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Abstract 

The low environmental impact of embedded generation, encouraged by govern-
ment legislation and private enterprise, has resulted in a large number of such in-
stallations being developed in recent years within the United Kingdom electricity 
supply industry. Unfortunately, a significant proportion of these installations have 
failed to achieve their full potential as a direct result of poor initial design. This sit-
uation has been precipitated by limited capital investment and lack of appropriate 
design experience. Affected installations are unnecessarily compromised, reducing 
the overall reliability, efficiency and maintainability of the constructed plant. 

An area of particular concern is the design of electrical switchgear within em-
bedded generation systems. Currently, the electrical design for embedded gen-
eration installations are prepared without the use of any specialist design tools, 
software based or otherwise. This situation renders the switchgear design pro-
cess reliant upon bespoke, ill-defined and un-optimised methods. Such practices 
are labour intensive, error prone and require substantial expertise in all aspects of 
power protection and distribution systems. 

This thesis investigates the use of object oriented programming to develop a 
software tool that assists with the complete design and specification of embed-
ded generation switchgear. By capturing the design rationale in such a tool, fast, 
accurate and checked switchgear designs may be produced by developers with-
out extensive previous switchgear design experience. The thesis describes how 
the design process for switchgear may be rationalised based upon design method-
ology, taking account of legal and regulatory codes of practice, such as G59. A 
complete and general review of artificially intelligent techniques and programming 
paradigms considered suitable for capturing design reasoning are presented. All 
aspects of the switchgear design are modelled, including protection and instru-
mentation equipment, auxiliary power supplies and sundry components. Internal 
component selection, connection and loading is automated ensuring that a com-
plete, fully specified switchgear installation is produced. 

The techniques investigated illustrate that cooperating, interacting networks of 
software objects may be used to assist and perform switchgear design. The tech-
niques presented could be readily adapted for use in other, non-related design do-
mains, within which complex interdependent architectures and relationships exist. 
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Symbols and Abbreviations 

Symbols 

The following symbols have been used throughout the thesis in circuit diagrams: 

General devices 

IEEE] 	Fuse 

—a:i-- 	Link - readily separable contacts 

Auxiliary switch or protection device contacts 

—o 	o— 	Make contact 

-cITJ- 	Break contact 

-& ---- 	Link - bolted contacts 

Direct current source 

(eg battery) 

-0 	 o— 	Make contact with delay 

—ao--- 	Break contact with delay 

Switching 

NC 

Machine Windings 

0 

Earthing 

I  

Circuit breaker 

Circuit breaker - normally closed 

AC generator 

AC star connected generator 

Earth 

Circuit breaker - normally open 
NO 

AC motor 

Transformer or reactor winding 

(core indication optional) 

Earth fault 

iv 



V 

Power and Measurement Transformers 

Two windings 	 Current transformer 

Simplified form 	 Voltage transformer 

Loading 

il 	Fixed resistive load 	 Variable resistive load 

----- 	Impedance load 

Connections 

Single phase connection 
	

Three phase connection 

Abbreviations 

The following abbreviations have been used throughout the thesis: 

Symbol Definition 

k 	kilo - 10 3  
M 	Mega-106  
T 	Tera-10 9  

kB 	kilobyte (unit of computer storage space) 
m 	meter (unit of distance) 

MB 	Megabyte (unit of computer storage space) 
n/a 	non-applicable 

e.g. 	exempli gratia - for example 

et al 	et alii, et alia. . . - and others 

ibid 	ibidem - in the same book or passage 

i.e. 	id est - that is to say 

p. 	page 

pp. 	pages 
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Chapter 1 

Introduction 

For the long term development of modern civilisation, mankind must become re-

liant upon sustainable electricity production. This situation was recognised by all 

European member states at the Kyoto protocol on climate change. At Kyoto, the 

United Kingdom government committed to substantially increasing the capacity 

of embedded generation over the next decade. Within the United Kingdom, there 

are recommendations and statutory requirements that apply to the construction 

and operation of any embedded generation scheme. However, the rapid expan-

sion of embedded generation in the near future will result in a profusion of differ-

ing design philosophies and implementations. If the new generation of embedded 

generation plant is to gain credibility, through efficient deployment and consistent 

performance, the design and specification of such plant must be rationalised. This 

thesis describes the development of object oriented programming techniques that 

may be applied to construct software capable of performing the organised design 

of embedded generation plant. The techniques developed could be applied to the 

design of any multi-component artefact. 

1.1 Background and Motivation 

The term embedded generation describes the connection of independent, limited ca-

pacity (<10MW) generators connected to the electricity distribution network. The 

exact technical definition of embedded generation varies, as the boundary between 

transmission and distribution networks varies between countries throughout the 

world. This thesis will focus upon the United Kingdom electricity supply industry 

within which embedded generators are generally regarded as having ratings less 

than 10MW and are connected at 33kV or below. 

Embedded generation is not a new development within the electricity supply 

industry [226]. However, the last two decades have seen an increased expansion 
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of embedded generation schemes as government legislation' [33] and private en-

terprise have responded to growing public concern for the environment. The be-

ginning of the 1990's witnessed the United Kingdom government taking an active 

involvement in environmental concerns, developing interrelated policies regarding 

energy efficiency programs, pollution reduction - especially carbon dioxide emis-

sions - and the encouragement of renewable energy schemes. 

Political incentives have resulted in the substantial and sustained development 

of embedded generation within the United Kingdom, based upon two electricity 

generation technologies: combined heat and power (CHP) schemes and renewable 

energy (RE) electricity generation. Typically, these technologies have either a rela-

tively small electrical capacity and/or a remote location, and hence are required to 

be connected at distribution voltages. Thus they are classed as embedded genera-

tion. 

Combined heat and power schemes allow the simultaneous production of heat 

and electricity in an efficient manner. By using a gas or steam turbine to drive 

an electrical generator, the exhausted gases or steam are utilised for heat intensive 

industrial processes, e.g. the manufacture of paper, or for commercial or domestic 

water and space heating. The overall efficiency of a combined heat and power 

plant is typically between 85% - 90%. In comparison, thermal processes, including 

power generation, have characteristic efficiencies between 30% - 40% [103]. 

The high efficiency of such plants has resulted in the technology being a crucial 

component of the government's energy efficiency policies. The current govern-

ment's target of 5GWe of combined heat and power electrical capacity by the end 

of the year 2000 appears to be on course. A new target of 10GWe by the year 2010 

as part of the current government's Climate Change Program will be announced 

later this year. However, the setting of such targets has not been met with univer-

sal approval [194]. In 1998 combined heat and power schemes supplied 6% of the 

electricity generated in the United Kingdom, with over 90% of these schemes (1304 

in number) having ratings less than 1OMWe and therefore classed as embedded 

generation [198, p.201. 

Renewable energy resources have substantial environmental benefits [273] and 

as a result have been subject to substantial government support. In 1989 the United 

Kingdom government passed the Electricity Act to transfer ownership of the elec-

tricity supply industry back to the private sector [195]. The act also included, un-

der Section 32, the obligation of the industry to comply with renewable orders. 

In 1990 the government announced the first Non-Fossil Fuel Obligation (NFFO 

'Such changes in energy policy have not only been reflected within United Kingdom legislation. 
The United Nations Conference on Environment and Development, also known as the Earth Summit, 
in Rio de Janeiro, June 1992, reflected world wide concern and agreement on climate change. More 
recently, as a result of the Kyoto conference, December 1997, such policies have been re-enforced by 
all European member states. 
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1) to encourage the development of renewable energy resources in England and 

Wales. The success of this initiative has resulted in a subsequent four additional 

obligations (NFFO 2-5), three Scottish Renewables Obligations (SRO 1-3) and two 
Northern Ireland Non-Fossil Fuel Obligations (NI NFFO 1-2); collectively referred 

to as the renewable obligations. 

The contracts awarded to developers under the renewable obligations are guar-

anteed a fixed price per unit of electricity generated for a fixed term. The additional 

cost of this generation over and above fossil fuelled generation is met by the Fossil 

Fuel Levy which is paid by all United Kingdom electricity consumers. An indica-

tion of the number and size of schemes developed under the renewable orders is 
presented in Table 1.1. 

Projects Projects Projects Projects To Completion 
Contracted Generating Terminated Be Commissioned Rates 

Number Capacity Number Capacity Number Capacity Number Capacity Number Capacity 
(MW DNC) (MW ONC) (MW ONC) (MW DNC) (%) (96) 

NFFO I 1990 75 152.1 61 141.5 14 7.6 0 0.0 81 93 
NFFO 2 1991 122 472.2 82 172.6 40 298.5 0 0.0 67 37 
NFFO 3 1994 141 626.9 70 248.0 2 1.9 69 377.0 50 40 
SRO I 199 30 76.5 13 27.8 0 0.0 17 48.7 43 36 

NI NFFO I 1994 20 15.6 13 14.6 0 0.0 7 1.0 65 94 
NFFO 4 1997 195 842.7 44 98.1 0 0.0 151 744.6 23 12 
SRO 2 1997 26 113.9 3 6.7 0 0.0 23 107.2 12 6 

NI NFFO 2 1996 10 16.3 4 0.8 0 0.0 6 15.5 40 5 
NFFO 5 1998 261 1177.0 9 14.7 0 0.0 252 1162.3 3 I 
SRO 3 1998 53 144.2 0 0.0 0 0.0 53 144.2 0 0 

Total: 933 3637.5 299 724.8 56 308.0 578 2604.7 - - 

Table 1.1: Current status of United Kingdom Renewable Orders [195, 196, 197, 
(Adapted)]. 

Further restructuring of the electricity supply industry planned by the current 

government will affect future renewable orders. 2  However, NFFO 5 and SRO 3 
provided substantial evidence that renewable generation is continuing to converge 
towards market prices [195, 196].  Indeed municipal and industrial waste projects 

are already economic without NFFO support, thus for the foreseeable future, the 

prospects for the continued development of embedded generation appear to be ex-

cellent. This is also encouraged in the longer term by the government's target to 

produce 10% of the United Kingdom's electricity supply from renewable sources 

by the year 2010 [195, p.5]. To meet this target, the government will have to en-

courage over a twelve fold increase in the total generation capacity available from 

renewable energy sources and a four fold increase in combined heat and power 

capacity within the next decade [ 20]. 
2 O the 28th of July, 2000, the Utilities Act became law, resulting in the replacement of the exist-

ing Electricity Pool with the new electricity trading arrangements (NETA) [102]. Under the NETA 
all electricity suppliers must produce electrical power from renewable energy sources in accordance 
with set targets. To encourage the use of electricity generated from renewable or combined heat and 
power plants, the Climate Change Levy will become law by April 2001. The levy requires business cus-
tomers to pay an additional 0.43 pence per unit of electricity consumed which has not been produced 
from either renewable energy or combined heat and power sources [71]. 
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With the majority of large primary resources already exploited, future projects 

will have to become increasingly small (in terms of electrical generating capacity) 

to exploit remaining renewable energy resources or opportunities for utilisation of 

combined heat and power plants [280, 721. There is already evidence to suggest 

that this trend is apparent with the mature renewable energy technologies, espe-

cially hydro power [268]. Furthermore, European Union's Electricity and Gas Di-

rectives are forecast to encourage the construction of small, clean and localised elec-

tricity generation stations, with combined heat and power plants becoming wide 

spread [264]. The development and availability of automated electronic control 

and switching equipment for inexpensive, small generating plants have assisted 

this trend. 

Due to the marginal economics of renewable embedded generation schemes 

the initial design process is a crucially important factor in the economic viabil-

ity and performance of any proposed embedded generator, but particularly so on 

smaller scale schemes. Indeed, the importance of decisions taken during the early 

stages of the design process and their later consequences has been widely recog-

nised [224, 75, 147, 781. Furthermore, Stewart [257] has indicated that up to 90% of 

civil structure failures, malfunctions or poor serviceability are attributed to human 

error, where at least 33% of such failures may have been avoided if design checking 

had been adequate. Unfortunately, similar figures for embedded generation do not 

currently exist. 

1.2 Design of Multi-Component Systems 

The advancement of modern technology has precipitated the development and 

construction of artefacts of escalating complexity. The design of such artefacts has 

only been made possible by employing techniques to manage the complexity inher-

ent within these artefacts. This is particularly true in engineering. In order to allow 

the development of modern artefacts, designers employ design strategies to allow 

them to manage complexity, the most common of which is divide and conquer, 

frequently referred to as top-down design. 4  

The application of the design strategies, especially top-down design, frequently 

results in boundaries being formed between constituent aspects of the artefact. of -
ten the boundaries formed allow the final artefact to be divided into two or more 

components with a common interface. However, it is usual that the design of one 

'Such schemes alluded to here would not apply to renewables obligations for support as they 
would not be economic; they would be privately funded and in direct discussion with the local public 
electricity supplier. 

4 Refer to Section 2.2 for a more complete discussion of design methodology. 
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component impacts upon several of the other constituent components of the arte-

fact. Within modern engineering design, such as embedded generation systems, 

the number of constituent components and their interdependencies can be very 

large indeed. The result is that it can be exceedingly difficult for designers to accu-

rately manage the design process. 

1.3 Design of Embedded Generation Systems 

Presently, no commercially available, industry standard software application exists 

that assists or performs the necessary design reasoning and specification produc-

tion common to the majority of embedded generation schemes. Furthermore, there 

currently exists no generic, flexible software architecture that allows the capturing 

and reproduction of design reasoning for multi-component artefact design. The 

development of such a software architecture is necessary if the electrical design of 

embedded generation systems is to be modelled in a computationally interpretable 

and flexible form. The design and specification of multi-component assemblies can 

be captured through the creation and development of a general software design ar-

chitecture, based upon the object oriented programming paradigm, combined with 

the metaknowledge of the application domain. This allows design and specifica-

tion tasks to be performed in shorter time frames with greater accuracy and re-

duced effort. The application of such a software structure to embedded generation 

design, that includes a graphically driven user interface, would allow developers 

with limited experience to produce high quality specifications that are consistent 
and accurate. 

Renewable embedded generation utilises a wide range of diverse engineering 

technologies with which natural forces or materials are harnessed to produce en-

ergy. By examination it is apparent that the switching, instrumentation and pro-

tection requirements for many embedded generation schemes are similar, both in 

electrical and operational terms. These are also the areas where the majority of 

developers have significant difficulties, as they are frequently familiar with the 

technology associated with the energy source or fuel and the selection of an ap-

propriately sized machine to exploit the resource. The detailed electrical design, 

however, including the switchgear selection, protection equipment requirements 

and instrumentation, are not typical skills of such developers. 

This project seeks to develop a framework that allows the design rationale for 

multi-component systems to be captured in a computational form. Embedded gen-

eration switchgear is a good example of a multi-component system and has been 

selected in this project to demonstrate how multi-component system design can 

be modelled. By concentrating upon switchgear design for embedded generation 
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(which includes instrumentation and electrical protection), capturing the design 

process for these artefacts in software, efficient, consistent and accurate switchgear 

specifications applicable to the majority of new embedded generation schemes can 

be achieved. - 

1.4 Scope of the Thesis 

The investigation presented in this thesis bridges two fields of research which are 

part of an ongoing series of projects in the Energy Systems Group, the Department 

of Electronics and Electrical Engineering at the University of Edinburgh. These two 

research fields are: 

Embedded generation and renewable energy systems (focusing particularly 

upon small scale hydro power), and 

Artificially intelligent techniques in design. 

The exploration of artificially intelligent techniques in design commenced by cap-

turing design rationale utilising a procedural programming language, namely C. 

However, the limitations of this approach, especially its inflexibility, became appar-

ent and subsequent research focused upon the use of expert systems. More recent 

studies have utilised genetic algorithms (combined with geographical information 

systems) to tackle more complex design problem domains. The most closely related 

projects are summarised below in chronological order. 

Pelton Turbine Design: The requirement for decentralised power generation in 

the rural areas of developing countries is vast, and extensive hydrological re-

sources available for small-hydro power development have been identified. 

However, the design procedure for turbine design is non-trivial. This project 

developed a new method of designing multi-jet vertical Pelton turbines and 

estimating their performance. This design method was developed and writ-

ten, using the procedural programming language C, into a comprehensive 

software package. A test facility was constructed to verify the software's out-

put. 5  

Micro-Hydro Design: Engineering knowledge in developing countries, both ex-

perimental and professional, is particularly valuable, especially for micro hy-

dro power design and development. Unfortunately, such knowledge is eas-

ily lost. The assessment of micro hydro sites requires a wide range of skills. 

This project developed an expert system coupled to a database that allowed 

51nvestigated by Robin Wallace [276]. 
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this assessment to be assisted and a decision made as to whether an installa-

tion should be undertaken. This research was targeted for Nepal where such 

knowledge is in short supply and the potential for hydro development is very 

large [9]. 

Power Electronic Design: The design of power electronic systems requires con-

siderable expertise in exploring a wide range of complex and tedious tasks. 

Faster design times and more efficient design are among the advantages that 

can be achieved using artificially intelligent technologies, such as expert sys-

tems, to assist with such tasks. This project explored the use of an expert 

system, linked to simulation tools to assist the design of switch mode power 

supplies, developing techniques that may be applied to the design of other 

electronic systems. 6  

Embedded Generation Simulation: The introduction of embedded generation to 

rural distribution networks can compromise overall system operation, secu-

rity and integrity. The technical issues associated with embedding generation 

plants through numerical simulation was explored, resulting in the produc-

tion of hierarchical rules to be used to rapidly identify whether plants may be 

successfully embedded at particular locations.' 

Wind Farm Design: Both traditional and external costs are associated with wind 

generation plant. In order to provide the optimum true cost wind turbine lay-

out a large number of technical and social factors must be considered. An op-

timal design can be determined utilising genetic algorithms combined with 

geographical information systems (GIS). The software developed efficiently 

produced wind farm layouts significantly better than those designed by hu-

mans. 8  

The research on embedded generation simulation was ongoing at the com-

mencement of this project. However, it was envisaged that the rule base produced 

could be, at some juncture, incorporated into this research. This would not only 

provide assistance with the design of the switchgear and associated components, 

but also the resulting specification could be assessed to ensure stability and in-

tegrity of the plant when connected to the distribution network. 

The experience acquired from the construction of a software application to de-

sign multi-jet Pelton turbines has indicated, in concordance with other research.' 

that the selection of a purely procedural programming approach to capturing de-

sign reasoning has significant limitations. Therefore research projects subsequent 

6 lnvestigated by Amarnath Reddy [161, 217]. 
7lnvestigated by Steven Stapleton [255, 254]. 
8 1nvestigated by Gary Connor [52]. 
9 Refer to Section 4.4.7. 
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to this work have utilised artificial intelligence software technologies to capture 

design knowledge concerning a particular domain. 

The research exploring power electronic design was nearing completion as this 

project commenced. The experience and knowledge gained, however, highlighted 

several difficulties and limitations of capturing design reasoning in a computer in-

terpretable form. 10  Therefore this project also attempted to explore alternative im-

plementation technologies. 

1.5 Project Aims 

During the next decade, if the government is to achieve its Kyoto commitments, the 

expansion of renewable embedded generation will be rapid and widespread. The 

success of embedded generation will depend upon an industry standard, ratio-

nalised, efficient design process that ensures consistent performance of such plant. 

The development of software capable of encapsulating and performing the de-

sign necessary to allow the automation of embedded generation systems design 

may be achieved through the creation of an object oriented hierarchy. Such a hier-

archy must reflect the organised and interrelated nature that exists within the mul-

tiple components that comprise any embedded generation installation. However, 

the software architecture developed must be flexible, both in terms of applicability 

to other design domains and future adaption and/or maintenance. Hence the aim 

of this project may be summarised thus: 

To develop an object oriented architecture that allows the capturing of 

design rationale for multi-component artefacts in a computationally 

interpretable form, such that the effects of individual component pa-
rameter alterations are propagated automatically throughout the var-

ious representative objects, ensuring that an accurate and consistent 

specification for the overall artefact is achieved. 

In order to achieve this aim, the project was partitioned into the following divi-

sions: 

A study of currently installed embedded generation, assessing design at-

tributes, methods and possible process development. 

A study of design methodology and mechanisms that allow human practi-

tioners to produce designs. 

' °These issues are explored in greater detail in Section 4.4.1. 
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A review of possible software technologies for the development of a design 

tool, considering each technology's advantages, limitations and use. 

From the prior studies, select an implementation technology that allows the 

construction of a flexible architecture for capturing design rationale within 

which switchgear design may be captured. 

Finally, the design tool created should be demonstrated to verify the integrity 

of the tool and investigate the implications arising from its use. 

The fundamental premise on which this research hinges is: 

The object oriented programming approach allows the encapsulation of 

design rationale within a flexible programming language. The hierar-

chal arrangement of objects and the creation of a complex network of 

interrelationships between objects allow intelligent design reasoning to 

be exhibited by a software application embodying this approach. 

1.6 Impact Areas 

The nature of the research presented in this thesis crosses several diverse disci-

plines, resulting in a voluminous literature survey. The diversity of documents and 

approaches within one field of research frequently leads to differences of opinion 

upon the critical evaluation of results. When several fields of research are involved, 

as in this instance, this problem is intensified. 

This thesis focuses upon three areas of knowledge which, when combined, al-

lowed the prototyping of a tool for embedded generation switchgear design: 

The development of a set of design practices and the modelling of leading 

design dimensions which thus allow the design reasoning of switchgear and 

associated components to be ordered into a hierarchal sequence. Within this 

process, legal, regulatory and common codes of practice have been incorpo-

rated. This process provides a demonstration of how an engineering task may 

be rationalised in order for it to be modelled in software. 

A comprehensive review of the field of artificial intelligence and key pro-

gramming paradigms with a view to their practical application for artificial 

design has been undertaken and reported in this thesis. This has allowed 

the appropriate selection of an implementation technology to be selected not 

only for the purposes of this research, but for future projects in design process 

modelling in other domains. 
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3. The object oriented programming techniques described in this thesis, altho-

ugh not novel, had not been applied directly to a power engineering design 

task before. Furthermore, this research attempts to combine design know!-

edge and processes specific to an engineering design domain into a hierar-

chy of cooperating objects without relying upon external data or knowledge 

bases. Although this approach introduces some limitations, it is hoped that 

the techniques developed will be of use to other areas of engineering design 

or that the model presented will be extended. 

The thesis concludes with a discussion of the implemented design tool. Explo-

ration of the object oriented design hierarchy, including limitations and possible 

alternatives to alleviate these issues, are described. Possible further extensions of 

the model are discussed resulting in the identification of a number of areas of future 

research. 

1.7 Thesis Outline 

The research presented in this thesis spans a four year period of study into ar-

tificially intelligent design practices of switchgear and associated components for 

embedded generation schemes. The work was performed in several stages and this 

situation has been reflected in the structure of the thesis. 

Initially a study of the electrical installation design of embedded generation 

schemes was explored and this work is presented in Chapter Two, combined with 

a review of design methodology, describing the fundamental theory of this embry-

onic discipline. This part of the thesis considers the design methods employed by 

human practitioners and how these techniques may be rationalised and emulated. 

Having considered design rationale, the discussion returns to the embedded gen-

eration design process and how this may be rationalised, and formulated into a 

design hierarchy, in accordance with statutory regulations. 

Chapter Three describes a comprehensive review of artificial intelligence tech-

nologies and fundamental programming paradigms. The artificial intelligence com-

munity have developed several technologies that attempt to emulate human rea-

soning. Since the practice of design is a distinctly human process, these tech-

nologies are presented to explore their suitability to modelling the art of design. 

Computer programming languages are also presented to allow a comparison to be 

drawn between artificial intelligence and other software technologies. 

Chapter Four develops the discussion presented in Chapter Three, by analysing 

the suitability of the software technologies previously presented with a view to cap-

turing a limited set of human design skills; a process which will be referred to as 
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artificial design. Examples of the construction of artificial design systems, classified 

by software technology type is also presented. The closing discussion in this chap-

ter describes the reasoning underpinning the final software technology selection. 

The methodology of object oriented programming adopted for the construction 

of a tool for switchgear design is presented in Chapter Five. This chapter includes 

a description of the various design techniques which the software emulates as well 

as the component hierarchy, dependencies and attributes modelled in objects. A 

discussion of various approaches to modelling individual components is also in-

cluded throughout the chapter. 

The operation of the software on a typical switchgear design situation is pre-

sented in Chapter Six. This chapter indicates how the hierarchy and network of 

design objects discussed in Chapter Five, combined with a graphical user interface, 

allows the user to quickly and accurately design switchgear for embedded genera-

tion plant. 

Finally, Chapter Seven discusses and summarises the work described in this 

thesis. Several areas of future research are suggested for the development of the 

software tool for switchgear, protection and instrumentation design. Final conclu-

sions are drawn about the suitability of object oriented programming techniques 

for use in the development of artificial design tools and the general design hierar-

chy developed through this project. 

1.8 Chapter Summary 

This chapter introduces and defines embedded generation. The motivation of this 

thesis of automating the design process for embedded generation switchgear has 

been presented utilising a generalised object oriented design hierarchy. The areas 

of contribution provided by the thesis and an overview of its structure has also 

been presented. 



Chapter 2 

Embedded Generation, Design 
Methodology & Rationalisation 

This chapter is composed of three distinct but interrelated areas. Initially, the tech-

nical background of embedded generation is presented, describing the equipment 

required for installation and the purpose of the individual components which con-

stitute an installation. Secondly, a review of design methodology is presented, ex-

ploring the methods utilised by human practitioners with a view to incorporat-

ing these techniques into the software tool. Finally, a rationalisation of the design 

process of switchgear and associated components for embedded generation is ex-

plained, indicating how aspects of the process may be automated or inferred. The 

chapter closes with a summary of the key concepts presented from each area. 

2.1 Embedded Generation 

Embedded generation is not a recent development. At the turn of the last century, 

the United Kingdom electricity supply industry was in its infancy, consisting of in-

dependent generating stations connected to local distribution networks. Reliability 

and performance of supplies varied, therefore in a bid to standardise and unify the 

industry the 132kV National Grid was constructed allowing larger, more efficient 

power stations to be developed and the bulk supply of electric power to occur. The 

electricity was then transmitted to areas of high demand and supplied to loads via 

the distribution network. In 1947 the electricity supply industry was nationalised 

[172], and, coupled with the rapidly growing demand for electricity throughout 

the United Kingdom [138, 1391, resulted in the supergrid being constructed. Operat-

ing at 275kV or 400kV, the supergrid provided the bulk transmission of electricity to 

the then well established distribution networks, produced by very large centralised 

power stations [130]. 

12 
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Independent generation still existed, directly connected to local distribution 

networks at either 132kV or 33kV, operating to increase both national and local 

supply security [226]. Such plants, however, were utilised to meet the specialist 

requirements normally associated with the industrial sector, which could justify, 

economically, the high costs associated with such plants. No commercial bias then 

existed concerning the dispatch of embedded generators, hence no regulatory con-

trols were required. Typical industrial applications included stand-by or peak load 

generation normally utilising steam turbine or diesel generation sets [100]. 

However, the mass production of compact, efficient and low cost generation 

equipment combined with reliable electronic and microprocessor control has made 

it feasible to construct and remotely operate embedded generation. Coupled with 

growing environmental awareness, the economical advantages of combined heat 

and power plants and improved electricity supply reliability have all been principal 

factors driving embedded generation development [134, 133]. 

In contrast to the operation of large scale generation which is scheduled to meet 

demand, embedded generation operates as determined by either the heat require-

ments of a combined heat and power scheme or by the energy available from a 

renewable energy resource. Embedded generators exporting less than 10MW to 

the public distribution network are not, as a rule, centrally despatched by the Na-

tional Grid Company (NGC) [126]. There are, however, some embedded schemes 

which respond to electronic tariff signals or other charging mechanisms; all such 

installations are dependent upon fuel or energy availability. 

A block diagram of a typical generation station is depicted in Figure 2.1; al-

though this is a typical layout for most generating stations, it is not universal. For 

example, fuel cell technologies convert their respective energy sources directly into 

electricity [811, thus only requiring control gear, switchgear and protection gear. 

Given the wide range of embedded generation technologies with their large range 

of specialist equipment for prime moving, generating and control, it is the focus of 

this project to attempt to automate the common sections in Figure 2.1; namely the 

design of the switchgear and protection equipment. 

The following sections will describe the legal and regulatory documents asso-

ciated with the implementation of embedded generation, the common electrical 

components required to construct such a plant and current design practice of de-

velopers of embedded schemes. 

2.1.1 Legislation and Regulations 

Until the 1960's many industrially based embedded generators cooperated with 

the public electricity supply industry to maintain security of supply. Without any 
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Figure 2.1: A block diagram of a generation station. 

commercial bias, no regulatory controls were required since embedded generators 

were only allowed to operate in parallel with the grid supply and not allowed to 

export electricity [226]. The expansion of distribution networks during the same 

period developed on the basis that power flowed from the grid supply points (GSP) 

into lower voltage networks. 

It was not until the 1983 Energy Act that this situation changed by allowing the 

commercial generation and export of electricity across public networks. The techni-

cal difficulties of exporting power from independent generators across distribution 

networks were highlighted, resulting in the formation of the Electricity Association, 

a representative body for the industry. This saw the introduction of the Engineering 
Recommendation G59 [15] which stated the basic minimum safety requirements that 

embedded generators are required to meet. More specifically, this recommenda-

tion, henceforth referred to as G59,' describes the protection equipment, earthing 

arrangements and switching required for safe operation of any embedded genera-

tor. 

Engineering Recommendations produced by the Electricity Association are reg- 

1 Since its introduction in 1985, G59 has been reviewed once, in 1991, and had two minor amend-
ments subsequently added, in 1992 and 1995. As a result of the 1991 review, G59 is officially called 
G5911 but since many authors refer to this document as G59 and for the sake of brevity, the current 
version of the document, G59/1, with both amendments will be referred to as G59 throughout this 
thesis. 
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ulatory in nature; that is, they are produced to develop a consistent approach to 

matters of safety across the electricity supply industry. Although not statutory, the 

Engineering Recommendations are required by all public electricity suppliers to be 

adhered to by third parties wishing to connect to their networks. However, due to 

the wide range of equipment and variable operational practices that occur in the in-

dustry, no single document could discuss all possible situations without excessive 

specification, therefore such documentation is open to interpretation. 

To assist embedded generation developers, the Electricity Association produced 

the Engineering Technical Report 113 [17], frequently referred to as ETR113, in 1988 

to provide greater technical guide-lines for the implementation of G59. In 1995, 

ETR113 was reviewed to precipitate the better understanding and simplification of 

the interpretation and implementation for embedded generation developers. This 

revision also reflected the changes detailed by the review of G59 in 1991. 

The scope of G59, and ETR113, was intended for generators connected at or be-

low 20kV and where the output of the generator does not exceed 5MW. However, 

the United Kingdom government has actively supported through the Renewables 
Obligations2  embedded generation on an economic basis. This policy has encour-

aged larger embedded schemes to be developed, and in 1996 the Electricity As-

sociation introduced Engineering Recommendation G75 [16] for generators between 

5MW and 100MW in capacity, connected above 20kV. Due to the large capacity 

of such embedded generators and their impact upon the distribution and trans-

mission networks, they may require a licence to generate (dependent upon local 

circumstances) and thus be centrally dispatched by the National Grid Company. 

Although G75 includes guidance on issues that affect larger embedded gen-

erators such as security, stability and synchronising, the document indicates that 

G59 and ETR113 should be used as sources of guidance on the technical aspects of 

connecting to the public electricity network. Such large schemes are, however, not 

relevant to this thesis as they are of sufficient size to afford to be professionally de-

signed and engineered. However, G59 is applicable to small scale embedded gen-

eration, the economics of which are marginal. Thus a software application which 

can alleviate costs, especially during the initial stages of an embedded generation 

project, will be of great benefit. Therefore, this thesis will focus upon modelling the 

technical aspects associated with G59. 

Another important issue associated with all types of generation is power qual-

ity. This issue is particularly relevant to embedded generators since they can af -

fect local consumers. There are two important areas of concern: transient network 

voltage disturbance, frequently referred to as flicker due to its effects upon light-
ing loads, and harmonic distortion of the mains voltage waveform. Typical causes 

2  A previously described in Section 1.1, page 1. 
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of voltage flicker include the connection and disconnection of generators or tran-

sient torques produced from the prime mover, an effect specifically associated with 

wind turbines [56]. Harmonic distortion of the mains waveform may generally be 

introduced by power electronic devices or interfaces which are becoming increas-

ingly common in embedded generation schemes; fuel cells and photovoltaics are 

examples of renewable energy sources that utilise power electronic devices directly 

[131], though wind farm developers are selecting static VAr compensators (SVC's) 

to improve voltage regulation as an economic alternative to distribution network 

reinforcement [236, 235] 

Due to the safety implications that voltage flicker and harmonic distortion intro-

duce into power systems, both issues are covered by Electricity Association guide-

lines; namely P28 [14] and G5 [13] respectively. Techniques already exist for the pre-

diction and reduction of harmonic distortion, and the implications of a scheme in 

terms of voltage flicker may be obtained by the analysis of existing schemes or de-

tailed numerical computer simulations. The inclusion of such analytical techniques 

is beyond the scope of this thesis but could be included  in future development as 

a basis upon which design decisions may be founded upon. However, it should 

be noted that Jenkins and Strbac indicate that embedded generation may have 

the ability to improve power quality in certain circumstances [132]. Furthermore, 

Hodgkinson suggests that the impact of embedded generation upon the quality of 

the local electricity supply may be minimised. This may be achieved by avoiding 

the connection of embedded generation at low voltages 3  where fault levels are at 
their minimum [117]. 

Other legal and regulatory documents applicable to embedded generators in-
dude the Grid Code and the Distribution Code. Both these codes of practice were 

introduced by the 1989 Electricity Act, as a result of privatisation of the United 

Kingdom electricity supply industry, to define working relationships between pub-

lic electricity suppliers and third parties, such as embedded generation developers 

[226]. Due to regional variations, in both demographic and geographical terms, 

which in turn reflect variations in the type and nature of local electricity networks, 

both the Grid and Distribution Codes have minor regional differences. These vari-

ations are also reflected in public electricity suppliers' interpretation of G59, but 

such differences are relatively minor and thus have a minimal impact upon this 

project. 

In summary, the principal regulatory document that directly affects the design 

of switchgear, protection and instrumentation equipment for embedded generation 

3The terms 'low voltage' and 'high voltage' have no universal definition within the electricity 
supply industry. For the purposes of this thesis, the definitions stated by G59 [15] will be adopted, 
as defined as follows. Low voltage (LV): A voltage normally exceeding extra-low but not exceeding 
1000VAC or 1500VDC between conductors or 600VAC or 900VDC between conductors and earth. 
High voltage (HV): A voltage exceeding 1000VAC or 1500VDC between conductors or 600VAC or 
900VDC between conductors and earth. 
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is G59, combined with the auxiliary material presented in ETR113. Therefore a key 

role of the design software must be to ensure G59 compliance is achieved by the 

provision of all necessary protection equipment. 

2.1.2 Typical Equipment 

Although all embedded generation schemes require both switchgear and protec-

tion equipment, both sets of equipment fulfilling very different purposes, they are 

both housed in the same metal enclosures, that are referred to as panels or sections. 
Each section contains a circuit breaker, a set of busbars, instrumentation and pro-

tection equipment; the collective term for One or more sections being switchgear or a 
switchboard. A typical switchgear installation is depicted in Figure 2.2. The compo-

nents that constitute a section are schematically illustrated for two manufacturers 

in Figures 2.3 and 2.4. 

The circuit breakers depicted in Figures 2.2 and 2.3 are described as vertically iso-
lating, with the property that circuit breakers may be changed (if faulty) or serviced 

without isolating or de-energising the entire switchboard. Manufacturers also pro-

duce horizontally isolating, horizontally withdrawable circuit breakers, as shown 

in Figure 2.4, and fixed circuit breakers which must be de-energised for mainte-

nance; they are, however, less expensive to purchase. 

Basic switchgear assemblies are manufactured to be general purpose pieces of 

switching equipment, thus their application to embedded generation schemes, or 

to any other task, requires such general specifications to be chosen by the devel-

oper, detailing control, protection and instrumentation equipment. The manufac-

turers of switchgear supply basic sections complete with circuit breakers and bus-

bars as these items are heavily integrated into the section enclosure. Additional 

components, such as current and voltage transformers along with control, instru-

mentation and protection equipment, must be installed into each section to the 

purchasers specification; either by the manufacturer or a specialised third party 

company. These additional components, with the exception of the current and volt-

age transformers, may be supplied by any suitable equipment manufacturer. The 

arrangement of components with a typical section is indicated by Figures 2.3 and 

2.4. 

2.1.3 Section Types 

As previously mentioned, switchboard sections are intended for a variety of pur-

poses, and embedded generators are frequently located on sites which require the 

generator switchgear to be integrated with other switching as part of a larger swit-

chboard. An example of such a situation would be a combined heat and power 
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Figure 2.2: A typical switchgear installation [150]. Note the individual elec-
tromechanical protection devices mounted at the top of the front 
panel (two rows), below which a series of low voltage fuses, in-
strumentation meters, control switches and indicator lamps are 
mounted. The circuit breakers are mounted at the bottom of each 
section; two of which can be seen withdrawn from service. 

scheme located within a paper mill; the generator, when operational, would sup-

ply electricity to reduce the grid demand of the on-site industrial machinery with 

any excess power being exported to the distribution network. In such a situation 
the switchgear sections illustrated in Figure 2.5 would be typical. 

After consideration of the spectrum of embedded generation installations and 

manufacturers data, it becomes clear that there are six distinct types of switchgear 

section, as illustrated in Figure 2.5. These are listed below with an explanation of 
their respective function: 

Incomer Section: The purpose of this section is to switch the incoming grid con-

nection. Typically there is only one grid connection to a switchboard, al-

though double and occasionally triple connections, separated by one or more 
bus sections (see below), are not uncommon (section 4). 
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Figure 2.3: An illustration of the front and side views of a vertically isolat-
ing, horizontally withdrawable switchgear section, indicating the 
arrangement of construction and components [150]. 

Load Section: These sections switch any loads connected to the switchboard; in a 

typical industrial setting, a load section would correspond to a production 
area (sections 1,3,6 and 7). 

Generator Section: This section switches a single generator. If there are multiple 

generators connected to a single switchgear set, then each generator must be 

connected via its own section (section 8). 

Bus Section: The purpose of a bus section is to allow groups of sections to be 

switched or to separate sources of energy; e.g. grid connections and gener-
ators (section 5). 

Operationally Spare Section: To allow for future expansion or a rapid connection 

of a load, the developer may include a fully specified load section which is 

not connected during the installation, commissioning or initial operation of 
the switchgear (section 9). 

Spare Section: These sections contain only a set of live busbars - no other equip-

ment. Developers may include such sections to allow for future expansion of 
the switchgear (section 2). 

The function of a section determines the constituent equipment required to fulfil 

its purpose. This equipment must be selected and specified by the switchgear de- 
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Figure 2.4: An illustration depicting the construction of a horizontally isolat-
ing, horizontally withdrawable switchgear section, from the side 
point of view [152]. 

veloper. Within each section, with the exception of spare sections, the following 
categories of equipment are required: 

. Circuit breakers, 

• Protection equipment, 

• Instrumentation equipment, 

• Current and voltage transformers, and 

• Fuses and links. 
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Figure 2.5: A series of switchgear sections installed at a paper mill [1661. 

By knowing the intended application of a section, the switchgear developer may 

then select intrumentation and protection equipment to meet the sections intended 

purpose. This act in turn determines the current and voltage transformer require-

ments and specifications, finally leading to fuse specifications. 

The above list of equipment categories will be examined in more depth in the 

following sections, along with the specification of auxiliary power sources. These 

sources are required to ensure that instrumentation and protection equipment op-
erate correctly. 

2.1.3.1 Circuit Breakers 

The most important functional component of any switchgear section is the circuit 

breaker. The purpose of this device is to perform the switching of electrical circuits 

during normal as well as abnormal operating conditions. Circuit breakers connect 

or disconnect circuits by the mechanical compression or separation, respectively, 

of metallic contacts. Typically, circuit breakers are manufactured to switch loads 

between 200A and 3000A at voltages between 3.3kV and 36kV. Higher capacity 

circuit breakers (<5000A) can be manufactured but are only utilised for specialist 

purposes due to the technical difficulties relating to their construction. 

All circuit breakers manufactured within the United Kingdom must conform to 

British Standard 5311 [39] which describes, in detail, all aspects of circuit breaker 

rating, design, installation and testing. Within British Standard 5311, twenty four 

electrical quantities of a particular type of circuit breaker must be specified by the 

manufacturer. However, only the circuit breakers rated voltage, current, frequency, 

fault level and the auxiliary supply's voltage and frequency ratings directly affect 

or have a bearing upon other aspects of the overall electrical design of a switchgear 

installation. 
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As part of their specification, all circuit breakers must be able to operate, that 

is disconnect circuits, during fault conditions. The maximum fault that a circuit 

breaker can withstand is indicated by the device's fault rating. A particular swit-

chboard section is manufactured to accommodate a specific type of circuit breaker. 

As a result the fault rating of a circuit breaker will generally dictate the fault rating 

for a particular type of switchboard section. Other components within a switch-

board that are required to be fault rated will be constructed to meet or exceed this 

fault rating. Such components include busbars and any device connected to them 

without the inclusion of a fault limiting device, such as a busbar or circuit fuse 

[216]. 

Having considered the electrical ratings of a circuit breaker, the interrupting 
medium is the next most important factor in the specification of these devices. Dur-

ing switching, a transitory stage of arcing occurs between the electrical contacts. 

Such arcing allows the flow of electrical energy to continue until the discharge 

ceases. The discharge also results in the surface of the switching contacts being 

damaged. The purpose of the interrupting medium is to accelerate the extinguish-

ing of the discharge. During the initial development of circuit breakers, air was 

the only interrupting medium available. The limited extinguishing properties of 

air circuit breakers resulted in the development of other interrupting mediums; 

these included compressed air, mineral oil, sulphur hexafluoride (SF 6 ) and most 
recently, ultra high vacuum [8].  Historically, mineral oil circuit breakers have been 

popular, but due to the safety issues associated with these devices [51, 21], modern 

circuit breakers utilise either sulphur hexafluoride or vacuum as their interrupting 

medium as such devices are physically compact, have lower foundation require-

ments, eliminate the bulk handling- of mineral oil, and are extremely reliable [85]. 

The interrupting medium throughout an individual switchboard installation is al-

ways the same. 

In order for a circuit breaker to open and close, the device's operating mech-

anism must be physically energised. There are various means by which this is 

achieved, such as [85]: 

• Manually, 

• Direct current solenoids, 

• Compressed air, 

• High pressure oil, 

• Charging spring, and 

• Electric motors. 
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The universal practice for the operation of indoor metal clad switchgear is the use 

of a charged spring mounted as an integral part of the circuit breaker's switching 

mechanism which is mechanically compressed during the closing operation, with 

the moving contacts being latched in the closed position. Modern switchboards are 

intended for automatic or remote control, therefore favour the use of solenoids or 

electric motors to energise the switching mechanism. The electric power to ener-

gise either of these devices is obtained from the switchboard's auxiliary supply. For 

circuit breakers that are operated infrequently, a manual charging mechanism can 

be installed [54]. In addition to the operating mechanism, circuit breakers also re-

quire two solenoids to cause them to open, a trip, and to close after the close springs 

have been compressed. These two solenoids are named the shunt trip coil and spring 
release coil respectively. Both of which require connection to the switchboard's trip-

ping supply at either 110 or 240 Vdc [160]. 

2.1.3.2 Protection Equipment 

Protection equipment, also termed protective gear or protective relaying, has the 

duty initiating the isolation of any component of an electrical system in which an 

abnormal condition occurs, either instantaneously or, in some cases, after a prede-

termined delay. The abnormal conditions in which protection equipment may be 

required are summarised as follows [160,2751: 

The overloading of equipment, which if persistent, results in the overheating 

of equipment, such as transformers or rotating machinery windings, cables 

or damage to other equipment. Such faults are called overcurrents. 

The failure of insulation resulting in a hazardous leakage of current to earth, 

either a single phase to earth, phase to phase to earth or three phase to earth 

fault; such faults are collectively referred to as an earth fault. 

The failure of insulation resulting in a short circuit between two or three 

phases; called phase to phase or three phase fault respectively. 

The complete loss of, or sustained drop in, system voltage resulting in the 

malfunction of equipment, e.g. electronic equipment 'crashing' or electric 

motors slowing or stopping; such situations are referred to as loss of mains, 
or undervoltage conditions respectively. 

The operation of the grid is unstable, or beyond statutorily operational limits; 

faults arising from such connections are referred to as under- or over-frequency 
and overvoltage. 
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Protection equipment for embedded generators was originally simply a set of 

electrical fuses [280]. However, the requirement for a more sophisticated approach 

to allow coordination and division of electrical networks into areas or zones, as 
depicted in Figure 2.6, precipitated the development of primitive protection devices 

[170] continuing to the present with the development of complex digital protection 
equipment. 

Figure 2.6: One line diagram of a power system indicating the primary protec-
tion zones [8, p.10(Adapted)]. 

Threshold 
Quantity 

Monitored 	Comparison I J Decision 	 Action 
Quantity 	- Element fl LElement 	 Element 

Figure 2.7: A schematic the functional elements constituting a protective de-
vice [8, p.71. 

Protection devices require electrical connections to either sensing transformers 
or transducers to allow them to monitor a specific aspect of the electrical network 

or power station. Typically sensing transformers are utilised, which is a collective 
term for both voltage transformers and current transformers. These devices electri-
cally isolate and reduce the magnitudes of their respectively measured quantities 

to manageable levels. However, other protection devices, especially those associ-

ated with motor or generator protection, require temperature, pressure, vibration 

and speed transducers. The purpose of all protection devices is to monitor a spe- 
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cific quantity, via a transducer, ensuring that this quantity remains within a prede-

termined range. Should the said quantity exceed the given range, the protection 

device will operate providing a contact change that opens the circuit breaker that 

is intended to clear the fault. This operation also initiates either shutdown of the 

generating station or an alarm signal to be issued. This process is schematically 

illustrated in Figure 2.7. A protection device may also be time delayed to deter-

mine if the monitored quantity has exceed the given range for a significant period 

of time; again such action is predetermined and defined by the protection engineer. 

Protection equipment or individual devices are frequently referred to as protec-

tion relays as early development of such devices was based upon mechanical relay 

technology. Since their introduction electromechanical relay devices have been re-

fined to become reliable and accurate pieces of protection equipment [191]. Due to 

the frequent and costly maintenance required to ensure that such electromechanical 

relay devices operated correctly, the first electronic protection devices were devel-

oped in the 1930's based upon vacuum tube technology. However, such electronic 

protection devices were not extensively used as they required similar or higher lev-

els of maintenance compared to their electromechanical equivalents. The develop-

ment of the transistor resolved this issue and by the mid 1960's electronic protection 

equipment had become extensively utilised in the power industry [8, p.991. 

The evolution of protection equipment continued with the development of dig-

ital protection devices which was first proposed in 1969 by Rockefeller [222], but 

it was not until the advent of cost effective microprocessors that the development 

of digital devices was considered seriously by the power industry. Digital protec-

tion devices convert the transducer or input quantities presented to it into digital 

signals by the processes of sampling and quantisation. The resulting digital infor-

mation may then be processed by the microprocessor, thereby allowing numerical 

and Boolean logic decisions to be performed under software control; typical oper-

ations include tripping, closing timing, reclosing, blocking, metering and synchro-

nising [25, 191]. By allowing protection signals to be digitally represented within a 

single digital protection device, a significant range of protection functions may be 

implemented; such devices are termed multi-function or integrated protection relays 

and are becoming increasingly popular due to the range and flexibility of features 

offered [110]. 

The different areas of protection required by an embedded generator are de-

picted in Figure 2.8, indicating the three categories of protection equipment that 

together combine to form a complete protection scheme. The generator protection 

monitors for internal physical faults on the generating unit, such as overheating, 

bearing failure and excessive vibration, but may also include electrical quantities, 

such as overcurrent, circulating currents, earth faults and voltage /frequency oper-

ated protection. 
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Figure 2.8: Embedded generator protection [131, 17, p.2371. 

The G59 protection ensures that the embedded generator does not disturb the 

operation of the public distribution network. Two situations in particular are mon-

itored: that the generator does not continue to supply a fault on the network,' and 

that the generator does not continue to operate isolated from the distribution net-

work, a situation termed islanding. The main hazards of islanding are [225, 2001: 

The reduction of fault levels such that the performance of protection equip-

ment is severely reduced or completely fails to operate, 

Reduction in the quality of supply due to the reduction of fault levels, 

Manual, remote or automatic operation of public electricity suppliers' circuit 

breakers resulting in the re-connection of unsynchronised generation, 

The operation of generation without a system earth, and 

The energisation of the high voltage supply network which may or may not 

be healthy - a dangerous situation called backfeeding. 

All of these issues substantially reduce or completely nullify safety precautions 

resulting in possible damage of the embedded generator or, more importantly, ex-

pose personnel, from either the utility and/or the operator, to partially energised, 

unearthed equipment. 

'This is a situation that can easily occur due to most embedded generators not having sufficient 
fault capacity to operate distribution protection and trip network circuit breakers. 



2.1 Embedded Generation 	 27 

Finally, the interface protection acts as a backup to the G59 protection, ensuring 

that faults are cleared and that the generator will not continue to supply a faulted or 

de-energised network. However, this protection equipment is owned and operated 

by the public electricity supplier, or otherwise referred to as the local utility. 

The associated costs with a complete and comprehensive protection scheme are 

considerable. Since there is a certain degree of duplication between G59 protection 

and the interface protection, it may be possible to come to an agreement with the 

local public electricity supplier on a more economic design. Such an agreement, if at 

all possible, is dependent upon the size of the proposed scheme and the conditions 

prevailing on the local distribution network [130]. However, developers are keen to 

reach an agreement since the cost of interface protection has a major impact on the 

viability of a scheme, especially as the electrical capacity of an embedded project 

decreases [63]. 

As previously mentioned, G59 prescribes the protection equipment required for 

an embedded generation scheme, in terms of electrical quantities to be monitored; 

Table 2.1 lists these protection requirements. The first four protection devices in-

dicated in Table 2.1 are present to ensure the fundamental safety of the embedded 

generator during operation and the last device in the list, the parallel limit timer, 
ensures that a plant certified for only short term operation in parallel with an en-

ergised distribution network disconnects once a short 'test' period has been com-

pleted.5  Such plant is intended to operate as standby generation. 

The protection devices reverse real and reactive power and directional overcurrent 
are required to ensure that a generating plant does not motor, that is, to be syn-

chronised and connected to the grid but instead of producing power, the generator 

draws power from the grid. The final two protection devices, namely loss of mains 
and neutral voltage displacement are employed to ensure that the generator does not 

become islanded, or operate with the neutral other than at earth potential. 6  These 

two conditions merit further consideration as they both require the installation of 

expensive protection equipment. 

Under G59 all generators larger than 150kVA, i.e. those that export electricity 

to the distribution network, have to employ a loss of mains protection device. The 

function of this device is to ensure that if the generator is operating and becomes 

5This classification of embedded generation is intended to back-up the public electricity supply. 
Such generators are installed in commercial or industrial premises where a sustained loss of mains 
power would incur significant costs to the company concerned. Installations typically utilise diesel 
engines as prime movers and to ensure the plant operates correctly they are tested frequently (nor-
mally at least once month). 

'It should be noted that reverse power protection may be included within the interface protection 
to provide complementary protection to loss of mains situations [117], however, due to it's associated 
cost and difficult implementation, such a decision on its provision may only be decided by the devel-
oper. G59 and ETR113 provide no guidance on the assessment of the necessity for such a protection 
device. 
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Permanent Parallel Operation 

HV Generating Plant LV Generating Plant 

Protection Required Small Medium Large 

No Export Export (<ISOkVA) (ISO - 250kVA) (>250kVA) 

Under / Over Voltage V V V V V 

Under / Over Frequency V V V V V 

Overcurrent  

Earth Fault V V x V V 

Loss of Mains V V x V V 

Reverse Real & Reactive Power V x x 

Directional Overcurrent X x 

Neutral Voltage Displacement x 

Parallel Limit Timer X x x x x 

Short Term (Test) Parallel Operation (<5 minutes) 

HV Generating LV Generating Plant 

Protection Required Plant Small Medium Large 

No Export (<ISOkVA) (ISO -2SQkVA) (>250kVA) 

Under/Over Voltage  

Under / Over Frequency  

Overcurrent V V V V 

Earth Fault V X V V 

Loss of Mains X X x x 

Reverse Real & Reactive Power X X x 

Directional Overcurrent X X X X 

Neutral Voltage Displacement 

Parallel Limit Timer V x V V 

Key: 

V Protection required by G59 

For application refer to ETR 113 

Optional protection (for application refer to ETR 113) 

X Not required 

Table 2.1: The minimum protection requirements for generating plant operat-
ing in parallel with a Public Electricity Supplier network [17, 225]. 

islanded, it will trip the generator circuit breaker, disconnecting it from the distri-

bution network and shut down the prime mover safely. 

To guard against islanding, loss of mains protection devices operate on the 

principle that should the distribution network to which the embedded generator 

is connected become de-energised, then a substantial fluctuation in the voltage, 

frequency, or, proved by recent research work [200], impedance, will result at the 
point of common connection. Two types of loss of mains protection devices have 

become widely accepted by the power industry; they are referred to as voltage vec-
tor shift and rate of change offrequency (ROCOF). Both these devices are expensive to 

purchase and have been proved unable to readily distinguish between normal and 

abnormal system frequency variations in operation. This is especially the case for 

ROCOF based devices, as sudden changes in load or generation capacity in a local 

area can cause nuisance tripping [280, 117, 2261. The introduction of multifunction 

digital protection devices has resulted in manufacturers [110] producing complete 
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G59 protection relay packages in one unit. However, such devices have yet to be 

generally accepted by the industry due to their unproven track record and high 

cost. Other research work has been conducted for loss of mains protection devices 

for specialist energy sources; for example Crossley et al [61] have developed a loss 

of mains device for the protection of wind farms. 

Embedded generators with a capacity of 1000kVA or below will typically em-

ploy a low voltage generator, connected via the distribution network by a star/delta 

transformer, illustrated in Figure 2.9(a). If the generator backfeeds via such a con-

nection arrangement, then any earth fault on the faulted supply network will not 

produce an earth fault current but will unbalance phase voltages, resulting in plac-

ing extra stress onto the unfaulted phases. This situation completely compromises 

the safety of both generator and distribution networks. 

A similar situation may occur with high voltage generators (1500kVA) which 

normally obtain their earth connection via the high voltage distribution network, 

depicted in Figure 2.9(b). Thus sustained generation during a loss of supply fault 

results in the unearthed operation of the generator. 

Both the aforementioned situations may be detected by neutral voltage displace-
ment protection, connected via a five-limbed voltage transformer. This transformer is 

connected either to the high voltage side of the distribution transformer, in the case 

of low voltage generators represented in Figure 2.9(a), or directly to the incoming 

supply for high voltage generators, portrayed in Figure 2.9(b). In both instances the 

neutral voltage displacement device and five-limb transformer must be connected 

to the utility's distribution network, beyond the developer's point of common connec-
tion - the boundary between the developer's or customer's electrical network and 

the distribution network. If deemed necessary, this equipment has to be purchased 

and installed at the expense of the developer but with ownership transferred to the 

utility. 

To conclude, G59 requires some form of loss of mains protection to be included 

within the protection scheme for an exporting embedded generator with a capacity 

greater than 150kVA. 

2.1.3.3 Instrumentation Equipment 

The purpose of switchgear instrumentation equipment is to provide metering and 

a visual indication, in real time, of various operations or electrical quantities con-

cerning the status of the section to which it is fitted. Instrumentation equipment is 

not required to enable a switchgear installation to operate safely; such important 

functions are performed by either control or protection equipment. Therefore in- 
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Figure 2.9: Typical connections for embedded generators [17, (Adapted)]; (a) 
Low voltage connection, (b) High voltage connection. 
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strumentation devices, if any, fitted to a section are at the discretion of the design 

engineer. 

The number and type of instruments fitted to a particular section depends upon 

the section's function; an indication of typical instrumentation facades and quan-

tities measured are depicted in Figure 2.10. As under and over current situations 

present the most danger, almost all sections of any switchgear installation will be 

fitted with at least a single phase current meter; the exception being spare sections. 

However, in situations were load imbalance is common and hence an important 

quantity to be monitored, either three individual current meters, or a single meter 

with a phase selector switch, may be fitted. 

I, 
'30, 0 

200 ,_-. 	ioo = 
500 

V 

(a) 

MW \0 1 1 

:7t  9 

(d) 

300 
A 400 

. " 200 

.5100 

(b) 

2 	I 	2- - 	- 
War 

(e) 

50 	, 

49 	51 

52 

Hz 

(c) 

IND CAP 

(f) 

Figure 2.10: A selection of typical instrumentation facades [1511; (a) 240 0volt 
meter, (b) 90°ampere meter, (c) 240°mains frequency meter, (d) 
90°real power meter, (e) 240 0 reactive power meter, (f) 360°power 
factor meter. 

Due to the safety implications introduced by the switching of any source of 

electrical energy, incomer and generator sections frequently require additional in-

strumentation. The instrumentation included on incomer sections also frequently 

includes volt meters though generator sections additionally include power factor, 

active and reactive power and synchronisation indicators as well. The connection 

of instruments that require mains derived current or voltage signals must be con-

nected to measurement grade current or voltage transformers. 

Instrumentation equipment also includes indicator lamps which are used to 

signal important events or status, such as if the section circuit breaker is either 

open or closed or if the section busbars are live. Other non-electrical but important 

events, for example the indication of the position of the main inlet valve for a hydro 
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generator or the boiler temperature of a steam turbine installation, may also be 

included within a section's instrumentation but this is a non-standard procedure - 

such equipment is normally mounted in separate, purpose made steel cabinets. 

2.1.3.4 Current and Voltage Transformers 

A transformer is a device that changes an alternating current at one potential dif-

ference to another through the action of a magnetic field linking the two coils of a 

transformer together [48].  This property to transform voltages and currents, deter-

mined by the turns ratio between the two coils of a transformer, enables the large 

voltages and currents associated with power systems to be linearly reduced to man-

ageable magnitudes, thereby allowing instrumentation and protection equipment 

to be mounted on low voltage panels within the switchgear. The benefits of oper-

ating equipment at low voltages also allows the physical size of the equipment to 

be reduced and personnel to calibrate and test such equipment safely [8]. The re-

duction of electrical quantities for measurement and protection purposes is accom-

plished by two categories of device, namely current transformers (CT's) and voltage 

transformers (VT's). Both these categories of transformer are collectively referred to 

as sensing transformers. 

Current and voltage transformers are further subdivided into two categories 

relating to their construction and rating; thus termed either protection grade or in-

strumentation grade transformers. All current and voltage transformers must be con-

structed to British Standards 7626 [38] and 7625 [37] respectively. 

Protection grade transformers are used to derive the measurement of currents 

or voltages from the busbars, or circuit being protected. Such transformers must be 

fully fault rated and are constructed so as not to saturate during fault conditions 

until a multiple of their rating has been exceeded; by which stage the protection 

device should have operated. If saturation did occur, a substantially reduced mag-

nitude representation of the current or voltage measured would be observed by the 

protection equipment, resulting in the protection device not sending a trip signal. 

There are two classes of protection grade transformers for both current and volt-

age measurement, defined by British Standards 7626 and 7625; either 5P or lop for 

current transformers and 3P or 6P for voltage transformers. The numerical quan-

tity indicates the multiple of the rating of the transformer within which the device 

remains accurate during a fault. The British Standard 7626 also allows for an ad-

ditional classification of protection grade current transformer, called Class X. Such 

devices are utilised for more demanding applications where the device is specified 

not by an accuracy class, but by detailed specification. 7  

7A Class X specification would typically include knee point voltage, turns ratio, exciting current 
at the stated voltage and secondary resistance. 
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Measurement grade transformers are used to derive electrical quantities from 

busbars in the same manner as protection transformers. Indeed the construction 

of measurement grade transformers is similar to their protection grade cousins, al-

though they differ by being accurate up to only 120% of their rating. Beyond 120% 

measurement grade transformers saturate, thereby protecting the measurement in-

struments connected to them from over current and over voltage conditions; such 

conditions are only experienced during fault conditions. The accuracy classes and 

relative percentage errors for measurement grade current and voltage transformers 

are given in Tables 2.2 and 2.3 respectively. 

Accuracy 

Class 
S 

± percentage of current ratio 
error of rated current 

20 	50 	100 120 

0.1 0.4 0.2 	ns 	0.1 0.1 
0.2 0.75 0.35 	ns 	0.2 0.2 
0.5 1.5 0.75 	ns 	0.5 0.5 
1.0 3.0 1.5 	ns 	1.0 1.0 

3.0 ns ns 	3.0 	ns 3.0 
5.0 ns ns 	5.0 	ns 5.0 

Table 2.2: Measurement grade current transformer classifications and their re-
spective percentage accuracy at various burdens, in accordance with 
British Standard 7626 [381.  Note that ns indicates not specified. 

Accuracy 	± percentage voltage 

Class 	 ratio error 
0.1 0.1 
0.2 0.2 
0.5 0.5 
1.0 1.0 
3.0 3.0 

Table 2.3: Accuracy classes for measurement grade voltage transformers in ac-
cordance with British Standard 7625 [37]. Note that the above values 
are only correct for burdens between 25% and 100% of rated output 
current and between 80% and 120% of rated output voltage. 

For both measurement grade current and voltage transformers it is typical that 

accuracy classes 0.5 or better are used for metering purposes, classes 1.0 or 0.5 for 

protection purposes and class 3.0 is normally used for indication purposes. 

2.1.3.5 Fuses 

The simplest and oldest device for the protection of any piece of electrical equip- 

ment is the fuse. A fuse is an "overcurrent protective device with a circuit opening 

fusible part that is heated and severed by the passage of overcurrent through it [129, 
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p.380]." For the purposes of this project the term 'fuse' describes the total assembly 

of the fuse element sealed in a cartridge and mounted in a holder in a circuit. The 

advantages and limitations of fuses are summarised as follows [272]: 

Advantages: 

Low cost, 

Fast clearance of faults, 

High reliability, 

Constant performance, and 

Fail safe operation. 

Limitations: 

Cartridge requires replacement after operation, 

Difficulty in protecting against small overcurrents, 

Materials and logistics limit use at high voltage, 

Indication of fuse status is not trivial, and 

Not suitable for sensitive applications. 

Fuses are extensively utilised in the power industry for the protection of lines 

and cables up to 132kV. In a similar manner that protection relays are organised to 

provide protection zones, fuses may also be zoned by the use of coordination charts. 

The use of fuses at higher voltages is limited to specialist applications due to the 

difficulty and cost of manufacturing cartridges, although fuses can safely interrupt 

currents up to approximately 200kA [11]. 

Within the switchgear installations, fuses are necessary to protect instrumenta-

tion and protection devices, and voltage transformers 8  from overcurrents. There-

fore all the fuses required for the protection of either instrumentation or protection 

equipment for a section are mounted on its corresponding front panel or inside. 

Voltage transformer primary fuses are mounted within the high voltage compart-

ment within the same section but the low voltage secondary fuses may be mounted 

either inside the low voltage compartment of the section or on the front panel of 

the section. 

'Current transformers are never fused since the resulting open circuit from the operation of a 
fuse will cause the current transformer to become saturated. This results in the mains alternating 
current waveform being chopped by the saturation effect, and coupled with the winding inductance, 
produces very high voltage spikes that can damage the current transformer windings and be a danger 
to personnel. 
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Figure 2.11: A current transformer operated, direct-acting trip coil, with time 
limit fuse [160, (Adapted)p.4451. 

2.1.3.6 Auxiliary Power Supplies 

The first generation of electromechanical control, instrumentation and protection 

devices obtained any additional energy required for their operation either directly 

or indirectly from the generator or grid connection which they served. An example 

of such an arrangement is illustrated in Figure 2.11, where a current transformer 

connects directly to the trip coil of a circuit breaker. To introduce a time delay, a time 

limit fuse is connected across the trip coil terminals with an inverse time/current 

characteristic. During normal operating conditions the fuse will carry the current 

transformer secondary current, by-passing the trip coil. During fault conditions, 

however, sufficient current will cause the fuse to 'blow' and the whole secondary 

current will be transferred to the trip coil, resulting in its operation. 

The operation of protection equipment based upon the principle illustrated in 

Figure 2.11, or other similar arrangements, was dependent upon the consistent and 

accurate manufacture of fuses. The variability of manufacturing processes that ex-

isted at the end of the nineteenth century, combined with the limited functional 

nature of such schemes and the requirement to replace a fuse after each opera-

tion, motivated the development of electromechanical relay devices. The adop-

tion of relay based protection devices substantially improved the accuracy, both in 

terms of current and time measurement; such a device is schematically illustrated 

in Figure 2.12. However, the use of such devices and their interconnection to form 

protection schemes necessitated the use of separate tripping facilities at the circuit 

breaker, with the energy required for tripping obtained from a separate, reliable 

source. 

More recently the advent and adoption of modern electronic control, for both 

instrumentation and protection purposes, has resulted in the requirement for an in-

dependent electrical energy source to power this equipment. Therefore in modern 

switchgear installations there are two separate electrical power sources, indepen-

dent of the main grid connection upon which the switchgear operates; a non-secure 

supply known simply as the auxiliary supply and a secure supply referred to as the 
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Figure 2.12: A relay operated protection device, with separate circuit breaker 
tripping facilities. 

tripping supply. The main items of equipment that require auxiliary power supplies 
and their typical voltage requirements are listed in Table 2.4. 

Device 	 Auxiliary Voltage 
AC 	 DC 

Circuit breaker (motor/solenoid operated) 	230,400 

Circuit breaker (tripping circuit) 	 30,50,220 	 30,50,220 
Instrumentation equipment 	 230 	 110 
Protection equipment 	 230 	 24,48,1 10, 125,250 

Table 2.4: Switchgear devices and their respective auxiliary power supply 
voltage requirements [150, 152]. 

The auxiliary supply generally provides power to all non-essential switchgear 

devices; these are pieces of equipment that if de-energised or removed from a sec-

tion would not compromise the safety or affect the operation of that section or 

adjoining sections. Devices connected to this supply would include instruments, 

panel illumination and anti-condensation heaters. Such supplies must be con-

nected to another source of electrical power other than the generator or the public 

electricity supplier connection switched by the switchgear. Typically the auxiliary 

supply is a single phase connection to the powerhouse's 9  non-secure mains sup-
ply; that is, a grid connection without any form of additional security of supply 

precautions or emergency or backup supply installation. The tripping supply is 

also normally connected to the powerhouse's mains supply but via a rectifier with 
a bank of emergency batteries 10  or other energy storage medium. As the name sug-

gests, the tripping supply provides electrical power to all the protection equipment 

(and critical sections of the control gear) vital to the switchgear and generator's 

safe operation during the event of a complete loss of mains power. During such an 

event, the embedded generator must be safely disconnected from the distribution 

9The building that houses or contains the generator and associated switchgear. 
10Such an installation is frequently called an uriinterruptible power supply (UPS). 
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network, the prime mover (and therefore the generator) shut down and the swit-

chgear circuit breakers left in a safe setting to await re-energisation. The schematic 

arrangement of a typical protection configuration is shown in Figure 2.13. 

CT 	VT 	Tripping 	CT 	VT 

	

I 	 Supply 	2 	2 

	

Protection 	 Protection 

Device I 	 I Device 2 

Trip 

Coil 

Circuit Breaker 

Mechanism 

Figure 2.13: A schematic diagram of a typical protection equipment configu-
ration. 

Both auxiliary and tripping supplies, unless already installed, are considered 

as part of the switchgear specification and eventual installation. In certain cases, 

especially schemes located within industrial sites, both supplies will have already 

been installed forming part of an existing switchgear installation. In such cases only 

the additional loading placed on each supply by the new switchgear installation 

must be specified, assuming that both new and existing switchgear are designed to 
operate off similarly specified supplies. 

2.1.4 Connection Topologies 

It could be argued that the installation of an embedded generator, in electrical 

terms, is substantially different for every site considered. This is most certainly 

the case in terms of the actual electrical magnitudes involved and minor details, 

such as the size and location of trapped and local loads or earthing arrangements. 

But the overall topological features of embedded generation are consistent. This 

may be observed by considering a variety of frequently encountered connection 

topologies, as depicted in Figure 2.14. 

Most embedded generation schemes will broadly fall into one of the topologies 

illustrated in Figure 2.14. All G59 compliant installations must apply the same pro-

tection philosophy; that is, the incoming, or public supply, connection is always 

protected from the embedded generator in the event of a fault. The application 

of G59 protection requires the fitting of protection devices to trip a circuit breaker, 
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Figure 2.14: Typical embedded generation connection topologies [277,171; (a) 
Basic LV installation, (b) LV installation with standby generation, 
(c) Dual LV installation, (d) Basic HV installation, (e) HV installa-
tion with trapped load, (f) Mixed voltage site. 
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therefore necessitating the need for a switchgear installation. Furthermore, an in-

corner section within a switchgear installation must always have G59 protection 

fitted. Even cases of mixed voltage embedded generation installations, such as 

the one illustrated by Figure 2.14(f), will require completely separate switchgear 

installations with separate G59 protection equipment. Such cases, however, are 

exceptional. 

2.1.5 Current Design Practice 

At present, the electrical specifications for embedded generation schemes are pro-

duced by the majority of developers utilising mental recall and organisational skills, 

and crude paper based aids, combined with limited design experience. The use of 

specialist computational tools is largely non-existent. However, word processing or 

spreadsheet applications are used to aid the documentation of the design process 

and to produce the final specification that is submitted to the manufacturer [277]. 

During the design process, there are the inevitable discussions between the de-

veloper and the local public electricity company. Such discussions tend to occur 

once the developer has arrived at a preliminary electrical specification for a sch-

eme. During such discourses it is not uncommon for specific aspects of the pro-

posed electrical specification to be considered and modified. Due to the complexity 

of switchgear installations such changes result in the omission or lack of consider-

ation of the implications such modifications may have upon the overall proposed 

electrical design. For example the addition of a specialist protection device may 

require additional current or voltage transformers to be installed - an expensive 

omission if not discovered until the commissioning of the plant. 

Given that the process of producing an electrical specification for any embed-

ded generation plant may be rationalised. Through rationalisation, the design pro-

cess for embedded generation switchgear can be defined. If this process can be 

captured in software, replicating certain aspects of design behaviour, then a con-

siderable improvement in the consistency and accuracy of switchgear design and 

the final specification can be achieved. 

2.1.6 Summary 

This concludes the introduction and discussion of embedded generation. This sec-

tion has discussed the common electrical components that constitute embedded 

generation schemes, excluding discussion of non-standard components such as 

prime movers and control equipment. The legal and regulatory issues directly af-

fecting the development of new embedded generation schemes have been given, 
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indicating the very important nature of G59 and its practical application guide, 

ETR113. The discussion has continued with a description of the typical equip-

ment required for safely switching and protecting an embedded generator, also 

indicating the other functions which a section may fulfill as part of a switchgear 

installation. Other equipment that constitute a switchgear section have also been 

introduced. Finally, various connection topologies were considered to indicate the 

validity of considering switchgear installations as a common instance in all embed-

ded generation schemes. 

2.2 Design Methodology 

The conception, specification and implementation of an embedded generation sch-

eme is not based upon any (clearly) defined procedure or any definite or intu-

itive series of logical process, documented or otherwise. Thus the development 

of an embedded generation project from conception through to specification then 

to physical implementation follows an ill-defined process common to the develop-

ment of all artefacts - the process of design. This process is principally concerned 

with the development of an artefact from a mentally conceived idea to a complete, 

typically written, specification of the artefact which resolves a particular need or 

function; the process of constructing the artefact from a given specification to a 

physical, or other manifestation, is occasionally accepted as a formality, and thus 

not always considered as part of the design process. 

Since the software described in this thesis is principally concerned with aiding 

a developer produce an electrical specification for the switchgear in an embedded 

generation scheme, it is appropriate that the process of design should be examined 

to crystallise the paradigms or methods utilised by human design practitioners. By 

examining such design paradigms and evaluating if such processes may be cap-

tured within a computer software environment, can any judgment be reached con-

cerning the validity and usefulness of the resulting software tool? Any software 

package should exhibit one or more of the design paradigms presented before it 

may be said to exhibit any recognisable form of design expertise. 

This section will explore the features that characterise design rationale in an 

attempt to reach a satisfactory description of the activity. The discussion will then 

continue to describe the five paradigms of design that currently exist, with several 

examples or descriptions of methods based upon these concepts. Finally, a limited 

review of computer aided design (CAD) 11  systems that attempt to emulate design 

reasoning will be presented. 

"This acronym originally stood for computer aided drafting but the later development of the field re-
sulted in the re-definition of the acronym to computer aided design, as detailed in Section 2.2.3, page 47. 
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2.2.1 What is Design? 

Since the dawn of mankind, humanity has designed, either consciously or in more 

primitive times in the thought processes of manufacture, creating artefacts such 

as hunting implements, shelters, and clothing. Such tasks have attracted and oc-

cupied practitioners for scores of centuries before the development of the natural 

sciences. Indeed it is a characteristic of human nature to change or sculpt the world 

to suit our purposes; it could be argued that the act of design is a manifestation of 

intelligence [261]. 

Yet the mental thought processes that underpin and orchestrate the act of design 

are not completely understood. The process of design lacks a distinct, universal 

definition due to its complex, difficult nature. This has resulted in a multitude 

of definitions being proffered. Brown [41] suggests two reasons for this to be the 

case: the goal state, or final ultimate state, of a given design process is difficult, if 

not impossible to define. Secondly, the implications of various actions or decisions 

during the design process are generally not predictable. 

The process of design may defy universal definition but not description. Simon 

[244, pp.58-591 captures the process eloquently: 

"The natural sciences are concerned with how things are. ... Design, on the 

other hand, is concerned with how things ought to be, with devising artefacts 

to attain goals." 

It is this combination of logical reasoning combined with creative or imaginative 

thought processes, concepts opposing each other, that defines a complete, univer-

sally accepted definition of design rationale. 

The discipline of design methodology developed independently of other fields 

of research in the early 1960's by pioneers such as Asimow [12], Alexander [5] and 

Jones [135]. However, logical and systematic analysis of design processes had been 

developing throughout the 1950's especially focusing upon engineering analysis 

and design based upon graph theory [253]. The interest in design was precipi-

tated and assisted by the development of electronic computers, automated systems 

combined with a substantial interest in rationalising mechanical engineering de-

sign [229] and architectural design [23]. Figure 2.15 illustrates the diverse range of 

disciplines typically involved in the design of an artefact. 

The multitude of disciplines engaged in design methodology initially resulted 

in two distinct divisions within the field being formed: design as a routine process 

based upon scientific reasoning and design as an inventive, innovative and creative 

process. Advocates of the scientific view of design view the process as a problem 
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Figure 2.15: Knowledge areas involved in design [223, p.321. 

solving or decision making scheme involved with finding, optimising and produc-

ing a solution; Figure 2.16 illustrates the parallels between design and scientific 

problem solving. The scientific approach also allows the process to be rationalised, 

then recorded or implemented. Supporters of the creative aspects of design view 

the process as a very human activity which may be understood from observing or 

testing. practitioners as they perform design tasks, from which lessons or methods 

may be learned to accelerate and/or ensure that optimal solutions may be found. 

Attempts have been made to unify these two contrary points of view, the nat-

ural sciences verses the engineering science (or as Simon called it - the science of 

the artificial [2441), but a complete theory has proved elusive. However, both ap-

proaches have yielded important results in furthering our understanding of design 

reasoning and rationale. Examination of the creative aspects of design led Rittel 

[221] to recognize the existence of wicked problems within some design domains; 

subsequently Simon [243] defined the concept of ill-structured problems - problems 
that are inaccessible or insoluble to the problem solving techniques of artificial in-
telligence. 12  

However, the development of modern technology has driven the need for the 

study of design methodology and, at least partly, yielded possible solutions. In 

1964, Alexander [5, pp.3-41 noted that design information is hard to handle, wide-

spread, diffuse and unorganised but the quantity of information was then well be-

yond the capabilities of individual designers; this situation has since become more 

acute with the spiralling complexity of modern artefacts compounded by the limi-

tations of human reasoning [177]. This situation has resulted in the exploration of 

the scientific approach to design by many researchers [261, 73, 66, 301, encouraged 

by developments in artificial intelligence and computational hardware since both 

disciplines allow the study and capture, respectively, of reasoning. 
12 The term 'artificial intelligence' is defined in Section 3.2, page 53. 
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The universal feature of design, from either the natural or engineering point 

of view, is that design practitioners perform a purposeful act; the identification of 

needs, the isolation of the problem, and the requirement for action to improve the 

situation. 

2.2.2 Design Paradigms 

The entire field of design methodology may be categorised into one of five de-

sign paradigms, according to Braha and Maimon [34]. Each paradigm provides a 

framework for the solution of design problems; from which any number of practi-

cal or concrete procedures or computational tools may be derived. Each paradigm 

is briefly outlined in the following sections. 

2.2.2.1 The Analysis-Synthesis-Evaluation Design Paradigm 

The Analysis-Synthesis-Evaluation (ASE) design paradigm has been widely adopt-

ed and utilised throughout the engineering disciplines. As indicated by its name, 

this paradigm has three key stages which are summarised below: 
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Analysis: The identification of need(s) and the development of an understanding 

of the problem domain, resulting in an explicit statement of requirements 

(goals). 

Synthesis: The generation of possible solutions that meet the needs of the problem. 

Evaluation: The consideration and assessment of possible solutions to the origi-

nal needs and requirements resulting in the selection of the most appropriate 

solution. 

There are many advocates of this paradigm who expand the above three steps 

into between five and twenty five steps [5, 207, 80, 30]. Frequently, proceeding 

through the paradigm once fails to yield a suitable or agreeable solution, but the 

process does produce valuable information concerning the design domain which 

may be used to change the initial requirements, therefore requiring the process to 

be performed again. Such cases of repeated application of the ASE paradigm are 
frequently referred to as iterative design. 

2.2.2.2 Case Based Design 

In design domains where there is no obvious or direct correspondence between 

form and function, or components of an artefact and the overall operation of the 

artefact, designers will utilise previous solutions and adapt them to new circum-

stances. Such selection and adoption is performed on a case by case basis, hence 
the name of this paradigm. 

Case based design exemplifies how engineering students are taught design; 

typically no design algorithms exist so solutions are provided by the incremen-

tal modification of previous solutions. This paradigm embodies the intuitive and 

creative aspects that design practitioners display, typically as an art or skill within 

a specific domain. This is still an aspect of engineering practice highly valued to 

the present day, where experience out ranks formal education [261]. 

2.2.2.3 The Cognitive Design Paradigm 

Cognitive design is concerned with the study of how humans perform tasks, both 

mental and/or physical, and the interaction they have with machines (frequently 

referred to as the man-machine interface), typically computer systems. Research 

based upon this paradigm explores, by the use of psychological experiments, how 

designers perform design and thereby allow tools to be constructed that facilitate 

design. 
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For example, Thomas and Carroll [267] report a selection of experiments includ-

ing analysis of professional designer's discourse, analysing individual designers' 

solutions to an identical problem, and studies involving the observation of peoples' 

responses when given restricted or open style tasks. The authors provide several 

methods to assist design practitioners, such as unstructured word lists to assist 

people to generate ideas. A similar but more comprehensive series of methods is 
reported by Cross [60, 58]. 

More recently, Cross and Cross [59] have reported upon design strategies em-
ployed by expert designers, concluding that successful designers adopt a systemic 

view of a design situation, frame the problem in a challenging manner and then 

utilise the first principles of engineering to generate the solution. Such results 

deepen our understanding of design, allowing future research to develop more 
comprehensive theories about design. 

2.2.2.4 The Artificial Intelligence Design Paradigm 

The field of artificial intelligence attempts to emulate intelligent human thought 

processes [32]. Within design, artificial intelligence techniques are utilised to cap-

ture knowledge of the problem domain and by using this knowledge, provide solu-

tions. By attempting to automate the process, the machine must be able to evaluate 

the design options available during the process and determine the most appropri-

ate choice. Therefore the artificial intelligence paradigm models a design domain 

as a series of states; commencing with an initial problem state, through the design 

process via intermediate states, to a final goal state. In order to proceed from one 

state to another a series of operators must be defined. Such operators are based 

upon the functional requirements or goals of the process, design constraints and 
meta knowledge. 

The organisation of intermediate states frequently relies upon the function-st r-
ucture-behaviour of the artefact or its components and their relationship between the 

outside world and each other. Therefore by modelling the causal reasoning that 

composes an artefact, combined with the fundamental physical laws applicable to 

the domain and searching through the remaining limited design options, optimised 

design solutions can be arrived at. 

Complex design domains have to be divided into manageable sizes compris-

ing of modellable artefacts, either individually or in groups. This is achieved by 
utilising a design strategy; Simon [244] proposed the three main strategies which 
are bottom-up, top-down and meet-in-the-middle. Bottom-up design commences with 

a series of basic structures which are combined to produce the final artefact. Top-

down design, which is also one of the most frequently used human design practices 
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due to its simplicity and effectiveness, studies the final behaviour required of the 

artefact, and proceeds by subdividing this behaviour into smaller behaviours, con-

tinuing the process until each small behaviour relates to a pre-defined or existing 

component of the problem domain. Composition of the components results in the 

required behaviour of the original design task. Meet-in-the-middle design selects 

either bottom-up or top-down design depending upon the suitability, difficulty and 
information available at various stages of the process. 

Artificial intelligent technologies include expert systems, case based reasoning, 

neural networks and genetic algorithms. These technologies are discussed, includ-

ing their operation, in Chapter 3 and their use for modelling design problems for 

various domains is reviewed in Chapter 4. It should be noted that the artificially in-
telligent design paradigm is particularly appropriate within tightly coupled, highly 
integrated and ill-defined design problems. 

2.2.2.5 The Algorithmic Design Paradigm 

This approach to design hinges upon the premise that design problems are well-
structured,13  thus amenable to a domain specific algorithm which if given a set of 

requirements, typically numerical parameters, can generate a design solution in a 

finite number of stages. The resulting solution must be accessible so that it may be 
checked against definite criteria to test if it fails, meets or exceeds the requirements 

of the design. This design paradigm is frequently referred to as parametric design. 

There are several other design methods based upon the algorithmic paradigm. 

For example, Haugen [108] has developed a design method to account for the 

random phenomena experienced by mechanical engineers based upon probabil-

ity. This approach has been extended to a general design theory by Siddall [242]. A 

practical demonstration of such an approach within power engineering is reported 
by Tse et al [270]. 

This approach to design has been and remains one of considerable interest, 

especially to engineering disciplines, as it provides methods of design automa-

tion utilising modern information technology. There are numerous areas within 

mechanical and electrical engineering where the automation of complex systems 

design is invaluable [75, 210, 22, 291. The majority of design problems are ill-

structured and thus have no definite finish point, or are fragmentary in nature, 

therefore the algorithmic paradigm is not applicable; however, such problems may 

be divided into segments that are well-structured and thus amenable to this para-
digm. 

13 AS defined and described by Simon [243]. 
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2.2.2.6 Summary 

The previous five sub-sections have indicated the fundamental paradigms which 

currently exist within design methodology. It should be noted that a certain but 

very limited degree of commonality exists between all of the paradigms. Some de-

sign methods may be classified by more than one paradigm, which is particularly 

true of certain methods that lie between algorithmic and artificially intelligent de-

sign paradigms; genetic algorithms, for example, can be technically classed within 

either paradigm. 

2.2.3 CAD Software 

An engineering drawing allows the unambiguous representation of an artefact on 

a two dimensional space thereby allowing communication of ideas and details be-

tween engineers. However, the process of drafting such drawings was a time con-

suming and repetitive task until the introduction of computer aided drafting (CAD) 
[73, p .42]. 

By the early 1960's, computers had been developed that operated on-line, allow-
ing users to interact directly with the machine, obtaining feedback instantaneously. 

This facilitated Ivan Sutherland to develop 'Sketchpad' in 1962, an interactive com-

puter graphics system that allowed engineering drawings to be created and edited 

directly using a light pen and a keyboard. The details of this pioneering work are 
given in Sutherland's Ph.D. thesis [263]. 

By 1964, General Motors extended Sutherland's concept of drafting engineer-

ing drawings on a computer to also link this information to a computer numer-

ically controlled (CNC) machine, thereby allowing mechanical components to be 

directly machined. The system was called Design Augmented by Computer One 

(DAC1) and was the first computer aided design and computer aided manufacture 

(CADCAM) system developed [30, p.2661. 

These early developments have shaped the entire structure of CAD/CAM com-

puter systems. By organising and eliminating the tasks previously required to pro-

duce drawings, CAD has allowed designers to concentrate on design problems 

while also reducing the time required to produce an artefact, thus allowing sub-

stantially more thorough analysis of artefacts at the early design stages, reducing 

prototype and manufacturing costs [73, p.44]. 

Such advances in computing technology and CAD software were quickly adopt-

ed by industry throughout the 1970's and 1980's, accelerated by the declining cost 

of computing systems. During this period, other aspects of the design process 

were also being included into CAD software other than the drafting of the two 
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or three dimensional physical aspects of artefacts. For example, projected cost-

ings, estimated manufacturing timescales and the inclusion of functional aspects 

to the geometrical representations of components were also modelled as part of 

the CAD systems [57, 171]. Such development continues to the present day based 

upon advanced design models using algorithmic and artificially intelligent design 
paradigms [274]. 

2.2.4 Summary 

This section has introduced the field of design methodology and charted, briefly, 

the development of the field to the present. A discussion on the ubiquitous question 
- what is design? - has been presented. An introduction to the key paradigms of 

design methodology has been given and finally the basic history and operation of 
CAD systems has been described. 

2.3 Rationalisation 

This section is the third and final part to this chapter. Having discussed the main 

features of embedded generation schemes in the first part of this chapter, followed 

by a review of design methodology in the second part, this final part discusses how 

the design process of switchgear for embedded generation may be rationalised. In 

other words, how design paradigms may be applied to the process of switchgear 

design. This is not intended to be an exhaustive list but to illustrate that the design 

of switchgear for embedded generation has scope for automation within a suitable 
software technology. 

2.3.1 Legal and Regulatory Requirements 

As indicated in Section 2.1.1, the Electricity Association Recommendation G59, 

and supporting implementation guide ETR113, detail the minimum safety require-

ments for embedded generation schemes connected at either low or high voltage 

connections. To ensure consistency and reduce the complexity of the proposed de-

sign tool, design practice for high voltage switchgear will be assumed throughout 
the project. 14  

' 41t could be argued that by assuming high voltage switchgear design practice for low voltage 
installations that the specifications produced by the software will be over-designed. This aspect of 
the software is discussed in Section 7.1.2. 
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With regard to earthing, high voltage installations will be assumed to have a 

switched neutral earthing arrangement connected via circuit breaker to the devel-

opers independent earth electrode. Other earthing arrangements do exist 15  but are 

uncommon. However, provision will be required to allow this assumption to be 

reviewed in the future. Low voltage installations will be assumed to have a TN-S 16  

utility connection. Again other low voltage utility connections exist but are not 

frequently encountered. 

The most important aspect of G59, the protection arrangements for embedded 

generators, must be fully and completely implemented by the software. This may 

be realised by utilising the algorithmic design paradigm to develop a computer 

interpretable representation of Table 2.1. In cases where G59 is open to interpreta-

tion or dependent upon installation site conditions other factors within the design 

will be considered; these situations are discussed in the following section and Sec-

tion 2.3.5. 

2.3.2 Connection Topologies 

From observation of typical topologies, as illustrated in Figure 2.14, it may be ob-

served that every embedded generation installation requires switchgear with G59 

protection fitted. This is the case with both low and high voltage installations. The 

location of G59 protection equipment outside of the switching section for a genera-

tor does occur on sites with either both low and high voltage generators of similar 

generation capacities or sites with large numbers of machines and a single G59 pro-

tection installation. However, such sites are very limited, exceptional and therefore 

beyond the scope of this project. 

Below 33kV, most utility networks are operated in a radial fashion in the inter-

ests of simplicity and economy. Due to the lower security offered by such networks 

regional electricity companies will tend towards the use of automating switching 

via remote control. Consequently the risk of islanding increases the further the gen-

erator is located away from the local distribution transformer (or substation). Such 

a risk is substantially increased if the generator can supply the loads connected to 

the distribution network in its vicinity [2251. In such cases it is very prudent to 

connect a loss of mains protection device; indeed the local utility will assess a pro-

posed embedded generation scheme and normally insist that such a device is fitted. 

Performing an assessment of the local distribution network is normally impractical 

as the information required only resides with the local utility which may not make 

such information available to the public. Analysis of local or site loads also fails to 
15 Refer to ETR113 [17], Figure 5.8, page 37. 
16 As defined in the lEE Wiring Regulations [123], page 15. 
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reduce this ambiguity, therefore the decision to fit loss of mains protection will be 

based upon the generator specification, discussed in Section 2.3.5. 

2.3.3 General Switchgear Observations 

Section 2.1.3 indicated that switchgear sections have a variety of purposes other 

than the switching, monitoring and protection of generators. However, since swit-

chgear installations rarely consist of just a generator section it was proposed to 

model all switchgear sections. 

The application of protection and instrumentation equipment may be deter-

mined from a section's function as indicated by the user. Thus using either the 

algorithmic or artificially intelligent design paradigm, the appropriate equipment 

can be selected and designed for that section. Furthermore, since both protection 

and instrumentation equipment require connection to either, and in some cases 

both, current or voltage transformers and auxiliary supplies with appropriately 

rated fuses, such design reasoning lends itself readily to automation. The imple-

mentation of such switchgear design reasoning would also allow the designer to 

monitor the design as it proceeds. For example, the burdens placed on a particular 

voltage transformer at any point during the design process can be readily known. 

2.3.4 Protection Requirements 

Traditionally, protection devices have been based upon electromagnetic principles 

for their operation 17 . As a result individual devices have only one condition for 

which the device provides protection against. However, advances in protection 

technology have resulted in electronic multi-function devices becoming available. 

Although currently not widespread, such devices are likely to become common-

place in the future, providing protection for embedded generation projects. Cur-

rently their high cost and unproven track record excludes them at present from 

being adopted, especially by small scale embedded generation schemes. 

Multi-function protection devices are capable of large numbers of sensing and 

logical operations with which it is easy to create an overly complex protection sch-

eme, that may in fact under-protect or over-protect a generator. Both situations are 

undesirable, with excessive protection programming frequently resulting in com-

plex commissioning, troubleshooting and testing. 

It is proposed that the software should focus upon discrete protection devices 

by default, as individual electromechanical or electronic devices are still currently 
17As discussed in Section 2.1.3.2. 
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preferred by developers. However, in recognition of the fact that multi-faceted 

digital protection devices will become industry standard over the next decade the 

model should have a capability to allow such devices to be included in a design 

scheme. This is accomplished by allowing the model to include a function attribute 

with each protection device, specifying the protection functions that the device per-

forms. It is proposed that it is the functionality of the protection devices present in a 

protection scheme that will be checked to ensure that the said scheme is sufficiently 

protected and complies with G59. Such an arrangement appears to strike a balance 

between keeping the model relatively simple while adaptable or extendable for the 

future. 

Digital protection devices require lower current and voltage transformer bur-

dens to operate as they only sample and quantize the waveforms; typical burdens 

are less that 1A at 110V or less. Older electromechanical devices, however, require 

significant burdens to energize their internal magnetic and mechanical circuitry 

with burdens of 5A standard at either 110 or 400V [191]. Both of these conditions 

must be reflected in the software model. 

2.3.5 Generator Requirements 

In general, electrical generators are classified into one of two categories; either in-

duction (or asynchronous) machines and synchronous machines. In terms of swit-

chgear design induction machines are easier to switch and protect due to their sim-

plicity; they do not require synchronising, automatic voltage regulation or exciting 

equipment. Synchronous machines, however, require the aforementioned equip-

ment. In terms of installation, synchronous machines may be installed further 

away from distribution substations, require limited or even export reactive power 

and may operate through a wide range of power factors. Such advantages are not 

available from induction generators as they require reactive power to operate and 

do so at a fixed power factor [ 48]. 

From a regulatory point of view, G59 is not concerned with the classification 

of a proposed embedded generator, but whether the generator is mains dependent 

or not. Mains independent generators are generally associated with synchronous 

machines since they may use an external electrical power source or a permanent 

magnet/tertiary winding supply for excitation allowing such machines to operate 

without a mains supply. Such machines must be fitted with a loss of mains protec-

tion device. 

Induction machines are generally thought to be mains dependent as they can not 

generate without a mains supply since they rely on it for excitation. However, in-

duction machines have been shown to remain excited for sustained periods follow-

ing a loss of mains supply; obtaining their excitation from other generators, power 
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factor correction capacitors or utility system cables or overhead lines [130, 132, 225]. 
Such sustained generation is deemed to be islanding and therefore requires loss of 

mains protection to be installed. 

It is therefore proposed that the design software will take into account the abil-

ity of a machine to be mains dependent or not. If a synchronous machine is selected, 

then loss of mains protection will be selected automatically. If a single induction 

machine is selected with power factor correction capacitors of a capacity below 10% 

of the machine's rating then loss of mains protection will not be selected. However, 

if two or more induction generators are selected, or a single machine has power 

factor correction capacitors of a capacity above 10% of the machine's rating then a 

loss of mains protection device will be included. 

2.3.6 Summary 

This section has highlighted the main features of the switchgear design process 

for embedded generation schemes and how aspects of the design process may be 

rationalised and captured using one or more design paradigms. 

2.4 Chapter Summary 

This chapter has laid the foundations of this project. The first part of the chapter 

introduced embedded generation, with the discussion covering legal and regula-

tory issues, the equipment required for constructing and operating an embedded 

generator, typical connection topologies and current design practice of embedded 

generation schemes. The second part of the chapter reviewed design methodology 

with an attempt to describe what design is and the five design paradigms of de-

sign. The third and final part of this chapter discussed aspects of the switchgear 

design process, indicating some of the features of the process that allow it to be 

rationalised and encoded within a software design tool by utilising one or more 

design paradigms. 

Having established that the automation of aspects of the design of embedded 

generation switchgear is possible, Chapter 3 reviews the current software technolo-

gies available, with which a software design tool may be realised. 



Chapter 3 

Design Software Technologies 

Since the advent of modern electronic computing a large number of programming 

languages and artificially intelligent technologies have been created. It is the pur-

pose of this chapter to review the currently available technologies and their use 

within the Electricity Supply Industry (ESI), thus forming a basis upon which a de-

cision can be reached on their suitability for coding an embedded generation design 

tool. 

3.1 Chapter Overview 

Available software technologies for developing the design tool fall into one of two 

categories: either an Artificially Intelligent (Al) technique, or the use of a program-

ming language based upon a programming paradigm. The structure of this chapter 

reflects these two categories, both of which are discussed and assessed individually, 

with a brief indication of their impact upon the electricity supply industry. 

3.2 Artificially Intelligent Techniques 

The term artificial intelligence was coined by John McCarthy and officially adopted 

by the research community during the summer of 1956 at the first artificial intelli-

gence conference at Dartmouth College. Artificial intelligence was then defined as 

[32]: 

'computer processes that attempt to emulate the human thought processes that 

are associated with activities that require the use of intelligence.' 

53 
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In 1958 McCarthy developed the first complete Al system, 'Advice Taker', a hypo-

thetical program able to use knowledge to search for solutions to problems. Re-

search continued, exploring artificial neural networks and genetic algorithms, with 

rapid developments and high expectations [2331. 

It was not until the mid 1960's that the mainly algorithmic search mechanisms 
used in artificial intelligence began to show their limitations, stagnating research in 

the area. The fortunes of artificial intelligence did not improve until a decade later 

with the development of knowledge based systems, leading to expert systems. By 
the beginning of the 1980's the first commercial expert systems appeared. 

The maturing of artificial intelligence, coupled with the development of pow-

erful, cheap, personal computers (PCs) has led to the application of artificial in-

telligence, especially expert systems, in a large number of fields including power 
systems. In the late 1990's artificial intelligence continues to develop with new 
technologies such as intelligent agents. 

The following sections briefly explain the fundamental principles behind the 

aforementioned artificial intelligent technologies, their use within the electricity 
supply industry and for artificial design tasks. 

3.2.1 Knowledge Based Systems 

The first generation of artificial intelligence researchers focussed upon solving prob-

lems by utilising search algorithms combined with elementary reasoning; a pro-
cess called weak methods [233, p.22]. This approach quickly showed deficiencies 
as moderately complex problems presented an enormous search space, frequently 

too large to be completely explored. It became apparent from the study of hu-

man experts that they are able to achieve high levels of performance because they 

utilise domain specific knowledge. Thus the focus of artificial intelligence research 

changed to developing systems which could capture knowledge of a specific do-

main in a machine interpretable form, thereby developing a branch of artificial in-
telligence termed knowledge based systems. 

Within the field of knowledge based systems, three fields of activity exist, the 

most utilised being expert systems, followed by case based reasoning and model 
based reasoning [159]. Only expert systems and case based reasoning will be ex-

plored here, as both these technologies have been used in prototype and production 

applications with reasonable success within the Electricity Supply Industry and in 

the domain of artificial design. 
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3.2.1.1 Expert Systems 

The basic features of an expert system is illustrated in Figure 3.1. The essence of 
an expert system is the knowledge base which contains the problem solving know!-

edge of the application domain. For example, the most popular form of knowledge 

representation is rule-based knowledge, which is recorded in a series of statements 
called rules of the form: 

if condition(s) then action(s). 

A rule is said to operate if its conditions have been satisfied and the resulting action 

may perform calculations and / or activate other rules. Knowledge representation 
may also be of the form of object-attribute-value triplets, semantic networks, frames or 
logical expressions [278]. 

facts in 	Knowledge Base 

expertise ou t 
	

Inference Engine 

Figure 3.1: Conceptual diagram of an expert system [118, p.2161. 

During operation of an expert system, the user will supply facts relevant to the 

system's domain of expertise, normally via a series of dialogs within a graphical 
user interface, resulting in the inference engine consulting the knowledge base. The 
inference engine in effect acts as an interpreter between the user and the knowledge 

base. The conclusions drawn from the knowledge base as a result are normally in 

the form of a series of linguistic statements, directly interpretable by the user and 

which constitute expert advice. In some instances it may be of interest to view 

how a particular conclusion, or series of conclusions, was reached; this may be 

performed by the expert system recording the path of decisions taken through the 
knowledge base [156, 157]. 

Due to their extensive use and commercial development for over two decades 

the key advantages and limitations of expert systems have been widely explored 

and documented; they are summarised below [118,1271: 

Advantages: 

The possibility of providing and sharing expert knowledge with anyone hay-

ing access to the required computer equipment. 

The capacity to permanently encapsulate knowledge acquired from one or 
more human experts. 
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The ability to provide advice and knowledge quickly, with more flexibility 

and improved consistency than if human experts were used. 

Expert systems provide excellent performance but in limited domains. 

If coded appropriately, expert systems have the ability to justify advice to the 
user. 

Limitations: 

Expertise is difficult to extract from experts and frequently is highly heuristic 
in nature. 

Heuristic rules tend to fail when given insufficient or unexpected data. 

There is a lack of scientific methodology in knowledge engineering resulting 
in fragmented, solitary systems. 

Rule based searches become inefficient with very large rule bases (> 500 rules) 

and are unable to access or manage large volumes of information. 

Maintenance, verification and validation of rule bases can become exceed-
ingly time consuming. 

The explanations of reasoning are descriptive - only indicating conclusions 
already implicit in the knowledge base. 

The knowledge contained within all expert systems is very task specific. 

Initially expert systems were coded entirely using a programming language 

such as LISP or implemented using specialised hardware, but after a decade of 

commercial development coupled with the advent of powerful, general purpose 

workstations or desktop personal computers, several expert system shells became 

available incorporating integrated tools within a graphical user interface; Figure 3.2 

illustrates this arrangement. Such expert system shells came with empty knowl-

edge bases in which the user could enter domain specific knowledge. A review of 

such systems was performed by Mettrey [173] at the height of their popularity. 

The first commercial expert system was the 'Ri' developed for the Digital Equip-

ment Corporation in the early 1980's and was judged an enormous commercial 

success [233, p.241. Expert systems were then developed for many industries, early 

adopters using the technology for financial, medical and civil construction appli-

cations. The electricity supply industry was no exception, with the first prototype 

expert systems being developed by the mid 1980's. Indeed, within the electricity 

supply industry, expert systems have been the most frequently applied artificially 

intelligent technology to date, with numerous application areas; the main areas of 
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Expert System Shell 
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User Interface Design Tools 

Validation & Maintenance Tools 

Figure 3.2: Conceptual diagram of an expert system shell. 

interest and development being alarm processing [290], planning [91] and control 

[97]. Other areas of research within the electricity supply industry include fault 

diagnosis, system restoration, scheduling, security and protection [86, 162, 62]. 

3.2.1.2 Case Based Reasoning 

The key paradigm underlying Case Based Reasoning (CBR) is analogy; the impor-

tance of previous experiences to the solution of new problems by exploitation of 

their partial similarity. Developed from cognitive theories on the operation of hu-

man memory, case based reasoning was introduced by Schank and Abelson [239] 

in 1977. They proposed that general knowledge of certain situations is recorded 

in human memory in the form of scripts, thereby allowing expectations of similar 

situations to be perceived and thus inferences performed. A period of research and 

development followed as case based reasoning matured, with the first commer-

cial systems being deployed by Lockheed Aeronautical Systems Company in 1990 

[279]. 

The operation of case based reasoning systems is based upon the case based 

reasoning cycle, illustrated in Figure 3.3 and described as follows: 

A problem specification is entered into the system, resulting in the case library 

being searched for case(s) similar in nature which are then retrieved. 

2. The case(s) selected are evaluated and a case is selected (as the basis of a 

possible solution). 

3. The proposed solution is evaluated against the problem criteria, revised and 

modified if required. 
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4. The confirmed solution is outputted and the new solution recorded (retained) 

in the case library. 

The key component of any case based reasoning system is the case library; each 

case represents contextual knowledge representing an experience within the appli-

cation domain in a structured and indexed manner. The basic representation of a 

case is an ordered pair: 

(problem, solution). 

The problem element of a case describes the problem domain, when the case oc-

curred, and its circumstances. The corresponding solution element records the to-

tal or partial resolving of the problem, including principles utilised, explanations 

or descriptions of how the solution may be obtained and/or decisions taken. In 

certain instances, the solution may require an action with effects that can not be de-

termined from the data supplied. Therefore the concept of a case has been extended 

to a triple: 

(problem, solution, effects), 

where the effects detail the consequences of the solution if implemented [219]. 

New Problem 

Problem Case Analysis 

Search and Retrieve 

Case Selection 	
Case 

Library 

Revise if 	 Evaluation of Proposed 
Necessary 	 Solution 	 Retain 

Confirmed 

Solution 

Figure 3.3: The case based reasoning cycle [164, (Adapted) p.351. 

The representation of cases includes all standard knowledge based representa-

tions including semantic networks, rules and logical expressions, with the major-

ity of case based reasoning systems utilising a combination of frames and objects. 

Bergmann [27] presents a detailed discussion with practical, industrially applied, 

examples of case representation with CDROM software. 
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The main advantages and limitations of case based reasoning systems are de-

tailed below [187]: 

Advantages: 

The process of acquiring cases is normally significantly shorter in duration 

than the development of rules for a similarly specified expert system. 

Case based reasoning systems are easier to construct, modify and maintain 

compared to other knowledge based systems. 

Cased based reasoning systems learn new cases as they arise without repro-

gramming. 

Case based reasoning systems are better understood by their users as they 

capture knowledge using familiar concepts and terms. 

Limitations: 

To attain reasonable performance from case based reasoning systems a suffi-

cient number of cases have to be acquired. 

Discovering a suitable case representation for a given domain is a difficult 

task. 

The amount of interest in case based reasoning within the electricity supply 

industry has been limited mainly because case based reasoning, as well as model 

based reasoning, are recently matured knowledge based technologies, and, alth-
ough independent technologies, they are generally applied within an expert system 

shell, forming only a minor proportion of the overall solution to an application 

domain. Example applications within power systems include the fault diagnosis 

of steam turbines [94, 95], generator fault diagnosis [187], electrical drive diagnosis 

[178] and design of electromagnetic devices [227]. 

3.2.2 Artificial Neural Networks 

The natural world provides many examples of creatures which are able to per-

form computational tasks beyond the capabilities of present artificial systems. The 

study of such biological entities reveals that these systems are constructed from 

highly parallel and interconnected networks of simple processing elements called 

neurons. The computational paradigm which mirrors the processing architecture 

of biological systems was originally proposed by McCulloch and Pitts [167] in the 

early 1940's, based upon the concept of the artificial neuron. 
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Figure 3.4: A model of an artificial neuron, as proposed by McCulloch and 
Pitts [109, p.9]. 

The artificial neuron operates by taking the inputs x, applying a weight, w, 
summing all the weighted inputs together, and applying an activation function f(x) 
to produce an output y2 , as illustrated in Figure 3.4. The activation or threshold func-
tion selected depends upon the neural model and learning algorithm being utilised; 

some examples of such functions are given in Figure 3.5. 

Figure 3.5: Examples of threshold functions [109, p.11]. 

Networks of neurons may be constructed, termed Artificial Neural Networks 

(ANN's). Many such network architectures exist e.g. the Multi Layer Perception 

(MLP), Kohonen's self organising feature map, Adaptive Resonance Theory (ART) 

and recurrent networks [188]. The architecture selected and number of neurons 

required depends upon the task the ANN is required to perform. 

Generally ANN's are applied to problems involving massive amounts of data 

from which a limited number of decisions may be deduced, normally via an in-

tricate, non-linear mapping [137, p431. From such large data sets, standardised 

training data may be derived of a similar nature as that which the network will 
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encounter in service. During training the ANN learns the non-linear mappings of 

its application space by setting and storing the weights, w 23 , at the inputs of each 

neuron. When in use, the weights of an ANN may be either static or dynamic; if 

static the ANN performs the same mappings as it learned during its training but, if 

dynamic, the ANN can learn new mappings by adapting weights in proportion to 

an error term, therefore allowing the network to adapt to new data. They are hence 

commonly known as learning ANN's. 

The key advantages and limitations of ANN's are summarised below [1]: 

Advantages: 

ANN's are adaptive, able to digest data and subtle relationships, and learn 
from them accordingly. 

ANN's can generalise by being able to process incomplete or noisy data. 

ANN's are non-linear, thus complex interactions present within the data may 
be captured. 

ANN's are highly parallel in organisation hence allowing independent, si-
multaneous operations to be performed. 

Limitations: 

ANN's are unable to easily account for their results, thus results have to be 
accepted at face value or externally verified, 

Training methods for ANN's are not completely understood therefore select-

ing an architecture and size of an ANN for a given problem is currently ill-

defined, 

ANN's require large amounts of computational resource especially during 
the training period. 

ANN's have been extensively demonstrated and utilised within the electricity 

supply industry. The tasks at which they excel are listed below with examples: 

Classification: Detection and classification of faults [137], fault discrimination [281], 

Recognition: Fault recognition for transmission lines [87, 262], identification of 
voltage stability in power systems [250], 

Optimisation: Dynamic analysis of voltage stability [240], simulation of power 

plant transients [83], reduction of external power system networks for mod-

elling and analysis [154]. 
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Aggarwal [2] presents a more detailed discussion of example applications of ANN's 

in power systems. 

3.2.3 Fuzzy Systems 

The concept of fuzzy set theory was created by Lotfi A. Zadeh in his seminal paper 

published in 1965 [2911. Zadeh continued the maturing of fuzzy set theory by being 

a key contributor to its development which led to the creation of fuzzy logic [141]. 

The motivation for Zadeh's work was that he realised the unsuitability of tradi-

tional analytical techniques for the solution of future engineering and information 

processing problems in several diverse areas, including natural language under-

standing, pattern recognition and system control. The use of such analytical tech-

niques resulted in complex models, encouraged by the availability of increasing 

computational power, but the models created became extremely difficult to ana-

lyze and understand. Zadeh realised that this complexity and resulting precision 

was largely unnecessary and could be elevated by introducing various degrees of 

circumstances into models [215]. In other words, Zadeh created variables to indi-

cate the strength, or degree, of relationships between the components of a system. 

Instead of creating a model of a problem with specific logical elements produc-

ing crisp, or discrete solutions, the application of fuzzy logic to the model allowed 

the conception of a series of functions with continuous, or fuzzy solutions; e.g. dis-

crete solutions are characteristic of boolean logic, either zero or one, as indicated in 

Figure 3.6 by the left hand side graphs, whereas fuzzy solutions are vague, stating 

a value between zero and one representing a degree of certainty, as shown on the 

right hand side of Figure 3.6. 

In Figure 3.6 the graphs C(x) and D(x) both represent single fuzzy member-

ship functions. In practical applications, however, fuzzy membership functions 

frequently overlap in a complementary manner with each function given a contex-

tual meaning representing an aspect of the model. The degree of certainty of such 

functions always sums to unity; a simple example of such a model is illustrated 

in Figure 3.7 where fuzzy sets are used to represent busbar voltage levels. Instead 

of presenting an absolute value to the user, the information may be simplified by 

allowing voltage levels to be classified as either low, normal or high, therefore mak-

ing the information more readily interpretable. For example if the voltage is 0.92pu, 

it is unity or 100% certain that the system voltage is low, or if the voltage is 1 .O2pu, 

then the system voltage is 80% certain to be normal but 20% certain to be high. 

Note that f(x) is continuous, even between voltage classifications. 

The application of fuzzy sets or logic in isolation to the electricity supply indus-

try is relatively uncommon; those examples that exist include power flow control 
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Figure 3.6: Examples of membership functions [141, P.  1.21. 
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Figure 3.7: Example of fuzzy sets modelling busbar voltage levels [146, p.51. 

[153], power system stabilizer control [269, 1161, load flow calculations [158], and 
short-term load forecasting [287]. 

Fuzzy systems, however, are being increasingly utilised in combination with 

other artificially intelligent technologies; in particular expert systems, artificial neu-

ral networks and genetic algorithms. The development areas of these hybrid sys-

tems are within power system planning, operation and analysis, e.g. power dis-
patch [252], distribution load shedding [271], network reconfiguration [251], and 
fault diagnosis [184]. 

3.2.4 Genetic Algorithms 

Genetic algorithms are heuristic search algorithms developed from the biological 

study of natural selection and genetics. Both empirically and theoretically proven, 
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genetic algorithms produce robust searches in complex, often large, spaces by ap-

plication of a fundamental natural principle - survival of the fittest [88]. Evolu-

tion strategies, evolutionary programming, genetic programming and simulated 

annealing, with genetic algorithms, comprise a field of research referred to as evo-

lutionary computing. Within this arena genetic algorithms have received the most 

attention in terms of both theoretical basis and application. 

The study of genetic algorithms originated in the late 1950's with the investi-

gation of genetic systems using digital computer simulations [99, p.89] in order to 

gain understanding of natural phenomena. It was not until 1962 when John Hol-

land performed his ground breaking work on utilising genetic type operators to ar-

tificial systems that the field of evolutionary computing was created [119]. Holland 
was not just interested in optimisation or heuristic search problems; his research 

goal was to create general programs able to adapt to arbitrary environments. In 

pursuing this goal, Holland created the foundation theory of genetic algorithms. 

The term genetic algorithm was first defined and given its first practical appli-

cation in 1967 with J.D. Bagley's pioneering doctoral thesis at the University of 

Michigan. Bagley used genetic algorithms to explore game theory developing a 

structure and method of operation not unlike genetic algorithms of the present day 

[99, p.931. 

A basic genetic algorithm consists of four elements: 

a population of chromosomes, 

afitness function, 

a crossover operator, and 

a mutation operator. 

A chromosome is a binary string which represents a possible valid solution within 

an application domain or search space. Each binary element of the chromosome is 

a gene. A group of chromosomes form a population. Thus if a genetic algorithm 

represents a problem domain, a population of chromosomes represents a series of 

possible solutions or outcomes. 

The fitness or reproduction function describes the problem domain algorithmi-

cally in terms of some measure to be maximised. By assessment, the fitness func-

tion determines the fitness value of each chromosome, the fitness value reflecting 

the performance or ability of the chromosome within the application domain. The 

larger the fitness value, the greater is the probability - of the chromosome contribut-

ing to one or more offspring in the next generation when mating ocurs. 
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Since different chromosomes represent different solutions of varying levels of 

fitness, improved solutions may only be attained if information can be passed from 

one chromosome to another of the next generation. To allow this information ex-

change to occur within a population, the crossover operator mimics the natural 

process of mating by allowing new chromosomes to be created from existing ones; 

the fundamental form being single point crossover, illustrated in Figure 3.8. By al-

lowing chromosomes to exchange genes (or sections of their binary strings), new 

solutions to the problem domain are created and will then be explored in the next 
generation. 

Crossover 
Point 

I1IVa 	 a .=  MAN  I 
r:4i1I 	 a a 0 a.. 

a • a 1 mmm77  
Child B: 

Key: 	 _____Gene  

L Chromosome 

Figure 3.8: The visualisation of the crossover operator. 

Finally, the process of mutation ensures that a population of chromosomes re-

mains diverse by randomly changing genes of a few chromosomes in the new 

generation. If this process is not performed the population may be dominated by 

overzealous chromosomes causing the potential loss of useful genetic information. 

In operation, an initial population of randomly generated chromosomes is cre-

ated and evaluated by the fitness function with the generation of corresponding 

fitness values. An intermediate population is created by randomly selecting chro-

mosomes from the current population but weighted relative to their fitness value, 

the fitter chromosomes having a greater chance of being selected. Finally the next 

generation is created by applying the crossover and mutation operators to this in-

termediate population. The previous generation is then discarded. This process 

of fitness assessment, selection, mating and mutation continues until a satisfactory 
solution or group of solutions has been found [175]. 
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The main advantages and limitations of genetic algorithms are listed below [99, 

146]: 

Advantages: 

Genetic algorithms are robust and effective in many different environments. 

Genetic algorithms can search multi-dimensional spaces too large for conven-

tional optimisation techniques to be applied. 

Genetic algorithms consider parameter sets, not individual parameters, thus 

they search multi-dimensional spaces simultaneously. 

Genetic algorithms search from a population of points, as opposed to indi-

vidual points, thus operating on several solutions simultaneously. 

Genetic algorithms use objective function information rather than derivatives 

or auxiliary knowledge, thus requiring virtually no problem-specific informa-

tion. 

Limitations: 

Genetic algorithms require extensive computing resource and long execution 

times (frequently of the order of days on powerful workstations). 

As the complexity of application domains increases, the lengths of the chro-

mosomes also increase resulting in greater computing resource requirements. 

Search domains must be expressible in terms of fitness functions and chro-
mosomes. 

Within the power industry, genetic algorithms have been extensively utilised; 

Figure 3.9 gives an historical indication of the number of publications relating to 

power engineering. More specifically, genetic algorithms have been used for coal 

purchase [125], economic dispatch [249], distribution system planning [288], load 

flow [286], and flexible AC transmission systems (FACTS) control design [218, 265] 

to name but a few. A common property all of the aforementioned applications share 

is a high numerical content within which genetic algorithms offer either the ability 

to compute such complex domains or significantly reduce computational intensity 

associated with traditional analysis methods. 
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Figure 3.9: The number of genetic algorithm papers published annually in 
power engineering [4, p.7]. 

3.2.5 Intelligent Agents 

One of the latest and most promising fields of research within artificial intelli-

gence, intelligent agents emerged as a recognised field of research in the early 1990's. 

Within the artificial intelligence community there appears to be no consensus upon 

the precise definition of an intelligent agent, but Nwana and Ndumn cautiously 

venture the following [193, p.51: 

• an agent is defined as referring to a component of software and/or hardware 
which is capable of acting exactingly in order to accomplish tasks on behalf of 
its user." 

Since such definitions are not definitive it is informative to describe the key at-

tributes of agenthood where there is more agreement amongst practitioners. These 

attributes are eloquently summarised by Ndumu and Nwana [1901 as: 

Autonomy: the ability to function largely independent of human inter-

action, 

Social ability: the ability to interact 'intelligently' and constructively 

with other agents and/or humans, 

Responsiveness: the ability to perceive the 'environment' and respond 

in a timely fashion to events occurring in it, 

Pro-activeness: the ability to take the initiative whenever the situation 

demands. 
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The fundamental basis of intelligent agents can be traced back to control theory 

of the eighteenth century, but it was not until the advent of electronic computing 

in the 1950's that the first steps into agent theory were taken. Research within the 

then newly formed field of cybernetics was attempting to unify models of control 

and communication phenomena, similar to those observed in animals, into a single 

mathematical model [1831. Also the emerging field of robotics allowed the phys-

ical construction of agents to be explored' [114]. The work in these fields formed 

the basis of a new field of research referred to as Distributed Artificial Intelligence 

(DAT) based upon the paradigm that collective interactions of large numbers of 

simple, interacting, semi-autonomous individuals (or agents) produce intelligence 

[159, pp.13-17]. This is a key departure from traditional artificial intelligence ratio-

nale, based upon the logical representation and manipulation of knowledge, utilis-

ing inference as a primary mechanism for intelligent reasoning. 

Since intelligent agents are in their infancy in terms of theoretical and practi-

cal development, there are presently few mature industrial applications with most 

practical examples of agents remaining at the development stage. The main appli-

cation areas are in information management relating to the internet, focussing on 

assisting browsing, but other tasks include scheduling of meetings, news filtering 
and answering questions [208, 180]. 

Several notable exceptions of more mature applications do exist; for example 

the use of agents to generate customised integrated circuit layouts [67]. One of the 
largest projects undertaken utilising intelligent agents has been the ARCHON (an 

ARchitecture for Cooperative Heterogenous ON-line systems) project which was 
developed between 1989 and 1994 [284]. The main application of the ARCHON 

project was to develop a multi-agent system for electricity management. Several 

systems were implemented and demonstrated, one of which was developed to as-

sist control engineers of the English and Welsh distribution systems in fault diagno-

sis, security analysis, creation of safe switching schedules and collection with cross 

referencing of system information. 

One particular aspect of intelligent agents which becomes apparent from the 

aforementioned applications is that, since agents themselves do not contain sig-

nificant amounts of knowledge concerning the application domain, they require 

access to underlying knowledge systems (such as the internet) or knowledge bases 

(as with the ARCHON project) to operate. This is an extremely limiting factor if 

the application domain has yet to have knowledge encapsulated in a computer 

interpretable form. Furthermore the principle feature of intelligent agents is auton-

omy which results in a transfer of control from human to artificial reasoning. For 

a review of the significant implications of this transfer of control see the article by 

'There are authors, such as Brooks [40], who suggest that the physical study of agents, i.e. in robot 
form as opposed to soft-agents, is extremely valuable if not more so. 
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Kitano [140]. 

3.2.6 Summary 

The maturing of the artificial intelligence field has found an abundance of appli-

cations within the electricity supply industry. This is evident in power systems 

research by a broadening of the traditional analytical techniques into the fields of 

artificial intelligence and information technology. 

The previous sections have presented the key artificially intelligent technolo-

gies and indicated some of their typical applications within power systems. This is 

not an exhaustive list of artificially intelligent technologies as there are other tech-

nologies, such as model based reasoning, which have not been widely adopted or 

utilised, or more recent developments, such as ontologies [47], which are only in 

their infancy. For these reasons such technologies are not included in this discus-

sion. 

The next section will explore the key programming paradigms currently avail-

able and the facilities that they offer. 

3.3 Programming Paradigms 

In 1835 Charles Babbage conceived, but never completed, the world's first pro-

grammable computer. The field of computing remained dormant until the 1940's 

when Konrad Zuse constructed the first programmable computer, and with it de-

veloped the world's first high-level programming language, called Plankalkul [143]. 

The first popular programming language, FORTRAN (FORmular TRANslator), 

was developed in 1954 and since then there has been a profusion of languages, 

all based upon several distinct programming paradigms. 

Before the development of FORTRAN, or other so-called 'automatic program-

ming systems', almost all programming was performed using machine or assem-

bly language. Use of such low-level languages severely limited the complexity 

of programs which could be written in a machine interpretable form, and in turn 

limited the problems they described. High-level programming languages, such as 

FORTRAN, Algol, LISP and later Pascal, C and Smalltalk were developed to allow 

computer code to become more readily understandable, computing platform (or 

hardware) independent, and bug free [1651. 

A programming paradigm is a general purpose technique for solving problems 

effectively; a half way house between the real world problem being considered and 
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machine interpretable code. Once a problem has been resolved in a programming 

paradigm it may then be translated into computer code, supported in a convenient 

manner by a programming language. It is important to note that for the purposes 

of this research, a programming language does not support a programming para-

digm if it takes exceptional effort to write code in the given language; the language 

simply enables the paradigm to be used. 

The key motivation for the development of programming paradigms has been 

the requirement to manage complexity. In 1956 Miller discovered that the maxi-

mum number of pieces of information an individual can simultaneously compre-

hend is approximately seven, plus or minus two [177]. This limitation is related 

to short-term memory capacity, which is used extensively when programming but 

is not a feature of long-term memory. As the complexity of software tasks has 

increased, new programming paradigms have been required and subsequently de-

veloped 2 . Further discussion of this and other human cognitive factors that affect 

software engineering are presented by Sommerville [247]. 

The following sections describe the programming paradigms 3  considered of im-

portance and relevance to this research, including a brief discussion of their fore-

seen advantages and limitations. 

3.3.1 Procedural Programming 

This is the original programming paradigm; eloquently summarised by Stroustrup 

[259, p. 23] as: 

Decide which procedures you want; 

use the best algorithms you can find. 

Programming languages based upon this paradigm concentrate upon data pro-

cessing and the construction of the most efficient algorithms to perform a required 

computation. Features typical of such languages are the creation and assignment 

of variables of basic types, global data, performing arithmetic, tests, loops, arrays, 

and functions. The structure typical of a procedural program is illustrated in Fig-

ure 3.10. Computer languages which focus upon the procedural programming par-

adigm are FORTRAN I, ALGOL 58 and IPLV and are referred to as the first genera-

tion of programming languages (1954 - 1958) [31, 651.  The focus on an algorithmic 

approach is reflected in the literature concerning these languages [241, 211]. 

2Note that management of complexity is not the only motivation for the development of program-
ming languages; for example Sun Microsystems developed JAVA with the main motivation to create a 
language which was completely computing platform independent without the need of re-compiling 
the code. 

3 lhis is not intended to be an exhaustive list as there are many other significant programming 
paradigms. Section 3.3.4 extends this discussion. 
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Start of Execution 

Procedure A 

Procedure B Ic ............ 	Data 

I Procedure C 

End of Execution 

Figure 3.10: Typical structure of a procedural program [282, (Adapted)p.571. 

The fundamental limitation of the procedural programming paradigm is that 

all functions have the same level of access to the data on which they operate. The 

resulting errors from incorrect code are then difficult to locate and correct. Further-

more, the inability to group or organise the program structure, combined with our 

limited capacity short-term memory and the limited features of such languages, 

crippled their capacity to encode abstract or complex concepts. These factors re-

sulted in the main applications of such languages to be numerical processing or 

systems programming domains. Indeed, this is also reflected in the applications of 

such languages within the power systems domain, typical applications being load 

flow and circuit analysis. 

3.3.2 Modular Programming 

Initially computer programming focused upon algorithms, since the quantities of 

data being processed were relatively small and the algorithms themselves, com-

pared to their modern day equivalent, uncomplicated. As data and algorithm size 

increased to cope with more advanced tasks and computing hardware, so too did 

program size and more importantly, the complexity. The emphasis in programming 

design hence moved from the design of algorithms or procedures towards the or-

ganisation of data. Hence the development of a module - a self contained unit of 

procedures and the data they manipulate [259, p.26]. The key features to be coded 

in order to create a module are: 

The provision of a user interface for the module, 

The data stored within the module must only be accessible via the 

interface, 

The module must be initialised before being used. 
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The important feature of the modular programming paradigm is that the user code 

is separate from the code which implements the module. Therefore the user of a 

module does not need to know how a module is implemented, indeed the imple-

mentation may change (as a result of bug fixes or adoption of more efficient code) 

but the use of the module, and more importantly the code which interfaces with it, 

will remain unaltered. The modular programming paradigm was first introduced 

to languages such as FORTRAN II and ALGOL 60, referred to as second generation 

programming languages (1959 - 1961) [31, 65], and is now supported by nearly all 

modern computer programming languages. 

 

----I 
Start of Execution 	

Functi 	

Data I 	Data 	
End of Execution

Functions 
Module A J 	

I 
 Module B Module C 

Figure 3.11: Typical structure of a modular program. 

Modular programming presented a significant advancement over procedural 

programming. By concealing data within a module, otherwise known as the data-
hiding principle, larger, more complex problems may be redefined into individual, 
ideally independent, segments of code, i.e. black boxes. Once created and exe-

cuted together, the modules would interact to resolve a particular computational 
problem. 

The ability to encode application domains in greater complexity utilising mod-

ular programming was rapidly exploited throughout the 1960's, complemented by 

an explosion of computer processing power. As the complexity of problem do-

mains escalated it was mirrored by the scope for, and frequency of, problem redefi-

nition resulting in the editing of modules. This situation was an improvement over 

having to substantially or entirely recode a procedural program although, it did fre-

quently result in the editing of modules which had previously been de-bugged and 

tested. Additional editing then normally resulted in new bugs being introduced 

into the modules in question. This limitation was also compounded by the organ-

isation (or classification) of modules as there are no language features to directly 

create, organise or manipulate such structures. Thus the modular programming 

paradigm created inflexible, linearly organised units of code. 

The application of modular programming to the electricity supply industry re-

flected the changes modular programming precipitated but the applications stud-

ied remained highly numerical. An example of such an application is load flow. 
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3.3.3 Object Oriented Programming 

The first object oriented computer language was developed by Ole-Johan Dahl and 

Kirsten Nygarrd between 1962 and 1967 at the Norwegian Computing Center. The 

language they developed was called SIIv1IULA (SiMUlation LAnguage), originally 

developed for discrete event simulation but was later revised and released as a gen-

eral purpose programming language. SIIvIULA was never widely accepted but it 

has significantly influenced the development of modern programming methodol-

ogy, introducing concepts such as classes, objects, inheritance and dynamic bind-

ing4  [120]. 

Dahl and Nygarrd realised that instead of modelling a domain as a series of 

abstract operations, they could represent the actual components of a system as a 

number of objects, with each object created from a specification. The specification, 

or class, of an object is defined such that multiple, identical objects may be created 

from any given class. In turn, another class may be derived from an existing one 

to represent similar types of objects. In Dahl and Nygarrd's language, each ob-

ject is similar to the concept of a module in that it is self-contained with its own 

data and functions; in this case, however, the data and functions mirror their real 

world counterpart's attributes and actions respectively. Objects may also contain 

references to other objects, along with other properties, allowing several objects to 

cooperate together. 

Start of Execution 

\ 	FFnsunctio__j 	 _i_o 
Object_ 

	

O_b_j_e_c t 

4E 	
Data 

Object 	

Functions 

	

nctions 	J 	_______________ 
 I Obie 

End of Execution 

Figure 3.12: Typical structure of an object-oriented program [282, 
(Adapted)p.571. 

Another powerful feature of SIMULA is the process of inheritance in which the 

classes are organised into a hierarchy of classes and sub-classes. Greater flexibil- 

4 These and other terms associated with object oriented programming are explained in depth in 
Chapter 5. 
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ity and re-use of code may be achieved as classes may be adapted and/or aug-

mented without affecting the original implementation of the class. SIMULA also 

introduced dynamic binding allowing many different types of objects to respond to 

a common set of operations, but resulting in different operations being performed 

depending on which object was selected; previous to this development all function 

calls within a program had to be determined at compile time, a process termed 

static binding. 

Throughout the 1970's research and development of programming languages 

was extensive and vigorous resulting in the production of many languages, exam-
ples include Fred, Chaos and Tranquil, but few endured [31, p.29]. However, many 
of the developments made during this period evolved to be incorporated into the 

next generation of programming languages. The fundamental concepts behind 
SIMULA were developed and resulted, in 1980, with the release of Smailtalk, the 
programming language which revolutionised object oriented programming. 

During the same year, Bjarne Stroustrup released C with Classes which would, 
five years later, mature and develop into C++; currently one of the most popular 
object oriented programming languages available [258]. By 1986 object oriented 
programming was becoming academically and commercially accepted resulting in 

the first conference devoted to its discussion, OOPSLA (Object Oriented Program-
ming Systems, Languages and Applications) [174], which marked the beginning 
of the hype surrounding the technology, focusing upon Smalltalk before becoming 
industry wide. 

The paradigm of object oriented programming has been eloquently captured by 
Stroustrup [259, p. 391 thus: 

Decide which classes you want; 

provide afull set of operations for each class; 

make commonality explicit by using inheritance. 

The key advantages and limitations of object oriented programming are de-
scribed below [311: 

Advantages: 

Object oriented systems are more resilient to change as they are constructed 

from independently constructed and proven components (objects). 

Object oriented programming allows complex software systems to evolve in-

crementally from smaller, previously tested systems. 
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As object oriented systems are based upon the modelling of real world ob-

jects, developers are able to capture their interaction through direct modelling 

of concepts they are familiar with. 

The use of dynamic binding allows function calls from objects to have a con-

textual meaning allowing intelligent reasoning to be captured. 

The interaction of groups of objects during execution allows intelligence to be 
exhibited. 

Limitations: 

Not all problem domains lend themselves to the object oriented paradigm; if 

commonality can not be found in the problem domain, object oriented pro-
gramming will be of limited use. 

The exposing, exploiting and expression of a domain in an object oriented 
paradigm is a non-trivial process, requiring great skill and experience. 

Application domains expressed in the object oriented paradigm require great-
er computational resource than similar procedural or modular implementa-

tions (but this increase is normally regarded as marginal). 

Direct application of object oriented programming to areas within the electricity 

supply industry has been limited, with the majority of work focusing in the field of 
power system load flow. Neyer et al [1921 performed early research in this field in 
1990. This research was continued by Foley and Bose [89] in 1995 with the addition 

of switched components allowing the dynamic load flow to be determined during 

simulation. While both these papers presented systems which were natively coded 
in a object oriented language, Phillips et al [209] utilised the SIMIAN (SiMulation 
Image and ANimation) framework, which includes object oriented databases and 

tools, to perform power system analysis. This hybrid approach is also mirrored by 

Deb [68] who utilises an object oriented expert system to the similar problem of line 
capacity estimation. 

3.3.4 Summary 

The proceeding sections have explored, in only basic detail, the key aspects of pro-

gramming paradigms which are of interest as possible implementation technolo-

gies. There is a significant body of literature based upon the study of programming 

languages; see for example the work of Marcothy [165]. 

Not all programming paradigms have been discussed. For example the goal-
oriented paradigm of PROLOG [36] or the symbolic paradigm of LISP [111, 283] would 
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have been interesting languages to explore artificial design within. Upon initial 

consideration, however, although PROLOG and LISP appear sufficiently expres-

sive to warrant further investigation, the lack of Microsoft Windows binaries and 

integrated graphical user interface tools make them inapplicable to this work, and 

are hence not explored further here. The generic programming paradigm, which is 

supported by several modern languages including C++ is also not explored since 

there is no obvious application of such a language feature to artificial design. 

3.4 Chapter Summary 

This chapter has explored available artificial intelligence technologies and pro-

gramming paradigms and their use with the electricity supply industry. For each 

technology a discussion of the advantages and limitations has been presented with 

a view to assessing its suitability for this project. In the ensuing chapters these 

technologies will be reviewed with respect to design, a selection made and imple-

mented in a design tool for embedded generation switchgear. 



Chapter 4 

Selection of Software 
Development Environment 

This chapter identifies the important issues raised from both embedded generation 

switchgear design and design methodology. By considering these issues, a sys-

tem specification for a software development environment is presented. A review 

and comparison of possible implementation technologies, indicating their respec-

tive prevalence and effectiveness in performing design tasks, is given. The chapter 

concludes with a discussion indicating the reasoning behind the selection of the im-

plementation technology and the software tools required to realise the embedded 
generation switchgear design software. 

4.1 Factors Raised from Embedded Generation Experience 

The implications of relatively minor mistakes committed at the design stage of an 

artefact may result in increased costs during the succeeding stages of development 

or construction.' The economics of embedded generation are marginal, hence the 

need for government intervention through the renewable obligations. Any possible 

reduction of such costs, especially if they can be made during the initial stages of 

an embedded generation project proposal, is therefore important. By capturing 

the key aspects of G59 combined with the design knowledge of switchgear in a 

computer interpretable form safe, accurate and complete specification of electrical 

switchgear for embedded generation schemes may be produced quickly, easily and 

effectively. For such a tool to be realised the following criteria must be met by the 

selected implementation technology: 

'As discussed in Chapter 1. 
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4.2 Factors Raised from Design Methodology 

• The ability to encode the reasoning required to design the various switchgear 

sections, including the internal components of each section, thereby allowing 

a correct and complete specification of the proposed embedded generation 

scheme to be produced. 

• The software tool must be easy to operate and must simplify the process of 

designing electrical switchgear for embedded generation without limiting the 

user to any artificial design restrictions. 

4.2 Factors Raised from Design Methodology 

Design paradigms allow the characterisation and analysis of a domain to be per-

formed thus allowing the process of design to be made more effective. However, 

not all the paradigms presented in Chapter 2 are suitable as a basis for developing 

computer interpretable design reasoning. The analysis-synthesis-evaluation (ASE) 

paradigm is only performed by human design practitioners. The cognitive para-

digm is the study of human design reasoning and thought processes which is not 

directly applicable to automating design reasoning. Case based design would be 

difficult to capture within a computer model as domains which are suitable have 

no discernible design methods or rules. However, both the artificial intelligence 

and algorithmic paradigms are readily and directly applicable to serve as a basis 

upon which to develop automated design methods. 

The study of design methodology yields a significant and universal characteris-

tic common to all design methods - evolution. Whether it is the adoption of existing 

solutions to new circumstances, the direct application of iterative design or the se-

lection of a final solution from a multitude of others, evolution manifests itself as 

an important aspect of design. The inherent inflexibility of certain software tech-

nologies to adapt, either during construction or execution, has already proved to 

be a significant limitation for modelling design processes in any domain. 2  Since 

design reasoning, even within narrow domains, may change over time, models of 

these processes must also evolve. If design domains are static, it is probable that the 

scope of the design tool is not. It is therefore important that the software technol-

ogy selected must be sufficiently flexible not only in use but also in construction, 

modification and maintenance. 

2All software technologies have limitations in their adaptability but as the discussion in Section 4.4 
indicates, some technologies which initially appear particularly suitable for design tasks are inflexible 
when required to adapt. 
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4.3 System Specification 

Having considered the factors raised from current embedded generation design 

practice and design methodology, in essence, any implementation technology shou-

ld meet the following three specification criteria: 

The software should be able to capture design methods, with reasonable cod-

ing effort, sufficient to allow the switchgear components of an embedded gen-

eration plant to be modelled. 

The software should be sufficiently flexible to allow the modification or adap-

tation of the software project to aspects of the design not originally envisaged 

without affecting existing functionality. 

The software must operate on a personal computer  in a robust and stable 

manner with a reasonable speed of execution; preferably utilising a standard 

interactive graphical user interface (GUI), such as the Microsoft Windows© 

operating system. 

4.4 Comparison of Implementation Technologies for 

Design 

Computional tools have been used to assist human designers since the mid 1960's, 

resulting in the development of computer aided design technology [263,30]. How-

ever, the majority of the research and development in this field has focused solely 

upon the visual and parametric aspects of design. This section will review the 

software technologies described in Chapter 3 with respect to their suitability and 

performance for capture and reproduction of design reasoning. 

4.4.1 Expert Systems 

The development of design tools based upon expert system technology has been 

extensively investigated with the first generation of tools appearing towards the 

end of the 1980's. Examples of such applications include Steinberg's exploration 

of the design of digital integrated circuits [256] and Soh and Soh's development of 

a tool for producing the preliminary design details for offshore structures such as 

oil riggs [245], both developed in 1990. In the same year, Gupta and Siewiorek's 

creation of the Ml, a tool for prototyping small computer systems [106], was also 

3The specification of the personal computer being a Pentium (x586) class processor or better, op-
erating at 120 MHz or faster with a minimum of 16 MB of RAM. 
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developed. Research in this area has continued throughout the last decade, allow -

ing the development of commercial expert system design tools, such as Hammond 

and Davenport's 'RaPiD' system for dental prosthesis [107], and Allen's system for 

enhancing the quality of printed circuit board assembly design [6]. 

Applications within the electricity supply industry continue to be developed 

and include the design of auxiliary power supply systems for thermal generation 

plant [97], the design of distribution networks [155, 213], integrated renewable en-

ergy systems design [212] and switched mode power supply design [161]. 

The predominant reasons for the adoption of expert system technology for de-
sign applications are as follows: 

• Expert systems were the first commercial and widely accepted artificially in-

telligent technology, resulting in the extensive development of specialist ex-

pert system shells or development environments, thereby allowing rapid and 
robust development of applications. 

• Expert systems are particularly adept at the capturing of heuristic reasoning 

and/or knowledge which is a common feature of many design domains. 

• Expert systems allow automated decisions to be traced, thus allowing addi-
tional validation of the design reasoning by either a human operator or spe-
cialist tools. 

• Specific design domains may be easily and accurately captured within an ex-

pert system knowledge base resulting in a tool that produces high quality 
results. 

Interest in expert systems for design tasks peaked in the early 1990's with de-

sign domains being explored and reported in compendium books, indicating the 

large volume of research into computional design tools based upon this technol-

ogy. A general review of the application of expert systems to engineering oriented 

design tasks was compiled by Rychener [234] who presents eleven expert systems, 

focusing mainly upon architectural/ structural design; other areas explored include 

computer construction and mechanical design. Coyne et a! [55] presents a compre-

hensive text on the construction, knowledge representation and operation of expert 

systems specifically for design tasks. Issues associated with the modelling of cre-

ative design utilising knowledge based systems was reported in detail by Gero and 
Maher [96]. 

The common element which may be traced throughout expert system based 

design shells is that the design domain must be heavily parametric. Within such 

models, numerical calculations may be performed either in the knowledge base(s) 
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or by external simulators, or a combination of both. Although many design do-

mains, especially those within the engineering disciplines, are particularly suitable 

for modelling using expert system technology with excellent results, this technol-

ogy does have limitations. 

In particular, Reddy [217] indicated the brittleness and limitations of expert sys-

tems for electronic power supply design. Assuming that the complex and time con-

suming task of entering all the knowledge for a domain has been encoded within 

a knowledge base, Reddy indicated that the editing of such a knowledge base to 

allow adaptation or extension of the expert system required considerable effort. 

Reddy also indicated the necessity, and significant effort required, to maintain an 

expert system. This limitation has also been acknowledged by other developers in 

the field, for example Waterman [278, pp.196-1991. There has been research into re-

ducing this workload of maintenance, for example by inductive learning and rule 

generation strategies [238] to allow such systems to adapt to a changing environ-

ment, or the use of distributed internet based tools for sourcing, modifying and 

storing design knowledge [223]. However, such expert systems have become ex-

cessively complicated to construct and have yet to be generally proven. 

To reduce the brittleness of expert systems, Ohki et a! [199] have extended this 
technology to perform electronic circuit design incorporating qualitative reasoning 

to present several possible circuits to the user, who then selects the preferred circuit 

solution. By manipulating and reasoning using parameter ranges as opposed to 

specific numerical values, and allowing the system to continue reasoning unevalu-

ated conditions, Ohki et al have created a more flexible, robust expert system in its 

operation than traditional approaches. The system remains, however, application 

domain specific with the underlying structure of the software requiring significant 
maintenance. 

4.4.2 Case Based Reasoning 

The capturing, recall and reuse of specific experiences offered by case based reason-

ing is particularly relevant to design, as it is an element instantly recognisable in the 

human practitioner. It is therefore not surprising that a significant number of artifi-

cially intelligent design tools have been developed utilising case based reasoning, 

though the majority of these systems have remained at the research or prototype 

stage. Maher and Silva Garza [163, 164] have reviewed the use of case based rea-

soning specifically for design purposes, indicating the main application areas are 

within architectural and structural design. The authors also indicate that software 

development, mechanical device representation and planning tasks are other de-

sign application domains utilising this technology. Case based reasoning has also 
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served as a basis for exploring several models of creative design, as reported by 

Goel [98]. 

Other disciplines in which case based reasoning has been applied include elec-

trical and mechanical engineering. For example, the design of aircraft subsystems 

such as flight controls, fuel systems, landing gear and electrical systems has been 

reported by Domeshek et al [76]. Rong and Lowther [228, 227] have explored the 

use of case based reasoning for the design of electromagnetic devices and Lees [148] 

has investigated the provision of quality assessment advice within the domains of 

mechanical component design and software development. Within the electricity 

supply industry the adoption of case based' reasoning for design oriented tasks ap-

pears non-existent. 

A review of case based reasoning applied to design tasks indicates that this area 

of research is still a developing discipline that has yet to mature. The fundamental 

issue of representing design cases has still to be formalised into a practical theory 

or even a set of guidelines, as indicated by Maher and Silva Garza [164, p.38]: 

"The approaches are as numerous as there are systems, indicating that this 

aspect of case-based design has not matured enough to lead to general principles 

of how to represent a design case." 

The other two key features that comprise a case based reasoning tool, namely case 
indexing and case adaptation, have a variety of possible implementations. However, 
both these features are significantly further developed and pose no limitations to 

the implementation of design systems as they are algorithmic in nature. Case based 

reasoning design tools will produce excellent results in comparison with other ar-

tificial design tools if the following two criteria are met: 

• The arrangement of system components or design factors of an artefact may 

be recorded, with reasonable effort, into a series of computationally interpret-

able cases. 

• The design reasoning relating (or optimising) the arrangement of components 

or factors to the final artefact's operation (or performance) is not definable. 

When considering an application domain where the design process is definable 

algorithmically, then other artificially intelligent technologies, such as expert sys-

tems, should be selected instead of case based reasoning. This is due to the fact that 

the collection and representation of cases is non-trivial thus making other develop-

ment technologies more attractive. 
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4.4.3 Artificial Neural Networks 

The use of artificial neural networks for artificial design has been limited. Of the 

few examples utilising this approach, it was Mohammed et al [182] who initially 

proposed the parametric design of magnetic cores for electromagnetic devices us-

mg neural networks. This concept of design optimisation utilising neural networks 

was extended by Idir et al [122] where neural networks are used to optimise a set of 

specification parameters for the design of induction motors. Idir et al produced the 

training data for the neural network to operate upon jointly from an expert system 

and a finite element simulation. The neural network then learned the relationship 

between motor performance and design specifications (or constraints). 

The software tool produced by Idir et al performed design reasoning as follows. 

The principal motor design parameters are entered into the input layer of the artifi-

cial neural network, with its output layer producing the current motor performance 

and design constraints. The trained neural network is given an initial specification 

and a set of desired constraints. With the use of a feedback loop the neural network 

interactively executes, comparing the current constraints to the desired constraints; 

the resulting difference is combined with an evaluation of the performance of the 

current design solution and returned as an error term. The error term adjusts the 

design parameters on the input layer of the neural network resulting in the evalua-

tion of a new design solution. This cycle of design, evaluate, adjust continues until 

an optimum solution has been found. 

The fundamental limitation of utilising artificial neural networks for design 

tasks, as exemplified by Mohammed et al and Idir et al, is that extremely few de-

sign domains have large, parameterised, computer interpretable design data upon 

which the networks may be trained. Both authors relied upon synthetically gener-

ated data and the use of evaluation strategies (either by the optimisation of training 

data, the direct expression in empirical formulas or use of simulation tools.) The 

issues concerning the validity of parametric domain data generation and evalua-

tion strategies, combined with the high computional intensity of this technique has 

resulted in the limited adoption of artificial neural networks as a basis for artificial 

design tools. 4  

4.4.4 Fuzzy Systems 

Fuzzy set theory has not been applied directly and solely for the implementation 

of a design tool since this technology only allows the fuzzJication of decisions, with 

no greater reasoning structure. It is therefore typical to combine fuzzy logic with 

4Both the software systems reported by Mohammed et a! and Idir et al have remained at the pro-
totype stage. 
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other artificially intelligent technologies to produce hybrid systems; examples in-

clude adaptive neuro-fuzzy systems which combine artificial neural networks with 

fuzzy logic [186] and fuzzy expert systems [292]. 

The use of fuzzy hybrid systems for design applications has not been exten-

sively developed. The only example of such a hybrid system was reported by Pang 

who implemented an adaptive neuro-fuzzy system for control design [202]; the ex-

ample presented is a control system for balancing an inverted pendulum. As previ-

ously indicated in Section 3.2.3, although hybrid fuzzy systems have been applied 

in the electricity supply industry, there is no evidence of their application within 

this sector specifically for design applications. 

4.4.5 Genetic Algorithms 

The use of genetic algorithms within the electricity supply industry has been in-

tensive in recent years [4]. This trend has also been reflected in other application 

areas, with the field of artificial or automated design methods being no exception. 

The first design tools were developed in the early 1990's. Examples of such tools 

include Bramlette and Bouchard's research [35] into utilising genetic algorithms for 

supersonic aircraft design; work which was later extended by Rasheed and Hirsh 

[214] and complemented by their exploration of the related design domain of su-

personic missile technology. Parmee and Vekeria [204] utilise genetic algorithms for 

the optimisation of material distribution for building construction. Deb and Goyal 

[69] present four mechanical engineering design domains, such as gear chain and 

hydrostatic thrust bearing design, resulting in components that outperform their 

respective counterparts produced by previously known design methods. 

More recently, Carlson-Skalak et al [45] have developed a genetic algorithm 
to design a cooling system for manufacturing machinery by configuring standard 

components to a desired specification. This is an advancement over the aforemen-

tioned design tools as it involves the extension of design reasoning from domain 

specifics, or component level, to an overall integrated system level. 

Specifically within the electricity supply industry, genetic algorithm based de-

sign software has been developed for several diverse application areas. Power sys-

tem stabiliser design and optimum street light placement has been reported by Yeh 

et a! [289]; the former has also been investigated by Baaleh and Sakk [19]. Concrete 

arch dam optimisation and two areas of gas turbine design, namely blade cooling 

geometries and turbine annulus design, has been explored by Parmee and Denham 

[205]. The design of three phase, surface mounted, permanent magnet motors was 

5Other hybrid design tools based upon combinations of other software technologies are discussed 
in Section 4.4.9. 
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considered by Bianchi and Bolognani [28] which allows the optimisation of one 

or more objective functions, such as motor torque or efficiency, to be determined 

by the user before the simulation proceeds. A final example of this approach was 

reported by Taranto and Falcão [2651 who present a tool for optimising the loca-

tion of static Var compensators (SVC's) and thyristor controlled series compensator 

(TCSC) damping controllers to control power flow within a small power system 

network. 

The features common to all the above genetic algorithm design tools are: 

The design domain must be expressible as a string of numerical parameters, 

with algorithms that allow design solutions to be evaluated, compared and 
an optimal solution selected. 6  

The design domain must be extremely large; e.g. Carlson-Skalak et al [45, p.651 
indicate that for a basic problem within their design domain, the number of 

possible solutions would be approximately 10 187 . 

The highly numerical nature of the design domain frequently overwhelms 

human designers. 

It is also interesting to note that some authors in this field of research argue that 
the application of genetic algorithms to design tasks mimics creative design, as dis-

played by the human practitioner. The counter argument to this debate is that this 

technique is simply performing a parametric optimisation that has little in common 

with the abstract thought process behind the human act. 

Even though this is a relatively new area of research, design tools based upon 

genetic algorithms have already been proven in many diverse application areas. As 

this field matures, the complexity of applications tackled using this approach and 

the quality of the artefacts produced will certainly increase, as already indicated by 
Carlson-Skalak et al [45].  Given a large design domain that may be described nu-

merically, genetic algorithms will produce excellent results quickly and efficiently. 

Although this section is primarily concerned with the use of genetic algorithms 

for design, it should be noted that the other technologies indicated in Section 3.2.4, 

under the general term evolutionary computing, have not been used specifically for 

design oriented tasks. The only exception to this trend has been Chen et al [49] 
who presented a novel approach to the design of feedback controllers for thyris-

tor controlled series compensators (TCSCs) for power systems utilising simulated 

annealing. 

6Design domains which meet this condition tend to be highly numerical (or parametric) in nature. 
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4.4.6 Intelligent Agents 

The use of intelligent agents to implement design systems has been a recent de-

velopment in the field of automated design methodology, thus there are currently 

extremely limited numbers of example applications. One of the first agent based 

design tools to appear was developed by Paredis and Khosla, iri.1997, to produce 

fault tolerant manipulators for satellite docking onboard the space shuttle [203]. 

More recently, a design tool based upon similar but more elaborate principles 

than those used by Paredis and Khosla is the 'A-Design' environment developed 

by Campbell et a! [44], in which the authors explore electro-mechanical design of 
weighing machines. The A-Design model operates based upon four subsystems 

which are: 

An agent architecture that allows the creation and progressive improvement 

of design alternatives, 

A conceptual representation of the design domain that may be queried by 

agents to obtain design goals, 

A system of decision making that allows multiple objectives and solution re-

tention (thus allowing for design changes), and 

An iterative algorithm for the evaluation and improvement of basic design 
premises. 

The A-Design system gains its robustness and flexibility from the collaboration of 

various agents within the framework, allowing the centralisation of data and ob-

jectives but still allowing individual specialist agents to be used for specific design 

goals or issues. This fundamental organisation of the design tool is analogous to 

how a company or consultancy operates, allowing the dynamic evolution of design 

tasks to be explored. It is therefore not surprising that the underlying technology 

of the A-Design system is based upon a whole wealth of technologies developed 

from the artificial intelligence community: primarily intelligent agent theory but 

also artificial life, genetic algorithms and simulated annealing. 

The advantages of utilising intelligent agents as a technology for artificial de-

sign is discussed by Campbell et a!, however, Lander [145] explores this arena in 

more detail. The central advantages are three fold and are discussed as follows: 

• Design domains are characterised by the constantly evolving development of 

technology and ideas, resulting in software tools that model such environ-

ments becoming quickly dated. Since intelligent agents operate through well 

defined, specified and separate interfaces, frequently via a common overall 
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architectural framework, interfaces may be constructed to incorporate ex-

isting tools into an agent based design application. As the design domain 

continues to change, individual agents may be modified or replaced without 

propagating modifications through the entire design tool. 

• The ability of agents to share data and process information, termed interop-
erability, allows the complex and varied flow of information within an agent 

based design tool to be managed, either by the architectural framework or 

by specialised system components. This allows the design process to be re-

modelled as and when required. By exploiting the relationships and infor-

mation within a given design domain whenever possible, high quality design 
solutions may, in theory, be arrived at with minimal effort. 

• Individual agents may also be coded to account for and manage conflicts 

which will undoubtedly arise during any design process. Typical sources 

of conflicts are incorrect information or knowledge, conflicting assumptions 

or goals between agents and differing evaluations of alternate designs. Such 

conflicts would normally result in a system halting, but agents may be coded 

to resolve such issues by classification and negotiation. 

In summary, intelligent agents allow the myriad of diverse design information 

and methods to be modelled in an extendable and flexible environment which, if 

implemented using similar protocols to the internet, does not even have to exist 

on a common computing platform. As a tool for artificial design, intelligent agents 

present a wealth of possibilities, therefore it is highly probable that this technology 

will become a common base for artificial design development in the future. 

4.4.7 Procedural & Modular Programming 

The procedural programming paradigm was utilised to construct the first genera-

tion of computer aided design (CAD) systems that began to appear during the mid 
1960's [30].  As these systems matured throughout the 1970's, their functionality 

increased substantially, resulting in a corresponding increase in the complexity of 

their construction. To allow developers of computional design tools to manage the 

code of such tools, the procedural programming paradigm was superseded by the 

modular programming paradigm [293, p.851. 7  

The advent of personal computers (PC's) in the 1980's resulted in a rapid expan-

sion of computer aided design systems aimed at small businesses for computerised 

drafting and basic parametric design purposes [220, 43]. However, the complexity 

7Examples of modular based programming languages utilised for the construction of computer 
aided design tools included FORTRAN, Pascal and C [293, p.85]. 
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of these tools continued unabated. Therefore by the early 1990's the modular pro-

gramming paradigm could not effectively manage the complexity of future corn-

putional design tools; necessitating the adoption of the object oriented program-

ming paradigm [169]. 

Both procedural and modular programming paradigms have been mainly used 

to construct visualisation and drafting tools or to perform parametric or algorith-

mic design within narrow, well defined domains. Their use within the electricity 

supply industry, and indeed beyond to industry at large, has been extensive. How-

ever, due to their limited capability in comparison with modern artificial intelli-

gence and programming techniques, both these paradigms are no longer directly 
and solely utilised to build such systems. 

4.4.8 Object Oriented Programming 

The use of object oriented programming for the development of design tools has 

mirrored the popularity and, more importantly, the availability of object oriented 

programming languages. One of the first systems proposed to exploit object ori-

ented programming for design problems was 'IIICAD' (Intelligent Integrated In-
teractive Computer Aided Design) reported by Akman et al [3]. The IIICAD system 
was particularly advanced when it was proposed in 1987, utilising a graphical user 
interface and specialist software components to assist mechanical artefact design. 

An extremely powerful feature of the IIICAD software is its ability to communicate 

between the various design components via an underlying system core. This is fa-

cilitated by the integration of data base and expert system technologies. It should 

be noted that the entire IIICAD system was encoded using the object oriented pro-
gramming language Smalitalk. 

It was not until the early 1990's that other developers explored similar areas of 
research to Akman et al. Initially developers focused upon the management of de-
sign information using object oriented programming. As these systems advanced, 

design processes and concepts became increasingly important, resulting in their 
modelling and inclusion into design tools. 

It should be noted that the object oriented paradigm, which is concerned with 

all aspects of software development, was also simultaneously developing and evol-

ving during this period. As object oriented programming matured, a series of 

methodologies to facilitate the understanding of this paradigm and to assist in 

the realistic, practical construction of such systems developed. Examples of these 

methodologies, of which there are many, include the CRC (Class, Responsibilities 

and Collaborators) method [24], OMT8  (Object Modelling Technique) [231], and 

8 'flriS notation is used in the ensuing chapters of this thesis and a notational summary is presented 
in Appendix A. 
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more recently the UML (Unified Modelling Language) method [90, 232].9  Hender-

son-Sellers [113] presents a complete listing of methodologies and a brief discussion 

of their eventual unification. 10  

The concepts proposed by Akman et al were developed by Barbian and Schlage-

ter [22] who proposed a system called CODA (COoperation model for Design Ap-

plications) to support groups of human designers that would be involved in large 

scale tasks, as exemplified by aircraft, integrated circuit or software design. Their 

contribution to this area of research was made by integrating the storage and re-

trieval of design data to a central location combined with communication, syn-

chronisation and coordination of information between users. 

In the same year, 1993, Popieul and Angue [210] developed what they described 
as a 'design helping tool', implemented in Smailtalk, to assist in the design of arte-

facts for manufacture utilising computer numerical controlled (CNC) machines. A 
similar approach, again using Smalitalk, was applied by Billington and Cox [291 for 
the design and analysis of control systems utilised in the water supply industry. 

The development of aforementioned software assistants focused upon the man-

agement of design information and mainly parametric design processes. A more 

ambitious project of creating a high level design assistant (HILDA) was originally 
proposed by Wnuk [285] for the creation of computer systems, but it was not until 
four years later, in 1994, that the system was realised through a language developed 
by Carmichael and Mangum [46]. The language they developed was supported by 
the Institute of Electrical and Electronic Engineers (IEEE) in an effort to establish a 

common language for the communication, documentation and design of electronic 

systems. The methods employed in the language were a top-down design strategy 

with constraint propagation. Although by no means a complete set of design meth-

ods, it represented a substantial attempt to model the design of electronic systems 
using this technique. 

The fundamental concepts described by Wnuk of attempting to relate paramet-

ric, functional and hierarchical knowledge within objects and applying constraints 

within the context of a design process has become an area of significant research. 

The extension of Wnuk's concepts has resulted in the development of design mod-

els not previously explored due to their complexity and the continued advance-

ment of modelling design processes. 

9A brief review of various object oriented design methodologies is presented by Daniels [65].  The 
review is now dated (as it was published in 1994 - before UML existed) it, however, remains a useful 
article. 

10Note that object oriented methodologies frequently use the term design which, in this context, 
refers to the act of creating an objected oriented system. This should not be confused with the context 
presented in this section where the software systems presented attempt to emulate human design 
reasoning utilising the object oriented programming paradigm. 
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The research performed by Mitchell et al [179] is a prime example of the exten-

sion of the object oriented modelling. The authors have developed a three dimen-

sional structural and visualisation model that also allows the relationships between 

a structure's physical form and actual function to be captured. Mitchell et al applied 

their software model to the domain of design and manufacture of gold club head 

prototypes. 11  

Examples of design tools for use within the electricity supply industry based 

solely upon object oriented technology have yet to be reported, despite the fact that 

this technology has been utilised within the sector, as indicated in Section 3.3.3. 

However, there have been several design tools which rely upon the object oriented 

programming paradigm but are combined with an artificially intelligent technol-

ogy to capture and perform design reasoning; such systems are described in Sec-

tion4.4.9. 

4.4.9 Hybrid Systems 

The majority of artificial design tools, in general, utilise a key software technology 

in order to re-create design reasoning, normally within a narrow domain. Within 

this thesis such technologies have been classified as either an artificially intelligent 

technique or programming language paradigm. It is therefore not surprising that 

some researchers have selected a combination of such technologies, based upon 

their cooperative merits, to implement design tools. An example of this hybrid 

approach has already been presented in Section 4.4.4. 

The combination of evolutionary computation, normally in the form of genetic 

algorithms, and artificial neural networks has proved constructive in the field of ar-

tificial design. An example of the operation of such a design tool would be that the 

neural network learns design attributes that have a high probability of producing 

successful solutions. From a set of design parameters, or a specification, the neural 

"Postscript: During the course of this project, developments within the field of object oriented de-
sign have continued apace. The following brief discussion indicates research that was not published 
when the decision to use the object oriented paradigm for construction of the design tool, described 
hitherto in this thesis, was initially made. The following authors indicate the viability of the object 
oriented paradigm for computional design tool construction. 

Bento et al [26] have extensively explored the use of logic and object oriented programming to rep-
resent the engineering design knowledge of structural engineering, focusing upon the modelling of 
framed building construction. The modelling of product and design processes, including the rela-
tionships between form and function have been reported by Gorti et al [101]. By developing their 
model, Gorti et al have also constructed a general architecture for expanding traditional object ori-
ented design techniques; the demonstration domain described product models for television remote 
controls. Computional design tools for use within the electricity supply industry are limited in num-
ber. However, a notable example of such a tool implemented utilising object oriented programming 
is described by Sachdev et a! [237] who presents a software application to design substation interlock 
schemes. A general formalism for object oriented design processes including evaluation of alterna-
tive designs, exploration of alternatives and the management of design history is presented in detail 
by Liang and O'Grady [149]. 
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network will produce a design solution which is then perturbed to produce a pop-

ulation of possible design solutions. An evolutionary algorithm is then utilised to 

optimise this population of solutions. 

Mohammed et al [181] were some of the first authors to adopt this hybrid ap-

proach for the optimal design geometry of electromagnetic devices. More recently, 

Grierson's research [104] on the conceptual design of bridge structures and Fan's 

work [82] on inverse design methods for turbo-machinery diffuser blade profiling 

have both exploited the combination of genetic algorithms and artificial neural net-
works. 

Another expanding research area for artificial design is the use of object ori-

ented programming and a variety of artificial intelligence techniques. For example 

Gorti and Sriram [101] have used the object oriented paradigm as the fundamen-

tal technology for their CONGEN software for exploring bridge design. However, 

the authors also employ object oriented versions of expert systems, case based rea-
soning and intelligent agent technology, all of which communicate with an object 

oriented database management system. Ormerod et a! [201] utilise an object ori-
ented database technology for storage of previous design solutions combined with 

intelligent agents to retrieve previous solutions and capture new solutions. 

Finally, Atanackovic et a! [18] present a software tool for the complete planning 

and design of power systems including sub-systems or components, such as gener-

ation, interconnections, transmission (AC and DC), distribution networks, towers 

and substations. The design software was implemented utilising a series of indi-

vidual, specialist expert systems and numerical simulation tools, each one created 

to resolve particular aspects of the application domain, however, these individual 

tools are integrated such that the overall design goals may be achieved and opti-
mised. 

The advanced application of the artificially intelligent techniques discussed in 

this thesis for machine learning within various design environments was reported 

by Duffy [771. 

4.4.10 Summary 

This section has briefly indicated the use of various software technologies for the 

implementation of computerised design tools. From this review it is clear that a 

large majority of computional design tools have been produced based upon expert 

system technology. However the limitations of this technology have resulted in ge-

netic algorithms and object oriented systems being developed, and more recently, 

intelligent agent systems. The vast majority of the design systems cited in this sec-

tion have remained, unfortunately, at the prototype stage of development. 
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4.5 Implementation Selection 

The system specification detailed in Section 4.3 lists the criteria which must be sat-

isfied to ensure the success of the project. The resolution of the first two criteria 

depend upon the implementation selection; the final criterion is dependent upon 

the selection of the development environment which is the subject of the next sec-

tion. The discussion which now follows described the reasoning behind the final 

and crucially important selection of an implementation technology for the project. 

Expert systems initially appear to be particularly suitable for constructing a 

computationally based design tool, as decisions may be traced and many design 

tasks may be described in heuristic rule sets. However, this approach has been ex-

tensively explored, proving to be inflexible and problematic. Furthermore, the ex-

perience reported by Atanackovic et al [18] indicates that within the domain of elec-

tric power system planning and design, the sequence of reasoning steps performed 

by the object oriented expert system when solving a design problem followed an 

established order of execution. 12  Since the order of design reasoning underpinning 
Atanackovic et al software could be determined, the inference engine of the expert 

system was rendered redundant. As a result, the latterly developed stages of the 

project were coded using a purely object oriented approach. For these reasons this 

technology was rejected despite the suitability of the switchgear domain to this ap-

proach and the availability of expert system shells, e.g. CLIPS [50] and KappaPC 
[136], within which graphical user interface features could be constructed. 

The lack of extensive training data for switchgear design, either in the form of a 

series of previous cases or in raw numerical form, excluded both case based reason-

ing and artificial neural networks from being considered any further. Indeed, the 
reliance upon synthetic or parametrically generated design data would be problem-

atic and error prone. Also when considered with the high computational intensity 

of neural networks and the operation of a graphical user interface, it was unlikely 

that such a design tool could operate on the specified personal computer without 

extreme delays between design stages. Furthermore, the limited number of design 

tools based upon either case based reasoning or artificial neural networks indicated 

that both these approaches are unsuitable for the majority of design tasks, unless 

combined with other artificially intelligent technologies. This too was also the case 

for purely fuzzy based systems. 

The use of genetic algorithms for exploring design domains has proved suc-

cessful, although only a recent development. Indeed, genetic algorithm technology 

could be applied to switchgear design, with an initial population of randomly gen-

erated chromosomes representing various switchgear configurations. The fitness 

12This is also the case for switchgear design. 
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function could be determined by the user which would be a symbolic represen-

tation of the required switchgear configuration. However, some cost or function 

minimising would also have to be incorporated into the fitness function to ensure 

grossly over specified designs were not produced. A hierarchy of components, or 

chromosome sections, would also have to be included so that switchgear sections 
could have precedence over, say, sets of fuses. 

Such limitations of a genetic based switchgear design tool could be resolved, 

but at the expense of contorting the genetic algorithm paradigm. Furthermore, the 

switchgear design domain does not require the vast search capability that genetic 

algorithms offer since a final specification for a particular site may be arrived at 

through logical deduction. For these reasons, genetic algorithms were not consid-
ered a suitable implementation technology. 

The very recent developments in intelligent agent based systems for imple-

menting design tools have provided very encouraging results. Indeed such sys-

tems will provide the basis for many future design systems. The justification for 
this statement is two fold: 

The ability of agent based technology to unify and integrate many smaller 

systems into a coherent, powerful design tool. 

Design information may be stored or extracted from many diverse sources 
via specially constructed database interfaces or the internet. 

However, agent based systems are such a recent development that their theory of 

construction and operation was only emerging when this project was considering 
the choice of implementation technology. This lack of maturity within the field 

was compounded by the large size of many agent based systems, requiring at least 

several people for their development. It was decided that an agent based approach 

was not appropriate for this project. Even if agent systems where applied in a 'kit 

form', the domain knowledge upon which the agents operate must also be encoded 
- a non-trivial task. 

The functionality available within any purely procedural programming lan-

guage will certainly allow the fundamental reasoning of any design domain to 

be crudely captured. Indeed most software systems could be re-coded only us-

ing procedural programming techniques, but such a task is seldom performed as it 

defeats the motivation of more recent programming paradigms - the management 

of complexity. Only the most basic design domains could be implemented using 

procedural programming techniques without the complexity and strategy of the 

design task becoming too great for the programmer to code. Therefore procedu-

ral programming was not considered as a possible implementation technology for 
modelling switchgear design. 
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The key feature underpinning the concepts of modular programming, the con-

cept of data hiding, resembles strongly the practice of top-down design. Both prac-

tices require the division of a domain into resolvable, separate modules with the 

construction of definite interfaces, thereby allowing the individual components, 

once constructed, to operate in unison to produce a solution. 

Modular programming presents a significant advancement over and above pro-

cedural programming techniques. Unfortunately, a major limitation of this ap-

proach is that the interaction between modules is fixed at compile time. Although 

initially this is not an obvious limitation, it becomes apparent as the complexity of 

design rationale modelled in software systems increases. Design processes adapt 

and evolve, however, the adaptation of module interaction during execution is not 

natively expressed in solely modular based programming languages. As a result, 

this severely limits its applicability to all but the most basic design situations. 

The organisation or classification of artefacts or their constituent components 

is an essential process utilised by human practitioners of design. This process is 

also not directly reflected in modular programming languages since module or-

ganisation is basically linear. Finally, the key to design rationale is evolution; this 

is reflected, to a limited extent, in software languages as flexibility, but the modifi-

cation of existing coded and tested modules frequently poses significant problems. 
Thus, due to the limitations and inflexibility of modular programming, the use of 

this technology to implement the project was rejected. 

The design of switchgear for embedded generation may be characterised by the 
use of components with specific features which when combined in an appropriate 

logical order constitute an operational switchgear installation. On a more general 

level, the relationship between objects or artefacts and design processes is a central 
issue in design methodology. 13  Object oriented programming allows the creation 

of interacting objects, each with its own data and functions (or behaviour), to be 

captured in software directly. This ability permits the modelling of design concepts 

or artefacts equivalent to that which the designer would manipulate in real life. 

The object oriented paradigm additionally enables design reasoning to be captured 

in a flexible manner, thereby allowing the model to evolve with the domain. As 

long as the object interfaces are adhered to (they must remain unchanged, but may 

be further expanded to model additional behaviours), the rest of the design system 

will operate as previously coded. 

The division of design domains into objects, either directly representing part (or 

a component) of the final artefact or as a conceptual aid, enables designers to effi-

ciently manage the complexity of the design domain and this is likewise facilitated 

in the object oriented paradigm. Furthermore, the object oriented paradigm allows 
13P example of such discussion is presented by Daley [64]. 
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algorithmic design and artificial intelligent design strategies as well as the ratio-

nalisation procedures outlined in Section 2.3 to be captured in code efficiently and 

elegantly. If any artificially intelligent technique were required, it is very likely that 

an object oriented algorithm would be available, already coded via the internet, 

that could be directly compiled or if needs be, easily translated. Indeed, the op-

eration of object oriented programming languages, especially the ability to define 

object interfaces, resembles the behaviour offered by intelligent agents. 

However, it should be noted that not all design domains lend themselves to the 

object oriented paradigm. If no such classification or commonality can be found 

within the problem domain, the object oriented programming paradigm will be 
of limited use. 14  Indeed exposing, exploiting and expressing such commonality is 
a non-trivial process, even for experienced programmers, but if achieved leads to 

flexible, maintainable, robust software. 

Given the advantages discussed above, combined with the ability of the object 

oriented programming paradigm to capture multi-component design rationale and 

general design strategies (subject to the development of a suitable framework) led 

to the decision that this was the most appropriate software technology currently 

available with which to develop an artificial design application. Within the elec-

tricity supply industry there are many possible multi-component design problems 
within which the development of an artificial design software application would be 

of use. The benefits of constructing such an application for embedded generation 

switchgear design are considerable. Hence its selection as the target domain. 

Having selected an implementation technology, a suitable operating system and 

implementation language had to be selected. This discussion is the subject of the 
following section. 

4.6 Development Platform and Language Selection 

The third criterion in Section 4.3 stipulates that the development platform must 

be a personal computer; however, there are many operating systems available for 

this platform, the most popular being Microsoft© Windows. Within the electricity 

supply industry, and indeed throughout many other industries and universities, 

the Windows operating system is utilised. Therefore Windows was selected as the 

development platform for this project. 

Microsoft Windows may be supplied in several versions, the most popular be-

ing version 95, which has been superseded by version 98SE and will shortly be 
14 Thjs is not the case for embedded generation switchgear design. 



4.6 Development Platform and Language Selection 	 96 

superseded again by the Millennium Edition (ME). 15  Therefore it was decided that 

any compiled code should operate on the Windows 9x operating system. However, 

the Windows 9x series of operating systems is not ideally suited for programming 

development due to its instability. 16  The Microsoft Corporation fortunately pro-

duces a stable and enhanced operating system that also includes the functionality 

of Windows 9x series, called Windows NT [246].' For this reason Windows NT, 

version 4.00, was selected as the development platform for the project. 

Having selected an operating system the final decision to be made was the 

choice of compiler. This was dictated by the choice of programming language. 

There are many object oriented programming languages available for Windows 

NT, the most widely used languages being C++ [259], Delphi (object oriented Pas-

cal) [70] and Java [128]. The widespread use of C++ and the existence of compilers 

for a large variety of platforms (should the code ever need to be exported), com-

bined with the maturity, speed and power of the language made C++ the logical 

choice of implementation language. 

It should be noted that the choice of C++ as the implementation language does 

not, by default, include libraries or tools for the construction of graphical user in-

terface features used within the Windows operating system, such as menus, dia-

logues and icons. To construct such features a specialist Windows based compiler 

is required. At the time of compiler selection for this project, there existed two C++ 

compilers that operate with a visual environment; Microsoft's Visual Studio [260] 
and Borland/Inprise's C++ Builder [42].18  The visual functionality of both compil-

ers refers to their ability to construct all the visual items required within the Win-

dows environment, e.g. menus, icons and dialogues, using similar graphical tools 

as opposed to having to code these items in a text based language, then compiling 

this code to render the final graphical user interface for the application in question. 

Since the design tool must be easy to use, this visual aspect of both compilers is a 

very important feature. 

Both Visual Studio and C++ Builder compilers were technically and function-

ally suitable for the project but it was decided that Visual Studio, with its intuitive 

manner of operation, extensive libraries, on-line help and enormous user base, was 

the most appropriate solution. 
15 This family of Microsoft operating systems will hence forth be collectively referred to as 'Win-

dows 9x'. 
16 When programming it is easy to produce code that is syntactically correct but logically flawed. 

Code of this nature will therefore compile without error but when executed will result in an the 
operating system attempting to perform an illegal operation. Such illegal operations will frequently 
result in Windows 9x crashing; that is, the computer becoming completely inoperable. The computer 
must then be switched off and re-started. Other operating systems for personal computers, such as 
Sun Microsystems© UNIX, any distribution of Linux or Microsoft's Windows NT, are constructed 
so that illegal instructions will result in the user being informed of an error but the system remains 
usable, hence these operating systems are described as 'stable'. 

17 NT stands for New Technology. 
18 A review of both compilers is reported by Anderson [10]. 
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4.7 Chapter Summary 

This chapter highlighted the main requirements any implementation technology 

had to fulfil from embedded generation switchgear and design methodology per-

spectives. These requirements were characterised into a system specification be-

fore a comprehensive review of computional based design tools was presented, 

categorised by implementation technology. Based upon this review a discussion of 

which implementation technology should be selected was presented; the final deci-

sion being the object oriented paradigm. Finally, a suitable development platform, 

Microsoft Windows NT, and an object oriented programming language, C++, were 

selected to implement the project which led to the Microsoft Visual Studio compiler 

being selected. 

Having decided upon the software apparatus with which to construct the em-

bedded generation switchgear design tool, the next chapter describes how the ra-

tionalised design process may be encoded and captured using the object oriented 

programming language C++. 



Chapter 5 

Software Methodology 

Having selected the object oriented paradigm as the most appropriate implementa-

tion technology, it is the purpose of this chapter to discuss how the switchgear de-

sign software is implemented utilising this programming technique. This chapter 

begins by outlining the object oriented programming approach, its implementation 

and the underlying language mechanisms that allow this programming technique 

to function. The discussion then proceeds to the application of the object oriented 

paradigm to the problem domain, namely switchgear design. This section indicates 

how the software technique was applied in order to create the design tool, as well 

as outlining some of the difficulties associated with the applications development. 

The chapter concludes by summarising the overall structure of the software. 

5.1 Object Oriented Programming 

The purpose of this section is to explain the essential aspects of the C++ program-

ming language, in particular, the mechanisms that allow object oriented systems 

to function. The C++ language features presented in this section have been dis-

cussed in detail, from a variety of perspectives, by numerous authors [282, 74, 144, 

206, 1211. The definitive guide to the C++ language is, however, given by Strous-

trup [259], who also created the language. In November 1997, the International 

Standards Organisation (ISO) ratified the third edition of the language to form the 
C++ Standard. It should be noted that the mechanisms discussed in this section 

are not specific to the C++ language but are common to all object oriented pro-

gramming languages. However, the language commands detailed in the text to 

invoke these mechanisms are specific to C++. To enhance the clarity of the text, all 

language commands or references to class names, member functions or member 

variables are highlighted in the text by the use of a monospaced font; e.g. virtual 
or .  CTransformer. 
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5.1.1 The Object Oriented Approach 

The object oriented paradigm is fundamentally concerned with the representation 

or modelling, in software, of real world artefacts within a particular problem do-

main.' In the real world, people are surrounded by objects, both actual and imag-

inary, that represent the various aspects of the world in which they exist. Such 

objects may be recognised by their identity and behaviour; typical examples in-
dude: 

• Physical objects, e.g. a car, a tree or a telephone, 

• Human entities, e.g. an employee, a customer or an organisation, 

• Incidents (relating to time), e.g. a transaction, a journey or a meeting, 

• Interactions (links between objects), e.g. an electrical connection, a legal im-
plication or a geographical location, 

• Inclusion (definition of sets of objects), e.g. an inventory, a directory or a 
specification. 

Therefore the fundamental philosophy underlying the object oriented paradigm is 

that the world consists of interacting, classifiable and identifiable objects. These 

objects should be modelled in an object oriented software system to reflect their 

real world counterparts as closely as possible, in both design and operation [248]. 

5.1.2 Object Definition and Creation 

The key to object oriented programming is the hierarchical organisation of classes, 
their use to create objects and the resulting behaviour of these interacting objects. 

To simplify and assist their understanding and management of the world around 

them, people tend to group artefacts with similar attributes together under a cat-

egory name. For example, Pelton, Francis and Kaplan are all types of hydraulic 

turbine. Within an object oriented program, a class provides a description for 

creating objects. Indeed, a single class may be used to produce any number of iden-
tical objects. 2  Individual objects are defined based upon the construction details of 
the class through a process termed instantiation.3  

Classes are organised into hierarchies where abstract, common features of a 

group of similar objects are modelled centrally at the top of a hierarchy by abstract 
'As discussed in Section 3.3.3. 
2 Fins is the case as long as there is sufficient, unallocated memory within the computer. 
3The term instantiation arises due to the fact that an object is a real example or an instance of the 

class. It should also be noted that the terms object and instance are interchangeable. 
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classes. Progressing down through a class hierarchy, the general features of abstract 

classes are reused, through a process called inheritance, and refined; with additional 
new features included to yield detailed, specific class specifications - called concrete 
classes. Concrete classes differ from abstract classes as they have sufficient defini-

tion to instantiate objects that can be utilised to perform practical tasks. Conversely, 

abstract classes are generalised and lack such detailed definition; they are utilised 

only to create and organise class hierarchies, hence their name. 

To illustrate the use of abstract and concrete classes, consider an object oriented 

simulation tool for hydraulic turbines. An abstract class called HydraulicTur-
b i n  would define all the common features associated with such machines. For ex-
ample all turbines have a power rating, a maximum flow rate and physical dimen-

sions. However, such a class can not define an object called, say, aHydraulic-
Turbine as it would be meaningless; it would be a generalised, poorly featured 
object. If the class HydraulicTurbine formed the basic model of such machines, 
through the process of inheritance, the concrete classes Pelton, Francis and Ka-
plan could be developed which would include the features common to all turbines 

with additional details specific to each type of turbine, sufficient to make the objects 
created from these classes realisable and purposeful. 

5.1.3 Object Implementation 

Objects developed based upon the object oriented programming paradigm are com-
posed as follows: 

Object = (private)Data + (public)Processes 

where the data segment stores the particular attributes and current state (and there-

fore the unique identity) of the object, referred to as member variables, and the pro-
cesses define how the object behaves to external actions, termed member functions. 
The terms in brackets indicate the access other instances have to the object's imple-

mentation details; they are referred to as access operators. 

Ideally, all member variables within an object should be declared as private, 
therefore denying direct access to the object's data by other objects. The hiding of 

data in this manner is crucial to the object oriented paradigm. By employing this 

technique, referred to as encapsulation, improved security and reliability of the re-

sulting software is achieved. However, in exceptional circumstances such private 

data may have to be declared public, thereby allowing other instances direct ac-
cess to an object's data; thus breaking the object's encapsulation. 
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Objects have the ability to respond to messages (implemented as function calls) 

from other objects within an application. Such interaction is provided by the pub-

ii c member functions that define the interface between the object and the rest of 

the application instances; this arrangement is illustrated in Figure 5.1. Note that 

any member function may additionally be defined as either protected or pri-

vate. 4  A summary of access operators available in C++ and their effect upon ac-

cess to member functions and variables is depicted in Figure 5.2. 

Public Interface 

Private State 

Figure 5.1: A schematic representation of an object [206, p.54]. 

Derived class' 

member functions 

General users 

1'ate 

Protected 

Public 

Own member 

functions 

Figure 5.2: A illustration of access operators within C++ [259, p.402 
(Adapted)]. 

An object oriented application performs its purpose by creating sets of interact-

ing objects from classes. During execution, a series of three important events take 

place that enable the interaction of objects to occur thereby allowing the software 

application to function; they are as follows: 

4 1t is important to note that due to space limitations a complete discussion concerning access op-
erators within C++ has not be given, especially with respect to the protected and friend declara-
tions. For a more complete discussion on their use refer to Stroustrup [259, pp.402-407  & pp.278-2821. 
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As an object oriented program begins execution, several fundamental objects 

are created that comprise the application's basic functionality; additional ob-

jects are created, as required, during the programs operation. 

As the program proceeds, it is the interaction between objects through mes-

sages (or member function calls) that allows the program to fulfil its task. 

During execution, if objects are no longer required, they are deleted and the 

memory they occupied is reclaimed. Once the task is complete, the program 

ceases to execute and all application objects are deleted and the memory re-
claimed. 

5.1.4 Object Oriented Terminology 

The object oriented paradigm is founded upon three powerful concepts that allow 
the technology to function. These concepts are abstraction /encapsulation, inheritance 
and polymorphism; all of which are concerned with the formation of, and relation-
ships between, classes. What these concepts are and how they manifest themselves, 

with respect to the C++ language syntax, is briefly explained and discussed below. 

5.1.4.1 Abstraction/Encapsulation 

Abstraction is the term given to the process of creating a self-contained model, an 

object, that includes all the essential features, states and behaviours required for its 

operation. Objects are constructed from a combination of basic data types, 5  called 
member variables, to create what is termed an abstract data type that defines how the 
object will be represented in the computer's memory. Such abstract data structures 

are also encapsulated with a set of operations, referred to as member functions that 
define how the object interacts, or behaves, within the software application. 

The term encapsulation is strongly associated with the process of abstraction. 

Encapsulation refers to the practice of ensuring that an object is independent, self-

contained and that the implementation details of the object are completely hidden 

from all other instances in the system. Therefore the internal state of an object can 

not be directly modified from outside the objects interface. If any modification is re-

quired, for example to store a number, it should be instigated by calling the appro-

priate public member function from the object's interface. Although this initially 

appears to be a convoluted approach, as opposed to storing the said number di-

rectly in a global variable, such encapsulation ensures that any changes to member 

5Examples of data types include integers, strings (of characters or numbers) and floating point 
numbers. 
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variables are appropriately type checked, validated and, if required, within prede-
termined value boundaries. Furthermore, modifications to the type representation 

of such variables may be made without affecting the external interface of the ob-

ject. Therefore the coding or operation of other objects that constitute the system 

will remain unaffected. 

5.1.4.2 Inheritance 

The process of inheritance allows one class to inherit the structure and behaviour 

of another class as if it were part of it's own implementation. The process of in-

heritance is not limited to a single relationship between superclass (or parent) and 

subclass (or child); a subclass may inherit from one or more superclasses through a 

mechanism termed multiple inheritance. The inheritance process fulfills two impor-

tant, complementary roles: 

Inheritance permits the inclusion of generality to be captured in software. 6  

Inheritance allows 'families' of similar objects to share their common data 

types and behaviours. 7  

Both the above roles are graphically illustrated in Figure 5.3. 

5.1.4.3 Polymorphism 

The term polymorphism means 'having many forms'; this is reflected directly in how 

this mechanism operates within the object oriented paradigm; Polymorphism al-

lows different objects to respond to the same member function call (or message) in 

different ways, thereby allowing specific behaviour to be associated with each type 

of object. The implementation details of how each object deals with a request is left 

to the receiving object. 

In practice, polymorphism is performed within the C++ language through two 

mechanisms, namely virtual functions and function overloading. Virtual functions are 

distinguished from normal member functions by the placement of the keyword 

virtual in front of the function definition. Apart from this keyword addition, the 

function is defined and implemented in a similar manner to any other standard 

6Traditional software techniques, such as procedural or modular based programming languages, 
utilise general models and transform them into specific solutions. In doing so, such specific solu-
tions lose the generality of the problem domain resulting in software that is difficult to modify or 
extend. Object oriented software, on the other hand, includes the burden of generality by expressing 
it through inheritance, resulting in software that may be easily restructured or adapted [65]. 

7  B using the inheritance mechanism, programmers have only to code the differences that exist 
between subclass and superclass to extend the functionality of existing software. 
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Figure 5.3: Diagram of inheritance [144, p.13(Adapted)]. 

function. Subclasses which inherit from superciasses that contain virtual functions 

may re-define the implementation of any virtual function within their own class 

definition resulting in a modification of their behaviour to that function call. 

Function overloading allows the symbolic names of functions to be used repeat-

edly throughout a series of class definitions, or even within a single class as long as 
the argument list for each function definition is unique. Therefore when an over-

loaded member function is called, it is the arguments provided by the calling object 

that will dictate which implementation of the said function will be executed. By al-

lowing several functions to bear an identical symbolic name, an operation common 

to a hierarchy of similar classes may bear the same symbolic name, allowing such 

general operations to be expressed elegantly. 8  

Both the virtual function and function overloading mechanisms permit the de-

cision of which function implementation will be executed to be deferred until run-

time through a compiler technology referred to as dynamic binding. 

5.1.4.4 Aggregation 

The three concepts of abstraction/ encapsulation, inheritance and polymorphism 

apply to the construction and relationships between classes. However, aggregation 

8This is in contrast to procedural or modular languages within which each function definition 
must be given a unique symbolic name so that all function calls may be pre-determined at compile 
time. Such programming languages are based upon a compiler technology known as static binding. 



5.2 The Development Environment 	 105 

relationships apply only to objects but constitute another important aspect of the 

object oriented paradigm. The aggregation mechanism allows objects of one class 

to be composed of objects of another class. Through aggregation, composition re-

lationships may be represented, e.g. x is part of y. The aggregation mechanism 

is a powerful feature of object oriented software as it allows structures of objects 

to be easily reorganised. Furthermore, if during the construction of an object ori-

ented program, the developer has a choice between utilising either the inheritance 

or aggregation mechanisms, it is recognised that aggregation relationships should 

be selected due to their inherent flexibility [92]. 

5.1.4.5 Summary 

Through the aforementioned mechanisms of the object oriented programming par-

adigm, allows greater levels of complexity and flexibility to be captured in soft-

ware. However, it is the reuse of existing code that is one of the most powerful fea-

tures of object oriented software. By the use of encapsulation, abstract data types 

may be created as and when required. The redefinition, and thus reuse, of existing 

classes into new classes is achieved through inheritance. Symbolic names may be 

reused by utilising polymorphism and in doing so different object behaviours may 

also be included. Finally, aggregation allows existing classes to be reused as com-

ponents to construct larger, increasingly complex objects. It is this ability to reuse 

code that permits object oriented software to be extremely flexible. This flexibil-
ity allows the code's shelf life to be extended and code maintenance to be easily 

managed. 

5.2 The Development Environment 

Before proceeding to explain the development and construction associated with 

the project software, the important role played by, and the implications associated 

with, utilising the Microsoft development environment should be noted. As de-

tailed in Section 4.6, the development environment selected with which to imple-

ment the project design software was Developer Studio, a C++ compiler that comes 

supplied with extensive code libraries and application development tools that en-

able complete, functional Windows applications to be created using C++ code. 

Microsoft Windows was originally coded in a procedural programming lan-

guage in which an interface was developed between the Windows operating sys-

tem and Windows applications. This interface was called the Windows Applica-

tion Programming Interface (API), through which applications could access a large 

set of functions9  that allow the application to execute within the Windows operat- 

9There are over a thousand functions that constitute the Windows API. 
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Figure 5.4: The Microsoft Foundation Class hierarchy for Edges. 

ing system. In order to facilitate the object oriented programming paradigm, the 

API was encapsulated into a class library called the Microsoft Foundation Classes 

(MFC) [1761. 

In addition to allowing object oriented Windows programs to be written, the 

MFC provides an application framework that defines the structure of a program, 

based upon the Document/View concept. The key feature of the Document/View 

program architecture is to separate the document, a convenient term for the appli-

cation's data, from the user's view of the document. This arrangement has several 

advantages, the most obvious being that a single data set, such as a list of numer-

ical figures, may be viewed as a table or as a chart [142]. By adopting the MFC 

framework and the Document/View architecture for an application, four funda-

mental objects are required by the MFC framework to create the basic application. 10  

The software developed in this project utilises the MFC framework and the Doc-

ument/View architecture; named Edges, an acronym for Embedded Design Gen-

eration Emulation Software, the class diagram for the application is illustrated in 

Figure 5.4. The diagrammatic notation utilised throughout this chapter is explained 

in Appendix A. Each of these four classes and their function are explained below 

[84,121]: 11  

CEdgesApp The purpose of this class is to represent the overall application. There-

fore the responsibilities of the class include dispatching messages (generated 

mouse or keyboard activity) to the various windows and dialogs that con- 

10Techriically the application referred to here is a single document interface (SDI) application 
framework. 

"It should be noted that within MFC all class names are prefixed with a capital 'C' to denote that 
the symbolic name represents a class definition; this naming convention has been adopted through-
out this project. 
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stitute the application and the management of memory and application sub-

processes (in so doing, keeping the application running). 

CMainFrame It is the responsibility of this class to represent the main frame of the 

application window; more specifically, the title bar, menu bar and border of 

the application window (refer to Figure 6.1). 

CEdgesView This class defines how the data contained within CEdgesDoc will 

be displayed to the user in the client area of the application window (refer to 

Figure 6.1) created by CMairiFrame. 

CEdgesDoc The purpose of this class is to provide a location and archiving func-

tions for the application data. All objects created during the course of the 

execution of the application will be stored within this class. 

Of these four classes, it is the CEdgesDoc and CEdgesView classes that will be of 

most interest as it is through these classes that the objects which perform switchgear 

design are stored and viewed within the application. 

5.3 Development of the Model 

The previous sections presented the features and mechanisms that allow object ori-

ented software to operate and the features of Microsoft Foundation Classes that 

ease the programming burden of developing a Windows application. The discus-

sion in this section focuses upon the construction of the switchgear design software 
that aims to meet or exceed the criteria described in Section 4.3. 

The development of any object oriented software application requires the reso-

lution of non-trivial architectural software design problems; such issues include: 

. Which artefacts, either real or symbolic, constitute, are appropriate or are nec-

essary to be included within the model? 

. Which particular aspects, or features, of the artefacts selected should be in-

cluded in the model? 

. How should the artefacts selected be organised within a class hierarchy? 

. How should the objects created from class definitions be arranged and stored 

in the computer's memory; how should they interact? 

Such questions have posed significant problems for software developers. As a re- 

sult, object oriented design methodologies have been developed to assist developers 
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resolve these issues. If applied intelligently, design methodologies will yield solu-

tions that will not only resolve the initial problem but will also provide extendable, 

flexible software solutions. 

This section will consider how such object oriented design methodologies were 

applied to develop the switchgear design tool, the problems that arose during its 

construction and the architecture of the various classes that together constitute the 

software. It should be noted that not every feature of every class has been included 

in the following discussion as this would extend the discussion immeasurably and 

bury the important aspects of the description under a wealth of relatively minor 

points of detail. 

5.3.1 Commencing the Modelling Process 

As a key architect of object oriented design methodology, Booch [31] recommends 

considering the problem domain; the nouns that constitute the domain should 

serve as the basis of class definitions and the verbs within the domain should con-

stitute the actions of these classes. The organisation and responsibilities of each 

artefact modelled should be reflected in the software as closely as possible through 

the hierarchy and interaction of objects. Adhering to this recommendation for em-

bedded generation switchgear design, the initial noun that appears is switchboard. 

Each switchboard contains a series of two or more sections, with each section ful-

filling a particular function, as discussed in Section 2.1.2, by the inclusion and ar-

rangement of specific constituent components within each section. Therefore each 

of these artefacts, specifically, the switchboard, the various section types and con-

stituent components, will be individually modelled by a class definition. The ar-

rangement of objects created by these class definitions will mirror the arrangement 

of these components in an operational switchgear installation. 

A switchgear installation consists of one or more switchboards, connected to 

a source of electrical energy; either to the distribution network or to one or more 

embedded generators. However, since the function of each switchboard is to dis-

tribute electrical energy to one or more on-site loads or, in the case for a single or 

group of embedded generators with no local load, to the local distribution network, 

it was decided that individual switchboards need only be modelled during a de-

sign scenario. This practice is also in accordance with current switchgear design 

practice. 

The responsibilities of the class CSwitchboard must reflect the attributes and 

features of a standard switchboard installation, which are: 
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To store all the attributes common to the entire switchboard and provide ac-

cess to these attributes via an interface. 12 

To provide storage and a manipulation interface for an indefinite number of 

switchgear sections. 

The attributes common to the entire switchboard include climatic conditions (al-

titude, humidity and temperature), electrical definitions (service voltage and fre-

quency, busbar current rating and prospective fault ratings) and general infor-

mation (switchgear manufacturer, horizontal or vertical isolation, inclusion of la-

belling, location details and applicable safety standards). Each of these attributes is 

stored in a private member variable with public member functions to provide and 

regulate access to these attributes. This arrangement ensures that the CSwitch-

board object is completely encapsulated by its interface. This approach of encap-

sulating member variables has been adopted throughout the project software. The 

storage of individual switchboard sections is also the responsibility of the CSwit-

chboard class, and is achieved by creating a dynamic array that stores CSection 

objects as they are created with the provision of a set of manipulation functions that 

allow the instantiation, editing, drawing, and printing of all section objects. 

To enable the CSwitchboard class access to the facilities offered by the Mi-

crosoft Foundation Classes framework, it must include within its class definition 

a series of appropriate member functions and variables. This is achieved by al-

lowing the CSwitchboard class to inherit the required interface from the MFC 

base object, a class specifically created for this task, called COb j e ct. Indeed, this 

is the case for all objects designed within Edges. Since a CSwitchboard object 

will be required for every design scenario performed using the software, a public 

rn_switchboard 13  object is included as part of the document class of the appli-

cation. The relationships between CSwitchboard and the MFC framework are 

illustrated in Figure 5.5. 

Every switchboard contains two or more sections, with each section fulfilling 

a distinct purpose. 14  As there are six functional types of section, an abstract class 

called C Section was defined to allow the features common to all sections to be 

described within its definition. These common properties may then be shared and 

included with functionally specific classes that model the operation of the various 

section types, through the mechanism of inheritance. The resulting class hierarchy 

is depicted in Figure 5.6. 
12 This arrangement ensures that all sections are consistently specified and that the duplicate stor-

age of such common design data is avoided. 
13  The notation of placing m' in front of a class data member is standard throughout the MFC 

framework. It has been adopted in this project to assist in identifying class member variables. 
14 Refer to Section 2.1.3 for details. 
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Figure 5.5: The relationships between CSwitchboard and the MFC frame-
work; (a,b) class diagrams, (c) object diagram. 

Figure 5.6: The initial class hierarchy for switchgear sections. 

All sections share several common properties with the switchboard in which 

they are contained; as previously alluded to, these properties are shared with other 

CSect ion objects through the use of the aggregation mechanism as opposed to the 

inheritance mechanism. The reasoning for electing to utilise aggregation in favour 

of inheritance for the modelling of sections is three fold; it allows: 

The realistic representation of the relationships between switchboards and 

sections, 15 

That the responsibilities of a switchboard and a section are completely sepa-

rate and independent, and, 

The resulting software architecture allows greater flexibility to be achieved. 

15A switchboard is comprised of a number of sections; however, if inheritance was utilised it would 
imply that each switchboard is a generalisation of a section, a conclusion which is not rational in this 
context. 
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Therefore the class relationship between CSwitchboard and CSect ion classes is 

illustrated in Figure 5.7. 

Figure 5.7: The aggregation relationship between CSwitchboard and CSec-
tion classes. 

Further consideration of the responsibilities of the various section types yielded 

that both CGeneratorSect ion and CLoadSect ion classes may also be defined 

as abstract classes since both are generalised section definitions. There are several 

different types of generator and load sections which have a direct impact upon the 

electrical specification of these sections and to a lesser extent upon the overall swit-

chboard specification. For example, synchronous generators require synchronisa-

tion protection relays, as opposed to induction generators where such equipment is 

unnecessary. Furthermore, both generators and loads have substantially differing 

fault contributions which must be considered to ensure the total fault level of con-
nected equipment does not exceed the maximum fault rating of the switchboard or 

utility connection. 

Therefore by modelling generator and load sections in greater detail, program-

ming only the differences between section types utilising inheritance and polymor-
phism mechanisms, the accurate inclusion of the various section types and their 

respective behaviours can be captured within the software model. The features 

common to all sections conform to an identical interface thereby allowing these 

different objects to be easily and uniformly managed. This revised arrangement is 

illustrated in Figure 5.8. Furthermore, through this hierarchy of section types the 

first important stages of design reasoning are captured within the software, as by 

selecting to create a particular section type the appropriate protection and instru-

mentation equipment may be automatically allocated. 

The operation of a switchboard relies upon the existence and correct operation 

of both external connections and constituent components. The following two sec-

tions considers both these aspects of switchgear installations respectively and how 

they may be incorporated into the object oriented design model. 

5.3.2 External Connections 

A switchboard requires several important electrical connections to be made to al-

low it to operate. These electrical connections consist of one or more connections 

to a source of energy (either via the distribution network and/or to an on-site em-

bedded generator) and connections to auxiliary power supplies. Load sections are 

optional except when no utility connection is present, in which case, one or more 
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Figure 5.8: The expanded class hierarchy for switchboard sections. 

load sections must be included within the switchboard design. The connections to 

the distribution network, generators and loads are already represented within the 

model by the hierarchy of various section types, depicted in Figure 5.8. However, 

auxiliary power supplies are a completely separate entity, sharing no general at-

tributes or responsibilities with any of the various section types or the switchboard 

itself. Therefore auxiliary supplies are modelled as a completely separate class. 

As indicated in Section 2.1.3.6, it is the responsibility of the auxiliary supplies 

to provide electrical power to the switchboard. This responsibility will be included 

within the class definition of any auxiliary power objects, along side the monitoring 

of the number and wattage of the loads connected. Therefore, it would appear 

logical to perform Booch analysis as previously applied to switchboard sections to 

yield the class hierarchy illustrated in Figure 5.9. 

CObjt 

I 	CPowerSupply 

CAuxiliarySupply 	I 	I 	CTrippingSupply 

Figure 5.9: An initial class hierarchy to represent switchgear auxiliary sup-
plies. 
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However, both supplies differ in only minor respects; their names, the type 

of electrical power produced and whether a secure supply is required; otherwise 

their responsibilities and functionality are identical. Thus the class hierarchy rep-

resented in Figure 5.9 appears unnecessarily complex, as such differences can be 

accommodated by providing arguments, e.g. supply name, voltage, current type 

and backup required, to the constructor member function of the class. 16  By util-

ising this technique as opposed to the inheritance mechanism, the class hierarchy 

illustrated in Figure 5.9 may be simplified to one concrete object, CPowerSupply, 

as shown in Figure 5.10. 

C Object 

CPowerSuppy 

Figure 5.10: The class hierarchy for auxiliary power supplies. 

Having decided upon the responsibilities and class definition sufficient to rep-

resent auxiliary power supplies, the relationships between CP owe rSupply and the 

other classes in the model must be considered. The majority of new switchboard 

installations will require both an auxiliary supply and a tripping supply. However, 

in certain design cases one or both supplies may be omitted from the final switch-

board specification. 17  Thus, there is a choice of including auxiliary supplies either 

by default (therefore instantiate two CPowerSupply objects and include member 

functions to either include or exclude each supply from the final specification de-

pendant upon the users requirements), or instantiate them as required. 18  

Experimentation with both arrangements, default instantiation and on demand 

instantiation of CPowerSupply objects, yielded that including two initialised C-

P owe rSupply objects by default was the most elegant solution. This approach had 

the advantage of allowing the user to continuously monitor the predicted loads 

placed on both auxiliary supplies throughout the design process, a factor often 

omitted or guessed during switchgear design. The class and object diagrams illus-

trating the relationship between CSwitchboard, CPowerSupply and the MFC 
16 Once objects are instantiated within a computer's memory, they invariably require some form of 

initialisation, e.g. the setting of values for each member variable or checking the existence of other 
necessary or cooperating objects. Within C++, every class has an initialisation member function, 
referred to as the constructor which is called automatically after the object has been created in the 
computer's memory. Constructor functions may be overloaded to accept arguments that initialise 
the object in a specific manner. Similarly, when an object is destroyed, the destructor member 
function is called which is utilised to assist in the correct destruction of the object. 

17 Users may have existing switchboards installed on a site, with existing auxiliary and/or tripping 
supplies with sufficient spare capacity to utilise these supplies as opposed to having to purchase and 
install new supplies. 

18The relationship between cpowersupply objects and their respectively connected loads pre-
sented several issues which are discussed in Section 5.3.3.2. 
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framework are given in Figure 5.11. 19  

CfdgesDoc 	 CpowerSupply 

CStchboard 

 

I 	 EdgesDocument 

m_AuxiliarySupply 

I 	m_TrippingSupply 

mSwitchboard 

 

Figure 5.11: The relationships between CSwitchboard, CPowerSupply and 
the MFC framework; (a) class diagram, (b) object diagram depict-
ing the inclusion of switchboard and auxiliary objects within the 
EdgesDocument object. 

5.3.3 Constituent Components 

The purpose of this section is to consider the constituent components necessary for 

the operation of each individual switchboard section, with a description of their in-

terrelationships and how these components are modelled and incorporated within 

the existing class hierarchy. 

5.3.3.1 Organisation of Components 

The constituent components of a switchboard section is discussed in Section 2.1.3; 

the items of equipment described include: 

• Circuit breakers, 

• Current and voltage transformers, 

• Fuses, 

• Instrumentation equipment, and 

• Protection equipment. 

"Note that through the MFC framework all objects derived from COb j ect may obtain a pointer to 
Edge sDocurnent at any point during execution and hence gain access to the interfaces of all publicly 
declared objects included within Edge sDocument object. 
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However, additional components are also required for the control and opera-

tion of the above items of equipment which are also part of any switchgear instal-

lation. Such items are of relatively minor importance and therefore are frequently 

overlooked or omitted in a switchboard design specification. Such items include: 

. Anti-condensation heaters, 

. Control switches, and 

Indicator lamps. 

All the above items of equipment are important to the successful installation and 

operation of a switchgear installation and therefore are included within Edges. In 
addition to these items of equipment, labelling for both sections and instruments is 

also included within the software for completeness. Other minor components not 

included within the model but which are provided by the switchgear manufacturer 

include cable boxes, foundation bolts, operational interlocks, and terminal blocks. 

Accepting that each of the above components will be represented by individ-

ual classes, the next important issue is how these classes should be organised or 

arranged into a structure within the existing application framework, such that they 

fulfil similar responsibilities to their real life counterparts. In addition to this re-

quirement, the classes developed should also interact with each other to simulate 

design reasoning and perform logical decision making based upon the design in-

formation contained within them. 

After several attempts to structure a series of component classes it became ap-

parent that during the initial stages of the design process of any artefact the de-

signer will manipulate generalised concepts or components of the problem domain. 

As the design process proceeds, the designer will make decisions based upon trad-

ing the limitations between the various components of the problem domain against 

the final overall features and performance of the artefact under construction. Dur-

ing this process, concepts and components develop from abstract, poorly defined 

items into becoming definite, accurate and completely specified artefacts. Careful 

study of various design domains shows that this aspect of the design process, the 

movement from abstract to definite, has a strong parallel with the object oriented 

programming paradigm if the inheritance and polymorphism mechanisms are util-

ised appropriately. 

For example, within a switchgear design scenario, the developer will have to 

make some initial decisions concerning all the components contained within the 

switchboard. Typical decisions would include deciding upon an interrupting med-

ium, or the type of instrumentation equipment required. If such information was 
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entered into the design software before the commencement of defining an individ-

ual switchboard section, then this information can be used to automate the design 

reasoning of each section. Furthermore, each attribute that affects other aspects or 

components in the design domain may be checked, adapted if necessary or a query 

presented to the user, with the result that the overall design of the switchboard is 

complete, accurate and consistent. 

Encoding such generalised design criteria or information may be performed 

within an object oriented class hierarchy by the creation of specification classes. The 

responsibility of each specification class will be to define all the common attributes 

associated with a constituent component of a switchboard section. Once the design 

domain has been populated with design data for all the components, this informa-

tion may be shared with other objects. By constructing objects to share such basic 

but important design information (otherwise referred to as leading dimensions) the 

software can reach realistic and consistent design conclusions. 

By utilising inheritance, polymorphism and the automatic memory allocation 

features of C++, these specification classes may be extended to create complete and 

realistic objects, called design classes, that mirror the functionality of their real life 

counterparts. By proceeding in this fashion, not only is the switchgear design pro-

cess modelled but the reuse of existing code is also achieved. As a design scenario 

proceeds design objects may be automatically generated in an organised, struc-

tured fashion, resulting in correctly specified artefacts. At any juncture, these ob-

jects may be individually edited by the user or additional objects included within 

the design as required. 

To incorporate the component specification and design classes into the existing 

application structure, each class will be instantiated by the CEdgesDoc class defi-

nition, as illustrated in Figure 5.12 through the use of the aggregation mechanism. 

Upon construction, each specification object will be initialised with default de-

sign parameters, thereby allowing the software to commence the definition of swit-

chboard sections within a design scenario immediately. To obtain the maximum 

benefit from the software, the user should decide upon the components to be util-

ised in the proposed design and enter the attributes associated with each compo-

nent at the beginning of a design scenario. 20  However, if specific component in-

formation concerning one or more components is not available at the commence-

ment of a design task, the default data may be used. Once accurate or complete 

information becomes available it may then be entered into the software, resulting 

in this new information being propagated throughout previously defined compo-

nents. New components will utilise the revised component specification details. By 

including this mechanism within the software the consistency of switchgear speci-

fications developed using Edges can be ensured. 

20The details of each component are entered via a specification dialog, illustrated in Figure 6.3. 
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CEdgesDoc 

CAntCondensationHeaterSpec 

CCircwtBreakerSpec 

-i CControISwitthSpec 

s 	 CFuseSpec 

ClndicatorLampSpec 

CInstrumentatonSpec 

CLabeiSpec 

CProtectionSpec 

 

EdgesDocument 

m_SpecACHeater 

m_SpecCircuitBreaker 

mSpecControlSwitch 

m_SpecFuse 

m_SpeclndicatorLamp 

m_Speclnstrumentarion 

mspecLabelSection 

m_SpecLabelComponent 

m_SpecPreteconReIay 

 

Figure 5.12: The relationships between the existing design classes and the 
MFC framework; (a) the class diagram, (b) the object diagram. 

As the design progresses, components will be selected and included in the spec-

ification automatically to ensure that the overall design confirms to legal and reg-

ulatory standards, especially G59. Additional components may be included as re-

quired. 

The following sections discuss the modelling and inclusion of component class-

es into the existing class hierarchy, indicating the operation of the specification 

classes, their extension into complete design classes and how the interaction of 

these objects allows design reasoning to be automated and performed. Initially 

the minor components will be considered before the discussion extends into the 

larger, more complex components. 

53.3.2 Anti-Condensation Heaters 

To exemplify several programming issues that required resolution in a clear man- 

ner, the discussion of the constituent switchboard components will commence with 

a very minor component before proceeding to the more complex and important 
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items. Anti-condensation heaters play a minor role in switchgear design. Discus-

sions with Wallace [277] highlighted that switchgear situated in cold or damp envi-

ronments should, as a matter of course, include an anti-condensation heater within 

each section. However, these heaters are often omitted from switchgear specifica-

tions. Such heaters are low wattage units, powered from the switchboard's auxil-

iary supply. By ensuring that the internal temperature of the section remains above 

the dew point, water vapour will not condense internally within any switchboard 

section. The inclusion of anti-condensation heaters within each section improves 

the reliability of the switchgear installation by reducing occurrences of electrical 

contact corrosion. 

At some points during their operational life, switchboards may experience cli-

matic conditions which could result in condensation forming inside a section cab-

inet. It is part of the designer's remit to decide if anti-condensation heaters are 

necessary or not. Therefore to assist the user, the software checks the climatic con-

ditions in which the switchboard is located. 21  If the likelihood of condensation is 

of moderate or high probability?2  then anti-condensation heaters will be included 

within each section. An experienced switchgear designer may wish to include these 

devices as a matter of course to ensure the reliability of the switchgear installation; 

this feature is also included within the software. 

An anti-condensation heater specification class, called CAnt iCon dens at ion - 

HeaterS pe c, stores the specification attributes common to all anti-condensation 

heaters included within a design scenario. Such attributes include power rating, 

manufacturer and part number. Due to the flexibility of object oriented code, addi-

tional parameters (such as the device's physical dimensions) may be included at a 

later stage to augment the design detail of the device's specification. This applies 

not only to anti-condensation heaters but to all other components involved in the 

design domain. 

Specification classes act as a basic data container within the class hierarchy; 

they contain no other features. Design classes then expand upon this basic data 

container by representing, in software, an actual switchboard component. Design 

classes therefore manipulate and store additional information that allows the pre-

cise and unique specification of the component that they represent. The develop-

ment of the CAnt iCondensationHeater design class raised several difficulties 

associated with including it into the existing class hierarchy, with the appropriate 

functionality. These difficulties are briefly discussed. 

21 The climatic conditions affect the entire switchgear installation. Therefore this data is available 
from the public member functions of CSwitchboard; users may edit this information via the speci-
fication dialog. 

22 The boundary conditions for the inclusion of anti-condensation heater, by the software, are if 
the average humidity level is over 80% or the average ambient temperature that the installation will 
experience is 5° Celsius or below [1681. 
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Anti-condensation heaters are only one of several components that require con-

nection to the switchboard's auxiliary supply. Therefore a common interface is 

required to allow communication between the power supply object and the load 

objects connected to it. Such an interface is symbolic of the electrical connection 

that would exist between loads and a supply in the final switchboard installation. 

Through this interface, the number and total wattage of loads connected to the 

power supply object may be determined as the design scenario proceeds. In ex-

change, each load will obtain the supply voltage and current type from the power 

supply object. By facilitating such information exchange, changes to either load 

or supply objects may be automatically communicated to the necessary object in-

stantaneously thereby ensuring consistency in the design. In order to achieve this 

arrangement, a class called CpowerSupplyLoad was created to implement the 

communication required between auxiliary supply objects and their load objects. 

This interface must be shared between all load objects; it was the incorporation of 

this interface into load objects that posed several architectural issues. 

First instincts would be to use the inheritance mechanism, as this feature allows 

the incorporation of existing class interfaces into new class definitions to be eas-

ily performed. This arrangement is depicted in Figure 5.13. However, this class 

arrangement illustrates a natural limitation of object oriented programming lan-

guages. Although completely legal and within the definition of the C++ language, 

the class hierarchy shown in Figure 5.13 fails to compile. This compile failure is due 

to the class CAntiCondensationHeater inheriting from both CPowersupply-

Load and CAntiCondensationHeaterSpec; both of these classes are derived 

from CObject. If an anti-condensation heater object were instantiated, it would 

contain two versions of every member function and variable from COb ject since 

both CPowerSupplyLoad and CAntiCondensationHeaterSpec inherit from 

COb j e Ct. This is an unacceptable situation, hence the compile errors. 23  

A second approach would be to utilise a single inheritance approach, as de-

picted in Figure 5.14. This class structure resolves the multiple inheritance issues 
associated with the previous attempt and delivers the required functionality, but at 

the expense of the model's clarity. The class hierarchy illustrated in Figure 5.14 im-

plies that the specification of anti-condensation heaters is a generalisation of power 

supply loads and that all specification classes inherit the ability to connect to a swit-

chboard's power supply. This is an impossible situation within the design domain; 

an ambiguous arrangement. Therefore it was rejected. 

Returning to the first class hierarchy, an attempt was made to resolve the issue 

of multiple inheritance. Any functionality from the MFC framework could be ex-

cluded from the CPowerSupplyLoad class definition, therefore this class would 

Multiple inheritance is legal within the C++ programming language and the compile errors indi-
cated in this example can be resolved by additional programming. To resolve this issue is non-trivial 
with most C++ authors and experts recommending the avoidance of such class hierarchies. 
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C0bject 

CPowerSupplyLoad 	I I CAntiCondensationHeaterSpec 

I CAntiCondensationHeater I 

Figure 5.13: A class diagram representing the initial attempt to include 
the CPowerSupplyLoad interface within the CAntiCoridensa-
tionHeater design class. 

CObje ct  

I 	CPowerSupptyLoad 	I 

CAntiCondensationHeaterSpec 

I 	CAntiCondensationHeater I 

Figure 5.14: The second approach to incorporating the design class for anti-
condensation heaters into the existing application class hierarchy. 

not need to be a subclass of CObject. This class arrangement is illustrated in 

Figure 5.15. This approach circumvents the multiple inheritance issues present 

within the first class arrangement. It was rejected since only one auxiliary supply 

may be connected to each load object. Although this is not a limitation for anti-

condensation heaters, other power supply load devices, such as modern circuit 

breakers and protection devices, require connection to both the auxiliary supply 

and the tripping supply of the switchboard. On this basis, this arrangement was 

rejected. 

The use of inheritance, as demonstrated by the previous examples, may lead 

to inflexible or conceptually difficult class hierarchies. The required design func-

tionality was achieved by the application of the aggregation technique. By creating 

a concrete power supply load class definition derived from COb j e ct and incor-

porating the required number of instances of such load objects into objects that 

require connection to auxiliary power supplies, the symbolic link between auxil-

iary power supplies and their loads can be achieved. The class diagram illustrating 

this arrangement is given in Figure 5.16. 

Having explored the practical application of utilising the aggregation mecha- 
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CObject 	 I 

	

I 	CPowerSupplyLoad 	I 
	

CAntuCondensationHeaterSpec 

I CAntiCondensationHeater I 

Figure 5.15: The third approach to incorporating the design class for anti-
condensation heaters into the existing application class hierarchy. 

CEdgDo 

CBoStion 	 - j- 	CAntjCondensatIonHete,—j-- 	CPowerSuuppIyLod 	 - 	 CDog 

	

CGtorSecdon 	- 	 H 	CFuu ner  

CLodSection 	H-1- --------------------------- 

A 
COpon1IySpSetion 

Figure 5.16: 5.16: The final approach utilised for implementing anti-condensation 
heaters. Note the difference between aggregation and creation re-
lationships; creation is non-permanent or optional. 

nism in favour of the use of the inheritance mechanism in switchgear component 

design, this approach was adopted for the development of all section components 

within the design domain. Upon the creation of a section object, it checks to deter-

mine if an anti-condensation heater is required. If so, an CAntiCondensation-

Heater object is instantiated. During instantiation, the new anti-condensation 

heater object obtains its specification from the m_ACHeaterSpec object stored in 

Edges' document object. Based upon this specification information, CPowerSup-

plyLoad and CFuse objects are instantiated to meet the requirements of the anti-

condensation heater object thereby ensuring that the anti-condensation heater is 

connected to an auxiliary supply and protected by a set of appropriately rated 

fuses. The device has now been correctly specified and included within the switch-

board specification. 

As previously stated, the user should be able to edit all components (assum-

ing that they do not violate any fundamental design rules); to meet this end, an 

edit function has been included within the anti-condensation heater class definition 



5.3 Development of the Model 	 122 

which, when called, instantiates and initialises a dialog object CAntiCondensa-

tionHeaterDig 24  allowing the user to directly edit the device via a specialised 

dialog box. Upon the closing of this dialog box, the data is checked and transferred 

back to the anti-condensation heater object. Through the same dialog box, the edit 

function of the CFuse object may be called and its specifications edited via another 

specialised dialog box. Once again, any edits to the specification of the fuse are 

checked and, if appropriate, updated. 

This discussion has indicated some of the programming issues associated with 

the creation of an object oriented design architecture. The development of speci-
fication classes for the storage of fundamental design data has been, through the 

use of the inheritance mechanism, extended to allow design classes capable of per-

forming basic design reasoning to be easily developed. A suitable technique of 

modelling auxiliary power supplies and their loads has been developed which 

will be adopted throughout the rest of the design framework. Finally, the aggre-

gation mechanism has been applied to allow different section types to include anti-

condensation heaters within their specifications, if required. 

5.3.3.3 Control Switches 

Control switches are the general term for low voltage electric switches mounted 

on the front panel of a switchboard section that enable the control and operation 

of that section. Typical functions for such devices include tripping/ resetting the 

circuit breaker or assisting the use of instrumentation devices. The class hierarchy 

for control switches and their relationship to the other design classes is depicted in 

Figure 5.17. 

Objt 	- 

CEdgeDoe 	 H J, 	CControISwitthSp 

CIntnnntdon 	H r .j 	CControlSwitch 	 Mabel 

cbeaitB,eaker 

	

	 CConoISwitd.DIg 

CcsectlonEditDlg 

Figure 5.17: The class diagram for control switches. 

Following an architecture similar to the one adopted for anti-condensation heat-

ers, the default specification for control switches is stored in the Edges document 

24A1l dialog classes are indicated by having the extension Dig at the end of their class name. 
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object and is used to initialise all CControlSwitch objects. The electrical at-

tributes defined within the specification class for control switches, CControl-

Switch Spec, includes the device's contact rating, current type, contact operation 

and the number of contacts. The control switch design class, CControlSwitch, 

augments and enhances the basic features of the control switch specification class. 

Supplementary features include the addition of a function description and part 

number member variables, a CLabel object and several member functions to as-

sist with the management of control switch design objects. The function description 

variable stores a text string that describes the purpose that the control switch per-

forms and forms a unique identifier for the device. It may not be edited by the 

user once the control switch is defined. This text string also forms the default facia 

label for the control switch, but the user may edit this to suit his/her preferences. 

As with all constituent components an edit function allows the user to view and 

adjust the properties for the control switch through a dialog box instantiated from 

the CContolSwitchDlg class. 

The main purpose of control switches is to enable the operation of either circuit 

breakers or instrumentation devices. Additional control switches may be manually 

defined by the user. These three circumstances require that control switches are 

included within a section specification. They are indicated by Figure 5.17 and are 

explained as follows: 

The instantiation of a CCircuitBreaker object will, by default, include a 

trip/neutral/close switch. If remote operation of the section is required an 

additional control switch will be added, labelled local/remote. 

The instantiation of a single phase panel meter will (from the Clnstru-
mentat ion class), by default, include a control switch to allow measure-

ment from any phase to be selected by the switchboard operator, labelled 

R/Y/B /Off. 

The direct instantiation of a control switch by the user; when editing a sec-

tion via the section edit dialog box, the user may include additional control 

switches as required. 

Due to the flexibility of object oriented software, control switches may be included 

within other design class instances by utilising the aggregation mechanism. Indeed 

the above three situations may be easily edited or extended to satisfy other design 

situations. 

The additional design data that is not available from the mSpecControl-

Switch object but is required to instantiate the control switch design objects is 

obtained from the objects that instigate their creation. This data is passed from the 
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instigating object to the newly formed control switch object via a multi-argument 

constructor call. As both circuit breaker and instrumentation objects already know 

their requirements, this is a straightforward process. 25 

All control switch objects, in common with all design objects, are created dy-

namically. In practical terms this means that control switch design objects are al-

located in some random memory location determined by the operating system. 

Therefore, once an object has been created, a reference to its location must be stored 

within the application framework to ensure that the object in question can be lo-

cated and utilised until it is no longer required or the application is terminated. 

Failure to keep track of dynamically created objects results in these objects being 

effectively lost in the computer's memory, a situation referred to as a memory leak. 

However, several different objects may contain a reference to a single object thus 

allowing many to one and one to many relationships to be represented. 

Both circuit breaker and instrumentation objects retain a reference to any con-

trol switch object that they instantiate, as they form an important part of these de-

vices' specification. However, any changes in the default specification of all con-

trol switches, instigated by the user through the component specification dialog, 

would necessitate a search through all circuit breaker and instrumentation objects 

to locate all the control switches and then modify their data. In order to avoid 

searching through other design objects and to facilitate the storage of user defined 

control switches, a dynamic array was included within each section object, named 

rn_Con trolSwitches, that allows an identical reference to every control switch object 

required within a section to be stored. This arrangement is illustrated in Figure 5.18. 

A similar arrangement is utilised for all other components, such as fuses and labels, 

that the more complex design objects create. 

Section I 

L 

CircuitBreaker I 

I m_ControlSwitch 

ControlSwitch I 

rn_Label 

Figure 5.18: The object diagram for a control switch object defined as part of a 
circuit breaker specification. 

25To illustrate this point consider the contact operation of a control switch which depends upon its 
intended purpose. If defined to control a circuit breaker, a non-latching set of contacts is required, 
but if defined to assist the operation of a single phase current meter via a set of current transformers, 
a set of make before break contacts are defined instead. 
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5.3.3.4 Labelling 

The inclusion of labelling within a switchboard specification is a very minor issue 

but they are included within the model as labels are frequently omitted from spec-

ifications. Labels are mounted on the front facia of switchgear sections to identify 

the function of a section, e.g. "Mill House Feeder", or the function of the devices, 

e.g. "ROCOF Relay" or, in the case of a control switch "Generator Shutdown". 

Typically such labels are produced on plastic (trafolyte) or embossed aluminum. 

The incorporation of labels into the existing design class hierarchy is depicted in 

Figure 5.19. 

CObJect 

g 

Figure 5.19: The class diagram for labels. 

The inclusion of labels follows the same pattern of previous constituent compo-

nents. The CLabeiSpec class contains the attributes common to all labels within 

the design domain; namely the material from which they are constructed, the col-

our of the text appearing on the label and the text height (in millimeters). Two 

CLabeiSpec objects are instantiated and stored within the Edges document object, 

one of which defines the section labels, the other, all other component labels. Once 

again, it is through a multi-argument constructor that the instantiating objects de-

termine which label type is required. 

The CLabel design class reuses and expands the basic class definition of CLa-

beiSpec to allow a text string to be stored which will be the text that appears on 

the label. Several additional member functions are also included to assist in the 

management of CLabel objects, most notably an edit function that allows the at-

tributes of individual labels to be edited; items that can be changed include the 

label's text, colour, size and material. By default, the labelling for devices is re- 



5.3 Development of the Model 	 126 

duced in size in comparison with section labelling. Items that require labels as part 

of their specification are indicated on the left hand side of Figure 5.19. 

5.3.3.5 Indicator Lamps 

Indicator lamps allow the annunciation of important information concerning the 

switchboard's status to be visually indicated on the front facia of a section. Typi-

cally, such events would include busbar live indication, circuit breaker status and 

device malfunction, although they are mainly dependent upon the designer's pref-

erences and the function of the section. Indicator lamps are now fast disappearing 

from the front of modern switchgear installations, replaced by electronic or com-

puterised notification of events; they are favoured by some designers and are in-

cluded within the design software for completeness. The lamps installed within a 

section obtain their power from one of the auxiliary supplies of the switchboard, 

via the device which controls their operation, or directly from the bus bars via a 

voltage transformer; which supply is utilised depends upon their function. The in-

clusion of indicator lamps within the software is illustrated in the simplified class 

diagram of Figure 5.20. 

CObject 

CEdgesDoc 	 I 

CCircuitBreaker 

CGenerator  

Cincomer 

ClndicatorLampSpec 	 - 	ClndicatorLampDlg 

A 	 CLabel 

CindicatorLamp 
 

L- - _CPowerSupplyLoad 

	

L 	- 	CTransformerBurden 

Figure 5.20: The class diagram for indicator lamps. 

The attributes common to all indicator lamps are stored within the Clndica-

torLampSpec class which includes data concerning the lamp's wattage, manu-

facturer and model. Based upon these common attributes, lamp objects are cre-

ated using the ClndicatorLamp design class which augments the specification 

class by defining several member functions to assist in the management and edit-

ing of indicator lamp objects and several member variables. Each lamp requires 

a label, a hood colour (e.g. red for busbars live), a fuse and connection to a power 

source. This additional information is provided via a several argument constructor. 

From the arguments provided by the constructor, the indicator lamp is connected 
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to a source of energy; either a voltage transformer secondary, 26  by instantiating a 

CTrans formerBurden object, or the switchboard's auxiliary supply, by instanti-

ating a CPowerSupplyLoad object. From either energy source, the indicator lamp 

object dynamically obtains its voltage rating and based upon this rating, a correctly 

sized fuse is included in the lamp's specification. 

5.3.3.6 Fuses 

The main function of fuses within a modern switchboard installation is to provide 

protection for items of equipment contained within a section connected to either 

an auxiliary supply or a voltage transformer. Devices that require protection are 

indicated on the left hand side of Figure 5.21, which depicts the class relationships 

between the fuse specification and design classes and the other classes that consti-

tute the switchboard design software. 

CObject 

CEdgesooc 	 CFuseSpec 

CAntiCondensationHeater__IC>- -1- - 	 CFuse 	 F - - 	 CFuseDIg 

CindicatorLamp 

Cinstrumentation 

lnstrumentationVoItageTransformer_ 

CProtectionRelay F-  

CProtectionVoItageTransformer_- 

Figure 5.21: The class diagram for fuses. 

Following a similar architecture to other constituent component classes, the 

attributes common to all fuses are captured within the specification class CFus-

e Spec, which includes applicable construction standards, the manufacturer, and 

the mounting type. Fuse objects are instantiated as required, dynamically, by the 

objects that require them from the CFu se design class. Additional features in-

cluded in the fuse design class were automatic voltage and current rating, number 

of fuses required and storage for individual order or part numbers. Extra member 

functions are included to assist in the management of C F u s e objects; most notably 

Edit (),and updateRating 0. The Edit () function allows the user to directly 
26 Indicator lamps are only directly connected to a voltage transformer when their function is to 

indicate the energisation status of the busbars. 



5.3 Development of the Model 	 128 

edit any fuse object via a specialised dialog box. The UpdateRating () function 

allows a fuse object to find the voltage and power rating of the device to which it 

is connected via a reference; this arrangement is shown in Figure 5.22. Once the 

voltage and power rating of the protected device is known then then the Updat-

eRating () function proceeds to determine the nearest standard value fuse rating 

appropriate to protect the device. Once obtained the fuse rating is stored as a mem-

ber variable within the object. In the event that the rating of the device protected 

by the fuse changes, the device then calls the UpdateRat i n g () function and the 

revised rating for the fuse is then determined and stored. 

flAntiCondensationHeater I 

rn_Fuse 	 Fuse I 

L rnDevice 

Figure 5.22: An object diagram illustrating the relationship between a fuse 
protected device (in this case an anti-condensation heater) and a 
CFuse object. 

5.3.3.7 Circuit Breakers 

The devices that perform the actual switching of electrical circuits connected to the 

switchboard are the circuit breakers. Every section within a switchgear installation 

contains a circuit breaker with the exception of spare sections; this relationship be-

tween the circuit breaker design class and the sections in which they are contained 

is illustrated on the left hand side of Figure 5.23. 

CObjct 

CEdgesDoc 	 F-, 	CCircuitBreakerSpec 

CBusSection 	 -j-  - 	CCircuitBreaker 	F T - 	CPowerSupplyLoad 	I 
CGeneratorSection 	H- 	 - 

- 	CCircuitBreakerDlg 

H- 	CLoadSection 

COperationallySpareSection_H- 

Figure 5.23: The class diagram for circuit breakers. 

The specification class CCircuitBreakerSpec contains all the attributes that 

are required to specify a circuit breaker, such as the interrupting medium, the 

charging type and wattage (if applicable) of the spring charging mechanism and 
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its required auxiliary voltage, the wattage of the spring release and shunt trip coils 

and their required voltage, applicable standards relating to the device's construc-

tion, and part number. The manufacturers' details are omitted as these are obtained 

from the CSwitchboard object. 

The above attributes are inherited and enhanced to create the CCircuitBr-

eaker design class. Additional member variables include the circuit breaker's rat-

ing (in amps) and the electrical connections to both auxiliary and tripping supplies, 

if required. Upon instantiation of a new section (with the exception of spare sec-

tions) the user is required to enter the size of the load or energy source as this 

parameter cannot be determined via any other means. 27  From this single piece of 

information combined with the circuit breaker specification details, a completely 

specified circuit breaker object can be instantiated as part of the components asso-

ciated with a section. The load size is checked and the necessary capacity breaker 

size is found by the member function B r e a k e r S i z e 0. 

Having instantiated an appropriately sized circuit breaker object, the spring 

charging mechanism, if required, is connected to the auxiliary power supply of the 

switchboard followed by the connection of both the spring release and shunt trip 

coils to the tripping supply. All three loads are automatically fused with appropri-

ately rated fuses. Several other management functions are also included within the 

public interface of C C i r c u i t B r e a k e r including the Edit () function that allows 

the user to edit the details of individual circuit breakers via a dialog. 

5.3.3.8 Current and Voltage Transformers 

The inclusion of current and voltage transformers (otherwise referred to as sensing 

transformers) within the model present a set of similar design issues comparable to 

those encountered by the modelling of auxiliary power supplies and their loads. 

Each sensing transformer, although not a source of energy, may be considered as 

such when devices are connected to their secondary windings. Therefore a similar 

approach to the modelling of auxiliary power supplies and loads is adopted to 

include sensing transformers and the devices connected to them (termed burdens). 

Current and voltage transformers are a specialised application of the general 

concept of the transformer, therefore to model this feature and allow for future de-

velopment of the software to include other types of transformers, an abstract class 

called CTrans former was developed. This class includes all the general features 

that characterise a transformer, such as primary and secondary winding ratings, 

capacity (in VA), number of phases and the ability to manage burdens connected to 

the secondary windings of the device. In a similar fashion to power supply loads, a 
27 Other leading dimensions are also required; for further details refer to Section 6.4. 
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class called CT ran sformerBurden was developed to define an interface between 

CTrans former objects and their burdens. 

There are significant differences between how current and voltage transform-

ers are specified within a switchboard installation. Hence it was decided to create 

two subclasses of CTransformer to model these differences. Thus CCurrent-

Transformer and cvoltageTransformer classes were created. However, as 

discussed in Section 2.1.3.4, there exists within switchgear design two distinct cat-

egories of sensing transformers; namely instrument grade and protection grade 

transformers. Therefore to include both of these important categories within the 

software model, a further four classes were derived, two each from both CCur-

rentTransformer and CVoltageTransformer classes. The complete class hi-
erarchy is illustrated in Figure 5.24. 

Cob) ct 

CTransformer 	 I I 	CTransfermcrBurden 

CCurrentTransformer 	I 
	

CVoltageTransformer 	I 

CProtectionCurrentTransformer I 	I ClnstrumentationVoltageTransfonner  I 	I CProtectionVoltageTransformer 

Figure 5.24: The class diagram for transformers and transformer burdens. 

Note that the design class hierarchy depicted in Figure 5.24 omits any speci-
fication classes. The reasoning for not including specification classes for sensing 

transformers is two fold. Firstly, the inclusion of a specification class in the upper 

portion of the transformer class hierarchy would be meaningless due to the diverse 

operation of the lower devices that the classes represent. However, including spec-

ification classes at the lower specialised levels of the class hierarchy would lead 

to the creation and management of an additional four classes in an already com-

plex class hierarchy for a relatively minor set of devices. This was a situation to be 

avoided. 

Secondly, both instrumentation and protection grade transformers serve two 

distinct groups of devices - instrumentation and protection equipment. Individ-

ual devices of either group all have various, distinct sensing transformer require-

ments. For example, a protection device may require connection to a one, two or 

three phase current and/or voltage transformer dependant upon the function of 

the protection device. This is also the case for instrumentation devices. Therefore 

it is impossible to define in advance meaningful specifications for sensing trans-

formers as the only attributes common to either current or voltage devices are the 
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secondary VA rating and accuracy class. Other transformer attributes, such as the 

capacity of the device, the primary rating and burden size, can only be determined 

at runtime. Thus the adoption of specification classes for each type of current or 

voltage transformer proved to be ineffective, and hence was rejected. 

The instantiation of a current or voltage transformer object requires the deter-

mination of the required accuracy and secondary rating of the device. 28  This issue 

was resolved by including these leading dimensions within the specification classes 

of the objects that would require such transformers, specifically the Clnstrumen-

tationSpec and CProtectionRelaySpec classes. 

The abstract class, CTrans former, provides a generalised definition of the 

function of a transformer. Through the use of inheritance and virtual functions, 

the subclasses of the C T r a n s former redefine this abstract definition into a set of 

fully functional concrete classes. For example, the CCurrent Trans former class 

redefines the function SecondaryRating () to ensure that it can only be defined 

as either 1 or 5A, however, the CVoitageTrans former class redefines the same 

function to return either 110 or 440V. Furthermore, the CVoltageTransformer 

class utilises the aggregation technique to include a set of primary fuses for the 

protection of the transformer. At the bottom of the inheritance structure the final 

concrete classes possess multi-argument constructors, the ability to automatically 

determine their appropriate size and accuracy (based upon the burdens placed on 

their secondaries) and several management functions including the instantiation 

of an edit dialog to allow users to view and edit these devices. The inter-class re-

lationships between all the sensing transformers' design classes, their respective 

dialog classes, and instrumentation and protection design classes are illustrated in 

Figure 5.25. 

1 	ClnstrumentationCurrentTransformer F - - ' 1 ClnstrumentationCurrentlransfornierDlg 

Cinstrumentation 4 	CtnstrumerItationVoItageTransformerF- - - lCliistimentationVoItageTransformerDIg 

L —IlCTransformerBurden 	 CFuse 

r- 	CProtectionCurrentTransformer F- - - CProtectionCurrentTransformerDlg 

CProtection F 4— r{CProtectionVoltageTransformerF- 1 - CProtectionVoItageTransformerDIg 

L - 	CTransformerBurden 	 I 	 CFuse 

Figure 5.25: The class diagram for current and voltage transformers. 

28The burden which the instrument, lamp or protection relay places on either a current or voltage 
transformer is considered part of that device's specification, not part of the transformer specification. 
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5.3.3.9 Instrumentation Equipment 

Instrumentation devices provide accurate information concerning the electrical con-

ditions of a section during the operation of a switchboard. The class diagram for 

instrumentation devices is depicted in Figure 5.26. The class hierarchy follows the 

familiar design pattern of specification class leading to a design class. The inclu-

sion of protection grade sensing transformers allows instrumentation devices to be 

connected to these devices, a situation that occasionally arises for small, limited 

capacity switchgear installations. 

CObject 

CEdgesDoc 	 I 	P 	CinstrumentationSpec 

CGeneratorSection 	H 
CLoadSection 	j, i 

COperationallySpareSection 

Clnstrumentation 	I 

- - CInstnimentationCurrentTransform 

+ - ClnstrumentationVoltageTransformer 

1— - ClnstrumentationDlg 

- 	 Cbel 

L - CProtectionCurrentTransformer 

L - CProtectionVoItageTransformer 

CTransformerflurden 	I 

Figure 5.26: The class diagram for instrumentation devices. 

The specification class for instrumentation devices provides storage for all at-

tributes common to these devices, which includes current and secondary voltage 

ratings and respective burdens, physical instrument size, range, required accuracy, 

manufacturers details and applicable construction standards. In common with all 

constituent components, typical valid parameters are provided by default which 

the user may edit through the component specifications dialog box. The Clnstru-

mentation design class augments the specification class by providing manage-

ment functions and several member variables that include CLabel and CTrans-

formerBurden objects, a part number, end scale and scale label text strings. 

Instrumentation devices have a large number of different forms and functions. 

The data within the instrumentation specification class is insufficient to define a 

realisable, functional instrument. Therefore, the user or Edges must provide the 

other leading dimensions that allow an instrument to be defined. These dimen-

sions are the function of the instrument, the required scale label and the number of 
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current and voltage transformers that the device requires to fulfil its function. The 

function attribute is a non-editable text string that identifies the parameters the in-

strument measures, e.g. power factor or current. This function attribute ensures 

that the instrument can always be uniquely identified within a section. The scale 

label identifies the required textual string that appears on the instrument. The cur -

rent and voltage transformer parameters define the number of connections of each 

device that the instrument requires; zero, one, two, three or four are all valid argu-

ments. Furthermore, a single instrument may have non-zero values for both these 

attributes; for example a power meter would be defined by having connection to 

three current transformers and a single voltage transformer. 

By default, Edges automatically includes a current meter and a selector switch 

within each section, although the user may exclude this device from the final swit-

chboard specification. To illustrate how instruments are instantiated, initialised 

and connected to sensing transformers via burdens, the interaction between these 

classes has been depicted in Figure 5.27 for the case of a voltage meter. 

Section I 	 VoltMeter I 
	

TransformerBurden I VoltageTransformerl 	Fuses I 
(CincomerSection) 	 (Cinstrumentation) 

	
(CTransformerBurden) 

	
(amItageTrformer) 	 (CFuse) 

CreotelnstVTO 

CreoteBsrden(VoltMete,I 

Figure 5.27: The interaction diagram for a voltage meter. Note that to sim-
plify the complexity of this diagram, the initialisation of the in-
strument's label and the burden's fuse objects have been omitted. 

The object interactions represented in Figure 5.27 are explained as follows. Dur-

ing its initialisation a section, in this case an incomer section, recognises from the 

constituent component specifications that it requires a three phase volt meter. There-

fore Section 1 instantiates a volt meter object from the Clnst rumentat ion class 

through a multi-argument constructor call which defines the device's properties. 
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The voitMeterl object now knows that it requires a connection to a three phase 

instrumentation grade transformer, however, this object is not aware if such a de-

vice already exists. Thus voitMeterl object queries the section that instantiated 

it, Section 1, to determine if a suitable voltage transformer currently exists. In this 

case, no such transformer exists so the VoitMeterl object instantiates a suitably 

rated three phase transformer. 

Upon instantiation, the instrumentation voltage transformer defines its capac-

ity which, automatically, selects the smallest standard size followed by instantiat-

ing a set of fuses that in turn automatically obtain the current rating of the volt-

age transformer and rate themselves appropriately. Execution control now returns 

to the volt meter object which now knows that an instrumentation grade trans-

former exists: it can now proceed to make a connection to this transformer via a 

CTransformerBurden object with an appropriate rating. By including a refer-

ence to the voltage transformer, the burden then automatically connects and loads 

the voltage transformer. This action results in the transformer checking its capac-

ity, accuracy and the fuses that protect it to ensure that they are all correctly rated; 

this is achieved by calling Re s i z e () function. The volt meter has now been in-

stalled, specified and connected to a correctly rated voltage transformer which in 

turn is protected by appropriately rated fuses. Control will now return to the in-

corner section object, Section 1, which will continue specifying other constituent 

components. 

5.3.3.10 Protection Equipment 

Protection equipment provides electrical protection against abnormal network op-

erating conditions for the section in which the equipment is mounted by continu-

ally monitoring the generator, load or incomer via protection grade sensing trans-

formers. If an abnormal condition is encountered, the protection device causes 

the section circuit breaker to trip, disconnecting and thereby protecting the sec-

tion. The majority of protection equipment take the form of individual devices, 

referred to as relays, though modern protection devices are of the form of elec-

tronic multi-function devices. The class hierarchy for protection relays follows the 

specification/ design class pattern characteristic of all constituent components, and 

is represented in Figure 5.28. 

The specification class, Cp rot ectionRelaySpec, stores the attributes com-

mon to all items of protection devices, which include the load imposed on the direct 

current tripping supply, current and voltage transformer requirements (number of 

phases, burdens per phase and preferred secondary ratings), manufacturers' de-

tails and applicable construction standards. The protection relay design class has 
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Figure 5.28: The class diagram for protection relays. 

been developed in a similar manner to the instrumentation design class by includ-

ing a function descriptor and part number text strings that allow any device to 

be uniquely identified. The objects CLabel, CPowerSupplyLoad and CTrans-

formerBurden are included to allow the protection device to be labelled (if re-

quired) and connected to the tripping supply and to the appropriate protection 

grade sensing transformers. 

The function descriptor allows the functions that the protection device performs 

to be included within each protection object, for example 'under and over voltage' 

or 'over current and earth fault'. By adopting this feature, the wide variety of pro-

tection devices can be specified from one design class, rather than a multitude of 

such classes; one for each type of protection device. In a similar fashion to instru-

mentation devices, protection relays may be connected to any number or combi-

nation of protection grade current or voltage transformers. These details, along 

with the functional descriptor, form the leading dimensions for the protection re-

lays, and therefore must be provided by either Edges or the user (via a specialised 

dialog box). 

Edges automatically defines all the protection equipment for each section to 

ensure that the entire switchboard is compliant to G59. The user may view the 

protection devices and edit their attributes or include additional protection devices 

where they deem it necessary. 29  The number and type of protection relays included 

within a switchboard section depends upon the section's function. Therefore when 

the user elects to add a new section to the switchboard, Edges can automatically 

define and electrically connect the appropriate protection relays for that section to 

29There are only a limited number of occasions where the user might wish to include additional 
protection devices; this feature has been included within the software to enhance its flexibility. 
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the necessary and correctly defined protection grade current and/or voltage trans-

formers, as well as connecting the relay to the tripping supply. A summary of the 

protection devices that Edges automatically defines for each section type are listed 

in Table 5.1. 

Section Type Sub-Type Protection relays installed 

Bus Section n/a None 

Generator Section Induction Generator Over voltage 

Under voltage 

Over frequency 

Under frequency 

Over current 

Earth fault (> I 5OkVA) 

Loss of mains 

Reverse real and reactive power (>25OkVA) 

Synchronous Generator Over voltage 

Under voltage 

Over frequency 

Under frequency 

Over current 

Earth fault (>1 50kVA) 

Loss of mains 

Reverse real and reactive power (>25OkVA) 

Synchronising Relay 

Incomer n/a Over current and earth fault 

Over voltage 

Load Section Induction Motor Over current and earth fault 

Over voltage 

Passive Load Over Current and earth fault 

Over voltage 

Semi-Conductor Over Current and earth fault 

Over voltage 

Synchronous Motor Over current and earth fault 

Over voltage 

Operationally Spare Section n/a Over current and earth fault 

Over voltage 

Spare Section n/a None 

Table 5.1: The protection devices created automatically by Edges, listed ac-
cording to section type. Note that the values in brackets indicate 
the size of the machine required for the protection device to be in-
stalled. 

The interaction between a current operated protection relay object, in this case 

an over current relay, with a protection grade current transformer, a transformer 

burden and an auxiliary supply is illustrated in Figure 5.29. This figure visually 

indicates the object interaction required to include a protection device within the 

switchboard design. 

The object interactions represented in Figure 5.29 are described as follows. The 

protection relay is instantiated by a section; in this case the section is an induction 

generator section which provides the leading dimensions sufficient to define the 

over current protection relay device. Once the protection relay has been instanti-

ated, it checks to see if a protection grade current transformer already exists in this 

section. In this instance, no such transformer exists, resulting in the over current 
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Figure 5.29: The interaction diagram for a over current relay. 

relay object instantiating a suitably specified current transformer. Once instanti-

ated, the current transformer initialises itself and automatically defines its capacity 

(in VA) by calling it's member function Resize 0.  Control now returns to the 

protection relay which, having instantiated a suitable transformer, instantiates a 

burden for the transformer via a several argument constructor call, allowing the 

transformer burden to correctly identify the current transformer to which it will 

connect the protection relay object. 

The majority of protection relays require additional electrical power to operate; 

this power is obtained from the secure tripping supply. Therefore the next stage 

of initialisation for the protection relay is to connect to the tripping supply, via a 

CPowerSupplyLoad object. Hence the instantiation of the TrippingSupply-

Load 1 object. Once again, by the use of a multi-argument constructor call, the 

power supply load object can automatically connect to the tripping supply with 

the correct load for the relay. This results in the TrippingSupply object calling its 

member function FresentLoading () to sequentially request the loading of each 

C P owe rS upp 1  Load object defined throughout the entire switchboard. It then cal-

culates the new total loading on the supply which is then stored. The instantiation 

of the power supply load object completes the initialisation of the protection relay 

object resulting in control being passed back to the section object to complete its 

initialisation. 

5.3.3.11 Summary 

This concludes the discussion of the constituent components necessary for the con- 

struction and operation of a switchboard. It has been seen that basic design objects 
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may be combined to form more complex objects. For example instrumentation 

or protection devices are coded such that together they perform the basic design 

reasoning necessary to specify themselves, their related components (if any), and 

connections to either auxiliary supplies and/or sensing transformers. 

5.4 Chapter Summary 

This chapter has considered the key aspects of the object orient programming lan-

guage C++, indicating the four mechanisms (abstraction/ encapsulation, inheri-

tance, polymorphism and aggregation) that allow this software technology to op-

erate. An object oriented architecture for multi-component design was described, 

indicating how domain knowledge and the features of C++ allow design rationale 

to be captured in a software application, named Edges. The various key features 

that constitute a switchboard were individually considered and captured in spe-

cific classes. The architecture allows abstract, component specification classes to be 

reused and expanded into design classes which cooperate together to allow swit-

chgear design to be modelled. 

Having discussed the operation of the software at the language level in this 

chapter, it is the purpose of Chapter 6 to describe how the software operates from a 

user's point of view through the description of a case study, from which an overall 

appreciation of the operation of Edges will be given. 



Chapter 6 

System Operation 

The previous chapter discussed the construction of, and interaction between, object 

oriented specification and design classes that allow Edges to perform switchgear 

design. This chapter extends this discussion from the point of view of the user by 

indicating how the project software is used in practice for designing and produc-

ing a complete specification for switchgear installation. Rather than discuss the 

software in general terms, a case study will be presented to focus the discussion of 

the software's operation. The chapter commences by outlining the main features of 

the application's graphical user interface, followed by the definition of the switch-

board's general properties and the specification attributes of section components. 

Having defined and edited the overall features of the proposed switchboard, the 

definition of individual sections may proceed. Once one or more sections have 

been included within a proposed design, their constituent components may be ad-

justed to suit the users requirements before the final switchboard specification is 

produced. The chapter concludes with an overall summary of the software's oper-

ation. 

6.1 Application Interface 

One of the criteria that the project software has to fulfill' is that it utilises a stan-

dard graphical user interface that will operate on a personal computer. The Mi-

crosoft Windows operating system meets this criterion. By utilising the Developer 

Studio, an application that takes advantage of Windows interface features can be 

constructed. The graphical user interface created using Developer Studio for the 

project software, Edges, is depicted in Figure 6.1 during a typical design scenario. 

The important features of the application interface are explained as follows. The 

menu bar provides access to all the main features of the application through a series 

'As discussed in Section 4.3. 
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Figure 6.1: A screen shot of Edges during a design task, with the key features 
of the Windows graphical user interface highlighted and labelled. 

of standard Windows drop down menus. However, the tool bar allows the user to 

access quickly the same features but through a series of coloured icons. The status 
bar at the bottom of the screen provides a description of the current status of the 

application and descriptions of menu or tool bar items highlighted by the mouse 

cursor. Two switchboard sections have already been defined and are drawn in the 

main portion of the window; each gray rectangle represents a switchboard section 

within which a graphical depiction of the section's type and key details are given. 

By moving the mouse pointer and selecting a section with the left mouse button, 

the user can edit the details and constituent components of that section, via the edit 
section dialog. 

The following sections describe how the software would be used to define the 

paper mill switchboard illustrated in Figure 2.5 on page 21. It should be noted 

that due to space limitations the majority of dialog boxes and minor features of the 

software have been omitted to allow the discussion to focus on the key aspects of 

the switchgear design software. 
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6.2 Commencing the Design 

Before commencing a switchboard design, the user must have a basic idea of the 

number and type of sections that will comprise the proposed switchboard and the 

type of components they wish to utilise within each section of the switchboard. 

These details will probably change during the course of the switchboard design; 

however, such changes are easily accommodated by the software. 

To commence the design of a proposed switchboard, the user starts Edges which 

results in the main application window appearing on the Windows desktop. By de-

fault, Edges will automatically create a new design document with a default switch-

board that does not contain any sections and a complete list of constituent compo-

nent specifications (for devices such as circuit breakers, control switches and fuses) 

populated with appropriate parameters. The user could at this point immediately 

commence the definition of switchboard sections. However, the switchboard spec-

ification produced would be based upon these default switchboard properties and 

constituent component parameters. To maximise the benefit from the software, the 

user should edit the switchboard properties and component specifications appro-

priate for their proposed installation. Once these settings have been entered, they 

may be saved to disk for future use. 

To edit the switchboard properties, the user selects the switchboard properties 

icon from the tool bar, using the mouse pointer, resulting in the dialog depicted in 

Figure 6.2 being displayed on screen. The dialog box consists of four property pages 
or tabs, one for each group of switchboard attributes; namely electrical, physical, 

location and climate. The electrical properties of the switchboard are visible in 

Figure 6.2, however, the values illustrated within each of the edit controls have been 

adjusted from the default values to suit the example of the paper mill switchgear 

installation conditions. 

By selecting, say, the busbar rating edit control, a list of typical ratings appears 

to guide the user. In this case the user may select one of these standard ratings 

or enter a specific value into the edit control. The properties for both auxiliary 

supplies may be edited by selecting the appropriately labelled button, resulting 

in the corresponding power supply dialog appearing. The switchboard attributes 

that are available through the physical, location and climate tabs are summarised 

in Table 6.1. 

Once the user has completed editing the general properties for all four aspects 

of the switchgear installation, they then select the OK button, causing the switchbo-

ard properties dialog to close and this information to be stored in the application 

document. If, at any point during the design process, the user changes any of 

the switchboard properties, the changes will be checked, stored and distributed 
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Electrical I Physical I Location I Crate 

Serice Voltage J 	j kV 
	

Frequency (Hz) 

BusbeRatrig: J1200 j A 	 50 (_ 60 

Fault Rating (3 second) Flo 

Auxary Supply Properties 

Trpp4ng Supply Properties 

OK 	Cancel  

Figure 6.2: The switchboard properties dialog. 

Attributes Group Attributes 

Physical 	Manufacturer, model, ingress rating (IP number), paint 

colour, construction standards, label inclusion, circuit 

breaker isolation/withdrawal type (horizontal or vertical) 

Location 

	

	Site name, site location, commencement and revision 

dates, revision number and project code 

Climate 	Installation altitude, average ambient temperature, peak 

humidity, anti-condensation heater inclusion options 

Table 6.1: A summary of the physical, location and climate attributes that are 
associated with a switchboard installation. 

through existing sections and their respective constituent components. Should the 

changes to the switchboard properties result in the specification of any constituent 

components becoming invalid, then the affected components will automatically 

re-evaluate their design parameters to account for the new design circumstances, 

thereby ensuring that the specification for the switchboard is consistent and accu-

rate. 

6.3 Component Specification 

The user, having defined the general aspects of the proposed switchboard, then 

proceeds to edit the component specifications which serve as the basis upon which 

all constituent section components are created and specified to. The component spec-
ification dialog, depicted in Figure 6.3, appears by the user selecting the component 

specification icon from the tool bar or from the similarly named menu item, listed 
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under Edit. 

Anti-Condensation Heaters 	I 	Circuit Breakers 	Con Switches 	I 	Fuses 
Indicator Lanps 	I 	lnstiisneration 	I 	Labels 	Protection Relays 

Manufacturer: 

Relay Series /Range: IhdJs 

Applicable Standards: IB5142 & lEC255 

Current Operated Relays 

CT Secondary Rating: 1 	j 

CT Burden (per phase):1025 	VA 

Classification: Ii OP  

Tripping SupplyLoad : 

50 E W(max) 	1110 	Vdc 

P0  Include panel labels 

Voltage Operated Relays: 

VT Secondary Rating: I 11 OJ V 

	

Vl Burden (pet phase) : 005 	VA 

Classification: 

OK 	Cancel 	 I 

Figure 6.3: The component specification dialog with the protection relay prop-
erty page displayed. 

The component specification dialog is constructed in a similar fashion to the 

switchboard properties dialog, using a series of property pages, each of which cor-

respond to a specific constituent component or group of components. The pro-

tection relay tab is displayed in Figure 6.3, indicating the relationships that are 

already established between objects. Note that the tripping supply voltage is in-

cluded within this dialog as part of the tripping supply load specification for each 

protection relay, but the user can not edit the voltage (indicated by its "grayed 

out" status) it is included within the dialog for the user's information only. If the 

user wishes to change the tripping supply voltage, he/she must do so from the 

switchboard properties dialog. Any such change is automatically reflected in the 
component specification property pages. 

Most of the options contained within the other tabbed component dialogs are 

self explanatory, but there are a few options that require further explanation; they 

are discussed as follows. Through the instrumentation tab, the user may define the 

general attributes for all instruments and also select and edit the type and number 

of instruments that are to be included within each section; the only exception to this 

rule being spare sections which are devoid of all constituent components. A similar 

option is not available under the protection devices property page due to the safety 

implications that such an option would pose. Therefore protection devices are pre-

defined and installed automatically by the software to ensure that G59 protection 

compliance is met. The user is then free to augment these protection devices with 
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additional devices of their own choosing. 

Furthermore, the specifications of protection and instrumentation devices are 

unusual as they not only define the common attributes for all protection and instru-

mentation devices, but also the sensing transformers to which they are connected. 

For all other component specifications, their respective property page relates only 

to the individual device in question. Note that for all sensing transformers, only 

the secondary ratings for the devices are present; the primary ratings and the ca-

pacity of the device will be determined at runtime once the device is instantiated 

and connected to the switchboard's busbars. 

Also under the instrumentation property page, there is a tick box labeled "Use 

protection grade current and voltage transformers". This option relates to the de-

sign practice of limited capacity switchgear installations where only protection 

grade transformers are specified and onto which all instrumentation devices are 

also connected. This practice is adopted to simplify and reduce the cost of the final 

switchboard installation. By default this option remains un-checked resulting in 

both instrumentation and protection grade sensing transformers being installed, as 

required, within each section. 

Under the climate property page, the user is asked for the altitude at which the 

switchboard will be installed and operated at. The number entered by the user 

does not have to be particularly accurate, as this parameter does not affect the elec-

trical design of the switchboard unless it is intended that the switchboard is to be 

operated above 1000m above sea level. Above this height the switchgear manufac-

turer must be informed of the altitude so that correction factors can be applied to 

the intended switchboard specifications to re-calculate or upgrade the maximum 

voltage, current and thermal ratings of the installation. 

Once the user is satisfied with the specification of the components, he/she then 

closes the dialog by selecting the OK button. This action results in all the component 

attributes being saved to the computer's memory and any previously defined sec-

tion components being automatically updated to reflect the new component speci-

fications. This measure ensures consistency in the proposed switchboard design. 

6.4 Defining the Switchboard 

Once the general properties and components of the switchboard have been refined 

to suit the installation, the user can proceed to define the sections that comprise 

the proposed switchgear installation. Rather than define an arbitrary example of a 

switchboard installation, this section will use the operational paper mill switchbo-

ard, illustrated in Figure 2.5, to demonstrate the software. It has been assumed that 
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the user has already entered the general and component properties for the switch- 

board including the specification of a current meter and voltage meter per section. 

Both instruments will have a selector switch to allow different phases to monitored. 

To define a section, the user selects with the mouse pointer the new section 

icon or menu item. Either action results in the new section selector dialog appear-

ing in front of the application window frame, as depicted in Figure 6.4. Note that 

not all the section types appear within the alphabetically sorted tree hierarchy pre-

sented to the user. In this instance, only the selection of either generator or incomer 

sections are valid, but this is contrary to the requirements of the paper mill swit-

chboard whose first section is a load section, labelled Old Mill Feeder. The limited 

choice of section types is due to the fact that only generator or incomer sections are 

allowed to have sensing voltage transformers installed within their specification 

(this is standard switchgear design practice). However, in terms of the software 

model, if other sections were allowed to be defined before either a generator or 

incomer section was instantiated, then they could request a connection to a volt-

age transformer that did not yet exist within the software model - an unacceptable 

situation. 

To resolve this limitation and to simplify the coding of the software, the user is 

required to define a generator or incomer section at the beginning of a design sce-

nario, or after the definition of a bus section. In either case, this allows the voltage 

driven equipment in load or operationally spare sections to connect to an exist-

ing voltage transformer, or the option of specifying an appropriate voltage trans-

former.' Therefore the paper mill switchboard sections one and four, and six and 

eight have been transposed to allow the software to model the switchboard. The 

revised switchboard is illustrated in Figure 6.5. Once all of the sections of the entire 
switchboard have been defined, the sections that were transposed to facilitate the 

switchboard's definition in the software can be replaced in their original position 

before the final specification of the switchboard is produced. 

As a result of this software limitation, the first section to be defined within the 

software model is in fact the fourth section of the paper mill switchboard - the 

incomer. The user selects the incomer section type from the tree hierarchy within 

the new section selector dialog, and confirms the selection by clicking the OK button 
at the bottom of the dialog. This action results in a dialog entitled New Incomer 

Section appearing with the leading dimensions that the user must complete to allow 

the section to be defined. The new incomer section dialog is illustrated in Figure 6.6, 

with the leading dimensions appropriate for the paper mill installation entered into 

the various dialog controls. 

Each of the controls within the new incomer section dialog are explained as fol- 

2The discussion in Section 7.2.3.2 indicates how this limitation may be resolved in future versions 
of the software. 
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Figure 6.4: The new section selector dialog on the first visit. The tree structure 
allows the user to select the new section type. 

Section I 

Utility 
Incomer 
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No I 

8006 A 
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800/5 A 
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Figure 6.5: The revised layout of the paper mill switchboard to allow it to be 
modelled in Edges. 

lows. The label edit control defines the section's label; this item is presented to the 

user upon the creation of all new sections. Any meaningful text string may be en-

tered by the user. Below the label control, the user is asked to enter the capacity, 

line impedance and fault level of the incomer at the point of common connection 

(PCC). This information ensures that a set of busbars and a circuit breaker of appro-

priate electrical ratings, sufficient to carry and switch the incomer 's load current, 
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Figure 6.6: The new mcomer section dialog. 

are defined and specified for the section. 

The last group of items on the dialog asks the user if remote switching is re-

quired; this option also appears on all new section dialogs with the exception of 

the new spare section dialog. Most switchgear installations have a mixture of lo-

cally or remotely controlled sections, therefore this question has to be presented to 

the user as each section is created. If remote switching is required, the following 

features are included automatically within the section specification: 

A labelled local/remote control switch, and 

A circuit breaker that includes an electrical spring charging mechanism. 

If local switching is selected, then the local/remote control switch is omitted 

and the charging mechanism defaults to the mechanism defined by the circuit 

breaker component specification. In the case of the paper mill, it is likely that the 

incomer may be switched frequently and remotely, hence the selection of remote 

switching. Once all the fields are completed by the user, the inclusion of the section 

in the switchboard will be confirmed by selecting the OK button. During the in-

stantiation of the incomer section (or any other section type), the following actions 

occur: 

• Based upon the capacity of the section, an appropriate, standard sized circuit 

breaker is instantiated, 

• From the circuit breaker specification, a set of busbars are specified and their 

rating is checked against existing busbars mounted in previously defined sec-

tions; the maximum through current between sections is determined and this 

defines the rating for all other busbars, 
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• The fault contribution from the section is calculated approximately 3  [124] and 

included with existing sections' fault contributions to ensure that the switch-

board is within its fault rating and that of the incomer, and 

• All necessary constituent components are created and, if required, connected 

to the appropriate auxiliary supplies or sensing transformers and, if appro-

priate, correctly fused. 

A complete but summarised list of the components and their ratings automatically 

defined by the software for the incomer section is given in Table 6.2. 

Item Rating 

Anti-condensation heater 230Vac, 40W 

protected by cartridge fuse 230Vac. IA 

Susbars, set of 3 phase 1200A @ 50Hz 

Circuit breaker: 

rated current 1200A @ 50Hz 

rated voltage 3.3kv @ 50Hz 

interrupting medium SF, 

spring charging mechanism 	- motor 230Vac, 190W 

spring release coil I lOVdc, 205W 

shunt trip coil II OVdc, 115W 

Control Switches: 

Local/Remote control switch 230Vac, I OA 

latching, selector with component label 

Trip/Neutral/Close control switch II OVdc, I OA 

latching, selector with component label 

Amp meter control switch 230Vac, IA 

make before break, latching, selector 

Volt meter control switch 230Vac, IA 

latching, selector 

Indicator Lamps: 

Busbar live lamps, 3 of, I IOVac, SW each 

with red filters 

voltage transformer properties: connection to VT I 

protected by cartridge fuses, 3 of II OVac, IA 

component label 

Instrumentation: 

Amp meter: 

accuracy 1% 

end scale value I400A 

scale 90 

scale label A 

size 96mm' 

current transformer properties: connection to CT I 

burden (per phase) 2VA 

component label 

Volt meter. 

accuracy 1% 

end scale value 3.6kv 

scale 90 

scale label A 

size 96mm' 

voltage transformer properties: connection to VT I 

burden (per phase) 2VA 

protected by cartridge fuses, 3 of II Ovac, IA 

component label 

Item Rating 

Protection Relays: 
Over current and earth fault relay: 

tripping supply load I l0Vdc, SW 

current transformer properties: connected to CT2 

burden (per phase) 0.25VA 

voltage transformer properties: not required 

component label 

Over voltage relay: 

tripping supply load I lOVdc, SW 

current transformer properties: not required 

voltage transformer properties: connected to VT2 

burden (per phase) 0.05 VA 

protected by cartridge fuses, 3 of II OVac, IA 

component label 

Sensing Transformers: 

Current Transformer I (CT 1): 

burden (per phase) 2VA 

number of phases 3 

capacity 2VA 

classification (instrumentation) I 

primary rating 1200A 

secondary rating SA 

Voltage Transformer I (irT  I): 

burden (per phase) 7VA 
number of phases 3 
capacity IOVA 

classification (instrumentation) 

primary rating 3.3kv 

secondary rating II OV 

protected by cartridge fuses, 3 of 3.3kv 

Current Transformer 2 (CT2): 

burden (per phase) 0.25 VA 
number of phases 3 
capacity 2.5VA 

classification (protection) 51' 

primary rating 1200A 

secondary rating 5A 

Voltage Transformer 2 (VT2): 

burden (per phase) 0.O5VA 

capacity IOVA 

classification (protection) 31' 

number of phases 3 

primary rating 3.3kv 

secondary rating II OVuc 

protected by cartridge fuses, 3 of 3.3kV 

Section label 

Table 6.2: A complete list of the automatically specified components and their 
ratings that comprise the incomer section of the paper mill switch-
board. 

The second section of the paper mill switchboard is a spare section that only 

contains a set of live busbars. This section is added to the switchboard specifica-

tion by once again choosing the new section selector option from the tool bar and 

3The fault calculations assume that the switchgear installation is connected via a distribution 
transformer with a five percent reactance rating per phase. 
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selecting a spare section. The only information required from the user is to confirm 

the label text for the section. 

The third section of the revised switchboard is the Refiner House Feeder. This 

load section supplies a large set of distributed induction motors via a transformer 

and a low voltage switchboard. The user selects the load section branch from the 

new section selector dialog, revealing a choice of four different load section types, 

as depicted in Figure 6.7. The major differences between the various load section 

types  are the use of specialised leading dimensions, where required, to assist in 

the definition of the section, and the calculation of their respective loading and 

fault contributions. 5  As the Refiner House Feeder supplies induction motors the 

user will select this option. 

Section 
. Bus Section 

Load 

: 	

g Passr,e Load 
ri 	 i 

M Synthonous Motor 
*' Semiconductor Load 

Jj Operationally Spare 

[I] Spare 

71 
Selection: Induction Motor 

OK 	Cancel 

Figure 6.7: The new section selector dialog on the second visit. Note the re-
vised tree structure. 

Upon selecting the induction motor load, a dialog entitled New Motor Section 

will appear; this dialog is reproduced in Figure 6.8. The first three controls in this 

dialog, namely label, capacity and power factor, are identical in function to that of 

the new incomer section dialog. The next leading dimension requests the size of ca-

pacitor bank connected to the induction motor. This is intended for large induction 

motor installations where power factor correction capacitors are utilised to reduce 

the reactive power drawn from the supply. If the capacitor bank is large (>10%) 

in comparison with the capacity of the induction motor, the fault contribution of 

the motor becomes significant. 6  Indeed, there are recorded cases where such mo-

tors generate during loss of mains or fault conditions. In order to take account of 

4 A11 load sections have the same instrumentation and protection devices automatically included 
within their respective section specifications since their requirements for these devices are identical. 

'Other minor differences do exist but relate to the management and control of the section objects. 
6  A discussed in Section 2.3.5. 
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such operating conditions, the user is asked to enter the size of the capacitor bank, 

if known. If the capacitor bank is greater than 10% of the motor's rating, loss of 

mains protection will be automatically included within the section's specification 

and fault calculations adjusted. This feature is specific to large, single induction 

motor installations. In the case of the paper mill, the distributed nature of the mo-

tor load means that the capacitor bank size can be safely defined as zero. 

Label. IRehmner House Feeder 

( MVA 
Motor Capacity: 	(A 

Power Factor: 10? 	C' Leadir 
( Lagging 

If a capacitor bank is connected across the motor's 
terminals indicate the total capacitance with respect 
to the motor's size in MVA below. 

Total Capacitance: 1° 
Remote switching required? 

C Yes ( No 

OK 	 Cancel 

Figure 6.8: The new induction motor section dialog. 

Finally the user has to specify if local or remote switching is required. In this 

instance, the Refiner House Feeder is switched infrequently and remote switching 

is not required, hence local switching is selected. Having entered the details into 

the various dialog controls, the user selects the OK button to confirm these details 

and instantiate the section. 

The fourth, and also, the seventh and eighth sections of the paper mill switch-

board are defined utilising an identical procedure as discussed for section three; 

these sections supply similar loads and are operated in an identical manner. All 

these sections are defined in the left to right order that they appear in Figure 6.5; 

they are simply omitted from any further discussion as they are included within 

the software model through an identical procedure to the one discussed for section 

three. 

The fifth section of the switchboard is a bus section. By once again opening the 

new section selection dialog and selecting the bus section option from the section 

list, a bus section will be added to the switchboard specification. Bus sections re-

quire only two leading dimensions to be defined by the user; these dimensions are 

a text label and the selection of remote switching, if required. In this case, remote 

switching is not necessary, and by selecting the OK button at the bottom of the new 

bus section dialog, the section is added to the switchboard design. It is common 

in switchgear design practice that bus sections contain no instrumentation or pro- 
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Figure 6.9: The new section selector dialog depicted about to include the 
Power Station section in the paper mill switchboard. 

tection devices; this is reflected by the software, however, the user may add such 

devices manually if they are required. Note that the required capacity of the bus 

section is not requested. This is due to the fact that the rating of the circuit breaker 

included within this section is defined to be identical to the busbar rating of the 

switchboard. Therefore the bus sections circuit breaker can be automatically rated 

by the software. 

The sixth section is the Power Station (an embedded generator) which in this 

case is a steam turbine driving a 3.3kV (1200A) synchronous machine. To include 

the machine within the switchboard specification, the user would select the syn-

chronous machine option that appears under the generators branch within the new 

section selector dialog. This dialog is illustrated in Figure 6.9. 

Having selected the appropriate generator, the new synchronous generator dia-

log will appear requesting the user to define the leading dimensions for the section. 

These dimensions include a section label, the generator's capacity and normal op-

erating power factor, and if remote switching is required. The user will then duly 

enter these leading dimensions into the dialog. By default, remote switching has 

been selected by the software as generators are frequently switched, both locally 

and remotely. Upon selection of the OK button, the synchronous generator section 

is instantiated and included within the switchboard specification. 

The synchronous generator section is the most technically and operationally 

complex section in any switchboard installation. Within Edges, this complexity is 

due to the large number of protection devices required that operate together to form 
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an electrical protection scheme that is G59 compliant. The constituent components, 

common to all other switchboard sections except spare sections, are also included 

within generator sections. In the case of the paper mill switchboard these compo-

nents include an anti-condensation heater, a three phase set of busbars, a circuit 

breaker with an electric motor spring charging mechanism, two control switches 

and two instrumentation devices (an amp meter and a voltage meter). 

In addition to the aforementioned constituent components, the Power Station 

switchboard section requires a set of busbar live indicator lamps and protection 

equipment. When the section is defined, its type and generating capacity are taken 

into account so that the protection scheme for the generator is compliant with G59. 

This also allows the protection scheme to be tailored to suit the requirements of the 

generator without the scheme being over-protective, hence expensive, and possibly 

problematic. The following protection relays were automatically defined for the 

paper mill generator: 

• An over and under current relay, 

• an over and under voltage relay, 

• an under frequency relay, 

• an over frequency relay, 

• a loss of mains (ROCOF) relay, 

• an earth fault relay, 

• a reverse power relay, and 

• a synchronising relay. 

Note that a synchronising relay has been included in this instance but this relay 

would have been omitted if an induction machine had been selected. Otherwise no 

other differences would exist between an induction generator section of a similar 

power generation capacity and the above section. 

All of the above constituent components within the Power Station section in-

dude, if required, correctly rated fuses (32 in total) and components labels (11 in 

total). Five sensing transformers and necessary connections to auxiliary supplies 

are also included in the section specification to allow all instrumentation and pro-

tection devices to operate. All of these components (including sensing transformers 

and connections to auxiliary supplies) are automatically created and appropriately 

specified by Edges. Table 6.3 lists all the components and their specifications in-
cluded in the Power Station section. 
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Item Rating 
Anti-condensation heater 230Vac, 40W 

protected by cartridge fuse 230Vac, IA 

Busbars, set of 3 phase 1200A @ 50Hz 

Circuit breaker: 

rated current 1200A @ 50Hz 

rated voltage 3.3kV @ 50Hz 

interrupting medium SF, 

spring charging mechanism - motor 230Vac, 190W 

spring release coil II OVdc, 205W 

shunt trip coil IlOVdc, 115W 

Control Switches: 

Local/Remote control switch 230Vac, I OA 

latching, selector with component label 

Trip/Neutral/Close control switch II OVdc, I OA 

latching, selector with component label 

Amp meter control switch 230Vac, IA 

make before break, latching, selector 

Volt meter control switch 23OVac. IA 

latching, selector 

Indicator Lamps: 

Busbar live lamps, 3 of, II OVac, SW each 

with red filters 
voltage transformer properties: connection to VT I 

protected by cartridge fuses, 3 of II OVac, IA 

component label 

Instrumentation: 

Amp meter. 

accuracy 1% 

end scale value 220A 

scale 90,  

scale label A 

size 96mmu 

current transformer properties: connection to CT  

burden (per phase) 2VA 

component label 

Volt meter. 

accuracy 196 

end scale value 3.6kV 

scale 90 

scale label A 

size 96mm' 

voltage transformer properties: connection to VT I 

burden (per phase) 2VA 

protected by cartridge fuses. 3 of II OVac, IA 

component label 

Protection Relays: 

Over and under current relay: 

tripping supply load II OVdc, SW 

current transformer properties: connection to CT2 

burden (per phase) 0. 25 VA 

voltage transformer properties: not required 

component label 

Over and under voltage relay: 

tripping supply load II OVdc, 5W 

current transformer properties: not required 

voltage fransformer properties: connection to VT2 

burden (per phase) 0.05VA 

protected by cartridge fuses, 3 of II OVuc, IA 

component label 

Under frequency relay: 

tripping supply load I l0Vdc, SW 

current transformer properties: not required 

voltage transformer properties: connection to VT2 

burden (per phase) 0.05 VA 

protected by cartridge fuses, 3 of II OVac, IA 

component label 

Over frequency relay: 

tripping supply load I lOVdc, SW 

current transformer properties: not required 

voltage transformer properties: connection to VT2 

burden (per phase) 0.05 VA 

protected by cartridge fuses, 3 of II OVuc, IA 

component label 

(continued) 

Item Rating 

Loss of mains relay (ROCOF): 

tripping supply load I l0Vdc. SW 

current transformer properties: connection to CT2 

burden (per phase) 0.25VA 

voltage transformer properties: connection to VT2 

burden (per phase) 0.05VA 

protected by cartridge fuses (VT only). 3 of II OVac, IA 

component label 

Earth fault relay: 

tripping supply load I lOVdc, SW 

current transformer properties: not required 

voltage transformer properties: connection to VT2 

burden (per phase) 0.05 VA 

protected by cartridge fuses. 3 of II OVac, IA 

component label 

Reverse power relay: 

tripping supply load I IOVdc, SW 

current transformer properties: connection to CT3 

burden (per phase) 0.25VA 

voltage transformer properties: connection to 's'T2 

burden (per phase) 0.05 VA 

protected by cartridge fuses (VT only), 3 of II OVac, IA 

component label 

Synchronising relay: 

tripping supply load I IOVdc, SW 

current transformer properties: not required 

voltage transformer properties: connection to VT2 

burden (per phase) 0.05 VA 

protected by cartridge fuses, 3 of II OVac. IA 

component label 

Sensing Transformers: 

Current Transformer I (CT I): 

burden (per phase) 2VA 

number of phases 3 

capacity 2VA 

classification (instrumentation) I 

primary rating 1200A 

secondary rating 5A 

Voltage Transformer I (VT I): 

burden (per phase) 7VA 

number of phases 3 

capacity IOVA 

classification (instrumentation) I 

primary rating 3.3W 

secondary rating I by 

protected by cartridge fuses, 3 of 3.3kVac 

Current Transformer 2 (CT2): 

burden (per phase) 0.25 VA 

number of phases 3 

capacity 2.5VA 

classification (protection) 5P 

primary rating 1200A 

secondary rating 5A 

Voltage Transformer 2 (VT2): 

burden (per phase) 0.05 VA 

capacity I OVA 

classification (protection) 3P 

number of phases 3 

primary rating 3.3kV 

secondary rating I lOVac 

protected by cartridge fuses, 3 of 3.3kVac 

Current Transformer 3 (CT3): 

burden (per phase) 0.25VA 

number of phases I 

capacity 2.5VA 

classification (protection) SP 

primary rating I200A 

secondary rating 5A 

Section label 

Table 6.3: A summary list of constituent components automatically defined 
by the creation of a synchronous generator section in the paper mill 
switchboard. A complete component specification for this section is 
given in Appendix B. 
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Sections seven and eight are load sections, defined in a similar manner as previ-

ously described for section three, and are omitted from any further discussion. The 

final section of the paper mill switchboard is an operationally spare section that 
allows the switchboard to accommodate additional loads. This section is added 

to the switchboard design by selecting the operationally spare option from the new 

section selector dialog. As with the other section types, the user must enter the lead-

ing dimensions for the section to allow its definition, which in this case is a section 

label, the required switching capacity of the section, and the use of remote switch-

ing, if required. Having completed these details within the new operationally spare 

section dialog, the user selects OK to confirm and add the section to the proposed 

switchgear specification. 

Having completed defining the switchboard, the user may then swap sections 

one and four, and six and eight to return the order of sections to that of the original 

switchboard. It should be noted that the order of switchboard sections is of no 

consequence for the design or operation of the switchboard, but it does have visual 

or production implications for the general arrangement drawings and single line 

diagrams. The re-ordering operation is performed by selecting the section using the 

mouse pointer, right clicking and entering the number of the section with which the 

selected section is to be swapped with into the pop-up dialog that appears. Having 

swapped sections, the definition of the switchboard is now complete and the user 

may either save this design to disk or print a hard copy of the complete specification 

as shown in Tables 6.2 and 6.3. If at a future point the switchboard required further 

extension, this specification may be loaded from disk and additional sections added 

to it utilising the procedures described above. 

It should be noted that the paper mill switchboard fails to utilise all the section 

types available within Edges. Passive, synchronous motor and semi-conductor 

loads, as well as, induction generators, were not required. Induction generators, 

however, have identical definition to synchronous machines. These load sections, 

if required, are defined in an identical fashion as any other section with a switch-

board design, via the new section selector dialog. To include them in any switch-

board specification, the user is required to enter their leading dimensions into the 

software; all three sections require a label, load capacity and power factor (except 

for passive loads where unity power factor is assumed) and the selection of remote 

switching, if required. In addition to these dimensions, the new semi-conductor 

load section dialog asks the user if the load has regenerative capability, through the 

use of a tick box control. If so, a reverse power relay is included to augment the 

section's standard protection devices and the fault calculations for the section are 

adjusted accordingly. 
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6.5 Section and Component Editing 

Having defined a section, or a number of sections, the user may wish to ensure that 

each section's specification is appropriate to their needs, and if not, the user may 

wish to make some minor adjustments to the specified components where they 

see fit. Such operations are easily performed at any point during the design of a 

switchboard by selecting a section and placing the mouse pointer within the gray 

rectangle of the section to be edited and clicking the left mouse button. This action 

results in the edit section dialog appearing, as illustrated in Figure 6.10. From this 

dialog, all aspects of the section's configuration may be viewed and certain aspects 

of all constituent components edited. 

Section Type: Incomer Section 

Busbar Rating: 1200. Amps. 

Circuit Breaker Rating: 1200. Amps. 

Section Properties 

Section Component Properties 

Anti Condensation Heater 	Circuit Breaker 

Section Label 

Control Switches 	 Indicator Lamps 

Instrumentation 	 Protection Relays 

Figure 6.10: The edit section dialog. 

The first three items of the section edit dialog display the type of section being 

edited, the present busbar rating for the switchboard and the rating of the circuit 

breaker included within the section. The user may then select one of eight buttons 

to allow the viewing and/or editing of the various aspects of the section's proper-

ties. The selection of the section properties button causes a dialog to appear that 

allows the user to edit the overall electrical properties of the section, such as the 

capacity and power factor of the section, as well as any specialist attributes asso-

ciated with the section; for example, in the case of an incomer section, the fault 

level at the point of common connection. If the user edits any of these attributes 

the software automatically re-evaluates the circuit breaker's capacity and the swit-

chboard's busbar ratings, re-sizing these components if required. 

Below the section properties button are a group of buttons collectively labelled 
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section component properties. These allow the user to edit existing components au-

tomatically defined within the switchboard or augment these devices at the user's 

discretion. The editing of these devices will be discussed with respect to the num-

ber of instances of each device within an individual section. Only one instance of 

an anti-condensation heater, a circuit breaker and a section label may be defined 

due to the physical layout of a switchboard section. Therefore, if the user selects 

one of these devices to edit, they will be presented with an edit component dialog 

that allows the user to selectively edit the attributes of that device. An example of 

such a dialog is given in Figure 6.11 for a circuit breaker. Such component editing 

allows the expert user to tailor the requirements of individual devices specific to 

the section in which they are mounted. 

Mani.1acttae I [To be specified Irterneig Medium.  

Spring Charging Macbamm: Sprg Release Cod: 

Load:1205zJW Jiio 	Vdc r 	Loag: Ii 90 	W 
r. motor 
r Soeno,d 	

Vac Sht Trip Col.  

Load: J115 	j W 	1 110 	Vdc 

Rated Vokage: [5-3 	kV AkcabieStandd: IIEc56253  

Rated Cuner: F_20_0 _ z] 
Ajrs P& Number ITo be specified 

OK Carlcel I 

Figure 6.11: The edit component dialog for a circuit breaker. 

The remaining four types of constituent components, namely control switches, 

indicator lamps, instrumentation and protection relays, may have multiple devices 

included within each section. Therefore the user must select which device within a 

functional group of components they wish to edit. This is performed through the 

components' respective device editor dialog. Figure 6.12 depicts the device editor di-

alog for protection relays, although the device editor dialogs for control switches, 

indicator lamps and instrumentation devices are identical except for appropriate 

dialog title and button text label changes. The check box to the left of each pro-

tection device allows the device to be either included (denoted by a tick mark) or 

excluded from the final switchboard specification. By selecting a device with the 

mouse pointer, indicated by the device name being highlighted, the user may edit 

the device by selecting the edit device button, resulting in the edit component di-

alog appearing. To illustrate this feature, the under voltage relay edit component 

dialog has been depicted in Figure 6.13. 

In Figure 6.13, the under voltage protection relay is connected to a three phase 

voltage transformer. As this device does not require connection to a current trans- 
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v Under & Over Current 

vol Under Frequency 

/ Over Frequency 

Loss of Mains 

jEarth Fault 

.#j Reverse Power 
vo~j Synchionising Relay 

Edit Relay 	 Add Relay 

Figure 6.12: The protection relay editor dialog. The editor dialog lists the pro-
tection devices automatically defined for a synchronous generator 
section. 

Relay Type: Under Voltage 

Manufacturer:  Imm 
Relay Series / Range IM dos 

Part Number: ITo be specified 

Applicable Standards: 1B 5142  & 1EC255 

DC Burden: 	- 

I° jJ W(max) 	 Vdc 

Current Transformer: 	 Voltage Transformer: 

Burden (per phase): F 	VA 	Burden (per phase): 10 05 	VA! 

Phase Number: 	 Phase Number: 3 

Voltage Transformer(s) Properties 

OK 	 Cancel 	Edit Label 

Figure 6.13: The device edit dialog for a protection relay. 
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former, the dialog controls for this device are inoperable. However, if the user 

wishes to view a summary of the voltage transformer's specification to which the 

protection relay is connected, he/she selects the voltage transformer(s) properties 

button, resulting in the similarly named dialog appearing; this dialog is shown in 

Figure 6.14. Note that from the voltage transformer properties dialog, the user may 

also view and edit the fuses that protect the primary windings of the voltage trans-
former. 

Type: Protection VT 

Section Number: 1 

Section Type: Sync. Generator 

Classification: 3.P 

Primary Rating: 3.3 kV 

Secondary Rating: 110V 

Number of Phases: 3 

Manufacturer: To be specified 

zszzl~~~  

Current Status (per phase): 

Transformer Rating (VA] : 10. 

Loading (VA): 0.35 

Number of Devices Connected: 7 

OK 	 Cancel 	Eck Fuses 

Figure 6.14: The voltage transformer properties dialog for a protection grade, 
three phase transformer. 

Returning to the device editor dialog, the user may, alternatively, wish to add a 

device not defined automatically by the software. This operation is performed by 

the user selecting the add device button on the bottom right of the editor dialog. In 

a similar fashion to the definition of switchboard sections, the leading dimensions 

of any new device must be entered by the user via a specialised dialog. The dimen-

sions required to define a control switch, indicator lamp, instrumentation device or 

protection relay are summarised in Table 6.4. 

Having completed viewing or editing components within a component editor 

dialog, the user may return to the section edit dialog to check or modify any of the 

other components within a section. Once the user is satisfied with the specification 

of a particular section, they may close the section edit dialog and select another 
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Component Leading Dimensions 
Control switch Function 

Label 

Indicator lamps Function 

Cover colour 

Connection to voltage transformer or auxiliary supply 

Number of lamps required 

Instrumentation device Function 

Scale label 

Number of current transformers required 

Number of voltage transformers required 

Protection relay Function 

Number of current transformers required 

Number of voltage transformers required 

Table 6.4: A summary of the leading dimensions for multiply defined section 
components. 

section to edit using the mouse pointer. All component changes are re-checked by 

the application to ensure the switchboard specification is consistent and correct. 

The switchboard specification may then be saved to disk and/or printed. This 

completes the discussion of editing section or component properties within Edges. 

6.6 Chapter Summary 

This chapter has indicated that through the use of the object oriented program-

ming paradigm, an artificial design application for multi-component design may 

be constructed. By utilising the features of the C++ programming language, an ar-

chitecture may be constructed that allows common design strategies, such as top-

down design, to be modelled in a flexible, extendable framework. This software 

framework has been demonstrated for embedded generation switchgear design. 

The operation of Edges meets the criteria deemed necessary for the software to be 

of practical value. Due to the flexible nature of object oriented programming, the 

functionality captured within the software may be modified or extended to meet 

future switchgear design practice. The description of the operation of the software 

given in this chapter is not complete as not all the features of Edges have been in-

cluded (such as error messages or user prompts), however, the key facilities of the 

software have been discussed, sufficient to allow the overall operation of Edges to 

be clearly indicated. 



Chapter 7 

Discussion and Conclusions 

The objective of this project was to investigate the use of object oriented program-

ming techniques to construct a software application that will allow the design ra-

tionale of multi-component systems to be modelled. The problem domain selected 

to examine if such a software architecture could be developed was embedded gen-

eration plant. The issues raised during the development of this project fall into four 

areas: the issues associated with the operation of the project software, development 

issues for the software, the benefits associated with the use of the object oriented 

programming paradigm for artificial design, and finally, the implications of this ap-

proach for use within other design domains. This chapter critically discusses these 

four categories of issues, from which conclusions are drawn as to the success of the 

work. The chapter finishes by suggesting future research, overall conclusions and 

a thesis summary. 

7.1 Software Operation Issues 

This section considers the issues associated with the operation of the project soft-

ware, Edges. The case study presented in Chapter 6 illustrates the ability of Edges 

to perform switchgear design reasoning, producing a complete and accurate spec-

ification for the paper mill switchboard. As with any man made artefact, there are 

several operational issues that exist within the software. These aspects of Edges are 

discussed below. 

7.1.1 Overall Operation 

The software functions as originally envisaged, allow the definition and design 

of an entire switchboard to be easily performed utilising a graphical user inter- 

face. Each section automatically receives appropriate discrete electrical protection 

160 
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that is compliant to G59. Should G59 be revised or superseded, however, the soft-

ware can easily accommodate other protection schemes. External features, such as 

auxiliary power supplies, have also been included within the model. Constituent 

components necessary for the switchboard's operation are individually modelled 

along side supplementary components that assist in the switchboard's operation 

and improve its reliability. Information concerning the design of all components 

is derived from the switchboard properties or component specification objects. In 

cases where such information is not available, the user is requested to provide this 

information via a specialist dialog. Once completed, the switchboard specification 

may be printed. 

In its present form, Edges only produces specifications for the electrical swit-

chgear common to the majority of embedded generation installations. Other areas 

of embedded generation design, such as hydro or wind turbine and generator se-
lection or combined heat and power plant design, or indeed any multi-component 

system, could be modelled by utilising the object oriented software architecture de-

veloped in this project. Any such extension to Edges' functionality would require 

the design process for that problem domain to be carefully studied, rationalised, 

coded and tested. However, such additional design functionality is well within 

the capability of the software architecture described in this thesis. If the design 

rationale included within Edges were extended to cover other design aspects of 

embedded generation, it would not effect the existing operation of the software 

unless specifically made to do so. 

The specification data produced by Edges would be considerably enhanced by 

the automatic production of electrical switchboard schematics. By the inclusion 

of drawing functions within each design class, the production of schematics could 

be realised without affecting the existing design capability of the project software. 

However, some form of drawing layout management would have to be developed 

and coded to ensure that the schematics produced where legible - a task which is 

non-trivial. 

An experienced, professional engineer may produce switchgear specifications 

that are superior to those presently produced by Edges. However, due to the esca-

lating complexity of modern technology, to which switchgear is no exception, spe-

cialist design software such as Edges will play an increasingly important role. Such 

software will greatly assist the management of complex, repetitive design prob-

lems, allowing the designers of such systems to concentrate on the critical design 

issues associated with individual projects. The result of developing and utilising 

specialist design software is that specifications for artefacts will take shorter peri-

ods of time to produce, be more accurate and complete. 
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7.1.2 Over Design 

By assuming high voltage design practice throughout the software, there will be 

a certain element of over design for low voltage installations. This will only oc-

cur in certain cases, especially as the total electrical generation capacity of such 

installations decreases. In cases where gross over design would occur, it would 

be normally accepted that a bespoke single section switchgear installation with 

limited G59 protection 1  would be purchased and installed. Embedded generation 

schemes that fall into this limited generation capacity category are currently un-

common since the costs of protection and connection to the distribution network 

makes them un-economical. 

7.1.3 Editing Constituent Component Specifications 

At present, if the user edits the specification of an constituent component via the 

component specification dialog, 2  all component specifications that have been edited 

are automatically updated. This behaviour has been selected to ensure consistency 

within the switchboard specification is guaranteed. Unfortunately this action has 

the side effect of deleting all individual component edits that the user may have 

performed prior to the component specification dialog being opened and specifica-

tion information edited. 

This behaviour of Edges is a limitation. A possible solution to this issue could 

be to present a warning to the user of the benefits or pitfalls of either approach 

during the software's use via a dialog. The user may then apply their discretion to 

either: 

Accept the component specification modifications that they have made and 

update all similar component types, or 

Ignore any component specification edits that they have made and perform 

these specification edits individually via the section edit dialog. 

Only components whose specification have been edited within the component spec-

ification dialog are affected by this software feature. Un-edited specifications are 

not permeated through the existing switchboard design. 

'Small embedded generation installations may enter into a discussion concerning the protection 
arrangements of the site with the local public electricity supplier. Such discussion can result in the 
public electricity supplier relaxing the protection requirements necessary to fulfill G59, dependant 
upon the local connection arrangements [280]. 

2 Refer to Figure 6.3. 
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7.1.4 Protection Equipment 

Presently, Edges only allows individual or discrete protection devices to be util-

ised in the design of a switchboard. However, many modern switchboard instal-

lations utilise multi-function protection equipment that also includes instrumen-

tation functionality; see for example the Alsthom LGPG111 relay [7], the General 

Electric PQM3  relay [93] or the Sepam range [105] of protection devices. Multi-

function protection devices could be included within the software by coding a pro-

tection device function supervisor which could be incorporated into all section class 

definitions or be implemented as a separate object. 

By including appropriate interface controls within the component specification 

dialog, the user could enter the functions that the multi-function protection de-

vice monitors, e.g. under and over voltage, earth fault, and loss of mains. These 

protection functions would be stored using the mfunct ion member variable that 

already exists within CProtect ion objects. During the definition of a section, the 

multi-function protection device, if defined, would be selected in precedence over 
discrete protection devices. However, the protection engineer would ensure that 

any protection requirements not met by the multi-function protection device would 

be fulfilled by discrete protection devices, thereby ensuring that the protection for 

all switchboard sections was compliant to G59 regulations. 

It should also be noted that, by default, directional overcurrent and neutral volt-

age displacement protection devices are omitted from automatic definition in the 

software. As both protection devices are are not mandatory under G59 and fre-

quently they are not required due to the electrical conditions within which embed-

ded generation operates, their inclusion within a switchboard design has been left 

to the discretion of the user. 

7.1.5 Computing Resources 

During execution, Edges does not rely upon external databases or third party appli-

cations for its operation. As a result, Edges does not require large amounts of mem-

ory, hard disk storage space or extremely powerful processors to execute. When ini-

tially started, Edges requires approximately 2.5 MB of random access memory to 

operate. This efficient use of memory is due to the dynamic memory management 

employed by the software. As a consequence of using dynamic memory manage-

ment additional random access memory is required as each additional section is 

defined. To illustrate this point, after the definition of the paper mill switchboard, 

3PQM is a acronym for Power Quality Management 
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as depicted in Figure 2.5, Edges occupied an additional 0.7 MB of memory. The effi-
cient use of computing resources means that the software will operate on virtually 

any modern personal computer. 

7.1.6 Software Maintenance 

The project software in its current form requires no additional maintenance to en-

sure its operation. Access and use of all the facilities that Edges offers requires no 

programming skills, only familiarity with Microsoft Windows' graphical user inter-

face features and controls. However, the modification or extension to the software's 

functionality will require the following skills: 

A thorough understanding of the C++ programming language and the object 

oriented programming paradigm, and, 

Familiarity with Microsoft's software application development tool, Devel-

oper Studio, and Microsoft's Foundation Classes. 

Embedded generation developers with sufficient switchgear design experience 

or power engineers from the switchgear manufacturing sector with these software 

skills are not readily available. It is likely that the continued development of arti-

ficial design tools, especially for switchgear, will be developed by companies with 

sufficient skills and financial backing to warrant the significant cost and time re-

sources required for their development, or by academic institutions.' Such compa-

nies are likely to be either medium or large scale enterprises or specialist consul-

tancy based companies. 

7.2 Software Development Issues 

This section discusses issues that will impact upon the future development of the 

project software. Consideration is given to the economic impact of artificially in-

telligent design software, such as Edges, upon the electricity supply industry if 

it were adopted, developed and utilised. The possibility of porting the code that 

implements Edges to other computing platforms is then considered. Finally, the 

discussion examines the overall flexibility of the existing code base and that of the 

software's design architecture. 

4Further discussion on this topic is given in Section 7.2.1.4. 
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7.2.1 Economic Considerations 

As indicated at the beginning of the thesis, 5  the three key motivations for develop-

ing Edges was to: 

Minimise the time taken to produce a switchboard specification, 

Increase the accuracy of proposed switchboard specifications, and, 

Devise a rationalised, effective design process for embedded generation swit-

chgear design. 

Each of these objectives are discussed below. 

7.2.1.1 Efficient Design 

As the software utilises a standard graphical user interface, developers will be able 

to access the full potential of Edges quickly and easily. The learning curve to use the 

software is very shallow in comparison with learning to design switchgear installa-

tions and the interpretation of the electrical regulations associated with embedded 

generation. 

Including typical design parameters for the general properties and constituent 

components of a switchboard assists and guides users to the appropriate specifi-

cation data required for their site. If such artificial design software systems were 

standardised and widely adopted by the switchgear manufacturing industry, in-

dividual manufacturers could issue prospective embedded generation developers 

with data files, via the internet. Such data files would contain the general prop-

erties and specification components which each individual manufacturer supplies. 

Therefore developers could define the switchboard they require and adjust the de-

fault section's specifications to meet their requirements (dependent upon the users 

experience). Once the switchboard specification has been finalised, the complete 

specification may be electronically returned to the manufacturer with appropriate 

tender or purchase order details. 

Furthermore, the software rationalises the entire switchboard design process. 

This rationalisation process frees the developer from the tedious task of specifying 

and checking individually each switchboard component. Embedded generation 

developers may then focus upon the overall operation and function of a proposed 

switchboard and on the non-standard features of the installation. 

5  A detailed in Section 1.1. 
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7.2.1.2 Reduced Design Durations 

The automation of switchgear constituent component specification, with the au-

tomatic evaluation of component ratings, combined with the auxiliary supplies' 

dynamic load information, allows the specification of a proposed switchboard to 

proceed with great speed in comparison with current techniques. A new switch-

board installation can be specified in a matter of tens of minutes with the use of 

Edges, as opposed to several days or even weeks depending on the switchgear de-

signer's experience and technical knowledge (especially in relation to G59). Such 

a reduction in design duration equates to substantial savings in time and, in turn, 

site development costs. 

7.2.1.3 Increased Accuracy 

Since each constituent component object is aware of its requirements both in terms 

of standard ratings and external connections or interdependencies, the interaction 

between objects within the software model ensures that the final switchboard spec-

ification is not only functional and complete, but, most importantly, accurate. The 

ability of designers to deal with complex domains, such as switchboard design, 

is limited6  in comparison with modern electronic computers and programming 

paradigms. Thus Edges is more adept at tracking and checking the implications 

of a leading design dimension change than a human practitioner. The enhanced 

accuracy of the software over and above traditional switchgear design techniques, 

would, if the software were adopted, result in the risk and financial implications 

associated with inaccurate switchgear specifications being substantially reduced. 

7.2.1.4 Future Development 

It is also worth considering at this juncture the future development of artificial 

design tools, such as Edges. It is questionable which sector of the electricity sup-

ply industry would fund the continued development of such software for artificial 

switchgear design. The main beneficiaries from the development and deployment 

of switchgear design tools are embedded generation developers, as they are able to 

quickly produce switchgear specifications that are accurate and complete. 

Therefore it is in the interest of embedded generation developers to support the 

development of software tools similar to Edges. However, the majority of devel-

opers do not possess the necessary programming skills and specialist switchgear 

design knowledge to further the development of such software, or indeed, possess 

6  A indicated in Section 3.3, based upon Miller's research [177]. 
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the financial resources required .7  Switchgear manufacturers or specialised power 

engineering consultants do have the resources and the possibility of recruiting the 

required programming skills to develop such tools. Unfortunately, both parties 

lack the financial incentives to do so as, if such a tool was adopted and proved 

successful, they would be reducing (or even eliminating) a valuable source of rev-

enue - the consultancy related to new embedded generation sites. It is therefore 

likely and unfortunate that without legislative, regulatory or governmental assis-

tance software for switchgear design, such as Edges, that could benefit the entire 

industry will remain an academic curiosity. 

The probability of artificial design systems being adopted throughout an en-

tire industrial sector are slim. However, the development of such software for use 

within individual companies is a significantly more likely prospect. The function 

of artificial design software within a company context would be to enhance sales of 

the company's products. Such software could significantly reduce the time taken 

to determine a customer's requirements and produce a complete specification, es-

pecially for complex products or services, thus allowing a competitive edge to be 

gained. Furthermore, specifications produced would be of a consistent and accu-

rate standard. Indeed, third party companies could utilise such software to offer 

services outside of their area of expertise but closely related to their own range of 

products. For example, a company who manufactures hydro turbines could offer 

to design and specify a suitable generator and electrical switchgear by utilising an 
enhanced version of Edges, hence allowing the company to offer a turn-key service. 

7.2.2 Portability 

The distribution of the software in its current form to interested parties is straight 

forward. Due to the appropriate selection of compiler options available within De-

veloper Studio, one executable file 8  includes all the Windows resources and pro-

gramming code required to allow the software to execute on any Windows oper-

ating system. A simple install routine or application, if deemed necessary, could 

be easily developed to allow the automatic installation of the binary file and the 

placement of an icon included either on the Windows desktop or in the Start Bar. 

The selection of Microsoft Windows as the target operating system remains ap-

propriate. Other operating systems are utilised within the electricity supply in-

dustry but are restricted to specialist applications. The vast majority of embed-

ded generation developers and switchgear manufacturers will possess, or have ac-

cess to, a personal computer that uses the Windows operating system. However, 

7  A such financial resources would be a considerable burden for an individual developer in com-
parison with the benefits that such software bring. 

8The size of the Edges binary file is approximately 600 kB. 
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since Edges is currently a self contained object oriented application it could be dis-

tributed directly over the internet by utilising the platform independent object ori-

ented programming language, Java [189]. The development of such a version of 

Edges would be an extensive task, requiring the complete re-development of exist-

ing code, but a task that could be quickly achieved (within several months) due to 

the rationalised object oriented design architecture developed in this project. It is 

through this knowledge that other design domains may be modelled utilising any 

object oriented programming language, such as Java. Further investigation of the 

object oriented feature set of the Java language would be required to ensure that 

all language features used in coding the software with C++ have Java equivalents. 

The construction of graphical user interface control and features would also have 

to be explored. 

7.2.3 Flexibility 

The flexibility of the project software may be sub-divided into two distinct but in-

terdependent categories: the flexibility of the existing code base and the flexibility 

of the object oriented design methodology, or architecture, implemented by the 

computer code. Both of these categories will be discussed below. 

7.2.3.1 Programming Code 

The review of software programming languages conducted in Chapter 3 indicates 

that the object oriented programming paradigm is the most flexible computer cod-

ing scheme yet developed. The experience gained from implementing this project 

confirms this to indeed be the case; all of the code reuse strategies within object ori-

ented code have been utilised. 9  The specification and design classes that implement 

the switchgear design process have been deliberately developed to allow the great-

est flexibility to be achieved. The components that constitute the design domain 

are modelled utilising individual classes, with increasingly complex but function-

ally similar components being defined in terms of more rudimentary components 

through the inheritance mechanism. However, to ensure that the software devel-

oped is flexible, the relationships between interrelated but dissimilar components 

are represented through the use of the aggregation mechanism. 

New classes may, therefore, be easily added to the existing class hierarchies 

by an experienced programmer to allow new switchboard components to be de-

fined. Such new components may be defined in terms of the specialisation of ex-

isting components through the use of inheritance, or by the incorporation and ar-

rangement of existing components by utilising the aggregation mechanism. If a 

9The strategies for code reuse are briefly described in Section 5.1.4.5. 
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choice between inheritance and aggregation occurs, then the aggregation mecha-

nism should be attempted first thereby maximising the flexibility of the software. 

Either approach allows existing code to be utilised and extended to suit new de-

sign rationale. If existing specification or design classes prove to be inflexible, then 

their class definitions may be re-implemented or augmented to fulfill new design 

processes. This editing of classes can occur without affecting the operation of the 

rest of the application as long as the original object interface is maintained. 

Design classes may even be completely removed should their functionality pro-

ve redundant. For example, if modern multi-function electronic protection instru-

ments were to become standard, discrete protection devices could be easily re-

moved from the switchgear design framework without affecting other, unrelated 

components. The object oriented design architecture also allows for component 

developments to be easily included within the existing software, as illustrated by 

the following example. 

Modern electronic measurement instruments require connection to the switch-
board's auxiliary supply as well as to sensing transformers. At present, all instru-

mentation devices are defined only to connect to the required current and voltage 

transformers. This is in line with current design practice, as the majority of instru-

mentation devices derive all their operational power from the sensing transform-

ers. Electronic instrumentation devices can be easily included within the model 

by deriving new design classes from the Clnstrurnentation class that include a 

CPowerSupplyLoad object within the class definition. Re-definition of the multi-

argument constructor for the new class will also be required. The new instrumen-

tation devices may then be utilised within the application by the modification or 

creation of appropriate dialogs; a task that can be easily achieved through Devel-

oper Studio. Furthermore, the verification of new or edited objects need only be 

concerned with the operation of the objects in question and their interaction with 

related objects. All other independent objects do not need to be tested; an advan-

tage, especially over expert system based design software. 

7.2.3.2 Design Methodology 

The flexibility of the design methodology implemented by the software is an im-

portant aspect of the project. The rationalised process for switchgear design 1° will, 

as a matter of course, require modification; design styles, switchboard components 

or regulations change, and these changes must be reflected in the software if it is to 

continue to be of service. Such developments may be accommodated by the object 

oriented approach and the design architecture within which the software is coded. 

10As presented in Chapter 2. 
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Several limitations currently exist with the model as it currently stands; these are 

discussed below. 

Presently, Edges uses generalised representations of the components that com-

prise the switchgear design domain, thereby allowing the functionality of these 

components to be captured and modelled directly utilising the language features 

of C++ without the need to rely upon an external data or knowledge base. This 

approach, unfortunately, does have a limitation. The software relies upon a purely 

functional design rationale. The design process modelled by the software can only 

perform design reasoning based upon the physical or functional requirements of 

the switchboard and its constituent components. 

As a result, the software model includes only a limited proportion of the de-

sign knowledge that human practitioners draw upon as a basis to perform design 

reasoning. Switchgear designers will base their design decisions upon other com-

ponent attributes or factors to optimise the final design to include not only the 

functional features that the switchboard must possess, but also to include one or 

more additional design objectives; a process referred to as multi-faceted design. Such 

objectives include, for example, the optimisation the switchgear specification for 

size or weight constraints, the minimisation of component numbers or, most im-

portantly, the management of switchboard costs. To model multi-faceted design 

rationale requires a choice of each component type to be accessible and available to 

be queried within the software. The storage, organisation and searching through 
such a library of components can be achieved by employing database technology. 

Therefore a database of switchboard components would be required that con-

form to the generalised component specifications already defined within the soft-

ware. However, these components would extend the generalised component at-

tributes to include supplementary information required to allow additional design 

reasoning to be performed by the software. The design rationale would be ex-

tended to take account of and utilise the database of components by including 

within the software additional member functions within existing design classes. 

The inclusion of such a database would be in effect extending the design features 

of Edges a stage further towards realistic design. 

It should be noted that an object oriented design hierarchy combined with a 

database is not the only software technology that allows multi-faceted design to be 

modelled. However, it is the most flexible, adaptable and maintainable software 

technology within which such design software can be written. Due to the inher-

ent volatility of the majority of design processes, this is a very important feature 

to consider when selecting an implementation technology for a software design 

application. 

Expert systems, if programmed appropriately, can exhibit multi-faceted design 
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rationale, but such applications are difficult to devise, code and maintain. The 

success of design applications constructed utilising case based reasoning depends 

upon an organised library of previous design cases. If the library of previous cases 

exhibits instances of multi-faceted design and algorithms to resolve conflicts, then 

such applications could be described as performing multi-faceted design reason-

ing. Genetic algorithms may also perform multi-faceted design if suitable fitness 

functions can be coded to optimise for conflicting design criteria simultaneously. 

Finally, intelligent agents may certainly model multi-faceted design, as they are 

able to resolve conflicts and explore alternatives by their very nature. Unfortu-

nately they require substantially more resources to develop in comparison with the 

object oriented design approach. 

7.3 Object Oriented Design Issues 

The selection of the object oriented programming paradigm was a central issue in 

this thesis. Having implemented an object oriented artificial design system, Edges, 

this section considers the implications associated with utilising this technology. 

In general, design processes may be classified as either a rational, routine pro-

cess based upon scientific reasoning, or a creative, inventive, and innovative pro-

cess. 11  Researchers within the design methodology field have attempted to unify 

these contrary views on design; as yet, to no avail. However, in attempting to do so, 

the gap between these opposing or diverse positions on design methodology has 

narrowed and this convergence will certainly continue into the foreseeable future. 

It was the combination of design domain rationalisation with expert system 

technology, enabled by the availability of inexpensive, powerful personal comput-

ers, that allowed the first generation of artificial design systems to be developed. 12  

However, it was also the inflexibility and high maintenance of these systems, 13 

combined with advances in programming languages and artificial intelligence tech-

niques, that have facilitated advanced, second generation artificial design systems 

to be developed. 

The key to developing any successful software is the containment and manage-

ment of complexity. As the problems attempted by computational means become 

increasingly complex, the tools utilised to encode the problem domain within a 

piece of software must also be sufficiently powerful to keep pace. This extension 

can be observed through the development of programming paradigms. 14  The ad-

vent of sophisticated programming paradigms also stimulates the development 

"As indicated in Section 2.2.1 
12 Refer to Section 3.2.1.1. 
13 As discussed in Section 4.4.1 
14 Refer to Section 3.3. 
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and construction of artificial intelligence techniques that embody ever advancing 

and complex behavioural patterns. 

The design process for all but the most trivial of artefacts is a complex process 

which may be captured and successfully managed within object oriented software 

by one of two key language features: 

By increasing the number of member functions within a class definition, thus 

allowing the class to manage a greater number of design responsibilities and-

/or behaviours, and 

By the inclusion of a greater number of classes, hence allowing additional 

aspects of the design domain to be incorporated within the software. 

This ability to manage complexity, coupled with the flexibility of the object oriented 

programming paradigm has been eloquently summarised by Daniels [65]: 

"The goal is to build in [object oriented] software a richer representation of the 

problem than is needed to meet the immediate needs, so that the software can 

adapt as needs change." 

The design process for all artefacts is open to change, and through the use of 

object oriented software artificial design systems can be constructed that allow such 

changes to be accommodated without having to re-code large sections of the entire 

application. Such flexibility includes: 

. The revision of an object's behaviour by re-coding it's implementation, 

. The extension of an object's behaviour through the use of inheritance (and 

inclusion of supplementary member functions and variables), and 

. The creation of increasingly complex objects from the combination of existing 

objects, through use of the aggregation mechanism. 

It is the ability of object oriented software to manage complexity and change that 

makes it a suitable software technology for the construction and development of 

artificial design systems. This is also reflected in the continued application and de-

velopment of object oriented design software systems [26, 101, 149, 237]. However, 

the appropriate or correct operation of such software depends solely upon the un-

derstanding of the programmer of both the design domain and the object oriented 

programming paradigm. 
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The design domain described in this thesis focuses upon a rational and logi-

cal design process. The development of Edges illustrates that the switchgear de-

sign process can be rationalised and automated utilising the object oriented pro-

gramming paradigm. However, the application of object oriented programming to 

rational design processes does not exclude this technology from being utilised to 

model the creative aspects of design domains. It is likely that in the near future, 

creative artificial design software applications will be developed that combine the 

powerful language features of object oriented systems with other artificial intelli-

gent technologies. For example, an object oriented framework combined with an 

artificial neural network could allow certain aspects or choices within a design do-

main to be learned as a design scenario proceeds. Alternatively, the use of genetic 

algorithms within an object oriented framework could explore certain aspects of 

a design domain that can be expressed in terms of a fitness functions. No matter 

which artificial intelligence technology is utilised, an object oriented framework 

will provide the underlying structure to drive the process to a successful conclu-

sion. 15  

Although the object oriented paradigm is a powerful approach to computer 
programming, it remains one of the most difficult software technologies to apply 

in practice. The creation of a functional, flexible and extendable class hierarchy 

remains a non-trivial task, even with the advent of multiple object oriented design 

methodologies. 16  The appropriate development of object oriented systems requires 

experience before suitable class arrangements for a problem domain become appar-

ent. However, once established, the class arrangements or patterns defined may be 

re-applied within other domains [92]. 

The adoption and development of object oriented programming techniques has 

become widely accepted in mainstream commercial software development. This 

trend is set to continue, accelerated by the development of electronic commerce 

where the use of object oriented relational databases and information technology 

appliances are becoming heavily integrated to create increasingly complex, elec-

tronic systems. The object oriented paradigm allows the complexity of these sys-

tems to be overcome, managed and maintained. 

7.4 Artificial Design Issues 

The prior discussion has focused upon the operation and the object oriented aspects 

of the software. This section considers the developments described in this thesis in 

15 0bject oriented programming languages include many features associated with frame-based ex-
pert systems. These include the ability to represent structured knowledge and inheritance. As a re-
sult, object oriented languages are frequently used to code artificial intelligent applications [266, 1591. 

16 Refer to Section 4.4.8 and Appendix A. 
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the larger context of artificial intelligence and design. 

7.4.1 General Design Knowledge 

The development of Edges illustrates that narrow design domains can be captured 

within a software application. The experience gained through this project confirms 

Steinberg's assertion [256] that: 

"Only a small fraction of design knowledge will apply to all domains, and that 

knowledge will be at a very abstract level and thus hard to apply to any given 

specific task." 

It is for this reason that no computer code library (implemented in any lan-

guage) of common design knowledge has been created to assist researchers de-

velop artificial design tools. 17  As exemplified by the development of this project, 

any such common design knowledge is simply coded, as required, within the con-

text of the main problem domain, in this case switchgear design. 

7.4.2 The Capturing of Design Knowledge 

The field of artificial intelligence has developed many structures that are classified 

as possessing some discernible level of intelligence. The artificial intelligence com-

munity typically represents knowledge utilising one of two methods [185, 159]: 

Explicit Representations: Systems that utilise this technique represent knowledge 

within carefully designed structures with search or goal driven algorithms 

to implement intelligence. Examples of this knowledge representation tech-

nique include expert systems, case based reasoning and genetic algorithms. 

Connectionest Networks: The construction of specially arranged networks, con-

stituted of highly interconnected, independent elements, that allow intelli-

gent behaviour to emerge from the network. Examples of this knowledge 

representation technique include artificial neural networks and intelligent 

agents. 

The project software, Edges, embodies both these knowledge representation 

techniques in order to perform intelligent design reasoning. Explicit knowledge is 

stored within an object's member functions allowing design rules specific to certain 
17 Common design knowledge that could be represented in such a library could include basic phys-

ical laws, geometric relationships or fundamental economics. 
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aspects of the design process to be captured. An example of this approach includes 
the determination of standard component ratings. The inter-relationships between 

objects and their interaction at runtime, combined with their explicit knowledge al-

lows the collection of design classes to perform intelligent design reasoning within 

the switchgear problem domain. If considered in isolation, individual design class-

es would not be classified as possessing intelligence. However, their interaction 

with other design objects and specification objects allows intelligent decision mak-

ing to be exhibited through the network of object interactions. 

7.4.3 Responsibility 

Throughout the development of the project software, one of the underlying goals 

of this research has been to attempt to explore and enhance machine intelligence 

but not to the detriment of human intelligence. Ormerod et al [201] argue that 

their software is aimed not as a replacement of designers, but as a tool to assist 

them handle and reuse information. Edges has been developed in a similar spirit; 

to allow users to focus on the crucial aspects of a switchgear installation while the 

software takes care of the details. The main objective of Edges is to assist switchgear 

designers, not replace them. 

7.4.4 Application 

The development of object oriented artificial design software requires considerable 

effort and expertise (in both the design application domain and object oriented pro-

gramming). The number of individuals or groups who possess the skills necessary 

to develop such software is very limited, therefore the financial costs associated 

with the development of such software is considerable. 

At present, Edges does not have the necessary communication functionality to 

obtain or store product information, either from an in-built database or directly 

from the internet. For artificial design software to become of commercial use, some 

form of communication functionality is highly desirable. The extension of artificial 

design systems based upon object oriented technology to include such database 

facilities is a straight forward process. However, the ability of the software to obtain 

relevant design information directly from the internet is, unfortunately, at present 

non-trivial. 

The use of object oriented programming for the construction of artificial design 

software will have similar development costs compared to the application of other 

software technologies to fulfil similar objectives. Therefore it is more pertinent to 

question under what conditions should artificial design software be developed? 



7.4 Artificial Design Issues 	 176 

Based upon the experience gamed through this project, design application domains 

require the following properties to be considered suitable for the development of 

artificial design systems: 

The design process for the artefact must be definable, highly structured and 

organised. 

. The attributes upon which design decisions are based, for either the complete 

artefact or its components, must be quantifiable. 

The above two points are discussed in more detail below. 

To apply the object oriented programming technique to a design domain, a se-

ries of interrelated objects must be created which mirror all the real life aspects 

of the artefact in question sufficiently to successfully complete the design process. 
Such objects must be self contained and know how to interact with other objects to 

achieve the design objectives. In order to achieve this, the design domain must be 

definable to allow analysis of the domain to be achieved. Furthermore, the domain 

must be highly structured and organised so that class definitions can be determined 

and the interrelationships between objects defined. These features are common to 

the majority of multi-component systems. 

During the design process, decisions will need to be made concerning all as-

pects of the artefact, which implies that all design decisions modelled in the soft-
ware must be evaluated computionally. Therefore decisions concerning the artefact 

and all of its constituent components must be determinable within the software de-

sign application. 

Application domains in which the process of developing artificial design soft-

ware would be of financial benefit are characterised by: 

High cost, low volume components. 

Low cost, high volume components. 

A design process of significant complexity requiring specialist designer skills. 

If a proposed design problem domain possess either of the first two attributes and 

the third attribute then the domain is suitable for the development of artificial de-

sign software. 

The object oriented programming paradigm can be utilised to encode any prob-

lem domain. However, it is in application domains which are characterised by 
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patterns of similar repeated behaviour that will successfully yield to the object ori-

ented programming approach, the benefits of which include economy of program-

ming effort, adaptability to future circumstance and maintainability. Such repeated 

patterns of behaviour are apparent within many multi-component systems. 

For example, the general function of a switchboard section is to switch electri-

cal loads, but the type of electrical load 18  determines the additional equipment re-

quired to be mounted within a section. It is this pattern of broadly similar devices 

(in this case sections) that have differing specifications dependant upon external 

factors (the load that the section supplies) that indicates the suitability of the object 

oriented programming technique to multi-component design. Such relationships 

may be easily expressed using the inheritance and polymorphism mechanisms. 

Having developed an object oriented architecture within which multi-compon-

ent design rationale can be captured and performed, it is worth considering if such 

reasoning could be achieved utilising another software implementation technology. 

Certainly the design reasoning described in this thesis for embedded generation 

switchgear design and specification could have been performed utilising an ex-

pert system. However, such a system would have been more difficult to construct, 

maintain and would have proved inflexible should the design rationale changed 

significantly. No other artificially intelligent technology or programming technique 

is suitable for modelling multi-component design processes. 

The future development of software based artificial design systems will cer-

tainly continue as there are already substantial financial incentives for their con-

struction and deployment. The intelligence and complexity of design reasoning 

capabilities of future software design systems will certainly continue to develop. 

At present, the main artificially intelligent technology being utilised for the de-

velopment of design software is intelligent agents. This trend is set to continue 

as intelligent agents possess attributes, such as autonomy, social ability and pro-

activeness, 19  that are of great benefit to modelling design reasoning. It is likely that 

future software applications that are said to exhibit creative design reasoning will 

be based upon intelligent agent technology. It is also interesting to note that the 

majority of intelligent agent applications are coded using object oriented program-

ming languages. 

7.5 Future Research 

The initial restriction of developing a software tool for switchgear design was se- 

lected as this is common to all embedded generation schemes. The basic switchgear 

18 For example induction motor or synchronous generator. 
19 Refer to Section 3.2.5. 
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design processes encapsulated in the software may be extended with reasonable 

effort due to the inheritant properties of object oriented programming. Possible 

extensions to the software's functionality are discussed below. 

The automated generation of circuit diagrams or schematics of proposed swit-

chgear installations would add a powerful feature to the software. This function-

ality could be included within the software by associating corresponding circuit 

symbols to each electrical component modelled in the software as part of their 

class definition. A similar approach could be utilised to produce a net list to al-

low proposed switchboards to be modelled within numerical simulation software 

applications, such as ERACS [79], to assess fault levels and stability issues. 

The development and inclusion of a database of switchboard components wou-

ld dramatically enhance the design capabilities of the software by allowing a choice 

of component models from which the most appropriate could be selected. Optimi-

sation algorithms could be developed to allow the switchboard design process to 

be multi-faceted instead of purely functional design based. Such secondary design 

objectives include cost, reliability or size. 

Finally, the existing software could be extended to include modelling of other 

aspects of embedded generation scheme design. The techniques for modelling de-

sign reasoning in this project can be applied to any multi-component system which 

includes many renewable energy technologies. For example the technology associ-

ated with small scale hydro schemes is particularly suitable, as the mature nature 

of hydro turbine technology means that the design process for the components 

that constitute a hydro scheme are well defined and understood. Therefore hydro 

power generation technology is a prime candidate for artificial design develop-

ment. 

7.6 Overall Conclusions 

The project software, Edges, has proved to be an effective tool to capture and per-

form artificial design for embedded generation switchgear installations. The fol-

lowing key features allowed this successful development: 

• The design process for switchgear design was able to be rationalised into a 

structured, organised arrangement of individual objects, relationships and 

interdependencies. 

• All aspects of the electrical design, including regulations that affected this 

process, were included in the software model. 
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. The selection of an appropriate implementation technology, in this case object 

oriented programming, was crucial to the project's success. 

Through the development of the project the following issues associated with 

developing artificial design software for multi-component systems became appar-

ent: 

• The detailed exploration of the design domain, combined with practical expe-

rience within it, is necessary for the successful development of any artificial 

design software application. 

• The object oriented programming paradigm, with its rich syntax, provides an 

excellent basis within which to develop artificial design software. 

• The flexible, extendable nature of well structured object oriented program-

ming code ensures that the significant effort required to encode a problem 

domain is not wasted upon maintenance or excessive code editing, as the 

software evolves with the design processes. 

If artificial design systems are to rival the ability of their human counterparts, 

the following architectures will have to be developed that allow: 

• the continued and automated updating of domain knowledge, and, 

• design process optimisation strategies that can redefine the design process for 

a domain in ways not envisaged by the developer. 

Until such software applications are developed, artificial design software will sim-

ply mimic logical, rational design domains within which domain specific design 

metaknowledge can be captured through either a collection of specialist algorithms 

or one or more connectionist networks, or a combination of both. 

This thesis demonstrates that switchgear design for embedded generation, or 

any multi-component artefact, can be captured and assisted within a software tool 

constructed utilising object oriented programming techniques. 

7.7 Thesis Summary 

The motivation for this thesis was the exploration and development of an object 

oriented software application to automate and emulate the design process. To this 

end, the application developed, Edges, fulfills this objective. In the process, the Se-

lection and use of the object oriented programming paradigm has been proven as 
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a tool capable of the task of capturing artificial design reasoning in a computable 

form with sufficient flexibility to allow the code developed to be adaptable and 

manageable. The future of artificial design research will certainly continue to utilise 

object oriented technology, either as a stand alone programming language or com-

bined with other artificially intelligent technologies. 

The future of embedded generation currently appears to be optimistic. It is 

hoped that the future development of embedded generation, especially low envi-

ronment impact electricity generation technologies, will continue. The future ad-

vances gained from the development of such power generation technologies will 

hopefully be adopted throughout the world, assisted by artificial design systems, 

such as Edges. The fundamental aim of these software systems should be to accel-

erate the appropriate utilisation and deployment of renewable electricity genera-

tion technologies. For we owe it to future generations to become dependent upon 

sustainable electricity production. 



Appendix A 

Notation Guide 

Throughout Chapter 5, illustrations have been extensively utilised to assist the ex-

planation of the construction, organisation and operation of object oriented pro-
gramming within the problem domain of switchgear design. The three notations 

used are described in this appendix and are as follows: 

Class diagrams illustrate what classes exist, their structure and the relation-

ships between them. 

Object diagrams indicate the structure of a particular set of objects during exe-

cution. 

Interaction diagrams depict the communication between objects over a limited 

time period. 

The notations adopted in this thesis were originally published by Gamma et 

a! [921. The representation diagrams utilised by Gamma et al were derived from 

object oriented notations used throughout the software industry at the beginning 

of the 1990's, with only minor alterations. Both the class and object diagrams are 

based upon the object modelling technique (OMT) developed by Rumbaugh et a! 

[231, 230, 531. The notation for the interaction diagrams was founded upon the 

Booch method [31,53]. 

The representation diagrams described in this appendix are not widely utilised 

throughout the software industry. The current industry standard object oriented 

design methodology is the Unified Modelling Language (UML). 1  Gamma et al no- 

'By the early to mid 1990's, the software industry became concerned with the profusion and di-
vergence of object oriented design methodologies and notations [112]. In response to this concern, 
the authors of the three major design methodologies at that time, namely Booch, Rumbaugh and Ivar 
Jacobson (who developed the OOSE - Object Oriented Software Engineering - method) joined forces 
in the autumn of 1995 to create a unified design methodology. By 1997, UTvIL was officially released. 

181 
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tation and the UML notation are both based upon two key oriented design method-

ologies; independently developed by Booch and Rumbaugh. The use of Gamma et 

al notation in this thesis has been selected due to its pictorial simplicity. 2  

The following sections will describe class, object and interaction diagrams, in-

dicating how the elements within each of these diagrammatic notations represent 

the various facilities of the object oriented programming paradigm. 

A.1 Class Diagrams 

Simplified or large class diagrams omit any details concerning the member func-

tions or variables for individual classes, as illustrated in Figure A.1(a). When ad-

ditional details are required, a list of member functions and variables will be given 

below the class name, as shown in Figure A. 1(b). However, it should be noted that 

such lists may or may not be a complete representation of the classes in question. 

Italic type face is used to indicate whether the class or member functions are ab-

stract. The inclusion of type information (e.g. an integer, floating point number or 

a text string) is optional. 

AbstractClassName 

AbstroctClassName 

AbstractMemberFurictionl() 
Type AbstractMemberFunction2() 

ConcreteClassName 

 

ConcreteClassName 

MemberFunctioni 0 
Type MemberFunction2() 

MemberDatal() 
Type MemberData2() 

 

Figure A.1: Class notation diagrams without any class relationships indicated; 
(a) basic notation to represent abstract and concrete classes, (b) ba-
sic notation with member functions and variables indicated. 

The various relationships between classes are illustrated in Figure A.2. Class 

inheritance is indicated by a triangle connecting the subclass to its superclass. A 

solid line with an arrow head indicates that the class from which the arrow head 

protrudes from has an object reference to the class pointed to. A diamond shape 

2All three of Gamma et al notations are present within UML except that Interaction diagrams have 
been renamed Scenario diagrams. 
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at the beginning of such a line denotes aggregation. If the arrow head has a filled 

circle preceding it, then this relationship may be repeated on one or more occasions 

to different instances of the class pointed to: otherwise, the arrowhead on its own 

indicates a one to one relationship. A dashed line pointing to a class indicates that 

instances of that class are created by the class the dashed line protrudes from. Single 

or multiple creation relationships are indicated in the same manner as reference and 

aggregation relationships. Finally, annotations or pseudocode fragments may also 

be added to class diagrams as indicated by an unfilled circle joined to a paper icon 

via a dashed line. 

AbstroctClassName 
	

I 	ConcreteClassName 

I AbsfractMemberFunctionO 	- - 

A 

ConcreteSubclassl 	 ConcreteSubclass2 

MemberFunction() 	 annotations 
pseudocode 

MemberData 

Figure A.2: Class notation diagram with all inter-class relationships depicted 
[92, (Adapted)]. 

The class diagram notation described above is the complete class diagram nota-

tion used by Gamma etal. However, since the project software consists of specially 

developed classes combined with Microsoft Foundation Classes (MFC), the class 

diagram notation has been extended to allow both class types to be differentiated 

from one another. MFC's are indicated by having a shaded background, as illus-

trated in Figure A.3. 

CObje 	 I 	CSection 

Figure A.3: Class notation diagram with both MFC and design classes de-
picted. 

A.2 Object Diagrams 

An object diagram depicts the arrangement of objects at a particular juncture dur-

ing the execution of an object oriented software system. Figure A.4 illustrates that 

a rounded box is used to depict an object with references between objects indicated 

by a filled circle and connecting dashed line with an arrow head. A line separates 
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the object's name from any references to other objects, member functions or mem-

ber variables. 

Object I 

ObjectReference 
memberData 

Figure A.4: Object diagram notation [92, (Adapted)]. 

A.3 Interaction Diagrams 

An interaction diagram allows the order of communication requests between ob-

jects to be depicted graphically, as shown in Figure A.5. A solid vertical line indi-

cates the existence of an object at a particular point in time; within interaction dia-

grams time flows from the top of the diagram downwards. Conversely, a dashed 

line indicates that the object has yet to be created. Upon receiving a request, an 

object will obtain execution control and this is represented by a vertical rectangle. 

Object I 	 Object2 

Q 

E 

tj 
a, 
-3 

0 
C 

C 
0 
a, 
> 
0 
cc 
C 
0 

1 a, 
0 
0 

Figure A.5: Interaction diagram notation [92, (Adapted)]. 

Two types of horizontal lines appear in interaction diagrams; a dashed line in-

dicates that a new object has been created (otherwise known as instantiation) and a 
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solid lire indicates that a member function of the class pointed to has been called 

from the object the line protrudes from. Member function calls that are called and 

executed from within an object are indicated by a solid line and arrow pointing 

back to the object itself. The names of member function calls are indicated on their 

respective horizontal line. 



Appendix B 

Generator Specification 

Table 6.3 in Chapter 6 provides a summary of the generator components automat-

ically specified by Edges. The complete list of components, the number of each 

device required with their respective attribute ratings are given in Table B.1 on 

pages 187 to 194. 
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Component Quantity Rating 

Miscellaneous 

Busbars x3 

manufacturer Yorkshire Switchgear 

current rating 1200A 

frequency rating 50Hz 

Circuit breaker xl 

manufacturer Yorkshire Switchgear 

part number to be specified 

interrupting medium SF, 

current rating 1200A 

voltage rating 3.3kV 

frequency rating 50Hz 

applicable standards BS53 II 

spring charging mechanism xl 

type electric motor 

power rating NOW 

voltage rating 230Vac 

spring release coil xl 

power rating 205W 

voltage rating II OVdc 

shunt trip coil xl 

power rating 115W 

voltage rating I lOVdc 

Anti-condensation heater xl 

power rating 40W 

voltage rating 230Vac 

manufacturer to be specified 

part number to be specified 

fuse protection xl 

voltage rating 230Vac 

current rating IA 

mounting type cartridge 

manufacturer to be specified 

part number to be specified 

applicable standards BS88 

Section label xl 

label text Power Station 

text height 20mm 

text colour black 

material aluminium 

Control Switches: 

Local/Remote xl 

contact voltage rating 230Vac 

contact current rating I OA 

contact number 2 

contact operation latching - break before make 

manufacturer to be specified 

range / series to be specified 

part number to be specified 

type selector 

applicable standards 1P65; CE mark 

component label x  

Table B.1: A complete list of constituent components automatically defined 
by Edges for the synchronous generator section in the paper mill 
switchboard. 
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Component Quantity 	Rating 

label text Local / Remote 

text height 10mm 

text colour white 

material plastic 

Trip/Neutral/Close x  

contact voltage rating 230Vac 

contact current rating 10A 

contact number 	 2 

contact operation 	 latching - break before make 

manufacturer 	 to be specified 

range / series 	 to be specified 

part number 	 to be specified 

type 	 selector 

applicable standards 	 1P65; CE mark 

component label 	 x  

label text 	 Trip / Neutral I Close 

text height 	 10mm 

text colour 	 white 

material 	 plastic 

Amp meter phase selection switch 	 x  

contact voltage rating 	 230Vac 

contact current rating 	 IA 

contact number 	 2 

contact operation 	 latching - make before break 

manufacturer 	 to be specified 

range / series 	 to be specified 

part number 	 to be specified 

type 	 selector 

applicable standards 	 lP65; CE mark 

component label 	 xi 

labeltext 	 R/Y/BOff 

text height 	 10mm 

text colour 	 white 

material 	 plastic 

Volt meter phase selection switch 	 x  

contact voltage rating 	 230Vac 

contact current rating 	 IA 

contact number 	 2 

contact operation 	 latching - break before make 

manufacturer 	 to be specified 

range I series 	 to be specified 

part number 	 to be specified 

type 	 selector 

applicable standards 	 1P65; CE mark 

component label 	 xi 

labeltext 	 R/Y/BOff 

text height 	 10mm 

text colour 	 white 

material 	 plastic 

Indicator Lamps: 
Busbar live lamps 	 x3 

power rating 	 5W 

Table B.1: continued. 



Component Quantity 	Rating 

voltage rating II OVac 

frequency rating 50Hz 

manufacturer to be specified 

part number to be specified 

lamp filter colour red 

component label x  

label text Busbars Live 

text height 10mm 

text colour white 

material plastic 

fuse protection 0 

voltage rating II OVac 

current rating IA 

mounting type cartridge 

manufacturer to be specified 

part number to be specified 

applicable standards BS88 

power source connection to VT I 

Instrumentation: 

Amp meter xl 

manufacturer Alsthom T&D 

series I range Metrik 

part number to be specified 

applicable standards BS89 and lP52 

size 96mm2  

scale 90° 

accuracy 1% 

end scale value 1400A 

scale label A 

current transformer properties connection to C71 

burden (per phase) 2VA 

voltage transformer properties not required 

fuse protection not required 

component label xi 

label text Ampere Meter 

text height 10mm 

text colour white 

material plastic 

Volt meter x  

manufacturer Alsthom T&D 

series / range Metrik 

part number to be specified 

applicable standards BS89 and 1P52 

size 96mm2  

scale 90° 

accuracy 1% 

end scale value 3.6kV 

scale label A 

current transformer properties not required 

voltage transformer properties connection to VT I 

burden (per phase) 2VA 

fuse protection x3 

Table B.1: continued. 
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Component Quantity Rating 

voltage rating II OVac 

current rating IA 

mounting type cartridge 

manufacturer to be specified 

part number to be specified 

applicable standards BS88 

component label x  

label text Voltage Meter 

text height 10mm 

text colour white 

material plastic 

Protection Relays: 

Over and under current relay xl 

manufacturer Alsthom T&D 

series I range Midos 

part number to be specified 

applicable standards BS 142 & 1EC255 

direct current burden 5W (II OVdc) 

current transformer properties connection to CT2 

burden (per phase) 0.25 VA 

voltage transformer properties not required 

fuse protection not required 

component label xl 

label text Over and under current 

text height 10mm 

text colour white 

material plastic 

Over and under voltage relay 

manufacturer Alsthom T&D 

series! range Midos 

part number to be specified 

applicable standards BS 142 & 1EC255 

direct current burden SW (I l0Vdc) 

current transformer properties not required 

voltage transformer properties connection to VT2 

burden (per phase) 0.05 VA 

fuse protection x3 

voltage rating II OVac 

current rating IA 

mounting type cartridge 

manufacturer to be specified 

part number to be specified 

applicable standards BS88 

component label x  

label text Over and under voltage 

text height 10mm 

text colour white 

material plastic 

Under frequency relay 

manufacturer Aisthom T&D 

series! range Midos 

part number to be specified 

Table B.1: continued. 
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Component Quantity Rating 

applicable standards BS 142 & 1EC255 

direct current burden 5W (I l0Vdc) 

current transformer properties not required 

voltage transformer properties connection to VT2 

burden (per phase) 0.05VA 

fuse protection x3 
voltage rating II OVac 

current rating IA 

mounting type cartridge 

manufacturer to be specified 

part number to be specified 

applicable standards BS88 

component label xl 
label text Under frequency 

text height 10mm 

text colour white 

material plastic 

Over frequency relay 

manufacturer Alsthom T&D 

series / range Midos 

part number to be specified 

applicable standards BS 142 & 1EC255 

direct current burden 5W(llOVdc) 

current transformer properties not required 

voltage transformer properties connection to VT2 

burden (per phase) 0.05VA 

fuse protection x3 
voltage rating I lOVac 

current rating IA 

mounting type cartridge 

manufacturer to be specified 

part number to be specified 

applicable standards BS88 

component label xl 
label text Over frequency 

text height 10mm 

text colour white 

material plastic 

Loss of mains relay (ROCOF) x  

manufacturer Aisthom T&D 

series / range Midos 

part number to be specified 

applicable standards BS 142 & IEC255 

direct current burden 5W (II OVdc) 

current transformer properties connection to C72 

burden (per phase) 0.25 VA 

voltage transformer properties connection to VT2 

burden (per phase) 0.05VA 

fuse protection x3 
voltage rating II OVac 

current rating IA 

mounting type cartridge 

Table B.1: continued. 
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Component Quantity 	Rating 

manufacturer to be specified 

part number to be specified 

applicable standards BS88 

component label xl 

label text ROCOF 

text height 10mm 

text colour white 

material plastic 

192 

Earth fault relay 

manufacturer 

series / range 

part number 

applicable standards 

direct current burden 

current transformer properties 

voltage transformer properties 

burden (per phase) 

fuse protection 

voltage rating 

current rating 

mounting type 

manufacturer 

part number 

applicable standards 

component label 

label text 

text height 

text colour 

material 

Reverse power relay 

manufacturer 

series / range 

part number 

applicable standards 

direct current burden 

current transformer properties 

burden (per phase) 

voltage transformer properties 

burden (per phase) 

fuse protection 

voltage rating 

current rating 

mounting type 

manufacturer 

part number 

applicable standards 

component label 

label text 

text height 

text colour 

material 

Synchronising relay 

Alsthom T&D 

Midos 

to be specified 

BS 142 & IEC25S 

5W (I l0Vdc) 

not required 

connection to VT2 

0.O5VA 

x3 

II 0Vac 

IA 

cartridge 

to be specified 

to be specified 

BS8B 

x  

Earth fault 

10mm 

white 

plastic 

x  

Alsthom T&D 

Midos 

to be specified 

BS 142 & 1EC255 

SW (II OVdc) 

connection to CT3 

O.25VA 

connection to VT2 

0.O5VA 

x3 

II OVac 

IA 

cartridge 

to be specified 

to be specified 

BS88 

x  

Reverse power 

10mm 

white 

plastic 

Table B.1: continued. 



Component Quantity Rating 

manufacturer Aisthom T&D 

series I range Midos 

part number to be specified 

applicable standards BS 142 & 1EC255 

direct current burden 5W (II OVdc) 

current transformer properties not required 

voltage transformer properties connection to VT2 

burden (per phase) 0.05 VA 

fuse protection x3 

voltage rating II OVac 

current rating IA 

mounting type cartridge 

manufacturer to be specified 

part number to be specified 

applicable standards BS88 

component label x  

label text Synchronising 

text height 10mm 

text colour white 

material plastic 

Sensing Transformers: 

Current Transformer I (CT I) xl 

type instrumentation 

classification 

burden (per phase) 2VA 

capacity 2VA 

number of phases 3 

primary rating 1200A 

secondary rating 5A 

manufacturer Yorkshire Switchgear 

part number to be specified 

fuse protection not required 

Voltage Transformer I (VT I) x  

type instrumentation 

classification 

burden (per phase) 7VA 

capacity IOVA 

number of phases 3 

primary rating 3.3kV 

secondary rating II OV 

manufacturer Yorkshire Switchgear 

part number to be specified 

fuse protection x3 

voltage rating 3.3kV 

current rating IA 

mounting type cartridge 

manufacturer Yorkshire Switchgear 

part number to be specified 

applicable standards BS88 

Current Transformer 2 (CT2) x  

type protection 

classification 5P 

Table B.1: continued. 

193 



Component Quantity 	Rating 

burden (per phase) O.5VA 

capacity 2.5VA 

number of phases 3 

primary rating 1200A 

secondary rating 5A 

manufacturer Yorkshire Switchgear 

part number to be specified 

fuse protection not required 

Voltage Transformer 2 (VT2) xl 

type protection 

classification 3P 

burden (per phase) 0.35VA 

capacity IOVA 

number of phases 3 

primary rating 3.3kV 

secondary rating II OVac 

manufacturer Yorkshire Switchgear 

part number to be specified 

fuse protection x3 

voltage rating 3.3kV 

current rating I GA 

mounting type cartridge 

manufacturer Yorkshire Switchgear 

part number to be specified 

applicable standards BS88 

Current Transformer 3 (CT3) xl 

type protection 

classification 5P 

burden (per phase) 0.25 VA 

capacity 2.5VA 

number of phases 

primary rating 1200A 

secondary rating 5A 

manufacturer Yorkshire Switchgear 

part number to be specified 

fuse protection not required 

Table B.1: continued. 
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Publications 

The work described in this thesis has been reported in the following publications: 

[Cl] Paul McCabe and D.E. Macpherson. The Application of Artificially Intelligent 

Techniques to the Design Process of Renewable energy Schemes, 32nd Universities 

Power Engineering Conference (UPEC '97), Volume 2, pages 1126 - 1129, 10th 

- 12th September, 1997. Department of Electrical Engineering and Electronics, 

University of Manchester Institute of Science and Technology (UMIST), P0 

Box 88, Manchester, United Kingdom. Volume 1: ISBN 0-9523165-3-6, Volume 

2: ISBN 0-9523165-4-4, Two Volume Set: 0-9523165-5-2. 

[C21 Paul McCabe. Application of Artificially Intelligent Techniques to the Design Pro-

cess of Embedded Generation Schemes, The Postgraduate Journal of the Depart-

ment of Electronics and Electrical Engineering (PhDEE), pages 41 - 45, April 

1998, Department of Electronics and Electrical Engineering, University of Ed-

inburgh, Mayfield Road, Edinburgh, United Kingdom. 1  

[C3] Paul McCabe, D.E. Macpherson and A.R. Wallace. An Artificially Intelligent 

Design Aid for the Specification of Protection Relays and Switchgear for Small Scale 

Hydro Plant, Small Hydro 1998, pages 105 - 112, 16th - 18th November, 1998. 

Athens, Greece. International Water Power & Dam Construction and Wilm-

ington Business Publishing, Wilmington House, Church Hill, Wilmington, 

Dartford, Kent, United Kingdom. 

'This paper has not been reproduced in this volume due to its very similar structure and content 
to [Cl]. 
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C.1 UPEC '97 

APPLICATION OF ARTIFICIALLY INTELLIGENT TECHNIQUES TO THE DESIGN 
PROCESS OF RENEWABLE ENERGY SCHEMES. 

P.R. McCabe and D.E. Macpherson 

University of Edinburgh, UK 

ABSTRACT 

The number of small-scale renewable energy schemes being utilised within the United Kingdom continues to grow, 
encouraged by Government legislation and public concern for the environment. The limited capacity of these schemes often 
results in poorly resourced projects which fail to attract the appropriate technical expertise at the design stage. Hence, once 
constructed the plant performs inadequately, becomes difficult to maintain, expensive to operate and has a significantly 
reduced life expectancy. These problems can be reduced by implementing artificially intelligent techniques during the design 
stage. This paper will outline the main features of the design process, discuss artificial intelligence and illustrate how this 
technology may be applied to the design process of renewable energy schemes. 

1. INTRODUCTION 

Recent Government legislation, in particular the Third 
order of the Non-Fossil Fuels Obligation (NFFO-3) and the 
Scottish Renewables Obligation (SRO), coupled with 
increasing environmental concerns and an ever increasing 
demand for electricity, has increased public interest in 
renewable sources of energy (e.g. wind, hydro, solar, 
energy crops, landfill gas) for electricity generation. This 
has been reflected in a substantial increase in the number 
of embedded generators t  that have been connected to the 
distribution network. New embedded projects are 
becoming decreasingly small, down to a capacity of ten's 
of kilowatts. Due to their decreasing small size, many of 
these projects have insufficient capital resources to 
purchase professional expertise and are therefore proposed 
and implemented by people of inadequate technical 
experience. As a result many Public Electricity Suppliers 
(PES) are having to process large numbers of applications 
for new embedded generation schemes which are 
inadequately specified and, in some cases, fall a long way 
short of the required electrical regulations such as G59/1. 

Past experience has indicated that the major costs 
associated with the development of embedded generation 
sites have been 

The amount of professional time required to 
electrically design and specify the plant. 
The high cost of undetected errors made during the 
design of the plant 
Poor reliability, efficiency and maintainability of 
the plant. 

Thus the design process is a crucial factor in the economic 
viability and ultimate performance of the proposed 
embedded scheme. 

It is also apparent that the (automated) control and 
electrical protection systems for many renewable energy 
schemes are similar, both in electrical and functional terms. 
Therefore, it is proposed that to avoid inadequately 

Embedded generators are generally accepted as having ratings less 
than 10MW and connected at 33kV or below.  

designed and costed proposals a design aid could be 
utilised which would: 

ensure that the proposed embedded scheme was 
economically and technically viable, 
minimise the number of poorly prepared 
applications processed by the utilities, 
increase the overall performance of the scheme, 

• produce a project costing. 
For such an design aid to be effective it should embody 
basic computer aided design (CAD) functions and at least 
some of the deeper reasoning which in applied by human 
designers to the design process. 

2. REVIEW OF THE DESIGN PROCESS 

The fundamental process of the design of an artefact (a 
man-made object) is a distinctly human activity, and 
because of its' abstract nature many authors have diverse 
views upon the precise definition of design [1,2,3]. Due to 
the complex nature of design and for clarity it will be 
described, as opposed to defined, as the creation or 
adaptation of an arlefact, or group of artefacts, such that 
certain characteristics which have been predetermined 
become optimisedfeatures oft/ic desired artefact. 

Before attempting to encode the design process artificially, 
some consideration should be given to the design methods 
used by human practitioners, as a successful system should 
incorporate at least some of these methods. 

2.1 Methods of Design 
When presented with a design task designers call upon 
various resources to focus the search for a suitable 
solution. These resources avoid the designer being 
overwhelmed by the number of different possibilities and 
minimise time wasted exploring unsuitable solutions. 
Such resources include the senses (e.g. sight, hearing and 
touch), previous design experience and knowledge relevant 
to the task, imagination, creativity and the ability to work 
with incomplete or defective information. All these 
resources are combined and utilised by the designer to 
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produce an optimum solution to the design task. 

Designers employ distinct methods to divide the task into 
manageable sections. The principal methods are outlined 
below. 

21.1 Top-Down Design 
This is one of the most utilised human design practices due 
to its simplicity and effectiveness. The structure is 
decomposed into several main sections and ideally the 
interfaces between each section are completely defined. 
Thus the design of each section becomes s totally 
independent sub-problem. This process is repeated until 
all the sub-sections can be resolved individually. Re-
composition of the sub-sections results in the solution of 
the original design task. 

The main limitation with this method is that the interfaces 
between the sub-sections are invariably incomplete or 
permutate during the design process. The re-definition of 
an interface may not only affect adjoining sub-sections but 
the entire structure of the design. 

21.2 Iterative Design 
Also known as the 'Generate-and-Test' method, iterative 
design is a powerful but resource intensive process. A 
proposed solution is generated using quantities which 
satisfy some of the design constraints while the remaining 
variables assume approximate values. The prototype is 
then tested against the design criteria. If the proposed 
design fails the process is re-iterated utilising information 
gained from the testing procedure to modify the design 
parameters. 

Although this approach allows for 'rules of thumb' to be 
applied (as long as they can be formalised) the system fails 
to take account of the overall purpose of the artefact as it is 
only interested in ensuring that the performance criteria 
have been met. 

2.1.3 Parameteric Design 
This procedure is now a widely used technique due to the 
advent of modern computer technology. The parameters 
and inter-relationships of the desired artefact are captured 
through a mathematical model of the design process. An 
artefact is generated by assigning values to the parameters 
and executing the model. This system is more akin to 
mathematical modelling than artificial design, but since the 
system can appear to produce new artefacts it is generally 
considered as having design capability. 

It should be noted that this is not an exhaustive list, but the 
majority of design tasks may be represented by one or 
more of the above techniques. Each of the above methods 
has advantages, e.g. computational efficiency, and 
disadvantages, e.g. failure to capture the richness of the 
design task, therefore most designers use a combination of 
these methods and their personal resources to focus the 
design of a single artefact. 
2.2 Computer Assisted Design 
If a computer is to be effective in mimicking a human 
designer all of the resources available to the human 
designer have to be simulated, re-crested or substituted 

artificially. Most computer-based design packages have 
only an alphanumerical database containing the key facts 
of the objects which they manipulate, in accordance with a 
set of design rules. This is only a fraction of the design 
information that human designers have access to, e.g. 
visual and physical stimuli related to the task. It is not 
surprising, therefore, that computer-based design software 
performs poorly without human intervention. 

CURRENT DESIGN SOFTWARE 

There are two distinct paradigms concerning artificial 
design 
1. Design as a routine process. 

Including: Problem solving processes. 
Decision making processes. 
Optimisation processes. 

2 Design as an inventive, innovative and creative 
process. 

It should be noted that a degree of overlap exists between 
the two areas. 'Design as a routine process' treats design as 
a straight-forward, repetitive, logical process requiring 
little creativity or thought. This approach has embraced 
Expert System based technology and applied it to areas 
where repetitive design decisions have to be made 
frequently and accurately. Application areas include VLSI 
layout, electrical circuit design, intelligent CAD systems 
and control system design. Within all of these areas the 
design environment is well defined and completely 
described by mathematical expressions; quantities which 
computers can process readily. Systems developed using 
this methodology have been very successful but all require 
human assistance to operate. 

'Design as an inventive, innovative and creative process' 
utilises the innovative ideas of artificial intelligence, e.g. 
neural networks and genetic algorithms, to create novel 
approaches to represent and manipulate knowledge 
concerning the design. These systems require extensive 
development and computational resources, and have had 
varying degrees of success when applied to real-life 
applications. Such tasks include power system generation 
scheduling, pattern recognition and fault diagnosis of 
complex control systems. 

Before considering how a design aid for renewable energy 
schemes is being implemented, a brief overview of current 
artificially intelligent techniques which are currently in use 
within power systems is presented. 

ARTIFICIALLY INTELLIGENT 
TECHNOLOGIES 

Since the mid' eighties there has been a divergence sway 
from the investigation of power systems by traditional 
methods (e.g. rigorous mathematical modelling) towards 
the application of artificially intelligent based technology 
[4]. Presently the principle artificially intelligent 
technologies utilised within power system applications are 
expert systems, fuzzy systems (based upon the principle of 
fuzzy logic), artificial neural networks and genetic 
algorithms. Each one of these technologies will be 
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discussed with respect to their application to artificial 
design. 

The most established of the artificially intelligent 
technologies, with the longest history of proven success, 
are expert systems, which allow specialist knowledge 
Within a narrow domain to be captured in a machine 
interpretable form. This knowledge may be captured in the 
form of rules, frames, objects or a combination of these 
structures. The initial stages of the design of any artefact 
are generally well structured. Therefore it seems intuitive 
to use an expert system to help structure and define the 
initial design stages for an artefact before utilising other 
programming techniques for the more complex, ill-defined 
sections of the design task. 

Fuzzy systems are based upon fuzzy logic where decisions 
can be made where for a given set of circumstances a 
degree of certainty may be found such that a certain 
condition exists. Thus fuzzy systems are able to deal with 
partial degrees of truth or vagueness. Fuzzy logic could be 
utilised within certain design tasks where all the possible 
conditions or relations could be defined and weighted 
within a limited domain, but by itself fuzzy logic is too 
limited and un-structured to deal with the richness required 
for artificial design. 

Genetic algorithms can be generally defined as a computer 
simulation in which a population of abstract 
representations of candidate solutions to an optimisation 
problem are stochastically selected, recombined, mutated 
and then either eliminated or retained based upon their 
relative fitness [5]. Genetic algorithms are advanced 
random search methods or optimisers which require a set 
of governing equations. Since most design tasks are not 
easily converted into a set of mathematical equations, 
genetic algorithms appear to be of limited use for artificial 
design. 

Artificial neural networks may be defined as mutli-layer 
networks constructed from layers of neurons which are 
extracted models of the biological neuron; they operate by 
taking the weighted sum of their inputs, and should this 
sum exceed a predetermined threshold the neurone fires, 
outputting the equivalent to a logic one or high. The tasks 
that artificial neural networks excel at are classification, 
recognition, optimisation and prediction. However, the 
main limitation with artificial neural networks is that they 
require extensive archives of standardised training data; 
thus implying that not only must most of the possible 
design options for a given task be calculated but that they 
also be classified and standardised into training data. 
Therefore the artificial neural network is operating as a 
classifier or optimiser as opposed to an intelligent design 
aid. 
4.1 Object Oriented Design 
One of the currently developing software paradigms, 
object-orientation, has emerged in recent years as a key 
technology of fundamental importance to artificial design. 
This non-artificially intelligent technology is founded upon 
the principle that objects identified in the problem 
specification can be represented in software; allowing the 
construction of an object-orientated model of the problem 

and mapping this model into a software design [6]. 
Several authors [7,8] have already utilised this technique 
with encouraging results. 

In summary; the rigorous and precise structure of expert 
systems coupled with the flexibility of object-orientated 
software allows a fully featured, rich environment within 
which to develop a design aid. The following section 
describes the operation of the design aid for the electrical 
specification of embedded generation. 

5. A DESIGN AID FOR THE ELECTRICAL 
SPECIFICATION OF EMBEDDED GENERATION 

Work is currently progressing on an artificial design aid for 
the electrical specification of embedded generation 
schemes. The design aid is based upon an object-
orientated software language, C++, with the inclusion of an 
expert system shell, CLEPS, which is used for the initial 
stages of the design and the validation of re-structuring or 
changes in specification. The development environment 
used is Microsoft® Windows NT operating system, but 
depending upon the computational demands of the 
software the code can be ported Onto a UNIX platform if 
necessary. 

The structure of the system is as follows; many of the 
proposed sites for embedded generation development may 
be represented by a small number of generic circuits 
(examples are shown in Figures 1 and 2). Within each of 
these generic circuits there are functional blocks, e.g. 
generator, transformer, protection systems, which are 
common to all embedded generation schemes. Each of 
these circuit blocks have been given characterising 
attributes, some general (e.g. cost, power rating) and some 
specific (e.g. electrical connections, control signals). 

Initially the user is presented with a graphical user 
interface displaying the various generic circuit options. 
The user may select the circuit which best approximates 
his/her requirements and upon selection the user is then 
presented with a more detailed view of the circuit 
topology, indicating the various components or functional 
blocks. Each of these functional blocks may be selected 
allowing the user to enter the proposed specifications. 

As the user enters the specification for a functional block 
into the design aid, she/he will have a choice of default 
values or components to select from. Once the 
specification for each component has been input, exit from 
the respective sub-menu will only be granted when 
sufficient information has been given to completely specify 
it's operation. This structure will ensure that all 
components or blocks are specified thus avoiding the 
absence or non-specification of components; thus avoiding 
a major cost associated with current embedded design 
practices. 
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aid opposed to a expert system for the design of renewable 
energy schemes. 

6. CONCLUDING REMARKS 

This paper has presented the main problems associated 
with embedded generation due to poor initial design. A 
brief analysis of the design process and methods of 
application has been indicated. A synopsis of current 
design software and artificially intelligent technologies has 
been presented along with a summary regarding their 
application to artificial design. Finally a design aid, which 
is currently under construction, for the electrical 
specification of embedded generation schemes has been 
described. 

liv 

Figure 1 : Example of a Generic Circuit; a long line with a 
distribution transformer and an embedded generator 

33kV 

Figure 2: Example of a Generic Circuit; a Wind Farm 
with 33kV and 11kV generation. 

Either during or after specifying the proposed design the 
user can change the existing circuitry (derived from the 
generic circuit) or include additional circuitry. This may 
be accommodated by the adaptation of the attributes of 
adjoining circuit elements thus ensuring that the design aid 
is able to adjust for changing or unfamiliar circuit 
topologies. 

Having completely entered the proposed design, including 
the circuit topology and specification for all the constitute 
components then a complete list of objects, within the 
software, and their respective attributes is created. This 
allows the overall design focus to be modified and applied 
to all the objects within the design specification. Therefore 
the final specification may be optimised for various 
options, e.g. cost, reduced maintaince or remote operation. 
To accommodate the users design knowledge, each of the 
changes suggested by the software to the respective objects 
or their characteristics is displayed and has to be vetted by 
the user. Hence the description of the software as a design 
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Abstract 

Mini-hydro generators have been installed for many years as the power sources in decentralised rural electrification schemes in less 
developed countries. Within the liberalised Electricity Supply Industries in Europe, mini-hydro generators are being rehabilitated or 
installed to connect to the distribution grids. At all levels of technical sophistication, safe and reliable operation is of primary 
importance; these criteria must be addressed from concept to the commissioning of the plant. 

Various computationally intelligent software packages have being developed and applied to the top-down design of mini-hydro schemes, 
but few attempt to specify in detail the switchgear, control and protection equipment, which are the key to the safe and reliable operation 
of the plant There are many equipment manufacturers entering the market with the facilities and skills to produce cost effective 
switchgear, control and protection equipment. However, they may not have the experience in hydro-electric plant to ensure that 
operational, safety and reliability standards are always maintained. Errors or omissions in the design and specification of plant can at 
best be costly to repair or re-instate. At worst there can be profound implications for safety and reliability. 

This paper describes the design procedures most suited to the specification of switchgear, control and protection systems, and identifies 
that object oriented programming can be utilised to embody the often subconscious design decisions that ensure plant is precisely and 
appropriately specified without omissions. The paper describes the application of C++ to the design of switchgear and protection 
equipment and shows examples of the breadth and depth of detail that must be indicated in a competent and secure design. 

1. Introduction 

Small scale hydro generators have a long history of reliable operation in decentralised rural electrification 
schemes throughout the world, especially in developing countries. This technology is currently expanding 
within the liberalised Electricity Supply Industries (ESI) in Europe due to the following factors - 

• Technical Advancements : The development of and increased availability of control systems which 
allow the automatic, remote control of plant. 

• Increasing demand for electricity: Demand continues to grow and has allowed for the exploration 
of natural resources previously thought of as non-viable. 

• Government legislation : Government programs, such as the Thermie program in Europe or the 
Non-Fossil Fuels Obligations (NFFO 1 -4) and the Scottish Renewables Orders (SRO I - 3) within 
the United Kingdom, have been strong incentives for developers. 

• Environmental Concerns : The increasing public interest in the environmental effects of electricity 
generation has encouraged the growth of hydro power. 

Within Europe, the number of mini and small scale hydro schemes is Set to grow, with an estimated 800 
TWh/year of economically feasible hydro power potential still undeveloped [1], of which an increasing amount 
will be embedded' as most large hydro resources become exploited. This anticipated growth is reflected 
throughout the world, particularly in the Pacific Rim, Russia, Middle East and South Asia, where rural 
electrification schemes based on hydro-electric generation have tremendous potential, with current estimates 
indicating 3600 TWblyear of economically viable hydro generation [2]. 

A common problem, even within developed countries, is that the maximum potential of the resource is often not 
realised due to poor performance of the plant. Upon close inspection, the main reason for many schemes poor 
performance may be traced back to the ad hoc design of the plant. This is often due to the developers of such 
small schemes 

'Embedded generators are generally accepted as having ratings less than 10MW and connected at 33kV or below. 
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• having very limited capital, thus being unable to seek specialist professional advice, and, 
• relying upon a limited skill base which may not be up-to-date or sufficiently broad enough to 

ensure that the design of the hydro scheme is effective. 

Plant developed in these circumstances is prone to mispecification, which is normally only discovered at the 
site during construction or commissioning, thus incurring expensive alterations or additional equipment. This 
condition is particularly acute in developing countries, where the potential for mini and small scale hydro is 
greatest but where many schemes are developed by people whose experience may be limited, especially 
concerning the electrical protection and control of the plant. 

The majority of small hydro plant operates as a small generating station embedded in a larger electrical system. 
It is essential to the reliability and safe operation of the overall system that the hydro plant complies with 
relevant national / international standards regarding electrical protection and operation. Within the UK the 
legal guidelines are defined by the Electricity Association in documents G5911 [3] and ETR1 13 [4]; however, 
designers of small hydro systems are frequently not electrical engineers, and may not be conversant with these 
standards and accepted design practices. Even with such documents the regulations can easily be 
misinterpreted by the unqualified. In many cases, particularly in developing countries, funds will not stretch to 
employing a specialist electrical power systems engineer in addition to the designer(s) of the civil works and 
electro-mechanical equipment. Resulting design problems can cause lengthy and expensive commissioning 
delays, and in some cases serious failure of the electrical system. 

It is the aim of this project to assist designers of small hydro-electric plant by encapsulating in software the 
knowledge of experienced electrical engineers concerning the design of electrical control and protection 
equipment. The knowledge is converted into a set of design rules and combined with databases of available, 
standardised equipment, which may be supplemented to adapt to local needs. The software aims to ensure the 
compliance of proposed schemes with the relevant standards and regulations, thereby ensuring the successful 
licensing of new plant. It is expected that utilisation of this design aid will substantially improve the quality of 
design, and assist developers avoid expensive, unforeseen changes during commissioning. This knowledge will 
be accessible through the use of a personal computer. 

Implementation of the software requires capturing some of the reasoning and thought processes of experienced 
human engineers as well as including the basic functionality common to all computer aided design (CAD) 
tools. 

2. The Concept of Design 

Defining the term design is difficult due to its general meaning and its abstract nature. Understanding the 
process of design is a central goal of engineers, scientists, and architects. Many authors have diverse views and 
definitions of design [5,6], but it is H.A. Simon who describes the spirit of the process most succinctly: 

"The natural sciences are concerning with how things are." ... "Design, on the other hand, 
is concerned with how things ought to be, with devising artefacts [man made objects] to 
attain goals. (7)" 

The process of design can be described as the creation or adaptation of an artefact, or group of artefacts, such 
that certain characteristics which have been predetermined become optimised features of the desired artefact. 

To create a design aid in the form of a software application, some consideration should be given to the design 
methods employed by human practitioners. Such methods include top-down design, iterative design, 
parametric design and probabilistic design. This is not an exhaustive list of techniques, but other design 
methods can generally be represented by one or a combination of these techniques. 

Top-down design is the most utilised design technique due to its simplicity and effectiveness. The design task 
is decomposed into main sections, and the interfaces between each section defined. Therefore the design of 
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each section becomes a totally independent sub-problem. This process of divide and conquer is applied until all 
of the sub-sections can be resolved individually. Re-composition of all the sub-sections results in the solution 
of the original design task. 

Each of the aforementioned design methods have advantages (e.g. computational efficiency or particular 
suitability to certain tasks) and disadvantages (e.g. a failure to model all the richness of the design task or an 
over-emphasis upon structure as opposed to creativity); therefore most human designers use a combination of 
these methods together with their personal skills and resources to focus upon the design of a artefact. It is the 
aim of the software to model the design process for electrical switchgear and protection equipment for small 
scale hydro schemes, allowing the user to be concerned only with the general parameters of the proposed 
project. The regulatory and intricate technical details, where many human designers make mistakes, are 
automated and checked by the software. 

Artificially Intelligent Technology 

The study of human cognitive processes is an area of research known as Artificial Intelligence (Al) which 
includes technologies such as expert systems, artificial neural networks, fuzzy logic, agent theory and genetic 
algorithms. Since the mid 'eighties there has been a divergence away from investigating power systems by 
traditional methods (e.g. rigorous mathematical modelling) towards the application of artificially intelligent 
technology [8]. Applications include the utilisation of neural networks for dispatching of electric power [9], 
genetic algorithms for service restoration in electric power distribution systems [10], and expert systems for 
distribution grid alarm processing [11]. 

Included within the area of artificial intelligence is object oriented design. As its name suggests, this area of 
research attempts to encapsulate human design decisions in software. Objects are constructed in software 
which are modelled upon the behaviour and inter-relations of their real life counterparts [12]. This technique 
has already been applied to other applications with encouraging results [13,14]. With additional data, a model 
of the problem space can be produced which can mimic the basic decisions of a human designer. 

EDGES - a Design Aid for the Electrical Protection and Switchgear for Hydro Plant 

The design aid, EDGES (Embedded Design Generation and Emulation Software), which is currently under 
development, is written in C++; an object oriented programming language which was first released in 1980 by 
Bjarne Stroustrup of AT&T Bell Laboratories. It has proved to be a very popular computer language, and can 
be implemented on all major computing platforms. The operating system selected for development was 
Microsoft Windows NT due to its stability and capacity to build applications for Windows 95 or 98 
environments. 

Many decisions for the electrical specification of switchgear may be broken down into: 

• the designer's discretion, 
• regulatory requirements, and 
• technical limitations. 

Thus by the careful study of the design process for the switchgear and protection of small scale hydro schemes, 
the decision space can be intelligently narrowed down and certain decisions can be automated by the software. 

Although hydro-electric sites have very individual characteristics, upon close examination it becomes apparent 
that most Sites have common electrical characteristics. For example, the grid configuration can normally be 
represented by one of a small number of generic circuits, as illustrated in Figure 1; this is not an exhaustive list 
of possible configurations, but indicates a first level of object abstraction or modelling. 
Within each of these generic circuits there are components which are common to all hydro schemes, e.g. lines 
and/or cables, transformers, generators, circuit breakers and protection equipment. Again, each of these 
components may be split into sub-components or functional blocks. Protection equipment, even on a simple 
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scheme, includes an over-current relay, an under- and over-frequency relay and an over-voltage relay. 
Embedded schemes should also include loss of mains, earth fault, reverse power, directional over-current, and 
neutral voltage displacement (NVD) relays. At this level of abstraction it is possible to create each of these 
relays as objects in the model and assign characteristics to them; some of a general nature such as cost, size, 
weight and rating; some specific to relays such as operating time, protection class current or voltage 
transformer requirements; and electrical connectivity to other devices, such as control signals. if this process is 
repeated for the other circuit elements which construct a possible scheme then a complex model may be 
constructed from objects which have the same attributes as their real life counterparts. 
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Figure 1 : A selection of generic circuits which characterise many typical topologies 
of small hydro schemes. 

To analyse a design scenario the user should select a generic circuit to which he may add or remove circuit 
elements to suit his requirements, and then give some initial information concerning the electrical environment 
of the proposed hydro development. This information is submitted through the Electrical Data dialog box, as 
reproduced in Figure 2, and is stored in an object called Electrical Environment, if the data is known to be 
accurate, it should be entered as Confirmed Data; however, during initial exploration of a design scenario it is 
common not to have complete and/or accurate data-for the scheme. In such cases a sensible estimate should be 
entered as Provisional Data: this allows the design to proceed, but flags to the user that the data should be 
checked at a later date. 
Whenever a new device is connected to the design (for example a second generator or a measurement class 
current transformer) the device inherits the electrical parameters relevant to its operation from the object 
Electrical Environment, if insufficient information is available then EDGES will request the additional details 
from the user. 
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Interrelated groups of devices may also be modelled. For instance, the user may wish to add a new protection 
device to the design model, such as an under-and over-frequency relay. Having selected a new relay from the 
database. EDGES will insert the relay into the design, connect it to a single phase or three phase (depending 
upon the user's preference) protection class voltage transformer, ensure that this additional burden does not 
over load the voltage transformer (if this burden proves too great, the voltage transformer is up-graded to the 
next standard size, and the transformer fuse ratings re-checked), and connect the trip circuit of the relay to the 
main circuit breaker. 
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Figure 2: The Electrical Data Dialog (a screen shot from EDGES). 

Thus by the modelling of circuit components, the inheritance structure of EDGES ensures that all the necessary 
components for a proposed scheme are selected and specified correctly, hence avoiding costly modifications 
and omissions. During the design process EDGES also allows for varying degrees of user control, depending 
upon the users experience. Considering the previous example of the addition of a protection relay; an expert 
user may be prepared to accept that the voltage transformer will be slightly over-loaded and choose not to 
perform the up-grade, whereas an inexperienced user would not be able to make such a judgment, and would 
therefore be made aware of the automatic up-grade. However, throughout the design process all major 
decisions are vetted my the user. 

The grouping of objects also allows various electrical standards to be applied. As previously mentioned, within 
the United Kingdom, all small scale hydro schemes embedded into the distribution grid have to comply with 
059/1. By selecting 059/1 from the standards menu, EDGES will insert all the protection relays required into 
the design prototype based upon the plant size, number of generators and purpose. Once a complete design has 
been chosen and examined by the developer, then EDGES will produce a complete specification of all 
equipment and components, including spares items such as fuses and contactors. The specification for the 
hydro plant may then be procured and constructed. 
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Future Development 

It is hoped that once current work upon EDGES is complete the follow features could also be added: 

• Extend EDGES to analyse hydrological data to aid turbine selection, 
• Expand concepts embodied in EDGES to the control system of the plant, 
• Include a flexible cost database to allow for a basic economic analysis, 
• Construct an interface to a third party electrical power systems analysis software, such as 

EMTP/ATP or ERACS, to examine in greater detail the effect of the scheme on the electrical grid 
system (stability, fault currents, voltage drops etc.). 

Conclusions 

The main advantages of EDGES to developers are: 

• More rational, consistent design specifications are produced, based upon standard components, 
• Omissions in the specification of a scheme are removed, 
• Reduced design time on each project, as time consuming checking of components is automated, 
• Reduced commissioning times by ensuring a complete and checked design is tendered, 
• Increased up-time during operation and extended lifetime of the plant as standard and proven 

components are selected and designed to suitable standards, 
• Long term-cost effective designs can be produced very quickly and alternative possibilities 

explored. 

EDGES could have been implemented using an artificially intelligent technique based upon expert systems. 
The advantages of using an object oriented design approach as opposed to an expert system approach are: 

• The code, C++, may be ported onto a large range of computing platforms (except for the graphical 
user interface) whereas an expert system shell is normally restricted to one computing platform, 

• Extensive checking and rule validation is unnecessary as the intelligent behaviour is encapsulated 
within easily understood objects, 

• The behaviour of individual objects may be modified without affecting the rest of the model, 
• Fast operation, as computationally expensive rule checks are avoided, 
• Once constructed objects may be re-used or advanced objects constructed from basic objects thus 

allowing the re-use of code and economy of expression, 
• Object oriented systems are more resilient to change. 

Hydro power development throughout the world will continue to expand, especially in developing countries 
where experience and knowledge concerning the design and implementation of new plant is scarce. It is hoped 
that through the use of EDGES mini and small scale hydro development will become quicker to design, cheaper 
to implement, more reliable and give longer service to the communities which they serve. 
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