demonstrated in Section (3.5.1)), it is perhaps unsur-

prising that one of the main achievements of this work was the development of a novel

gene expression meta-analysis approach specifically designed to facilitate the predic-

tion of transcriptional relationships involving key genes (or combinations of genes) of

interest across specified (or subsequently identified) biological contexts. The HBLCA

approach, incorporating the probabilistic framework for localised co-dependency analy-

sis introduced in Section (5.1) and utilising the GESTr method for preprocessing input

gene expression datasets, was developed as a result of progressive evaluation and re-

development of bicluster models in terms of the practical utility of the output of the

corresponding meta-analysis approaches in helping to provide a greater understanding

of the transcriptional regulation of biological processes, particularly those relating to

the control of pluripotency.

The HBLCA approach was evaluated in terms of comparitive success in example

meta-analysis tasks against existing successful methods for prediction of transcriptional

relationships through meta-analysis of gene expression data and against standard differ-

ential expression analysis methods applied to individual datasets. The results of these

evaluations, given in Section (5.2), demonstrate that the HBLCA approach generally

predicts transcriptional relationships between genes with known DNA-binding and/or

consistent patterns of differential gene expression displayed across ‘held-out’ datasets

profiling samples of the relevant biological contexts better than established methods

306



for generation of similar predictions from gene expression data. Furthermore, HBLCA

can identify transcriptional relationships occurring across defined subsets of a large

gene expression dataset (providing sufficient data is present to infer such relationships)

reflecting biological contexts of interest, with sufficient success to be a useful tool for

the utilisation of existing gene expression data for further study of the transcriptional

control of biological processes. This claim is further supported by the investigations

of transcriptional control of pluripotency presented in Chapter 6 and the analyses of

DNA-binding and regulation of expression involved in the work presented in Sections

(5.3 & 6.4), in which an implementation of HBLCA was used to gain insight into

transcriptional mechanisms involved in the regulation of biological processes.

As a general tool for investigating mechanisms of transcriptional control of biological

processes using existing gene expression data, especially when used in conjunction with

alternative techniques for investigating the biological processes in question, this ap-

proach has the potential for widespread application in successfully advancing biological

research.

7.2.4 Integrative Analysis

With increasing availability of genome-scale DNA binding datasets in the public domain

comes the opportunity to combine analysis of such data with analysis of relevant gene

expression data in an attempt to identify genes that are likely transcriptional regulatory

targets of TFs of interest. As illustrated in Section (5.2.2), the DNA binding data

alone do not explain all gene expression patterns involving the bound targets and

respective binding TFs (even when considering only samples of the same context as

those in which the DNA-binding studies were performed), as would be expected due

to combinatorial transcriptional regulatory mechanisms involving multiple TFs and

the effects of context-specific epigenetic modifications. Additionally, it was shown in

Section (5.2.2) that there can be considerable variation in the results of different studies

measuring genome-scale DNA binding of a TF, even when the data comes from similar

experimental technologies. Therefore, an integrated meta-analysis approach involving

meta-analysis of multiple DNA binding datasets for a given TF of interest and directed

meta-analysis of gene expression data is recommended for the identification of genes

that are both reliably bound by the TF of interest and show significant and consistent

expression co-dependency across the biological context in question, as such genes are

likely to be the relevant targets of the given TF in the particular biological context of

interest.

A simple integrated analysis approach was presented in Section (5.3), along with the

results indicating that this approach can reliably identify (with a high rate of success)

genes that are consistently differentially expressed in ‘held-out’ knock-down studies in-

volving variation of the expression of the TF in question, and are thus likely to be direct

307



transcriptional targets of the TF of interest. In the investigations relating to transcrip-

tional control of pluripotency presented in Sections (6.3 & 6.4) this integrated analysis

approach (incorporating the HBLCA approach) was used to make novel observations

regarding possible mechanisms involved in the control of pluripotency, supporting the

claim that such an integrated analysis approach as this may also have widespread ap-

plication in biological research.

7.3 Study Of The Transcriptional Control Of Biological

Processes

The methods summarised in the previous section were developed in order to provide

means of gaining insight into transcriptional regulatory mechanisms through interro-

gation of large collections of gene expression data. Application of an ensemble of these

methods can results in the identification of gene expression co-dependency patterns

relevant to a particular gene (or set of genes) of interest across a particular (set of)

biological context(s). The identification of such transcriptional relationships relevant

to a particular biological investigation may have a wide range of potential uses to of-

fer insight into different aspects of mechanisms of transcriptional control of biological

processes of interest. The following section provides an overview of a number of in-

vestigations into different aspects of the control of pluripotency that were described

in the previous chapter. These investigations illustrate a range of different ways in

which the novel methods presented in this thesis can be applied to provide insight

into different aspects of transcriptional regulatory mechanisms, with these applications

representing research methods in themselves, which would not have been possible with-

out the HBLCA meta-analysis approach. The results of these investigations clearly

demonstrate that the methods developed through the course of this work have useful

applications to biological research, through the analysis of large collections of data.

7.3.1 Results Relating To Pluripotency

Functional Analysis of Oct4-Dependently Expressed Genes

A set of genes whose expression level decreases significantly upon Oct4 knock-down in a

mouse ES cell microarray experiment [Hall et al., 2009] was obtained. These genes are

likely to be directly influenced by the expression of Oct4 and thus involved in the main-

tenance of the ES cell pluripotent state. Through application of the HBLCA approach

using each of these genes as a ‘guide’ it was possible to associate biological processes

with these genes through functional enrichment analysis of the resulting genelists. The

input genes were separated into three subsets, with each subset sharing similar out-

put from the HBLCA tool. Interestingly, each of these subsets was characterised by

a unique expression profile in the Oct4 knock-down microarray dataset and was sta-

tistically enriched for different sets of biological processes. Particularly noteworth is
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the fact that application of standard functional enrichment analysis techniques to the

original input genelist did not reveal any biological processes significantly affected on

a transcriptional level by the knock-down of Oct4.

The analysis performed as described in Section (6.1) implicated a number of sets

of genes that respond to Oct4 knock-down in ES cells and may represent distinct

functional components of the Oct4-mediated pluripotent state of ES cells. One such

subset of genes appears to characterise a role of cell adhesion in this phenotype, which

has not previously been demonstrated to be involved in pluripotency.

Oct4 Target Genes Identified with Different Expression Dependencies

Lists of genes with expression patterns in ES cells associated to individual Oct4 bind-

ing targets were obtained by applying the HBLCA tool with a set of targets reliably

bound by Oct4 as input ‘guide’ genes. Analysis of these associated genelists enabled

the identification of subsets within this list of Oct4 binding targets that shared expres-

sion dependency patterns. One such subset involved genes with clear Oct4-dependent

expression in ES cells, which may represent key pluripotency genes directly regulated

by Oct4. Another subset showed expression in ES cells seemingly unrelated to the level

of Oct4, but did show a correspondance of expression level to that of Foxh1. This

may represent a novel component of Oct4 target genes expressed in ES cells, for which

transcription may be redundantly or dominantly regulated by another factor, which

may be Foxh1.

Combinatorial Analysis of Regulation by Oct4, Sox2 and Nanog

Using HBLCA it was possible to identify genes with apparent expression dependencies

on particular combinations of Oct4, Sox2 and Nanog: TFs with considerably over-

lapping sets of DNA-binding targets. The binding targets identified with apparently

specific dependency of expression to a particular combination of expression of Oct4,

Sox2 and Nanog may serve as a means to decompose the complex and highly intercon-

nected transcriptional regulatory network controlling pluripotency.

Transcriptional Regulatory Activity of cMyc

HBLCA was used to investigate the cMyc-dependency of expression of cMyc DNA-

binding targets across a broad range of biological contexts. It was demonstrated that

the majority of cMyc-bound genes that show cMyc-dependent expression in any biolog-

ical context show cMyc-dependent expression specifically in that context. Thus, cMyc

does not appear to induce expression of a consistent set of targets across the full range

of biological contexts in which it is expressed.
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The hypothesis proposed in [Wong et al., 2008, Sridharan et al., 2009] that cMyc in-

duces a ‘stem cell like’ transcriptional program was investigated using the HBLCA

tool. It was demonstrated that the cMyc-bound targets with most ES cell specific

expression do not appear to show cMyc-dependent expression outside ES cells. These

would be the genes most obviously associated with a cMyc-induced stem cell like tran-

scriptional signature. A set of genes was identified using HBLCA that did show rel-

atively ES cell specific expression and cMyc-dependent expression in a range of non-

ES biological contexts (including blood, liver and placenta). The genes proposed in

[Wong et al., 2008] to represent the cMyc-induced stem cell like signature were sepa-

rated into apparently cMyc-responsive and cMyc-unresponsive subsets. Interestingly,

the cMyc-responsive subset were generally expressed at a higher level in ES cells than

in other cMyc-expressing samples in a large dataset. Such genes with relatively specific

ES cell expression and relatively broad cMyc co-dependent expression may represent

a cMyc-induced stem cell like transcriptional signature, but they do not seem to be

universally cMyc-dependent and comprise at most only a small fraction (< 10%) of the

supposed cMyc-induced, ES cell like module described in [Wong et al., 2008].

7.3.2 Generalisability Of Approach

While the results obtained through the investigations described in Chapter 6 are sig-

nificant in offering insight into the transcriptional mechanisms involved in controlling

pluripotency, they are also significant in terms of illustrating a means of utilising the

novel meta-analysis tools for investigations with application to a potentially wide range

of areas in biological research.

• The results of Section (6.1) demonstrate that the meta-analysis tools presented

in this thesis may provide a means for alternative, context-specific functional en-

richment analysis that offers advantages over existing techniques. These existing

techniques have had wide-ranging application in biological research, implying that

the approach described in Section (5.4) may have equally wide-ranging applica-

tion.

• The analyses described in Sections (6.1 & 6.3) illustrate ways in which the output

of the HBLCA tool can be used to decompose an input genelist into subsets

with unique sets of shared expression co-dependencies. These subsets may share

similar function, as with the subset genelists identified in Section (6.1). These

approaches may be used to identify components within any complex expression

pattern related to a gene or biological process of interest.

• The application of HBLCA to the identification of target genes with observed

expression dependency on specific combinations of Oct4, Sox2 and Nanog was

described in Section (6.3). A similar approach could be taken to investigate any
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complex transcriptional regulatory network in which a number of key regula-

tors may share significantly overlapping sets of targets, provided relevant DNA-

binding data and gene expression data is available.

• The techniques used in the investigation of cMyc transcriptional regulatory ac-

tivity may be applied to analyse the biological context specificity of observed or

predicted transcriptional relationships. This can be achieved through visualising

expression co-dependency significances evaluated with the HBLCA approach.

The development of novel meta-analysis tools presented in this thesis has afforded

the ability to identify genes with expression co-dependency patterns relating to a gene

or combination of genes of interest, across a broad range of individual biological con-

texts. The HBLCA approach to gene expression analysis has potentially far-reaching

applications in biological research, both directly and in conjunction with further anal-

ysis approaches such as those utilised in the investigations presented in Chapter 6.

7.4 Open Questions & Further Work

This thesis describes an investigation of meta-analysis of gene expression data, primarily

relating to the application of biclustering to this task. Theory developed in this work

provides a foundation for the effective adaptation of the general biclustering paradigm

to gene expression meta-analysis. This work also introduces a new concept in the

analysis and utilisation of collections of gene expression data, notably that of context-

specific co-dependency of expression.

The results of evaluation of different approaches proposed in this thesis have illus-

trated some of the potential pitfalls and considerations required specifically when con-

sidering meta-analysis of large, diverse collections of gene expression data. As the work

presented in this thesis represents the first such investigation reported, the theoretical

foundation provided will enable further investigation of the application of bicluster-

ing approaches to gene expression meta-analysis, and of both theoretical and practical

aspects of gene expression co-dependency analysis.

7.4.1 Extending Scope of Analysis Approaches and Observations

Due to the emphasis on development of theory in this work that was required to enable

successful practical application of the intended meta-analysis techniques, limitations

in the scope of the applications considered in this work provide a number of obvious

avenues for future work:

• Other Organisms: all analyses in this work concern gene expression in the

mouse. It is assumed that the issues concerning gene expression meta-analysis

that have been characterised and overcome in this work apply similarly to the use
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of large, diverse collections of gene expression data from other organisms to study

their transcriptional regulatory mechanisms. This has not been demonstrated in

this thesis, and so it may prove worthwhile to utilise the novel approaches for

applications to investigate transcriptional regulatory mechanisms in other organ-

isms. In fact, such application may reveal further utilities of the developed analy-

sis approaches. Examples might include the study of conservation or evolution of

regulatory mechanisms, or highlighting species-specific and species-independent

transcriptional relationships between genes of interest. However, there is a very

wide range of potential applications of the developed approaches within mouse

molecular biology such that this work would still have considerable impact on fu-

ture biological research, even in the unlikely event that utility of the novel analysis

approaches turned out to be mouse-specific.

• Other Measurement Technologies: Due to the abundance of data from

Affymetrix microarray platforms, particularly in contrast to any other technolo-

gies, the meta-analysis approaches presented in this thesis were devloped and

studies in the context of Affymetrix microarray data only. It might therefore af-

ford further utility from these approaches and increase the scope of their possible

application if they were to be generalised or adapted to data from alternative

technologies. The relative utility of such application may be minimal while the

body of available gene expression data is so dominated by Affymetrix microar-

ray platforms, but this might change as next-generation sequencing technologies

are increasingly applied to measuring gene expression. It should be noted that

the models of expression data developed through this work and utilised in the

HBLCA approach are based on arbitrary gene expression values and adapt to

the observed distributions, so any required modifications should be limited to the

incorporation of alternative measurement error models into the GESTr process

and possibly also in the modelling of gene-variation significance estimator pa-

rameters that is required for co-dependency analysis. These modifications reflect

relatively small components of the overall analysis approaches used in this work,

which suggests that the majority of the conclusions presented in this thesis would

not be platform-dependent.

• Multi-Platform Analysis: for ease of comparability of data from different sam-

ples and different experiments, all the gene expression meta-analysis presented in

this thesis was performed on data from the same microarray platform. While

publicly available data from this single platform constitutes a very large, diverse

collection of comparable gene expression measurements (from O(10, 000) sam-

ples), greater utility might be afforded by the HBLCA approach if it could be

adapted to apply to collections of gene expression data from multiple platforms.

It is anticipated that this might constitute a significant but potentially rewarding

piece of work, involving the evaluation and development of modifications to the
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GESTr modelling approaches that may be required for cross-platform analysis.

7.4.2 Optimisation of Novel Analysis Approaches

When each analysis method described in this thesis was applied to a real task for

biological research, complications were discovered that led to further approaches in-

creasingly optimised towards the task at hand. It is therefore highly unlikely that the

most sophisticated methods for meta-analysis described in this thesis are truly optimal

for their intended task, especially considering the relatively broad scope of the intended

tasks. It may well be that when applied to particular investigations it is discovered that

certain parameter settings (such as those governing stringency of contrasts considered

significant, consistently high expression considered necessary for bicluster inclusion, or

distance allowed between bicluster and comparison samples) may give particularly good

or poor results. It may also be that certain subtleties of particular applications of gene

expression co-dependency analysis may be discovered during the course of subsequent

investigations utilising the novel approaches presented in this thesis. It may either be

pertinent to utilise such observations to improve the existing models employed in these

analysis techniques, or to develop derivative methods for specific applications. However,

it should also be noted that the methods used for the biological research applications

presented in this thesis have been shown to be effective enough to have considerable

utility in a range of applications.

7.4.3 Usability: Developing Interfaces

The work presented in this thesis focused on the development of meta-analysis ap-

proaches that could be used to study practicalities of pattern mining in large gene ex-

pression datasets, and ultimately to facilitate development of effective tools for studying

transcriptional regulation through meta-analysis of gene expression data. As such, it

was sufficient for any novel methods to be implemented in tools that could be used by

the developer alone. It was therefore unnecessary to develop any simple, user-friendly

interfaces for these tools for the scope of this work. However, now that analysis ap-

proaches involving the GESTr and HBLCA have been demonstrated to have applica-

tion to investigations in biological research, it would greatly facilitate the application

of these tools if simple, easy to use interfaces were vailable. R software packages have

been compiled and incorporated into bash shell scripts for application of the GESTr

method to new data collections and to datasets when a transformed compendium exists

(e.g. for analysis with the TranSAM method). A suite of R functions was developed

to apply the HBLCA approach to appropriately preprocessed data from within the R

environment. However, to assist the use of these methods by biological investigators

without familiarity to the R programming environment, a graphical interface would

be most appropriate. It is proposed that such a graphical user interface for the bi-

clustering meta-analysis tools, provided as a web service running on top of compiled
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and preprocessed data collections, would enable widespread adoption of these methods

and facilitate the incorporation of co-dependency analysis into many areas of biological

research.

7.4.4 Further Application of Novel Analysis Approaches

A number of investigations were performed in this work to explore transcriptional

regulatory mechanisms controlling pluripotency. The purpose of these investigations

was twofold: firstly to generate and test hypotheses regarding mechanisms of activity of

key TFs involved in pluripotency, and secondly to demonstrate that the gene expression

analysis tools developed through the course of this work can be used to gain insight

into biological processes through utilisation of existing data. While outside the scope

of this work, experimental validation of the observations made in Chapter 6 make for

a set of obvious follow-up tasks to the work presented in this thesis:

• Section (6.1) - investigation of the functional roles in ES cells of members of the

subsets of genes differentially expressed upon Oct4 knock-down would consolidate

the predictions made in Section (6.1). If confirmed these observations could lead

to greater understanding of the complex regulatory mechanisms in balance in ES

cells, and could possibly suggest new means of manipulating pluripotent cells.

• Section (6.2) - experimental validation of the lack of response to Oct4 differential

expression in ES cells of the subset of Oct4 targets with ‘Foxh1-like’ expression

patterns would need to be performed to confirm this prediction. It might also

prove rewarding to investigate the consequences of altering the expression level of

Foxh1 or the associated Oct4 targets listed in Section (5.6) in ES cells. This may

provide insight into non-Oct4 dependent processes involved in the maintenance

or loss of pluripotency.

• Section (6.3) - analysis described in Section (6.3) resulted in prediction of genes

likely to be regulated in ES cells by specific combinations of the TFs Oct4, Sox2

and Nanog. High-confidence targets were identified with consistent evidence of

DNA-binding by the relevant TFs, and so further confirmation of a predicted

unique dependency on a particular combination of TFs may require potentially

complicated combinatorial knock-down experiments. In the absence of such ex-

perimental data, further investigation of any available information regarding the

identified target genes may add further weight to these predictions and provide

some context regarding the possible significance of the different TF-target rela-

tionships predicted.

• Section (6.4) - confirm predicted lack of cMyc-response of highlighted mem-

bers of the supposed cMyc-induced ‘stem cell like’ transcriptional signature. This

could be achieved through forced overexpression of cMyc in a range of tissues and
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quantifying mRNA levels of the target genes proposed in [Wong et al., 2008] that

are predicted as a result of the analysis described in Section (5.5) to be unrespon-

sive to cMyc expression in more than a restricted set of biological contexts.

As well as further investigation and validation of the observations presented in

Chapter 6, as mentioned earlier the analysis tools described in this thesis may find use

in many areas of biological research. Any additional successful applications of these

tools to research problems will help to build a body of evidence to support the assertion

that the theoretical foundations for these tools developed through the course of this

work are sound, and that the implementations provided are effective.

7.5 Conclusion

The work described in this thesis covers the study, development and application of

pattern mining approaches for assessing the evidence of transcriptional relationships,

in the form of co-dependency of gene expression, in large collections of gene expression

data. As part of this work, but of free-standing interest, approaches for modelling

states of gene expression represented by large collections of potentially arbitrary mea-

surements were developed and evaluated. Results presented in this thesis constitute

the first analysis of applying biclustering methods to meta-analysis of diverse collec-

tions of gene expression data, highlighting issues concerning the dominance of bicluster

expression patterns by widely-expressed genes and cell-type specific gene expression

programs. An approach to modelling biological states of gene expression on a uni-

versal scale, known as the GESTr, is described in this thesis. The GESTr represents

the first such universal model of gene expression state, and the utility of the approach

is demonstrated in the facilitation of effective meta-analysis of collections of gene ex-

pression data and the identification of genes with biologically significant differential

expression in a single microarray dataset. The concept of localised gene expression

co-dependency analysis was introduced in this thesis, providing the opportunity to as-

sess variations in the expression level of any pair of genes across sets of samples in the

context of the similarity (or dissimilarity) of those samples. A probabilistic framework

for this gene expression co-dependency was built, and is described in this thesis. This

work enabled the development of a set of tools for the utilisation of large collections

of diverse gene expression data to analyse evidence for transcriptional relationships in-

volving particular genes or biological contexts of interest. A range of techniques were

used to apply the HBLCA tool to study the transcriptional control of pluripotency,

providing insight into cMyc-induced transcriptional signatures, identifying regulatory

targets of different combinations of the TFs Oct4, Sox2 and Nanog, and identifying

functional signatures associated with the differentiation of ES cells upon loss of Oct4

expression. In addition to suggesting avenues for further experimental investigation of

the transcriptional control of pluripotency, the results of applying these analysis tools
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to open questions in biological research suggest that the concepts introduced in this

thesis and the methods developed to use these concepts for extracting relevant infor-

mation from large collections of gene expression data provide effective means for the

investigation of mechanisms of transcriptional regulation of biological processes. It is

hoped that the novel concepts and analysis tools described in this thesis, constituting

advances both in the theory of biological data analysis and in the set of bioinformatics

tools available to researchers, might be further refined and adopted by the research

community to afford valuable insight into the transcriptional regulatory mechanisms

involved in a wide range of biological processes.
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nens, L., Göhlmann, H., Shkedy, Z., and Clevert, D.-A. (2010). Fabia: factor analysis

for bicluster acquisition. Bioinformatics, 26(12):1520–1527.

[Holland, 1975] Holland, J. (1975). Adaptation in natural and artificial systems. Uni-

versity of Michigan Press, Ann Arbor.

[Holm, 1979] Holm, S. (1979). A simple sequentially rejective multiple test procedure.

Scandinavian Journal of Statistics, 6(2):65–70.

[Hong and Breitling, 2008] Hong, F. and Breitling, R. (2008). A comparison of meta-

analysis methods for detecting differentially expressed genes in microarray experi-

ments. Bioinformatics, 24(3):374–382.

[Hong et al., 2006] Hong, F., Breitling, R., McEntee, C., Wittner, B., Nemhauser, J.,

and Cory, J. (2006). Rankprod: a bioconductor package for detecting differentially

expressed genes in meta-analysis. Bioinformatics, 22(22):2825–2827.

[Huang et al., 2009a] Huang, D., Sherman, B., and Lempicki, R. (2009a). Bioinformat-

ics enrichment tools: paths toward the comprehensive functional analysis of large

gene lists. Nucleic Acids Research, 37(1):1–13.

[Huang et al., 2009b] Huang, D., Sherman, B., and Lempicki, R. (2009b). System-

atic and integrative analysis of large gene lists using david bioinformatics resources.

Nature Protocols, 4:44–57.

[Husmeier, 2003] Husmeier, D. (2003). Sensitivity and specificity of inferring genetic

regulatory interactions from microarray experiments with dynamic bayesian net-

works. Bioinformatics, 19(17):2271–2282.

[Huttenhower et al., 2009] Huttenhower, C., Mutungu, K., Indik, N., Yang, W.,

Schroeder, M., Forman, J., Troyanskaya, O., and Coller, H. (2009). Detailing regu-

latory networks through large scale data integration. Bioinformatics, 25(24):3267–

3274.

324



[Ihmels et al., 2004] Ihmels, J., Bergmann, S., and Barkai, N. (2004). Defining

transcriptional modules using large-scale gene expression data. Bioinformatics,

20(13):1993–2003.

[Irizarry et al., 2006] Irizarry, R., Cope, L., and Wu, Z. (2006). Feature-level explo-

ration of a published affymetrix genechip control dataset. Genome Biology, 7(8):404.

[Irizarry et al., 2003] Irizarry, R., Hobbs, B., Collin, F., Beazer-Barclay, Y., Antonellis,

K., Scherf, U., and Speed, T. (2003). Exploration, normalization and summaries of

high density oligonucleotide array probe level data. Biostatistics, 4:249–264.

[Ivanova et al., 2006] Ivanova, N., Dobrin, R., Lu, R., Kotenko, I., Levorse, J., De-

Coste, C., Schafer, X., Lun, Y., and Lemischka, I. (2006). Dissecting self-renewal in

stem cells with rna interference. Nature, 442:533–538.

[Jiang et al., 2008] Jiang, J., Chan, Y.-S., Loh, Y.-H., Cai, J., Tong, G.-Q., Lim, C.-

A., Robson, P., Zhong, S., and Ng, H.-H. (2008). A core klf circuitry regulates

self-renewal of embryonic stem cells. Nature Cell Biology, 20:353–360.

[Jupiter and VanBuren, 2008] Jupiter, D. and VanBuren, V. (2008). A visual data

mining tool that facilitates reconstruction of transcription regulatory networks. PLoS

ONE, 3(3):e1717.

[Katz et al., 2006] Katz, S., Irizzary, R., Lin, X., Tripputi, M., and Porter, M. (2006).

A summarization approach for affymetrix genechip data using a reference training

set from a large, biologically diverse database. BMC Bioinformatics, 7:464.

[Kim et al., 2008] Kim, J., Chu, J., Shen, X., Wang, J., and Orkin, S. (2008). An

extended transcriptional network for pluripotency of embryonic stem cells. Cell,

132(6):1049–1061.

[Kim et al., 2010a] Kim, J., Woo, A., Chu, J., Snow, J., Fujiwara, Y., Kim, C., Cantor,

A., and Orkin, S. (2010a). A myc nework accounts for similarities between embryonic

stem and cancer cell transcription programs. Cell, 143:313–324.

[Kim et al., 2010b] Kim, M., Cho, S., and Kim, J. (2010b). Mixture-model based

estimation of gene expression variance from public database improves identification

of differentially expressed genes in small sized microarray data. Bioinformatics,

26(4):486–492.

[Kleinsmith and Pierce, 1964] Kleinsmith, L. and Pierce, G. (1964). Multipotentiality

of single embryonal carcinoma cells. Cancer Research, 24:1544–1551.

[Klemm and Pabo, 1996] Klemm, J. and Pabo, C. (1996). Oct-1 pou domain-dna inter-

actions: cooperative binding of isolated subdomains and effects of covalent linkage.

Genes & Development, 10:27–36.

325



[Knoepfler et al., 2006] Knoepfler, P., Zhang, X.-Y., Cheng, P., Gafken, P., McMahon,

S., and Eisenman, R. (2006). Myc influences global chromatin structure. The EMBO

Journal, 25:2723–2734.

[Kunath et al., 2007] Kunath, T., Saba-El-Leil, M., Almousailleakh, M., Wray, J., Me-

loche, S., and Smith, A. (2007). Fgf stimulation of the erk1/2 signalling cascade

triggers transition of pluripotent embryonic stem cells from self-renewal to lineage

commitment. Development, 134:2895–2902.

[Lazzeroni and Owen, 2002] Lazzeroni, L. and Owen, A. (2002). Plaid models for gene

expression data. Statistica Sinica, 12:61–86.

[Lee and Batzoglou, 2003] Lee, S. and Batzoglou, S. (2003). Application of indepen-

dent component analysis to microarrays. Genome Biology, 4(11):R76.

[Lemmens et al., 2006] Lemmens, K., Dhollander, T., Bie, T. D., Monsieurs, P., Enge-

len, K., Smets, B., Winderickx, J., Moor, B. D., and Marchal, K. (2006). Inferring

transcriptional modules from chip-chip, motif and microarray data. Genome Biology,

7:R37.

[Levy and Hill, 2005] Levy, L. and Hill, C. (2005). Smad4 dependency defines two

classes of transforming growth factor β target genes and distinguishes tgf-β-induced

epithelial-mesenchymal transition from its antiproliferative and migratory responses.

Molecular and Cellular Biology, 25(18):8108–8125.

[Lewandowski, 2001] Lewandowski, M. (2001). Conditional control of gene expression

in the mouse. Nature Reviews Genetics, 2(10):743–755.

[Li et al., 2009] Li, G., Ma, Q., Tang, H., Paterson, A., and Xu, Y. (2009). Qubic: a

qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids

Research, 37(15):e101.

[Li, 2002] Li, K.-C. (2002). Genome-wide coexpression dynamics: theory and applica-

tion. PNAS, 99(26):16875–16880.

[Li et al., 2004] Li, K.-C., Liu, C.-T., Sun, W., Yuan, S., and Yu, T. (2004). A system

for enhancing genome-wide coexpression dynamics study. PNAS, 101(44):15561–

15566.

[Li et al., 2008] Li, X., MacArthur, S., Bourgon, R., Nix, D., Pollard, D., Iyer, V.,

Hechmer, A., Simirenko, L., Stapleton, M., Hendriks, C., Chu, H., Ogawa, N., In-

wood, W., Sementchenko, V., Beaton, A., Weiszmann, R., Celniker, S., Knowles,

D., Gingeras, T., Speed, T., and Eisen, M. (2008). Transcription factors bind thou-

sands of active and inactive regions in the drosophila blastoderm. PLoS Biology,

6(2):365–387.

326



[Liebermeister, 2002] Liebermeister, W. (2002). Linear models of gene expression de-

termined by independent component analysis. Bioinformatics, 18(1):51–60.

[Liu et al., 2008] Liu, X., Huang, J., Chen, T., Wang, Y., Xin, S., Li, J., Pei, G., and

Kang, J. (2008). Yamanaka factors critically regulate the developmental signaling

network in mouse embryonic stem cells. Cell Research, 18:1177–1189.

[Lockhart et al., 1996] Lockhart, D., Dong, H., Byrne, M., Follettie, M., Gallo, M.,

Chee, M., Mittman, M., Wang, C., Kobayashi, M., Horton, H., and Brown, E.

(1996). Expression monitoring by hybridization to high-density oligonucleotide ar-

rays. Nature Biotechnology, 14:1675–1680.

[Loh et al., 2006] Loh, Y.-H., Wu, Q., Chew, J.-L., Vega, V., Zhang, W., Chen, X.,

Bourque, G., George, J., Leong, B., Liu, J., Wong, K.-Y., Sung, K., Lee, C., Zhao,

X.-D., Chiu, K.-P., Lipovich, L., Kuznetsov, V., Robson, P., Stanton, L., Wei, C.-L.,

Ruan, Y., Lim, B., and Ng, H.-H. (2006). The oct4 and nanog transcription network

regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38:431–440.

[Lutz et al., 2002] Lutz, W., Leon, J., and Eilers, M. (2002). Contributions of myc

to tumorigenesis. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer,

1602(1):61–71.

[Madeira and Oliveira, 2004] Madeira, S. and Oliveira, A. (2004). Biclustering algo-

rithms for biological data analysis: a survey. IEEE/ACM Transactions on Compu-

tational Biology and Bioinformatics, 1(1):24–45.

[Marson et al., 2008] Marson, A., Levine, S., Cole, M., Frampton, G., Brambrink, T.,

Johnstone, S., Guenther, M., Johnston, W., Wernig, M., Newman, J., Calabrese,

J., Dennis, L., Volkert, T., Gupta, S., Love, J., Hannett, N., Sharp, P., Bartel,

D., Jaenisch, R., and Young, R. (2008). Connecting microrna genes to the core

transcriptional regulatory circuitry of embryonic stem cells. Cell, 134(3):521–533.

[Martin, 1975] Martin, G. (1975). Teratocarcinomas as a model system for the study

of embryogenesis and neoplasia. Cell, 5:229–243.

[Martin, 1981] Martin, G. (1981). Isolation of a pluripotent cell line from early mouse

embryos cultured in medium conditioned by teratocarcinoma stem cells. PNAS,

78(12):7634–7638.

[Massy, 1965] Massy, W. (1965). Principal components regression in exploratory sta-

tistical research. Journal of the American Statistical Association, 60(309):234–256.

[Masui et al., 2007] Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R.,

Takahashi, K., Okochi, H., Okuda, A., Matoba, R., Sharov, A., Ko, M., and Niwa,

H. (2007). Pluripotency governed by sox2 via regulation of oct3/4 expression in

mouse embryonic stem cells. Nature Cell Biology, 9(6):623–635.

327



[McNeish, 2004] McNeish, J. (2004). Embryonic stem cells in drug discovery. Nature

Reviews Drug Discovery, 3:70–80.

[Mikkelsen et al., 2008] Mikkelsen, T., Hanna, J., Zhang, X., Ku, M., Wernig, M.,

Schorderet, P., Bernstein, B., Jaenisch, R., Lander, E., and Meissner, A. (2008). Dis-

secting direct reprogramming through integrative genomic analysis. Nature, 454:49–

55.

[Mirkin, 1989] Mirkin, B. (1989). Mathematical classification and clustering. Kluwer

Academic Publishers.

[Mitchell et al., 1992] Mitchell, M., Forrest, S., and Holland, J. (1992). The royal road

for genetic algorithms: fitness landscapes and ga performance. Toward a Practice

of Autonomous Systems: Proceedings of the First European Conference on Artificial

Life.

[Mitra and Banka, 2006] Mitra, S. and Banka, H. (2006). Multi-objective evolutionary

biclustering of gene expression data. Pattern Recognition, 39(12):2464–2477.

[Mitsui et al., 2003] Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M.,

Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003). The homeo-

protein nanog is required for maintainance of pluripotency in mouse epiblast and es

cells. Cell, 113(5):631–642.

[Miura et al., 2004] Miura, T., Brandenberger, R., Mejido, J., Luo, Y., Yang, A., Joshi,

B., Ginis, I., Thies, R., Amit, M., Lyons, I., Condie, B., Itskovitz-Eldor, J., Rao, M.,

and Puri, R. (2004). Gene expression in human embryonic stem cell lines: unique

molecular signature. Blood, 103(8):2956–2964.

[Moreau et al., 2003] Moreau, Y., Aerts, S., Moor, B. D., Strooper, B. D., and

Dabrowski, M. (2003). Comparison and meta-analysis of microarray data: from

the bench to the computer desk. Trends in Genetics, 19(10):570–577.

[Murali and Kasif, 2003] Murali, T. and Kasif, S. (2003). Extracting conserved gene

expression motifs from gene expression data. Pacific Symposium on Biocomputing,

pages 77–88.

[Murray and Keller, 2008] Murray, C. and Keller, G. (2008). Differentiation of embry-

onic stem cells to clinically relevant populations: lessons from embryonic develop-

ment. Cell, 132:661–680.

[Myers et al., 2006] Myers, C., Barrett, D., Hibbs, M., Huttenhower, C., and Troyan-

skaya, O. (2006). Finding function: evaluation methods for functional genomic data.

BMC Genomics, 7:187.

328



[Nakagawa et al., 2008] Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K.,

Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S.

(2008). Generation of induced pluripotent stem cells without myc from mouse and

human fibroblasts. Nature Biotechnology, 26:101–106.

[Ng et al., 2003] Ng, S.-K., Tan, S.-H., and Sundararajan, V. (2003). On combining

multiple microarray studies for improved functional classification by whole-dataset

feature selection. Genome Informatics, 14:44–53.

[Nguyen and Rocke, 2002] Nguyen, D. and Rocke, D. (2002). Tumor classification

by partial least squares using microarray gene expression data. Bioinformatics,

18(1):39–50.

[Nichols et al., 1998] Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klebe-
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