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SUMMARY

Semi-dwarf varieties of wheat and barley were compared with conventional

varieties under a range of husbandry treatments. In the barley study,

two semi-dwarf varieties were compared with three conventional vari¬

eties in each of two seasons. Five rates of nitrogen and five seed

rates were applied as treatments. The performance of the varieties

was compared in yield and the principal yield components. Large

differences were found between the years of the experiment as the

weather in the second season promoted tiller production which could

not be utilised due to the lack of sunshine in the post-anthesis

period. The performance of two of the varieties, Golden Promise and

one of the dwarfs (6262Co/N/44) was affected less by this difference

between seasons due to their economy of tiller production. Variation

in response to the husbandry treatments among the semi-dwarf vari¬

eties was similar to the variation in the conventional varieties.

The semi-dwarf varieties did not give a greater response to increase

in nitrogen or seed rates but their delayed lodging increased the

range of these treatments over which maximum yield could be achieved

before lodging caused yield reduction.

A smaller field trial was carried out in 1972 on a sandy soil in an

endeavour to examine the effect of drought on three varieties, one

of which was a semi-dwarf. The principal aim of this study was

defeated by a wet spring so no further conclusions could be drawn.

Study of the growth of roots of two barley varieties was undertaken

in one season. Extensive root growth occurred in the first weeks

of growth after which the size of the root system was maintained
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until after anthesis before any reduction in the amount of root was

recorded. Golden Promise, the shorter strawed of the two varieties

examined showed slightly poorer root growth in the early season and

an earlier reduction in the amount of root in the soil from which it

was concluded, this variety could he at risk in dry seasons if the

same rooting pattern was developed.

The wheat study was a combined agronomic and physiological study, over

two seasons, of three semi—dwarf and two conventional varieties under

five rates of nitrogen. Yield and its components were measured.

Total leaf lamina area and dry weight were measured at several dates

in the first season and total photosynthetic area above the flag leaf

node after anthesis in the second. A fuller understanding of the

mechanisms of yield production was sought by relating these measures.

Root growth of four of the cultivars was studied in the early part of

one season but no significant differences were found between the

varieties. A detailed study of the rates and duration of grain

filling in the different parts of the ear was also undertaken and the

findings of this study were related to the measures of yield and crop

growth.

Two of the dwarf varieties, TL363/3O and TL365a/34, gave yields similar

to, or greater than Maris Nimrod, the standard variety. No differences

were found in the yield response of the varieties to nitrogen but a

reduction in the efficiency of the leaf area in grain production at

high nitrogen rates was found in all varieties. From the leaf and

grain yield studies it was concluded that this reduction in efficiency

was due to mutual shading of the leaves at high leaf areas and not to

a shortage of total sink capacity. It was found that grains in
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different parts of the ear grew at different rates with the slowest

growing grains being in the distal florets. The pattern of grain

filling was the same in all varieties and the rate of individual

grain filling was unaffected by nitrogen rate. It was suggested

that the rate of grain filling of a variety could impose a limit on

the amount of carbohydrate utilised in grain filling.
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CHAPTER 1

HISTORICAL REVIEW OF LITERATURE

In wheat and barley breeding there has been a steady progression to¬

wards shorter strawed varieties which have a greater resistance to

lodging (Berbigier, 1968; Vogel et al, 1956). In barley breeding the

progression has been accelerated in recent years by the creation of

mutants with short straw resulting from a shortening of the internodes

(Berbigier, 1968).

The wheat breeding of the world has been changed by the discovery and

use of a number of dwarf and semi-dwarf varieties. These include

Norin 10, Seu Seun 27 and Suwon 92. Of these, the one to have the

greatest impact on the wheat breeding of the world has been Norin 10.

This cultivar was originally bred in Japan in 1924 (Reitz and Salmon,

1968). The breeding of this variety was:

Fultz (Americ) .— Glossy Fultz Fultz Doruma

(Reitz and Salmon, 1968).

In 1946 this cultivar was taken to the United States of America where

it was used in crosses with conventional varieties to produce short-

strawed cultivars. The dwarfing character of Norin 10 and Suwon 92 is

believed to he carried on one major recessive gene and its effect is

modified by other genes to a greater or lesser extent (Briggle and

Vogel, 1968). The first variety to he produced in the U.S.A. using

gene plasma from Norin 10 was Gaines, which was a very successful

Doruma (Jap)

Turkey Red (Americ Released 1935

Norin 10 (1924)
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variety in the Pacific North-West area of the United States. The

production of this variety attracted the attention of breeders

throughout the world, who began to show interest in the semi-dwarf

character. Italian and Balkan dwarf varieties which have not had such

world wide acclaim can also trace their origin to the same source

(Reitz and Salmon, 1968).

About the same time as breeding was started in the United States,

breeders in Mexico also began to investigate the new semi-dwarfism

with remarkable success. In the early 1960*s, a number of very use¬

ful semi-dwarf cultivars were produced by CIMMYT in Mexico. These

cultivars had the great advantage of being neutral in reaction to day

length. They included Sonora 64, Lerma Rojo, and Mexico 120. The

usefulness of these cultivars was fully realised in 1964 when they

were grown in India and gave yields which were quite outstanding in

that part of the world (iARI, 1968). Within a few years the 'Green

Revolution* was fully mounted and very large quantities of the Mexican

cultivars were being grown in India, Pakistan and a number of other

Near-Eastern countries. Record harvests were recorded in every

country where the introduction of the wheats was made (CIMMYT, 1970).

By 1971 however, the picture was somewhat less attractive. Yields in

India had been falling for two years, in Pakistan yields were also on

the decline and in the Near East a similar picture was developing

(CIMMYT, 1972, Hafiz, 1972). The large yield reductions are due to

serious attacks by diseases (Noble, Personal Communication).

Inadequate screening of the imported seed against seed-borne diseases

has been largely responsible. A lack of knowledge of the indigpious

races of leaf-borne diseases has also been a contributory factor as

resistance against these races was not sought, nor was the reaction
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of the imported cultivars to these races known. Large areas were

sown with one or two of these imported varieties without taking these

disease factors into consideration and drastic yield losses have re¬

sulted (Noble, Personal Communication). More attention is being paid

to disease races now, but the confidence of the farmers in the under¬

developed countries has been seriously shaken by this carelessness on

the part of the scientists involved.

Within the United States, breeding programmes have been carried out

in every wheat growing region to try to incorporate the dwarfing chara¬

cter in the indigenous type. These programmes have not met with con¬

spicuous success in every case. For example in the central regions,

durum wheats, with the dwarf character, have been produced hut these

are very susceptible to disease, (hriggle and Vogel, 1968). The

disease problem is thus widespread, but with increased awareness of

tne causes, and diligent use of sources of resistance available, this

problem can be kept at hay. In addition to the dwarf varieties of

wheat derived from the Norin 10 source, some dwarf varieties of wheat

have been produced by mutation, by irradiation in the same way as

some barley dwarfs have been produced (Briggle and Vogel, 1968),

(Konsak et al, 1969).

Different classifications of varieties by stature, have been attempted,

to avoid confusion. Borojevic (1968) suggested a height classification

whereby the categories of wheat became;

Stunted (grass clump) <30 cm late maturing, part or complete sterility

Dwarf 30-50 cm

Semi-dwarf 50-70 cm

Short strawed 70-90 cm
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Medium high 90-110 cm

Tall > 110 cm

The usefulness of such a classification has been questioned (Briggle

and Vogel, 1968) as height expression is very greatly dependent on

the environmental conditions. The extent of this dependence is shown

by Johnson (l953)« Other workers in the field have classified dwarf

varieties by the number of dwarfing genes having an additive effect

in reducing the height of the plants.

Characteristics of Semi-Dwarf and Dwarf Cultivars

Several studies have been undertaken in which the dwarf varieties were

examined to establish the mechanism by which the dwarfing was manifest

and to evaluate the varieties for any other associated changes in plant

characters which might make the dwarf varieties unsuitable for general

use (Allan, et al, 1965? Borojevic, 1968; Burleigh, et al, 1965;

CIMMYT, 1970, 1972; Gupta, et al, 1968; IARI, 1968; Johnson, et al, 1966;

McNeal, et al, I960; Paquet, 1968; Thorne, et al, 1969; Vogel, et al,

1956, 1963).

In general, these studies found little change in the various test

weights and measurements made other than variation which would nor¬

mally be found between conventional varieties. Several workers however,

found that coleoptile length was shortened, as well as the expected

shortening of internodes and peduncle. The shortening of the cole¬

optile can lead to poor emergence and stand establishment among the

dwarfs (Allan, et al, 1965; Burleigh, et al, 1965; Feather, et al,

1968; Gupta, et al, 1968; Thorne, et al, 1969). Other workers re-
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ported increased tillering in the semi-dwarf selections which could

be a result of the poorer establishment (Paquet, 1968; Roy, et al,

1969). The short coleoptile of the Norin 10 dwarfs, while not a

very serious disadvantage, has been overcome in some breeding pro¬

grammes (Briggle and Vogel, 1968; Konsak, et al, 1969), by the use

of other dwarfing sources e.g. the irradiation of the variety Burt.

In addition to these studies of the characters of the dwarf wheats,

the suitability of the dwarfs for many regions of the world has been

evaluated (Beech and Norman, 1968; CIMMYT, 1970, 1972; IARI, 1968;

Paquet, 1969; Porter, et al, 1964; Vogel, et al, 1963). Where

disease susceptibility did not affect the results of these experi¬

ments, the dwarf cultivars were, in general, adequate performers in

the situations in which they were tested. In other parts of the world

crosses with indigenous cultivars have been made before the intro¬

duction of the dwarf varieties. This imparts greater disease resist¬

ance and a better adaptation to the climate of the region, before

widespread introductions of the new cultivars (Lupton, et al, 1970).

More detailed reviews of the behaviour of semi-dwarf varieties in terms

of physiological development and root growth will be given in later

chapters (Chapters 3» 4 and 5)» Likewise the effect of husbandry on

the development of semi-dwarf wheat will be dealt with in Chapter 3

and the effect on barley in Chapter 2.
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CHAPTER 2

BARLEY EXPERIMENTS 1970, 71 and 72

2A Introduction In view of the recent interest in the

production of semi-dwarf varieties of barley (Berbigier, A.1968^ it

was considered desirable to investigate the behaviour of such varieties

under different husbandry treatments and to compare this behaviour

with that of more conventional varieties. The very different stature

of these varieties ,led to the hypothesis that the two different types

may respond differently to such husbandry treatments as, seed rate and

nitrogen level to such an extent as to materially bias the results of

variety trials which included these varieties. In addition, if this

was the case, it would be desirable to establish the extent of any

differences in response to enable changes in the recommended rates of

fertiliser and seet rates to be quantified and made available to those

using the new varieties.

The dwarf varieties already in use, or nearing release from the breeders,

have been exhibiting higher performance (Berbigier, A.I968) and in the

light of this finding, an investigation into the mechanism by which this

increase in yield was brought about, in terms of yield components was

thought desirable, as a knowledge of the sources of increased performance

could lead to more efficient breeding methods orientated towards improvement

of those parameters which are most readily influenced and which lead to

the most effective increases in yield.

2B The influence of variety, nitrogen fertilizer and seed rate on the

growth of barley.

i The morphological growth of Barley.
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The growth of barley can be divided into four stages;

1. The germination stage

2. The vegetative stage

3. The reproductive stage

4. The seed stage.

In a strict botanical sense the germination stage lasts from imhibition

of moisture to the elongation of the radicle but in agricultural terms

the emergence of the coleoptile above the soil can be considered as

the end of this stage and the start of the vegetative stage.

(Wellington,1966) During this stage the seminal root system is

developed and the plumule elongates towards the soil surface. As the

plumule elongates the more permanent adventitious root system starts to

develop from the coleoptilar node. The plumule elongation is caused

by a lengthening of the internodes which make up the main axis at this

stage. The number of internodes which elongate and the extent of this

elongation is dependent on the depth of planting. The external environment

also influences the rate at which development occurs. Growth at this

stage is supported by the starch stored in the endosperm and by the

mineral contribution provided by the root system as it develops. The

coleoptile is pushed up towards the soil surface together with the apex

and its associated groups of nodes and unexpanded internodes with buds

and associated leaves. When the coleoptile emerges from the soil the

vegetative phase is deemed to begin. During the vegetative phase the

leaves, tillers and the root system are developed and this stage lasts

until the first double ridge is formed on the apex. It is during this

stage that the husbandry treatments such as the provision of fertiliser

and manipulation of the population by seed rate changes have the

greatest effect. Varietal differences in behaviour during this stage

have a large bearing on the subsequent performance which ultimately

affectsyield.
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The pattern of development followed during this stage is the same in

both wheat and barley. The coleoptile tip emerges above the soil as

a transparent tube containing the true leaves which rapidly turn green

and start to elongate. The leaves each consist of a lamina and a

sheath which is curved into a cylinder around the growing point and the

sheaths of subsequently developed leaves. In the axil of each of the

leaves is a bud which can develop into a tiller. Tillers themselves

can produce second and third order tillers but these occur only seldom

and very rarely in a field situation. Tillers develop throughout this

phase though the plant is capable of developing new tillers during

the reproductive phase. Development of established tillers continues

in the reproductive phase though at a reduced rate (Bunting and Drennan,

1966). The structure of tillers is identical to that of the main stem.

The development which takes place in the root system during this stage

in the plants development will be reviewed elsewhere. (Chapter 4:ii).

With the appearance of the first double ridge in the apex the reproductive

stage is deemed to begin. This stage will be dealt with in greater

detail with particular reference to the development of the wheat spike

in a later chapter. (Chapter 5)» Cereal plants* reproductive develop¬

ment is responsible for the production of a sink for the carbohydrate

produced by the leaves of the plant. This sink is responsible for

the establishment of the next generation. Barley differs from wheat

in that the barley spike is not determinate and can in theory continue

to develop new spikelets without restraint. Wheat however produces a

terminal spikelet which is inserted perpendicular to the earlier

spikelets. Each barley spikelet however is determinate and has only

one floret. There are three spikelets at each node of which one or

more develop. In "two-row" barleys only one of the spikelets at

each node develops but in "six-row" barleys all three spikelets develop
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but the lateral spikelets are generally smaller than the central one.

In the wheat spike however the spikelets are capable of producing any

number of florets within each spikelet. The development of the spike

in barley is described by Bonnett (1935). The reproductive phase

ends at anthesis.

In the seed stage the embryo and the endosperm of the grain are formed

and the grain and the whole plant gradually senesce and loose moisture.

This outline of the development of the barley plant serves as a basis

against which differences in the development caused by different

husbandry or environmental influences are manifest.

ii The influence of husbandry on the development of barley.

In growing the barley plant in a crop situation a strong competitive stress

is placed on the individual plants which make up the crop. The essence

of the development described above occurs with all the plants in the

crop but the full potential of each plant is not realised. Donald (1963)

described a healthy crop as one made up of subnormal individuals.

When plants were sown at a density of 1.4 plants/sq.m. the yield of

each plant was 33*2 g. but when sown at the spacing for maximum yield

per unit area 35 plants/m2.the yield of each plant was reduced to

7.1 g. The cultural practices which were applied to the crop in the

experiments described later in this section have been shown to have a

profound effect on the growth of the barley crop.

iii The effect of nitrogen on the growth of barley.

The primary effect of nitrogen on the growth of barley is on leaf

growth (Langer, 1966) measured as total foliage area. This parameter

is a compound of the number of leaves present at any time and the size

of each leaf. Each of these can be further broken down to the more
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meaningful parameters namely; the number of leaf hearing tillers and

the rates of production and senescence of the leaves on each tiller

make up the first parameter while the size of each leaf is dependent

on the rate of expansion of the leaf and the duration of this expansion.

These parameters have not been widely examined but the influence of nitrogen

on the growth of the foliage system in barley has been well documented

(Langer, 1966). Nitrogen has been shown to increase the mean leaf

area per shoot in barley (Watson et al., 1958) but the effect of this

increase was smaller than the effect of the increase in shoot number.

It appears that the number of leaves on a shoot and the duration of these

leaves, have a smaller effect on the total leaf area than the number of

shoots (Langer, 1966), though they show some effect of change in

nutrient supply. The effect of nitrogen on the control of the tiller

number at various stages in the growth of the plant has been thoroughly

examined by Aspinall (l96l and 1963). In the first of these papers

the tillering pattern was established when the plant was provided with

all the nutrients at an early stage. This pattern was an increase in

the number of tillers for a period which was dependent on the amount of

nutrients supplied. This period was followed by a period in which no

new tillers were formed but this was not due to a lack of tiller buds.

This phase could be terminated at any time by the application of more

nutrient though, if this raising of the nutrient supply was delayed for

a time after ear emergence, the onset of renewed tillering was delayed

progressively. The second paper looked at the effect on tiller bud

growth of applied nutrients during the ear development phase. The

principal finding to emerge was that grains and tiller buds competed

for nutrients at this stage. The effect of the grains could be

overcome by increased nitrogen but an excessively large amount was

required to overcome the effect of the grains, implying a further
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control in the form of a growth substance from the grains inhibiting

tiller bud development. Tiller buds are also subject to competition

from developing tillers in the earlier stages of growth and the tillers

seem to have a greater priority for nutrients than tiller buds.

(Aspinall, 196l). The degree of independence achieved by tillers is

subject to some doubt. Tillers produce root and leaf systems of their

own but transport of nutrient from the main stem to the tillers has

been demonstrated by studies in wheat and rice (Bunting and

Drennan, 1966) though Lupton (1968) found that, after stem elongation

in the tiller, it became independent of the parent.

When nutrient supply is continuous the growth of new tillers continues

without any break. Initially the growth is exponential but the growth

rate reduces to a constant increase in the number of tillers being

produced (Aspinall, 1961).

The primary mechanism by which nitrogen affects the growth of the barley

plant thus appears to be through the manipulation of the leaf area by

the production of tillers. (Bunting and Itennan, I966 and Langer, I966).

These single plant studies allow a fuller understanding of the mechanisms

by which crop yields are obtained in response to fertiliser.

For high yields to be achieved a high application of nitrogen is required,

(van Dobben, 1966). This however results in lodging under most conditions

and a consequent loss in yield. While a large number of experiments

have been conducted to examine the effect of nitrogen on yield very

few of these have taken note of how the yield increases came about in

terms of yield components.



Experiments of this type include those of Widdowson and Penny (1968 and

69) Moffat and Widdowson (1967), Harvey (1964) and Lessels and Webber

(1965)# In all these experiments an increase in yield with increasing

nitrogen over the low part of the range was recorded but at the highest

levels of nitrogen reductions in yield were recorded in a number of

these experiments but only Moffatt and Widdowson (1967) accounted for

the yield loss in terms of lodging on very fertile sites.

A number of other papers examined the effect of nitrogen coupled with

water shortage (van Dobben, 1966, and Leubs and Lang, 1969). These

papers emphasise the need for adequate water supply for the utilisation

of nitrogen as an increase in leaf area caused by nitrogen application

also increases the transpiration of water which in areas of water shortage

results in reduced yields. In this case the yield reduction is caused

by a reduction in ear numbers and in grain numbers on the ears.

The time of nitrogen application to barley has been shown to have an

effect on the utilisation and effectiveness of the nutrient. van Dobben

(1966) advocated the use of late application, i.e. up to and just beyond

earing as this tends to prolong the period of post anthesis leaf area

duration which results in an increased yield. Early application

results in an increase in tiller number and in straw length and increases

the likelyhood of lodging. The late application is only beneficial when

the fertility is adequate to provide a large enough plant to utilise

the late application. If this is not the case, van Dobben (1966)

suggested a split dressing which provides a large enough plant at the

second dressing to fully utilise the late application of fertiliser

in prolonging the leaf area duration. The effect of nitrogen on the

yield components was examined in the experiment of Oswald (1970) who

found that the first application of nitrogen (25 units per acre) gave
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a marked increase in tiller number, 1000 grain weight, number of grains

per ear and yield but that this increase was not sustained with a

further application of nitrogen though a slight increase in all the

components was noted. It was concluded that competition between

tillers became more intense at the higher nitrogen level which prevented

any further increase in yield of tillers or of the crop as a whole.

(Oswald, 1970).

iv Effect of seed rate on growth of barley.

The plant population of a crop has a profound influence on the individual

plants as described earlier (Donald, 1963) and the object in varying

the seed rate is to find the population which will give the best yield

of all the plants taken together and not the optimum yield of the

individual plants. The establishment of a crop does not only depend

on the number of seeds sown but on how many of these survive to produce

plants and on the propensity of these plants to produce tillers. The

overriding consideration when discussing population in barley is not

the number of plants but the number of tillers per unit area.

(Holliday, i960)

In an extensive review of the effect of plant population on crop yield,

Holliday (i960) found a very large variation in the optimum seed rate

for the various cereals. When the fertile tiller population was taken

into account the variation was considerably reduced. This confirms

that the seed rate is an inadequate measure of the plant population but

Holliday found that the response of yield to increase in seed rate was

parabolic and thus there is a wide range in plant population in which

yield is only slightly affected.
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The effect of increased seed rate on the individual plants was

recorded by Kirby (1968) in terms of yield components. As seed rate

increases the number of plants per unit area changes only slightly.

Similarly Holliday (i960) found that the number of plants per seed

sown reduced as density increased. The number of tillers per plant

was found to be reduced but the greater numbers of ears per unit area

are found at high density. The number of grains per ear was reduced

by high density but again the number of grains per unit area is only

affected a little by changes in density. The final component of

yield, the weight of the individual grains was only slightly affected

by an increase in density. (Kirby, 1968). Similar findings have

been reported by other workers who have looked at the components of the

yield (Ben^sson, 1972 and Oswald, 1970). The relationship between the

number of tillers per unit area and the yield with increased density

was considered to be more than coincidental by Holliday (i960) in

that, with a larger number of ears the contribution of the upper parts

of the plant to the total dry matter production of the crop becomes

greater. Thorne (1965) showed the main part of the grain weight was

provided by the upper part of the plant and as this part has an

increased contribution a larger grain yield would be expected. Several

workers have reported an interaction effect of seed rate and nitrogen

though in all cases this has not reached a significant level. (Holliday,

I960; van Dobben, 1966; Bengtsson, 1972; Holmes et ah, 1971).

In the absence of lodging this interaction is positive but when lodging

occurs the interaction is negative. (Holliday, i960)

The arrangement of the plants in the crop has been shown to have an

effect on the response to increase in crop density. (Holliday, 1963;

Angus et al., 1972; Donald, 1963; Moffat and Widdowson, 1967; van

Dobben, 1966; Holmes et al., 1971). In all cases a yield advantage
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has been achieved with narrow row spacing of barley when compared

with a wider row spacing as this allows the plants to utilise the

space around them more effectively. Yield advantage has however

been slight when compared to the effects of increased plant density

and the addition of more nitrogen.

Finally varieties respond differently to changes in the crop environment

caused by such changes as seed rate and nitrogen manipulation.

Varietal characteristics such as propensity to tillering, leaf width,

leaf inclination, plant height and straw strength affect the way in

which a variety will respond to an increased competitive stress. As

an example, Angus et al. (1972) compared two barley varieties of differing

leaf inclinations at two densities. One variety had erect leaves and

responded to an increase in density by an increase in dry matter

production and yield while the other variety which had long lax

leaves responded with a decrease in dry matter production and grain

yield. Watson et al. (1958) examined the difference between old and

new varieties of barley and found that the new varieties appeared to

be more efficient in photosynthesis and partitioned their assimilates

more efficiently than the older varieties. In addition the new

varieties did not lodge while the old varieties did. The net result

was a lQ-ljjo higher yield in the new varieties, illustrating the extent

to which the variety is responsible for differences in yield when the

husbandry treatments are the same.

In light of the increasing use of short statured varieties of barley

(Berbigier, 1968) a fuller understanding of the response of such

varieties to changes in husbandry practice would be desirable. In

addition, should the reaction of such varieties be markedly different

in response to husbandry treatments, modification of the variety
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testing procedures may also be required to avoid a bias against

varieties of a different type.

v Influence of the environment and the weather on the growth of

barley.

The growth and development of the crop in the field is dependent on a

number of stimuli, from the environment, e.g. photoperiod and is also

dependent on the environment for the provision of essential elements

for its growth such as light, moisture and a suitable temperature.

These factors which influence the plant growth are largely outwith the

control of the farmer though irrigation and shelter from the wind can

be provided to some effect (Milthorpe, 1955)

Throughout the growing season the environment imposes limitations on

the growth and development of the crop. (Monteith, 1966, i) At

germination the processes of imbibition and growth are restricted

by temperature. At temperatures between 15° and 25° C germination

proceeds at its fastest while at temperatures below 3° C the process

stops completely (Monteith, 1966, i). The effect of low temperatuits,

i.e. temperatures in the range 10°-5^ C, at this stage however does

not appear to be particularly damaging as within this range germination

proceeds at a reasonable pace (Smith. 1967).

During the next phase of growth, the leaf expansion phase, the

temperature again exercises the greatest influence through the soil

temperature. This must be adequate to enable the root activity,

essential for the provision of nutrients to the expanding leaves,

to be sustained. Humidity also influences the plant development

at this stage as a good flow of water through the plant is essential



17

for the provision of nutrients but if transpiration is too rapid,

water stress in the leaves becomes limiting and leaf expansion

is slowed (Monteith, 1966, i).

The process of photosynthesis is essential to the production of the

plant but is very much at the mercy of the elements. The most important

factors of the environment on this process are the concentration of

carbon dioxide in the atmosphere near the leaves and the incident light.

In bright radiation the carbon dioxide becomes limiting and the

radiation is in part wasted. A similar situation develops at low

temperatures (i.e. below 10° C) when the permeability of the leaves to

carbon dioxide is reduced. (Monteith, 1966, i)

The process of respiration is also affected by the environment in that

it is increased with increase in temperature and more of the carbo¬

hydrate produced by the photosynthesis of the leaves is lost to the

production of the crop product, i.e. the grains in barley. Respiration

is also dependent on translocation and thus on the supply of moisture

(Monteith, 1966, ii).

The initiation of the flowering phase and the rate of development in

this phase are dependent on photoperiod and temperature (Monteith,

1966, ii). The final phase of growth when the grains are filling is

dependent for high production on the activity and the duration of the

activity of the photosynthetic area provided by earlier growth.

(Thorne, 1965) High temperature affects the duration of this phase

by hastening senescence (Thorne, et al., 1967) and moisture shortage

at this stage has a similar effect. (Black and Watson, i960).
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When the effect of the weather on the production of the barley crop

as a whole is examined the optimum season for barley yield would

appear to he one in which a cool spring (cool air temperature)

preceeded by low winter rain and a warm dry period for sowing is

followed by a moderate rainfall during the shooting period and dry

periods interspersed with light rain during the reproductive phase.

There should he abundant sunshine throughout (Smith, 1967). This

conclusion was reached from a wide ranging study of the conditions

found in a large number of field experiments.

The influence of the environment is thus considerable and further

complicates the assessment of the production of different varieties

under different husbandry treatments.

2C Materials and methods. An experiment was carried out in

1970 and repeated, with minor adjustments, in 1971 in which five varieties

of barley of different stature were compared at five seed rates and under

five rates of nitrogen. The varieties which were studied in these

experiments were;

1970 26l/34 (Dwarf B) from Guiness barley research, Warminster.

6262Co/N/44 (Dwarf A) Dwarf from P.B.I. Aberystwyth.

Golden Promise a semi-dwarf variety in commercial use.

Zephyr a medium straw length variety in commerial use.

Clermont a tall "six-row" variety in commercial use.

1971 The first four named above were grown in the second year but

Clermont was replaced by Julia a medium straw length variety in

commercial use.

The design of the experiment was a randomised block design with the

three way interaction confounded to allow a block size of 25 plots.

There were two replicates of the experiment.
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The seed rates in both years were;

- 45 kg/ha.

S3 - 157 "
S2 - 101 kg/ha.
S4 - 213 "

Sc - 269 "5

The nitrogen rate was increased in the second year as shown below.

This change was made as there was no lodging in the first year even at

the highest level of nitrogen. The rates of the two years were;

The experiments were carried out on the farms of the Edinburgh School

of Agriculture.

In 1972 the experiment was carried out on Saltcoats Farm Gullane. The

object was to test the response of the varieties under conditions of

water shortage and the Gullane farm is on very sandy soil which was

thought to be suitable for this purpose. Only three of the varieties

used in previous years were used at Gullane. These were; Golden

Promise, 6262Co/n/44 (Dwarf A) and Zephyr. Three nitrogen rates were

applied. The design was completely randomised with six replicates.

No zero nitrogen rate was used as the inherent fertility of the sandy

soil was thought to be too low to promote adequate growth to prevent

such a treatment attracting animal pests.

1970 NQ - 0 kg/ha. 1971 NQ - 0 kg/ha.
N1 - 44 «
N2 - 88 "

N1 - 38 "
N2 - 75 "

n3 - 113 "
n4 - 151 "

N - 132 "
j

n4 - 176 »

The nitrogen rates used were;

- 50 kg/ha, N2 - 100 kg/ha. N3 - 150 kg/ha.
All three experiments were sown with a commercial Norsted seed drill in



20

plots 2.6 m wide and approximately 16.5 m long. The drills were

11.5 cm apart. The experiments of 1970 and 1971 were grown on a sand

loam gley soil of the Macmerry series (Soil Survey of Scotland) and

that of 1972 on a loamy sand soil.

The sowing dates, dates of nitrogen application and dates of weed

control sprays were;

1970 1971 1972

Sowing date 3 April 14 April 16 March

Nitrogen applied
Nitro-chalk (21$N) 18-19 May 12-13 May 13 April

MCPA Spray None * 3 June 25 April

* Some plots were hand weeded in 1970.

No phosphorus or potassium was applied in the first two years hut in

1972 200 kg/ha of a 0-20-20 compound fertiliser were sown on the

experimental area the day before sowing.

In the first year no anti-mildew treatment was applied but in 1971 the

experiment was sprayed with 'Lucel' on the 28 June. In 1972 the

seed was treated with 'Milstem' before sowing as protection against

mildew as the variety Golden Promise is very susceptible to this

disease. Emergence counts were made on three blocks in 1970 and on

one whole replicate in 1971 on the 21 May and the 11-12 May respectively.

A mildew assessment was made in 1970 and also in 1971 before the spray

was applied. Ear emergence dates were scored in 1970 and 1972.

Height of straw was measured by sighting each year.

A sample of all the plants enclosed by a frame of area 3715 sq cm was

taken from one replicate of the experiment in 1970 and 1971• Yield

component measurements were made on this sample. These were;
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Number of plants 1970 )

Number of tillers/plant 1970 )

Number of grains/ear 1970-71

Weight of 1000 grains 1970-71

Dry weight of straw 1970-71

Dry weight of grain 1970-71

Nitrogen content of straw 1970-71

Nitrogen content of grain 1970-71

The weight of grain of four
size categories 1970

Number of tillers 1971

No comparable sample was taken in 1972 but the weight of 1000 grains

was determined. Plot maturity varied considerably in the first two

years of the experiment as a result of the different treatments

applied and harvesting was thus staggered and only plots which were

deemed ripe were harvested on several dates after 10 September 1970 and

7 September 1971• Maturity was more even in 1972 so all plots were

harvested on 21 August.

2D i Besults of barley experiments 1970-72.

The overall mean yield of the three years' experiments were

1970 - 3777 kg/ha (4311) 1971 - 3161 kg/ha (3614) 1972 - 6288 kg/ha

(6288). The mean yield of the three varieties common to all years are

in brackets.

The difference in yield between the yeas is considerable, reflecting

the large differences between the seasons and/or the site in which

the crops were grown. Weather data for Bush Estate and Dunbar are

presented (Appendix l) which will be used to discuss probable causes

of differences in both yield and the yield components. In the succeeding
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discussion of the results only effects which were significant at the

95°/° level and above will be discussed.

D ii Response of yield to Nitrogen.

Yield response to nitrogen differed in the first two years of the

experiment (Tables 2:1; 2:2 and Fig 2:l). In the first year the

highest yield over all varieties and all seed rates was achieved at

113 kgN/ha. Yield rose sharply with the first 38 kgN/ha after which

there was a slight further rise to 113 kg/ha. A slight decline was

noted between 113 and 151 kgN/ha. In 1971 the mean yield increased

between 0 kgN/ha and 44 kgN/ha but with further increase in nitrogen

the yield declined almost to the level found in the absence of nitrogen.

The yield increased very steeply to 150 kgN/ha in the 1972 experiment

with no decline in the response apparent. The response in 1972 was

very much greater than in the previous years (Table 2:3).

Diii The response of yield to seed rate.

The effect of change in seed rate in 1970 and 1971 when this factor was

examined was similar (Tables 2:1; 2:2; Fig 2:3). The highest yield

was achieved at 213 kg/ha though there was little difference between

yield at 157 kg/ha and 213 kg/ha. In 1970 there was a slight decline

in yield at the highest seed rate 269 kg/ha which was not found in

1971. Higher seed rates than the maximum of 269 kg/ha of this

experiment seem to be required to achieve a decline in yield in response

to seed rate, in agreement with the findings of Holliday (i960).

D iv Response of yield to variety.

The order in which the varieties were placed in terms of yield differed

between the first two years of the experiment as shown. (Tables 2:1-3)
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Chapter 2 Where Standard Errors (SE) are quoted the first figure
is for comparisons within the Table and the second for

comparisons of mean.

Table 2:1 2-way Table of yield 1970 (Kg per Ha).

a. Variety x Nitrogen
Dwarf A Dwarf B Zephyr Golden

Promise
Clermont Mean

No 4245 4099 4000 4044 3544 3986

*1 4204 4484 4413 4356 3941 4280

N2 4138 4309 4468 4506 4130 4310

N3
N4

4186 4287 4592 4542 4080 4337

4243 4157 4470 4262 4098 4246

Mean 4203 4267 4389 4342 3958 4232

b. Variety x Seed Rate

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

si 3290 3329 3457 3454 3491 3405

4049 4211 4355 4364 3837 4163

4403 4359 4723 4606 4288 4476

»i! 4740 4723 4826 4617 4113 4604

S5 4533 4714 4582 4669 4064 4512

Mean 4203 4267 4389 4342 3958 4232

c. Seed rate x Nitrogen

S1 S2 S3 S4 S4 Mean

No 3444 4000 4234 4085 4168 3986

N1 3481 4208 4655 4521 4533 4280

*2 3520 4165 4498 4882 4484 4310

N3 3447 4067 4547 4945 4680 4337

*4 3130 4374 4444 4586 4696 4246

Mean 3405 4163 4476 4604 4512

SE 135.2 60.38
Significant effects.

NL ** NQ **

SL ** SQ **
cv **

N x S *
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Table 2:2 Two-way Tables of Yield 1971

a. Variety x Nitrogen

Dwarf A Dwarf B Zephyr
Golden
Promise

Julia Mean

No 3411 3176 3216 3134 3355 3259

N1 4126 4059 3622 3886 3874 3914

N2 4118 3402 3606 3874 3594 3719

N3 3623 3227 3532 3908 3305 3519

N4 3275 3501 3302 3570 2872 3304

Mean 3711 3473 3456 3674 3400 3543

b. Variety x Seed Rate

Dwarf A Dwarf B Zephyr
Golden
Promise

Julia Mean

S1 3088 3037 2892 3179 2899 3019

S2 3586 3250 3255 3726 3412 3446

S3 3844 3647 3749 3810 3607 3732

S4 3893 3670 3661 3920 3664 3762

S5 4143 3761 3722 3738 3417 3756

Mean 3711 3473 3456 3674 3400 3543

c. Seed Rate x Nitrogen

S1 S2 S3 S4 S5 Mean

No 2993 3173 3376 3260 3490 3259

N1 3085 3857 4118 4249 4259 3914

N2 3207 3496 3894 4101 3895 3719

N3 2970 3389 3689 3745 3805 3519

N4 2839 3316 3581 3453 3331 3304

Mean 3019 3446 3732 3762 3756 3543

SE 119.36 53.38

Significant Effects NQ** NC** N.*
A

SL**
CN*

SQ**
NQ x SL** CV x NL**
rv X NO* N x CV*



Table 2:3 Two-way Table

Variety x Nitrogen
Dwarf A

N1 5027

*2 6263

N3 6986
J

Mean 6092

25

of Yield 1972

Zephyr Golden
Promise

Mean

5482 5507 5339

6782 6028 6357

7107 7411 7168

6457 6516 6288

Significant effects. N **



Figure 2:1 Effect of Nitrogen on Yield
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Figure 2:2 Effect of Nitrogen on Tiller Number
and number of grains/ear
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Figure 2:3 The Effect of Seed Rate on Yield,
1000 gr wt and Grain Number/m^
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Figure 2:4 The Effect of Seed Rate on

Tiller Number and Grain Number per ear
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The degree of lodging in the second year could account for part of the

change in the yield placings in that Zephyr showed fairly extensive

lodging in 1971

Lodging (1971) Julia Zephyr Golden Dwarf A Dwarf B
Promise

No. plots slight
lodging 962 - -

No. plots exten¬
sive lodging 5 3 - - -

Score made on 25 plots per variety.

In 1972 differences in yield between the varieties were nonsignificant.

D v Interactions of Nitrogen, seed rate and variety on yield.

The interaction of nitrogen and variety (l97l) could have either of two

explanations. (Table 2:2) Firstly, the varieties can he divided

into two types in terms of their response to increased nitrogen.

Zephyr and Golden Promise were found to sustain their peak level of

yield over the range 44 to 132 kgN/ha. before a sharp decline at the

highest rate of nitrogen. Dwarf B and Julia had a peak of yield at

44 kgN/ha which was followed by a decline over the next two rates of

nitrogen, Dwarf B showed a recovery at 176 kgN/ha however. The

fifth variety, Dwarf A, was intermediate in the duration of the peak

yield with increasing nitrogen as it maintained the peak yield over

the range 44 to 88 kgN/ha before declining. The second explanation

could be that the two varieties, Julia and Dwarf A, had a lower yield

at 176 kg/ha than with no nitrogen, while the other three varieties

did not show such an extreme decline in yield at the highest rates of

nitrogen. Thus no clear cut distinction can be drawn between the

dwarf and the tall varieties in their response, in yield, to the treat¬

ments applied in this experiment.
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Figure 2:5 Effect of Seed and Nitrogen Rate on Yield of Barley (1970)
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Yield of Barley (l97l),6 Effect of Seed and Nitrogen rate on Yifigure 2.o
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The nitrogen seed rate interaction is different in the two years.

(Figs 2:5-6; Tables 2:1-2). In 1970 the highest response to nitrogen

fertiliser was found at high seed rates and the greatest response to

seed rate at high N rates but in 1971 the response to seed rate was

greatest at intermediate levels of nitrogen, though the highest nitrogen

response was still at the highest level of seed rate.

D vi The effect of nitrogen on yield components.

The main effects of nitrogen in the two years are shown in Table 2:4

Table 2:4 Effect of nitrogen on yield components.

1970

Nitrogen No N1 N2 N3 N4 Mean SE Signif

KgN/ha 0 38 75 113 151

Grain/ear 22.55 23.22 22.74 23.80 24.12 23.29 .459 Lin *

Tiller No 216.8 249.9 274.2 271.3 260.1 254.5 9.15 lin **

No grains/sq m 13160 15620 16780 17380 16890

Straw wt. (g) 147.0 165.9 169.4 184.0 179.4 169.2 5.365 lin **

200 gr wt. (g) 6.96 6.49 6.46 6.09 6.02 6.41 .106 lin **

Gr/straw rat .964 .915 .901 .828 .821 .886 .033 lin **

°/o gr N 1.77 1.90 2.01 2.18 2.26 2.02 .040 lin **

°/o straw N .68 .82 .95 1.13 1.26 .97 .040 lin **

Sample grain
yield (g) 137.4 146.6 149.6 149.2 146.0 145.8 5.038 NS

mi

Nitrogen No N1 N2 N3 N4 Mean SE Signif

KgN/ha 0 44 88 132 176

Grain/ear 19.73 19.98 19.36 19.62 19.20 19.58 .464 NS

Tiller No 183 211 205 209 203 202 6.3 quad *

No grains/sq m 9720 11350 10680 11040 10490

Straw wt (g) 173.1 194.4 205.7 206.8 210.4 198.1 5.85 lin **
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Nitrogen No N1 N2 N3 N4 Mean SE Signif

KgN/ha 0 44 88 132 176

200 gr wt (g) 6.33 5.88 5.66 5.67 5.27 5.76 .084 lin ** cub

Gr/straw rat Oin• .527 .432 .453 • 00 .477 .0175 lin ** 4

gr N 1.84 1.93 2.01 2.05 2.18 2.00 .031 lin **

°/o straw N .64 .82 1.08 1.08 1.30 .98 .042 lin **

Sample grain
yield (g) 99.6 102.1 88.8 93.1 80.0 92.7 3.91 lin **

1222 N

N1

N

N2

N

N3
KgN/ha 50 100 150

200 gr wt (g) 7.17 6.98 6.86 **

°/o grain N 1.48 1.68 1.94 **

In 1970 a distinction was made between the number of tillers per plant

and the number of plants. Distinction between a tiller and a plant

at this stage was very difficult and the results are therefore suspect.

The total number of fertile ears calculated from these two measures

will however be accurate and directly comparable with the results of

1971* The number of ears in 1970 (254.5) was very much greater than

in 1971 (202) measured as the total number on the sample area of

3715 sq. cm.

The straw weight in 1971 was greater than in 1970 though all other yield

components were lower in 1971•

The grain weight of the sample, a comparable parameter to the grain

yield, was only taken on one replicate of the experiment and was taken

from a small sample area (3715 sq. cm). It was therefore subject to

a greater experimental error than the total yield. In 1970 the sample

yield followed the same pattern as the total yield in response to
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increased nitrogen (cf. Table 2:4 and Table 2:l) but in 1971 the

yield at high levels of nitrogen dropped below that with no nitrogen

which is a more exaggerated response than that recorded for the total

yield (cf. Tables 2:4 and 2:2).

As a result of the changes in grain and straw weights the grain to

straw ratio decreased in value in both years with increase in nitrogen.

Values in 1970 were much higher than in 1971 (Table 2:4).

D vii The effect of seed rate on the yield components.

The main effects of seed rate are shown in Table 2:5. The yield components

measured were the same as those of the previous section though the seed

rate was only varied in the first two years of the experiment.

Table 2:5 Effect of seed rate on the yield components measured.

im

SignifSeed rate S1 S2 S3 S4 S5 Mean SE

Kg/ha 45 101 157 213 269

Grain/ear 27.93 24.69 23.48 21.55 18.79 23.29 • 459

Tiller No 172.3 228.4 251.7 303.0 316.8 254.5 9.15

No grains/sq m 12950 15180 15910 17580 16020

Straw wt (g) 178.9 170.2 162.8 171.0 162.9 169.2 5.365

200 gr wt (g) 6.06 6.34 6.62 6.56 6.49 6.41 .106

gr/straw rat .680 .838 • VO ►P- 00 .993 .969 .886 .033

c/o gr N 2.18 2.04 1.99 1.93 1.98 2.02 .040

"i'o straw N 1.20 1.05 0.89 0.84 0.86 0.97 .040

Sample grain

lin ** quad **

yield 114.4 136.7 153.4 168.6 155.7 145.8 5.038 lin ** quad **
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1971

Seed rate S1 S2 S3 S4 S5 Mean SE Signif

Kg/ha 45 101 157 213 269

Grain/ear 22.94 20.81 19.09 18.02 17.02 19.58 .464 lin **

Tiller No 149 176 218 230 238 202 6.3 lin ** quad

No grains/sq m 9200 9860 11200 11160 10900

Straw wt (g) 194.1 189.2 207.2 202.3 196.9 198.1 5.85 NS

200 gr wt (g) 6.03 5.81 5.85 5.62 5.51 5.76 .084 lin **

Gr/straw rat .436 .475 .499 .501 .473 .477 .0175 quad **

°/o gr N 2.05 2.02 1.98 .2.02 1.95 2.00 .031 NS

°/o straw N 1.08 1.05 O.96 0.91 0.92 0.98 .042 NS

Sample grain
yield (g) 84.2 86.6 100.9 99.3 92.7 92.7 3.91 lin * quad *

The pattern of the sample grain yield was similar to the grain yield

of the whole plot except that the decline at the highest seed rate was

more marked in the sample.

The response of 1000 grain weight differed in the two years of the

experiment (Table 2:5 and Fig 2:3). In 1970 the weight of each grain

increased with seed rate up to 157 kg/ha before a slight decline but

in 1971 the weight declined throughout the range of seed rates as seed

rate increased.

Dviii Interaction of seed rate and nitrogen on yield components.

In 1970 this interaction was not significant in any of the yield components

measured but in 1971 several interactions were significant which will be

described here.

The number of fertile tillers responded by increasing with increase in
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nitrogen at low seed rates but with higher seed rates the response

to nitrogen was reduced with the peak tiller number achieved with

low nitrogen usage. (Appendix Table 2:8). Similarly with 1000

grain weight the response to increased nitrogen was greater at low seed

rates than at high (Appendix Table 2:10) though here the response

to nitrogen was a decline in 1000 grain weight. The response to

seed rate is similarly greatest at low levels of nitrogen with the

reduction in 1000 grain weight being greater at the lower nitrogen

rates.

Straw weight behaved differently from the two components above as the

response to nitrogen was not so great at low seed rates as it was at

high. The straw weight at different levels of nitrogen fluctuated

over a wide range in response to seed rate changes but not in any

consistent fashion. The response to seed rate as a main effect was

not significant due to this fluctuation* (Appendix table 2:9).

D ix Response of the yield components to variety.

Some of the varieties used in the experiments were changed after each

year. Clermont and Julia were each grown for only one year and

Dwarf B only for two. Clermont, the six-row variety, behaved in a

different way to the other varieties in terms of yield components.

The number of grains per ear was very much greater than the two-row

varieties while the number of ears per sample area was very much less

and the yield was smaller. As this variety was so different the

variety sum of squares was broken down into three parts in 1970

i.e.l.variation between two and six—row varieties.

2.variation between tall and dwarf two-rows

3. variation within tall and dwarf varieties.

Comparison of Julia with the other varieties is only possible in 1971



38

and it cannot be compared between years. Thus Dwarf A, Zephyr, Golden

Promise and Dwarf B will be the varieties discussed at greatest length

in this section and they will be compared over the two years in which

the yield components were measured.

In 1970 Clermont differed from the other varieties in grain number

per ear. In 1971 this component was not significantly influenced by

variety (Table 2:6).

Table 2:6 The main effect of variety on the yield components.

1970

Variety Cler Zephyr G.P. A B Mean SE Signif

Grain/ear 37.17 19.85 19.00 21.45 18.97 23.29 .459 **

Tiller No 123.4 263.5 287.6 277.5 320.3 254.5 9.15 **

Straw wt (g) 146.9 193.8 151.7 179.6 173.7 169.2 5.365 **

200 gr wt (g) 6.89 7.12 6.26 5.89 5.86 6.41 .106 **

Gr/sr rat r-00• tnCO• .978 .855 .915 .886 .033 *

°/o gr N 2.11 1.97 2.05 2.00 2.00 2.02 .040 NS

°/o straw N .79 .92 1.02 1.11 .99 .97 .040 *

Sample
Grain yield (g)122.3 159.8 148.7 146.8 151.2 145.8 5.038 **

1971

Variety Julia Zephyr G.P. A B Mean SE Signif

Grain/ear 20.05 19.00 19.17 20.39 19.28 19.58 .464 NS

Tiller No 181 162 203 231 234 202 6.3 *-*

Straw wt (g) 217.9 185.4 175.8 210.2 201.0 198.1 5.85 **

200 gr wt (g) 6.10 6.37 5.54 5.58 5.93 5.76 .084 **

Gr/str rat .439 .444 .503 .505 .493 .477 .0175 *

°/o gr N 2.06 1.96 2.03 1.95 1.99 2.00 .031 NS

°/o straw N .91 .95 .90 I.06 1.10 .98 .042 *

Sample
Grain yield(g) 94.8 8O.9 87.3 104.2 96.5 92.7 3.91 *
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1972

Variety Julia Zephyr G.P. A B Mean SE Signif

200 gr wt 7.20 6.56 7.24 - 7.00 **

gr N 1.78 1.68 1.62 - 1.69 **

In both years Dwarf B gave the greatest number of tillers and Zephyr

the least. In all varieties the number was much less in 1971 than in

1970 but the drop between years was the least in Dwarf A which meant

that Dwarf A nearly equalled Dwarf B in this parameter in the second

year (Table 2:6). The straw weight was greater in all varieties except

Zephyr in 1971. Dwarf A and B both had a greater weight of straw

in 1971 than Zephyr, a reversal of the position in 1970. G.P. had the

lowest straw weight of the varieties in both years.

The grain yield of the sample was comparable to that of the plot in

1970 in that the relative yields of the varieties were similar except

that Dwarf B gave a strangely high sample yield. This could have been

a result of the heterogeneous nature of this variety as it had a large

number of late maturing tillers which may have contributed to the yield

in the sample but would not in the main plot as the small grains would

be cleaned out in the combine harvester. In 1971 also, Dwarf B and

Julia gave a surprisingly high sample yield. The same explanation

could apply to Julia which had a wide range of maturity of the ears

of the sample due in part to extensive lodging slowing maturity. Golden

Promise on the other hand had a relatively lower sample yield than the

yield from the whole plot but this variety was very prone to grain shed¬

ding during handling of the sample which could account for the smallness

of the sample yield. Apart from these slight differences the yield of

the sample reflected the yield of the whole plot with reasonable

accuracy (cf. Table 2:6 and Table 2:2).
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The resultant grain to straw ratio (Table 2:6) showed a large change

in the two years. The ratio was much reduced in all varieties in

the second year as grain yield dropped and straw yield increased in

1971. Golden Promise had the highest ratio in 1970 with the Dwarfs

A and B well below and Zephyr with a still lower value. In 1971

however, while Zephyr was still the lowest, the other three varieties

common to the two years all had comparable values in this ratio

(Table 2:6).

D x The interaction of cultivar with nitrogen and with seed rate.

The seed rate/cultivar interaction on the number of grains per ear

was the only one to be significant in 1970. Here again the difference

between Clermont and the two-row varieties was the probable cause of

this interaction being significant.

In 1971 however a number of interactions were significant. In tiller

number two varieties, Dwarf A and Golden Promise gave a considerable

positive response to increased nitrogen but none of the other varieties

gave such a response. (Appendix Table 2:8). Julia showed no response

to nitrogen in straw weight either,while all the other varieties gave

a considerable increase in this component with increased nitrogen

accounting for the significance of the cultivan- quadratic nitrogen

interaction on straw weight (Appendix Table 2:9).

Julia and Zephyr had a much more marked negative response to seed rate

in 1000 grain weight than the other three varieties (Appendix Table 2:10).

Finally Julia gave a lesser response» than the other varieties!in

establishment of seed,to increased seed rate (Appendix Table 2:13), i.e.

emergence percentage declined more in Julia.

2E Discussion of barley results Before a meaningful
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discussion of the effects of husbandry treatments,in the different

seasons,on the growth of the varieties under examination can be

undertaken,the influence of the weather on the three season's crops,

must be examined (Appendix l). Adverse weather conditions at particular

stages in the crop growth cycle can he very damaging to the yield

(Monteith, 1966, i). The components of yield which were measured

i.e. grain number per ear, ear number per unit area and the weight

of the grains are determined at different stages in the growth of the

crop. The first two of these are determined early in the season

and combine to give the number of grains per unit area to the crop.

Tillers which are likely to become fertile and contribute to yield

are formed early while later formed tillers are unlikely to mature.

The weather in the three seasons of the experiment at the tiller-

forming stage differed. In 1971 conditions were best of the three

years in that the weather was dry and sunny after a wet spell which

would provide adequate moisture. 1970 and 1972 had less sunshine

but other conditions were adequate. Shortly after the tillers are

initiated the grains are initiated on the ears of the tillers and the

grain number per ear is determined. This stage just preceeds extension

of the stem and ear emergence. Poor conditions at this stage can

result in whole ears being infertile as well as reduced numbers of

grains on the fertile ears. Conditions were again adequate in 1970

and 1972 but 1971 was lacking in sunshine at this stage (June) and

temperatures were lower than average. The next important period in

the growth cycle is the period from anthesis to maturity when the grain

weight is determined. 1972 had the best conditions of all three years

during this phase having plenty of sunshine. Sunshine in the other

two years was below average though particularly so in 1971. These

seasonal differences are apparent in both the yield and the yield

components of the three years.



42

Nitrogen applied to the barley crop in the early season has been shown

to promote the development of tillers (Aspinall, 1961) and thus increase

the number of grains per unit area and increase yield. In these

experiments yield was increased with the first rate of nitrogen in

1971, with the first three rates in 1970 and throughout the range of

nitrogen usage in 1972. The increase in the number of grains per

unit area by an increase in tiller number is not automatic but depends

on the maintenance of a constant number of grains on each of the larger

number of ears. Competition between tillers for light and nutrients

becomes more intense as their number increases and grain number per

ear is likely to be affected. Tiller number increased with the first

two increments in nitrogen in 1970 and with the first in 1971 but

numbers of grains per square metre increased over a greater range in

1970.

No. grains/m^
1970 13160 15620 16780 17380 16890

1971 9720 11350 10680 11040 10490

°/o redn between years 26 27 36 36 38 100 x (1970'

°/o redn in tiller no. 16 16 25 23 22 1971) 1970

"/> redn in gr/ear 13 14 15 18 20

Thus although conditions appeared better for tiller production in

1971 the tiller number was reduced by harvest time and the number of

grains per square metre was also reduced both by reduction in tiller

numbers and by reduction in the number of grains per ear. Conditions

at grain formation in 1970 were better than in 1971 so the reduction

in grain number per ear in the latter is understandable. The reduction

in tiller number must have been the result of either the death of a

large number of the tillers produced or a lower number produced in

the first place.
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The reduced response to nitrogen in tiller number in the second year

would thus have been due to competition for necessary factors for tiller

production, other than nitrogen. Similar competitive stresses acted

on the crop in 1970 also hut greater nitrogen utilisation was possible

before the other constraints became limiting as the peak tiller number

was maintained at a higher level over a wider range of nitrogen usage.

Straw weight was also measured in both years and was greater in 1971

than in 1970 although fertile tiller number was less. This suggests

that, rather than a cessation in the production of tillers in 1971»

there was a reduction in the number which were fertile of a larger

number produced. With a large number produced the competition

between tillers would become intense at a lower nitrogen rate and

fertile tiller response to nitrogen would cease at a lower nitrogen

rate which was the observed response when compared with 1970.

Competition would also be more intense at the grain initiation stage

which would result in a reduction in grain number per ear which was

again the observed response.

The effect of these changes on the number of grains per square metre

has been shown (Table 2:4). In 1970 response to nitrogen was sustained

up to 113 kgN/ha but in 1971 it was only sustained to 44 kgN/ha due

to greater inter-tiller competition from infertile tillers.

The other principal determinant of yield is the weight of each grain.

This is determined by the growth in the period between anthesis and

maturity. Grain weight was less in 1971 than in 1970 and this would

be due principally to the poorer weather during this growth stage in

1971 and possibly to continued competition from the infertile tillers.

Grain weight in 1972 was very much greater than in either of the
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previous years reflecting the improved post-anthesis conditions.

Increased nitrogen led to a reduction in grain weight which balanced

the increase in grain number due to competition between grains for

nutrient. The yield, being the product of grain number and grain

weight, gave a response to nitrogen which was tempered by the

competitive effects described in that the response was sustained

to a high level in 1970 as the grain number increase more than

balanced the reduction in the grain weight. In 1971 the grain

number did not increase over such a wide range of nitrogen rates,

the grain weight again declined with increased nitrogen and so the

yield declined after the first rate of nitrogen. Lodging at high

rates of nitrogen in 1971 would also have the effect of accelerating

the reduction in the grain size which would reduce the yield further.

Lodging 1971 No N1 N2 N3 N4

No plots, extensive lodging 0 0 0 2 6 25 plots per

No plots, slight lodging 0 1 2 4 2 nitrogen

Total no. plots lodged 9 1 2 6 8 level.

A reduction in the grain to straw ratio with increase in nitrogen was

noted in both years. At all rates of nitrogen the ratio was much

less in 1971 than in 1970 reflecting the larger straw weight coupled

with the smaller grain yield in the second year. The efficiency of

the straw in producing grain was thus much less in the secondyear,

partly due to the lack of sunshine during the grain filling stage of

growth and partly, it is proposed, through an increase in the

competition experienced from unproductive tillers.

The yield in 1972 was much higher than in either of the previous years

and showed little reduction in response to nitrogen at the highest rates.
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Fertility of the soil, on which this crop was grown, was thought to be

less by its sandy nature. This hypothesis, was borne out by the

magnitude of the response to nitrogen. The season, in which the crop

was grown, also had a profound hearing on the yield increase over the

previous years, as the weather throughout closely matched the ideal

conditions described by Smith (1967) (sect. 2B v). The object of growing

the crop on a light soil, which was to study the effect of moisture

stress in the vegetative phase, was defeated by the moist spring of

1972. A little lodging was noted in this experiment at the highest

rates of nitrogen. Without knowledge of the yield components no

further conclusions can be drawn about the growth of the crop in 1972.

The growth of the two crops (1970 and 1971) which was described in the

discussion of the effect of nitrogen is applicable to the discussion

of the effect of seed rate on the crop growth. Peak yield was achieved

at the same seed rate in both years namely at 213 kg/ha. Yield increased

rapidly with the first two increases in seed rate after which the

response to increased seed rate was reduced,especially in 1971# (Tables

2:1 and 2:2)

In both years, the tiller number increased with the increased seed rate and

the number of grains per ear declined. The resultant number of grains

per unit area increased to 213 kg/ha in 1970 and to 157 kg/ha in 1971

(see below).

No. grains per sq. metre S,_

1970 12950 15180 15910 17580 16020

1971 9200 9860 11200 11160 10900

Thousand grain weight was the only yield component to respond differently

in the two experiments. In 1970, thousand grain weight increased with

seed rate to 157 kg/ha before declining, while in 1971» the thousand

grain weight declined throughout the range of seed rates. Neither
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the increase in thousand grain weight in 1970, nor its decline in

1971 were large responses, whereas, the changes in the number of grains

per ear and in tiller number were considerable. These three components

of yield are all interdependent and are also dependent on the weather.

The difference in the response in 1970, from the more usual response

of thousand grain weight to change in population (Willey and Holliday,

197l) observed in 1971, was probably the result of a small change in

the relative numbers of tillers and grains on each tiller. Such changes

would occur in response to population changes which altered maturity

dates, resulting in some treatments experiencing slightly different

conditions at the critical stages in their development.

The number of fertile tillers, in 1971, was much less than in 1970 but

straw weight was greater. Competition was as intense in the second

year, however, as shown by the lower grain number per ear and the lower

grain weight. This supports the theory proposed earlier that there

were a large number of infertile tillers produced in the second year,

which increased competition.

In 1971, lodging at the highest seed rates would also be responsible for

the earlier reduction in the response, of yield, to increased seed rates.

No. of lodged plots 1971 S2 S4 S5
Extensive 0 1 1 3 3 of 25 plots

Slight 1 0 2 2 4 per seed

Total 11357 rate.

The number of plants established, per seed sown, has been shown to

decrease as the seed rate increases (Holliday, I960; Oswald, 1970;

Holmes et al, 1971), due to some form of competition between the seeds.
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In this experiment however, the effect of seed rate on establishment,

was only slight in 1970 and the opposite effect was observed in

1971» i.e. emergence per seed sown increased as seed rate increased.

Whether there is competition between seeds at emergence is doubtful.

No. of plants emerged
per Kg seed sown per Ha.

S1 S2 S3 S4 S5
1970 19.6 19.3 19.7 18.6 18.9

1971 17.6 17.0 17.0 17.6 17.5

Small differences, at this stage of growth, are unlikely to have an

effect on the later growth of the crop however, as differences in the

degree of tillering can quickly compensate for small differences in

emergence.

The interaction of nitrogen and seed rate on yield (Tables 2:1 and 2:2),

which was significant in both years, was the same interaction reported

by Holliday, (i960) and Holmes et al. (1971). It is a positive

interaction of nitrogen and seed rate, i.e. the response, of yield,

to increased nitrogen, is greater at high seed rates than at low. A

similar positive interaction between nitrogen and seed rate was noted

in straw weight in 1971. This could be due to the better moisture

retention properties of a dense crop (high seed rate), allowing greater

utilisation of the nitrogen applied to the crop.

A negative interaction, between nitrogen and seed rate, was recorded in

the same year, in both fertile tiller number (Appendix Table 2:8)

and thousand grain weight (Appendix Table 2:10). This would be the

expected response, as, at low seed rates, the competitive effects of

increased nitrogen would not affect these components until higher

rates were used and thus, the response to increased nitrogen would be

greater at low seed rates.
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The varieties grown varied in stature and growth habit.

Height (cm) 1970 1971 1972
Cultivar

Clermont 91.4 — —

Julia - 94.0 -

Zephyr 86.1 91.7 85.9

Golden Promise 74.3 81.6 71.7

Dwarf A 77.0 75.4 65.8

Dwarf B 71.4 73.3 —

Clermont and Golden Promise are both very erect cultivars, Julia and

Zephyr both grow with an erect habit but their heads droop near

harvest time, while the two dwarf varieties have a rosette habit for

the early part of the season before throwing up flowering heads.

The two dwarf varieties were not 'fixed' varieties but were breeder's

material which was still heterozygous. As a result, the maturity

of these varieties showed a greater degree of variation than a normal

selected variety.

The effects of variety on yield were significant in 1970 and 1971 only.

The order, in which the varieties were placed, in terms of yield, changed

considerably between years. (Tables 2:1 and 2:2) Dwarf A was the

lowest yielder in 1970 and the highest in 1971, while Zephyr, which was the

highest yielder in 1970, was the lowest in 1971. This change in Zephyr,

is probably due, in part, to the more extensive lodging in Zephyr in

1971 (see 2D iv). The change in the position of Dwarf A will be more

easily expressed with reference to the differences in the yield components

of the varieties, between the two years.
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°/o change in yield and yield
components between 1970 and
1971 ( °/o of 1970 values)

Zephyr Golden Dwarf Dwarf
Promise A B

Yield -21.3 -15.4 -11.7 -18.6

Grains per ear

Tiller number/sample

Grains/sq m

1000 gr wt

Straw weight

- 4.3 + 0.9 - 4.9 + 1.6

38.4 -29.2 -16.6 -26.9

-41.1 -28.8 -20.8 -25.8

-10.5 -11.5 - 5.3 -10.8

- 4.3 +15.9 +17.9 +15.7

The largest difference* between the two years,is in the number of

fertile tillers and thus,in the number of grains per unit area.

Dwarf A showed the smallest change in these parameters and Zephyr

the largest. The reduction in tiller number could arise due to

either,a reduction in the number of tillers produced during the

tillering phase or,the failure of a proportion of the tillers

produced to reach harvest as fertile tillers

The former,is less likely due to the better weather in the tillering

phase in 1971*but if large numbers of tillers were produced, the compet¬

ition during the poor weather of the ear development phase in this

season,would be responsible for the abortion of large numbers of

tillers. The competitive stress between tillers was not relieved

by improved weather later in the season so the chanqes of recovery of

smaller tillers,would be slight. All varieties would be similarly

affected by the weather conditions so the variety differences must

have been due to some further factor. The lodging,in Zephyr,could

have been the additional factor in the very large reduction in fertile

tiller number in this variety,although it produced the fewest tillers

in the earlier year when tiller survival was probably greater. Lodging

is implicated in the yield reduction of Golden Promise while the large
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drop in yield in Dwarf B is probably the result of a larger degree of

tiller competition in this variety, which produced the largest tiller

population in the favourable year.

All varieties showed an increase, or, in Zephyr only, a very slight

decline in straw weight between the two years, which supports the

suggestion that there were a large number of tillers produced which did

not reach maturity in the second year.

The change in grain number per ear between years was slight, as was

the difference between varieties within each year. Grain weight

however, was reduced in the second year in all varieties. The

reduction was least in Dwarf A although it had the greatest number of

grains on each ear in each year of the experiment and also, had the

greatest number of grains per unit area in the second year. These

findings indicate that this variety was more efficient in partitioning

the assimilates from photosynthetic activity to the grains than the

other varieties. This greater efficiency in the second year is also

reflected in the lower reduction in the grain to straw ratio of this

variety between years.

Nitrogen uptake by the grain and straw wa

previous year and the partitioning of the

straw changed between years.

Zephyr

°/o of total N in grain 1970 63.5(4.88)

°/o of total N in grain 1971 47.5(3.35)

() wt of grain and straw N (g/3175 sq cm)

See also Appendix Tables 2:14 to 2:17

i less in 1971 than in the

nitrogen between grain and

Golden
Promise

66.0(3.6) 59.6(4.93) 63.7(4.74)

52.8(3.35) 47.6(4.26) 46.5(4.13)
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The change in the partitioning was least in Golden Promise and Dwarf A,

suggesting a greater degree of independence, of adverse conditions, by

these varieties. The total nitrogen taken up by these varieties

did not change much between years.

The greater efficiency of Golden Promise and Dwarf A suggested by

these findings, is supported by the different responses of the

varieties to increase in nitrogen in terns of straw weight (Appendix

Table 2:9) and tiller number (Appendix Table 2:8). Both of these

interactions were significant in 1971. With increased nitrogen,

Dwarf A and Golden Promise gave a positive response in tiller number,

while the other two varieties did not. In straw weight, all the

varieties except Julia gave an increase in weight with increased

nitrogen. Thus Zephyr and Dwarf B gave an increase in straw weight

without a similar increase in fertile tiller number in response to

nitrogen which suggests a higher number of infertile tillers in these

two varieties at high nitrogen rates. This wasteful production of

tillers, would account for the poor partitioning of assimilates to the

ear in these two varieties when compared to Golden Promise and Dwarf

A, that is, if efficiency is measured in both nitrogen partitioning

and in grain to straw ratio* The positional changes in yield between

the two years could thus he largely due to the increased competition

from infertile tillers in Zephyr and Dwarf B in the second year.

Zephyr also showed a greater decline in thousand grain weight (Appendix

Table 2:10) with increased seed rate than the other varieties in 1971,

possibly due to increased lodging at high seed rates or increased tiller

competition.

In the first year of the experiment, the prevailing weather conditions

* allowed the production of a substantial tiller population which was

not placed under a great competitive stress by shortage

free tillering varieties were not at a disadvantage.
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the evidence suggests,that those varieties which were economical in

tiller production were at an advantage over the free tillering

varieties which suffered from shortage of light in the later stages

of growth in this duller season. The third season's yields suggest

that conditions approached the optimum for barley growth and varietal

differences were slight,though no yield component data is available

to allow a study of the means by which the good yields of the 1972

crop were achieved.

From the comparison of the first two years' results it appears that

Zephyr and Dwarf B were more susceptible to the poor conditions of the

1971 season,in that,they appeared to over-produce tillers,which competed

with each other to the detriment of the yield. The other two varieties

showed a greater stability of yield in the varied conditions under

which the three crops were grown. The variation among semi-dwarf

varieties thus,seems to be as great as that within conventional

varieties in response to different nitrogen and seed rates. Dramatic

yield increases resulting from the introduction of dwarf varieties

are therefore unlikely. The pattern of response of the semi-dwarf

varieties to the changes in fertiliser and seed rate were similar

to those of conventional varieties and thus,changes in husbandry practice

resulting from the introduction of these varieties,will not be

necessary,nor will new testing procedures.

The two dwarf varieties used in these experiments have not been selected

for further development. Dwarf A showed pronounced susceptibility

to Rynchosporium,while Dwarf B was not sufficiently outstanding to

warrant further development,though both are being used in further

breeding programmes (Davies and Hayes; Personnal communication).
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CHAPTER 3

WHEAT

3(A) Physiology of Grain Production in Wheat. The useable

end product of the wheat crop i.e. the grain,represents only a part of

the productive effort of the crop. Before any attempt to increase the

production of the crop can he made the sources of the grain production

must he known.

The grain is made up largely of carbohydrate produced by the photosynthetic

system of the plant and transported to the grain by the translocation system.

The important aspects of the productive cycle are (l) the source of

carbohydrate for the grain, (2) the influence of the sinks in the plant in

altering the course of carbohydrate through the plant to the different

sinks, and (3) the ability of the sink to accommodate the carbohydrate it

receives.

The sources of carbohydrate for the grain in wheat appear to be the

photosynthetic tissues above the flag leaf node (Thorne, 1966) which include

the flag leaf lamina, the flag leaf sheath, the peduncle and the photo¬

synthetic parts of the ear. This finding has been based on a number of

experiments using different techniques. Most of these experiments also

attempted to establish the relative contributions of these parts of the

plant to the grain yield.

The methods used in these studies were; (l) shading a part of the plant

and measuring the reduction in the yield over the yield of a control and

thus by subtraction finding the contribution of the part which was shaded,

(Thorne, 1965 Quinlan and Sagar, 1962); (2) by introducing carbon
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dioxide labelled with the Carbon-14 isotope into the separate parts

of the plant and measuring the radioactivity of the parts of the plant

after a short period of time, during which, the carbohydrate produced

using the was redistributed through the plant and thus, the sources

of the carbohydrate for the grain were found (Rawson and Hofstra, 1969;

Marshall and Wardlaw, 1973; Wardlaw and Porter 1967; Patrick, 1972)

(3) by using gas exchange chambers which measure the COg used by the
various plant parts, (Evans and Rawson, 1970). That the photosynthetic

area above the flag leaf node is responsible for filling the grain does

not mean that the other leaves are superfluous. The leaves produced

earlier are responsible for the provision of the sink for the photo-

synthetic tissues above the flag leaf node in that they provide the

nutrients for the ear in its early development before anthesis and are also

responsible for determining the number of ears and grains at anthesis. In

addition the flag leaf itself is dependent on the leaves below it in

its early expansion stage (Rawson and Hofstra, 1969; Wardlaw, 1968).

From the production of the first true leaf, each successive leaf is

supported by the leaf, or leaves, below it until it reaches about half

of its full size. After it reaches its full size, it, in turn, exports

to the leaves being formed above it as well as supplying photosynthate

to the roots and to other tillers. (Doodson et al., 1964) The

export of carbohydrate from leaves has been well documented at all

stages in the growth of the plant but the recurring question remains

namely, what factors control the destination of the carbohydrate?

Patrick (1972) studied the pattern of assimilate movement during the stem

elongation phase of growth of the wheat plant and concluded that transport

down the stem was easier than in the opposite direction, which was

consistent with the arrangement of the seive elements in the phloem.

He also found that leaf growth was supported by the leaf two below the
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one being supplied. The largest sinks during this phase of growth

were the elongating internodes on either side of the exporting leaf.

The upper three leaves were responsible for supplying the developing

ear up to anthesis after which the flag leaf was the only one to supply

this sink. He concluded that the destination of the assimilates was

determined by the size of the sink, its proximity to the source of supply

and was constrained by the structure of the vascular system. Eawson

and Hofstra (1969) came to a similar conclusion regarding the proximity

of the sink to the source of supply. They concluded however that the

lower leaves exported downwards preferentially and supported the tillers

and roots while the upper leaves supported the stem and ear growth. The

supply to roots is secondary to that of shoots if a shortage develops

(Wardlaw, 1968). In times of surplus production after the start of

stem extension the assimilates can be stored in the stem and can be

utilised by the grain at a later stage. (Wardlaw and Porter, 19675

Wardlaw, 1968). The extent of the contribution of the leaves below the

flag leaf to the grain either directly (Lupton, 1966) or indirectly via

stem storage (Wardlaw, 1968) is generally agreed to be less than 10°/o of

the total ear carbohydrate.

The early growth pattern described shows the pattern of supply of

assimilates to various sinks in the main culm of the wheat plant. The

number of ears produced in a crop also helps to determine the yield of

the crop and so the supply of assimilates to tillers becomes important.

The degree of independence of the main stem achieved by tillers in wheat

is not clear. Lupton (1966) showed the tillers in his experiment to be

entirely autotrophic and even dying tillers did not transfer any assimilate

back to the main stem. Eawson and Hofstra (1969) found however that

tillers never became independent of the main culm and that photosynthate
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from the lower leaves of the main shoot was finally incorporated in the

ears of the tillers. The proportion of the grain weight made up of

carbohydrate from this source was however very small. The effect of

tillers on the production of the main culm has been variously reported

as detrimental to the main culm (Luptoq, 1966; Wardlaw and Porter, 1967),

having no effect on the main culm (Thorne,1966; Bremner,1969), as the

carbohydrate and nitrogen of the dying tillers which do not contribute

to yield are transferred to the main culm and to surviving tillers, or

complimentary to the plant growth in that they improve root development

to the benefit of all culms (stoy, 1965). All are agreed however, that

the best varieties in recent years have had a large proportion of the

tillers produced surviving until maturity and contributing to yield.

(Lupton,1966; Thorne,1966: Stoy,1965) The differences found in the

dependence of tillers on the main culm could be due to varietal

differences (Thorne,1966) or differences in the environmental conditions

prevailing.

The size of the ear and the number of ears present are dependent on the

early leaves, though the partitioning of assimilates between the various

sinks in the early stages of growth is still not clear and the control

of this partitioning, whether by demand of the sink or due to supply of

the source is likewise not fully understood.

The final yield of grain,assuming an adequate size of ear, is dependent

on the activity of the parts of the plant above the flag leaf node, the

efficiency of this activity, its duration and the partitioning of the

assimilates of this activity (Thorne?1966). Stoy (1965) also pointed

out that the respiration of the ear had a large bearing on the final

yield of grain as kO°/o of the total photosynthetic production is respired

again.
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There are differences in the proportion of the grain weight derived

from each of the sources (within the photosynthetic tissues above the

flag leaf node). The contribution of the ear in awned wheats is much

greater than that of awnless wheat but the photosynthetic area is also

much greater and generally the size of the flag leaf is reduced in awned

wheat. (Stoy, 19&5) Awns can be as much as k6°/o of the chlorophyll

containing ear surface area. (Teare and Peterson, 1971) Estimates

of the contribution of the flag leaf, ear, sheath and peduncle to the

yield of the grain differ markedly between workers. Thorne (1966) in

a review of this topic concluded that in awnless wheats, the type most

commonly grown in the United Kingdom, th.j contributions of the various

parts were thus: Ear 0-10^; Flag leaf and Sheath 80-90°/o% other parts

10-15^. The contribution of the ear may in fact be negative in that

the respiration of the ear may be greater than the photosynthesis by its

green tissues (Thorne, 1965). Stoy (1965) however argues that the

ear contribution could be greater than that suggested by Thorne (1965)

on the evidence of Krishnamurthy (1963 and Drennan and Krishnamurthy,

1964) and from calculations based on his own results and those of

Gabrielsen (1942). The rates of photosynthesis of the various

components of this part of the plant appear to be quite different. The

lamina of the flag leaf and the ear seem to have considerably higher

rates of true photosynthesis than the sheath and peduncle. All are

capable of rapid rates of photosynthesis however. (Stoy, 1965).

The efficiency of the activity of the crop is measured by the net

assimilation rate (NAR) which is the dry matter production per unit leaf

area. (Watson, 1952) This parameter is largely dependent on the leaf

area index of the crop at the time of measurement (Stoy, 1965) as the

efficiency is dependent on the degree of mutual shading in the crop.
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Differences in NAB between cultivars are small however and only between

species are differences large (Watson,1968). This parameter measures

changes in the weight of the foliage parts of the crop as well as the

grain and another parameter was devised to measure the photosynthetic

efficiency in terms of grain production. This is the grain/leaf ratio

(G)(Thorne,1966) which measures the increase in grain weight per unit

leaf area index of photosynthetic area above the flag leaf node.

Differences between varieties are apparent in this measure but these

could be due to differences in sink size affecting the partitioning of

assimilates (Thornej1966). More direct evidence that sink size could

affect the partitioning of assimilates is given by Evans and Eawson (1970)

who deduced that grain growth was not limited by the supply of assimilates,

which was found to be adequate at all times after anthesis. Indirect

evidence for such an effect of sink size is given by Buttrose and May

(1959) in barley and by .Ttfelbank et al. (1965) for wheat.

As well as differences in partitioning of assimilates differences in the

rate of photosynthesis between varieties are possible (Stoy,1965). The

reasons for differences in the grain/leaf ratio are therefore obscure

but that differences do exist is certain and in itself is justification

for further examination of varieties' performance in this character with

a view to seeking improvement in yield through improvement in G.

The largest difference in yield between varieties appears to arise from

differences in the magnitude and duration of the leaf area after anthesis

i.e. in LAD. (Thorne, 1966). This appears to apply particularly to leaf

area above the flag leaf node (Welbank>et al. 1965). Variety differences

in yield could be closely correlated to differences in the duration of

the leaf area above the flag leaf node in Welbank's (1965) experiments.
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Similarly, Thorne (1966), explained differences in the yield between winter

and spring varieties of wheat by differences in LAD. The pattern of leaf

growth of the two types was very different as the winter variety had

a greater maximum leaf area hut a shorter duration than the spring variety.

The partitioning of assimilates has been touched on earlier and it seems

that the size of the sink can influence the pattern of assimilate

movement through the plant and if the sink size is inadequate yield losses

can result (Evans and Rawson,1970). The development of the ear and the

environmental and cultural influences on this development will be dealt

with fully in chapter 5. The mechanisms controlling partitioning of

assimilates at this stage of growth are as obscure as the mechanisms in

the earlier growth stages of the crop. The influence of the sink, on

the partitioning of the supply from the source is not clear but the

proximity of the sink to the source of supply appears to have a

considerable bearing on the destination of the assimilates (Wardlaw, 1968).

The demand of the sink also influences the pattern of movement and it

appears that reproductive sinks have priority over purely vegetative

ones (Wardlaw,1968). The drawing power of a sink also seems to be consid¬

erable when the supply is limited as Marshall and Wardlaw (1973)

reported an increase in the movement of carbohydrate and phosphate from

the penultimate leaf to the grain in plants where the culm was partly

shaded which reduced the supply. Willey and Holliday (l97l) also

suggest that sink size can be an important limiting factor to yield.

The interactions of this source/sink relationship are at present too

complex for firm conclusions to be drawn.

Finally, in this study of factors influencing supply of photosynthate

to the grain, the influence of the respiration rate on the available
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carbohydrate must be considerable (Stoy, 1965). Differences in the rate

of respiration have not been examined to any extent due to the difficulty

in finding a suitable reference basis for the measurement. Considerable

varietal differences have been reported within the cereal species as well

as differences between the species which may be another important factor

in the determination of the grain yield of cereals. (Stoy, 1965)

Of all the factors examined the most important seems to be the LAD of

leaf area above the flag leaf node and to prolong this gives a marked

improvement in the yield. The influence of the other factors can be

considerable but the true extent of their influence is as yet uncertain

due to the difficulty of examining the effect of each factor in isolation

but the circumstantial evidence gathered to date suggests that the

source/sink relationship could in certain circumstances be of primary

importance.

3(Aii) The effect of the Environment and Nitrogen Fertiliser on the Growth

of Wheat The grain producing system is dependent on the provision

of sinks, the duration of the post anthesis leaf area, the influence of

the environment and of cultural treatments on those processes in the plant

which have the greatest effect on the yield of the crop. (Thorne,1966)

Moisture provision, temperature, gaseous exchange and disease all have

a marked bearing on the efficiency of the leaves in the crop. Moisture

provision affects the early growth of the crop by its influence on

tillering. As tiller number is the largest factor to influence leaf

area in the early stages of the crop, (Campbell and Read. 1968) the

effect of moisture is also noticed in the leaf area. The influence

of moisture on the crop at this stage is probably through the effect on

the uptake of nutrients. Nitrogen is the most influential of these
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nutrients and its effects on leaf growth and tiller growth are consid¬

erable in both wheat and barley (Chapter 2). Temperature also influences

tiller production but the response to temperature seems to be dependent

on the daylength response of the variety (Kirby, 1969).

Increased light intensity increases the number of tillers produced while

low temperature likewise encourages tillering (Friend, 1966). The trans¬

location system seems to be little affected by moisture but translocation

of assimilates out of a wilted leaf is less than out of a turgid one

(Wardlaw, 1967).

At the later stages of the growth cycle reduction in moisture and high

temperature accelaate senescence which reduces the LAD with a consequent

reduction in yield (Thorne, 1966). Wilting of a leaf rapidly reduces the

rate of photosynthesis but grain growth seems to be little affected by

a short period of wilting (Wardlaw, 1967).

Individual leaves do not utilise light of high intensity to the full but

the light passes through to lower levels in the crop (Wilson, i960).

The peak of efficiency appears to be around a mean intensity of 800 feot

candles. The intensity of a leaf surface is dependent on the angle at

which the light hits the leaf and thus differences in the utilisation

of light by varieties with differing leaf inclinations would be expected.

Such an effect was noticed by Tanner et al (1966) and Angus et al (1972)

with barley and by Vogel et al (1963) with wheat. Upright leaf types

were found to be more efficient in utilising light. In saturation light

conditions the floppy leaf type should be more efficient as intensity

at the leaf surface will not be so great. Findings in support of the

latter effect are being made at Cambridge (Ford, Personal Communication).

Increase in the density of the top layer of the canopy should lead to

a more efficient light utilisation for grain production as the photo-

synthetic products of this layer are moved to the grain.
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Utilisation of light depends on the availability of carbon dioxide.

Puekridge (l97l) found differences between varieties in the uptake of

COg but the predominant influence on the uptake was the leaf area
index. There was a close relation between LAI and CO^ uptake. In
another experiment the uptake of CO^ was predicted from the LAI and
the measured respiration which gave a good relation with the actual

photosynthesis (Puckridge and Rathowsky»197l)• In the latter

experiment there was no difference in the photosynthesis of the two

varieties although one had upright leaves and the other floppy leaves.

The total photosynthesis was measured in this experiment. At the same

LAI there need be no difference in total photosynthesis though

partitioning of assimilates may very well he different. Thus the

proportion of carbohydrate moving to the grain may he different. At

peak levels of light intensity the supply of CO^ can become limiting
leading to inefficient utilisation of the light (Monteitfy 1966)

Total leaf area can he increased with nitrogen but excess causes lodging

which results in a marked loss in yield.

Little alteration can he made to the effects of environmental conditions.

Delay in leaf senescence after anthesis would bring the crop into a

period of shorter days with lower light intensities which would not give

as great a yield advantage as might he expected and harvesting

difficulties would also he increased. Earlier anthesis would however

have a beneficial effect in this country as this would bring the grain

growth period nearer to coincidence with the period of maximum daily

radiation but provision would still have to be made for an adequate sink.

Control of leaf growth by fertiliser and by plant population manipulation

remain the principal means by which yield can be influenced.
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3(Aiii) The Growth and Yield of Dwarf and Semi-Dwarf Wheats

Since the first successful variety, Gaines, with semi-dwarf growth habit

was introduced in U.S.A., breeders throughout the world have bred other

semi-dwarf varieties which have been tried and tested against tall

varieties in their own region. In other parts of the world where

breeding is not so advanced semi-dwarf varieties have been imported and

compared directly with the indigenous varieties. These studies have for

the most part dealt with the yield of the varieties and the main yield

components with little further physiological study which might have

further improved the understanding of any differences found and could

have revealed hidden potential in these varieties.

In the United States several such experiments have been conducted which

have attempted to evaluate the semi-dwarf growth habit for the different

regions of wheat production. Briggle and Vogel (1968) reviewed a

number of such evaluation experiments and reported that semi-dwarf

varieties were being grown successfully in the Pacific North West

region and in the Eastern soft wheat region though difficulty was being

encountered in the Central States. This difficulty arose through the

lack of suitable sources of disease resistance and drought tolerance.

Successful semi-dwarf varieties have been produced in some of the

Western States (Johnson et al.,1966 and Porter et aL ,1964) and in some

Eastern States (Vogel et al.,1963). In Australia even under the extreme

conditions of the Ord river valley where wheat is ripening in increasing

temperatures, semi-dwarf varieties imported from Mexico have been grown

with success (Beech and Norman,1968). Mexican varieties were also

imported by India and the countries of the Near East and were grown

with success with irrigation and nitrogen fertiliser though disease

problems are now becoming more acute in these regions (lARI,1968;

CIMMYT, 1970 and 72).
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No consistent behaviour in terms of yield components emerged from these

studies. Some workers found grain size to be small in the semi-dwarf

varieties (Johnson et al., 1966; Misra et al., 1968) while others

found grains to be larger than conventional varieties (Berbigier, 1968).

The variation among the semi-dwarf varieties seems to be as great as that

in the conventional varieties. In all trials where nitrogen rate was

varied the semi-dwarf varieties exhibited a greater degree of lodging

resistance than the control varieties (iARI, 1968; Porter et al., 1964;

Vogel et al., 1963; Paquet, 1968 etc.) The shortness of the coleoptile

which is associated with semi-dwarfism, and the overcoming of this

drawback have been discussed (Chapter l).

Studies in slightly greater depth carried out in India (LABI, 1968 and

Asana and Chattopadhyay, 1970) showed that the yield advantage of Sonara

64 (Mexican) over NP876 (Indian) was almost entirely due to the resistance

of the former variety to lodging under highly fertile conditions. Slight

differences were noted in the rate of tiller production and in the rate

of ear filling but these were too small to affect the yield.

In two Australian studies, those of Beech and Norman (1968) and Syme

(1967), the yield advantage of the semi-dwarfs was attributed to a longer

period of growth between anthesis and maturity.

In the United Kingdom both imported and home bred semi-dwarf varieties

have been studied in comprehensive physiological experiments. (Thorne

et al., 1968,69,70 and 71; Lupton et al., 1970,71 and 72). The series

of experiments carried out at Rothamsted (Thorne et al., 1968,69,70 and

7l) used imported cultivars. Three spring wheats were studied;

Mexico 120, Lerma Rojo 64 (both Mexican semi-dwarf) and Kloka (European
commercial variety) and two winter wheats; Gaines (American semi-dwarf)
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and Cajpdle. In the early experiments more semi-dwarf material was

used hut this was dropped for the later study. The semi-dwarf varieties

yielded as well as the conventional varieties although they had smaller

leaf areas and were susceptible to diseases. The mechanism of this

apparent increase in efficiency was sought and it appeared from early

experiments that the semi-dwarf varieties were more efficient in utilising

the product of the leaf area after anthesis for grain production. Plant

density was varied to achieve the same leaf area in both semi-dwarf and

conventional varieties and it was found that at the same leaf area the

proportion of the photosynthetic product utilised in grain production

was the same in both the semi-dwarf and conventional varieties and that

the greater apparent efficiency of the semi-dwarf cultivars was derived

from a reduction in mutual shading at lower light intensity when leaf

area index of the dwarfs was lower than the conventional varieties in the

previous experiments, (Thorne, 1970). Any residual improvement in

efficiency was accounted for by the fact that the semi-dwarf varieties

had awns which were absent in the European cultivar. In the most

recent experiment comparing Penjambo 62 (Mexican semi-dwarfs) and Kloka

at Rothamsted (Thorne, 1972) the increased efficiency of the semi-dwarf

was not apparent.

Experiments at Cambridge using home bred semi-dwarf cultivars and thus

avoiding the danger of large differences in disease susceptibility,

showed that the semi-dwarfs had a greater rate of photoynthesis at the

same LAI than the control varieties (Lupton et al.,1970,71, 72). A

greater proportion of the leaf area after anthesis in the semi-dwarf

cultivars was in the form of leaf lamina area which has been shown to

photosynthesise at a greater rate than leaf sheaths or ears (stoy, 1965).

While the photosynthetic efficiency was greater there was no apparent

difference in the proportion which was used in the production of grain.
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These varieties had no awns and are thus not directly comparable with

those which were studied by Thorne and her co-workers at Kothamsted.

The semi-dwarf cultivars grown by Lupton had a greater number of

tillers on each plant but of these a higher proportion contribute to

yield and thus there is no indication of a larger proportion of

carbohydrate being used in unproductive tillers. (Lupton et al.,1972).

Yields of the varieties grown by Lupton, which were the same varieties as

those grown in the experiment reported in JB were greater than those of

the conventional varieties with which they were compared.

Yield improvement in Australian semi-dwarf wheat varieties was attributed

to a larger sink for the carbohydrate being provided relative to the leaf

area after anthesis (Syme,1969). A similar result was found by Cock (1969)

in U.K. using imported North American semi-dwarf material. The highest

yielding semi-dwarf variety had the largest number of grains per ear while

differences in ear population or grain size could not be related to the

differences in the final yield. Efficiency of utilisation of tillers in

the semi-dwarf varieties was again reported in this work (Cock,1969).

Physiological studies in Mexico have been carried out in the last two

seasons (Fischer, Personnal comm.). These studies have been conducted

at two levels. Agronomic studies have been made to establish whether

there is a need for changes in farming practice to make the best use of

the dwarf character and physiological studies have been conducted from

the standpoint that some character of the growth of wheat is limiting the

yield of crops i.e. the source of carbohydrate is limiting yield or the

sink is too small to accommodate the carbohydrate produced. Preliminary

studies of the influence of the sink appeared to support the view that

the sink was inadequate as the yield increased markedly when the number

of grains was artificially increased on a given area but the grain size
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remained the same. The effect was not so marked in the second year

hut temperatures were higher at the grain filling period in this year.

Thorne (1972) found temperatures above 20°C increased the rate of

senescence and also increased the contribution from the stem storage

of the early part of the season, suggesting that the sink size is not

limiting under these conditions. In the Mexican experiment of 1971-2

(Fischer, Personnal communication) temperatures were within the range

where these conditions apply and the increased radiation accompanying

the increased temperature seems to be insufficient to overcome the

effect of the temperature. Under certain conditions it is probable

that sink capacity can limit yields.

In the agronomic studies the semi-dwarf varieties appear to be able to

utilise a wider range of conditions of fertiliser usage and seed rate

than conventional varieties though there is a wide range within the

semi-dwarf type in terms of response. The two gene dwarfs have a much

greater harvest index than the conventional varieties but tripple gene

dwarfs show no further improvement in this parameter suggesting a limit

in the shortness of the straw may have been reached (Fischer, Personnal

comm.).

Yield of wheat grown under ideal husbandry conditions seems to have

reached a plateau especially in those countries where extensive breeding

work has been undertaken over a prolonged period (Fischer 1972). Even

the introduction of dwarf wheats in Mexico while lifting the yield from

a low point to a much higher one now seems to have reached a limit as

yields are levelling off. Further understanding of the limits which are

now being imposed by the plants in a crop by way of insufficient grain

capacity or a shortage of photosynthetic tissue would help to break

down the next barrier to further increases in yield.
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3:B Experimental Methods

(i) Wheat experiments 1970-71 and 1971-72. An experiment

was made in each of the two years 1970-71 and 1971-72 in which five

varieties of wheat were compared under five rates of nitrogen. The

experimental design was the same in both years and was a 5 x 5 ran¬

domised block desigi in which the third order and some of the second

order interactions were confounded to constrain the block size to

five plots per block. The design was balanced by having four repli¬

cates (Nair, 1940).

Five varieties were sown at approximately 235kg/ha., account being

taken of the thousand grain weights in an attempt to sow the same

number of grains of each variety. The varieties sown were TL363/30,

TL365a/34, TL365a/37, all semi-dwarf varieties from the Plant Breeding

Institute at Cambridge, Maris Nimrod, a medium height variety in

commercial use and N59, a tall variety grown only for its extreme

straw length. The experiments were sown on the farms of the Edinburgh

School of Agriculture on a Macmerry series (Soil Survey of Scotland)

sandy clay loam in 1970-71 and on an alluvial fan in 1971-72. The

1970 crop was the first after a two year ley and that of 1971 the

first crop after potatoes.

Plots were 1.54 m wide by 6.15 m and were eight rows wide with 15.4 cm

between the rows. The experiments were sown with a plot seed drill

designed and manufactured at the Scottish Society for Research in

Plant Breeding (Cameron et al, I967).

The experiment was sown on 7th December 1970 after ploughing and two

runs of the disc harrows in fine dry weather and on the 3rd and 4th

November 1971, except for one replicate which was sown on 9th November.
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In 1971 the land was ploughed and cultivated with a spring-time har¬

row.

The five nitrogen rates which were applied on 1 May 1971 and 17 April

1972 were as follows:

Weed control was affected by spraying with Actril C (ioxynil with

Mecoprop) on 14 May 1971 and on 19 May 1972, spraying at 7 Litre/ha.

The crop was harvested with a Hegge 125 plot harvester on 16 September

1971 and on 27 September 1972. Grain was dried on a hag drier and

cleaned before weighing. When the grain was weighed a sample was re¬

moved for dry matter detenhination. 3«1 m of plot were combined each

year and all 8 rows of the plot were taken.

(ii) Sampling procedure. One half of each plot was used for

sampling and half preserved for the final harvest. Samples were taken

from one half metre length of two adjacent rows and each sample 'site*

was protected by at least on intact row. In 1971 the plots were sam¬

pled approximately fortnightly, the sample site from each plot being

chosen at random. All the tillers from two sites in each plot were

harvested and taken to the laboratory for leaf area measurement and

dry weight determination as described in the next section. The time

1971 NQ - Okg/ha 1972 NQ - Okg/ha
N1 - 40 ••

N2 - 80 »

N1 - 31 "

n2 - 63 "

N3 - 94 "
N4 -125 "

N3 -120 "
N. -160 "

4
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involved in the measurement of leaf area meant that only part of

the experiment could be sampled on each day, so sampling was spread

over 3» 4 or 5 days, depending on the work force available. The

sampling dates in 1971 were 20-26 May, 7-9 June, 28 June - 2 July,

19-21 July and 9-11 August.

In 1972 the method of leaf area measurement was changed and this en¬

abled all the plots to be sampled in two days. 10 whole plants, 5

from each of two separate drills were taken from each plot in 1972.

All the plots were sampled from the same position in the plot at each

sample date to speed the sampling process. These plants were taken

to the laboratory for leaf area measurement by the second method de¬

scribed in the next section (3sB iii). The first sample from each

plot was taken at anthesis when of the ears on the plot had one

half of the anthers visible on the outside of the ear. This sample

differed from those subsequent to it in that all the shoots were

taken from 4 x J m length of row from two pairs of adjacent rows.

Tiller number, leaf area and dry weight were determined from this

first sample. Sample two was taken on the 12-14 July from those

plots which had reached anthesis and had therefore been sampled pre¬

viously. Samples were taken weekly from all plots subsequent to this,

until both flag leaf and ears on the plot were deemed to be greater

than 85cjo senesced, after which only one more sample was taken to

determine the extent of the senescence of the flag leaf sheath and

the peducle. Field senescence estimation was made on each plot ane

week after the last sample to establish the date of final senescence.

In addition to these samples for leaf area measurement, non-destructive

measurement of emergence of plants was made on 4 February 1971 and 30
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December 1971• Tiller counts were taken on 10 May 1971 and just be¬

fore harvest in 1972 on 12-13 September. These counts were made on

two separate metre bigths of row. Height measurement was made on all

plots on 28 July 1971 and 11 September 1972. The degree of lodging was

measured when it first occurred and on subsequent dates.

(iii) Leaf area measurement. A different method was used in

each year. In 1971 a modified version of that used by Thorne (Thorne

and Watson, 1955) was used which was dependent on rating the indivi¬

dual shoots. Ihe sample was collected in the field as described in the

previous section. The total number of shoots in the sample was deter¬

mined. Of these, 20 were laid aside for rating. A number of standards

representing the range of shoots in the field were selected to repre¬

sent the range of leaf area. These were arrayed near the operator. The

operator looked at each shoot of the sample of 20 shoots and rated it

according to the scale of standards, taking care to look only at leaf

area without confusion with length, colour or any other distraction.

The rating awarded to each shoot was noted. Of these 20 rated shoots,

5 were measured for leaf area on a light interception meter. The leaves

were stripped off the shoot and placed as flat as possible on the glass

plate of the meter and the reading on the associated galvanometer was

noted. At the end of each sample the regression of the log of leaf area,

calculated from the galvanometer reading for each shoot, on the rating

for each shoot was calculated. It was found that the leaf area did not

give a straight line when plotted against rating but that the log of

the leaf area did and therefore the log of leaf area was used to cal¬

culate the regression. The regression coefficient and intercept on the

axis were calculated for each variety and nitrogen rate and these were

compared by analysis of variance to test whether the assessment of leaf
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area was influenced by treatment. No significant differences were

found between varieties or nitrogen rates in the regression coeffic¬

ient and therefore the combined coefficient was used to calculate

plot leaf area/ for all plots, on the one sampling date. This was

calculated by using the mean rating of the 20 plants and converting

this to an area by the regression coefficient of the log of the leaf

area on rating taken from the 5 plants on which rating and measurement

were made. This area was multiplied by the number of shoots in the

sample to give the leaf area over the sample area. In this method the

areas of the ear, the stem and the peduncle were not considered but

the areas of all the leaves were.

In 1972 a more direct measurement was made which only took account of

the leaf area above the flag leaf node. A sample of ten plants was

taken from the field as described in 3*B (ii). These plants were divided

into main and auxilliary shoots. The linear dimensions of the various

parts of the shoots were measured with a ruler. The length of the ear

from the collar to the tip of the glume of the terminal spikelet was

measured and the breadth both ways at the middle of the ear. The length

of the stem from the top of the flag leaf node to the collar and the

breadth at the node and the collar were measured to determine the area

of the flag leaf sheath and peduncle. The flag leaf itself was removed

from each shoot and all these were collected from the main and auxilliary

shoots separately and were measured on the leaf area meter described in

the previous method. In 1972 the leaves were held flat with transparent

adhesive tape.

The photosynthetic area above flag leaf node of the sample of ten plants

was thus established and with reference to the tiller counts taken in
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the first sample, the leaf area per unit ground area could be cal¬

culated.

The surface areas were calculated as follows:

Surface area of the ear (Se)

Se = 2(LxB^) + (LxBg)) L - Length of ear

B^ and B^ - Breadth of ear both ways.

Surface area of sheath and peduncle (Sp)

gp _ 2itD x L i.e. one half the area of a cylinder
4 where L is the length from the collar

to the top of the flag node and D is

the mean diameter of the diameter at the collar and at the top of the

flag leaf node. Half the area was taken as the peduncle and sheath

were found by Stoy (1965) to be half as efficient as the leaves in

photosynthe sising.

3:C Results of wheat experiments. There was a large dif¬

ference between years in both the weather (Appendix l) and the yield.

The mean yields were 5015 kg/ha in 1970-71 and 6797 kg/ha in 1971-72.

The yield response to nitrogen was similar in both years, with yield

showing a sharp rise with the first two rates of nitrogen and then a

slight reduction in the response to nitrogen (Table 3sl). Yield re¬

sults of both experiments are presented in Table 3sl«

The interaction of variety and linear nitrogen on yield was significant

in 1971. The maximum yield of TL363/3O was achieved with 63 kgN/ha and

that of N59 with 94 KgN/ha. The other three varieties gave a response

to all rates of nitrogen (Table 3sl)«
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Table 3:1 Yield of Wheat (kg/ha)

1970/71

kgN/ha TL363/30 TL365a/34 TL365a/37
Maris
Nimrod N59 Mean

Nitrogen NQ 0 4880 4802 3376 4372 3751 4236

Rate NA 31-4 5220 5162 4218 5419 4258 4855

N2 62.8 5786 5692 5000 5738 4312 5306

N3 94.2 5592 5719 4863 5908 4328 5282

N, 125.64
5597 6152 5215 6180 3865 5402

Mean 5415 5505 4534 5523 4103 5015

SE 208.65 93.31

Significant Effects NL** NQ** Cv** Cv x NL**

1971/72

No 0 5150 5456 5168 5055 4306 5027

N. 40
1

6399 6852 6541 6511 5423 6345

N2 80 7557 8503 7089 7208 6406 7352

120 8252 8033 7828 7632 6587 7667

N, 1604
7990 8269 7451 7826 6428 7593

Mean 7070 7423 6815 6847 5830 6797

SE 583.0 231.6

Significant Effects NL** NQ** Cv**
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i) Response of yield components to nitrogen and variety.

The pattern of response of the yield components to nitrogen was simi¬

lar in both years of the experiment (Table 352).

Table 3:2 Effect of Nitrogen on the Yield Components

1970/71 No N1 N2 MJ N4 Signif. Level

Kg nitrogen/ha 0 31 63 94 126

Yield (kg/ha) 4236 4855 5306 5282 5402

Height (cm) 87.8 95.5 90.2 94.4 93.1 4th*

1000 grain weight (g) 43.5 44.1 41.6 39.8 38.3 lin ** quad*cub*

Ear number/.305 hi 137 134 144 151 154 lin**

Grains/ear 20.5 21.8 26.1 27.9 28.4 lin**cub*

Grains/sq m 9208 9591 12318 13823 14325 lin**

Straw weight (g) 221.5 238.1 269.2 296.6 308.1 lin**

Grain/straw ratio .5594 .5532 .5790 .5681 .5487 NS

1971-72

Kg nitrogen/ha 0 40 80 120 160

Yield (kg/ha) 5027 6345 7352 7667 7593

Height (cm) 92.7 99.4 100.5 99.9 98.7 1in**quad**cub**

1000 grain weight (g) 46.4 46.7 46.1 46.3 43.4 lin**quad**

Ear number/.305 sq m 145 158 170 190 196 lin**

Grains/ear 30.0 34.6 38.2 39.0 39.5 lin**

Grains/sq m 10834 13587 15948 16599 17495 lin**
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The only variation in the response between the years was in thousand

grain weight where the decline with increased nitrogen did not occur

in 1972 until 160 kgN/ha was applied hut in 1971 this decline occurred

with only 63 kgN/ha. For the other parameters, the response was simi¬

lar between years hut the extent of the response was greater in 1972

than in 1971•

Straw weight was measured in 1971 which allowed the calculation of

grain to straw ratios. The response of this parameter to nitrogen

was non-significant however.

The behaviour of the five varieties in the two years is shown in Table

3:3.

Table 3:3 Effect of Variety on the Yield Components

1970/71 TL363/30 TL365a/3k TL365a/37 JJim^od N59 SiSnif

Yield (kg/ha) 5415 5505 5523 5523 4103

Height (cm) 88.0 81.2 85.0 91.2 115.5

1000 grain weight (g) 41.81 40.42 44.28 44.38 36.33 **

Ear no./.305 sq m 144 155 137 134 150 *

Grains/ear 27.25 26.27 21.69 26.96 22.54 **

Grains/sq m 12866 13350 9743 11845 11085 **

Grain/straw ratio .641 .634 .544 .591 • kO 00 **

Straw weight 252.2 256.4 241.5 271.9 3H.7 **
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1971/72

Yield (kg/ha) 7070 7423 6815 6847 5830

Height (cm 94.5 83.9 96.6 95.4 120.8

1000 grain weight (g) 47.57 42.87 45.29 52.08 41.12 **

Ear no./.305 sq m 176 176 168 174 167 NS

Grains/ear 36.50 41.79 37.44 34.51 30.99 **

Grains/sq m 14862 17315 15047 13147 14178 **

All varieties showed an increase in yield over the previous year in

1972, which, the yield components showed, was largely due to an in¬

crease in the number of grains per unit area. TL365a/37» which showed

the largest increase in yield between the years of the experiment, also

gave the greatest increase in grains per unit area. Both numbers of

grains and the size of grains increased in the second season. Varieties

differed in the response of grain to straw ratio to nitrogen in 1971

(Appendix table 3:l). N59 had much lower ratios throughout the range

of nitrogen applied hut also showed a decline in the ratio as nitrogen

usage increased. All the other varieties had a peak of this ratio at

63 kgN/ha or above.

The interaction of linear nitrogen and cultivar on 1000 grain weight

was significant in both years. All the semi-dwarf varieties and N59

showed a decline in 1000 grain weight in 1971» with increase in nit¬

rogen above 32 kgN/ha. Only Maris Nimrod showed an increase in 1000

grain weight up to 63 kgN/ha in 1971. A similar response occurred in

1972 where all varieties of semi-dwarf habit had the highest 1000 grain

weight with no nitrogen but N59 and Maris Nimrod had their peak of 1000

grain weight at 120 kgN/ha (See Appendix table 3s2).
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The 1971 response of the cultivars, in grain number per ear with nit¬

rogen, differed significantly also (Appendix table 3:3). TL365a/34

and TL365a/37 responded with an increase in grain number to all rates

of nitrogen hut N59 and Maris Nimrod responded up to 63 kgN/ha and

TL363/30 to 95 kgN/ha. In 1972 the interaction was non-significant

but N59 and Maris Nimrod again showed a response up to a lower rate

of nitrogen than the other varieties (Appendix table 3:3).

Leaf areas were measured in both years hut in 1971 the area of all the

leaves on each shoot was measured and the area of the stem and ear was

ignored. In 1972 the area of all the photosynthetic tissue above the

flag leaf node was measured. Thus a comparison, of the leaf area, be¬

tween the years, is not possible. The 1971 measurements show the growth

of the whole plant in dry weight and leaf area, while those of the 1972

experiment, concentrate on the production of grain. (Figs. 3:1A, 3;2A)

Values of Net assimilation rate (NAR) were calculated between the var¬

ious samples in 1971. The calculation of NAR is dependent on the cons¬

tancy of the relationships, Leaf area: time and Dry weight: time over

the intervals between samples (Watson, 1952; Radford, I967). For per¬

iods of a week or less, the assumption of a constant relation is feas¬

ible, hut for the 3 week periods between samples in this experiment,

the assumption of constancy of the relationships becomes doubtful. The

values of NAR presented in table 3:^ should therefore be treated with

caution.
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Figure 3:5 P.A.D. on Sample Date
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table 3:4 The Effect of Varieties and Nitrogen Rates on NAR

-2 -1
NAR gm dm wk TL363/30 TL365a/34 TL365a/37

Maris
Nimrod

N59

24/5 - 8/6 .4605 .3682 .4241 .4749 .3981

8/6 - 30/6 .4741 .4670 .5560 .5457 .4284

1/7 - 20/7 .8070 .6363 .5504 .7168 .9585

21/7 - 10/8 1.4348 .3823 .3957 -.4006 -.2343

No N1 N2 N3 N4

24/5 - 8/6 .5013 .4617 .3827 .4081 .3720

8/6 -30/6 .5343 .5538 .4694 .4685 .4452

1/7 - 20/7 .7405 .7305 .7911 .7046 .7023

21/7 - 10/8 .3045 -.2484 -.0204 1.0370 .5052

Coefficients of variation were very high in these derived variates, particularly

in the last (2l/7 - 10/8), where the points lay on either side of zero. The

interaction of nitrogen and variety, in the third NAR (l/7 - 20/7), was sig¬

nificant, as TL365a/34 and N59 both had increasing NAB with increase in nit¬

rogen (Appendix table 3*4).

Tables of leaf area and dry weight at the five sample dates are presented in

Appendix tables 3*5 to 3*9. Variety and nitrogen means are plotted in figs

3*1 and 3*2. Leaf area values were very skew and the analysis of variance

was therefore calculated on ihe square root transformation of the data.
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Significant effects quoted in the tables are from this transformed data

analysis. The area of leaf on each shoot was assessed in the course of

calculating total leaf area. Log values of these areas are presented

in Appendix table 3*19 and 3520. Only main effects are given as no

interactions were significant.

In the measurement of the leaf area, the number of shoots on the sample

area of .305 sq m were counted, at each sampling date. The response of

this parameter, to variety and nitrogen rate and the decline in number

with time, are clearly shown in figures 3s3 and

The measurement of leaf area in 1972 was carried out from the day the

plot reached anthesis and was measured thereafter, at weekly intervals,

on the Tuesday and Wednesday of each week, half the plots on each day.

The total photosynthetic area above the flag leaf node was measured.

Measurements were recorded in such a way that the proportion of the

total photosynthetic area comprised of flag leaf lamina area, flag

leaf sheath and peduncle area and ear area could he determined at

each date, as well as the total photosynthetic area.

Total photosynthetic area index (PAl) at three sample dates and the

proportion of the lamina, stem and ear at these dates are presented

in table 3s5• Leaf area index (LAl) has been the term most commonly

used to describe this parameter by Thorne and her co-workers at

Rothamsted and many others. Here PAI and PAD (photosynthetic area

duration, the integral of PAI with time after anthesis) will be used,

to emphasise the contribution made by all the photosynthetic tissue

above the flag leaf node, including the flag leaf lamina.



89

Table 3*5 Photosynthetic Area 1-ndex of Constituent Parts of Plant above Flag Leaf

Node and Percentage of Total PAI

Sample 3 19 July PAI \ ®f total PAI of °f f oi
-p-, PAI total of ear total PAIFlag Stem & Ped.
Leaf

Cv TL363/30 .5326 18.78 .7518 26.51 1.5514 54.71 2.8358

TL365a/34 .6284 21.04 .76IO 25.47 1.5980 53.49 2.9874

TL365a/37 .5740 19.72 .7346 25.24 1.6022 55.04 2.9110

Maris Nimrod .5650 19.70 .7628 26.60 1.5396 53.69 2.8674

N59 .4842 16.65 .8716 29-97 1.5520 53.37 2.9078

No .3120 14.64 .6400 30.03 1.1792 55.33 2.1312

N1 .4380 17.00 .7466 28.98 1.3916 54.02 2.5762

N2 .5666 18.64 .8138 26.78 1.6590 54.58 3.0394

N3 .6968 21.22 .8338 25-39 1.7530 53.39 3.2836

N4 .7710 22.16 .8476 24.36 1.8604 53.48 3.4790

Sample 6 9 August

TL363/3O .4238 13.61 .8140 26.16 1.8738 60.23 3.1112

TL365a/34 .4342 13.45 .8458 26.20 1.9480 60.35 3.2280

TL365a/37 .3530 11.72 .7692 25.53 1.8910 62.76 3.0132

Maris Nimrod .4998 15.26 .7834 23.92 1.9912 60.81 3.2744

N59 ...4358 12.59 .9456 27.33 2.0790 60.08 3.4604

No .2336 9.79 .6526 27.36 1.4992 62.85 2.3854

N1 .2854 10.88 .7396 28.20 1.5980 60.92 2.6230

N2 .4462 13.18 .8720 25.99 2.0414 60.84 3-3556

N3 .5612 14.89 .9414 24.98 2.2666 60.13 3.7692

.6238 15.77 .9524 24.09 2.3778 60.14 3.9540
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Table 3:5 Cont.

Sample 9 30 August
PAI of
Flag
Leaf

°/o total
PAI

PAI of
sheath
& Ped.

°/o of to¬
tal PAI

PAI of
ear

°/o of to¬
tal PAI

Total

Cv TL363/30 .0302 4,24 .3368 47.28 .3454 48.48 .7124

TL365a/34 .0276 5.08 .3078 56.67 .2078 38.25 .5432

TL365a/37 .0310 4.42 .3386 48.23 .3323 47.35 .7020

Maris Nimrod .0316 3.65 .4348 50.24 .3990 46.11 .8654

N59 .0142 1.24 .5992 52.87 .5200 45.88 1.1334

N rate N0 .0144 3.07 .2468 52.69 .2072 44.24 .4684

N1 .0152 3.29 .2122 45.97 .2342 50.74 .4616

N2 .0238 3.21 .3846 51.90 .3326 44.89 .7410

N3 .0270 2.50 .5654 52.33 .4880 45.17 1.0804

.0542 4.50 .6082 50.47 .5426 45.03 1.2050
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The duration of the photosynthetic area (PAD) was calculated from an-

thesis up to each sample date. The variety and nitrogen means were

plotted against time in figs 3:5 and 3:6. In fig 3:5 the PAD is

plotted against sample date i.e. calendar time, and in fig 3:6 the

time is measured in numbers of days post anthesis. The mean an-

thesis dates are given in table 3s6 for each variety and nitrogen

rate. The numbers are dates in the month of July.

Table 3:6 Anthesis Dates M
TL363/3O TL365a/34 TL365a/37

Anthesis date 75 9
N59Nimrod

10 16

N N N N N
0 1 2 3 4

Anthesis date 89 9 10 10.5

, ft
Plotting the increase in PAD versus sample date (table 3:5) shows the

effect of the duration of the leaf area after anthesis at each sam¬

pling date. That is, the variety which reached anthesis at the ear¬

liest date, TL365a/34, has the greatest PAD at the earliest sample.

1 f'*
The alternative presentation (table 3:6) shows the effect of increased

PAI more clearly. Among the varieties there is very little difference

in PAI as the curves almost merge in the earlypart. After 35 days,

however, the varieties which maintain a greater PAI for a longer

period e.g. TL365a/34 stand out from the rest as PAD maintains a

steep gradient for a longer period. The effect of nitrogen, on PAD,

is thus largely through its effect on PAI as in fig 3:6 the curves

are distinct. At high nitrogen levels (H^ and above), increased
maintenance of PAI also has an effect, as the curves separate more

rapidly after 25 days post anthesis.



Total PAD at maturity for all varieties is given in table 3s7«

Table 3:7 Total Photosynthetic Area Duration at Maturity

Maris
Nirarod 169 Mean

88.3 H3.4 100.8

114.9 H8.7 112.5

144.2 126.7 145.4

157.7 155.6 163.7

4 167.9 149.5 171.5

Mean 143.1 149.3 134.2 134.6 132.8

N lin** N cub** Cv** N lin x Cv**

The interaction of linear nitrogen and cultivar in this parameter is pro¬

bably the result of the smaller response of N59» to nitrogen, than that

of the other varieties. At the earlier sample dates this interaction

was more markedly significant and the explanation holds good on each

occasion. The lower response of N59 to nitrogen, than the other vari¬

eties, was noticeable in the PAD of main shoots alone, though the inter¬

action was non-significant. This variety thus seems to be less well

fitted to respond to nitrogen, by increasing photosynthetic area, as

a smaller proportion of the leaf area is composed of flag leaf lamina

which was part of the area most responsive to nitrogen (table 3*5)•

The tables of PAD, of total shoots, at all sample dates after 18 July

are presented in Appendix tables 3*10 to 3!17 and that of PAD, of main

shoots at maturity, in Appendix table 3'18.
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Grains from separate parts of the main shoot ears were weighed for the

study of grain filling and development in Chapter 5. From these re¬

sults the total grain weight per ear at each sample date after anthesis

was calculated. The variety and nitrogen means of these values are

graphed against the number of days post anthesis on which the sample

was taken (figs 3*7 A and B respectively). From these weights, an

approximation to the accumulation of grain dry matter per unit area

was calculated by calculation of the product of the grain weight per

main shoot ear and the total number of ears per unit area. The vari¬

ety and nitrogen means of this parameter are plotted in figs 3*8 A

and B.

The efficiency of the photosynthetic area in producing grain carbo¬

hydrate can be measured by the grain leaf ratio (G). This parameter

is the ratio of final grain weight per unit area per unit of PAD,

post anthesis. This ratio was calculated from the 1972 results and

is presented in table 3*8.

Table 3*8 G. (Grain/Leaf Ratios) g m •4T-1

£

KgN/ha TL363/30 TL365a/34 TL365a/37 Maris
Nimrod N59 Mean

N0 0 5.32 5.31 5.31 5.82 3.83 5.12

N1 40 6.52 5.87 5.76 5.71 4.72 5.72

o00
Ol

53 5.28 4.85 5.23 5.08 5.15 5.12

N 120
3

4.74 4.84 4.93 4.94 4.08 4.70

N. 160
4

4.04 4.53 4.68 4.66 4.40 4.46

Mean 5.18 5.72 5.18 5.24 4.48

N lin** N quad* N cub* Cv*
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Figure 3:7 Total Grain Weight per Ear vs time
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Figure 3:7 Total Grain Weight per ear vs Time.
B. Nitrogen Means
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Figure 3*8 Total Grain Weight per unit area vs Time
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Figure "5:8 Total Grain wt per unit area vs Time

B. Nitrogen Mean
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This parameter is comparable to the NAR calculated in 1971 which mea¬

sured the efficiency of the leaves in producing dry matter. Lodging

occurred in very few plots in either year. In 1972, TL363/3O showed

the most lodging with 3 out of 4 plots of the highest nitrogen rate

lodged by over 50%. No other treatment combination showed a tendency

to lodge however.

3:D Discussion of Wheat Results. The higher yield of 1971/

72 over that of the previous year was due to an increase in all the

yield components which were measured. The amount by which these in¬

creased is shown in table 3:9«

Table 3:9 Percentage Increase in the Yield Components

Between Years (% of 1971/72 Results)

TL363/30 TL365a/34 TL365a/37 Maris
Nimrod

Yield 23.4 25.8 33.5 19.3

1000 gr wt 12.1 5.7 2.2 14.8

Ear no/.305 18.2 11.9 18.5 23.0

Grains/sq m 13.2 22.9 35.2 9.9

N59

29.6

11.7

10.2

21.8

No N1 N2 N3 N4
Yield 15.7 23.5 27.9 31.1 28.9

1000 gr wt 6.3 5.4 9.7 14.2 11.9

Ear no/.305 m^ 5.5 15.2 15.3 20.5 21.4

Grains/sq m 15.0 29.4 22.8 16.7 18.1

In the comparison of the varieties between years it must be noted that

the nitrogen applied was increased in the second year by 17°/> in all

varieties. Similarly the nitrogen applied at all rates, except the
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nil rate, increased by 21.5$ in the second year.

In 1971/72 the yield response to nitrogen was sustained to 120 kg/ha

before a slight decline. In the previous year the maximum yield was

reached with 126 kgN/ha but the response after 63 kgN/ha was very

slight. The largest difference, between years, in yield, is thus

found at N3 and N4. The change in the yield components between years

is dependent on the rate of nitrogen applied. At the three lower

rates the largest change between the years of the experiment is found

in graii number per unit area but at the two higher rates the change

in 1000 grain weight becomes more important in explaining the change

in the yield and the changes, in both number of grains and the size

of each grain, have an almost equal effect on the change in yield

between the two years.

In both years the number of grains per square metre increased with in¬

crease in nitrogen but in 1000 grain weight the increase in nitrogen

caused a decline from 31 kg/ha in 1971 but had no effect until 120 kg/

ha in 1972. Thus in 1972, the size of the grains was maintained through¬

out a much wider range of grain population per unit area which indicates

that the grain filling period, in 1972, must have been more suitable

than the previous year. The increase in grain population per unit

area between years was less at the highest nitrogen rates, which im¬

plies that the ceiling for this parameter was being approached in the

second year. At high nitrogen rates a larger part of the change in

grain number per unit area was due to an increase in the number of ears

per unit area than to changes in grain number per ear. The conditions,

in 1972, must, therefore, have been adequate to support a large tiller

population but not to increase the number of grains on these ears after

a high ear population was reached, when competition between tillers
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became more intense.

In this second year the decline in yield at the highest nitrogen rate,

(table 3s2) was due to a reduction in the 1000 grain weight. As

greater grain weights were achieved at lower nitrogen rates and the

grain number per unit area did not decline, it is unlikely that the

cause of the yield reduction could have been a shortage of sink capa¬

city for the available photosynthetic area, but must have been due to

a reduction in the efficiency of the photosynthetic organs. This source/

sink discussion will be opened again when the leaf growth and grain

filling pattern are discussed.

The order in which the varieties were placed differed between the two

years of the experiment. TL363/3O and TL365a/34 both had a higher yield

than Maris Nimrod in 1972 though they were lower yielding in 1971 • The

yield change in Maris Nimrod, between years, followed a different pat¬

tern to that of the other varieties. The greatest increase in the

yield components of Maris Nimrod, between years, was in 1000 grain

weight while the other varieties either had a very slight change in

this component, and a large change in grain numbers, or, had equally

large changes in both the number and the size of grains. As well as

showing the differences between seasons in a different way, Maris Nimrod

and N59, both had a different pattern of response to nitrogen from

the semi-dwarf varieties, in terms of the yield components. In 1000

grain weight, Maris Nimrod and N59 showed a positive response to nit¬

rogen in the lower part of the range of nitrogen rate, but the semi-

dwarfs showed a decline throughout the range of nitrogen rates. In

grain number per ear the semi-dwarf varieties gave a response to a

wider range of nitrogen rates than the other two varieties. The semi-
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dwarf varieties thus seem to have a greater flexibility of grain popu¬

lation than the conventional varieties hut, as the population of the

grains increases, the leaf area provided, seems to he inadequate to

maintain the grain size found at lower populations.

Although Maris Nimrod showed a smaller increase, in yield, in the bet¬

ter season for grain filling and had the smallest grain number per unit

area of all the varieties in the second year, the smaller sink capacity

does not seem to be the principal reason for the poorer relative per¬

formance of this variety as, at the highest nitrogen rate, the grain

size of this variety is not as large as it is at lower rates (Appendix

table 3*2) and thus, the sink capacity is not used to the full. The

smaller increase in performance in 1972, than the semi-dwarfs, must

therefore be due to poorer utilisation of the leaf area, by Maris

Nimrod, at the high ear density which it achieved in the second year.

The other parameters measured in these experiments help to clarify the

differences between varieties.

The relationship between leaf area and dry weight of the different vari¬

eties and nitrogen rates in 1971 is shown in figures 3*1 and 3*2.

TL365a/3^ has the greatest LAI after the first sample but the second

lowest yield of dry weight. In the light of the high performance of

this variety in grain yield and in biological yield (tables 3*1 and

appendix table 3*23), inefficiency of the photosynthetic area, of the

variety itself, is unlikely i.e. reduced photosynthetic rate. The only

explanation, therefore, is, that the short stature and the high leaf

area expressed by this variety, lead to an increase in the mutual

shading of the leaves over this phase of growth, which reduces the per¬

formance more than that of the other varieties.
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At the opposite end of the height spectrum, N59> shows the highest dry-

weight of all cultivars when its leaf area is at its peak and is higher

than any other variety. LAI, in N59, is reduced more rapidly in 1971

than in 1972 (figures 3*1 and 3*6) hut, as the LAI in 1971 was measured

in leaf lamina area aiy and a large proportion of N59's PAI, in 1972,

was made up of stem area (table 3*5) this difference is readily under¬

stood.

The linear increase in dry weight, with nitrogen (fig. 3*2), at each

sample date is not reflected in the grain yield (table 3*l) as the

grain to straw ratio (Appendix table 3*l) is reduced at high nitrogen

rates. Biological yield however increased almost linearly with nit¬

rogen rate (table 3*23).

Differences between varieties in NAR were not significant at any of the

sampling dates in 1971• The variation in this parameter was very great

and the sampling period, over which the calculation of NAR was made,

was too long for any firm conclusions to be drawn from the values com¬

puted. The reesons for this were pointed out in the previous section

(3*C). No single variety had consistently better or worse values in

NAR, though TL365a/34 and N59 bad the lowest values over the first two

sample intervals. By the third interval however, they had comparable

values to the other varieties.

The different behaviour of TL365a/34 and N59 in response to nitrogen

in the third NAR (Appendix table 3*4 and section 3*C), from that of

the other varieties, could be the result of the dry weight, at high

nitrogen rates, increasing more rapidly between harvests 3 and 4 in

these two varieties than in the other three varieties. At low nit-
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rogen rates, a lesser increase in dry weight between harvests 3 and 4

in TL365a/34 and N59> than the other varieties, was also apparent

(Appendix table 3'7 and 3*8). Leaf area senescence was less rapid

at the high nitrogen rates in TL365a/34 and N59« This would have the

opposite effect to the change in dry weight noted, but the combined

result of these two differences in response to nitrogen, gave the

observed reversal of the response of NAR to nitrogen, of these two

varieties, from the response of the other three.

Anthesis dates were not accurately recorded in 1971 so accurate de¬

termination of the leaf area duration after anthesis of the lamina

area of all the leaves was not possible. From the graphs of the

variety and nitrogen means of LAI (fig. 3*1 and 3*2), an approximation

of LAD can be made by calculating the area under the curves. These

approximate values of LAD are given in table 3 s 10.

Table 3s10 Approximate LAD of Leaf Laminae Area

Variety and Nitrogen Means (l970-7l)

TL363/3O TL365a/34 TL365a/37 ^od N59
LAD (days) 34.9 49.6 30.8 35.74 25.3

N N N N N
0 1 2 3 4

27.38 35.74 37.3 38.7 40.99

The order in which the varieties are placed in leaf area duration is

the same as the order in the total yield excepting that, the position

of TL365a/34 and Maris Nimrod are reversed. The response to nitrogen

is similar, in LAD to the response of total yield to nitrogen though,

at the higher rates of nitrogen, the reduction in response noted in
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final yield, is not as noticeable in leaf area duration. This could be

the result of the leaf area being inefficiently utilised due to in¬

creased mutual shading at high leaf areas.

In 1972 the order of the varieties in final PAD is again the same as

that of final yield. The relative differences between the varieties

were also the same as in final yield, with the exception of N59» which

had a lower yield than would be expected from the PAD recorded (cf.

table 3sl and 3*7). TL365a/34 had the highest PAD at the final har¬

vest due to greater duration of leaf area* rather than through an in¬

crease in PAI.

The accumuMion of dry matter in each ear and of the grain dry matter

per unit ares (figures 3*7 and 3s8)» follow a broadly similar pattern

to the PAD curves with time (fig. 3:6), particularly in the nitrogen

means. The PAD and grain weight at each sample date increase with in¬

crease in nitrogen. At the top two nitrogen rates, the curves of the

grain weight per unit area caxverge slightly more than the curves of

PAD at the same rates of nitrogen. The convergence could be an indi¬

cation that the sink is unable to accommodate the increased carbo¬

hydrate contribution from the larger leaf area, or that the ieaf area

was less efficient at the highest nitrogen rates due to mutual shading

becoming more intense. The effect is however very slight and is not

sufficiently strong evidence to suggest that the sink size imposed a

limit on either the rate or the duration of the grain dry matter accu¬

mulation.

The rate of dry matter accumulation per unit area differed little be¬

tween the varieties. N59» which had the shortest post-anthesis period
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had, by far the smallest grain weight per unit area. The rate of grain

filling diowed a decline after only 38 days in N59 which was much sooner

than the other varieties. Most of this reduction in the photosynthetic

area of N59 was due to the loss of flag leaf lamina area and at the last

sample (sample 9» table 3*5) the lamina area of N59 was considerably

less than that of the other varieties. As the variety with the largest

lamina area at the final sample, was also the one to show the least re¬

duction in grain filling rate, i.e. Maris Nimrod, it appears fhat at this

stage the photosynthate of the ear and the leaf sheath is less fully

utilised than has been thought and that senescence of the flag leaf leads

to a rapid reduction in the rate of grain filling.

The increased duration of the leaf area of TL365a/34 (fig» 3*6) did not

lead to an increase in grain weight per unit area (fig. 3s8A) but the

lamina area of this variety was reduced to a greater extent than in any

other except N59. This is further support for the suggestion that lam¬

ina senescence results in a rapid fall in the rate of grain filling.

The nitrogen results support this view except at the lowest rate. As

the flag leaf area at the last sample (sample 9> table 3*5) declines

with nitrogen rate, so that the rate of grain filling reduces more

rapidly over the last sample interval (fig. 3'8),

Another reason for the low grain weight per unit area achieved by N59>

compared to the other varieties, could be that N59 had fewer tillers

per plant than the other varieties. This would mean that the over¬

estimate of the grain wight, caused by using the weight of the heavier,

main shoot ears alone, to calculate the grain weight per unit area,

would be smaller in N59 than in the other varieties where the lighter
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tiller ears made up a larger proportion of the total ears in the crop.

The difference between N59 and the other varieties in grain weight per

ear (fig. 3:7A) is not as great as it is in grain weight per unit area

(fig. 3:8A) which would support this conclusion.

The nitrogen means of PAD at each date (fig. 3:5 and 3:6) increase

throughout the range of nitrogen usage but the total yield showed

a decline in response after 80 kgN/ha and a drop in yield between

120 and 160 kgN/ha. Thus in both years of the experiment, the effic¬

iency with which the leaf area was utilised was reduced at high nit¬

rogen rates, and in the second year, when all the photosynthetic tissue

above the flag leaf node was measured, the efficiency of N59 in pro¬

ducing grain was lower than the other varieties. This efficiency of

utilisation of the leaf area is conveniently measured by G, the grain

leaf ratio, values of which are presented in table 3:8. These values

were only calculated in 1971-72 due to the unreliability of the LAD

data in 1970-71* The difference between the varieties, other than

N59, are very slight, both in response to nitrogen and in their num¬

erical values. N59 had considerably lower values of G than the other

varieties, and in response to nitrogen, the decline in G with increased

nitrogen, which occurred after 40 kgN/ha in all the other varieties,

did not occur until 80 kgN/ha in N59. In 1970-71 the grain to straw

ratio was calculated, which is also e measure of the efficiency of the

crop in partitioning the assimilates between the grain and the straw.

In this parameter TL365a/34, TL363/3O and Maris Nimrod all behaved

similarly (Appendix table 3:l)» having the greatest efficiency of

utilisation of the assimilates at 63-94 kgN/ha. TL365a/37 was at its

most efficient with the maximum supply of nitrogen though the efficiency

was always lower in this variety than in the afore-mentioned varieties.
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N59 had reducing efficiency of utilisation throughout the nitrogen

range and also had Considerably lower values in this ratio than all

the other varieties.

In total biological yield in 1970-71 all the varieties gave similar

yields (Appendix table 3*23) and the smaller proportion of the bio¬

logical yield made up of grain yield, in N59 and to a lesser extent in

TL365a/37> must have been due to poorer distribution of assimilates

rather than to a poorer assimilation of photosynthate.

Both in 1971 and in 1972, the efficiency of all the varieties in uti¬

lising the increased leaf area, which was furnished by increased nit¬

rogen usage, is reduced after 40-60 lcgN/ha have been applied. This

reduction in efficiency could be due to increased mutual shading of

higher leaf areas or it could be that the capacity of the grains for

carbohydrate could be insufficient to utilise the abundant supiy from

the increased PAD. The latter explanation is unlikely as the size of

the grains as measured by 1000 grain weight is reduced with increase

in nitrogen, indicating that the sink capacity is not used to the full.

This reduction in 1000 grain weight is least in Maris Nimrod and N59

but at the highest rates of nitrogen a reduction in the 1000 grain

weight is still apparent (Appendix table 3*2).

The improved sink capacity of the semi-dwarf varieties with increase

in nitrogen, described earlier, does not manifest itself in any increase

in the efficiency of carbohydrate utilisation, which would be apparent

as a smaller reduction in G with increased nitrogen, than in the other

varieties. This suggests that the efficiency reduction is probably

due to the increase in mutual shading.
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In N59> the reduction in G occurs after 80 kgN/ha has been applied,

while in the other varieties this reduction in efficiency occurs after

only 40 kgN/ha. N59 has a higher proportion of the photosynthetic

tissue made up of stem and peduncle surface (table 3s5)» which, in

itself, is less efficient (Stoy, 1965), which could account for the

lower efficiency at all nitrogen rates, hut mutual shading by the stems

will not occur until a higher photosynthetic area is reached which

could account for the greater response in G (table 3*8), by this variety

with nitrogen. That is, a greater photosynthetic area must he produced

in response to nitngen before any reduction in the efficiency of the

area is noticed in N59 as this form of photosynthetic tissue, stems and

ears, is less susceptible to mutual shading than the tissue of the other

varieties which is made up of a greater proportion of flag leaf lamina

area (table 3*5)•

The reported yield improvement in upright leaf type grains (Pearce et

al, 1967* Tanner et al, 1966) could he the result of a greater propor¬

tion of the photosynthetic area being made up of stem area and thus, a

reduction in mutual shading of the photosynthetic tissue at high popu¬

lations would result. The photosynthetic efficiency of this type of

tissue is however, not as great as that of leaf laminae (Stoy, 1965).

If the difference in the proportion of lamina to stem was not so great

as in N59 in this experiment, or the stem was more efficient in culti-

vars with a small lamina area, this could he the reason for the re¬

ported findings. A greater drop in yield with reduction in the popu¬

lation would he the result of greater efficiency derived from such a

reduction in mutual shading. This result was reported by Pearce et

al (1967) who found that the upright leaf type only showed increased
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rates of photosynthesis when the leaf area index was greater than 2 in

the early stages of growth. No results are reported for differences at

a later stage of growth when grain production would he affected.

The proportion of the total PAI made up of the constituent parts at the

several dates of sampling in 1972 (tahle 3*5) is surprising in some res¬

pects. Ear area, at the first sample (19 July) i.e. 14 days after an-

thesis of the earliest variety and 4 days after in the latest, accounts

for over 50% of the total PAI. At 9 August it makes up over 60% of PAI

and thus, the contribution of the ear, to the measured PAD, would be

over 50^ of the total in this experiment. Of this, a greater propor¬

tion would be in the later stages of the development of the crop, as

the flag leaf senesced before the ear (table 355)•

Earlier estimates of the contribution of the ear to the yield of grain

in wheat give values for this contribution of nil or even negative (more

respiration than photosynthesis) (Thorne, 1966), up to 37%» though

the latter figure was quoted as the photosynthetic contribution of the

peduncle and ear together, (Stoy, 1965) (Sect. 3'A).

Values of the gross photosynthetic rates of the ear and the flag leaf

have been found to he similar (Stoy, 1965), though the respiration of

the ear is very much larger than that of the flag leaf (Stoy, 1965).

Of the assimilates produced by the ear some will be respired so that

the actual contribution of the ear will he less than the total photo¬

synthetic contribution but there is no reason to suppose that the ear

assimilates are any more readily respired than those from the other

contributing parts of the plant. On this basis, as the ear is the
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sink for the assimilates from the whole surface area above the flag

leaf node, the respiration of the ear should he debited from the whole

PAI contribution and not from that of the ear alone. Thus the ear

contribution to the total net photosynthesis of the area above the flag

leaf would be in proportion to its surface area, as the flag leaf and

ear photosynthesise at the same rate. That is, the contribution to

yield of the constituent parts would depend on their gross photosyn¬

thesis and area. The contribution of the stem (flag leaf sheath and

peduncle) is smaller, as the rate of photosynthesis of this part has

been shown to be about half that of the flag leaf lamina (Stoy, 1965).

This was taken into account when the area of the stem was measured in

the present study, as it was calculated as half the area of a cylinder.

This way of assessing the contribution of the parts of the plant con¬

tributing to the final ear weight, by measuring photosynthetic area

and rate of photosynthesis of each part and crediting this positive

contribution to the separate parts while debiting the total respiration

of the whole area from all parts equally, allows a simpler interpretation

of the complex processes involved.

If the nil contribution suggested by Thorne (1966) is accepted, and the

area of the ear is removed from the calculation of the PAD in this ex¬

periment, the effect would be to reduce the numerical values of the PAI

and PAD by approximately 50°/° in each case. No differences due to var¬

iety or nitrogen rate from those already discussed, would be evident,

as the ear's proportion of PAI was unaffected by treatment.

The values of G computed using the PAD, inclusive of ear area, are com¬

parable to those of Thorne (1966). Thome's results place the value
-2 -1

of the ratio at around 12 g m wk for winter wheat but in her experi¬

ments the PAD used, was calculated from ear emergence and, G values
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are thus, about 50% smaller than those of table 3s8. Any reduction

in the leaf area used to calculate G, by the removal of the ear area

in the present study, would raise its value t) an impossibly high fi¬

gure suggesting a photosynthetic rate in excess of any suggested to

date. Such a situation is improbable and thus the contribution of

the ear to photosynthesis and to the growth of the crop must be simi¬

lar to the values measured, i.e. up to 50%.

The proportion of the gross photosynthetic product provided by the

ear, which contributed to the ear weight has been variously quoted at

values from 17-59% (Langer, 1967)*. with the larger proportion of the

values at around 20%. The generally accepted value for the gross

photosynthesis of the ear is the value of Thorne (1965) of 17% of the

total photosynthetie contribution. The respiration losses by the ear

in this experiment (Thorne, 1965) were greater than the ear photosyn¬

thesis with the result that the net contribution of the ear was negative.

Kriedman (1966), however, using a gas exchange technique similar to

that of Thorne (1965), found net photosynthesis of the ear to contri¬

bute 29% of the total yield. This was in part due to the re-utilisation

of respired C02 by the ear. The value for this net contribution of the

ear, in one of Kriedeman*s experiments (the only one with summer

radiation input), was as high as 46%. Spikelet removal techniques

(Buttrose and May, 1959) have frequently given values of the net con¬

tribution by the ear of between 21 and 50% of the grain weight (Thorne,

1966; Kriedeman, 1966) and shading techniques have given values of net

ear contribution of 41% (Thorne, 1966). The value of the assimilates

of the component parts, of the area above the flag leaf node, is thus

not clear. Higher values, of the net contribution of the ear, than

would be expected from the 17% gross contribution of Thorne (1965),
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have been found regularly. If the gross values of Thorne (1966) were

treated in the way suggested i.e. the total respiration of the upper

parts of the plant he shared among the photosynthetic tissues, the

contribution of the ear would be similar to the net values found and

to the 50°/o contribution suggested in the earlier discussion. As there

are differences in respiration rate between varieties (Stoy, 1965),

this method would give a more realistic picture of the contribution of

the various parts without penalising the ear photosynthetic tissues in

high respiration varieties with the total respiration of the tissues

derived from all the contributing photosynthetic area.

The recorded shoot numbers in 1971 show an interesting difference be¬

tween the varieties (fig. 3*3 and . At the earliest sample, N59

has considerably more tillers on the sample area than the other vari¬

eties but, by the final sample the tiller numbers in all the varieties

are similar, though the differences are still significant. N59 is

thus wasteful in tiller production in the early stages of growth. The

other varieties are all similar in the efficiency with which they uti¬

lise the tiller production (see table 3!l)«

Table 3:1 Percentage of Tiller Number at 24 May lost by 9 August

(1970-71)

TL363/30 TL365a/34 TL365a/37 N59

°/o lost shoots 35.8 37«4 38.6 33*2 47.1

N N N N N.«0 2 3 4

o/o lost shoots 31.4 35.2 40.8 40.5 43.6

The proportion of shoots utilised increases with increase in nitrogen

usage. The effect of these wasted shoots on plant growth is the subject
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debate as some consider this production of non-productive shoots is

detrimental to the plant (Lupton, 1966; Wardlaw and Porter, 1967),

others consider it beneficial to the plant as it enhances the root

formation (Stoy, 1965), while others consider that neither benefit

is gained nor harm is done by the non-productive shoots (Thorne,

1966; Bremner, 1969 ) (Sect. 3*A). The generally agreed fact is,

that the variety which utilises the largest proportion of the tillers

it produces, is generally the highest yielding (Thorns, 1966; Stoy,

1965; Lupton, 1966). This was the observed response in the 1971

experiment as Maris Nimrod with the highest proportion of surviving

tillers, was the highest yielding variety, while N59, with the low¬

est proportion, was the lowest yielding.

The steepest fall in the number of tillers, with time, occurs when

the leaf area is increasing rapidly. This is the period of stem

extension, which appears to be a critical phase in the life of a

tiller. After this initial rapid drop in tiller number, the number

decreases at a similar rate to leaf area (fig. 3:1} 3*2 and 3*3)•

This suggests that the reduction in leaf area was due to the re¬

duction in the tiller population. During this period just prior

to anthesis, the production of leaf area on each tiller closely

matches the reduction due to senescence of the lower leaves and the

leaf area of each shoot stays more or less constant (Appendix table

3:19, 3:20). After ear emergence, which almost coincided with sample

3 (30 June), there is little further change in the number of tillers

up until harvest. In 1972 the measurement of leaf area depended

on this finding, as the tiller number was counted at anthesis, and

this number was used throughout the post anthesis period to calculate

the PAI and PAD. Leaf area declined throughout this phase in 1971
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by complete senescence (Appendix table 3219-20) and not to a reduction

in the number of tillers.

In 1972, after anthesis, the area of the photosynthetic tissues above

the flag leaf node increased for a short time with the extension of the

peduncle and the ear and then senescence reduced the area of the flag

leaf lamina followed by the sheath and the ear (table 3•5)• At high

nitrogen rates, the flag leaf lamina formed a larger proportion of the

total photosynthetic tissue than at low rates* This would have a

tendency to increase the degree of mutual shading which, in turn, would

counteract the greater photosynthetic efficiency of the lamina tissue

over that of the stem and the ear*

From the evidence available, the reduced response of yields high nit¬

rogen rates would appear to be due to a reduced response in the supply

of photosynthates to the grain at higher PAI due to increased mutual

shading or, due to assimilates being wasted in the production and main¬

tenance of the higher PAI at high nitrogen rates*

The slight differences in the behaviour of the different varieties in

sink size, in response to increased nitrogen, would be unlikely to have

a great enough effect on the yield to cause the observed yield response

of the varieties, to nitKgen, There is, however, a slight indication

that the higher yielding dwarf varieties in this experiment, TL363/3O

and TL365a/34, may have the potential of a greater sink capacity which

could lead to a higher yield in years in which the supply of photosyn-

thetic assimilates was too great for a variety with a smaller sink to

utilise* The sink capacity and the rate at which the parts of it are



115

will be examined more closely in Chapter 5*

In all the other aspects of the behaviour of the plant which have been

discussed here, there are no clear cut distinctions to be drawn between

the dwarf varieties and Maris Nimrod though the outdated variety N59

differed in a number of respects from the behaviour of the more modern

varieties. The dwarf varieties did not behave in an identical fashion

but showed as great a degree of variation among themselves as would be

expected when comparing several conventional varieties of similar per¬

formance. Dramatic yield increases, of the size achieved in India and

the Middle East (CIMMYT, 1970 and 1972), are thus not to be expected

with the introduction of semi-dwarf varieties to this country, but these

varieties, TL363/3O and TL365a/34 in particular, have performed well

in these experiments as, Maris Nimrod is one of the highest yielding

varieties at present on the market, and they have compared favourably

with Maris Nimrod, in their performance throughout.

These varieties of semi-dwarf stature are now undergoing statutory

performance trials for future release as commercial varieties. TL365a/34

and TL365a/37 are now in their second year of trials, while TL363/3O*

has just entered these trials this year. The results of the first yearfs

Statutory Performance trials including these varieties were recently
W " .

published (P.V.S.G., 1973) and these were:

°/o of Yield Control (mean of Maris Sanger and Cappelle)

TL365a/34

TL365a/37

Maris Nimrod

Control Yield

119°/®

11 bP/o

119°/o

5.89 tonnes/ha
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These are the mean results of trials at six sitea throughout Britain.

In similar trials conducted by the Plant Breeding Institute, Cambridge,

at several sites in Britain these varieties performed thus (Lupton et

al, 1972):

°/o Yield of Control (Maris Huntsman)

TL363/30 110D/o

TL365a/34 109D/o

102°/o

Maris Nimrod 105/o

These results indicate that these varieties are likely to be used on a

large acreage in Britain in years to come and that the varieties have

no serious shortcomings.
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CHAPTER 4

ROOT GROWTH

4i Introduction. The aspects of root growth which were

studied experimentally were, the root growth of tall and semi-dwarf

varieties of wheat and barley, and the growth of both species through

the season with samples being taken on several occasions. To enable

a fuller understanding of the complexities of the growth of roots a

brief review of the endogenous and external factors affecting the growth

of roots is included together with a review of root studies already

carried out in the comparison of semi-dwarf and tall varieties of wheat.

4ii The Growth of Roots. In the cereal plant the roots are

the first organs to emerge from the seed after germination. After the

imbibition of water by the seed the coleorhiza containing the primary

root emerges and very shortly afterwards the primary root and two pairs

of seminal roots emerge from the coleorhiza. These five roots make up

the primary or seminal root system in the cereal plant {Wellington, 1966).

These roots arise from below the insertion of the coleoptilar node which

distinguishes them from the subsequently formed adventitious or nodal

roots which form the bulk of the root system of cereal plants. The

relative importance of these two types of root in terms of activity and

contribution to the growth of the plant is a subject of some doubt.

The activity per gram of root is greater in the seminal than the adven¬

titious roots but the longevity of the seminal roots has been doubted

(Brouwer, 1966). Bennett (l96l) showed that the seminal roots were

present even at a late stage of the growth of cereal plants however.

More recently, relative uptake of nutrients by seminal and nodal roots

were suggested (Russell and Newhould, 1969) which showed nodal roots
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to be more important, though lateral roots of both types were respon¬

sible for the greatest activity.

The seminal roots have more branch roots than adventitious roots have

(Brouwer, 1966). The branching of seminal roots has been studied by

Hackett (1969) in barley and was found to be sensitive to potash defi¬

ciency which prevented branching in two cultivars of barley while phos¬

phate deficiency only stopped branching in one of the varieties while

promoting it in the other. This highlights two of the important aspects

controlling the growth of roots. Firstly the nutrition of the root is

of prime importance both from internal sources i.e. the provision of

carbohydrate from the shoot and from external sources for the provision

of minerals and water. The second feature demonstrated is the degree

of control exercised by the genotype on the growth of the roots even

within a species.

The overriding control of root growth appears to be the nutrition of

the root from the shoot (Brouwer, 1966) especially nutrition with carbo¬

hydrate. A number of experiments have also established that the control

of various root developments i.e. extension and branching is by chemical

control mechanisms (Hess, 1969; Street, 1969). The nature of this con¬

trol of the root is complex and in addition to the provision of carbo¬

hydrate, the stem also provides nitrogen compounds, auxins and phenolic

compounds which all seem to have a part to play in the efficient func¬

tioning of the root (Hess, 1969).

The other principal requirements for adequate, healthy root growth can

be considered as 1. An adequate pore space

2. An adequate air and water supply
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3. A supply of nutrients in the soil

solution

4. An adequate temperature (Russell, 1966).

The importance of pore space lies in the requirement of the root for

space to grow in the soil medium. A root is unahle to pass through

a space smaller than the unstressed width of the meristem as cell size

does not fall below a certain minimum and cell arrangement is strictly

adhered to in a root (Greacen et al, 1969). In addition, the pore space

is vital to the second requirement, in that, a soi 1 with an adequate

pore space allows roots to ramify through the soil and provides a large

interface between the root, the soil atmosphere and the soil water

supply (Eavis and Payne, 1969).

The importance of the air supply to the roots is difficult to demonstrate

except by the total removal of air. The growth of roots of a mesophytic

species, in oxygen free agar ceased after penetrating the agar to a depth

of 2 centimetres (Greenwood, 1969). This demonstrated that oxygen trans¬

portation was possible in such species.

There is also evidence that oxygen can be transported through the barley

plant to the roots, though the quantities are unlikely to be sufficient

to support the growth of the root system (Greenwood, 1969)* Waterlogging

of the soil for even a few days can reduce the yield of a barley crop by

at least a third as a result of the formation of toxins in anaerobic con¬

ditions (Greenwood, 1969). Although the quantity of air in a soil can he

measured with considerable accuracy none of these measures relate to perfor¬

mance of the plant or the crop (Grable, 1966). This is probably the result

of a number of interactions in the soil of the various root requirements.
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For example the provision of an adequate air supply may reduce the

available water to a level where it starts to inhibit the growth of

the roots or the temperature in the soil may be too high or low for

root growth to be sustained.

Thus the water and air requirements of a soil are in conflict as they

share the pore spaces in the soil and a balance must be sought. In a

freely drained soil the most readily available water for the roots is

lost by gravity but a large quantity of water is held in the pore spaces.

A considerable amount of energy is required to remove this water from

the soil particles but the structure of the soil, and in particular the

provision of pore spaces in which water can be held has a considerable

bearing on the ease with which the soil water can be utilised by the

roots (Eavis and Payne, 1969). The energy required by the roots to

utilise the water in the soil can be measured by the suction tension

of the water in the soil which can be related to the reduction of the

growth of the roots as the tension increases (Brouwer, 1966).

The air-water relations in the soil are thus complex when measured in

plant growth terms and the true effects of changes in either are diffi¬

cult to measure.

The provision of nutrients to the roots is bound up with the water

supply to the roots and is thus in part affected by the restraints

described in the previous paragraph. Nutrient uptake is not however,

directly proportional to the amount of water taken up by the roots

particularly in periods of rapid root growth (Eavis and Payne, 1969).

In the agricultural context the principal nutrients are provided to

the plant in the form of granulated mineral compounds. The ease with which
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such minerals are utilised and the efficiency of the utilisation have

been examined by Russell and Newbould (1969) who concluded that pro¬

vided the water status of the soil was adequate, provision of nutrients

in this form was satisfactory as the root has the ability to transfer

nutrients within the plant. The activity of the roots is the most

important aspect of the root growth for plant productivity hut the rela¬

tive activity of old and young roots and seminal and nodal roots has

not been determined. Russell and Newbould (1969) presented figures for

the percentage uptake by nodal axis, seminal axis and lateral roots but

these were calculated from small sections of root which may not have

been representative of the remainder of the root system. The thickening

of the wall of the older roots interferes with uptake though it has been

shown recently (Clarkson and Sanderson, 1971) that the suberised tertiary

wall of roots is not a complete barrier to the passage of ions into the

root as the ions pass through the plasmodesmata in the tertiary wall.

The best parameter of root growth i.e. the one most closely related to

the activity of the root seems to be the volume of the root (Clarkson

and Sanderson, 1971) though the volume of the lateral roots must be in¬

cluded. Care must be exercised therefore in removing the roots from the

soil to avoid loosing the finer lateral roots.

The final prerequisite for root growth to be maintained is a temperature

within the range in which the processes of growth and active absorbtion

can continue. Roots tend to be more sensitive to temperature than shoots

(Nielsen and Humphries, 1966). At low temperatures absorbtion of water

and nutrients is slowed as the viscosity of the water increases and the

permeability of the protoplasm of the cells of the root is reduced. Ion

uptake is also affected by low temperature as this is an energy requiring

process and is thus dependent on the oxidation of carbohydrate for the
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release of energy, but, as this reaction is slowed by low temperature,

the uptake of ions is also slowed. Roots grown at low temperatures are

thicker and less branched than when temperature is adequate. The

reduction in branching is probably the result of a reduction in the

supply of carbohydrate or one of the other requirements for branching

described earlier, either through reduced shoot growth at the low

temperature or, through a reduction in translocation to the root of

these substances. The increase in the thickness of the roots will

also reduce the amount of ramification of the roots through the soil

and increased mechanical impedance has been shown to further retard

root growth (Russell, 1966).

The effects of low temperature are thus considerable, and these effects

become apparent at higher temperatures than those which reduce shoot

growth (Neilsea and Humphries, 1966).

4iii Provision of a Root Environment. In cultivating the soil

for crop sowing an attempt is being made to provide an environment in

which all the requirements of root growth are being met. The effect of

tillage on the soil was studied by deRoo (1969) in the tobacco crop

through the effect on the root growth of the crop. He concluded that

primary tillage, ploughing, was desirable in that it removed the effects

of compaction of the previous year's crop but that secondary tillage,

harrowing and other cultivations caused compaction and should be kept

to a minimum. Compaction was as great at each successive harvest after

the normal round of traffic over the soil after ploughing. Pans in the

soil form an impermeable barrier to root growth and should be broken (deRoo,

1969). The most common shortage to arise in the world, of the require¬

ments of the previous section (4ii), is a shortage of moisture. The effect
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of water shortage on the plant growth has been extensively studied and

the effect most commonly noted is a reduction in the shoot/root weight

ratio. This is a result of the root, being closest to a scarce resource,

having first call on that resource and undergoing extension growth

seeking new supplies of the scarce resource in this case, moisture.

Thus the root weight increases relative to the shoot weight and the

ratio is reduced. In a similar way when the carbohydrate supply to the

root is limiting as the shoot is receiving too little sunshine the scarce

resource becomes carbohydrate which is utilised preferentially at the

source of the supply, namely in the shoot which increases in weight.

Under the same environmental conditions and at the same stage of growth

the shoot/root ratio of a cultivar has been found to be constant (Brouwer,

1966). Any influence which upsets the growth by altering the ratio will,

when the stress is removed, result in an acceleration of the growth of

one part of the plaint which will bring the ratio to a similar equilib¬

rium to that found in plants which did not undergo the stress (Brouwer,

1966). In a field situation where two treatments have differing effects

on the shoot/root ratio, for example mulching versus no mulching, the

resultant effect on the plant and crop growth can be considerable. When

drought becomes a limiting factor in the non-mulched soil the shoot

growth is slowed sooner than in the mulched crop where the water reten¬

tion characteristics of the soil are improved. With the return of moist

conditions equilibrium of shoot growth to the different sized root sys¬

tems is sought by the crop and consequently the mulched crop reaches a

greater size. This greater shoot growth is capable of supporting root

growth for a longer period in the next period when moisture is limiting

with the result that crop growth is considerably improved by mulching in

dry conditions (Eavis and Payne, 1969).
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The other major control of the soil contribution to plant growth exer¬

cised by the farmer is the provision of nutrients. This is achieved

by the addition of granular, mineral fertilisers. This has been shown

to be a suitable means of achieving an efficient utilisation of the

fertiliser (Russell and Newbould, 1969)#

4iv The Root Systems of Different Varieties. Between species

large differences in root growth have been recognised for many years

but recently it has been realised that differences can exist between

similar strains of one species (Troughton and Whittington, 1969, Monyo

and Whittington, 1970; Russell and Newbould, 1969, Hackett, 1969).

These are not only differences in the structure of the root system

which can result in changes in apparent uptake due to differences in

ramification through the soil but there appear also to be differences

in real uptake by the roots (Hackett, 1969)* The extent of such dif¬

ferences is such that consideration should be given to the distribution

of the roots in breeding though the difficulty of measurement makes

this unlikely.

The introduction of semi-dwarf varieties of wheat and barley (Chapter l)

prompted the question of whether the dwarfness of the stem was reflected

in the root growth. Experiments to examine whether this was the case

have been reported from India (Subbiah et al, 1968; IARI, 1968) and the

United Kingdom (Newbould et al, 1969, 1971; Cannell et al, 1972; Welbank

and Taylor, 197l).

In India two semi-dwarf Mexican varieties, Sonora 64 (2 gene dwarf) and

Lerma Rojo (single gene) were compared with four indigenous tall vari¬

eties under identical field conditions with a P32 injection technique.
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Differences in the rooting pattern were observed. Sonora had a vertical

penetrating root system about 4 inches in diameter to a depth of 15 inches

with a dense pattern in the top 6 inches. Lerma Rojo however had almost

all its roots in a shallow laterally spread pattern. The indigenous

varieties had a deep, spreading pattern with greater spread than Sonora.

The pattern of the indigenous varieties was considered to be the best

but those of the imported varieties were considered to be adequate though

in years of drought with no irrigation Lerma Rojo could suffer the effects

of drought (Subbiah et al, 1968).

In the United Kingdom, home bred semi-dwarf varieties were compared with

other commercial conventional varieties over a number of years. The semi-

dwarf varieties included the ones used in the experiment reported in the

next section. One of the semi-dwarfs differed significantly in its early

root growth in that growth was slower in TL365a/37 though one of the con¬

ventional varieties had the same slow growth (Welbank, 1972). These

experiments were carried out using Rubidium 86 injection (Ellis and

Barnes, 1968; Russell and Ellis, 1968) and measuring the uptake of P32

from the soil. Later in the season no difference could be found between

the varieties and it was concluded that no harmful effect on root growth

was associated with the dwarf character in these varieties (Cannell et

al, 1972).

4v Materials and Methods. Root study was undertaken on two

varieties of barley in 1971 and on four varieties of wheat in 1972. In

both years root sampling plots were laid out adjoining the main barley

or wheat experiment described in Chapter 2 and Chapter 3.
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(a) Barley Root Study 1971* Two varieties were compared, namely

Golden Promise (short strawed) and Zephyr (tall) in the absence of any

applied nitrogen. No other treatment was included hut six replicates of

the two plot block were sown and sampled. Samples were taken at approxi¬

mately fortnightly intervals on the 17 and 31 May, 14 and 28 June, 12

and 28 July and on the 9 and 24 August. The sampling technique and

measurement method are described later (sect. 4vc). The stages of growth

of the crop with which these sampling dates coincide most closely are

complete braird May 6, 4 leaf stage June 3 (Sample 2), in hoot (G.S.10)

June 28 (Sample 4), anthesis 15 July (Sample 5)> maturity September 7

onward. These dates are approximate due to the variation between vari¬

eties.

(b) Wheat Root Study 1972. Four varieties of wheat were com¬

pared in the early part of the spring with the last sample being taken

on 5 June. The varieties grown in the experiment were TL365a/34, TL363/30»

Maris Nimrod and N59» The growth characters of these varieties have been

described in chapter 3« In this study no other treatment was applied

but four replicates of the four varieties were sown specifically for

root study. Sample dates were 24 January, 31 March and 5 June which

coincided with the early tillering stage, the early ear initiation stage

and the late ear initiation stage respectively.

(c) Sampling and Measurement Techniques. The method of samp¬

ling was essentially the same as that used by Lockhart (l9?l)« Soil

cores of 6.5 cm diameter and 36 cm or 50 cm length were taken from each

plot. At each sampling date four cores were taken from each plot. The

36 cm cores were taken first and divided into three equal, 12 cm, divi¬

sions which were bulked, weighed, crumbled and subsampled. When a deep



127

(50 cm) sample was taken the 50 cm core was inserted in the hole left

by the 36 cm core. Again four samples were taken from each plot which

were bulked, weighed, crumbled and subsampled as before. 1000 g or

300 g subsamples were taken from the upper three divisions i.e. divi¬

sions of the first 36 cm cores and 300, 500 or 1000 g samples from the

"deep" cores. The subsample was mixed with water, stirred with a vari¬

able speed stirrer to break up aggregates and washed onto an 8" 30 guage

sieve. The sieve was placed under a sprinkler to remove the fine soil

fraction before washing the remainder of the sample into a sedimentation

tank from which the roots were decanted off into a beaker. The water

was then removed by suction filtration and the sample was stored on its

filter paper at -5°C until the measurements of length and diameter were

to be carried out.

The root length per unit volume of soil was measured using Newman's met¬

hod (Newman, 1966). This method estimates the length of an unknown quan¬

tity of root by the number of intersections between the root and a known

length of fixed line within a known area. The intersections were counted

by scanning a black tray with white lines and arcs etched on it with a

binocular microscope (magnification 5 x 1.25) mounted on a swinging racked

arm. The roots from the filter paper were washed onto the black tray

with a little water which did not need to he removed. By using regular

fixed fields quick counting of the intersections on a long length (450 cm)

of line was possible.

The diameter of the roots was measured by counting the divisions on a

linear scale in the eye piece of a higher power lens (x 14). For this

measurement the roots were washed onto a red perspex tray with black lines
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etched on it and diameter of the roots was measured where the root

crossed one of the lines. Greater magnification (14 x 1.25) was

used for this measurement.

Knowing the length and mean diameter of the roots the volume and

surface area of the roots in a volume of soil could he calculated.

The method was tested by Lockhart (l97l) who found that the least

significant difference at the 5°/> level was 15°/> for root length and

9°/o for diameter when means of 8 replicates of 4 treatments were com¬

pared. The coefficient of variation was in the range of 30-40^ on the

basis of 4 cores per sample for lengths between 200 cm and 600 cm

but at lengths less than 100 cm and greater than 1000 cm the errors

became considerably larger. 1000 and 500 g samples were taken from

some of the cores to avoid root lengths falling into the range where

the measurement became less accurate. At lengths greater than 1000 cm

the clumping of the roots became a serious problem and the number of

intersections was difficult to determine accurately. For consistent

measurement of the viable root in a sample the measurement had to be

carried out by one operator.

The layers of the soil from which the samples were taken will be

described as

Top layer 0 cm - 12 cm depth

Middle layer 12 cm - 24 cm depth

Bottom layer 24 cm - 36 cm depth

Deep layer 36 cm - 50 cm depth

4vi Results of Root Study in Barley. The length, surface

area and volume of barley root in the two varieties at the eight sampling
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dates through the season are shown in tables 4:1, 4:2 and 4:3 respectively.

Few of the differences between the varieties are significant in any of

the parameters hut slight, fairly consistent differences in the results

from the first four sampling dates are noticeable.

In the top layer Golden Promise, the ^semi-dwarf' variety, had a slightly

greater root length up to anthesis. This greater length was also evi¬

dent in the middle layer but in the bottom layer Zephyr seemed to have

a slightly greater length of root in the early stages of growth. After

anthesis the differences between the varieties were inconsistent and it

is doubtful if any real differences exist. The greatest increase in

root length occurred before the 4 leaf stage in both varieties and at

all depths in the soil. After this, growth proceeded at a slower rate

and the root length reached a peak at, or just before anthesis. No

rapid decline in root length after anthesis was apparent in any of the

layers though this could have been a failure to recognise senesced root

in the later samples. The length of root in the bottom layer at the

first sampling in the tall variety was very much less than that of the

dwarf variety suggesting that the growth of the tall variety at this

depth was slower in the earliest stages though, by the 4 leaf stage,

the length of root of the tall variety had overtaken that of the dwarf,

as described earlier.

The differences noted in the length of root of the varieties were also

apparent in the surface area measurement (table 4:2). The dwarf variety

again had a slightly greater surface area of root in the top two layers

up to anthesis while the tall variety had the greater surface area in

the bottom layer except at the first sampling date. In the top layer

a slight increase in the surface area after anthesis was noted which

may have been a real effect in that the roots thickened without any
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TABLE 4:1

Length of Root BARLEY 1971 cm/cm3 of Soil

SAMPLE 1 2 3 4 5 6 7 8

Date 17/5 31/5 14/6 28/6 12/7 28/7 9/8 24/8

Top Layer ** NS NS * NS NS NS NS

tall 2.44 5.44 6.39 6.09 5.26 7.76 6.04 6.65

dwarf 2.90 5.81 7.01 7.39 5.54 7.38 6.44 6.37

c V/o 5.89$ 19. 6$ 40.64$ 9.81$ 37.15$ 19.3$ 21.7$ 21.9$

Middle Layer NS NS NS NS * NS NS NS

tall 2.54 4.44 4.18 4.96 2.17 3.61 3.86 3.67

dwarf 3.32 5.17 5.84 5.52 2.74 3.93 3.53 2.90

CV°/o 21.8°/ 49.3$ 16.96$ 16.7$ 15.4$ 9. 8$ 11.2$ 29.6$

Bottom Layer NS NS ** NS NS ** NS NS

tall 0.80 2.15 2.05 2.31 0.99 1.20 1.55 1.42

dwarf 1.29 1.46 0.96 2.38 1.00 1.75 1.55 1.52

C V/o 38.0$ 34. 7$ 16.75$ 17.3$ 18.1$ 13. 9$ 39. 0$ 35. 0$

Deep Layer NS NS

tall 1.82 1.58

dwarf 1.98 1.38

cv^ 25.77$ 42. 4$

cv°/» = coefficient of variation
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TABLE 4:2

2 -3
Surface Area of BARLEY Root 1971 cm cm of Root in Soil

SAMPLE 1 2 3 4 5 6 7 8

Date 17/5 31/5 14/6 28/6 12/7 28/7 9/8 24/8

Top Laver * NS NS * NS NS NS NS

tall 0.103 0.271 0.365 0.355 0.350 0.416 0.302 0.325

dwarf 0.129 0.281 0.395 0.427 0.346 0.408 0.335 0.303

cV/o 11.9# 25.8# 39.3# 11.6# 41.4# 20.6# 19.4# 19.2#

Middle Layer NS NS NS NS NS NS NS NS

tall 0.104 0.238 0.233 0.269 0.147 0.193 0.214 0.201

dwarf 0.141 0.254 0.268 0.299 0.194 0.212 0.176 0.142

cV/o 21.6# 44.7# 23.0# 21.1# 18.5# 17.1# 15.7# 27.5#

Bottom Layer NS NS ** NS NS * NS NS

tall 0.032 0.121 0.128 0.153 0.071 0.073 0.095 0.092

dwarf 0.052 0.079 0.058 0.143 0.081 0.106 0.090 0.083

cv# 33-7# 35.9# 13.6# 11.7# 16.5# 18.0# 37.3# 36.6#

Deep Layer NS NS

tall 0.090 0.111

dwarf 0.101 0.104

C\°/o 16.0# 55.6#



TABLE 4:3

Volume of BARLEY Roots 1971 3 -3
cm cm x 10~3 of Root in Soil

SAMPLE 1 2 3 4 5 6 7 8

Date 17/5 31/5 14/6 28/6 12/7 28/7 9/8 24/8

Top Layer NS NS NS NS NS NS NS NS

tall 0.351 1.111 1.674 1.663 1.888 1.820 1.209 1.293

dwarf 0.459 1.089 1.784 1.981 1.730 1.815 1.400 1.154

cV/o 21.8°/ 36.4% 38.2% 14.1% 46.6% 29.0% 28.4% 22.9%

Middle Layer NS NS NS NS NS NS NS *

tall 0.341 1.019 1.043 1.175 0.814 0.835 0.962 0.879

dwarf 0.477 1.009 1.188 1.309 1.118 0.919 0.715 0.561

C\°/o 27.4% 41.6% 29.9% 31.1% 30.8% 26.9% 26.9% 26.2%

Bottom Layer NS NS ** NS NS NS NS NS

tall 0.110 0.559 0.652 0.819 0.441 0.357 0.468 0.478

dwarf 0.167 0.328 0.280 0.699 0.539 0.522 0.415 0.360

cV/o 41.2% 37.3% 27.1% 18.1% 32.9% 30.3% 36.9% 43.8%

Deep Layer NS NS

tall 0.357 0.653

dwarf 0.413 0.668

cv°/> 14.6% 74.6%
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further length extension at this stage.

Fewer significant differences were noted in root volume as the coef¬

ficients of variation were higher in this derived variate (table 4:3)•

In the top two layers the supremacy of the dwarf variety in terms of

length and surface area is not evident in root volume. In the bottom

layer however the greater length and surface area of the tall variety

is also apparent in the volume measurement where the difference is, if

anything, more obvious up to anthesis. A decline in volume after an-

thesis is noticeable in the dwarf variety in particular, though it is

also evident in the top division of the tall variety. This could sug¬

gest an earlier reduction in the activity of the dwarf variety's roots

than in the tall variety. Rapid volume growth in the top layer was

sustained beyond the 4 leaf stage in both varieties before the growth

slowed. Length and surface area both showed an earlier reduction in

rate of growth.

The differences between the varieties in the deep layers in all three

parameters are unlikely to be real differences as they are very slight.

It is interesting to note however that the difference between the two

sampling dates is very small in both length and surface area but that

this difference is considerable in volume thus the roots at this depth

become thicker around anthesis. In all other layers the increase in

volume and surface area occurs most rapidly in the earliest stage of

growth measured i.e. between samples 1 and 2 after which the rate of

increase is reduced.

4vii Results of Root Study in Wheat. The results of the root

measurements on the three sample dates are shown in table 4:4 for length,



TABLE4:4
BootsWHEAT1972 LengthofRoot

SAMPLE Date

1

24January

2

31March

3

5June

Layer

Top

Middle

Bottom

Top

Middle

Bottom

Top

Middle

Bottom

Deep

VARIETY
L E

*

M

1.24

0.93

0.51

10.00

7.43

3.90

8.80

7.53

4.36

6.47

N

N

2.64

0.81

0.60

11.40

9.27

4.52

8.03

7.54

3.62

3.48

G

A

1.40

0.99

0.60

9.84

6.35

2.48

8.52

6.79

4.81

7.95

T

-3

cmcmB
2.35

0.65

0.43

10.92

5.56

2.62

9.38

8.64

4.03

6.36

H

CV/o

52

44

60

17

14

32

19

15

19

51

signif.

NS

NS

NS

NS

*M=MarisNimrod
N=N59A=TL363/30B=TL365a/34
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RootsWHEAT1972

SurfaceAreaandVolumeasat5June
s

Layer

Top

Middle

Bottom

Deep

Top

Middle

Bottom

Deep

u

VARIETY
R F

*

M

0.48

0.40

0.25

0.09

V

*

M

2.12

1.68

1.11

0.46

A

N

0.45

0.41

0.19

0.05

0

N

2.02

1.81

0.82

0.23

C

2 -3
cmcm

A

0.46

0.34

0.25

O

•

IO

L

A

2.05

1.41

1.01

0.62

E

B

0.54

0.49

0.22

0.10

U

3-3-3
cmcmxlO

B

2.47

2.27

0.96

0.53

CV°/o

19

18

1

54

M

cu°/o

24

22

24

59

A

signif.

NS

NS

NS

NS

E

signif.

NS

NS

NS

NS

R
E A

*M=MarisNimrod
N=N59

A=TL363/30
B=TL365a/34
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surface area and volume measurements. The earliest sample (24 January)

was very variable as the root lengths were very short and the intersection

counts fell within the range (<100) where the method becomes unreliable

(sect. 4vc). 1000 gram samples were used in the second sample to avoid

this danger.

The samples were too widely spaced to enable conclusions regarding growth

patterns to be drawn but comparison of the varieties at the separate

dates wil 1 give an indication of the extent of the root development of

the different varieties.

At the first two sample dates varieties N59 and TL365a/34 had by far

the greatest root growth in the top layer and N59 also in the middle and

bottom layers. At the final sample however, N59 had the least root in

all the layers except the middle where it was intermediate in root length

between the other varieties. TL365a/34 had the least root of all the

varieties in the middle and bottom divisions at the first two dates which

suggests a more extensive growth at a shallow depth at the expense of the

deeper roots. The results of the third sample do not bear out this con¬

clusion as this variety has the largest amount of root at the middle layer

as well as the top and an intermediate amount at greater depth.

Values of all the parameters are higher at the second sampling date than

at the third. This could arise through one of two causes. Firstly there

may have been more roots at the second sample or the disparity of the

results could be due to a different operator making the measurements at

the third sample from the operator at the other two dates. The first two
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samples in the wheat study were measured hy a B.Sc. student (A.G. Courtice,

1972) for his honours thesis while all the other measurements were made hy

the author. If the first cause is the real one all varieties have less

root at the end of the ear emergence phase than at the start and the re¬

duction in the amount of root is greatest in N59»

The variability of the results both within and between sampling dates

makes it difficult to draw any firm conclusions regarding the growth of

roots of the four varieties under examination. It can however be stated

that there does not appear to be any large difference between the growth

of roots in the dwarf varieties to that of the taller ones.

4viii Discussion of Root Study Findings. The relevance of the

measures made on the roots in this study to the activity of the roots in

the soil is doubtful. Of the three parameters measured, length, surface

area and volume, the volume appears to be the one most closely relating

to the activity of the roots in the soil (Clarkson and Sanderson, 1971)

though this close relationship only exists where the fine lateral roots

are measured as well as the larger axis roots. With the technique of

root extraction used in this study the only point at which lateral roots

could be lost is on the 30 mesh sieve where the fine soil fraction is

removed. Here losses could only occur if roots were washed through the

sieve which is unlikely as the force of water used on the soil at this

stage was slight. It can therefore be assumed that the volume measure¬

ments made in this study relate most closely to the activity of the

roots in the soil. The discussion will not however be restricted to

discussion of the volume of root as the evidence to support the con¬

clusions of Clarkson and Sanderson (l97l) has not been extensively veri¬

fied to date.
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The pattern of growth of the two barley varieties was essentially similar.

Growth of roots in length and surface area was rapid up to the four leaf

stage at all depths though the dwarf variety had greater growth in the

middle and bottom layers before the first sample was taken. After the

four leaf stage the roots grew more slowly with a cessation of growth at

or around anthesis. A slight decline in the amount of root after anthesis

was noticed particularly in the volume of root and this decline was more

rapid in the dwarf variety than in the tall one. Volume growth maintained

the early rapid growth up to the sample after the four leaf stage was

reached i.e. for a fortnight after the length and surface area growth

had slowed. In barley therefore the root system is developed early in

the life of the plant with only a little new growth occurring after the

four leaf stage and most of this being thickening of the existing roots.

The technique of measurement measured the total root in a volume of soil

and thus no conclusion can he drawn regarding the amount of new growth

which occurs to replace dead roots in this slow growth phase between four

leaves and the flowering of the plant. Such regeneration of tissue occurs

in the shoots of the plant with lower leaves dying and being replaced

by younger leaves with little overall effect on the total leaf area and

it is therefore probable that sone thing similar occurs in the root system

but escapes unnoticed.

The main differences between the barley varieties were, the more extensive

early length growth of the dwarf and its earlier reduction in volume, in

particular, though length was also reduced. The early growth of Golden

Promise roots is similar to the tiller growth observed in this variety

(Table 2:6, Chapter 2Dix). More tillers are produced by Golden Promise

than by Zephyr and as each tiller produces some roots the root growth
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of the greater tillering variety would be expected to be more extensive.

In the discussion of the shoot growth (Chapter 2E) it was concluded that

Zephyr produced a large number of infertile tillers. These would be pro¬

duced near anthesis and would thus be instrumental in reducing the diffe¬

rence between the root growth of the two varieties at this stage. The

early reduction in the volume and length of Golden Promise roots observed

would result in a reduction in the activity of the root system during the

grain filling period which could result in a reduction in the supply of

some essential elements for the grain filling process or the reduction

could be a result of the earlier ripening of Golden Promise. Earlier,

(Chapter 2Dix) it was shown that Golden Promise had smaller grains and,

in 1971, a smaller yield than Zephyr which could have been in part due to

the reduction in the root activity during the grain filling stage.

The only other difference between the barley varieties which was noticed

was the earlier depth penetration of the dwarf variety. Only in a very

dry spring would such a difference in root growth manifest itself in

shoot growth differences. Although the dwarf variety established exten¬

sive roots in the bottom layer early in the growth of the plant, the tall

variety developed a more extensive system in this layer by the four leaf

stage and had a greater quantity of root, particularly in volume up to

anthesis. Lack of such deep roots could be detrimental in a dry year

when the roots in the upper soil layers would be in dry soil and the

plant might be in danger of suffering lost production through drought.

Similar amounts of root were found in the deep layer however which would

alleviate this danger.

Thus the slight differences in the growth of the roots of the two barley

varieties could have an effect on the growth of the plants and on the



140

crop performance particularly in drought conditions though the reduction

in root volume of the dwarf could have detrimental results even in the

absence of drought.

The wheat findings point to no obvious differences between tall and dwarf

varieties in the growth of their roots though the outmoded variety, N59»

may in fact, behave differently to the other varieties, in that, it has

a greater length of roots than the other varieties at the first two

sample dates and less at the final sample. This could he the result

of a greater tiller loss by this variety by the end of the ear initiation

phase resulting in a greater loss of roots associated with these tillers.

Unfortunately no tiller counts were made in association with these root

measurements. Should this be the true position it tends to refute the

argument put forward by Stoy (1965) (Chapter 31) in favour of tillers

helping the plant by enhancing the root system as the roots appear to

die with their associated tillers and contribute little to benefit the

plant as a whole. All varieties showed a reduction in roots at this

stage hut as the measurements were made by different operators they

must be treated with caution especially as no such reduction in rooting

before anthesis was noticed in the mae comprehensive barley root study

(Chapter 4vi). The varietal differences at individual sampling dates

would not be affected by the change in operator and the change in the

position of N59» from having the greatest amount of root, to having the

least is, in all probability, a real difference.

Of the other three varieties, Maris Nimrod was intermediate in length of

root between the two dwarf varieties. The difference between the two

dwarfs was always present in all parameters with TL365a/34 having slightly

greater amounts of root than TL363/30. Differences between the varieties

were small however and it is concluded that any differences between the
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varieties in this experiment were too small for the experimental me¬

thod to detect. Variation within the dwarf varieties seems to be as

great as that within conventional varieties.

These same varieties with the exception of N59 were studied elsewhere

(Newbould et al, 1969 > 1971 and Cannell et al, 1972) in terms of root

growth and activity and the same conclusion was reached.

Comparison of the growth of barley and wheat roots is unfortunately not

possible due to the doubtful between-sample comparisons in the wheat

study. At the start of June however wheat had a greater length and a

comparable volume of root to that of barley (same operator (the author)

for barley and final wheat sample) showing that the barley roots were

thicker than those of wheat at this stage.

The root growth of dwarf varieties of wheat seems to have no serious

shortcomings over the growth of conventional varieties and the fears

that short stem growth would be associated with a reduction in root

growth appear to be groundless. In barley there was weak evidence to

support the farmers' view that Golden Promise is unsuitable for soils

susceptible to drought as it had poorer root growth. In the bottom

layer this is probably true but the difference between the varieties

in the deep layer is very slight so poorer performance by Golden Promise

would be unlikely.



CHAPTER 5

Study of the ear formation and filling in wheat (Triticum aestivum L).

5i Introduction. The production of grain in cereals can he

considered to be the result of two separate operations by the plants

1. the production of the carbohydrate in the leaves, stems and

other photosynthetic organs in the plant and

2. the assimilation of these photosynthetic products in the uti-

lisable form of the grains in the ear.

In Chapters 2 and 3 the contribution of the photosynthetic organs has been

discussed.

The second operation requires firstly, that a suitable sink in the form

of an ear of adequate size to cope with the assimilates produced be for¬

med, and, after the necessary processes of fertilisation have been perfor¬

med, that this sink be filled. In this section therefore there are three

critical periods in which knowledge is required. These periods are (l)

the period of initiation and development of the spikelets and florets of

the ear, (2) the period influencing grain set, and (3) the period after

anthesis when the ear becomes active as a competitive sink.

5ii The Initiation of the Ear. Bonnett (1936) and Friend (1965)

described in detail the morphological development of the wheat ear from

the initiation of double ridges which developed into spikelets, the upper

ridge developing greatly while the lower of the two ridges represents the

leaf subtending a branch and shows little development. Bonnett (1936)

further described the order of development within the spike. The earliest

part to develop is the middle section of the spike after which growth and
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development proceed in both directions at the same time. Within each

spikelet of the ear development proceeds from the outside of the spike-

let to the centre with the glumes being the first part to develop fol¬

lowed by the florets which develop from the basal floret to the top

floret. Within each floret development proceeds from the outer parts

inward. The lemma is the first to develop followed by the anthers, palea,

and pistil and within the pistil the ovary, styles and stigmas develop,

in that order. This development of the ear is under the influence of

environmental factors which impinge on the rate of development and the

length of time during which the ear development can take place.

Calder (1966) describes three stages prior to the start of the flowering

cycle; (l) the juvenile stage, (2) the inductive stage and (3) the stage

of realisation (i.e. initiation). All gramineae do not exhibit all three

stages. Spring cereals are considered to have no juvenile or inductive

stage but are considered to be capable of responding to a photoperiodic

stimulus to flower without any preparation. Winter cereals however, are

deemed to require an induction which brings them to a state where they

are ready to respond to a photoperiodic stimulus. This induction is in

the form of vernalisation. The juvenile stage is a feature of some grasses

which require more than one stimulus, be it in the form of a temperature,

photoperiodic or growth period stimulus. The physiological mechanisms by

which these stimuli are effective are not understood (Calder, 1966).

Once the stimulus to flower has been received the environment plays a

large part in controlling the rate of development during, and the extent

of, the initiation phase in cereals. This phase is the period from the

appearance of the first spikelet initial in the form of a double ridge

to the initiation of the last floret to be initiated on a particular

ear. In barley the end of the initiation period coincides with the
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start of internode elongation (Nichols and May, 1963). The start of the

initiation period in these experiments (Nichols and May, 1963) occurred

when the apex of the barley plants was a particular length. Lucas (1972),

however, found that with wheat, the length of the apex had no apparent

hearing on the time of the appearance of the first double ridge. Friend

et al, (1963) found that the appearance of the first double ridge was

influenced by the environmental conditions prevailing. Higher temperatures

advanced initiation as did an increase in light intensity. Once the

double ridge stage is reached, the size of the sink is dependent on two

separate aspects in the control of grain number i.e. the number of spike-

lets and the number of florets which develop. Lucas (1972) examined the

effect of day-length on the number of spikelet primordia produced and at

the same time looked at the effect under two levels of light intensity in

wheat. The effect of keeping plants under short days for varying lengths

of time before moving them to long day conditions on the primordia num¬

ber was examined. Plants kept under short days continuously produced

the largest number of spikelet primordia. The plants kept under short

days for the longest period before moving to long days gave the next

largest number of primordia and the number of primordia reduced with the

length of the short day period thereafter. The light intensity had vary¬

ing effects on the production of primordia. In this experiment only the

number of spikelet primordia was noted, except on the terminal spikelets,

where the floret primordia were counted. Therefore the effect on total

grain number was not wholly examined. By analysis of the data it was

deduced that the potential spikelet number was determined at the double

ridge stage and that the most important factors controlling the number

were the timing of floral initiation and the spike length at floral

initiation.
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Thorne and Ford (1967) and Rawson (1970, 197l) both found that short days

increased the spikelet number. Rawson deduced that any factor which

prolonged the period of spikelet initiation increased the number of

spikelets. This view is supported by the findings of Friend (1965),

who found that low temperatures, while retarding the morphological de¬

velopment of the ear to a greater extent than the rate of growth of the

whole plant thus prolonged the duration of ear development resulting

in larger ears with more spikelets. The increase in spikelet number

does not necessitate a greater number of grains per ear and Thorne and

Ford (1967) found a reduction in the number of grains per ear when the

plants were subjected to short days between initidion and anthesis.

The effect of temperature reported by Thorne and Ford (1967) was the

same as that found by Friend (1965) i.e. that low temperatures gave a lar¬

ger number of spikelets per ear. Friend (1965) found a consistent effect

of light intensity on spikelet number in that high light intensities

increased the number, the same conclusion reached in a review of this

effect (Friend, 1965).

Thus any factor which tends to increase the time span of the intiation

period to a greater extent than its effect on the growth of the whole

plant would appear to increase the number of spikelets. The environ¬

mental factdrs which have this effect are a low temperature, a high

light intensity and a short day length.

Defoliation of tillers before the stage of initiation of the spikelets

was found to delay the onset of floral and spikelet initiation and to

reduce the length of the apex at the stage of initiation. The capacity
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of the ear was thus reduced (Bremner and Ingham, i960).

In only two <f the experiments where the environmental effects were stu¬

died was more than one variety compared (Rawson, 1970, 1971)• In the

first of these experiments the varieties studied were divided into those

which needed a vernalisation treatment to flower and those which did not.

Those varieties which had a pronounced vernalisation response were found

to require a long period prior to the start of floral initiation as this

period was when the spikelet primordia were differentiated. Those vari¬

eties where vernalisation was not required were found to produce most of

their spikelet primordia in the period between the start of floral initi¬

ation and the formation of the terminal spikelet. Where the reaction to

vernalisation was only mild both periods were important in determining

spikelet number. In the first experiments the influence of a varying

number of short periods of long days (inductive cycles) was studied

(Rawson, 1970). As the number of cycles increased from 2 to 9 the num¬

ber of spikelets was reduced. The rate of development was accelerated

by the exposure of the plants to inductive cycles. The second series of

experiments (Rawson, 1971) further explored the variety reaction to photo-

period. Varieties from a range of sources were subjected to different

photoperiodic treatments. Differences in final spikelet number were re¬

lated to three factors i.e. the number of double ridges at floral initi¬

ation, the rate of production of spikelet primordia and in duration of

production of primordia. The varieties could be divided into two types,

those which were early and those which were late, by their response to

changes in photoperiod. The late varieties had an increased spikelet

number with decreasing photoperiod down to a 10 hour period after which

there was no response while early varieties responded to an 8 hour period

with a further increase in the number of spikelets which were formed.
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The rates of production of the two types were also different. Thus the

number of spikelets per ear and, therefore, one part of the control of

the number of grains per ear is dependent on variety and several of the

environmental factors which impinge on it. The response of the number

of grains per ear to the environmental influences discussed is not clear.

Thorne and Ford (1967) found that the grain number per ear dropped with

increase in the number of spikelets in one experiment but found that

grain number per ear was increased by the same treatments in the following

year. Rawson (1970) however found a very close relation between the

spikelet number and the grain number hut not with grain yield as the

grains were very variable in weight between varieties. Kirby (1969)

also described photoperiodic response as an increase in both spikelets

per ear and grains per ear with short days suggesting a close relation

between spikelets per ear and grains per ear.

From this review of the influence of the various factors on the number

of spikelets, the number of grains and thus the resultant capacity of the

ears of the wheat crop it appears that any factor which is likely to

slow development will increase the capacity of the resultant ears. The

evidence of Bremner and Ingham (i960) is the only evidence to refute

this statement.

In this work (Bremner and Ingham, i960) the leaf area was artificially

reduced which had the effect of slowing the rate of development but, un¬

like the findings of the other workers mentioned, the ear size was reduced

instead of increased when the rate of development was slowed. This

suggests that the leaves may have a greater influence than that of

mere suppliers of photosynthate and that they may also be suppliers

of some growth substance which stimulates and encourages development by

the apex. Friend et al (1963) suggested that certain wavelengths of light
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were responsible for the stimuli required by the ear for development.

The photochrome system of the leaves was implicated as being responsible

for the provision of a stimulus to the ear. From this suggestion, and

that of Bremner and Ingham (i960) it would seem that the leaves are res¬

ponsible in part for the development of the ear in its early stages both

as suppliers of photosynthetic products and as the source of a stimulus

to the apex to differentiate.

The environmental influences on the plant at this stage of development

are thus considerable. Variety also has an influence especially when

varieties of different daylength response or different response to verna¬

lisation are compared. Cultural effects on the plant at this stage are

unknown but it would appear that a compromise should be sought between

practices which will delay the onset of initiation and reduce the rate

of development and those which will accelerate this development. This

would ensure a satisfactory number of grain sites in the ear without

slowing development to the detriment of the plant in the later stages

of growth.

5iii Factors Affecting Grain Set. At this period in the growth

of the plant there are two ways in which the fertility of the flowers can

affect the number of grains set after anthesis;

1. the flowers themselves may not be fertile;

2. having flowered the development may be halted and the flower

may abort.

These two effects are not easily examined in isolation but the resultant

absence of grains in certain sites in the ear can be attributed to one

or other of these two factors. The picture is further confused by the

fact that the plant is able to compensate, by the development of more
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distal florets, for any grain sites lost in this way. Thus records of

numbers of grains per ear do not give a complete picture of the effect

on the plant of conditions at the period around anthesis.

Evans et al (1972) studied the effect on the distal grains in the ear of

emasculation of the basal florets in the central spikelets of the ear.

The effect noted was an increase in the number of the distal florets

which set grains. In intact ears the florets which set grains were the

ones which reached anthesis within two days of the first floret regard¬

less of the position in the ear. When pollination of the earliest florets

was delayed, this resulted in an increase in the total number of grains

set over the number in control plants. This evidence suggests, that there

is some form of growth substance control of the flowering process which

tends to inhibit the later flowering florets from setting grain and thus

imposes a limit of the sink size at this stage. The distal florets

would thus appear to be fertile but, unless the need for them to flower

is very great e.g. as a result of lower florets aborting, they merely

abort. Thus the effect on the number of grains is controlled within the

plant in a complex way which makes study of the environmental effects on

the processes within the plant even more difficult to establish. Bingham

(1966) tried to compare three varieties in the field in their grain set¬

ting response to water stress. The field trial was unsuccessful in that

effects noted were not consistent. In an associated glasshouse experi¬

ment however plants which were subjected to water stress at a few days

before pollen meosis showed male sterility in the basal florets of the

spikelets but a marked increase in the number of more distal florets

which set grain was noted. This finding would agree with those of Evans

et al (1972). Bingham concludes however that the field experiment re¬

sults show that the yield was reduced by a lack of sink capacity which
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he suggests could be overcome by the breeding of plants with more flo¬

rets per spikelet. Evans' evidence would tend to disagree with this sug¬

gestion and rather suggest that some means of overcoming the inhibition

of the distal florets flowering should be found before attempting to

increase the number of florets.

The effects of day length and temperature on the numbers of grains set

in different varieties was studied by Kolderup (1970). The varieties

studied were two local Norwegian varieties and Sonora 64. The local

varieties had an altogether different response to temperature in that

they had highest seed set at 12-15°C (95°/°) which fell with higher tem¬

peratures while Sonora had its lowest seed set at 12°C and about 80°/o

at higher temperatures up to 24°C. The number of flowers in Sonora was

not dependent on temperature but in the local varieties a peak was reached

between 18-21°C. Owen (l97l) also studied the effect of temperature on

the development of spikelets. In this work the higher end of the tem¬

perature scale was studied and it was found that the high temperatures

(greater than 32°C) adversely affected the development of florets and

prevented the filling of fertile grains. These results agreed with

Wardlaw (1970) who found highest grain set at low temperature (l5/l0°C)
and with full sunlight. At the high temperature (27/22°C) treatment

grain set was reduced.

5iv Grain Filling. Early work on the study of the yield of

cereals concentrated on the supply of photosynthate from the photosyn-

thetic organs of the plant and has been reported earlier in this publi¬

cation. More recently the importance of the sink for this photosynthate

has attracted attention. It has been suggested that the requirements of

the photosynthetic system for storage space need not always be met by the
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ear (Evans and Rawson, 1970; Bremner, 1972) i.e. that the ear is too

small to accommodate all the photosynthate produced. Bremner (1972)

altered the supply of photosynthate by shading and defoliating the

shoots and found that, with reduced supply of photosynthate the re¬

duction in grain weight was smaller than in the total dry weight as

the shortage in the supply of photosynthate became more acute. From

this he deduced that the control plants produced dry matter surplus

to the needs of the ear. Evans and Rawson (1970) found the supply of

photosynthate of the ear and flag leaf to be adequate at all times in

supplying the needs of the ear as a sink. Similarly Asana et al (1969)

came to the conclusion that the way to improve yield still further

was to produce a more efficient sink for the storage of photosynthate.

From the above workers' findings it becomes clear that we must know

more about the mechanisms which control the physiology of the ear, in

particular what controls its capacity and the partitioning of assimi¬

lates to the various grain sites in the ear. Asana and Bagga (1966)

were the first to look at the growth of individual grains within the

ear of wheat. They compared two varieties of wheat in terms of grain

weight, volume, linear dimensions, water content and chemical compo¬

sition. The two varieties differed in the relationship of grain weight

between the two basal and the upper grains of the central spikelets.

In one variety the basal grains were heavier and the upper grains

lighter than those of the other variety after four weeks post-

anthesis. In the next two weeks the first variety increased the

dry weight of all its grains hut the other variety did not although

they were both senescing at the same rate. The difference was attri¬

buted to the difference in the moisture content of the grains of the

two varieties, in that, the variety with the higher moisture content

continued to increase in dry weight at a greater rate than the other
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variety. Thus there is at least one further control on the filling of

the grains beyond that of the supply of photosynthate. The control mech¬

anisms were further investigated by Rawson and Evans (1970). In their

experiment they looked at both intact ears and ears in which some of the

florets were sterilised. In intact ears the grains of the second floret

of the central spikelet maintained the highest growth rate and the first

floret of the basal spikelet the lowest growth rate. When the basal one

or two florets of the central spikelets were sterilised the other spike-

lets made compensating increases in weight and in the number of grains

set. In one variety this even led to an increase in the weight of grain

per ear by up to 20°/o. This last finding has not been backed up by sub¬

sequent experiments (Evans et al, 1972). The distribution of labelled

carbon has also been studied in this work from both the ear and from the

flag leaf. Ear assimilated carbon was found to be evenly distributed

but that of the flag leaf was found to be partitioned preferentially to

the grains which grew fastest. When these were sterilised the was

found in an increased proportion in the distal and basal florets. From

these findings it appears that the greater growth rate of the second

grains of the middle spikelets inhibits the development of later flow¬

ering and slower growing florets in the ear resulting in a reduction in

grain yield. Walpole and Morgan (1972) did not find the uneven distri¬

bution of photosynthate from the flag leaf in barley but found that the

flag leaf contribution was evenly distributed and that the grain weight

of an individual grain was in part proportional to the length of the

awn subtending that grain. Such a difference between species would be

quite feasible when the different ear structure is considered as the

differences in morphology are certain to result in differences in the

vascular connections of the ear. That such a difference does exist,is

implied from the results of Walpole and Morgan's two previous papers
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barley. In barley, grains in the centre of the ear were found to grow

more quickly in the early stages of grain filling, while the basal grains

grew quicker after the first week post-anthesis. In wheat, these workers

detected no difference in the growth rate of grains from different parts

of the ear. This latter finding has been disputed by Bremner (1972) who

found that grains in middle spikelets were larger at anthesis and remained

larger throughout the growth period of the ear while those of the bottom

spikelets while starting smaller grew to he larger than those of the top

spikelets. Within spikelets the basal grain was largest immediately after

anthesis but was outgrown by the second grain. These findings of Bremner

(1972) corroborate those of Rawson and Evans (l970)» If these later

findings are accepted the spikelets of wheat would appear to behave

in a similar fashion to those of barley but the partitioning within the

spikelet of wheat has no counterpart in barley.

Within spikelets the effect of the absence of a grain from a site within

the spikelet has provoked some debate. Rawson and Evans (1970) found that

if the third grain from the base of the spikelet was missing the other

two grains were larger. This effect was noted on the growth during the

period immediately after anthesis. Bremner (1972) however found that

the effect of the absence of the third grain on the other two was appar¬

ently non-existent instead of the expected weight gain. This effect

could have been due to a difference in the vigour of the spikelets exam¬

ined. When further testing of the results was carried out the absence

of the third grain did not seem to affect the growth of the other grains

in the spikelet or those of neighbouring spikelets. The test employed

to examine the effect of the presence or absence of the third grain of

the fifth spikelet (5j) was as follows.
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The ratio (5j+52)/(7j+72+9j+92+H^+ll2^was studied in both the presence
and absence of 5^ and no difference was found in the value of the ratio.

3

This test takes into account the degree of vigour of the ear and the

spikelet from which the spikelets under test are derived. Bremner

(1972) suggested that at the stage of Rawson and Evans'(1970) plants

i.e. just after anthesis the florets could he competing for some

limiting factor while at the later stage of grain filling the supply

of carbohydrate is rarely limiting.

The preceeding discussion has been wholly centred on the growth of

the ear under one set of environmental conditions. The effect of the

environment on this stage of the plant's development has not been

examined very extensively to date. Wardlaw (1970) examined the effect

of light and temperature on the early grain filling period of wheat.

High temperature (27°day/22°night C) led to more rapid grain develop¬

ment and to greater dry matter accumulation in the grain. Lower tem¬

perature (2^/l6°C) led to an increase in the dry weight of the stem.

A reduction in the light intensity led to a reduction in the dry mat¬

ter accumulation of both the stem and the ear and with tracer studies

it was concluded that the stem and ear competed for assimilates when

the light was limiting. The effect of light reduction on the two stages

of grain growth i.e. from anthesis to 10 days and the starch deposition

stage thereafter was similar in that it caused a reduction in the

weight of grain per ear at both stages. The effect of temperature,

however, when varied over the same stages, differed. High temperature

in either stage reduced grain yield but this effect was greatest at

the later stage. The low yield at the early stage was partly due to

a reduction in grain set which was in part compensated for by larger

grains. High temperature in the later stage reduced the size of grains
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though the development was more rapid. These findings are backed up

in part by those of Marcellos and Single (1972) who looked at the dura¬

tion of the post flowering phase under different conditions of tempera¬

ture and photoperiod and found that the phase of growth was shortened

by high temperature. The effect of variety and photoperiod on the rate

of development was not significant.

The rate of development appears to affect the yield in this phase in a

similar way to the way in which the rate of development in the ear ini¬

tiation phase affected the number of pikelets differentiated and thus

indirectly affecting the yield. Any factor which accelerates the develop¬

ment of the ear to a greater extent than it affects the growth of the

ear will reduce the yield.

The influence of variety on the development of the ear hos not been

studied to any great extent in wheat. Marcellos and Single (1972)

found no difference in the length of the post flowering phase with

variety. Walpole and Morgan (1970) found with one cultivar that there

was no difference in the rate of growth between grains within the ear

but the results of Bremner (1972) and Rawson and Evans (1970) contra¬

dict this finding. There is thus a case for examining the growth and

development of the ear and the grains within the ear in different

cultivars to examine whether there are differences in the degree of

competition between grains within the ear in different cultivars or

differences in the ear development. Such an examination would allow

selection for the more efficient sink which has been shown to be ne¬

cessary (Asana et al, 1969) to utilise more of the photosynthate pro¬

duced by the photosynthetic system of the plant.
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In addition the effect of cultural practice such as fertiliser appli¬

cation on the growth and development of the ear have not been studied.

The compound effects of the nutrition of the plant on leaf area have

been studied (Chapter 3) but how these changes are manifest in the

development of the ear will be examined in the experimental section

of this chapter (5B and C).

5B Experimental Method

i Study of grain filling in wheat 1971 and 1972. In

1971 a pilot study was carried out to examine methods of determining

the extent of differences between varieties and treatments in terms of

the weight of grains from different parts of the spikelet in wheat.

Ears of wheat at a similar growth stage in the experiment described

in Chapter 3 B and C were marked in the field just after anthesis

with pieces of red wool tied around the peduncle. The growth stage

was determined by the number of dehisced anthers which were visible

on the outside of the ear. Nine ears from each plot were marked in

this way for sampling at a later date. Samples of these ears were

harvested on 19-21 July and 9-H August three ears being taken from each

plot at each sampling. These ears were dried in a forced draught

oven at 100°C and stored. Three ears per plot were harvested at

random at harvest and were dried and stored as before. The final

sample of marked ears could not be made as the wool was blown off the

ears of the tallest variety.

When removed from storage the samples were dried again before being

weighed intact. The number of spikelets on each ear was determined

and the four spikelets nearest to the middle of the ear were separated

out from each ear. The twelve spikelets now making up the sample were
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broken up and the grains from the top, middle and bottom florets were

separated out of each and the grains making up each group were counted

and weighed. The division into top, middle and bottom grains was

effected by reference to the following table

Number of florets No. of Basal No. of Middle No. of Top
grains grains grains

1 1 0 0

2 1 0 1

3 1 1 1

4 1 2 1

5 1 3 1

etc

The mean weight of each grain from each position in the spikelet was

calculated and the results analysed.

In 1972 the method was modified and expanded to give information on

the grain weights from nine different positions in the ear. These

positions were; Grains from the top floret of the bottom third of the

ear; Grains from the middle florets of the bottom third of the ear;

Grains from the bottom floret of the bottom third of the ear and grains

from the same florets in the middle third and top third of the ear.

A sample of ten ears was taken weekly from each plot after anthesis.

These ears were the ones measured in the determination of photosynthetic

area. The sample was dried and stored for further examination in the

winter. After storage the ears were again dried. The number of

spikelets on each ear was counted and the ear was broken into its

component spikelets. The spikelets were placed in three separate piles

one for each of the top, middle and bottom thirds of the ear. The

division into thirds was carried out according to the following table.
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No of Spikelets No. of Bottom
spikelets

No. of Middle No. of Top
spikelets spikelets

6
7
8

9
10
11
12

13
14
15
16
17
18

19
20

2

3
3
3
4
4
4
5
5
5
6
6
6
7
7

2
2
2

3
3
3
4
4
4
5
5
5
6
6
6

2
2

3
3
3
4
4
4

5
5
5
6
6
6
7

20 spikelets were taken from each pile of spikelets and each spikelet

was further divided into top, middle and bottom grains. This division

was done according to the table used in 1971• The grains in each

category were then counted and weighed. From these figures themean

weight of each grain in each category could be determined. The total

number of fertile spikelets was also recorded and from these results

the weight of grain in each ear was established as well as the weight

of grain in the three divisions of the ear. Growth rates of grains

between sampling dates Avare also calculated and the varieties and

treatments were compared. This method of examination of different

grain sites in the ear overcomes the problem of vacant grain sites

encountered in earlier studies (Walpole and Morgan, 1970; Rawson and

Evans, 1970; Bremner, 1972). These vacant sites are the result of

the failure of the grains to develop in certain positions in the ear.

In the earlier studies (Walpole and Morgan, 1970; Sawson and Evans,

1970 and Bremner, 1972) the grains in each spikelet position were

weighed. As many of these were absent, either a large standard error

was accepted or some means of accounting for the lack of the grains

was found. Walpole and Morgan (1970) examined only ears which

conformed to a particular pattern of grain set within the ear. Bremner
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(1972) however calculated values for the missing grains on the basis
of missing values. In the present study only grains which were

present contributed to the calculation of mean weight for a particular

site. Only in one division, (Top spikelet, middle floret) did this

lead to a wide range of values for grain weight and thus a high standard

error due to, a high proportion of vacant sites as there were a large

number of two grain spikelets in this division.

5B ii Ear development study methods. A pilot study of the

early stages of development of the ear was undertaken. Samples of three

main shoots per variety were taken from discard plots beside the main

1971-2 wheat experiment on various dates after the beginning of April.

The growing points were dissected under a microscope and were examined.

A number of observations of the size and development of the parts of

the ear was made. No measurement criteria were fixed in the early

stages i.e. before the start of floret differentiation but, after

floret initiation had commenced, the number of florets of the terminal

spikelet which had reached the stages of development described and

illustrated by Williams (1966), were counted and a comparison between

varieties in the development of the ear was obtained. The technique

of Friend (1963) of numbering stages in the development lacked clarity

of definition of the stages described as no one spikelet was selected

for timing the development and, as the spikelets in the various parts

of the ear display a wide range of development stages, one key spike¬

let must be used for development study. In this pilot study the terminal

spikelet was the one selected for study. Recent work by Kirby (personal

communication) has concentrated on the early stages of ear development

and the measure used in his study is to count the spikelet primordia

which have started to differentiate at each sample date and plot the
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number against time. Some degree of success is being achieved with

this approach

5C i Results and discussion of ear development study.

The measurements of size and development of the ears of the five varieties

on the various sampling dates are shown in Table 551• The first

double ridges were noted on 10 April. By 14 April spikelets were

discernible as extensions of the upper of the two ridges of the double

ridge. The number of such "developing spikelets" was determined

(Table 5sl). At the next sample on the 8 May the terminal spikelet

had been differentiated and its development was followed closely from

this stage until the last sample on 6 June, 2 weeks prior to ear

emergence when development was almost complete. The number of

developing florets on the terminal spikelet were counted on 8 May and

their development noted. Similar samples were made on 16 and 23 May

and on 6 June which included, in addition to the measurement of floret

number and development, the length of the spike from the collar to the

tip of the terminal spikelet.

The flexibility of the wheat plant in the production of grain sites

is clear from the results in Table 5s1• Although spikelet number per

ear reaches a maximum before 16 May the number of florets per spike¬

let increases into June that is up to two weeks before ear emergence.

Dates of ear emergence were not recorded but anthesis dates from the

main experiment are included in Table 5'-1 for the no nitrogen treat¬

ment (no) as the plots from which these samples were taken were grown

without applied nitrogen. N59 and Maris Nimrod were later in reaching

anthesis than the three semi-dwarf varieties and their later

development is noticeable throughout ear development. The rate of

development of the varieties differs but when the lengths of the
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Table 5:1A Length and Spikelet development
pre-anthesis.

of -wheat ear

Length of
ear

Date TL363/30 TL365a/34 TL365a/37 Maris
Nimrod

N59

Primordiun

(mm)
16 May 5.02

23 May 11.45

6.94

15.68

7.01

12.30

6.6l

6.36

3.71

6.6l

6 June 42.96 45.36 30.00 32.04 23.04

Spikelet development

Number of

spikelets 10 April 4 6 4 3- 3+ (]

14 April 5«33 6.33 5.67 4.83 4.17

Mean of 16 May 15.33 15.50 17.33 16.00 15.67

3 ears 23 May 15.67 16.50 16.33 15.00 16.33

6 June 15.67 16.33 15.69 15.67 16.33

No. of Florets in Terminal Spikelet

8 May 2.30 2.00 2.00 1.00 0

MEAN of 16 May 3.67 5.50 4.00 3.00 2.67

3 ears 23 May 5.00 6.25 5.33 4.00 4.33

6 June 5.33 6.67 5.00 5.33 5.00

Anthesis date . (Days after 1st July)

6.50 3.50 7.00 10.00 13.75

* DR Double ridges
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Table 5:1B Development of florets within terminal spikelet at
23 May.

TL363/3O TL365a/34 TL365a/37 Maris N59
Nimrod

Basal Floret (No. at each stage. 3 florets at each cultivar examined)
Stamen development 1st visible

(34 days *) 0 0 0 11.5
Stamen development well

progressed

(36 days ») 2 0 1.5 2 1.5
Carpels and stamens

developed

(40 days*) 1 3 1.5 00

Top Floret (No. at each stage, 3 florets of each cultivar except

TL365a/34 where 4 florets)
Stage 1 * 0 2 2 32

Stage 2 * 1 1 0 01

Stage 3 * 0 0 0 00

Stage 4 (32 days) * 2 1 1 10

stages 1, 2, 3 and 4 refer to the number of protuberances visible
in the developing floret, i.e. stage 1 - one protuberance earliest

stage; stage 2-2 protuberances differentiation of stage 1

stage 3-3 protuberances differentiation of stage 2

stage 4-4 protuberances differentiation of stage 3

32, 34, 36 and 40 days refer to Williams (1966) as days after
sowing. Double ridge at 22 days. Stage of development of
each is described above.
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Table 5slC Development of florets within terminal spikelet at
6 June.

TL363/3O TL365a/3it TL365a/37 Maris N59
Nimrod

Total No. of florets
at stage

(a) Completely
developed 5 11 7 7 6

(b) 40 day * 2 0 1 0 2

36 day * 2 2 2 3 2

34 day * 0 1 0 0 0

32 day * 3 1 1 1 1:

Stage 3 * 1 1 2 2 0

Stage 2 * 1 2 2 1 2

Stage 1 * 1 2 0 2 2

* see note at Table 5sIB
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developing ear are plotted against the number of days prior to

anthesis some of the differences are removed (Fig 5:A). In all

varieties the rate of length of the ear increase is greater after 50

days prior to anthesis. The rate of growth of TL365a/37 is less than

the other two dwarf varieties and less than Maris Nimrod. The

relationship between rates of growth of TL365a/37 and N59 is uncertain

as another sample taken nearer to anthesis would be required to show

the rate of growth of N59 with greater accuracy.

The rates of development are less readily compared as varieties differed

in anthesis date. The differences in stage of development reached at

a particular sample date may thus be indicative of no more than the

difference between the early-flowering and a late-flowering variety.

At each sample date N59 is the least developed variety but this variety

is also the latest in flowering, of those studied. At 23 May N59 is

52 days short of anthesis which is the same number of days pre-anthesis

as TL365a/37 is at 16 May sample. Comparison of development of these

two varieties at the two separate sample dates shows that N59 has

reached a comparable stage of development by 52 days before anthesis.

Similarly by comparison of N59 at 6 June sample with TL365a/34 at

23 May the rate of development of N59 was comparable to the other

varieties at the same number of days pre-anthesis.

Taking these constraints on the interpretation of the results in Table

5:1 into account, TL365a/34, TL363/3O and Maris Nimrod all appear to

have faster rates of development than TL365a/37. The rate of

development of N59 is again difficult to ascertain as it is later in

developing. Rawson and Evans (1970) proposed that the rate of

development and final grain number per ear were inversely related, i.e.
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Figure 5:A Growth of Wheat ear pre-anthesis
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that the fastest developing variety had the lowest number of grains

per ear. The present study tends to contradict this finding as the

three varieties with the faster development rate also have a higher

number of grains on each ear in the absence of nitrogen fertiliser

(Appendix Table 3-3) while TL365a/37 which had the lowest development

rate also has the lowest number of grains on each ear if N59 is

ignored for the present discussion. The uncertainty regarding the

rates of development, in the present study, however casts doubt on

any relationships with the other, accurately determined parameters.

This pilot study failed in its objective of assessing the rate of growth

and development of the ears in the pre-anthesis period principally

through the lack of constancy of the parameters measured and the

unsuitability of these parameters for numerical presentation and

comparison.

The method of Friend (1963) of relating stages of development to the

development of a plant grown in standard conditions on a numerical

basis has much to commend it in the period after floral initiation hut

spikelets in fixed positions in the ear must he selected on which the

observations are to be made. The technique of Kirby (personnal

communication) where the primordia are counted as they appear is very

suitable for the stages before floret differentiation commences. The

use of these methods would make possible a graphical presentation of

the results of each day's measurements against the number of days

before anthesis on which the sample was taken. This would be the

most suitable method of examining the rate of development of the

different varieties.
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5C ii Results of grain filling study. The results of the

weighings of the grains from the nine sample positions in each ear at

the several sample dates are presented graphically in Figures 5:1 and

5:8. Varietal and nitrogen means of the average weight of the grains

from each position in the ear are plotted against the number of days

after anthesis on which each sample was taken. This form of

presentation shows the treatment effects in terms of absolute rate of

growth more clearly than by graphing the weights against chronological

time as it removes the effect of the differences in the duration of

the grain filling prior to the first sample being taken.

The graphs of the nitrogen means (Figs. 5:5;-5:8), where the effect

of treatment on grain growth is very slight, show the absolute rate

of growth of the individual grain positions very clearly against the

days after anthesis. Only near maturity do the effects of nitrogen

become marked on the growthof each grain.

A Growth within the ear. The absolute rate of growth of the

grains in the different positions in the ear at one nitrogen rate,

(40 kgN/ha), are presented in Table 5:2 and the values of the relative

growth rate at the same rate of nitrogen are presented in Table 5:3*

Differences between spikelets in the absolute growth rate and the

duration of growth are shown most clearly in Fig 5:8. The middle

spikelet has the largest grains in the earliest samples with the top

spikelet grains only very slightly smaller. At this stage the grains

of the bottom spikelet are the smallest. The absolute growth rates

of the middle and bottom spikelets are similar and are greater than

that of the top spikelet (Table 5:2, Fig. 5:8) which results in the

weight of the bottom spikelet becoming greater than that of the top
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Figure 3:3 Weight of Grain within Top Spikelet
Effect of Variety
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Weight of Grain within the Bottom Spikelet - Effect of Nitrogen
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Weight of Grain within the Middle Spikelet
Effect of Nitrogen
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Figure 5s7 Weight of Grain within the Top Spikelet
Effect of Nitrogen

Ave wt of grain

5.0 -i (g x 10-1)

3.0 -

Nc
N1
Nr

N,

X

0

•

A

A

* O

Middle 10

vx

A
A

Middle
Grain

Bottom
Grain

A

A

Dx

A
A

A

A

A 8'
A

20 30 40 50 60

Top
Grain

Bottom 10 20 30 40 50

Top 10

Days after Anthesis

60

20 30 40 50



175

Figure 5:8
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Table 5:2

SPIKELET
POSITION

Grain
Position

Harvest
Dates

BASAL

Bottom

Middle

Top

MIDDLE

Bottom

Middle

Top

TOP

Bottom

Middle

Top

176

Absolute growth rate of grains in different positions
in ear of wheat.

Mean of all varieties at (40 kgN/ha) g x 10 ^ (1971-72)

AGR = W2 - Wx (t2 - tx)

19-26 July

.0805

.0780

.0570

H4-H5
27 July -

2 Aug

.1193

.1384

.0980

H5 " H6
>9 Aug

.1326

.1456

.1297

10rl6 Aug

.1157

.1101

.1196

H? - H8
17-23 Aug

.1323

.1286

.1423

24-30 Aug

.0469

.0951

.0039

.0864

.0747

.0617

.1327

.1489

.1056

.1287

.1434

.1173

.1114

.1051

.1144

.1331

.1283

.1541

.0201

.0481

.0203

.0752 .1017

.0879 .0971

.0574 .0980

.1040 .0969

.0984 .0664

.0967 .0820

.1373 - .0023

.1629 . 0733

.1436 - .0057
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Table 5:3 Relative growth rate of grains in different positions in
ear of wheat

—2 —2
Mean of all varieties at (40 kgN/ha) g x 10 /g x 10 f!/day

(1971-72)

SPIKELET
POSITION

Grain
Position

Harvest
Dates

BASAL

Bottom

Middle

Top

H3~H4

.1133

.1083

.1136

H. - Hk4 5

19-26 July 27 July
2 Aug.

.0846

.0937

.0939

H5 ~ H6 H6 " H7 H7 ~ H8

.0578

.0589

.0704

.0366

.0327

.0441

.0330

.0306

.0392

H8-H9

3-9 Aug 10-16 Aug 17-23 Aug 24-30 Aug

.0100

.0190

.0009

MIDDLE

Bottom

Middle

Top

.1049

.0908

.1064

.0834

.0927

.0906

.0514

.0546

.0603

.0333

.0301

.0415

.0307

.0297

.0417

.0043

.0098
- .0049

TOP

Bottom

Middle

Top

.1002

.1168

.1046

.0742

.0694

.0897

.0498

.0472

.0545

.0347

.0250

.0342

.0380

.0470

.0450

- .0006

.0171
- .0206

B.G.R. = <W2 - V
(t2 - v
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Table 5:4 Absolute Growth Bate

of grains in different positions in the ear

-2 -1
g x 10 x days 1970-71

Basal Grain

hi-h2
h2 - h3

TL363/30
.1105

.0168

TL365a/34 TL365a/37 M. Nimrod

.1155

.0091

.1300

.0203

.1420

.0112

Hl-H2
H2-H3

N,0

.1415

.0035

N
1

.1380

.0068

N,2

.1270

.0091

N,
3

.1165

.0097

N
4

.1165

.0132

Middle Grain

TL363/30 TL365a/34 TL365a/37 M. Nimrod
- H2 .1180 .1210 .1310 .1455

EL - H .0091 - .0059 .0009 .0091
* 3

N N N N N
0 1 2 3 4

E1 - H2 .1375 .1355 .1265 .1130 .1245
II - H - .0182 .0065 .0047 .0076 .0068

^ J

Top Grains

H1 - H2
H2-H3

TL363/30
.0890

.0179

TL365a/34
.0255

.0215

TL365a/37
.1105

.0200

M. Nimrod

.122

.0141

H1 " H2
h3 , H4

N0
.1200

.0126

N
1

.1025

.0162

N2
.0870

.0221

N3
.1005

.0056

N4
.0975

.0185
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Table 5s5 Relative Growth Rate x 10 /g x 10 /dy 1970-

Basal Grain

H1 " H2
h2 - H3

TL363/3O
.0421

.0038

TL365a/34 TL365a/37 Maris Nimrod
.0450

.0022

.0480

.0043

.0513

.0023

H1 " H2
H2 - H3

N.0

.0535

.0008

N
1

.0496

.0015

N,2

.0474

.0020

N
3

.0449

.0023

N
4

.0471

.0032

Middle Grain

H1 " H2
H2-H3

TL363/30
.0461

.0022

TL365a/34 TL365a/37 Maris Nimrod
.0490

.0015

.0520

.0002

.0540

.0019

H1 " h2
h2 - h3

N,0

.0556

.0047

N1
.0492

- .0015

N,2

.0463

.0011

N,
3

.0436

.0018

N
4

.0536

.0017

Top Grain

TL363/3O TL365a/34 TL365a/37 Maris Nimrod
- H2 .0500 .0493 .0551 .0592

h2 - H3 .0055 .0067 .0053 .0037

N N N N NiN0 1 2 3 4

H1 - H2 .0594 .0504 .0470 .0525 .0582
Eg - 1I3 .0034 .0045 .0066 .0017 .0057
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spikelet. This superiority of the bottom and middle spikelets, in

absolute growth rate, is clear from harvest 4 to harvest 7 hut,

between the first two samples the rates of growth are similar for all

spikelets. (Table 5J2) At the last sample, the growth rate of the top

spikelet was reduced more rapidly than that of the other two spikelets,

with the least reduction being shown by the bottom spikelet.

Within the spikelets the three grain positions showed differences in

the absolute rate and duration of growth which are seen, most clearly,

in Figs 5:5-5s7. In the two lower spikelets, the middle grain showed

slightly faster growth than the bottom grain hut, in the distal

spikelet, after the second harvest, the bottom grains grew very

slightly faster than the middle grains until the last two intervals,

when the middle grains grew at a faster rate. The lowest absolute

growth rate was shown by the top grains in all the spikelets particularly

in the early part of the growth period. Near the end of the sample

period (between sample harvest 6 and 8) the growth rate of the top

grain equalled that of the other two grain positions or even exceeded

it. The greatest decline in growth rate was found in the top grain

in all spikelets between the last two harvests (harvests 8 and 9)

while the middle grain showed the least reduction in absolute growth

rate in this period.

Differences in relative growth rate were slight within spikelets, between

spikelets however there were discernible differences. After harvest 4

the relative growth rate of the top spikelets was less than that of the

others up to harvest 7 when all spikelets were similar in this parameter.

(Table 5s3) No clear trend was obvious in the comparison of relative

growth rates within spikelets though the top grain may in fact have a

greater relative growth rate after harvest 4 as the values, of the E G R

of the top grain, in all the spikelets, were slightly higher throughout
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the sampling period.

B Effect of nitrogen. The effect of nitrogen on the rate of

growth of the grains is very slight (Figs. 5s5»~5t8) excepting at

the end of the growth period. At the highest nitrogen rate the growth

of the top and bottom grains of each spikelet showed the earliest

reduction in absolute growth rate. This early decline in growth with

high nitrogen is also clear in the mean of all the grains in the bottom

and top spikelets (Fig. 5:8). All the other nitrogen rates behaved

similarly having a more prolonged growth period than with the

exception of (80 kgN/ha) which seemed to show an even more prolonged

growth period than the other nitrogen rates. This is clear in Figure

5:8 in the top spikelet where the growth of the other nitrogen rates

has shown a decline at the last sampling date. Within the spikelets

the smaller decline in is also apparent in the top and bottom grains

of the top spikelet and the top grain of the middle spikelet (Figs 5:6

and 5:7).

C Effect of variety. Differences between varieties were

much more easily discernible than differences between nitrogen rates

in both the rate and duration of the growth of the grains in the different

positions in the ear. (Fig 5:1 to 5:4) All the differences found were

apparent in each of the nine grain positions examined and were almost

entirely consistent throughout. Figure 5:4 shows the differences between

varieties in the growth of each spikelet while Figures 5:1 - 5:3 show

the differences between grains within each of the three spikelets.

Three of the varieties were outstanding while TL365a/37 and TL363/3O

exhibited the standard pattern against which the other varieties were

compared.
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Over the first period of 10-15 days after anthesis, N59» had the most

rapid growth of all the varieties in all the grain positions but after

this period the growth rate of N59 equalled that of the other varieties

and near the end of the grain filling period the growth rate of N59

grains declined sooner and more rapidly than those of the other

varieties.

The final weight of N59 grains was invariably less than that of the

other varieties but N59 reached anthesis between 6 and 10 days later

than the other varieties. The first example, in N59» was thus taken

between 6 and 10 days sooner after anthesis than in the other varieties.

Senescence of the photosynthetic tissues of the plants did not occur

as early as N59 as in the other varieties but grain weights were still

less at final harvest as was seen in 1000 grain weight (Appendix Table

3:2) in chapter 3« The slight reduction in growth rate evident in

the last sample of N59 is thus probably the start of the rapid decline

in the growth rate seen in the other varieties.

TL365a/34 had a slower growth rate in the first two weeks after anthesis

which resulted in the grains being smaller after this early period.

The growth never subsequently exceeded that of the other varieties and

thus this variety had the smallest grain weight throughout excepting

N59.

Maris Nimrod was the other variety which stood out from the standard

pattern in both rate of grain growth and the final grain size. Over

the first week after anthesis the growth of this variety was similar

to the standard and grain weight was thus also similar to the standard

at the first sample. After this initial period of growth the growth
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rate accelerated over that of the standard and the grain size in all

positions in the ear in this variety was greater after 20-25 days post-

anthesis. This greater size was maintained throughout and, at the

final sample harvest, the decline in growth rate in Maris Nimrod was

less than the other varieties, which resulted in the differences in

the grain size, increasing at the last sample. The increased rate

of growth lasted for approximately two weeks from 16 to 30 days post-

anthesis. This acceleration in the growth rate of Maris Nimrod could

not be associated with any increase in the radiation received during

this time period. Likewise when the growth of the grains was

plotted against chronological time no differences, which could he

related to differences in radiation input were recognised.

The order of the varieties in the final sample weight was the same as

that observed in 1000 grain weight (Table 3*3 and Appendix Table 3*2).

The order of the varieties in grain weight is most easily seen in

Figure 5:4 where the mean weight of all the grains in each spikelet

are compared. The total weight of grain on each ear was calculated,

presented and discussed in Chapter 3 (Fig. 3:7).

The results of the pilot study carried out on the 1970-71 experiment

are presented in Tables 5:4 and 5:5 in which the absolute growth rate

and the relative growth rates are shown between the three sample dates

on which the grains from the middle spikelets were weighed. The

interval between samples was very long in the pilot study with 20 days

between the first two harvests and 34 days from harvest two to the

final harvest. The values of the absolute growth rate between the

first two harvests, at nitrogen rates and N^ are similar to those
of table 5:2 which shows that the rate of growth of the grains was

similar in both years. The values of relative growth rate are not
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comparable with any in the second year as they cover a much longer

time interval during which the relative growth rate is constantly

declining. The values of RGR in the pilot study did remain more

or less constant throughout the three positions in the spikelet.

Nitrogen had very slightly more effect on the absolute growth rate,

in the pilot study, than was found in the second year as increased

nitrogen caused a slight reduction in growth rate. The differences

between the varieties were similar to those found in the second year

and were constant in each position in the spikelet. Variety

differences were again much larger than differences due to nitrogen.

The results for N59 were lost in the pilot study as the second sample

was lost in this variety when the markers used to identify the ears

which had been at the same stage of growth at anthesis were blown off

the taller N59 ears. No accurate dates of anthesis were recorded in

the pilot study so the growth of the different treatments could not be

related to the duration of grain filling as it was in second year.

As these results do not differ in any major respect from those of the

more comprehensive second year study no specific mention of them will

be made in the succeeding discussion.

5D Discussion of the grain filling. The principal features

of the comparison of the growth of the grain in the different positions

in the ear are the differences in the absolute growth rate within and

between spikelets (Table 5:2) differences in the time of cessation of

growth in the different positions of the ear and differences in the

relative growth rate between grains.

Between spikelets the differences in absolute growth rate observed were
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similar to those reported by Bremner (1972) and Rawson and Evans (1970).

Grains in the middle spikelets were larger than those of the top and

bottom spikelets at the first sample date and maintained the advantage

by maintaining a similar growth rate to that of the bottom spikelets and

a greater growth rate than the top spikelets. Grain size in the

bottom spikelets overtook the top in most treatments by the third sample

(H5) and in all treatments by the fourth (H6) i.e. by six weeks after

anthesis and before growth had slowed. In Bremner's (1972) study growth

had slowed in all the spikelets by the sixth week after anthesis and

it was only by greater duration of growth that the bottom spikelet

grains became heavier than those of the top spikelet.

Within spikelets the absolute growth rate of the bottom and middle

grains were almost identical and only in the top spikelets was there

slightly faster growth of the bottom grain over the middle grain.

This finding differs slighly from that of Bremner (1972) who found

the bottom grain to be faster growing in all the spikelets of the ear.

In no treatment in the present study was the final weight of the

bottom grain greater than that of the middle grain though this frequently

occurred in Bremner's study (1972). This is surprising as in the

present study the middle grain was made up of the average weight of

the grains within the spikelet other than the top and bottom grain

and would thus have been expected to he lighter, relative to a bottom

grain than a single middle grain in a three grain spikelet as in

Bremner (1972) study.

The relative size of the top grain within all spikelets was the same

in the present study as in Bremner's. A different order of size was

found within spikelets by Walpole and Morgan (1970) where the bottom

grain was always larger than the middle grain. This is a complete
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reversal of the size relation found in the present experiment within

spikelets and is not readily understood.

Growth continued for a longer period in the present study than in the

previous work (Walpole and Morgan, 1970 and Bremner, 1972). The

experiment of Bremner (1972) was carried out in a glasshouse while in

Walpole and Morgan's (1970) study the reduction in the growth rate

observed coincided with lodging in the crop under study. The lodging

caused rapid curtailing of the growth which masked the differences which

could have occurred with more gradual senescence. In the present

study the growth continued unabated until the last interval between

samples when sudden reduction in the growth rate of certain grains

was noticed. The reduction in the growth rate in Bremner's study was

more gradual. In the present study the bottom spikelets were least

affected by the slowing of growth and the top spikelets showed the

greatest reduction. Within spikelets the top grain showed the greatest

reduction in growth rate and the middle grain the least, i.e. the middle

grain continued growth for the longest period. These differences were

not observed in the earlier work (Walpole and Morgan, 1970; Bremner, 1972).

The grains which showed the earliest reduction in grain growth i.e.

the grains of the top spikelets and the distal and bottom grains of the

other spikelets were the same grains which Rawson and Evans (1970)

found to be least dependent on the supply of assimilates from the flag

leaf. As theflag leaf was the first to senesce (Table 3*5) of the

photosynthetic tissues supporting the ear, the grains which were most

dependent on it as a source of supply would have been expected to be

the first to show signs of a slower growth rate, i.e. the opposite of

what was observed. It is therefore proposed that what Rawson and

Evans (1970) observed was, that the middle grains and, the lower and

middle spikelets had the greatest demand for assimilate from any
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source and their greatest demand for assimilates coincided with the

period when the flag leaf was most active as a source. These grains

thus received a greater proportion of flag leaf assimilate than the more

distal grains and spikelets hut not due to their being more dependent

on the flag leaf. The flag leaf is most important as a source of

assimilate in the earliest part of the post anthesis period which is

the period when the most rapid grain growth occurs in the lower grains

in each spikelet and in all grains of the middle and bottom spikelets.

Finally only small differences were found in the relative growth rate

(RGR) of grains, which showed the growth to be largely related to the

size of the grains in the various positions though there was one excep¬

tion to this theory. Grains in bottom spikelets were always smaller

than grains in the top spikelet at the first sample and by faster growth

these grains overtook the top spikelet grains and their RGR must

therefore have been greater. The RGR of the top spikelets was thus

slightly less than that of the lower spikelets (Table 5s3)- Walpole

and Morgan (1970) showed no differences between the relative growth

rates of the grains in different positions in the ear in the first 31

days post anthesis, i.e. in the period before the reduction in grain

weight growth occurred in their experiment. Bremner (1972) disagreed

with this finding as he also found grains of the bottom spikelets

overtook those of the top spikelet in weight.

This could arise from one of two causes. Either the supply of assimilates

was insufficient to maintain the growth of the grains in the top

spikelets at a rate of growth proportional to their grain size, in

the same way as the growth of the other spikelets, or the grains were

inherently less able to utilise the assimilates which were available.

A shortage of assimilates is unlikely. With increased nitrogen the
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the increased photosynthetic area produced more than matched the

increase in the number of grains as grain number only increased with

the first increase in nitrogen while the PAD increased throughout the

range of nitrogen used. The amount of assimilate moving to the

top grain was unaffected by this increase in the supply and it there¬

fore seems likely that the top grains are less able to utilise the

supply through some other cause. This could be that there is a

poorer vascular supply to the slower growing grains or, as the grains

are smaller they may possess a smaller pool of enzymes with which to

effect the biochemical changes necessary to incorporate assimilates

as starch storage. The vascular supply to a spikelet has been

examined by Zee and O'Brien (l97l) but no comparison was made of the

vascular connections to spikelets in different positions in the ear.

The size of the vascular connections may not be the most important

character in determining their activity. The distance of the slower

growing grains from the source of supply may in fact be the principal

factor in causing their slow growth rate but it seems that the growth

rate of these grains is inherently less than that of the bottom grains

in the spikelets.

Differences in the pattern of growth of grains within the ear due to

either changes in the supply of nitrogen to the crop or due to different

varieties were not found. From this finding it can be concluded that

within the range of genotypes examined there are no differences in the

pattern of assimilate distribution within the ear. Bremner (1972)

also examined different varieties but as the results within one variety

were very inconsistent he could not draw any firm conclusions regarding

the difference between genotypes in the pattern of grain filling

within the ear of wheat.
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In Chapter 3 it was indicated that TL363/3O and TL365a/34 had a greater

potential sink capacity, in that they had higher grain papulations per

unit area and gave a greater response to nitrogen in this character.

The individual grains of these varieties filled at a slighly slower

rate than those of the varieties where grain numbers were not so great,

with the result that grain weight per ear and per unit area (Figures

3:7 and 3:8) increased at the same rate in all varieties with time.

All the varieties had a similar development of PAD with time (Figure

3:6) though TL363/3O and TL365a/34 had a slightly greater maintenance

of PAI than the other varieties. Although these varieties had a

greater grain capacity, they did not show any increase in the rate of

individual grain growth nor in the rate of grain growth per unit area.

This must he due to a reduction in the efficiency of the increased

photosynthetic area as sink size could not be limiting.

The rate of individual grain filling may be a restriction on the

capacity of the grains. The varieties showed different rates of grain

filling from each other hut these were consistent throughout the

several sites within the ear. The effect of nitrogen on the rate of

grain filling was negligible though the increase in the PAD with

increased nitrogen (Fig. 3:6) far exceeded the increase in the

grain number per unit area (Table 3:2) but no increase in the rate of

individual grain filling was observed. It is suggested that the rate

of individual grain filling of a variety is a measurable trait and

increased yields could result from the selection of a variety with

a large grain population and a rapid rate of individual grain filling
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CHAPTER 6

General discussion and conclusions. In the preceeding chapters

the effects of several husbandry treatments on the new semi-dwarf and

taller, more conventional varieties of wheat and barley have been

examined. The semi-dwarf varieties chosen for these studies were bred

in the United Kingdom and therefore had adequate resistance to the

disease spectrum in this country as well as possessing a suitable res¬

ponse to natural constraints such as daylength and temperature.

This choice allowed the effects of the treatments applied to the var¬

ieties to be examined without other major factors interfering with their

interpretation. The implications of the findings of both agronomic and

the physiological studies for farmers and plant breeders will be dis¬

cussed here.

On a world wide basis, the introduction of varieties wtLcb possess the

semi-dwarf character, has had an enormous impact on agriculture. When

the semi-dwarf varieties were introduced to the underdeveloped countries,

they were backed up with large scale training programmes to teach the

farmers the benefits of the use of irrigation and fertilisers in con¬

junction with the short statured varieties. In the United Kingdom,

such a training programme is not necessary, but any changes in the

husbandry requirements for the semi-dwarf varieties would need to be

passed to the farmer.

The semi-dwarf barley varieties examined in the present study, responded

to the husbandry treatments applied, in a similar fashion to the conven¬

tional varieties with which they were compared. In response to increases
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in seed rate it was found that the barley varieties reached a ceiling

of yield after which further increases in seed rate resulted in neither

increase nor decrease in yield until lodging occurred.

No greater response to nitrogen was found in the dwarf barley varieties

which would have led to an increase in the fertiliser recommendations

for such varieties. A greater tolerance of high nitrogen was evident

however, as no lodging occurred in the dwarf varieties. The peak yield

was reached before lodging imposed a limit and increase in nitrogen

application beyond this peak level resulted in a slight reduction in

yield before lodging occurred.

In the wheat study, yield reductions were evident, in all varieties,

at the highest rates of nitrogen, which were seldom due to lodging.

Thus, some further limit to yield must be responsible for this ceiling

to further increase in yield.

In the seasons in which high average yields of grain were harvested the

tolerance of greater nitrogen application and seed rate usage was in¬

creased and the ceiling yield was maintained over a greater range of

nitrogen rates before yield reduction occurred. This effect was most

noticeable in the semi-dwarf barley varieties.

The introduction of the dwarf varieties in Europe has not led to such

a large increase in yield as their introduction in underdeveloped

countries, largely due to the different lodging resistance of the

indigenous varieties of European and underdeveloped countries. Euro¬

pean varieties have been developed for lodging resistance in the past

and possess this character in such a degree that lodging does not seem
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to be the yield limiting factor with modern varieties. Semi-dwarf

varieties do not extend the yield limits any further than the lodging

resistant varieties hut merely postpone lodging to more extreme rates

of sowing and nitrogen usage, thus providing a wider safety margin

between the maximum yield and the point at which lodging occurs and

causes large reductions in yield. In underdeveloped countries the in¬

troduction of semi-dwarf varieties gave the farmers lodging resistance

for the first time and the slow progression towards adequate, varietal

lodging resistance, experienced by European breeders was avoided by

breeders in underdeveloped countries.

Semi-dwarfism in a variety is not a guarantee that the variety will

not lodge but lodging resistance varies within the semi-dwarf vari¬

eties in much the same way as it does in conventional varieties. In

other characters also, the variation among the semi-dwarf varieties

is considerable and depends to some extent on the indigenous parent

which was chosen to confer disease resistance and tolerance of United

Kingdom conditions, to the semi-dwarf selections.

Although semi-dwarf varieties do not improve yield dramatically, as

they did in the underdeveloped countries, they can still make a

considerable contribution to the breeding of improved varieties.

This can be done by incorporating dwarf plasma into lodging suscep¬

tible, but otherwise suitable, varieties as a quick method of con¬

ferring lodging resistance. Such breeding programmes can be embarked

on since it has been shown, in this thesis and elsewhere, that the

dwarf varieties have very few traits which could reduce their per¬

formance in crosses with indigenous varieties. Those few traits

which may affect the performance of the semi-dwarfs are the short¬

ening of the coleoptile which reduces emergence, and possibly poorer

root development in some cultivars, though this could already be
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found within the indigenous cultivars, as large differences have recently

been found within species in root growth. In shoot growth, there do

not appear to be any dileterious characters associated with the semi-

dwarf character.

The problem of further extending the upper limit of yield still re¬

mains, The factors implicated in preventing further yield increase are,

too small a sink capacity to accommodate the supply from the photo-

synthetic organs or too small a supply from these organs to fill the

sinks provided.

From the study of the leaf area production and activity in wheat in

Chapter 3 if was concluded that the total sink capacity of the vari¬

eties under examination was adequate to utilise more assimilate than

the photosynthetic area produced. With large photosynthetic areas the

efficiency was reduced, in terms of grain production. The reduced

efficiency was believed to be caused by an increase in mutual shading.

On closer examination of the sink capacity, and the rate and duration

of the grain filling process, an additional factor in the control of

grain production was found. The rate of grain filling appeared to he

limited by some constraint which was characteristic of each variety.

Those varieties which had faster rates of individual grain growth showed

this consistently in all the grain positions within the ear. Nitrogen

had no effect on the rate of individual grain growth. The rate of

grain dry matter accumulation per ear or per unit area was the same

in all the varieties although some had greater numbers of grains and

a greater leaf area. It was concluded that varieties had a charac¬

teristic maximum rate of individual grain growth which could not be

exceeded.
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The implications of these findings in terms of increasing the yield

ceiling are twofold. To produce more dry matter per unit area it is

necessary to have a greater amount of photosynthetic tissue but the

efficiency of this increase photosynthetic area must not be reduced

by increased shading. An improvement in the efficiency of large

photosynthetic areas must he sought by improvement in the distribution

of the canopy and by an increase in duration of the canopy's active

life. The increase in the duration of the photosynthetic area should

be sought by extending the post-anthesis period by earlier anthesis

rather than by delayed senescence. The reason for this is that, by

delaying senescence, harvesting difficulties will be increased and

the crop will be growing in a period of shortening days and reduced

radiation input, whreas, by advancing anthesis, the post-anthesis

period will coincide more closely with the period of maximum incident

radiation. Acceleration of the early development of the plant may

cause conflict with the other requirement to arise from the findings

of the present study. This requirement is for an increase in the

population of the grains per unit area coupled with an increase in

the rate of individual grain filling. From the conclusions reached in

Chapter 5» this would appear to be the best combination to produce a

further increase in the yield of grain.

Neither of these conditions for improved yield may be easy to achieve

but the yields of present day varieties fall far short of the world

record wheat yield of 14 tons/ha achieved in Washington State in 1965

(Fischer, 197l)» but similar yields must be attainable.
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APPENDIX I

Weather Records for Bush and Dunbar 1970-72

1970 BUSII

Honth Mar A M J J A S 0 N D

Dry bulb °C 2.9 5.2 9.9 13«2 12.8 13.9 12.4 8.9 4.8 3.5
Screen

lax °C 6.6 8.4 13.6 17.0 15.8 17.6 15.3 12.2 7.7 5.7

Screen

nin °c -0.3 1.4 6.3 7«9 9.2 10.6 8.7 5.4 2.1 1.1

Rainfall

36.83 52.3 24.1 46.7 87.4 65.3 75.7 75.2 IO9.5 54.1
Sunshine

hrs 3.97 3.70 3.61 5.70 3.39 4.50 3.81 3.21 1.91 1.13
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Weather
Records
for

Bush
and

Dunbar
1970-72

1971

BUSH
Month

J

F

M

A

M

J

J

A

S

0

N

D

Dry
bulb
°C

3.4

3.7

4.2

6.9

10.9

10.9

14.8

13.6

13.0

9.6

4.9

5.7

Screenmax
°C

5.7

6.5

7.2

10.2

14.3

13.4

18.8

16.6

16.4

13.2

7.6

8.6

Screenmin
°C

0.6

1.2

0.8

2.3

4.6

3.6

9.8

9.7

8.4

5.3

2.0

4.1

Rainfall
mm

49.4

56.0

123.7
30.6

57.0

50.3

92.3

112.2
25.4

67.1

64.8

50.1

Sunshine
0.75

2.15

2.71
4.58

7.10

4.01

6.45

3.42

4.70

3.06

1.71

0.5?

hrs

Mean
of
10

Yrs
-

1962-71
BUSII

Dry
bulb
°C

2.3

1.9

3-9

6.9

9.5

13.4

14.5

13.8

12.9

9.4

4.2

3.1

Screenmax
°C

4.0

4.8

6.8

9.7

12.8

16.2

16.7

16.7

15.1

12.5

7.2

5.7

Screenmin
C

-0.3
-

1.1

0.6

2.2

4.9

8.1

9.2

9.3

8.1

5.7

1.4

0.3

Rainfall
66.9

56.7

61.5

51.9

79.5

58.4

80.2

101.7
83.9

77.8

95.5

60.7

m
mSunshine

1.20

2.41

3.18

4.45

4.73

5.32

4.77

4.39

3.54

2.88

1.67
0.9!

hrs

Mean
of
10

Yrs
1962-71
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1972

BUSH
MonthDry

bulb
°C

Screenmax
°CScreenmm

CRainfallmmSunshinehrs1972

DUNBAR
Dry
bulb
°C

Screenmax
°CScreeno

mm
CRainfallmmSunshinehrs

Weather
Records
for

Bush
and

Dunbar
1970-72JFMAMJJASON

2.66

2.64

4.08

7.15

9.53

10.91
14.19
12.85
10.69
9.69

4.54

5.19

5.27

7.96

10.70
12.80
14.16
17.75
16.75
14.35
13.16
7.44

0.14

0.32

1.24

3.75

5.60

6.25

9.H

8.55

5.89

4.88

1.73

57.2

59.5

54.7

78.6

71.8

64.0

30.6

31.6

10.3

23.0

64.3

1.04

1.56

3.37

4.60

3.6I

5.37

6.04

4.83

3.99

3.37

1.56

6.3

8.5

11.4

12.9

15.5

17.1

17.5

1.5

2.7

5.2

6.9

8.2

10.4

10.3

53

29

29

47

31

24

31

1.78

4.38

5.88

4.76

6.72

6.71
5.9



APPENDIX 2

Yield Components Barley

Table 2:1 Grain Number per Ear

1970 CV x N

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

NO 21.20 17.90 20.78 18.88 33.96 22.55

N1 21.37 19.94 18.76 18.48 37.57 23.22

N2 19.97 17.62 19.01 18.69 38.43 22.74

N3 22.59 19.85 19.63 19.43 37.52 23.80

N4 22.11 19.53 21.04 19.54 38.36 24.12

Mean 21.45

CV x SR

18.97 19.85 19.00 37.17 23.29

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

SI 24.15 22.12 23.09 21.80 48.50 27.93
S2 23.00 21.16 19.88 20.26 39.14 24.69
S3 22.23 19.21 20.16 18.83 36.99 23.48
S4 19.31 16.49 19.10 17.34 35.48 21.55

S5 18.55 15.88 16.99 16.78 25.73 18.79
Mean 21.45

SR x N

18.97 19.85 19.00 37.17 23.29

S1 S2 S3 S4 S5 Mean

NO 28.58 24.08 23.71 19.11 17.26 22.55
N1 27.49 23.67 23.37 22.43 19.16 23.22
N2 27.46 25.49 21.57 21.11 18.09 22.74

N3 27.00 26.22 23.69 21.97 20.15 23.80
N4 29.13 24.00 25.07 23.11 19.27 24.12

Mean 27.93 24.69 23.48 21.55 18.79 23.29

SE 1.027 0.459

Significant Effects NL * CV **

CV x S **

SL **



Table 2:2 Ear Number per 3715 sq cm.

1970 CV x N

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

NO 247 263 213 250 110 217

N1 270 332 251 276 119 250

N2 289 367 262 329 124 274

N3 289 326 327 291 124 271

N4 291 313 263 292 140 260

Mean 277

CV x SR

320 263 288 123 254

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

SI 204 215 198 171 73 172

S2 241 264 258 278 101 228

S3 291 314 254 277 123 252

S4 318 378 306 362 150 303

S5 334 430 301 350 170 317

Mean 277

SR x N

320 263 288 123 254

S1 S2 S3 S4 S5 Mean

NO 147 185 228 259 264 217

N1 193 223 235 281 318 250

N2 180 243 273 321 354 274

N3 190 249 256 342 320 271

N4 152 242 267 312 328 260

Mean 172 228 252 303 317 254

SE 20.47 9.15

Significant Effects NL ** NQ ** SL ** CV **



Table 2:3 Straw Dry Weight (g)

CV x N

Dwarf A Dwarf B Zephyr Golden Clermont Mean

Promise

NO 161.0 135-9 172.4 143.7 122.2 147.0

N1 184.3 180.9 181.9 145.7 136.6 166.0

N2 162.4 184.1 187.3 159.2 154.2 169.4

N3 195.2 187.4 223.4 155.6 158.4 184.0

N4 195.2 180.4 204.1 154.4 162.9 179.0

Mean 180.0 174 193.° 152.0 147.0 169.1

CV x SB

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

SI 191.0 186.1 222.6 140.3 154.3 179.0

S2 200.8 174.8 185.6 160.4 129.6 170.2

S3 176.3 165.6 181.9 153.4 136.8 I63.O

S4 168.4 161.4 202.6 154.1 168.5 171.0

S5 161.6 180.8 176.4 150.4 145.1 I63.O

Mean 180.0 174.0 194.0 152.0 147.0 169.1

SE x N

S1 S2 S3 S4 S5 Mean

NO 149.8 142.0 152.9 148.8 141.7 147.0

N1 179.2 159.5 164.0 175.3 151.4 166.0

N2 181.3 177.2 165.4 166.8 156.5 169.4

N3 209.4 180.9 165.5 177.8 186.4 184.0

N4 174.6 191.6 166.2 186.3 178.3 179.4

Mean 179.0 170.2 163.0 171.0 163.0 169.1

SE 12.00 5.37

Significant Effects NL ** CV **



Table 2:4 200 Grain Weight (g)

1970 CV X N

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

NO 6.64 6.66 7.62 6.70 7.18 6.96

N1 6.25 6.12 6.88 6.34 6.84 6.49

N2 5.96 6.04 7.08 6.22 7.00 6.46

N3 5.40 5.18 6.76 6.32 6.78 6.09

N4 5.20 5.30 7.26 5.70 6.66 6.02

Mean 5.89

CV X SR

5.86 7.12 6.26 6.89 6.40

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

SI 5.64 5.56 7.04 5.60 6.48 6.06

S2 5.65 5.76 6.76 6.52 7.02 6.34

S3 6.04 6.24 7.44 6.40 6.98 6.62

S4 6.18 5.90 7.28 6.58 6.88 6.56

S5 5.94 5.84 7.08 6.18 7.10 6.43

Mean 5.89

SR X N

5.86 7.12 6.26 6.89 6.40

S1 S2 S3 S4 S5 Mean

NO 6.66 6.86 7.02 7.20 7.06 6.96
N1 6.14 6.47 6.74 6.84 6.24 6.49

N2 6.20 6.26 6.82 6.68 6.34 6.46

N3 5.98 6.02 6.48 6.00 5.96 6.09
N4 5.34 6.10 6.04 6.10 6.54 6.02

Mean 6.06 6.34 6.62 6.56 6.43 6.40

SE 0.237 0.106

Significant Effects NL ** SL ** SQ CV **



Table 2:5 Grain Sample Dry Weight (g)

1222
Dwarf A Dwarf B Zephyr Golden

Promise
Clermont Mean

NO 152.3 156.7 145.7 133.8 98.4 137.4

N1 138.9 174.0 148.5 147.2 124.3 146.6

N2 147.9 157-4 151.9 163.1 127.8 149.6

N3 143.7 138.7 177.0 157.4 129.2 149.2

N4 151.1 129.1 175.7 142.0 131.9 145.9

Mean 147.0

CV x SE

151.1 160.0 149.0 122.3 145.7

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

SI 114.6 123.5 139.3 103.6 90.8 114.4

S2 127.0 130.7 154.6 152.6 118.6 136.7

S3 163.1 160.8 161.3 159.1 122.6 153.4

S4 165.6 166.8 189.6 169.4 151.6 168.6

S5 163.6 174.1 154.0 158.8 128.0 155.7

Mean 146.8

SR x N

151.2 159.8 148.7 122.3 145.8

S1 S2 S3 S4 S5 Mean

NO 130.9 119.5 149.1 151.5 135.9 137.4

N1 120.5 116.9 160.0 176.3 159.2 146.6

N2 116.4 143.7 159.2 173.4 155.4 149.6

N3 112.6 152.2 159.3 160.7 161.2 149.2

N4 91.4 151.2 139.3 181.1 166.8 146.0

Mean 114.4 136.7 153.4 168.6 155.7 145.8

SE 11.27 5.04

Significant Effects SL ** SQ ** CV **



Table 2:6 Grain to Straw Ratio

1220 CV x N

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

NO 0.967 1.215 0.860 0.959 0.821 0.964

NL 0.842 0.969 0.812 1.012 0.941 0.915

N2 0.931 0.913 0.816 1.022 0.822 0.901

N3 0.755 0.744 0.826 0.983 0.830 0.828

N4 0.778 0.732 O.863 0.913 0.820 0.821

Mean 0.855

CV x SR

0.915 0.835 0.978 0.847 0.886

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

SI 0.621 0.816 O.632 0.729 0.604 0.680

S2 0.711 0.757 O.836 0.951 0.937 0.838

S3 0.93*1 O.968 O.892 1.043 0.905 0.948

S4 0.989 1.042 0.933 1.106 0.897 0.993

S5 1.019 O.99O 0.883 1.059 0.891 0.969

Mean 0.855

SR x N

0.915 O.835 0.978 0.847 0.886

S1 S2 S3 S4 S5 Mean

NO 0.981 0.854 0.980 1.037 0.970 0.964

N1 O.670 0.876 0.975 0.999 1.057 0.915

N2 0.673 0.819 0.964 1.049 0.999 0.901

N3 0.542 0.848 0.967 0.910 0.870 0.828

N4 0.536 O.796 O.855 0.972 0.947 0.821

Mean 0.680 0.838 0.948 0.993 0.969 0.886

SE 0.0740 0.0331

Significant Effects NL ** SL ** SQ ** CV *



Table 2:7 Grain Number Per Ear

1971 CV x N
Dwarf A Dwarf B Zephyr Golden

Promise
Julia

NO 21.26 18.60 19.03 18.87 20.88

N1 20.21 18.92 19.02 21.13 20.62

N2 19.28 18.13 19.32 19.78 20.33

N3 20.41 20.33 18.48 18.99 19.91

N4 20.82 20.42 19.17 17.09 18.53

Mean 20.39

CV x SR

19.28 19.00 19.10 20.05

Dwarf A Dwarf B Zephyr Golden
Promise

Julia

SI 23.39 24.01 21.67 22.33 23.33

S2 20.95 19.35 20.47 21.48 21.82

S3 20.52 18.45 18.60 18.45 19.45

S4 19.50 18.23 17.33 17.70 17.36

S5 17.62 16.36 16.95 15.89 18.30

Mean 20.39 19.28 19.00 19.17 20.05

SR x

s,1

NO 25.30

N1 22.75

N2 22.79

N3 21.87

N4 22.02

Mean 22.94

SE 1.038

S2 S3
20.36 18.82

21.48 19.52

20.10 19.29

20.56 19.49

21.57 18.35

20.81 19.09

0.^64

S4 S5
17.66 16.50

19.12 17.02

17.09 17.56
18.68 17.51

17.57 16.53
18.02 17.02

Mean

19.73

19.98

19.36
19.62
19.20

19.58

Mean

22.94

20.81

19.09

18.02

17.02

19.58

Mean

19.73

19.98

19.36
19.62

19.20

19.58

Significant Effects SL **



Table 2:8 Ear Number per 3715 sq om.

1971 CV x N

Dwarf A Dwarf B Zephyr Golden
Promise

Julia Mean

NO 191 232 137 157 198 183

N1 244 238 177 199 197 211

N2 257 243 151 209 165 205

N3 236 235 172 217 183 209

N4 226 221 173 231 164 203

Mean 231

CV x SR

234 162 203 181 202

Dwarf A Dwarf B Zephyr Golden
Promise

Julia Mean

SI 161 181 117 169 119 149

S2 204 208 143 176 147 176

S3 241 254 182 211 200 218

S4 265 248 186 231 222 230

S5 283 278 182 227 219 238

Mean 231

SR x N

234 162 203 181 202

S1 S2 S3 S4 S5 Mean

NO 149 162 195 175 233 183

N1 157 185 209 247 257 211

N2 160 166 231 262 206 205

N3 134 170 240 254 246 209

N4 146 194 214 215 246 203

Mean 149 176 218 230 238 202

SE 14.1 6.3

Significant Effects NQ ** SL ** SQ ** CV **

CV X NL **

NQ x SQ *



Table 2:9 Straw Dry Weight (g)

1971 CV x N

Dwarf A Dwarf B Zephyr Golden Julia Mean
Promise

NO 163.5 178.0 158.2 137.4 228.5 173.1

N1 206.5 189.1 180.7 184.5 211.0 194.4

N2 237.9 215.6 179.4 200.5 195.2 205.7

N3 225.3 212.2 200.6 167.5 228.2 206.8

N4 218.0 210.2 208.2 189.1 226.7 210.4

Mean 210.2 210.0 185.4 175.8 217.9 198.1

CV x SR

Dwarf A Dwarf B Zephyr Golden
Promise

Julia Mean

SI 213.0 188.2 187.1 180.1 202.3 194.1

S2 197.9 209.4 173.5 164.7 200.4 189.2

S3 215.6 206.6 192.3 175.5 249.3 207.9

S4 206.3 196.9 213.7 172.5 222.3 202.3

S5 218.4 204.0 160.5 186.2 215.3 196.9

Mean 210.2 201.0 185.4 175.8 217.9 198.1

SR x N

S1 S2 S3 S4 S5 Mean

NO 199.5 173.3 166.4 152.0 174.4 173.1

N1 199.1 182.8 188.1 209.1 192.7 194.4

N2 208.3 180.9 241.2 215.8 182.4 205.7

N3 182.6 185.7 217.9 236.7 210.9 206.8

N4 181.2 223.2 225.7 198.1 224.0 210.4

Mean 194.1 189.2 207.9 202.3 196.9 198.1

SE 13.09 5.85

Significant Effects NL ** NQ *

CV x NQ *
NL x SL **

CV **

NL x SQ *



Table 2:10 200 Grain Weight (g)

1971 CV x N
MeanDwarf A Dwarf B Zephyr Golden Julia

Promise

NO 6.24 5.55 6.93 6.16 6.76 6.33

N1 5.70 5.41 6.41 5.78 6.11 5.88

N2 5.34 5.08 6.18 5.44 6.26 5.66

N3 5.66 5.13 6.37 5.16 6.03 5.67

N4 4.96 4.97 5.94 5.15 5.35 5.27

Mean 5.58 5.23 6.37 5.54 6.10 5.76

CV x SR

Dwarf A Dwarf B Zephyr Golden Julia Mean
Promise

SI 5.91 5.04 6.70 5.80 6.71 6.03

S2 5.35 5.46 6.69 5.56 5.99 5.81

S3 5.60 5.29 6.43 5.55 6.38 5.85

S4 5.57 5.31 6.17 5.23 5.81 5.62

S5 5.46 5.04 5.85 5.55 5.63 5.51

Mean 5.58 5.23 6.37 5.54 6.10 5.76

SR x N

S1 S2 S3 S4 S5 Mean

NO 6.79 6.66 6.25 6.01 5.94 6.33
N1 5.91 6.05 6.00 6.16 5.27 5.88

N2 6.05 5.37 5.79 5.47 5.63 5.66

N3 6.13 5.84 5.81 5.32 5.25 5.67
N4 5.27 5.13 5.40 5.14 5.43 5.27

Mean 6.03 5.81 5.85 5.62 5.51 5.76

SE 0.188 0,.084

Significant Effects NL ** NC * SL ** CV **

CV X SL *

NL x SL *



Table 2:11 Grain Sample Dry Weight (g)

1971 CV x N
Dwarf A Dwarf B Zephyr Golden Julia Mean

Promise

NO 107.3 103.8 87.6 80.6 118.9 99.6

N1 114.3 105.1 89-9 94.1 107.2 102.1

N2 102.7 94.2 72.8 89.5 84.7 88.8

N3 107.3 102.0 79.2 83.5 93.6 93.1

N4 89.2 77.6 75.0 88.7 69.5 80.0

Mean 104.2 96.5 80.9 87.3 94.8 92.7

CV x SE

Dwarf A Dwarf B Zephyr Golden Julia Mean

Promise

SI 95.4 81.8 73.1 87.9 82.9 84.2

S2 90.7 96.4 81.5 82.9 81.3 86.6

S3 105.6 103.0 91.3 93.3 111.5 100.9

S4 116.1 105.3 87.9 86.3 100.7 99.3

S5 113.0 96.2 70.7 86.0 97.5 92.7

Mean 104.2 96.5 80.9 87.3 94.8 92.7

SE X N

S1 S2 S3 S4 S5 Mean

NO 107.5 97.5 102.0 89.6 101.6 99.6

N1 85.9 99.2 101.9 125.7 97.9 102.1

N2 95.7 68.6 107.2 93.4 79.0 88.8

N3 68.8 84.3 109.1 110.5 92.9 93.1

N4 63.2 83.2 84.5 77.1 92.0 80.0

Mean 84.2 86.6 100.9 99.3 92.7 92.7

SE 8.75 3.91

Significant Effects NL ** SL * SQ * CV **



Table 2:12 Grain to Straw Ratio

1971 CV x N
Dwarf A Dwarf B Zephyr Golden

Promise
Julia Mean

NO O.663 0.602 0.561 0.603 0.522 0.590

N1 0.554 0.561 0.498 0.512 0.511 0.527

N2 0.429 0.438 0.409 0.443 0.442 0.432

N3 0.475 0.486 0.396 0.495 0.412 0.453

N4 0.401 0.379 0.357 0.462 0.308 0.381

Mean 0.505

CV x SR

0.493 0.444 0.503 0.439 0.477

Dwarf A Dwarf B Zephyr Golden
Promise

Julia Mean

SI 0.439 0.451 0.386 0.492 0.410 0.436

S2 0.481 0.468 0.498 0.516 0.413 0.475

S3 0.505 0.516 0.483 0.542 0.449 0.499

S4 0.574 0.548 0.417 0.511 0.455 0.501

S5 0.524 0.481 0.437 0.454 0.466 0.473

Mean 0.505

SR x N

0.493 0.444 0.503 0.439 0.477

S1 S2 S3 S4 S5 Mean

NO 0.552 0.592 0.620 0.611 0.575 0.590

N1 0.435 0.553 0.545 0.599 0.504 0.527

N2 0.459 0.396 0.448 0.435 0.423 0.432

N3 0.380 0.459 0.503 0.470 0.452 0.453

N4 0.352 0.377 0.380 0.390 0.408 0.38I

Mean 0.436 0.475 0.499 0.501 0.473 0.477

SE 0.0390 .0175

Significant Effects NL ** N4 * SQ * CV *



Table 2:13 Establishment (plants/m of row)

mi CV x N

Dwarf A Dwarf

NO 30.50 33.85

N1 25.40 33.70

N2 27.85 32.80

N3 26.50 35.20

N4 28.95 29.00

Mean 27.84 32.91

CV x SR

Dwarf A Dwarf

SI 9.20 9.25

S2 18.65 21.05

S3 26.70 30.30

S4 38.50 45.30

S5 46.15 58.65

Mean 27.84 32.91

SR x N

S1 S2
NO 8.00 16.75
N1 8.75 16.85

N2 7.90 18.15

N3 7.80 17.00

N4 7.20 17.00

Mean 7.93 17.15

SE 1.976 0 .884

Zephyr Golden
Promise

Julia Mean

23.90 27.05 23.10 27.68

22.55 30.75 22.35 26.95

25.90 28.90 22.75 27.64

23.45 27.75 21.95 26.97

25.05 25.65 26.95 27.12

24.17 28.02 23.42 27.27

Zejihyr Golden Julia Mean
Promise

6.45 8.05 6.70 7.93

13-95 17.10 15.00 17.15

24.70 27.75 24.70 26.83

33.45 37.90 31.80 37.39

42.30 49.30 38.90 47.06
24.17 28.02 23.42 27.27

S„ s, Sc Mean
3 4 5

26.35 41.55 45.75 27.68

26.85 35.40 46.90 26.95
27.10 36.65 48.40 27.64
28.40 35.50 46.15 26.97

25.45 37.85 48.10 27.12

26.83 37.39 47.06 27.27

Significant Effects SL ** CV **
C¥ x SL **



Table 2:14 °/o Nitrogen in Barley Grain Dry Matter

1970 CV x N

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

NO 1.81 1.73 1.74 1.84 1.75 1.77

N1 1.76 1.89 1.93 1.93 2.00 1.90
N2 2.03 1.96 2.01 2.02 2.02 2.01

N3 2.07 2.09 2.11 2.22 2.42 2.18

N4 2.34 2.31 2.04 2.22 2.37 2.26

Mean 2.00

CV x SR

2.00 1.97 2.05 2.11 2.02

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

SI 2.12 2.24 2.04 2.19 2.30 2.18

S2 2.19 1.91 1.99 2.09 2.02 2.04

S3 1.87 1.95 2.02 1.96 2.16 1.99
S4 1.91 1.87 1.86 2.02 2.01 1.93

S5 1.91 2.02 1.93 1.97 2.07 1.98
Mean 2.00

N x SR

2.00 1.97 2.05 2.11 2.02

S1 S2 S3 S4 S5 Mean

NO 1.95 1.77 1.77 1.69 I.69 1.77
N1 2.02 1.92 1.86 1.78 1.94 1.90
N2 2.08 2.15 2.00 1.81 2.00 2.01

N3 2.44 2.02 2.13 2.17 2.15 2.18

N4 2.40 2.35 2.20 2.20 2.13 2.26
Mean 2.18 2.04 1.99 1.93 1.98 2.02

SE 0.089 0.040

Significant Effects NL ** S **



Table 2:15 °jo Nitrogen in Barley Straw Dry Matter

1970 CV x N

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

NO 0.83 0.62 0.65 0.75 0.56 0.68

N1 0.91 0.88 0.76 0.87 0.66 0.82

N2 1.07 0.99 0.92 0.98 0.77 0.95

N3 1.25 1.15 1.17 1.18 0.92 1.13

N4 1.48 1.33 1.10 1.33 1.04 1.26

Mean 1.11

CV x SR

0.99 0.92 1.02 0.79 0.97

Dwarf A Dwarf B Zephyr Golden
Promise

Clermont Mean

SI 1.31 1.27 1.12 1.26 1.06 1.20

S2 1.53 0.99 0.92 1.06 0.73 1.05

S3 0.95 0.91 0.84 1.01 0.73 0.89

S4 0.87 0.89 0.86 0.97 0.62 0.84

S5 0.88 0.91 0.86 0.82 0.81 0.86

Mean 1.11 0.99 0.92 1.02 0.79 0.97

N x SE

S1 S2 S3 S4 S5 Mean

NO 0.75 0.81 0.69 0.60 0.57 0.68

N1 1.02 0.93 0.70 0.67 0.77 0.82

N2 1.08 1.11 0.89 0.76 0.89 0.95

N3 1.51 1.17 0.95 1.03 1.01 1.13
N4 1.65 1.21 1.22 1.16 1.04 1.26

Mean 1.20 1.05 0.89 0.84 0.86 0.97

SE 0.090 0.040

Significant Effects NL ** SL ** CV *



Table 2:l6 °/o Nitrogen in Grain dry Matter

1971 CV x N

Dwarf A Dwarf B Zephyr Golden
Promise

Julia Mean

NO 1.85 1.79 1.72 1.85 1.97 1.84

N1 1.82 1.99 1.94 1.90 1.98 1.93
N2 1.96 1.99 1.99 2.08 2.00 2.01

N3 1.97 2.06 1.99 2.16 2.06 2.05

N4 2.15 2.12 2.18 2.17 2.29 2.18

Mean 1.95

CV x SR

1.99 1.96 2.03 2.06 2.00

Dwarf A Dwarf B Zephyr Golden
Promise

Julia Mean

SI 1.88 1.98 2.02 2.16 2.18 2.05

S2 2.05 2.05 1.98 2.01 2.02 2.02

S3 1.85 1.89 1.91 2.05 2.18 1.98
S4 1.98 2.05 2.00 2.04 2.01 2.02

S5 2.00 1.99 1.91 1.91 1.92 1.95

Mean 1.95

N x SR

1.99 1.96 2.03 2.06 2.00

S1 S2 S3 S4 S5 Mean

NO 1.98 1.78 1.82 1.82 1.79 1.84

N1 1.96 1.92 1.96 1.96 1.83 1.93
N2 2.12 2.01 1.88 1.99 2.02 2.01

N3 1.97 2.15 2.09 2.03 2.00 2.05
N4 2.20 2.23 2.12 2.28 2.09 2.18

Mean 2.05 2.02 1.98 2.02 1.95 2.00

SE 0.070 0.031

Significant Effects NL **



Table 2:17 "k Nitrogen in Barley Straw Dry Matter

1971 CV x N

Dwarf A Dwarf B Zephyr Golden
Promise

Julia Mean

NO 0.70 0.70 0.61 0.64 0.57 0.64

N1 0.90 0.80 0.82 0.82 0.75 0.82

N2 1.24 1.30 0.94 1.08 0.91 1.08

N3 1.03 1.23 1.05 1.08 1.14 1.08

N4 1.45 1.48 1.31 1.30 1.20 1.30

Mean 1.06

CV x SR

1.10 0.95 0.90 0.91

Dwarf A Dwarf B Zephyr Golden
Promise

Julia Mean

SI 1.15 1.23 1.12 1.01 0.88 1.08

S2 1.21 1.18 0.89 0.88 1.12 1.05

S3 1.08 1.08 0.90 0.88 0.89 O.96
S4 0.83 1.05 0.93 0.98 0.75 0.91

S5 1.04 0.99 0.89 0.73 0.94 0.92

Mean 1.06

N x SR

1.10 0.95 0.90 0.91 0.98

S1 S2 S3 S4 S5 Mean

NO 0.71 0.65 0.66 0.61 0.60 0.64

N1 0.99 0.78 0.79 0.73 0.82 0.82

N2 1.14 1.28 1.06 0.97 0.93 1.08

N3 1.17 1.11 0.99 1.15 1.00 1.08

N4 1.38 1.46 1.33 1.08 1.25 1.30

Mean 1.08 1.05 0.96 0.91 0.92 0.98

SE 0.095 0.042

Significant Effects NL ** S * CV **



Table 2:18 200 Grain Weight (g)

1972 CV x Nitrogen

Dwarf A Zephyr Golden Mean
Promise

N1 7.32 7.29 6.91 7.17

N2 7.16 7.14 6.64 6.98

N3 7.25 7.19 6.13 6.86

Mean 7.24 7.20 6.56 7.00

Significant Effects CV ** N ** CV x N *

Table 2:19 °/o Nitrogen in Grain Dry Matter

1972
Dwarf A Zephyr Golden

Promise
Mean

N1 1.435 1.508 1.481 1.475

N2 1.606 1.793 1.648 1.683

N3 1.826 2.05 1.936 1.938

Mean 1.62 1.78 1.68 1.693



APPENDIX 3

Results 1970/71 1971/72
(Throughout this appendix standard errors of comparisons within the table will
be placed first and the standard errors for the comparisons of means second)

Table 3:1 Grain to Straw Ratio 1970/71
TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 0.6325 0.5989 0.5057 0.6009 0.4591 0.5594
N1 O.63OO 0.6385 0.5035 0.5925 0.4013 0.5532

N2 0.6494 0.6877 0.5526 0.6048 0.4004 0.5790

N3 0.7086 0.6118 0.5604 0.5970 0.3627 0.5681
N4 0.5855 0.6332 0.5972 0.5590 0.3686 0.5487

Mean 0.6412 0.6340 0.5439 0.5908 0.3984 0.5617
SE within table comparison 0.0223 Cv & N means 0.00997

Significant Effects Cv** Cv x NL**

Table •• to 1000 Grain Weight 1970/71 1971/72 (g)
L970/71 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 45.37 43.66 46.06 45.43 36.88 43.48
N1 45.63 44.50 45.77 45.08 39.71 44.14

N2 41.21 40.55 44.79 46.05 35.33 41.59
N3 40.88 36.79 42.56 43.55 35.00 39.75
N4 35.97 36.63 42.24 41.79 34.66 38.26

Mean 41.81 40.42 44.28 44.38 38.26 41.44
SE within table comparison 1.050 Cv & N means 0.469

Significant Effects Cv** NL** NQ* Nc* Cv x NL*

200 Grain Weight 1971/72 (g)
1971/72 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 9.767 9.209 9.695 9.749 7.987 9.281
N1 9.609 8.830 9.621 10.208 8.414 9.336
N2 9.622 8.818 9.140 10.185 8«316 9.216
N3 9.517 8.369 8.731 11.176 8.537 9.266
N4 9.055 7.643 8.106 10.759 7.864 8.685

Mean 9.514 8.574 9.058 10.415 8.223 9.157
SE within table comparison 0.2829 Cv &N means 0.1124

Significant Effectss NL** NQ** Cv** NL x Cv**



Table 3:3 Number of Grains/Ear 1970/71 1971/72
1970/71 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59

NO 21.93 18.92 16.63 21.59 23.42

N1 22.13 21.05 18.82 27.44 19.71

N2 27.17 29.96 20.82 28.34 24.16

N3 33.30 30.39 25.99 27.73 22.17

N4 31.73 31.01 26.19 29.71 23.23

Mean 27.25 26.27 21.69 26.96 22.54

SE 1.534 0.686

Significant Effects Cv** NL** Nc* Cv x NL**

1971/72 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59

NO 26.40 29.60 24.92 21.23 23.53

N1 32.11 35.68 25.33 29.66 26.37

N2 37.32 41.28 27.17 25.25 31.69

N3 31.46 38.33 37.09 30.29 36.52

N4 38.87 43.85 39.16 33.00 32.35

lean 33.23 37.75 30.73 27.89 30.09

SE 4.939 1.963

Significant Effects Cv** NL**

Mean

20.50

21.83

26.09

27.92

28.37

24.94

Mean

25.13

29.83

32.54

34.74

37.45

31.94
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Table 3:4 Net Assimilation Rate 1/7 - 20/7 (g dm wk )

1970/71 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 1.289 0.488 0.427 0.854 0.645 0.741

N1 1.184 0.209 0.624 0.708 0.929 0.731

N2 0.585 0.794 0.356 1.089 1.133 0.791

N3 0.578 0.781 0.451 0.702 1.012 0.705

N4 0.399 0.911 0.895 0.232 1.074 0.702

Mean 0.807 O.636 0.550 0.717 0.959 0.734

SE 0.2335 0.1045

Significant Effects Cv x NL*



Table 3:5 (A) Leaf Area (sq cm) 24 May 1971

TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 42.65 45.17 33.32 32.01 37.96 38.22

N1 52.76 55-04 42.63 34.96 65.69 50.22

N2 76.72 63.66 58.83 63.43 77.72 68.07

N3 58.30 63.52 62.67 71.70 81.98 67.63

N4 77.34 79.04 76.52 66.78 101.46 80.23

Mean 61.55 61.29 54.79 53.78 80.23 60.88

SE 10.098 4.516

Significant Effects Cv* NL** Calculated from square root transforma

of skew data

Table 3:5 (B) Dry Wt of Sample (g ) 24 May 1971

TL363/3O TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 48.90 42.20 42.70 38.00 49.70 44.30

N1 57.80 51.50 45.60 49.40 62.90 53.40

N2 66.60 60.60 56.80 62.40 68.80 63.00

N3 69.60 64.60 61.00 64.00 71.00 66.00

N4 68.50 65.90 67.70 67.60 79.30 69.80

Mean 62.30 56.90 54.80 56.30 66.30 59.30

SE 4.89 2.19

Significant Effects Cv** NL** NQ*



Table 3:6 (a) Leaf Area (sq cm) 8 June 1971

1970/71 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 73.44 77.61 37.26 50.46 57.92 59.34

N1 58.40 74.92 68.69 67.72 79.46 69.84

N2 92.13 82.23 101.94 90.66 114.98 96.39

N3 97.22 106.82 102.95 96.81 99.85 100.73

N4 97.12 135.30 93.99 137.72 121.94 117.20

Mean 83.66 95.37 80.95 88.67 94.83 88.70

SE 14.194 6.348

Significant Effects nl**

Table 3:6 (b) Dry Wt of Sample (g ) 8 June 1971

1970/71 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 122.0 102.6 81.7 78.9 103.8 97.8

N1 107.3 97.6 95.1 121.0 135.0 111.2

N2 131.2 124.6 125.4 136.2 133.9 130.2

N3 152.2 115.6 128.0 152.3 146.3 138.9

N4 144.4 142.6 130.8 154.2 163.8 147.1

Mean 131.4 116.4 112.2 128.5 136.5 125.0

SE 9.67 4.32

Significant Effects Cv** NL**



Table 3:7 (A) Leaf Area (sq cm) 30 June 1971

TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 45.07 60.32 47.50 46.36 54.99 50.85

N1 61.48 69.96 48.59 74.81 58.49 62.66

N2 75.45 79.54 64.75 71.49 86.18 75.48

N3 94.19 84.18 71.43 90.11 84.38 84.86

N4 82.93 108.73 79.10 118.28 82.75 94.36

Mean 71.82 80.55 62.27 80.21 73.36 73.64

SE 8.923 3.991

Significant Effects Cv** NL**

Table 3:7 (B) Dry Wt of Sampl e (g ) 30 June 1971

TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 172.0 184.8 181.8 186.2 192.7 183.5

N1 206.5 234.1 188.0 246.4 231.1 221.2

N2 268.2 235.4 244.0 260.4 237.0 249.0

N3 265.1 246.6 267.4 284.2 281.5 269.0

N4 299.1 267.1 248.2 351.2 259.7 285.0

Mean 242.2 233.6 225.9 265.7 240.4 241.5

SE 14.81 6.62

Significant Effects Cv** NL** NQ*



Table 3:8 (a) Leaf Area (sq cm) 20 July 1971

1970/71 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 27.23 32.42 20.93 29.57 15.38 25.11

N1 36.50 36.17 32.36 37.95 15.91 31.78

N2 40.86 39.33 26.10 27.06 30.03 32.68

N3 34.23 49.49 26.82 22.72 23.73 31.40

N4 25.39 53.39 35.60 35.00 18.06 33.49

Mean 32.84 42.16 28.36 30.46 20.62 30.89

se 9.429 4.217

Significant Effects Cv**

Table 3:8 (b) Dry Wt of Sample 20 July 1971 (g)

L970/71 TL363/3O TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 296.1 247.1 214.9 272.4 261.2 258.3

N1 354.4 281.7 258.8 336.9 327.3 3H.8

N2 361.3 366.9 305.0 390.7 352.5 355.3

N3 348.5 360.8 302.5 382.6 404.7 359.8

N4 354.6 406.0 368.0 431.8 358.3 383.7

Mean 342.9 332.5 289.8 362.9 340.8 333.8

SE 28.41 12.71

Significant Effects Cv** NL** NQ*



Table 3:9 (A) Leaf Area (sq cm) 10 August 1971

1970/71 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 7.47 10.20 7.19 3.93 5.48 6.85

N1 7.80 15.92 4.41 8.25 9.52 9.18

N2 7.32 8.33 1.78 5.62 7.49 6.11

N3 3.36 11.99 5.31 6.94 6.04 6.73
N4 3.52 9.60 14.50 7.23 5.38 8.05

Mean 5.90 11.21 6.64 6.39 6.78 7.38

SE 2.54 1.14

Significant Effects Cv** Cv x NL*

Table 3:9 (B) Dry Wt of Sampl e (g) 10 August 1971

1970/71 TL363/3O TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 362.5 268.4 222.1 243.6 260.5 271.4

N1 305.4 287.6 260.6 328.7 371.7 310.8

N2 376.5 372.4 331.4 374.5 377.6 366.5

N3 367.6 350.6 362.6 403.2 403.7 377.5

N4 401.1 418.8 374.7 418.1 351.9 392.9

Mean 362.6 339.5 310.3 353.6 353.1 343.8

SE 27.45 12.28

Significant Effects Cv* NL** NQ*



Table 3:10 PAD (3) 19 July 1972 (days)

1971/72 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 27.53 34.47 29.55 20.40 19.80 26.35

N1 30.22 41.26 28.83 28.22 13.53 28.41

N2 44.04 54.39 35.08 29.22 13.87 35.32

N3 47.70 49.79 36.38 32.17 14.74 36.15

N4 46.97 55.42 35.25 32.52 14.14 36.86

Mean 39.29 47.07 33.02 28.50 15.22 32.62

SE 3.334 1.325

Significant Effects NL** NQ* N *
4

Cv** NL x Cv**

Table 3:11 PAD (4) 26 July 1972 (days)

1971/72 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 42.09 50.66 43.39 33.33 35.51 40.99

N1 46.39 59.04 45.91 46.94 31.97 46.05

N2 64.71 79.28 56.26 50.96 34.49 57.14

N3 72.14 74.01 62.76 51.92 37.52 59.67

N4 72.41 81.17 60.23 55.86 37.56 61.45

Mean 59.55 68.83 53.71 47.80 35.41 53.06

SE 4.683 1.861

Significant Effects NL** NQ** N^* Cv** NL x Cv**



Table 3:12 PAD (5) 2 August 1972 (days)

1971/72 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 57.57 67.43 59.04 47.04 52.12 56.64

N1 62.43 76.52 64.01 65.89 50.67 63.90

N2 86.17 106.38 77.27 74.36 57.15 80.27

N3 98.28 101.33 88.55 73.35 62.04 84.71

N4 100.32 107.96 86.91 76.69 61.76 87.33

Mean 80.95 91.92 75.16 68.07 56.75 74.57

SE 5.962 2.369

Significant Effects NL** NQ** Nc* N *
4

Cv** NL x Cv**

Table 3:13 PAD (6) 9 August 1972 ( days)

1971/72 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 73.99 82.79 76.49 62.60 71.69 73.51

N1 77.34 94.09 82.10 85.08 72.47 82.22

N2 109.10 133.55 98.04 98.04 80.17 103.78

N3 125.56 128.54 112.14 103.21 88.71 111.63

N4 129.44 134.76 113.87 107.73 87.43 114.65

Mean 103.09 114.74 96.53 91.33 80.09 97.16

SE 7.697 3.058

Significant Effects NL** NQ** Nc* Cv** NL x Cv**



Table 3:14 PAD (7) 16 August 1972 (days)

1971/72 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 86.9 94.4 88.4 74.6 88.6 86.6

N1 86.7 106.4 98.3 101.2 93.3 97.2

N2 129.2 155.5 115.3 118.5 99.4 123.6

N3 148.5 151.3 133.3 127.5 114.2 135.0

N4 157.5 157.7 135.0 134.0 111.8 139.2

Mean 121.8 133.1 114.0 111.2 101.5 116.3

SE 9.66 3.84

Significant Effects NL** NQ** Nc* Cv** NL x Cv**

Table 3:15 PAD (8) 23 August 1972 (days)

1971/72 TL363/3O TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 93.7 101.3 95.7 81.8 98.9 94.3

N1 93.1 111.9 108.1 110.1 107.2 106.1

N2 141.4 167.3 125.4 132.8 113.6 136.1

N3 162.8 160.2 147.5 143.9 135.0 149.9

N4 178.7 171.7 149.8 149.6 131.1 156.2

Mean 133.9 142.5 125-3 123.6 117.2 128.5

SE 11.24 4.47

Significant Effects NL** NQ* Nc* Cv** NL x Cv**



Table 3:16 PAD (9) 30 August 1972 (days)

1971/72 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 96.7 104.1 99.7 86.4 107.4 98.9

N1 97.3 115.9 112.7 113.7 114.5 110.8

N2 143.8 173.9 132.3 140.4 122.3 142.5

N3 171.7 166.5 155.9 152.3 149.5 159.2

N4 191.2 178.7 159.3 160.6 143.2 166.6

Mean 140.1 147.8 132.0 130.7 127.4 135.6

SE 12.00 4.77

Significant Effects NL** Nc** Cv** NL x Cv**

Table 3:17 PAD TOTAL ALL SHOOTS to HARVEST (days)

1971/72 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 97.8 104.6 100.2 88.3 113.4 100.8

N1 98.3 116.2 114.2 114.9 118.7 112.5

N2 146.0 175.8 134.3 144.2 126.7 145.4

N3 176.0 169.2 160.1 157.7 155.6 163.7

N4 197.3 180.8 162.0 167.9 149.5 171.5

Mean 143.1 149.3 134.2 134.6 132.8 138.8

SE 12.95 5.15

Significant Effects NL** Nc** Cv** NL x Cv**



Table 3:18 PAD TOTAL MAIN SHOOTS ONLY to HARVEST (days)

1971/72 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 91.6 95.1 95.2 85.0 102.8 93.9

N1 86.6 107.5 102.8 110.7 110.1 103.5

N2 118.9 150.9 117.7 134.9 114.0 127.3

N3 142.4 137.3 135.4 145.5 136.0 139.3

N4 152.6 143.5 127.6 153.7 133.2 142.1

Mean 118.4 126.9 115.7 126.0 119.2 121.2

SE 11.38 4.52

Sigiificant Effects ML** NQ* Nc * NL x Cv*



Table3:19

LogarithmtoBase10ofLeafArea/ShootVARIETYMAINEFFECTS
1970/71

CvSignif

TL363/30

TL365a/3^

TL365a/37

MarisNimrod

N59

Mean

24May

NS

1.4062

1.3649

1.3612

1.4128

1.3785

1.3847

8June

NS

1.6129

1.6378

1.5911

1.6592

1.6015

1.6205

30June

**

1.6275

1.6540

1.5761

1.6825

1.6521

1.6385

20July

**

1.3022

1.2886

1.2751

1.1892

1.0272

1,2165

10August

**

0.1736

0.7371

0.4994

0.4905

0.4766

0.4754

Table3:20

Logarithmto
Base10ofLeaf
Area/Shoot
NitrogenMeans

1970/71

NLSignif

NO

N1

N2

N3

N4

SE

24May

**

1.2769

1.3471

1.4263

1.4134

1.4599

0.0218

8June

**

1.5170

1.5650

1.6548

1.6612

1.7045

0.0221

30June

**

1.5210

1.5865

1.6636

1.6996

1.7216

0.0181

20July

*

1.2178

1.2918

1.2566

1.1968

1.1193

0.0448

10August

*

0.6380

0.6173

0.3316

0.3550

0.4354

0.0971



Table 3:21 (A) Grain No/sq m 1970/71

TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 9563 9057 7252 8848 11441 9208

N1 9360 10629 7837 11966 8336 9591

N2 14520 14243 9420 10778 12674 12318

N3 16159 17138 12015 13547 11267 13823

N4 14981 17488 12108 13053 11425 14325

Mean 12866 13350 9743 11845 11085

Table 3:21 (B) Grain No/sq m 1971/72

TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 10545 11849 10661 10370 10783 10834

N1 13319 15520 13597 12757 12890 13593

N2 15708 19286 15512 14154 15406 15948

N3 17342 19197 17932 13658 15432 16599

N4 17648 21638 18384 14548 16348 17495

Mean 14862 17315 15047 13148 14180



Table 3:22 Ear Number per 2m of Drill

1970/71 TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 133 146 133 125 149 137

N1 129 154 127 133 129 134

N2 163 145 138 116 160 144

N3 148 159 146 149 155 151

N4 148 172 141 150 158 154

Mean 144 155 137 134 150 144

SE 10.7 4.8

Significant Effects NL** Cv*

1971/72

NO 158.4 154.4 132.4 143.8 134.8 144.8

N1 161.0 179.2 153.0 154.2 147.4 159.0

N2 159.6 173.8 159.0 169.2 187.0 169.6

N3 198.8 186.4 183.4 205.8 183.4 190.4

N4 208.4 185.8 210.4 195.4 180.6 196.0

Mean 176.0 175.8 167.6 173.6 166.6 172.0

SE 18.98 7.54

Significant Effects NL**



Table 3:23 Biological Yield 1970-71

TL363/30 TL365a/34 TL365a/37 Maris Nimrod N59 Mean

NO 341.6 31B.9 303.5 324.9 426.2 343.0
N1 331.9 376.1 321.9 457.1 351.4 367.7
N2 459.4 422.3 377.6 393.3 466.4 423.8

N3 473.6 464.2 449.8 478.5 454.8 464.1
N4 464.8 511.1 418.1 506.7 472.7 474.6
N5 414.3 418.5 374.2 432.1 434.3 414.6



APPENDIX 4

Sample Analyses of Variance Calculations

Table 1 Barley grain yield (l97l)

Source df SSq MSq VR Ratio

Replicates 1 86.8997 86.8997

Blocks 8 772.4108 96.5518

Nitrogen Linear 1 28.4708 28.4708

quad. 1 689.4220 689.4220 75.73 **

Cubic 1 207.9509 207.9509 22.84 **

Rem. 1 35.9312 35.3912 3.89 *

Seed Rate Linear 1 1056.5254 1056.5254 116.06 **

quad. 1 266.4814 265.4814 29.27 •**

Cubic 1 4.9379 4.9379

Rem. 1 7.3022 7.3022

Cultivar 4 248.4277 62.1069 6.82 *-*

Cv x NL 4 208.4325 52.1081 5.72 ■**

Cv x NQ 4 96.1091 24.0273 2.64 •*

Cv x N 8 148.8864 18.6108 2.04 *

Cv x SL 4 56.2552 14.0638

Cv x SQ 4 33.8726 8.4682

Cv x S 8 43.3531 5.4191

NL x SL 1 2.1791 2.1791

NL x SQ 1 18.6165 18.6165

NQ x SL 1 86.4587 86.4587 9.50 **

NQ x SQ 1 4.6875 4.6875

N x S 12 121.4951 10.1246

N x S x Cv 64 478.7430 7.4804

Error 112 1019.5297 9.1029

Design. Randomised Block design 5 Nitrogen Rates x 5 seed rates
x 5 cultivars

Block size 25 plots 2 replicates of 5 blocks
1970 Experiment same design.



Table 2 Analysis of Variance, Total yield (1972)

Source df SSq MSq

Blocks/reps 5 1121.4762 224.2952

N level 2 1918.7300 959.3658

Cultivar 2 76.9968 38.4984

N x Cv 4 122.4106 30.6026

Error 40 1900.9585 47.5239

Total 53 5140.5721

Design: Completely randomised design of 3 nitrogen rates x 3 cultivars
6 Replicates.



Table 3 Yield of Wheat 1971-72

Source df SSq MSq V.R.

Reps 3 5543287 1847762 3.443
Blocks 16 8877867 554867 1.034

N lin 1 83287392 83297392 155.213

quad 1 17274576 17274576 32.193
cub 1 11888 11888 0.022

quot 1 134710 134710 0.251

Cultivar 4 28073936 7018484 13.079

NL x Cv 4 836019 209005 0.389

Nq x Cv 4 308752 77188 0.144

N6 x Cv 4 399650 99912 0.186

N4 x Cv 4 1353028 338257 0.630
Error 56 30049728 536602

Total 99 176150992

Design Randomised block design of 5 nitrogen rates x 5 cultivars

Block size 5 plots 4 replicates 5 blocks per replicate.

1970-71 same design

Same analysis used in all yield components and in grain filling

study (Chapter 5) for analysis of measurements at each sample date.



Table 4 Root length in Barley (l97l) on 14/6/71 bottom layer

Bottom layer
Source df SSq MSq V.R.

Blocks 5 0.8671 0.1734

Varieties 1 3.5305 3.5305 55.598

Error 5 0.3174 0.06348

Total 11 4.715

Design Completely randomised 2 plots per replicate; 2 varieties
6 replicates. Other layers calculated similarly.
Surface area and volume calculated similarly.

Table 5 Boot length in wheat on 5 June 1972 top layer

Top layer
Source

Blocks

Varieties

Error

Df

3

3

9

SSq
0.0248

0.0170

0.0788

MSq
.00829

.00507

.00875

V.R.

Total 15 0.1206

Design Completely randomised 4 varieties per replicate
4 plots per replicate

4 replicates Other layers calculated similarly
Surface area dnd volume calculated similarly.



Table 6 Analysis of variance calculation for comparison of

regression coefficient of log of leaf area on rating
in leaf area measurement 1970-71 wheat

Day 3 sample 2 comparison of effect of nitrogen
treatments

Source Df SSq MSq
Combined b 1 4.1059 4.1059
Deviation 4 0.0528 0.0132 1.7143 NS

Difference in Mean 4 1.3680 0.3420 44.4123 **

Error 115 0.8904 0.0077

Total 124 6.3270


