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Abstract 

Two 6 - lactamase gene sequences encoded by Ps. aeruginosa AMS 149 

plasmid and Aps. capsu/ata sp 108 were investigated. The genes were located 

using DNA recombinant techniques and their nucleic acid sequences were. 

determined using the Sanger dideoxy-sequencing technique. The amino acid 

sequences were identified and compared with other characterised 8-lactamases. 

They are both class A enzymes (Ambler classification). 

The pseudomonad plasmid encoded enzyme is expressed constitutively, but 

its gene sequence has an attenuator sequence - reminiscent of inducible 

bacterial synthetic operons. It also has three putative loop-forming sequences in 

the middle of the gene. RNA mapping studies indicate that, the attenuator is read 

through from an upstream promoter. There is low level initiation from its own 

promoter and the transcripts sometimes terminate around the second internal 

stem-loop. The full message is also made. Thus, it is likely, that the 

pseudomonad gene is normally highly regulated. Its constitutive expression may 

be as a result of some control mutation. 

The rhodopseudomonad enzyme is unlike other characterised Gram-negative 

class 8 - lactamases because it is inducible. Gene hybridization experiments 

suggest that it may be chromosomally encoded in strain sp 108 as well as in the 

Pen S  strain sp 109. 6-lactamase active bands were also observed in 
pS  Rps. 

capsulate St. Louis and fips. sphaero/des If this is the usual state of affairs in 

photosynthetic bacteria which are not normally subject to the selective pressures 

of the presence of B - lactam antibiotics by virtue of their aquatic habitat, the sp 

108 strain may also be producing the enzyme in large quantities due to some 

control mutation. 

It is postulated then, that, 5-lactamase genes in Gram-negative bacteria may 

be of two kinds - one that is chromosomal and is highly regulated, and another 
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which has lost the regulation and over-expresses the enzyme. The latter may be 

representative of the common plasmid-borne S-lactamase genes. 
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Abbreviations 

Amp Ampicillin 

Bp Base-pair 

BSA Bovine serum albumin 

Cb Carbenicillin 

Cm Chloramphenicol 

COS Cold osmotic shock 

DNA Deoxyribonucleic acid 

DTT Oithiothreitol 

EDTA Ethylene diamine tetra-acetic acid 

EtBr Ethidium bromide 

Kb Kilo-base 

Kn Kanamycin 

MIC Minimal inhibitory concentration 

ORE Open reading frame 

PBP Penicillin binding protein 
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PMSF Phenyl methyl-sulfonyl fluoride 

PSE Penicillin sensitive enzyme 

RNA Ribonucleic acid 

SDS Sodium dodecyl sulphate 

Tc Tetracycline 

Tris Tris(hydroxymethl) aminomethane 

All other abbreviations used in this thesis are as defined in the Biochemical 

Journal - Instructions to authors. 



Abbreviations for bacterial genera 

B. Bacillus 

E. Esch erich/a 

Ps. Pseudomonas 

fips. Rhodopseudomo'7aS 

Staph. Staphylococcus 

Strep. Streptococcus 
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CHAPTER 1 

INTRODUCTION 

1.1. Introduction 

The production of a penicillin destroying enzyme by bacteria was first 

reported by Abraham and Chain (1940), soon after the introduction of penicillin 

into clinical medicine. Penicillin inactivating enzymes have been found to be of 

three kinds: the amidase (E.C.3.5.1.11), which splits off the side chain (R) (Fig.11a) 

(Batchelor at at, 1961); penicillinase and cephalosporinase, which break the 

B-lactam bond (Fig.1.1b); and thirdly, the penicillin esterase, which liberates a 

penicillanate from Penicillin-3-amide (Fig.1.1c) (Huang at at, 1963). The 

penicillinases and cephalosporinases constitute the B-IactamaseS (Penicillin 

amido 3-lactam hydrolase, E.C.3.5.2.6; Pollock, 1960). 

Though penicillin amidases have been used extensively in the industrial 

production of semi-synthetic penicillins by attachment of special side chains to 

arninopenicillanic acid, the clinically important antipenicillin enzymes are 

6-lactamases. Other intrinsic cellular properties contribute to 6-lactam 

resistance. These include a diffusion barrier (as provided by the Gram-negative 

bacterial outer membranes), as well as a decrease in affinity of target sites 

(Spratt. 1978). S - lactamases are however of prime importance because they are 

the most common cause of high level 8-lactam resistance (Coulson, 1985). 

The enzymes can probably be found in any bacterial group which is carefully 

examined, as illustrated in an extensive recent review (Hamilton-Miller and Smith, 

1979). S- lactamase activity has also been reported in yeast (Mehta and Nash, 

1978) and mammalian tissue (Hamilton-Miller, 1982), but these non-bacterial 

enzymes have not been characterised in great detail. All the work reported here 

is therefore concerned with bacterial enzymes. 



1.2. Historical development 

S-Iactamase genes provide a readily selectable marker and the protein is 

often easily expressed and purified. They have thus served as convenient 

systems for much molecular biological research. Some recent examples of these 

are the testing of DNA sequencing methods with pBR322 (Sutcliffe, 1978); the 

studies of prokaryotic promoters and the control of gene expression (Stuber and 

Bunjard, 1981; Kraft et 8/, 1983; etc.). 

Research directed at understanding the function of B-Iactamases themselves 

started with the work of Pollock on the induction of Bacillus enzymes (Pollock, 

1950). The only group of organisms whose enzymes posed a clinical problem at 

this time were the staphylococci (Kirby, 1944). Following the introduction of 

phenethicillin and methicillin to combat these, it was soon observed that several 

Gram-negative bacteria could readily hydrolyse the new compounds. Indeed, the 

gene coding for a 6-lactarnase in E. call (designated TEM) was found to be on a 

plasmid (Datta and Kontomichalou, 1965). It was thus predicted that 8 - lactam 

resistance could spread to other bacterial species. This prediction was further 

strengthened by the discovery that the TEM gene was carried on a transposon 

(Hedges and Jacob, 1974). Using a sensitive assay with a chromogenic substrate 

and high resolution isoelectric focusing, Matthew and Harris (1976) found 

8- lactamases in all the bacteria they examined including highly sensitive species 

such as streptococci. This observation supported the idea earlier put forward by 

Abraham and Chain (1940) that 8-lactamases may have a physiological role other 

than that of conferring 3-Iactam resistance. 

Work had already begun into the molecular basis of 8-lactamase activity. By 

1979. four 6-lactamase sequence analyses had been achieved by Ambler and 

co-workers (Ambler, 1975; Ambler and Meadway, 1969; Thatcher, 1975; Ambler & 

Scott, 1978). The enzymes are produced at high concentrations in certain 

Gram-positive bacteria (Kogut at al, 1956; Citri and Pollock, 1966) where much of 



the S-lactamase is excreted into the culture. In Gram-negative bacteria, synthesis 

is at a lower level and the mature enzymes are located in the periplasmic space. 

DNA sequence analysis of B-lactamases with known protein sequences, (Sutcliffe, 

1978; Lai at a/,1981; Nielsen at at, 1981) led to the elucidation of the signal 

peptides and hence the mode of secretion. 

Subsequent active site modification studies on 8-lactamases from 

Gram-positive (Cohen 	and 	Pratt, 	1980; 	Cartwright 	and Coulson, 	1980) and 

Gram-negative (Fisher 	at 	at. 	1980; 	Knott-Hunziker 	at 	at. 1982) 	bacteria has 

provided some insight into the mechanism of action of certain 8-lactamases. The 

present 	active state 	of 	8-lactamase -associated 	research is 	indicated 	by the 

number of recent reviews (Waxman and Strominger, 1983; Waley & Cartwright, 

1983; Coulson, 1985; Frere and .Joris, 1985). 

1.3. Classification of B-lactarnases 

1.3.1. Variety of B-lactamases 

Studies of the physiology, chemistry and genetics of 8 - lactamases show that 

there are a large variety of types. The earliest method used to classify 

8- lactamases involved the use of "substrate profiles", whereby rates of 

destruction of different 8-lactam antibiotics are related to benzylpenicillin or 

cephaloridine. When grouped like this, the enzymes fall into three categories:-

penicillinases (which are more active against compounds having the basic 

penicillin structure), cephalosporinases (which preferentially hydrolyse those with 

the 8-lactam ring fused to a dihydrothiazine nucleus; O'Callaghan at al. 1968) 

and broad spectrum enzymes. However the several penicillinases and 

cephalosporinases react with penicillins and cephalosporins at varying rates. 

Other differences in molecular weights, isbelectric points and susceptibility to 

inhibitors necessitated more discriminatory methods of classification. 



1.3.2. The Richmond and Sykes Classification 

Richmond and Sykes (1973) proposed the first extensive and systematic 

classification of 8-lactamases. The criteria used included substrate profile, 

molecular weight, susceptibility to various classes of inhibitors, as well as the 

location of the gene. 

The Gram-negative $-lactamases were thus divided into five groups. Class I 

comprised the cephalosporinases. In class II were placed the chromosomally 

mediated penicillinases which are resistant to cloxacillin inhibition. The broad 

spectrum 8-lactamases make up classes Ill and IV, but are distinguished by the 

cloxacillin sensitivity of the latter class. Class V enzymes are basically 

penicillinases which differ from class II in being sensitive to sulphydryl agents. 

The scheme had a serious disadvantage in that it did not cover all bacterial 

species. Hence, the staphylococcal and bacillary enzymes, which are similar to 

the Gram-negative TEM in many respects, could not be easily fitted in. This is 

because 8-lactamase genes are chromosomal in Bacillus sp (Nielsen, 1983) but 

can be on the chromosome as well as on plasmids in Staph. aureus (Dyke 

1979). In addition, some of the measurements on which the scheme depends, 

such as molecular weight, are unreliable, as different values can be reported for 

the same protein in different laboratories,e.g. molecular weights of 16,000 (Datta 

and Richmond, 1966) from ultracentrifugatiofl studies, 21,000 (Dale & Smith, 1971) 

using gel filtration measurements and 27,000 (Scott, 1972) from SDS gel 

electrophoresis, have all been reported for the F. co/i TEM enzyme. Finally, there 

is evidence that the substrate specificity of 8-lactamases can be altered by a 

small number of amino acid substitutions. Hall and Knowles (1976) described the 

isolation of point mutants of a penicillinase which had acquired cephalosporinase 

activity. 	 - 

However, the main purpose in classifying enzymes is to gain some insight 
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into the underlying principles of their function and mechanism of action (Coulson, 

1985). The best mode of classification is therefore a natural one obtained by 

comparing their primary structures (Ambler, 1975). However, sequence 

information takes a long time to gather, so the Richmond and Sykes classification 

might still serve for preliminary classification. 

1.3.3. Ambler Classification 

Ambler (1979) started a sequence-based classification for B - lactamases. Not 

only were the enzymes from Gram-positive and negative bacteria reconciled, but 

a clearer pattern for the mechanisms of action and evolution of S- lactamases 

emerged. On the basis of the sequence information available at the time, Amber 

(1980) suggested a polyphyletic origin for S-lactamases. 

At present, four classes are recognised. The relationship between them is set 

out in Fig. 1.2. Essentially, they are mainly serine enzymes and a group of 

meta llo-enzymes. 

Class A 

Class A consists of four main S-lactamases: Staph. auraus PC 1; 

S. lichen/form/s 749/C; B. ceraus 569/H $-lactamase I and F. ccli TEM. They have 

molecular weights approximately 29,000, and p1 varying from 5.9 to 9.0. They also 

differ widely in their substrate profiles as well as in other kinetic parameters. 

However, about 20 0/a of the amino acid sequences are identical in all the proteins 

and very few insertions or deletions need to be postulated in aligning the 

sequences. The extent and distribution of the sequence similarities suggest that 

they have all diverged from a common ancestral gene (Ambler, 1980). 

They are 	all 	penicillinases. 	Chemical modification of 	active 	site residues by 

inhibitors has led to the implication of an invariant serine residue. Incubation of 

class A enzymes with clavulanic acid (a metabolite of Streptomyces clavul/gerus) 



gives rise to an absorption at 280 nm. Judging from the plausible arrangements 

of bonds and the multiple bond capacity of clavulanate, it was suggested that 

inhibition was due to the formation of an a, B, unsaturated acyl enzyme 

(Cartwright & Coulson, 1980; Fisher at al. 1980). Using other derivatives of the 

inhibitor, an equivalent serine residue was observed to be labelled in both the 

TEM (Fisher et a!, 1980) and Staph. aureus enzymes (Cartwright & Coulson, 1980), 

as well as in the B. cereus enzyme (Knott-Hunziker at at, 1979). 

Class B 

The fully characterised representative of this class is the broad spectrum 

B. cereus 8 - - lactamase II (Hussein at at, 1985). It has a molecular weight of about 

25,000 and is unique in its requirement for a metal cofactor Zn 2 . The metal 

binding involves three histidine residues and a solitary cysteine (Baldwin at a!, 

1979). Sequence information clearly shows that it is different structurally and 

perhaps in its mechanism of action from the class A group. 

Another Zn 2  requiring B-lactamase has been reported in Ps. ma/tophhlia 

(Saino et a!, 1982). This enzyme differs from the B. cereus S - lactamase II in 

being a penicillinase and a tetramer of subunit molecular weight 31,000. Bicknell 

at at (1985) determined the sequence of the N-terminal 32 residues and found 

no recognizable similarity to other S - lactamases. Hence, it is not known if the Ps. 

maltophiia Li enzyme is homologous to the B. ceraus Zn 2  requiring enzyme. 

Class C 

The inducible cephalosporinase from Ps. aerug/nosa (Sabath at at, 1965; 

Mcfhail & Furth, 1973) had been purified and shown to have a molecular weight 

of 40,000, suggesting that it was unlikely to be closely related to either the class 

A or B enzymes. Jaurin and Grundstrom (1981) sequenced the amp C gene of 

E. co/i which encodes a closely related enzyme and found this to be 
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representative of  new class of B-lactamases. Other class C enzymes have now 

been characterised from Enterobacter cloacae P99 (Charlier at at, 1983), 

Citrobacter freundil and Shigella sonei (Bergstrom et al. 1983). In fact, the use of 

cloned amp c gene as a probe has revealed that a wide range of Gram-negative 

bacteria contain homologous genes (Bergstrom at at, 1983). 

Class C enzymes are more active against cephalosporins and apart from a 

requirement for an active site serine, they are structurally unrelated to class A 

enzymes. Protein/B-Iactam interaction here also involves the formation of an acyl 

enzyme. The acyl enzyme situation is better established for class C B - lactamases 

because, when they interact with benzylpenicillin in aqueous methanol, an 

intermediate (acyl enzyme) accumulates (Knott-Hunziker at at, 1982). 

Class D 

The newly sequenced oxa-2 enzyme specified by the resistance plasmid R46 

(a Salmonella tphiniurium isolate; Anderson & Datta, 1965), has been assigned to 

a new class based on its sequence relationship (Dale at at, 1985). It further 

differs from other 5-lactamases in its affinity for anthraquinone dyes such as 

Cibacron blue (Dale & Smith, 1976). It has been suggested that it might have a 

nucleotide binding domain. Though there is no evidence for nucleotide binding in 

5-lactamases, it is interesting that the complete sequence shows homology in 

some regions to rho (a DNA binding protein involved in control of bacterial gene 

expression) (D. Mossakowska, Pers. Comm.). 

Oxa-2 shows a preference for hydrolysing isoxaryl penicillins. Mechanistic 

studies have not been done for the class 0 enzyme. However, it has the 

ST-K ---- L sequence, characteristic of the active site residues of classes A and C 

eniyms. It is thus possible that it may still act via acyl enzyme formation. 

The Ambler classification is by no means closed. There are other enzymes 
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being studied in different laboratories and judging from preliminary reports e.g. 

12,000 molecular weight for the Ps. aeruginosa R151 specified enzyme (Matthew, 

1978); the ZnZ* requiring penicillinase from Ps. maltophhia (Saino et at. 1982); 

14,900 molecular weight for a Streptomvces sp UCSM-104 S - lactamase (Campos 

et at 1985); etc., new classes might need to be created. 

1.4. Genetics of 6- lactamases 

Reference has already been made to the variation in the location of 

B-lactamase genes in section 1.2.1. Class A $-lactamases are chromosomally 

mediated in Bacillus SP, while in Staph. aureus they may be on the chromosome 

or on plasmids. The closely related TEM enzyme is often plasmid borne in 

Gram-negative bacteria. For example, of 363 plasmid encoded penicillin resistant 

isolates characterised by isoelectricfocusing, 62% were the TEM type (Matthew et 

at 1979). There is no clear evidence yet of a chromosomal TEM type gene, 

although the known properties of R factors suggest that integration should 

readily occur (Meynell et a!, 1968; Novick, 1969). 

Consequently, in contrast to the evolutionary relatedness, there seems to be 

no set pattern for the genetic organisation of class A B-lactamase genes. The 

flexible arrangement has been attributed to interspecies transfer of the plasmid 

borne genes. Evidence in support of this hypothesis comes from the location of 

the TEM gene to a transposable element (Richmond et a!, 1980). This situation is 

not peculiar 'to class A enzymes. Most class C genes so far studied are 

chromosomal. None has been found on a transposon, but a plasmid encoded 

related gene has been reported (Jack & Richmond, 1970). 

An interesting revelation from isoelectricfocusing of 8 - lactamases, was that 

natural isolates possess more than one kind of enzyme (Matthew & Harris, 1976; 

Matthew & Hedges, 1976). The presence of multiple 8 - lactamases had also been 

observed in S. cereus 569 (Pollock, 1956; Nielsen & Lampen, 1983). Here, two 



class A genes are specified by the same organism in addition to a class B type. 

The two class A enzymes are immunologically distinct and, while the protein of 

type I can be loosely cell-bound or free, the type Ill is a lipoprotein which is 

more tightly bound to the membrane. A cell-free form of the type Ill enzyme is 

also produced in very small quantities. Nielsen & Lampen (1983) studied the type 

Ill form and reported that it differed from the type I enzyme in having a cysteine 

residue in its leader sequence (to which is attached the lipid moeity). 

Most 5-lactamases from Gram-negative bacteria are constitutive in that their 

rate of expression is not affected by the presence of $-lactam antibiotics. 

Exceptions have been certain class C enzymes from Entarobacter cloacae 

(Hennessey, 1967), Citrobacter freundil (Lindberg at at 1986), and Pg. aerug/nosa 

"Sabath enzyme" (Sabath at al, 1965). Induction of B - lactamase is more common 

with Gram-positive bacteria (Citri & Pollock, 1966). Inducibility is characterised by 

a long lag before maximum enzyme synthesis is achieved. In the pseudomonad, 

induction was only possible with exceptionally high concentrations of penicillin or 

cephalosporins (Sabath at at, 1965). 

In summary, some B- lactamase genes are chromosomal in some bacteria but 

are on plasmids in others. Bacteria have and express more than one type of the 

genes. Though most enzyme synthesis is constitutive, induction in inducible 

S- lactamases generally follows a peculiar pattern (characterised by a long lag 

phase), when compared with normal inducible enzyme systems (see section 

1.5.3.). 

1.5. Evolution of B- lactamases 

1.5.1. Penicillin-bacterial cell interactions 

8 - lactam antibiotics kill bacteria by interfering with the biosynthesis of the 

cell wall, an action that usually leads to lysis of the cell. Bacterial cell walls 

consist of crosslinked polysaccharide chains made up of alternating units of two 



Fig. 1.3: Schematic representation of the structure of bacterial cell wall 
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Fig. 1.3: Schematic representation of the structure of the 
bacterial cell wall. Chains of alternating N-acetyl muramic 
acid (NAM) and N-acetylglucosamine (NAG) residues are 
cross-linked by branched chain oligopeptides. The sequence 
S the oligopeptides differs in different species, but the final 
cross-link is always made by an acyl transfer from a 
C-terminal D-Ala-D-Ala bond to an amino group on a 
neighbouring chain. 
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amino sugars: N-acetylglucosamine (NAG) and N-acetylmuramic (NAM) acid. The 

complete 3-dimensional envelope (sacculus) arises from crosslinks of the 

backbone polysaccharide chains by short peptides borne on the NAM residues 

(Fig. 1.3.). 

Maintenance of cell shape and osmotic balance depends on an intact 

sacculus. Treatment: with lysozyme (N-acetylmuramide glycanohydrolase, which 

attacks 6(1 - 4) bonds) or other chemical agents which damage the bacterial 

skeleton, lead to cell leakage and death. 

The peptidoglycan sacculus is not static but undergoes extension during cell 

growth. It is during this process that cells are vulnerable to the effects of 

penicillins (Lederberg, 1956). Proteins which interact with the antibiotics (penicillin 

binding proteins, PBP) have been studied. Membrane preparations or whole cells 

are incubated with a radioactive 8 - lactam antibiotic. The membranes are 

solubilized and the proteins are separated by electrophoresis. Labelled proteins 

are identified by autoradiography. Penicillin sensitive enzymes (PSE) involved in 

peptidoglycan biosynthesis can be identified by correlating morphological 

changes in bacteria in the presence of the antibiotic with those produced in 

specific PBP mutants (Spratt St Pardee, 1975; Spratt, 1975; 1977). Using these 

techniques, the main PSEs have been identified as transpeptidases and 

carboxypeptidases (Ghuysen at a!, 1979; Spratt, 1980). 

The natural history of penicillin is complex and poorly understood. They can 

however be viewed as a weapon devised by soil dwelling fungi against 

competing bacteria. It has thus been proposed that B - lactams act by mimicking 

the D-Ala-D-Ala bond involved in the transpeptidase and carboxypeptidase steps 

(Tipper & Strominger, 1965). The ring strain of the 6 - lactams makes them good 

acylating agents, so that it is likely that some of the PBPs become irreversibly 

acylated (Coulson, 1985). 
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However, different S - lactams have varying effects on bacterial cells. This has 

been correlated to the differences in affinity for the many PSEs (Spratt at al, 

1980) involved in the different steps of cell wall synthetic reactions. Some 

penicillin-cell interactions cannot, however, be described as simply inhibiting a 

particular PSE. In Staph. aureu penicillin G causes the classical accumulation of 

murein precursors, formation of loose peptidoglycan and subsequent cell death 

(Tipper & Strominger, 1965). Ampicillin and methicillin in the same organism 

stimulate an increase in cell wall products released by the cell's autolytic system 

(Izaki et a/, 1968). At the same time, a S- lactam antibiotic added to different 

bacteria may induce very different physiological effects. Streptococcus pogenes 

and Strep. pneumon/ae have about the same minimal inhibitory concentrations. 

When either strain is treated with benzylpenicillin, Streptococcus pvogenes loses 

viability without any sign of lysis or structural damage to the cell, whereas the 

pneumococci lose viability and lyse (Tomasz et al. 1970). Analysis of some 

tolerant pneumococci indicates that resistance in these instances was due to 

suppression of the cell's autolytic system (Tomasz, 1980). 

In conclusion, the Tipper and Strominger hypothesis seems to explain many 

of the effects of penicillins on bacteria. There are, however, some cases 

(involving triggering of the cell's autolytic enzymes), for which it may not hold. 

1.5.2. Relationship between 3-lactamases and PBPs 

As 6 - lactams probably bind to the active sites of PBPs, it is tempting to 

assume that $-Iactamases evolved from cell wall synthetic enzymes. On the 

basis of active site sequence similarities between carboxypeptidases and class A 

6-lactamases, it was postulated that the latter enzymes might have evolved from 

PBPs, having found a way to reverse acylation (Waxman & Strominger, 1980). 

More sequence information about the whole carboxypeptidase molecule and 

other P8P5, have shown that, while the active site sequence similarity is a 

common property (Broome-Smith at a!, 1985), homology in other regions is 
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limited. This supports Ambler's (1980) earlier caution that active site similarity 

might simply be because they all interact with 3-lactam antibiotics. Recent 

tertiary structural analysis of B. lichen/form/s and B. cereus B- lactamases (Kelly 

at. at 1986; Samraoui at at, 1986) suggest extensive homology to Streptomycas 

sp carboxypeptidase folding. This has again been interpreted as evidence of 

divergence of carboxypeptidases and 6 - lactamases from the same ancestral 

gene. 

1.5.3. function of B-Iactamases 

The in vitro reactions of 3-lactamases with B-lactam antibiotics show a very 

high specificity (Pollock, 1960). A striking relationship between degree of 

resistance to 6-lactam antibiotics and 8 - lactamase activity can be demonstrated 

in many clinical isolates (Richmond & Sykes, 1973). Complete and permanent 

genetic loss through deletion of the gene or genes specifying the enzymes does 

not affect bacterial growth appreciably unless the antibiotics are present in the 

environment. These observations have led to the proposition that 8- lactamases 

function as antibiotic detoxifiers (Pollock, 1971). 

Evidence in support of a 6 - lactamase function in natural ecological niches 

was provided by the experiments of Hill (1970). He studied populations of 

penicillin sensitive and penicillin resistant Bacillus sp in competition with 

penicillin producing fungal isolates in sterile soil. A selective advantage was 

observed for 8 - lactamase production. In fact, increase in the use of antibiotics in 

medicine and agriculture has led to the development of new pathogenic patterns 

with newly emerged resistance strains (Broda, 1979). 

There are, however, some observations which are not in complete agreement 

with a merely detoxifying role for bacterial 6-lactamases. Firstly, the possession 

of a $-lactamase is not synonymous with B - lactam resistance; e.g. many 

Gram-negative bacteria have a gene homologous to the E. coil amp C and 
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express it constitutively at low levels (Matthew & Harris, 1976; Normark & 

Lindberg, 1985). Secondly, induction of the enzymes differs from the classical 

pathways of inducible enzymes. Whereas, in most inducible enzymes, a very short 

lag (1-3 mm) occurs before enzyme synthesis (Jacob and Monod, 1961), induction 

of Ø-lactamase in B. cereus 569 is characterised by a long lag period of 5-15 

min after addition of inducer and enzyme synthesis continues linearly irrespective 

of presence or absence of inducer (Citri & Pollock, 1966). A similar situation has 

been reported for other Bacillus sp, Enterobacter cloacae (Hennessey, 1967) and 

Rps. capsulate sp 108 (Scahill, 1981) S-lactamases. 

These observations hive been interpreted as meaning that induction is 

probably indirect, suggesting that B - lactamases might have an as yet unidentified 

physiological role in bacteria (Saz & Lowery, 1979). Since B-lactams upset 

peptidoglycan synthesis (Waxman & Strominger, 1980), the real inducer could well 

be a peptidoglycan precursor. Induction of 6 - lactamase synthesis has been 

described for exogenous low molecular weight peptidoglycan in B. cereus (Saz & 

Lowery, 1979). 

There is no doubt that the ability to produce B-lactamase confers a selective 

advantage on bacteria in both experimental and natural situations. Nevertheless, 

the diversity in B- lactamase enzymes available does lead to several questions: 

- Are 6 - lactamases long standing enzymes evolved to cope with 
"poisons" secreted by competing fungi? OR 

- Do they represent catabolic enzymes that have been recruited 
to tackle the problem of 6 - lactam toxins? 

1.6. Scope of this Thesis 

In the work reported here, two B - lactamases specified by the Ps. aeru.glnosa 

RMS 149 plasmid and by fips. capsulate sp 108 were studied. The primary aim 

was to provide sequence information for further evolutionary analysis of bacterial 

8-lactamases. 
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The pseudomonad enzyme was unusual because it has been reported to have 

a molecular weight of 12,000 daltons (Sawada et al., 1974), much smaller than 

any of those already characterised. It was thus of interest to determine its 

sequence and find out its relationship (if any) to other 6 - lactamases. A more 

detailed account of Ps. aerug/nosa RMS 149 plasmid and the 8-lactamase 

specified is given in section 3.1. 

Most of the research on penicillin-bacterial interactions has concentrated on 

Bacillus spp and pathogenic organisms. The extensive distribution of 

8-lactamases has already been mentioned in section 1.1. Penicillins and related 

antibiotics can be expected to be present in physiologically significant levels in 

soil environments associated with fungi. As a consequence of clinical 

applications, there are hospital environments where the antibiotic levels are high. 

It is, however, difficult to imagine that concentrations of antibiotics in water 

habitats will be sufficiently high to exert a penicillin-selective pressure for 

8- lactamases. It was considered of interest to analyse the structure of a 

6 - lactamase specified by a photosynthetic bacterium isolated from sewage. This 

was with a view to studying its evolutionary relationships to clinical 

8 - lactamases. 

A more detailed description of the rhodopseudomonad and the 8 - lactamase 

is given in section 5.1. In chapters 3, 4, and 5, experiments are described which 

were aimed at cloning, subcloning and sequencing the DNA encoding the two 

8 - lactamases. Difficulties in isolating and characterising both proteins as 

produced in their native states, necessitated the indirect method of DNA 

sequencing. 

In the final study reported in chapter 6, several sequence analysis techniques 

were used to explore the phylogenetic relationships between the two new 

5-lactamases and other characterised ones. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1. Materials 

2.1.1. Chemicals 

Acrylamide, N,N'-methylene-bis--acryiamide, sodium dodecyl sulphate (SIDS), 

ethidium bromide, polyethylene glycol-6000 (PEG), ficoll and adenosine 5' 

-triphosphate were obtained from Sigma Chemical Co. Ltd., London; ethylene 

diamine tetra-acetic acid (EDTA) and caesium chloride were purchased from 

Fisons Scientific Apparatus, Loughborough, Leics., England. The deoxy- and 

dideoxy nucleotides were originally gifts from the Molecular Biology Laboratory in 

Cambridge and were later obtained from Pharmacia (GB) Ltd., Middlesex. 

Dithiothreitol (DTT) and phenol were from Bethesda Research Laboratories 

(UK) Ltd., Cambridge and the antibiotics- oxacillin, cloxacillin, cephalexin, 

methicillin, and rifampicin were obtained from Sigma Chemical Co., Ltd. Ampicillin, 

cephaloridin, benzyl penicillin, chloramphenicol, kanamycin and tetracycline were 

obtained from the Royal Infirmary, Edinburgh, while carbenicillin and nitrocefin 

were gifts from Glaxo Group Research Ltd. Synthetic oligonucleotide sequencing 

primer and the M13 hybridization probe primer were purchased from New 

England Biolabs, Bishop Stortford, England. 

2.1.2. Enzymes 

T4  DNA ligase, (E.C.6.5.1 1), E. co/i DNA polymerase I (Klenow large fragment), 

T4  polymerase, Si nuclease (E.C3.1.30.1) were all bought from Bethesda Research 

Laboratories (UK) Ltd., Cambridge, while pancreatic RNAse (E.C.3.1.4.22), pancreatic 

ONAse (E.C.3.14.18) and lysozyme were obtained from Sigma Chemical Co. Ltd., 

London. 
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The restriction enzymes were bought from several sources:- NBL enzymes 

Ltd.. Cramlington; New England Biolabs, Bishop Stortford, England; and Boehringer 

Mannheim, Miles Laboratories, Stoke Poges, England. 

2.1.3. Radioactively labelled Compounds 

[- 32 P] labelled deoxycytosine 5' -triphosphate and [ 35 S1a thio labelled 

deoxyadenosine 5' -triphosphate were obtained from Amersham International 

p.l.c., England. 

2.1.4. Bacterial strains 

2.1.4.1. E. coIiK12 strains 

Strains Description Reference/Source 

ED 8654 § 2E. 	hsdR, M Laboratory stock 

HB 101 hsdS20, R, M 	recA13 Boyer et al; 1969; 
ara14, proAz, lacYl Laboratory stock 

jK2, rpsL20 (S m )R 

TG1 del (lac, 	) !3aE, thiF' Gibson, 1984; 
traD36, pro A B lac I T.J. Gibson 
ZdM15 hsd5 

C 600 !yQE44, tonA21, thrl, Appleyard, 1954; 
thri, leuB6, thil, lacYl Laboratory stock. 

FS 1585 !yE. !.aF, TonA21, thri, D.R.F. Leach 
IeuB6, thu, lacYl, recBC 

2.1.4.2. Other Bacterial strains 

Species Strain 	 Source Reference 

Ps. aeruginosa 1973E (PUE1 with 	J. Fleming Jacoby, 1974 
R151) 

Ps. aeruginosa 1920E (PUE1 with 	J. Fleming Jacoby, 1974 
RMS 149) 

Ps. aeruginosa PAOS 	 P. Mulien 

Rps. capsulata sp 108 	 J.Fleming Weaver at at, 
1975 



Genotype 

Rps. capsu/ata 

fips. capsu/ata 

Rps. sphaero ides 

2.1.5. Plasmids 

Plasmid 

M13 mp8 

M13 mpi9 

pLO 339 

p5520 

AMS 149 

pRLG 3 

pRLG 300 

pRLG 301 

pRLG 303 

pRLG 304 

pORl 

pDR2 

Weaver et a/, 
1975 

Gest, 1974 

Source/Reference 

Messing & Viera, 1982 

Messing & Viera, 1982 

Laboratory stock 
Stoker et a!, 1982 

Scahill, 1981 

Jacoby, 1977 

This thesis 

This thesis 

This thesis 

This thesis 

This thesis 

This thesis 

This thesis 
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sp 109 
	

J. Fleming 

ATCC 23782 
	

J. Fleming 
(St. Louis) 

630 
	

J. Fleming 

kan A .  Tc R 

!E12 (pBR322/BamHl)* 

CbR, c m R,S m R, S u R.  

kanA amp  
(pLO 339/Barn Hi) 

amp  (pLO 339/Barn Hi-
Xho 1) 

a m p  R  (pRLG 300,Sal 1 
and Eco Ri del) 

gg"(pLG 339/7 
Eco R1-Xho 1) 

amp R  (pLO 339/Clal-
Taq  1) 

2R mR kan R (pLG 
339/Eco Ri) 

ia mp RT 	R (pDR1 
with insert in opp. orientation) 

I 

2.1.6. Phage strains 

Phage 

Xc1857 

XLS2O 

Genotype 

c1857, Sarn7 

sb 10,  sb(2-3) ins 
!JJfl 5,red3 amp  R 

Source/reference 

Laboratory stock 

Scahill, 1981 



IF 

XLS200 
	

amp R  (Ac1857/Sall) 
	

This thesis 

* The figures in bracket denote the vector/enzyme site(s) 
flanking the insert in the recombinant plasmid 
or phages. 

** del=deletion 

insinsertion. 

2.1.7. Media 

The following compositions are per litre of medium. 

Luria broth (L-broth; Lennox, 1956) 
Bacto-tryptone (Difco), 10 9;  yeast extract, 15 g; 
NaCl, 5 g; D-glucose, 1 g; pH 7.2. 

L-agar 	 L-broth solidified with 15 gIl Difco agar. 

Nutrient broth 	 Oxoid nutrient broth, 26 g; pH 7.2. 

R-broth (Sojka at a!, 1967) Sodium pyruvate, 1.5 g; sodium hydrogen malate 1.5 
g; ammonium chloride, 0.5 g; magnesium sulphate, 
0.4 g; calcium chloride, 0.05 g; sodium chloride, 0.4 g; 
yeast extract, 0.025g. The pH was adjusted to 6.8 
with KOK or NaOH before autoclaving and sterile 
potassium phosphate buffer, pH 6.8 was added to 
(5mM) after autoclaving. 

R-agar 	 ft-broth solidified with 15 gIl of Difco agar. 

BBL-broth (Parkinson, 1968) BBL trypticase (Difco), 10 g; sodium chloride 5 g. 

BBL-agar BBL-broth solidified with 10 gIl agar. 

Top agar BBL-broth solidified with 6.5 g/l agar. 

2.1.8. Buffers 

The following formulations are per litre of solution. 

TE buffer 	 Tris base,1.21 g; EDTA, 0.37 g; adjusted to pH 8 with 
0.6 - 0.8 ml 6 N HCI. 

Bacterial buffer 	 Potassium dihydrogen orthophosphate, 3 g; sodium 
dihydrogen orthophosphate, 7 g; sodium chloride, 4 
g; magnesium sulphate, 0.2 g; pH 7.2. 

Phage buffer 	 Potassium dihydrogen orthophosphate, 3 g; sodium 
dihydrogen orthophosphate, 7 g;  sodium chloride, 5 
g; magnesium sulphate, 0.25 g; calcium chloride, 
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0.015 g; gelatin, 1% (w/v); pH 7.1. 

10 x TBE 	 Tris, 109 g; boric acid, 55 g; EDTA, 93 g; pH 8.3. 

20 x SSC 	 Sodium chloride, 173.3 g; Tr-sodium citrate, 88.2 g; 
adjusted to pH 7.0 by adding a few drops of 6 N HCI. 

Loading buffer 	 Tris base, 1.21 g; EDTA, 7.5 g; glycerol, 10% (v/v); 
bromophenol blue, 0.01% (w/v); agarose, 0.2 g; adjust 
to pH 7.5 with HCI. The mixture is heated to dissolve 
the agarose and allowed to set. Then the slurry is 
taken up and forced through a hypodermic needle 5 
- 8 times to make a homogeneous slurry. 

Universal buffer (for most endonucleases) 
Tris, 39.9 g; Magnesium acetate, 21.45 g; potassium 
acetate, 64.7 g. The solution is adjusted to pH 7.5 
with acetic acid and autoclaved. To two ml, are 
added 10 UI 1 M DTT and 2 mg of Nuclease-free 
Bovine serum albumin (BRL Ltd., Cambridge). 

2.2. Methods 

2.2.1. Handling of bacterial cell cultures and general protein methods 

2.2.1.1. Maintenance of cultures 

All the strains of E. co/i and Ps. aeruginosa used in these investigations were 

stored on L-agar stab medium and in 25% frozen gelatin solutions. 

R/iadopseudorrionas spp were maintained on R-agar stab medium. Strains 

carrying plasmids were routinely subcultured onto supplemented media for 

characterization of their phenotype. 

2.2.1.2. Growth conditions 

i) F. cal/and Pseudomonasspp. 

Liquid cultures were grown in 5 ml volumes in 10 ml bottles or in 500 ml 

volumes in 2 I Erlenmeyer flasks on an orbital shaker incubator. Routinely, H. co/i 

and Pseudomonas strains were incubated at 37 0C.. 

Large scale cultures for 6-lactamase preparations were grown in 50 I Biotech 

fermenters using L-broth. Incubation was at 37 0C, 5 h for E. col/ and 18 h for Ps. 
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aeruginosa The stirrer speed was maintained at 250 - 300 revs/mm. 

Micro-aerophilic conditions were achieved by aerating at 1.5 - 3.5 I of air/mm. 

The cells were harvested in an Alfa-Laval continous flow centrifuge and yields 

of 2 - 2.5 gIl (wet weight) were obtained routinely. Harvested cells were stored 

at -20 0C until required. 

ii) Rhadopseudomanasspp 

Rhodopseudomonad strains were grown in covered blood bottles filled with 

500 ml A-broth, and illuminated with 300W tungsten filament light bulbs. Two 

lamps were used for every 40 bottles. The cultures were placed 42 -45 cm under 

the lamps and incubated at room temperature. A perspex screen was used to 

protect the growth from the intense heat generated by the bulbs. 

Typically, 20 - 40 bottles were grown in one batch and the resulting 10 - 20 I 

cultures were harvested in a continuous flow centrifuge after incubation for 

seven days. By this time, the cultures were deep red in colour. Approximately, 40 

g (wet weight), of cells were recovered from a good growth. The cells were used 

immediately or stored at -20 °C until required. 

2.2.1.3. Measurement of bacterial growth 

Bacterial growth was determined by measuring absorbance of 1 ml culture, or 

an appropriate dilution, at 650 nm in a Perkin Elmer 320 spectrophotometer. In 

measurement of enzyme yields, bacterial growth was expressed in terms of 

mg/dry weight. This was determined by correlating absorbance to its 

corresponding mg/dry weight value in a predetermined opacity-dry weight curve. 

2.2.1.4. Opacity-dry weight curve determination 

Standard opacity-mg dry weight curves were determined for F. co/i ED 8654 

and Pg. aeruginosa 1920E. 
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Fig. 21: Opacity/mg dry weight curve: E.coIiED 8654 

01 	02 	03 	04 	05 	06 	07 	06 	09 	10 	11 	mg/ml. 

015 x 10g. 030x109  045x109  060 x109  075 X109  090x109  1:05 x 10 i20 x109  135x 109 150x109 	ceII.s 

J 



Fig. 2.2: Opacity/mg dry weight curve: Ps. aeruginosa 1920E 
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Nutrient broth cultures of the bacteria (100 ml) were grown overnight. 

Appropriate dilutions of 1 ml were made and the OD at 650 nm and the viable 

counts were determined. The remaining 99 ml were spun down and resuspended 

in 10 ml distilled water. Serial dilutions of the cell suspension were made and the 

corresponding ODs recorded using a Perkin Elmer spectrophotometer at 650 nm. 

Portions (3.5 ml) of the original suspension were put in tared beakers, dried in an 

oven at 70 0C overnight and weighed after cooling in a desiccator. The beakers 

were dried again for another 6 h, cooled and weighed. The process of drying and 

weighing was repeated till a constant weight was achieved in two successive 

operations. 

The mg-dry weight was calculated for the different dilutions. A graph was 

then drawn by plotting OD against the corresponding mg-dry weight values. The 

viable count corresponding to a particular 00 can also be calculated and 

correlated on the graph (ref. Figs. 2.1 and 2.2). 

2.2.1.5. Application of antibiotics 

Antibiotics were applied at the concentrations given below. They were 

routinely added to the molten agar before pouring plates or directly to broth 

cultures. 

Tetracycline (Tc), 10 pg/mI; ampicillin (Amp), 50 - 100 pg/mI; kanamycin (Kn), 

50 jig/ml; carbenicillin (Cb), 1 mg/ml; chloramphenicol (Cm), 50 jig/MI. 

2.2.1.6. Determination of Protein concentration (Lowry, \ 1951) 

Reagents A (100 ml 2% (w/v) Na2CO3 in 0.1 M NaOH + 1 ml 1% (w/v) aqueous 

NaK tartrate + 1 ml 1% (w/v) aqueous CuSO4. 51-120) and B (10 fold dilution of 

Folin Ciocalteau's reagent) were made. At time 0, 3 ml of reagent A was mixed 

with 0.5 ml sample. After 10 mm, 0.3 ml of reagent B was added and the mixture 

was incubated at room temperature for 1 - 3 h. 
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Standard solutions of serum albumin containing 0.05 - 0.2 jig protein were 

made and treated alongside the test samples. The extinction at 750 nm was read 

in both test and standard samples. A standard curve was obtained by plotting 

known concentration of standards against the corresponding 0D7 50  values. The 

concentration of protein in the sample was then extrapolated from the curve. 

2.2.1.7. 6- lactamase assay (Perret iodine assay. 1954) 

Penicilloic and cephalosporoic acids reduce Iodine, while their parent 

compounds do not (Groove and Randal, 1955). The Perret assay is based on 

calculating the amount of substrate destroyed by measuring Iodine used up in a 

back titration with sodium thiosulphate. 

The B-lactam was added in 0.1 M potassium phosphate buffer at a 

concentration of 7 mM. Five ml of the solution was put into two 50 ml flasksin a 

shaking water bath at 30 0 C and left to warm up for 5 mm. To oneVAsk 0.05 - 1 

ml (v) enzyme solution (depending on the level of B - lactamase activity) was 

added. After an incubation time of 5 - 20 mm (t), 10 ml of 0.0166 N Iodine in 

sodium acetate buffer, pH 4.2 was added to both test and control flasks. A 

corresponding volume of enzyme used for the assay in the test flask was also 

added to the control tube and both were left to stand at room temperature for 

10 mm. 

The residual Iodine was then titrated against 0.0166 N Sodium thiosuiphate 

using starch as indicator. The difference between the control and test flask end 

point values is the titration difference (TD). 

lnterntional S - lactamase unit/ml = 2 x TD/t x v 

An international B-lactamase unit is the amount of enzyme which will hydrolyse 

one pmol of substrate per min at 30 0C, pH 7 (Davies et at 1975). 
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2.2.1.8. lsoelectricfocusing 

To cross check that a recombinant plasmid encoded a 6 - lactamase, 

isoelectric focusing techniques were used as described by Matthew at al. (1979). 

This is based on the fact that proteins can be differentiated on the basis of their 

p1. Thus, total cell protein are resolved in a pH gradient created by carrier 

ampholytes. By specifically staining for B -Iactamase activity, one can determine 

the presence or absence of the enzyme. 

For a 19 cm x 10 cm gel. sorbitol (1.65 g) and agarose (LKB isoelectrofocusing 

grade, 0.132 g) were mixed with 15.5 ml water in a screw-capped flask and 

heated in a boiling water bath until the mixture was homogeneous. The mixture 

was cooled slightly and carrier ampholyte (0.83 ml) of the required pH range was 

added. After swirling gently, the gel was poured onto the glass. plate and allowed 

to set. The gel was run on a LKB 2117 "Multiphore" apparatus. The electrode 

strips were soaked in 1.3 ml, 0.5 M NaOH (cathode) and 1 ml 0.5 M acetic acid 

(anode) before they were applied. The samples were applied on small pieces of 

filter paper (0.5 cm x 1 cm, LKB sample application paper). Routinely 5 - 15 M 1  

samples (containing approximately 1 - 2 mg protein) were used. The electrode 

strips and sample application papers were placed on the gels according to the 

markings on the LKB template. The gel was run at 400 V (about 50 V/cm) for 1.5 

- 2 h or until focusing was complete as judged by a coloured marker protein 

(usually a cytochrome c). If required, the pki of the electrofocussed protein was 

determined by measuring the pH of the surrounding gel using a pH surface 

electrode (Russell pH , Ltd., Auchtermuchty). 

6- lactamase bands were detected by laying over the gel for a period of 1 

mm, 3MM Whatmann filter paper soaked in nitrocefin (87/312) (O'Callaghan at al. 

1972; 0.5 mg/ml in 0.1 M potassium phosphate buffer, pH 8). The intact substrate 

is yellow but becomes pink when the B-Iactam bond is opened. Thus, the 

focussed bands with 8 - lactamase activity appear pink on a yellow background. 
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2.2.2. Preparation and management of Nucleic acids 

2.2.2.1. Plasmid DNA preparations 

Small amounts of plasmid DNA for rapid screening of recombinant plasmid 

were often made from 2 ml overnight broth cultures, while large amounts were 

made from 500 ml overnight growths. 

(I) Birnboim preparation 

This refers to the preparation of plasmid DNA from small volumes according 

YbeL* 
to the Birnboim (1919) method. Chromosomal DNA is selectively denatured by 

1' 

alkaline SDS and covalently closed circular DNA is then precipitated from the 

cleared cell lysate. As small volumes are used throughout, all the operations are 

carried out in two ml polyethylene microfuge (snapcap) tubes. 

Grow cells in 5 ml universal bottles with vigorous shaking 

overnight at 37 0 C. 

Centrifuge 2 ml of broth culture at 3000g in a bench 
centrifuge (e.g. Eppendorf Model 3412) for 2 mm. 

Resuspend cells in 100 p1 lysis solution (2 mg/ml lysozyme; 
25 mM Tris.HCI pH 8, 10 mM EDTA; 50 mM glucose), vortex 
and leave at 0 °C (on ice) for 30 mm. 

Add 200 41 alkaline SIDS (0.2 N NaOH, 1% SDS) and leave on 

ice, 5 mm. 

Add 150 p1 high salt solution (3 M sodium acetate/acetic acid; 
pH 4.8) and keep at 0 °C for 1 h with occasional mixing by 

inverting. 

Spin 5 min and carefully avoiding the floating materials, 

transfer 400 M1  clean supernatant to a clean tube. 

Ethanol precipitate by adding 1 ml ethanol and placing the 
microfuge tube at -20 0 C for 30 min.  

Centrifuge 2 min and remove supernatant using a fine drawn 

out Pasteur pipette. 

Redissolve precipitate in 100 p1 dilute sodium acetate (0.1 M 
sodium acetate/acetic acid pH 6). 

Precipitate DNA by adding 200 p1 ethanol, spin, discard 
supernatant, vacuum dry pellet and resuspend in 30 p1 TE. 
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This DNA solution can be used for restriction enzyme analysis. 

(ii) Large scale plasmid DNA preparations from E. colt.' 

Grow 600 ml cells overnight, harvest and resuspend in 6 ml 
sucrose solution (25% sucrose; 50 mM Tris.HCI pH 8; 40 mM 
EDTA). 

Add 1 ml 10 mg/ml lysozyme and leave on ice for 5 mm. 

Add 1 ml 0.5 M EDTA, pH 8 and 13 ml Triton lysis mix (2 ml 
10% Triton X-100; 26 ml 0.5 M EDTA pH 8.1; 10 ml 1 M 
Tris.HCI pH 8.1; and water to 200 ml). When lysis is complete 
(as determined by clearing of the cell suspension), spin for 30 
mm (rcf36,000g). 

Decant the supernatant and make up to a density of 1.56 by 
adding 0.96 g CsCI and 0.1 ml (5 mg/ml) EtBr, per ml of 
supernatant. 

Load the plasmid suspension into suitable ultracentrifugation 
tubes (e.g. heat sealed tubes for 50 Ti rotor, OTD 50 B Sorvall 
ultracentrifuge), and centrifuge at 80,000g for 36 h at 20 0 C. 

Visualize plasmid DNA bands in the dark under longwave UV 
and remove with a syringe. 

Extract EtBr by shaking DNA suspension with an equal volume 
of NaCI saturated isobutanol, 3 - 4 times. 

Dilute CsCl by adding 2 - 3 times the volume of water. 
Precipitate DNA by adding twice the new volume of ethanol. 
Redissolve precipitate in 500 p1 TE. 

Phenol extract twice, phenol/chloroform extract, chloroform 
extract and ethanol precipitate. Vacuum dry DNA pellet and 
resuspend in TE (to a final concentration Of 5 mg/ml). 

The plasmid DNA is usually ready for use at this stage. Occasionally (due to 

failure to achieve good endonuclease digestion), a dialysis step was included. 

Thus, the DNA solution was dialysed against two changes of TE in the cold (4 0 C) 

for 1 - 2 days. This was enough to remove any residual phenol. 

(iii) Large scale plasmid preparations from Ps. aeruginosa and fips. capsu/ata 

These strains 	have 	large 	natural plasmids which also 	occur in 	low 	copy 

numbers. The best plasmid yields were obtained by first selectively concentrating 
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the plasmids in several cell lysates before the CsCl/EtBr ultracentrifugation step. 

Grow five to ten 500 ml L-broth or R-broth late stationary 
phase cultures. 

Harvest and resuspend 25 g cell pellet (wet weight) in 6 ml 
sucrose solution (see above in U). 

Add I ml each of lysozyme (10 mg/ml) and 0.25 M EDTA. 

Lyse by adding 7 ml alkaline SDS (same as in Birnboim 
preparation). Add 8 ml 3 M sodium acetate pH 5.6 and 
chromosomal DNA clumps visibly. Leave on ice for 1 h. 

Centrifuge at 17,000g for 1 h. Decant supernatant. Add equal 
volume isopropanol. Leave at -20 0C for 30 mm. 

Spin (16,000g for 10 mm) and redissolve plasmid pellet in 2 
ml TE. Pool this with 5 - 10 similar preparations and set up 
CsCl/EtBr 	gradients 	as 	in 	E. co/i 	preparations. 
Ultracentrifugation, plasmid band harvest and cleaning were 
as outlined in the preceding section. 

Pre-treatment of the crude plasmid preparation with heat-treated RNase (50 

4g/ml for 20 min at 37 0C), gave a cleaner plasmid preparation. 

2.2.2.2. Bacterial chromosomal DNA preparation 

This was according to the method of Ballard et at (1973), which is an 

adaptation of Marmur (1961). 

Spin a 100 ml fresh overnight growth culture and resuspend 
cells in 6 ml sucrose solution. For Rhodapseudomonas spp, 4 

g cells (wet weight) were used. 

Add 1 ml lysozyme solution (10 mg/ml). Leave on ice for 10 
mm. 

Add 1.5 ml 0.5 M EDIA pH 8.1 and keep on ice 10 mm. 

Add 1 volume Triton lysis mix(So.ntQ cu  

When the cells have lysed, add SDS to a 0.5% concentraton 
followed by RNAse treatment (100 4g/ml) for 30 min at room 
temperature. Add proteinase K (50 pg/mI) and leave at 37 0 C 
overnight with gentle shaking. 

Extract cell lysate with an equal volume of phenol. * Spin and 
layer the water phase onto two volumes ethanol in a small 
beaker. 
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7. Wind the precipitating DNA around a glass rod and dissolve in 
half original volume .0.1 x SSC; make up to 1 x SSC by adding 
the appropriate amount of 10 x SSC and shake with an equal 
volums of chloroform - isoamylalcohol (24:1) mixture. Spin. ** 

Repeat * to ** 5 - 8 times till there is little or no protein left in the interphase. 

The final clear DNA wound round the glass rod is dissolved in 1 ml 0.1 x SSC. 

This is phenol extracted twice and dialysed against two changes of TE for 24 h at 

4 0C. Finally the DNA is precipitated and redissolved in 500 M1  TE. The DNA 

concentration was usually determined at this stage. 

2.2.2.3- A Phage DNA preparation 

A c1875 phage DNA was used as marker DNA in all the restriction digest 

analyses in these investigations as well as a vector in a subcloning step. In 

preparing phage DNA, phage particles were first produced in a large liquid lysate, 

concentrated and cleaned in two CsCI-centrifugation steps and then phenol 

extracted. Briefly, the steps are outlined as follows:- 

(i) Plate lysates 

Resuspend a fresh plaque in 1 ml phage buffer with a drop of 

CH 3CI and leave for 10 mm. 

Adsorb 0.1 ml of phage suspension onto 0.1 ml fresh plating 
cells containing 10 MM Mg504  for 10 min at room 

temperature. 

Add 3 ml top agar and plate on fresh L-agar plates. Incubate 
fors-8h at370C. 	

I 	 I 

When confluent lysis has occured, add 4 ml L-broth to the 
plate and harvest after 1 h. Add a drop of CH3CI, titre the 
supernatant and leave till next day. 

(ii) Liquid lysates 

Dilute an overnight broth culture of sensitive bacteria (e.g. ED 
8654) 1:20 in 200 ml fresh L-broth + 10 MM  MgSO4 . 

Monitor OD every 30 min at 650 nm. When OD is 0.5, add 



phages from (I) to a multiplicity of infection 2 - 5. Check OD 
which will rise, fall when cells begin to lyse and then rise 

again. 

Add 0.5 ml Chloroform as OD begins to rise and shake for a 
further 10 mm. 

Add NaCl (0.5 M) and ONAse (1 jig/ml). Keep shaking for 
another 20 mm. 

Spin, 18,000g for 12 min to remove bacterial debris and titre 
cleared supernatant to ensure lysate was successful. 

(iii) Phage concentration 

Dissolve PEG-6000 (10% w/v) in the liquid lysate to 
precipitate the phages. Leave overnight at 4 ° C. 

Centrifuge 16,000g for 10 min and resuspend phages in phage 
buffer, 0.04 - 0.02 the original volume. 

Layer onto a CsCI step gradient (adapted from S. Bruce). The 
three solutions of CsCI used here have densities 1.3, 1.5 and 
1.7 mg/ml (i.e. 31%, 45% and 56% w/v CsCl). They were made 
up as follows: first a saturated CsCl solution (1.9 mg/ml) is 
made and diluted to obtain the different concentrations as 
follows: 

Density Volume 	Volume 	Ratio Amount in gradient 
required (1.9mg/mi) Phagebuffer 

1.9 	1 ml 	0 ml 	 0.5 ml 

1.6 	1 ml 	0.5 ml 	2:1 	 0.5 ml 

1.48 	1 ml 	1 ml 	1:1 	 1.0 ml 

1.32 	1 ml 	2 ml 	1:2 	 1.5 ml 

The solutions are overlaid from above and the phage 
suspension is added last A maximum of 10 ml sample can be 
loaded on such a gradient. Spin in a Beckman ultracentrifuge 
79,0009 for 2 h at 20 0C in a 6 x 14 rotor. 

Collect whitish phage band with a syringe, mix with 41.5% 
preclarified CsCI solution and centrifuge in a 6 x 5 Ti 
swing-out rotor, 79,000g for 24 h at 4 0C. 

5. Remove phage band with a Pasteur pipette and dialyse 
against TE for 1 h to remove CsCl. 
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(iv) Phage DNA 

Dilute phage suspension with 0.5 volume TE and phenol 
extract three times; 	phenol/chloroform 	extract once; 
chloroform extract and dialyse the water phase containing 
phage DNA against three changes of TE at 4 °C to remove 

any residual organic solvents. 

Determine DNA concentration, ethanol precipitate and 
reconstitute in TE at a final concentration of 5 mg/ml. 

2.2.2.4. RNA preparation 

This was done by the method of Shaw and Guest (1982) which is a 

modification of Salsier at al. (1967). Briefly, 

Grow a 500 ml culture in L-broth until OD at 650 nm is 1. 

Spin 16,000g for 8 mm, wash cells in 50 ml TE. 

Spin as in (2), resuspend cells in 6.5 ml RNA preparation 

solution A (5 MM  MgCl 2; 10 mM Tris.HCI pH 7.3; 10 mM KCI), 
and transfer to a sterile universal bottle. 

Add 2 mg lysozyme, freeze cells (-70 0C for 30 mm), and 

thaw. 

Add 0.9 ml 10% SIDS and incubate at 60 - 65 °C until turbidity 

drops (5 - 10 mm). 

Add 0.33 ml 2.5 M sodium acetate pH 5.2 (preparation goes 
cloudy). 

Extract with 1 volume water saturated phenol at 64 °C. Shake 

the mixture in a 65 0C water bath for 4 mm; spin 5 mm 
(16,000g); remove and discard lower phenol layer using a 
Pasteur pipette. 

Repeat (7), 6 - 8 times until phenol layer clears 

Add 1 g solid NaCI and divide the preparation between two 
siliconized corex tubes. Add 1.5 volumes cold ethanol to each 
and leave at -20 0C for 1 h. 

Spin for 10 mm, wash pellet three times with RNA preparation 
solution B (70% ethanol; 10 mM Tris.HCI pH 7.5; 10 mM NaCl). 

Vacuum dry pellet and redissolve in 1 ml water. 

Determine ANA concentration in the same way as it is done for DNA (see below). 

Routinely, the yield was 16 mg/ml. For Rps. capsulata 3 g (wet weight) cells 
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were used. 

2.2.2.5. Determination of DNA concentration 

DNA was usually resuspended in water or TE*- 	The OD at 260 and 280 

nm was determined for a 1/20 -1/200 dilution using a water/TE blank. 

00260 = 1 is equivalent to 50 jig/ml DNA 
Conc of DNA (jig/ml) = 0D260 x 50 x dilution factor 

0D 2601280 is a measure of the purity of DNA (Maniatis et a!, 1982). A value within 

the range 1.8 - 2.0 is good and such DNA was used in the cloning steps. 

2.2.2.6. DNA purification 

Standard methods (Maniatis et at 1982) were used in the purification of DNA. 

Organic solvents were used to clean and concentrate DNA while contaminating 

proteins were removed by extraction with distilled phenol. 

Phenol distillation 

Redistilled phenol was used in these investigations. Solid phenol was distilled 

in an atmosphere of nitrogen and collected under 1 M Tris.HCI pH 7.5 containing 

0.1% of 8-hydroxyquinoline (AR). 8-hydroxyquinoline is an antioxidant, an inhibitor 

of RNAse and a weak chelating agent (Kirby, 1956). In addition, it imparts a yellow 

colour which provides a convenient way of identifing the phenol phase. 

Routinely, four kg were distilled in a single preparation to yield 1 I liquid 

phenol. This was divided into 20 ml volumes and stored frozen at -20 0C after 

saturation with 1 M Tris:HCI pH 7.5. Before use, the 20 ml volume was thawed 

and pre-equilibrated with TE or water as required. 

Phenol extraction 

To phenol extract a DNA preparation, 1 volume phenol is added and the 

tube/bottle is rolled gently at room temperature for 5 mm. Spin at low speed to 
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layer. Remove the phenol layer with a Pasteur pipette. Repeat procedure twice or 

until both layers are clear and there is no protein visible in the interface. 

Sometimes (especially when working with very small volumes of DNA solutions), 

the phenol was back extracted; i.e. extracting used phenol with an equal volume 

of water oy TE. This was passed through the other volumes used and later 

pooled with the original DNA solution. 

Generally, 	the 	phenol 	extraction 	was 	followed by 	a 1 	volume 

phenol/chloroform (1:1) 	extraction 	of 	the 	DNA 	solution and 	a chloroform 

extraction to remove residual phenol. A dialysis against TE with 2 - 3 changes in 

24 h at 4 OC was sufficient to remove all organic solvents. (dialysis tubing 8/32, 

was boiled for 10 min in 1 mM EDTA before use.) 

(iii) Ethanol precipitation 

This serves to clean and concentrate DNA in a solution. It was also used 

when a change in the surrounding buffer was required. The technique is rapid 

and very efficient, allowing recovery of short DNA fragments (e.g. less than 1 kb, 

Maniatis et at, 1982). 

Add 1/10 volume 2 M sodium acetate pH 5.6 to the DNA 
solution 

Add 2 volumes cold (-20 0C) ethanol, keep 15 s in a dry 
ice/methanol bath or for 30 min at -20 °C. 

Spin 5 mm (12,000 g), and pour off the supernatant. 

Vacuum dry pellet and resuspend in TE/water. 

When DNA solutions were very dilute or fragments too small (0.1 - 0.5 kb), 

efficiency of recovery of DNA was enhanced by adding carrier tRNA (50 pg/mI) 

before using the above procedure. 
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(iv) Isopropanol precipitation 

lsopropanol precipitation serves the same purpose as (iii) and was preferred 

when there was not enough space for addition of 2 volumes ethanol to the 

tube/bottle. 

Add 1/10 volume 2 M sodium acetate pH 5.6. 

Add 0.6 - 1 volume isopropan-2 -ol to the DNA solution and 

leave on ice for 30 min or 15 5 in a dry ice/methanol bath. 

Spin 5 mm, wash pellet in 1 ml ethanol. 

Spin, vacuum dry pellet and resuspend in TE/water. 

2.2.3. In vitro DNA manipulations 

2.2.3.1. Restriction analysis 

The nomenclature for restriction enzymes is as proposed by Smith and 

Nathan (1973). 

Routinely, 0.5 pg DNA was digested in a small volume (20 - 40 p1) with 0.5 

unit of enzyme in the appropriate restriction buffer (Table 2.1) and incubated at 

37 0C for 1 h. The reaction was stopped by 10 min incubation at 70 0 C. 

Stock solutions (10 x) of the restriction buffers (shown below) were stored at 

-20 °C. When double digests were carried out, the buffer containing the lowest 

salt concentration was used. If digests could not be carried out simultaneously, 

DNA was restricted with one enzyme, ethanol precipitated and reconstituted 

before digesting with the second enzyme. Universal buffer (section 2.1.8) was 

found to be sufficient for most restriction endonucleases in my experience. 

Table 2.1: Restriction assay buffers. 

Enzyme 	EDTA Trms-HCI 	pH 	NaCl MgCl 2  2-Me 
	

BSA  

Bam Hi 	 - 	6 	7.5 	50 	6 	6 
	

1 

EcoRl 	 - 	100 	7.5 	50 	5 	- 
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7 
500 100 	- - 

150 6 	- - 

- 10 	- 0.1 

50 6 	- 0.1 

6 6 	6 0.1 

500 100 	- 0.1 

100 - 	 - - 

Hind Ill 	 - 60 7.5 

Xhol 	 - 500 - 	 7.5 

SaIl 	 0.2 8 7.6 

Clal 	 - 10 8.0 

Sau3A 	 - 6 7.5 

WET 	 - 6 7.5 
- 500 7.5 

Ddel 	 - 100 7.5 

€,?,94- +&0qssi1) 
All concentrations are in mM. 

A 

2.2.3.2. Gel electrophoresis 

DNA fragments resulting from enzyme digestions were separated using 

agarose gel electrophoresis. All the gel apparatus used in these investigations 

were constructed in this laboratory from perspex. 

(i) Agarose gels 

These were run according to the recommendations of Maniatis et al. (1982). 

For gel analysis of restriction digests, 0.75% agarose gels (200 ml) were run 

overnight at 16 mA (LKB, Multiphor 2117) in horizontal perspex plates (160 cm x 

250 cm) set between two buffer tanks. Muslin wicks were used to connect the 

gel to the gel buffer (40 mM Tris.HCI pH 8.2; 20 mM NaAc; 1 mM EDTA) in the 

tanks. Minigels (1% agarose gels) were used for rapidly checking the efficiency of 

digestion as well as the range of the resulting fragments. They were run at 40 

mA for 40 - so min in 	the "concorde" apparatus 	in which the 	gel is 	totally 

submerged in the gel buffer. 

Agarose gels were made by adding the appropriate amount of agarose to the 

gel 	buffer and dissolved 	by 	boiling 	for 	5 	mm. The cleared solution was then 

cooled to about 50 0C and poured. Samples were mixed with 1/3 - 1 volume 

loading 	buffer (section 	2.1.8) 	and 	applied 	to preformed 	wells 	in 	the gels. 

Routinely, the sample was run into the gel at a high voltage (500 V) and when 

the blue dye had run into the gel, the voltage was lowered to 70 - 100 V. so as 

to achieve the appropriate current flow. For the large horizontal gels which were 



34 

often run overnight, the gel was then covered with Saran wrap. 

The gels were stained with the fluorescent dye ethidium bromide (Sharp et 

direcF 
al. 1973) either by, incorporation into the gel (0.5 pg/mI) or by soaking 

electrophoresed gel in 0.5 pg/mI EtBr solution for 20 - 30 mm. The gel is then 

destained for 15 min in water to remove nonspecifically bound dye. 

The gels were viewed under UV and photographed using Ilford FP4 film 

through a red filter (Kodak Wratten filter number 9). 

(ii) Purification of DNA fragments from gels 

It was sometimes necessary to isolate a specific DNA fragment from a 

mixture, especially as this gave more specific recombinants. 

The DNA was digested with the required enzyme(s) and run in the submerged 

minigel apparatus for 20 min to 2 h depending on the relative sizes of fragments 

being fractionated. Low gelling temperture (LOT) agarose (1%) was used in these 

steps and was usually poured S - 16 h before use and kept at 4 0 C. 

The gel was stained, visualized and photographed as outlined ,  in section (i) 

above. The agarose surrounding the target fragment was then cut out, placed in 

a sterile microfuge tube and left at 65 0C for 10 min to melt. The tube was 

cooled down to about 40 0C at room temperature, phenol extracted three times, 

back extracted and isopropanol precipitated. The pellet was washed with 1 ml 

ethanol, vacuum dried and resuspended in 20 41 TE. 

2.2.3.3. Ligation 

Target and vector DNA (0.2 pg each) were restricted separately with the 

appropriate enzyme(s), pooled and ethanol precipitated. The mixed fragment 

pellet was resuspended in a 10 - 20 41 ligation "cocktail" (Tris.HCI p14 7.5, 660 

mM; EDTA pH 9, 10 mM; MgCl 2 , 100 mM; 2-mercaptoethanol or DTT, 100mM; 
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ATP, 10 mM; NaCl, 400 mM; T 4  ligase, 400 - 800 units). 

The 	ligation 	mixes were 	then 	incubated 	overnight at 	16 	°C. Controls 

containing 	target 	DNA and 	no 	vector, 	and 	vice 	versa, were 	also routinely 

included. 

2.2.3.4. Recombinant plasmid/phage recovery 

The in vitro recombination reactions mediated by T 4  ligase generate a range 

of recombinants depending on the fragments present originally. With a 

knowledge of the phenotypic characters coded for by the various DNA fragments, 

one can select for these characters after transformation or transfection of the 

recombinant DNA into the appropriate hosts (competent cells). 

(i) Making competent cells 

In the investigations reported in this thesis, the competent cells were bacteria 

treated such that they could accept foreign DNA upon subsequent transformation. 

The procedure used was an adaptation from Mendel and Higa (1970). 

Dilute a fresh overnight growth of a competent strain (HB 101, 
ED 8654, etc.) 1:50 in L-broth and grow till 013650=0.55. 

Chill culture on ice and spin, 17,000g for 10 mm. 

Wash cells in equal volume of cold (0 0 C) 100 MM  MgCl2. 

Spin and wash cells again in 1/2 volume 100 MM  MgCl2. 

Spin and resuspend cells in 1/10 volume 100 mM CaCl2. 

Keep on ice till use. 

Routinely, 100 41 competent cells were tested by transforming with 0.2 jig 

plasmid DNA of known phenotype and spreading on appropriate media. The rest 

of the competent cell preparation was kept at 4 0C overnight, awaiting the test 

results. 



(ii) Transformation/transfection 

• 	 For transformation, 	10 - 20 p1 DNA solution was mixed with 100 - 200 p1 

competent cells, left on ice for 30 mm, heat shocked at 42 °C for 2 min and put 

back on ice for a further 30 mm. L-broth (1 	ml) was added and the tube was 

incubated 	at 37 	°C for 30 	min to allow 	expression of any recently 	acquired 

gene(s), 	before 	0.1, 	0.3, 	and 	0.5 ml 	portions 	were spread on 	L-agar 	plates 

containing the relevant antibiotics. 

During transfection, the recombinant DNA solution was diluted by adding an 

equal volume of TE. Then, 10 - 20 p1 samples were mixed with competent cells 

as outlined above in transformation. Plating cells (100 p1) were added to the 

transfected cells before spreading on L-agar plates containing ampicillin. 

While the appearance of stable colonies signified positive transformants 

during selection for the presence of recombinant plasmids, the recombinant 

phage carrying an amp gene was identified as a distinct plaque surrounded by a 

halo of bacterial cells. 

2.2.4. DNA sequencing 

2.2.4.1. Introduction 

The principles involved in the dideoxy sequencing methods have been 

thoroughly described (Sanger et a!, 1977; 1980; Bankier & Barrell, 1983), so only 

an outline of the various steps is given here. 

In general, the DNA fragment to be sequenced is purified, ligated, on itself (to 

minimise the availability of loose ends) and sonicated. The resulting random 	* 

population of DNA fragments are treated with T 4  DNA polymerase to fill in any 

single stranded ends, fractionated to select fragments of sizes between 300 - 

600 bp, and then cloned into the Sma 1 site of a double stranded M13 vector. 

The recombinant DNA is transfected into E. coil host cells, which are 
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subsequently spread on L-agar plates containing inducer and indicator molecules. 

Successful recombinants are identified by the white plaque phenotype as against 

the unchanged vector blue plaques. 

Single-stranded templates are made from packaged phages. Primed synthesis 

across the insert is effected by addition of Klenow DNA polymerase and four 

precursor deoxynucleotides, one of which is radioactively labelled. Specific 

termination at each of the four deoxynucleotides is brought about by including in 

the deoxynucleotide mixes, dideoxynucleotide triphosphates (ddNTPs). Four 

separate reactions are carried out and the four sets of reaction products are 

fractionated on denaturing polyacrylamide gels. The corresponding sequence is 

then read off the ladder of terminated fragments. 

2.2.4.2. The random cloning strategy 

Three main ways have been used in generating DNA segments for sequencing 

in M13 vectors: 

- By the use of specific restriction endonucleases. 

- By cloning a large DNA fragment into double stranded M13 DNA 
and in time course digests with exonuclease Ill (Anderson, 
1981), generating a random range of deletions spanning the 
whole insert. 

- Mechanical shearing of DNA. 

The generation of discrete DNA fragments with specific restriction enzymes has 

the disadvantage that the relevant site(s) might not be present, especially when 

dealing with sizes which are 3 kb or less. M13 vectors do not grow well with 

large inserts, with the consequent production of reduced yields. Deletions also 

arise at low frequency by aberrant homologous recombination and the shortened 

mutants tend to outgrow the full length phage. Prior to sequencing, this anomaly 

cannot be easily detected. Thus, shearing DNA by using mechanical force seems 

a more practical way to generate random DNA fragments for sequencing. By 
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sequence accumulation is plotted against the theoretical 
number of gel readings required to determine the sequence of 

a S kb fragment on both strands, assuming an average 
number of 250 bp per clone. 
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introducing the fractionation step, a range of fragments tolerated by M13 vectors, 

and allowing for competition during the subsequent ligation step, is selected. The 

latter is deduced from the observation that smaller fragments tend to be picked 

up repeatedly. 

In random sequencing, each base must be determined twice on each strand. 

All gel readings must also overlap with two other gel readings; i.e. one on either 

side in order to ensure that no data are missed. The lowest practical limit for 

determining a sequence would be to determine a base on average three times. 

Thus theoretically, for an average gel reading of "a" bp, one would require: 

N clones = 6 x L/a 

where, L = length of DNA to be sequenced in bp 

a = average reading in bp/gel 

Nevertheless, the sonication protocol proved less efficient than was expected. As 

illustrated in Fig. 2.3; (Bankier and Barrell, 1983), the theoretical number of gel 

readings of 250 bp • each, required to complete a sequence of 5 kb DNA on both 

strands, shows a great deal of redundancy towards the completion of the 

sequence. There is, however, an unquantified but valuable increase in confidence 

in the completed sequence as a result of the extra accumulated data. 

- 	Hence, after more than 	100 gel 	readings, about 95% of the sequence was 

obtained 	and a 100% increase in gel 	readings 	did not 	significantly 	make any 

difference. The project 	could be completed 	by 	extending readings 	of gels 

adjacent to gaps. Where this is not practicable, clone turn arounds of gels in the 

region can supply the missing data (Bankier & Barrell, 1983). 

The random sequencing protocol has another advantage in that it is quick as 

all cloning and preparation of templates can be completed in less than one week. 



2.2.43. Cloning into M13 

Purify the fragment to be sequenced as outlined in section 
2.2.3.2.(iii). 

Self ligate 5 - 10 jig fragment in a 30 p1 volume ligation 
"cocktail". 

Check ligated DNA on minigel and sonicate if percentage of 
re-ligation is about 80%. Where re-ligation was too efficient, 
10"/ total DNA of linear fragment was added before 
sonication. This was necessary as religated junctions 
containing inverted repeat regions do not clone into M13 
vectors. In these experiments, a Cup-Horn sonicator made by 
Heat Systems Ultrasonics, Inc.,. model W-375, was used. The 
sample is given two bursts of 60 s each and spun in between 
treatments and afterwards. 

End repair fragments by adding 2 p1 0.25 mM dNTPs (chase) 
and 2 41 T4  polymerase. Leave at room temperature for 30 
mm. 

Size fractionation:- Add 6 p1 loading buffer and apply sample 
in a 1 cm slot of a 40 ml 1.5% agarose gel and run at 30 mA 
until the blue dye has run 1 - 2 cm into the submerged 
minigel. View under UV, cut a 1 cm by 2 cm slot at the lower 
limit of the required size by comparing with an adjacent track 
containing pBR322 Sau 3A fragments (1.5 kb, 650 bp and 350 
bp). fill slot with 800 p1 TBE and electroelute DNA into buffer 
by running the gel at 20 mA for 45 5, 15 times (i.e. remove 
the buffer and refill after every 45 s, 15 times). Phenol extract 
DNA solution once, isobutanol clean and isopropanol 
precipitate. Ethanol wash, vacuum dry and reconstitute in 40 
p1 water. 

Vector preparation:- M13 mp8 (and later M13 mpl9) 
double-stranded plasmid DNA was digested with Sma 1, calf 
intestinal phosphatase enzyme treated and phenol extracted. It 
is then isopropanol precipitated, ethanol cleaned and vacuum 
dried before resuspending in water (1 pg/mI). 

Ligation of the sonicated and end-repaired target DNA 
fragments into M13 vectors was as outlined in section 2.2.3.3. 
in 10 p1 mixes. 

Transfection:- The E. co/i (TG1) host cells were made 
competent using the Hanahan method (1983) as follows: 

Dilute an overnight broth culture of TG1 (1:100) in 
L-broth and grow at 37 0C until OD 650  is 0.4 - 0.6. 

Spin 16,000g at 4 0C, resuspend cells in 3 ml 
Hanahan transformation buffer (10 mM MES, pH 6.2; 
100 mM KCI; 45 mM MnCl2.4H20; 10 MM 
CaCl2.2H20; 3 mM hexaminecobaltic chloride) 

39 
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c. Add 100 p1 DMF, leave 10 min on ice, add 100 p1 
DTT solution (2.25 M DTT, 40 mM KAc pH 6), keep 
on ice for a further 10 mm. Add 100 p1 DMF, leave 
on ice for 5 min and cells can now be used. 
Transformation efficiency was observed to be 
reduced to zero if cells were not used within 1 h of 	 $ 

preparation. 

To 200 p1 competent cells, add 1 - 2 p1 portions of the 10 p1 
ligation mixture and keep on ice for 45 mm. Neat shock at 42 

°C for 2 - s min and add 3 ml top agar, 25 p1 2% BCIG (Xgal) 

in DME and 25 ul 2.5% IPTG. 

Add 100 p1 plating cells and spread on L-agar plates. Incubate 

at 37 °C overnight. 	- 

2.2.4.4. Template DNA preparation 

Put two ml of a 1:100 dilution of an overnight culture of TG1 
into a 5 ml glass culture tube and pick a white plaque into 
each tube. 

Grow with vigorous shaking at 37 0 C for 4 - 5 h. Spin culture 
in a microfuge tube, 5min at 16,000g, and transfer supernatant 
to a clean tube. 

Add 150 p1 PEG solution (20% PEG; 2.5 M NaCI), and leave at 
room temperature for 10 mm. 

Spin 5 mm, suck off PEG solution, respin for 30 5 and remove 

residual PEG solution. 

Resuspend the phage pellet in 100 p1 0.3 M NaAc pH 5.6 and 
phenol extract (100 p1 phenol), isopropanol precipitate, ethanol 
wash and vacuum dry the phage DNA. 

This is the template DNA solution and was stored at'-20 ° C until required. 

2.2.4.5. Sequence reactions 

All sequencing reactions were carried out in microtitre plates. Wells are 

marked out for T, C, G and A reaction mixes. 

Dispense 2 p1 template DNA into each well in sample rows of 
4 wells/clone. 

Add 2 p1 of primer mix (0.2 pmol, 17mer primer; 100 mM 

Tris.HCI pH 8; 50 MM  MgCl 2), to each well. 
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Make the different nucleotide mixes for 1, C, G and A 
reactions (see below) and dispense in 2 111 portions to the 

appropriate well. 

Mix the above solutions by covering microtitre plate with 
Saran wrap and spinning for 30 s in an IEC Centra-3 bench 
centrifuge. 

Incubate in a 55 0C oven for 30 min and add 2 p1 of the 
enzyme/label "cocktail" (0.1 mM DTT; Klenow polymerase, 2 
units; [ - S1 ATP, 4 pCi; 0.07 mM Tris.HCI pH 8). Spin to mix 
and incubate at room temperature for 20 mm. 

Add 2 p] chase (0.25 mM cold dNTP5) and leave at room 
temperature for another 15 mm. 

Add 2 p1 formamide dyes (100 ml deionized formamide; 0.1 g 
xylene cyanol EF; 0.1 g bromophenol blue; 2 ml 0.5M EDTA), 
spin and keep sample at 80 °C for 15 mm. 

This encourages DNA denaturation as well as reduction in the water content. 

Load onto denaturing polyacrylamide gels. If samples were not electrophoresed 

immediately, they were stored for up to one week at -20 0C. The solutions in the 

sequencing reactions were dispensed using a Hamilton PB600 repetitive dispenser 

fitted with a 1710 LT syringe. 

Nucleotide mixes 

The nucleotide mixes were made up by mixing the appropriate amounts in p1 

volumes as shown below: 

Stock solution T C G A 

0.5 mM dTTP 25 500 500 500 

0.5 mM dCTP 500 25 500 500 

0.5 mM dGTP 500 500 25 500 

10 mM ddTTP 50 - - - 

10 mM ddCTP - 8 - - 

10mMddGTP - 
- 16 - 

10mMddATP - - 
- 3 

TE (10 mM, 0.1 1000 1000 1000 1000 

mM EDTA pH 8) 
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dNTP chase 

0.25 mM dTTP; 0.25 MM dCTP; 0.25 mM dGTP; 0.25 mM dATP. 

2.2.4.6. DNA sequencing gels 

Pouring the gel 

Routinely, 50 x 50 cm glass plates were used for running the sequencing gels. 

The plates were thoroughly cleaned with soap and water and dried. The top 

(notched) plate was siliconised and both plates were cleaned with alcohol. The 

plates were then taped together, using yellow 2.5 cm wide Selotape, separated 

by 1 cm wide plastikard spacers. 

For each gel, S x IBE gel mix (7 ml, 5 x ThE gel mix; 14 p1 AMPs; 14 41 

TEMED) and 0.5 x TBE gel mix (45 ml, 0.5 x TBE gel mix; 70 p1 AMPs; 70 p1 

TEMED), were prepared. In a 25 ml pipette, 6 ml 0.5 x TBE gel mix and all 7 ml of 

the S x TBE gel mix were taken up. With the taped plates held diagonally, the gel 

mix was carefully poured down one edge and when nearly all the gel mix in the 

pipette had gone in, the plates were lowered to the horizontal level to stop the 

flow. The rest of the 0.5 x TBE gel mix was then put in using a pre-filled 30 ml 

plastic syringe. The slot-former (also made of plastikard) was put in place and 

both top and bottom edges of the plates were clamped. The gel was left lying 

horizontally for 20 - 30 min to set 

Loading the sample 

The slot former was removed and the glass plates holding the gel were 

clamped onto the vertical gel apparatus used for running sequencing gels. TBE 

buffer (single strength) was poured into the top and bottom tanks. Denatured 

DNA sample (from section 2.2.4.5) was loaded onto marked slots using drawn out 

capillary polypropylene tubing. The gel was electrophoresed at 37 - 40 mA for 3 

h (or 15 min after the deep blue dye had run out of the bottom of the gel). 
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The glass plates were disengaged from the gel apparatus and the notched 

plate was carefully prised off. The gel, still on the whole glass plate was fixed in 

10% acetic acid and 10% methanol for 15 mm. After draining the gel, it was 

transferred to 3MM Whatman paper, covered in Saran wrap and dried on a gel 

drier at 80 0C for 30 min to 1 h. 

The Saran wrap was taken off and the dried gel was placed in direct contact 

with an X-ray film overnight in a cassette. 

Gel solutions 

40% acrylamide stock solution 
38% acrylamide. 2% bis-acrylamide. The solution is 
made up in distilled water and deionized by adding 
20 g Amberlite MB1 resin (Hopkin and Williams). The 
solution is then filtered and stored at 4 0C until 

required. 

0.5 x TBE gel mix 	 150 ml 40% acrylamide; 50 ml 10 x TBE; 460 g urea, 
made up to 1 I with water. 

5 x TBE gel mix 	 150 ml 40% acrylamide; 500 ml 10 x TBE; 460 g urea; 
50 mg bromophenol blue, made up to 1 I with water. 

2.2.4.7. Clone turn around 

After sequencing more than twice the theoretical number of clones required 

(see section 2.2.4.2), some regions were still sequenced only on one strand in the 

Aps. capsu/ata derived fragment (section 5.5). A clone in M13 mp8 was then 

turned around in order to determine the complementary sequences (Bankier & 

Barrell, 1983). Essentially, a template likely to contain the required region 

(because it starts upstream of it and because it has the desired length as 

observed on the sequencing gels), is primed and made double stranded by 

addition of Klenow and four cold deoxynucleotides. The insert is cut out by the 

use of two enzymes having sites on both sides of the polylinker (Eco Ri and 

8am Hi). The excised DNA fragment is then cloned into M13 mp9 or M13 mp19 

which have the cloning sites of the polylinker in the opposite orientation. Thus, a 



single stranded template generated from the resulting clone is complementary to 

the original M13 mp8 or M13 mp18 clone. Briefly; 

Anneal 8 p1 template DNA, 4 p1 sequencing primer and 2 p1 
Tris.HCI pH 8; MgCl2 buffer in a 60 °C oven for 30 mm. 

Add extension "cocktail" (6 p1 chase; 1.5 units Klenow) and 
leave at room temperature for 30 mm. 

Phenol extract once, isopropanol precipitate and ethanol wash. 
Dry and reconstitute pellet in 14 41 water. 

Digest double stranded DNA by adding 2 p1 each of Barn Hi 
and Eco Ri enzymes. Incubate at 37 0C for 1 - 2 h. 

Add colourless loading buffer (25% sucrose solution) and load 
into 1% LGT agarose gels using the 1 cm slot. Run gel at 35 
- 40 mA for 15 - 20 mm. Cut out small insert band and purify 
as outlined in section 2.2.3.2.(iii). 

Ligation of purified fragment to M13 mp19, template DNA preparation and 

sequencing procedures were executed in the same way as outlined for M13 mp8 

clones (sections 2.2.4.3 - .6). The templates prepared in M13 mp19 were usually 

checked for hybridization to M13 probes (section 2.2.5.3 below), made from the 

original M13 mp8 clones before sequencing. 

2.2.4.8. Computer methods for analysis of sequences 

A Vax 11/780 computer (Digital Equipment Corp. Marynard. M.A. USA) was 

used for compilation and analysis of all the randomly generated DNA sequences. 

In addition, a Graf/bar GP7 sonic digitizing device (Science Accessories Corp. 

Boston, USA) and VT640 enhanced graphics terminal (Digitizing Engineering Inc. 

Sacramento, USA) were also used. 

Most of the sequence analyses were carried out using the Staden programs 

which are written in standard Fortran and are mostly interactive. The program 

GELIN (Staden, 1984) was used to enter new sequence data into the computer by 

reading direcitly from an autoradiograph using the Graf/bar digitizer. The gel 

readings were checked for the presence of the restriction enzyme sequences 
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used in excising the original fragment and for homology to any M13 sequences 

using the program SCREENV (Staden, 1982). Any vector sequences were rejected 

by the program. DBAUTO (Staden, 1982a) was then used to compile the sequence 

database. Problem gel readings, editing the database and other functions were 

dealt with by using the general database handling program DBUTIL (Staden, 

1982a). 

The major analysis programs used for interpreting the sequences were 

ANALYSEQ (Staden, 1984) which has options to search for most of the properties 

of nucleic acids and proteins; and DIAGON (Staden, 1982a) for the diagonal 

matching of homologous sequences. Many of the results are presented 

graphically on the VT640 VOL.). 

For interpretations of sequence relationships (chapter 6), some programs of 

the University of Wisconsin Genetics computer package (UWGCG) were used. 

Protein sequences were matched using BESTFIT and GAP. Protein databases were 

searched for sequences homologous to open reading frames using 

WORDSEARCH. CHOUFAS was used to obtain secondary structure predictions and 

PRETTY served to align nucleotide and protein sequences. 

2.2.5. In vitro labelling of DNA and hybridization techniques 

2.2.5.1. Strategy 

Hybridization studies were carried out to ensure that recombinant DNA 

originated from target DNA. Firstly, the DNA (restricted and run on agarose gels 

or from plaques) was transferred and fixed onto nitrocellulose filters. The 

immobilized DNA was exposed to the probe in conditions which permit 

hybridization and then washed in a series of buffers to remove all non-specific 

binding. The filters were later dried and autoradiographed so that related DNA 

could be identified as those which produced dark spots/bands. 
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2.2.5.2. Blotting DNA & RNA onto nitrocellulose filters 

(I) Southern transfers 

DNA bands were transferred from agarose gels onto nitrocellulose filters 

according to the method of Southern (1975). 

Digest DNA samples to be blotted and run gel using large 
horizontal plates. 

Visualize gel under UV (long wavelength) and photograph. If 

necessary, cut gel to minimum size. 

Soak gel in denaturation solution (0.5 M NaOH, 1.5 M NaCI) for 

40 - 60 mm, depending on the size of gel. 

Wash in distilled water for 1 - 2 mm. Neutralize in 1 M 

Tris.HCI pH 5.5; 3 M NaCl for 1 h. 

Wash in 2 x SSC for 10 mm. 

Place a perspex or glass plate slightly bigger than the gel on 
two big bungs in a tray. Fill tray 2 cm lower than the plate 
with 20 x SSC. Wet two layers of blotting paper with 2 x SSC 
and lay over the plate so. that they dip into the solution 
(these are the wicks). Now, place the gel on the wicks and lay 
nitrocellulose filter (cut to same size as gel), on top of the gel 
after thoroughly wetting it with 2 x SSC. Carefully remove air 
bubbles. 

Soak two Whatman 3MM filter papers (cut to same size as 
gel) in 2 x SSC and lay on top of filter. Cut ordinary blotting 
paper to same size as gel, enough to make a wad 15 - 20 cm 
thick. Place wad of blotting paper as well as a weight about 1 
kg on the filter paper and allow transfer to continue for 16 - 
48 h. 

B. Remove filter and soak in 2 x SSC for less than 1 mm. 

9. Air dry for 30 min at 37 °C• vacuum dry at 80 0C for 2 h. 

Filters were stored in sealed plastic bags until required. Some filters were reused 

by boiling in distilled water for 10 - 15 min to disengage bound probe. 

(ii) Plaque blotting 

This was done according to the method of Benton and Davies (1977). Petri 

dishes (in duplicates) containing plaques were chilled at 4 0 C to harden the top 
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agarose. Nitrocellulose filters cut with a circular template were marked and 

placed on the plates for 1 mm. Next, the filters were carefully removed and: 

- placed on a pad of Whatman 3MM filter paper soaked in 0.5 M 
NaOH; 1.5 M NaCl for 2 mm (the surface which had been in 
contact with the plaques being placed uppermost), 

- submerged in 0.5 M Tris.HCI pH 7.4; 3 M NaCl for 10 mm, and 

- rinsed in 2 x SSC for less than 1 miii. 

The filters were then air dried and vacuum baked at 80 °C for 2 h. 

(ii) Dot blotting of DNA/RNA 

Purified nucleic acid solutions were used for testing M13 clone turn around 

templates (refer to section 2.2.4.7) and RNA preparations, in order to ensure that 

the RNA preparation contained sequences that would interact with the probe. 

For M13 templates 

Template DNA (5 ul) was spotted onto dry nitrocellulose filters which were then 

placed on wads of blotting paper soaked with the following solutions:- 

0.5 M NaOH, 3 mm; 

0.5 M NaOH, 1.5 M NaCl, 4 - S mm; 

3 M NaCl, 1 M Tris.HCI pH 7.5, 2 mm; 

3 M NaCl, 1 M Tris.HCI pH 7.5, 2 mm. 

The filter was washed in 2 x SSC for 4 mm, air dried at 37 °C and baked at 80 °C 

under vacuum. 

RNA dot blotting 

Nitrocellulose filters cut to the appropriate size, were pre-equilibrated in 3 M 

NaCl, 0.3 M sodium citrate pH 7 (20 x SSC) for 10 min and air dried at 37 ° C for 

30 mm. Samples of RNA (10 Mg)  were spotted on, dried at 37 °C for 30 min and 
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the filter was baked in vacuo for 2 h. 

22.5.3. Probes 

(i) Nick translation 

Labelling of DNA by nick translation was carried out according to the method 

of Rigby at at (1977) in 2 ml microfuge tubes containing: 

3 p1 (0.25 - 1 pg) double stranded DNA sample (can be 
fragment, plasmid or phage). 

20 p1 1 x buffer + cold dNTPs (see below), 

1.5 41 [c- 32P]dCTP (20 pCi), 

1 p1 DNAse I stock solution. 

The mixture was left at room temperature for 1 - 1.5 min and 0.5 p1 E. co/i 

polymerase 1(1 unit/pI) was added. The tube was then kept at 15 0C for 3 h. 

The reaction mix was passed through a sterile Sephadex G-50 column (15 cm 

x 0.7cm) to separate labelled DNA from unincorporated nucleotides. The column 

was eluted with sterile water and Cerenkov counts were determined for 5 p1 

fractions. A successful nick translation reaction is characterised by two 

radioactive peaks - the first corresponding to labelled DNA and the second one 

to unincorporated label. The first peak was usually pooled and used as probe in 

the hybridization reactions. 

Solutions used 

1 x buffer + cold dNTPs 	100 p1 4 x buffer; 4 p1 2 mM dTTP, dGTP, dATP; 1 41 
3-mercaptoethanol; 290 p1 water. 

4 x buffer 	 210 mM Tris.HCI pH 7.5; 21 MM MgCl 2; 20 49/ml 

BSA. 

DNAse I stock solution (2 x io mg/ml DNAse in Polymerase I buffer) 
1 p1 2 x polymerase dilution buffer; 4 p1 1 mg/ml 
DNAse I; 1 ml glycerol. Mix 20 p1 of 2 x io mg/ml 

DNAse solution (from above) with 1 ml 2 x 
polymerase I dilution buffer, and 1 ml glycerol to get 
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working DNAse I stock solution 

2 x Polymerase I dilution buffer 
2 ml 1 mg/ml BSA or gelatin; 100 41 2 M ammonium 
sulphate; 20 p1 1 M B-mercaptoethanol; 100 41 1 M 
Tris.HCI pH 7.5. 

The solutions were dispensed into 250 p1 aliquots and stored at -20 °C. The yield 

was routinely 1.5 x 10 cpm (Cerenkov). 

(ii) M13 probe 

The primer extension method of Hu and Messing (1982) as modified by Brown 

(1982) was used to make single stranded template DNA, radioactive. In this 

instance, the primer (PH M 235) is complementary to a region on the 5' side of 

the insert. Thus, while the M13 vector is made double stranded, the insert 

remains unpaired and can be hybridized to related DNA. In short:- 

Mix 5 p1 M13 template, 1 p1 10 x Hin buffer (Tris.HCI pH 8, 1 
mM; NaCl, 6 MM; MgCl2, 0.66mM); 1 41 primer PH M 235; and 
3 p1 water. Boil for 3 mm. 

Cool to room temperature and add 3 p1 500 pmol dATP, dCTP, 
dTTP mix; 6 p1 water; 1.5 p1 [ct- 32P]dCTP (10 pCi); 1 p1 Klenow 

(1 unit). 

Incubate at room temperature for 90 min and terminate the 
reaction by adding 100 p1 10 mM EDTA. This preparation was 
then used in hybridization reactions without any further 

treatment. 

(ii) Prime-cut probes (Farrell et a!, 1983) 

Single-stranded prime-cut probes were used in Si mapping experiments. The 

probes were generated by replicating the relevant template DNA and purifying 

the resulting complementary strand. Briefly, 

1. Mix 8 p1 template DNA, 4 p1 (0.2 pmol) sequencing primer and 
2 p1 100 mM Tris.HCI pH 8; 50 mM MgCl2 buffer. Incubate at 

55 - 60 °C for 30 min.  



Initiate polymerisation by adding 50 mM dTTP, dGTP, dATP 

mix, 10 pCi [a- 32 P]dCTP and 1 unit DNA polymerase (Kienow) 
to a final volume of 20 p1. Leave at room temperature for 20 

mm. 

Add chase of 1 p1 (50 mM cold dNTP mix), and continue 

reaction for 5 mm. 

Add restriction enzyme buffer and a restriction enzyme which 
cuts at a chosen site. Eco Ri which cuts on the 5' end of the 
insert was routinely used in these investigations. 

After the digest, the sample is desalted by passage through a Sephadex C-SO 

spun column (Maniatis et al, 1982). A one ml syringe is filled with sterile 

Sephadex G-50 equilibrated in TE and spun at 16,000g for 2 min in a Centra-3 

centrifuge (IEC Dunstable, Bedfordshire). Next, the sample is loaded onto the 

column and spun at 16,000g for 10 mm. The eluate (15 - 20 p1) is then mixed 

with 20 p1 formarriide dye mix (section 2.2.4.6), placed in a boiling waterbath for 3 

min and loaded onto a 3 cm wide slot in a sequencing type gel. 

After electrophoresis, the gel (still on the whole glass plate) is covered with 

Saran wrap and autoradiographed for 5 min to locate the labelled DNA. The 

region corresponding to the appropriate band is cut out, and crushed into 500 41 

elution buffer (500 mM ammonium acetate, 10 mM magnesium acetate, 1 mM 

EDTA, 0.1% SDS, 10 pg/mI tRNA; Maxam & Gilbert, 1980). The gel slurry is kept at 

37 0C for 16 - 24 h before spinning in 1 ml blue tips stoppered with nylon wool. 

The resulting probe was either used directly in hybridization reactions or 

ethanol precipitated with carrier tRNA to concentrate the DNA. The yield was 

generally 1 - 3 x 106  cpm (Cerenkov) 

(iv) End-labelled probes 

End-labelled digests of plasmid DNA were used as markers in the Si mapping 

gels. 

1. Plasmid DNA (1.5 pg) is digested with a restriction enzyme 
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that creates recessed 3' termini at suitable positions. Sau 3A 
was used to digest pBR322 in these investigations as it gave 
a range of desired sizes (37 - 358 bp). 

Add 10 pCi of [ct- 32PIdCTP and 2 p1 cold 500 mM dATP, dGTP, 

and dTTP mix. 

Add 1 - 2 units of Klenow DNA polymerase I fragment and 
incubate at room temperature for 30 mm. 

The DNA fragments are labelled by polymerisation of the staggered ends 

generated by Sau 3A digestion. Labelled DNA is separated from unincorporated 

nucleotides by passage through the Sephadex G-50 spin column (see section 

2.2.5.3.iii). 

2.2.5.4. Conditions for hybridization of probes 

The conditions used for Southern and dot hybridizations as well as plaque 

hybridizations were as described by Maniatis at at (1982). 

Prehybridize filter in hybridization solution (4 x SSC; 50% 
formamide; 1 x Denhardts solution; 0.1% SDS), for 1 h at 37 

O C. 

Using bag sealer, make a plastic bag round filter(s). 

Mix 100 p1 denatured Salmon sperm or Calf thymus DNA (5 
mg/ml), 10 ml hybridization solution and probe. Add the 
mixture to the bag and seal after making sure that there are 
no enclosed air bubbles. 

Shake bag in a perspex box overnight at 37 0C. 

Remove filter and wash for 2 h in 2 x SSC. 0.1% SOS; at 37 

O C. 

Wash filter in 2 x SSC for a further 2 h. 

Blot filter dry for 10 min at room temperature and cover with 
Saran wrap before autoradiography. 

To increase stringency, the post-hybridization wash was scaled down to 0.5 x 

SSC. The probe was routinely denatured by boiling for 3 - 5 min before use 

(except with M13 probes). 

N 
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Solution used 

10 x Denhardts 	 0.2% BSA; 0.2% Polyvinylpyrolidine (PVP); 0.2% FicoIl. 
The solution was sterilized by filtration and stored at 
-20 0 C. 

2.2.5.5. Si nuclease mapping 

DNA/RNA hybrids were digested with Si nuclease and analysed for protection 

of labelled DNA by total cell RNA. This was in order to determine the presence 

and nature of any transcript, arising from the deduced protein coding regions of 

sequenced DNA. 

Mix RNA (200 - 300 jig) and single stranded labelled DNA (4 
jig) with 10 x Si hybridization buffer (0.1 M Tris.HCI pH 8; 1.5 
M NaCl; 0.1 M MgCI; 1 mM EDTA), to a final volume of 100 

pl. Incubate at 68 U  for 1 h to denature any secondary 
structures in the nucleic acids. 

Allow tube to cool to room temperature and add 1 p1 3 M 
sodium acetate pH 4.5 1 41 0.1M ZnSO 4  and 51 nuclease (2 

units). 

Ethanol precipitate DNA/RNA hybrids, redissolve in 10 - 20 ul 
TE and add formamide loading dyes (15 p1). Boil for 3 - 5 mm 
and electrophorese on denaturing gels. 

Autoradiography was as described for sequencing gels (section 2.2.4.6) 
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CHAPTER 3 

PS- AERUGINQSAC RMS 149 AND ITS ENCODED BLACTAMASE 

3.1. Introduction 

3-1.1. Ps. ae,'uginosa 

The name Ps. aeruginosa is given to a well defined group of bacterial isolates, 

examples of which are sometimes found as pathogens to animals and plants, but 

more commonly as inhabitants of soil or fresh water. Ps. aerug/nosa is a small 

(0.5 - 1 pm by 1.5 - 4 pm), Gram-negative, polarly flagellated bacterium, 

classified into family I Pseudomonadaceae, section 4 of Bergy's Manual of 

Systematic Bacteriology (1984) . The 3 + C content is 67%. The bacteria are strict 

aerobes and, in artificial media, they develop a fluorescent diffusible greenish 

pigment. In humans, pseudomonads are particularly notorious in ear infections 

and in secondary infections of burns. In both situations, the bacteria are difficult 

to kill because of an inherent resistance to most chemotherapeutic agents. 

Ps. aeruginosa and related species have been extensively studied because of 

their unusual antibiotic resistance, complex genetic organization and biochemical 

versatility (Holloway, 1969; 1973; Bryan at al, 1974; Jacoby, 1977; 1979; etc.). 

There is a book that covers many aspects of the organism (Clarke and Richmond, 

eds., 1975). 

A characteristic feature of pseudomonad species is that they harbour several 

plasmids and bacteriophages. The phenotypic properties specified by the various 

plasrnids include antibiotic resistance, UV protection, cell envelope functions and 

metabolic enzymes. Many of the plasmids are highly promiscuous as they can be 

transferred to widely differing bacterial species. Jacoby (1977) has grouped Ps. 

aerug/nosa plasmids based on plasmid size, DNA composition and homology, 

susceptibility or resistance of plasmid host to certain bacteriophages as well as 
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plasmid-plasmid incompatibility relationships. 

Gram-negative S-lactamases which are basically cephalosporinases (ref. 

section 1.3.3) were first characterized in Ps. aeruginosa (Sabath et al, 1965). 

Other types at 8-lactamases specified by plasmids in pseudomonad sp have 

since been reported by several workers (Bryan et al, 1974; Jacoby. 1979; etc.). 

3.1.2. Plasmid RMS 149 

The RMS 149 plasmid was originally isolated by Jacoby (1977) while studying 

gentamicin resistant pseudomonads in a burns unit. It was characterised as Trat 

Fl, (RP 1 , RP2), Phi(116), b/a, aacC' and assigned to the lncP-6 group. The plasmid 

is not transmissible to E. co/i; but can be transferred to other pseudomonad spp, 

e.g. Ps. f/uorescen$ albeit with reduced efficiency as compared to transfer to Ps. 

aeruginosa Its presence confers resistance to gentamicin, carbenicillin, 

spectinomycin, streptomycin and sulphonamide. However, the plasmid can be 

mobilized into E. co/i by the use of a helper plasmid (Hedges and Matthew, 1979). 

It was stably maintained, conferred carbenicillin resistance but low gentamicin 

protection. 

In a study of pseudomonad natural plasmids, Moore (1980) investigated the 

occurrence of restriction enzyme sites present on the RMS 149 plasmid and 

reported 3 Barn Hi, 9 §j 11,6 Hind III, 14 CIa 1, 9 Pst 1, 12 Pvu II, 20 Sal 1, and 4 

Sma 1 sites. By analysing the sizes of fragments generated in restriction enzyme 

digests, a molecular weight of 63 kb was deduced. 

3.1.3. RMS 149 plasrnid encoded 6- lactamase 

The Ps. aeruginosa plasmid specifies a B - Iactamase which is unusual in 

hydrolysing carbenicillin much faster than other S - lactam antibiotics (Sawada et 

al, 1974). The enzyme was released by ultrasonication and partially purified using 

CM Sephadex chromatography and isoelectrofocusing. An isoelectric point of pH 

7 was observed and the estimated molecular weight as determined by thin layer 
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gel filtration using Sephadex superfine, was 12,000 daltons. 

Compared with the published data, the RMS 149 enzyme studied here, differs 

from already characterised B-lactamases because of its significantly lower 

molecular weight. Studies on the reversible unfolding of the staphylococcal 

6- lactamase molecule led to the suggestions that the enzyme might consist of 

three domains (Carrey and Pain, 1978; Carrey at a!, 1980). The approximate 

molecular weight ascribed to one of these domains is about 12,000 d. 

Carbenicillin is a semi-synthetic 8-lactam used to combat opportunistic 

pseudomonad infections which are prevalent in hospitals (Hamilton-Miller, 1982). 

Since carbenicillin had been effectively used against Ps. aeruginosa, an 

interesting question was: had the pseudomonad lost one of its domains in 

developing the ability to hydrolyse a previously resistant B - lactam? 

Amino acid sequence provides a satisfactory method of comparing related 

proteins (Ambler, 1975; 1984). Initial attempts at protein purification of the RMS 

149 encoded 6 - lactamase were not successful as the enzyme was unstable in 

cell lysates. Thus, with the great improvements in recombinant DNA techniques 

and DNA sequencing (Sanger at at, 1977; Maxam & Gilbert, 1977), it was 

considered feasible to determine the nucleotide sequence encoding the 

pseudomonad enzyme and thus investigate its relationship to other 

6- lactamases. 

In the work reported here, some protein chemistry was done to confirm the 

properties reported in the literature for the pseudomonad B-lactamase. The gene 

coding for the enzyme was cloned and, in several subcloning steps, limited to a 

3 kb region of the RMS 149 plasmid. The DNA sequence of this region was 

determined and the complete amino acid sequence of the enzyme was deduced. 

The similarity of the deduced sequence to that of the class A B - lactamases 

(Ambler, 1980) provided reassurance that the correct gene had been studied. 



TABLE 3.2: MC OF BENZYL PENICILLIN AND AMPICILLIN FOR PS. AERUGINOSA STRAINS 

Strain 

1920E 

1973E 

P405 

1920E 

1973E 

P405 

Penicillin 0.5 1 2 	3 	4 	5 	6 	7 	8 	(mg/ml) 

B.pen + + + 	+ 	+ 	s 	s 	s 	- 

B.pen + + + 	+ 	+ 	+s 	+s 	s 	- 

B.pen + + + 	+ 	+ 	+s 	+s 	- 	- 

Amp + s s 	- 	 - 

Amp + + S 	±5 	- 	- 

Amp + s s 	- 	- 

Notes: 

B.pen = benzyl penicillin, Amp = ampicillin. 

+ = growth (normal sized colonies, i.e. same size as growth 
without antibiotic). 

= growth producing smaller colonies. 

- = no growth. 
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TABLE 3.1: ANTIBIOTIC SENSITIVITY PROFILE OF PS. AERUG/NOSA4 STRAINS 

Antibiotic 

ampicillin 

gentamycin 

spectinomycin 

streptomycin 

kanamvcin 

tetracycline 

chioramphenicol 

rifampicin 

carbenicillin 

trimethoprim ** 

sulphonamide *  

1920E 1973E PAOS 	El co/f 
ED 8654 

A 	R 	A 	s 

A 	A 	s 
	

S 

A 	A 	R 
	

A 

A 	R 	S 
	

S 

R 	JR 	R 
	

S 

A 	JR 	R 
	

S 

R 	A 	A 
	

S 

A 	P 	s 
	

S 

A 	A 	s 
	

S  

E. coil ED 8654 
+ RMS 149* 

A 

r 

S 

S 

S 

S 

A 

Notes: 

R=resistant; s=sensitive; rresistance. 

* E. coil transformed with purified RMS 149 plasmid DNA. 

** Trimethoprim and sulphonamide sensitivity could not be tested 
as minimal plates were required and Ps. aeruginosa PUE1 
(the host strain) is ile, val and rifR. 
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Finally, the nature of the B-Iactamase gene m-RNA transcripts in Ps. aeruginosa 

harbouring the plasmid was investigated. 

3.2. Antibiotic sensitivity tests 

Ps. aerug/nosa plasmids - RMS 149 and R151 code for a wide range of 

antibiotic resistance genes (Jacoby, 1977). In order to investigate the resistance 

profile of the plasmid strains, a known concentration of cells (100 cfu) were 

spread on L-a garplates containing various antibiotics. The strain PA05 was 

included as a plasmid-free pseudomonad control. The results of the tests are 

shown in Table 3.1. Both Ps. aeruginosa 1920E and 1973E (carrying plasmids RMS 

149 and RiSi respectively) were apparently resistant to all the antibiotics tested. 

The high resistance level of PAOS that was observed, conforms to other reports 

of the innate antibiotic resistance of PS. aeruginosa 

3.3. Determination of Minimal Inhibitory Concentrations (MIC) 

The MIC is defined as the lowest concentration of antibiotics which prevents 

visible bacterial growth. MIC values were investigated to determine the level of 

protection from 	8- lactam antibiotics conferred on Ps. aerug/nosa 1920E by its 

plasmid 	encoded 	S-lactamase. 	Strains 	1973E and 	PA05 	were included as 

reference 	points 	for 	protection 	by 	another B- lactamase 	and intrinsic cell 

resistance, respectively. 

Cells 	from 	mid-exponential 	phase F  cultures grown 	in 	the 	absence of any 

8 - lactarn, were diluted in bacterial buffer and samples containing 50 - 100 cfu 

were spread onto L-agar plates containing a range of ampicillin concentrations. 

The plates were incubated overnight at 37 0C and scored for growth (+) or no 

growth (-). 

MIC values were very high for all the pseudomonads (Table 3.2), though there 

seems to be no significant difference in the resistance levels of strains 1920E 

and PA05. As the concentration of antibiotic increased, the colonies tended to 
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get smaller. This phenomenon was not observed with F. ca/i cells that were 

treated alongside. 

3.4. Plate detection of Q-lactarnase activity 

Routinely, amp R 
colonies or plaques were selected on ampicillin plates. As 

bacteria can be amp without producing any 6-lactamase (ref. section 3.2), any 

putative amp R 
colonies were picked onto duplicate ampicillin plates, incubated 

overnight at 37 0C and stained for 8 - lactamase activity on one of the plates. 

Nitrocefin solution (5 mM in 0.1 M KH 2PO4  buffer; O'Callaghan at a!, 1972) was 

spread on the petri-dish and 6-lactamase producing colonies were observed to 

be surrounded by pink wheels against 'a yellow background. 

3.5. Release of B- lactamase activity 

In Gram-negative bacteria, the 6 - lactamases are located in the periplasmic 

space and are commonly release.d by ultrasonic disintegration (Dale, 1979). With 

thick cell suspensions however, cleared solutions were not obtained and the 

need to cool the suspension restricted the amount that could be sonicated at 

one time. In order to find an alternative method, treatments used for disrupting 

cells such as freeze-pressing in a French Press and lysozyme/detergent 

treatment (according to the method for making pseudomonad sphaeroplasts; 

Mizuno & Kageyama, 1979), were compared with ultrasonication. The efficiency of 

the different methods were compared by measuring the amount of activity 

released into cleared supernatants with each treatment, as well as percentage 

lysis achieved. 

Cells harvested from a 2 I overnight growth were resuspended =t• in 24 ml 

lysis cocktail (0.01 M Tris.HCI pH 8; 0.01 M EDTA; 0.005 M benzamidine; 0.005 M 

PMSF; Oegema at a!, 1975). The RMS 149 encoded S-lactamase was observed to 

be unstable in cell lysates. The protease inhibitors were therefore included to 

protect the B - lactamase in crude cell extracts from proteolysis. Seven ml 



TABLE 3.4: YIELDS OF B-L&CTAMASE ACTIVITY (UNITS/MG DRY WEIGHT) 

Organism 	 Enzyme yields (units/mg dry weight) 
b.penicillin 	 carbenicillin 

co/i TGI 	 0.00094 

co//ED 8654 	 0.0012 	 nil. 

PS. aeruginosa PA05 	 0.0009 	 n.d. 

Ps. aeruginosa 1920E 	 0.008 	 0.02 

F. co//TG1 + (PRLG 304**) 	 0.04 	 6.1 

Notes: 

* n.d. = not detected. 

** F. co/i PCi carrying the recombinant plasmid PRLG 304 
(this thesis, section 3.9). 



TABLE 3.3: RELEASE OF B-LACTAMASE ACTIVITY IN PS. AERUG/NOSA 1920E 

Treatment Activity in units/ml % iysis % e ffect i veness * 

b.peniciillin carbenicilin 

No treatment n.d. nd. < 2% 0 

Uitrasonication 1.1 1.6 97.5% 100 

French press 0.4 0.75 81.2% 36.4 

Sphaeroplast3 0.6 1.1 68.5%** 545% 

Notes: 

* % effectiveness was derived by expressing the S-lactamase 
activity released in the cell lysates as percentages 
of the activity released by ultrasonication. 

** This value represents the percentage of cells in a 
a popu1ation'ble to grow, as fully formed sphaeroplast 
cannot divide, though, they have not lysed. 



portions of the cell suspension were used for each treatment. During 

sphaeroplasts formation, sucrose was incorporated in the lysis cocktail to 25%. 

Sonication was at a wavelength of 3 - 4 microns for 30 s bursts (MSE 100W 

Ultrasonic Disintegrator), 4 - 5 times until there was considerable sample 

clearing. A viable count was determined before and after each treatment, 

percentage lysis was determined by expressing the number of non-viable cells as 

a percentage of original viable count. 

The results are presented in Table 3.3. Generally, the better the lysis, the 

greater the enzyme activity released. Thus, ultrasonication proved to be the best 

method for lysing cells at the concentration used in these tests. Sphaeroplastç 

formation also released a significant amount of enzyme activity which, from its 

reaction profile (see section 3.8 below), suggests it is the plasmid encoded 

enzyme. This is consistent with a periplasmic location for the RMS 149 

B- lactamase. 

Lysis with the French press gave the lowest yields. However, it is a simpler 

process which can be applied to large samples without much dilution. It was 

thus, the process used in the rest of these investigations to release 8- lactamase 

activity from cells. 

3.6. Yield of 8- lactamase activity 

The yield of 6- lactamase activity released in Ps. aeruginosa 1920E, as 

determined per mg dry weight was compared to that produced in strains PADS, 

E. co/i TG1 and ED8654 which do not carry any plasmids. 

The presence of the RMS 149 plasmid made a difference to the amount of 

enzyme activity detectable in the cell lysates, as illustrated in Table 3.4. The ratio 

of 1:2 for the benzyl pen icilfln/carbenicillin activities was also observed here. 



TABLE 3.5: SUBSTRATE PROFILE OF B-t.ACTAMASE IN PS. AERL/GINOSA 1920€ 

Sample Relative rate of hydrolysis 
b.pen amp carb met oxa clox ceph cephal 

1920E lysate 100 100 240 0 12 0 32 32 

1973E lysate 100 210 63 260 515 1010 35 0 

TEM (50 jig/ml) 100 133 36 20 20 2 8 0 

TG1 (PRLG 304*) 100 93 219 7 25 0 7 30 

Notes: 

* £ CO/i TG1 carrying the recombinant plasmid PRLG 304 
(this thesis). 

b.pen, benzyl penicillin; amp, ampicillin; carb, carbenicillin; 
met, methicillin; oxa, oxacillin; clox, cloxacillin; 
ceph, cephaloridine; cephal,cephalexin. 
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3.7. lsoelectricfocusing of Ps. aeruginosa 1920E 6- lactamases 

Matthew at al. (1979) demonstrated that the S-iactamases found in 

Gram-negative bacteria could be classified into six (6) groups based on their 

isoelectric points (p1). 

For this test, Is i cells of E. co//TOl, Ps. aerug/nosa strains 1920E and 1973E 

were grown overnight, spun down, resuspended in 20 ml lysis cocktail (section 

3.5) and passed through the French press. DNA5e (1 mg/ml) was added to the 

cell lysate and the mixture was left at room temperature for 10 - 20 mm. The 

clarified cell lysate cell was dialysed overnight against water at 4 0C, lyophilized 

and resuspended in a tenth of its original volume of distilled water. Samples of 

10 - 15 .il containing 1 - 2 mg protein were then applied to isoelectric focusing 

gels. 

Samples from 1920E and 1973E each produced two 	8- lactamase bands at 

positions corresponding to p1 values 7 and 8, and 6.3 and 	8, respectively. The 

activity at pH 8 (also present in F. co/i TG  and Ps. aeruginosa P405 lysates) is 

the 	chromosomally 	mediated B- lactamase while the 	other 	bands 	are 	those 

specified by the RMS 149 and RiSi plasmids respectively (Matthew, 1978). 

3.8. Substrate profile of the Ps. aeniginosa RMS 149 -lactamase 

This was determined by assaying the $-lactamase activity in a clarified cell 

lysate prepared as outlined in section 3.7. above. All the substrates were used at 

a concentration of 7 mM and the profile was calculated relative to an arbitrary 

value of 100 for the rate of hydrolysis of benzyl penicillin. The E. co/i TEM 

enzyme was included in the test as control. It was applied at a concentration of 

50 4g/ml which gave approximately 17 international 8- lactamase units/mi. 

As can be deduced from the results presented in Table 3.5, the $-lactamase 

coded for by the RMS plasmid has a preference for peniciliins but is unique in 

being twice as active against carbeniciiiin 	as 	compared to 	its activity 	against 



Fig. 3.1: Electron micrograph of the RMS 149 plasmid molecule 

RMS 149 
pAT1S3 



FIG. 32: RESTRICTION ENZYME ANALYSIS OF RMS 149 PLASMID 

Track no. DNA Restriction endonuclease 

1 RMS 149 plasmid undigested 

2 	- -do- Barn Hi 

3 -do- Eco Ri 

4 Xc1367 Hind 	Ill 

5 RMS 149 plasmid Hind 	III 

6 -do- Xhoi 

7 -do-  Pvu  11 

8 -do- Sail 

9 Ac1857 Hind 	III 

10 RMS 149 plasrnid Sma 1 

ii -do- Pst 1 

Notes: 

Fragments in marker track (S) are derived from a Hind Ill 
digestion of Xc1857. 

Most of the fragments generated from digesting RMS 149 
plasrnid DNA were in the high molecular weight range so 
that, they could not be properly sized using electrophoretic 
methods. 



1 	2 	3 	4 	5 	6 	7 	B 	9 	10 	1,111 	S 

Fig. 	3.2. 

23.7 

9.5 

6.7 

-- 4.4 

2.2 



M. 

benzyl penicillin. 

3.9. RMS 149 plasmid structure 

3.9.1. Isolation and sizing of the plasmid DNA 

Plasmid DNA was prepared by the alkaline denaturation method from Ps. 

aeruginosa 1920E as outlined in section 2.2.2.1. The yield was routinely 0.3 mg 

DNA from 2.5 I cultures. The purified plasmids were visualized by electron 

microscopy e.g. Fig. 3.1. Since agarose gel electrophoretic sizing techniques are 

inaccurate in the large size range (Southern, 1979), electron microscopic methods 

were adopted for sizing the plasmid molecules instead. Twenty molecules were 

measured using a Ferranti Cetec Digitizer and the average size was 58.9 kb (1.4). 

(The standard deviation is shown in brackets). 

3.9.2. Restriction enzyme analysis of RMS 149 DNA 

The restriction fragments from Barn Hi, Sal 1, Xho 1, Eco RI and Pvu II 

digests of the RMS 149 plasmid were separated by agarose gel electrophoresis 

(Fig. 3.2). 

The approximate sizes of some of the fragments were determined by the 

method of Southern (1979) and, as several of these were too large for proper 

measurement, the plasmid size could not be deduced by summing the sizes of 

individual fragments. 

At this stage, only a rudimentary physical map of the RMS 149 could be 

deduced, as only the Barn Hi and Xho 1 sites could be unambiguously assigned 

(Fig. 3.3a). No experiments were performed to determine the copy number of the 

RMS plasmid. However, one would expect it to be single copied, judging from the 

large size. 



Fig. 33: Cloning strategy 
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Fig. 3.3: Schematic diagram showing the construction of the 
recombinant plasmid pRLG 304, which carries a portion of the 
RMS 149 DNA. The several steps are explained in the text. 
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3.10. Cloning the RMS 149 plasmid 8-lactamase gene 

3.10.1. Choice of vector 

Multiple copies of genes coding for regulatory or membrane proteins have 

been observed to be unstable in E. co/i cells (Murray and Kell-y, 1979; Hansen & 

Von Meyenberg, 1974; Spratt et a!, 1980). As the 8- lactamase gene codes for a 

periplasmic enzyme (Matthew, 1979), pLG 339 was chosen as the vector because 

it is a low copy number plasmid (6 - 8 copies/cell) and has been found to be 

suitable for some difficult genes (Stoker et a!, 1982). pLG 339 (6.2 kb) carries 

genes conferring resistance to kanamycin and tetracycline. It also has several 

unique sites for hexanucleotide cuffing enzymes, five of which occur within a 

drug resistance gene (Fig. 3.3b). 

The pLG 339 plasmid does not code for ampicillin resistance, so that 

selection for ampj recombinant plasmids is possible. 

3.10.2. Cloning strategy 

The RMS 149 8 - lactamase gene was localized by recombinant DNA 

techniques according to the scheme in Fig. 3.3. A shotgun cloning of Barn Hi 

digested target and vector DNA produced the first recombinant plasmid (pRLG 3, 

Fig. 3.3c) with an insert of about 42 kb. The choice of Barn Hi was arbitrary, 

although it made it possible to relate later recombinant plasmids to the original 

RMS 149 physical map. 

Next, a directional cloning using Xho 1 and Barn Hi double digest of vector 

DNA was carried out in order to determine which arm of the 42 kb Barn Hi insert 

carried the 6- lactamase gene. The resulting plasmid pRLG 300 showed it was the 

longer arm (about 20 kb), which jacks the Hind Ill site (ref. Figs. 3.3c and 3.3d). 

After careful mapping of the plasmid pRLG 300, multiple Sal 1 fragments and 

a 	2 	kb internal Eco Ri fragment were observed (Fig. 3.3d). In separate deletion 



FIG. 14: P1 OF B-LACTAMASES SPECIFIED BY RECOMBINANT PLASMID - PRLG 304 

Track no. 	 Sample 

1 	 Ps. acruginosa 1920E cell lysate 

2 	 E. coil (ED 8654) lysate 

Rps. sphaerofdes C2  cytochrome 

3 	 E. coil ED 8654 with pRLG 304 Lysate 

Notes: 

Isoelectricfocusing was carried out as described in the text. 
The pH gradient was generated by application of pH 3-10 
Ampholines (LKB). 

Track 	indicates that the E. coil host strain has acquired the 
S-lactamase band (p1, 7) by virtue of carrying the recombinant 
ptasmid. 



Fig. 34: p1 of pRLG 304 derived B-lactamase 

1234 

.ampC B-lactamase (p1 8) 

RMS 149 -lactamase (p 1  7) 
i Rps. sphaeroides c cytochrome 



62 

experiments which involved digestion with the appropriate enzyme, re-ligation 

and transformation steps, the Sal 1 and Eco Ri fragments were observed to be 

unnecessary for the S - lactamase gene expression. A further Eco Ri and Xho 1 

directional cloning yielded pRLG 303 (Fig. 3.3f). 

Attempts to generate amp colonies by cloning the 3.5 kb Eco R1/Sst 2 

fragment of pRLG 303 were not successful. A partial ] 1 digest of pRLG 303 

plasmid was then made and cloned into the pLG 339 vector digested with CIa 1. 

The recombinant plasmid obtained from the resulting amp R  transformants which 

carried the smallest insert (3.3 kb) was later designated pRLG 304 (Fig. 3.3g). 

During all these steps, plasmids were prepared as outlined in section 2.2.2.1, 

digested, ligated and recombinants were transformed into competent cells as 

described earlier (section 2.2.3). Amp   transformants were selected by spreading 

the bacterial cells on LB-amp plates and transferred (with toothpicks) onto Tc or 

Kn plates to check for loss of any antibiotic resistance depending on the 

restriction enzyme being used. The resulting recombinant plasmids from bacteria 

having the expected phenotype, were made by the Birnboim method (section. 

2.2.2.1.i) and checked for the presence of the cloned DNA by separating restricted 

fragments on agarose gels. 

In another experiment where RMS 149 was digested with Eco Ri and the 

fragments were ligated to the pLO 339 Eco Ri site, the recombinant plasmids 

pORl and pDR2 (Fig. 3.3a') were obtained. The two plasmids carry the 

approximately 18 kb Eco Ri fragment of RMS 149 in opposite orientation. This 

helped to determine the Eco Ri sites within the original 42 kb Barn Hi fragment. 

The B - lactamase coded for by the recombinant plasmid pRLG 304 in E. co/i 

was extracted as outlined earlier in section 3.6 and subjected to 

isoelectricfocusing (ref. Fig. 3.4). There are two 8- lactamase staining bands - one 

corresponding to the RMS 149 plasmid encoded S - lactamase at p1 7 and another 
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at p1 8 which is the chromosomal enzyme. The substrate profile (Table 3.5) also 

agrees well with that previously determined for Ps. aerugiuiosa 1920E lysate. The 

yield of the enzyme activity per mg dry weight was 0.04 units/mg which is five 

times (5 x) the value obtained from Ps. aerugiulosa carrying the native plasmid 

(Table 3.4). This correlates approximately with the Increase in copy number of 6 - 

8 genes per cell expected from the vector (Stoker et al. 1982). 

3.11. Summary 

The RMS 149 plasmid encoded 8 - lactamase is remarkable for its high activity 

against carbenicillin. The yield of the enzyme in Ps. aeruginosa 1920E was not 

high enough for protein purification to be successful or for molecular weight 

determination by SDS-PAGE. The gene coding for the 8- lactamase was located 

to a 3.3 kb DNA 'fragment using recombinant DNA techniques as the $-lactamase 

encoded in this region -  had similar properties to that produced in the native 

plasmid. 



Fig. 4.1: RMS 149 Xho 1/Barn Hi fragment, nucleotide sequence 

TCGAGAGAGCCGATCCCCATGCAGACCATCGACCTGGCGGCCACGAGTTGCAAGGACAGT 

10 	 30 	 50 

AGCTCTCTCGGCTAGGGCTACGTCTGGTAGCTGGACCGCCGGTGCTCAACGTTCCTGTCA 

ATCACTGGCCCCGAAGACCCGACGCTCTGGAACTTCAAGAACCTCGACGAC TTGTGGATG  

70 	 90 	 110 

TAGTGACCGGGGCTTCTGGGCTGCGAGACCTTGAAGTTCTTGGAGCTGCTG AACACCTAC  

GAATAGCCCCCACAAAACGACGGCCCCGTGAGGGAGCCGTTGAACATCGTCGAGCGATGC 

130 	 150 	 170 

CTTATCGGGGGTGTTTTGCTGCCGGGGCACTCCCTCGGCAACTTGTAGCAGCTCGCTACG 

CCGTCCAGGGAGGGATGGCCGAGCTCGATTCTCCAGGGTAGCTGGTGACACGAGTGTT 

190 	 210 	 230 

GGCAGGTCCCTCCCTACCGGCTCGAGCTGAGGTCTTCCATCGACCACTGTGCTCACAA 

GAGCCCACCCAACTAGGGTGACGGAAATTTCTGGGGTTCCGGCTTACATCCCCTAICGG 

250 	 270 	 290 

CTCGGGTGGGTTGATCCCACTGCCTTTAAAGACCCCAAGGCCGAATGTAGGGGATTTGCC 

TGCCCCCCTACGGGCTACCCCCTTTATTCCACGGTTCGCTTGACCCCCTCTCCACTAGTA 

310 	 330 	 350 

GGCGGCCCGTGGCGGCGTTTTCTCGACGTGGCCCTGCCTGCCCCCTTTCTTACCTTCTCA 

370 	 390 	 410 

CCGCCGGGCACCGCCGCAAAAGAGCTGCACCGGGACGGACGGGGGIAGAATGGAAGAGT 

AAACGCGCTGTAGGCCCGTTTCTGGCCGGAGCCGGGCGGCGGGCGGWGCTCCGCTTTT 

430 	 450 	 470 

TTTGCGCGACATCCGGGCAAAGACCGGCCTCGGCCCGCCGCCCGCCTTTCGAGGCGAA 

CGTTCGACGGCTGGCCGACAACGAGCCGAAGGCGAGGCGTCAGCACGGT GTTTCACCAAA  

490 	 510 	 530 

GCAAGCTGCCGACCGGCTGTTGCTCGGCTTCCGCTCCGCAGTCGTGCCACAGTGGTTT 

AACGAGCAGCCGACCGGGCAGCGGTACGTTACGAACCGCTCGCATATCGTATCTGTAT 

550 	 570 	 590 

TTGCTCGTCGGCTGGCCCGTCGCCATGCAATGCTTTTGGCGAGCGTATAGCATAGACATA 

610 	 630 	 650 

ACGCATAGTATAGACATAACTATGCTWTGTGACTATGCCATGCTTTCCTCGTTGCTAG 
* VS VT R F S 	RD 



UHF—i -9 
MAR Q G IT F E 	VA A VA D A LAG 

ATGGCACGTCAGGGCATCACTTTTGAGCAGGTCGCCGCCGTCGCTGATGCGCTGGCAGGC 

670 	 690 	 710 

TACCGTGCAGTCCCGTAGTGAAAACTCGTCCAGCGGCGGCAGCGACTACGCGACCGTCCG 

H CT LADS K EL D G G 	SIR Q CA 

E G Q Q PT IRA V RE K L G 	T G S P 

GAGGGTCAGCAGCCGACCATCCGGGCGGTGCGGGAGAAGCTGGGCGACACCGGCAGCCCG 

730 	 750 	 770 

CTCCCAGTCGTCGGCTGGTAGGCCCGCCACGCCCTCTTCGACCCGCTGTGGCCGTCGGGC 

L T L ER G 	PR H P EL Q A V G A AR 

N TI H K H L TA W REAR P VA A A A 
AACACTATTCACAAGCACTTGACCGCGTGGCGCGAGGCCCGCCCGGTGGCCGCAGCCGCT 

790 	 810 	 830 

TTGTGATAAGTGTTCGTGAACTGGCGCACCGCGCTCCGGGCGGGCCACCGGCGTCGGCGA 

V S 	V L 	Q G R PAL GA R HG C G S 

A P EL P Q A ETA A IA A El ERA A 
GCGCCGGAACTGCCGCAGGCGCTGACCGCTGCCATTGCCGCCGAGATCGAGCGGGCCGCA 

850 	 870 	 890 

CGCGGCCTTGACGGCGTCCGCGACTGGCGACGGTAACGGCGGCTCTAGCTCGCCCGGCGT 
R R F Q R ER Q G S G N G G L DL PG C 

SR AR GE I E G R L 	Q A  Q  A E A A E 

TCGCGGGCACGCGGCGAGATCGAGGGCCGTCTGGTGCAGGCGCAGGCGGAGGCCGCCGAA 

910 	 930 	 950 

AGCGCCCGTGCGCCGCTCTAGCTCCCGGCAGACCACGTCCGCGTCCGCCTCCGGCGGCTT 
R PC A A ED LA T Q HE RE H EGG F 

LA A AGE V LEG ER DEL A E 	V A 

CTGGCCGCCGCTGGCGAGGTGCTGGAAGGCGAACGCGACGAGCTGGCCGAGCAGGTGGCC 

970 	 990 	 1010 

GACCCGCGGCGACCGCTCCACGACCTTCCGCTTGCGCTGCTCGACCGGCTCGTCCACCGG 

Q G GSA EM Q F A F A V L 	GEL HG 

V L PT ER D T LAG K A A Q Q A A DL 
GTGCTGACCACTGAGCGCGACACGCTGGCAGGCAAAGCCGCCCAGCAGGCCGCCGACTTG 

1030 	 1050 	 1070 

CACGACTGGTGACTCGCGCTGTGCGACCGTCCGTTTCGGCGGGTCGTCCGGCGGCTGC 

H 	G SLAV R Q C A F G GEE G G V Q 

A E A Q Q RI E E V F KG P L EM P K A 
GCCGAGGCGCAGCAGCGCATCGAAGAAGTTTTTAAAGGCCGCTTGCTGATGCCGGGCA 

1090 	 1110 	 1130 

CGGCTCCGCGTCGTCGCGTAGCTTCTTCAAAAATTTCCGGCGAACGACTACGGCTTCCGT 
G L R LEAD F F N K F A A Q Q HR L C 

Fig. 4.1 (continued) 



L £ ER D T G H VIE P V K F A GA F D 
CTGCTGGAGCGGGACACAGGACACGTCATTGAGCCAGTCAAATTCGCCGGAGCGTTTGAT 

1150 	 1170 	 1190 

GACGACCTCGCCCTGTGTCCTGTGCAGTAACTCGGTCAGTTTAAGCGGCCTCGCAAACTA 
Q Q £ PVC S V D NEW D FE G SR RI 

AG Q F GIG EN V AD F F LA LIE G 
GCGGGTCAGTTCGGCATTGGCTTGAATGTAGCCGATTTTTTCCTGGCGCTGATAGAAGGC 

1210 	 1230 	 1250 

CGCCCAGTCAAGCCGThACCGAACTTACATCGGCTAAAAAAGGACCGCGACTATCTTCCG 
R T LEAN A Q II G I K E 	R Q Y F A 

I GAP T K D V I V D K AR TA ER £ G 
ATCGGTGCGCCAACGAAGGATGTGATTGTAGACAAAGCGCGTACAGCCGCGTCTGGGC 

1270 	 1290 	 1310 

TAGCCACGCGGTTGCTTCCTACACTAACATCTGTTTCGCGCATGTCGGCTTGCAGACCCG 

D TRW R L 	H NY V FR T C G FT Q A 

K Q L C L F R C W V K A V F V G A F C H 
AAGCAACTGGGCTTGTTCAGGTCTTGGGTAAAAGCGGTATTTGTAGGCGCGTTTfr9AT 

1330 	 1350 	 1370 

TTCGTTGACCCGAACAAGTCCACAACCCATTTTCGCCATAAACATCCGCGCAAAACAGTA 
EL Q A Q E PT P1 FRY KY AR K TM 

6 URF-2 

VS H F 1SF N V K IA IV * 
GTATCACATTTTATTTC1rTTTGAAGATAGCAATAGTTT*AGGAG*GCGAGAAC 

1390 	 1410 	 1430 

CATAGTGTAAAATAAAGAAAATTACACTTCTATCGTTATCAAATTTCCTCCTCGCTCTTG 

AGGGGCGGCTAACGCCGCCGCGCTATCCCTCCCCGGCATGAATGCCGGGGTTTCTCGCGC 

1450 	 1470 	 1490 

TCCCCGCCGATTGCCGCGGCGCGATAGGGAGGGGCCGTACTTACGGCCCCAGAGCGCG 

3-lactamase -> 
M M K F Q C H F L S V P V A I £ C C V 

ATAAATGATGAAATTTCAATGTCATTTTCTCTCTGTCCCTGTGGCGATACTCGGATGTGT 

1510 	 1530 	 1550 

TATTTACTACTTTAAAGTTACAGTAAAAGAGAGACAGGGACACCGCTATGAGCCTACACA 

G L 	CT SAY A MD T GILD LA VT 

TGGCCTCATCTGCACATCCGCATATGCCATGGATACGGGAATCCTCGACCTCGCTGTC 

1570 	 1590 	 1610 

ACCGGAGTAGACGTGTAGGCGTATACGGTACCTATGCCCTTAGGAGCTGGAGCGACATTG 

Q E E T T I. QA R V C V A V I U T D S C 
CCAAGAGGAGACCACGCTTCAGGCTAGGGTCGGAGTGGCGGTGATCGATACGGATTCCGG 

1630 	 1650 	 1670 

GGTTCTCCTCTGGTGCGAAGTCCGATCCCAGCCTCACCGCCACTAGCTATGCCTAAGGCC 

Fig. 4.1 (continued) 



L T Vi Q H .R C D E R F P L N S T H K A F 

CCTGACGTGGCAGCATCGTGGCGACGAACGCTTCCCGCTGAACAGCACGCATAAAGCCTT 

1690 	 1710 	 1730 

GGACTCCACCGTCGTAGCACCGCTGCTTGCGAAGGGCGACTTGTCGTGCGTATTTCGGAA 

S 	A A V LA Q AD R 	K L N L E 	A I 

TTCCTCCGCGGCCGTTCTGCCCAGGCCGACCGCCACAAGCTGAACCTGGAGCAGGCGAT 

1750 	 1770 	 1790 

AAGGACGcGCCGGCAAGAcCGGGTCCGGCTGGCGGTGTTcGACTTGGAcCTcGTCCGcTA 

P1 ER TA L 	TI S P VT ER VP PG 

AcCGATCGAGcGcAcAGcGcTGGTcACATAcTCAccCGTGACGGAAAGGGTGcCAcCTGG 

1810 	 1830 	 1850 

TGGCTACCTCGCGTGTcGCGACCAGTGTATGAGTGGGcAcTGccTTTCCCAcGGTGGAcC 

G T L T L R E L C R A A V S I S 0 -N T A 

CGGCACGCTGACCCTGCGTGAGCTGTGCAGGGCCGCCGTCAGTATCAGTGACAACACAGC  

1870 	 1890 	 1910 

CccGTGcGAcTGGGAcGcAcTcGAcACGTCCcGGcGGCAGTCATAGTCACTGTTGTGTCG 

A N LA L 0 Al G GA R T F TA F MRS 

GGCCAATTTGGCGTTGGATGCAATCGGCGGGGCACGGACATTCAcCGCGTTCATGCGGTC 

1930 	 1950 	 1970 

CCGGTTAAAcCGCAACCTACGTTAGCCGCCCCGTGCCTGTAAGTGGCGCAAGTACGCCAG 

I G 	OK T R L DR R E.P E L N EAT P 

TATcGCTGACGATAAGAcACGCCTGGATCGGCGAGAACCCGAACTCAACGAGGCCACGCC 

1990 	 2010 	 2030 

ATACCCACTGCTATTcTGTGCGGACCTAGCCGCTCTTGGGCTTGAGTTGCTCCGGTGCGG 

G D A B 0 T T T P I A A A B S L Q T L L 

GGGCGATGCACGCGAcACGACAACGCCAATTGCGGCAGCGCGGAGCCTGCAAACACTGTT 

2050 	 2070 	 2090 

CCCCCTACGTGCGCTGTGCTGTTGcGGTTAACGCCGTCGCGCCTCGGACGTTTGTGACAA 

L 0 G V L SAP A RN EL T Q Vi ML G  

GCTCGACGCTGTCCTCTcCGCTCCGGcTCGGAACGAAcTGACACAATGGATGCTCGGGGA 

2110 	 2130 	 2150 

CGAGCTGCcACAGGAGAGGCGAGGCCGAGCCTTGCTTGACTGTGTTACCTACGAGCCCCT 

Q V A D A L L R A G L P B 0 Vi Q I A D K 

TCAAGTTGCCGATGCcTTGCTACGCCCTGGCTTGCCGAGGCATTGGCAAATTGCGGACAA 

2170 	 2190 	 2210 

AGTTCAACGGCTACGCAACCATGCGCGACCGAACGGCTccCTAAcCGTTTAACGCCTGTT 

SC AG C H Cs B $11 A V V Vi PP KR 

GTCCGGAGCAGGTGGTCACGGATCACCTTCCATAATCGCCGTTGTCTGGCCGCCCAAGCG 

2230 	 2250 	 2270 

CAGCCCTCGTCCACCAGTGCCTAGTGCAAGGTATTAGCGGCAACAGACCGGCGGGTTCGC  

Fig. 4.1 (continued) 



S A V 	VA I Y IT Q TA A S 	S A S  

TTCAGCCGTCATTGTGGCGATCTACATCACCCAAACCGCAGCGTCTATGTCGGCAAGCAA 

	

2290 	 2310 	 2330 

AAGTCGGCAGTAACACCGCTAGATGTAGTGGGTTTGGCGTCGCAGATACAGCCGTTCGTT 

Q A V SRI GSA LA K AL Q * 
CCAGGCGGTGTCCAGAATCGGATCAGCCTTAGCAAAGGCGTTGCAATGAGCGTTCCCGCC 

	

2350 	 2370 	 2390 

GGTCCGCCACAGGTCTTAGCCTAGTCGGAATCGTTTCCGCAACGTTACTCGCAAGGGCGG 

TCAGTGCACACTTAGCGTGCTTTATTTTCCGTTTTCTGAcACGACCCCATCGACGAACTG 

	

2410 	 2430 	 2450 

AGTCACGTGTGAATCGCACGAAATAAAAGGCAAAAGACTCTGCTGGGGTAGCTGCTTGAC 

AACAAAACCGTGCAAGGCGTTTGGGACGACCTCAAGCCAACCGAAACGCAAGGCAAGAAG 

	

2470 	 2490 	 2510 

TTGTTTTGGCACGTTCCGCAAACCCTGCTGGAGTTCGGTTGGCTTTGCGTTCCGTTCTTC 

A.AGGGCCAGCCGAAAGCACTACCAGTCTTTTCCGTCCATGCGGACGGCCTGTTGCTCTCC 

	

2530 	 2550 	 2570 

TTCCCGGTCGGCTTTCGTGATGGTCAGAAAAGGCAGGTACGCCTGCCGGACAACGAGAGG 

GTCGAGACATGGAAGAACCCACGCCGGGTGCTCAATCCGCTTTGCACACTTCAGCACGGA 

	

2590 	 2610 	 2630 

CAGCTCTGTACCTTCTTGGGTGCGGCCCACGAGTTAGGCGAAACGTGTGAAGTCGTGCCT 

AAAATAGCCCCATTCTGGATGCACGAAGCGTGGTTAGAAGCCAGGTGTGGGATGCGAATA 

	

2650 	 2670 	 2690 

TTTTATCGGGGTAAGACCTACGTGCTTCGCACCAATCTTCGGTCCACACCCTACGCTTAT 

AAGATTCATCCGTACAAATWGTCTCATTCTTTGAAATAGAGTTTCATCCTAACAGA 

	

2710 	 2730 	 2750 

TTCTAAGTAGGCATGTTTATTTCAGAGTAAGAAACTTTATCTCAGTAGGATTTTGTCT 

GGGCAAAGCCTCCTGCGGGACGGTGGCCACTTTCGGCCCTGCCGGTCGCCGTCCGTTCGT 

	

2770 	 2790 	 2810 

CCCGTTTCGGAGGACGCCCTGCCACCGGTGAAAGCCGGGACGGCCAGCGGCAGGCGCA 

GCGGCGCTGCAAGTATCGCAGCACACCCAGCGTCATGCGGGCGTCGGCAAGGGCGCGGTG 

	

2830 	 2850 	 2870 

CGCCGCGACGTTCATAGCGTCGTGTGGGTCGCAGTACGCCCGCAGCCGTTCCCGCGCCAC 

TGCGCCGTCTTCTGCCACGCCGCAGTCGGTCGCAGCCPCGATCAGCTTCAACCATCGCCA 

	

2890 	 2910 	 2930 

ACGCGGCAGAAGACGGTGCGGCGTCAGCCAGCGTCGGAGCTAGTCGGTTGGTAGCGGT 

Fig. 4.1 (continued) 



GCGGTCGCGGCTCCGGTCGTACTCTCCATGCCACTCGGCATACATCAGCATCGCGCAAGC 
2950 	 2970 	 2990 

CGCCAGCGCCGAGGCCAGCATGAGAGGTACGGTGAGCCGTATGTAGTCGTAGCGCGTTCG 

GTCGTCAACACTGGCGCGGTGATTCCGTGTATCTGATAGGTCTGCCGCAGCAAGCGCGCA 
3010 	 3030 	 3050 

CAGCAGTTGTGACCGCGCCACTAAGGCACATAGACTATCCAGACGGCGTCGTTCGCGCGT 

TCTAAAAGCGACGTTGTAGGCAACGACGGTTCGGCCAGCAACGGCGGCGGCGTACTGCTC 
3070 	 3090 	 3110 

AGATTTTCGCTGCAACATCCGTTGCTGCCAAGCCGGTCGTTGCCGCCGCCGCATGACGAG 

.GGCCACCTCGGGCCAGCTCGGCGCACTGGCCACCATGGCGTCCTGATTTTGTGAATCGCT 
3130 	 3150 	 3170 

CCGGTGGAGCCCGGTCGAGCCGCGTGACCGGTGGTACCGCAGCACTAAAACACTTAGCGA 

GTCGCCTCGACTACGCGATCATGGCGACCACACCCGTCCTGTGGATC 
3190 	 3210 

CAGCGGAGCTGATCCGCTAGTACCGCTGGTGTGGGCAGGACACCTAG 

Fig. 4.1: Nucleotide sequence of the Ps. aerug/nosa RMS 149 
3-lactamase gene and flanking DNA sequences. The boxes 
indicate the mapped 8-lactamase promoter and 
Shine/Dalgarno sequences. The deduced amino acid 
sequences of URF-1, URF-2 and the 9-lactamase gene are 
indicated. 

Fig. 4.1 (continued) 
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CHAPTER 4 

SEQUENCE DETERMINATION OF THE RMS 149 DNA FRAGMENT 

4.1. Introduction 

The nucleic acid sequence of the Xho 1/Bam Hi fragment of pRLG 304 

encompassing the Taq 1/CIa 1 cloned piece of RMS 149 DNA was determined. 

The method used for gene sequencing was the M13 dideoxy sequencing method 

(Sanger at at, 1977; Messing & Viera, 1982; Biggin at al, 1983) as outlined in 

section 2.2.4. The DNA sequences were analysed for their coding content and 

three large open reading frames (ORF) were identified with candidate signals for 

transcription and translation. The sequence of the 5-lactamase gene was 

identified using the program DIAGON (Staden, 1982a) which compared the OAFs 

to the S. lichen/form/s 8-lactamase I sequence held in the EMBL library. 

4.2. Compilation of sequences 

Individual 150 - 350 bp long gel readings of the M13 clones, generated from 

the pRLG 304 Xho 1/13arn Hi fragment, were transcribed into a computer and 

compiled as outlined in section 2.2.4.8. The consensus sequence of the major 

contiguous fragment is presented in Fig. 4.1. This represents DNA sequence from 

the Xho 1 site within the pLG 339 vector to the Bam Hi site also on the vector 

but an the other side of the I!a 1 generated insert. The junctions of the ]:! 

1/Cia 1 insert are underlined at either end. After sequencing 105 M13 clones, all 

the bases in the main contiguous fragment were determined on both strands, an 

average of 3.7 times. 

4.3. Identification of genes 

Advances in recombinant DNA and gene sequencing techniques have led to 

an accum'hulation of the knowledge and rules governing the protein coding 

content and expression signals in DNA sequences. The analysis of the sequence 



Fig. 4.2: ORFs & stop codons in the RMS 149 plasniid DNA fragment 
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Fig. 4.2: Open reading frames predicted for the AMS 149 DNA F 
fragment. The stop codons are marked as vertical bars along 
the base of each of the six reading frames. The first three are 
in the forward orientation, while the others represent the - 
frames in the opposite orientation. 	 - 
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data from the RMS 149 DNA fragment is presented below in the context of the 

current state of prokaryotic gene expression. 

4.4. Open reading frames (Ol*s) 

Potential protein coding regions were identified by searching for long ORF5 

i.e. reasonably long stretches of nucleotide sequences which code for amino 

acids without any internal stop codons. To this end the program ANALYSEG 

(Staden, 1984), which has many options, including plotting stop and start codons, 

Shine/Dalgarno (1974) sequences and searching for E. co/i-like promoters, was 

used (ref. Fig. 4.2). 

4.5. Confirmation of protein coding regions 

The presence of an ORF is not conclusive evidence that this stretch of DNA 

encodes a protein. The OFFS presented in Fig. 4.1 as translations were further 

studied by the use of other ANAL/SEQ options (Staden, 1984). 

Examination of the nucleic acid content of known coding and noncoding 

regions reveal that coding for a protein confers some regular properties on DNA 

sequences (Dayhoff, 1969; Staden, 1984a). These arise by: 

- the uneven use of amino acids (some occur more frequently in 
proteins than others), 

- the unequal number of codons for different amino acids (except 
for tryptophan and methionine) and 

- the unequal use of the different codons for a particular amino 

acid. 

In practice the task of coding for a protein in frame 1, for example, will influence: 

the amino acid content in frame 1 as well as in frames 2 and 3; the codon 

composition in all 3 frames; and the frequency with which each of the 4 bases 

occurs in each of the three positions in the codons (positional base frequencies). 

ANAL/SEQ has the gene search by content menu which predicts coding regions 

using: 



Table 4.1: Codon usage in Ps. aerugiiiOsa RMS 149 DNA fragment 

F ITT 1. S TCT 2, Y TAT 0. C TOT 0. 

F TIC 3. S TCC 5. Y TAC 2. C TOC 2. 
L hA 1. S TCA 4. * TAA 0. * TGA 0. 
L TIG 6. S TCG 2. * TAG 0. W 166 4. 

L CTT 1. P CCT 1. H CAT 2. R CGT 4. 

L CTC 6. F.  CCC 3. H CAC 2. R CGC 6. 

L CIA 1.'P CCA 2. 0 CAA 6. R CGA 1. 
L CTG 13. P.CCG 6, 0 CÁO 5. R COO 5. 

I ATT 3, T ACT 0. N AAT 1. S AOl 2. 
I ATC 10. 1 •ACC 6. N AAC 6. S AGC 3. 
I AlA 2. I ACA B. K AAA 1. R AGA 1. 
11 ATG 4. 1 ACG 10. k AAG 5. R AGG 4, 

V OTT 3. A GCT 5. 0 GAT 10. 6 GGT 4, 

V GTC 6. A 6CC 13. 0 GAd 8. 0 GOC 6. 
V GTA 1, A OCA B. E 6AA 5. 6 OGA 5. 
V flO 6, A OCO 14. E GAG 6, 0 606 3. 

TOTAL C000NS= 265, 
T C A 6 

1 23.19 26.67 38.60 41.87 
2 48,55 37.08 34.50 20.33 

3 28.26 36.25 26.90 37.80 

1 12.08 24.15 24.91 36.87 
2 25.28 33.58 22.26 18.87 
3 14.72 32,83 17.36 35,09 

17,36 30.19 21.51 30.94 OBSERVED; 	OVERALL TOTALS 
20 . 8 ?.  26.77 24,38 28.03- EXPECTED, 	EVEN COt'ONS PER ACID 



Fig. 4.3: Positional base preference plot of RMS 149 sequence 
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Fig. 43: Gene predictions for the RMS 149 plasmid DNA using 
the base preference method (Staden, 1984). The abscissa 
represents the DNA in the same orientation as presented in 
Fig. 4.1. Probabilities of coding are calculated by sliding a 
window of 23 codons along the sequence, one codon at a 
time. For every position of the window, the codons found in 
each reading frame are compared with an average calculated 
by Davhoff (1969) for 314 known coding regions. A continuous 
line at the mid-point of a reading frame indicates which of 
the 3 frames is most likely to be coding. The initiation 
codons, ATG or GTG, are marked as vertical bars along the 
base of each plot and the termination codons as vertical bars 
along the 50% level. 



Positional base preference methods 
Here the effects produced in base, codon and amino 
acid compositions are measured in known coding 
sequences and the average obtained is compared to 
the frequencies in a new sequence. This allows for 
the prediction of potential coding regions. The 
average used is that calculated by Dayhoff (1969) for 
314 protein families. 

Uneven positional base frequencies method 
This does not depend on an expected frequency but 
measures the relative abundance of each of the four 
bases in each of the three positions. 
Non-randomness in base frequency is characteristic 
of a DNA segment encoding a protein (Staden, 
1984a). 

To perform the positional base preference method, a specified window length is 

slid along the sequence, one codon at a time. For every position of the window, 

the codons found in each of the reading frames are compared with the Dayhoff 

(1969) standard and the corresponding probabilities of coding is thus calculated. 

A probability level above the 50% median line is considered to be significant (Fig. 

4.3). The' roken line shows possible coding regions. The base preference plot is 

run independently of the gene search by signal menu (which searchs for ORFs), 

although they have been superimposed on one another in the figure. 

On the whole, the gene search by signal and content menus of ANALYSEQ 

strongly predicted two potential coding regions in the forward orientation. The 

entire RMS 149 derived fragment showed a bias in all ORFs for codons with a 0 

and, to a lesser extent, an A in the first position (Table 4.1). This agrees with the 

characteristic distribution of bases in a DNA segment encoding a protein (Staden, 

1984a). 

4.5.1. Codon usage 

The codon usage in all OAFs is summarized in Table 4.1. As was expected 

from a high 0 + C content of 61.1% (T, 17.4%; C, 30.2%, 0, 30.9%, A, 21.5%), 

there was a preference for codons with a G or C in the third position. 



FIG. 4.5: PLASMID LOCATION OF PS. AERIJGINOSA B-LACTAMASE GENE 

(A) 0.75% agarose gel electrophoresis of RMS 	149 and 
associated recombinant plasmids. 

(B) Hybridization analysis of Southern transfers of DNA 
from 	gel 	(A) 	using an 	M13 template carrying DNA 
within the S-lactamase gene as probe. 

Track DNA Restriction endonuclease 

1 RMS 149 plasmid undigested 

2 RMS 149 plasmid Bam Hi 

3 19E Total DNA preparation Bam Hi 

4 1920E Total DNA preparation Barn Hi 

5 pRLG 3 plasmid Bam Hi 

6 pRLG 300 plasmid Barn Hi/Xho 1 

7 pRLG 301 plasmid Eco Ri/Sal 1 

8 pRLG 303 plasmid Eco Ri/Xho 1 

9 Xc1857 Hind 	Ill 

10 pRLG 304 plasmid Xho 1/Barn Hi 

ii pACYC 187 plasmid Barn Hi 

12 pss20 plasmid Barn Hi 

13 Xc1857 Hind 	ill 

Notes: I 

Hybridization in tracks 1, 2, 4, 5, 6, 7, 8 and 10 of Fig. 4.58, 
confirm that the 8 - lactamase gene studied in these 
investigation originated from the pseudornonad RMS 149 
plasmid. 

The fragment sizes in the (S) marker tracks are derived from 
a Hind Ill digest of Xc1857 phage DNA. 
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Fig. 4.4: Diagonal match between B. liclieniformis 8-lactamase & papen 
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Fig. 4.4: Comparison of the protein sequences deduced for 
papen and S. lichen/form/s 749/C using the program DIAGON 
(Staden, 1982). WAGON produces a diagram which contains a 
representation of all the matches between a pair of 
sequences. The Bacillus enzyme is on the vertical axis while 
the pseudomonad enzyme is on the horizontal axis. Each dot 
represents sequences, 21 amino acids long which have a 
double matching probability more than a calculated maximum 
value for random occurence of such matches. 



4.5.2. Identification of the ORFs 

4.5.2.1. The -lactamase gene 

The translation of the Xho 1/Barn Hi fragment in all 6 reading frames was 

compared with the B. lichen/form/s B - lactamase I amino acid sequence held in 

the EMBL library using the diagonal match program DIAGON (Staden, 1982a). 

There was a match within the reading frame 2 and the ORF in this region is 

named papen. Papen codes for a protein of molecular weight 31,283. Dot plot 

analysis of papen sequence and the Bacillus $-lactamase showed that they share 

extensive regions of homology and are proteins of about the same size (Fig. 4.4). 

The coding region starts from double Met codons at nucleotide 1505. A search 

for a putative Shine/Dalgarno sequence revealed one 73 bp upstream of the 

putative start Met codon. The potential ribosome binding site was well placed 

from a good E. co/i-like promoter (Fig. 4.1).. 

To confirm that the 6 - lactamase gene comes from the RMS 149 plasmid, a 

M13 hybridization probe was made from a template carrying an insert which 

extends from nucleotide 1623 to 1871 (a segment within the S - lactamase gene), 

and used to probe Ps. aeruginosa 1920E total DNA, AMS 149 plasmid and several 

recombinant plasmids obtained during the subcloning procedure. The appropriate 

RMS 149 derived fragments were hybridized (Fig. 4.5a & b) and the location of 

the gene on the RMS 149 plasmid was confirmed. 

4.5.2.2. Other ORFs 

In the course of these investigations, some other open reading frames were 

encountered. They are designated below as unidentified open reading frames 

(URF5), as an extensive search using the program WORDSEARCH (UWGCG) 

against the National Biomedical Research Foundations (NBRF) protein databases 

failed to reveal any significant homology between them and the stored 

sequences. 
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Fig. 4.6: Graphical representation of RMS 149 B- lactamase gene 

URF-1 -Lactamase gene 

5,  

Fig. 4.6: Graphical representation of the RMS 149 B - Iactamase 
gene and flanking sequences. The arrows indicate the 
direction of transcription of the genes. The symbol T stands 
for possible stem-loop forming sequences. 

3 ,  
3 kb 
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URF 1 

This reading frame was convincingly predicted by ANALYSEG (Fig. 4.3). It starts 

from the potential initiation codon at position 661 and extends up to nucleotide 

1421, thus ending at the putative Shine/Dalgarno sequence of the downstream 

5-lactamase gene. URF 1 has a good Shine/Dalgarno sequence (Fig. 4.1) which is 

almost identical to that of the $-lactamase gene. It codes for a protein of 

molecular weight 27,003. 

URE 2 

Another long URF in the RMS 149 fragment runs in the opposite direction from 

nucleotide 1380 to 628. It has a poor putative Shine/Dalgarno sequence and 

codes for a protein of 250 amino acids (molecular weight, 27,707). 

It was not, however, clear what significance these URF5 had. URF 1 and URF 2 

occur in the same phase, so that either of them could give rise to the other. 

Coding on one DNA strand affects its complementary strand (Staden, 1984a). A 

common observation is that, on the complementary strand in phase with the 

coding strand, there are often fewer stop codons than in the other two frames. 

The result is that one gets long open reading frames on both strands of the DNA 

that are exactly in phase with one another when using the uneven positional 

base preference method to predict coding regions. From studies with the E. co/i 

uric operon and the unc-54 myosin gene of nematode (Macleod et at, 1981; 

Staden, 1984a), it has been postulated that this might be a feature of highly 

expressed genes. 

The gene arrangement as suggested by the presence of ORFs around the Ps. 

aeru.ginosa RMS 149 6-lactamase gene is shown in Fig. 4.6. 



TABLE 42: POSSIBLE SECONDARY STRUCTURES IN RIMS 149 DNA TRANSCRIPTS 

Stem sequences loop size Location AG (kcal moL) 

138 CGACGGCCCC 4 outside coding region -10.7 
162 GUUGCCGAGG 

829 GCCGCAGC 1 within URF-1 -14.6 
845 CCGCGUCG 

945 GGCGGAGGCCG 6 within URF-1 -20.2 
972 UCGCCc3CCGGU 

1083 CGAGGCGC 4 within URF-1 -11.6 
1102 GCUACGCG 

1442 GGGGCGGC 4 first attenuator seq. -16.2 
1461 CGCCGCCG 

1471 CCCCGGCAU 2 2nd attenuator seq. -32.2 
1490 GGGGCCGUA 

1552 CGGAUGUGU 13 within 6 - lactamase gene -6.8 
1580 GCCUACACG 

1850 GUGCCACC 1 first middle loop -16.4 
1866 CACGGCGG 

1869 UGACCCUGCGUG 3 2 nd  middle loop -9,4 
1895 GCCGGG.ACGUGU 

1891 GGCCGCCGU 16 third middle loop -14.4 
1924 CCGGCGACA 

2778 GGACGGUGGCC 15 outside coding region -13.6 
2814 CCUGCCGCUGG 

2819 GUOCCOCO 10 outside Coding region -8.6 
2844 CACGACGC 

2875 GCGGUGUG 13 outside coding region -6.6 
2903 CGCCGCAC 

Notes 

- The putative secondary structures of RNA transcribed from the 
AMS 149 encoded 5-lactamase DNA sequence and surrounding 
region have been predicted using the UWGCG program 
STEMLOOP(it is explained in the text). 

- The free energies of pairing have been calculated using the 
method of Tinoco at at (1973), which takes into consideration 
stem sequences as well as nearest neighbour and loop 
sequence effects. 
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4.6. Possible secondary structures 

A search for possible stem-loop structures in the DNA sequence using the 

program STEMLOOP (UWGCG) revealed 13 potential structures with eight or more 

base pairs in the stem (Table 4.2). Only four of them are in the flanking 

non-coding regions (these are not shown in the figure). Three occur at regular 

intervals of about 120 bp along URF 1, while six occur within the B - lactamase 

gene in two main clusters (Fig. 4.6). Two of these lie in the 73 bps between the 

putative Shine/Dalgarno sequence and the putative initiation codon, and the 

others are grouped between the nucleotides 1850 and 1924, in the middle of the 

B - lactamase gene. The sixth one is situated 50 bps downstream from the 

initiation codon. The 8 - lactamase gehe however, ends in a poor 6 bp long stem. 

The latter has only two 0—C bonds though it precedes a run of thymine residues. 

Application of the program STEMLOOP to other DNA sequences suggests that 

stem-loop structures occur randomly (results not shown). Hence, any 

interpretations of their relevance has to be in the context of other neighbouring 

sequences. Secondary and tertiary structure of RNA have been implicated in the 

control of gene expression. Roenberg et at (1978) observed pausing by RNA 

polymerase at the stem-loop of XR1 terminator. This role has been proposed as 

the general function for the RNA hairpin structures (Adyha & Gottesman, 1978; 

Pribnow, 1979; Rosenberg & Coujn, 1979; Yanofsky,1981; etc.). Actual termination, 

however, requires a sufficient stretch of uridines downstream of the pause sites 

(Platt, 1981). 

Thus, the two hairpin structures occurring after the putative Shine/Dalgarno 

sequence of the 8 - lactamase gene have the characteristics of attenuator 

sequences: short G-C rich palindromes followed by A-T rich regions, occurring 

before the main body of the structural gene (Yanofsky, 1981). The other cluster in 

the middle of the gene raises interesting implications. The third loop is preceded 

by two adenines and three thymines. It would seem likely, that although the 



FIG. 4.7: Si MAPPING REACTIONS OF RMS 149 DNA PROBES AND 1920E TRANSCRIPTS 

Tracks TCGA are dideoxy-sequencing tracks of a template 
used as marker DNA. Size markers (M) are fragments derived 
from a Sau 3A digest of pBR322 DNA, end-labelled with 
Klenow fragment of DNA polymerase. 

The numbers 5, 66 and 127 refer to probes generated from 
templates 5, 56 and 127 	?4; respectively. They are 
described in the text. 

Tracks a contain untreated probe; tracks b, no hybridization 
and Si digestion of probe; tracks c, hybridization to 1920E 
total RNA preparation followed by Si digestion. 

Arrows indicate protected fragments 

Notes: 

- Probe 5 (the termination region probe) was completely 
protected. 

- The start region probe (127; Fig. 4.7b), was largely fully 
protected, but a small proportion was reduced by about 100 
bases. The shorter probe 127a (Fig. 4.7a) was reduced by about 
19 bases. 

- Probe 56 was partly fully protected while the remaining part 
was reduced by about 35 bps. 
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S-lactamase 	gene 	codes 	for 	a 	bigger 	'normal' 	sized 	enzyme, 

transcription/translation may get aborted in the middle of the gene. 

4.7. Repeats 

A computer search of the sequenced DNA with the program REPEAT (UWGCG) 

did not reveal any major repetitive sequences. 

4.8. Transcription of the 6-lactamase gene 

In order to determine the transcriptional start and stop sites of the 

S-lactamase gene, Si mapping experiments with internally labelled probes were 

carçied out as outlined in section 2.2.5.5. Three M13 templates covering different 

parts of the gene were used to make the prime cut probes. 

Probe 127 	 covers DNA 128 bases upstream of the 
Shine/Dalgarno sequence from the Psa 1 site at 
nucleotide 1302, down past the attenuator sequence 
to the N-terminal region of the 6- lactamase at 
position 1782. Probe 127a is a shorter version 
starting 55 bases downstream the Shine/Dalgarno 
sequence. 

Probe 56 	 consists of DNA occurring completely within the 
gene and spans the putative middle region 
stem-loops. It extends from the BgI I site at 
nucleotide 1756 to 1918. This region was used, so as 
to investigate the effect of the multiple loop-forming 
structures in the middle of the B-lactamase gene 
sequence. 

Probe 5 	 starts from within the gene at nucleotide 2269 and 
spans the stop codon before ending at nucleotide 
2514. 

All the probes were complementary to the expected mRNA sequence. The probes 

were hybridized to total RNA preparations from Ps. aeruginosa 1920E. After Si 

digestions of the RNA/DNA hybrids, the protected fragments were examined on 

sequencing type gels for any changes in length. The results are presented in Fig. 

4.7. 

Two protected fragments were observed for the initiation site probe 127 (Fig. 
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4.7b). One of these is the fully protected probe while the other is shortened by 

about 100 bases (the sizes were determined by interpolation of a plot 

1og 10[fragment length] against distance of migration of pBR322 Sau 3A digested 

markers). This observation suggests that the 8-lactamase gene is sometimes 

read through from an upstream promoter, possibly, that of URF-1 as well as from 

its own promoter. As the fully protected band is stronger, (ref. Fig. 4.7b), most of 

the transcripts are initiated from the upstream promoter. The shorter probe 127a 

(Fig. 4.7a) is shortened by about 19 bases (sizes here, are determined by counting 

the number of bands in the marker dideoxynucleotide sequencing tracks). The 

reduction in bases can be accounted for by the loss of the llmer sequencing 

primer used in generating the probe. 

Probe 56 (Fig. 4.7a) yielded two fragments - one that is full size and another 

which is 35 bases shorter. This observation is indicative of transcript abortion in 

the middle of the 8-lactamase gene around the second loop. 

The termination probe 5 was completely protected in these Si mapping 

experiments. This would seem to suggest that 8-lactamase gene transcription in 

the RMS 149 plasmid does get past the middle termination region, even though, 

final termination is not at the putative stop site. 

In summary, there is preliminary evidence in these investigations, that the 

pseudomonad $-lactamase gene is expressed from its own promoter mapped in 

Fig. 4.1. Most of the transcripts, however, arise from an upstream promoter. 

There is termination of transcription around the middle of the gene but, the full 

gene sequence is also transcribed. 

4.9. Conclusion 

The nucleic acid sequence of the 3.3 kb Xho 118am Hi fragment of pRLG 304 

revealed the sequence of a 2.9 kb portion of the RMS 149 plasmid which codes 

for a $-lactamase, one definite URF and possibly another URF. The enzyme 
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closely resembles the S. licheniformis and TEM penicillinases which are class A 

enzymes (see chapter 6). The 2.9 kb insert can have arisen either by cloning a 

partial ]!a 1 digested fragment or by multiple cloning of smaller fragments. The 

good sequence alignment of the $-lactamase gene to other characterised 

enzymes, and the presence of an internal CIa 1 site suggest that, the sequenced 

DNA was derived by cloning a partial Taq 1 digested fragment. 

The gene sequence implies that the 6 - lactamase gene is not as small as 

reported by Sawada or at (1974). This observation does not however rule out the 

possibility of post-translational processing, though the method used for 

estimating the molecular weight (thin layer gel filtration) is not reliable 

(ft Ambler, Pers. comm.). The presence of a cluster of putative stem-loop 

forming structures in the middle of the gene, suggests that there could be 

abortions during the transcriptional process. Si nuclease mapping of RNA 

transcripts support this suggestion. It is not clear at this stage, if the truncated 

message produces a smaller enzyme or not. The fact that the full message is 

also available would suggest that the overall effect is to reduce the level of 

translation rather than to produce a smaller enzyme. 

The low yields observed in the expression of the S- lactamase gene (section 

3.6) may be due in part to the presence of an attenuator sequence. Premature 

termination of transcription is thought to result if significant amounts of mRNA 

are left unprotected by ribosomes (Pribnow, 1978). Therefore, it is possible that, 

the effect of the attenuator sequences is to reduce translation which in turn, 

cause abortions in transcription. It was not, however, clear why a constitutive 

enzyme should have been placed under controls normally characteristic of 

inducible systems. 

The leader 	transcript 	of 	the S- lactamase 	cistron is 	unusual in 	lacking 	a 

second Shine/Dalgarno sequence downstream from the attenuator sequence. The 
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result is that the Shine/Dalgarno sequence is separated from the start codon by 

73 nucleotides in the putative mRNA. This separation is rarely less than 5 or 

longer than 9 nucleotides (Scherer et a!, 1980). Exceptions have been reported in 

literature. Thr leader sequence has a Shine/Dalgarno to Met codon space that is 

12 nucleotides long (Stormo at a!, 1982), suggesting that the ribosome can 

accommodate some extra nucleotides between the Shine/Dalgarno region and 

the initiation codon. An extreme example is the situation in T 4  gene 38 mRNA 

(Gold et a!, 1981). In this case, the Shine/Dalgarno - initiation codon separation 

is 23 nucleotides long and an intramolecular hairpin has been hypothesised to 

reduce this to 5 nucleotides. Thus, secondary structure formation of the putative 

stem-loops in the Ps. aerug/nosa RMS 149 B - Iactamase attenuator region, may 

act to bring the Shine/Dalgarno sequence closer to the start codon. AUG is not 

absolutely required for transJiUtion (Gold at at 1984). The use of GUG, UUG, 

AUU, and maybe UUU have been observed (Gold at a!, 1981; 1984). Consequently, 

some other codon apart from the first Met may act as initiation codon. 
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CHAPTER 5 

RH000PSEIJOOMONAS CAPSUL4TA SP 108 B—LACTAMASE 

5.1. Introduction 

5.1.1. Rps. capsulatasp 108 

Rhodopseudomonas spp are non-sulphur, purple, Gram-negative bacteria, 

commonly found in stagnant bodies of water and mud. They are photosynthetic 

by means of bacteriachiorophyll in the presence of extraneous hydrogen donors 

such as alcohols, fatty acids, hydroxy- and keto-acids. Photosynthesis proceeds 

without the evolution of oxygen. Although most of them grow optimally as 

anaerobic organotrophs, rhodopseudomonads can also be cultivated in darkness 

under aerobic conditions. Representative species have been characterised using 

DNA/DNA hybridizations (Weaver at al.. 1975), comparative cytochrome c 

sequence analysis (Ambler at at. 1979), and 16S RNA catalogues (Gibson at at, 

1979). The findings suggest that photosynthetic bacteria are a phylogenetically 

diverse group. 

Bps. capsulata (Van Niel, 1944) are small (1 pm by 0.5 pm) palarly flagellated 

bacteria. They are closely related to two other Rhodopseudomonas spp - Bps. 

sphaero/des and Bps. ge/at/nose (Pfenning, 1977). A generalized transducing 

phage (GTA) capable of interstrain transfer of rifampicin resistance has been 

reported in Bps. capsulata (Marrs, 1974). Wall at at (1975) observed that the 

system was highly species specific, as transfer could not be effected to other 

rhodopseudomonads. There have been few reports of naturally occurring 

plasmids (Gibson & Niedman, 1970; Saunders at at, 1976; Scahill, 1981). These 

are very large and of several types per cell. Some Bps. capsu/ata phages confer 

pseudo-Iysogeny (Wall at at, 1975), thus raising the possibility that certain 

plasmids may be phage genomes. 
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• Photosynthetically incompetent 	 strains were isolated after Aps. 

sphaero/das 2.4.1 had been incubated with lauryl sulphate or exposed to 

N-methyl-N-nitro-N'-nitrosoguaflidine (Saunders at al, 1976). The known curing 

abilities of these compounds led to the suggestion that the Pho phenotype 

might be due to loss of a plasmid. Electron microscopic studies revealed that the 

original classes of plasmids still existed though one of them had increased in 

size. No conjugative ability has been observed for these natural plasmids. Sistrom 

(1977) was able to transfer a resistance factor (R68.45) from Ps. aerug/nosa 

P4025 to Rps. sp/iaeroides and Rps. ge/at/nasa While the plasmid conferred 

neomycin and carbenicillin resistance to Aps. ge/at/nasa, only neomycin 

resistance was observed in Rps. sphaero/des Interestingly, Rps. sphaero/des 

could transfer the acquired R factor to fips. capsu/at4 although carbenicillin 

resistance was not conferred (J.D. Wall, quoted in Scahill, 1981). 

fips. capsulate sp 108 was originally isolated from sewage and, in a routine 

antibiotic sensitivity screen, it was identified as a highly penicillin-resistant strain 

(Weaver at at 1975). Its penicillin resistance was found to be due to a high level 

of $ - lactamase production as a mutant was derived which no longer produced 

the enzyme (Weaver at a!, 1975). 

/ 

Most Aps. capsulate strains are highly penicillin sensitive (Weaver at at 1975). 

There is experimental evidence that Rhodopseudamonas spp can receive 

resistance transfer factors from other Gram-negative bacteria (Sistrom, 1977; 

J.D. Wall, quoted in Scahill, 1981). It was thus interesting to carry out structural 

studies on this 6 - lactamase produced in photosynthetic bacteria which have no 

clinical significance and live in an aquatic environment. As previously stated, 

(section 1.6), it is unlikely that a high concentration of S- lactam antibiotics 

become accummulated in such niches by penicillin-producing fungi, as to exert a 

selective pressure on bacteria for 6 - lactamase production. 
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5.1.2. Rps. capsulata sp 108 3-lactamase 

Preliminary studies on the 8- lactamase production in the photosynthetic 

bacteria were carried out by Scahill (1981). With the use of isoelectricfocusing, 

cell extracts from strains sp 108 and sp 109 were shown to produce the same 

8- lactamase. They differed in that, whereas enzyme synthesis is inducible in sp 

108, it is non-inducible in sp 109 and the $-lactamase is produced at a very low 

basal cell level. Essentially, the enzyme is a penicillinase with isoelectric points 

corresponding to pH values 4.5 and 4.7. These represent the cytoplasmic enzyme 

and the periplasmic derivative as determined by comparing isoelectricfocusing 

gels of whole cell lysates and cold osmotic shock (COS) released materials. The 

COS process consists of incubating bacterial cells in concentrated sucrose/EDTA 

solutions, followed by sedimentation and sudden exposure to cold water or dilute 

magnesium solutions. The treatment acts to release periplasmic proteins without 

affecting cell viability (Neu & Chou, 1967). 

The structural gene was cloned from total DNA digests of Rps. capsu/ata 

strain sp 108 into plasmid (pMB9) and phage X781-0 (an Eco Ri replacement 

vector; Murray at at, 1977) vectors. The gene was expressed only when on the 

phage. Thus, it was suggested that transcription was probably via the powerful 

phage promoters. Both rhodopseudomonad strains were analysed for their 

plasmid content and were shown to possess identical plasmid complements (four 

classes). Hybridization studies, using the cloned fragment as a probe, indicated 

that the 8 - lactamase gene was probably on one of these plasmids. The results of 

similar hybridization studies in the investigations reported here do not agree with 

this observation (see section 5.9). The actual coding sequences were located to a 

5.8 kb Barn Hi fragment by subcloning the original 12 kb Eco Al fragment into 

XNJM570BV2 (a Barn Hi vector, Klein & Murray, 1979) as a preliminary step to 

nucleotide sequencing. An internal M II site, mapped in the 5.8 kb Barn Hi 

fragment, was implicated as probably occurring within the gene as ampicillin 



Fig- 5.2: Physical map of the Rps. capsulata 5.8 kb DNA fragment 
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FIG. 5.1: RESTRICTION ENZYME ANALYSIS OF P5520 PIASMID 

Track DNA Restriction endonuclease 

1 pSS20 plasmid DNA Xho i/Sal 1 

2 -do-  Barn H1/Xho 1 

3 Xcl857 Hind 	Ill 

4 pSS20 plasmid DNA Xho 1 

S -do- BgI ll/Xho 1 

6 -do- BgI 	II 

7 -do- Barn Hi/j II 

8 Xc1857 Hind 	Ill 

9 pSS20 plasrnid DNA Barn Hi 

10 -do- Barn Hi/Sal 1 

11 -do- Sal 	1 

12 -do- 891 II/Sal 	1 

Note: 

The fragments in the marker track (5) are derived from digesting Xc1857 with 

Hind 	Ill. 
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resistant plaques could not be obtained with Barn H1/?9l II generated fragments. 

In the course of the continuing investigation of the primary structure of the 

B - lactamase, the recombinant plasmid pSS20 (pBR322 carrying Rps. capsulata sp 

108 derived 5.8 kb Barn Hi fragment) was physically mapped. Several fragments 

spanning the whole length of the 5.8 kb DNA were cloned into a X vector and 

the gene was further located to a 2.3 kbThaI 1 insert. The nucleic acid sequence 
A 

of the rhodopseudomonad DNA was determined and the amino acid sequence of 

the Rps. capsulata so 108 8-lactamase was deduced. The nature of the 

B - lactamase gene transcript was also examined to determine the transcriptional 

start and stop signals in photosynthetic bacteria. 

5.2. pSS20 plasmid 

The plasmid p5520 is derived from an insertion of the Rps. capsu/ata 5.8 kb 

fragment into the Barn Hi site of pBR322 (Scahill. 1981). The plasmid was 

mapped by single and double restriction enzyme digestion and agarose 

electrophoretic resolution as outlined in section 2.2.3 (Fig. 5.1). The restriction 

enzyme sites and approximate fragment sizes deduced for the different fragments 

in the Barn Hi insert are shown in Fig. 5.2. The Sal 1 fragment was generated 

because of a flanking Sal 1 site within the pBR322 DNA only 275 bps from the 

Barn Hi junction site (Sutcliffe, 1978). 

5.3. Subcloning the derivatives into plasmid vector 

In order to locate the rhodopseudomonad 8- lactamase gene more closely, the 

5.8 kb Barn Hi, 25 kb §91 II, 21 kb Sal 1 and 2.2 kb Xho 1 generated fragments 

(Fig. 5.2) were purified from the rest of the pBR322 sequences as explained in 

section 2.2.3. The purified fragments were then separately cloned into the Barn 

Hi cut pLG401 vector DNA (Fig. 5.3) for the Barn Hi and the BgI II fragments or 

into the Sal 1 site of the same vector for the Sal 1 and Xho i fragments. 

pLG 401 is an expression vector constructed in the course of this work. It 
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Fig. 5.3: Plasmid pLC 401 construction 
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Fig. 5.3: Diagramatic representation of the scheme used in 
generating pLC 401. The Eco Ri/Barn Hi fragment of pLC 339 
is replaced by that from pCQV2 (Queen, 1983). 
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was derived by replacing the Eco Ri/Barn Hi fragment in the plasmid pLG 339 

vector DNA with an Eco Ri/Barn Hi fragment from an expression vector PCQV2 

(Queen, 1983). DNA sequences upstream and spanning the beginning of the pLG 

339 ic R gene are thus replaced by that encoding a ts cI gene and the APr 

promoter(Fig. 6.3). Subsequent DNA cloned into the Barn Hi site or the nearby §!i 

i site, can then be transcribed from the APr promoter at the non-permissive 

temperature of 42 0 C. 

Ampicillin resistant colonies which produce 8-lactamase were observed for 

E. ccli transformed with recombinant plasmid DNA carrying either the 8am HI 

fragment (positive control) or the Sal i piece. The recombinant plasmids resulting 

from the Sal 1 cloning were recovered by the minipreparation method (Birnboimg 

1979) and subjected to restriction enzyme analysis. Though the 2.6 kb Sal 1 was 

not resolved (Fig. 6.9a), the plasmid was later observed to hybridize to a 

radioactive probe made from the Rps. capsulate B-lactamase gene (see section 

5.9 below). This plasmid- pSS200 was not used in further investigations as the 

inability to excise the cloned Sal i fragment, suggests there might have been 

some gene rearrangement. 

5.4. Subcloning the 5.8 kb Barn Hi fragment into Xc1857 

Xho i and Sal i fragments prepared as outlined in section 5.3 above were 

ligated into the Sal i site of Ac1857 Sam in separate experiments. The two Sal 1 

sites on A DNA occur within 0.6 kb of each other within the gam gene (Sanger et 

al. 1982; Daniels et al, 1983). This is part of the replaceable inessential region. 

Since only 0.6 kb is lost in a Sal 1 digest, the insert on ligation must be less 

than 3 kb for efficient phage packaging (Murray, 1983). This is because A will only 

package DNA that is 80 - 105% of its full genomic size (Weil at al, 1973). Thus, 

both target fragments were within the desired range. 

5-lactamase producing phages were obtained only with recombinant phage 



Table 5.1: Codon usage table in Rps. capsulata 3-lactamase gene 

F ITT 0, S TCT 3. Y TAT 0. C 161 1, 
F TIC 7. S ICC 6, V TAC 1. C TGC 2, 
L TIA 0. S TCA 0, * TAA 0. * TGA 0, 
L 116 1. S TCG 5. * TAG 0. W 166 6. 

LCTT 1.PCCT 3.11CAT 1.RCOT 3. 
L CIC 19. P ccc s. H CAC 3. R C6C 12. 
LCTA O.PCCA 1. QCAA 0.RCGA 1. 
L CTG 15. P CCC 6. 0 CAG 30 R COG 4, 

I AlT 0. 1 ACT 1. N AM 2. S AGT 0. 
tAlC 11.TACC 8.NAAC 6.SAGC 7. 
I AlA 0, 1 ACA 1. K AAA 1. R AGA 0. 
H ATG 9. 1 ACG 12. K AAG 5. R AGO 3. 

V OTT 3. A 6C1 3. 0 GAT 4. 6 661 3. 
V OTC 12. A 6CC 14. 0 GAC 15. 6 GGC 17. 
V GIA 0.-A GCA 2, E GAA 5. 6 66A 3. 
V 616 9. A GCG 20. E GAG 18. 6 600 5. 

TOTAL COE'ONS= 308, 
I C A 6 

1 21.77 24.68 45.83 41.43 
2 59.18 28.85 44.44 20.87 
3 19.05 46.47 9.72 37.69 

1 10.39 25.00 21.43 43.18 
2 28.25 29.22 20.78 21.75 
3 9.09 47.08 4.55 39,29 
Z 15.91 33.77 15.58 34.74 OBSERVED, 	OVERALL TOTALS 
X 22.02., 24.33 22.67 30.97 EXPECTED, 	EVEN COL'ONS PER ACID 



Fig. 5.5: Nucleotide sequence of Rps. capsulata 3-lactamase gene and 

flanking sequences 

GGATCCAGAACTTCTACAACGCCCATCGGCTATCTCCCGCGACGGGCGCCAGGAGCCACT 

	

10 	 30 	 50 

CCTAGGTCTTGAAGATGTTGCGGGTAGCCGATAGAGGGCGCTGCCCGCGGTCCTCGGTGA 

CTCCCAGCCCTCAACCCGTCGCCGGGAAATCGACACTCCCTTACTCTGGCTGATGTGAAG 

	

70 	 90 	 110 

GAGGGTCGGGAGTTGGGCAGCGGCCCTTTAGCTGTGAGGGAATGAGACCGACTACACTTC 

GGCGGGAAGCGGACCTTCGCCGCGCTTGGGTCGAACGTCGCGGAAGGGCCGTCTCTGCTG 

	

130 	 150 	 170 

CCGCCCTTCGCCTGGAAGCGGCGCGAACCCAGCTTGCAGCGCCTTCCCGGCAGAGACGAC 

GGCAGACCCCACTCGCTTGGGGGGCAGCAAGCTGTGCCGCCGCAACTCTGCTTCGAGCCC 

	

190 	 210 	 230 

CCGTCTGGGGTGAGCGAACCCCCCGTCGTTCGACACGGCGGCGTTGAGACGAAGCTCGGG 

TTTCGAGCCCTTCGTGTCGGTTPTGGGCTTCATGTTGCATGACGGGCATCCAGTGGGTG 

	

250 	 270 	 290 

AAAGCTCGGGAAGCACAGCCAAAACCCGAAGTACAACGTACTGCCCGTAGGTTCACCCAC 

CCTGCCAATGTCCGCGGCGCTTAGCGCGCACGGCAGGCTTGGGGGGGGGGTGACACGAAT 

	

310 	 330 	 350 

GGACGGTTACAGGCGCCGCGAATCGCGCGTGCCGTCCGAACCCCCCCCCCACTGTGCTTA 

TGGATGCTTACTCAGCGCTCTGGCCGGTCAGCCAACGCGAGAACGTGCTCATCGCTGATG 

	

370 	 390 	 410 

ACCTACGAATGAGTCGCGAGACCGGCCAGTCGGTTGCGCTCTTGCACGAGTAGCGACTAC 

* E A S 	G T LW R SF T S 		A S 

TGGCGGGCCGGTCGGACGGCCAGGCGAGATAGTAACGTCCGACAGAAACTGTGACGCCGA 

	

430 	 450 	 470 

ACCGCCCGGCCAGCCTGCCGGTCCGCTCTATCATTGCAGGCTGTCTTTGACACTGCGGCT 

	

TAP R 	D S P WA L Y Y 	C VS VT V C 

AAGGCTGTGCCAAGCGGCCCTGCGCGATGTAGCTCTCGAACATGGAGATCGGCAGCAGGC 

	

490 	 510 	 530 

TTCCCACACGGTTCGCCGGGACGCGCTACATCCACAGCTTGTACCTCTAGCCGTCCTCCC 
F P0 AL R GO A 115SF MS I P L L 

CCACGCCGCCGCCTGAGCTTGCCAGCTCTGCCAAACCCACCCAGCTGTCAAAGACCGGCC 

	

550 	 570 	 590 

GCTGCGGCCGCGGACTCCAACGGTCGAGACGGTTTCGGTGGCTCGACAGTTTCTGGCCGG 
A V GAGS TALE ALA V 550 F V P 

CCGTGACACCCCGGCAAGGCACGCCTCCCCCCTCAAACCAGCCCCGCCATTCGGCCCTTC 

	

610 	 630 	 650 

GCCACTGTCCGCCCCTTCCCTGCGGACGCCGGAGTTTGCTCGGGCCCGTAAGCCCCGAAG 
C TV PP C P VGA A SF W C P WE AS 



GGTAGCTGCCCAGAAGCGTTACTTGCCCGAGGTCCGAGGGATGCAGCAGCCGTGACGCGA 

670 	 690 	 710 

CCATCGACGCGTCTTCGCAATGAACCCGCTCCAGGCTCCCTACGTCGTCGGCACTGCGCT 
R Y SR L L TV Q G L D S P H £ L R S A 

GCCCCGCCGCGCAGAGCGGCGCCATCGGCGCCTCTGCCAGTGGGATCCCATCGTGTCCTG 

730 	 750 	 770 

CCGGGCCGCGCGTCTCGCCGCCGTAGCCGCGGAGACGCTCACCCTAGCCTAGCACAGGAC 
L CPA CL PAM PAL AL P1 AD HG 

PSSURF-1 
MS S PS R RI ST R 

TCCAGCCTCCAGTGCCG4.ACCG*CCCCATCTCCAGCCCCTCGCGCAGGATCTCCACCC 

790 	 810 	 830 

AGGTCGCAGCTCACGGCTTTGCCTAGCGGTACAGCTCGGCGAGCGCGTCCTAGAGCTGGG 
T W CC T C F R I A M D L C ER LIE V 

L L L 	E 	L R S I W C WA C RN ASS 

GCTTGTTGTTCCTCGACATCCTCACGTCCATCTCCCGATCGCCCTGTCCCCCCCTCGA 

850 	 870 	 890 

CCAACAACAACCACCTCTACCACTCCACCTACACCCCTACCCCCACACCCTTGCGCACCT 

RN N NT SIR L DI Q PH A Q 	F AL 

R CI S 	H IA K V V L T PP F ST S  

GCCCCGCCATCACCCAGCACATCCCGAACCTCCTGTTCACCCCCCTTTACCACCTCCA 

910 	 930 	 950 

CCCCGCCCTACTCGCTCGTCTACCCCTTCCAGCACAACTCCGCTTCCAAATCGTCCACCT 
L RPM LW CM A FT TN V C V K L 	E 

SR R PP R R SS T RD IA S 	PC 55 

TCTCGCCCCCCCCGCCCACACCCTCCACCACCCGCCACATCCCCTCCAACCCATGCTCAA 

970 	 990 	 1010 

ACACCGCCCCGCCCCCCTCTCCCAGCTCCTCGGCCCTCTAGCCCACCTTGGCTACGACTT 

ID R R CCL RD L 	R S 	AD F C HE 

T C K SR R P S S V CI S P W E 	L RN 

CCACGCCAAACACCACCCCTCCCTCCTCCCTCCCCATCACCCCCTGCCAGCTCCTCAGCA 

1030 	 1050 	 1070 

CCTCCCCTTTCTCCTCCCCAGCCACCACCCACCCC.TAGTCCCGCACCCTCCACCACTCCT 
L VP FL L R C E D T P I £ C QS T R L 

S A V PS R SS SR AT W W L TA A WV 
ACAGCGCTCTCCCCACCACCTCCTCGACCCGCCCCACCTCCTCGCTCACGCCACCCTGCC 

1090 	 1110 	 1130- 

TGTCCCGACACCCGTCCTCCACCAGCTCCCCGCCCTCCACCACCCACTGCCCTCCGACCC 
FLAT CL £ DEL R A V OHS V A A Q 

T R S S 	A A L 	K L P W R MATS NT 

TCACCCGCACCTCCATCCCCCCCTTCGTAAACCTCCCCTCCCCCATCCCCACCTCCAATA 

1150 	 1170 	 1190 

ACTGCCCCTCCACCTACCCCCCCAACCATTTCCACCCCACCGCGTACCCCTCCAGCTTAT 
TV R L El A A K T F SC Q R MA V E F 

Fig. 55 (continued) 



R R AL S G R SO R S 	A VP Q L M AG 

CGCGCAGGGCATTGAGCGGCAGGTCGGGGCGATCCATGGCAGTACCTCAGCTAATGGCAG 

	

1210 	 1230 	 1250 

GCGCGTCCCGTAACTCGCCGTCCAGCCCCGCTAGGTACCGTtTGOTCGATTACCGTC 

V R LAN £ P £ D PR D M 
IE 	PSSIJRF-2 

H K I C R £ MA AIR P KIT V R MT S 

GCCATAAGATTTGTCGTTTGATGGCTGCGATCAAGCCGA1CAGTCCGCATGACAT 

	

1270 	 1290 	 1310 

CGGTATTCTAAACAGCAAACTACCGACGCTAGTTCGGCTTTATATGTCAGGCGTACTGTA 

3- lactamase 9. 

	

C D V 	A S 	A P LA Q ILK GM V P CO 
MR 

CATGTGATGTCGCATCCCAGGCGCCACTGGCGCAGATCCTG4AAGGA*GGTCCCATGCG 

	

1330 	 1350 	 1370 

GTACACTACAGCGTAGGGTCCGCGGTGACCOCGTCTAGGACTTTCCTTACCAGGGTACGC 

	

S P L 	PS C 	V SR Q G 5£ SAC P W P 

F TAT V L SR V A TO LA L 0 L S 	A 

GTTCACCGCTACCGTCCTGTCGCGTGTCGCGACA000CTCGCTCTCGGCCTGTCCATGGC 

	

1390 	 1410 	 1430 

CAAGTGGCGATGGCAGGACAGCGCACAGCGCTGTCCCGAGCGAGAGCCGGACAGGTACCG 

R pp  5 P KR £ SR R S P K PS PG SR 
TA S LA E T P V LA £ SET V A RI E 
CACGGCCTCCCTCGCCGAAACOCCTGTCGAGGCOCTCTCCGACCGTCGCCCGGATCOA 

	

1450 	 1470 	 1490 

GTOCCGGAGOGAGCGGCTTTGCGGACAGCTCCGCGAGAOGCTTTGGCAGCGGGCCTAGCT 

N S SAP AS A SR SW R PAR V GPO 
E  £ OAR V G £ S£ MET 0 T G W SW 

GGAACAGCTCGGCGCCCGCOTCOGCCTCTCGCTCATGGAGACCGOCACGGGTTGGTCCTG 

	

1510 	 1530 	 1550 

CCTTGTCGAGCCGCGGGCGCAGCCGGAGAGCGAGTACCTCTGGCCGTGCCCCCAGGAC 

L TARTS F SS * 
SHRED ELF £ MN ST V K VP V CO 

GTCTCACCGCGAGGACGAGCTTTTCCTCATGAACAGCACGGTCAAGGTGCCOGTCTGCGG 

	

1570 	 1590 	 1610 

CAGAGTGGCGCTCCTGCTCGAAAAGGAGTACTTGTCGTGCCAGTTCCACGGCCAGACGCC 

Al £ AR W D AG R £ S L SD ALP V R 
CGCCATCCTCGCGCGTT000ACGC000CAGGCTGTCOCTCTCCGATGCGCTGCCOGTGCG 

1630 	 1650 	 1670 

GCOGTAGGAGCOCGCAACCCTGCOCCCGTCCGACAGCGAGAGGCTACGCGACGGCCACGC 

Fig. 5.5 (continued) 



K A D L V P1 A P VT E T R V G G N MT 
CAAGGCCGACCTCGTGCCCTACGCGCCCGTCACGGAGACGCGGGTCGGCGGCAACATGAC 

1690 	 1710 	 1730 

GTTCCGGCTGGAGCACGGGATGCGCGGGCAGTGCCTCTGCGCCCAGCCGCCGTTGTACTG 

L DEL CL A A 1DM SD N VA A NIL 
CCTCGACGAGCTCTGCCTCGCGGCGATCGACATGAGCGACAATGTGGCGGCGCATCCT 

1750 	 1770 	 1790 

GGAGCTGCTCGAGACGGAGCGCCGCTAGCTGTACTCGCTGTTACACCGCCGCTTGTAGGA 

IC H L G 	PEA VT Q F FR S V G 	P 

GATCGGGCATCTCGGGGGGCCGGAGGCGGTGACGCAGTTCTTCCGCAGCGTCGGCGACCC 

1810 	 1830 	 1850 

CTAGCCCGTAGAGCCCCCCGGCCTCCGCCACTGCGTCAAGAGGCGTCGCAGCCGCTGGG 

	

T S R L DR I E PR L ND F AS G 	ER 

GACGAGCCGTCTCGACCGCATCGAGCCCAAGCTGAACGACTTCGCTTCTGGAGACGAGCG 

1870 	 1890 	 1910 

CTGCTCGGCAGAGCTGGCGTAGCTCGGGTTCGACTTGCTGAAGCGAAGACCTCTGCTCGC 

D T T S P A A MS E T L R ALL L G 	V 

GGACACCACGAGCCCGGCCGCCATGTCCGAGACGCTGCGAGCGCTGCTGCTGGGCGACGT 

1930 	 1950 	 1970 

CCTGTGGTGCTCGGGCCGGCGGTACAGGCTCTGCGACGCTCGCGACGACGACCCGCTGCA 

L SPEAR G K LA E W MR HG G VT G 

GCTGTCTCCGGAGGCCCGCGGGAAGCTGGCGGAGTGGATGCGCCACGGCGGCGTGACCGG 

1990 	 2010 	 2030 

CGACAGAGCCCTCCGGGCGCCCTTCGACCGCCTCACCTACCCGGTGCCGCCGCACTGGCC 

ALL RAE A ED A W L 	L D KS G S G 

CGCATTGCTGCGCGCCGACCCCGAGGACGCCTGGCTGATCCTCGACAGTCGGGCAGCGG 

2050 	 2070 	 2090 

GCGTAACGACGCGCGGCTCCGGCTCCTGCGGACCGACTAGGAGCTGTTCAGCCCGTCGCC 

5 H T RN L 	A VI Q PEG GAP WI A 

AAGCCACACGCGCAACCTCGTCGCGGTGATCCAGCCTCAAGGCGGAGCGCCCTGGATCGC 

2110 	 2130 	 2150 

TTCGGTGTGCGCGTTGGAGCAGCGCCACTAGGTCGGACTTCCGCCTCGCGGCACCTAGCG 

TM F IS D T D A El FE V RN El AL K D 

GACCATGTTCATCTCGGATACGGACGCGGAGTTCGAGGTTCGCAACGAGGCGCTCP.GA 

2170 	 2190 	 2210 

CTGGTACAAGTAGAGCCTATGCCTGCGCCTCAAGCTCCAAGCGTTGCTCCGCGAGTTTCT 

terminator 

L G 	A V VA V V RE * 	 ) ( 
TCTGGGTAGGGCGGTGGTCGCGGTTGTTCGCGAATAGCCTATCCCAGGCGCGGCTTCCGC 

2230 	 2250 	 2270 

AGACCCATCCCGCCACCAGCGCCAACAAGCGCTTATCGGATAGGGTCCGCGCCGAAGGCG 

Fig. 55 (continued) 



ec-
TCTGAGAAAGGATGTACTTTGGGCTGCGGAGCAGTGAGACATCATGCCATTGCGCAGCCG 

	

2290 	 2310 	 2330 
AGACTCTTTCCTACATGAAACCCGACGCCTCGTCACTCTGTAGTACGGTAACGCGTCGGC 

ATGGTGCCGGTGGGGTGCCCTGCAATACCTGGTCGAC 

	

2350 	 2370 
TACCACGGCCACCCCACGGGACGTTATGGACCAGCTG 

Fig. 5.5: Nucleotide sequence of the rhodopseudomonad 
derived DNA fragment. The boxed sequences indicate 
E. coil-like ribosome binding sites (Shine/Dalgarno 
sequences), while, the arrows show the mapped B - lactamase 
terminator sequences. Amino acid translations of large ORFs 
have been presented in their one-letter notation. 

Fig. 5.5 (continued) 



Fig. 54: Amp R  plaques 

A 

Fig. 5.4: Ampicillin resistant plaques. B-tactamase producing 
plaques conspicuously surrounded by a halo of bacterial 
growth. 
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DNA arising from cloning the Sal 1 fragment. These were identified as plaques 

surrounded by a halo of cells when the plaques were transferred onto an 

ampicillin sensitive F. co/iFS 1585 lawn on L-broth ampicillin plates (Fig. 5.4). The 

amp  R  plaques were later confirmed for B — lactamase production by staining with 

nitrocefin (section 3:4). 

5.5. DNA sequence of the Rps. capsulata Bam Hi/Sal 1 fragment 

The DNA sequencing method and compilation of data used were the same as 

those outlined in section 4.2 for the pRLG 304 fragment. The DNA sequence of 

the Rps. capsu/ata 2.3 kb Sal 11Barn Hi fragment is shown in Fig. 5.5. The internal 

II site was located and served as a confirmatory site during the DNA 

sequencing. There were two )tho 1 sites at positions 898 and 1105 respectively. 

Their proximity might account for why only one site was detected in that region 

during restriction enzyme mapping. 

Each nucleotide was sequenced on average, four times. After sequencing 140 

clones, the region from nucleotide 392 to 673 had only been sequenced on one 

strand, although in seven different experiments. To solve the problem, two clones 

(72 and 113) covering this region were made double stranded, excised with Barn 

Hi 	and Eco Ri 	and cloned into M13 mp19 double stranded DNA (clone turn 

around; section 2.2.4.7). Templates from cells transformed with the recombinant 

phage DNA were then sequenced to provide the complementary strand of the 

region. 

The G + C content calculated in the sequenced region was 68.5% (T, 15.9%; 

C, 33.8%; G, 34.7%; A, 15.6%; ref Table 5.1). 	This 	falls within the range reported 

for 	R/iodopseudomonas spp (Jan 	de Bont 	et 	a!, 1981) and 	from 	direct 

calculations of the recently sequenced cytochrome c gene (Daldal et al, 1986). 
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Fig. 5.8: Comparison of the rhodopseudomoflad B-Iactamase & Tern 1 

sequences 
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Fig. 5.8: Comparison of the protein sequences of rcpen and 
E. co/i TEM 3-lactamase using the program DIAGON. The 
window length is 21 amino acids. 



Fig. 5.7: Framescan of the rhodopseudomonad DNA fragment 
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Fig. 5.7: Gene predictions for the Rps. capsulata DNA fragment 
using the codon preference option of Staden & McLachlan 
(1982). This is one of the functions of ANALYSEQ (explained in 
the text). The abscissa represents the DNA in (a), the same 
orientation as Fig. 5.5 and (b), in reverse orientation. The 
probability is plotted on the ordinate. The method assumes 
that the codon usage of genes from related organisms is 
similar and in this case the codon usage of Rps. blast/ca Lta 
operon (Tybulewicz et a/. 1984) was used. 

The probabilities for each of the six reading frames have been 
plotted one above the other, every 3 codons. a continuous 
line at the mid-point of a reading frame (this is at the 50% 
level of probability) indicates which of the three frames is 
most likely to be coding. The initiation codons, ATG or GTG, 
are marked as vertical bars at the base of each plot and the 
termination codons as vertical bars along the 50% level. 
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Fig. 5.6: ORFs & stop codons in the rhodopseudomoflad DNA fragment 
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• Fig. 5.6: ORFs predicted by ANALYSEQ in the sequenced 

rhodopseudomonad DNA. The positions of the stop codons 
are represented as vertical bars at the base of each of the six 
reading frames. The absence of stop codons in long stretches 
of DNA is suggestive of a potential coding region. 



5.6. Analysis of the sequence data 

The analysis of the Bps. capsulata nucleotide sequence was similar to that 

carried out for the Ps. aerug/nosa sequence (see section 4.3). The open reading 

frames were identified using the program ANALYSEG (Fig. 5.6). 

The coding sequences could not, however, be confirmed by the use of 

positional base preference methods as very poor graphs were obtained. The 

content of the sequence library used for generating the average frequencies is 

strongly biased towards certain organisms (Staden, 1984a) and so it is possible 

that the very high G + C content (68.5%) of the Bps. capsulate DNA affected the 

analysis. The codon usage option was thus employed. 

This option uses the method of Staden and McLachlan (1982) to calculate the 

probability that a given gene codes for a protein by having a codon usage 

resembling that of a "standard" gene. This method assumes that codon 

preferences in related organisms are similar since, according to the Wobble 

hypothesis (Crick, 1966), the first and second bases of codons are usually specific 

with the third base being more variable. As a result, there is a bias in this third 

base for those which are more common in the DNA. 

To confirm the coding regions in the Bps. capsulate DNA, a codon usage table 

compiled from studies on the nucleotide sequence of Bps. blast/ca LtE operon 

(Tybulewicz et al, 1984) was used as the standard gene. Two coding regions 

were identified in the forward orientation (Fig. 5.7). Another OFF was also 

observed in the. opposite orientation. The S - lactamase gene was identified by 

comparing the translations of these regions to the TEM 1 S- lactamase protein 

sequence held in the EMBL library using the program DIAGON (Fig. 5.8). A short 

sequence resembling the Shine/Dalgarno sequence (Shine/Dalgarno, 1974) 

predicted for rhodopseudomonad genes (Gibson et al, 1979) was found 7 bps 

upstream from the start Met of the 8 - lactamase gene. Its corresponding protein 



FIG. 5.9: LOCATION OF RPS. CAPSUL.4TA SP 108 W-LACTAMASE GENE 

0.75% agarose gel electrophoresis of total genomic 
and plasmid DNA digests of Bhodopseudomonas spp. 

Hybridization analysis of southern transfers of DNA 
from gel (A) using a hybridization probe generated 
from 	template 	carrying 	DNA 	within 	the 
rhodopseudornonad 6-lactamase gene. 

Track DNA Restriction endonuclease 

1 pSS20 SaIl 

2 pSS200 Sal 	1 

3 Barn Hi 

4 Bps. capsu/ata sp 108 plasmids Barn Hi 

5 Bps. capsu/atasp 108 plasmids 	- undigested 

6 Bps. capsu/ata sp 108 total DNA Barn Hi 

7 Xc1857 Hind 	Ill 

8 Bps. capsu/ata St. Louis plasmid Barn Hi 

9 Bps. capsu/ata St. Louis plasmid undigested 

10 Bps. capsu/ata St. Louis total DNA Barn Hi 

ii Bps. capsu/atasp 109 plasmids Barn Hi 

12 Bps. capsu/atasp 109 plasmids undigested 

13 Rps. capsu/atasp 109 total DNA Barn Hi 

14 Bps. spfzaerofdasplasrnid-DNA Barn Hi 

15 Bps. sphaaro/desplasrnid DNA undigested 

16 Bps. sphaerofdestotal DNA prep. Barn Hi 

Notes: 

The hybridization of the probe in tracks 1, 2, 3, 6 & 13 
suggest that the B-lactamase gene may be chromosornally 
mediated in the photosynthetic bacteria. 

The size markers (5) are derived from a Hind Ill digest of 
Xc1857. 
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sequence is named rcpen. 

5.7. Chromosomal or plasmid location of the B- lactamase gene 

The original clone of the Rps. capsulata -lactamase gene was derived from a 

total genomic digest. Scahill (1981) had also observed and studied several native 

plasmids in strains sp 108 and sp 109. Both had four plasmids (127, 92, 14.9 and 

8.4 kb). No differences in plasmid sizes or in restriction fragment patterns 

generated could be observed when the strain sp 108 was grown in the presence 

or absence of penicillin and growth in EtBr did not abolish the penicillin resistant 

phenotype. Hybridization of XLS20 (original 12 kb Eco Ri clone) to plasmid 

preparations and the total genomic digests had suggested a plasmid location for 

the gene. Interestingly, there was no hybridization to total genomic DNA. 

In the investigations reported in this thesis, a M13 hybridization probe was 

made from a template carrying an insert extending from nucleotide 1523 to 1757 

(a region within the $-lactamase coding sequence), and used to probe genomic 

and plasmid digests of fips. capsulata strains sp 108 and sp 109. Rps. capsulata 

(St. Louis) and Rps. sphaero/des which are both penicillin sensitive, were included 

as controls. 

The probe hybridized to bands corresponding to the 5.8 kb Barn Hi fragments 

in Rps. capsulata sp 108 and sp 109 total genomic DNA tracks only (Fig. 5.9). This 

result suggests that the 8-lactamase gene is probably chromosomally mediated 

or that, if it is on a plasmid, the plasmid is not recovered by the method of 

plasmid preparation used here. The latter is unlikely since the alkaline 

denaturation method (section 2.2.2.1.iii) used had been successful in isolating the 

Ps. aeruginosa RMS 149 plasmid which was very difficult to recover by more 

conventional methods. 

No difference was observed between the hybridization of this probe to DNA 

isolated from ampicillin induced and non-induced strain sp 108 growths. This 	is 



Fig. 5.10: Graphical representation of Rps. capsu/ata gene & surrounding 

sequences 
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Fig. 5.10: Graphical representation of the rhodopseudomonad 
8-lactamase gene and surrounding DNA sequences. The 
arrows indicate the direction of transcription of the ORFs. The 
symbol T -  indicates possible stem-loop forming sequences. 

URF-1 D-tQctamase gene 

I 	I I T 

	

5r 	I 	URF-2 	I 	 13 
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For reference: Fig. 4.6: Graphical representation of the RMS 
149 3-lactamase gene and flanking sequences. 
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in agreement with Scahill's (1981) earlier finding. The failure of XLS20 DNA to 

hybridize to Eco Ri digested sp 108 total DNA digest was postulated by Scahill 

to be because plasmid DNA constitutes only a fraction of total genomic DNA 

(Scahill, 1981). Judging by the hybridization of a similarly generated probe to the 

RMS 149 plasmid and to total DNA preparation (section 4521), the lack of 

hybridization to plasmid DNA in this instance seems more indicative of a 

chromosomal location of the B - lactamase gene. The clearly distinguishable 

br4C..k 
plasmid types in the Bps. capsulata undigested plasmid (Fig. 5.9a) confirm that 

the plasmid preparation was satisfactory. Thus, in contrast to Scahill's (1981) 

finding, the Bps. capsulata sp 108 6- lactamase gene may be chromosomal. 

5.8. Other ORFs 

PSSLJRF- 1 

This ORF starts upstream of the $-lactamase gene from nucleotide 1592. 

PSSURF-1 has a putative Shine/Dalgarno sequence AACGGA (Fig. 5.5) that is not 

as good as the S-lactamase perfect consensus one. It codes for a protein of 

molecular weight, 28,169. 

PSSURF-2 

In the complementary strand, PSSURF-2 starts from position 1239 and ends at 

nucleotide 368. This second ORF is not in the same phase as PSSURF-1 and as 

such it might be a protein coding region itself (see section 4.3.4.2). It codes for a 

protein of molecular weight, 31,453. 

An extensive search, using the UWGCG program WORDSEARCH to compare 

these putative proteins against entries in the NBRF protein library, failed to show 

up any significant homology. Interestingly, the gene organization around the 

6- lactamase gene in Bps. capsu/ata sp 108 (Fig 5.10) is very similar to that 

observed with the Ps. aaru.ginosa RMS 149 plasmid encoded enzyme (ref. section 



TABLE 52: PUTATIVE SECONDARY STRUCTURES IN THE RH000PSEUDOMONAD DNA 

Stem sequences 	loop size 	Location 	 Ac (kcal moi 1  

20 CGCCCAUCG 11 within external URF -14.6 
48 GCGGGCAGC 

283 CGGGCAUCCA 2 terminator of external URF? -17.4 
304 GUCCOUGOGU 

431 GUCGGACG 16 at terminus of PSSURF2 -11.2 
463 CAGCCUGC 

578 CACCGAGCUG 8 within PSSURF2 -10.6 
605 GUGGCCCGGC 

607 CAGGCGGGC 3 before PSSURF1 -12.6 
627 GUCCGCACG 

735 AGCGGCGCC 3 before PSSURF1 -15.4 
755 UCUCCGCGG 

828 AGGAUCUC 19 before PSSURF1 -8.2 
862 UCCUAGAG 

1394 GUCCUGUCGCG 3 beginning of S - lactamase -15.2 
1418 CGGGACAGCGC gene 

1538 GAGACCGG 12 within -lactarnase gene -4.8 
1565 CUCUGGUC 

1719 CGCGGGUCG 9 within 8 - lactamase gene -7.6 
1745 GCUCCCAGU 

2017 GAUGCGCC 13 within B-lactamase gene -12.6 
2046 UUACGCGG 

2302 GGCUGCGGAG 18 after end of B-lactamase -11.6 
2339 CCGACGCGUU gene 

Notes 

- The possible secondary structures of RNA from the 
rhodopseudomonad B - lactamase gene and surrounding DNA 
were predicted using the program STEMLOOP. 

- The free energies of pairing were calculated using the rules of 
Tinoco et at, (1973). 1 kcal = 4.184 U. 



4.6). In both cases, an upstream gene terminates within the coding region of the 

S- lactamase gene and, in the complementary strand, another gene starts off lust 

before the putative start of the 6 - lactamase gene. 

The two PSSURFs were compared with the pseudomonad URF-1 and URF-2 

using the programs BESIFIT and GAP. No significant homologies were detected 

and it is thus possible that the similarities in the gene arrangement are 

coincidental. 

5.9. Possible secondary structures 

The program STEMLOOP (UWGCG) indicated twelve potential stem-loop 

forming sequences in the 2.3 kb rhodopseudomonad DNA fragment, with eight or 

more base pairs in the stem (Table 5.2). Two of these occur in the 5' flanking 

sequences with one well placed to act as a terminator sequence to an ORF which 

starts outside the 2.3 kb fragment (Fig. 5.10). Four potential stem-loop structures 

are clustered in the region between nucleotides 283 and 756 upstream of the 

PSSURF-1 start. Apart from two other loop-forming sequences which are within 

the B- lactamase gene so that they occur in the putative carboxyl terminus of 

PSSURF-1 protein, there is only one such structure within PSSURF-1 itself and 

this is situated 17 bps after its start codon. 

Four possible stem-loops are interspersed within the 5-lactamase gene, the 

first one being 18 bps from the putative initiation codon. The 6- lactamase gene 

ends in a poorer stem-loop structure with four G-C bonds but leads to an A-T 

rich region. 

While the latter may function in rho-independent termination of transcription 

(Platt, 1981), the other loops may act to regulate gene expression during 

translation. As pointed out in section 4.6, some of them may have no special 

roles. 
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5.10. Repeat sequences 

No repeat lengths of any major significance were observed in the DNA 

sequence using the program REPEAT (UWGCG). An interesting observation, 

however, was the dyad symmetrical sequence occurring before the PSSURF-1 

Shine/Dalgarno sequence at nucleotide 738 to 752 which has a similar sequence 

to another between nucleotides 1340 and 1353, just before the 6-lactamase 

Shine/Dalgarno sequence as shown below:- 

738 GGCGCCATCGGCGCC 752 

1340 GGCGCCACTGGCGC 	1353 

Their similarity in sequence and in positioning, i.e. before a putative ribosomal 

binding site, would seem indicative of a regulatory role. Regulatory proteins e.g. 

cr0, ci and lac repressor bind to DNA with dyad symmetry (Wharton at a!, 1984; 

Anderson eta!, 1984; e.t.c.). 

There was, also, an 11 bp direct repeat at either end of the S-lactamase gene 

at nucleotide 1334 to 1344 and 2261 to 2271. As three other 11 bp direct repeats 

were also observed to occur within the $-lactamase gene and other parts of the 

2.3 kb fragment, it was not clear if the flanking direct repeats had any 

significance or if they were simply coincidental. 

Genetically unstable a mpC mutants which carry tandem copies of the ampC 

gene have been reported (Edlund at a!, 1979). The ampC containing repeats were 

10 - 20 kb in size, and in one case, it was demonstrated that the initial 

duplication had occurred through an unequal recombination event between two 

12 bp repeats, 9.8 kb apart on either side of the a.EC  gene (Edlund & Normark, 

1981). It is thus possible that these Rps. capsu/ata flanking 11 bps repeats may 

have been responsible for the highly unstable penicillin resistant isolates earlier 

described by Wall at al. (1975). 



FIG. 5.11: Si NUCLEASE MAPPING OF RPS. CAPSUL.4 TA B-LACTAMASE MRNA 

Tracks TCGA represent dideoxynucleotide sequences of a 
marker M13 template. 

Probe 2 refers to the probe spanning the S-lactamase gene 
Shine/Dalgarno sequence while probe 45 spans the putative 
termination loop. 

Tracks a, probe hvtridized  to total RNA preparation and Si 
digested; tracks b, no hybridization and Si digestion; tracks c, 
untreated probe. 

Note: 

Probe 2 was completely protected by RNA during Si mapping though, probe 

45 was reduced by 48 bps (as determined by counting the number of sequencing 

bands between original probe and the protected fragment). 
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5.11. Transcription of Rps. capsulatasp 108 8- lactamase gene 

RNA mapping studies aimed at determining transcriptional start and stop sites 

in the rhodopseudomonad S- lactamase gene were carried out as described for 

the Ps. aerugiriosa plasmid encoded enzyme (section 2.2.5.3). Two probes were 

used:- 

Probe 2: 	 starts at the Dde 1 site at nucleotide 1246 upstream 
from the 5-lactamase Shine/Dalgarno sequence and 
extends to position 1371, three bases downstream of 
the putative Shine/Dalgarno sequences. 

Probe 45: 	 extends from the Bgl II site in the putative 

carboxyl-terminus of the 6 - lactamase (at nucleotide 
2218), past the stop codon to nucleotide 2336. 

After Si digestion of probe/ANA hybrids and examination of the protected 

fragments on denaturing polyacrylamide gels, the 125 bases of probe 2 were 

found to be completely protected while probe 45 was reduced by about 48 bases 

(ref. Fig. 5.11). 

These results suggest that the 8 - lactamase gene is transcribed from an 

upstream promoter, probably that of PSSURF-1. Work is in progress to map the 

putative promoter of PSSURF-1 by using a probe spanning DNA sequences 

upstream and downstream, of its Shine/Dalgarno sequence. The reduction in size 

of the termination-site probe by 48 bases can be accounted for by Si digestion 

of the 17mer hybridization primer as well as the 18-20 bases beyond the 

termination point of the B - lactamase gene. Thus the results suggest that 

termination of the 6 - lactamase transcripts occur around its own terminator 

sequence mapped in Fig. 5.5. 

Generally, in the Si mapping experiments carried out in these investigations, 

the probes that were bound to longer transcripts tended to be fully protected (i.e. 

17mer primer and all), while the end probes readily lost the primer. It is also 

possible that in the latter cases, some bases are lost either due to "breathing" at 



the ends of the RNA/DNA hybrids, which allows Si nuclease to digest into the 

double-stranded hybrid or due to exonucleolytic digestion of the RNA molecules 

during the extraction procedure (Tybulewicz et al, 1984). The RNA preparations 

were made using the rapid hot phenol extraction procedure (section 2.2.2.4), in 

order to reduce to a minimum any exonucleolytic digestion. The breathing at the 

ends of the hybrid molecules cannot be prevented. More precise transcriptional 

start and stop sites can however, be determined by carrying out primer extension 

experiments. Here, prime-cut probes are hybridized to RNA and extended with 

reverse transcriptase. The probes can then be examined on sequencing-type gels 

for any increase in length. 

5.12. Summary 

The fips. capsulata sp 108 B - lactamase gene was located to a 2.3 kb Sal 

1/Barn Hi DNA fragment of the 5.8 kb Barn Hi insert in p5520. Its nucleic acid 

sequence was determined and the amino acid sequence of a 8-lactamase, clearly 

recognizable as a class A enzyme (Ambler classification), was identified. 

This class of 5-lactamase is commonly found in Gram-negative bacterial 

plasmids (Matthew & Hedges, 1976; Richmond et a!, 1980), but hybridization 

studies (section 5.7) suggest a possible chromosomal location for the fips. 

capsulata sp 108 B-lactamase gene. 8 - lactarnase genes are often organized as 

part of a transposable element (Richmond et a!, 1980), which can move between 

bacterial replicons independently of the cell's generalized recombination systems. 

Thus, they can exist as part of a chromosome, plasmid or phage DNA. In TnA, the 

3-lactamase gene ends 110 bps upstream from the start of the inverted repeats 

required for transposition (Heffron et a!, 1979). The DNA sequence here only 

extends 119 bps downstream of the B- lactamase stop codon. This means that 

there was not enough sequence information to check for mA inverted repeat 

sequences. 



Its 68.5% G + C content, which is more characteristic of rhodopseudomonad 

species (compare E. colt 48% - 52% 0 + C), seems to indicate that this is an 

authentic rhodopseudomonad gene. Thus, the Rps. capsu/ata sp 108 6- lactamase 

might represent the first characterised example of a Gram-negative 

chromosomal, inducible class A $-Iactamase. This raises the possibility that such 

a homologous gene in Enterobacteriaceae might be the source of the TEM gene 

commonly found on transposons (see section 7.8 below). 



E*3 

CHAPTER 6 

CLASSIFICATION AND EVOLUTION OF CLASS A BLACTAMASES 

8 - lactamases have been used as tools for a variety of molecular biological 

studies (section 1.2). Particular interest in them as detoxifying agents against the 

chemotherapeutically important B-lactam antibiotics means that a wealth of data 

has been accum.uIated about the various types found in diverse bacteria. 

Reference has already been made to the usefulcness of a classification of 

enzymes, based on primary sequence relationships (section 1.2.3). It is hoped that 

these studies will provide information about the origin and genetic relationships 

of the 8-lactamases, and at the same time, extend our knowledge of bacterial 

protein evolutionary processes. 

Reviews concerning the use of macromolecular sequences for taxonomic and 

phylogenetic analyses are numerous (Sneath, 1974; Peacock, 1981; Falsenstein, 

1981; Ambler, 1984). Thus, this chapter will only give a brief outline of the 

methods used and how they have been applied to the Ps. aeniginosa RMS 149 

plasmid and Rps. capsulata sp 108 $-lactamases. 

6.1 Molecular evolution of enzymes 

6.1.1. Introduction 

The study of the evolution of new enzymes (metabolic activities) is only a 

part of a larger field which deals with the evolution of the organism. 

Geological data show that conditions on earth are not static and that, indeed, 

at the beginning, they were different from what they are now. The planet is 

believed to have emerged by the condensation of a cloud of gases and dust. 

Thus, the then abundant simple chemicals like N2, NH3, CR 4  and H20 were 

transformed into the more complex macromolecules now characteristic of life, in 
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reactions driven by the energy of the sun (Oparin, 1965). Miller (1973) hacje. 
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demonstrated the soundness of these postulates in experiments in which they 

generated large quantities of amino acids and other organic molecules by 

subjecting a mixture of H 2 , NI-I 3 , CH 4  and H 20 to an electric discharge in vacuo. 

With the evidence from the basic biochemical unity of all present day 

organisms, the most economical hypothesis is that all life forms have arisen from 

one source. Living cells probably arose on earth by the spontaneous aggregation 

of molecules about 3.5 thousand ,tillion years ago. From our knowledge of 

present day organisms, at least three steps must have occurred before the first 

cell emerged: 

formation of RNA polymers capable of self replication; 

development of protein synthesis directed by RNA molecules; 

compartmentalization of the above by a lipid membrane 

(Alberts et al, 1983). 

Thus, the first life forms - most probably anaerobic heterotrophs - came into 

existence in an aqueous oceanic environment in which were dissolved large 

masses of prebiotic compounds (the "primeval soup"). Organisms are postulated 

to have evolved by developing more enzymes to produce types more suited to 

the new ecological niches. 

Natural selection involves the interaction of the phenotype with the 

environment. Ultimately, the nature of the phenotype, depends directly or 

indirectly, on genetically determined structures and hence, the function of 

enzymes and other proteins. The flow of information within the cells was 

postulated by Crick (1958): DNA is transcribed into RNA which is then translated 

into proteins. All the information for the fate of the polypeptide is determined by 

the nature of its constituent amino acids. Therefore, the folding of individual 

proteins and association with other macromolecules occurs without further direct 



intervention of the genetic material. 

Translation of genetic material into a polypeptide chain involves triplet 

codons for 20 possible amino acids. All genomic modifications, therefore, affect 

proteins to a greater or lesser extent, depending on the type and position of the 

amino acid changed. It is, hence, possible to visualize the situation whereby 

organisms evolve via such changes. The observations that proteins which serve 

the same functions in all organisms frequently show strong similarity in structure 

(e.g. heme-bearing proteins - globins have striking similarities amongst 

eukaryotic species (Dayhoff, 1972), as well as the disappearance in higher 

organisms of some enzymes present in lower ones and the appearance of many 

new enzymes in higher organisms, attest to the general validity of these 

postulates (Smith, 1970). 

6.1.2. Evolutionary studies 

Two main approaches are currently used in studying the processes involved 

in the evolution of enzyme systems (Hegeman and Rosenberg, 1974). They 

involve:- 

Selection of a group of different organisms and studying 
relationships of a character (or group of characters), in an 
attempt to define the pressures which act upon them 
(descriptive approach). 

Selection of an organism and studying the changes of a 
character (or group of characters) produced by controlled 
applications of selection pressures (experimental approach). 

Both methods have been applied to a variety of systems and have revealed: 

- the genetic factors involved in the changing structure of 
homologous enzymes (e.g. sequence similarities of different 
serine proteases suggest that the enzymes evolved from a 
common precursor by gene duplication and subsequent 
independent evolution; Marktand and Smith, 1971); 

- the specific roles of amino acid residues in the mechanism of 
action and specificity as opposed to protein conformation and 
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- the selective factors operative in the evolution of enzymes, 
leading to the development of new metabolic pathways. 

Micro-organisms have been used to investigate the last finding. Their high 

populations and rapid growth rate make bacteria ideal systems for studying 

evolution in the laboratory. Such experiments consist of placing the organism 

under conditions where they must develop new capabilities to grow. Thus, 

pathways for the acquisition of catabolic enzymes for novel substrates have been 

studied for K/ebsiel/a aerogenes mutants that can metabolize 5-carbon sugars 

(Mortlock, 1982) and for the ebg operon of E. co/i k12 - a new operon for lactose 

utilization (Campbell et a/1973; Hall & Hartl, 1974), etc. 

These experiments in microbial evolution suggest that new metabolic 

capacities emerge by a plasmid acquisition, which introduces a new gene 

conferring on the host some selective advantage, or by the recruitment of other 

normal cell enzymes so that they can be utilized for a new function. 

Plasmids are extrachromosomal DNA elements which are capable of 

replicating autonomously within the cell. The elements generally include no 

genes that are unconditionally needed for reproduction of the host. Characters 

encoded by plasmids are conventionally distinguished from chromosomal ones by 

the ability to readily transfer them to other bacteria or to lose them by curing. 

There are several chemical and physical methods of curing bacteria of their 

plasmids. Chemical agents include EtBr, SOS, rifampicin, and novobiocin. The two 

main physical methods used are elevated temperature and UV irradiation. Most of 

the chemical agents are capable of intercalating between DNA bases, so that the 

net result of treatments with curing agents is to disturb general DNA metabolism. 

In the process, the dispensible extrachromosomal replicons may be lost. Plasmids 

can however integrate into the chromosome, so that it can sometimes be 

difficult to tell what character is plasmid-borne. 
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The mutations that lead to the recruitment of normal cellular enzymes for a 

new role are either regulatory ones (a previously regulated enzyme becomes 

constitutively expressed) or structural ones. In either case, new enzymes are 

produced which intercact with novel substrates better (Campbell et 8/, 1973; Hall 

& Hartl, 1974; Mortlock, 1982). 

In summary, by combining the findings of laboratory simulated enzyme 

evolution and observations from descriptive studies, there is now more 

understanding of the mechanism of enzyme evolution. 

6.1.3. Methods used in determining macromolecular relationships 

Studies of the history of evolution have been based on analysis of the fossil 

record. If metabolic pathways evolved by the sequential addition of new 

enzymatic reactions to existing ones, then genetic sequence is also a historical 

record (Bryson & Vogel, 1965; Zukerkandl & Pauling, 1965). Therefore, a 

comparative analysis of genetic sequence can be used to establish genealogical 

relationships amongst organisms. The many approaches now available are 

summarized in Table 6.1. 

Table 6.1: Parameters used in measuring molecular evolution 

Macromolecule 	 method 

Proteins Gel electrophoresis 

Proteins Microcomplement fixation 
Proteins Amino acid sequence comparison 

DNA/RNA Nucleotide sequence comparison 

DNA/RNA Restriction mapping 
DNA/RNA Hybridization experiments 

All the different methods listed above reflect the organism's genetic information 

directly or indirectly. Gel electrophoresis (separating proteins on the basis of 

their overall charge) is a measure of differences in amino acid composition. It has 

been used extensively to distinguish different but related proteins e.g. Matthew 

(1979) showed that Gram-negative bacterial 8 - lactamases could be grouped 
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according to their characteristic isoelectric points. Complement fixation (which 

measures interaction of test proteins with a reference antibody) and hybridization 

experiments have limited use as only very close relationships can be recognized. 

These methods are, however, indispensible for initial screening of large samples. 

The use of direct sequence comparisons is dealt with below. 

6.1.4. Aligning macromolecular sequences 

The best data for studying the relationship between two organisms or group 

of organisms is an aligned protein or nucleic acid sequence (Dayhoff, 1969; 

woese,Q 1981; Ambler,1984). The unique advantage is due to the fact that 

sequence information is digital" rather than "analogue" (Ambler, 1976; 1984). 

Thus, an aligned sequence data provides a better quantitative handle for these 

studies in contrast to the imprecise data obtained from comparing the gross 

physical properties. 

Once aligned, the relationship can be considered as being homologous (i.e. 

both sequences come from the same ancestral gene) if their primary sequences 

show sufficient similarities in the number of invariant residues (i.e. residues 

occurring in every sequence at certain positions in the alignment) and 

conservative substitutions (a change in the residue at a particular alignment 

position such that the chemical properties at that point are maintained). They 

may be analogous (i.e. come from different ancestral genes) if no significant 

sequence similarities can be detected. Satisfactory significance in this context is 

difficult to formulate, and different workers are likely to disagree on any 

particular case. It follows, too, that proteins with similar functions need not be 

homologous (a situation defined as convergent evolution). 

6.1.5. Quantifying sequence similarities and differences 

Ordinarily, the number of invariant residues can be counted and similarity 

expressed as a percentage of total number of residues in one sequence. For 
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more complex analysis, e.g. building phylogenetic trees, each pair is compared 

position by position and the number of differences is converted to percentage 

difference between the sequences. 

The number of differences between aligned sequences can be given equal 

value (Dayhoff & Eck, 1968) or, more frequently, may be based on the minimum 

nucleotide distances (i.e. the nature of the genetic code and rates of mutation at 

nucleotide level are taken into consideration - e.g., a valine to leucine mutation 

with a GTC to dC codon change would have a value of 1 while a methionine to 

tryptophan change (ATQ to TOG) would have a value of J,. Fitch, 1966). 

Unfortunately, it is not clear what value to assign an insertion or deletion event. 

It is conventional to score a value of 1 for every base involved but this is 

arbitrary as the size of a deletion is probably not directly related to its frequency 

of occurrence. 

The values derived from comparing the homologous sequences from different 

organisms are then used to construct a matrix which gives a rough estimate of 

the evolutionary distance between any pair or group of organisms. Evolutionary 

trees which show more details in the nature of ancestral and present day 

organisms can be constructed by using the values from the matrix table. 

Phylogenetic trees are also drawn using the most probable ancestral sequences 

deduced from studying amino acid changes in aligned sequences. 

6.1.6. Problems with deducing phylogeny from single genes 

Several factors impair the use of sequence data for classification and 

evolutionary studies. Firstly, the same mutational event might occur in different 

lines to produce the same character at the same position (parallelism), so that 

the apparent degree of similarity is increased. The extent of parallelism in any 

data set is difficult to measure, but estimates indicate it may be as common as 

divergent events (Peacock, 1981). 



FIG. 6.1: AMINO ACID SEQUENCE ALIGNMENT OF CLASS A W-LACTAMASES 

1 50 

pnsap.seq .......... ......... 	........... ...... MKRL LFLIVIALVL 

bclaci.seq ........MI LKNKRMLKIC ICVGILGLSI TSLEAFTGES EJQVEAKEKTC 

blpenc.seq .......... ... MKLWFST LJKLKKAAAVL LFSCVALAGC ANNQTNASQP 

pnecp.seq .......... .......... .......... .. MSIQHFRV ALIPFFAAFC 

ppapen.seq .......... .......... ..... MPKFQ CHFLSVPVAI LGCVGLICTS 

rcpen.seq .......... .......... ..... MRFTA TVLSRVATGL ALGLSMATAS 

Consensus 
51 100 

pnsap.seq SACNSNSSHA KELNOLJEKKY NAHIGVYALD TKSCRE.VKF NSDKRFAThS 

bclaci.seq QVKHKNQATH KEFSQLEKKF DARLCVYAID TGTNQT.ISY RPNERFAFAS 

blpenc.seq AEKNEKTEMK DDFAKLEEQF DAKLGIFALD TCTNRT.VAY RPDERFAFAS 

pnecp.seq [JPVFAHPETL VRVRDAEDQL GARVGYIELD LNSGKILJESF RPEERFPMMS 

ppapen.seq AYM4DTCIEJD LAVTQEETTLJ QARVGVAVID TDSGLJTWQ.H RGDERFPLNS 

rcpen.seq LAETPVEALS ETVRIEEQL GARVGLSLME TGTCWSWS.H REDELFLMNS 

Consensus 
101 150 

pnsap.seq TSKAINSAIL LEQVPYNKLN KKVHI. .NKD DIVAYSPILE KYVGKD.ITL 

bclaci.seq TYKALAAGVL LQQNSIDSLM EV. .ITYTKE DLVDYSPVTE KUVDTG.MKL 

blpenc.seq TIKALTVGVL LQQKSIEDLN QR. .ITYTRD DLVNYNPITE KHVDTG.MTL 

pnecp.seq TFKVIJLCGAV LSRVDAGQEQ LGRIHYSQN DLVEYSPVTE KHLTDG.MTV 

ppapen.seq THKAFSCAAV LAQADRHKLN LEQAIPIERT ALVTYSPVTE RVPPGCTLTL 

rcpen.seq TVKVPVCCAI LABWDAGRLS LSDALPVRKA DLVPYAPVTE TRV.GCNMTL 

Consensus t-k ------- 1 
151 200 

pnsap.seq KALIEASMTY SDNTANNKII KEIGGIKKVK QRLKELGDKV TNPVRYEIEL 

bclaci.seq GEIAEAAVPS SDNTAGNILF NKIGGPKCYE KALRHMGDRI TMSNRFETEL 

blpenc.seq KELJADASLJRY SDNAAQNLIL RQIGGPESLK RELRRIGDEV TNPERFEPEL 

pnecp.seq RELCSAAITM SDNTAANLLL TTIGGPKELT AFLHNMCDHV TRLDRWEPEL 

ppapen.seq RELCRAAVSI SDNTAANLAL DAICGAPTFT AFMRSIGDDK TPLDRREPEL 

rcpen.seq DELCLAAIDM SDNVAANILI GHLCCPEAVT QFFRSVGDPT SRLDRIEPKL 

Consensus ----- ----- sd---- - -- --- --- g -  ----- ------ gd-- ---- -----1 

201 250 

pnsap.seq NYYSPKSKKD TSTPAAFGKT LNKLIANGKL SKENRKFLEJO LMLNNKSGDT 

bclaci.seq NEAIPGDIRD TSTAKAIATN LKAFTVGNAL PAEKRRILTE WMLCNATGDK 

blpenc.seq NEVNPGETQD TSTARALVTS LRAFALEDKL PSEKRELLID WMKRNTTGDA 

pnecp.seq NEAIPNDERD TTMPAAMATT LRKLLTGELL TLASRQQLID W4EADKVACP 

ppapen.seq NEATPGDARD TTTPIAAARS LQTLLLDGVL SAPARNELTQ WMLGDQVADA 

rcpen.seq NDFASCDERD TTSPAAMSET LRALLLGDVL SPEARGKLAE WMRHGGVTCA 

Consensus . 	 -   - 	d t --------- 1 --------1 -------1 

251 300 

pnsap.seq LIKDCVPKDY KVADKSGQAI TYASBNDVAF VYPKGQSEPI VLVIF.TNKD 

bclaci.seq LIRAGIPTOW VVCDKSGAG. SYGTRNDIAV VWP.PNSAPI I. .VLISSKD 

blpenc.seq LIRAGVPDGW EVADKTGAA. SYGTRNOIAI IWP.PKGDPV VLAVL.SSRD 

pnecp.seq LLRSALPAGW FIA]DKSGAG. ERCSRGIIAA LGP.DGKPSR IVVIY.TTGS 

ppapen.seq tJLRAGLPRDW QIADKSGAG. GHGSRSIIAV VWP.PKRSAV IVAIYITQTA 

rcpen.seq LLRAEAEDAW LILDKSGSGS HTRNLVAVIQ PEGGAPWIAT MFISDTDAEF 

Consensus 1 --------- --- dk- 



301 	 327 

pnsap.seq NKSDKPNDKL ISETAKSVMK EF. 

bclaci.seq EKEAIYNDQL IAEATKVIVK GS ..... 

blpenc.seq KRDAKYDDKL IAEATKVVMK ALNMNGK 

pnecp.seq QATMDERNRQ IAEIGASLIK HW ..... 

ppapen.Seq ASMSASNQAV SRIGSALAKA LO ..... 
rcpen.seq EVRNEALKDL GRAVVAWRE ....... 

Consensus 

Notes: 

pnsap = Staph aureus PC 1; Ambler, 1975. 

bclaci = B. cereus 569/1-1; Thatcher, 1975. 

blpenc = B. lichen/form/s 749/C; Ambler & Meadway, 1969. 

pncep = E. col/TEM 1; Sutcliffe , 1978, Ambler & Scott, 1978. 

ppapen = PS. aeruginosa RMS 149 specified enzyme (this 

thesis). 

rcpen = Aps. capsu/ata sp 108 B-lactamase (this thesis). 

The residues are aligned on the system of the Ambler 
classification. 

The residues that are identical in all the sequences are 
represented in the consensus string. 
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Secondly, the concept of a molecular clock, on which evolutionary deduction 

rests, is not unequivocal as mutation rates differ in different proteins e.g. in 

histone IV, a highly conserved eukaryotic DNA binding protein, the rate of 

evolution is very low (about 600 million years for a 1% change in sequence). On 

the other hand, RNAse has evolved at different rates in different lines, so that, for 

example, rat ribonuclease has evolved much faster than ANAses from other 

mammalian orders (Berg & Bientema, 1975). 

In addition, if a gene occurs in an organism because of a process of lateral 

gene transfer, sequence comparisons may produce anomalous results. Lastly, the 

correctness in sequence cannot be overemphasised, as incorrectly determined 

sequences can, and have, led to spurious trees (e.g. the classical rattlesnake 

cytochrome c case; Ambler, 1984) 

Confusions due to parallelism can be avoided by considering more than one 

type of macromolecule. The problem with a representative molecular clock is 

more serious with prokaryotes as some eukaryotic fossil records exist and have 

been used to provide a reference framework. Nevertheless, it is hoped that by 

studying a large number of widely different proteins and nucleic acids in bacteria, 

it will be possible to find those which constitute the genetic core (i.e. they are 

not likely to be easily transferred) and are more suitable for producing a natural 

classification (Ambler, 1979a). 

6.2. Results of analyses 

6.2.1. Class A 6-lactamase alignment 

As both the S- lactamase genes from Pg. aerug/nosa and Rps. capsulate were 

identified using the B. lichen/form/s 749/C B- lactamase protein sequence, it was 

evident that the two enzymes belong to the class A 6-lactamase group (Ambler 

classification, 1980). The deduced protein sequences are aligned in Fig. 6.1 with 

other class A enzymes using the Ambler scheme (1980). 



FIG. 6.1k SEQUENCE CONSERVATION AMONGST GRAM-NEGATIVE CLASS A ENZYMES 

1 50 

papen.seq .......... .......... ..... MRKFQ CHFLSVPVAI LGCVGLICTS 

rcpen.seq .......... .......... ..... MRFTA TVLSRVATGL ALJGLSMATAS 

pnecp.seq .......... .......... .......... .. MSIQHFRV ALIPFFPSAFC 

Consensus 
51 100 

papen.seq AYAMDTGILD tJAVTQEETTL QARVGVAVID TDSGLTWQ.H RGDERFPLNS 

rcpen.seq LAETPVEALS ETVARIEEQL GPRVGLSLME TCTGWSWS.H REDELFLMNS 

pnecp.seq LPVFAHPETL VKVKDAEDQL GARVGYIELD LNSGKILESF RPEERFPMMS 

Consensus -------------- -- --- 1 -art---------------- 
101 150 

papen.seq THKAFSCAAV LAQADRHKLN LEQAIPIERT ALVTYSPVTE RVPPGGTLTL 

rcpen.seq TVKVPVCGAI LARWDAGRLS LSDALPVRKA DLVPYAPVTE TRV.GGNMTLJ 

pnecp.seq TFKVLLCGAV LSRVDAGQEQ LGRRIHYSQN DLVEYSPVTE KHLTDG.MTV 

Consensus t-k --- ---- 1 --- d ----- 1 --------- ------ pvt --------- 

151 200 

papen.seq RELCRAAVSI SDNTAANLAL DAIGGARTFT AFMRSIGDDK TRLDRREPEL 

rcpen.seq DELCLAAIDM SDNVAANILI GHLGCPEAVT QFFRSVGDPT SRLDRIEPKL 

pnecp.seq RELCSAAITM SDNTAANLLL PTIGGPKELT AFLHI4NGDMV TRLDRWEPEL 

Consensus -elc-aa--- sdn-aa- --- --- g - ---- t -f ---- gd-- -rldr-ep-1 

201 250 

papen.seq NEATPGDARD TTTPIAAARS LQTLLJLDGVL SAPARNELTQ WMLGDQVADA 

rcpen.seq NDFASCDERD TTSPAAMSET LRALLLCDVL SPEARCKLAE WMRHCGVTGA 

pnecp.seq NEAIPNDERD TTMPATT LRKLLTGELL TLASPQQLID WMEADKVAGP 

Consensus -------d-rd tt ------- 1--11---- 1 -------1-- wm ---- .... 
251 300 

papen.seq LLRAGLPRDW QIADKSGAG. GHGSRSIIAV VWP.PKRSAV IVAIYITQTA 

rcpen.seq LLRAEAEDAW LILDKSGSGS HTRNLVAVIQ PEGGAPWIAT MFISDTDAEF 

pnecp.seq LLRSALPAGW FIADKSGAG. ERGSRGIIAA LJGP.OGKPSR IVVIY.TTGS 

Consensus 11r ------ w -i-dks 
301 322 

papen.seq ASMSASNQAV SRIGSALAKA LQ 

rcpen.seq EVRNEALKDL GRAVVAVVRE 

pnecp.seq QATMDERNRQ IAEIGASLIK 11W 

Consensus 

Notes: 

1. papen = Ps. aerug/nosa RMS 149 encoded B - lactamase (this 
thesis). 

2, rcpen = fips. capsu/ata sp 108 8-lactamase (this thesis). 

pncep = E. ccli TEM enzyme (Sutcliffe. 1978; Ambler & Scott, 

1978). 

While there are some sequence conservation amongst the 
Gram-negative bacterial enzymes, there were no sequence 
homologies in the carboxyl-termini. 



FIG. 6th: SEQUENCE CONSERVATION AMONGST GRAM-POSITIVE CLASS A B-LACTAMASES 

1 50 

pnsap.seq ...................................... MK KLIFLIVIAL 

bclaci.seq .......... MILKNKRMLK IGICVGILGL SITSLEAFTG ESLQVEAKEK 

blpenc..seq .......... ..... MKLWF STLKLKRAAA VLLFSCVALA GCANNQTNAS 

Consensus 
51 100 

pnsap.seq VLSACNSNSS HAKELNDLEK RYNAHIGVYA LDTKSGKEVI< FNSDKRFAYA 

bclaci.seq TCQVKHKNQA THKEFSQLJEK KFDARLGVYA IDTGTNQTIS YRPNERFAFA 

blpenc.seq QPAEKNEKTE MKDDFAKLEE QFDARLJGIFA LJDTGTNRTVA YRPOERFAFA 

Consensus ------------- 1 ----------------------- rCa-a 

101 i_so 

pnsap.seq STSKAINSAI LLEQVPYNKL NKKVHI. .NTC ODIVAYSPIL EXYVCKDITL 

bclaci.seq STYKALAAGV LLQQNSIDST NEV. .ITYTK EDLVDYSPVT EKHVDTGMKL 

blpenc.seq STIKALTVGV LLJQQKSIEDL NQR. . ITYTR DDLVNYNPIT EKHVDTGMTL 

Consensus st-k- ----- 11-- ----- i. ------I -------------- ek------- 1 

151 200 

pnsap.seq KALIEASMTY SDNTANNRII KEIGGIKKVK QRLKELGDKV TNPVRYEIEL 

bclaci.seq GEIAEAAVRS SDNTAGNILF NKIGGPKGYE KALRHMCDRI TMSNRFETEL 

blpenc.seq KELJADASLRY SDNAAQNLIL KQIGGPESLK KELRKIGDEV TNPERFEPEL 

Consensus ---------- sd--- - -- --- - - ig - ----- -- 1 --- gd-- t--e-el 

201 250 

pnsap.seq t'WYSPKSKKD TSTPAAFGKT LNKLIANGKL SKENKKFLLD LMLNNKSGDT 

bclaci.seq NEAIPGDIRD TSTAKAIATN EJKAFTVGNAL PAEKRKILTE WtILGNATGDK 

blpenc.seq NEVNPGETQD TSTARALVTS LRAFALJEDKL PSEKRELLID WMKRNTTGDA 

Consensus ----------d tst ------- 1 --------1 -------1 ---------- gd- 

251 300 

pnsap.seq LIKDGVPKD? KVADKSGQAI TYASRNDVAF VYPKGQSEPI VLVIF.TNKD 

bclaci.seq LIRAGIPTDW VVGDKSGAG. SYGTRNDIAV VWP.PNSAPI I. .VLISSKD 

blpenc.seq LIRAGVPDGW EVADKTGAA. SYGTRNDIAI IWP.PKGDPV VLAVL.SSRD 

Consensus ii ----------- dk----- -- -- md----------- ---------- d 

301 327 

pnsap.seq NKSDKPNDKL ISETAKSVMI( EF ..... 

bclaci.seq EKEAIYNDQL IAEATKVIVK GS ..... 

blpenc.seq KKDAKYDDKL IAEATKVVMK ALNMNGK 

Consensus -k ----- d-1 i-e--k --- k ------- 

Notes: 

pnsap = Staph aureus PCi B-Iactamase. 

bclaci = S. cereus 569/H S-Iactamase. 

blpenc = B. lichen/form/s 749/C enzyme. 

The 	sequence 	conservation 	amongst 	Gram-positive 
B-Iactamases, extends into the carboxyl termini of the protein 

sequences. 



TABLE 6.2: SIMILARITY MATRIX FOR CLASS A WLACTAMASES 

Staph. aureus PC 	 - 

8. cereus 569/H 	 34 - 

B. lichen/form/s 749/C 	37 48.4 - 

E. cel/ TEM 	 29 30.2 30 	- 

Ps. aerug/nosaRMS 149 	27 34 30 	40 

fips. capsulatasp 108 	21 26 26 	36 	35.5 

1. 2. 3. 	4. 	5. 
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Generally, the alignment is very good, suggesting that these sequences are all 

derived from the same ancestral gene. Many of the invariant residues were 

retained and all the enzymes are approximately the same size. The invariant 

active site serine (c kfF& Cc4Pfrt3. 1980) has been numbered 100 according 

to the recommendation of S.G Waley (Pers. comm.) so as to give a stable 

numbering system without numbers less than one. Although the proteins coded 

for by the genes were not studied for their amino acid content in these 

investigations, the alignment observed is good evidence that the gene sequences, 

and hence, the deduced amino acid sequences are correct. 

As was earlier observed, with the class A enzymes (Coulson, 1985), the 

overall similarity is best in the amino-termini of the enzymes, the 

carboxy-termini showing much more variation. When the sequences are 

considered in groups of Gram-positive and Gram-negative derived enzymes, 

however, some more sequence conservation within the groups is observed and 

the carboxy-termini variability disappears in the Gram-positive enzymes (Fig. 6.1a 

and 6.lb). 

Consequently, there seems to be a widespread distribution of class A 

8- lactamases in bacteria which have undergone independent evolution in the two 

bacterial lineages. 

6.2.2. Similarity matrix of class A B- lactamases 

A pairwise comparison of the characterised class A enzyme sequences was 

carried out and a similarity matrix table was drawn (Table 6.2). All amino acid 

residue matches were scored as 1 and mismatches were scored as 0. The 

percentage similarity was then calculated from the total nummber of matches 

divided by the number of residues in the longer of the pair. 

As was expected from the observations in section 6.2.1 above, the Sac/I/us 

enzymes were more related to each other and at the same time closer to the 
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staphylococcal enzyme than to the Gram-negative ones. 

6.2.3. Relationship to other 3-lactamases and PSPs 

No significant similarities were evident when the pseudomonad and 

rhodopseudomonad B - lactamases were compared with classes B, C and 0 

enzymes (Jaurin at at. 1982; Dale at at, 1985). The only similarity they share With 

classes C and 0 as well as other penicillin binding proteins is the active site 

serine and its surrounding residues (Broome-Smith at at 1985). 

An attempt was made to take into consideration the extensive base 

substitution amongst the different class A enzymes in making the sequence 

comparison with other B - lactamases. Thus, a consensus string made from the 

alignment in Fig. 6.1 (by representing the invariant residue as their amino acid 

symbols and silent mutations according to the nature of the residue e.g. N for 

neutral, C for charged, H for hydrophobic and X for nonspecific amino acids), was 

compared to the classes C and D enzyme sequences. The similarity did not 

extend beyond the four amino acids on either side of the active site serine, 

which supports the hypothesis that the different classes result from a 

polyphyletic origin of bacterial 8-lactamases. 

6.2.4. Secondary structure predictions and tertiary structure 

Of all the amino acids making up proteins, only a limited number will 

participate actively in the catalytic mechanisms of the enzymes, namely, those 

with appropriate side chains that act in proton transfer, as group acceptors, as 

nucleophiles, or electrophiles etc. Some amino acids, particularly those with 

hydrophobic side chains, may not be directly involved in catalysis. These, in 

conjunction with others, serve to determine the precise folding of the 

polypeptide chain. The numerous observations that after denaturation or 

dissociation there is spontaneous reconstitution of simple and complex proteins 

as well as organelles (e.g. ribosomes) support these suggestions (Nomura, 1973). 
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Natural selection involves the interaction of the organism with the 

environment. Therefore, evolution is driven partly by selection of the biological 

conformations best suited to specific functions. In homologous enzymes, it 

follows that changes permitted in one lineage should correspond to those in 

other lines if they still perform similar functions. Thus, we can compare 

conformations of homologous proteins for the purpose of confirming their 

primary sequence relationships as well as providing some explanations for the 

roles of the various amino acids. 

The tertiary structure of proteins (the spatial arrangement of all atoms of a 

polypeptide chain) is the most complete information that could be obtained to 

make the basis of this comparison. Progress in determining the tertiary structure 

of B- lactamases has been slow despite the extensive sequence information now 

available, and the ease of purifying the protein. This has been attributed to the 

rather flexible nature of S-lactamase molecules (L. Sawyer, pers. comm.). 

Extensive secondary structural predictions derived by the hydrophobicity profiles 

and the modified Chou Fassman's methods, have been reported for the 

characterised class A enzymes (Bunster & Cid, 1984). There was a general 

consensus in the folding pattern observed in all the enzymes. The enzymes were 

predicted to consist of short helical and extended regions interspaced with 

random coils, as well as a large number of reverse turns around the active site 

serine. Based on these findings, three-dimensional models of the spatial 

distribution of the class A 6 - lactamase atoms were proposed. The general 

picture was that the class A enzymes consisted of two domains and that a 

charged loop surrounded the active site serine located in the amino-terminal 

domain I. 

Secondary structure :predictions were carried out independently for the Ps. 

aeruginosa RMS 149 plasmid and Rps. capsulata sp 108 6- lactamases using the 

program CHOUFAS (Gamier et a!, 1978) based on basic Chou and Fassman (1977) 
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principles. The predictions for the two new class A 8-lactamase sequences were 

essentially similar to one another and to those predicted for other class A 

enzymes. Interestingly, this conservation of secondary structure extends into the 

variable carboxyl-terminal regions, confirming that the sequences are 

homologous. Towards the end of this project, the tertiary structure of two class 

A enzymes were finally determined (Kelly et a!, 1986, for B. lichen/formis and 

Samraoui et 8/., 1986, for the B. cereus enzyme). 

The tertiary structures reported for both the B. cereus and B. lichen/form/s 

enzymes present an altogether different picture. There are no seperate domains 

and the molecules consist of five stranded 8-pleated sheets flanked on one side 

by three a-helices and five helices on the other. It is of interest to note, that this 

arrangement is similar to the three-dimensional model proposed for domain II of 

the class A enzymes by Bunster and Cid (1984) from secondary structure 

predictions (six 8 -pleated sheets flanked by helices). The similarity may be purely 

coincidental and as such it is not clear what implications (if any) this may have. 

The tertiary structures were also observed to share extensive regions of 

homology with the three dimensional structure of the penicillin-sensitive 

D-alanyl D-alanine carboxypeptidase-transpeptidase from Streptomfr'ces R61. This 

finding has been interpreted to mean that the two groups of enzymes have 

diverged from a common ancestor. 

6.2.5. Nucleic acid sequence relationships amongst class A 3-lactamases 

It was observed in the gene hybridization experiments (sections 4.Zand 5 *) ,  

that neither the pseudomonad nor the rhodopseudomonad $-lactamase genes 

hybridized to the other or to the TEM gene on pBR322. This is expected from the 

wobble nature of the genetic code which allows flexibility in the third base of a 

triplet so that it is often dependent on the G + C content of the organism 

(Dayhoff, 1972). The nucleic acid sequences of the two genes in these 



FIG. 6.2: NUCLEOTIDE SEQUENCE ALIGNMENT FOR CLASS A 8-LACTAMASE GENES 

1 50 

ppapen.ONA GAGACCACGC TTCAGGCTAG GGTCGGAGTG GCGGTGATCG ATACGGATTC 

rrcpen.DNA GAGGAACAGC TCGGCGCCCG CGTCGGCCTC TCGCTCATGG AGACCGGCPSC 

rtern.DNA CAAGATCACT TGGGTGCACG AGTGCGTPAC ATCGAACTGG ATCTCAACAG 

blpenc.DNA GAGGAACAAT TTGATGCAAA ACTCGGGATC TTTGCATTGG ATACAGGTAC 

Consensus 9- tg------ t9 - ---- ------- t-g ---------- 

51 100 

ppapen.DNA CCGCCTGACG TCGCAG ... C ATCGTGGCGA CGAACGCTTC CCGCTGAACA 

rrcpen.ONA CGGTTGGTCC TGGTCT ... C ACCGCGAGGA CGAGCTTTTC CTCATGAACA 

rtern.DNA CGGTAAGATC CTTGACAGTT TTCGCCCCGA AGAACGTTTT CCAATGATGA 

b1peic.DNA AAACCGGACG . . .GTAGCGT ATCCGCCGGA TGAGCGTTTT CCTTTTGCTT 

Consensus ------ - --- -------- 
 C -- --- ga-ga-c-- tt - ---- t ----- 

101 150 

ppapen.DNA CCACGCATAA AGCCTTTTCC TGCGCGGCCC TTCTGCCCCA GGCCGACCGC 

rrcpen.DNA GCACGGTCAA GGTGCCGGTC TGCGGCGCCA TCCTCGCGCG TTGGGACGCC 

rtem.Dt4A CCACPTTTAA AGTTCTCCTA TGTGGCGCCG TATTATCCCG TGTTGACGCC 

blpenc.Dt4A CGACGATTAA GGCTTTAACT GTAGGCGTGC TTTTGCAACA GAAATCAATA 

Consensus --a- ---- a - -- -------- --- ------  
t--t ---- __---------- 

151 200 

ppapen.DNA CACAAGCTGA ACCTGGAGCA GGCGATACCG ATCGACCCCA CAGCGCTGCT 

rrcpen.DNA GCCAGGCTGT CCCTCTCCGA TGCGCTGCCG GTGCGCAAGG CCGACCTCGT 

rtem.DNA GGGCAAGAGC PSACTCGGTCG CCGCATACAC TATTCTCAGA ATGACTTGGT 

blpenc.DNA GAAGATCTGA ACCAGAGA .. .... ATAACA TATACACGTG ATGATCTTGT 

Consensus -------- -- --- -----  t ---- ---------- -- - --- t-gt 

201 250 

ppapen.DNA CACATACTCA CCCGTGACGG M.AGGGTGCC ACCTGGCGGC ACGCTGACCC 

rrcpen.DNA GCCCTACGCG CCCGTCACGG AGAçGCGGGT C ... GGCGGC AACATGACCC 

rtem.DNA TGAGTACTCA CCAGTCACAG AAAAGCATCT TACGGATGGC . .ATGACAG 

blpenc.ONA AAACTACAAC CCGATTACGG AAAAGCACGT TGATACGGGA .ATGACGC 

Consensus ----tac--- cc--t-ac-g ----- ----- 
------- g------ tgac-- 

251 300 

ppapen.DNA TGCGTGAGCT GTGCAGGGCC GCCGTCAGTA TCAGTGACAA CACAGCGGCC 

rrcpen.DNA TCGACGAGCT CPGCCTCGCC GCCATCGACA TGAGCGACAA TGTGGCGGCG 

rtem.0t'IA TAAGAGAATT ATGCAGTCCT GCCATAACCA TGAGTGATAA CACTGCGGCC 

bipenc.DNA TCAAAGAGCT TGCGGATGCT TCGCTTCGAT ATAGTGACAA TGCGGCACAG 

Consensus t ---- ga--t ------- g-- ----t ----- --ag-ga-a - ---- g----- 

301 350 

ppapen.DNA AATTTGGCGT TGGATGCAAT CGGCGGGGCA CGGACATTCA CCGCGTTCAT 

rrcpen.DNA AACATCCTGA TCGGGCATCT CGGGGGGCCG GAGGCGGTGA CGCAGTTCTT 

rtem.DNA AACTTACTTC TGACAACGAT CGGAGGACCG AAGGAGCTAA CCGCTTTTTT 

blpenc.DNA AATCTCATTC TTAAACAAAT TGGCGGACCT GA.AAGTTTGA AAAAGGAACT 

Consensus aa--t ----- t --------t -gg-g---- - ------- t- - --------- t 

351 400 

ppapen.DNA GCCGTCTATC GGTGACGATA AGACACGCCT GGATCGGCGA GAACCCGAAC 

rrcpen.DNA CCGCAGCGTC GCCGACCCGA CGAGCCGTCT CGACCGCATC GAGCCCAAGC 

rtem.DNA GCACAACATC GGGGATCATG TAACTCGCCT TGATCGTTGG GAACCGGAGC 

blpenc.DNA GAGGAAGATT GGTGATGAGG TTACAAATCC CGAACGATTC GAACCAGAGT 

Consensus --------t -  gg-g - ----- --- ----- ---- c----- ga-c----- - 

401 450 

ppapen.DNA TCAACGAGGC CACGCCGGGG GATGCACGCG ACACGACAAC GCCAATTGCG 

rrcpen.DNA TGAACGACTT CGCTTCTGGA GACGAGCGGG ACACCACGAG CCCGGCCGCC 

r tern. DNA TGAATGAAGC CATACCAAAC GACGAGCGTG ACACCACCAT GCCTGCAGCA 

blpenc.DNA TAAATGAAGT GAATCCGCCT CAAACTCAGG ATACCAGTAC AGCAAGAGCA 

Consensus t-aa-g - --- ----- - ---- g- ---- --- 9 a-a------- --- ---- gc- 



451. 500 

ppapen.DNA GCAGCGCGGA GCCTGCAAAC ACTGTTGçTC GACGGTGTCC TCTCCGCTCC 

rrcpen.DNA ATGTCCGAGA CGCTGCGAGC GCTGCTCCTG GGCGACGTGC TGTCTCCCGA 

rtern.DNA ATGGCAACAA CGTTCCGCAA ACTATTAACTGGCGAACTAC TTACTCTACC 

blpenc.DNA CTTGTCACAA GCCTTCGAGC CTTTCCTCTT GAAGATAAAC TTCCAAGTGA 

Consensus --------- - --- t ------- t ------- ---- ----- c t --------- 

501 550 

ppapen.DNA GGCTCGGAAC GAACTGACAC AATCGATGCT CCGGGATCAA GTTCCCGATG 

rrcpen.Dt'IA CGCCCGCCCG AAGCTGGCGG AGTGGATGCG CCACGGCGGC GTGACCGGCG 

rtern.DNA TTCCCGGCAA CAATTAATAG ACTGGATGCA GGCGGATAAA GTTGCAGGAC 

blpenc.DNA AAAACGCGAG CTTTTAATCG ATTGGATGAA ACCAAATACC ACTCCAGACG 

Consensus ----C ---- ----- t ----- a-tggat 

551 600 

ppapen.DNA CCTTCCTACG CGCTCGCTTG CCGAGGCATT GGCAAATTGC GGACAAGTCC 

rrcpen.DNA CATTGCTCCG CGCCGAGGCC GAGGACGCCT GGCTGATCCT CCACAAGTCC 

rtern.DNA CACTTCTGCG CTCGGCCCTT CCGCCTCGCT GGTTTATTGC TGATAAATCT 

blpenc.DNA CCTTAATCCG TCCCGGTGTC CCGGACGGTT GGCAACTGGC TGATAAAACT 

Consensus c--t--t-C - ----- ----- -- - --- - - t 9--t--- -ga-aa--c- 

601 650 

ppapen.DNA GGAGCAGGT. . .TCGTCACG GATCACGTTC CATAATCGCC GTTCTCTGGC 

rrcpen.DNA GGCACCGCAA GCCACACCCG CAPLCCTCCTC GCGGTGATCC AGCCTGAPSGG 

rtem.DNA CGAGCCGGT. . .GAGCGTGG GTCTCGCCGT ATCATTGCAG CACTGGGGCC 

blpenc.DNA GGAGCGCCA. . .TCATATGG PLACCCCGAAT GACATTCCCA TCATTTGGCC 

Consensus 
651 700 

ppapen.DNA C ... GCCCAA GCGTTCAGCC GTCATTGTCG CGATCTACAT CACCCAAACC 

rrcpen.DNA CCGACCGCCC TCGATCGCGA CCATGTTCAT CTCGGATACG GACGCGGACT 

rtem.OtTA 	* A ... GATGGT AAGCCCTCCC GTATCGTAGT TATCTAC... ACCACGGGGA 

blpenc.DNA C ... CCAAAA GCACATCCTC TCGTTCTTGC AGTATTA... TCCAGCAGGG 

Consensus 
701 750 

ppapen.DNA CCAGCCTCTA TGTCGGCAAG CAACCAGGCC GTGTCCACAA TCGCATCAGC 

rrcpen.DNA TCCACGTTCG CAACGAGGCC CTCAAAGATC TGCGTAGGCC GGTCGTCCCC 

rtem.DNA GTCACCCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA GATAGCTCCC 

blpenc . DNA ATAAAAACGA CCCCAAGTAT GATGATAAAC TTATTGCAGA GGCAACAAAG 

Consensus 
751 772 

ppapen.DNA CTTAGCAAAG CCGTTCCAAT CC 

rrcpen.DNA CTTCTTCCCC AATAG ....... 

rtem.DNA TCACTCATTA ACCATTGGTA 

blpenc.DNA GTCCTAATCA AAGCCTTAAA CA 

Consensus 

Notes: 

ppapen = Ps. aerug/nosa RMS 149 B-lactamase gene. 

rrcpen =• Rps. capsulata sp 108 8-lactamase gene. 

item = F. co//TEM 1 gene on pBR322 (Sutcliffe, 1978). 

blpenc = B. lichen/form/s gene (Neugebauer et al. 1981). 

The nucleotide sequences were aligned in the same way as 
were the protein sequences in Fig. 6.1. The variable leader 

peptide sequences were excluded. 

The high nucleotide polymorphism observed for the 
conserved amino acid sequences suggest that the genes have 
diverged considerably. 
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investigations, as well as those of two other class A $-lactamases (the pBR322 

amp and B. lichen/form/s Ø-lactamase genes), were aligned according to the 

protein sequence alignment in Fig. 6.1 and examined for nucleotide 

polymorphism. The principles used were the same as Kreitman's (1983) for 

alcohol dehydrogenase genes. The sequences before the first invariant glutamic 

acid were not included so as to avoid the effect of the different signal peptides. 

As can be observed in Fig. 62, in 32 of the 38 invariant amino acids, all 

possible variations in the third position of the codons are present. Generally, 

there is a great variation in codon content. This would suggest one of two 

possibilities: - 

- that the 8 - lactamase genes sequences being compared are 
ancient genes which diverged a long time ago, or 

- that they are new but highly mutable, so that constraints on the 
structure of the protein molecule are the main force keeping 
them as they are. 

Hirota (1984; 5-lactamase conference, Holy Island) predicted an ancient origin for 

$-lactamases based on their primary sequence relationships to PBP5. However, 

the absence of a reliable molecular clock in bacteria makes it difficult to 

conclude whether they are ancient or modern genes on the basis of nucleotide 

polymorphism. 

6.3. Summary 

The two S-lactamases in this study belong to class A (Ambler classification, 

1980). Amino acid and nucleotide sequences differ extensively in the class A 

enzyme from various bacterial sources. Secondary structure predictions and 

three-dimensional evidence, however, suggest that most of the mutations are 

conservative. 

The occurence of a class A B - lactamase in a photosynthetic bacterium raises 

interesting possibilities for the functions and origins of 3-lactamases. This will be 



discussed further in chapter 7. 
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CHAPTER 7 

DISCUSSION 

7.1. Introduction 

The investigations reported here concerned novel 8 - lactamases from two 

different bacteria. The DNA sequences were determined for the $-lactamases 

specified by Ps. aerug/nosa RMS 149 plasmid and Rps. capsulata sp 108. The 

nucleotide sequences as well as the deduced amino acid sequences were 

compared with other characterised B- lactamases in order to investigate the 

relationship between these enzymes. This discussion will be focussed on the 

implications of these findings for the function and the evolution of B- lactamases. 

7.2. Ps. aeruginosa RMS 149 8- lactamase 

7.2.1. The structural gene 

The amino acid sequence deduced from the pseudomonad plasmid gene 

sequence suggests a molecular weight of 31,283, much larger than that reported 

for the excreted enzyme (Sawada at a!, 1974). Si mapping experiments suggest 

that the RNA transcripts sometimes stop in the middle of the gene. Protein 

expression studies have not yet been completed, so the possibility still exists 

that the final product is smaller due to the abortion of transcription or 

post-translational processing. Nevertheless, reports of incorrectly determined 

molecular weights are abundant in the literature (ref. section 1.3). The good 

alignment of the pseudomonad enzyme to other class A $-lactamases and the 

observation that the full transcripts are made, suggest that this may well be 

another example of the difficulty of determining molecular weights satisfactorily. 

The similarities amongst the different class A 6- lactamase sequences are 

consistent with divergence from a common ancestral gene (section 6.3). The 

differences are, however, so extensive that the B - lactamase gene on the RMS 
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149 plasmid is unlikely to be a recent transposition of the commonly occurring 

Gram-negative TEM enzyme gene onto a pseudomonad-specific plasmid. 

Sequences similar to the TnA repeat sequences were not observed in flanking 

DNA sequences. 

Thus, the RMS 149 plasmid encoded 5-lactamase might represent the first 

example of a Gram-negative penicillin -destroying enzyme which differs from the 

TEM enzyme in all its physiological characteristics but is genetically related. 

7.2.2. Control of gene expression 

The pseudomonad B - lactamase is constitutive at low levels (Sawada et at, 

1974). However, its transcript has an attenuator sequence similar to those of 

inducible bacterial synthetic operons which have an upstream leader region 

capable of forming secondary structures (Yanofsky, 1981; Platt, 1981; etc.). The 

RMS 149 leader transcript does not code for a peptide. The situation is thus 

similar to the promoter region of the E. co/i a.!C  8 - lactamase (a class C 

enzyme), except that in the latter case, there is another Shine/Dalgarno sequence 

downstream of the leader transcript (Jaurin & Grundstrom, 1981). 

In ampC gene expression, studies with a mutant in the leader transcript 

region that destabilizes the attenuator loop structure, suggest a growth 

rate-dependent regulation. This is postulated to be mediated via anti-termination 

due to increased ribosome binding at higher grwth rates (Jaurin et a!, 1982). 

This growth rate-dependent control is independent of the rel system (which 

mediates similar stringent control on the cell's translational machinery) as it is 

not relieved in reF hosts (Jaurin & Normark, 1979). It seems likely that expression 

studies might reveal similar possibilities for the RMS 149 -lactamase leader 

transcript. 

Transcription studies (section 4.7), however, suggest that the attenuator is 

read through from an upstream gene which overlaps its promoter. Therefore, the 
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gene expression controls in the pseudomonad enzyme synthesis might be more 

complex, as a choice has to be made between reading through and stopping or 

initiating from the 6- lactamase promoter. The low levels of expression and the 

presence of attenuator-like sequences upstream from the gene would seem to 

suggest that we are looking at a gene that has lost its inducibility, either in a 

control protein or in its sequences, such that it is now expressed constitutively. 

The gene is expressed in E. co//in sufficient quantities to protect the organism 

against 100 -500 4g/ml ampicillin (section 3.2). Hence, whatever the changes (if 

any), the effects have not been degenerative as far as penicillin resistance is 

concerned. 

Nothing has been found in the literature about sequences upstream of the 

promoter regions of Gram-positive class A B - lactamases. So, no comparisons 

could be made. Genetic and biochemical analysis of 8 - lactamase expression in 

Gram-positive bacteria, however, suggest the involvement of two regulatory 

genes (Imsande, 1978). Sherrat and Collins (1973) analysed a set of 

S. lichen/form/s penicillinase mutants by transformation. They reported that a 

penicilinase repressor is specified by the Efl I gene which is linked to the 

structural pen P gene. Another remote regulatory region which is not linked to 

pen  P was also implicated. Mutations in the latter were observed to reduce the 

basal cell level of 8- lactamase expression and completely blocked induction. A 

similar arrangement has been described for Staph. aureus 6 - lactamase by Cohen 

et at, (1970). It was suggested that whereas the penicillinase is plasmid encoded 

in this case, the unlinked regulatory gene was chromosomally encoded. The 

model proposed for regulation in the Gram-positive 3-lactamases (Imsande, 

1978) is that, the linked regulatory gene codes for a repressor protein which is 

inactivated by the 8- lactam activated antirepressor protein, specified by the 

remote regulatory gene. Thus, in Gram-positive bacteria, there is evidence that 

class A 6 - lactamase expression is normally under very stringent controls. 
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73. Rps. capsu/ata sp 108 8- lactamase 

Rps. capsulate sp 108 is the only isolate of a photosynthetic bacterium so far 

isolated that is resistant to penicillins through the possession of a 6 - lactamase. 

Early experiments showed it was difficult to isolate as a soluble protein (S. 

Scahill, Pers. comm.). The alternative strategy of isolating and characterising the 

gene was therefore adopted. The gene coding for the enzyme was located by 

recombinant DNA techniques and its nucleic acid sequence was determined using 

the Sanger dideoxy sequencing technique. The deduced amino acid sequence 

indicates that it is a class A enzyme (Ambler classification, 1980), similar to those 

commonly found in enterobacteria, staphylococci and Bacillus spp. 

The sequence similarity extends right through the coding region, but a 36% 

exact similarity to the TEM enzyme (section 6.2.2) suggests that the two genes 

have diverged considerably. Unfortunately, there was not enough sequence 

information downstream of the 8 - lactamase gene to search for sequence 

relationship to the inverted repeats of TnA. 

Southern hybridization experiments suggested a possible chromosomal 

location of the structural gene in both the inducible strain sp 108 and sp 109 (a 

penicillin sensitive derivative of the original isolate). The latter strain produces 

only basal levels of the enzyme (Scahill, 1981). The hybridization experiments did 

not reveal the presence of similar genes on Rps. capsulate (St Louis) or fips. 

sphaero/des which are both penicillin sensitive. In order to investigate the 

presence or absence of 9-lactamase enzymes in these other photosynthetic 

bacteria, liquid cultures were grown up as described in section 2.2.1.2. The cells 

were tysed in a French Press (section 3.5) and the resulting cell lysates were 

tested for 8 - lactamase activity using the isoelectricfocusing method (Matthew at 

at, 1979). B - lactamase active bands were detected in both strains. If the penicillin 

sensitive sp 109 strain is indicative of the normal situation in photosynthetic 

bacteria, then the penicillin resistant phenotype of strain sp 108 might be due to 
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an overproduction of a class A S-lactamase which may be chromosomaly 

mediated. 

The sequences involved in transcript initiation could not be unequivocally 

identified but initiation from an upstream gene was strongly suggested (section 

5.11). Curiously, the organisation of genes around the rhodopseudomonad 

$-lactamase was very similar to that around the pseudomonad one (Fig. 5.9). The 

different URFs did not, however, match one another significantly, so it is not 

clear if the gene arrangement was merely coincidental. Since PSSURF-1 overlaps 

the $-lactamase gene, it will be interesting to see how many proteins are made 

in protein expression studies. It is possible that in sp 108, alterations have 

occurred so that the controls operate to favour .  B-lactamase expression. 

7.4. Advantages in studying DNA sequence information directly 

A satisfactory evaluation of evolutionary origins and relationships requires 

measurements of genetic variations in natural populations. In recent years, gross 

physical properties of macromolecules such as electrophoretic mobilities have 

allowed the screening of large samples, but protein sequences have proved more 

effective for estimating the extent of genetic variation at structural loci. 

Recent advances in recombinant DNA technology mean that DNA sequences 

can be rapidly determined, thus making it possible for allelic differences between 

individuals to be directly identified at the nucleotide level. This complete 

resolution of genetic variation not only solves the problem of detecting all amino 

acid substitutions between the proteins, but also identifies nucleotide variation 

that is not translated into protein differences. The latter can be pointers to how 

long the genes have been diverging from one another. 

Consequently, the methods used in these investigations have been highly 

satisfactory for obtaining sequence information. Direct protein sequence 

determination would otherwise have been difficult. Firstly, the respective 
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8-lactamases are produced in very small quantities in both organisms. Secondly, 

the rhodopseudomonad is difficult to grow, requiring a large surface area for 

exposure of small containers to light of the right wavelength and for periods up 

to one week. Finally, in order to increase yields, one would have had to generate 

magno-constitutive mutants. As plasmids and total DNA can be made from wet 

cell masses between 4 - 15 g (section 2.2.2), it was possible to obtain these 

quantities from manageable culture volumes. 

$-lactamases afford an excellent selection marker and so the initial cloning 

was easy, once a vector was obtained which did not carry an amp gene. In my 

experience, locating the gene to as small a DNA fragment as possible proved to 

be the most difficult aspect. This was due to the poor distribution of restriction 

enzyme sites. Thus, during the DNA sequencing exercise, the Bankier/Barrell 

(1983) shotgun modification of the Sanger dideoxy DNA sequencing technique 

was very useful because randomly generated fragments could be cloned. The 

fragments were evenly distributed and as computer 

methods were used for sequence compilation, DNA sequencing was almost a joy. 

A major advantage of studying DNA sequences directly, as opposed to amino 

acid sequence determination, was that the control sequences involved in gene 

expression were examined as well. An interesting revelation is the possible effect 

of the state of 8 - lactamase gene expression on the penicillin sensitivity or 

resistance phenotype of bacteria. Further reference will be made to this later in 

section 7.7. 

7.5. Accuracy in DNA sequencing 

The sequences presented in these investigations are believed to be correct, 

though there a number of ways in which errors can arise. The shotgun cloning of 

fragments to be sequenced allows the generation of random sequences without 

a priori knowledge. Thus, the very fact that they all match in a contiguous 



fragment is an indication that the match is genuine. Each base is determined on 

the average three to four times. Whenever discrepancies arose between gel 

readings, the autoradiographs were re-examined and many differences were 

simple errors made during reading and were corrected. 

The intensity of bands in sequencing autoradiographs varies, the C track 

being the most irregular. There are, however, rules to DNA sequencing band 

intensities which are well documented (Bankier & Barrell, 1983). 

Compressions arising from the stacking of bases in G-C rich regions were 

another problem. Inspection of sequencing gels in the opposite orientation often 

allowed the establishment of the correct consensus as no region was found to 

be compressed on both strands. 

Mutations arising in cloned DNA are a potential source of changes in the 

sequence. No differences ascribable to mutation were found between templates 

containing the same segments of DNA during the compilation of data. Therefore, 

neither single base changes nor DNA rearrangements occurred during the 

passaging and subcloning procedures. The possibility exists that some changes 

could have occurred in cloned DNA before the sequencing steps. It is unlikely 

that there were major/significant deletions or rearrangements, other than small 

ones, because no discrepancies were observed between the length of sequenced 

DNA and the sizes of recombinant DNA fragments deduced by electrophoretic 

methods. 

The deduced amino acid sequences reported here should ideally be confirmed 

by some protein chemical analyses of the gene products. There are plans for 

doing this for both the pseudomonad and the rhodopseudomonad sequences in 

the near future. Nevertheless, the good alignment of the amino acid sequences of 

the newly sequenced $-lactamases with other characterised class A ones, 

suggest that the sequences are correct. 
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7.8. Evolution of 6- lactamase activity 

The -Iactamases produced by bacterial species are of several types. They 

are either metallo or serine enzymes. The more common types are the class A 

serine enzymes. 

In the present study, the genes for two other class A enzymes from Ps. 

aeruginosa RMS 149 plasmid and Bps. capsulate sp 108 were investigated. The 

overall gene organization around both B-lactamase coding sequences is similar 

and RNA mapping studies indicate that they can be transcribed from upstream 

promoters. DNA sequence information suggests that the pseudomonad gene 

might be placed under some kind of transcriptional/translational control and that 

Bps. capsulate strains sp 108 and sp 109 represent the inducible and 

non-inducible versions of a similar chromosomal gene. Although it is not yet 

certain that Bps. capsulata sp 109 represents the original state of $-lactamase 

production in the photosynthetic bacterium, or if it is just a micro-constitutive 

mutant, these findings suggest that the current mode for screening for 

8 - lactamase production may be inadequate. 

Penicillin resistant colonies are initially picked from antibiotic agar plates. 

Organisms which grow are then analysed for 8 - lactamase activity. As was 

pointed out in section 1.1, the organisms which grow at the initial selection are 

those which have an effective permeability barrier or a penicillin 

hydrolysing/modifying enzyme. As a result, some "B - lactamase producing" 

isolates could represent some form of regulatory mutants which would be rare in 

natural populations. Reports that $-lactamase activity can be detected from most 

bacteria (Matthew & Harris, 1976; Hamilton-Miller & Smith, 1979) including very 

B-lactam sensitive species (Floréy at at, 1947), seem to support this hypothesis. 

Studies on the origin of new enzymatic activities in micro-organisms reveal 

that most occur in two stages. First, there are modifications in the regulation of 
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enzymes involved in other established pathways and later, in the structural genes 

themselves, to produce enzymes fitter for the new role(s) (Hall & Knowles, 1976; 

Hall & Zuzel, 1980; Mortiock, 1982). It has been postulated that this is as a result 

of performing these experiments with organisms that have evolved precise 

mechanisms for the regulation of synthesis and activity of their metabolic 

pathways. Thus, if an organism is capable of using an already present enzyme 

activity to establish growth under novel conditions, a regulatory mutation might 

be required to permit enzyme synthesis. Even if the enzyme activity can only be 

established by a mutation in the structural gene, another mutation in the 

regulation of the altered gene may also be required. 

The initial selection of penicillin resistant bacteria from natural isolates is very 

similar to the laboratory conditions used in evolutionary studies (ref. section 

6.2.2). For this purpose, bacteria are subjected to new compounds such that they 

must develop new capabilities to survive and grow. It is thus postulated here 

that, when bacteria are challenged with antibiotic, they may recruit some cellular 

proteins to destroy the toxins or block their entry. This hypothesis can be tested 

by searching for $-lactamase genes in penicillin sensitive bacteria. Chromosomal 

digests can be cloned into high expression vectors and successful recombinant 

plasmids/phages screened for B - lactamase activity. The presence of S- lactamase 

staining bands in cell lysates of photosynthetic bacteria observed in the course 

of these investigation (section 7.3), suggests that such experiments might prove 

fruitful. 

7.7. Possible metabolic role for 3-lactamases 

As a corollary of the deduction in the last section, if $-lactamase activity is 

always present in bacteria, these proteins may perform some metabolic function. 

The only cellular metabolism so far associated With class A B - lactamase is spore 

coat formation in the Bacillaceae (Ozer and Sn, 1970). A S-lactamase negative 

mutant of B. cereus 569 H (B. cereus 569 H pen), which was impaired in 
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sporulation at the late steps V and VI (Murrel, 1967) so that matured spores were 

not released, could be rescued by exogenously added B - lactamase. There was 

then no delay at the late steps. The resulting spores appeared normal under 

electron microscopy and were as heat resistant as wild-type ones. The wide 

distribution of the class A enzymes amongst bacterial species, however, suggests 

that they might have some other universal function. Their sequence similarity 

with other PBPs around the active site serine (Broome-Smith at al. 1985) 

suggests the possibility that S- lactamases are evolutionarily derived from PBPs. 

This is seemingly supported by the observed tertiary structure similarity between 

Carboxypeptidase and B. cereus 8- lactamase (Samraoui at 8/. 1986; Kelly at al, 

1986). Thus, if they have any general physiological function, it is likely to be 

associated with cell wall metabolism. 

Proteins with a similar molecular weight and activity profile have not, 

however, been identified in the 6- lactam labelling experiments (ref. section 1:5.1). 

It is unlikely that such proteins would be discovered as - the labelled $-lactam 

would be rapidly hydrolysed. This suggestion is further supported by similar 

labelling experiments where cefotaxime (a highly 8-lactamase resistant B- lactam 

antibiotic; Richmond, 1980) was used instead of benzyl-penicillin and five PBP5 

different from those currently characterised were identified in E. co/i (Labia at al. 

1980). 

Ambler's (1979) observation that the Staph. aureus class A 6 - lactamase 

copurifies with a small peptide similar to the cell wall crossliriking peptide has 

recently been repeated in this laboratory (I. Scragg, Pers. comm.). The association 

is not covalent as they can be separated by gel filtration in 50% formic acid 

(Ambler, 1979). Such observations have not been reported for other 

8-lactamases. The observations that classes A and C enzymes can hydrolyse and 

transacylate depsipeptide substrates (analogues of peptidoglycan crosslinking 

peptides), albeit slowly, (Pratt and Govandhan, 1984) would seem to suggest that 
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they are built for the slower events of trans peptidation, which according to 

Mirelman (1980), are important for maturation of the polymer. Such a function 

need not be crucial, especially in the stable conditions of laboratory growth. 

7.8. Evolution of class A 6- lactamase genes 

The inference made in the preceding section is based on purely circumstantial 

evidence. Therefore, other S- lactamase regulatory sequences and gene 

arrangements need to be studied. Tentatively, it is suggested that there might be 

two gene systems for class A enzymes: one which is chromosomal and 

stringently controlled and another, (less controlled), which has been acquired by 

a transposon and transferred inter-species via plasmid conjugation. Fixation has 

been helped by medical and agricultural use of 8- lactam antibiotics. 

This prescribed system of events is not peculiar to class A S- lactamase 

genes. A recent study of the evolutionary relationships between class C 

chromosomal 8 - lactamases from E. col, Enterabacter cloacae Citrobacter 

freundil and Ps. aeruginosa (Normark & Lindberg, 1985) suggests a similar 

situation. In all but the Citrobacter sp, which is a soil isolate, the gene 

organization of the ampC gene is similar and its expression is repressed. Its 

promoter is buried within a fumarate reductase gene required for anaerobic 

respiration such that in the conditions of the gut, the am pC gene is rarely 

expressed. In Citrobacter sp, the gene control sequences are similar but there is 

another ampR gene preceding the $-Iactamase structural gene. 422R is a 

negative regulatory protein which represses 8-lactamase synthesis in the 

absence of inducer. Though most ampC genes are chromosomally located, a 

plasmid-borne related gene has been reported (Jack & Richmond, 1970). Thus, 

the ampC gene of Citrobacter sp with its more complex organization has been 

suggested to be evolutionarily older than the E. co/f one. Another evolutionary 

parallel is evident in the lac plasmids currently observed in a wide range of 

enterobacterial species (Guiso & Ullman, 1976). In one case, the lac region is 
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homologous to that of E. co/i and it is borne on a transposable element 

(Cornelius et al, 1978). 

7.9. Other possible lines of research 

7.9.1. Ps. aeruginosa RMS 149 6- lactamase 

Protein expression studies need to be done so as to provide enough protein 

for protein chemical studies. Thus, the deduced protein sequence could be 

confirmed, and the correct molecular weight of the exported protein can be 

determined. N-terminal amino acid analysis will provide information about the 

protein secretory mechanism used in this periplasmic enzyme. The attenuator 

sequences upstream of the structural gene might serve as an interesting system 

for a study. Mutants could be generated so as to allow the determination of the 

role of the stem-loop structure. Also, it will be interesting to find out how the 

expression of the 5-lactamase gene is related to that of the upstream gene. 

Thus, the pseudomonad B-lactamase gene might prove a useful system for 

examining the unique expression controls on genes with an unusual 

Shine/Dalgarno sequence to initiation codon space. 

7.9.2. Rps. capsulatasp 108 

More DNA sequence determination needs to be done for the rest of the 5.8 

kb Barn Hi fragment, so that sequences flanking the B-lactamase genes can be 

examined for TnA repeats. Penicillin sensitive photosynthetic bacteria can be 

examined for genes homologous to class A S - lactamase genes as prescribed in 

section 7.6 

In the course of these investigations, gene hybridization was not detected 

between the Rps. capsulate sp 108 B-lactamase gene sequence and other 

penicillin sensitive Rhodopseudomonas spp. The lack of such reactivity with the 

related genes on the RIMS 149 plasmid and pBR322 indicates that this is not 
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necessarily a detracting finding. 

7.10. Conclusion 

Studies in the function and evolution of enzymes are closely linked, because 

it is difficult to think of the use of an enzyme without considerations of the 

molecular mechanisms of the genetic changes which produced it (Pollock, 1971). 

Function is largely a subjective quality measurable only in relation to the limited 

criteria available in the laboratory. Yet in the neo-Darwinian understanding of 

evolution, the process is determined to a large extent by natural selection of 

organisms showing greater efficiency in new environments (in terms of greater 

chances of survival and more rapid growth). 

Thus, all interpretations of function made here have been attempts to 

correlate the extensive distribution of B - lactamases and the known physiology of 

bacterial species. There is consensus in natural and experimental evidence that 

the ability to produce 5-lactamase confers a selective advantage on bacteria. The 

studies reported here provide preliminary evidence that penicillin resistant or 

penicillin sensitive phenotypes may be partly dependent on the state of certain 

regulatory gene(s). 

It has therefore been suggested that the 	different types 	of 	B - Iactamases 

might be examples of 	cellular 	metabolic enzymes 	being 	recruited 	to 	tackle 

6-lactam toxins. It is hoped that comparative studies on other B- lactamase 

genes, particularly from non-pathogenic bacteria, will cast more light on the 

subject of 8 - lactamase evolution. 
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