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ABSTRACT

The obligatory role of pituitary luteinizing hormone (LH) and

follicle-stimulating hormone (FSH) in the control of testicular function

is well established. However there is increasing experimental evidence,

largely in the rat, that quantitatively normal spermatogenesis not only

requires an adequate local supply of testosterone but also the complex

interactions between the various cellular components within the

seminiferous tubules and interstitial compartments of the testis. The

critical role of paracrine mechanisms in the testis may be reflected by

the defective spermatogenesis in idiopathic male infertility where

systemic levels of LH, FSH and testosterone are normal or elevated.

Thus to further our understanding of the hormonal control of

spermatogenesis and to define possible aetiological mechanisms in the

infertile man, the study of paracrine mechanisms in the human testis is

of paramount importance.

The approach to study paracrine mechanisms in the human testis was

to establish in vitro techniques whereby individual components of the

testis were isolated and specific functional markers defined so that

their subsequent interaction could be further studied in vitro. At the

same time, the delineation of these 'local' parameters were related to

the overall functional states of the testis as defined by circulating

levels of LH, FSH, testosterone and the histological assessment of

spermatogenesis.

Testes were obtained at orchidectomy for prostatic carcinoma.

Methods were established to examine the effect of intratesticular levels

of testosterone and systemic levels of LH, FSH and testosterone on

quantitative measures of spermatogenesis. For this purpose a simple
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technique which involved enumeration of spermatid nuclei in fixed

testicular homogenates to determine daily sperm production was adopted.

Daily sperm production in this group of ageing testes was generally

lower than has been observed previously for younger men. Although

intratesticular levels of testosterone varied widely there was no

indication of an intratesticular deficiency of testosterone as a

critical factor in subnormal spermatogenesis in the ageing testis.

Inhibin, a peptide marker of Sertoli cell function was measured in

human testicular extracts by bio- and radioimmunoassay. The

relationship observed between FSH and both inhibin bioactivity and

immunoactivity imply that the role of inhibin in the testis may be

somewhat different to the classical concept of FSH feedback.

A technique for the routine isolation of human Leydig cells was

established. Human Leydig cells purified by Percoll density

centrifugation were highly responsive to hCG, although sensitivity and

receptor number were significantly lower compared to the rat. This

system was used to test for the effects of putative paracrine factors on

human Leydig cell function.

In conclusion, a number of in vitro techniques have been

established and validated which provide a basis for future investigation

of seminiferous tubule and Leydig cell function in the human testis.
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CHAPTER 1

Review of the Literature
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1.1 HISTORICAL ASPECTS

Since Neolithic times the importance of the male gonads in libido

and potency has been recognized. Castration as a punishment for sexual

offences was described as early as 2000 BC. Aristotle (400 BC) studied
/'

the effects of pre- and postpubertal castration in roosters and in man.

Despite his observations and accurate illustrations of testicular

anatomy, Aristotle maintained that the testes were not necessary for

fertility. The Romans believed the testes to be witnesses of a man's

virility, and hence our word "testis" comes from the Latin "testis"

meaning witness or spectator.

With the development of the simple microscope, de Graaf (1668)

described the testis as being composed of tubules. He also established

that the production of the fertilizing portion of the semen originates

in the testes. In 1677 Leeuwenhoek demonstrated the existence of

"animacules" or spermatozoa, which he thought were young developing

animals, in seminal fluid. By 1840 Koelliker concluded that the

spermatozoa are not young developing animals, but are the product of

cell development within the seminiferous tubules.

The "branched cells" of the testis which now bear his name were

described by Sertoli in 1865. He opposed previous suggestions that the

spermatozoa arose from his "branched cells" and described how the cells,

which we now call round spermatids, metamorphose into spermatozoa.

Sertoli also identified two types of spermatogonia and described three

developmental stages of the spermatocytes.

From his studies on the transplantation of testes from roosters to

ectopic sites in capons, Berthold (1849) concluded that a substance from

the testis must be transmitted through the bloodstream to affect other

tissues. This was the first description of the endocrine function of
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any gland. Although he did not attribute any endocrine function to the

cells named after him, Leydig (1850) first described the interstitial

cells of the testis. An endocrine role for the Leydig cells was

established in 1903 when Bouin and Ancell reported that in man and

animals with cryptorchidism, in whom there is no spermatogenesis but the

interstitial cells are intact, androgen-dependent functions, such as the

development of secondary sexual characteristics, are maintained.

Attempts to isolate the male hormones began in 1927 when McGee

prepared an extract from bull testes, which, when administered to

capons, was capable of restoring their masculinity. In 1935 the male

hormone, testosterone, was isolated from the testis by David and

co-workers and Ruzicka & Wettstein.

Around this time the importance of the pituitary involvement in

gonadal function was realized. Following the observations of Cushing

(1910) and Aschner (1912), who removed the pituitary in dogs and showed

that hypopituitarism led to genital hypoplasia, the idea that the

functions of the gonads might be regulated by a factor from the anterior

pituitary had been suggested. The two pituitary hormones which in the

ovary stimulate follicular growth (follicle-stimulating hormone - FSH)

and cause luteinization (luteinizing hormone - LH) were extracted from

the anterior pituitary (Fevold et al. 1931) and the relation of FSH to

spermatogenesis and LH to Leydig cell function was demonstrated by Greep

and co-workers (Greep et al. 1936; Greep & Fevold, 1937). The precise

role of FSH became less clear when it was shown that testosterone in the

absence of the pituitary is capable of maintaining spermatogenesis

(Walsh et al. 1934). The precise role of FSH in regulating

spermatogenesis remains a contentious issue to this day.

The past 30-40 years have seen great advances in our understanding
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of testicular structure and function. Detailed morphological studies in

the 1950's and 1960's revealed the structure and organization of

spermatogenesis in a number of species. Clermont (1963) and Heller &

Clermont (1964) described the cycle of the human seminiferous epithelium

and its organization into cell associations.

During the 1970's the emphasis was on the hormonal regulation of

spermatogenesis. The development of a number of techniques which

enabled the detection of sex steroids and pituitary hormones, and the

identification of target cells within the testis for these hormones,

subsequently led to the elucidation of molecular mechanisms for hormone

action.

In the 1980's a number of factors produced locally within the

testis, which are thought to mediate the interaction between the various

cellular elements in response to gonadotrophin stimulation, have been

identified. Most of the information on these intratesticular or

paracrine factors is derived from studies in the rat. The importance of

paracrine control of the human testis and possible dysfunction of these

mechanisms in idiopathic male infertility are only just being realized,

and, as such, the need to study paracrinology of the human testis is of

paramount importance.
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1.2 SPERMATOGENESIS

Spermatogenesis is the process by which the male gametes, the

spermatozoa, are formed. This takes place within the seminiferous

tubules where there is a close morphological relationship between the

developing germ cells and the Sertoli cells (see 1.3.1). Cell processes

from adjacent Sertoli cells extend laterally to envelop the developing

germ cells (Fig. 1.1). Within this arrangement, the germ cells proceed

through the developmental stages of spermatogenesis.

The spermatogonia are the stem cells from which all spermatozoa are

derived, the spermatogonia themselves being descended from the

primordial germ cells which reach and multiply in the genital cords in

the developing testis. In the fully differentiated testis the

spermatogonia are situated along the basement membrane of the

seminiferous tubule. In man three basic types of spermatogonia can be

distinguished - dark type A, pale type A and type B (Clermont, 1963).

Dark type A spermatogonia divide to maintain the basic store of

spermatogonia and also give rise to some pale type A cells which divide

and differentiate into type B spermatogonia. Type B spermatogonia

divide to produce the primary spermatocytes. The spermatocytes then go

through a long prophase which shows characteristic configurations of the

chromosomes (leptotene, zygotene, pachytene). This prophase is then

followed by the subsequent steps of the first reduction division that

yields the secondary spermatocytes containing the haploid number of

chromosomes. Each secondary spermatocyte then undergoes the second

reduction division to produce two round spermatids. These spermatids

then go through a series of nuclear and cytoplasmic modifications to

produce mature spermatozoa.

The seminiferous epithelium therefore is composed of four or five
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FIGURE 1.1

Diagramatic representation of the developing germ cells enveloped in
the Sertoli cell cytoplasm.
From: Histology, M. Dym, p.979, Weiss, L. and Greep, R.O.
(Eds.),McGraw-Hill, New York, 1977.

SPERMATOZOON

RESIDUAL
BODY

SPERMATID

SPERMATOCYTE SPERMATOGONIUM
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distinct generations of germ cells at different stages of development.

Cytological studies have shown that at any point in the seminiferous

tubule these generations of cells are not randomly arranged but form

cellular associations of fixed composition, such that spermatids at a

given stage of development are always associated with the same types of

spermatogonia and spermatocytes. The activities of several generations

of germ cells pass through a cycle, the length of which and the number

of stages involved vary in different species (Clermont, 1972). In man,

each cycle occupies about sixteen days (Heller & Clermont, 1964) and

comprises six different cell associations or stages (Clermont, 1963;

Fig. 1.2). In the rat, the cycle comprises fourteen different stages (I

- XIV) lasting approximately twelve days (Le Blond & Clermont, 1952).

These stages of the cycle of the seminiferous epithelium reflect the

constant rate of germ cell development, the cyclic commitment of the

cells to differentiation and the gradual displacement of successive

generations of maturing cells towards the tubular lumen.

The functional requirements of each individual stage have been

studied in the rat, aided by the spatial arrangement of each successive

stage of the spermatogenic cycle along the length of the seminiferous

tubule. This spatial arrangement is known as the wave of the

seminiferous epithelium, and in most mammals, including the rat, each

stage is distributed in sequence along the length of the seminiferous

tubule (Perey et al. 1961). This has permitted the development of

transillumination-assisted seminiferous tubule dissection in which pools

of seminiferous tubules at one specific stage of the cycle can be

isolated and their functional requirements investigated (Parvinen, 1982;

Parvinen & Ruokonen, 1982). Such studies have not been possible in the

human as different stages occupy helically running strip-shaped areas
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FIGURE 1.2

Diagramatic illustration of the cellular composition of six stages
(I - VI) of the cycle of the seminiferous epithelium in man. The
stages correspond to cell associations which succeed one another in
time in any given area of the seminiferous tubule according to the
sequence I - VI. Following stage VI, stage I reappears and the
sequence starts over again. The space allotted to each stage of the
cycle is proportional to its relative duration. The arrows correspond
to the most advanced labelled cells at various time intervals

(indicated on the arrows ) after an intratesticular injection of
^H-thymidine.

Ad, Ap, B - dark type A, pale type A,type B spermatogonia;
PI, L, Z, P - preleptotene, leptotene, zygotene, pachytene primary
spermatocytes; II - secondary spermatocytes; S - spermatids; SZ -

spermatozoa.

From: Y. Clermont (1970), In: The Human Testis, E. Rosemberg & C.A.
Paulsen (Eds.), Plenum Press.
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of the seminiferous epithelium (Schulze & Rehder, 1984). One area of

the seminiferous tubule is occupied by up to three stages (Kerr & de

Kretser, 1981), and as such, individual stages cannot be isolated.

Nevertheless there ..is much evidence to suggest that the functional
/

requirements of germinal cells in the human testis are analogous to

those in the rat (Sharpe, 1986).

While the morphological and kinetic aspects of spermatogenesis have

been studied extensively, we are now beginning to appreciate that the

control of spermatogenesis involves local interaction between the

various cell types within the testis. The problem that concerns us now

is the identification of the factors involved in this process.
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1.3 THE SERTOLI CELL

Since it was first described the Sertoli cell has been associated

with the process of spermatogenesis, but its importance is only now

being realized. ^

Primitive Sertoli cells, which differentiate from the

mesenchymatous medullary gonadal blastema, form cell cords which embody

the germ cells (Witschi, 1970; Jost et al. 1974). Mitosis of the

Sertoli cell occurs only in the immature testis (Clermont & Perey, 1957;

Steinberger & Steinberger, 1971), apparently independent of hormonal

control. After puberty Sertoli cell number remains constant, and this

fact has been employed in the use of the Sertoli cell as a constant

reference in the quantitation of spermatogenesis (Rowley & Heller,

1971). An age-related decline in Sertoli cell number has however

recently been observed (Johnson et al. 1984).

1.3.1 Blood-testis barrier

By virtue of its position in the seminiferous epithelium, the

Sertoli cell is intimately involved in the process of spermatogenesis.

The Sertoli cell maintains the integrity of the seminiferous epithelium

by specialized contacts with adjacent germ cells (see Russell, 1980 for

review). These specialized junctions also facilitate the movement of

maturing germ cells from the basal aspects of the seminiferous

epithelium to the tubular lumen (Russell, 1980).

In addition to the specialized Sertoli-germ cell contacts, adjacent

Sertoli cells are connected by tight junctions in the basal aspect of

the seminiferous epithelium. These tight junctions are the site of the

blood-testis barrier which separates the seminiferous epithelium into

basal and adluminal compartments (Fawcett, 1975) (Fig. 1.3). The basal

compartment contains spermatogonia and early spermatocytes which share a
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FIGURE 1.3

Illustration of Sertoli cell tight junctions which are the main
component of the blood-testis barrier. These structures divide the
seminiferous epithelium into a basal compartment which is occupied by
the spermatogonia and preleptotene spermatocytes, and an adluminal
compartment containing the postmeiotic germ cells.

From: D.W.Fawcett (1975), Handbook of Physiology, Section 7 Vol V.
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position with the Sertoli cell on the basal lamina and are interposed

between adjoining Sertoli cells in such a way that the Sertoli cells

arch over these cells and meet above them. Internal to the tight

junctions late spermatocytes and spermatids are situated in the

adluminal compartment.

The first evidence for the existence of the blood-testis barrier

came from the realization that seminiferous tubule fluid and rete testis

fluid were very different in composition from blood plasma and

testicular interstitial fluid (Setchell et al. 1969). The variation in

the rate of entry of various radiolabelled markers into the seminiferous

tubule from the blood added to the evidence for the existence of a

barrier. Electron microscopic studies with horseradish peroxidase and

lanthanum, both electron-dense intracellular markers, showed that

cell-cell junctions within the seminiferous epithelium constituted a

barrier to the passage of substances into the tubular fluid (Fawcett et

al. 1970; Dym & Fawcett, 1970).

Tight junctions between Sertoli cells first appear at puberty with

the development of the primary spermatocytes (Vitale et al. 1973). This

event coincides with the completion of Sertoli cell proliferation and

the secretion of seminiferous tubule fluid from these cells into the

newly formed tubular lumen. Seminiferous tubule fluid contains high

concentrations of potassium and bicarbonate and low levels of sodium and

chloride, compared to blood plasma or interstitial fluid (Setchell &

Waites, 1975). One of the main functions of the blood-testis barrier is

to maintain the ionic composition of the seminiferous tubule fluid which

creates a specific intratubular environment suitable for meiosis and

maturation of the postmeiotic germ cells (Setchell, 1980).

13



Entry of substances into the seminiferous tubules depends mainly on

their lipid solubility; in general entry is high where lipid solubility

is high (Setchell & Waites, 1975). Testosterone enters seminiferous

tubule fluid much more rapidly than its lipid solubility would suggest

(Cooper & Waites, 1975; Setchell et al. 1978b). A specific saturable

carrier mechanism involving facilitated diffusion is thought to be

utilized in the transport of testosterone into the seminiferous tubules

(Setchell et al. 1978b).

FSH gains access to the basal compartment of the seminiferous

tubules by penetrating between the myoid cells at sites where cell-cell

junctions are relatively open (Dym & Fawcett, 1970). FSH is unable to

cross the blood-testis barrier and enter the adluminal compartment of

the seminiferous epithelium (Setchell et al. 1976). Therefore not

surprisingly all FSH-receptors are situated in the basal compartment of

the seminiferous epithelium (Orth & Christensen, 1979).

In addition, haploid germ cells, which express surface autoantigens

after meiosis, within the adluminal compartment of the seminiferous

epithelium are protected by the blood-testis barrier which ensures that

they are not recognized by the immune system (Millette & Bellve, 1977;

O'Rand & Romrell, 1977).

The integrity of the blood-testis barrier is maintained even when

the spermatocytes enter meiotic prophase and move from the basal into

the adluminal compartment. During this migration new tight junctions at

the base of the spermatocytes are formed while the old adluminal

junctions are still intact (Russell, 1977b).

From what we know about the blood-testis barrier it seems likely

that its functional integrity is essential for normal spermatogenesis.

Further study is required to see if specific abnormalities in the

14



structure and function of the blood-testis barrier are associated with

abnormal spermatogenesis and impaired fertility.

1.3.2 Synthesis and secretion of proteins from the Sertoli cell

The tight junctional complexes which form the blood-testis barrier

prevent the free access of compounds in blood plasma to the germ cells in

the adluminal compartment. The Sertoli cell by the secretion of a number

of serum- and testis-specific proteins, is responsible for regulating

the environment in which the germ cells in the adluminal compartment

divide and differentiate.

A number of Sertoli cell products have been identified and used to

monitor the hormonal and cellular control of the Sertoli cells and the

seminiferous epithelium in vitro. Attempts have also been made to

measure specific Sertoli cell products in blood or semen to provide a

means of assessing testicular function and dysfunction in vivo,

(i) Androgen binding protein

Androgen binding protein (ABP), the first Sertoli cell protein to be

identified in the rat, is thought to maintain high concentrations of

androgen within the seminiferous tubule and lumen of the caput epididymis

and thus be important in spermatogenesis and sperm transport (Hansson &

Tveter, 1971; Ritzen et al. 1971; French & Ritzen, 1973; Hagenas et

al. 1975).

The purification and subsequent development of a radioimmunoassay

for ABP showed that small amounts of this specific protein are secreted

into the systemic circulation in rats (Gunsalus et al. 1978, 1980). This

observation gave rise to the idea that by measuring ABP levels in blood,

Sertoli cell function could be monitored, and as such the structure and

function of ABP has been observed in a number of species.

Studies attempting to demonstrate the presence of ABP in the human
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testis have been hampered by the presence of testosterone-oestrogen

binding globulin (TeBG) from serum (Bardin et al. 1981). A number of

studies have suggested the presence of a distinct human ABP which can be

distinguished from TeBG by charge and binding kinetics (Hsu & Troen,

1978). Furthermore, human Sertoli cells cultured in vitro have been

shown to secrete ABP which has physicochemical characteristics similar

to rat ABP, but as yet, correlation of human ABP with other aspects of

human testicular function is lacking.

(ii) Inhibin

Inhibin is a gonadal glycoprotein which feeds back to the anterior

pituitary to regulate the secretion of FSH, and in the male is produced

by the Sertoli cell (Steinberger & Steinberger, 1976). The existence of

a testicular factor which in some way regulates the pituitary gland was

suggested as early as 1923 when Mottram & Cramer observed morphological

changes in the anterior pituitary gland of a male rat whose seminiferous

epithelium was severely disrupted by radiation. Then in 1932 McCullagh,

who showed that injection of a water soluble extract from bovine testes

could inhibit the morphological changes in the pituitary cells following

irradiation, named this hypothetical testicular factor inhibin. Since

these early studies, suppressive effects of steroid-free testicular

preparations from a number of species on the pituitary production and

secretion of FSH have been described in a number of in vivo and in vitro

systems.

Conflicting reports existed concerning the properties of inhibin and

its purification until in 1985 the full sequence of two 32 kDa forms of

porcine follicular fluid inhibin were published (Mason et al. 1985).

The availablity of purified inhibin has enabled the development of

radioimmunoassay techniques for its measurement, which has confirmed the
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hormonal nature of this peptide in the female (Tsonis et al. 1987b). The

development of more sensitive assay techniques for the detection of

inhibin in the systemic circulation in the male could prove a useful tool

in the diagnosis of infertility in men with disorders of the seminiferous

epithelium. Furthermore, because of its ability to suppress the

secretion of FSH, which theoretically could lead to a reduction in germ

cell production, inhibin has often been regarded as a potential regulator

of fertility in men. This avenue of potential male contraception must

however await confirmation of the actual role of FSH in germ cell

development in man.

(iii) Transferrin

Transferrin from the liver is found in the serum of all vertebrates,

and until recently it was thought that the Sertoli cell served as an

intermediate in the transport of iron from serum transferrin, across the

blood-testis barrier to the germ cells in the adluminal compartment of

the seminiferous epithelium. However testicular transferrin is secreted

by the Sertoli cell (Skinner & Griswold, 1980), and it is now believed

that the transport of iron to the developing germ cells is mediated by

the shuttling of the iron between the two distinct forms of transferrin

(Djakiew et al. 1986).

Diferric transferrin binds to its receptor on the basal plasma

membrane of the Sertoli cell, after which is is internalized by receptor

mediated endocytosis into the endocytic organelles (Morales & Clermont,

1986). Here, in an acidic atmosphere, iron is dissociated from serum

transferrin and released into the Sertoli cell cytoplasm. Subsequently

the transferrin molecule, still bound to its receptor, recycles to the

cell surface as apotransferrin, and the iron, now bound to testicular

transferrin is secreted from the apical pole of the Sertoli cells to the
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developing germ cells and/or the lumen of the seminiferous tubule

(Djakiew et al. 1986).

Secretion of transferrin by the rat Sertoli cell varies according

to the stage of the spermatogenic cycle, secretion being highest in

stages IX to XIV (Wright et al. 1983). Human Sertoli cells stimulated

by FSH also secrete transferrin in culture (Lipshultz et al. 1982;

Holmes et al. 1984). Cellular interaction between the Sertoli cells and

the peritubular cells also appears to be involved in the control of

transferrin secretion in both the rat and man (see 1.6.3).

The majority of the transferrin in human seminal plasma is thought

to be of testicular origin and the use of seminal plasma transferrin as

a marker of Sertoli cell function has been suggested (Holmes et al.

1982). Liu and co-workers (1986) confirmed that seminal plasma

transferrin reflects Sertoli cell function, but that this is of limited

clinical value as the range of transferrin in seminal plasma from normal

men is wide and overlaps with values from men with genital tract

obstruction or seminiferous tubule failure.

(iv) Plasminogen activator

Sertoli cells in culture secrete the protease plasminogen activator

under the regulation of FSH (Lacroix et al. 1977; Lacroix & Fritz,

1982). Plasminogen, the substrate of plasminogen activator is

synthesized in the liver. Diffusion of circulating plasminogen into the

adluminal compartment of the seminiferous tubules has not been

demonstrated, suggesting the possible local synthesis of plasminogen.

Plasminogen can be detected in culture medium from rat seminiferous

tubules, however its cellular source remains unknown (Saksela & Vihko,

1986).

The secretion of plasminogen activator by the Sertoli cells is

highly stage-specific, with maximal secretion during stages VII and VIII
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in the rat (Lacroix et al. 1981; Vihko et al. 1984; Vihko et al.

1985). At these stages in the spermatogenic cycle, preleptotene primary

spermatocytes enter the adluminal compartment of the seminiferous

epithelium prior to meiosis and concomitantly spermatids are released

into the tubular lumen (Le Blond & Clermont, 1952). In the absence of

these specific germ cells, the stage VII-VIII secretion of plasminogen

activator is abolished indicating the role of plasminogen activator in

the restructuring of the seminiferous epithelium during germ cell

movement (Vihko et al. 1984).

(v) Gamma glutamyl transpeptidase

Gamma glutamyl transpeptidase (GGT) catalyses the transpeptidation

reaction which appears to be involved in the transport of certain amino

acids across the blood-testis barrier (Bustamante et al. 1982). Human

Sertoli cells contain GGT activity similar to that of the rat (Lipshultz

et al. 1982). In contrast to the rat, human Sertoli cell GGT is

responsive to FSH. This response is hormone specific and dose-dependent

(Lipshultz et al. 1982). In both the rat and the human GGT activity was

thought to be correlated solely with the Sertoli cell and thus appeared

to be an important marker of Sertoli cell function (Hodgen & Sherins,

1973; Krueger et al. 1974; Lipshultz et al. 1982; Tindall et al.

1983). More recently, studies in the rat have demonstrated that GGT

activity is localized predominantly in the arterial and arteriolar

endothelium (Niemi & Setchell, 1986). The specific activity of GGT

increases coincident with puberty and has been linked to the cessation

of Sertoli cell mitosis prior to the onset of spermatogenesis (Hodgen &

Sherins, 1973; Lu & Steinberger, 1977). This pubertal increase in GGT

activity could be associated with the increased volume of the vascular
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endothelium which takes place around this time (Niemi & Setchell, 1986).

GGT activity in testis homogenates and in homogenized cultured Sertoli

cells (Lu & Steinberger, 1977) could be explained by the effects of

contaminating endothelial cells (Niemi & Setchell, 1986). This new

information casts doubt on the possibility of the use of GGT as a

biological marker of Sertoli cell function.

(vi) Lactate and pyruvate production by the Sertoli cell

Glucose is essential for the maintenance of spermatogenesis in vivo

(Mancini et al. 1960). Induction of acute hypoglycaemia results in germ

cell degeneration (Zysk et al. 1975). The capacity of isolated germ

cells to utilize glucose as an energy source however appears to be poor,

as isolated pachytene spermatocytes and round spermatids do not survive

in the presence of glucose alone (Jutte et al. 1981). The failure of

the germ cells to utilize glucose directly appears to be due to a block

in glycolysis at the level of glyceraldehyde-3-phosphate dehydrogenase

(Cervenka et al. 1986). The maintenance of metabolic activity of germ

cells, as indicated by oxygen consumption and protein synthesis, is

dependent on exogenous lactate (Jutte et al. 1981). Lactate production

by the Sertoli cell in co-culture with pachytene spermatocytes is able

to maintain the metabolic activity and integrity of the germ cells, but

only in the presence of glucose (Jutte et al. 1982).

The specific isoenzyme of lactate dehydrogenase (LDH-C4) is present

in pachytene spermatocytes and round spermatids (Meistrich et al. 1977).

Lactate from the Sertoli cells can be utilized by means of LDH-C4, which

has been shown to preferentially catalyze the oxidation of lactate to

pyruvate (Blanco et al. 1976) . Lactate oxidation to pyruvate via the

tricarboxylic acid cycle supplies the germ cells with energy in the form
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of ATP.

LDH-C4 activity from the testis is present in seminal plasma

(Clausen & 0vlison, 1965). The extracellular presence of cell specific

intracellular enzymes is an indication of cell and/or membrane y

destruction. LDH-C4 activity in human seminal plasma has been shown to

originate from germ cells which have degenerated before release into the

semen, with increased LDH-C4/sperm ratio indicating dysfunction of the

seminiferous epithelium (Eliasson & Virji, 1985). LDH-C4 in relation to

sperm number is therefore an important marker, indicating the functional

status of the seminiferous epithelium.

1.3.3 Sertoli cell growth factors

A number of Sertoli cell-derived growth factors appear to be

involved in the paracrine regulation of the testis. Not surprisingly,

spermatogenesis, the most proliferative cell process in the body, might

be expected to be regulated by mitogenic factors of Sertoli cell origin.

Increasing awareness that growth factors are regulators of cell

metabolism and growth has prompted study of specific growth factor

contribution to the spermatogenic process.

(i) Sertoli cell regulators of mitosis and meiosis

Seminiferous growth factor (SGF) is a polypeptide thought to be of

Sertoli cell origin which is present in all mammals, including man

(Feig et al. 1983). The action of SGF is to induce DNA synthesis and

cell proliferation of prepubertal Sertoli cells, regulate the mitotic

division of the spermatogonia in the basal compartment of the

seminiferous epithelium and to induce the meiotic reduction divisions of

the spermatocytes in the adluminal compartment of the seminiferous

epithelium (Bellve & Feig, 1984).

In addition to SGF, meiosis in the male is regulated by two Sertoli
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cell products - meiosis-preventing substance (MPS) and meiosis-inducing

substance (MIS). In the human MPS activity is found in the foetus and

the prepubertal male, whereas little or no MPS activity is found in the

adult testis (Grinsted & Byskov, 1981). Prior to puberty the germ cells

appear to be prevented from entering meiosis by MPS (Byskov, 1978;

Grinsted et al. 1979). MIS activity is found both in foetal and adult

testes.

In the rat maximum MIS secretion is observed at the onset of

meiosis in stages VII and VIII. It is also secreted in high amounts

during the meiotic reduction divisions of stages XII and I (Parvinen,

1982). In contrast to the human, MPS is secreted at a constant rate in

the testes of adult rats. The role of MPS in the adult rat seems to be

the prevention of the spermatogonia from entering meiosis until maximum

MIS secretion at the appropriate stage of the cycle.

(ii) Somatomedin-C/insulin-like growth factor

In both clinical (Kulin et al. 1981) and experimental (Swerdloff &

Odell, 1977; Zipf et al. 1978) situations, growth hormone (GH)

increases LH-stimulated testosterone production by the Leydig cells in a

dose-dependent manner. Many of the physiological actions of GH are

thought to be mediated by the somatomedins, a family of small

polypeptide growth factors with insulin-like activity (Herrington et al.

1983). Somatomedin-C/insulin-like growth factor 1 (Sm-C/IGF 1) is the

most directly GH dependent of these peptides and originates in a number

of tissues, including ovarian granulosa cells (Adashi et al. 1985) and

testicular Sertoli cells (Ritzen, 1983).

Sm-C/IGF 1 accumulates in the medium of cultured Sertoli cells from

immature rats (Tres et al. 1986) and immature pigs (Benahmed et al.

1987). Recently immunoreactive Sm-C/IGF 1 has been reported to be
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present in rat peritubular myoid cell-conditioned medium (Skinner &

Fritz, 1986). In addition, both rat Sertoli and peritubular cells

display Sm-C/IGF 1 immunoreactivity as determined by immunofluorescence

and RIA (Tres et al. 1986). However the 1% peritubular cell

contamination of rat Sertoli cell cultures is not sufficient to account

for the amount of Sm-C/IGF 1-like activity detected in Sertoli cell

culture medium (Smith et al. 1987).

Immunocytochemical studies have demonstrated that Sertoli cells

show binding affinity for Sm-C/IGF 1 (Tres et al. 1986), and the

mitogenic effects of IGF 1 on immature Sertoli cells in culture have

been shown previously (Borland et al. 1984). In hypophysectomized adult

rats however very little binding of Sm-C/IGF 1 to Sertoli cells is

observed (Kasson & Hsueh, 1987). Sm-C/IGF 1 may therefore have

autocrine effects on Sertoli cell proliferation in the prepubertal

animal.

Binding of Sm-C/IGF 1 to pachytene spermatocytes has been observed

in immunofluorescent studies of Sertoli-germ cell co-cultures (Tres et

al. 1986). The significance of Sm-C/IGF 1 activity in Sertoli and germ

cell function is unknown, but it has been suggested that late meiotic

prophase spermatocytes may be stimulated by Sm-C/IGF 1 to progress into

meiotic division (Tres et al. 1986).

The presence of receptors for Sm-C/IGF 1 on Leydig cells

(Handelsman et al. 1985) adds this polypeptide to the increasing list of

potential Sertoli cell regulators of Leydig cell function (see 1.6.1).

The addition of Sm-C/IGF 1 to cultured porcine Leydig cells results in

increased LH/hCG binding in addition to increased hCG stimulated

testosterone production (Benahmed et al. 1987; Kasson & Hsueh, 1987).

Sm-C/IGF 1 while having no effect on its own, augments the steroidogenic
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action of LH/hCG. Although the mechanism by which Sm-C/IGF 1 exerts its

effects on Leydig cell function remains unclear, this does not appear

to be due to a Sm-C/IGF 1 related increase in Leydig cell growth

(Benahmed et al. 1987).

The results suggest that Sm-C/IGF 1 derived from the Sertoli cell,

possibly under the control of GH, augments the actions of LH on Leydig

cell androgen biosynthesis, Sertoli cell function and ultimately

spermatogenesis.

(iii) Testicular interleukin-1

Interleukin-1 (IL-1), which represents a family of polypeptides,

was initially described as a macrophage-derived growth factor

(Dinarello, 1985). Infections, immunological reactions, injury, toxins

and inflammatory processes trigger IL-1 production. IL-1 is a potent

mitogen not only of lymphocytes but also of a number of other cell types

including fibroblasts, glial cells, osteoblasts, chondrocytes, synovial

cells, mesangial kidney cells and epithelial cells (Dinarello, 1985).

Significant amounts of IL-1 have been found in homogenates and cytosol

preparations of rat testis (Khan et al. 1987). Testicular macrophages,

which are predominantly confined to the interstitium (El-Demiry et al.

1986), appear not to be the major source of testicular IL-1, as

interstitial cell homogenates show negligible activity in a murine

thymocyte bioassay for IL-1 (Khan et al. 1987). Seminiferous tubules

from cryptorchid rats, devoid of germ cells, retain IL-1 activity,

pointing to the Sertoli cell as its most likely source. Whether IL-1

produced from these cells is related to the macrophage IL-1 family

remains to be clarified.

IL-1 activity has also recently been demonstrated in the human

testis (Arver & Sb'der, 1986). Relapse of childhood acute lymphoblastic
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leukaemia often starts in the testis (Nesbit et al. 1980), and it has

been suggested that the presence of IL-1 in the testis may provide a

favourable environment for the rapid proliferation of lymphocytes in

this disease (Khan et al. 1987). Purification of human testicular IL-1

is now underway to investigate whether this mitogenic factor is involved

in the prolific germ cell activity during spermatogenesis (0. Soder,

personal communication).

1.3.4 Sertoli cell androgen receptors

Androgens are known to be essential for quantitatively normal

spermatogenesis to proceed (Steinberger, 1971). Although it is

conceivable that androgens could act directly on the germ cells,

conflicting evidence exists as to the presence of androgen receptors on

these cells (Sanborn et al. 1975; Grootegoed et al. 1977; Wright &

Frankel, 1980). The indirect action of androgens on spermatogenesis by

influencing Sertoli cell function is well accepted. High affinity

receptors specific for testosterone have been demonstrated in the

Sertoli cell. The presence of cytoplasmic androgen receptors (Tindall

et al. 1977) and the translocation of the hormone-receptor complex to

nuclear binding sites (Mulder et al. 1976; Sanborn et al. 1977),

chromatin acceptor sites for androgen receptor complexes (Tsai et al.

1977) and promotion of Sertoli cell secretory activity in the presence

of testosterone (Louis & Fritz, 1979) indicate the Sertoli cell as an

androgen target cell in the rat. Androgen receptors are however also

present on peritubular cells (Verhoeven, 1980), and androgen effects on

these cells are thought to modulate the function of the Sertoli cell

(see 1.6.3).

Androgen receptors have been demonstrated in the seminiferous

tubules of the human testis (Winters & Troen, 1984). To date there is
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no report of localization of the androgen receptor to specific

testicular cell types in man.
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1.4 INTERSTITIAL TISSUE

The interstitial tissue, which gives support to the seminiferous

tubules, is composed of loose connective tissue interspersed with Leydig

cells, macrophages, fibroblasts, vascular and lymphatic vessels and

unmyelinated nerve fibres (Fawcett et al. 1973). Copious amounts of

interstitial fluid, formed from serum by capillary filtration,

circulates in the interstitium (Setchell & Sharpe, 1981). This fluid is

a means of communication between the avascular seminiferous tubules and

the vascularized interstitial tissue.

The Leydig cell is the most common interstitial cell type. These

cells occur singly or in clumps of varying sizes and are often

associated with rich plexuses of vascular and lymphatic capillaries

(Fawcett et al. 1973).

Macrophages are present in the testicular interstitium of a number

of species including man (Kerr & de Kretser, 1981) and the rat

(Christensen & Gillim, 1969). Testicular macrophages are observed in

close association with the Leydig cells. In the rat, processes which

extend from the Leydig cells have been shown to interdigitate and make

contact with macrophage surface membranes (Miller et al. 1983).

Although these specialized contacts are thought to be associated with

the transport of waste materials and Leydig cell metabolites, it has

been suggested that testicular macrophages are involved in the endocrine

function of the testis (see 1.6.4).

Testicular fibroblasts of the human testis are thought to be Leydig

cell precursors (Chemes et al. 1985). Following hCG stimulation these

cells have been shown to differentiate into mature Leydig cells capable

of secreting testosterone (Chemes et al. 1985).
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1.4.1 The Leydlg cell

In mammals there are two generations of Leydig cells. Foetal

Leydig cells are of mesenchymal origin and are stimulated to develop by

placental hCG (Clements et al. 1976). These cells possess receptors for

LH, and under the influence of foetal pituitary LH they secrete

testosterone (Huhtaniemi et al. 1977) for masculinization of the foetus

(Roosen-Runge & Anderson, 1959). During early postnatal life foetal

Leydig cells undergo involution. Although the ultimate fate of these

cells is unknown, they are thought either to degenerate or to

de-differentiate and become fibroblast-like mesenchymal cells which at

puberty respond to LH and differentiate into the adult generation of

Leydig cells (Chemes et al. 1985). This adult Leydig cell population

although derived mainly from interstitial mesenchymal cells are also, to

a lesser extent, derived from mitosis of fully differentiated Leydig

cells (Mancini et al. 1963). Adult Leydig cells are rich in smooth

endoplasmic reticulum, Golgi apparatus and mitochondria, the organelles

involved in the synthesis of androgens and other Leydig cell products

(Ewing & Zirkin, 1983).

The onset of puberty is associated with altered frequency and

amplitude of LHRH secretion from the hypothalamus resulting in the

increased secretion of LH from the pituitary. Proliferation and

differentiation of adult Leydig cells has until recently been attributed

to the prepubertal increase in LH levels (Christensen & Peacock, 1980).

In the rat however conflicting evidence exists concerning the

prepubertal rise in LH with some reports of increased plasma LH (de Jong

& Sharpe, 1977) and others of no increase (Ketelslegers et al. 1978).

There is however a much closer relationship between rising FSH levels

and the differentiation of the adult generation of Leydig cells in the

rat (Swerdloff et al. 1972). Furthermore FSH, acting via the Sertoli
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cell, promotes rapid growth of Leydig cells in immature,

hypophysectomized rats (Kerr & Sharpe, 1985a,b) (see 1.5.6).

The synthesis and secretion of androgens by the Leydig cell

proceeds under the control of the trophic hormones from the anterior

pituitary (see 1.5). In addition these cells receive other hormonal and

paracrine input. Specific receptors for LHRH (Bourne et al. 1980;

Sharpe & Fraser, 1980; Clayton & Catt, 1981; Huhtaniemi et al. 1985),

prolactin (Huhtaniemi et al. 1981), insulin-like growth factor

(Handelsman et al. 1985), vasopressin (Meiden & Hsueh, 1985), epidermal

growth factor (Ascoli, 1981; Welsh & Hsueh, 1982) and catecholamines

(Anakawe et al. 1985) have been localized on rat Leydig cell membranes.

The physiological role of these potential regulators of Leydig cell

function remains to be clarified.

1.4.2 Heterogeneity of adult Leydig cells

A number of studies have demonstrated the heterogeneous nature of

the adult Leydig cell population. In the normal human testis, mature

Leydig cells which are rich in smooth endoplasmic reticulum, Golgi

apparatus and mitochondria are often observed adjacent to smaller cells

with poorly defined smooth endoplasmic reticulum and numerous lipid

droplets (Kerr & de Kretser, 1981).

The idea that there may be two distinct populations of adult rat

Leydig cells came initially from a study by Janszen and co-workers

(1976) who found two types of Leydig cells following isolation by

density centrifugation. Both cell types produced testosterone basally

and showed increased cAMP activity in response to LH. LH-stimulated

testosterone production however was observed in the "denser" cells only

(Janszen et al. 1976). Similar results have been obtained in a number
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of studies (Payne et al. 1980a; Cooke et al. 1981; Kerr et al. 1985a).

The lack of responsiveness of the "less dense" Leydig cells is not due

to the number or affinity of LH-receptors between the two populations

(Payne et al. 1980a). Furthermore pretreatment in vivo with LH

increases testosterone production of the "less dense" cells in vitro to

levels comparable to the more responsive "dense" cells (Payne et al.

1980b) .

Cooke and colleagues (1981) suggested that the heterogeneity of the

adult Leydig cell population in the rat may be indicative of a cycle of

Leydig cell function. An attempt to correlate this proposed Leydig cell

cycle to the spermatogenic cycle was made by Bergh (1982, 1983). He

observed that Leydig cells adjacent to the most androgen dependent

stages of the spermatogenic cycle (stages VII-VIII) are larger than

other Leydig cells in the same testis. Moreover, this effect is

abolished in the abdominal testis of unilaterally cryptorchid rats

(Bergh & Damber, 1984). It appears therefore that the seminiferous

tubules may secrete a factor(s) in a cyclical manner which locally

influences Leydig cell morphology and possibly function, and may in part

explain the heterogeneous nature of the Leydig cell population.

1.4.3 Testicular androgens

The Leydig cell is a highly differentiated cell whose primary

function is the synthesis and secretion of androgens. The main

secretory product of the Leydig cell is testosterone which is

synthesized via biosynthetic pathways common to other steroid secreting

tissues. Cholesterol is synthesized de novo in the Leydig cell smooth

endoplasmic reticulum, while the mitochondria exhibit the side-chain

cleavage enzymes which convert cholesterol to pregnenolone (van der

Vusse et al. 1973). The enzymes involved in the conversion of
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pregnenolone to testosterone are localized in the Leydig cell smooth

endoplasmic reticulum (Murota et al. 1966). Dehydroepiandrosterone,

androstenedione and dihydrotestosterone are also secreted by the Leydig

cell (Hammond et al. 1977). Secreted by the testis in small amounts,

dihydrotestosterone is derived mainly by reduction of testosterone by 5 ©C"

reductase at target sites in reproductive tissues.

1.4.4 Biological actions of androgens

The possibility that androgens might play a crucial role in human

spermatogenesis was overlooked for a long time despite evidence for a

profound effect of androgens on spermatogenesis in lower species. The

reluctance to consider a role for androgens in human spermatogenesis

resulted from studies in oligospermic and euspermic men in whom the

peripheral administration of testosterone leads to an arrest of

spermatogenesis and azoospermia (Heller et al. 1950). Peripheral

administration of androgens at low doses is now known to suppress the

release of pituitary LH via negative feedback mechanisms (Santen, 1981),

and while still being able to support secondary sex characteristics and

libido, reduces intratesticular testosterone to levels insufficient to

support spermatogenesis (Steinberger, 1971).

1.4.5 Testicular androgen receptors

Testicular androgen activity is mediated via androgen receptors

which have been localized in Sertoli cells (Mulder et al. 1976; Sanborn

et al. 1977; Tindall et al. 1977). The action of androgens on

spermatogenesis is thought to be mediated via Sertoli cell function (see

1.3.4) .

Androgen receptors have also been detected in Percoll-purified

Leydig cells from adult rats (Gulizia et al. 1983) and immature pigs

(Isomaa et al. 1987) and also in an established Leydig cell tumour line
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(Nakhla et al. 1984). The function of these receptors, which are

specific for androgens, is unknown but it has been suggested that

testicular androgens regulate their own production via an ultrashort

negative feedback mechanism (Purvis & Hansson, 1978; Adashi & Hsueh,/

1981).

1.4.6 Extratesticular androgen action

Circulating testosterone in the foetus is responsible for the

development and maintenance of the Wolffian ducts and their derivatives,

the epididymides, vasa deferentia, seminal vesicles and ejaculatory

ducts (Jost et al. 1973). Differentiation of the male external

genitalia and also the prostate are dependent on dihydrotestosterone,

the 5cX.-reduced form of testosterone (Wilson et al. 1983).

In addition to the reproductive tissues, testosterone acts on a

large number of body tissues including muscle, kidney, liver, adipose

tissue, red blood cells, skin, hair, bone and also the immune and

central nervous systems (for review, see Mooradian et al. 1987).

Testosterone exerts its effects on these tissues through the androgen

receptor both unchanged (e.g. testis, muscle, immune system) and via 5oC-

reductase (e.g. prostate, bone, skin, hair) and also in tissues with

high aromatase activity as an oestrogen via the oestrogen receptor (e.g.

adipose tissue, central nervous system).

1.4.7 Other Leydig cell products

(i) Oestradiol

In immature rats the Sertoli cell is the predominant source of

oestradiol (Rommerts et al. 1978). These cells lose their aromatase

activity during maturation after which they are unable to secrete

oestradiol in response to FSH (Rommerts et al. 1982). LH-stimulation of

isolated Leydig cells from adult rats increases their aromatase activity
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(Valladares & Payne, 1979) suggesting that in the mature animal the

Leydig cell is the main source of oestradiol. The human testis also

secretes oestradiol, again the interstitial tissue being the site of

aromatization (Payne et al. 1976).

In vivo administration of oestradiol to animals, including man,

results in a decrease in circulating plasma levels of testosterone and

inhibition of the testosterone response to LH stimulation (Jones et al.

1978; Saez et al. 1978). It has been argued that this anti-testicular

effect of oestradiol is due to suppression of pituitary LH secretion (de

Jong et al. 1975; Chowdhury et al. 1980). However the demonstration of

decreased plasma testosterone without any change in the level of LH in

oestrogen treated rats (Chowdhury et al. 1974; Sholiton et al. 1975)

and also of high affinity cytoplasmic oestrogen receptors on Leydig

cells (Brinkman et al. 1972) suggests that oestradiol might act directly

on the Leydig cell to suppress testosterone production. Oestradiol

exerts its inhibitory effect by blocking 17p^.-hydroxylase and 17,20

desmolase (Wang et al. 1980). The fact that desensitization of the

Leydig cells following large doses of LH/hCG (see 1.5.3) is due partly

to inhibition of these enzymes suggests that oestradiol may be a

mediator in this process (Catt et al. 1980), but whether this effect is

mediated via the oestrogen receptor or via functional modification of

the steroidogenic enzymes is not clear. Evidence to suggest that

oestrogenic effects are not mediated by the oestrogen receptor came from

Damber and co-workers (1983) who were unable to inhibit this oestrogenic

effect by tamoxifen, a potent anti-androgen which blocks the oestradiol

receptor. In contrast Cigorraga and colleagues (1980) showed that

tamoxifen is capable of inhibiting the decrease in responsiveness of the

Leydig cells to LH following a large dose of LH (hCG). So, any role of
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the Leydig cell oestrogen receptor in the gonadotrophin induced changes

in testicular steroidogenesis remains to be clarified.

(ii) Oxytocin and vasopressin

Oxytocin of Leydig cell origin has been detected in the rat testis

(Guldenaar & Pickering, 1985). It induces the contraction of the

peritubular myoid cells which propel the mature spermatozoa towards the

rete testis (Nicholson et al. 1986). Oxytocin has also been reported to

inhibit testosterone production by long-term (3 day) cultures of

testicular cells from hypophysectomized rats (Adashi et al. 1984). The

significance of these results is questionable since the inhibition of

testosterone production may be due to the effect of oxytocin on the

myoid cells present in the testicular cultures (Nicholson et al. 1986).

In short-term (24 h) culture of purified rat Leydig cells, no effect of

oxytocin on testosterone production is observed (Sharpe & Cooper, 1987).

Similarly intratesticular injection of oxytocin has no effect on

interstitial fluid testosterone content (Sharpe & Cooper, 1987). It

seems unlikely, therefore, that oxytocin is an autocrine regulator of

testosterone production in the rat testis.

Vasopressin is also present in the rat testis although its source

is unknown (Kasson et al. 1985; Kasson & Hsueh, 1986). Vasopressin has

been reported to be a potent inhibitor of hCG-stimulated testosterone

production by testicular cell cultures (Meidan et al. 1985). Data from

long-term (2-3 day) cultures of purified Leydig cells show that in the

presence of supraphysiological levels of hCG, vasopressin inhibits

testosterone production (Sharpe & Cooper, 1987). During short-term (5

h) culture vasopressin stimulates basal testosterone production and has

no effect on hCG-stimulated testosterone production (Sharpe & Cooper,

1987). The lack of an in vivo effect of vasopressin raises doubts as to
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the significance of this peptide in the paracrine control of Leydig cell

function (Sharpe & Cooper, 1987).

(iii) Pro-opiomelanocortin-derived peptides

Pro-opiomelanocortin (POMC)-derived peptides have been detected in

the male reproductive tract of a number of species with p-endorphin,

C<. -melanocyte-stimulating hormone and adrenocorticotrophic-like factors

present specifically in Leydig cell cytoplasm (Tsong et al. 1982a). A

growing number of studies suggest that POMC-derived products may have

some local intratesticular effects (1.6.1 (viii)).
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1.5 ENDOCRINE CONTROL OF THE TESTIS

The hormonal control of spermatogenesis involves the interaction of

gonadal steroid hormones and the pituitary gonadotrophic hormones LH and

FSH on specific cells of the testis. The involvement of the pituitary

gonadotrophins in the normal functioning of the gonads was realized more

than 50 years ago, but it is only in the last 15 years, with advances in

the isolation and detection of both LH and FSH, that their basic

mechanisms of actions have been elucidated.

1.5.1 Luteinizing hormone and the Leydig cell

The first demonstration of LH action on the Leydig cell was in 1936

when it was shown to maintain normal Leydig cell morphology in

hypophysectomized rats (Greep et al. 1936). It was not until over 30

years later that binding of LH was shown to be restricted to the

testicular interstitial cells of the rat (Mancini et al. 1967; de

Kretser et al. 1971). Subsequent studies have demonstrated receptors

for LH on the cell surface of Leydig cells in human foetal testes

(Huhtaniemi et al. 1977) and adult human testes (Hsu et al. 1978).

LH is thought to exert its action on the activity of the enzymes

involved in the synthesis of testosterone (Hall, 1970; Ewing & Brown,

1977). The endpoint of LH action appears to be the regulation of

mitochondrial cholesterol side chain cleavage involving the cytochrome

P450 system (Menon et al. 1967; van der Vusse et al. 1975).

Furthermore, LH is thought to be involved in the conversion of

cholesterol ester to free cholesterol (Moyle et al. 1973) and in the

transport of the free cholesterol to the mitochondria (Hall et al.

1979).

1.5.2 Mechanism of action

The mechanism of LH action on the Leydig cell has been studied
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extensively. Stimulation of androgen synthesis by LH is brought about

mainly by changes in the production of cAMP, the subsequent activation

of protein kinase and phosphorylation of specific proteins leading to

the increase in steroidogenic enzyme activity (Purvis et al. 1981;

Dufau et al. 1984) .

Changes in endogenous levels of cAMP in the testis do not however

completely support the idea that cAMP mediates the effects of LH on

steroidogenesis (Cooke et al. 1977). Recent data indicate that a number

of transducing systems including cAMP, protein kinase-C and fluxes of

intracellular concentrations of calcium are required for the stimulatory

action of LH on androgen production (Hall et al. 1981; Lin, 1985;

Themmen et al. 1985).

LHRH has also been shown to stimulate androgen production without

apparent changes in cAMP production (Sullivan & Cooke, 1984). The

mechanism of action of LHRH on Leydig cell steroidogenesis is not clear

but LHRH has been shown to increase intracellular calcium and to

stimulate incorporation of labelled phosphate into phosphatidyl inositol

(Molcho et al. 1984).

1.5.3 Regulation of LH receptors

The ability of peptide hormones to regulate the concentrations of

their specific receptor sites in endocrine target cells has been

demonstrated in numerous tissues. Initially receptors for insulin and

growth hormone were shown to be inversely proportional to the

concentrations of the homologous hormone in the peripheral circulation

(Roth et al. 1975).

LH (hCG) negatively regulates the number of its own receptors on

the Leydig cell plasma membrane. LH receptor number is decreased by

exogenous gonadotrophins (Hsueh et al. 1977; Sharpe, 1976) and also by
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elevation of endogenous LH levels following treatment with LHRH-A (Catt

et al. 1979). A single supraphysiological dose of LH (hCG) results in a

rapid (within 3-6 h) increase in receptor number (Hsueh et al. 1977;

Sharpe, 1980; Huhtaniemi et al. 1981). Following the, as yet

unexplained, initial transient up-regulation, high doses of LH induce a

prominent reduction or down-regulation in LH receptor numbers, and an

impaired responsiveness of the Leydig cell to subsequent hormonal

stimulation (desensitization) (Nozu et al. 1981 a,b, 1982).

Desensitization is the result of uncoupling of the receptor from

adenylate cyclase and the internalization of the hormone-receptor

complex. In the endosomal vesicles the hormone is dissociated from the

receptor and degraded while the receptor is returned to the cell surface

(Habberfield et al. 1986). This internalization and recycling process

appears to be important in maintaining the ability of the Leydig cell to

bind LH.

1.5.4 Leydig cell response to LH

Administration of LH (hCG) to men results in a biphasic response in

which there is a modest (20-60%) acute increase in plasma testosterone

levels within 6 h, followed by a 2- to 3-fold rise 2-3 days later (Saez

& Forest, 1979; Smals et al. 1979; Padron et al. 1980; Martikainen

et al. 1980; Nankin et al. 1980). A similar biphasic response is

observed in the rat (Hsueh et al. 1976; Sharpe, 1976).

The mechanism of this biphasic steroid response is not completely

understood although desensitization and down regulation of the LH

receptor is thought to be involved (Padron et al. 1980). The secondary

rise in testosterone production, the magnitude of which is determined by

the dose of LH (hCG) administered, has been attributed to trophic

effects of LH (hCG) on cytoplasmic organelles and possibly Leydig cell
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number. Although data on the effects of a single injection of LH (hCG)

is limited, chronic administration of hCG in man has been shown to

result in an increase in Leydig cell smooth endoplasmic reticulum,

mitochondria and Golgi apparatus, reflecting an increase in the capacity

of these cells to secrete testosterone (de Kretser, 1967). Similarly in

the rat, chronic stimulation with LH (hCG) increases cell size and

number (Christensen & Peacock, 1980; Nussdorfer et al. 1980).

1.5.5 Follicle-stimulating hormone

The seminiferous epithelium is the principal site of action of FSH

in the testis (Means & Vaitukaitis, 1972). Autoradiographic studies

have shown binding of FSH primarily to the basal aspect of the Sertoli

cell and also to the spermatogonial membrane (Orth & Christensen, 1977,

1978) . Binding of FSH to receptors located on the plasma membrane of

the Sertoli cell stimulates adenylate cyclase (Fakunding et al. 1975),

activates cAMP-dependent protein kinase (Fakunding & Means, 1977) and

stimulates RNA and protein synthesis (Means et al. 1976). In the rat,

ABP has been used extensively as a marker for FSH action on the Sertoli

cell (Ritzen et al. 1981).

The responsiveness of the Sertoli cells to FSH with respect to

accumulation of cAMP declines significantly during sexual maturation

(Steinberger et al. 1977). This diminished responsiveness of the

Sertoli cells to FSH with age is not due to impaired hormone binding, as

the binding of FSH actually increases during this period (Steinberger et

al. 1977). The loss of cellular response to FSH is due to decreased

production of cAMP secondary to increased phosphodiesterase activity.

This lack of response can be reversed by the phosphodiesterase inhibitor

l-methyl-3-isobutyl-xanthine (MIX) (Fakunding et al. 1975; Means et al.

1976). The FSH-dependent functions of the Sertoli cell in the immature
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animal are regulated by testosterone in the mature animal (Hansson et

al. 1976).

The precise role of FSH became less clear when it was shown that in

adult animals testosterone alone, when administered in high doses, is

capable of maintaining or restoring complete spermatogenesis in the

absence of FSH (Boccabella 1963; Buhl et al. 1982; Marshall et al.

1983). In mature hypophysectomized rats, in the presence of normal

levels of testosterone, failure to restore or maintain normal germ cell

number implies the need for other factors for quantitatively normal

spermatogenesis (Chowdhury, 1979; Stevens & Steinberger, 1983).

Similarly in hypogonadotrophic men, and men made hypogonadotrophic by

the administration of exogenous testosterone, both FSH and LH are

required for quantitatively normal spermatogenesis, although either FSH

or LH alone is sufficient to stimulate spermatogenesis in the presence

of testosterone (Bremner et al. 1984). These findings suggest that in

addition to testosterone, FSH is also required for quantitatively normal

spermatogenesis.

Although the adult seminiferous tubules have been shown to respond

to FSH only minimally (Ritzen et al. 1981) the actions of FSH appear to

be dictated locally by stage-dependent changes in the response to FSH

(Parvinen et al. 1980). Significant variation occurs in both the

binding of FSH and in the FSH-stimulated cAMP production depending on

the stage of the cycle of the seminiferous epithelium. The number of

FSH receptors and the amount of cAMP produced in response to FSH is

highest at stage I, and lowest during stages VII-VIII (Parvinen et al.

1980).

1.5.6 FSH and the Leydig cell

In the testis, although receptors for FSH are found only on the
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Sertoli cells and the spermatogonia (Means et al. 1976; Orth &

Christensen, 1977), in vivo studies have suggested that FSH also

regulates Leydig cell steroidogenesis. This information derives from

studies in which administration of FSH to immature hypophysectomized

rats results in increased Leydig cell LH receptor number (Odell et al.

1973; van Beurden et al. 1976; Chen et al. 1977) and increased

capacity of the Leydig cell to bind LH and secrete testosterone (Odell &

Swerdloff, 1975; Chen et al. 1976, 1977; Selin & Moger, 1977).

Morphometric studies by Kerr and Sharpe (1985a, 1985b) have shown that

these effects are due to FSH-induced differentiation of the adult

population of Leydig cells.

1.5.7 Mode of action

The regulatory effect of FSH on Leydig cell steroidogenesis is not

exerted directly on the Leydig cell but is mediated through the Sertoli

cell. In Sertoli-Leydig cell co-cultures FSH enhances Leydig cell hCG

binding, hCG-stimulated testosterone production and the development of

organelles involved in steroidogenesis (Benahmed et al. 1986). Leydig

cells cultured in conditioned medium from FSH-stimulated Sertoli cells

in culture as compared to conditioned medium from non-stimulated Sertoli

cells show an increase in their steroidogenic capacity (Benahmed et al.

1986). Since in vivo the Sertoli and Leydig cells are in different

compartments of the testis and unable to communicate through cell

contact, these results suggest that FSH regulates Leydig cell function

by means of FSH-stimulated Sertoli cell factors (see 1.6.1).

1.5.8 Control of FSH secretion

In many physiological and pathological conditions the levels of the

gonadotrophins LH and FSH change independently. In men suffering from

germinal cell failure, without damage of the Leydig cells, the levels of
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plasma FSH are often elevated whereas plasma LH levels are frequently

normal (Franchimont et al. 1975). Since the synthesis of both LH and

FSH is controlled by hypothalamic LHRH, there must be some factor which

can regulate the release of FSH at the pituitary level.

Regulation of FSH secretion via a negative feedback mechanism by a

water-soluble substance from the testis was postulated by McCullagh

(1932). This substance he called inhibin. It has since been confirmed

that water-soluble testicular extracts suppress FSH secretion without

altering LH release in male animals (Baker et al. 1976; Keogh et al.

1976; Eddie et al. 1978).

1.5.9 Source of inhibin

Direct evidence that inhibin is produced by the Sertoli cell in the

male came from in vitro studies in which medium from cultured rat

Sertoli cells was shown to selectively suppress FSH secretion in

cultures of pituitary cells (Steinberger & Steinberger, 1976; Bicsak et

al. 1987).

Inhibin is present in abundance in seminal plasma in a number of

species, including man (Franchimont et al. 1979). Seminal plasma

inhibin is of prostatic origin (Becsak et al. 1984) and reports as to

whether it is capable of suppressing FSH release from pituitary cells in

culture are conflicting (Ramasharma et al. 1984; Sheth et al. 1984; de

Jong & Robertson, 1985; Liu et al. 1985). The action of prostatic

inhibin is at present unknown.

The presence of inhibin in rete testis fluid (Setchell & Jacks,

1974; Baker et al. 1976) may indicate a means by which this peptide

gains entry to the peripheral circulation in order to mediate its

effects on the anterior pituitary (Baker et al. 1976). Little is

currently known about the mechanism(s) or route(s) by which inhibin is
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secreted from the testis into the peripheral circulation although in

sheep, the high concentration of inhibin in the ovarian vein (Tsonis et

al. 1986) suggests that a vascular route may be important.

1.5.10 Mode of action

Since the structure of inhibin was defined less than 2 years ago

(Mason et al. 1985), no report has yet appeared on the localization of

receptors for inhibin. So although the anterior pituitary is generally

accepted to be the site of inhibin action, direct action of inhibin on

the hypothalamus has also been reported (Lumpkin et al. 1981).

Using a 32 kDa inhibin from porcine follicular fluid, Fukuda and

co-workers (1987) have confirmed that inhibin acts to suppress FSH, but

not LH or any other pituitary hormone. Suppression of basal FSH release

is thought to be a consequence of reduced intracellular stores of FSH

(Scott & Burger, 1981b; Fukuda et al. 1987). Cycloheximide, a potent

inhibitor of protein synthesis, is capable of mimicking the actions of

inhibin, suggesting that the difference in response of both LH and FSH

to inhibin is due to differences between these hormones in

susceptibility to biosynthetic inhibition (Fukuda et al. 1987).

LHRH-stimulated release of both FSH and LH is suppressed by inhibin, and

cycloheximide, indicating that inhibin acts on the gonadotrophs by

inhibiting protein biosynthesis (Fukuda et al. 1987).

1.5.11 Testicular steroids and FSH secretion

Testicular steroids are known to be involved in the regulation of

LH secretion (Santen, 1981), but their role in the secretion of FSH is

not clearly defined. Testosterone in pharmacological doses has been

shown to suppress FSH (Baker et al. 1976) whereas other androgens such

as dihydrotestosterone and \lc/^ -hydroxyprogesterone have no effect

(Stewart-Bentley et al. 1974). Similarly oestrogens have been shown to
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suppress FSH (Baker et al. 1976) but are required in doses which are

large enough to produce gynecomastia in castrate men (Walsh et al.

1973). In rats both oestrone and oestradiol have been shown to suppress

FSH (Swerdloff et al. 1973).
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1.6 PARACRINE CONTROL OF THE TESTIS

The importance of the gonadotrophic hormones LH and FSH in the

development and maintenance of testicular function cannot be

over-emphasized. The gonadotrophins provide the basic stimuli on which

normal testicular function depends. However, it is difficult to imagine

that the maintenance of a highly complex structure such as the testis

could be achieved by the gonadotrophins alone. Indeed the way in which

the testis responds to these stimuli appears to be mediated by gonadal

factors. The testis is composed of various somatic and germinal cells

which interact in response to gonadotrophic stimulation by producing

paracrine factors. These factors mediate the actions of the

gonadotrophins according to local testicular requirements and, as such,

co-ordinate the functions of the various testicular cell types.

1.6.1 Sertoli cell-Leydig cell interactions

The Sertoli and Leydig cells were for a long time considered to be

completely independent cell types. Evidence of a close interdependence

of the two cell types is now accumulating.

The concept that the Leydig cells, by providing high local

concentrations of testosterone, regulate testicular function via the

Sertoli cells is well-established (Steinberger, 1971; Ritzen et al.

1981; Sanborn et al. 1984). The maintenance of quantitatively normal

spermatogenesis is completely dependent on adequate supplies of

testosterone (Desjardins et al. 1973; Nieschlag et al. 1973), while the

absolute amount of this hormone required remains unknown.

Results from several studies indicate the cyclical variation in the

requirements of the Sertoli cell for testosterone (Dym et al. 1977;

Russell & Clermont, 1977; Russell et al. 1981). In all cases

gonadotrophic deprivation leads to the disappearance of post-meiotic
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germ cells in stages VII and VIII in the rat. Recent studies involving

the administration of the Leydig cell toxin ethane dimethanesulphonate

(EDS) to adult rats have demonstrated disruption of post-meiotic germ

cells in stages VII and VIII as a result of short-term testosterone

deprivation (Kerr et al. 1985b, 1986; Bartlett et al. 1986). In view

of this stage-specific dependence of spermatogenesis on testosterone, it

is difficult to perceive how the testosterone supply could be regulated

sufficiently by the episodic release of pituitary LH to meet the demands

of individual stages of germ cell development. There now exists

considerable evidence to suggest that tubular factors, in response to

gonadotrophic stimulation, influence Leydig cell testosterone

production.

(i) Evidence for paracrine regulators of Leydig cell function

Evidence for communication between the interstitial and tubular

compartments of the testis came initially from a number of studies which

demonstrated that tubular damage, as a result of anti-androgens (Aoki &

Fawcett, 1978), cryptorchidism (Kerr et al. 1979a) vitamin A deficiency,

hydroxyurea treatment, foetal irradiation (Rich et al. 1979) or efferent

duct ligation (Risbridger et al. 1981), secondarily effects Leydig cell

function. Aoki & Fawcett (1978) observed the involution of seminiferous

tubules around intratesticular implants of the anti-androgen cyproterone

acetate, accompanied by hypertrophy and hyperplasia of Leydig cells in

the neighbouring interstitial tissue. These changes were not

accompanied by significant elevation of gonadotrophin levels and did not

occur in tubules distant to the implants or in the contralateral testis,

suggesting the presence of some local, paracrine regulator of Leydig

cell function.
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(ii) Follicle-stimulating hormone

A growing number of studies have suggested that FSH, in addition to

its stimulatory influence on the Sertoli cell, may also exert effects on

Leydig cell steroidogenic function. FSH pre-treatment of

hypophysectomized rats results in an increase in LH-stimulated

testosterone secretion by the Leydig cells both in vivo (Odell &

Swerdloff, 1975; Selin & Moger, 1977) and in vitro (Chen et al. 1976;

van Beurden et al. 1976; Chen et al. 1977). In addition, FSH appears

to stimulate LH receptor number (Chen et al. 1977). As binding of FSH

to Sertoli cells (Orth & Christensen, 1977) but not to Leydig cells (de

Kretser et al. 1971; Means & Vaitukaitis, 1972) is well-established,

these observations suggest that the regulatory effect of FSH on Leydig

cell steroidogenesis may result from an interaction between the Sertoli

and Leydig cells via the production of a mediator by the Sertoli cell.

(iii) Oestradiol

Oestradiol was suggested as a possible local feedback messenger

between the Sertoli and Leydig cells (Aoki & Fawcett, 1978). However,

Sertoli cells are now known to lose their aromatase activity during

maturation (Rommerts et al. 1982), after which they are unable to

secrete oestradiol, effectively ruling out the possibility of oestradiol

as a potential messenger between the tubular and interstitial cells.

(iv) Testicular-LHRH

The possibility that the regulatory effect between the seminiferous

tubules and the Leydig cells is mediated, at least in part, by

testicular-LHRH has been suggested as a result of a number of

observations.

An LHRH-like peptide of testicular origin has been reported in the

rat (Dutlow & Millar, 1981; Sharpe et al. 1981, 1982a; Bhasin et al.

1983; Nagendranath et al. 1983; Hedger et al. 1985). Reports of
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LHRH-like activity in spent media from Sertoli cell cultures indicates

the Sertoli cell as the site of its production (de Jong et al. 1979;

Sharpe et al. 1981, 1982a; Nagendranath et al. 1983).

LHRH was found to have no direct effects on the Sertoli cell
y

/

(Gore-Langton et al. 1981) in keeping with the finding that specific

LHRH binding sites are present in Leydig but not Sertoli cells (Bourne

et al. 1980; Sharpe & Fraser, 1980; Clayton & Catt, 1981; Huhtaniemi

et al. 1985). These results suggest that the Sertoli cells produce an

LHRH-like peptide in response to FSH which acts on the Leydig cells to

locally regulate their function.

(v) Physiological role of testicular-LHRH

Most of the information available on the physiological effects of

testicular-LHRH has been obtained from the use of agonistic analogues of

hypothalamic LHRH. The suitability of these agonists, in the absence of

purified testicular-LHRH, has been proved by the demonstration that

LHRH-agonists prevent the gonadal actions of native LHRH in a

dose-dependent manner (Hsueh et al. 1981).

Initial studies with long-term (3 or more days) exposure to

LHRH-agonists reported a potent direct inhibitory effect on

steroidogenesis both in vivo and in vitro (Bambino et al. 1980; Hsueh

et al. 1981; Hsueh & Jones, 1981). Short-term incubations (of up to 24

hours) with LHRH agonist stimulates Leydig cell testosterone production.

This stimulatory effect has been demonstrated in vivo, in both normal

(Sharpe & Rommerts, 1983; Sharpe et al. 1983) and hypophysectomized rats

(Sharpe et al. 1982; Sharpe & Harmar, 1983), and in vitro (Hunter et

al. 1982; Sharpe & Cooper, 1982a, 1982b).

(vi) Mode of Action

The physiological role for testicular-LHRH seems to be as a
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stimulatory regulator of intratesticular levels of testosterone.

The method of action of testicular-LHRH is thought to be mediated by its

effects on testicular blood flow and capillary permeability (Sharpe,

1984a). The action of LHRH is to stimulate testicular blood flow (Damber

et al. 1984) and to reduce capillary permeability (Sharpe, 1984a).

Receptor binding sites for testicular-LHRH are present only on the Leydig

cells therefore LHRH stimulates the Leydig cells which in turn are

thought to secrete a vasoactive factor(s), possibly ^-endorphin which
acts upon the testicular capillaries (Sharpe 1984a). By controlling

capilliary permeability, testicular LHRH is in effect controlling the

volume of interstitial fluid and ultimately the intratesticular level of

testosterone. In addition, by controlling interstitial fluid volume,

testicular-LHRH is directly involved in the passage of other hormones, in

particular LH, into the intratesticular environment (Sharpe, 1984a).

So although testicular-LHRH clearly modulates testosterone

production by the rat Leydig cells, whether it has a localized effect on

the Leydig cells adjacent to particular androgen-dependent states (VII

and VIII) of the cycle of the seminiferous epithelium has not been

demonstrated. Immunohistochemistry has shown that tubular content of

LHRH varies in different cross sections (Paull et al. 1981). These

authors did not however relate LHRH content with the stage of the

spermatogenic cycle. A recently reported Sertoli cell LHRH-peptidase

may be involved in the modulation of testicular-LHRH secretion in

response to local environmental requirements at different stages of the

cycle (Hedger et al. 1986). Secretion of this peptidase into the

interstitial fluid may be a means by which the Sertoli cell can confine

testicular-LHRH to a site of action by preventing the accumulation of

this peptide and its subsequent diffusion through the interstitial fluid.
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(vii) Sertoli cell/Interstitial fluid stimulatory factor(s)

Substantial evidence exists for the presence of a Sertoli cell

factor, which is not testicular-LHRH, but which has local stimulatory

effects within the testis (Grotjan & Heindel, 1982; Benahmed et al.

1984; Parvinen et al. 1984; Sharpe & Cooper, 1984; Janecki et al.

1985; Verhoeven & Cailleau, 1985). Seminiferous tubules at stages VII

to VIII incubated with rat Leydig cells enhance testosterone production

by the Leydig cells, while LHRH-antagonist is not capable of diminishing

the seminiferous tubule effect (Parvinen et al. 1984).

Verhoeven & Cailleau (1985) reported a stimulatory factor from

immature Sertoli cell culture media which was not inhibited by

LHRH-antagonist. Maximally effective levels of this factor plus

LHRH-agonist had additional effects, suggesting that they act via

different receptor systems. The ability of both FSH and dibutyryl cAMP

to stimulate the levels of this factor in spent media from immature

Sertoli cell cultures undoubtedly points to the Sertoli cell as the

source (Verhoeven & Cailleau, 1985).

Although the physiological significance of these in vitro effects

are questionable, their potential importance is substantiated by the

comparable action of a factor produced in vivo. Testicular interstitial

fluid (IF) collected from normal adult rats is capable of enhancing

Leydig cell testosterone production by 6-fold or more in response to

maximally stimulating levels of hCG (Sharpe & Cooper, 1984; Sharpe,

1985).

This effect is not due to IF gonadotrophins as IF-factor activity

is also present in IF from hypophysectomized rats (Sharpe & Cooper,

1984). In addition, antiserum to LH fails to diminish the stimulatory

effect of the IF-factor (Sharpe & Cooper, 1984). The most important
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determinant of the magnitude of the stimulatory effect of IF-factor is

the ambient level of intratesticular testosterone (Sharpe & Cooper,

1984; Sharpe, 1985). Testicular damage which reduces intratesticular

testosterone, for example cryptorchidism, results in increased
/

stimulatory effects of the IF-factor (Sharpe & Cooper, 1984; Sharpe et

al. 1986b). Testicular damage is often accompanied by changes in IF

volume which may give erroneous estimates of IF-factor activity. IF

volume is decreased in cryptorchid rats, however IF-factor activity

remains elevated even after IF volume has returned to normal levels

(Sharpe et al. 1986b). FSH is also elevated as a result of testicular

damage, but this does not explain the increased level of IF-factor

activity as in rats made unilaterally cryptorchid increased activity of

the IF-factor is seen in the abdominal testis only and not in the

contralateral scrotal testis (Sharpe et al. 1986b).

The Leydig cell toxin EDS provides a means by which the effect of

intratesticular testosterone on IF-factor activity can be investigated

(Sharpe et al. 1986a). Short-term deprivation of testosterone following

Leydig cell destruction leads to an increase in the activity of the

IF-factor. However at 3-7 weeks post EDS treatment when intratesticular

levels of testosterone are back to normal, IF-factor activity is still

elevated. This has been attributed by Sharpe et al. (1986) to

disruption of spermatogenesis which still persists to some extent even

after normal testosterone levels are restored (Bartlett et al. 1986).

In EDS-treated rats intratesticular levels of testosterone are back to

normal at around 3 weeks post-EDS, however Leydig cell number is still

greatly reduced (Kerr et al. 1985b). During this period of reduced

Leydig cell number the increased activity of the IF-factor may well be

the mechanism by which intratesticular testosterone levels are returned



to normal thus permitting restoration of spermatogenesis (Sharpe et al.

1986a).

Any communication between the Sertoli and Leydig cells must take

place via the testicular interstitial fluid, and as such, both the
y

interstitial fluid-factor and the Sertoli cell derived factor may be

identical, or possibly members of a family of related peptides.

(viii) Testicular opiates

In addition to testosterone, other Leydig cell products are thought

to have local effects on the seminiferous epithelium. Immunoreactive

^3-endorphin, a peptide which is derived from the processing of a
precursor molecule pro-opiomelanocortin (POMC) (Krieger et al. 1980),

has been reported in human semen (Sharp & Pekary, 1981) and in rat

testis extracts (Sharp et al. 1980; Tsong et al. 1982a).

Immunoreactive ^-endorphin has been identified in the Leydig cells, but
not in the Sertoli or germ cells, of a number of species (Tsong et al.

1982b). In hypophysectomized rats, in which plasma levels of

^-endorphin are undetectable, this POMC-derived peptide is still
detectable in the Leydig cells (Tsong et al. 1982a). In addition, POMC

mRNA has been demonstrated in rat Leydig cells (Chen et al. 1984;

Pintar et al. 1984). Opioid receptors have been identified in mature

and immature rat Sertoli cells (Fabbri et al. 1985). These results

raise the possibility that POMC is synthesized in the Leydig cells and

that POMC-derived products may have some local intratesticular effects.

Several POMC-derived peptides, in addition to ^-endorphin, such as
^-endorphin, ^-endorphin, adrenocorticotrophin (ACTH) and<^ melanocyte
stimulating hormone (<?CMSH) have been found in the testis (Margioris et

al. 1983). MSH is synthesized by the Leydig cells and has been shown

to directly stimulate cAMP production by the Sertoli cells and to
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modulate the response of these cells to FSH (Boitani et al. 1986). This

action of C^MSH on the Sertoli cell may represent a paracrine

regulatory mechanism within the testis.

^-endorphin-like immunoreactivity and ACTH are present in rat
interstitial fluid, in concentrations which far exceed those of plasma,

confirming local synthesis of these peptides (Valenca & Negro-Vilar,

1986). Synthesis of ^-endorphin is modulated according to the local
hormonal milieu. In hypophysectomized rats, administration of hCG

results in an increased secretion of JB-endorphin-like immunoreactivity
into the interstitial fluid whereas LHRH-A appears to have inhibitory

effects on the interstitial fluid levels of jB-endorphin-like
immunoreactivity (Valenca & Negro-Vilar, 1986). However in the

short-term, administration of LHRH-A to intact animals results in

elevated interstitial levels of ^B-endorphin-like immunoreactivity
concomitant with decreased interstitial fluid volume (Valenca &

Negro-Vilar, 1986). These authors suggest that in response to LH,

testicular opiates may regulate interstitial fluid production, and in

doing so, effectively alter intratesticular hormone concentrations.

Evidence of a paracrine effect of JB-endorphin has been observed in
immature rats. Administration of a jB-endorphin antagonsit, naloxone,
results in increased Sertoli cell division, testicular hypertrophy and

increased ABP production, suggesting that ^5-endorphin might inhibit
Sertoli cell function in immature rats (Gerendai et al. 1983). Adult

Sertoli cell function, however, as indicated by ABP production is not

affected by intratesticular treatment with opioid antagonists (Gerendai

et al. 1984). In normal rats, naloxone administration results in

decreased serum testosterone levels suggesting that endogenous

testicular opiates may regulate testosterone production. It is not
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clear whether these opiates regulate Leydig cell testosterone production

directly, by an autocrine mechanism, or indirectly through another cell

type, by a paracrine mechanism.

Thus there is evidence to suggest that POMC-derived peptides are

present in the male reproductive tract, with ^-endorphin and ACTH-like
factors present specifically in Leydig cell cytoplasm. These peptides

have been shown to exert local inhibitory effects on the Sertoli cells.

However, little is known of the nature of receptors for POMC-derived

peptides on Sertoli cells. Whether these peptides act directly on the

Sertoli cells or via an intermediate factor(s) awaits identification

and characterization of their receptors on the Sertoli cell.

1.6.2 Sertoli cell-germ cell interactions

The epithelium of the seminiferous tubule is unique in its

organization consisting of a permanent population of Sertoli cells, and

interspersed among these the germ cells in a continuously evolving

state. The differentiation of the developing germ cells takes place in

a highly organized manner at precise, unvarying time intervals. Each

particular stage of the spermatogenic cycle appears to have different

functional requirements. The Sertoli cell provides the specific milieu

which is required by the germ cells in their different stages of

development.

(i) Functional cycle of the Sertoli cell

Several observations suggest the existence of a functional cycle of

the Sertoli cell, such that neighbouring Sertoli cells may be performing

different functions depending on their germ cell association, despite

being exposed to the same gonadotrophic stimulation. Sertoli cells

undergo morphological and histochemical changes during the cycle of the

seminiferous epithelium. Variations in cell volume (Cavicchia & Dym,
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1977), nuclear morphology (Le Blond & Clermont, 1952), lipid morphology

and position (Kerr & de Kretser, 1975) and some enzyme activities

(Parvinen & Vanha-Pertulla, 1972; Hilscher et al. 1979) related to the

cycle of the seminiferous epithelium have/been reported.

More recently in vitro studies of stage-specific tubule segments

have also demonstrated cyclical variations in Sertoli cell function

(Parvinen, 1982). The number of Sertoli cell FSH-receptors varies

during the cycle with preferential binding of FSH occurring between

stages XII and V in the rat (Parvinen et al. 1980). The ability of FSH

to stimulate cAMP production in the presence of a phosphodiesterase

inhibitor, also varies in a cyclical manner with cAMP production being

lowest during stages VII - VIII reflecting maximal activity of the

phosphodiesterase inhibitor (Parvinen et al. 1980). This pattern of FSH

induced cAMP production is thought to relate to the stage of spermatid

development, indicated by the activity of the spermatid-specific enzymes

protein carboxyl-methylase and manganese-dependent adenylyl cyclase

(Cusan et al. 1981; Gordeladze et al. 1982). These enzymes are

involved in the maturation of step 12 to 17 spermatids during stages XII

to V in the rat (Cusan et al. 1981). Their activity is closely related

to the rise in FSH-induced cAMP production which is thought to be

important for spermatid maturation (Parvinen, 1982). These spermatid

specific enzyme activities fall off in parallel with decreased

production of cAMP prior to spermiation (Gravis, 1978). These data

suggest that the action of FSH on the Sertoli cell is dictated locally

by the stage of the cycle.

In addition, preferential action of testosterone occurs in the rat

during stages VII to VIII (Parvinen, 1982). Decreased availability of

testosterone leads to the degeneration of stage VIII spermatocytes and
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spermatids. Androgen dependent germ cells at stages VII and VIII of the

cycle are thought to communicate with adjacent Leydig cells to maximize

the availability of testosterone (see 1.6.1).

The complex series of changes by which spermatogonia are

transformed into spermatozoa can be divided into three phases,

spermatocytosis, meiosis and spermiogenesis. During the first phase,

spermatocytosis, the spermatogonia proliferate by mitotic division to

replace themselves and to produce primary spermatocytes. These mitotic

divisions occur at specific stages of the spermatogenic cycle,

indicating the presence of a mitotic control mechanism. Likewise in the

second phase, meiosis, the two successive reduction divisions which

produce the secondary spermatocytes and the spermatids, are strictly

limited to particular stages. The Sertoli cell products, seminiferous

growth factor (SGF), meiosis-inducing substance (MIS) and

meiosis-preventing substance (MPS) are thought to control germ cell

mitotic and meiotic divisions (see 1.3.3 (i)). Other Sertoli cell

products, somatomedin-C/lGFl-like factor, testicular interleukin-1 and

possibly inhibin are also potential regulators of germ cell growth (see

1.3.3).

The culmination of the third phase of spermiogenesis, spermiation,

results in the release of the mature spermatozoa into the tubular lumen.

This event occurs concomitantly with the translocation of the

preleptotene spermatocytes from the basal to the adluminal aspects of

the seminiferous tubules. Both spermiation and translocation coincide

with increased secretion of plasminogen activator from the Sertoli cell

as described above (see 1.3.2 (iv)).

(ii) Germ cell effects

As spermatogenesis is dependent on an ordered sequence of changes
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in Sertoli cell function, cell-to-cell contacts between the Sertoli

cells and the germ cells could modulate the responsiveness of the

Sertoli cell to FSH. In other words, do germ cells exert paracrine

effects on the Sertoli cell? Germ cell removal from Sertoli c,ell

enriched cultures induces a reduction of FSH-dependent ABP secretion,

while replacing the removed germ cells promotes ABP secretion (Galdieri

et al. 1984). Furthermore, only germ cells at certain stages of

differentiation have this effect. Pachytene spermatocytes co-cultured

with Sertoli cells show surface junctional structures which are thought

to allow metabolic communication between the two cell types (Ziparo et

al. 1980, 1982). Round and elongate spermatids, which do not form these

junctional structures in vitro, have no effect on ABP production when

co-cultured with Sertoli cells (Galdieri et al. 1984) . Following

sequential depletion of spermatogonia, spermatocytes and spermatids in

rats by in vivo chronic gamma irradiation, there is a high degree of

correlation between elongate spermatids and Sertoli cell activity as

determined by ABP production (Pinon-Lataillade et al. 1986). The

responsiveness of the Sertoli cell to FSH appears therefore to be

modulated, at least in part, by their surface interactions with germ

cells.

Depletion of pachytene spermatocytes by X-irradiation results in a

reduction of plasminogen activator secretion during stages VII to VIII

(Vihko et al. 1984; Parvinen et al. 1986). Moreover, plasminogen

activator secretion by the Sertoli cell is stimulated by retinoic acid

during stage VII (Vihko et al. 1987), but the receptor for retinoic acid

is localized in the germ cells (Porter et al. 1985). The effects of

retinoic acid therefore seem to be indirect and mediated by the germ

cells.
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Isolated Sertoli cells in culture respond to stimulation by FSH by

exhibiting changes in cell shape which are thought to indicate inherent

cyclicity of Sertoli cell function (Spruill et al. 1981). However the

evidence presented here seems to suggest that the differentiation of

germ cells is not entirely influenced by the metabolic responses of the

Sertoli cells, but that it is a two-way process with Sertoli cell

function being modulated by the germ cells.

1.6.3 Sertoli-peritubular-Leydig interactions

External to the basement membrane of each seminiferous tubule lies

the peritubular tissue (Ross & Long, 1966; Bustos-Obregon & Holstein,

1973). This consists of approximately 3-5 alternating layers of

collagen fibres and myoid cells separated by thin layers of microfibrils

and basement membrane-like material, and is devoid of any blood vessels

or nerves (de Kretser et al. 1975). Located between the seminiferous

epithelium and the interstitium , the peritubular tissue is

strategically placed so as to exert an influence on Sertoli cell and

Leydig cell function.

The development of the highly organised peritubular tissue has been

attributed to stimulation by the gonadotrophins. Patients with

hypogonadotrophic hypogonadism show poorly organized peritubular tissue

which subsequent to gonadotrophin therapy takes on a mature appearance

(de Kretser & Burger, 1972). However neither LH nor FSH bind to

isolated peritubular cells (Steinberger et al. 1975; Fritz et al.

1975), and it is likely that the effect of the gonadotrophins is exerted

via androgen production by the Leydig cells (Sar et al. 1975; Skinner &

Fritz, 1985a,b). This androgen mediated effect is supported by studies

both in vivo and in vitro. Bressler & Ross (1972) observed myoid cell

differentiation in testosterone treated hypophysectomized adult rats
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given intratesticular implants of immature testicular tissue. In vitro,

the anti-androgen cyproterone acetate prevents the development of rat

myoid cells (Hovatta, 1972b).

Contractions of the peritubular myoid cells are responsible for the

passage of mature spermatozoa along the lumen of the seminiferous

tubules towards the epididymis (Ross & Long, 1966). Testicular oxytocin

from the Leydig cells is thought to play a role in the regulation of

seminiferous tubule contractions, although this remains to be

substantiated (Nicholson et al. 1984; Guldenaar & Pickering, 1985).

In vivo the Sertoli cells are surrounded by the peritubular cells

separated only by the basal lamina. Co-culture of peritubular and

Sertoli cells results in the synthesis of laminin by the Sertoli cells,

and fibronectin and type I collagen by the peritubular cells (Tung et

al. 1984) which together lead to the formation of a basal lamina-like

structure (Tung & Fritz, 1980). Monoculture of peritubular cells and

Sertoli cells fail to synthesize their respective components of the

basal lamina (Tung & Fritz, 1984). The role of the basal lamina is not

clear but it is thought to promote histotypic expression of the Sertoli

cells in vitro. Sertoli cells plated out on polystyrene culture dishes

form monolayer cultures. If however they are plated on top of

peritubular cells, the basal lamina thus formed influences the

orientation and polarity of the Sertoli cells such that they remain

columnar with abundant cytoplasmic processes and junctional complexes

between adjacent cells (Tung & Fritz, 1984).

An additional cellular interaction which may have a regulatory role

between the peritubular and Sertoli cells is that mediated by the

secretion of paracrine factors. Co-culture with peritubular cells

promotes the secretion of ABP and transferrin from rat Sertoli cells
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both in the presence and absence of FSH (Tung & Fritz, 1980; Hutson &

Stocco, 1981; Skinner & Fritz, 1985 a,b, 1986). In the early studies

the effects of peritubular cells could not be mimicked by peritubular

cell-conditioned medium. Rat peritubular and Sertoli cells cultured in
y/

parabiotic chambers demonstrated that peritubular cell secretions were

unable to influence ABP production (Hutson, 1983). This would suggest

that the action of the peritubular cells requires a specific cell-cell

interaction. More recent studies demonstrate that peritubular cells

produce a protein (P-Mod-S) which is capable of stimulating Sertoli cell

production of ABP and transferrin in a dose-dependent manner (Skinner &

Fritz, 1985a,b,1986). The discrepancy between these studies can be

explained by the presence of contaminating peritubular cells in the

Sertoli cell-enriched preparations of the earlier studies which may have

obliterated the effects of the non-concentrated peritubular

cell-conditioned medium (Skinner & Fritz, 1985b).

The availability of pure Sertoli cell-enriched preparations,

contaminated by approximately 0.3% peritubular cells (Tung et al.

1984), made possible experiments which established that the maintenance

of ABP production by the Sertoli cells is androgen-independent but

dependent on the presence of peritubular cells. Androgen actions on the

seminiferous tubule are therefore in part mediated via their actions on

peritubular cells. Thus androgens produced by the Leydig cells

stimulate the peritubular cells to produce the paracrine factor P-Mod-S

which in turn modulates the functions of the Sertoli cells. Similar

mechanisms are thought to exist in the human as co-culture of human

peritubular and Sertoli cells results in increased production of

transferrin by the latter (Holmes et al. 1984).

The difficulty in obtaining pure myoid cell preparations has
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hindered the purification of myoid cell secretory products. Myoid cells

are known to secrete a number of proteins (Kissinger et al. 1982), many

of which are also secreted by the TR-M cell line, which is thought to be

of myoid cell origin (Mather et al. 1982). It has been suggested that
/

this cell line could be useful in the study of myoid cell function and

the role they play in the regulation of testicular function (Mather et

al. 1983).

1.6.4 Leydig cell - macrophage interactions

Testicular macrophages are situated in the interstitial tissue

where they are closely associated with the Leydig cells

(Fawcett et al. 1973; Miller et al. 1983). The regulatory effect of

FSH on Leydig cell steroidogenesis is thought to result from

interactions between the Sertoli and Leydig cells but recent

observations suggest that testicular macrophages may also be involved.

Studies by Yee and Hutson have demonstrated high affinity binding

sites for FSH on testicular macrophages (1985a), and that these cells

respond specifically to FSH in vitro by increased lactate production

(1983), and in vivo by increased incorporation of labelled amino acids

into secreted products and an accumulation of cAMP (1985b).

Furthermore, culture medium from testicular macrophages enhances rat

Leydig cell steroidogenesis (Yee & Kutson, 1985c). Macrophages are

active in the secretion of many products including prostaglandins and

leukotrienes, in particular leukotriene B4 (LTB4) (Takemura & Werb,

1984). LTB4 has been implicated in the LH-dependent stimulation of

Leydig cell testosterone production (Papadopoulos et al. 1986). These

studies suggest that FSH-regulated secreted products from testicular

macrophages may be involved in the paracrine control of Leydig cell

function similar to the situation which exists in the ovary, in which
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secretion of progesterone by the luteal cells is stimulated by secretory

products from ovarian macrophages (Kirsch et al. 1981).
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1.7 SCOPE OF THIS THESIS

From the time of the early microscopists, who demonstrated that the

testis was divided into seminiferous tubule and interstitial

compartments, the function and control of these compartments have been

considered completely independently. The isolation of two gonadotrophic

hormones from the anterior pituitary, LH which acts on the interstitial

Leydig cells and FSH which acts on the Sertoli cells in the seminiferous

tubule compartment, reinforced this concept of independent control.

Over the past five years there has been increasing experimental

evidence, largely in the rat, to suggest that quantitatively normal

spermatogenesis requires not only stimulation by the gonadotrophic

hormones, but also the complex interactions between the various cellular

components within the seminiferous tubules and interstitial compartments

of the testis - the so-called paracrine control. Thus, in order to

further our understanding of the paracrine control of testicular

function in man, the studies described herein were directed towards

establishing techniques whereby individual components of the testis

could be studied in isolation and in combination and related to the

overall functional state of the testis as defined by systemic hormone

levels and histological assessment of spermatogenesis. These studies

provide a basis for future investigation of seminiferous tubule and

Leydig cell function in the human testis.
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CHAPTER 2

Materials and Methods
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2.1 HUMAN TESTICULAR TISSUE, PLASMA AND INTERSTITIAL FLUID

Testicular tissue for all of the studies described was obtained

from men undergoing either total or subcapsular orchidectomy for

prostatic carcinoma. All samples were collected from the operating

theatre as soon as possible following orchidectomy and placed on ice.

Patients ranged in age from 50 to 94 years (median 73 years) and were

sub-divided into groups according to treatment regimen as follows:-

2.1.1 No treatment

Orchidectomy was the primary treatment for prostatic carcinoma in

this group, other forms of treatment being contraindicated because of

the risk of thromboembolism and cardiovascular complications or because

of the advanced state of the disease.

2.1.2 Radiation treated

All patients who had received radiotherapy at some stage prior to

orchidectomy were included in this group. In all cases radiotherapy was

completed at least 2 years prior to orchidectomy.

2.1.3 Oestrogen treated

This group comprised patients who were receiving diethyl

stilboestrol (DES; 3 mg daily) up to the time of orchidectomy.

2.1.4 Post mortem

Testes from one 17 year old man, killed in a road traffic accident,

were obtained 12 h after death.

2.1.5 Plasma

Peripheral blood was obtained from the patients prior to

anaesthesia. After centrifugation at 1000 x g for 10 min at 4°C, plasma

samples were pipetted off and stored at -20°C prior to measurement of

testosterone, LH, FSH and oestradiol.
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2.1.6 Interstitial fluid

Interstitial fluid (IF) was collected from testes after total

orchidectomy by the method described by Sharpe & Cooper (1983). A small

incision was made in the caudal pole and the testis placed in a glass

funnel. The IF was allowed to drain from the testis into a glass

centrifuge tube for approximately 16 h, after which time it was

centrifuged at 4°C for 10 min to remove any contaminating red blood

cells. The interstitial fluid was then aspirated and incubated at room

temperature for 30 min with charcoal (Norit A; 20 mg charcoal/ml IF),

centrifuged for 10 min at 1000 x g and the supernatant extracted a

second time using the same procedure. Following this double charcoal

extraction, testicular IF levels of testosterone were undetectable. IF

was stored at -40°C.
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2.2 MORPHOMETRY AND STEREOLOGY

2.2.1 Histology

Testicular tissue of approximately 1 mm cubed was sampled at random

from cranial, equatorial and caudal regions of the testis and fixed in

3% glutaraldehyde buffered with 0.2 M sodium cacodylate. Tissue blocks

were post-fixed in 2% cacodylate-buffered osmium tetroxide for 2 h,

stained with 1% uranyl acetate in 0.05 M maleate buffer, dehydrated in

alcohols and embedded in Epon-araldite. Semithin 1 ^im sections were cut
with a Reichert 0mU3 ultramictrotome, stained with toluidine blue and

examined with a Zeiss photomicroscope.

2.2.2 Photography

Photomicrographs were prepared using standard techniques and

printed at a final magnification of 1200 x.

2.2.3 Random sampling

Careful attention was taken to ensure a systematic method of random

sampling such that all morphometric analysis was performed on unbiased,

representative samples.

2.2.4 Standardization

All micrographs were taken at the same magnification. In addition,

a micrograph of a stage micrometer was taken with each film to correct

for any minor inconsistencies in the microscope or in the film

processing routine.

2.2.5 Minimal sample size

On average 4000 observations were made for each parameter measured

for each individual patient (20 sections x 10 areas/section x 20

objects/area).

2.2.6 Measurement of testicular volume

The volume of a preweighted block of testicular tissue was
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determined by fluid displacement. A beaker containing water was placed

on a balance and weighed. A preweighed block of testicular tissue was

suspended by a thin thread so that it was completely immersed in the

water but did not touch the bottom of the beaker. This new weight (g)

minus the weight of the beaker plus water was equal to the volume of the

testicular tissue (cm^). The specific gravity of testicular tissue

was also determined by allowing the tissue to drop to the bottom of the

beaker and this new weight measured. This weight, minus the weight of

the beaker plus water, divided by the volume of the testicular tissue

was equal to the specific gravity. The specific gravity of human

testicular tissue approximates unity (1.03 + 0.08, n=20), thus "g" and

"cm^" are interchangeable.

Tissue processing for light microscopy alters testicular volume by

shrinkage (fixation and dehydration) and swelling (embedding). The

extent of these effects were determined by measuring testicular volume

before and after processing. Testicular tissue processed according to

the protocol detailed above (2.2.1) was reduced in volume to 58.7% - 75%

compared to fresh tissue. Measurements of numerical density (see 2.2.8)

from semithin sections were corrected accordingly and expressed in terms

of fresh intact tissue.

2.2.7 Section thickness

20 sections were re-embedded in Epon-araldite, cut on edge and

their thickness determined with an eyepiece graticule. Mean section

thickness did not deviate significantly from 1 ji (1 + 0.3, p^0.05).
2.2.8 Determination of round spermatid and Leydig cell number

The number of round spermatid and Leydig cell nuclei in individual

testes was derived by the measurement of numerical density (Nv) using

the Floderus equation Ny = NA/D+t-2h (Floderus, 1944), where Na is

68



the number of nuclei counted in a known area, D is the mean caliper

diameter of the nucleus of interest, t is the section thickness and h is

the height of the smallest visible nuclear cross section.

Quantitation of was carried out using a Zeiss photomicroscope

with a Plan Apo 40 x oil objective. Round spermatid and Leydig cell

nuclei were counted in random areas (i.e. including areas which did not

contain the cell type of interest) using a squared lattice with an area

of 44,100 ^lm^. Approximately 300 reference areas, or 13.2 x 106
yum^, were examined to determine for each individual.

Measurement of average nuclear diameter (D) was carried out on

photomicrographs, taken with a Zeiss photomicroscope with a Plan Apo 40

x oil objective, printed at a final magnification of 1200 x. Nuclear

diameter was measured in mm in approximately 4000 cells (20 sections x

10 areas x 10 cells / area) per individual, converted to ji using a

photomicrograph of a stage graticule taken at the same magnification and

the mean taken as the actual nuclear diameter. Since the nuclei were

often elongated in section, both the longest and shortest diameters were

measured and the average of the two measurements considered as the

actual diameter.

The height of the smallest visible cap section (h) was arbitrarily

estimated to be one-third of the section thickness, or approximately 10%

of the nuclear diameter (Mori & Christensen, 1980).

Ny gave the number of nuclei per^im^. This was converted to
number per cm-^ (1 cm^ = 10^2 ^m3) i.e. number per g of
testis.

2.2.9 Seminiferous tubule length

Total seminiferous tubule length per testis was calculated from the

formula:-
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Length = volume (of seminiferous tubules)

area (of seminiferous tubule cross section)

Counts to determine volume density of seminiferous tubules were

made with a Plan Apo x 10 objective and 10 x eyepieces, one of which
y

contained a squared grid comprising 49 intersecting points. The volume

density of seminiferous tubules was derived by dividing the number of

points landing on seminiferous tubules by the total number of points

observed (49 points/area x 10 areas/slide x 10 slides/individual = 4900

points).

The area of seminiferous tubule cross sections was derived by

tracing the perimeter of approximately 100 transverse sections (5

transverse sections/slide x 20 slides) for each individual with an image

analyser.

Seminiferous tubule length was expressed as m/testis.

2.2.10 Daily sperm production

Spermatogenesis was quantitated as daily sperm production (DSP)

using a technique described by Johnson and co-workers (1981).

Testicular tissue, of approximately 30-50 mg, was immersion fixed in 2%

glutaraldehyde buffered with 0.2 M sodium cacodylate. Fixed tissue was

stored at 4°C until homogenates were prepared by dicing

glutaraldehyde-fixed tissue in 10 ml homogenizing fluid consisting of

150 mM NaCl, 0.05% (v/v) Triton X-100 and 3.8 mM NaN3. Diced

parenchyma was homogenized at room temperature for 6 min in a VirTis 23

macrohomogenizer (Techmation Ltd., U.K.). All spermatid nuclei were

counted in a haemocytometer under phase contrast microscopy using the

classification system of Clermont (1963) and Heller & Clermont (1964).

DSP/g was calculated by dividing the number of spermatids in the
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homogenate by the product of the weight of tissue homogenized by a time

divisor of 23.9 days. The time divisor is designated to determine the

number of days sperm production represented by the spermatids counted in

the homogenate. This was assumed to be the sum of the duration of the
y

stages of the-spermatogenic cycle in which spermatids are present.

For each patient six blocks of tissue were selected at random from

both left and right testes. DSP for each testis was expressed as X +

SD.

The precision of this technique was estimated by the coefficient of

variation which was 8.1 + 4.5% between spermatid counts within the same

homogenate, and 14.8 + 5.5% between different homogenates from the same

testis.

2.2.11 Morphometric analysis of DSP

DSP was calculated in 7 individuals on lji semithin sections by
dividing numerical density of round spermatid nuclei (see 2.2.8) by a

time divisor of 8.9 days (Johnson et al. 1981). The correlation

coefficient between DSP/g obtained using both homogenization and

morphometric techniques was tested for significance.

2.2.12 Quantitation of spermatogenesis by enumeration of mature

spermatids

Mature spermatids (Scl, Sc2, Sdl, Sd2 in stages I, II, V & VI) were

counted in approximately 100 transverse seminiferous tubule cross

sections (20 slides x 5 cross sections/slide) per man. Seminiferous

tubules cut obliquely were not enumerated. Mature spermatid nuclei were

counted and the total number divided by the number of tubules in which

they were observed.
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2.3 DISTRIBUTION OF TESTOSTERONE IN THE HUMAN TESTIS

2.3.1 Whole testis testosterone

Testes were decapsulated and parenchymal weight determined. Six

blocks of tissue (approximately 0.5 g) were sampled at random to

determine whole testis testosterone. Each preweighed block of tissue

was stored at -20°C prior to extraction of testosterone.

2.3.2 Isolation of human seminiferous tubules

Seminiferous tubules from representative cranial, equatorial and

caudal regions were isolated from both right and left testes.

Seminiferous tubule dissections were carried out on a trans-illuminated

cooled stage through which ice-cold water was pumped continuously.

Attached to the stage was a transparent 1 mm squared grid. Small blocks

of testicular tissue, of approximately 1 g, were in turn placed in 5 cm

plastic Petri dishes containing ice-cold medium 199 containing Hank's

salts and 20 mM Hepes buffer (= ml99H, Flow Laboratories, UK).

Seminiferous tubules were teased apart with watchmakers forceps, and

isolated tubules of varying lengths, with no adherent connective tissue

or interstitial cells, were transferred to another Petri dish, again

containing ml99H. This medium was aspirated to leave only a covering on

the surface of the Petri dish. Individual seminiferous tubules were

aligned above the transparent grid and cut into segments of 0.5 cm. 20

x 0.5 cm aliquots of isolated seminiferous tubules were transferred to

glass tubes containing 300 yl distilled water to cause lysis of the
tissue, and stored at -20°C prior to extraction of tubule testosterone.

2.3.3 Extraction of whole testis and seminiferous tubule testosterone,

dihydrotestosterone and oestradiol on celite columns

(i) Whole testis

Tritiated testosterone (1,2,6,7-^H, 80-105 Ci/mmol, Amersham
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International PLC), dihydrotestosterone (1,2-^H (N), 55.5 Ci/mmol, New

England Nuclear) and oestradiol (2,4,6,7-^H, 100 Ci/mmol, Amersham

International PLC), each at approximately 4000 counts per minute (cpm)

in a volume of 100 js 1 were added to each preweighed testis block to
determine percentage recovery. Each testis block was homogenized and

centrifuged at 1500 x g for 10 min at 4°C. The resulting organic phase

was pipetted off and the residue extracted a second time with 2 ml

methanol. Both organic phases were pooled and dried down under

nitrogen. The residue was reconstituted in 0.5 ml iso-octane

(2,2,4-trimethylpentane).

(ii) Seminiferous tubules

After the addition of ^H-testosteorne , ^H-dihydrotestosterone

and ^H-oestradiol (each at 2000 cpm in 100jil) to monitor for
recovery, each aliquot of seminiferous tubules was sonicated for 30 sec

using an MSE Soniprep 150 (MSE Instruments Ltd., UK). The resulting

preparation was extracted with 3 ml diethyl ether and vortex mixed for

10 min. The aqueous phase was frozen in a solid C02~ethanol bath and

the organic phase dried down under nitrogen and reconstituted in 0.5 ml

iso-octane.

(iii) Preparation of celite columns

Celite 545 (Johns Manville Co., USA) was acid washed overnight with

concentrated hydrochloric acid, rinsed with tap water until it reached

neutral pH, and dried. Each time columns were prepared, celite was

activated at 300°C for 12 h. Activated celite was mixed with ethylene

glycol (1 g : 0.5 ml) and packed into glass columns. Each column was

flushed through twice with iso-octane prior to addition of the samples.

(iv) Elution of steroids on celite columns

Whole testis and seminiferous tubule extracts in 0.5 ml iso-octane
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were loaded onto individual celite columns and allowed to flow through

completely. Each column was then washed with 2.5 ml iso-octane and the

eluate discarded. The dihydrotestosterone fraction was eluted with 5 ml

iso-octane. Next the testosterone fraction was eluted with 5 ml 20%

benzene in iso-octane. Finally the oestradiol fraction was eluted with
/

6.5 ml 40% ethyl acetate iso-octane. Each fraction was dried down under

nitrogen and reconstituted in phosphate gelatin buffered saline (PGBS,

0.1 M). Extracts of whole testis and seminiferous tubule

dihydrotestosterone and oestradiol have as yet not been assayed, and

will not be discussed further. Each testosterone fraction was assayed

using an ■'-^I-testosterone assay.

2.3.4 Iodination of tracer for ^-25j_^-estoster0ne assay

2 ^ig testosterone-3 carboxymethyl oxime-histamine were iodinated
with 2 mCi Na-I-125 (Amersham International Ltd. , UK) using chloramine-T

(1 mg/ml). This reaction was stopped after 2 min by the addition of 10

jil sodium bisulphite (1 mg/ml) in 0.05 M phosphate buffered saline. The
products of this reaction were extracted twice with ethyl acetate and

separated by thin layer chromatography using a solvent mixture of

chloroform:methanol:glacial acid (90:10:1 by volume). Two bands of

iodinated material were obtained and the most active (lower) band was

eluted in ethanol and stored at 4°C for up to 2 months.

2.3.5 Testosterone standards

Standards were prepared from a solution containing 1 yg
testosterone in 1 ml ethanol. 640 ji 1 of this solution were evaporated
to dryness and the residue reconstituted in 100 ml PGBS to give a

concentration of 640 pg/100 jil. Dilutions of this stock solution were
made to produce standards ranging from 640-5 pg/100 yl. Results were
calculated from the standard curve run with each assay using a log-logit

transformation.
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2.3.6 125I-testosterone assay

Testosterone was assayed by a double-antibody radioimmunoassay

using 125i-labelled testosterone-3-carboxymethyl oxime-histamine as

tracer and an antiserum raised in the sheep against the same

testosterone conjugate (Sharpe & Bartlett, 1985). Testosterone samples,

standards and quality controls (100 yl in duplicate) were added to 500
jil PGBS, approximately 15,000 cpm 125x-labelled testosterone tracer
and 100 y.1 of a 1:350,000 dilution of the testosterone antiserum and
incubated at room temperature for 4 h. Following incubation, 100 jil of
a 1:1,000 dilution of normal sheep serum (Scottish Antibody Production

Unit) and 100 jil of a 1:25 dilution of goat anti-sheep precipitating
serum (Scottish Antibody Production Unit) were added and incubated for a

further 16 h at 4°C. Each tube was then centrifuged at 1500 x g for 30

min at 4°C, the supernatant decanted, and the precipitate counted in a

gamma counter (NE 1600, Nuclear Enterprises Ltd., U.K.). The results

were computed by a Commodore 4032 micro-computer (CBM Computers Ltd.,

U.K.) linked to the NE 1600. The inter- and intra-assay coefficients of

variation, calculated from quality controls run with each assay, were

12.3 + 3.1% and 8.2 + 3.0% respectively. The limits of detection of the

assay were 0.2 and 3.2 ng/ml.

2.3.7 Measurement of circulating hormones

(i) Testosterone

Tritiated testosterone, approximately 1000 cpm in a volume of 20

^il, was added to 100 jil plasma in duplicate. This was extracted with
1.5 ml redistilled hexane-diethyl ether (4:1). After vortex mixing for

5 min the aqueous phase was frozen in a solid C02-ethanol bath. The

organic phase was decanted, dried down under nitrogen and reconstituted

in 200 jil PGBS. 100 ul was assayed using the l^x-testosterone
radioimmunoassay (2.3.6) and 50 ul was used to determine percentage
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recovery of individual samples. Quality control plasma samples were

extracted and assayed in exactly the same manner.

(ii) LH and FSH

Human plasma LH and FSH were measured using a double antibody

radioimmunoassay (Hunter & Bennie, 1979), and the results expressed in

terms of WHO standards 68/40 and 78/549 respectively. Briefly, 100 jsl
sample, 150 jil 1% BSA/PBS and 50 ^il antiserum (LH: F87-2, 1:200,000,
from the Chelsea Hospital for Women; FSH: M93/2, 1:250,000 from Dr. S.

Lynch, Birmingham) were incubated for 24 h at 4°C. Following the

addition of 50 jil tracer (both from the Chelsea Hospital for Women, LH:
18,000 cpm/tube; FSH 15,000 cpm/tube) the asssay was incubated for a

further 24 h at 4°C before the addition of 100 jil donkey anti-rabbit
serum (Scottish Antibody Production Unit, 1:32) and 100 ^il normal immune
rabbit serum (Scottish Antibody Production Unit, 1:200). Following

incubation overnight at 4°C, 1 ml 0.9% saline was added to each tube and

centrifuged for 30 min at 1500 x g at 4°C. The supernatant was tipped

off and the remaining precipitate counted in an NE 1600 gamma counter.

The results were computed by a Commodore 4032 micro-computer linked to

the NE 1600.

(iii) Oestradiol

Oestradiol was extracted from 100 jil plasma with 1 ml diethyl
ether. After mixing for 30 sec the aqueous phase was frozen in a solid

C02~ethanol bath. The organic phase was decanted and dried down on a

heating block. To each extract 200 ^il antiserum (BW 26/9/80, Tenovus
Institute for Cancer Research, 1:4,500,000) and 200 jil tracer
(oestradiol-3-carboxymethyl ether-[-*-^^1]-iodo-histamine, 15,000

cpm/200 ^il) were added and incubated at room temperature for 2 h.
Following incubation, 500 ul 1.25% dextran-coated charcoal
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(Norit A charcoal, Sigma Ltd., UK; dextran T70, Pharmacia, UK) was

added and each tube allowed to incubate for 15 min on ice. Each tube

was then centrifuged for 10 min at 1500 x g at 4°C and the supernatant

decanted and counted in an NE 1600 and the results calculated using a

log spline curve fit. The intraassay coefficient of variation was^5%.
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2.4 LEYDIG CELL STUDIES IN VITRO

2.4.1 Patients

Testicular tissue was obtained from men aged between 57 and 85

years who were undergoing orchidectomy for prostatic carcinoma. No

patient had received any previous treatment, or had any known endocrine

disease or any chronic systemic illness known to affect Leydig cell

function.

2.4.2 Animals

Adult male Sprague Dawley rats (80-100 days), obtained from Charles

River Ltd., UK were housed under conventional conditions and killed by

dry ice-generated CO2.

2.4.3 Percoll gradients

Stock Percoll (Pharmacia, UK) was mixed with lOx medium 199 with

Hanks' salts (Flow Laboratories, UK) (9:1 v/v) to produce a solution of

90% Percoll with a density of 1.12 g/ml. This solution was diluted with

appropriate quantities of medium 199 containing Hanks' salts and 20 mM

Hepes buffer (= ml99H, Flow Laboratories, UK) to produce solutions of

Percoll with densities of 1.09, 1.07, 1.05 and 1.03 g/ml. Discontinuous

gradients of Percoll consisting of successive 10 ml layers of each of

the Percoll solutions, beginning with 1.09 g/ml and topped with 10 ml

ml99H alone were prepared and stored overnight at 4°C prior to use.

2.4.4 Preparation of human Leydig cells

Testes were weighed, decapsulated and cut into small pieces of

about 5 mm cubed. Approximately 5-8 g of tissue was then placed into 50

ml conical glass flasks and washed briefly with 25 ml medium 199

containing Hanks's salts and 20 mM Hepes buffer (= ml99H, Flow

Laboratories, UK). This medium was then decanted and replaced by 8 ml

ml99H containing 0.5 mg/ml collagenase (Type I; Sigma UK) and 2.5 mg/ml
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bovine serum albumin (BSA, Fraction V; Sigma, UK). The tissue was then

incubated in a shaking water bath (180 cycles/min) for 10 min at 32°C.

The contents of each flask were then transferred to measuring cylinders,

diluted with 40 ml ml99H and inverted 2 or 3 times. Undispersed tissue

and tubule fragments were then allowed to settle and the supernatant was

filtered through a double layer of gauze. The filtrate, containing

isolated cells was then centrifuged at 200 x g for 5 min at 4°C and the

precipitated cells resuspended in medium 199H containing 0.5 mg/ml BSA.

The cell suspension obtained from the paired testes of each subject was

then filtered once through gauze to remove cell aggregates before being

loaded onto a discontinuous gradient of Percoll (Pharmacia, UK). The

gradient was then centrifuged at 1800 x g for 20 min at 4°C. Three cell

bands were formed at the interface between the successive layers of

Percoll and these were termed band 1 (at the interface between 1.03 and

1.05), band 2 (between 1.05 and 1.07) and band 3 (between 1.07 and

1.09). The bands were aspirated, washed in ml99H containing 0.5 mg/ml

BSA and centrifuged at 250 x g for 5 min at 4°C. The precipitated cells

were then resuspended in equal volumes of ml99H containing 0.5 mg/ml BSA

and medium 199 containing Earles' salts, 0.5 mg/ml BSA, L-glutamine (2

mM: Flow Laboratories, UK), penicillin (100 IU/ml; Flow Laboratories,

UK) and streptomycin (100 jug/ml; Flow Laboratories, UK) (= ml99E).
Nucleated cells were then counted in a haemocytometer. In some

experiments all 3 cell bands were studied but, in the majority of

experiments, cells from bands 2 and 3 were combined prior to the final

washing step described above.

2.4.5 Preparation of rat Leydig cells

Rat Leydig cells were isolated using a technique essentially

identical to that described above for the preparation of human Leydig
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cells, but with the following modifications:-

1. 10 testes were used for each Leydig cell preparation.

2. Groups of 5 decapsulated testes were placed in 50 ml conical flasks

together with 8 ml ml99H containing 0.25 mg/ml collagenase plus 2.5

mg/ml BSA and incubated for 7 mins in a shaking water bath at 32°C.

3. Leydig cells were obtained from band 3 only.

2.4.6 Identification of Leydig cells

Leydig cells were identified histochemically by staining for

glass slides, air dried and fixed for 10 min in acetone. Fixed cells

were stained for 3^-HSD by incubating for 2 h at 32°C in a solution
consisting of 0.1 M Tris-HCl (13%), N,N-dimethylformamide (5.4%), sodium

cyanide (0.0003%) and anhydrous magnesium chloride (0.0004%) in

distilled water, to which was added nitro-blue tetrazolium (0.82 mg/ml),

dehydroepiandrosterone (0.27 mg/ml) and ^-nicotinamide adenine
dinucleotide (0.91 mg/ml). Following incubation the slides were rinsed

with tap water, dried and mounted in glycerine jelly. The percentage of

stained nucleated cells (Leydig cells) were determined by counting

random fields of at least 250 cells by light microscopy.

2.4.7 Leydig cell incubation

Aliquots of 0.05 x 10^ cells were incubated in a final volume of

0.25 ml ml99E in plastic multiwell dishes (Nunc, Denmark) at 32°C under

a humidified atmosphere of 95% air : 5% C02« Apart from triplicate

wells which contained no hormone additions to determine basal

testosterone production all other wells contained hCG (Chorulon,

Intervet) at various concentrations but always including a dose (20,000

mlU/ml) that represented a 100- to 1000-fold excess above that needed to

maximally stimulate testosterone production. All incubations were done

Cell smears were prepared on
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21°C in 63 x 11 mm polystyrene tubes in the presence of concentrations

of 125I-labelled hCG (NIAMDD hCG-CR121) ranging from 0.01 to 3.3 pM,

to enable construction of saturation curves. Non-specific binding was

determined by parallel incubation in the presence of a 1000-fold excess

of unlabelled hCG. The ^25l-labelled hCG was prepared using

lactoperoxidase and had a specific activity of 12 mCi/mg as determined

by self-displacement. Cell preparations from one human and one group of

five rats were compared in the same binding assay.
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2.5 INHIBIN BIOACTIVITY IN HUMAN TESTICULAR EXTRACTS

2.5.1 Patients

Testes were obtained from 21 men aged between 60-89 years (median

74) who were undergoing orchidectomy for prostatic carcinoma. Fifteen

patients received no previous treatment, while six men had received

radiotherapy 2-3 years before orchidectomy. No patient had any

endocrine disease or chronic illness known to affect testicular

function. Patients receiving endocrine therapy were excluded from the

study.

2.5.2 Preparation of testicular extracts

Testicular aqueous extracts were prepared from human, rat (adult

male Sprague Dawley), ram, boar (from the local abattoir) and marmoset

(adult from our own colony) as described previously by Au et al. (1983).

Briefly, testicular tissue of known weight was homogenized on ice in 1:1

(w/v) sterile Dulbecco's phosphate buffered saline (DPBS, pH 7.4)

containing penicillin (50 IU/ml) and streptomycin (50^ig/ml).
Homogenates were centrifuged at 100,000 x g for 1 h at 4°C and the

aqueous fraction aliquoted, snap frozen and stored at -20°C. Each

sample was passed through C18 Sep-Pak cartridges (Waters Associates,

Milford, MA, USA) to remove the steroids before bioassay.

2.5.3 In vitro inhibin bioassay

Inhibin was measured using a sheep pituitary cell bioassay as

described previously (Tsonis et al. 1986). Heads from ewe lambs aged

between 8-15 months were obtained from the local abattoir. Anterior

pituitary glands were removed, chopped into blocks of approximately 4

mnp and washed 6 to 8 times in DPBS containing 7.5 mM glucose/1 and

0.1% BSA. Pituitary blocks were placed in a 25 ml spinner flask with 10

ml 0.5% trypsin made up in DPBS + 0.1% BSA and stirred gently for 30
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min at 37°C. The trypsin solution was removed and replaced with 10 ml

Dulbecco's Modified Eagles's Medium (DMEM, Flow Laboratories, UK)

supplemented with 10% lamb serum (Flow Laboratories), 2.5% foetal bovine

serum (Flow Laboratories) 10 mM Na HCO3/I, 2 mM glutamine/1 (Sigma,

UK), penicillin (50 IU/ml) and streptomycin (50 ^ig/ml) and stirred
gently for 30 min at 37°C. The supplemented DMEM was removed and

replaced with 10 ml DPBS~ (Ca^+ and Mg2+ free) supplemented

with 2mM EDTA/1 and 0.1% BSA and stirred gently for 10 min at 37°C.

This medium was centrifuged at 500 x g for 10 min at room temperature

while the remaining tissue was washed 3-4 times with 10 ml DPBS and

dispersed using a series of 3 Pasteur pipettes of decreasing bore (5-2

mm) which were sterile, siliconized and flame treated. The dispersed

cells were made up to 20 ml with supplemented DMEM and centrifuged twice

at 500 x g for 10 min at room temperature, the pellet being resuspended

in 3-5 ml supplemented DMEM between spins. The precipitated cells were

added to those isolated during the first spin, diluted to 20 ml with

supplemented DMEM and counted in a haemocytometer. The average cell

yield per pituitary was 30-50 x 10^ cells. Pituitary cells were

diluted to a final concentration of 180,000-200,000/50 jil with
supplemented DMEM. 50 jil aliquots of cells were incubated in a final
volume of 600 jil supplemented DMEM in plastic multiwell dishes (Nunc,
Denmark) and cultured for 48 h in a humidified atmosphere of 95% air :

5% C02.

Following the initial 48 h culture period, the medium was aspirated

and replaced with either test sample, ovine rete testis fluid inhibin

standard (oRTF lU/mg, kindly donated by Dr. J.K. Findlay (see Eddie et

al. 1979), or ovine follicular fluid quality control (oFF; Tsonis et al.

1986) and cultured with anti-oestradiol and anti-progesterone serum

(Tsonis et al. 1986, 1987c) for a further 48 h. Both the oRTF inhibin
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standard and the oFF quality control were assayed in quadruplicate over

a five-fold dose range to establish an FSH-inhibition curve. Testicular

extracts were tested in duplicate at three dilutions using up to 50 jil/
culture well. Ovine FSH in the culture medium was assayed by a specific

y
double antibody radioimmunoassay using an NIH-oFSH-S14 standard as

described by McNeilly and colleagues (1976). FSH dose-response curves

were expressed as percent of control (no exposure to inhibin).

Regression analysis was performed to determine the slope, index of

precision (lamda) and significance of regression (Finney's g; Finney,

1964). Testicular extracts were compared to the oRTF standard and

relative potencies calculated for samples which showed no significant

departure from parallelism and linearity. The index of precision of the

bioassay was 0.055 and the sensitivity was 0.05 - 0.1 U/ml relative to

the oRTF standard.

2.5.4 Bioassay of pituitary cell mitogenic activity

Ovine pituitary cells were cultured for 48 h (2.5.3) after which

the culture medium was removed and replaced with medium containing

extracts of human, rat, ram, boar and marmoset testes. After a further

72 h of culture the medium was aspirated and the pituitary cells removed

from the culture plates by the use of trypsin DPBS- containing 0.2%

trypsin and 0.08% EDTA (250 |il) was added to each culture well for 20
min at room temperature. The trypsin was neutralized by the addition of

250 jil DPBS+ containing 0.1% BSA. The cells were lifted from the
culture plate by repeated, gentle aspiration using a Gilson pipette.

Cell number was counted using a haemocytometer.
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2.6 STATISTICS

As normal distribution of values could not be assumed, both

parametric and non-parametric (in parentheses) analyses were applied to

the results. Where appropriate analysis was by Student's t test (Mann-
y

Whitney test), simple regression (Spearman's rank order correlation

coefficient), multiple interactive regresssion and analysis of variance

(Kruskal-Wallis one way analysis of variance). In no case did the

significance of difference change according to which test was applied.

All results are expressed in terms of parametric analyses, significance

being determined by the t- statistic.
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CHAPTER 3

Relationship between Testosterone and Spermatogenesis

In the Senescent Huaan Testis
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3.1 Introduction

The function of the mammalian testis is two-fold. Firstly there is

the production of androgens by the Leydig cells under the influence of

LH. Secondly there is the production of the male gametes, the

spermatozoa, by the process of spermatogenesis. Maintenance of

spermatogenesis requires a specific hormonal milieu, and androgens have

become regarded as the essential hormones of this milieu (Desjardins et

al. 1973; Nieschlag et al. 1973). In the past it has been accepted

that high intratesticular levels of testosterone are an essential

prerequisite of spermatogenesis, and a number of studies have reported

the existence of paracrine factors which act to maintain high

intratesticular levels of testosterone (Sharpe, 1984, 1986). Indeed

declining levels of testosterone, as a result of a reduction in Leydig

cell number, has been proposed as the reason for impaired

spermatogenesis in elderly men (Neaves et al. 1984).

However a small number of observations have challenged this concept

that high intratesticular levels of testosterone are essential for the

production of spermatozoa. In hypophysectomized rats (Boccabella, 1963;

Buhl et al. 1982) and stalk-sectioned monkeys (Marshall et al. 1983),

the administration of exogenous testosterone resulting in

intratesticular levels of testosterone which are 10-20% of normal is

sufficient to maintain spermatogenesis, at least qualitatively. In

intact adult rats, following the peripheral administration of

testosterone proprionate which, by suppressing serum LH to undetectable

levels, reduces intratesticular testosterone levels to 20% of normal,

spermatogenesis is maintained quantitatively (Cunningham & Huckins,

1979). Similarly in rats made hypogonadotrophic by treatment with a

luteinizing hormone-releasing hormone antagonist, subcutaneous implants
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of testosterone maintained spermatogenesis quantitatively in the

presence of intratesticular levels of testosterone which are 15% of

normal (Rea et al. 1986). In this study, as in that by Cunningham &

Huckins, while the administration of exogenous testosterone suppresses

LH to undetectable levels, FSH is reduced only moderately. Thus it has

been suggested that in the presence of FSH, high intratesticular levels

of testosterone are not essential for spermatogenesis to proceed as

normal.

The present study attempted to investigate the relationship between

intratesticular levels of testosterone and spermatogenesis in the

senescent human testis. Testes obtained from a group of men who had

received orchidectomy as primary or secondary treatment for prostatic

carcinoma provided an ideal source of tissue with varying degrees of

hormonal and germ cell disruption.

3.2 (i) Daily sperm production

Daily sperm production (DSP) was quantitated as described

previously (see 2.2.10). Briefly this involved homogenizing

approximately 30-50 mg of fixed testicular tissue in 10 ml homogenizing

fluid. Spermatid nuclei were examined under phase contrast microscopy,

classified according to Figure 3.1 and enumerated.

DSP in 34 normal untreated males with prostatic carcinoma (60-90

years, median 75 years; 2.8 + 1.3 x 10^/g) was lower than that

reported for 28 healthy men aged between 20-48 years (6.0 + 2.1 x

106/g; Johnson, 1986), but similar to that reported for 28 men aged

between 50-90 years (3.8 + 1.6 x 10^/g; Johnson, 1986). No

significance was attached to the difference in DSP observed between the

young (20-48) and older (60-90) age groups as individual values for the

younger men were not available (Fig. 3.2). Despite the apparent
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FIGURE 3.1

Illustration from Johnson et al. (1981) of Leydig
cell, Sertoli cell and germ cell nuclei in human
testicular homogenates viewed by phase contrast
microscopy.
a) A typical Leydig cell nucleus with euchromatic
nucleoplasm and a single nucleolus.
b,c) Ovoid nuclei of Sertoli cells showing typical
folding of the nuclear envelope, abundant euchromatin
and a single nucleolus.
d-h) Spherical nuclei of spermatogonia with fine
nucleoplasm and multiple nucleoli.
i-1) Nuclei of primary spermatocytes with conspicuous
strands of chromatin and prominent single nucleoli,
m) A characteristic secondary spermatocyte nucleus
which is smaller than that of primary spermatocytes,
yet larger than those of round spermatids,
n-s) Spherical nuclei of Sa spermatids with
distinctive nucleoli and visible acrosomal caps,
t-w) Elongating nuclei of Sb spermatids with less
obvious acrosomal caps than Sa spermatids, but with
distinctive flagellar development.
x,y) Elongated nuclei of Sc spermatids with dark
staining nucleoplasm containing vacuoles.
z-d) Nuclei of Sd spermatids with condensed
nucleoplasm which appears highly retractile under
phase contrast.

Bar length = 7.7 |im
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FIGURE 3.2

Age related change in daily sperm production in 28
healthy men (28 - 48 years, from Johnson et al. 1981)
and in 34 men with prostatic carcinoma (60 - 90 years)
Values are mean ± SD. There was no significant
difference between daily sperm production in men from
60 - 90 years.
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decrease in DSP in the older men, a number of these men had DSP levels

within the range of the younger men. Furthermore, there was no

significant age related decrease in DSP between 60-90 years (Fig. 3.2).

(ii) Morphometric analysis of daily sperm production

In order to validate the homogenization approach to the

quantitation of DSP, morphometric analysis of this parameter was carried

out in 7 men (see 2.2.11). Parameters of round spermatic nuclei and DSP

are shown in Table 3.1. A highly significant correlation was observed

between estimates of DSP determined by enumeration of spermatid nuclei

in fixed testicular homogenates and by morphometric analysis (R = 0.97,

P<0.001, Fig. 3.3).

(iii) Quantitation of spermatogenesis by enumeration of mature

spermatids

Enumeration of mature spermatids (Scl, Sc2, Sdl, Sd2 in stages I,

II, V & VI) in 1 |i histological sections is a means by which testicular
biopsies can be evaluated. This technique was used to evaluate

spermatogenesis in 22 men and compared to DSP determined by counting

spermatid nuclei in testicular homogenates (Fig. 3.4). A high

correlation between the two techniques was found (R = 0.86, P<^0.001)

providing further validation for the homogenization approach to the

quantification of spermatogenesis in the human testis.

(iv) Systemic hormone levels and their relationship to daily sperm

production

In 21 patients who underwent orchidectomy as primary treatment for

prostatic carcinoma, blood samples were obtained prior to anaesthesia

and the endocrine status of these men compared to that of 100 healthy

young men aged 18-50 years (normal data by kind permission of F.C.W.

Wu). Plasma testosterone did not decline significantly as a function
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Table3.1.Testicularparenchymalweight,parametersofroundspermatidnucleianddaily spermproductionin7menbasedonmorphometricanalysis Patients

1

2

3

4

5

6

7

Parenchymalwt(g)

7.7

17.1

24.4

17.1

29.5

20.2

15.6

Roundspermatidnucleardiam(ji)
7.4

7.3

7.5

6.9

7.2

7.2

6.8

Roundspermatidnumber/g(x10)̂
9.5

18.0

15.9

45.0

28.4

38.2

25.7

Dailyspermproduction/g(x10)̂
1.1

3.1

1.8

5.1

3.2

4.3

2.9



R = 0.97

1 2 3 4 5

DSP (homogenization) x 10 6 /g

FIGURE 3.3

Correlation between estimates of daily sperm

production (DSP) in 7 men derived by enumeration
of spermatid nuclei in homogenates of
glutaraldehyde-fixed human testes and by
morphometric analysis (R = 0.97, PC0.001).
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Daily sperm production ( x 10 6 / g )

FIGURE 3.4

Correlation between the number of mature spermatids per
tubule cross section and daily sperm production in 22
patients (R = 0.86, P<0.001).
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of age (Fig. 3.5). Although the mean testosterone level of 6.0 + 1.2 in

the 18-50 age group was greater than that in each of the older age

groups (60-70, 3.1+1.3; 71-80, 3.5+2.2; 81-90, 2.5+1.0), this

was not statistically significant.
/'

LH was significantly elevated in the 60-70 (12.0 + 5.4), 71-80 (9.5

+ 7.5) and 81-90 (12.3 + 3.9) age groups compared to the 18-50 group

(5.6 + 1.8) (P^O.001). LH did not however rise significantly between

60 and 90 years. Similarly, FSH was significantly increased at each of

the older age groups (13.7+ 9.6, 8.9 + 7.1, 6.5 + 3.4) compared to the

18-50 group (3.2 + 1.5) (P<£^0.001), but did not increase as a function

of age between 60-90 years.

The distribution of circulating testosterone, LH and FSH in these

patients, who were divided into those with normal levels of FSH (n=14)

and those with high FSH (n=7), plus a further 7 patients who had

received radiation treatment prior to orchidectomy, was observed (Fig.

3.6). Significant correlations were observed between plasma

testosterone and LH (R = -0.47, P<^0.05) and between LH and FSH (R =

0.73, P<^0.001).
Levels of spermatogenesis were also correlated to circulating

hormone levels in each of the different patient groups (Fig. 3.7). DSP

was reduced in the high FSH and radiation treated groups and this was

reflected in the significant negative correlations observed between DSP

and both FSH (R = -0.74, P<^0.001) and LH (R = -0.57, P<^0.01). A weak

positive correlation which just reached significance (R = 0.40, P<0.05)

was also observed between DSP and the wide range of circulating levels

of testosterone.
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Age related change in circulating levels of
testosterone, LH and FSH. Data was obtained from
100 healthy men (18 - 50 years), and from 21 men
with prostatic carcinoma (60 - 90 years). While
circulating testosterone was not significantly
different between any of the age groups, both LH
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Correlation between daily sperm production (DSP) and
circulating levels of testosterone (R = 0.40, PC0.05),
LH (R = -0.57, P<0.01) and FSH (R = -0.74, P<0.001).
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(v) Intratesticular testosterone levels and their relationship to daily

sperm production

Figure 3.8 shows the distribution of DSP in relation to circulating

and intratesticular hormone levels in four groups of patients. As in

the previous graph, three of these groups comprised of 21 untreated or

radiotherapy treated patients, with an additional group of 9 men who had

been treated with diethylstilboestrol (DES) up to the time of

orchidectomy. Despite the wide variation in DSP, gonadotrophins, and

circulating levels of testosterone in all four groups, excluding the DES

treated men, there was no apparent change in testicular levels of

testosterone, either in the whole testis or in the seminiferous tubules.

Interestingly, despite the very low levels of both circulating and

intratesticular testosterone levels in the DES treated group,

spermatogenesis in these men was not completely arrested with DSP levels

of 0.5 + 0.4 x 106/g.

Surprisingly when DSP was correlated to testicular levels of

testosterone in 39 individuals, high levels of intratesticular

testosterone were associated with low levels of DSP (Fig. 3.9).

(vi) Leydig cell number, intratesticular testosterone and daily sperm

production

Total Leydig cell number was determined in 14 patients in the

untreated group. While there was a wide variation in total Leydig cell

number, no correlation was observed between daily sperm production and

testicular or tubular testosterone (Fig. 3.10).

(vii) Re-evaluation of intratesticular levels of testosterone

In assessing post-isolation changes in intratesticular testosterone

following orchidectomy, some patients showed a significant increase in

testosterone levels at each of the time intervals, while others showed
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a significant decline (Fig. 3.11). However no overall significant

difference existed when testosterone levels from 6 patients were

expressed as mean + SD of percentage of initial levels.

3.3 Discussion

With the uncertainty as to the level of testosterone required to

maintain spermatogenesis, this study set out to determine whether

declining levels of spermatogenesis in elderly men were associated with

reduced intratesticular levels of testosterone. Methods first described

to quantitate intratesticular distribution of testosterone in the rat

(Sharpe & Bartlett, 1985) (see 2.3), and a new approach to quantitate

spermatogenesis in the human testis (Johnson et al. 1981) were adopted

in these studies. This novel approach to the quantitation of

spermatogenesis involves homogenizing small (approximately 10-50 mg)

pieces of fixed testicular tissue and then enumerating spermatid number

under phase contrast microscopy (see 2.2.10). Spermatogenesis

quantitated by this method is expressed as daily sperm production (DSP).

This technique was validated by a classical morphometric technique (see

2.2.11), and a high degree of correlation was observed between DSP

determined by each of the two methods.

Testicular biopsy has for over 40 years been used to differentiate

between obstructive and non-obstructive azoospermia, and also as a tool

to assess spermatogenic disruption in cases of oligospermia. While

microscopic observation of the histologic features provides much

information, the need for quantitative analysis of testicular biopsies

has long been realized. In 1981 Silber & Rodriguez-Rigau described a

simple method for quantitating testicular biopsies by counting easily

recognizable darkly staining mature spermatids in stages I, II, V and VI.
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FIGURE 3.11

Changes in intratesticular testosterone following
orchidectomy. Time intervals 1-7 represent tissue
obtained during orchidectomy (1), and at 5 min (2),
lh (3), 2h (4), 3h (5), 4h (6) and 12h (7) after
orchidectomy. Some patients showed a significant
increase in intratesticular levels of testosterone

(top) at each of the intervals following orchidectomy,
while others showed a significant decline (middle). Each
value is the mean ± SD of three testicular samples
obtained at the same time from different areas of the

same testis. No overall significant difference existed
when testosterone levels from 6 patients were expressed
as mean ± SD of percentage of initial levels (bottom).
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Except in cases of obstruction, the results obtained by this method have

been shown to correlate well with sperm in the ejaculate. In the

absence of proper validation of this technique, in the present study DSP

was correlated to mature sperm number in histological sections in 22

men, and a high degree of concordance was observed between the two.

Comparing both techniques for the quantification of spermatogenesis, the

homogenization approach is much more simple and the results are

available much faster. While the homogenization technique requires the

use of a specific homogenizer (VirTis 23 macrohomogenizer) and also a

phase contrast microscope, it is possible that the adoption of this

approach in the clinical situation would provide a convenient method to

quantitatively assess testicular biopsies without laborious histological

preparation.

While circulating levels of testosterone were on the whole reduced

in this group of men, this was not a significant function of age.

Indeed as has been reported previously (Harman & Tsitouras) a number of

these men into their 7th, 8th and 9th decades had circulating levels of

testosterone which were in the range of normal young men. Plasma levels

of both LH and FSH were significantly increased in these men compared to

younger men, although neither LH nor FSH appeared to increase as a

function of age between 60-90 years. The highest serum levels of LH

and, in particular, FSH have been shown to occur in men with the lowest

levels of DSP.

Declining levels of spermatogenesis in elderly men have been

attributed to reduced numbers of Leydig cells resulting in inadequate

levels of intratesticular testosterone (Neaves et al. 1984). Contrary

to this, the results of the present study indicate high intratesticular

levels of testosterone in men with low levels of DSP. Interestingly,
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high intratesticular levels of testosterone are not reflected in the

peripheral circulation in these men, in whom circulating testosterone

was low to normal. Therefore despite the capacity of the Leydig cells

to produce testosterone, this did not appear to gain entry to the

circulation. Testosterone from the interstitial tissue must pass

through the walls of the testicular capillaries in order to enter the

peripheral circulation. Unlike capillaries in other endocrine tissues,

testicular capillaries are unfenestrated, yet despite this, transport

though the capillary wall is thought to be passive (Setchell et al.

1978b). A frequent observation in the testes of old men is the

thickened peritubular tissue surrounding the seminiferous tubules, and

indeed of fibrosis of the testicular tissue to a greater or lesser

extent. While there are no reports of this in the literature,

thickening of the vasculature may provide a barrier to the passive

diffusion of testosterone from the interstitial tissue to the

circulation.

Increased testicular levels of testosterone in these men may be as

a result of Leydig cell stimulation by elevated levels of LH. In rats

the administration of hCG results in Leydig cell hypertrophy and

hyperplasia (Christensen & Peacock, 1980). The physiological

implications of this for the present study are such that chronically

elevated LH may induce an increase in Leydig cell number and/or volume

which would enable the Leydig cell population to produce excessive

amounts of testosterone. However evidence of Leydig cell hyperplasia

was not observed in this study, pointing against a compensatory

mechanism of elevated LH.

In order that increased intratesticular levels of testosterone

associated with suppressed spermatogenesis were not merely a reflection
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of decreased testicular volume, and hence elevated Leydig cell number

per gram of tissue, Leydig cell number was determined in 14 patients who

had not received any treatment prior to orchidectomy. While there was a

wide spread in Leydig cell number, no direct relationship was found

between Leydig cell number and DSP or intratesticular measures of

testosterone, confirming the results of Neaves and colleagues (1987).

High intratesticular levels of testosterone could therefore be the

result of a block in the steroidogenic pathway in these men. Under

normal circumstances, intratesticular testosterone is convered to

dihydrotestosterone by 5bCrreductase, and to oestradiol by aromatase.

A block in this pathway could result in accumulating levels of

biologically inactive testosterone.

These studies therefore appear to support increasing evidence in

the rat that high intratesticular levels of testosterone may not be

essential in the maintenance of spermatogenesis (Cunningham & Huckins,

1979; Rea et al. 1986). Such studies are however completely dependent

on the accurate measurement of intratesticular levels of testosterone,

and doubts about the accuracy of current techniques have emerged

recently. In a study by Maddocks and colleagues (1986), in which

push-pull canulae were used to collect interstitial fluid from

anaesthetized rats, the levels of testosterone measured in this fluid

were much lower than those reported previously. These results have

raised the possibility that conventional techniques to isolate the

testes prior to testosterone measurement may yield spuriously high

testosterone levels due to post-isolation synthesis of this steroid

(Sharpe, 1987). Indeed by comparing testosterone levels in right and

left testes from the same rat isolated in different ways, post-isolation

synthesis of testosterone was significant, and on average resulted in a
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75% overestimate of testosterone levels (Sharpe et al. 1987).

Attempts were made to determine post-isolation synthesis of

testosterone in human testes. Biopsies were obtained during operation

prior to orchidectomy and placed immediately in liquid nitrogen.

Following orchidectomy testes were placed on ice and samples obtained at

various time intervals afterwards were also snap frozen in liquid

nitrogen. While post-isolation synthesis of testosterone was

significant in some cases, in others testosterone levels fell following

orchidectomy. This difference could possibly reflect differing

functional capacity of the Leydig cells in different men, such that

those with healthy Leydig cells would continue to produce testosterone

following isolation, while less healthy Leydig cells would not. Overall

there was no significant effect of post-isolation synthesis of

testosterone. Therefore the effect of this on the results of the

present study are unclear.

In conclusion, the response of the human testis to ageing is highly

variable. While age is a significant correlate of DSP, Leydig cell

number, testosterone and gonadotrophin levels, its predictive value for

individuals is weak. The lack of any significant relationship between

Leydig cell number and testosterone in the decline of DSP suggests that

more significant overriding relationships must exist. Indeed the

importance of high intratesticular levels of testosterone in the

maintenance of spermatogenesis in both rat and man is now being

questioned (Rommerts, 1987), and it must be considered that in both

species the Leydig cells may produce testosterone in excess of that

required to maintain spermatogenesis.
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CHAPTER 4

Isolation of Hunan Leydig Cells and Analysis

of their Function In vitro
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4.1 Introduction

The effects of LH and human chorionic gonadotrophin (hCG) on rat

Leydig cell LH/hCG receptor number and steroidogenesis in vitro have

been widely investigated (Catt et al. 1980). The limited information

available from in vitro studies in the human has suggested that human

Leydig cells may be inherently less responsive to hCG than are rat

Leydig cells (Huhtaniemi et al. 1982). Furthermore, the response of the

human testis to hCG in vivo is characterized by a rapid but modest

(20-60%) increase in serum levels of testosterone within 6 h of

intramuscular injection (Saez & Forest, 1979; Martikainen et al. 1980;

Padron et al. 1980). In contrast, in the rat, serum testosterone levels

are increased by 10- to 20-fold over the same time period after hCG

injection (Hsueh et al. 1976; Chasalow et al. 1979). This difference,

which has not yet been explained satisfactorily, has led to the belief

that the function of human Leydig cells may be very different from that

in the rat.

The different approaches employed to study Leydig cell function in

vitro, in both the rat and man, has made it difficult to compare results

between the two species. The introduction of density centrifugation

techniques has permitted the isolation of rat Leydig cell populations

which are highly responsive to hCG (Sharpe & Fraser, 1983). In the

present study, such techniques were used to develop a procedure for the

isolation of human Leydig cells. Testicular tissue was obtained from

ten men aged between 57-85 years who were undergoing orchidectomy for

prostatic carcinoma. Leydig cells were isolated as described in Section

2.4, and compared to rat Leydig cells in terms of fractionation

characteristics, cell yield and responsiveness to hCG in vitro.
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4.2 (i) Pattern of Leydig cell fractionation on gradients of Percoll

When loaded onto discontinuous Percoll gradients, both rat and

human testicular cells fractionated into three bands, corresponding to

the interfaces between successive layers of Percoll of different

densities (Fig. 4.1). In the human, band 1 occurred at the interface

between 1.03 and 1.05 and was the most intense cell band as 95-97% of

the added cells migrated to this band. Band 2 occurred at the interface

between 1.05 and 1.07 and 2-4% of cells migrated to this band. Band 3

occurred at the interface between 1.07 and 1.09 and only 0.7-1.5% of

cells migrated to this band. In the rat, although cell bands 1-3 formed

in exactly the same positions as in the human, a different fractionation

pattern of the added testicular cells was observed with 58-65% migrating

to band 1, 29-33% to band 2 and 6-9% to band 3.

In both the human and the rat band 1 contained 12-28% Leydig cells

as determined by 3J3-HSD staining, and 77-95% (human) and 38-46% (rat) of
all Leydig cells were retained in this band. In the human, band 2 cells

showed the highest percentage of 3J5-HSD positive cells (48-70%) with
4-18% of all Leydig cells being retained in this band. In the rat only

30-45% of band 2 cells stained positively for 3J3-HSD and 37-40% of all
Leydig cells were retained in this band. Band 3 was particularly

enriched in Leydig cells (75-90%) in the rat with 15-22% of all Leydig

cells migrating to this band while in the human 30-56% of band 3 cells

stained positively for 3J3-HSD and only 1-6% of all Leydig cells migrated
to this band.

After 20 h incubation, band 1 cells from both the rat and man

showed only a 1.5- to 2.5-fold response to hCG and made very low amounts

of testostrone (Fig. 4.1). In the rat, Leydig cells from band 3 always

secreted more testosterone and were more responsive to hCG (8.5-fold
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Left hand panel - Schematic representation of the pattern of
fractionation of rat and human testicular cells on discontinuous

gradients of Percoll using successive layers of Percoll of density
1.09, 1.07, 1.05, 1.03 and 1.0 g/ml. Right hand panel - Basal and
maximal hCG (20 IU / ml) - stimulated testosterone production (ng/10®
3J5-HSD positive cells per 20h) for representative rat and human
testicular cells obtained from cell bands 1-3. Values are mean ± SD

of triplicate incubations.
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stimulation) than were cells from band 2 but in the human, cells from

bands 2 and 3 were generally comparable, both in terms of the amounts of

testosterone secreted and the magnitude of their response (4.5- to

13-fold) to hCG (Fig. 4.1 and Table 4.1). In view of this finding

coupled with the high yield of Leydig cells in band 2, for most

subsequent studies human Leydig cells from bands 2 and 3 were combined,

(ii) Leydig cell yield

For the six subjects from whom Leydig cells were prepared the total

yield of 3J5-HSD positive cells for bands 1, 2 and 3 were 10.6-16.6,
0.7-5.7 and 0.3-1.9 x 10^, respectively, while the total Leydig cell

yield (i.e. bands 1,2 & 3) ranged from 11.6 - 24.2 x 10^. From

morphometric studies (Neaves et al. 1984) aged human testes contain

approximately 200 x 10^ Leydig cells which means that in the current

studies approximately 6-12% of the total number of Leydig cells were

isolated, while the number of highly responsive Leydig cells (i.e. bands

2 & 3) constituted only 0.5-4% of the total number present in the

testes. These values differ somewhat from those obtained for the rat in

that 10.6-22.1, 11.2-19.0 and 6.3-7.2 x 10^ Leydig cells were isolated

in bands 1, 2 and 3 respectively, from a total of 10 testes in several

experiments. As adult rat testes contain approximately 45 x 10^

Leydig cells (Mori & Christensen, 1980) this means that 6.2-10.7% of all

Leydig cells are recovered on the Percoll gradient with the highly

responsive cells (i.e. those in band 3) constituting 1.4-1.6% of the

total present in the testes.

In two experiments an attempt was made to increase Leydig cell

yield further by re-digesting testicular tissue with collagenase after

the initial isolation procedure. Cells from this second dispersion

fractionated identically to those from the first dispersion although the
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Table4.1BasalandhCG(20IU/ml)-stimulatedtestosteroneproduction byPercoll-purifiedhumanLeydigcellsobtainedfromcellbands2and3. IncubationadditionsTestosteronesecretion(ng/10^3^-HSDpositivecells/20h) Band2Band3P
Basal234+6246+12N.S. hCG1342+981066+110N.S. Basal136+14182+7P<0.02 hCG642+52875+46P<0.02 Basal81+3101+38N.S. hCG1052+1071008+39N.S.

Valuesarethemean+S.D.oftriplicateincubations,usingcellsprepared from3differentmen. Pvaluesrefertocomparisonofrespectivevaluesforbands2and3.



total number of Leydig cells obtained in bands 2 and 3 was only 40-50%

of that obtained in the first dispersion. Somewhat surprisingly, both

band 2 and 3 Leydig cells from the second dispersion produced

significantly more testosterone than did cells from the first

dispersion, and this was equally evident under both basal and

hCG-stimulated conditions (Table 4.2).

(iii) Variation in Leydig cell responsiveness between men and its

relationship to hormone levels and testicular morphology

Basal testosterone production and the maximal response to hCG was

determined for Percoll-purified Leydig cells from a total of 10 men.

The percentage of 3p-HSD positive cells was determined for only 6 of
these men and the results are shown in Table 4.3; for the remaining 4

men the magnitude of the Leydig cell response to hCG was similar to that

shown in Table 4.3 except that in 3 of the 4 men the amounts of

testosterone produced per 10^ nucleated cells was low as shown for

patient 1.

At 5 h basal testosterone values ranged from 6-63 ng/10^ 3^-HSD
positive cells, and by 20 h this parameter was increased to reach 44-234

ng/10^ 3JB-HSD positive cells, values which were comparable to those
obtained for Leydig cells from young adult rats (Table 4.3).

At 5 h human Leydig cells responded to hCG by increasing

testosterone production between 4- and 12-fold. The response to hCG at

20 h varied from 5- to 17-fold (Table 4.3). This range and the absolute

amounts of testosterone produced (up to 1342 ng/10^ 3^-HSD positive
cells) were in general very similar to the values found for rats (up to

1463 ng/10^ 3j3-HSD positive cells), although patient 1 (basal value =
44 ng, hCG stimulated = 171 ng) had clearly lower testosterone responses

in vitro. As mentioned above, low testosterone values (basal = 4-12
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Table4.2BasalandhCG(20IU/ml)-stimulatedtestosteroneproduction(ng/10^3^-HSDpositivecellsper20h) bycellbands2and3fromPercollgradients.Resultsareshownfortwomenusingcellsobtained fromtwosuccessivecollagenasedispersions. Percoll

Patientcellband

BasalConditions
Dispersion1

Dispersion2

hCG-stimulated
Dispersion1

Dispersion2

2 3

81+3
101+38

130+7*** 192+11*

1052+107 1009+39

1998+260** 1645+78**

2 3

135+1 71+8

109+9** 356+26***

984+64 581+79

620+7*** 1891+137***

Valuesarethemean+S.D.oftriplicatemeasurements.
*P<0.02;**P<;o.01;***<0.001,incomparisonwithrespectivevaluesfordispersion1.



Table4.3SummaryofbasalandhCG(20IU/ml)-stimulatedtestosteroneproductionbyPercoll-purifiedhuman Leydigcells(bands2+3)from6meninrelationtoage,meantestisweightandtheplasmaT,LHandFSHlevels. PlasmahormonelevelTestosteroneproduction
PatientTestisAgeTLHFSH5hincubation20hincubation no.wt.BasalhCGBasalhCG (g)(yr)(ng/ml)(mlU/ml)(mlU/ml)(ng/10^3j$-HSDpositivecells)

1

17.5

76

2.1

11.0

14.0

6

+

1

45

+

6

44+

0

171

+

8

2

15.4.

73

2.5

10.4

5.3

63

+

15

361

+

62

103+

36

782

+

230

3

17.0

79

5.5

3.9

12.1

28

+

3

346

+

35

90+

26

1028

+

83

4

15.7

71

2.3

3.7

3.6

-

-

234+

10

1342

+

170

5

33.3

68

2.5

15.6

10.6

-

-

80+

9

1330

+

181

6

27.5

77

-

-

-

-

-

160+

27

764

+

135

Valuesfortestosteroneproductionarethemean+S.D.oftriplicateincubations.Atboth5and20hinall men,hCG-stimulatedtestosteroneproductionwassignificantlyincreased(P^O.OOl)abovebasalvalues. Forreferencepurposes,valuesobtainedat20hfor6successivepreparationsofPercoll-purifiedLeydigcellsfrom theratgavethefollowingvalues(mean+S.D.)—Basal139+52(range86-235),hCG1036+329(range698- 1463).



ng/lO^ nucleated cells; hCG = 24-42 ng/10^ nucleated cells) were

also found at 20 h in 3 other men for whom the percentage of Leydig

cells was not determined. Men with poorly responsive Leydig cells in

vitro could not be distinguished from those whose Leydig cells made

large amounts of testosterone on the basis of age, testicular weight or

the plasma levels of LH, FSH or testosterone (Table 4.3).

Testicular morphology was examined in all patients in order to

ascertain whether the differences between men in the capacity of their

Leydig cells to make testosterone in vitro could be related in any way

to morphological criteria. In all patients testicular morphology showed

the Leydig cell population to be heterogenous with small and large

Leydig cell clusters consisting of either pale or darkly staining cells

or a mixture of both. Although it is emphasised that no quantitative

measurements were made on these sections, it appeared that highly

responsive Leydig cell preparations were isolated from testes which

showed clusters of light and darkly staining Leydig cells (Fig. 4.2).

In contrast to this, unresponsive preparations were isolated from testes

which appeared to have low numbers of darkly staining cells which

contained large accumulations of lipid (Fig. 4.2).

(iv) Dose response to hCG and Leydig cell hCG-receptors

The sensitivity of human Leydig cells to hCG was assessed from

detailed dose response curves (Fig. 4.3). That shown for rat Leydig

cells is typical of that found routinely in our laboratory and showed

that the dose response curve covered doses of hCG ranging from 0.03 to

0.5 mU/ml; addition of higher concentrations of hCG did not alter the

maximum response. In contrast, for three representative does response

curves from human Leydig cells there was a large shift to the right.

Thus, the dose-response to hCG covered the range 0.4 to 100 mU/ml,
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FIGURE 4.2

Representative light micrographs of Leydig cells which were highly
responsive (top) and less responsive (middle and bottom) to hCG.
Highly responsive Leydig cells were isolated from testes which
contained a mixture of dark and pale staining Leydig cells. Less
responsive Leydig cells were isolated from testes which contained a
higher proportion of pale staining cells and any dark staining cells,
when present, exhibited large lipid accumulations. Magnification x
650.
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FIGURE 4.3

Comparison of the dose response curves to hCG for Percoll -
purified rat and human Leydig cells. Values were obtained from a

representative rat Leydig cell preparation (Q) and from three human
Leydig cell preparations which showed 17-fold (■ ), 13-fold (0) or
6-fold (□) responses to maximally stimulating levels of hCG. As the
maximal testosterone responses for these cell preparations differed,
each dose response to hCG has been expressed as a percentage of the
maximal response i.e. to 20 IU hCG/ml. The latter values, expressed as

ng/10® 3B-HSD positive cells, are shown in parentheses. Inset shows
the full dose response curve for the most responsive human Leydig cell
preparation. Each point is the mean ± SD of triplicate incubations.
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indicating a 10- to 100-fold reduction in sensitivity compared to rat

Leydig cells (Fig. 4.3).

In view of this difference in sensitivity, the number and affinity

of Leydig cell LH (hCG)-receptors was assessed from Scatchard analysis y

of 125-hCQ binding. From this study, purified human Leydig cells

contained approximately 5-fold fewer LH (HCG)-receptors than did

purified rat Leydig cells, while the affinity of receptors (Kd~"

1CT10M) was comparable for both cell preparations (Fig. 4.4).

4.3 Discussion

In this study a method for the isolation of highly responsive human

Leydig cells was established. In terms of testosterone output and

responsiveness to hCG, human Leydig cells were in general comparable to

those of the rat, suggesting that the function of human Leydig cells may

be more similar to those of the rat than has been thought previously.

Leydig cells from both the human and the rat separated into three

bands when run on discontinuous Percoll gradients. In both species,

band 1 contained 12-28% Leydig cells as identified by 3p-HSD staining,
but whilst band 3 was the most Leydig cell-enriched fraction in rat cell

preparations (75-90% Leydig cells), in the human band 2 (48-70% Leydig

cells) was consistently more Leydig cell-enriched than was band 3

(30-56% Leydig cells). However, in contrast to the rat, human Leydig

cells from bands 2 and 3 were very similar in terms of their response to

hCG and the amount of testosterone secreted per 10^ Leydig cells. The

reason for the difference in separation characteristics of rat and human

Leydig cells is not known, but may be due to differences in cytoplasmic

content of lipid or organelles. Human Leydig cells usually contain

large numbers of lipid droplets (Christensen, 1975), whereas normal

adult rat Leydig cells rarely contain such inclusions (Clegg, 1961).
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Left hand panel - Specific binding of ^^I-hCG to human and rat
Leydig cells with increasing concentrations of l^I-hCG. Right hand
panel - Scatchard plot of the same data.
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The presence of lipid droplets would be expected to decrease the buoyant

density of Leydig cells with the result that they would fractionate

higher up the gradient during separation on Percoll. Repeated attempts

to examine the morphology of the 3 bands obtained following Percoll

separation of human testicular cells were however unsuccessful.

With the exception of their somewhat different pattern of

fractionation on Percoll, human Leydig cells were in most instances very

similar to those from the rat, both in terms of the amount of

testosterone produced per 10^ cells and in terms of the magnitude of

their response to hCG. This finding contrasts with what has been

generally accepted until now, namely that human Leydig cells are poorly

responsive in vitro and in vivo when compared to the rat (Saez & Forest,

1979; Smals et al. 1979; Martikainen et al. 1980; Nankin et al. 1980;

Padron et al. 1980; Huhtaniemi et al. 1982). Previous studies in vitro

have generally used either testis pieces (Nieschlag et al. 1979) or

crude cell preparations, the latter being prepared using higher

concentrations of collagenase and longer dispersion periods, both of

which will severely reduce the responsiveness of rat Leydig cells (R.M.

Sharpe, personal communication). It is therefore likely that the

combination of gentler preparative conditions coupled with Leydig cell

purification account for the differences between the present and

previous findings. There remains the possibility that human Leydig

cells from bands 2 and 3 after Percoll separation represent a selected

sub-population of highly responsive cells, and indeed the same may be

true for rat Leydig cells isolated on Percoll. The obvious

heterogeneity of Leydig cells in fixed tissue from human testes (see

Fig. 4.2 and below) could be taken as evidence in favour of this

possibility, although this would fail to explain why some of the
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purified Leydig cell preparations from patients in our study made small

amounts of testosterone despite fractionating identically to highly

responsive cell preparations. This variation could not be linked to any

of the systemic endocrine parameters or to testicular weight, confirming

the findings of Huhtaniemi et al. (1982) and Nieschlag et al. (1979).

However, qualitative morphological assessment of fixed tissue suggested

that there may have been inherent differences in the Leydig cells, such

that poorly responsive cell preparations derived from testes in which

the ratio of darkly staining to lightly staining Leydig cells was low in

comparison to testes generating highly responsive Leydig cells (see Fig.

4.2). These 'dark' and 'pale' Leydig cells are a well-recognized

phenomenon in the human testis, and Christensen and Gillim (1969) have

suggested that the different staining intensities represent artifacts

resulting from immersion fixation. A more recent study (Schulze, 1984)

suggests that this is not the case, since dark and pale Leydig cells

were observed also in perfusion-fixed human testes. Detailed morphology

of the cells in bands 2 and 3 will be required to determine whether the

dark and pale cells predominate in particular bands, and whether there

is any difference in steroidogenic capacity between the two cell types.

In fixed tissue, morphometric studies will be necessary to confirm the

impression that there may be a relationship between the relative number

of dark or pale Leydig cells and the subsequent steroidogenic capacity

of purified Leydig cells in vitro.

Although the magnitude of response to hCG of most human Leydig cell

preparations was comparable to that for the rat, human Leydig cells were

10- to 100-fold less sensitive to hCG stimulation. This difference in

sensitivity may have been due to the 80% fewer LH-receptors on human, as

opposed to rat Leydig cells. These results are comparable to findings
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of previous studies using testicular homogenates (Huhtaniemi et al.

1982), or isolated human Leydig cells (Davies et al. 1979), and lessens

the possibility that this difference results from the artifactual

removal of LH-receptors during collagenase digestion, an event known to

occur during the isolation of human luteal cells (Bramley et al. 1985).

In this respect Huhtaniemi et al. (1982) reported that prolonged (30

min) collagenase dispersion of human testicular tissue had no

significant effect on LH-receptor number.

The testes used in this, and most previous studies, were obtained

from ageing men who generally have raised serum levels of LH (Harman &

Tsitouras, 1980; Takahashi et al. 1983). This might account for the

decreased LH-receptor number, as it is well established that in both

rats (Catt et al. 1980) and men (Sharpe et al. 1980), systemic

administration of LH or hCG will lead to the down-regulation of Leydig

cell LH-receptors. The latter change is not usually associated with any

diminution of the testosterone response to excess LH or hCG in vitro but

does result in a clear shift to the right of the dose response curve to

hCG (Catt et al., 1980; Sharpe & McNeilly, 1980), a change also evident

in the present studies. Contrary to this reasoning, in a study by

Leinonen et al. (1982) no correlation was found between serum LH levels

and the number of LH binding sites in testes obtained from men with

prostatic carcinoma. In addition, our limited number of dose response

curves to hCG would not support such a relationship, as the least

sensitive human Leydig cell preparation (Patient 1, Fig. 4.3) derived

from a patient with normal serum levels of LH (Table 4.3).

The response of both the human and rat testis to hCG in vivo is

characterized by a biphasic increase in testosterone production (Hsueh

et al. 1976; Chasalow et al. 1979; Saez & Forest, 1979; Smals et al.
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1979; Martikainen et al. 1980; Padron et al. 1980). Testosterone

levels reach a peak within a few hours of intramuscular injection of hCG

after which they return to normal prior to the delayed response 2-3 days

later. The delayed response is of the same magnitude in both man and

the rat (2- to 3-fold increase), and is thought to be due to hCG-induced

hypertrophy and hyperplasia of the Leydig cells. The acute response

however, seen within 6 h of hCG administration, differs greatly between

man and the rat. Martikainen et al. (1982) showed by measuring

spermatic vein and systemic steroid concentrations, that the human

testis was able to respond to hCG within 30 min although the magnitude

of testosterone rise at this time interval was under 2-fold. In

contrast, in the rat, serum testosterone levels are increased by 10- to

20-fold within 6 h of hCG injection (Hsueh et al. 1976; Sharpe, 1976).

This difference in the acute response in vivo contrasts with the

similarity in response of purified Leydig cells from the rat and man in

vitro. This discrepancy between in vitro and in vivo findings is not

fully understood but may be related to differences between man and rat

in terms of the relative number of Leydig cells to blood volume.

From the morphometric analysis of Mori and Christensen (1980) it

can be calculated that in a normal rat there are approximately 3 x 10^

Leydig cells per ml of blood, while in aged men there are only

approximately 0.056 x 10^ Leydig cells per ml blood (using the

morphometric data of Neaves et al. 1984). Therefore since the rat has

approximately 50-fold more Leydig cells per ml of blood than does the

human, it is not surprising that the in vivo response to hCG, as

measured by peripheral testosterone concentration, in the rat is much

greater than in man despite the fact that in vitro the respone to hCG is

similar in both species on a per-cell basis. For the human male to
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maintain testosterone in serum at a level comparable to that in the rat,

this would necessitate either increasing Leydig cell mass 50-fold or

retarding clearance of testosterone. This may perhaps explain why man,

but not the rat, has a serum testosterone-binding globulin (TeBG). TeBG

has been found in the blood of several species (Corvol & Bardin, 1973;

Bardin et al. 1981) and while its role has never been fully understood

it is clear that it retards the metabolic clearance of testosterone.

This suggestion is speculative, but it is of interest that animals such

as the ram do have a serum testosterone-binding globulin (Corvol &

Bardin, 1973; Bardin et al. 1971), but of lower affinity than in man

(i.e. less effective in prolonging the half life of testosterone) and,

from morphometric data (Hochereau-de Reviers et al. 1985), these

animals have an estimated Leydig cell to blood volume ratio of

0.4 x 10^ cells/ml, a figure which is intermediate between that of the

rat and man.

These results suggest that the in vitro testosterone response to

hCG of human Leydig cells may be more similar to that of the rat than

has been thought previously, which could mean that the extensive

findings from in vitro studies of rat Leydig cells may have direct

relevance to the human. The establishment of this technique for the

isolation of human Leydig cells has enabled the study of putative

paracrine control mechanisms in the human testis (Chapter 5), and more

importantly, raises several exciting possibilities for future research.
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CHAPTER 5

Paracrine Control of the Human Leydig Cell
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5.1 Introduction

In the rat there is now a substantial body of evidence to suggest

that Leydig cell function is under the dual control of both the

system, by a number of factors produced locally within the testis. In

vitro studies have shown the effects of putative paracrine factors such

as testicular LHRH, oxytocin, vasopressin, opiates and a factor(s)

present in Sertoli cell/seminiferous tubule conditioned medium and

testicular interstitial fluid on Leydig cell testosterone production.

However the techniques applied to these studies, such as the stage

dissection of seminiferous tubules and the isolation of both Sertoli and

Leydig cells, have been limited to experimental animals, and similar

studies on the human testis are lacking.

The opportunity to study the effect of putative paracrine factors

on human Leydig cell function has now arisen with the development of a

reliable method for the isolation of human Leydig cells. In this study

the effects of LHRH-A, vasopressin, human transforming growth factor B

and interstitial fluid factor on human Leydig cell function were

investigated by the measurement of testosterone production.

5.2 (i) Effects of putative paracrine hormones on Leydig cell function

The effects of luteinizing hormone releasing hormone-agonist

and hCG (20 IU/ml)-stimulated testosterone production by

Percoll-purified human Leydig cells were studied at 5,20 and 48 h of

incubation.

LHRH-A ( [D-SerCBu11)6] des Gly NH210 LHRH-ethylamide;

Hoechst A.G. , Frankfurt, F.R.G.; 10""%) had no significant effect on

basal or hCG-stimulated testosterone production at 5,20 or 48 h in

endocrine system, by LH from the anterior pituitary, and the paracrine

(LHRH-A), vasopressin and transforming growth
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Leydig cell preparations from 9 individual men (Fig. 5.1). In 2 of

these preparations the addition of LHRH-A ( [D-Ala^ MeLeu^

Pro^ NEt] LHRH, Dr. R. Milton, Dept. of Chemical Pathology, University

of Cape Town, South Africa; 10~^M) produced identical results (Fig.

5.2).

The addition of vasopressin (Sigma, UK; 10~^M) to each of 7

Leydig cell preparations failed to alter basal or hCG-stimulated

testosterone production at 5,20 or 48 h (Fig. 5.3). Similar results

were obtained following the addition of TGFj? (Dr. A. Roberts, NIH;
10~®M) to each of 4 Leydig cell preparations (Fig. 5.4).

(ii) Effects of testicular interstitial fluid and serum on Leydig cell

testosterone secretion in vitro

The effect of charcoal-extracted testicular interstitial fluid (IF)

and serum from both the rat and man on rat and human Leydig cell

steroidogenesis during 20 h of incubation was tested in the presence of

hCG (20 IU/ml) at a dose in excess of that required to maximally

stimulate testosterone production.

Using Percoll-purifed preparations of rat Leydig cells, the

addition of rat IF consistently enhanced Leydig cell testosterone

production in response to maximally stimulating levels of hCG (P*C

0.001), whereas human IF was without effect (Fig. 5.5). When added to

one preparation of human Leydig cells, rat IF was shown to stimulate

testosterone production in a dose-dependent manner (Fig. 5.6), but this

result was not consistent. Fig. 5.7 shows the reverse effect of rat IF

on human Leydig cell testosterone production. In this case the highest

dose of rat IF (50 ^il) did not significantly increase testosterone
levels above those obtained with hCG alone, but did at a dose of 25 jil
(P<^0.05) and also 12.5 jil (P<CJ1.001). The dose-dependent stimulatory
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FIGURE 5.1

Effect of LHRH-A ([ D-Ser(But )6 ] des Gly NH2 LHRH-ethylamide
on human Leydig cells in vitro. Each value is the mean ± SD of
9 Leydig cell preparations, and is expressed as percentage of
basal production. hCG - stimulated testosterone production was

significantly increased compared to basal levels, PC0.001,
PC0.05. LHRH-A did not stimulate testosterone production above
basal or hCG - stimulated levels.
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I I Basal

hCG (20 IU / ml)
LHRH-A1 ( [D-Ser(But )6]desGlyNH21° LHRH-ethylamide ) (10 ~6M)
LHRH-A 2 [D-Ala6 Na Me Leu7 Pro9 NEtLHRH] (10 '5M)
hCG + LHRH-A 1

hCG + LHRH-A 2

FIGURE 5.2

Comparison between the effects of two LHRH - agonists
on the production of testosterone by human Leydig cells
in vitro. Each value is the mean ± SD of 2 Leydig cell
preparations, and is expressed as percentage of basal
production. hCG - stimulated testosterone production was
significantly increased compared to basal levels, P<0.001.
Neither of the two LHRH - agonists stimulated
testosterone production above basal or hCG - stimulated
levels.
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Effect of vasopressin on human Leydig cells in vitro. Each
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stimulated testosterone production was significantly
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FIGURE 5.5

Effect of human and rat testicular interstitial fluid

(IF) on rat Leydig cell testosterone production in vitro.
hCG (20 IU / ml ) - stimulated testosterone production
was significantly increased compared to basal levels
** PC0.01. Rat IF significantly increased Leydig cell
testosterone production above the level obtained with a
maximally stimulating dose of hCG ttt P<0.001. Human IF
did not significantly enhance hCG - stimulated
testosterone production (NS). Values are the mean ± SD
of triplicate incubations.
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Stimulatory effect of rat interstitial fluid (IF) on
human Leydig cell testosterone production in vitro.
hCG - stimulated testosterone production was significantly
increased compared to basal levels,*** P<0.001. Testosterone
production was increased significantly in the presence of IF
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ttt P<0.001, tt P<0.01, t P<0.05. Values are the mean ± SD
of triplicate incubations.
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FIGURE 5.7

Effect of rat interstitial fluid (IF) and rat serum on

human Leydig cell testosterone production in vitro. hCG
(20 IU / ml)-stimulated testosterone production was

significantly increased compared to basal levels,***
P<0.001. Testosterone production was increased
significantly with decreasing amounts of interstitial
fluid, t P<0.05, ttt P<0.001, but was not changed
significantly with the addition of rat serum (NS).
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effect of human IF on testosterone production by human Leydig cells was

observed only once (Fig. 5.8). On this occasion, the IF used was

obtained from a man who had been receiving the anti-androgen cyproterone

acetate'as treatment for prostatic carcinoma.

In another human Leydig cell preparation (Fig. 5.9) 50 yl of human
IF significantly decreased testosterone production compared to

hCG-stimulated testosterone production alone (P<(^0.01), while 25 jil and
12.5 ^il were without effect (NS). Rat IF added to the same Leydig cell
preparation was without effect at 50 |il and 25 jil (NS), but at 12.5 ji 1
testosterone production was significantly increased (P<^0.05). Controls

in the form of human and rat serum were mainly without effect (NS),

although at 12.5 jil rat serum did significantly enhance testosterone
production.

In an identical experiment with another human Leydig cell

preparation (Fig. 5.10) both human and rat IF did not significantly

increase testosterone production above levels obtained with a maximally

stimulating dose of hCG. Likewise rat serum controls were without

effect, however human serum significantly enhanced testosterone

production (P<^0.05, P<^0.01).

Figure 5.11 shows data pooled from seven individual human Leydig

cell preparations indicating that there is no consistent effect of human

or rat IF on testosterone production. Likewise, serum controls did not

significantly enhance testosterone production. The large errors

associated with human IF derive from one preparation (Fig. 5.8) where

the addition of human IF increased testosterone production from 19.3- to

28.3-fold that of basal production.

5.3 Discussion

In the rat, the presence of Leydig cell receptors for an LHRH-like
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FIGURE 5.8

Stimulatory effect of human testicular interstitial fluid
(IF) on human Leydig cell testosterone production in vitro.
hCG (20 IU / ml) - stimulated testosterone production was

significantly increased compared to basal levels,*** P<0.001.
Testosterone production was increased significantly in the
presence of IF compared to hCG-stimulated testosterone
production alone, tt PC0.01, t P<0.05. Values are the
mean ± SD of triplicate incubations.
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FIGURE 5.9

Effect of human and rat interstitial fluid (IF) and serum

on human Leydig cell testosterone production in vitro. hCG
(20 IU / ml)-stimulated testosterone production was

significantly increased compared to basal levels, *** PC0.001
The addition of 50|J.l human IF significantly decreased
testosterone production, ft P<0.01. Rat IF stimulated
testosterone production at a concentration of 12.5|ll,
t PC0.05, but was without effect at higher concentrations
(NS). Rat serum significantly increased testosterone
production at a concentration of 12.5|i.l, tt P<0.01.
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peptide (Bourne et al. 1980; Sharpe & Fraser, 1980; Clayton & Catt,

1981; Huhtaniemi et al. 1985) of Sertoli cell origin (de Jong et al.

1979; Sharpe et al. 1981, 1982a; Nagendranath et al. 1983) has led to

the idea that the regulatory effect between the Sertoli cell and the

Leydig cell is mediated, at least in part, by this peptide. This idea

is backed up by experimental evidence using analogues of hypothalamic

LHRH. Short-term (20 h) incubations with LHRH-agonist stimulates

testosterone production. This effect has been demonstrated in vivo, in

both normal (Sharpe & Rommerts, 1983; Sharpe et al. 1983), and

hypophysectomized rats (Sharpe et al. 1982; Sharpe & Harmar, 1983), and

in vitro (Hunter et al. 1982; Sharpe & Cooper, 1982a, 1982b).

In the present study, LHRH-agonist ([D-Ser(But)^] des Gly

NH2IO LHRH-ethylamide) had no effect on basal or hCG-stimulated

testosterone production by human Leydig cells at a dose known to

stimulate testosterone production in the rat (Fig. 5.1). In order that

this negative effect was not merely a reflection of enzymatic

degradation of the agonist, a second LHRH-agonist (D-Ala^ N^MeLeu?

Pro^ N ethylamide), substituted in the 6, 7 and 10 positions resulting

in greater resistance to enzyme degradation and increased binding

affinity (Karten & Rivier, 1986) was tested, and it too was without

effect (Fig. 5.2). This lack of a direct gonadal effect of LHRH-agonist

may reflect the uncertainty about the presence of receptors for this

peptide in the human testis. The absence of receptors for LHRH was

reported by Clayton & Huhtaniemi (1982) in the testes of both the human

and the monkey, yet despite this Popkin et al. (1985) observed that

testicular receptors for LHRH did exist in the human, but that they were

of much lower affinity (100-1000 fold lower) than those found in the

rat. Similarly mice do not possess specific binding sites for LHRH and
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subsequently LHRH-agonist has no effect on hCG binding, testosterone or

cAMP production (Hunter et al. 1982). If LHRH-like peptide does indeed

exist in the human testis it may be quite different structurally from

the LHRH-agonists used, whereas in the rat testicular-LHRH and the

LHRH-agonist [D-SerCBu11)^] des Gly NH2^® ethylamide do not

differ in size or structure (Sharpe & Fraser, 1980).

Chronic administration of LHRH-agonist in man (Linde et al. 1981;

Schurmeyer et al. 1984) as well as in the rat (Bambino et al. 1980;

Hsueh et al. 1981; Hsueh & Jones, 1981) results in a direct inhibitory

effect on steroidogenesis both in vivo and in vitro. While it is clear

that by binding to specific Leydig cell receptors, LHRH-agonist directly

inhibits steroidogenesis in the rat, pituitary desensitization appears

to be the mode of action in man. Thus in response to hCG, serum levels

of testosterone in man are unchanged before and after the administration

of LHRH-agonist (Evans et al. 1984; Heber et al. 1984; Schaison et al.

1984; Rajfer et al. 1987).

Significant species differences therefore appear to exist between

the rat, man, monkey and mouse in their response to LHRH-agonist. While

in the rat a direct gonadal effect appears to predominate, the

hypothalamic-pituitary axis is the primary, if not the only, site of

action of LHRH-agonist in man.

Vasopressin is another peptide which is present in the rat testis

(Kasson et al. 1985) and is reported to act through specific high

affinity receptors on the Leydig cells (Meidan et al. 1985; Kasson &

Hsueh, 1986). In long-term cultures (3 days) of mixed testicular cells

(Meidan et al. 1985; Kasson & Hsueh, 1986) and purified Leydig cell

preparations (Sharpe & Cooper, 1987), vasopressin inhibits Leydig cell

testosterone production. However, during short-term culture (5 h)
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vasopressin stimulates basal testosterone production but has no

significant effect on hCG-stimulated testosterone production (Sharpe &

Cooper, 1987). This stimulatory effect is dose-dependent and of small

magnitude (3-fold). y

In the present study, vasopressin (10~^M) did not significantly

alter basal or hCG-stimulated testosterone production by human Leydig

cells at 5, 20 or 48 h (Fig. 5.3). This may be due to the lack of

vasopressin-like peptide or receptors for such a peptide in the human

testis. If such a peptide does exist, structural differences between

the native peptide and the vasopressin used in the present study may be

the reason for the observed lack of effect. Indeed the physiological

significance of the effects of vasopressin in the rat testis are

questionable since the levels of interstitial fluid testosterone remain

unchanged following intratesticular injection of vasopressin in vivo

(Sharpe & Cooper, 1987).

Dimers of the ^-subunit of inhibin, which have been shown to be
potent stimulators of pituitary FSH synthesis and secretion in vitro

(Ying et al. 1986), show significant structural homology with TGFjB
(Derynck et al. 1985; Mason et al. 1985). This structural homology

raises the possibility that dimers of the JS-subunit of inhibin may play
a role as autocrine and/or paracrine modulators of gonadal function,

analogous to the effects of TGF^B reported in other tissues (Brown &
Blakeley, 1984).

When added to short- and long-term cultures of human Leydig cells

(Fig. 5.4), TGFyB (lCT^M) had no significant effect on testosterone
production. Likewise in the rat, TGFJ? has no consistent effect on
Leydig cell testosterone production (R.M. Sharpe, personal

communication). These results indicate that ^5-dimer forms of inhibin
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are unlikely to have any effect on the Leydig cell. Studies in the rat

have shown that TGF^ can enhance FSH-stimulated LH receptor induction
and secretion of oestradiol and progesterone by granulosa cells in a

dose-dependent manner (Ying et al. 1986; Dodson & Schomberg, 1987). If

^5-dimer subunits of inhibin do exist as independent entities, they may
exert paracrine effects on the Sertoli cell. Moreover, in vivo, these

peptides may be released into the peripheral circulation to increase

pituitary FSH synthesis and secretion.

Any factor produced within the seminiferous tubules which has an

effect on Leydig cell steroidogeneisis must pass into the testicular

interstitial fluid (IF). A factor present in rat IF has been shown to

enhance Leydig cell testosterone production in the presence of maximally

stimulating levels of hCG (Sharpe & Cooper, 1984). This factor, which

is not LHRH (see 1.6.1 (vii)), appears to be similar to a Sertoli cell

factor observed in a number of studies (Grotjan & Heindel, 1982;

Benahmed et al. 1984; Parvinen et al. 1984; Janecki et al. 1985;

Verhoeven & Cailleau, 1985).

Testicular IF contains a number of factors present in serum

(Sharpe, 1979) from which it is formed (Setchell & Sharpe, 1981). The

addition of serum to cell cultures is known to result in changes in

their structure and function, so as a control for these non-specific

serum effects, in the present study where possible, both IF and serum

from the same individual or animal were added to the Leydig cell

preparations.

The addition of both human and rat IF and serum to human Leydig

cells produced inconsistent results (Figs. 5.6 - 5.11). In different

Leydig cell preparations, human and rat IF either stimulated

testosterone production in a dose-dependent manner (Figs. 5.6 & 5.8),
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or in a reverse dose-dependent manner (Figs. 5.7 & 5.9), or was without

effect compared to maximally stimulating levels of hCG (Fig. 5.10).

Furthermore, the stimulatory effects of both human (Fig. 5.10) and rat

serum (Fig. 5.9) on Leydig cell testosterone production are difficult to

interpret.

Although the variable results obtained with human and rat IF on

Leydig cells of the opposite species may be explained simply by species

differences, the lack of any consistent effect of human IF on human

Leydig cell testosterone production is in direct contradiction to the

results obtained in a recent study by Verhoeven & Cailleau (1987). In

this study spent media from human seminiferous tubule cultures was

reported to contain a Leydig cell stimulatory factor similar to the IF

factor(s) described in the rat. This factor derived from two young

patients (25 and 37 years) with Leydig cell tumours. These tumours

synthesize androgens and oestrogens directly and indirectly by

aromatization of androgens (Bercovici et al. 1987). These patients as a

rule have suppressed gonadotrophin levels, impaired spermatogenesis and

are infertile. Analogous to this is the situation in the present study,

in which IF obtained from a patient who had received the gestagenic

anti-androgen cyproterone acetate, as primary treatment for prostatic

carcinoma, significantly enhanced hCG-stimulated testosterone production

by human Leydig cells (Fig. 5.8). This patient had undetectable levels

of gonadotrophins, and severely disrupted spermatogenesis.

Similarly, in the rat, situations which lead to reduced

intratesticular testosterone levels and subsequently suppressed

spermatogenesis, for example depletion of Leydig cells by EDS (Sharpe et

al. 1986a) or short-term cryptorchidism (Sharpe et al. 1986b), also

results in increased IF-factor activity. Following short-term
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morphological damage to the seminiferous epithelium when testosterone

and LH levels are back to normal, IF factor activity remains elevated,

the activity being highest in animals with the most severe disruption of

spermatogenesis (Sharpe et al. 1986a, 1986b).

In situations of acute severe spermatogenic disruption IF-factor

activity appears therefore to be elevated. This however fails to

explain why IF obtained from normal adult rats is capable of stimulating

Leydig cell testosterone production. Human IF was obtained from men who

underwent orchidectomy as primary treatment for prostatic carcinoma.

These men, as a function of age, have chronically disrupted

spermatogenesis, and elevated gonadotrophin levels. Raised serum levels

of FSH are usually associated with Sertoli cell malfunction (de Kretser

& Kerr, 1983) and secretory functions of the Sertoli cell decline when

there is impairment of spermatogenesis (Au et al. 1983; de Kretser &

Kerr, 1983; Jegou et al. 1984). Furthermore Sertoli cell number is

known to decrease in the human testis with age (Johnson et al. 1984). A

combination of reduced Sertoli cell number, and a reduction in the

function of the remaining Sertoli cells, may be the cause of reduced

production of IF-factor by the human Sertoli cells in this group. At

the present time therefore, we can only speculate as to the role of

IF-factor in the paracrine control of the human testis.

Despite the clear cut effects of a number of putative paracrine

factors on Leydig cell function in the rat, similar effects on human

Leydig cell function were not observed. Essentially, the dose of

LHRH-A, vasopressin and TGFjl used in the present study was the same as
that used in the rat studies. Dose-response experiments would have to

be performed before it could be established that these factors have no

effect on human Leydig cell function. If indeed these putative
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paracrine factors exist in the human testis, they may exert their

effects on other cell types, the peritubular cells or macrophages for

example. Furthermore, apart from LHRH which has been shown consistently

to have effects in vivo, it remains to be established whether the other

factors described above have any physiological significance.
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CHAPTER 6

Inhibln Bioactivity and Immanoactlvlty

in Hunan Testicular Extracts
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6.1 Introduction

Inhibin is a peptide produced by the gonads which acts on the

anterior pituitary to selectively inhibit the synthesis and secretion of

follicle-stimulating hormone (FSH) (de Jong, 1979; Baker et al. 1983).

Within the last 2 years the purification, nucleotide sequencing and gene

cloning of bovine, porcine and human inhibin have been achieved

(Miyamoto et al. 1985; Robertson et al. 1985; Forage et al. 1986;

Fukuda et al. 1986; Mason et al. 1986). However, studies to define a

physiological role for inhibin are still scarce, particularly in the

male.

In the male rat, testicular inhibin is produced by the Sertoli cell

(Steinberger & Steinberger, 1976; Bicsak et al. 1987). Spermatogenic

disruption results in a decrease in inhibin with an accompanying

increase in levels of plasma FSH (Au et al. 1983, 1984, 1987).

Following hypophysectomy, rat testicular inhibin is decreased and can be

restored by exogenous FSH (Au et al. 1985). These data provide

convincing experimental evidence for the role of inhibin within the

pituitary FSH-testicular feedback loop in the male rat.

In infertile men, atrophy of seminiferous tubules is usually

associated with a selective increase in circulating FSH (de Kretser et

al. 1974) and this has been attributed to decreased inhibin feedback.

Human seminal plasma inhibin levels have been correlated with FSH and

sperm count in normal and infertile men (Scott & Burger, 1981a). Human

seminal plasma inhibin is however distinct from testicular inhibin,

being of prostatic rather than gonadal origin (Beksac et al. 1984).

Furthermore, there is conflicting evidence as to whether seminal plasma

inhibin is able to suppress pituitary FSH secretion in vitro (Ramasharma

et al. 1984; Sheth et al. 1984; de Jong & Robertson, 1985; Liu et al.
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1985) .

At present, direct evidence for the existence of testicular inhibin

in the human male is lacking. The aim of this study was to quantify
y

levels of inhibin in human testes by means of a sensitive bioassay and

to relate inhibin bioactivity to circulating FSH and spermatogenesis.

In addition, following the development of a radioimmunoassay for the

detection of inhibin in the human (McLachlan et al. 1986), by kind

permission of Professor D.M. de Kretser, a comparison was made between

testicular inhibin immunoactivity and bioactivity.

6.2 (i) Testicular inhibin bioactivity, gonadotrophins, steroids and

spermatogenesis

Inhibin bioactivity was detectable in testicular extracts from all

21 patients using a sheep pituitary cell bioassay (see 2.5.3). In the

ten men from whom both testes were available, there was no significant

difference in inhibin bioactivity (4.5 + 1.7 U/ml left and 4.5 + 1.9

U/ml right) or daily sperm production (DSP) (1.7 + 0.9 x 10^/g left

and 1.6 + 1.1 x 10^/g right) between left and right testes. In these

cases, results were expressed as the average of the two testes.

The mean values of testicular inhibin, DSP, plasma FSH, LH,

testosterone and oestradiol concentrations in the whole group and in the

untreated and post-radiotherapy sub-groups are shown in Table 6.1 The

group as a whole had low DSP, low normal testosterone and minimally

increased FSH and LH with reference to young adults, although the range

of individual values was very widely distributed. Patients who received

radiotherapy previously had significantly lower inhibin bioactivity (P-C.

0.05) and DSP (P<0.01) but higher circulating FSH (P<Q).001) and LH (P<^
0.01) compared with the untreated group while testosterone and

oestradiol remained unchanged (Fig. 6.1).
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Table6.1.Levelsoftesticularinhibinbioactivity,dailyspermproduction(DSP),FSH,LH, testosteroneandoestradiolin21patients(wholegroup)consistingofuntreated(n=16)and post-radiotherapy(N=5)sub-groups,andbothsingle-factorandmultipleinteractiveregression analysesbetweeninhibinandtheothervariables.Valuesaremeans+S.D.
Radiation

WholegroupUntreatedtreatedSimpleRMultiple
Inhibin(U/ml)

4.4

+

1.3

4.8

+

1.1

3.2

+

1.4

DSP(x10^/g)

2.0

-

1.3

2.5

+

1.2

0.8

+

0.7

0.25

0.25

FSH(mU/ml)

11.9

+

8.3

8.4

+

6.7

20.7

+

4.4

-0.36

0.36

LH(mU/ml)

11.8

+

6.2

9.5

+

4.5

17.6

+

6.4

-0.15

0.39

Testosterone(ng/ml)
3.2

+

1.6

3.1

+

1.5

3.3

+

1.7

0.23

0.47*
\

Oestradiol(pM/1)
96.6

+

28.1

93.5

+

30.2

104.0

+

18.1

0.11

\

0.48*

*P<0.05 Forreferencepurposes,correspondingvaluesfornormalfertilemalesunder50yearsare: DSP,5.9+0.8x106/g;FSH,1.5-10mU/ml;LH,1.5-10mU/mlTestosterone3-10ng/ml, Oestradiol200pM/1



FIGURE 6.1

Comparison between the levels of inhibin, FSH, daily sperm production
(DSP), LH, testosterone and oestradiol in both the untreated and
radiation treated groups. Inhibin and DSP were significantly reduced
(P<0,05, P<0.01 respectively), FSH and LH significantly increased
(P<0.001, P<0.01 respectively), and testosterone and oestradiol
unchanged (NS) in the radiation treated as compared to the untreated
group. Values are mean ± SD from 15 patients in the untreated group
and 6 patients in the radiation treated group.
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The distribution of these variables against inhibin in individual

patients are shown in Figure 6.2. As expected, there was a highly

significant inverse relationship between DSP and FSH in the overall

group (R = -0.78, P<^0.001). However, the'apparent negative correlation

between inhibin and FSH did not reach statistical significance in this

group (R = -0.36). Single-factor regression analysis also failed to

elicit any significant relationships between inhibin and DSP, LH,

testosterone or oestradiol (Table 6.1). These variables, when analysed

by multiple interactive regression, did become significantly correlated

with inhibin (R = 0.48, P<^_0.05).

(ii) Comparison between testicular inhibin immunoactivity and

bioactivity

In 17 patients, in whom inhibin bioactivity had been measured

previously, testicular inhibin immunoactivity was measured by

radioimmunoassay using an antiserum raised against purified bovine

follicular fluid inhibin as a primary immunogen boosted with 31 kDa

bovine inhibin. Results were expressed in terms of a human IVF plasma

pool assayed against a partially purified human follicular fluid

standard (D.M. de Kretser, personal communication). Testicular inhibin

bioactivity (4.8 + 1.1 U/ml - untreated group; 3.2 + 1.4 U/ml -

radiation treated group) was significantly lower than immunoactivity

(155.6 + 75 U/ml - untreated group; 392.8 + 397.4 U/ml - radiation

treated group). Furthermore, single-factor regression analysis showed

the lack of correlation between inhibin bioactivity and immunoactivity

in this group of men (Fig. 6.3). A positive correlation was observed

between inhibin immunoactivity and FSH (R = 0.62, P<C.0.001) and also

between inhibin immunoactivity and LH (R = 0.74, P<^0.001), in a

situation where LH and FSH were positively correlated (R = 0.81, P

159



□
□
□

□

«■

~i—1—r

2 3

-r

4

DSP(x10 /g;

~r

5

7 n

~ 6
E

3 ^
i 41
ffl oJ
x d1
^ 21

6

1

H

■

■ □
□

□

10 20

LH (mU /ml)

—i

30

7 -

xr 6 -
E ■

3 5"
i4:
ffi o.
X J -

2 2.
□

□
-i—|—i—i—i—\—i—i—i—i—i—i—i—i

1 2 3 4 5 6 7

TESTOSTERONE ( ng / ml)

7 -

i6:
35"l
Z41
§3
— 2 1

1

□

p

0 50 100 150
OESTRADIOL ( pM /1)

FIGURE 6.2

Single-factor regression analyses showing a highly significant
inverse relationship between daily sperm production and FSH
(R = -0.78, PC0.001), but a lack of significance between inhibin
bioactivity and daily sperm production (DSP), FSH, LH,
testosterone and oestradiol. The closed squares represent 15
patients in the untreated group, and the open squares, 6 patients
in the post-radiotherapy group.
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Regression analysis showing the lack of significant
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0.001) (Fig. 6.4). No significant relationship existed between inhibin

immunoactivity and either DSP, testosterone or oestradiol (Fig. 6.4).

(iii) Relationship between inhibin immunoactivity and FSH in the

peripheral circulation

Previous studies have failed to detect inhibin bioactivity in

spermatic vein blood in men undergoing embolization treatment for

variocoeles or in the peripheral circulation of two normal males who

received FSH infusion (Metrodin, Serono; 25 IU 3 hourly for 5 days)

(F.C.W. Wu & C.G. Tsonis, unpublished observations). With the

availability of a radioimmunoassay capable of detecting plasma levels of

inhibin immunoactivity in males, the relationship between FSH and plasma

levels of inhibin can now be investigated.

Plasma from the two males who received infusion of FSH for 5 days

was assayed for inhibin immunoactivity, FSH, LH and testosterone. While

FSH levels rose significantly during FSH infusion, plasma levels of

inhibin immunoactivity, and also LH and testosterone, were not altered

significantly (Fig. 6.5).

6.3 Discussion

The presence of FSH-suppressing bioactivity in pooled human

testicular extracts has been reported previously (Krishnan et al. 1982),

but this is the first attempt to quantify levels of inhibin in the human

testis and to relate this to direct and indirect measures of

spermatogenesis. Despite the high average age of the patients (60 - 89

years, median 74) and the low DSP in some cases, inhibin bioactivity was

detectable in all samples. The mean level of inhibin in the human

testis of 4.38 U/ml (^ 90 U/testis) is, on a per testis basis,

approximately half that reported by Au et al. (1984) in testicular

extracts from normal adult male rats (120 U/ml;~180 U/testis) using a
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Single-factor regression analyses showing highly significant
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rat pituitary cell bioassay but the same inhibin reference standard

(ovine rete testis fluid, lU/mg) as in the present study. This may be

due to differences in the sheep and rat inhibin bioassays or may reflect

the decreased number of Sertoli cells seen in the ageing human testis

(Johnson et al. 1984). Furthermore, inhibin bioactivity observed in the

human female during both spontaneous and gonadotrophin-stimulated cycles

seem to be considerably higher than that observed in human testicular

extracts. Thus the concentrations of inhibin bioactivity in follicular

fluid at mid-cycle in women receiving human menopausal gonadotrophin

and/or clomiphene were 200-300 U/ml (Baird et al. 1987) and in

peripheral plasma, in both spontaneous and stimulated cycles, 1-8 U/ml

(Tsonis et al. 1987b, Tsonis et al. 1987c). In contrast, inhibin was

undectable in the spermatic vein of normal adult rats (Au et al. 1984).

Similarly, we were unable to detect inhibin bioactivity in spermatic

vein blood in 12 men undergoing embolization treatment for varicocoeles

or in the peripheral plasma of two normal males who received FSH

infusion for 5 days (F.C.W. Wu & C.G. Tsonis, unpublished observations).

Taken together, these results suggest that inhibin production in the

human male may be substantially lower than in the female.

In patients who received radiotherapy, testicular inhibin

bioactivity was significantly lower than in those not previously treated

(Table 6.1), although in no instance was inhibin undetectable. In the

former group, DSP was profoundly reduced and FSH, though grossly

elevated, was still below the castrate range, while testosterone and

oestradiol were normal. These findings are compatible with the concept

that inhibin is important in the feedback control of FSH, and implicate

a relative deficiency of inhibin as the underlying mechanism for the
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predominant FSH rise frequently observed in infertile men with

spermatogenic failure. Scott & Burger (1981a) reported the absence of

seminal plasma inhibin in eight azoospermic men with increased FSH, but

their finding that vasectomized men also had inhibin activity in seminal

plasma makes it unlikely that they were detecting a hormone of gonadal

origin as in the present study. Although a role for prostatic inhibin

in the control of FSH secretion has been postulated (Ramasharma et al.

1984; Sheth et al. 1984), a more important point is the possibility

that pituitary FSH-suppressing activity in vitro may not be specific to

inhibin as it is currently defined.

If inhibin does play a physiological role as a modulator of FSH

secretion, one might expect to find a negative correlation between

inhibin and FSH and a positive one between inhibin and DSP in a

situation where a significant inverse relationship between FSH and DSP

exists (Fig. 6.2). In the 21 patients studied, the relationships

between these three variables were in the directions anticipated but

there was no significant correlation between testicular inhibin

bioactivity and circulating FSH or DSP (Fig. 6.2). One possible

explanation for this may be that gonadal inhibin concentrations are not

representative of inhibin in the peripheral circulation. Studies on rat

Sertoli cell cultures show that FSH stimulates both intracellular and

secreted levels of inhibin in a dose-dependent manner, with

approximately 1/2 - 2/3 of the inhibin being secreted (Bicsak et al.

1987). Little is currently known about the mechanism(s) or route(s) by

which inhibin is secreted from the testis into the peripheral

circulation although, in sheep, the high concentration of inhibin in the

ovarian vein (Tsonis et al. 1986) and ovarian lymph (Findlay et al.

1986) indicate that both vascular and lymphatic routes may be
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important. However as yet, it has not been possible in the male to

determine the exact relationship between circulating inhibin and FSH.

An interesting analogy is our finding that testicular testosterone

concentrations from a similar group of men bore no significant

correlation to either circulating testosterone or LH (Simpson & Wu,

1986). One interpretation of these findings for both testosterone and

inhibin is the compensatory response of the Leydig and Sertoli cells to

germ cell loss or degeneration, so that the gonadal production of these

hormones is stimulated by the elevated levels of LH and FSH

respectively. However, these changes in gonadal inhibin and

testosterone are not reflected by levels of these hormones in the

peripheral circulation. This type of chronic adaptation in the

pituitary-testicular axis of the ageing human male is in distinct

contrast to that observed during acute experimental disruption of

spermatogenesis in young adult rats (Au et al. 1983, 1984, 1987), where

an inverse relationship between testicular inhibin bioactivity and

circulating FSH was consistently observed.

Following spermatogenic disruption in rats, the decline in

testicular inhibin does not occur immediately, but is delayed to

coincide with a reduction in testicular weight, an event known to

reflect germ cell loss. Restoration of normal spermatogenesis following

heat damage (Au et al. 1987) results in a return to normal FSH levels

associated with a return to normal levels of testicular inhibin. The

possibility of an interaction between different Sertoli cell/germ cell

associations to regulate the production of inhibin has been suggested

previously. The involvement of the spermatids in the regulation of

inhibin production has been suggested by a number of authors
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(Franchimont et al. 1975; Davies et al. 1978; Dandekar et al. 1984).

In the present study however no significant relationship between

testicular inhibin bioactivity and spermatid number (expressed as DSP)

was observed (Fig. 6.2). Other studies have suggested the interaction

between spermatocytes and Sertoli cells in the regulation of inhibin

production, as FSH levels remain within the normal range despite the

depletion of more advanced germ cells by vitamin A deficiency (Krueger

et al. 1974) or hydroxyurea treatment (Mecklenburg et al. 1975). More

recent studies have shown that "crude" germ cells co-cultured with

Sertoli cells have no signficant effect on inhibin production

(Steinberger, 1980). It would appear therefore that, as in the control

of ABP secretion by the Sertoli cell (see 1.6.2 (ii)), particular

Sertoli cell-germ cell associations may be required to regulate inhibin

production.

Our finding that DSP and FSH were the two parameters with the

highest correlation to inhibin is compatible with the notion that the

latter is an index of Sertoli cell function. However, the fact that the

correlations did not reach significance until testosterone was included

implies that the interaction between FSH, germ cells, Leydig cells and

Sertoli cells in the production of inhibin is more complicated than we

had previously envisaged. In keeping with this are the findings that

androgens stimulate inhibin production by rat testes in vivo and in

vitro (Steinberger, 1981; Verhoeven & Franchimont, 1983), and also by

human granulosa-lutein cells in vitro (Tsonis et al. 1987a).

In 1985 the full sequence of 32 kDa forms of inhibin in bovine and

porcine follicular fluid were published (Ling et al. 1985; Mason et al.

1985; Robertson et al. 1985). This smallest active form of inhibin was

shown to comprise of an 4X^(18 kDa) and a B chain (13 kDa) interlinked by
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a disulphide bridge. This 32 kDa form of inhibin is derived from a 58

kDa form by proteolytic processing of the<X^subunit (Robertson et al.

1985; Forage et al. 1986; Leversha et al. 1987), a process which has

y
been shown to occur in plasma (McLachlan et al. 1986). However, there

is little information on the molecular form or heterogeneity of the

inhibin molecule within the testis or in the circulation. Our reliance

on in vitro bioassays for the detection of testicular inhibin has the

disadvantage that other intragonadal factors may interfere with the end

point of FSH suppression in cultured pituitary cells. Recent work has

demonstrated the existence of a homodimer of the inhibin J3-subunit in
porcine follicular fluid which is capable of stimulating FSH release in

vitro (Ling et al. 1986; Vale et al. 1986). A significant structural

homology has also been described between the j?-subunit of inhibin and
human transforming growth factor-^ which can stimulate and inhibit cell
growth (Mason et al. 1985), suggesting that the inhibin subunit may

possess paracrine activities. The mitogenic activity of sheep pituitary

cells in culture has been shown to be stimulated by conditioned media

from cultured chicken ovarian thecal cells (Tsonis et al. 1987d) and by

a factor from human testicular extracts (Chapter 7), both of which also

possess FSH-suppressing activity. These findings highlight the

non-specificity and potential pitfalls of in vitro bioassays, and

therefore, with the development of specific radioimmunoassays for

inhibin, testicular inhibin immunoactivity was measured in 17 patients

in whom inhibin bioactivity had been measured previously.

Although testicular inhibin immuno- and bioactivity were expressed

in terms of different standard preparations, and as such cannot be

compared directly, nevertheless, the two were not significantly

correlated (Fig. 6.3). Contrary to the accepted dogma that inhibin
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selectively inhibits the synthesis and secretion of FSH from the

anterior pituitary, a highly significant positive correlation was

observed between inhibin immunoactivity and circulating levels of FSH

(Fig. 6.4). The differences observed in the relationships between

inhibin immuno- and bioactivity and FSH may be explained, at least in

part, by the demonstration of inhibin-related factors which are capable

of stimulating pituitary cell release of FSH in vitro (Ling et al. 1986;

Vale et al. 1986). By increasing the release of pituitary FSH, these

factors would result in inhibin activity measured by bioassay being

underestimated. The radioimmunoassay used in the present study did not

however cross-react with these FSH-releasing peptides, or indeed, TGFJ5,
MIS or any other potentially cross-reacting peptide (D.M. de Kretser,

personal communication). In addition, the presence of a potent

mitogenic factor in human testicular extracts, which stimulated the

division of ovine pituitary cells in vitro, thus inhibiting the

production of FSH from these cells, may also confound the inhibin

bioactivity measurements (see Chapter 7). In view of the difficulties

inherent to the inhibin bioassay, the significance of the positive

correlation between inhibin immunoactivity and FSH must be further

considered.

While at present there is no information as to the relationship

between testicular levels of inhibin and those in the peripheral

circulation, if, in the light of the present results, testicular inhibin

is representative of levels in plasma, a positive correlation between

FSH and plasma inhibin might be expected to exist. While bioassay

techniques proved too insensitive to measure inhibin in the peripheral

circulation of two males who received FSH infusion for five days,

inhibin immunoactivity was measureable in these samples. Despite the

5-fold increase in circulating levels of FSH in these men,
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no consistent rise in plasma inhibin was observed (Fig. 6.5). Studies

in vitro have shown conclusively that FSH causes a dose-dependent

increase in immature rat Sertoli cell inhibin production, while

comparison between secreted and intracellular levels of inhibin reveal

that approximately 1/2 - 2/3 of the inhibin is secreted (Bicsak et al.

1987). The discrepancy between testicular and plasma levels of inhibin

in relation to FSH may indicate that in man also, Sertoli cell inhibin

is stored prior to release into the circulation. This is in contrast to

the situation in the female where, following FSH-stimulation, granulosa

cells do not contain measurable intracellular levels of inhibin (Bicsak

et al. 1986). The fact that Sertoli cell inhibin is stored while

granulosa cell inhibin is not, suggests that there may be differences in

inhibin processing between the two cell types.

The indication of the present results that inhibin alone is not the

negative feedback regulator of FSH production is in keeping with studies

in vitro, and also with recent data in the human female and other

species. In the sheep it has been shown that during the follicular

phase of the oestrous cycle, the secretion of inhibin from the ovary

declines concomitantly with a fall in levels of FSH as oestradiol

increases (Tsonis et al. 1986). Similarly, during the menstrual cycle

in women, inhibin production by the granulosa cell is stimulated by FSH,

while inhibition of FSH is mainly by the interaction of both inhibin and

oestradiol (Tsonis et al. 1987b). Testosterone has also been shown to

stimulate the production of inhibin by both the granulosa cells prior to

luteinization and by the corpus luteum (Tsonis et al. 1987a). Therefore

the role of LH and steroid hormones in the negative feedback control of

FSH secretion in the female must be considered, and the function of
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inhibin in this process re-investigated.

In the male, investigation of the extent to which steroids are

involved in the control of FSH release is made difficult in view of the

non-cyclical nature of steroid secretion. Conflicting evidence exists

as to whether androgens are effective in stimulating Sertoli cell

inhibin production in vitro (Verhoeven & Franchimont, 1983; Bicsak et

al. 1987). In the present study no significant relationship existed

between testicular inhibin immunoactivity and peripheral levels of

testosterone or oestradiol (Fig. 6.4) or intratesticular levels of

testosterone.

In conclusion, this is the first report of the presence of inhibin

immunoactivity in the human testis. Comparison between inhibin

bioactivity and immunoactivity revealed the non-specificity and

potential pitfalls of in vitro inhibin bioassay. The highly significant

positive correlation between testicular inhibin immunoactivity and

circulating levels of FSH suggest that in the male, as in the female,

the concept of FSH-stimulated inhibin production in the negative

feedback control of FSH must be re-examined. The development of

radioimmunoassay techniques, capable of detecting inhibin levels in the

peripheral circulation, will assist greatly in this task. Recent

findings have however led to the speculation that the production of

inhibin may be under complex paracrine/autocrine control, and that

inhibin might also subserve a paracrine function(s) within the testis in

addition to its better recognized systemic role of FSH regulation.

While the importance of inhibin in the negative feedback control of FSH

should not be underestimated, the mechanism of this control appears to

be much more complex than thought previously. Future studies must take
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into account the interaction between inhibin and the steroid hormones in

this process, in particular the modulatory effects of steroids on the

production and processing of gonadal inhibin.
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CHAPTER 7

Mltogenlc Activity In Testicular Extracts

174



7.1 Introduction

During the course of a routine bioassay to determine whether

inhibin was present in the pre-ovulatory follicle of the domestic hen,

Tsonis and colleagues (1987d) observed that conditioned medium from

chicken thecal/stromal cells, but not granulosa cells, stimulated the

proliferation of ovine pituitary cells in culture (Tsonis et al. 1987d).

While the identity, cellular origin and physiological significance of

the thecal/stromal factor remains to be established, it has been

suggested that this factor may be involved in the division of thecal

layer fibroblasts or in the stimulation of granulosa cells during

folliculogenesis (Tsonis et al. 1987d). This increasing awareness that

cell metabolism and cell division may be regulated by growth factor has

also stimulated much interest in their possible role in

spermatogenesis.

When measuring inhibin bioactivity in human testicular extracts

during the present study, it was observed that these extracts also

stimulated the proliferation of ovine pituitary cells in culture. A

number of Sertoli cell-derived growth factors are thought to be involved

in autocrine and/or paracrine regulation of testicular function (see

1.3.3). The mitogenic activity in human testicular extracts was

therefore further investigated in relation to a number of aspects of

testicular function. Preliminary findings are reported in this

chapter.

7.2 (i) Presence of mitogenic activity in human testicular extracts

Mitogenic activity was determined in testicular extracts in a group

of 17 men (61-86 years, median 74) who had underwent orchidectomy for

prostatic carcinoma. This group consisted of 9 previously untreated, 5

radiation treated, 2 diethylstilboestrol (DES) treated men and 1 man

treated with cyproterone acetate. A human testicular extract pool was
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also prepared from 21 men in whom testicular inhibin had been measured

previously (Chapter 6). Mitogenic activity of human testicular extracts

was determined using the same conditions as for the ovine pituitary cell

inhibin bioassay (see 2.5.3), and the same time-course as employed

previously to detect mitogenic activity in chicken thecal/stromal cells

(Tsonis et al. 1987d). Following pre-incubation for 48 h, ovine

pituitary cells were incubated with testicular extract, or culture

medium alone (control), for a further 48-72 h, before being lifted from

the culture plates by the addition of trypsin (see 2.5.4). Pituitary

cell number was then counted in a haemocytometer.

Following the initial observation that human testicular extracts

had potent mitogenic effects on ovine pituitary cells in culture, the

effect of a human testicular extract pool (HTE) on ovine pituitary cell

number was observed. The addition of HTE from 6.25 jil to a maximum of
25 jil (P<Q.001), produced a dose-dependent increase in pituitary cell
number while the addition of higher doses reduced the viability of these

cells in culture (Fig. 7.1). In spite of the increased number of

pituitary cells, however, no accompanying increase in FSH, LH or

prolactin was observed (Fig. 7.2). Indeed the total release of FSH was

suppressed in a dose-dependent manner, while LH and prolactin were not

significantly changed. In contrast, when expressed as release per final

pituitary cell number (percentage of control), both LH and prolactin

were also suppressed in a dose-dependent manner, although FSH was

suppressed to an even greater extent (Fig. 7.2).

When mitogenic activity in individual testicular extracts from 16

patients was correlated to FSH release in the same ovine pituitary cell

culture, a significant negative correlation (R = -0.51, P<^0.05) was

observed (Fig. 7.3). Thus if the presence of mitogenic activity is

associated with a reduction in the release of FSH from pituitary cell,
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FIGURE 7.1

Increase in cultured ovine pituitary cell number with
increasing levels of a human testicular extract pool
(HTE) up to a dose of 25 |il compared to control (***,
P<0.001). The addition of higher doses reduced the
viability of these cells in culture {***, P<0.001).
Values are the mean ± SD of triplicate incubations.

ii Control
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FSH
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FIGURE 7.2

Histograms showing the effect of increasing concentrations
of a human testicular extract pool (HTE) on the total
release of FSH, LH and prolactin from cultured ovine
pituitary cells (left panel), and the release expressed
as percentage of control per final pituitary cell number
(right panel).
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FIGURE 7.3

The effect of increased mitogenic activity in individual
testicular extracts on the release of FSH from ovine

pituitary cells in culture (R = -0.51, P<0.05) (n = 16),
and on testicular inhibin bioactivity (n = 14) and
immunoactivity (n = 13).
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inhibin bioactivity measured in the same assay system might be expected

to be overestimated. However inhibin bioactivity measured in 14 of

these patients just failed to show the expected positive correlation

with mitogenic activity (Fig. 7.3). Inhibin immunoactivity measured in

13 of these patients failed to show any significant relationship with

mitogenic activity. These observations suggest that the HTE mitogenic

activity is associated with an apparent suppressive effect on FSI1

release independent of inhibin bioactivity.

To assess the individual variability in mitogenic activity,

testicular extracts from 17 men were examined at a maximum dose of 25 jal
and at a 1:4 dilution. The results were divided into four groups

according to treatment regimen, and are shown in Figure 7.4. In all

cases, except for one man who had been treated with cyproterone acetate,

the addition of testicular extracts stimulated the division of pituitary

cells in culture. There was no significant difference in the response

of the pituitary cells to testicular extracts from untreated or

radiation treated patients although the hormonal and germ cell status of

these patients were very different (see Fig. 6.1). Interestingly at a

dose of 25 jil, testicular extracts from two men treated with DES did not
stimulate pituitary cell division to the same extent as did the 1:4

dilution (Fig. 7.4). While the intratesticular hormonal milieu, and

also the state of the seminiferous epithelium was significantly

different between the treatment groups, no correlation was observed

between either daily sperm production, testicular levels of testosterone

or gonadotrophin levels and mitogenic activity (Fig. 7.5) - mitogenic

activity being an arbitrary figure calculated from final pituitary cell

number minus control.
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No significant correlation was observed between mitogenic
activity (an arbitrary figure calculated from final
pituitary cell number minus control) and daily sperm
production (DSP), testicular testosterone, tubular
testosterone, FSH or LH.

182



7.2 (ii) Presence of testicular mltogenic activity in other species

In addition to HTE, the mitogenic activity of testicular extracts

from a number of species was observed. When added to ovine pituitary

cells in culture, testicular extracts from rat, boar and marmoset did

not stimulate pituitary cell number above control levels, while ram

testicular extract contained a mitogenic factor which appeared to be

even more potent than that present in the HTE pool (Fig. 7.6).

7.2 (iii) Effect of human testicular extract on rat Leydig cell

function

In order to look at a more physiological situation, the effect of

HTE and rat testicular extracts were observed in cultures of rat Leydig

cells (Fig. 7.7). All additions of both rat and human testicular

extracts significantly depressed Leydig cell number compared to control

levels (P^O.OOl).
7.3 Discussion

While determining the presence of inhibin bioactivity in human

testicular extracts it was observed that these steroid free extracts

contain a factor which has potent mitogenic effects on ovine pituitary

cells in culture. The addition of a human testicular extract pool to

the pituitary cells results in a 2- to 3-fold increase in pituitary cell

number above control by 48 - 72 h of incubation. Similarly it has been

shown that chicken thecal/stromal cell conditioned media (ThCM), but not

granulosa cell conditioned media (GCCM), stimulates the proliferation of

ovine pituitary cells during inhibin bioassay (Tsonis et al. 1987d).

The addition of GCCM to ovine pituitary cells causes a dose-dependent

suppression of FSH while not affecting the release of LH or prolactin.

This effect has been attributed to the presence of inhibin from the

granulosa cells, the secretion of which increases during follicular
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FIGURE 7.6

Effect of testicular extracts from human, ram, rat, boar and
marmoset on cultured ovine pituitary cell number. Extracts
from human and ram testes significantly increased pituitary
number above control levels, while those from rat, boar and
marmoset were without any significant effect. Values are

expressed as the mean of triplicate incubations.
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Effect of rat and human testicular extract pools and serum
controls on rat Leydig cell number in vitro. At all doses
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Leydig cell number to values significantly below control
and serum levels (P<0.001).
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development (Tsonis et al. 1987d). While stimulating a 4- to 5-fold

increase in total pituitary cell number during 96 h of incubation, ThCM,

which should not contain inhibin activity, also suppresses FSH release

in a dose-dependent manner while not affecting the release of LH or

prolactin. Tsonis and colleagues suggest that this inhibin-like

activity of the ThCM is due either to contamination of the preparation

by granulosa cells, or to the presence of the mitogenic activity since a

previous study (Yoshimura et al. 1974), which followed the life stage

and secretory cycle of the anterior pituitary gonadotrophs, suggested

that following pituitary cell division the release of FSH is

suppressed.

Considering that bioassay of inhibin depends upon the extent to

which FSH release is suppressed in pituitary cell cultures, then the

presence of any factor which might alter the synthesis or release of FSH

would bias inhibin bioactivity measured in this system. Following the

addition of HTE, ovine pituitary cell proliferation was determined by

counting total cell number, as suitable facilities for distinguishing

between gonadotrophs, lactotrophs, somatotrophs and other pituitary cell

types were not available. Therefore in this study, as in that by

Tsonis et al., there is no way of knowing whether the mitogenic factor

induced the gonadotrophs to divide. Pituitary cell proliferation may

have been the result of division of primitive stem cells, of

non-secretory chromophobe cells, of one particular type of pituitary

cell or of all pituitary cell types. Considering the extent of

pituitary cell proliferation (2- to 3-fold in 48 - 72 h) in view of the

lengthy pituitary cell cycle (A.M. McNichol, personal communication), it

would appear that the mitogenic factor was inducing all pituitary cell

types to proliferate.
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On the assumption that all pituitary cell types were dividing

equally, the total output of FSH, LH and prolactin were expressed in

terms of release per final pituitary cell number. While FSH release was

suppressed due at least in part to the presence of inhibin, the release

of LH and prolactin were also suppressed, although to a lesser extent

than FSH. This indicates that the mitogenic factor may indeed affect

peptide hormone release from a number of pituitary cells, including the

gonadotrophs. Furthermore when mitogenic activity of individual

testicular extracts was correlated to the release of pituitary cell FSH,

a significant negative correlation was observed, indicating that

increased mitogenic activity is associated with reduced output of FSH.

Also the lack of any significant relationship between inhibin

immunoactivty and mitogenic activity illustrates that the release of FSH

is suppressed to a greater extent than by inhibin alone. Despite this,

inhibin bioactivity just failed to show a positive correlation with

mitogenic activity. If therefore the assumption that following the

addition of HTE all pituitary cells divide equally, then it would appear

that the newly formed pituitary cell population has reduced capacity to

secrete its peptide hormones. Reduced production of FSH would result in

overestimation of inhibin bioactivity in human testicular extracts.

Spermatogenesis is the most proliferative cell process in the male,

and as such, has prompted study of specific growth factor contribution

to this process. A number of Sertoli cell-derived growth factors are

thought to be involved in autocrine and/or paracrine regulation of

testicular function. Although the cellular origin of the mitogenic

factor remains unknown, it is likely to derive from the Sertoli cell,

and as such investigation of the physiological role of the mitogenic

factor in germ cell development and function is therefore of great
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interest. At the time of this study however, the techniques for the

isolation and co-culture of Sertoli cells and germ cells were not set up

in our laboratory. Instead however, with the availability of techniques

for in vitro study of Leydig cell function, an attempt was made to study

the effect of HTE on rat Leydig cell steroidogenic capacity in vitro.

At all doses, HTE and also steroid free testicular extracts from rats,

severely reduced the viability of the Leydig cells in vitro compared to

control.

Studies to identify this factor are in the preliminary stages, but

it is unlikely to be fibroblast growth factor, which has been shown

previously to have only minimal mitogenic activity on pituitary cells in

culture (Baird et al. 1986), or either epidermal growth factor or

transforming growth factor p, which show only limited mitogenic activity
in the present system (Tsonis et al. 1987d). Likewise, it appears not

to be interleukin-loc or J> which do not stimulate the division of ovine
pituitary cells in culture (G. Duff & J. Symons, personal

communication). While this rules out a number of possibilities, it is

feasible that this mitogenic factor is one of many other well-

documented growth factors of Sertoli cell origin, for example,

seminiferous growth factor (Feig et al. 1983), meiosis-inducing

substance (Grinsted & Byskov, 1981) or insulin-like growth factor (Tres

et al. 1986).

Since the purification of this mitogenic factor requires a constant

supply of material, and as human testicular tissue is not available on

demand, the presence of this factor was investigated in other species.

Testicular extracts from ram, rat, boar and marmoset were added to the

ovine pituitary cell bioassay and their effects on cell number

investigated. Testicular extracts from rat, boar and marmoset did not
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stimulate cell proliferation above control levels. Ram testicular

extract however contained a mitogenic factor with similar potency to

that present in the human.

In trying to explain these species differences it was noted that

the ram testes were obtained during mid-June, a time of great germ cell

proliferation, and increased gonadotrophin levels in these seasonal

breeding animals. Similarly in the elderly patients in this study,

gonadotrophin levels were also elevated as a result of suppressed

spermatogenesis, while in the rat, boar and marmoset, spermatogenesis

and gonadotrophin levels were normal. It is possible therefore that in

situations of suppressed spermatogenesis, under the appropriate

steroidal and/or gonadotrophic milieu, this factor is produced, possibly

by the Sertoli cell which acts on the germ cells to stimulate their

development and function. In senescence however this putative

mechanism appears not to function efficiently, as despite the presence

of the mitogenic factor, germ cell development is chronically

suppressed. Thus while the intratesticular hormonal and gonadotrophic

environment and germ cell status were very different between individual

patients, no correlation was observed with mitogenic activity. If

indeed this factor is derived from the Sertoli cell, which decline in

number with age (Johnson et al. 1984), a combination of reduced Sertoli

cell number, and a reduction in the function of the remaining Sertoli

cells, may result in insufficient production of this mitogenic factor to

induce germ cell proliferation.

The serendipitous observation that the addition of human testicular

extracts to ovine pituitary cell cultures results in great proliferation

of these cells, throws into doubt the validity of the sheep pituitary

cell bioassay for the detection of inhibin in these extracts. As yet it
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is not possible to say whether the gonadotrophs, and in particular the

synthesis and secretion of FSH are affected by this mitogenic activity.

If as seems likely the gonadotrophs are induced to divide, any

subsequent alteration in FSH synthesis or release would bias inhibin

bioactivit'y measured in this system. From the present results,

increasing mitogenic activity appears to be associated with suppression

of pituitary cell FSH release, resulting in overestimation of inhibin

bioactivity. Indeed this may explain the lack of correlation between

inhibin bioactivity and immunoactivity observed in these testicular

extracts. Until histochemical or monoclonal antibody techniques are

applied to determine the extent of acidophil, basophil and chromophobe

proliferation, then we can only speculate as to the implications of the

mitogenic factor in the in vitro bioassay of testicular inhibin.

The presence of this putative mitogenic factor in testicular

extracts implies a gonadal role, possibly in germ cell proliferation

during episodes of high gonadotrophic stimulation. Studies are now

underway to determine the presence of this factor in human foetal

testes, and future studies might also investigate its presence in the

rat during puberty and also following experimental disruption of the

seminiferous epithelium.

To conclude, a factor of testicular origin has been found to have

potent mitogenic effects on ovine pituitary cells in culture. While

this is unlikely to be of any physiological significance, it has

important implications for detection of testicular inhibin in the human

using pituitary cell bioassay techniques. Studies to identify and to

determine a possible gonadal role for this factor are continuing.

190



CHAPTER 8

Concluding Remarks
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8.1 Concluding remarks

Fertility in the male has been shown conclusively to be dependent

on the pituitary gonadotrophins, LH and FSH, which regulate testicular

development and maintain its function. In addition to endocrine control
y

by the gonadotrophins, there is increasing evidence of paracrine

involvement in the control of testicular function, paracrine control

being a form of regulation whereby one cell type in a gland or organ

selectively influences the activity of an adjacent cell type through the

synthesis and release of factors which pass through interstitial spaces

to act on neighbouring target cells. In the rat, an increasing number

of paracrine factors are being identified which modulate the testicular

actions of the pituitary gonadotrophins according to local conditions

and requirements.

In a recent World Health Organization (WHO) survey of 6682

infertile males from 25 countries (Diczfalusy, 1986), while testicular

dysfunction, including primary idiopathic testicular dysfunction and

abnormal sperm morphology and motility, accounted for approximately 21%

of all infertility, a further 42.8% appeared to have no demonstrable

cause as investigated by conventional semen analysis and endocrine

tests. This high percentage of apparent idiopathic infertility or

subfertility in man may reflect disturbance of local intratesticular

paracrine regulation.

Studies on the paracrinology of testicular function have almost

exclusively been limited to the rat, and similar in vitro studies in the

human are lacking. However since the process of spermatogenesis through

its testosterone dependent stages of mitosis, meiosis, translocation and

spermiation is basically similar in both the rat and man, it seems

likely that paracrine mechanisms in the human testis would not be
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appreciably different from those in the rat. With this in mind, the

present study was aimed towards establishing techniques whereby

individual components of the human testis could be studied in isolation,

and related to the overall functional state of the testis as defined by

systemic hormone levels and histological assessment of spermatogenesis.

Testes from elderly men with prostatic carcinoma were utilized to

establish a basis for the in vitro study of testicular paracrinology in

the human. The lack of investigation of this nature in the human

previously has undoubtedly arisen from the shortage of available

material. While tissue was obtained from elderly men, who in general

are known to have decreased levels of spermatogenesis and circulating

testosterone, and also decreased Sertoli and Leydig cell number,

concomitant with increased gonadotrophin levels, a number of these men

had quite normal levels of these parameters, despite their age and

prostatic illness. Indeed the ability of Leydig cells from these

patients to produce testosterone in response to hCG was in many cases

similar to that in young adult rats. Furthermore, patients treated with

either radiotherapy, synthetic oestrogens or anti-androgens provided a

suitable model of chronically suppressed testicular function. These

patients therefore provided a suitable model to study paracrine control

in the human testis.

Better known for its systemic endocrine role, testosterone is also

the most important paracrine hormone in the testis. The main thrust of

this study revolved around the importance of testosterone in the

maintenance of spermatogenesis. While spermatogenesis is completely

dependent on an adequate supply of this hormone, the question of how

much testosterone is required locally to maintain spermatogenesis has

been fraught with controversy over the years. Initial studies set out
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to determine the distribution of testosterone within the human testis,

and whether a lack of available intratesticular testosterone was related

to a decline in spermatogenesis. While the decline in peripheral levels

of testosterone commonly seen with advancing age has fuelled the idea

that reduced Leydig cell function in elderly men is the cause of reduced

sperm production, the results of the present study do not confirm this.

On the contrary, men with high levels of daily sperm production, in the

range of normal healthy young men, appeared to have lower levels of

intratesticular testosterone compared to those with low levels of daily

sperm production, who had surprisingly high intratesticular levels of

testosterone. At face value these results would suggest that the

original hypothesis of depressed levels of spermatogenesis associated

with reduced available testosterone is not substantiated. However

towards the end of this study it became apparent from studies in the rat

that the methods employed to measure absolute amounts of testosterone

within the testis may yield spuriously high results. This is due to

continued Leydig cell function following isolation of the testes. In

view of the apparent methodological difficulties, the validity of the

techniques used in the present study were re-evaluated. While the

post-isolation synthesis of testosterone in the human was not

consistently observed, in a number of cases testosterone production did

continue significantly after testicular isolation. This variability may

reflect the functional capacity of the Leydig cells in different

individuals and may also explain why the original validation of the

techniques did not pick up this problem. As such, before any

conclusions can be drawn as to the minimum amount of testosterone

required to maintain quantitatively normal spermatogenesis,

intratesticular concentrations of testosterone in both the rat and man
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must be re-evaluated taking special precautions to minimize the

post-isolation synthesis of testosterone.

The most widely studied paracrine mechanism in the rat is that of

the interaction between the Sertoli and Leydig cells in the maintenance

of high intratesticular concentrations of testosterone. A number of

factors thought to be produced by the Sertoli cell have been shown to

increase Leydig cell production of testosterone in vitro. The ability

to perform this type of study in the rat is due to the ease with which

Leydig cells can be isolated and their function studied in vitro.

Previous in vitro human Leydig cell studies have generally involved the

use of testis pieces or crude cell preparations, both of which are

unsuitable for investigation of the paracrine control of Leydig cell

function. In the present study, density centrifugation techniques were

adopted for the isolation of highly responsive human Leydig cells,

permitting further investigation of their function in vitro.

The effect of a number of putative paracrine factors which have

been shown to have stimulatory effects on rat Leydig cell function in

vitro were studied in 5 - 48 h incubations of human Leydig cells. The

addition of LHRH-agonist, testicular interstitial fluid, vasopressin and

TGF^ at concentrations known to stimulate testosterone production in
the rat, had no significant effect on human Leydig cell testosterone

production. In addition to possible species differences, this lack of

effect may be accounted for in a number of ways. Firstly there is the

possibility that human Leydig cells isolated on Percoll may represent a

sub-population of cells which are highly responsive to hCG, but which

are not representative of the whole Leydig cell population. This seems

unlikely however as poorly responsive Leydig cells in vitro fractionate

on Percoll in exactly the same manner as do highly responsive cells.
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Secondly there is the possibility that reduced responsiveness of the

human Leydig cells to these putative paracrine factors may reflect the

advanced age of the sample population. While this is indeed a

possibility, again it seems an unlikely explanation as at least some of

the men studied had peripheral hormone levels and quantitative measures

of spermatogenesis in the range of healthy young men. From these

studies therefore it would seem that the fine regulation of Leydig cell

steroidogenesis via paracrine mechanisms may not be required for the

maintenance of spermatogenesis in man. Indeed the importance of these

putative paracrine mechanisms in the in vivo situation in the rat have

been questioned recently in view of evidence that in this species

spermatogenesis can be maintained in the presence of testosterone levels

which are approximately 10 - 20% of available intratesticular levels.

In the light of these results it seemed appropriate to move on to

study human Sertoli cell function, utilizing the new techniques

available for Sertoli cell isolation and co-culture with germ cells. At

this point however the policy for the treatment of men with prostatic

carcinoma changed, and the number having primary orchidectomy dropped

considerably. With the increasing use of LHRH-agonists as first line

treatment, orchidectomy will no longer be the choice of treatment for

this condition. As such, the future of in vitro studies involving human

testicular material looks bleak.

While studies in vitro will inevitably further our understanding of

testicular physiology and pathophysiology, the assessment and treatment

of malfunction of testicular paracrine mechanisms in the clinical

situation is a long way off. One way forward in this area appears to be

by non-invasive techniques through the identification of markers which
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can be measured and related to testicular function. This approach has

already been adopted to some extent. For example, transferrin in

seminal plasma is thought to be of Sertoli cell origin, and measurement

of this transferrin has been suggested as a suitable marker of Sertoli

cell function. Unfortunately this has turned out to be of little

clinical value as the range of seminal transferrin levels overlaps

between normal men and those with seminiferous tubule malfunction.

Now that the technology is available to detect circulating inhibin

in man, inhibin too may be a possible marker of Sertoli cell function.

The highly significant positive correlation between testicular inhibin

immunoactivity and circulating levels of FSH, found in the present

study, suggest that the concept of FSH-stimulated inhibin production in

the negative feedback control of FSH must be re-examined. These

findings have led to the speculation that the production of inhibin may

be under complex paracrine/autocrine control, and that inhibin might

also serve a paracrine function within the testis in addition to its

better recognized role of FSH regulation. So before inhibin can be used

as a suitable marker of testicular function, further investigation is

required to clarify its role in man.

So at the present time while there is a lack of potential markers

of paracrine events within the testis, the results of a recent study

provide hope that such a marker will be found. The isoenzyme lactate

dehydrogenase - C4 in semen, when expressed in relation to the number of

ejaculated sperm, is a good indicator of the efficiency of

spermatogenesis in that individual. While this enzyme does not reflect

any testicular paracrine event, it demonstrates that in the near future

markers of testicular paracrine events may be detected in blood or

semen. As such it is this approach, in conjunction with studies in
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vitro, that we must now undoubtedly pursue.

Advances in our knowledge of the paracrine control of the testis

should have major consequences in our understanding of and ability to

treat idiopathic infertility in men. The studies reported herein

provide a basic starting point for future investigations of paracrine

control in the human testis.
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