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Abstract

We generalise the study of cyclotomic matrices - those with all eigenvalues in the interval [−2, 2]

- from symmetric rational integer matrices to Hermitian matrices with entries from rings of in-

tegers of imaginary quadratic fields. As in the rational integer case, a corresponding graph-like

structure is defined.

We introduce the notion of ‘4-cyclotomic’ matrices and graphs, prove that they are necessar-

ily maximal cyclotomic, and classify all such objects up to equivalence. Six rings OQ(
√
d) for

d = −1,−2,−3,−7,−11,−15 give rise to examples not found in the rational-integer case; in

four (d = −1,−2,−3,−7) we recover infinite families as well as sporadic cases.

For d = −15,−11,−7,−2, we demonstrate that a maximal cyclotomic graph is necessarily 4-

cyclotomic and thus the presented classification determines all cyclotomic matrices/graphs for

those fields. For the same values of d we then identify the minimal noncyclotomic graphs and

determine their Mahler measures; no such graph has Mahler measure less than 1.35 unless it

admits a rational-integer representative.
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Chapter 1

Introduction

1.1 Overview

The Mahler measure is a height function on polynomials which is conjectured to be bounded

away from 1 for noncyclotomic Z-polynomials. In this Chapter we summarise some of the

partial answers to this question, which has become known as Lehmer’s problem. In particular,

we describe recent work which verified the conjecture for polynomials arising in a natural way

from integer symmetric matrices. A key component of this approach was the classification of

such matrices with all eigenvalues in [−2, 2]. This thesis generalises both this classification

problem and Lehmer’s problem to matrices with entries from rings of integers of imaginary

quadratic fields and their associated polynomials.

1.2 Mahler Measure and Lehmer’s Problem

Let P (z) = adz
d + · · ·+ a0 = ad

∏d
i=1(z − αi) ∈ C[z] be a non-constant polynomial.

Definition 1.2.1. The Mahler Measure M(P ) is given by

M(P ) := |ad|
d∏
i=1

max (1, |αi|) = |ad|
∏
|αi|>1

|αi| (1.1)

(In [13] Mahler studied an equivalent formulation,

M(P ) := exp
(∫ 1

0

log |P (e2πit)|dt
)
,

from which the name arises; the version given in (1.1) is from Lehmer’s earlier paper [12].)

1



Clearly for P (z) ∈ C[z] M(P ) may take any value ≥ |ad|; thus for a monic P , M(P ) ∈ [1,∞).

This therefore holds for P (z) ∈ Z[z], but here much more can be said.

The cyclotomic polynomials1 have Mahler measure 1, so the lower bound is attainable over

monic polynomials from Z[z]. By a result of Kronecker [11] we have essentially the converse:

M(P ) = 1 only if ±P is the product of a cyclotomic polynomial and a power of z.

For a monic integer polynomial with M(P ) > 1, Lehmer asked (in [12]) whether M(P ) could

be arbitrarily close to 1. This is now known as Lehmer’s Problem; the negative result - that

there is some λ > 1 such that M(P ) > 1 ⇒ M(P ) ≥ λ - is sometimes referred to as Lehmer’s

Conjecture.

Lehmer exhibited the polynomial

z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1

with Mahler measure λ0 = 1.176280818 in his 1933 paper; no smaller examples have been found

since. Further, Lehmer’s Conjecture has been proven for various classes of polynomials; for a

survey see Smyth [19]. In particular, in [14], [15] McKee and Smyth considered polynomials

arising from integer symmetric matrices, and it is these results which motivate the extensions

presented in this thesis. We thus summarise their results in the following sections.

1.3 Integer Symmetric Matrices and Charged Signed Graphs

For a monic polynomial g ∈ Z[x] of degree n, define its associated reciprocal polynomial to be

zng(z + 1/z)

which is a monic reciprocal polynomial of degree 2n. For A an n-by-n symmetric matrix

with entries from Z, denote by RA(z) the associated reciprocal polynomial of its characteristic

polynomial χA(x) = det(xI − A). Further, we define M(A), the Mahler measure of A, to be

M(RA(z)).

If g has all roots real and in [−2, 2], then the roots of its associated reciprocal polynomial are

all of modulus 1 and hence (by Kronecker) it is a cyclotomic polynomial. For A an integer

symmetric matrix, all roots of χA(x) are real algebraic integers, and thus RA(z) is cyclotomic

if A has spectral radius at most 2. Such an A is described as a cyclotomic matrix; the Mahler

measure of A is 1 precisely when A is a cyclotomic matrix.

If A is a block diagonal matrix, then its list of eigenvalues is the union of the lists of the

eigenvalues of the blocks. If there is a reordering of the rows (and columns) of A such that
1For convenience, we will use ‘cyclotomic’ to refer to any polynomial for which all roots are roots of unity,

rather than just the irreducible polynomials Φn.
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it has block diagonal form with more than one block, then A will be called decomposable; if

there is no such reordering, A is called indecomposable. Clearly any decomposable cyclotomic

matrix decomposes into cyclotomic blocks, so to classify all cyclotomic matrices it is sufficent

to identify the indecomposable ones.

The following result is of central importance to this effort:

Theorem 1.3.1 (Cauchy Interlacing Theorem). Let A be a Hermitian n × n matrix with

eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.

Let B be obtained from A by deleting row i and column i from A.

Then the eigenvalues µ1 ≤ · · · ≤ µn−1 of B interlace with those of A: that is,

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ λn−1 ≤ µn−1 ≤ λn.

(This is Théorème I of Cauchy’s curiously titled paper [4] from 1829. For a modern reference

in English see Theorem 4.3.8 of [9], which provides a proof by the Courant-Fischer min-max

theorem (Id. Theorem 4.2.11); a very short proof by reduction to interlacing of polynomials is

given in Fisk [7].)

Thus if A is cyclotomic, so is any B obtained by successively deleting a series of rows and corre-

sponding columns from A. We describe such a B as being contained in A. If an indecomposable

cyclotomic matrix A is not contained in a strictly larger indecomposable cyclotomic matrix, then

we call A maximal ; it thus suffices to classify all maximal indecomposable cyclotomic matrices.

Finally, an equivalence relation on cyclotomic matrices can be defined as follows. Let On(Z)

denote the orthogonal group of n×n signed permutation matrices. Conjugation of a cyclotomic

matrix by a matrix from this group gives another matrix with the same eigenvalues, which is

thus also cyclotomic. Cyclotomic matrices A,A′ related in this way are described as strongly

equivalent ; indecomposable cyclotomic matrices A and A′ are then considered equivalent if A′

is strongly equivalent to either A or −A.

The following (Lemma 6 of [14]) is an easy consequence of Theorem 1.3.1:

Lemma 1.3.2. Apart from matrices equivalent to either (2) or

 0 2

2 0

, any indecomposable

cyclotomic matrix has all entries from the set {0, 1,−1}.

This motivates the following generalisations of the adjacency matrix of a graph. If M is an

n × n matrix with diagonal entries all zero and off-diagonal elements from {0, 1,−1} then M

describes an n-vertex signed graph (as in [3], [21]), whereby a non-zero (i, j)th entry indicates

an edge between vertices i and j with a ‘sign’ of −1 or 1. For a general {0, 1,−1} matrix we

extend this to charged signed graphs, interpreting a non-zero diagonal entry as a ‘charge’ on the

corresponding vertex.

3



A charged signed graph G is therefore described as cyclotomic if its adjacency matrix A is

cyclotomic; the Mahler measure of G is that of A (i.e., of RA(z)), and graphs G,G′ are (strongly)

equivalent if and only if their adjacency matrices A,A′ are. A charged signed graph G is

connected if and only if its adjacency matrix is indecomposable. If a cyclotomic matrix A′

is contained in A then its corresponding charged signed graph G′ is an induced subgraph of

G corresponding to A; thus a maximal cyclotomic charged signed graph is not an induced

subgraph of any strictly larger connected cyclotomic charged signed graph.

The equivalence relation on cyclotomic matrices has the following graphical interpretation.

On(Z) is generated by diagonal matrices of the form diag(1, 1, . . . , 1,−1, 1, . . . , 1) and permu-

tation matrices. Conjugation by the former has the effect of negating the signs of all edges

incident at some vertex v; following [3] this is described as switching at v. Conjugation by a

permutation matrix merely permutes vertex labels and so up to equivalence we may ignore ver-

tex labellings: strong equivalence classes are therefore determined only by switching operations

on unlabelled graphs. Equivalence of charged signed graphs is then generated by switching and

the operation of negating all edge signs and vertex charges of a connected component.

For conciseness, we indicate edge signs visually, with a sign of 1 given by an unbroken line

and a sign of −1 given by a dotted line . Vertices with charge 0 (neutral), 1

(positive) and −1 (negative) will be drawn as , + and − respectively.

By Lemma 1.3.2 we thus have that (with the exception of (2) or

 0 2

2 0

 and their equiv-

alents) any maximal indecomposable cyclotomic integer symmetric matrix is the adjacency

matrix of a maximal connected cyclotomic charged signed graph.

1.4 Maximal Connected Cyclotomic Charged Signed Graphs

A complete classification of cyclotomic matrices/graphs over Z is therefore given via the fol-

lowing main results of [14]:

Theorem 1.4.1. Every maximal connected cyclotomic signed graph is equivalent to one of the

following:

(i) The 14-vertex signed graph S14 shown in Fig. 1.1;

(ii) The 16-vertex signed graph S16 shown in Fig. 1.2;

(iii) For some k = 3, 4, . . ., the 2k-vertex toral tessellation T2k shown in Fig. 1.3.

Further, every connected cyclotomic signed graph is contained in a maximal one.

Theorem 1.4.2. Every maximal connected cyclotomic charged signed graph not included in

Theorem 1.4.1 is equivalent to one of the following:
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(i) One of the three sporadic charged signed graphs S7, S8, S
′
8 shown in Fig. 1.4;

(ii) For some k = 2, 3, 4, . . ., one of the two 2k-vertex cylindrical tessellations C++
2k , C+−

2k

shown in Fig. 1.5.

Further, every connected cyclotomic charged signed graph is contained in a maximal one.

Figure 1.1: The 14-vertex sporadic maximal connected cyclotomic signed graph S14.

Figure 1.2: The 16-vertex sporadic maximal connected cyclotomic signed graph S16.

A

B

· · ·

A

B

Figure 1.3: The family T2k of 2k-vertex maximal connected cyclotomic toral tessellations.
(Where k ≥ 3, and the two copies of vertices A and B should be identified.)
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+

− +

+

S7

− +

+ −

+ −

− +

S8

−

+

+

−

S′8

Figure 1.4: The three sporadic maximal connected cyclotomic charged signed graphs S7, S8, S
′
8.

+

+

· · ·

+

+

C++
2k :=

+

+

· · ·

−

−

C+−
2k :=

Figure 1.5: The families of 2k-vertex maximal connected cyclotomic cylindrical tessellations
C++

2k and C+−
2k , for k ≥ 2.

1.5 Maximal Cyclotomic Graphs

Since any graph is a charged signed graph, it is natural to ask which are the connected cyclotomic

graphs (corresponding to the indecomposable symmetric {0, 1}-matrices with zero diagonal).

This earlier result of Smith [18] is given as Lemma 2.2 in [16] as follows:

Theorem 1.5.1. The connected cyclotomic graphs are precisely the induced subgraphs of the

graphs Ẽ6, Ẽ7, Ẽ8 and those of the (n + 1)-vertex graphs Ãn (n ≥ 2), D̃n, (n ≥ 4) as in Fig.

1.6.

Ẽ6 Ẽ7 Ẽ8

Ãn
D̃n

Figure 1.6: The maximal connected cyclotomic graphs Ẽ6, Ẽ7, Ẽ8, Ãn, D̃n.
(The number of vertices is one more than the subscript; n ≥ 2 for Ãn and n ≥ 4 for D̃n.)
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The cyclotomic graphs Ẽ6, Ẽ7, Ẽ8, Ãn, D̃n are thus maximal in the sense that they are not

contained in any strictly larger connected cyclotomic graph. They are however nonmaximal

as charged signed graphs (Ẽ6, Ẽ7, Ẽ8 are equivalent to subgraphs contained in S16, whilst each

Ãn−1, D̃n is contained in the corresponding T2n.)

1.6 Minimal Noncyclotomic Integer Symmetric Matrices

Definition 1.6.1. A symmetric n× n matrix is minimal noncyclotomic if it is noncyclotomic

and every (n− 1)× (n− 1) submatrix is cyclotomic.

We note that every minimal noncyclotomic integer symmetric matrix is necessarily indecom-

posable.

In [15] McKee and Smyth prove that M(A) ≥ λ0 for all minimal noncyclotomic integer sym-

metric matrices and that this bound is best possible since the charged signed graphs given in

Fig. 1.7 are minimal noncyclotomic with Mahler measure λ0.

+ − +

−

Figure 1.7: Charged signed graphs with Mahler measure λ0.

An immediate consequence of Theorem 1.3.1 is that if an integer symmetric matrix B is con-

tained in a larger A, then M(B) ≤ M(A). Therefore if A is a noncyclotomic integer sym-

metric matrix, then there exists a minimal noncyclotomic integer symmetric matrix A′ with

M(A) ≥M(A′). Thus [15] settles Lehmer’s problem for integer symmetric matrices:

Theorem 1.6.2. ([15] Corollary 2) If A is an integer symmetric matrix, then the Mahler

measure of A is either 1 or at least λ0. Further, if A is indecomposable and has Mahler measure

equal to λ0 then it is equivalent to the adjacency matrix of one of the charged signed graphs

given in Fig. 1.7.

For an algebraic integer α with minimal polynomial Pα, define the Mahler measure of α to be

M(α) := M(Pα). We say α is reciprocal if Pα is; equivalently, α is conjugate to α−1. Breusch

[2] proved that if α is nonreciprocal then

M(α) ≥M(z3 − z2 − 1
4

) = 1.17965 . . . > λ0
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with Smyth showing further in [20]

M(α) ≥M(z3 − z − 1) = θ0 = 1.3247 . . .

Let P be the set of nonreciprocal monic polynomials with integer coefficients. If P ∈ P then it

has a root α such that α−1 is not a root of P ; α is therefore a nonreciprocal algebraic integer

with Pα dividing P . As the Mahler measure is multiplicative and at least 1 for each factor of

P , we have

M(P ) ≥M(Pα) = M(α) ≥ θ0

That is, Lehmer’s conjecture holds for P ∈ P as for any such P , M(P ) ≥ θ0 > λ0; we note

that no greater lower bound than θ0 is possible for such P since z3− z− 1 ∈ P and has Mahler

measure θ0.

Thus Theorem 1.6.2 would resolve the general version of Lehmer’s problem if for any reciprocal

monic P with integer coefficients there exists an integer symmetric matrix A such that

M(P ) = M(A). (1.2)

Clearly (1.2) would hold if it could be shown that for every monic reciprocal P ∈ Z[z] there

existed an integer symmetric matrix A with

P = RA(z). (1.3)

However, there are simple counterexamples to (1.3). For instance, suppose x2 − 3 were the

characteristic polynomial of a matrix

A =

 a b

b c

 .

Then A has eigenvalues

λ± =
(a+ c)±

√
(a− c)2 + 4b2

2
= ±
√

3

but there are no a, b, c ∈ Z satisfying these equations2. Thus by taking the associated reciprocal

polynomial z4 − z2 + 1 of x2 − 3 there exists a monic reciprocal polynomial P ∈ Z[z] for which

there can be no integer symmetric matrix A satisfying (1.3).

(We note in passing that if minimal polynomials rather than characteristic polynomials of integer

symmetric matrices are considered, then more can be achieved. In [6] Estes and Guralnick

2Note that the requirement that A be symmetric is a crucial obstruction since for any monic P ∈ Z the
companion matrix C(P ) satisfies χC(P ) = P .
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demonstrated that if f ∈ Z[x] is a monic, separable, degree n ≤ 4 polynomial with all real

roots, then f is the minimal polynomial of a (2n) × (2n) integer symmetric matrix.3 They

thus conjectured that for such f of any degree there is an integer symmetric matrix with f as

minimal polynomial. In [5] Dobrowolski proves that this is not so, even with the relaxation of

the dimension condition: there are infinitely many algebraic integers whose minimal polynomial

is not the minimal polynomial of an integer symmetric matrix.)

In [15] it is shown that if an integer symmetric matrix A is noncyclotomic with M(A) < 1.3,

then M(A) is one of sixteen given values. By comparison with the tables of small Salem numbers

([1], [17]), noncyclotomic counterexamples to not just (1.3) but (1.2) are found: the polynomial

z14 − z12 + z7 − z2 + 1 has M(P ) = 1.20261 . . ., but this is not one of the possible M(A) < 1.3

for A an integer symmetric matrix.

1.7 Motivation and Results

Lehmer’s problem therefore remains open for reciprocal polynomials due to these ‘missing’

Mahler measures. An obvious approach is to extend the study of integer symmetric matrices

/ charged signed graphs to broader classes of combinatorial objects, in the hope of recovering

generalisations of Theorem 1.6.2 and thus further evidence for Lehmer’s conjecture.

In this thesis we consider cyclotomicity in the context of imaginary quadratic fields K = Q(
√
d)

for squarefree d < 0. The objects of interest are Hermitian matrices A with entries from the

ring of integers R = OK ; we consider d negative rather than positive to ensure RA(z) ∈ Z[z]4.

In Chapter 2 we find that there are finitely many d < 0 yielding cyclotomic matrices inequivalent

to any Z-matrix and that there are finite sets L such that all examples are L-matrices. We

introduce a corresponding graph-like structure, charged L-graphs, which serve as the main tool

in proofs. We define 4-cyclotomic L-matrices and graphs, demonstrate that they are maximal,

and identify new infinite families with this property.

In Chapter 3 we exploit interlacing to provide algorithms to ‘grow’ cyclotomic and 4-cyclotomic

L-matrices. For each d < 0, this leads to a classification of all connected 4-cyclotomic L-graphs

up to ‘form’ (that is, specifying the underlying weighted graph).

In Chapter 4 we refine this to a classification up to equivalence: for each d < 0 any connected 4-

cyclotomic graph is shown to be equivalent to a member of one of the infinite families identified

in Chapter 2 or one of finitely many given sporadic examples.

In Chapter 5 we show for all d < 0 6∈ {−1,−3} that a maximal connected cyclotomic L-graph

is 4-cyclotomic and thus the earlier classification determines all cyclotomic L-matrices. This
3In Chapter 7 we provide a simple construction of {0, 1,−1}-matrices with minimal polynomial x2 − n.
4χA(x) ∈ R[x] for any ring R, and χA(x) ∈ R[x] if A is Hermitian; for d < 0 R ∩R = Z, but for d > 0 this is

not the case.
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also gives an alternative proof of Theorems 1.4.1, 1.4.2 to that of [14].

In Chapter 6 we find for all d < 0 6∈ {−1,−3} a classification of the minimal noncyclotomic

matrices, proving Lehmer’s Conjecture for such d.

In Chapter 7 we classify for all d < 0 the maximal connected cyclotomic L-graphs with eigen-

values ±
√

3 - in each case, a finite set - and deduce a construction of L-matrices with minimal

polynomial x2 − n for each n ∈ Z.
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Chapter 2

Cyclotomic Matrices and Graphs

over Imaginary Quadratic Fields

2.1 Overview

In this Chapter we generalise the study of cyclotomic matrices from symmetric Z-matrices to

Hermitian R-matrices, where R = OQ(
√
d) for some d < 0, determining the values of d for

which new cyclotomic examples can arise. We identify finite sets L such that any cyclotomic

R-matrix is an L-matrix and define a corresponding graph-like structure. The weighted degree

of each vertex is shown to be bounded for cyclotomic graphs. We then introduce the notion

of 4-cyclotomic graphs, prove that any such graph is maximal cyclotomic, and use this to

demonstrate the existence of new infinite families of maximal connected cyclotomic L-graphs.

2.2 Entries of Cyclotomic Matrices over Imaginary Quadratic

Fields

We assume throughout that d < 0 and squarefree. Then (e.g., by [8] II(1.31)-(1.33)) we have

that

R := OQ(
√
d) =

 Z[ 1+
√
d

2 ] d ≡ 1 mod (4)

Z[
√
d] d ≡ 2, 3 mod (4)

Remark 2.2.1. If x = a+ b
√
d ∈ R then xx = a2 − db2 = Norm(x) ∈ N ∪ {0}.

We note the following obvious sufficient condition for a matrix to be non-cyclotomic:
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Lemma 2.2.2. Let A be an n×n Hermitian matrix. If either χA(2) < 0 or (−1)nχA(−2) < 0,

then A is not cyclotomic.

We now consider the possible entries from R of a cyclotomic matrix.

Lemma 2.2.3. Let M be an n×n Hermitian matrix with all entries from R. If M is cyclotomic,

then for all 1 ≤ i ≤ n,

Mi,i ∈ {0,±1,±2}

and if n ≥ 2 and M is indecomposable, then Mi,i ∈ {0,±1}.

Proof. Mi,i = di is an entry on the diagonal of M and thus real. By interlacing, the 1×1 matrix

(di) is cyclotomic, so |di| ≤ 2. If M is an indecomposable cyclotomic matrix with Mi,i = 2 for

some i, then it is either the matrix (2) or it induces a cyclotomic submatrix

M ′ :=

 2 x

x dj


for some x, dj . By indecomposability, there is such a matrix with x 6= 0. But then χM ′(2) =

−xx < 0 by Remark 2.2.1, which contradicts Lemma 2.2.2; the proof for Mi,i = −2 is equivalent.

Lemma 2.2.4. Let M be an n×n Hermitian matrix with all entries from R. If M is cyclotomic,

then for all i, j,

|Mi,jMi,j | ≤ 4.

Proof. By Lemma 2.2.3, the result holds for i = j and thus for n = 1. For i 6= j and n ≥ 2 we

consider the entry Mi,j = x. By interlacing, the 2× 2 matrix

M ′ :=

 cii x

x cjj


is cyclotomic, and by Lemma 2.2.3 cii, cjj ∈ {0,±1}. M ′ has eigenvalues

t± =
(cii + cjj)±

√
4xx+ (cii − cjj)2
2

and so for max(|t+|, |t−|) ≤ 2 we require |xx| ≤ 4.

Definition 2.2.5. For n ≥ 1, define

Ln = {x ∈ R |xx = n}.
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Remark 2.2.6. By Remark 2.2.1, for any x ∈ R either x = 0 or x ∈ Ln for some n ∈ N. We

set

L := {0} ∪ L1 ∪ L2 ∪ L3 ∪ L4

and describe a Hermitian matrix with all entries from this set as an L-matrix. Then by Lemma

2.2.4 if M is a cyclotomic Hermitian matrix with all entries from R, then M is a cyclotomic

L-matrix.

Theorem 2.2.7. Let M be a Hermitian cyclotomic L-matrix with entries from OQ(
√
d) for

some d < 0. If

d 6∈ {−1,−2,−3,−7,−11,−15}

then M is a rational integer symmetric cyclotomic matrix.

Proof. Let x be an entry of M . If d ≡ 1 mod 4 then x = a + b 1+
√
d

2 for some a, b ∈ Z; if x is

not a rational integer then b 6= 0 and

xx = (a+ b/2)2 + b2|d|/4 ≥ b2|d|/4

By Lemma 2.2.4 this is impossible for |d| > 16, which we have for any d ≡ 1 mod 4 6∈

{−3,−7,−11,−15}.

If instead d ≡ 2, 3 mod 4 then x is of the form a + b
√
d for some a, b ∈ Z. By Lemma 2.2.4

a2 + b2|d| ≤ 4; thus if d 6∈ {−1,−2} then b = 0 and x ∈ Z.

Since the Interlacing Theorem applies for Hermitian matrices, we inherit the notion of maximal

indecomposable cyclotomic L-matrices from the integer symmetric case, and as before need

only classify such matrices to determine all possible cyclotomic L-matrices.

Cyclotomic Matrices Over OQ(
√
−1)

For d = −1 we have

L1 = {±1,±i},L2 = {±1± i},L3 = ∅,L4 = {±2,±2i}

Cyclotomic Matrices Over OQ(
√
−2)

For d = −2 we have

L1 = {±1},L2 = {±
√
−2},L3 = {±1±

√
−2},L4 = {±2}

13



Cyclotomic Matrices Over OQ(
√
−3)

For d = −3 we have

L1 =
{
±1,±1

2
±
√
−3
2

}
,L2 = ∅,L3 =

{
±3

2
±
√
−3
2

,±
√
−3
}
,L4 =

{
±2,±1±

√
−3
}

Cyclotomic Matrices Over OQ(
√
−7)

For d = −7 we have

L1 = {±1} ,L2 =
{
±1

2
±
√
−7
2

}
,L3 = ∅,L4 =

{
±2,±3

2
±
√
−7
2

}

Cyclotomic Matrices Over OQ(
√
−11)

For d = −11 we have

L1 = {±1} ,L2 = ∅,L3 =
{
±1

2
±
√
−11
2

}
,L4 = {±2}

Cyclotomic Matrices Over OQ(
√
−15)

For d = −15 we have

L1 = {±1} ,L2 = ∅,L3 = ∅,L4 =
{
±2,±1

2
±
√
−15
2

}

Cyclotomic Matrices Over OQ(
√
d), all other d < 0

By Theorem 2.2.7, we have only rational integer entries, and by Lemma 2.2.4 any such non-zero

entry must be in one of

L1 = {±1} ,L2 = ∅,L3 = ∅,L4 = {±2}

2.3 Cyclotomic Graphs Over Imaginary Quadratic Fields

In Section 1.3 symmetric {−1, 0, 1} matrices are identified with charged, signed graphs: an n×n

matrix corresponds to an n-vertex graph, with a non-zero (i, j)th entry denoting an edge with

a ‘sign’ of −1 or 1 between vertices i and j; and a non-zero (i, i)th entry indicating a ‘charge’

on the ith vertex.

We may generalise this for Hermitian L-matrices to charged L-graphs: for n ≥ 2 we can (by

Lemma 2.2.3) interpret diagonal entries as charges in the usual way; for i < j a non-zero (i, j)th
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entry x ∈ L corresponds to an edge with label x between vertices i and j.

Definition 2.3.1. For an edge with label x we define its weight to be the norm of x (so a

weight n edge is one with a label from Ln).

We will often specify graphs up to the weight of their edges, indicated as follows:

Edge label from L1:

Edge label from L2:

Edge label from L3:

Edge label from L :

For convenience, we further distinguish known edges of norm 1: in all fields, and

denote 1,−1 respectively; in OQ(i) and denote i,−i respectively; and

in OQ(
√
−3) we have , , and for ω,−ω, ω and −ω respectively.

An uncharged (‘neutral’) vertex is indicated by •; a vertex with charge +1 by ⊕ and a vertex

with charge −1 by 	. If the vertex is of unknown charge c ∈ {0, 1,−1} then we denote it by

~; a vertex known to be charged but of unknown polarity is denoted ±©.

We specify the form of a charged L- graph by indicating the possible charges of each vertex and

the possible label sets Li containing each edge label. The corresponding Hermitian L-matrix is

therefore determined up to the possible norms of its entries.

2.4 Equivalence and Switching

As in Section 1.3, let On(Z) denote the orthogonal group of n×n signed permutation matrices,

and for d 6= −1,−3 define two cyclotomic L-matrices m1,m2 to be strongly equivalent if m1 =

Xm2X
−1 for some X ∈ On(Z) . For d = −1,−3 we generalise this notion to Un(R) the

group of n× n unitary matrices generated by permutations and diagonal matrices of the form

diag(1, 1, . . . , λ, 1, . . . , 1) for λ ∈ L1 (describing a matrix generated by such a diagonal matrix

with λ 6= ±1 as a complex switching matrix ).

We describe two indecomposable cyclotomic matrices A,A′ as merely equivalent if A′ is strongly

equivalent to any of A,−A,A,−A. This equivalence relation then extends easily to decompos-

able cyclotomic matrices, and as before it is therefore sufficient to classify all maximal inde-

composable cyclotomic matrices up to equivalence.

The notions of strong equivalence and equivalence then apply to charged L-graphs by consid-

ering their corresponding L-matrices.
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Conjugation by a diagonal matrix diag(1, 1, . . . ,−1, 1, . . . , 1) corresponds to reversing the signs

of all edges incident at some vertex v; this was described as switching at v. For d = −1,−3 we

need also consider complex switching at v corresponding to conjugation by a diagonal matrix

diag(1, 1, . . . , λ, 1, . . . , 1) with λ 6= ±1. Considered as edges eij from vi to vj , this has the effect

of multiplying the labels of all edges incident at vi by λ; due to the labelling convention this

will give new edge labels λeji for any j < i and λeij for any j > i.

Conjugation by a permutation matrix permutes vertex numberings; up to form, we may thus

ignore such numberings, but for d = −1,−3 equivalent matrices may have graphs with visually

distinct edge labels and thus a numbering should be fixed before determining classes. Equiva-

lence of graphs is generated by the operations of: permutation; (complex) switching; negating

all edge labels and vertex charges in a component; and taking the complex conjugate of all edge

labels in a component.

Remark 2.4.1. There is thus a single class of maximal indecomposable cyclotomic matrices

with a diagonal entry not in {0, 1,−1}, with representative

(2).

2.5 Weighted Degree

Definition 2.5.1. For a vertex v we define its weighted degree as the sum of the weights of the

edges incident at v, plus 1 if v has a charge of ±1.

Theorem 2.5.2. If v is a vertex in a cyclotomic graph over R = OQ(
√
d) for some d < 0, then

v has weighted degree at most 4.

We first prove the following special case:

Lemma 2.5.3. For R = OQ(
√
d), d < 0 The only connected cyclotomic matrices containing an

entry of weight 4 are of the form S2:

t

for some t ∈ L4.

Proof. For each ring (and its corresponding label set L) we consider all matrices of the form


x t a

t y b

a b z


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for charges x, y, z ∈ {0,−1, 1} and edge labels t ∈ L4, a, b ∈ L.

Testing, we find that such matrices are cyclotomic if and only if x = y = a = b = 0; that is, a

cyclotomic matrix of the form  x t

t y


has x = y = 0 and admits no indecomposable cyclotomic supermatrix; thus it is maximal.

Since any indecomposable maximal cyclotomic matrix M with a weight 4 entry induces such a

submatrix, M must be a 2× 2 matrix of this form.

Remark 2.5.4. For all rings R = OQ(
√
d), we have a class of maximal cyclotomic matrices

with representative  0 2

2 0


and corresponding L-graph as given in Fig. 2.1. For d = −1,−2,−3,−11 this is the only class

of maximal cyclotomic matrices with a weight 4 entry.

2

Figure 2.1: The 2-vertex sporadic maximal connected cyclotomic L-graph S2.

Remark 2.5.5. For d = −7 we have an additional class with representative 0 3
2 +

√
−7
2

3
2 −

√
−7
2 0


and corresponding L-graph as given in Fig. 2.2.

Remark 2.5.6. For d = −15, we have an additional class with representative 0 1
2 +

√
−15
2

1
2 −

√
−15
2 0


and corresponding L-graph as given in Fig. 2.2.

As L1 ∪L2 ∪L3 = {1,−1} for d = −15 this is the only class of maximal cyclotomic L-matrices

with a non-rational integer entry.

Remark 2.5.7. We are thus able to exclude edge labels of weight 4 (and hence d = −15)

from now on - that is, we will consider L = L1 ∪ L2 ∪ L3 ∪ {0} - significantly reducing the

combinatorial complexity of proofs.
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t

Figure 2.2: The 2-vertex sporadic maximal connected cyclotomic L-graph S∗2 .
(Where t = 3

2 +
√
−7
2 , 1

2 +
√
−15
2 for d = −7,−15 respectively.)

Subject to this restriction, we may resume the proof of Theorem 2.5.2.

Let v be a vertex with weighted degree greater than four and let A be an edge incident at v

with the greatest weight amongst such edges. Depending on the weight of A, a subgraph of the

following form is necessarily induced on v and some of its neighbours:

∗
v

∗

∗

A
∗

v

∗

∗

A
∗

v

∗

∗ ∗

A

∗
v

∗

∗ ∗

A ∗
v

∗

∗ ∗

A ∗
v

∗

∗
∗

∗

A

∗
v

∗

∗
∗
∗

∗
A

We will demonstrate that no matrix corresponding to such a graph is cyclotomic.

Remark 2.5.8. Fixing a numbering, let M be the set of matrices corresponding to a graph

specified up to form. Then there are sets Li,j ⊆ L such that for each M ∈M, Mi,j ∈ Li,j. For

n × n Hermitian matrices of a given form, determining which are cyclotomic näıvely requires
n∏
i=1

n∏
j=i

|Li,j | matrices to be tested; this rapidly becomes unfeasible.

However, by interlacing we may eliminate unsuitable entries Mi,j column by column: if M is

an n× n cyclotomic matrix, then so is the (n− 1)× (n− 1) matrix with entries


M1,1 · · · M1,n−1

...
. . .

...

Mn−1,1 · · · Mn−1,n−1


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Thus if for a list of candidate entries mi,j the matrix


m1,1 · · · m1,n−1

...
. . .

...

mn−1,1 · · · mn−1,n−1


is not cyclotomic, then we may discard any superlist


m1,1 · · · m1,n−1 M1,n

...
. . .

...
...

mn−1,1 · · · mn−1,n−1 Mn−1,n

Mn,1 · · · Mn,n−1 Mn,n


since, regardless of the choice of each Mi,j ∈ Li,j, the n×n matrix obtained cannot be cyclotomic.

In this way, we may first restrict testing to a submatrix of practical size (typically 4× 4), then

iteratively determine suitable entries for successive columns.

Lemma 2.5.9. (A weight 3) There are no cyclotomic graphs of form

∗ ∗

∗

∗ ∗

∗

∗ ∗

∗ ∗

Proof. Fixing a numbering, we consider for the first two graphs the general matrix representa-

tive: 
x A α

A y a

α a z


for charges x, y, z ∈ {0,−1, 1} and edge labels A ∈ L3, α ∈ L2 ∪ L3, a ∈ L. Testing, we find

that no such matrix is cyclotomic.

For the final graph we again fix a numbering and consider general matrix representative:
x A α1 α2

A y a1 a2

α1 a1 z a3

a2 a2 a3 w


for charges x, y, z, w ∈ {0,−1, 1} and edge labels A ∈ L3, αi ∈ L1, ai ∈ L. By (complex)

switching, if such a matrix is cyclotomic then there is such a matrix with α1 = α2 = 1; testing

confirms there are none.
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Lemma 2.5.10. (A weight 2) There are no cyclotomic graphs of form

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗
∗

∗

Proof. Fixing a numbering, we consider for the first two graphs the general matrix representa-

tive: 
x A α B

A y a1 a2

α a1 z a3

B a2 a3 w


for charges x, y, z, w ∈ {0,−1, 1} and edge labels A,B ∈ L2, α ∈ L1 ∪ L2, ai ∈ L. Testing, we

find that no such matrix is cyclotomic.

For the final graph we again fix a numbering and consider general matrix representative:

x A α1 α2 α3

A y a1 a2 a3

α1 a1 z a4 a5

α2 a2 a4 w a6

α3 a3 a5 a6 v


for charges x, y, z, w, v ∈ {0,−1, 1} and edge labels A ∈ L2, αi ∈ L1, ai ∈ L. By (complex)

switching, if such a matrix is cyclotomic then there is such a matrix with α1 = α2 = α3 = 1.

By Lemma 2.5.9 we can discard choices of the ai that yield a vertex with both an edge label

of weight 3 and a total weighted degree of greater than four. We then proceed as described in

Remark 2.5.8, starting with the induced 4× 4 matrices, and find that none of the possible 5×5

matrices of this form are cyclotomic.

Lemma 2.5.11. (A weight 1) There are no cyclotomic graphs of the form

∗
∗

∗
∗
∗

∗
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Proof. Fixing a numbering, such a graph admits a matrix representation

x α1 α2 α3 α4 α5

α1 y a1 a2 a3 a4

α2 a1 z a5 a6 a7

α3 a2 a5 w a8 a9

α4 a3 a6 a8 v a10

α5 a4 a7 a9 a10 u


for charges x, y, z, w, v, u ∈ {0,−1, 1} and edge labels αi ∈ L1, ai ∈ L. By (complex) switching,

if such a matrix is cyclotomic then there is such a matrix with αi = 1 for each i. By Lemma

2.5.9 we can discard choices of the ai that yield a vertex with both an edge label of weight 3

and a total weighted degree of greater than four; and similarly by Lemma 2.5.10 ai yielding

vertices with both an edge label of weight 2 and a total weighted degree greater than four.

Working subject to these restrictions, we proceed as in Remark 2.5.8, starting with the induced

4×4 matrices, and find that no choice of weights and edge labels ultimately yields a cyclotomic

6× 6 matrix of this form.

Remark 2.5.12. Lemmata 2.5.3, 2.5.9, 2.5.10, 2.5.11 prove Theorem 2.5.2.

2.6 Existence of Infinite Families

In the rest of this chapter, we present proofs of the existence of infinite families of maximal

cyclotomic graphs.

Definition 2.6.1. If a connected cyclotomic L-graph G has all vertices of weighted degree 4,

then we describe G (or its corresponding indecomposable L-matrix) as 4-cyclotomic.

Remark 2.6.2. By Geršgorin’s Circle Theorem1, if G is any L-graph with all vertices of

weighted degree 4, then every eigenvalue of G is in [−4, 4] at worst.

Proposition 2.6.3. If G is a 4-cyclotomic L-graph over R = OQ(
√
d) for some d < 0 with all

vertices of weighted degree 4, then G is maximal.

Proof. Any connected supergraph of G would have a vertex of weighted degree greater than 4

and thus (by Theorem 2.5.2) be non-cyclotomic.

Lemma 2.6.4. If an indecomposable Hermitian L-matrix M satisfies M2 = 4I, then M is

4-cyclotomic and hence a maximal indecomposable cyclotomic matrix.
1See e.g., [10] Section 19.7 Theorem 1
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Proof. If M2 = 4I then

(M + λI)(M − λI) = (4− λ2)I

So if λ 6∈ {−2, 2}, M−λI is nonsingular; thus the only possible eigenvalues of M are ±2 ∈ [−2, 2]

Hence M is cyclotomic. Further, (M2)i,i = 4 for all i, but this is precisely the weighted degree

of vertex i in the L-graph G of M , so M is 4-cyclotomic.

Remark 2.6.5. By Theorems 1.4.1, 1.4.2 we have the converse for integer symmetric cyclo-

tomic matrices- each maximal indecomposable example M satisfies M2 = 4I, so (by Lemma

2.6.4) we have that over Z a cyclotomic matrix is maximal indecomposable if and only if it is

4-cyclotomic.

Remark 2.6.6. Motivated by this observation, we will classify all 4-cyclotomic L-graphs over

R = OQ(
√
d) for each d < 0 in the following two chapters.

Lemma 2.6.7. Let M be a cyclotomic L-matrix with corresponding L-graph G. For fixed

vertices i 6= j, label each common neighbour l with Mi,lMl,j. If vertex i is charged and a

neighbour of vertex j, label it with Mi,iMi,j; if vertex j is charged and a neighbour of vertex i,

label it with Mi,jMj,j. Then (M2)i,j is the sum of these vertex labels.

Proof. Let M be an n× n matrix. Then the entry (M2)i,j is given by

(M2)i,j =
n∑
l=1

Mi,lMl,j (2.1)

For each l 6∈ {i, j}, if vertex i is not a neighbour of vertex l then Mi,l = 0, and if vertex l is not

a neighbour of vertex j then Ml,j = 0. Thus the summand Mi,lMl,j is zero whenever vertex l

is not a common neighbour of vertices i and j.

For l = i (or l = j) the summand Mi,iMi,j (Mi,jMj,j) is zero unless vertices i and j are adjacent

so that Mi,j 6= 0, and vertex i (j) is charged so that Mi,i 6= 0 (Mj,j 6= 0).

By construction, the list of vertex labels is therefore the non-zero summands in (2.1), so their

sum is (M2)i,j .

Corollary 2.6.8. Let M be a cyclotomic L-matrix. If vertices i 6= j in the corresponding

L-graph have no common neighbours and are uncharged, then (M2)i,j = (M2)j,i = 0.

Corollary 2.6.9. Let M be a cyclotomic L-matrix. If vertices i 6= j in the corresponding

L-graph have no common neighbours and are non-adjacent, then (M2)i,j = (M2)j,i = 0.
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2.6.1 Graphs of the Form T2k.

Definition 2.6.10. For k ≥ 3, define the 2k-vertex graphs of form T2k by:

1

A
2 3

k + 1

B
k + 2 k + 3

· · ·

k − 1 k 1

A

2k − 1 2k k + 1

B

Theorem 2.6.11. Let a be an algebraic integer satisfying aa = 1. Then for k ≥ 3 the 2k-vertex

graph G of form T2k with edge labels

1

A
2 3

a

k + 1

B
k + 2 k + 3

−a

a −a · · ·

k − 1 k 1

A

2k − 1 2k k + 1

B

is cyclotomic.

Proof. For k = 3, 4 the result can easily be verified directly using Lemma 2.6.4 with matrices:

0 a 1 0 a −1

a 0 1 −a 0 1

1 1 0 1 −1 0

0 −a 1 0 −a −1

a 0 −1 −a 0 −1

−1 1 0 −1 −1 0




0 a 0 1 0 a 0 −1

a 0 1 0 −a 0 1 0

0 1 0 1 0 −1 0 1

1 0 1 0 1 0 −1 0

0 −a 0 1 0 −a 0 −1

a 0 −1 0 −a 0 −1 0

0 1 0 −1 0 −1 0 −1

−1 0 1 0 −1 0 −1 0


By Lemma 2.6.4 it suffices to show that (M2)i,j = 4δij for all 1 ≤ i, j ≤ 2k.

If i = j, then by inspection vertex i has weighted degree 4 as required.
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So we seek to show that (M2)i,j = 0 for all i 6= j. By Corollary 2.6.8 this holds immediately

for vertex pairs i, j with no common neighbours and if true for (M2)i,j is also true for (M2)j,i.

Thus we need only consider 1 ≤ i < j ≤ 2k such that vertices i, j have common neighbours.

For k ≥ 5, the only possible induced subgraphs on i, j and their common neighbours are the

following, shown with the neighbours labelled as in Lemma 2.6.7:

i

1

j

−1

i

a

j

−a

i

a

j

−a

aa i −1

−a(−a) j −1

1 i −1

1 j −1

1 i a(−a)

1 j a(−a)

−1 i

j 1

−a i

j a

−a i

j a

i 1

−1 j

i a

−a j

i a

−a j

i

−1

1 j i

−a

a j i

−a

a j

In all cases, the sum of the labels is zero, confirming that (M2)i,j = 0 for all i 6= j. So

(M2)i,j = 4δij ∀1 ≤ i ≤ j ≤ 2k as required.

Corollary 2.6.12. By setting a = 1 we recover (for k ≥ 3) the infinite family of maximal
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cyclotomic graphs T2k as given in Fig. 1.3:

1

A
2 3

k + 1

B
k + 2 k + 3

· · ·

k − 1 k 1

A

2k − 1 2k k + 1

B

Corollary 2.6.13. By setting a = i we recover (for k ≥ 3) an infinite family of maximal

cyclotomic graphs T ′2k with entries from OQ(i) :

1

A
2 3

k + 1

B
k + 2 k + 3

· · ·

k − 1 k 1

A

2k − 1 2k k + 1

B

Corollary 2.6.14. By setting a = ω = 1
2 +

√
−3
2 we recover (for k ≥ 3) an infinite family of

maximal cyclotomic graphs T ′2k with entries from OQ(
√
−3):

1

A
2 3

k + 1

B
k + 2 k + 3

· · ·

k − 1 k 1

A

2k − 1 2k k + 1

B

Remark 2.6.15. The conditions in Theorem 2.6.11 are sufficiently general that we may obtain

cyclotomic graphs in many more rings of integers. For example, if ζ = eiθ is a primitive nth

root of unity then it is an algebraic integer satisfying ζζ = 1 and thus gives a cyclotomic graph

over OQ(ζ).

Theorem 2.6.16. The graphs T ′2k given in Corollaries 2.6.13 and 2.6.14 are inequivalent to

the graph T2k; that is, the rings OQ(i), OQ(
√
−3) admit more than one class of cyclotomic graphs

of form T2k.

Proof. We will demonstrate that T ′2k is not equivalent to any graph with all edge labels rational

integers.

Lemma 2.6.17. The product of edge labels in a cycle is preserved by complex switching.

Proof. Let S be an arbitrary complex switching matrix; in fact, all that is necessary is that S

be diagonal, which such a matrix is. Let vertices v1, . . . , vn be a cycle s.t. each edge label ei,j

25



joins vi to vj for j = i + 1 mod n. Let e′i,j be the edge label obtained after switching by S;

then e′i,j = Siiei,j(Sjj)−1 and so

n∏
i=1

e′i,j =
n∏
i=1

Sii

n∏
j=1

(Sjj)−1
n∏
i=1

eij =
n∏
i=1

eij

since j = i+ 1 mod n.

Let T ′2k, with matrix representative M ′, be as given in Corollary 2.6.13 or 2.6.14, so a = i

or a = ω respectively. Consider the subgraph induced on vertices 1, . . . , k: this is a k-cycle

with a single edge label a joining vertices 1, 2; each other edge has label 1 and joins vertices

l, l+ 1 mod k for 2 ≤ l ≤ k. Thus the product of the edge labels is a 6∈ Z, and by Lemma 2.6.17

this is invariant under switching.

Now let G be any graph equivalent to T ′2k, and MG any matrix representative of G. Then there

exists a permutation matrix P and a complex switching matrix S such that

MG = ±PSM ′S−1P−1 = ±PMP−1

for some M . By the above M must have at least one entry not from {−1, 1}, corresponding

to an edge label between some pair of vertices 1 ≤ i, j,≤ k- if not, then all such labels are

rational integers and cannot have product a. But then, since permutation does not alter the

set of entries of a matrix, MG has at least one non-rational integer entry also. Thus G has at

least one non-rational integer edge label and therefore cannot be T2k.

Thus for d = −1,−3 we have a new infinite family of 4-cyclotomic graphs as in Fig. 2.3.

1

A
2 3a

k + 1

B
k + 2 k + 3

−a

a −a · · ·

k − 1 k 1

A

2k − 1 2k k + 1

B

Figure 2.3: The family T ′2k of 2k-vertex maximal connected cyclotomic L-graphs.
(Where k ≥ 3, a = i or ω for d = −1,−3 respectively, and the two copies of vertices A and B
should be identified)
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2.6.2 Graphs of the Form T 4
2k

Definition 2.6.18. For k = L+ 1 ≥ 3 define the 2k-vertex form T 4
2k by

1 2 3

L+ 1 L+ 2 L+ 3

· · ·

L− 1 L

2L− 1 2L

2L+ 1 2L+ 2

Theorem 2.6.19. Let A,B be algebraic integers satisfying AA = 2 = BB. Then for k =

L+ 1 ≥ 3 the 2k-vertex graph G of form T 4
2k with charges and edge labels

1 2 3

L+ 1 L+ 2 L+ 3

· · ·

L− 1 L

2L− 1 2L

2L+ 1 2L+ 2

B

−B

A

A

is cyclotomic.

Proof. For k = 3, 4 the result can easily be verified using Lemma 2.6.4 and the matrices

0 1 0 1 A 0

1 0 −1 0 0 B

0 −1 0 −1 A 0

1 0 −1 0 0 −B

A 0 A 0 0 0

0 B 0 −B 0 0




0 1 0 0 1 0 A 0

1 0 1 −1 0 1 0 0

0 1 0 0 −1 0 0 B

0 −1 0 0 −1 0 A 0

1 0 −1 −1 0 −1 0 0

0 1 0 0 −1 0 0 −B

A 0 0 A 0 0 0 0

0 0 B 0 0 −B 0 0


By Lemma 2.6.4 it suffices to show for the remaining cases k ≥ 5 that (M2)i,j = 4δij for all

1 ≤ i, j ≤ 2k.
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If i = j, then by inspection vertex i has weighted degree 4 as required.

So we seek to show that (M2)i,j = 0 for all i 6= j. By Corollary 2.6.8 this holds immediately

for vertex pairs i, j with no common neighbours, and if true for (M2)i,j also holds for (M2)j,i.

Thus we need only consider 1 ≤ i < j ≤ 2k such that vertices i, j have common neighbours.

For k ≥ 5, the only possible induced subgraphs on i, j and their common neighbours are the

following, shown with the neighbours labelled as in Lemma 2.6.7:

i 1

−1 j

i

1

j

−1

−1 i

j 1 i

−1

1 j

A i

j

−A

i −1

AA

j −1

A

i

j

−A

i B

j

−B

1 i

−BB

j1

−B

j

Bi

1 i −1

1 j −1

In all cases, the sum of the labels is zero, confirming that (M2)i,j = 0 for all i 6= j. So

(M2)i,j = 4δij ∀1 ≤ i ≤ j ≤ 2k as required.

Corollary 2.6.20. By setting A = B = 1
2 +

√
−7
2 , A = B =

√
−2 or A = B = 1+ i in Theorem

2.6.19 we recover infinite families of maximal cyclotomic graphs T 4
2k (for k ≥ 3) with entries

from OQ(
√
−7), OQ(

√
−2) and OQ(i) respectively; clearly, these are not equivalent to any rational

integer cyclotomic graph.

Corollary 2.6.21. For d = −7, set A = ω = 1
2 +

√
−7
2 and B = ω in Theorem 2.6.19 to recover

an infinite family of maximal cyclotomic graphs T 4
2k
′ for k ≥ 3.
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Theorem 2.6.22. For d = −7, the graphs T 4
2k
′ given in Corollary 2.6.21 are inequivalent to

the graphs T 4
2k given in Corollary 2.6.20.

Proof. Let M ,M ′ be the matrix representatives of T 4
2k, T

4
2k
′ respectively. If M is strongly

equivalent to M ′ then there exists a permutation matrix P and a switching matrix S such that

M = PSM ′S−1P−1

where S = S−1 = diag(s1, . . . , s2k) for si ∈ L1 = {±1}; and there exists σ ∈ S2k such that for

matrices X,Y , if X = PY P−1 then Xi,j = Yσ(i),σ(j).

Thus in general Mi,j = sσ(i)sσ(j)M
′
σ(i),σ(j) = ±M ′σ(i),σ(j). Since ω = M1,2L+1 = ML+1,2L+1 =

ML,2L+2 = −M2L,2L+2, considering the entries ±ω in M ′ we therefore require that the sets

{M ′σ(1),σ(2L+1),M
′
σ(L+1),σ(2L+1),M

′
σ(L),σ(2L+2),M

′
σ(2L),σ(2L+2)}

{M ′1,2L+1,M
′
L+1,2L+1,M

′
2L+2,L,M

′
2L+2,2L}

be equal, which is impossible since it implies

{σ(2L+ 1), σ(2L+ 2)} = {2L+ 1, L, 2L}

For −M strongly equivalent to M ′ we obtain the same condition, whilst for ±M strongly

equivalent to M ′ we would require equality of the sets

{M ′σ(1),σ(2L+1),M
′
σ(L+1),σ(2L+1),M

′
σ(L),σ(2L+2),M

′
σ(2L),σ(2L+2)}

{M ′L,2L+2,M
′
2L,2L+2,M

′
2L+1,1,M

′
2L+1,L+1}

which is also impossible.

So M,M ′ are necessarily inequivalent.

Thus for d = −1,−2,−7 we have a new infinite family of 4-cyclotomic graphs as in Fig. 2.4

and for d = −7 we additionally have the distinct family given in Fig. 2.5.
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1 2 3

k k + 1 k + 2

· · ·

k − 2 k − 1

2k − 2 2k − 1

2k − 1 2k

ω

−ω

ω

ω

Figure 2.4: The family T 4
2k of 2k-vertex maximal connected cyclotomic L-graphs.

(Where k ≥ 3 and ω = 1 + i,
√
−2, 1

2 +
√
−7
2 for d = −1,−2,−7 respectively.)

1 2 3

k k + 1 k + 2

· · ·

k − 2 k − 1

2k − 2 2k − 1

2k − 1 2k

ω

−ω

ω

ω

Figure 2.5: The family T 4′

2k of 2k-vertex maximal connected cyclotomic L-graphs.
(Where k ≥ 3 and ω = 1

2 +
√
−7
2 .)

Remark 2.6.23. The conditions in Theorem 2.6.19 are sufficiently general that we may obtain

cyclotomic graphs in other rings of integers. For example, by setting A = B =
√

2 we are

able to exhibit an infinite family of real symmetric matrices with all entries algebraic integers

from OQ(
√

2) and all eigenvalues ±2; whilst by taking A,B from different quadratic fields we

can construct cyclotomic matrices from rings of integers of fields of necessarily higher degree,

such as taking A = 1
2 +

√
−7
2 , B = 1 + i to obtain a cyclotomic matrix from OQ(

√
−7,i) .

2.6.3 Graphs of the Form C2±
2k

Definition 2.6.24. For k ≥ 1 define the 2k + 1-vertex form C2±2k by

±
1 2 3

±
k + 1 k + 2 k + 3

· · ·

k − 1 k

2k − 1 2k

2k + 1

Theorem 2.6.25. Let A be an algebraic integer satisfying AA = 2. Then for k ≥ 2 the
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2k + 1-vertex graph G of form C2±2k with charges and edge labels

+
1 2 3

+
k + 1 k + 2 k + 3

· · ·

k − 1 k

2k − 1 2k

2k + 1

A

−A

is cyclotomic.

Proof. For k = 2 the result can easily be verified using Lemma 2.6.4 and the matrix



1 1 1 1 0

1 0 −1 0 A

1 −1 1 −1 0

1 0 −1 0 −A

0 A 0 −A 0


By Lemma 2.6.4 it suffices to show for the remaining cases k ≥ 3 that (M2)i,j = 4δij for all

1 ≤ i, j ≤ 2k.

If i = j, then by inspection vertex i has weighted degree 4 as required.

So we seek to show that (M2)i,j = 0 for all i 6= j. By Corollary 2.6.8 this holds immediately

for vertex pairs i, j with no common neighbours, and if true for (M2)i,j also holds for (M2)j,i.

Thus we need only consider 1 ≤ i < j ≤ 2k such that vertices i, j have common neighbours.

For k ≥ 2, the only possible induced subgraphs on i, j and their common neighbours are the

following, shown with the neighbours labelled as in Lemma 2.6.7:

i 1

−1 j

i

1

j

−1

−1 i

j 1 i

−1

1 j

i A

j

A

1 i

−AA

j1

−A

j

Ai
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1 i −1

1 j −1

+
1 i −1

+
1 j −1

+
1

i

−1

+
1

j

−1

+
1

i

j

+
−1

+
1

i

j

+
−1

+
1 i

+
−1

j

+
1

j

+
−1

i

+
i 1

−1 j

+i

1

j

−1

+
i

−1

1 j

In all cases, the sum of the labels is zero, confirming that (M2)i,j = 0 for all i 6= j. So

(M2)i,j = 4δij ∀1 ≤ i ≤ j ≤ 2k as required.

Corollary 2.6.26. By setting A = 1
2 +

√
−7
2 , A =

√
−2 or A = 1 + i in Theorem 2.6.25

we recover infinite families of maximal cyclotomic graphs C2+
2k (see Fig. 2.6) with entries from

OQ(
√
−7), OQ(

√
−2) and OQ(i) respectively; clearly, these are not equivalent to any rational integer

cyclotomic graph.

+
1 2 3

+
k + 1 k + 2 k + 3

· · ·

k − 1 k

2k − 1 2k

2k + 1

A

−A

Figure 2.6: The family C2+
2k of 2k + 1-vertex maximal connected cyclotomic L-graphs.

(Where k ≥ 1 and A = 1 + i,
√
−2, 1

2 +
√
−7
2 for d = −1,−2,−7 respectively.)

Remark 2.6.27. Theorem 2.6.25 is also sufficiently general to provide results in other rings

of integers: for example, by setting A =
√

2 we are able to exhibit an infinite family of real,

symmetric matrices with all entries algebraic integers from OQ(
√

2) and all eigenvalues ±2.

2.6.4 Graphs of the Form C+±
2k .

Definition 2.6.28. For k ≥ 2 define the 2k-vertex form C+±2k by
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+
1 2 3

+
k + 1 k + 2 k + 3

· · ·

k − 1

±
k

2k − 1

±
2k

Theorem 2.6.29. For k ≥ 2 the 2k-vertex graphs C++
2k , C+−

2k of form C+±2k with charges and

edge labels as in Fig. 1.5

+
1 2 3

+
k + 1 k + 2 k + 3

· · ·

k − 1

+
k

2k − 1

+
2k

+
1 2 3

+
k + 1 k + 2 k + 3

· · ·

k − 1

−
k

2k − 1

−
2k

are (for R = OQ(
√
d), d < 0) maximal cyclotomic.

Proof. For k = 2, 3 the result can easily be verified using Lemma 2.6.4 and the matrices


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




1 1 1 1

1 −1 −1 −1

1 −1 1 −1

1 −1 −1 −1




1 1 0 1 1 0

1 0 1 −1 0 1

0 1 1 0 −1 −1

1 −1 0 1 −1 0

1 0 −1 −1 0 −1

0 1 −1 0 −1 1





1 1 0 1 1 0

1 0 1 −1 0 1

0 1 −1 0 −1 1

1 −1 0 1 −1 0

1 0 −1 −1 0 −1

0 1 1 0 −1 −1


By Lemma 2.6.4 it suffices to show for the remaining cases k ≥ 4 that (M2)i,j = 4δij for all

1 ≤ i, j ≤ 2k.
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If i = j, then by inspection vertex i has weighted degree 4 as required.

So we seek to show that (M2)i,j = 0 for all i 6= j. By Corollary 2.6.8 this holds immediately

for vertex pairs i, j with no common neighbours, and if true for (M2)i,j also holds for (M2)j,i.

Thus we need only consider 1 ≤ i < j ≤ 2k such that vertices i, j have common neighbours.

For k ≥ 4, the only possible induced subgraphs on i, j and their common neighbours are the

following, shown with the neighbours labelled as in Lemma 2.6.7:

1 i −1

1 j −1

+
1 i −1

+
1 j −1

+
1

i

−1

+
1

j

−1

+
1

i

j

+
−1

+
1

i

j

+
−1

+
1 i

+
−1

j

+
1

j

+
−1

i

+
i 1

−1 j

+i

1

j

−1

+
i

−1

1 j

1 i

+
−1

1 j

+
−1

1

i +
−1

1

j +
−1

i

+
−1

+
1

j

i

+
1

j

+
−1

In all cases, the sum of the labels is zero, confirming that (M2)i,j = 0 for all i 6= j. So

(M2)i,j = 4δij ∀1 ≤ i ≤ j ≤ 2k as required.

34



Chapter 3

4-cyclotomic Graphs I-

Reduction to Infinite Families

3.1 Overview

In this Chapter, we will prove the following classification up to form:

Theorem 3.1.1. Let G be a connected 4-cyclotomic L-graph with entries from OQ(
√
−d) for

some d < 0. Then, with only finitely many exceptions, G is of the form T2k, C+±2k , T 4
2k or C2±2k .

Further, we identify the form of the exceptions.

3.2 Growing Algorithms

Algorithms are presented here as pseudocode to illustrate the key ideas; for implementation

specifics and further optimisations, see Appendix A.

3.2.1 Cyclotomic Additions

Given a maximal cyclotomic graph G and an induced subgraph G′, we clearly may recover G

from G′ by reintroducing the ‘missing’ vertices one at a time, giving a sequence of cyclotomic

supergraphs of G′ contained in G.

Thus, given a seed n-vertex cyclotomic graph G′, we may recover all cyclotomic n + 1-vertex

graphs inducing G′ as a subgraph by considering all possible additions of a new vertex to G.

If an addition yields a connected cyclotomic graph we describe it as a cyclotomic addition,
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otherwise as a noncyclotomic addition; a graph that admits no cyclotomic addition is clearly

maximal.

Iterating this process allows us to generate sets of successively larger cyclotomic graphs with

G′ as an induced subgraph. Given a set Sk of k-vertex graphs with this property, applying this

growing procedure produces two sets: Mk, the set of elements of Sk which admit no cyclotomic

addition; and Sk+1, the set of (k + 1)-vertex cyclotomic supergraphs of the elements of Sk.

The entries (if any) of Mk are all the maximal k-vertex graphs inducing G′ as a subgraph; any

maximal cyclotomic graph with n > k vertices inducing G′ as a subgraph necessarily induces

some g ∈ Sk+1 as a subgraph. Thus if Sn = ∅ for some n, then the set of maximal cyclotomic

graphs inducing G′ as a subgraph is finite, namely

n⋃
k=|G′|

Mk.

Näıvely, this gives a procedure for determining all maximal cyclotomic graphs up to a given

vertex count: Take as seed set S2 the graphs of the form

∗ ∗t

for t ∈ L\{0}, and iteratively find maximal supergraphs by repeated rounds of testing for

cyclotomic additions. However, since (with possible vertex charges 0, 1,−1) each round requires

testing 3(|L|k − 1)|Sk| graphs for cyclotomicity, this rapidly becomes impractical - and the

existence of infinite families of cyclotomic graphs proves it can never terminate with a complete

classification. Nonetheless, with refinement such growing techniques allow us to characterise

various special cases and provide the foundations for the general proof.

We now formalise some of these ideas in terms of matrix representatives of cyclotomic graphs.

Definition 3.2.1. For k ∈ N and a label set L, define the näıve column set Ck(L) as the set

of all k-tuples c = (c1, . . . , ck) ∈ Lk such that at least one ci 6= 0 (i.e, c 6= 0).

Definition 3.2.2. For a k×k matrix representative m of a k-vertex cyclotomic L-graph, a label

set L and a charge set X, let the näıve cyclotomic addition set of m be the set of (k+1)×(k+1)

matrices

super(m,L, X) :=

mc,x =

 m c

c x

 ∣∣∣ c ∈ Ck(L) , x ∈ X , mc,x is cyclotomic

 .

Proposition 3.2.3. If G is a (k + 1)-vertex cyclotomic L-graph obtained from a k-vertex L-

graph G′ by a cyclotomic addition, and m′ is a matrix representative of G′, then there is a

matrix representative of G in super(m′,L, {0, 1,−1}).
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Definition 3.2.4. Let Sk be a set of k × k cyclotomic matrices mi. For a label set L and

charge set X we define a round of näıve growing as the direct determination of sets

Sk+1 =
⋃

mi∈Sk

super(mi,L, X)

and

Mk = {mi ∈ Sk | super(mi,L, X) = ∅}.

Proposition 3.2.5. Let G be an n-vertex cyclotomic L-graph inducing a k-vertex cyclotomic

subgraph G′ with matrix representative M ′. Let Sn be the set obtained after n − k rounds

of näıve growing of any set Sk containing M ′, with X = {0, 1,−1}. Then there is a matrix

representative of G in Sn.

Proposition 3.2.6. Let G′ be a k-vertex cyclotomic L-graph with matrix representative M ′.

If G is a maximal n-vertex cyclotomic graph inducing G′ as a subgraph, then there is a matrix

representative of G in the set Mn found by n − k + 1 rounds of näıve growing of seed set

Sk = {M ′} with X = {0, 1,−1}.

3.2.2 Refinements

Bounded Weight Growing

From Theorem 2.5.2 we have that any vertex in a cyclotomic graph has weighted degree at

most four. Note that if mc,x is obtained by an addition to a matrix m then it is the matrix

representative of a graph with a vertex of weighted degree w = |x| +
∑
cici; for this to be a

cyclotomic addition we therefore require w ≤ 4.

This allows us to refine our choice of potential addition columns to the following:

Definition 3.2.7. For k ∈ N, bound b ∈ N and label set L, define the bounded weight column

set Cbk(L) as the set of all k-tuples (c1, . . . , ck) ∈ Ck(L) such that

k∑
1

cici ≤ b

This gives rise to a corresponding growing procedure:

Definition 3.2.8. For a k × k matrix representative m of a k-vertex cyclotomic L-graph, a

label set L, a bound b ∈ N and a charge set X, let the bounded weight cyclotomic addition set

of m be the set of (k + 1)× (k + 1) matrices

superb(m,L, X) :=

mc,x =

 m c

c x

 ∣∣∣ c ∈ Cbk , x ∈ X , mc,x is cyclotomic


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Definition 3.2.9. Let Sk be a set of k × k cyclotomic matrices mi. For a label set L and

charge set X We define a round of bounded weight growing as the determination of sets

Sk+1 =
⋃

mi∈Sk

super4(mi,L, X)

and

Mk = {mi ∈ Sk | super4(mi,L, X) = ∅}.

Proposition 3.2.10. For a given L, X the sets Sk+1, Mk obtained after a round of näıve

growing or a round of bounded weight growing are equal.

Proof. Note that for all m,

super(m,L, X) = super4(m,L, X) ∪ {mc,x|c ∈ Ck(L)\C4
k(L) , mc,x cyclotomic}

= super4(m.L, X) ∪ ∅ = super4(m,L, X)

since if c ∈ Ck(L)\C4
k(L) then mc,x corresponds to a graph with a (k+ 1)st vertex of weighted

degree greater than four which, by Theorem 2.5.2, is not cyclotomic.

Equivalent Growing

Consider a k× k cyclotomic matrix m and a vector c ∈ Ck. If the (k+ 1)× (k+ 1) matrix mc,x

is cyclotomic for some c, x, then, by (complex) switching at the new vertex, so are the matrices

mλc,x for any λ ∈ L1, and they are equivalent to mc,x.

We may thus restrict our attention to the reduced column set Ck′(L) := Ck(L)/ ∼, where

c = (c1, . . . , ck) ≡ c′ if and only if c′ = (λc1, . . . , λck) for some λ ∈ L1; this gives a reduced

cyclotomic addition set, super′(m,L, X).

Combining with the observations in Section 3.2.2, this gives

Definition 3.2.11. For k ∈ N, bound b ∈ N and label set L, define the reduced bounded weight

column set Cbk′(L) as the set of all k-tuples (c1, . . . , ck) ∈ Ck′(L) such that

k∑
1

cici ≤ b

(equivalently, Cbk′(L) = Cbk(L)/ ∼.)

Definition 3.2.12. For a k×k matrix representative m of a k-vertex cyclotomic graph, a label

set L and a charge set X, let the reduced bounded weight cyclotomic addition set of m be the
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set of (k + 1)× (k + 1) matrices

super′b(m,L, X) :=

mc,x =

 m c

c x

 ∣∣∣ c ∈ Cbk′ , x ∈ X , mc,x is cyclotomic


Definition 3.2.13. Let Sk be a set of k × k cyclotomic matrices mi. For a label set L and

charge set X we define a round of reduced bounded weight growing as the determination of sets

Sk+1 =
⋃

mi∈Sk

super′4(mi,L, X)

and

Mk = {mi ∈ Sk | super′4(mi,L, X) = ∅}.

If cyclotomic matrices m1,m2 are equivalent, then for fixed L, X, b any m′1 ∈ super′b(m1,L, X)

is equivalent to some m2
′ ∈ super′b(m2,L, X). Where practical we may therefore reduce each

Sk modulo equivalence between rounds. We have thus arrived at the following:

Theorem 3.2.14. Let G be an n-vertex cyclotomic graph with matrix representative M . Let

G′ be a k-vertex cyclotomic graph equivalent to an induced subgraph of G and with matrix

representative M ′. Then G is equivalent to a graph with a matrix representative in the set Sn

obtained after n− k rounds of reduced bounded weight growing from seed set Sk = {G′}.

Definition 3.2.15. (The equivgrow algorithm) Let Sk be a seed set of k × k cyclotomic

matrices, L a label set and X a charge set. Let C4
k′(L) be the reduced bounded weight column

set as in Definition 3.2.11 with b = 4. Then the following algorithm performs a round of reduced

bounded weight growing as described in Definition 3.2.13:
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Algorithm 1: equivgrow
Input: Sk, X,C4

k′(L)

Output: Sk+1,Mk corresponding to reduced bounded weight growing

Sk+1 = ∅

Mk = ∅

for m ∈ Sk do
Sm = ∅

for x ∈ X do

for c ∈ C4
k′(L) do

mc,x =

 m c

c x


if mc,x is cyclotomic then

Sm = Sm ∪ {mc,x}
if Sm = ∅ then

Mk = Mk ∪ {m}; // Found a maximal example

else
Sk+1 = Sk+1 ∪ Sm

return Sk+1,Mk

By using the reduced bounded weight column set C4
k′(L) in equivgrow we avoid extending

any of the seed matrices by a (k+1)st vertex of weight greater than four. However, for m ∈ Sk,

x ∈ X, c ∈ C4
k′(L) it is still possible for the weight of another vertex in the graph of mc,x to have

weight greater than four; such an extension can also be rejected as necessarily noncyclotomic.

Thus for small sets of large seed matrices it can prove computationally advantageous to preselect

the suitable entries of C4
k′(L).

To this end, we define the ith row weight of a k × k L-matrix M to be

RowWeight(M)i :=
k∑
j=1

Mi,jMi,j

i.e., RowWeight(M) is the list of weighted degrees of vertices in the corresponding L-graph.

Then we have the following variant of equivgrow:
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Algorithm 2: bounded equivgrow
Input: Sk, X,C4

k′(L)

Output: Sk+1,Mk corresponding to reduced bounded weight growing

Sk+1 = ∅

Mk = ∅

for m ∈ Sk do
Sm = ∅

Cm = C4
k′(L)

for l from 1 to k do

rowWeightsl =
∑k
i=1ml,iml,i

for c ∈ Cm do
newWeightsl = rowWeightsl +Norm(cl)

if max(newWeights) > 4 then Cm = Cm − {c}
for x ∈ X do

for c ∈ Cm do

mc,x =

 m c

c x


if mc,x is cyclotomic then

Sm = Sm ∪ {mc,x}
if Sm = ∅ then

Mk = Mk ∪ {m}; // Found a maximal example

else
Sk+1 = Sk+1 ∪ Sm

return Sk+1,Mk

Saturating Growing

So far we have considered algorithms to find (up to equivalence) all n-vertex cyclotomic graphs

with a specified induced subgraph. However, if we restrict our attention to 4-cyclotomic graphs,

then further improvements are possible.

Given a maximal cyclotomic graph G and an induced subgraph G′, define the saturation of a

vertex v of G′ to be the number of its neighbours in G that are also present in G′. If all such

neighbours are present, then v is described as saturated ; otherwise, unsaturated. For a fixed

numbering of the vertices, describe a cyclotomic addition as saturating if it strictly increases

the saturation of the first unsaturated vertex.

Clearly, any G can be recovered from one of its induced subgraphs by a sequence of saturating

cyclotomic additions. Given a matrix representative m′ of a cyclotomic graph G′ with the first r

vertices saturated, we thus need only consider growing by columns c such that c1 = · · · = cr = 0

and cr+1 6= 0. In general, we do not necessarily know if a vertex is saturated (weighted degree
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4 is sufficient but potentially not necessary). If G is 4-cyclotomic, however, then a vertex of G′

is saturated if and only if it has weighted degree 4.

Definition 3.2.16. The satgrow algorithm

Let Sk be a seed set of k × k cyclotomic matrices, L a label set and X a charge set. Let C be

the reduced bounded weight cyclotomic addition set C4
k′(L) (as in Definition 3.2.11 with b = 4).

Then the following algorithm performs a round of saturating growing :

Algorithm 3: satgrow
Input: Sk, X,C

Output: Sk+1,Mk corresponding to saturating growing

Sk+1 = ∅

Mk = ∅

for m ∈ Sk do
Sm = ∅

r = 1

while RowWeight(m)r = 4 and r ≤ k do r=r+1

// r now stores the index of the first unsaturated vertex, or k + 1 if

all saturated

if r = k + 1 then

Mk = Mk ∪ {m}; // Found a maximal example

else

for x ∈ X do

for c ∈ C do

if (r = 1 and c1 6= 0) or (r ≥ 2 and c1 = · · · = cr−1 = 0 and cr 6= 0) then

// c a saturating addition; see if it gives a cyclotomic

matrix

mc,x =

 m c

c x


if mc,x is cyclotomic then Sm = Sm ∪ {mc,x}

if Sm = ∅ then

// Found an m with vertex of weighted degree < 4 but no

saturating additionsa

Mk = Mk ∪ {m}
else

Sk+1 = Sk+1 ∪ Sm
return Sk+1,Mk

aWe guard against this possibility, but in practice found it never to occur for any seed graph tested.

We thus have the following result:

Theorem 3.2.17. Let G be an n-vertex connected 4-cyclotomic graph inducing a k-vertex
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subgraph G′ equivalent to a graph G′′. Let Mn be the set of maximal matrices obtained by

n− k+ 1 rounds of saturating growing from seed set Sk = {G′′}. Then G is equivalent to some

graph with a matrix representative M ∈Mn.

Saturated extensions

Definition 3.2.18. If we have a cyclotomic L-graph G on vertices v1 . . . vk, we will describe

the extension of G by vertices x1 . . . xn and corresponding edges as a saturating extension if all

vertices v1 . . . vk then have weighted degree four; the xi needn’t also be saturated.

Trivially, any subgraph G′ of a 4-cyclotomic L-graph G can be grown to G by a saturating

extension- simply reintroduce all missing vertices and edges. We thus describe a saturating

extension by x1 . . . xn as minimal if omitting any one of the xi and its corresponding edges

gives a non-saturating extension (that is, each xi is necessary to saturate some vj). Note that

a minimal saturating extension corresponds to some sequence of saturating additions.

Proposition 3.2.19. Any 4-cyclotomic L-graph G can be grown from any of its induced sub-

graphs by a sequence of minimal saturating extensions.

Proof. Reintroduce the neighbours of all unsaturated vertices, either recovering the maximal

L-graph G or a strictly larger subgraph of G with unsaturated vertices only amongst those just

added. Repeat this process until G is recovered, which must occur after a finite number of

saturating extensions.

3.3 Graphs With Weight 3 Edges

For d = −2,−3 or −11, let G be a maximal connected cyclotomic L-graph with a weight 3 edge

label. For d = −2 or −11, we have (by negating and/or conjugating if necessary) that G is

equivalent to such a graph with an edge label of α = 1 +
√
−2 or α =

1
2

+
√
−11
2

respectively;

whilst for d = −3 we have that G is strongly equivalent to a graph with an edge label of

α =
3
2

+
√
−3
2

by complex switching.

We may thus take as seed set S2 the cyclotomic matrices of the form x1 α

α x2


for x1, x2 ∈ {0, 1,−1}, and iterate the equivgrow algorithm to recover representatives of the

maximal n-vertex connected cyclotomic L-graphs inducing a ∗∗
α

subgraph: if G has n

vertices, then G ∼ H for some H with representative in Mn. For each ring, this process

terminates after three rounds (S5 = ∅; i.e., for all m ∈ S4, m ∈M4), giving the following result:
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Proposition 3.3.1. There are only finitely many maximal cyclotomic L-graphs with a weight

3 edge label. Up to form, they are:

Lines of Form S ′2

± ±

Squares of Form S ′4

with cyclotomic examples of each in the three rings OQ(
√
d) for d = −2,−3,−11.

Remark 3.3.2. For d = −11, these are the only maximal classes with a non-rational integer

entry.

Remark 3.3.3. For d = −3, this reduces the classification of maximal connected cyclotomic

L-graphs to those with all edges of weight 1.

3.4 Graphs With All Edges Weight 1

3.4.1 Preliminaries

Note that it suffices to consider d = −1 and d = −3 only, since, for any other OQ(
√
d) with d < 0

(or simply Z), if G is an L-graph with all edge labels of weight 1 then it has all edge labels from

L1 = {1,−1} and thus is also a cyclotomic graph with all edge labels of weight 1 over OQ(i).

To that end, we make the following useful definitions and establish some preliminary results.

Definition 3.4.1. We describe any 2k-vertex graph of the form

1

k + 1

· · ·

k

2k

as a cylinder of length k.
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Definition 3.4.2. We describe any 2k-vertex graph of the form

1

k + 1

· · ·

±
k

±
2k

as a stem of length k.

Lemma 3.4.3. There are no cyclotomic L-graphs of the form

∗

Proof. For each of d = −1,−3, we find up to equivalence the possible uncharged cyclotomic

graphs of the form
y

However, no addition to such a graph formed by adjoining a new vertex x (of any charge) to

only vertex y is cyclotomic, thus there can be no cyclotomic graphs of the form described in

the Lemma.

3.4.2 Uncharged Triangles

In order to exclude them from future arguments, we first determine the 4-cyclotomic L-graphs

which induce an uncharged triangle:

We consider both charged and uncharged L-graphs, and thus repeatedly apply satgrow with

the cyclotomic triangles as seed set S3, taking L = L1 ∪ {0}, X = {0, 1,−1} and reducing

intermediate stages by complex switching where feasible.

For d = −3, this process terminates at 7 vertices, having yielded the following maximal forms:
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5-vertex maximal form S5

± ±

6-vertex maximal forms

T6 form

2 charge form S ′6

± ±

7-vertex maximal form S7

±
± ±

±

For d = −1, this process terminates at 8 vertices, having yielded the maximal forms T6,S7 as

above and an 8 vertex form:

8-vertex maximal form S†8

These computations imply the following result:
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Proposition 3.4.4. If G is a 4-cyclotomic L-graph with at least 8 vertices not of the form S†8 ,

then G does not contain as a subgraph an uncharged cycle of the form . That

is, G is uncharged-triangle free.

3.4.3 Uncharged-Triangle Free Graphs

We now repeatedly apply the satgrow algorithm to the most general subgraph ∗ ∗ , again

with L = L1 ∪ {0}, X = {0, 1,−1}. After each round we may discard any graph containing an

uncharged triangle (since by Proposition 3.4.4 we know all possible maximal supergraphs), and

can reduce modulo complex switching whilst feasible. In this way we generate representatives

of all possible 4-cyclotomic L-graphs of 8 or less vertices, and a set of nonmaximal 8-vertex

cyclotomic L-graphs G8 := S8\M8 such that if G is a connected 4-cyclotomic uncharged-

triangle free L-graph (not necessarily itself uncharged) then G induces as a subgraph some

g8 ∈ G8. Thus if the forms of all possible 4-cyclotomic supergraphs of the elements of G8 can

be determined, then this completes the classification of all 4-cyclotomic L-graphs up to form.

4-Cyclotomic Graphs Of At Most Eight Vertices

We obtain the following maximal forms:

4-vertex maximal form C+±4

+ ±

+ ±

6-vertex maximal forms

6 charge form S6 (d = −3 only)

±

±±

±

± ±

C+±6 form
+ ±

+ ±
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8-vertex maximal forms

S8 form

± ±

± ±

± ±

± ±

S′8 form

±

±

±

±

Plus the uncharged form T8 and charged form C+±8 .

Combining these results with Proposition 3.4.4, we conclude the following:

Proposition 3.4.5. If G is a connected 4-cyclotomic L-graph of at most 8 vertices, with all

edges of weight 1, then G is of the form C+±4 ,S5, T6,S6,S ′6, C+±6 ,S7, T8,S8,S ′8,S
†
8 or C+±8 .

Nonmaximal 8-Vertex Cyclotomic Forms

In addition to the maximal forms described above, we recover the set G8. If g ∈ G8 then g is

either a cylinder of length 4, stem of length 4 or one of the forms S8A, S8B or S8C given below.

Form S8A
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Form S8B (d = −3 only)

Form S8C (d = −3 only)

3.4.4 Sporadic Forms With More Than Eight Vertices

We define the following maximal forms

10-vertex form S10 (d = −3 only)

12-vertex form S12 (d = −3 only)
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14-vertex form S14

16-vertex form S16

Then the following hold:

Lemma 3.4.6. The only 4-cyclotomic L-graphs to induce a subgraph of the form S8A are of

the form S12,S14 or S16.

Proof. Repeated application of satgrow to the representatives of graphs of form S8A in G8

terminates at 16 vertices, with all maximal examples being of the claimed forms.

Lemma 3.4.7. The only 4-cyclotomic L-graphs to induce a subgraph of the form S8B are of

the form S12.

Proof. Repeated application of satgrow to the representatives of graphs of form S8B in G8

terminates at 12 vertices, with all maximal examples being of the claimed form.

Lemma 3.4.8. The only 4-cyclotomic L-graphs to induce a subgraph of the form S8C are of

the form S10.

Proof. Repeated application of satgrow to the representatives of graphs of form S8C in G8

terminates at 10 vertices, with all maximal examples being of the claimed form.
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3.4.5 Uncharged Cyclotomic Graphs With All Edges of Weight 1

Theorem 3.4.9 (Uncharged Graphs). If G is an uncharged 4-cyclotomic L-graph with all edges

of weight 1, then G is of one of the forms S†8 ,S10,S12,S14,S16; or of form T2k for some k ≥ 3.

Proof of Theorem 3.4.9

If G has 8 or less vertices and is uncharged then, by Proposition 3.4.5 we have that G is of the

form S†8 , T6 or T8, which is consistent with the above Theorem. Else G has 9 or more vertices,

and must have as an induced subgraph some g ∈ G8. Since G is uncharged, this means it

is a 4-cyclotomic supergraph of a cylinder of length 4 or of a graph of the form S8A, S8B or

S8C . By the previous Section, if G induces a subgraph of the form S8A, S8B or S8C then it is

S10,S12,S14 or S16. Otherwise, G has a cylinder of length 4 as an induced subgraph and the

following suffices to complete the proof:

Theorem 3.4.10. If all edge labels are restricted to L1, then the only minimal saturating

extensions of a cylinder of length k ≥ 4 are maximal graphs of the form T2(k+1) or T2(k+2), or

a nonmaximal cylinder of length k + 2.

There is necessarily a sequence of minimal saturating extensions that grow any remaining 4-

cyclotomic G from a cylinder of length 4; inductively, G can therefore only be of the form T2m
for some m ≥ 5; conversely, for any m ≥ 5 we can obtain T2m in this way (and we already have

T6, T8).

Proof of Theorem 3.4.10

We consider minimal saturating extensions by a set of vertices X = {x1, . . . , xi}. We first note

the following generalisation of Lemma 3.4.3:

Lemma 3.4.11. If C is a cylinder of length k ≥ 4 and x is an element of a saturating set such

that x is attached to one of the vertices 1, k + 1 then x is also attached to the other; and the

same for vertices k, 2k.

Proof. If x were attached to one of vertex 1, k+1 but not the other, then the subgraph induced

on x, 1, 2, 3, k + 1, k + 2, k + 3 would violate Lemma 3.4.3. Similarly for the subgraph on

x, k, k − 1, k − 2, 2k, 2k − 1, 2k − 2 were x to be attached to only one of k, 2k.

Minimal Saturating extensions of length-k cylinders Let C be a cylinder of length

k ≥ 4 with unsaturated vertices 1, k + 1, k, 2k as in Definition 3.4.1. We consider minimal

saturating extensions of C. By minimality, we require each of the saturating vertices xj to

be attached to at least one of the unsaturated vertices. By Lemma 3.4.11, an element of the
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saturating set must therefore be attached to at least 2 vertices. Since there are 4 unsaturated

vertices of capacity 2 each this means there are at most 4 saturating vertices. To ensure all

existing vertices 1, . . . , 2k are saturated, we require at least 2 new vertices, so 2 ≤ i ≤ 4.

W.l.o.g., we may assume that x1 and x2 are attached to vertex 1, and thus by Lemma 3.4.11 to

k+ 1. Either x1 is additionally attached to k and thus 2k, or it is not. If it is, then necessarily

so is x2, else as k 6= 2 the induced subgraph on k, x1, 1, 2, x2, k + 1, k + 2 would be

x1 1 2k

x2 k + 1 k + 2

which contradicts Lemma 3.4.3. Further, if x2 but not x1 were connected to k and hence 2k we

would induce a subgraph
x1 1 2

2k x2 k + 1 k + 2

again in violation of the lemma. So x1 is a common neighbour of all four of 1, k+ 1, k, 2k if and

only if x2 is.

If they are, we obtain a maximal graph of form T2(k+1)

1 2

k + 1 k + 2

· · ·

k x1

2k x2

x1

x2

If not, then we require an additional 2 vertices x3, x4 to saturate vertex k, and by Lemma 3.4.11

these are also neighbours of 2k. This gives us the most general form:

1 2

k + 1 k + 2

· · ·

k x3

2k x4

x1

x2

α1

x1

x2

α2

α4

α1α6

α3

α5

where the αi ∈ L1∪{0}. Since the graph is uncharged and has at least 12 vertices, by Proposition
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3.4.4 α1 = α6 = 0.

Now if α2 ∈ L1 we have α3 ∈ L1 else we induce a subgraph

x1 1 2x3

x2 k + 1 k + 2

which contradicts Lemma 3.4.3. By the same Lemma we also have the converse, so α2 ∈ L1 if

and only if α3 ∈ L1. But then by consideration of the appropriate 7-vertex subgraphs we find

α2 ∈ L1 if and only if α3 ∈ L1 if and only if α5 ∈ L1 if and only if α4 ∈ L1. So the possible

cyclotomic graphs are determined by the norm of α2.

If α2 ∈ L1 then so are α3, α4, α5 and we have as general form a maximal T2(k+2):

1 2

k + 1 k + 2

· · ·

k x3

2k x4

x1

x2

x1

x2

Else, α2 = α3 = α4 = α5 = 0 and we have as general form a nonmaximal cylinder of length

k + 2:
1 2

k + 1 k + 2

· · ·

k x3

2k x4

x1

x2

as claimed.

3.4.6 Charged Cyclotomic Graphs With All Edges Weight 1

Theorem 3.4.12 (Charged Graphs). If G is a charged 4-cyclotomic L-graph with all edges of

norm 1, then G is of one of the forms S5,S ′6,S6,S7,S8,S ′8, or the form C+±2k for some k ≥ 2.

Proof of Theorem 3.4.12

If G has 8 or less vertices and is charged then, by Proposition 3.4.5, we have that G is of the

form C+±4 ,S5, C+±6 ,S ′6,S6,S7,S8,S ′8 or C+±
8 , which is consistent with the above Theorem. Else

G has 9 or more vertices and must have as an induced charged subgraph some g ∈ G8. But
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then g is necessarily a stem of length 4, so the following Theorem suffices to prove Theorem

3.4.12.

Theorem 3.4.13. Given a stem of length k ≥ 4, the only minimal saturating extensions,

subject to the constraint that all edge labels be from L1, are nonmaximal stems of length k + 1

or maximal graphs of the form C+±2(k+1).

Proof. Let X = {x1, . . . , xi} be the saturating set. By saturation, minimality and the require-

ment that all edges labels have weight 1, we have i = 2, 3 or 4, since the unsaturated vertices

1, k + 1 have a capacity of two.

If i = 3, 4 then there is necessarily an xj attached to 1 but not k + 1. W.l.o.g., let that vertex

be x1. Then the subgraph induced on x1, 1, 2, 3, k + 1, k + 2, k + 3 would contradict Lemma

3.4.3 if cyclotomic. Hence there can be no minimal saturating extension by 3 or 4 vertices.

If i = 2 then for saturation both x1 and x2 are attached to each of 1, k+ 1, with general graph

1

k + 1

· · ·

±
k

±
2k

∗
x1

∗
x2

α

Suppose at least one of x1, x2 charged. Testing of the possible 6-vertex graphs induced on x1,

x2, 1, 2, k + 1, k + 2 confirms that the only cyclotomic examples arise from α ∈ L1 with both

x1, x2 charged; this gives a maximal graph of form C+±2(k+1) as required.

Otherwise, they are both uncharged and unsaturated, so (as k ≥ 4), the subgraph induced on

x1, x2, 1, 2, 3, k+ 1, k+ 2, k+ 3 is a nonmaximal (hence not S†8) connected subgraph with eight

vertices and all edge labels of weight 1. So Proposition 3.4.4 applies and we can conclude that

this subgraph is triangle free, so α = 0 and we have a stem of length k + 1 as required.

3.5 Uncharged Graphs With Weight 2 Edges

We return our attention to the cases where L2 6= ∅, namely d = −1,−2 or −7, and consider

graphs with edge labels from L = L1 ∪ L2 ∪ {0}. For now, we consider only uncharged graphs,

but naturally require at least one label from L2.

Theorem 3.5.1. If G is an uncharged 4-cyclotomic graph with a weight 2 edge then, with only

finitely many exceptions, G is of the form T 4
2k for some k ≥ 2.
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3.5.1 Reduction to Isolated L2,L2 Paths

L1,L2,L1 Paths

Lemma 3.5.2. For d = −1,−7, there are no cyclotomic 3-vertex L-graphs consisting of a

cycle. For d = −2, by equivgrow (with charge set {0, 1,−1} for future conve-

nience) the only maximal L-graphs to induce such a cycle are of the form S∗4 :

Lemma 3.5.3. By application of equivgrow (with charge set {0, 1,−1} for future convenience)

to seed graphs of the form

the only maximal cyclotomic connected L-graphs inducing a non-cyclic uncharged L1,L2,L1

subpath are of the following forms:

6 vertex form S†6 (d = −7 only)

8 vertex form S‡8 (d = −1 only)
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8 vertex form S∗8 (all d)

L2,L2,L2 Subpaths

Lemma 3.5.4. Testing shows that for each d, no cycle is cyclotomic, and that

the only connected maximal cyclotomic L-graphs to contain a L2,L2,L2 path are of the form

T 4
4 :

L1,L2,L2 Paths

Lemma 3.5.5. For each d, none of the possible cycles are cyclotomic.

Thus if an edge of weight 2 is present, it must be contained in an L2,L2,L2,L2 cycle as in

Lemma 3.5.4; as part of a six- or eight-vertex graph as in Lemma 3.5.3; or else a L1,L2,L2,L1

path. That is, if any other connected maximal cyclotomic L-graph contains weight 2 edges then

they arise as isolated pairs.

3.5.2 Isolated Weight 2 Pairs

Uncharged Graphs With L2,L2 Paths: Theorem

Proposition 3.5.6 (Base Step). Given the graph , the only possible minimal

saturating extensions are maximal graphs of the form
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or nonmaximal chains of length one:

a1 a0

b1 b0

Theorem 3.5.7 (Inductive Step). Given a chain of length k:

ak ak−1

bk bk−1

· · ·

a1 a0

b1 b0

the only possible minimal saturating extensions are a nonmaximal chain of length k + 1 of the

form:
ak+1 ak ak−1

bk+1 bk bk−1

· · ·

a1 a0

b1 b0

or maximal graphs of the form

ak ak−1

bk bk−1

· · ·

a1 a0

b1 b0

Uncharged Graphs With L2,L2 Paths: Proofs

Lemma 3.5.8. If a non-saturated weight 1 connected subgraph of a 4-cyclotomic L-graph con-

tains at least eight vertices, then it is triangle-free.

Proof. By Section 3.4.2, if a connected L-graph contains only weight 1 edges and features an

L1,L1,L1 cycle, then it is an induced subgraph of one of the maximal forms S5, T6,S7,S†8 . If

it has at least eight vertices yet is unsaturated, then this is clearly impossible.
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Lemma 3.5.9. The L-graph H
A

cannot be an induced subgraph of a 4-cyclotomic L-graph G whose weight 2 edges arise as

isolated pairs.

Proof. Vertex A has weighted degree 2 in H, so must have at least one neighbour B in G

attached by some edge with label α. Then the subgraph induced on H ∪ {B} is of the form

B Aα

β

If α were in L1 then we would have

B A

β

but the upper path is forbidden since weight 2 edges are assumed to occur in pairs. So α ∈ L2,

giving
B A

β
.

But then to prevent an L2,L2,L2 path, we require β 6∈ L2. However, for each d testing of the

possible graphs with α ∈ L2, β ∈ L1 ∪ {0} shows that none are cyclotomic.

Thus G necessarily induces a noncyclotomic subgraph if it induces a subgraph H.

Proof of Proposition 3.5.6 We consider minimal saturating extensions of the graph

a0

b0

58



in terms of the size of the extension set x1 . . . xn. Since the weighted degrees of a0, b0 are two,

we require between one and four new vertices. If we adjoin a weight 2 edge to either of a0 or

b0, then by Lemma 3.5.4 we are in the n = 1 case and must form a square as claimed in the

base step; and conversely this is the only possible saturation when n = 1. So we may assume

that n ≥ 2 and that only weight 1 edges are adjoined.

For the n = 2 case we wish to saturate a0, b0 by new vertices x1, x2. Hence x1, x2 must be

neighbours of each of a0, b0. The general form of the graph is then

a0

b0

x1

x2

α

but we require α 6∈ L2 to prevent an isolated weight 2 edge, and (for each d) testing of the

remaining possibilities confirms that the general form can only be cyclotomic if α = 0 (no edge).

Thus we have the chain of length 1 as desired.

For the remaining cases, we note the following result:

Lemma 3.5.10. There are no cyclotomic L-graphs of the form

∗

∗
β

α

for α ∈ L, β ∈ L1 ∪ {0}.

Thus no cyclotomic L-graph has such a graph as an induced subgraph.

For the n = 3 case there is by saturation necessarily a common neighbour of a0, b0 amongst the

xi (call it x2) and by minimality this is their only common neighbour amongst the xi. Thus

the general extension is:

a0

A

b0

x1

x2

x3

α1

α2

α3

For the n = 4 case there is by minimality no common neighbour amongst the xi of a0 and b0.
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Thus the general extension is

a0

A

b0

x1

x2

x3

x4

α1

α2

α3

α4

α5

α6

but in each case, were such an extension cyclotomic it would induce a cyclotomic subgraph

on x1, x2, a0, b0, A in contradiction with Lemma 3.5.10. Thus there are no minimal saturating

extensions by three or four vertices of an L2,L2 pair, and so the base step holds.

Proof of Theorem 3.5.7 We first seek to reject minimal saturating extensions of length k

chains by three or four vertices. General graphs are:

ak ak−1

bk bk−1

· · ·

a1 a0

b1 b0

x1

x2

x3

α1

α2

α3

and

ak ak−1

bk bk−1

· · ·

a1 a0

b1 b0

x1

x2

x3

x4

α1

α2

α3

α4

α5

α6

For k = 1 we verify directly the following result:
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Lemma 3.5.11. There are no cyclotomic graphs of the form

a0

b0

a1

b1

∗

If k = 1 the above general forms would induce such a subgraph on x1, a1, a0, b1, b0; thus they

are not possible saturating extensions.

Otherwise we have k ≥ 2 and can appeal to Lemma 3.4.3:

If there were cyclotomic minimal saturating extensions by three or four vertices of a chain

of length k ≥ 2, then they would induce cyclotomic subgraphs on vertices x1, ak, ak−1, ak−2,

bk, bk−1, bk−2 in contradiction with Lemma 3.4.3; thus such extensions are not possible.

This leaves only saturating extensions by one or two vertices. If a single vertex is to saturate

both ak, bk, then necessarily each much be attached to it by a weight 2 edge, giving the claimed

maximal graph.

Finally, for an extension by 2 vertices Lemma 3.5.9 and minimality ensures we cannot attach a

weight 2 edge to either ak or bk. Hence for saturation each is attached to both of the two new

vertices, with the general graph being

x1 ak ak−1

x2 bk bk−1

· · ·

a1 a0

b1 b0

α1

But to prevent an isolated weight 2 edge we have α1 6∈ L2. During the proof of the base step

we verified that for k = 0, such a graph can be cyclotomic only if α1 = 0. If k ≥ 2 then the

induced weight 1 subgraph on x1, x2, ak, ak−1, ak−2, bk, bk−1, bk−2 is a nonmaximal connected

eight-vertex subgraph and thus triangle free by Lemma 3.5.8, forcing α1 = 0. Finally, if k = 1,

we have the graph
x1 a1 a0

x2 b1 b0

α1

If α1 6= 0 then w.l.o.g. we may assume α1 = 1 and consider the induced subgraph on
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x1, x2, a1, b1, a0, b0. Testing confirms that of the possible such graphs, none are cyclotomic

and thus for the supergraph to be cyclotomic, we must have α1 = 0.

Thus for all k, a minimal saturating extension by 2 vertices can only be cyclotomic if α1 = 0;

that is, the only such extension is a chain of length k+ 1 as claimed. This completes the proof

of the inductive step, and thus of Theorem 3.5.1.

3.6 Charged Graphs With Weight 2 Edges

This leaves one possible case: charged graphs with weight 2 edges. In this Section, we will

prove the following:

Theorem 3.6.1. If G is a 4-cyclotomic L-graph with at least one charged vertex and at least

one edge of weight 2 then, with finitely many exceptions, G is of the form C2±2k for some k ≥ 2.

3.6.1 Reduction to Isolated L2,L2 Paths

Here we demonstrate that, except for finitely many examples, if a graph features both charged

vertices and weight 2 edges, then those edges occur in isolated pairs.

Charged Vertices With Weight 2 Edges

±©L2~ Paths By initial testing then satgrow, we obtain classes of 3-vertex 4-cyclotomic

L-graphs with general form C2±2 :

± ±

and of 4-vertex L-graphs with general form S4:

± ±

± ±

as the only possible connected 4-cyclotomic forms containing a ±©L2~ subgraph.

Isolated Charges

By the previous result, we may assume that in a graph featuring both charged nodes and weight

2 edges, these features are isolated.
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L1,L2,L1 cycles Since we are excluding the possibility of ±©L2~ subpaths, the only possible

cycles of the form ∗ ∗ ∗ are uncharged cycles of the form or charged

cycles of the form ± . By Lemma 3.5.2 we may exclude the former; for d = −2,−7

the latter is never cyclotomic.

For d = −1, there are cyclotomic examples: satgrow terminates with maximal squares of the

form S†4
± ±

L1,L2,L1 paths Excluding ±©L2~ subgraphs, the general charged non-cyclic L1,L2,L1 path

is given by ± ∗ , contained in some L-graph of form

±

∗

However, the only cyclotomic examples of such an L-graph are of the maximal form S†4 as

above.

Thus if a 4-cyclotomic L-graph contains both charges and a non-cyclic L1,L2,L1 path, then the

4 vertices in the path are uncharged. However, for each d applying satgrow to representatives

of all 4-vertex cyclotomic graphs with such a path terminates at 8 vertices, with only the

uncharged graphs described in Section 3.5.1.

L2,L2,L2 paths We now consider paths of more than 2 consecutive weight 2 edges. By

±©L2~ avoidance and the prior result that no cycle is cyclotomic, the simplest

such path is . However, by Lemma 3.5.4 the only cyclotomic examples

are contained in maximal uncharged squares, so there are no charged 4-cyclotomic graphs

containing an L2,L2,L2 path. Hence they can contain no longer such path, so if any weight 2

edge occurs, then it does so as part of an isolated pair.
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3.6.2 Isolated Weight 2 Pairs

Charged Graphs With L2,L2 Paths: Theorem

Proposition 3.6.2 (Base Case). Given the graph , the only possible minimal

saturating extensions including at least one charged vertex are maximal graphs of the form C2±4 :

±

±

Theorem 3.6.3 (General Case). Given a chain of length k ≥ 1:

ak ak−1

bk bk−1

· · ·

a1 a0

b1 b0

the only possible minimal saturating extensions including at least one charged vertex are maximal

graphs of the form C2±2(k+2):

ak ak−1

bk bk−1

· · ·

a1 a0

b1 b0

±

±

By the earlier Proposition 3.5.6 and Theorem 3.5.7 on minimal saturating extensions of chains

of length k, these suffice to complete the proof of Theorem 3.6.1 as follows. There must be a

weight 2 edge which, excluding the maximal forms of the previous section, means that there

must be a subgraph. From this, the maximal graph can be grown by minimal

saturating extensions. If that extension involves a charge, then we terminate as in the base case

with a graph of form C2±4 . If it does not, then it is an uncharged minimal saturating extension

and must (by Proposition 3.5.6) give a chain of length 1.

Given a chain of length k, its minimal saturating extension either includes a charged vertex or

it does not. If it does, then we terminate with the desired maximal charged graph. If it does

not, then it is an uncharged minimal saturating extension-this (by Theorem 3.5.7) gives either

a chain of length k + 1 or an uncharged maximal graph of form T 4
2k. Since we desire a charged

vertex, we cannot have the latter, so we must obtain the chain of length k + 1.
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Thus, inductively, all charged 4-cyclotomic L-graphs not of the form S4 or S†4 are of the claimed

form C2±2k for some k.

Charged Graphs With L2,L2 Paths: Proofs

Proof of Proposition 3.6.2 As before, we consider minimal saturating extensions of the

graph
a0

b0

in terms of the size of the extension set x1 . . . xn.

Note that we cannot adjoin a vertex by an edge from L2 as this creates a L2,L2,L2 path, which

is excluded (as it forces the uncharged maximal square T 4
4 ). Thus the n = 1 case is impossible

as it cannot saturate either of a0, b0, and in the remaining cases we need only consider vertices

attached by weight 1 edges.

In the n = 2 case we seek to saturate a0, b0 by adjoining common neighbours x1, x2, at least

one of which is charged: w.l.o.g. x1. This gives the general graph

±
x1 a0

∗
x2 b0

α

where by ±©L2~ avoidance α 6∈ L2. Testing then confirms that such a graph is cyclotomic only

if α ∈ L1, x2 = ±1, that is, of the claimed maximal form C2±4 .

For the n = 3 case there is by saturation necessarily a common neighbour of a0, b0 amongst the

xi (call it x2) and by minimality this is their only common neighbour amongst the xi. Thus

the general extension is:

a0

A

b0

∗
x1

∗x2

∗
x3

α1

α2

α3
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where xi ∈ {0, 1,−1} not all zero, αi ∈ L. Since L1,L2,L1 cycles have been excluded, α1, α2 6∈

L2 and since L1,L2,L1 paths have been excluded, nor is α3. But then if any such L-graph were

cyclotomic, it would induce a cyclotomic L-graph on A, a0, b0, x1, x2, which contradicts Lemma

3.5.10 (with α = α1, β ∈ L1). Thus there can be no such extension.

For the n = 4 case there is by minimality no common neighbour amongst the xi of a0 and b0.

Thus the general extension is

a0

A

b0

∗
x1

∗x2

∗x3

∗
x4

α1

α2

α3

α4

α5

α6

where xi ∈ {0, 1,−1} not all zero, αi ∈ L. Since L1,L2,L1 cycles have been excluded, α1, α3 6∈

L2 and since L1,L2,L1 paths have been excluded, nor are the remaining αi. Again, if such an

L-graph were cyclotomic, then Lemma 3.5.10 would be contradicted by the subgraph induced

on A, a0, b0, x1, x2 (where α = α1, β = 0). Thus a minimal saturating extension by four vertices

is not possible.

As a minimal saturating extension of the vertices a0, b0 cannot involve more than four new

vertices, this completes the proof of the base case.

Proof of Theorem 3.6.3 Lemmata 3.4.3 and 3.5.11 allow us to reject minimal saturating

extensions of length k chains by three or four vertices. Recall from Lemma 3.5.9 that the

subgraph
A

is excluded from a 4-cyclotomic L-graph with all weight 2 edges in isolated pairs, since vertex

A is unsaturated yet there cannot be another edge incident at it. Since we have also excluded

±©L2~ paths, the subgraph with A charged is also forbidden. Thus no minimal saturating

extension by more than one vertex of a length k chain can have a weight 2 edge adjoined to
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either ak or bk. This gives general graphs for the three and four vertex extensions as follows:

ak ak−1

bk bk−1

· · ·

a1 a0

b1 b0

∗
x1

∗x2

∗
x3

α1

α2

α3

and

ak ak−1

bk bk−1

· · ·

a1 a0

b1 b0

∗
x1

∗x2

∗x3

∗
x4

α1

α2

α3

α4

α5

α6

For k = 1 we again note that the above general forms would induce a cyclotomic subgraph

on x1, a1, a0, b1, b0 if they were cyclotomic, contradicting Lemma 3.5.11. Therefore there are

no such saturating extensions. Otherwise k ≥ 2 and a cyclotomic graph of any of the above

forms would induce a cyclotomic subgraph on x1, ak, ak−1, ak−2, bk, bk−1, bk−2 in contradiction

with Lemma 3.4.3. Thus minimal saturating extensions of chains of length k by three or four

vertices (not all uncharged) cannot occur.

The n = 1 case is also clearly invalid: we require x1 to be charged, but then as ±©L2 paths have

been excluded it cannot saturate either ak or bk.

Finally, for an extension by 2 vertices ak, bk are necessarily (by Lemma 3.5.9 and saturation)

attached to each of the two new vertices by weight 1 edges, with the general graph (assuming

w.l.o.g. x1 charged) being

ak ak−1

bk bk−1

· · ·

a1 a0

b1 b0

±
x1

∗
x2

α1

67



Testing of the possible 6-vertex graphs induced on x1, x2, ak, ak−1, bk, bk−1 confirms that the

only cyclotomic examples arise from α1 ∈ L1 with both x1, x2 charged; this gives a maximal

graph of form C2±2(k+2) as required.

3.7 Conclusions

In this Chapter, we have shown:

Theorem 3.7.1. Let G be a 4-cyclotomic L-graph with all edge labels of weight at most 3 and

charges from {0, 1,−1}. Then G is of one of the following forms:

• S ′2,S4,S ′4,S∗4 ,S
†
4 ,S5,S6,S ′6,S7,S8,S ′8,S∗8 ,S

†
8 ,S

‡
8 ,S10,S12,S14, or S16;

• T2k for k ≥ 3;

• C+±2k for k ≥ 2;

• T 4
2k for k ≥ 2;

• or C2±2k for k ≥ 1.

Recall from Chapter 2 that if G is a 4-cyclotomic L-graph with entries from OQ(
√
−d) for some

d < 0 then: all charges are from {0, 1,−1} unless G is in the class (2) (Lemma 2.2.3); all edge

labels in G have weight at most 4 (from Theorem 2.5.2); and if G has an edge label of weight

4 then it is in the class S2.

Combined with Theorem 3.7.1, we have thus classified all 4-cyclotomic L-graphs overOQ(
√
−d), d <

0 up to form; and as a corollary Theorem 3.1.1 holds.
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Chapter 4

4-Cyclotomic Graphs II-

Classification up to Equivalence

4.1 Overview

In this Chapter, we classify all 4-cyclotomic L-graphs over OQ(
√
d), d < 0 (and thus implicitly

over Z) up to equivalence.

4.2 Graphs of Form T2k

We will prove the following:

Theorem 4.2.1. Let G be a 2k-vertex maximal cyclotomic L-graph of the form T2k, k ≥ 3.

Then G is equivalent to either the signed graph T2k shown in Fig. 1.3; or, for d = −1 or

d = −3, the L-graph T ′2k as defined in Corollary 2.6.13 or 2.6.14 respectively.

Corollary 4.2.2. Let R be Z or OQ(
√
−d) for d < 0, d 6= −1,−3. Then if G is a cyclotomic

L-graph of form T2k with all entries from R, then G is equivalent to the signed graph T2k.

4.2.1 Proof of Corollary 4.2.2 for Sufficiently-large Graphs

It is useful to first prove the following:

Lemma 4.2.3. If g is a cyclotomic 2m-vertex cylinder of length m ≥ 4 with all edge labels ±1
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then g is equivalent to the signed graph

1

m+ 1

· · ·

m

2m

Proof. First consider m = 4. Then by switching we may ensure that at least one edge at each

vertex has the ‘correct’ label. Fixing the top and bottom m-vertex paths in this way, we obtain

general graph G4

1 2 3 4

5 6 7 8

a1 a2 a3

b1 b2 b3

where the edge labels ai, bi ∈ L1 are free, subject to the constraint that g - and hence, having

only applied switching, G4 - is cyclotomic. However, testing confirms that the only such signed

graphs satisfy either ai = 1, bi = −1 or ai = −1, bi = 1. Both cases are precisely the desired

form; the former being as numbered in the Lemma and the latter being its mirror image (that

is, reversing the left-right numbering of the vertices recovers the illustrated graph). Thus the

Lemma holds for m = 4. Inductively, suppose the result holds for some m. Then for m + 1

we may assume that the first 2m vertices have the appropriate edge labels, and by switching

fix one edge label at each of the two new vertices x1, x2. The subgraph induced on vertices

m− 2,m− 1,m, 2m− 2, 2m− 1, 2m,x1, x2 is then

m− 2 m− 1 m x1

2m− 2 2m− 1 2m x2

a

b

but this is cyclotomic if and only if a = 1, b = −1; that is, if the cylinder of length m+ 1 is also

of the desired form.

Hence for any m ≥ 4 any cyclotomic cylinder of length m is equivalent to the cylinder given in

the Lemma.

This gives us the following special case of Theorem 4.2.1:

Theorem 4.2.4. Let G be a 2k-vertex maximal cyclotomic signed graph of the form T2k, k ≥ 5

with all edge labels ±1. Then G is equivalent to the signed graph T2k.
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Proof. We can confirm the case k = 5 of theorem 4.2.4 immediately. If G is a cyclotomic

L-graph with all edgel labels ±1 of form T10 then, using Lemma 4.2.3 and switching at A,B,

it is equivalent to one with edge labels as follows:

A

B

A

B

This gives 64 possible signed graphs, but only one is cyclotomic, that with the desired labelling:

A

B

A

B

Thus, any cyclotomic signed graph of the form T10 is equivalent to T10 as claimed.

Else, k ≥ 6 and G contains a cylinder of length m = k − 1 ≥ 5 which by Lemma 4.2.3 is of the

required form. Let the remaining two vertices be A,B and consider the subgraph induced on

vertices 1, 2,m− 1,m,m+ 1,m+ 2, 2m− 1, 2m,A,B which, fixing an edge at each of A,B by

switching, is:
m− 1 m A 1 2

2m− 1 2m B m+ 1 m+ 2

a2

a1a3

b2

b1b3

(Note that this is a cylinder rather than a torus since m ≥ 5 as k ≥ 6; that is, vertex m− 1 is

neither vertex 2 nor a neighbour, and similarly for the other unsaturated vertices.)

As before, the edges ai, bi are constrained only by the requirement of cyclotomicity. There are

then only two valid assignments: a1 = a2 = b3 = 1, a3 = b2 = b1 = −1 and a1 = a3 = b2 =

1, a2 = b1 = b3 = −1, both of which correspond to the desired representative (redraw with the

positions of m, 2m swapped to see that the latter is also T2k).

Remark 4.2.5. Corollary 4.2.2 thus holds for k ≥ 5, since for any such R we have that

L1 = {1,−1}. To complete the proof we need only confirm the cases k = 3, 4; these will be

obtained as special cases of Theorem 4.2.1 in the following section.
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4.2.2 Proof of Theorem 4.2.1

We now return to general L-graphs of the form T2k; thus for d = −1,−3 we have the possibility

of weight 1 edge labels other than ±1.

Graphs of Form T6 or T8 (k ≤ 4)

T6 We consider the general L-graph of form T6, fixing a numbering as follows:

1 2 3 1

4 5 6 4

Then by switching at 1 to fix the edge 1 − 2, at 3 to fix the edge 2 − 3, at 4 to fix the edge

4− 5 and 6 to fix the edge 5− 6 we have that any cyclotomic L-graph of form T6 is equivalent

to one of the form

1 2 3 1

4 5 6 4



0 1 a1 0 a2 a3

1 0 1 a4 0 a5

a1 1 0 a6 a7 0

0 a4 a6 0 −1 a8

a2 0 a7 −1 0 −1

a3 a5 0 a8 −1 0



for some a1, . . . , a8 ∈ L1.

For d = −1, there are 65, 536 possible L-graphs. Testing (via the process described in Remark

2.5.8) allows us to recover the 16 cyclotomic examples. Up to equivalence, we find that there

are two classes with representatives:



0 1 1 0 1 −1

1 0 1 −1 0 1

1 1 0 1 −1 0

0 −1 1 0 −1 −1

1 0 −1 −1 0 −1

−1 1 0 −1 −1 0


and



0 i 1 0 i −1

−i 0 1 i 0 1

1 1 0 1 −1 0

0 −i 1 0 −i −1

−i 0 −1 i 0 −1

−1 1 0 −1 −1 0


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1 2 3 1

4 5 6 4

and

1 2 3 1

4 5 6 4

but these are precisely the signed graph T6 and L-graph T ′6 as required.

For d = −3, the proof is the same; again, we obtain two distinct equivalence classes, with

representatives T6 and T ′6.

For any other d < 0 (or R = Z) we have that L1 = {1,−1} ⊂ {1,−1, i,−i}; so if G is a

cyclotomic signed graph of form T6 then by the result for d = −1 it must be equivalent to T6

or T ′6. But it was shown earlier that no L-graph equivalent to T ′6 has all edge labels rational

integers, so G cannot be equivalent to T ′6. Thus it is equivalent to T6.

T8 If G is a cyclotomic L-graph of form T8 then, by switching, it is equivalent to an L-graph

G′ with labels
1 2 3 4

5 6 7 8 5

1

We consider the induced subgraph on vertices 1, . . . , 6:

1 2 3 4

5 6 5

1

If G′ is cyclotomic, then this subgraph is cyclotomic. For d = −1, we have 1024 possible edge

labellings, of which 96 yield a cyclotomic L-graph, from one of two equivalence classes. Let

S1, S2 be representatives of those classes. Then G′ and hence G is equivalent to either a 4-

cyclotomic supergraph of S1 or of S2. By applying satgrow (with weight 1 edge labels and

neutral vertices only) we can generate representatives of all classes of such supergraphs, then

discard those not of form T8 to recover representatives of the possible equivalence classes for G.

Doing so, we find two classes. For one, no switching produces a representative with all edge

labels from {1,−1}, whilst the other admits such a representation. Thus there is only one class
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of cyclotomic signed graphs of form T8, and since T8 is such a graph, it suffices as representative:

1 2 3 4

5 6 7 8 5

1

The L-graph T ′8 is also cyclotomic, but no switching of it produces an L-graph with all edge

labels in {1,−1}. Thus it cannot be equivalent to T8, so serves as a representative of the other

class:
1 2 3 4

5 6 7 8 5

1

That is, the case k = 4 of Theorem 4.2.1 holds for d = −1. An identical proof establishes the

result for d = −3 also; for any other d < 0 (or R = Z) the result for d = −1 implies that any

graph of form T8 with all edge labels ±1 is equivalent to T8 as claimed.

Remark 4.2.6. These results for k = 3, 4, combined with Theorem 4.2.4, complete the proof

of Corollary 4.2.2.

Graphs of Form T2k, k ≥ 5

We generalise Lemma 4.2.3:

Lemma 4.2.7. If g is a cyclotomic 2m-vertex cylinder of length m ≥ 4 with all edge labels

from L1 then g is equivalent to the graph

1

m+ 1

· · ·

m

2m

Proof. First consider m = 4. Then by (complex) switching we may ensure that at least one

edge at each vertex is of the appropriate label. Fixing the top and bottom m-vertex paths in
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this way, we obtain general graph G4

1 2 3 4

5 6 7 8

a1 a2 a3

b1 b2 b3

where the edges ai, bi are free, subject to the constraint that g and hence (having only applied

switching) G4 is cyclotomic.

For d = −1, testing confirms that the only such L-graphs satisfy a1 = a2 = a3 = −b1 = −b2 =

−b3 with a1 ∈ L1. The cases a1 = 1, a1 = −1 thus give a signed graph, which by Lemma 4.2.3

is of the desired form. The cases a1 = i, a1 = −i are equivalent by complex conjugation. We

thus need only consider the case a1 = i:

1 2 3 4

5 6 7 8

However, by complex switching at vertices 1, 2, 3, 4 in that order, we can replace all {±i} edge

labels with ones from {±1} (without introducing any more from {±i} in the process). But then

we have a cylinder with all edge labels ±1, so Lemma 4.2.3 applies and we have the desired

form. Thus the Lemma holds for m = 4 and d = −1.

Similarly for d = −3, we have that G4 is cyclotomic if and only if a1 = a2 = a3 = −b1 = −b2 =

−b3. For each choice of a1 ∈ L1, there is a complex switching that gives a signed graph; by

Lemma 4.2.3 this, and hence any g via G4, is equivalent to the desired form. Thus the Lemma

holds for m = 4 and d = −3 also.

Inductively, suppose the result holds for some m. Then for m + 1 we may assume that the

subgraph on the first 2m vertices is ‘correct’, and by complex switching fix one edge at each of

the two new vertices x1, x2. The subgraph induced on vertices m − 2,m − 1,m, 2m − 2, 2m −

1, 2m,x1, x2 is then:
m− 2 m− 1 m x1

2m− 2 2m− 1 2m x2

a

b

with a, b ∈ L1. But for each of d = −1,−3 this is cyclotomic if and only if a = 1, b = −1; that
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is, if the cylinder of length m+ 1 is of the desired form.

Hence for any m ≥ 4 any cyclotomic cylinder of length m is equivalent to the cylinder given in

the statement of the Lemma.

We can now complete the proof of Theorem 4.2.1.

Graphs of Form T10 The case k = 5 of Theorem 4.2.1 is then immediate. If G is a cyclotomic

L-graph of form T10 then, using Lemma 4.2.7 and switching at A,B, it is equivalent to one with

edge labels as follows:

A A

B B

a1

a2

a4

a6

a3
a5

for a1, . . . , a6 ∈ L1.

For d = −1, this gives 4096 possible L-graphs, with the only cyclotomic examples being:

• a1 = i, a2 = i, a3 = −1, a4 = i, a5 = 1, a6 = −i: the L-graph T ′10

• a1 = −i, a2 = −i, a3 = −1, a4 = −i, a5 = 1, a6 = i: the conjugate of T ′10 (hence,

equivalent)

• a1 = 1, a2 = 1, a3 = −1, a4 = −1, a5 = 1, a6 = −1: the signed graph T10

• a1 = −1, a2 = −1, a3 = −1, a4 = 1, a5 = 1, a6 = 1: a signed graph, hence equivalent to

T10 by Theorem 4.2.4.

For d = −3 this gives 46,656 possible graphs, with the only cyclotomic examples being:

• a1 = 1, a2 = 1, a3 = −1, a4 = −1, a5 = 1, a6 = −1: the signed graph T10

• a1 = −1, a2 = −1, a3 = −1, a4 = 1, a5 = 1, a6 = 1: a signed graph, hence equivalent to

T10 by Theorem 4.2.4.

• a1 = ω, a2 = ω, a3 = −1, a4 = −ω, a5 = 1, a6 = −ω: the L-graph T ′10

• a1 = ω, a2 = ω, a3 = −1, a4 = −ω, a5 = 1, a6 = −ω: the conjugate of T ′10 (hence,

equivalent)

• a1 = −ω, a2 = −ω, a3 = −1, a4 = ω, a5 = 1, a6 = ω: equivalent to T ′10 by permuting

vertices 1,6.
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• a1 = −ω, a2 = −ω, a3 = −1, a4 = ω, a5 = 1, a6 = ω: the conjugate of the above (hence,

equivalent to T ′10)

Thus, the case k = 5 of Theorem 4.2.1 holds.

k ≥ 6 If k ≥ 6 then G contains a cylinder of length m = k− 1 ≥ 5 which by Lemma 4.2.7 is of

the required form. Let the remaining two vertices be A,B and consider the subgraph induced

on vertices 1, 2,m− 1,m,m+ 1,m+ 2, 2m− 1, 2m,A,B which, fixing an edge at each of A,B

by switching, is:
m− 1 m A 1 2

2m− 1 2m B m+ 1 m+ 2

a2

a1a3

b2

b1b3

(Note that this is a cylinder rather than a torus since m ≥ 5 as k ≥ 6; that is, vertex m− 1 is

neither vertex 2 nor a neighbour, and similarly for the other unsaturated vertices.)

As before, the edges ak, bk ∈ L1 are constrained only by the requirement of cyclotomicity. In

addition to the two labellings as in the proof for Theorem 4.2.4 - which correspond to T2k - for

d = −1,−3 there are further choices which yield a cyclotomic L-graph.

For d = −1 we have a1 = 1, a2 = i, a3 = i, b1 = −1, b2 = −i, b3 = i - corresponding to T ′2k;

and a1 = 1, a2 = −i, a3 = −i, b1 = −1, b2 = i, b3 = −i - the complex conjugate of (and thus

equivalent to) T ′2k.

For d = −3 we have case A : a1 = 1, a2 = ω, a3 = −ω, b1 = −1, b2 = −ω, b3 = ω and its

conjugate; plus case B : a1 = 1, a2 = −ω, a3 = ω, b1 = −1, b2 = ω, b3 = −ω. Numbered as

in Corollary 2.6.14, case A is T ′2k, whilst case B is the graph obtained by permuting vertices

1, k + 1 in T ′2k and thus is equivalent.

This completes the proof of Theorem 4.2.1.

4.3 Graphs of Form C+±
2k

We will prove the following result:

Theorem 4.3.1. For R = Z or R = OQ(
√
d), d < 0, if G is a 2k-vertex cyclotomic L-graph of

the form C+±2k for k ≥ 2 then G is equivalent to one of the charged signed graphs C++
2k , C+−

2k

shown in Fig. 1.5.

It suffices to prove the result for d = −1,−3. We first verify some simple cases, then use the

results of the previous section to prove the general case.
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k ≤ 5

k = 2

We have as general graph the charged square

+ ±

+ ±

For both d = −1,−3, it is easy to determine the cyclotomic examples and reduce them modulo

equivalence; as claimed, there are two distinct classes with representatives C++
4 and C+−

4 :

+ +

+ +

and

+ −

+ −

k = 3

We note the following:

Lemma 4.3.2. A charged L-graph of the form

±
x1

±
x2

is cyclotomic only if x1 = x2 (that is, the two charged vertices have the same charge).

Thus if G is a cyclotomic L-graph of the form

±
x1

±
x3

±
x4

±
x6

then x1 = x4 and x3 = x6; negating if necessary, G is equivalent to such an L-graph with

x1 = x4 = 1. Further, by (complex) switching G is then equivalent to an L-graph with fixed
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edge labels and charges:

+ ±
x3

+ ±
x6

Of the possible edge labellings for each choice of x3 = x6, those which yield cyclotomic graphs

split into two equivalence classes with representatives C++
6 , C+−

6 . Thus any L-graph of form

C+±6 is equivalent to one of these charged signed graphs, as required.

k = 4

We note the following condition, which holds by direct testing:

Lemma 4.3.3. If F is a cyclotomic L-graph of the form

+

+

then, by (complex) switching, F is equivalent to the charged signed graph

+

+

Let G be a cyclotomic L-graph of the form C+±8 . Negating if necessary, then by (complex)

switching, G is equivalent to one with edges and charges fixed as follows:

+ ±
x4

+ ±
x8

with x4 = x8 by Lemma 4.3.2.

By Lemma 4.3.3 then (complex) switching at vertices 4 and 8 we thus have that G is equivalent
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to an L-graph with labels:

+ ±
x4

+ ±
x8

But for each choice of x4 = x8 only one such L-graph is cyclotomic, corresponding to the two

classes C++
8 , C+−

8 as required.

k = 5

Negating if necessary, then applying Lemma 4.3.3 and switching at the remaining four vertices,

an L-graph of form C+−10 is equivalent to one with charges and edge labels as follows:

+ ±
x5

+ ±
x10

with x5 = x10 by Lemma 4.3.2. However, for each choice of those charges, just one combination

of edge labels gives a cyclotomic L-graph, corresponding to the two classes C++
10 , C+−

10 . So G is

an element of one of those equivalence classes, as required.

k ≥ 6

To complete the proof of Theorem 4.3.1, it therefore suffices to confirm the following:

Theorem 4.3.4. If G is a 2k-vertex cyclotomic L-graph of the form C+±2k for k ≥ 6 then G is

equivalent to one of the charged signed graphs C++
2k , C+−

2k .

Proof. From Lemma 4.3.2, if G is an L-graph of form

±
x1

±
x2

· · ·

±
x3

±
x4
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then (negating if necessary) G is equivalent to such an L-graph with x1 = x2 = 1 and either

x3 = x4 = 1 or x3 = x4 = −1.

Having so arranged, we may apply Lemma 4.2.7 to the middle 2k − 4 vertices to obtain the

desired edge labels, and apply (complex) switching at the charged vertices to ensure the top

and bottom k-vertex paths are ‘correct’. This then leaves undetermined edges at the charged

vertices only, with the cyclotomicity condition completing the proof: at the left edge we have

+

+

c

a

b

which is cyclotomic if and only if a = c = 1, b = −1 as desired; whilst at the right edge we have

±
x3

±
x4

c
a

b

which is cyclotomic if and only if x3 = x4 = a = 1, b = c = −1 (giving C++
2k ) or x3 = x4 = b =

−1, a = c = 1 (giving C+−
2k ).

4.4 Graphs of form T 4
2k

We note the following useful computational results:

Lemma 4.4.1. If G is cyclotomic and induces a subgraph of the form

1 2

L+ 1 L+ 2

2L+ 1

α

β

then α = β ∈ L2.
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Lemma 4.4.2. If G is cyclotomic and induces a subgraph of the form

L− 1 L

2L− 1 2L

2L+ 2

γ

δ

then γ = −δ ∈ L2.

Theorem 4.4.3. If G is a cyclotomic L-graph of form T 4
2k then it is equivalent to the L-graph

T 4
2k given in Corollary 2.6.20 or (d = −7 only) T 4

2k
′ given in Corollary 2.6.21.

Proof. For k ≥ 5 the result is immediate: for the vertex numbering given in Definition 2.6.18,

vertices 1, . . . , 2L are a cylinder of length at least 4, so by Lemma 4.2.7 G is equivalent to an

L-graph of form

1 2

L+ 1 L+ 2

· · ·

L− 1 L

2L− 1 2L

2L+ 1 2L+ 2

γ

δ

α

β

for some α, β, γ, δ ∈ L2 . Then by Lemmata 4.4.1, 4.4.2 we have that α = β and γ = −δ.

For d = −1, complex switching at vertices 2L + 1, 2L + 2 ensures α = γ = 1 + i, giving the

L-graph T 4
2k. For d = −2, L2 = {±

√
−2} so by switching at 2L + 1, 2L + 2 we can ensure

that α = γ =
√
−2, giving the L-graph T 4

2k. For d = −7, by negation and/or conjugation G is

equivalent to an L-graph with α = ω = 1
2 +

√
−7
2 , and by switching at vertex 2L + 2 we can

ensure γ = ω - giving T 4
2k - or that γ = ω, giving T 4

2k
′.

For k = 2, we have the degenerate case of squares

for which we can test equivalence directly; all cyclotomic examples are equivalent to T 4
4 or (for

d = −7 only) T 4
4
′, where the latter is inequivalent to the former.

For k = 3, by negation and/or conjugation we can fix α = 1 + i,
√
−2 or ω = 1

2 +
√
−7
2 for
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d = −1,−2,−7 respectively, then by (complex) switching G is equivalent to an L-graph of form

1 2

5 6

3 4

α

β

γ

δ

for some β, γ, δ ∈ L2; testing confirms that all cyclotomic examples are equivalent to T 4
6 or (for

d = −7) T 4
6
′.

For k = 4, by negation and/or conjugation we can fix α = 1 + i,
√
−2 or ω = 1

2 +
√
−7
2 for

d = −1,−2,−7 respectively, then by (complex) switching G is equivalent to an L-graph of form

1 2 3

7 8

4 5 6

α

β

γ

δ

for some β, γ, δ ∈ L2; testing confirms that all cyclotomic examples are equivalent to T 4
8 or (for

d = −7) T 4
8
′.

4.5 Graphs of Form C2±
2k

Theorem 4.5.1. If G is a cyclotomic charged L-graph of form C2±2k then it is equivalent to the

charged L-graph C2+
2k defined in Corollary 2.6.26.

Proof. For k ≥ 5, the result is immediate. By Lemma 4.3.2 we have that the charges on vertices

1, k + 1 are equal; negating if necessary G is equivalent to an L-graph with both charges +1.

Then vertices 2, . . . , k, k + 2, . . . 2k are a cylinder of length at least 4, so by Lemma 4.2.7 and

switching at 1, k + 1 G is equivalent to an L-graph with edges specified as follows:

+
1 2

+
k + 1 k + 2

· · ·

k − 1 k

2k − 1 2k

2k + 1

α

β

c
a

b

for some a, b, c ∈ L1, α, β ∈ L2. But, as in the proof of Theorem 4.3.4, the subgraph induced

on vertices 1, 2, 3, 4, k + 1, k + 2, k + 3, k + 4 is cyclotomic if and only if a = c = −b = 1. By
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complex conjugation and/or switching at 2k+ 1, we can ensure α = 1 + i,
√
−2 or 1

2 +
√
−7
2 for

d = −1,−2,−7 respectively; by Lemma 4.4.2, β = −α. Thus we recover the charged L-graph

C2+
2k as claimed.

If k = 3 then, by Lemma 4.3.2, negating if necessary, then switching, then conjugating/switching

to fix α we have that G is equivalent to an L-graph with edge labels and charges:

+
1 2 3

7

+
4 5 6

α

β

Only one such L-graph is cyclotomic, C2+
6 .

Similarly, if k = 4 we have that G is equivalent to some L-graph with edge labels and charges

+
1 2 3 4

9

+
5 6 7 8

α

β

but the only cyclotomic example for fixed α is C2+
8 .

For k = 2 we have G equivalent to some L-graph with edge labels and charges

+
1 2

5

+
3 4

α

β

but the only cyclotomic example for fixed α is C2+
4 .

Finally, for k = 1 we have that G is equivalent to some L-graph with edge labels and charges

+
1

3

+
2

α

β

but the only cyclotomic example for fixed α is C2+
2 .
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4.6 Sporadic Forms

2-vertex maximal forms

The maximal form S2 was classified up to equivalence in Remarks 2.5.4, 2.5.5, 2.5.6: there is a

single class as in Fig. 2.1 for d = −1,−2,−3, 11, and two distinct classes as in Figures 2.1 and

2.2 for d = −7,−15.

For d = −2,−3,−11, any cyclotomic L-graph of form S ′2 is equivalent to the example given in

Fig. 4.1.

+1 − 2
t

Figure 4.1: The 2-vertex sporadic maximal connected cyclotomic charged L-graph S′2.
(Where t = 1 +

√
−2, 3

2 +
√
−3
2 , 1

2 +
√
−11
2 for d = −2,−3,−11 respectively.)

4-vertex maximal forms

For d = −1,−2,−7 any cyclotomic L-graph of the form S4 is equivalent to the example given

in Fig. 4.2.

+
1

−
2

−
3

+
4

t

−t

Figure 4.2: The 4-vertex sporadic maximal connected cyclotomic charged L-graph S4.
(Where t = 1 + i,

√
−2, 1

2 +
√
−7
2 for d = −1,−2,−7 respectively.)

For d = −2,−3,−11 any cyclotomic L-graph of the form S ′4 is equivalent to the example given

in Fig. 4.3.

1 2t

3 4

t

−t

Figure 4.3: The 4-vertex sporadic maximal connected cyclotomic L-graph S′4.
(Where t = 1 +

√
−2, 3

2 +
√
−3
2 , 1

2 +
√
−11
2 for d = −2,−3,−11 respectively.)
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For d = −2 any cyclotomic L-graph of the form S∗4 is equivalent to the example given in Fig.

4.4.

1 2

3 4

√
−2

−
√
−2

Figure 4.4: The 4-vertex sporadic maximal connected cyclotomic L-graph S∗4 .

For d = −1 any cyclotomic L-graph of the form S†4 is equivalent to the example given in Fig.

4.5.

+
1

−
2

3 4−1− i

Figure 4.5: The 4-vertex sporadic maximal connected cyclotomic charged L-graph S†4.

5-vertex maximal forms

For d = −3, if G is an L-graph of form S5 then, negating to ensure a positive charge and by

(complex) switching as necessary, G is equivalent to an L-graph of form

21

+3

5

± 4

but testing confirms there are only two cyclotomic matrices corresponding to this form, and

they are conjugates and thus equivalent. So any cyclotomic L-graph of form S5 is equivalent

to the example given in Fig. 4.6.
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21

+3

5

+ 4

Figure 4.6: The 5-vertex sporadic maximal connected cyclotomic charged L-graph S5.

6-vertex maximal forms

For d = −3, if G is an L-graph of form S6, then, negating to ensure a positive charge and by

(complex) switching as necessary, G is equivalent to an L-graph of form

± 4

±
3

±
2

+1

±
6

±
5

but testing confirms there are only two cyclotomic matrices corresponding to this form, and

they are conjugates and thus equivalent. So any cyclotomic L-graph of form S6 is equivalent

to the example given in Fig. 4.7.

− 4

+
3

−
2

+1

−
6

+
5

Figure 4.7: The 6-vertex sporadic maximal connected cyclotomic charged L-graph S6.

For d = −3, if G is an L-graph of form S ′6, then, negating to ensure a positive charge and by
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(complex) switching as necessary, G is equivalent to an L-graph of form

+1

2 3

6 5

± 4

but testing confirms there are only two cyclotomic matrices corresponding to this form, and

they are conjugates and thus equivalent. So any cyclotomic L-graph of form S ′6 is equivalent

to the example given in Fig. 4.8.

+1

2 3

6 5

− 4

Figure 4.8: The 6-vertex sporadic maximal connected cyclotomic charged L-graph S′6.

For d = −7, if G is an L-graph of form S†6 then, negating and/or conjugating to fix a weight 2

edge then by switching if necessary, G is equivalent to an L-graph of form

4

32

1

6 5

ω

where ω = 1
2 +

√
−7
2 .

Testing confirms that only two such L-graphs are cyclotomic and they are strongly equivalent

by switching. So any cyclotomic L-graph of form S ′† is equivalent to the example given in Fig.

4.9.
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4

32

1

6 5

ω −ω

ω

Figure 4.9: The 6-vertex sporadic maximal connected cyclotomic L-graph S†6.
(where ω = 1

2 +
√
−7
2 .)

7-vertex maximal forms

The only sporadic 7-vertex maximal form is S7, with cyclotomic examples for all d. However,

since all edges have weight 1, it suffices to prove that there is only a single class of this form for

each of d = −1,−3. For a given numbering, fixing some edge labels by (complex) switching,

and proceeding as in Remark 2.5.8, we find for both (and thus all) d that any L-graph of form

S7 is equivalent to the charged signed graph given in Fig. 1.4:

+

− +

+

8-vertex maximal forms

Graphs of form S8

As for S7, it suffices to confirm for d = −1,−3 that there is only one class of L-graphs of

form S8. If G is such an L-graph, then negating to fix a charge then (complex) switching as

necessary, G is equivalent to an L-graph of form

±
8

±
7

±
4

±
3

±
5

±
6

−
1

±
2

Consider the subgraph induced on vertices 1, . . . , 6. Testing for each d = −1,−3 confirms that

89



all cyclotomic examples are equivalent; a representative is the charged signed graph H:

+
4

−
3

+
5

−
6

−
1

+
2

Thus G is equivalent to a cyclotomic L-graph inducing H as subgraph on vertices 1, . . . , 6;

proceeding as in Remark 2.5.8 and fixing an edge label at each of vertices 7,8 by (complex)

switching as specified, we find that G is necessarily equivalent to the representative given in

Fig. 1.4:

−
8

+
7

+
4

−
3

+
5

−
6

−
1

+
2

Graphs of form S ′8

Again, it suffices to confirm for d = −1,−3 that there is only one class of L-graphs of form S ′8.

If G is such an L-graph, then negating to fix a charge then (complex) switching as necessary,

G is equivalent to an L-graph of form

±
8 7

+
4 3

5

±
6

1

±
2

Consider the subgraph induced on vertices 1, . . . , 6. Testing for each d = −1,−3 confirms that

all cyclotomic examples are equivalent; a representative is the charged signed graph H:
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+
4 3

5

+
6

1

−
2

Thus G is equivalent to a cyclotomic L-graph inducing H as subgraph on vertices 1, . . . , 6;

proceeding as in Remark 2.5.8 and fixing an edge label at each of vertices 7,8 by (complex)

switching as specified, we find that G is necessarily equivalent to the representative given in

Fig. 1.4:

−
8 7

+
4 3

5

+
6

1

−
2

Graphs of form S∗8

For d = −1,−2,−7, we note that the L-graph in Figure 4.10 is cyclotomic and of form S∗8 .

8 7

4 3

5 6

1 2

−ω
ω

−ω
ω

Figure 4.10: The 8-vertex sporadic maximal connected cyclotomic L-graph S∗8

(ω = 1 + 1,
√
−2, 1

2 +
√
−7
2 for d = −1,−2,−7 respectively.)

If G is an L-graph of form S∗8 then, by (complex) switching, G is equivalent to an L-graph of

form
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8 7

4 3

5 6

1 2

(4.1)

For d = −2 we verify directly that, after the switching required to obtain edges labels as in

(4.1), any cyclotomic G of form S∗8 is equivalent to one of two possible L-graphs, but they are

conjugate and thus equivalent. Hence there is only a single equivalence class, with the L-graph

given in Fig. 4.10 thus serving as a representative.

For d = −1, consider the subgraph of G induced on vertices 1, . . . , 6 (as labelled in (4.1)).

Testing confirms that four choices of edge labels yield a cyclotomic L-graph; and that these four

are strongly equivalent by (complex) switching: in particular, all four are strongly equivalent

to the L-graph H:

4 3

5 6

1 2

−1− i
1 + i

Thus any cyclotomic G is equivalent to a cyclotomic L-graph inducing H as subgraph on

vertices 1, . . . 6; testing confirms that (up to equivalence, fixing edges at vertices 7,8 as in (4.1)

by switching) there is only one such L-graph. Thus the example given in Fig. 4.10 serves as

representative for any cyclotomic L-graph of form S∗8 for d = −1.

Similarly, for d = −7 we find that by conjugation and/or switching any cyclotomic G of form

S∗8 is equivalent to a cyclotomic L-graph with subgraph H:

4 3

5 6

1 2

−ω
ω

where ω = 1
2 +

√
−7
2 , but then testing confirms that such a G is equivalent to the L-graph given

in Fig. 4.10.

92



Graphs of form S†8

We need consider only d = −1. If G is of form S†8 , then by (complex) switching it is equivalent

to an L-graph of form

8

1 2

3

7

6 5

4

There are only two cyclotomic possibilities for the subgraph induced on vertices 1, . . . , 6; pro-

ceeding as in Remark 2.5.8 we recover two possible cyclotomic L-graphs of the above form,

and they are conjugates and thus equivalent. Any cyclotomic L-graph of form S†8 is therefore

equivalent to any other, such as the example given in Fig. 4.11.

8

1 2

3

7

6 5

4

Figure 4.11: The 8-vertex sporadic maximal connected cyclotomic L-graph S†8.

Graphs of form S‡8

We need consider only d = −1. If G is of form S‡8 , then it induces a subgraph of form

1 2

3

6 5

4

but all cyclotomic examples lie in a single equivalence class. Let H ′ be a representative of that

class. As in Theorem 3.2.14, we may thus generate representatives of the possible equivalence
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classes for a cyclotomic G of form S‡8 from H ′. This yields a single class, with a representative

given in Fig. 4.12.

8

1 2

3

7

6 5

4

1 + i

1− i

Figure 4.12: The 8-vertex sporadic maximal connected cyclotomic L-graph S‡8.

10-vertex maximal forms

We have for d = −3 only the sporadic form S10; by (complex) switching any cyclotomic L-graph

G of this form is equivalent to one with specified edge labels

1 2

5

6 7

8

10 9

4 3

For the subgraph H induced on vertices 1, . . . , 7 only two choices of edge labels give cyclotomic

L-graphs H1, H2. Thus G is equivalent to an L-graph of the above form inducing either H1

or H2 as subgraph; applying the growing procedure described in Remark 2.5.8 we can find

representatives of all possible such L-graphs. However, for each of H1, H2 only one such

representative is found and further they are conjugates of each other. So there is only a single

class of cyclotomic L-graphs of the form S10 inducing H1 or H2 and G is necessarily in this

class; a representative is given in Fig. 4.13.
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1 2

5

6 7

8

10 9

4 3

Figure 4.13: The 10-vertex sporadic maximal connected cyclotomic L-graph S10.

12-vertex maximal forms

We have for d = −3 only the sporadic form S12; by (complex) switching any cyclotomic L-graph

G of this form is equivalent to one with specified edge labels

4

3

21

12

11

10

9

8 7

6

5

Starting from the cyclotomic induced subgraphs on vertices 1, . . . , 6 we apply the growing

procedure from Remark 2.5.8 to find possible classes for G; only two 12-vertex L-graphs of the

above form are obtained, and as they are conjugate, there is only a single equivalence class.

Thus any cyclotomic L-graph of form S12 is equivalent to any other, such as the example given

in Fig. 4.14.

95



4

3

21

12

11

10

9

8 7

6

5

Figure 4.14: The 12-vertex sporadic maximal connected cyclotomic L-graph S12.

14-vertex maximal forms

The only sporadic 14-vertex maximal form is S14, with cyclotomic examples for all d. However,

since all edges have weight 1, it suffices to prove that there is only a single class of this form for

each of d = −1,−3. By (complex) switching, any G of this form is equivalent to an L-graph of

form

4

2

3

13

5

14

12

6

1

7

10

11

8

9

Note that the subgraph induced on vertices 1, . . . , 6 has only one unspecified edge; for each of

d = −1,−3 only a single choice yields a cyclotomic L-graph H. Using this as a seed graph,

we proceed as in Remark 2.5.8 to determine the remaining edge labels vertex by vertex; at

each stage, we recover only 1 cyclotomic example, terminating with a single class of cyclotomic

L-graphs of the form S14 inducing H. Thus any cyclotomic L-graph of form S14 is equivalent

to any other, such as the signed graph given in Fig. 1.1.
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16-vertex maximal forms

The only sporadic 16-vertex maximal form is S16, with cyclotomic examples for all d. However,

since all edges have weight 1, it suffices to prove that there is only a single class of this form for

each of d = −1,−3. By (complex) switching, any G of this form is equivalent to an L-graph of

form

8 7

4 3

5 6

1 2

16 15

12 11

13 14

9 10

As for S14, the subgraph H induced on vertices 1, . . . , 6 is cyclotomic for only a single choice

of edge labels. Using this as a seed graph, we proceed as in Remark 2.5.8 to determine the

remaining edge labels vertex by vertex; at each stage, we recover only 1 cyclotomic example,

terminating with a single class of cyclotomic L-graphs of the form S16 inducing H. Thus any

cyclotomic graph of form S16 is equivalent to any other, such as the charged signed graph given

in Fig. 1.2.

4.7 Conclusions

Using the results of this Chapter and Theorem 3.7.1 from the previous, we note the following

classifications of connected 4-cyclotomic L-graphs for d = −1,−3 (we defer the remaining d to

the following Chapter in order to strengthen the result).

Remark 4.7.1. The maximal connected cyclotomic (charged) signed graphs in Theorems 1.4.1,

1.4.2 are connected 4-cyclotomic L-graphs for all d ≤ 0.

Theorem 4.7.2. (d = −1) Every connected 4-cyclotomic L-graph for R = OQ(i) not included

in Theorems 1.4.1, 1.4.2 is equivalent to one of the following:

(i) The 2-vertex L-graph S2 shown in Fig. 2.1;

(ii) The 4-vertex L-graph S4 shown in Fig. 4.2;

(iii) The 4-vertex L-graph S†4 shown in Fig. 4.5;
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(iv) The 8-vertex L-graph S∗8 shown in Fig. 4.10;

(v) The 8-vertex L-graph S†8 shown in Fig. 4.11;

(vi) The 8-vertex L-graph S‡8 shown in Fig. 4.12;

(vii) For some k = 3, 4, . . ., the 2k-vertex L-graph T ′2k shown in Fig. 2.3;

(viii) For some k = 2, 3, 4, . . ., the 2k-vertex L-graph T 4
2k shown in Fig. 2.4;

(ix) For some k = 1, 2, 3, . . ., the 2k + 1-vertex L-graph C2+
2k shown in Fig. 2.6.

Theorem 4.7.3. (d = −3) Every connected 4-cyclotomic L-graph for R = OQ(
√
−3) not in-

cluded in Theorems 1.4.1, 1.4.2 is equivalent to one of the following:

(i) The 2-vertex L-graph S2 shown in Fig. 2.1;

(ii) The 2-vertex L-graph S′2 shown in Fig. 4.1;

(iii) The 4-vertex L-graph S′4 shown in Fig. 4.3;

(iv) The 5-vertex L-graph S5 shown in Fig. 4.6;

(v) The 6-vertex L-graph S6 shown in Fig. 4.7;

(vi) The 6-vertex L-graph S′6 shown in Fig. 4.8;

(vii) The 10-vertex L-graph S10 shown in Fig. 4.13;

(viii) The 12-vertex L-graph S12 shown in Fig. 4.14;

(ix) For some k = 3, 4, . . ., the 2k-vertex L-graph T ′2k shown in Fig. 2.3.
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Chapter 5

Maximal Cyclotomic Graphs are

4-Cyclotomic

5.1 Overview

In this Chapter we first prove that a charged signed graph is maximal only if every vertex has

weighted degree four: thus the maximal connected charged signed graphs are the 4-cyclotomic

charged signed graphs. Combined with the results of the previous Chapters, this gives a new

proof of Theorems 1.4.1, 1.4.2 of [14]. We are able to extend this to L-graphs in the case

L1 = {±1}, and thus for d = −2,−7,−11,−15 are able to classify all maximal connected

cyclotomic L-graphs.

5.2 Preliminaries

For vectors x = (x1, . . . xn), y = (y1, . . . yn) ∈ Cn we take as standard inner product

〈x, y〉 = xy∗ =
n∑
i=1

xiyi.

For x, y ∈ Rn, this gives the standard dot product x · y.

Definition 5.2.1. For an n× n Hermitian matrix A we describe a set W = {w1, · · ·wn} as a

set of Gram vectors for A if 〈wi, wj〉 = Aij for all 1 ≤ i, j ≤ n.

Lemma 5.2.2. (Special case of [9] Thm. 7.2.6) Let A be a positive semidefinite Hermitian

matrix. Then there exists a positive semidefinite Hermitian matrix B such that B2 = A.
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Proof. A can be unitarily diagonalised as A = UΛU∗ with Λ = diag(λ1, . . . , λn) and all λi ≥ 0.

Define
√

Λ = diag(
√
λ1, . . . ,

√
λn), taking the unique nonnegative square root in each case.

Then B = U
√

ΛU∗ is Hermitian, positive semidefinite, and satisfies B2 = A.

Proposition 5.2.3. Let A be an n × n positive semidefinite integer symmetric matrix. Then

there exists a set of real Gram vectors for A (that is, W = {w1, · · ·wn} with each wi ∈ Rn such

that Aij = wi · wj).

Proof. Since A is real symmetric it can be diagonalised by orthogonal matrices, so the matrix

B given in Lemma 5.2.2 is a real symmetric matrix. Let W be the set of rows of B; then

B2
ij = wi · wj . But by the Lemma B2

ij = Aij , so W is a set of Gram vectors for A.

Proposition 5.2.4. Let A be an n× n positive semidefinite Hermitian R-matrix. Then there

exists a set of Gram vectors for A.

Proof. By Lemma 5.2.2, let B be a Hermitian matrix satisfying B2 = A. Take W to be the set

of rows of B. But then as B is Hermitian we have for the inner product as defined above that

〈wi, wj〉 = B2
ij = Aij as required.

5.3 Charged Signed Graphs

We will demonstrate the following:

Theorem 5.3.1. Let G be a cyclotomic charged signed graph with a vertex of weighted degree

1,2 or 3. Then G is nonmaximal.

Thus, a cyclotomic charged signed graph is maximal only if all vertices have weighted degree

4. In Proposition 2.6.3 it was shown that this condition is also sufficient for maximality over

(for instance) R = OQ(i) and thus over Z; so we have

Corollary 5.3.2. A cyclotomic charged signed graph is maximal if and only if it is 4-cyclotomic.

5.3.1 Constructing Cyclotomic Supermatrices With Gram Vectors

Let M be a matrix representative of a connected cyclotomic charged signed graph G. Then

both A = M + 2I and B = (−M) + 2I are positive semidefinite. Hence (by Proposition 5.2.3)

there exist sets of real Gram vectors W and W ′ for A and B respectively, whereby Aij = wi ·wj
and Bij = w′i · w′j . We then have:

• For all i 6= j, wi · wj and w′i · w′j are in {0, 1,−1}, with wi · wj = −w′i · w′j ; wi · wj gives

the label of the edge between vertices i, j (0 if no edge).
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• For all w ∈W and w′ ∈W ′, w ·w and w′ ·w′ are in {1, 2, 3}; wi ·wi − 2 gives the charge

on vertex i.

• For all i, w′i · w′i = 4− wi · wi.

Theorem 5.3.3. Let M be a matrix representative of a cyclotomic charged signed graph G.

Fix a vertex labelling then determine Gram vectors W,W ′ as above. If there exist vectors x, x′

with the following properties:

• x · x ∈ {1, 2, 3}

• For all wi ∈W , x · wi ∈ {0, 1,−1}

• There exists wi ∈W such that x · wi 6= 0

• x′ · x′ = 4− x · x

• For all i, x′ · w′i = −x · wi

then define A∗ to be the matrix determined by the set of Gram vectors W ∪ {x}. M∗ = A− 2I

is then a matrix representative of a cyclotomic, connected, charged signed graph G∗ inducing G

as a proper subgraph, so G is nonmaximal.

Proof. By construction A∗ is symmetric and positive semidefinite. Thus M∗ has all eigenvalues

in [−2,∞). By the first two conditions on w, M∗ has all entries in {0, 1,−1} so describes a

charged signed graph G∗ and by choice of Gram vectors this is an extension of G by a single

vertex. By the third condition G∗ is connected so G is a proper subgraph of G∗; G is therefore

nonmaximal provided G∗ is cyclotomic.

ConsiderB∗ the Gram matrix corresponding to vectorsW ′∪{x′}; by the properties ofW,W ′ and

the final two conditions, B∗ is precisely the matrix (−M∗) + 2I. As B∗ is positive semidefinite,

−M∗ has all eigenvalues in [−2,∞). Hence M∗ has all eigenvalues in (−∞, 2]; combined with

the earlier bound this ensures all eigenvalues of M∗ are in [−2, 2] and G∗ is thus cyclotomic.

5.3.2 Excluded Subgraphs

For various cyclotomic charged signed graphs H we note that if G is cyclotomic but not 4-

cyclotomic and induces H as a subgraph, then G is not maximal. This holds when such an

H is contained in only finitely many cyclotomic charged signed graphs, and each of these is

contained in a maximal 4-cyclotomic example; G is necessarily also a proper subgraph of one

of those maximal examples.
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For instance, let G contain a singly-charged weight 1 triangle H; w.l.o.g. H is

+
a

b c

but such an H is cyclotomic if and only if ebc = −1. Then by bounded equivgrow the only

cyclotomic charged signed graphs to induce H as a subgraph are (up to equivalence) S7, S
′
8,

or appropriate subgraphs. Thus if G is cyclotomic and induces H as a subgraph but is not

4-cyclotomic, then it is not equivalent to either S7 or S′8 and hence is equivalent to a proper

subgraph of one of them. Therefore G is nonmaximal.

By the same procedure (determination by equivgrow, with label set and charge set both

{0, 1,−1}, of a finite set of cyclotomic charged signed supergraphs all contained in 4-cyclotomic

examples) we thus have the following:

Lemma 5.3.4. A cyclotomic charged signed graph G with not all vertices weight 4 is nonmax-

imal if it induces a subgraph of any of the following forms (where cyclotomic):

(a) Uncharged triangles

(G contained in cyclotomic charged signed graph equivalent to T6 or S7)

(b) Single-charged triangles
±

(G contained in cyclotomic charged signed graph equivalent to S7 or S′8)

(c) Triple-charged triangles
±

± ±

(G contained in cyclotomic charged signed graph equivalent to C++
4 or C+−

4 )
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(d) Double-charged paths of form

± ±

(G contained in cyclotomic charged signed graph equivalent to C++
8 or C+−

8 )

(e) Triple-charged 3-paths of form
± ± ±

(G contained in cyclotomic charged signed graph equivalent to S7 or S8)

(f) Double-charged 3-paths of form
± ±

(G contained in cyclotomic charged signed graph equivalent to S7 or S′8)

Or of form
± ±

(G contained in cyclotomic charged signed graph equivalent to C++
6 , C+−

6 , S7 or S′8)

(g) Uncharged 5-cycles

(G contained in cyclotomic signed graph equivalent to T10)

5.3.3 Charged Signed Graphs With Weight 3 Vertices

Let G be a cyclotomic charged signed graph with a vertex v of weight 3. We seek to show that

G is nonmaximal; we consider separately the cases v charged and v uncharged.

v charged

W.l.o.g., v has a positive charge and neighbours a,b. Then one of the following holds:

(i) Both a, b charged;

(ii) Only one of a, b charged;

(iii) Neither charged.
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In case (i), if eab 6= 0 then G induces a triple-charged triangle on vertices v, a, b and thus is

nonmaximal by Lemma 5.3.4 (c). Otherwise v, a, b is a triple-charged 3-path in G, which is

therefore nonmaximal by part (e) of the same Lemma.

In case (ii), if eab = 0 then the subgraph on vertices v, a, b is a double-charged 3-path and thus

renders G nonmaximal by Lemma 5.3.4 (f). Otherwise, the subgraph on v, a, b is a double-

charged triangle, but up to equivalence the only cyclotomic example is

+
v

+a b

I

(5.1)

In case (iii) if eab 6= 0 then G induces a single-charged triangle on vertices v, a, b and thus is

nonmaximal by Lemma 5.3.4 (b). Otherwise, up to equivalence the subgraph on vertices v, a, b

is

+
v

a b

II

(5.2)

G is thus equivalent to a graph G′ inducing one of I or II as a subgraph, and if G′ is nonmaximal

then so is G. In each case we will demonstrate the existence of a cyclotomic supergraph of G′

(and hence G) by exhibiting suitable Gram vectors x, x′ as in Theorem 5.3.3.

Subgraph I Let W be the set of Gram vectors for A = M + 2I where M is a matrix

representative of a cyclotomic G′ inducing I as a subgraph. By identifying vertex i with its

Gram vector wi, we note the following conditions on W :

wv · wv = wa · wa = 3;wb · wb = 2

wv · wa = wv · wb = 1;wa · wb = −1

Consider x = wv − wa − wb. Then the following hold:

x · wa = 1− 3−−1 = −1

x · wb = 1−−1− 2 = 0

x · wv = 3− 1− 1 = 1

x · x = 1−−1− 0 = 2
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Further, if wi ∈W\{wv, wa, wb} then by assumption wv · wi = 0 and so

x · wi = −(wa · wi + wb · wi)

For any corresponding vertex i 6∈ {v, a, b} the subgraph H induced on vertices v, a, b, i is neces-

sarily cyclotomic; H is of form

+
v

+a b

∗
i (5.3)

but testing confirms cyclotomic examples occur only when wa ·wi +wb ·wi ∈ {0, 1,−1} and so

x · wi ∈ {0, 1,−1} for all such i.

Thus x ·x ∈ {1, 2, 3} and x ·wi ∈ {0, 1,−1} for all wi ∈W . Further, x ·wv 6= 0, so all conditions

on x required by the Theorem are satisfied.

With the same vertex labelling we now consider W ′ the Gram vectors of B = (−M) + 2I, for

which the following hold:

w′v · w′v = w′a · w′a = 1;w′b · w′b = 2

w′v · w′a = w′v · w′b = −1;w′a · w′b = 1

Setting x′ = −w′a − w′b − 3w′v we then have

x′ · w′a = −(1)− (1)− 3(−1) = 1 = −x · wa
x′ · w′b = −(1)− (2)− 3(−1) = 0 = −x · wb
x′ · w′v = −(−1)− (−1)− 3(1) = −1 = −x · wv
x′ · x′ = −(1)− (0)− 3(−1) = 2 = 4− x · x

Finally, if w′i ∈W ′\{w′v, w′a, w′b} then by assumption w′v · w′i = 0 and hence

x′ · w′i = −w′a · w′i − w′b · w′i = wa · wi + wb · wi = −x · wi

Therefore by Theorem 5.3.3, G′ is nonmaximal; thus G is nonmaximal if it induces a subgraph

equivalent to I.

Subgraph II (This case is analogous to graphs with subgraph I, again taking x = wv−wa−wb
and x′ = −w′a − w′b − 3w′v)
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Let W be the set of Gram vectors for A = M + 2I where M is a matrix representative of a

cyclotomic G′ inducing II as a subgraph. By identifying vertex i with its Gram vector wi, we

note the following conditions on W :

wv · wv = 3;wa · wa = wb · wb = 2

wv · wa = wv · wb = 1;wa · wb = 0

Consider x = wv − wa − wb. Then the following hold:

x · wa = 1− 2− 0 = −1

x · wb = 1− 0− 2 = −1

x · wv = 3− 1− 1 = 1

x · w = 1−−1−−1 = 3

Further, if wi ∈W\{wv, wa, wb} then by assumption wv · wi = 0 and so

x · wi = −(wa · wi + wb · wi)

For any corresponding vertex i 6∈ {v, a, b} the subgraph H induced on vertices v, a, b, i is neces-

sarily cyclotomic; H is of form

+
v

a b

∗
i (5.4)

but testing confirms cyclotomic examples occur only when wa ·wi +wb ·wi ∈ {0, 1,−1} and so

x · wi ∈ {0, 1,−1} for all such i.

Thus x ·x ∈ {1, 2, 3} and x ·wi ∈ {0, 1,−1} for all wi ∈W . Further, x ·wv 6= 0, so all conditions

on x required by the Theorem are satisfied.

With the same vertex labelling we now consider W ′ the Gram vectors of B = (−M) + 2I, for

which the following hold:

w′v · w′v = 1;w′a · w′a = w′b · w′b = 2

w′v · w′a = w′v · w′b = −1;w′a · w′b = 0
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Setting x′ = −w′a − w′b − 3w′v we then have

x′ · w′a = −(2)− (0)− 3(−1) = 1 = −x · wa
x′ · w′b = −(0)− (2)− 3(−1) = 1 = −x · wb
x′ · w′v = −(−1)− (−1)− 3(1) = −1 = −x · wv
x′ · w′ = −(1)− (1)− 3(−1) = 1 = 4− x · x

Finally, if w′i ∈W ′\{w′v, w′a, w′b} then by assumption w′v · w′i = 0 and hence

x′ · w′i = −w′a · w′i − w′b · w′i = wa · wi + wb · wi = −x · wi

Therefore by Theorem 5.3.3, G′ is nonmaximal; thus G is nonmaximal if it induces a subgraph

equivalent to II. This completes the proof that a cyclotomic graph G with a charged vertex of

weight 3 is nonmaximal.

v uncharged

All neighbours of v charged Up to equivalence, G induces a subgraph on v and its neigh-

bours a, b, c of the following form:

±
b

v

+
a

±
c (5.5)

but the only cyclotomic examples are

+
b

v

+
a

+
c

+
b

v

+
a

+
c

+
b

v

+
a

+
c

+
b

v

+
a

−
c

+
b

v

−
a

+
c

+
b

v

−
a

−
c
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each of which induces a double-charged 3-path; thus G is equivalent to a nonmaximal graph by

Lemma 5.3.4 (f).

Two neighbours of v charged Up to equivalence, G induces a subgraph on v and its

neighbours a, b, c of the form

v

c

+
a

±
b

where, having chosen a, b to be charged, the possibility of eac or ebc being nonzero is excluded

by Lemma 5.3.4 (b).

There are two cyclotomic examples: the first is

v

c

+
a

−
b

which can be excluded by part (f) of Lemma 5.3.4; the second is

v

c

+
a

+
b (5.6)

for which we consider the two possibilities: a has a neighbour in G, or it doesn’t.

If not, then let W be the set of Gram vectors for A = M+2I where M is a matrix representative

of G with the subgraph on v, a, b, c as above. By identifying vertex i with its Gram vector wi,

we note the following conditions on W :

wa · wa = wb · wb = 3;wv · wv = wc · wc = 2

wv · wa = wv · wb = wv · wc = 1;wa · wb = −1
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Consider x = wa + wb − wv. Then the following hold:

x · wa = 3 + (−1)− (1) = 1

x · wb = (−1) + 3− (1) = 1

x · wc = 0 + 0− (1) = −1

x · wv = 1 + 1− 2 = 0

x · x = 1 + 1− 0 = 2

Further, if wi ∈W\{wv, wa, wb, wc} then by assumption wv · wi = wa · wi = 0 and so

x · wi = wb · wi ∈ {0, 1,−1}

Thus x ·w ∈ {1, 2, 3} and x ·wi ∈ {0, 1,−1} for all wi ∈W . Further, x ·wa 6= 0, so all conditions

on x required by the Theorem are satisfied.

With the same vertex labelling we now consider W ′ the Gram vectors of B = (−M) + 2I, for

which the following hold:

w′a · w′a = w′b · w′b = 1;w′v · w′v = w′c · w′c = 2

w′v · w′a = w′v · w′b = w′v · w′c − 1;w′a · w′b = 1

Setting x′ = −3w′a + w′b − w′v we then have

x′ · w′a = −3(1) + 1− (−1) = −1 = −x · wa
x′ · w′b = −3(1) + 1− (−1) = −1 = −x · wb
x′ · w′c = −3(0) + 0− (−1) = 1 = −x · wc
x′ · w′v = −3(−1) + (−1)− (2) = 0 = −x · wv
x′ · x′ = −3(−1) + (−1)− (0) = 2 = 4− x · x

Finally, if w′i ∈W ′\{w′v, w′a, w′b, w′c} then by assumption w′v · w′i = w′a · w′i = 0 and hence

x′ · w′i = w′b · w′i = −wb · wi = −x · wi

Therefore by Theorem 5.3.3, G is nonmaximal if a has no other neighbours.

This leaves the case in which a has a neighbour d 6= v, b; up to equivalence the subgraph induced
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on vertices v, a, b, c, d is then of the form

c v
+
a

+
b

∗
d (5.7)

for which the only cyclotomic example is

c v
+
a

+
bd (5.8)

Therefore, let W be the set of Gram vectors for A = M+2I where M is a matrix representative

of G with such an induced subgraph. By identifying vertex i with its Gram vector wi, we note

the following conditions on W :

wa · wa = wb · wb = 3;wv · wv = wc · wc = wd · wd = 2

wv · wa = wv · wb = wv · wc = wa · wd = wb · wd = 1;wa · wb = wc · wd = −1

Consider x = wa + wb − wc − 2wd. Then the following hold:

x · wa = 3 +−1− 0− 2(1) = 0

x · wb = −1 + 3− 0− 2(1) = 0

x · wc = 0 + 0− 2− 2(−1) = 0

x · wd = 1 + 1− (−1)− 2(2) = −1

x · wv = 1 + 1− 1− 2(0) = 1

x · w = 0 + 0− 0− 2(−1) = 2

Further, if wi ∈ W\{wv, wa, wb, wc, wd} then by assumption wv · wi = 0 and also, as vertices

a, b have weighted degree 4, wa · wi = wb · wi = 0. Thus

x · wi = −wc · wi − wd · wi
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and the subgraph on v, a, b, c, d, i is of form

c v
+
a

+
bd

∗
i (5.9)

which is cyclotomic only if −wc · wi − wd · wi ∈ {0, 1,−1}.

Thus x ·x ∈ {1, 2, 3} and x ·wi ∈ {0, 1,−1} for all wi ∈W . Further, x ·wv 6= 0, so all conditions

on x required by the Theorem are satisfied.

With the same vertex labelling we now consider W ′ the Gram vectors of B = (−M) + 2I, for

which the following hold:

w′a · w′a = w′b · w′b = 1;w′v · w′v = w′c · w′c = w′d · w′d = 2

w′v · w′a = w′v · w′b = w′v · w′c = w′a · w′d = w′b · w′d = −1;w′a · w′b = w′c · w′d = 1

Setting x′ = −4w′a − w′c − w′d − 3w′v we then have

x′ · w′a = −4(1)− (0)− (−1)− 3(−1) = 0 = −x · wa
x′ · w′b = −4(1)− (0)− (−1)− 3(−1) = 0 = −x · wb
x′ · w′c = −4(0)− (2)− (1)− 3(−1) = 0 = −x · wc
x′ · w′d = −4(−1)− (1)− (2)− 3(0) = 1 = −x · wc
x′ · w′v = −4(−1)− (−1)− (0)− 3(2) = −1 = −x · wv
x′ · x′ = −4(0)− (0)− (1)− 3(−1) = 2 = 4− x · x

Further, if w′i ∈W ′\{w′v, w′a, w′b, w′c, w′d} then by assumption w′v ·w′i = 0 and further as vertices

a, b have weighted degree 4, w′a · w′i = w′b · w′i = 0. Thus

x′ · w′i = −w′c · w′i − w′d · w′i = wc · wi + wd · wi = −x · wi

Therefore by Theorem 5.3.3, G is nonmaximal if a has another neighbour. This completes the

proof in the case of v having two charged neighbours.
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One neighbour of v charged Using Lemma 5.3.4 (a) and (b), the subgraph on vertex v

and its neighbours a, b, c is necessarily triangle free, and up to equivalence is therefore

cv
+
a

b (5.10)

Let W be the set of Gram vectors for A = M + 2I where M is a matrix representative of G

with the subgraph on v, a, b, c as above. By identifying vertex i with its Gram vector wi, we

note the following conditions on W :

wa · wa = 3;wv · wv = wb · wb = wc · wc = 2

wv · wa = wv · wb = wv · wc = 1

Setting x = 2wv − wa − wb − wc we then have

x · wa = 2(1)− 3− 0− 0 = −1

x · wb = 2(1)− 0− 2− 0 = 0

x · wc = 2(1)− 0− 0− 2 = 0

x · wv = 2(2)− 1− 1− 1 = 1

x · x = 2(1)− (−1)− 0− 0 = 3

Further, if wi ∈W\{wv, wa, wb, wc} then by assumption wv · wi = 0, so

x · wi = −(wa · wi + wb · wi + wc · wi)

and the subgraph induced on v, a, b, c, i is of form

cv
+
a

b

∗
i (5.11)

which is cyclotomic only if wa · wi + wb · wi + wc · wi ∈ {0, 1,−1}.

Thus x ·x ∈ {1, 2, 3} and x ·wi ∈ {0, 1,−1} for all wi ∈W . Further, x ·wv 6= 0, so all conditions

on x required by the Theorem are satisfied.

With the same vertex labelling we now consider W ′ the Gram vectors of B = (−M) + 2I, for

112



which the following hold:

wa · wa = 1;wv · wv = wb · wb = wc · wc = 2

wv · wa = wv · wb = wv · wc = −1

Setting x′ = −w′a − w′b − w′c − 2w′v we then have

x′ · w′a = −(1)− (0)− (0)− 2(−1) = 1 = −x · wa
x′ · w′b = −(0)− (2)− (0)− 2(−1) = 0 = −x · wb
x′ · w′c = −(0)− (0)− (2)− 2(−1) = 0 = −x · wc
x′ · w′v = −(−1)− (−1)− (−1)− 2(2) = −1 = −x · wv
x′ · x′ = −(1)− (0)− (0)− 2(−1) = 1 = 4− x · x

Further, if w′i ∈W ′\{w′v, w′a, w′b, w′c} then by assumption w′v · w′i = 0 and so

x′ · w′i = −w′a · w′i − w′b · w′i − w′c · w′i = wa · wi + wb · wi + wc · wi = −x · wi

Therefore by Theorem 5.3.3, G is nonmaximal if it contains an uncharged weight-3 vertex with

a single charged neighbour.

All neighbours of v uncharged (This case is analogous to the previous, with the same

choice of x, x′ now yielding a cyclotomic extension by an uncharged vertex)

Using Lemma 5.3.4 (a), the subgraph on vertex v and its neighbours a, b, c is necessarily triangle-

free and up to equivalence is therefore

cva

b (5.12)

Let W be the set of Gram vectors for A = M + 2I where M is a matrix representative of G

with the subgraph on v, a, b, c as above. By identifying vertex i with its Gram vector wi, we

note the following conditions on W :

wa · wa = wb · wb = wc · wc = wv · wv = 2

wv · wa = wv · wb = wv · wc = 1
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Setting x = 2wv − wa − wb − wc we then have

x · wa = 2(1)− 2− 0− 0 = 0

x · wb = 2(1)− 0− 2− 0 = 0

x · wc = 2(1)− 0− 0− 2 = 0

x · wv = 2(2)− 1− 1− 1 = 1

x · x = 2(1)− (0)− 0− 0 = 2

Further, if wi ∈W\{wv, wa, wb, wc} then by assumption wv · wi = 0 and so

x · wi = −(wa · wi + wb · wi + wc · wi)

and the subgraph induced on v, a, b, c, i is of form

cva

b

∗
i (5.13)

which is cyclotomic only if wa · wi + wb · wi + wc · wi ∈ {0, 1,−1}.

Thus x ·x ∈ {1, 2, 3} and x ·wi ∈ {0, 1,−1} for all wi ∈W . Further, x ·wv 6= 0, so all conditions

on x required by the Theorem are satisfied.

With the same vertex labelling we now consider W ′ the Gram vectors of B = (−M) + 2I, for

which the following hold:

wa · wa = wb · wb = wc · wc = wv · wv = 2

wv · wa = wv · wb = wv · wc = −1

Setting x′ = −w′a − w′b − w′c − 2w′v we then have

x′ · w′a = −(2)− (0)− (0)− 2(−1) = 0 = −x · wa
x′ · w′b = −(0)− (2)− (0)− 2(−1) = 0 = −x · wb
x′ · w′c = −(0)− (0)− (2)− 2(−1) = 0 = −x · wc
x′ · w′v = −(−1)− (−1)− (−1)− 2(2) = −1 = −x · wv
x′ · x′ = −(0)− (0)− (0)− 2(−1) = 2 = 4− x · x

Further, if w′i ∈W ′\{w′v, w′a, w′b, w′c} then by assumption w′v · w′i = 0,thus

x′ · w′i = −w′a · w′i − w′b · w′i − w′c · w′i = wa · wi + wb · wi + wc · wi = −x · wi
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Therefore by Theorem 5.3.3, G is nonmaximal if it contains an uncharged vertex of weighted

degree 3 with uncharged neighbours. This completes the proof for v uncharged, and thus for v

of weighted degree 3.

5.3.4 Charged Signed Graphs With Weight 2 Vertices

Let G be a cyclotomic charged signed graph with a vertex of weighted degree 2. We seek to

show that G is nonmaximal.

We may assume by the previous section that G has no vertices of weighted degree 3, so all

vertices of G have weighted degree 1,2 or 4. If there are no vertices of weighted degree 4,

then G is a chordless path or cycle and is clearly nonmaximal by embedding in an appropriate

T2k or C+±
2k . We therefore need only consider graphs G containing a weight 2 vertex v with

a neighbour w of weight 4 (since a weight 1 vertex clearly cannot neighbour both a weight 2

vertex and a weight 4 vertex). This gives rise to the following cases:

(i) Both v, w charged;

(ii) v charged, w uncharged;

(iii) v uncharged, w charged;

(iv) Neither charged.

In case (i), there necessarily exist neighbours a, b of w but not of v, and up to equivalence the

subgraph of G on vertices v, w, a, b is therefore of the form

∗
a

∗
b

+
v

±
w

(5.14)

but the only cyclotomic examples are

a

b

+
v

−
w

+
a

+
b

+
v

−
w

(5.15)

which can be excluded by Lemma 5.3.4 (b) and (e) respectively.

115



In case (ii), there necessarily exist neighbours a, b, c of w but not of v, and up to equivalence

the subgraph of G on vertices v, w, a, b, c is therefore of the form

∗
b

w

∗
a

∗
c

+
v

(5.16)

But there is no choice of charges on vertices a, b, c and edge labels eab, eac, ebc ∈ {0, 1,−1} for

which such a graph is cyclotomic, so this case is excluded by the cyclotomicity of G.

In case (iii), there necessarily exists a neighbour u of v. If u does not neighbour w, then w has

two other neighbours a, b and - up to equivalence - the subgraph of G on vertices u, v, w, a, b is

of the form

∗
a

∗
b

v
+
w

∗
u

(5.17)

But there is no choice of charges on vertices u, a, b and edge labels eau, ebu, eab ∈ {0, 1,−1} for

which such a graph is cyclotomic, so this case is excluded by the cyclotomicity of G. Vertex

u is therefore a neighbour of w, which has one other neighbour a, and up to equivalence the

subgraph of G on vertices u, v, w, a is of the form

+
w

v

∗
u

∗
a (5.18)
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but the only cyclotomic examples are

+
w

v u

+
a

+
w

v
+
u

a (5.19)

The first of these is excluded by Lemma 5.3.4 (b). For the second, we deduce that u, v, w, a

are the only vertices of G: any other vertex could not be a neighbour of v by assumption of

weighted degree 2; nor of u or w since these have weight 4. So for G to be any larger a would

necessarily have a neighbour a′, inducing (up to equivalence) a subgraph of G of the form

+
w

v
+
u

a
∗

a′

but no such graph is cyclotomic. The 4-vertex graph G is then clearly not maximal by embed-

ding into (for example) an appropriate graph of form C++
6 .

This completes the proof of nonmaximality of G when at least one of v or w is charged.

Neither v, w charged

There is necessarily a neighbour u of v; by Lemma 5.3.4 (a) and (b) this cannot be a neighbour

of w. Thus w also has neighbours a, b, c; up to equivalence the subgraph of G on vertices

u, v, w, a, b, c is therefore of the form

∗
b

w

∗
a

∗
c

v

∗ u (5.20)

We may reduce the number of cases to be considered by further fixing the first charge (by

negation) and the identity of the charged vertices (by permutation of a, b, c), which leads to the

following possibilities (where xi denotes the charge on vertex i):

(I) u charged, a, b, c uncharged. W.l.o.g. xu = 1, xa = xb = xc = 0;
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(II) u charged, a, b, c charged. W.l.o.g. xu = 1, xa, xb, xc ∈ {1,−1};

(III) u charged, two of a, b, c charged. W.l.o.g. xu = 1, xa, xb ∈ {1,−1}, xc = 0;

(IV) u charged, one of a, b, c charged. W.l.o.g. xu = 1, xa ∈ {1,−1}, xb = xc = 0;

(V) u uncharged, a, b, c uncharged. W.l.o.g. xu = xa = xb = xc = 0;

(VI) u uncharged, a, b, c charged. W.l.o.g. xu = 0, xa = 1, xb, xc ∈ {1,−1};

(VII) u uncharged, two of a, b, c charged. W.l.o.g. xa = 1, xb ∈ {1,−1}, xu = xc = 0;

(VIII) u uncharged, one of a, b, c charged. W.l.o.g. xa = 1, xu = xb = xc = 0.

Cases (II), (IV), (VI), (VIII) can immediately be discarded since no choice of undetermined edge

labels and charges yields a cyclotomic graph on u, v, w, a, b, c which contradicts the cyclotomicity

of G. Case (III) can also be ruled out, as the only cyclotomic examples are

+
b

w

−
a

c

v

+ u

−
b

w

+
a

c

v

+ u

−
b

w

−
a

c

v

+ u

+
b

w

+
a

c

v

+ u (5.21)

but the first two are excluded by Lemma 5.3.4 (b) (e.g., vertices w, b, c) whilst the second two

are excluded by part (d) of the same (using vertices u, v, w, b).

We now dispense with the remaining cases by Gram vector constructions.

(I) Up to permutation of a, b, c the only cyclotomic example occurs when eau = −1 and all

other undetermined edge labels are zero. Redrawing, this gives
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bw

a c

v
+
u

(5.22)

Let W be the set of Gram vectors for A = M + 2I where M is a matrix representative of G

with the subgraph on u, v, w, a, b, c as above. By identifying vertex i with its Gram vector wi,

we note the following conditions on W :

wu · wu = 3;wv · wv = ww · ww = wa · wa = wb · wb = wc · wc = 2

ww · wa = ww · wb = ww · wc = wu · wv = wv · ww = 1;wu · wa = −1

Let i be any other vertex of G. Then by assumption wv ·wi = 0, and as vertex w has weighted

degree four ww ·wi = 0 by cyclotomicity of G. The most general subgraph on u, v, w, a, b, c, i is

therefore
bw

a c

v
+
u

∗
i

(5.23)

but testing all possible combinations of edge labels and charges shows that this is cyclotomic

only if

wa · wi = wu · wi = 0

which matches our expectation that any further neighbour of u or a would be a neighbour of v.

Setting x = wv + wa − ww we then have

x · wu = 1− 1− 0 = 0

x · wv = 2 + 0− 1 = 1

x · ww = 1 + 1− 2 = 0

x · wa = 0 + 2− 1 = 1

x · wb = 0 + 0− 1 = −1

x · wc = 0 + 0− 1 = −1

x · x = 1 + 1− 0 = 2

Further, if wi ∈W\{wu, wv, ww, wa, wb, wc} then by the previous observation

x · wi = wv · wi + wa · wi − ww · wi = 0

So x · x ∈ {1, 2, 3} and x · wi ∈ {0, 1,−1} for all wi ∈ W . Further, x · wv 6= 0, so all conditions
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on x required by the Theorem are satisfied.

With the same vertex labelling we now consider W ′ the Gram vectors of B = (−M) + 2I, for

which the following hold:

w′u · w′u = 1;w′v · w′v = w′w · w′w = w′a · w′a = w′b · w′b = w′c · w′c = 2

w′w · w′a = w′w · w′b = w′w · w′c = w′u · w′v = w′v · w′w = −1;w′u · w′a = 1

and for any other w′i ∈W ′,

w′a · w′i = w′u · w′i = w′v · w′i = w′w · w′i = 0

Setting x′ = −2w′u − 2w′v − w′w we then have

x′ · w′u = −2(1)− 2(−1)− (0) = 0 = −x · wu
x′ · w′v = −2(−1)− 2(2)− (−1) = −1 = −x · wv
x′ · w′w = −2(0)− 2(−1)− (2) = 0 = −x · ww
x′ · w′a = −2(1)− 2(0)− (−1) = −1 = −x · wa
x′ · w′b = −2(0)− 2(0)− (−1) = 1 = −x · wb
x′ · w′c = −2(0)− 2(0)− (−1) = 1 = −x · wc
x′ · x′ = −2(0)− 2(−1)− (0) = 2 = 4− x · x

Further, if w′i ∈W ′\{w′u, w′v, w′w, w′a, w′b, w′c} then

x′ · w′i = −2w′u · w′i − 2w′v · w′i − w′w · w′i = 0 = −x · wi

Therefore by Theorem 5.3.3, G is nonmaximal if case (I) holds.

(V) We note the following useful result:

Lemma 5.3.5. If a cyclotomic charged signed graph G induces a subgraph equivalent to

u v w b

a c

d

where v has weight 2 in G and no vertices of G have weight 3, then G is equivalent to a

nonmaximal subgraph of S16.
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Proof. Since a has weight 3, there must exist a neighbour e of a in G; testing confirms that the

subgraph on u, v, w, b, c, d, e must then be

u

v w b

a c

d

e

If this is all of G then we are done, since this is equivalent to a subgraph of S16. Otherwise,

one of u, c, d, b or e must have a neighbour in G, and by the assumption on weight 3 vertices it

must then have two. We will illustrate the argument in the case of u having neighbours; the

other possibilities hold in the same way.

Introducing neighbours x, y of u, fixing eux = euy = 1 by switching and testing subgraphs,

we find that one of x, y neighbours e and the other neighbours d, and the graph obtained is

a subgraph of S16; w.l.o.g. we may take x a neighbour of d. Now d and e have weight 3, so

they must have neighbours in G; testing confirms that the only possibility is that they share

a mutual neighbour z. The graph obtained is again a proper subgraph of S16, and no vertices

have weight 3; if this is all of G then we are done. Otherwise our existing 11 vertex graph

can be grown into G by equivgrow subject to the constraint that no vertex added can be a

neighbour of v. This process terminates with at most 14 vertices, and each graph obtained can

be embedded in a graph of form S16, so the result holds.

In case (V) for cyclotomicity the subgraph on u, v, w, a, b, c is necessarily equivalent to one of

u v w b

a c u

v w b

a c (5.24)

depending on whether u and w share one or three of a, b, c as mutual neighbours (no cyclotomic

examples arise otherwise). If this is all of G then we are done, since each can be embedded

into a graph of form T2k. Otherwise, there exists a neighbour d in G of at least one of u, a, b, c.

Considering the subgraphs on u, v, w, a, b, c, d we have, up to equivalence, the following possi-
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bilities:
u v w b

a c

d

u
v w b

a c

d u
v w b

a c

d

u v w b

a c

d u v w b

a c

+
d

u v w b

a c

d u v w b

a c

+
d

u

v w b

a c

d

u

v w b

a c

+
d

(5.25)

The first example is precisely the subgraph excluded by Lemma 5.3.5, whilst the second two

force G to be a nonmaximal subgraph of some T10 by Lemma 5.3.4 (g). For the others we

proceed by Gram vector construction in accordance with Theorem 5.3.3.

Let W be the set of Gram vectors for A = M + 2I where M is a matrix representative of G

with subgraph on u, v, w, a, b, c, d one of the graphs
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u v w b

a c

d u v w b

a c

+
d

u v w b

a c

d u v w b

a c

+
d

(5.26)

By identifying vertex i with its Gram vector wi, we note the following conditions on W :

wu · wu = wv · wv = ww · ww = wa · wa = wb · wb = wc · wc = 2;wd · wd ∈ {2, 3}

wu · wv = wv · ww = ww · wb = ww · wa = ww · wc = 1

wu · wa = −1

wu · wd ∈ {0, 1}, wb · wd ∈ {0, 1}, wc · wd ∈ {−1, 0}

Setting x = wv − ww + wa we then have

x · wv = 2− 1 + 0 = 1

x · wa = 0− 1 + 2 = 1

x · wb = 0− 1 + 0 = −1

x · wc = 0− 1 + 0 = −1

x · wu = 1− 0 + (−1) = 0

x · ww = 1− 2 + 1 = 0

x · wd = 0− 0 + 0 = 0

x · x = 1− 0 + 1 = 2

Remark 5.3.6. Let i be any other vertex of G. We find that if wa ·wi 6= 0 then G necessarily

induces a subgraph on u, v, w, a, b, c, i which can be excluded by Lemma 5.3.5.

Thus we may assume wa · wi = 0 and, as vertex w has weight 4, ww · wi = 0. As wv · wi = 0

by assumption, we conclude that x · wi = 0 for all wi ∈ W\{wa, wb, wc, wd, wu, wv, ww}. So

x · x ∈ {1, 2, 3} and x · wi ∈ {0, 1,−1} for all wi ∈ W . Further, x · wv 6= 0, so all conditions on

x required by the Theorem are satisfied.

With the same vertex labelling we now consider W ′ the Gram vectors of B = (−M) + 2I, for
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which the following hold:

w′u · w′u = w′v · w′v = w′w · w′w = w′a · w′a = w′b · w′b = w′c · w′c = 2;w′d · w′d ∈ {1, 2}

w′u · w′v = w′v · w′w = w′w · w′b = w′b · w′d = w′w · w′a = w′w · w′c = −1

w′u · w′a = w′c · w′d = 1

Setting x′ = −w′v − w′w − w′a we then have

x′ · w′v = −(2)− (−1)− (0) = −1 = −x · wv
x′ · w′a = −(0)− (−1)− (2) = −1 = −x · wa
x′ · w′b = −(0)− (−1)− (0) = 1 = −x · wb
x′ · w′c = −(0)− (−1)− (0) = 1 = −x · wc
x′ · w′u = −(−1)− (0)− (1) = 0 = −x · wu
x′ · w′w = −(−1)− (2)− (−1) = 0 = −x · ww
x′ · w′d = −(0)− (0)− (0) = 0 = −x · wd
x′ · x′ = −(−1)− (0)− (−1) = 2 = 4− x · x

Further, if w′i ∈W ′\{w′u, w′v, w′w, w′a, w′b, w′c, w′d} then by Remark 5.3.6

x′ · w′i = −w′v · w′i − w′w · w′i − w′a · w′i = −w′a · w′i = 0 = −x · wi

Thus all conditions of the Theorem are satisfied for these graphs.

Alternatively let W be the set of Gram vectors for A = M + 2I where M is a matrix represen-

tative of G with the subgraph on u, v, w, a, b, c, d one of the remaining graphs

u

v w b

a c

d

u

v w b

a c

+
d

(5.27)

By identifying vertex i with its Gram vector wi, we note the following conditions on W :

wu · wu = wv · wv = ww · ww = wa · wa = wb · wb = wc · wc = 2;wd · wd ∈ {2, 3}

wu · wv = wv · ww = ww · wb = ww · wa = ww · wc = wa · wu = wb · wd = 1

wu · wb = wu · wc = wc · wd = −1

Let wα be a vector with the properties that wα ·wi = 0 for all wi ∈W and wα ·wα = 1. Then
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setting x = − 1
2wa + 1

2wv + wα we have

x · wv = − 1
2 (0) + 1

2 (2) + 0 = 1

x · wa = − 1
2 (2) + 1

2 (0) + 0 = −1

x · ww = − 1
2 (1) + 1

2 (1) + 0 = 0

x · wu = − 1
2 (1) + 1

2 (1) + 0 = 0

x · wb = − 1
2 (0) + 1

2 (0) + 0 = 0

x · wc = − 1
2 (0) + 1

2 (0) + 0 = 0

x · wd = − 1
2 (0) + 1

2 (0) + 0 = 0

x · x = − 1
2 (−1) + 1

2 (1) + wα · wα = 2

Remark 5.3.7. By testing possible subgraphs on u, v, w, a, b, c, d, i for cyclotomicity we find

that for any wi ∈W\{wu, wv, ww, wa, wb, wc, wd} wa · wi = 0.

Thus x · wi = 0 for any such wi also. So x · x ∈ {1, 2, 3} and x · wi ∈ {0, 1,−1} for all wi ∈W .

Further, x · wv 6= 0, so all conditions on x required by the Theorem are satisfied.

With the same vertex labelling we now consider W ′ the Gram vectors of B = (−M) + 2I, for

which the following hold:

wu · wu = wv · wv = ww · ww = wa · wa = wb · wb = wc · wc = 2;wd · wd ∈ {1, 2}

wu · wv = wv · ww = ww · wb = ww · wa = ww · wc = wa · wu = wb · wd = −1

wu · wb = wu · wc = wc · wd = 1

Let w′α be a vector with the properties that w′α ·w′i = 0 for all w′i ∈W ′ and w′α ·w′α = 1. Then

setting x′ = − 1
2w
′
v + 1

2w
′
a + w′α we have

x′ · w′v = − 1
2 (2) + 1

2 (0) + 0 = −1 = −x · wv
x′ · w′a = − 1

2 (0) + 1
2 (2) + 0 = 1 = −x · wa

x′ · w′w = − 1
2 (−1) + 1

2 (−1) + 0 = 0 = −x · ww
x′ · w′u = − 1

2 (−1) + 1
2 (−1) + 0 = 0 = −x · wu

x′ · w′b = − 1
2 (0) + 1

2 (0) + 0 = 0 = −x · wb
x′ · w′c = − 1

2 (0) + 1
2 (0) + 0 = 0 = −x · wc

x′ · w′d = − 1
2 (0) + 1

2 (0) + 0 = 0 = −x · wd
x′ · x′ = − 1

2 (−1) + 1
2 (1) + w′α · w′α = 2 = 4− x · x

Further, if w′i ∈W ′\{w′u, w′v, w′w, w′a, w′b, w′c, w′d} then by Remark 5.3.7

x′ · w′i =
1
2
w′a · w′i = 0 = −x · wi
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Thus all conditions of the Theorem are satisfied for these graphs.

Therefore by Theorem 5.3.3, G is nonmaximal if case (V) holds.

(VII) We recover three possible cyclotomic graphs on u, v, w, a, b, c:

u v w
−
b

+
ac

u

v w
+
b

+
ac u v w

+
b

+
ac (5.28)

The first is excluded by Lemma 5.3.4 (b) (e.g., vertices w, a, c.) The remaining two we eliminate

by Gram vector constructions as in Theorem 5.3.3.

Let W be the set of Gram vectors for A = M + 2I where M is a matrix representative of G

with subgraph on u, v, w, a, b, c
u

v w
+
b

+
ac

(5.29)

By identifying vertex i with its Gram vector wi, we note the following conditions on W :

wu · wu = wv · wv = ww · ww = wc · wc = 2;wa · wa = wb · wb = 3

wu · wv = wv · ww = ww · wb = ww · wa = ww · wc = wc · wu = 1

wu · wa = wu · wb = wa · wb = −1

Let wα be a vector with the properties that wα ·wi = 0 for all wi ∈W and wα ·wα = 1. Then

setting x = wv − 1
2wu −

1
2ww + wα we have

x · wv = 2− 1
2 (1)− 1

2 (1) + 0 = 1

x · wc = 0− 1
2 (1)− 1

2 (1) + 0 = −1

x · wu = 1− 1
2 (2)− 1

2 (0) + 0 = 0

x · ww = 1− 1
2 (0)− 1

2 (2) + 0 = 0

x · wa = 0− 1
2 (−1)− 1

2 (1) + 0 = 0

x · wb = 0− 1
2 (−1)− 1

2 (1) + 0 = 0

x · x = 1− 1
2 (0)− 1

2 (0) + wα · wα = 2

As w and u have weighted degree 4, they have no further neighbours in G and thus for wi ∈
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W\{wu, wv, ww, wa, wb, wc},

x · wi = wv · wi −
1
2
wu · wi −

1
2
ww · wi + wα · wi = 0

So x · x ∈ {1, 2, 3} and x · wi ∈ {0, 1,−1} for all wi ∈ W . Further, x · wv 6= 0, so all conditions

on x required by the Theorem are satisfied.

With the same vertex labelling we now consider W ′ the Gram vectors of B = (−M) + 2I, for

which the following hold:

wu · wu = wv · wv = ww · ww = wc · wc = 2;wa · wa = wb · wb = 1

wu · wv = wv · ww = ww · wb = ww · wa = ww · wc = wc · wu = −1

wu · wa = wu · wb = wa · wb = 1

Let w′α be a vector with the properties that w′α ·w′i = 0 for all w′i ∈W ′ and w′α ·w′α = 1. Then

setting x′ = −w′u − w′v + w′a + w′α we have

x′ · w′v = −(−1)− (2) + (0) + 0 = −1 = −x · wv
x′ · w′c = −(−1)− (0) + (0) + 0 = 1 = −x · wv
x′ · w′u = −(2)− (−1) + (1) + 0 = 0 = −x · wu
x′ · w′w = −(0)− (−1) + (−1) + 0 = 0 = −x · ww
x′ · w′a = −(1)− (0) + (1) + 0 = 0 = −x · wa
x′ · w′b = −(1)− (0) + (1) + 0 = 0 = −x · wb
x′ · x′ = −(0)− (−1) + (0) + w′α · w′α = 2 = 4− x · x

Further, if w′i ∈W ′\{w′u, w′v, w′w, w′a, w′b, w′c} then by the earlier observation

x′ · w′i = 0 = −x · wi

Thus all conditions of the Theorem are satisfied for this graph.

Finally, let W be the set of Gram vectors for A = M + 2I where M is a matrix representative

of G with subgraph on u, v, w, a, b, c

u v w
+
b

+
ac (5.30)
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By identifying vertex i with its Gram vector wi, we note the following conditions on W :

wu · wu = wv · wv = ww · ww = wc · wc = 2;wa · wa = wb · wb = 3

wu · wv = wv · ww = ww · wb = ww · wa = ww · wc = 1

wu · wc = wa · wb = −1

Setting x = wa + wb − ww we have

x · wu = 0 + 0− (0) = 0

x · wv = 0 + 0− (1) = −1

x · wc = 0 + 0− (1) = −1

x · ww = 1 + 1− (2) = 0

x · wa = 3 +−1− (1) = 1

x · wb = −1 + 3− (1) = 1

x · x = 1 + 1− (0) = 2

Now if wi ∈ W\{wu, wv, ww, wa, wb, wc}, then as w can have no further neighbours in G,

x · wi = wa · wi + wb · wi. But by considering the general subgraph on u, v, w, a, b, i:

u v w
+
b

+
ac

∗
i (5.31)

we find (by cyclotomicity of G) that wa · wi = wb · wi = 0, and thus x · wi = 0 also.

With the same vertex labelling we now consider W ′ the Gram vectors of B = (−M) + 2I, for

which the following hold:

wu · wu = wv · wv = ww · ww = wc · wc = 2;wa · wa = wb · wb = 1

wu · wv = wv · ww = ww · wb = ww · wa = ww · wc = −1

wu · wc = wa · wb = 1

128



Setting x′ = −w′w − 2w′a, we have

x′ · w′u = −(0)− 2(0) = 0 = −x · wu
x′ · w′v = −(−1)− 2(0) = 1 = −x · wv
x′ · w′c = −(−1)− 2(0) = 1 = −x · wc
x′ · w′w = −(2)− 2(−1) = 0 = −x · ww
x′ · w′a = −(−1)− 2(1) = −1 = −x · wa
x′ · w′b = −(−1)− 2(1) = −1 = −x · wb
x′ · x′ = −(0)− 2(−1) = 2 = 4− x · x

and as for w′i ∈ W ′\{wu, wv, ww, wa, wb, wc} w′w · w′i = w′a · wi = 0 by earlier observations, we

have x′ ·w′i = 0 = −x ·wi also. Thus all conditions of the Theorem are satisfied for this graph.

This completes the proof of nonmaximality for case (VII), and thus for all graphs containing

uncharged neighbouring vertices v, w of weight 2,4 respectively. Hence any cyclotomic graph

with a vertex of weighted degree 2 is nonmaximal.

5.3.5 Charged Signed Graphs With Weight 1 Vertices

Let G be a cyclotomic charged signed graph with a vertex v of weighted degree 1. By the

previous two sections, we may assume that all vertices of G have weight 1 or 4, and thus that

v has a neighbour w of weight 4 (else we have the trivially nonmaximal 1-vertex charged graph

or 2-vertex uncharged graph).

If w were charged, then it would necessarily have two neighbours a, b, and (up to equivalence)

G would induce a cyclotomic subgraph of the form

v
+
w

∗
a

∗
b (5.32)

but no such graph is cyclotomic. Hence w is uncharged and must have three neighbours a, b, c.

Up to equivalence, G therefore contains a cyclotomic subgraph of the form

v w

∗
a

∗
b

∗ c

(5.33)
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Up to equivalence - in particular, by permuting a, b, c to fix the identity of charged vertices -

there are only three cyclotomic possibilities:

v w

+
a

−
b

c
v w

+
a

+
b

c
v w

a

b

c

(5.34)

The first is excluded by Lemma 5.3.4 (b). For the second, we note that there must exist some

neighbour d in G of a since otherwise it would have weighted degree 3. Since d cannot be a

neighbour of v (by assumption) or w (as that vertex has weight 4) we obtain as general subgraph

on v, w, a, b, c, d:
v w

+
a

+
bc

∗
d (5.35)

but no such graph is cyclotomic, so the second case is excluded. In the remaining case, at least

one of a, b, c has a neighbour else G is the five vertex graph on v, w, a, b, c which is trivially

nonmaximal. W.l.o.g., let a have a neighbour in G; by assumption a must be weight 4 and thus

have three neighbours x, y, z. We first establish the possible subgraphs on v, w, a, b, c, x, y: up

to equivalence this must be of form

v w

c

b

a

∗
x

∗
y

Up to equivalence there are three cyclotomic examples:

v w a x

b c y

v w a
+
x

b c
+
y

v w a

x

b

c

y

(5.36)

but testing confirms that for all three it is impossible to construct a cyclotomic supergraph
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with a neighbour z of a in which v has weight 1. Thus the final case is also excluded, and we

conclude that a graph with a weight 1 vertex is nonmaximal.

This completes the proof of Theorem 5.3.1.

5.4 L-Graphs With Edges Of Weight 3 Or 4

By Theorem 2.5.3, if G is a maximal connected cyclotomic L-graph over OQ(
√
d) for d < 0 with

an edge label of weight 4, then G is of form S2 and hence 4-cyclotomic.

By Proposition 3.3.1 there are only finitely many maximal connected cyclotomic L-graphs with

a weight 3 edge, and each is 4-cyclotomic.

Thus we have

Theorem 5.4.1. If G is a maximal connected cyclotomic L-graph over OQ(
√
−15), then G is

4-cyclotomic.

Proof. If G has an edge of weight 4 then it is 4-cyclotomic by Theorem 2.5.3. But if not, then

G has all edge labels from Z and by Corollary 5.3.2 is 4-cyclotomic.

Theorem 5.4.2. If G is a maximal connected cyclotomic L-graph over OQ(
√
−11), then G is

4-cyclotomic.

Proof. If G has an edge of weight 4 then it is 4-cyclotomic by Theorem 2.5.3. If it has an edge

of weight 3 then it is 4-cyclotomic by Proposition 3.3.1. Otherwise, G has all edge labels from

Z and by Corollary 5.3.2 is 4-cyclotomic.

5.5 L-Graphs Over OQ(
√
−2),OQ(

√
−7)

In this section we generalise Theorem 5.3.1 as follows:

Theorem 5.5.1. Let G be a cyclotomic L-graph with edge labels from OQ(
√
−2) or OQ(

√
−7). If

G has a vertex of weighted degree 1,2 or 3, then G is nonmaximal.

By the previous section, we may assume that G has all edge labels from L = L1 ∪ L2 ∪ {0}.

Since for d = −2,−7 L1 = {1,−1}, Theorem 5.3.1 ensures the result holds if G has no edge

labels from L2. Thus we may assume that G has at least one edge of weight 2.
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5.5.1 Constructing Cyclotomic Supermatrices With Gram Vectors

Let M be a matrix representative of a connected cyclotomic L-graph G. Then both A = M+2I

and B = (−M)+2I are positive semidefinite. Hence (by Proposition 5.2.4) for a given ordering

on the vertices there exist sets of Gram vectors W and W ′ for A and B respectively, whereby

Aij = 〈wi, wj〉 and Bij =
〈
w′i, w

′
j

〉
. We then have:

• For all i 6= j, 〈wi, wj〉 and
〈
w′i, w

′
j

〉
are in L, with 〈wi, wj〉 = −

〈
w′i, w

′
j

〉
.

• 〈wi, wj〉 gives the label eij of the edge from vertex i to j (0 if no edge); so 〈wj , wi〉 =

eji = eij as required.

• For all w ∈ W and w′ ∈ W ′, 〈w,w〉 and 〈w′, w′〉 are in {1, 2, 3}; 〈wi, wi〉 − 2 gives the

charge on vertex i.

• For all i, 〈w′i, w′i〉 = 4− 〈wi, wi〉.

Thus Theorem 5.3.3 generalises to Hermitian matrices as follows:

Theorem 5.5.2. Let M be a matrix representative of a cyclotomic L-graph G. Fix an ordered

vertex labelling then determine Gram vectors W,W ′ as above. If there exist vectors x, x′ with

the following properties:

• 〈x, x〉 ∈ {1, 2, 3}

• For all wi ∈W , 〈x,wi〉 ∈ L

• There exists wi ∈W such that 〈x,wi〉 6= 0

• 〈x′, x′〉 = 4− 〈x, x〉

• For all i, 〈x′, w′i〉 = −〈x,wi〉

then define A∗ to be the matrix determined by the set of Gram vectors W ∪ {x}. M∗ = A− 2I

is then a matrix representative of a cyclotomic L-graph G∗ inducing G as a proper subgraph,

so G is nonmaximal.

5.5.2 Excluded Subgraphs

Let G be a cyclotomic L-graph with edge labels from L = L1 ∪ L2 ∪ {0}.

Proposition 5.5.3. If a non 4-cyclotomic L-graph G induces a subgraph of any of the forms

described in Lemma 5.3.4, then G is nonmaximal.
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Proof. As in the proof of Lemma 5.3.4 we confirm that any such G is contained in one of a finite

set of maximal cyclotomic supergraphs of the induced subgraph H; for this we use bounded

equivgrow with label set L = L1 ∪ L2 ∪ {0} instead of {0, 1,−1}.

We also identify the following excluded subgraphs with an edge of weight 2:

Lemma 5.5.4. A cyclotomic L-graph G with not all vertices weight 4 is nonmaximal if it

induces a subgraph of any of the following forms (where cyclotomic):

(A) Vertex with a charge and a weight 2 edge

± ∗

(G contained in cyclotomic L-graph of form C2±
2 or S4)

(B) L1,L2,L1 Cycles

(G noncyclotomic for d = −7, contained in cyclotomic L-graph of form S∗4 for d = −2)

(C) L1,L2,L1 Subpaths

(G contained in cyclotomic L-graph of form S∗8 or, if d = −7, S†6)

(D) L2,L2,L2 Cycles

(G noncyclotomic)

(E) L2,L2,L2 Subpaths

(G contained in cyclotomic L-graph of form T 4
4 )
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(F) L1,L2,L2 Cycles

(G noncyclotomic)

(G) Charged L1,L2,L1 Cycles
±

(G noncyclotomic)

(H) L2,L1 charged path of form
±

(G contained in cyclotomic L-graph of form C2±4 )

(I) L2,L1,L1 charged path of form

±

(G contained in cyclotomic L-graph of form C2±6 )

Proof. (A) holds by equivgrow with charge set {0, 1,−1}, label set L; (B) and (C) are the

content of Lemmata 3.5.2 and 3.5.3 respectively; (D) and (E) are Lemma 3.5.4; (F) is Lemma

3.5.5; (G) is by direct testing; (H),(I) hold by equivgrow with charge set {0, 1,−1}, label set

L.

5.5.3 L-Graphs With Weight 3 Vertices

Let G be a cyclotomic L-graph with a vertex v of weighted degree 3. As before, we seek to

show that G is nonmaximal and consider the cases of v charged and uncharged separately.

v charged

W.l.o.g., v has positive charge. Then by Lemma 5.5.4 (A), there cannot be a weight 2 edge

from v to any other vertex of G. Thus v has two neighbours a, b and one of the following holds:

(i) Both a, b charged;

(ii) Only one of a, b charged;
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(iii) Neither charged.

In case (i), if eab ∈ L2 then G is nonmaximal by Lemma 5.5.4 (A), whilst if eab ∈ L1 then G is

nonmaximal by Lemma 5.3.4 (c). Thus eab = 0, but then as before G is nonmaximal by Lemma

5.3.4 (e).

In case (ii) if eab ∈ L2 then G is nonmaximal by Lemma 5.5.4 (A), and if eab = 0 then G is

nonmaximal by Lemma 5.3.4 (f). So the subgraph on v, a, b is, up to equivalence, the graph I

given in (5.1).

For case (iii), we first note that eab 6∈ L2 by Lemma 5.5.4 (G); further if eab ∈ L1 then G is

nonmaximal by Lemma 5.3.4 (b). So eab = 0 and the subgraph on v, a, b is, up to equivalence,

the graph II given in (5.2).

G is thus equivalent to a graph G′ inducing one of I or II as a subgraph, and if G′ is nonmaximal

then so is G. We thus verify the nonmaximality of G′ by confirming the Gram vectors identified

in the rational-integer case are still suitable when G′ has edge labels from L. This can only fail

if the existence of weight 2 edges in G causes 〈x,wi〉 6∈ L for some wi ∈W\{v, a, b}.

For I and x = wv − wa − wb the subgraph on v, a, b, i is as given in (5.3), with the possibility

of eai, ebi ∈ L2. Fixing an ordering v < a < b < i, testing confirms that cyclotomic examples

arise only if 〈x,wi〉 = −〈wa, wi〉 − 〈wb, wi〉 ∈ L as required for Theorem 5.5.2.

For II and x = wv −wa −wb the subgraph on v, a, b, i is as given in (5.4), with the possibility

of eai, ebi ∈ L2. Fixing an ordering v < a < b < i, testing confirms that cyclotomic examples

arise only if 〈x,wi〉 = −〈wa, wi〉 − 〈wb, wi〉 ∈ L as required for Theorem 5.5.2.

As the vectors x′ identified satisfy the conditions of Theorem 5.3.3 w.r.t. the given x, they are

also suitable for Theorem 5.5.2. Hence a cyclotomic graph G with a charged vertex v of weight

3 is nonmaximal.

v uncharged

We now have two possibilities: v has two neighbours (with eva ∈ L2 for some a) or v has three

neighbours.

v has two neighbours Up to equivalence, G induces a subgraph H on v and its neighbours

a, b of form
v

a ∗ b
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as a is necessarily uncharged by Lemma 5.5.4 (A). If eab ∈ L1 then (if b uncharged) G is

nonmaximal by 5.5.4 (B) or (if b charged) noncyclotomic by part (G) of the same Lemma. If

eab ∈ L2 then b is uncharged by (A), but then G is noncyclotomic by (F).

Thus we conclude that eab = 0. If b is charged we have a L2,L1 charged path, and G is

nonmaximal by 5.5.4 (H). Therefore b is uncharged and, fixing a vertex ordering such that

v < a < b, we have that (up to equivalence) H is

va bω

where ω =
√
−2 or 1

2 +
√
−7
2 for d = −2,−7 respectively and edge labels indicate eij for i < j

(so here eva = ω).

Let W be the set of Gram vectors for A = M + 2I where M is a matrix representative of G

with subgraph on v, a, b as above. Identifying vertex i with its Gram vector wi, the following

conditions on W hold:

〈wv, wv〉 = 〈wa, wa〉 = 〈wb, wb〉 = 2

〈wv, wa〉 = ω , 〈wv, wb〉 = 1

Setting x = 2wv − ωwa − wb we have

〈x,wv〉 = 2 〈wv, wv〉 − ω 〈wa, wv〉 − 〈wb, wv〉 = 2(2)− ω(ω)− 1 = 4− 2− 1 = 1

〈x,wa〉 = 2 〈wv, wa〉 − ω 〈wa, wa〉 − 〈wb, wa〉 = 2(ω)− ω(2)− 0 = 2ω − 2ω = 0

〈x,wb〉 = 2 〈wv, wb〉 − ω 〈wa, wb〉 − 〈wb, wb〉 = 2(1)− ω(0)− 2 = 2− 2 = 0

〈x, x〉 = 2 〈wv, x〉 − ω 〈wa, x〉 − 〈wb, x〉 = 2(1)− ω(0)− 0 = 2 = 2

Further, for any wi ∈W\{wv, wa, wb} 〈wv, wi〉 = 0 by assumption so

〈x,wi〉 = −ω 〈wa, wi〉 − 〈wb, wi〉

but (fixing v < a < b < i) testing confirms that the subgraph induced on v, a, b, i

v

a

b

∗
i

ω

is cyclotomic only if−ω 〈wa, wi〉−〈wb, wi〉 ∈ L; thus 〈x,wi〉 ∈ L for all wi ∈W , 〈x, x〉 ∈ {1, 2, 3}

and 〈x,wv〉 6= 0. So all conditions on x required by Theorem 5.5.2 hold.

With the same vertex labelling and ordering we now consider W ′ the Gram vectors of B =
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(−M) + 2I, for which the following hold:

〈w′v, w′v〉 = 〈w′a, w′a〉 = 〈w′b, w′b〉 = 2

〈w′v, w′a〉 = −ω , 〈w′v, w′b〉 = −1

Setting x′ = −2w′v − ωw′a − w′b we have

〈x′, w′v〉 = −2(2)− ω(−ω)− (−1) = −1 = −〈x,wv〉

〈x′, w′a〉 = −2(−ω)− ω(2)− 0 = 0 = −〈x,wa〉

〈x′, w′b〉 = −2(−1)− ω(0)− 2 = 0 = −〈x,wb〉

〈x′, x′〉 = −2(−1)− ω(0)− 0 = 2 = 4− 〈x, x〉

and for w′i ∈W ′\{w′v, w′a, w′b},

〈x,w′i〉 = −ω 〈w′a, w′i〉 − 〈w′b, w′i〉 = ω 〈wa, wi〉+ 〈wb, wi〉 = −〈x,wi〉

so by Theorem 5.5.2 G is nonmaximal.

v has three neighbours, all charged Up to equivalence, G induces a subgraph H on v

and its neighbours a, b, c of the form given in (5.5), but by Lemma 5.5.4 (A) the free edges

eab, eac, ebc cannot be in L2. Thus H necessarily induces a double-charged 3-path and G is

therefore nonmaximal by Lemma 5.3.4 (f) as before.

v has three neighbours, two charged Again, Lemma 5.5.4 (A) ensures eab, eac, ebc 6∈ L2

so the subgraph H on v, a, b, c is (up to equivalence) as given in (5.6). In the case where a has

no further neighbours, the vectors x = wa + wb − wv, x′ = −3w′a + w′b − w′v also satisfy all the

requirements of Theorem 5.5.2, as 〈x,wi〉 = 〈wb, wi〉 ∈ L with 〈x,wi〉 = 〈x′, w′i〉 for all vertices

i 6= v, a, b, c.

If a has a neighbour d then, as before, the subgraph on v, a, b, c, d is (up to equivalence) of form

H given in (5.7), as ead ∈ L1 by Lemma 5.5.4 (A). But then, as before, the only possibility

is that H is the charged signed graph (5.8) since no choice of ebd or ecd from L2 gives a

cyclotomic L-graph. Further, for any i the subgraph on v, a, b, c, d, i remains of form (5.9),

which is cyclotomic only if −〈wc, wi〉 − 〈wd, wi〉 ∈ L. So the vectors x = wa + wb − wc − 2wd,

x′ = −4w′a−w′c−w′d−3w′v are again suitable for Theorem 5.5.2, since 〈x,wi〉 = −〈x′, w′i〉 ∈ L.

So G is nonmaximal.
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v has three neighbours, one charged Up to equivalence, the subgraph H on v and its

neighbours a, b, c is of form
c

v
+
a

b

but eab, eac 6∈ L2 by Lemma 5.5.4 (A) and ebc 6∈ L2 by part (B) of the same; further eab, eac 6∈ L1

by Lemma 5.3.4 (b) and ebc 6∈ L1 by part (a) of the same. So eab = eac = ebc = 0 and thus we

have that H is (5.10) as before.

Hence for any other vertex i the subgraph on v, a, b, c, i is (5.11), which (fixing an ordering) is

cyclotomic only if 〈wa, wi〉+ 〈wb, wi〉+ 〈wc, wi〉 ∈ L. Thus the vectors x = 2wv −wa−wb−wc,

x′ = −w′a −w′b −w′c − 2w′v are again suitable for Theorem 5.5.2, since 〈x,wi〉 = −〈x′, w′i〉 ∈ L.

So G is nonmaximal.

v has three uncharged neighbours Up to equivalence, the subgraph H on v and its

neighbours a, b, c is of form
c

v

a

b

but eab, eac, ebc 6∈ L2 by Lemma 5.5.4 (B) and eab, eac, ebc 6∈ L1 by Lemma 5.3.4 (a). So

eab = eac = ebc = 0 and thus we have that H is (5.12) as before.

Hence for any other vertex i the subgraph on v, a, b, c, i is (5.13), which (fixing an ordering) is

cyclotomic only if 〈wa, wi〉+ 〈wb, wi〉+ 〈wc, wi〉 ∈ L. Thus the vectors x = 2wv −wa−wb−wc,

x′ = −w′a −w′b −w′c − 2w′v are again suitable for Theorem 5.5.2, since 〈x,wi〉 = −〈x′, w′i〉 ∈ L.

So G is nonmaximal.

This completes the proof of nonmaximality for a cyclotomic graph with a vertex of weighted

degree 3.

5.5.4 L-Graphs With Weight 2 Vertices

Let G be a cyclotomic L-graph with a vertex of weighted degree 2. We seek to show that G is

nonmaximal.

We may assume by the previous section that G has no vertices of weight 3. If all vertices have
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weight 1 or 2 then G is a nonmaximal chordless path or cycle as before, or the trivial graph

which is clearly nonmaximal.

We therefore need only consider L-graphs G containing a weight 2 vertex v with a weight 4

neighbour w, in one of the following combinations:

(i) Both v, w charged;

(ii) v charged, w uncharged;

(iii) v uncharged, w charged;

(iv) Neither charged.

v or w charged

In case (i), by Lemma 5.5.4 (A) w necessarily has two neighbours a, b which do not neighbour

v, and so up to equivalence the subgraph H of G on vertices v, w, a, b is as in (5.14). If either of

a, b is charged then eab 6∈ L2 by Lemma 5.5.4 (A), but if neither is charged then the possibility

of eab ∈ L2 can be excluded by part (G) of the same. Thus H is (up to equivalence) one of the

graphs given in (5.15), so G is nonmaximal by Lemma 5.3.4 as before.

In case (ii) we confirm that there are no cyclotomic graphs of form (5.16). However, as w is

uncharged and of weight 4, it may instead have only two neighbours a, b with the subgraph H

induced on v, w, a, b being (up to equivalence) of form

a

∗
b

+
v w

where a is necessarily uncharged by Lemma 5.5.4 (A). But then H induces a L2,L1 charged

path on v, w, a and so G is nonmaximal by part (H) of the same Lemma.

In case (iii), w necessarily has two neighbours by Lemma 5.5.4 (A). Further, there exists u a

neighbour of v with euv ∈ L1 (since v has weighted degree 2). If u does not neighbour w, then

the subgraph on u, v, w, a, b is as in (5.17), of which there are still no cyclotomic examples.

So u neighbours w and, by Lemma 5.5.4 (A), euw ∈ L1. So the subgraph induced on u, v, w, a

is as in (5.18), with the only cyclotomic examples being (5.19). The first is excluded by Lemma
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5.3.4 (b) as before, whilst for the second we note that the cyclotomic L-graph of form

+
w

v
+
u

a
∗

a′

is excluded by Lemma 5.5.4 (A),(H) and that eaa′ 6∈ L1 by noncyclotomicity. So G is precisely

the nonmaximal charged signed graph on u, v, w, a as before.

Neither v, w charged

evw ∈ L2 For L-graphs we now have the possibility of evw ∈ L2. If so, then the subgraph H

on v, w and their neighbours is (up to equivalence) of one of the forms

wv a

wv
∗
a

∗
b

For the first we note that w has weighted degree 4 and v is assumed to have no further neigh-

bours, so if G has any other vertices then at least one, b, is a neighbour of a. But then the

subgraph on v, w, a, b is of form

wv a
∗
b

for which there are no cyclotomic examples with eab 6= 0. So v, w, a is the entirety of G, which

is then trivially nonmaximal.

In the second case G is nonmaximal by Lemma 5.5.4 (H) if either a or b is charged, but if

neither is charged then eab 6∈ L2 by part (B) of the same and eab 6∈ L1 by Lemma 5.3.4 (a).

Hence we may assume eab = 0 and that a, b are uncharged; fixing an ordering v < w < a < b

we have that H is, up to equivalence,

wv a

b

ω

where ω =
√
−2 or 1

2 +
√
−7
2 for d = −2,−7 respectively.

Let W be the set of Gram vectors for A = M + 2I where M is a matrix representative of G
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with subgraph on v, w, a, b as above. Identifying vertex i with its Gram vector wi, the following

conditions on W hold:

〈wv, wv〉 = 〈ww, ww〉 = 〈wa, wa〉 = 〈wb, wb〉 = 2

〈wv, ww〉 = ω , 〈ww, wa〉 = 〈ww, wb〉 = 1

Setting x = ww − wa − wb we have

〈x,wv〉 = 〈ww, wv〉 − 〈wa, wv〉 − 〈wb, wv〉 = ω − (0)− (0) = ω

〈x,ww〉 = 〈ww, ww〉 − 〈wa, ww〉 − 〈wb, ww〉 = 2− (1)− (1) = 0

〈x,wa〉 = 〈ww, wa〉 − 〈wa, wa〉 − 〈wb, wa〉 = 1− (2)− (0) = −1

〈x,wb〉 = 〈ww, wb〉 − 〈wa, wb〉 − 〈wb, wb〉 = 1− (0)− (2) = −1

〈x, x〉 = 〈ww, x〉 − 〈wa, x〉 − 〈wb, x〉 = 0− (−1)− (−1) = 2

Further, for any wi ∈W\{wv, ww, wa, wb}, 〈ww, wi〉 = 0 since w has weighted degree 4, so

〈x,wi〉 = −〈wa, wi〉 − 〈wb, wi〉

but (fixing an ordering) testing confirms that for any vertex i, the subgraph induced on

v, w, a, b, i

wv a

b

∗
iω

is cyclotomic only if 〈wa, wi〉 = −〈wb, wi〉 and so 〈x,wi〉 = 0 for all such wi. Hence all conditions

on x required by Theorem 5.5.2 are satisfied.

With the same vertex labelling and ordering we now consider W ′ the Gram vectors of B =

(−M) + 2I, for which the following hold:

〈w′v, w′v〉 = 〈w′w, w′w〉 = 〈w′a, w′a〉 = 〈w′b, w′b〉 = 2

〈w′v, w′w〉 = −ω , 〈w′w, w′a〉 = 〈w′w, w′b〉 = −1
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Setting x′ = w′w + w′a + w′b we have

〈x′, w′v〉 = −ω + (0) + (0) = −ω = −〈x,wv〉

〈x′, w′w〉 = 2 + (−1) + (−1) = 0 = −〈x,ww〉

〈x′, w′a〉 = −1 + (2) + (0) = 1 = −〈x,wa〉

〈x′, w′b〉 = −1 + (0) + (2) = 1 = −〈x,wb〉

〈x′, x′〉 = 0 + (1) + (1) = 2 = 4− 〈x, x〉

and for w′i ∈W ′\{wv, ww, wa, wb},

〈x′, w′i〉 = 〈w′a, w′i〉+ 〈w′b, w′i〉 = −(〈wa, wi〉+ 〈wb, wi〉) = −(0) = −〈x,wi〉

Thus G is nonmaximal by Theorem 5.5.2. This completes the proof for evw ∈ L2.

evw ∈ L1 Otherwise, v has a neighbour u: if u were charged then euw 6∈ L2 by Lemma 5.5.4

(A) and euw 6∈ L1 by Lemma 5.3.4 (b); whereas if u were uncharged then euw 6∈ L2 by Lemma

5.5.4 (B) and euw 6∈ L1 by Lemma 5.3.4 (a). So we may assume euw = 0.

w has two neighbours If w has only two neighbours a, b, then (up to equivalence, and fixing

u < v < w < a < b) the subgraph H on u, v, w, a, b is of form

a

∗
b

v w
∗
u

ω

(where a is uncharged by Lemma 5.5.4 (A))

For cyclotomicity, H is then one of the following:

a

b

v w
+
u

ω
a

b

v w
+
u

ω

a

b

v wu

−ω

ω

a

b

v w

u

ω

−ω
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a

b

v wu
ω

(5.37)

The first two are excluded by Lemma 5.5.4 (I) and the third by (C) of the same. For the fourth,

testing shows that for cyclotomicity any neighbour of b is also a neighbour of v, so (as u, a, w

have weighted degree 4 and v is assumed to have no further neighbours) H is G which is clearly

nonmaximal by embedding in, for example, a graph of form T 4
6 . So we are left with only the

fifth case.

Let W be the set of Gram vectors for A = M + 2I where M is a matrix representative of G

with subgraph on u, v, w, a, b as in (5.37). Identifying vertex i with its Gram vector wi, the

following conditions on W hold:

〈wu, wu〉 = 〈wv, wv〉 = 〈ww, ww〉 = 〈wa, wa〉 = 〈wb, wb〉 = 2

〈ww, wa〉 = ω , 〈ww, wv〉 = 〈ww, wb〉 = 1

〈wu, wv〉 = 1 , 〈wu, wb〉 = −1

Setting x = ww − wv − wb we have

〈x,wu〉 = 〈ww, wu〉 − 〈wv, wu〉 − 〈wb, wu〉 = 0− (1)− (−1) = 0

〈x,wv〉 = 〈ww, wv〉 − 〈wv, wv〉 − 〈wb, wv〉 = 1− (2)− (0) = −1

〈x,ww〉 = 〈ww, ww〉 − 〈wv, ww〉 − 〈wb, ww〉 = 2− (1)− (1) = 0

〈x,wa〉 = 〈ww, wa〉 − 〈wv, wa〉 − 〈wb, wa〉 = ω − (0)− (0) = ω

〈x,wb〉 = 〈ww, wb〉 − 〈wv, wb〉 − 〈wb, wb〉 = 1− (0)− (2) = −1

〈x, x〉 = 〈ww, x〉 − 〈wv, x〉 − 〈wb, x〉 = 0− (−1)− (−1) = 2

Let i be any other vertex in G. Then the general subgraph on u, v, w, a, b, i is

a

b

v wu

∗
i

ω

which is cyclotomic only if 〈wb, wi〉 = 〈wa, wi〉 = 0 or 〈wb, wi〉 ∈ L2, 〈wa, wi〉 ∈ L1; but the

latter case can be excluded by Lemma 5.5.4 (C). So we may assume that 〈wb, wi〉 = 0, and

since 〈wv, wi〉 = 0 by assumption and 〈ww, wi〉 = 0 by weight of w, we conclude that for all
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wi ∈W\{wu, wv, ww, wa, wb}

〈x,wi〉 = 0

and as 〈x,wv〉 6= 0, the conditions on x in Theorem 5.5.2 are satisfied.

With the same vertex labelling and ordering we now consider W ′ the Gram vectors of B =

(−M) + 2I, for which the following hold:

〈w′u, w′u〉 = 〈w′v, w′v〉 = 〈w′w, w′w〉 = 〈w′a, w′a〉 = 〈w′b, w′b〉 = 2

〈w′w, w′a〉 = −ω , 〈w′w, w′v〉 = 〈w′w, w′b〉 = −1

〈w′u, w′v〉 = −1 , 〈w′u, w′b〉 = 1

Setting x′ = w′v + w′w + w′b we have

〈x′, w′u〉 = 〈w′v, w′u〉+ 〈w′w, w′u〉+ 〈w′b, w′u〉 = −1 + 0 + 1 = 0 = −〈x,wu〉

〈x′, w′v〉 = 〈w′v, w′v〉+ 〈w′w, w′v〉+ 〈w′b, w′v〉 = 2 +−1 + 0 = 1 = −〈x,wv〉

〈x′, w′w〉 = 〈w′v, w′w〉+ 〈w′w, w′w〉+ 〈w′b, w′w〉 = −1 + 2 +−1 = 0 = −〈x,ww〉

〈x′, w′a〉 = 〈w′v, w′a〉+ 〈w′w, w′a〉+ 〈w′b, w′a〉 = 0 +−ω + 0 = −ω = −〈x,wa〉

〈x′, w′b〉 = 〈w′v, w′b〉+ 〈w′w, w′b〉+ 〈w′b, w′b〉 = 0 +−1 + 2 = 1 = −〈x,wb〉

〈x′, x′〉 = 〈w′v, x′〉+ 〈w′w, x′〉+ 〈w′b, x′〉 = 1 + 0 + 1 = 2 = 4− 〈x, x〉

and for any w′i ∈W ′\{w′u, w′v, w′w, w′a, w′b},

〈x′, w′i〉 = 〈w′b, w′i〉 = −〈wb, wi〉 = 0 = −〈x,wi〉

so G is nonmaximal by Theorem 5.5.2.

w has three neighbours As in the charged signed graph case the subgraph H induced

on u, v, w, a, b, c is, up to equivalence, of form (5.20) and we consider the possible charges on

u, a, b, c as enumerated in cases (I) through (VIII).

In case (II) H is necessarily a charged signed graph since no undetermined edge can be in L2

by Lemma 5.5.4 (A). Thus case (II) is again excluded since there were no cyclotomic examples.

In case (IV) the only possibility for H to have an edge label from L2 is if ebc ∈ L2, but then

G is nonmaximal by Lemma 5.5.4 (B). Thus H is a charged signed graph, but there were no

cyclotomic examples of this form, so case (IV) is excluded.

In case (VI) H is necessarily a charged signed graph since no undetermined edge can be in L2

by Lemma 5.5.4 (A). Thus case (VI) is again excluded since there were no cyclotomic examples.

In case (VIII) eau, eab, eac 6∈ L2 by Lemma 5.5.4 (A) and ebc 6∈ L2 by part (B). Testing the
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remaining possible combinations of edge labels confirms that there are no cyclotomic examples,

so case (VIII) is excluded.

In case (III) H is necessarily a charged signed graph since no undetermined edge can be in

L2 by Lemma 5.5.4 (A). Thus we have one of the graphs (5.21), all of which continue to be

excluded by Lemma 5.3.4.

In case (I) eau, ebu, ecu 6∈ L2 by Lemma 5.5.4 (A) and eab, eac, ebc 6∈ L2 by Lemma 5.5.4 (B)

from considering the triangle with w and two such vertices. Thus H is necessarily a charged

signed graph and so up to equivalence is as given in (5.22). But then for any

wi ∈W\{wu, wv, ww, wa, wb, wc}

the subgraph (5.23) induced on u, v, w, a, b, c, i is cyclotomic only if

〈wa, wi〉 = 〈wb, wi〉 = 0

so the original vectors x = wv+wa−ww, x′ = −2w′u−2w′v−w′w suffice for proving nonmaximality

of G by Theorem 5.5.2.

Thus we are left with the cases (V) and (VII), which admit new cyclotomic examples over L.

We seek Gram vectors for supergraphs in accordance with Theorem 5.5.2, as well as to confirm

the existing constructions for G with a charged signed subgraph H remain suitable.

(V)

Remark 5.5.5. Lemma 5.3.5 generalises to L-graphs.

Proof. By equivgrow it is impossible to extend the 8-vertex graph given in Lemma 5.3.5 to a

9-vertex graph G′ containing a weight 2 edge; thus any neighbour of u, b, c, d or e is attached

by weight 1 edges, and if any of those vertices has a third neighbour it also has a fourth. So we

proceed as in the proof of Lemma 5.3.5: first introducing a pair of neighbours of a candidate

unsaturated vertex in the subgraph; further introducing neighbours of any weight 3 vertex

produced; then using bounded equivgrow now with label set L instead of {0, 1,−1}. For each

vertex, we generate only a finite set of candidates for G, each equivalent to a subgraph of S16

as required.

For case (V) we note that eab, eac, ebc 6∈ L2 by Lemma 5.5.4 (B); testing the remaining possi-

bilities confirms that, up to equivalence, H is one of the graphs given in (5.24), depending on

whether v and w share one or three of a, b, c as neighbours. As before, if H is G then we are done,

since then it is nonmaximal by embedding into some T2k. Otherwise, there exists some neigh-

bour d of at least one of u, a, b, c; the subgraph H ′ on u, v, w, a, b, c, d is then (up to equivalence)
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one of the nine charged signed graphs identified in (5.25) or (fixing u < v < w < a < b < c < d)

a

bv wu

c

d

ω

(5.38)

or

a

bv wu

c

d

ω

−ω
(5.39)

The first three graphs given in (5.26) can be excluded by Remark 5.5.5 and Lemma 5.3.4 (f).

For the four L-graphs (5.26) we note that Remark 5.3.6 generalises to L-graphs, so 〈wa, wi〉 = 0

for all wi ∈ W\{wu, wv, ww, wa, wb, wc, wd}, and hence the Gram vectors x = wv − ww + wa,

x′ = −w′v − w′w − w′a remain suitable for Theorem 5.5.2 since

〈x,wi〉 = 〈wa, wi〉 = 0 = 〈w′a, w′i〉 = −〈x′, w′i〉

Similarly, for the remaining two charged signed graphs (5.27) we confirm that Remark 5.3.7

generalises to L-graphs, so the Gram vectors x = − 1
2wa + 1

2wv + wα, x = 1
2wa −

1
2wv + wα

remain suitable for Theorem 5.5.2 since

〈x,wi〉 = 〈wa, wi〉 = 0 = 〈w′a, w′i〉 = −〈x′, w′i〉

for any wi ∈W\{wu, wv, ww, wa, wb, wc, wd}.

Let W be the set of Gram vectors for A = M + 2I where M is a matrix representative of G

with subgraph on u, v, w, a, b, c, d as in (5.38). Identifying vertex i with its Gram vector wi, the

following conditions on W hold:

〈wu, wu〉 = 〈wv, wv〉 = 〈ww, ww〉 = 〈wa, wa〉 = 〈wb, wb〉 = 〈wc, wc〉 = 〈wd, wd〉 = 2

〈wu, wv〉 = 〈wv, ww〉 = 〈ww, wa〉 = 〈ww, wb〉 = 〈ww, wc〉 = −1

〈wu, wd〉 = −ω , 〈wu, wa〉 = 1
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Setting x = wv − wu − wa we have

〈x,wu〉 = 〈wv, wu〉 − 〈wu, wu〉 − 〈wa, wu〉 = 1− (2)− (−1) = 0

〈x,wv〉 = 〈wv, wv〉 − 〈wu, wv〉 − 〈wa, wv〉 = 2− (1)− (0) = 1

〈x,ww〉 = 〈wv, ww〉 − 〈wu, ww〉 − 〈wa, ww〉 = 1− (0)− (1) = 0

〈x,wa〉 = 〈wv, wa〉 − 〈wu, wa〉 − 〈wa, wa〉 = 0− (−1)− (2) = −1

〈x,wb〉 = 〈wv, wb〉 − 〈wu, wb〉 − 〈wa, wb〉 = 0− (0)− (0) = 0

〈x,wc〉 = 〈wv, wc〉 − 〈wu, wc〉 − 〈wa, wc〉 = 0− (0)− (0) = 0

〈x,wd〉 = 〈wv, wd〉 − 〈wu, wd〉 − 〈wa, wd〉 = 0− (ω)− (0) = −ω

〈x, x〉 = 〈wv, x〉 − 〈wu, x〉 − 〈wa, x〉 = 1− (0)− (−1) = 2

Further, for any other vertex i of G the subgraph induced on u, v, w, a, b, c, d, i is cyclotomic

only if 〈wa, wi〉 = 0, hence for any such i

〈x,wi〉 = 〈wv, wi〉 − 〈wu, wi〉 − 〈wa, wi〉 = 0− 0− 0 = 0

since u has weighted degree 4 and v is assumed to have no other neighbours. Since additionally

〈x,wv〉 6= 0, all conditions on x in Theorem 5.5.2 are satisfied.

With the same vertex labelling and ordering we now consider W ′ the Gram vectors of B =

(−M) + 2I, for which the following hold:

〈w′u, w′u〉 = 〈w′v, w′v〉 = 〈w′w, w′w〉 = 〈w′a, w′a〉 = 〈w′b, w′b〉 = 〈w′c, w′c〉 = 〈w′d, w′d〉 = 2

〈w′u, w′v〉 = 〈w′v, w′w〉 = 〈w′w, w′a〉 = 〈w′w, w′b〉 = 〈w′w, w′c〉 = 1

〈w′u, w′d〉 = ω , 〈w′u, w′a〉 = −1

Setting x′ = w′a − w′u − w′v we have

〈x′, w′u〉 = 〈w′a, w′u〉 − 〈w′u, w′u〉 − 〈w′v, w′u〉 = 1− (2)− (−1) = 0 = −〈x,wu〉

〈x′, w′v〉 = 〈w′a, w′v〉 − 〈w′u, w′v〉 − 〈w′v, w′v〉 = 0− (−1)− (2) = −1 = −〈x,wv〉

〈x′, w′w〉 = 〈w′a, w′w〉 − 〈w′u, w′w〉 − 〈w′v, w′w〉 = −1− (0)− (−1) = 0 = −〈x,ww〉

〈x′, w′a〉 = 〈w′a, w′a〉 − 〈w′u, w′a〉 − 〈w′v, w′a〉 = 2− (1)− (0) = 1 = −〈x,wa〉

〈x′, w′b〉 = 〈w′a, w′b〉 − 〈w′u, w′b〉 − 〈w′v, w′b〉 = 0− (0)− (0) = 0 = −〈x,wb〉

〈x′, w′c〉 = 〈w′a, w′c〉 − 〈w′u, w′c〉 − 〈w′v, w′c〉 = 0− (0)− (0) = 0 = −〈x,wc〉

〈x′, w′d〉 = 〈w′a, w′d〉 − 〈w′u, w′d〉 − 〈w′v, w′d〉 = 0− (−ω)− (0) = ω = −〈x,wd〉

〈x′, x′〉 = 〈w′a, x′〉 − 〈w′u, x′〉 − 〈w′v, x′〉 = 1− (0)− (−1) = 2 = 4− 〈x, x〉

and for any other w′i ∈W ′\{w′u, w′v, w′w, w′a, w′b, w′c, w′d},

〈x′, w′i〉 = 〈w′a, w′i〉 − 〈w′u, w′i〉 − 〈w′v, w′i〉 = 0− 0− 0 = 0 = −〈x,wi〉
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so G is nonmaximal by Theorem 5.5.2.

Finally, let W be the set of Gram vectors for A = M + 2I where M is a matrix representative

of G with subgraph on u, v, w, a, b, c, d as in (5.39). Identifying vertex i with its Gram vector

wi, the following conditions on W hold:

〈wu, wu〉 = 〈wv, wv〉 = 〈ww, ww〉 = 〈wa, wa〉 = 〈wb, wb〉 = 〈wc, wc〉 = 〈wd, wd〉 = 2

〈wu, wv〉 = 〈wv, ww〉 = 〈ww, wa〉 = 〈ww, wb〉 = 〈ww, wc〉 = 1

〈wb, wd〉 = ω , 〈wc, wd〉 = −ω , 〈wu, wa〉 = −1

Setting x = ww − wv − wa we have

〈x,wu〉 = 〈ww, wu〉 − 〈wv, wu〉 − 〈wa, wu〉 = 0− (1)− (−1) = 0

〈x,wv〉 = 〈ww, wv〉 − 〈wv, wv〉 − 〈wa, wv〉 = 1− (2)− (0) = −1

〈x,ww〉 = 〈ww, ww〉 − 〈wv, ww〉 − 〈wa, ww〉 = 2− (1)− (1) = 0

〈x,wa〉 = 〈ww, wa〉 − 〈wv, wa〉 − 〈wa, wa〉 = 1− (0)− (2) = −1

〈x,wb〉 = 〈ww, wb〉 − 〈wv, wb〉 − 〈wa, wb〉 = 1− (0)− (0) = 1

〈x,wc〉 = 〈ww, wc〉 − 〈wv, wc〉 − 〈wa, wc〉 = 1− (0)− (0) = 1

〈x,wd〉 = 〈ww, wd〉 − 〈wv, wd〉 − 〈wa, wd〉 = 0− (0)− (0) = 0

〈x, x〉 = 〈ww, x〉 − 〈wv, x〉 − 〈wa, x〉 = 0− (−1)− (−1) = 2

Further, for any other vertex i of G the subgraph induced on u, v, w, a, b, c, d, i is cyclotomic

only if 〈wa, wi〉 = 0, hence for any such i

〈x,wi〉 = 〈ww, wi〉 − 〈wv, wi〉 − 〈wa, wi〉 = 0− 0− 0 = 0

since w has weighted degree 4 and v is assumed to have no other neighbours. Since additionally

〈x,wv〉 6= 0, all conditions on x in Theorem 5.5.2 are satisfied. With the same vertex labelling

and ordering we now consider W ′ the Gram vectors of B = (−M) + 2I, for which the following

hold:

〈w′u, w′u〉 = 〈w′v, w′v〉 = 〈w′w, w′w〉 = 〈w′a, w′a〉 = 〈w′b, w′b〉 = 〈w′c, w′c〉 = 〈w′d, w′d〉 = 2

〈w′u, w′v〉 = 〈w′v, w′w〉 = 〈w′w, w′a〉 = 〈w′w, w′b〉 = 〈w′w, w′c〉 = −1

〈wb, wd〉 = −ω , 〈wc, wd〉 = ω , 〈wu, wa〉 = 1
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Setting x′ = w′v + w′w + w′a we have

〈x′, w′u〉 = 〈w′v, w′u〉+ 〈w′w, w′u〉+ 〈w′a, w′u〉 = −1 + 0 + 1 = 0 = −〈x,wu〉

〈x′, w′v〉 = 〈w′v, w′v〉+ 〈w′w, w′v〉+ 〈w′a, w′v〉 = 2 + (−1) + 0 = 1 = −〈x,wv〉

〈x′, w′w〉 = 〈w′v, w′w〉+ 〈w′w, w′w〉+ 〈w′a, w′w〉 = (−1) + 2 + (−1) = 0 = −〈x,ww〉

〈x′, w′a〉 = 〈w′v, w′a〉+ 〈w′w, w′a〉+ 〈w′a, w′a〉 = 0 + (−1) + 2 = 1 = −〈x,wa〉

〈x′, w′b〉 = 〈w′v, w′b〉+ 〈w′w, w′b〉+ 〈w′a, w′b〉 = 0 + (−1) + 0 = −1 = −〈x,wb〉

〈x′, w′c〉 = 〈w′v, w′c〉+ 〈w′w, w′c〉+ 〈w′a, w′c〉 = 0 + (−1) + 0 = −1 = −〈x,wc〉

〈x′, w′d〉 = 〈w′v, w′d〉+ 〈w′w, w′d〉+ 〈w′a, w′d〉 = 0 + 0 + 0 = 0 = −〈x,wd〉

〈x′, x′〉 = 〈w′v, x′〉+ 〈w′w, x′〉+ 〈w′a, x′〉 = 1 + 0 + 1 = 2 = 4− 〈x, x〉

and for any other w′i ∈W ′\{w′u, w′v, w′w, w′a, w′b, w′c, w′d},

〈x′, w′i〉 = 〈w′v, w′i〉+ 〈w′w, w′i〉+ 〈w′a, w′i〉 = 0 + 0 + 0 = 0 = −〈x,wi〉

so G is nonmaximal by Theorem 5.5.2.

This completes case (V).

(VII) Since eab, eac, ebc, eau, ebu 6∈ L2 by Lemma 5.5.4 (A) and ecu 6∈ L2 by part (C) of the

same, subgraph H is necessarily a charged signed graph and thus (up to equivalence) one of

the graphs (5.28). The first is excluded by Lemma 5.3.4 (b) as before.

For the second charged signed graph (5.29) we note that the vectors x = wv− 1
2wu−

1
2ww+wα,

x′ = −w′u − w′v + w′a + w′α also satisfy the conditions of Theorem 5.5.2, since for any wi ∈

W\{wu, wv, ww, wa, wb, wc} we have

〈wu, wi〉 = 〈wv, wi〉 = 〈ww, wi〉 = 〈wa, wi〉 = 〈wb, wi〉 = 0

by weighted degree considerations, so

〈x,wi〉 = 0 = −〈x′, wi〉

for all such wi.

Finally, for the third charged signed graph (5.30) we confirm that the L-graph (5.31) is cyclo-

tomic only if 〈wa, wi〉 = 〈wb, wi〉 = 0. So the vectors x = wa + wb − ww, x′ = −w′w − 2w′a

satisfy

〈x,wi〉 = 0 = −〈x′, w′i〉

for any wi ∈W\{wu, wv, ww, wa, wb, wc} and thus the conditions of Theorem 5.5.2 hold.

This completes case (VII), and thus the proof for graphs with a weight 2 vertex.
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5.5.5 L-Graphs With Weight 1 Vertices

Let G be a cyclotomic L-graph with a vertex v of weight 1. By the previous two sections, we

may assume that all vertices of G have weight 1 or 4, and thus that v has a neighbour w of

weight 4 (else we have the trivially nonmaximal 1 vertex charged graph or 2 vertex uncharged

graph).

If w were charged, then by Lemma 5.5.4 (A) it must have neighbours a, b with ewa, wwb ∈ L1.

Then, up to equivalence, G induces a subgraph of form (5.32), but over L no such graph is

cyclotomic.

Thus w is uncharged and has either two or three neighbours in addition to v. If there are only

two, a, b, then - fixing an ordering v < w < a < b - the subgraph H induced on these four

vertices is (up to equivalence)
a

∗
b

v w ω

since a is uncharged by Lemma 5.5.4 (A). But then the only cyclotomic example is

a

b

v w ω

If H is all of G then we are done, since G is then clearly nonmaximal by embedding in, for

example, a graph of form T 4
6 . But if not then there exists a vertex c of G neighbouring at least

one of a, b but not v; the only such graph is (up to equivalence)

a

b

v w

c

ω

−ω

which is excluded by Lemma 5.5.4 (C).

So w has three neighbours a, b, c with the subgraph on v, w, a, b, c being (up to equivalence) as in

(5.33). However, over L we have only the charged signed graphs (5.34). The first is excluded by

Lemma 5.3.4 (b) as before, whilst for the second we note that there are no cyclotomic L-graphs

of form (5.35) either, so again G is H and hence excluded by the assumption of no weight 3
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vertices. In the third case we note that a has at least 2 neighbours x, y giving a graph of form

v w

c

b

a

∗
x

∗
y

but (considering eax ∈ L1, eax ∈ L2 in turn) the only cyclotomic examples are the charged

signed graphs (5.36). In each of these a has weighted degree 3, but no cyclotomic supergraph

introduces a fourth neighbour z without violating the assumption that v has weight 1. Thus

the final case is excluded, and the proof is complete for L-graphs with weight 1 vertices.

This completes the proof of Theorem 5.5.1.

5.6 Conclusions

From Theorems 5.4.1, 5.4 and 5.5.1 we have that for d ∈ {−2,−7,−11,−15} any maximal

connected cyclotomic L-graph is a connected 4-cyclotomic L-graph. Thus, combined with the

results of Chapters 3 and 4, we have a complete classification of maximal connected cyclotomic

L-graphs for such d (and hence cyclotomic L-matrices).

Theorem 5.6.1. (d = −2) Every maximal connected cyclotomic L-graph for R = OQ(
√
−2) not

included in Theorems 1.4.1, 1.4.2 is equivalent to one of the following:

(i) The 2-vertex L-graph S2 shown in Fig. 2.1;

(ii) The 2-vertex L-graph S′2 shown in Fig. 4.1;

(iii) The 4-vertex L-graph S4 shown in Fig. 4.2;

(iv) The 4-vertex L-graph S′4 shown in Fig. 4.3;

(v) The 4-vertex L-graph S∗4 shown in Fig. 4.4;

(vi) The 8-vertex L-graph S∗8 shown in Fig. 4.10;

(vii) For some k = 2, 3, 4, . . ., the 2k-vertex L-graph T 4
2k shown in Fig. 2.4;

(viii) For some k = 1, 2, 3, . . ., the 2k + 1-vertex L-graph C2+
2k shown in Fig. 2.6.

Theorem 5.6.2. (d = −7) Every maximal connected cyclotomic L-graph for R = OQ(
√
−7) not

included in Theorems 1.4.1, 1.4.2 is equivalent to one of the following:
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(i) The 2-vertex L-graph S2 shown in Fig. 2.1;

(ii) The 2-vertex L-graph S∗2 shown in Fig. 2.2;

(iii) The 2-vertex L-graph S′2 shown in Fig. 4.1;

(iv) The 4-vertex L-graph S4 shown in Fig. 4.2;

(v) The 6-vertex L-graph S†6 shown in Fig. 4.9;

(vi) The 8-vertex L-graph S∗8 shown in Fig. 4.10;

(vii) For some k = 2, 3, 4, . . ., the 2k-vertex L-graph T 4
2k shown in Fig. 2.4;

(viii) For some k = 2, 3, 4, . . ., the 2k-vertex L-graph T 4′

2k shown in Fig. 2.5;

(ix) For some k = 1, 2, 3, . . ., the 2k + 1-vertex L-graph C2+
2k shown in Fig. 2.6.

Theorem 5.6.3. (d = −11) Every maximal connected cyclotomic L-graph for R = OQ(
√
−11)

not included in Theorems 1.4.1, 1.4.2 is equivalent to one of the following:

(i) The 2-vertex L-graph S2 shown in Fig. 2.1;

(ii) The 4-vertex L-graph S′4 shown in Fig. 4.3.

Theorem 5.6.4. (d = −15) Every maximal connected cyclotomic L-graph for R = OQ(
√
−15)

not included in Theorems 1.4.1, 1.4.2 is equivalent to one of the following:

(i) The 2-vertex L-graph S2 shown in Fig. 2.1;

(ii) The 2-vertex L-graph S∗2 shown in Fig. 2.2.

Remark 5.6.5. Theorems 5.3.1,3.7.1 and the results of Chapter 4 also provide an alternative

proof of Theorems 1.4.1, 1.4.2.
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Chapter 6

Minimal Noncyclotomics

6.1 Overview

For R = OQ(
√
d), d < 0, 6= −1,−3, squarefree we prove Lehmer’s Conjecture for R-matrices:

if A is such a matrix, then M(A) = 1 or M(A) ≥ λ0. We reduce to adjacency matrices of

L-graphs, then identify the minimal noncyclotomic L-graphs not equivalent to any minimal

noncyclotomic charged signed graph given in [15]. As in the rational integer case, to do so we

prove that there can be no minimal noncyclotomic examples with more than ten vertices and

determine the remaining small examples and their Mahler measures.

6.2 Minimal Noncyclotomic R-Matrices With Large Norm

Entries

6.2.1 R-Matrices with Entries On Diagonal of Large Modulus

As in [15], we note that for any n ∈ N such that n ≥ 2, The matrix

(n)

is minimal noncyclotomic with Mahler measure (n +
√
n2 − 4)/2 ≥ 2.618; and no larger inde-

composable noncyclotomic matrix can contain such a charge and still be minimal. Thus we

may restrict our attention to matrices with entries on the diagonal from {0,±1,±2}.

153



6.2.2 R-Matrices with Entries Off Diagonal of Large Norm

Let a be an algebraic integer satisfying aa = n ≥ 5. If M is a minimal noncyclotomic R-matrix

with a as an off-diagonal entry, then by Interlacing it is necessarily of the form x a

a y


where we may assume that x, y ∈ {0,±1,±2} by the above. By computing eigenvalues of M

then roots of the associated polynomial in terms of n for each choice x, y, we note the Mahler

measure is increasing in n and find the possible values for n = 5. In this way we observe that

there are infinite families of minimal noncyclotomic R-matrices of form x a

a y

x ∈ {0, 1, 2}, y ∈ {0,±1± 2}, aa ≥ 5

with Mahler measure at least 2.36.

We may thus exclude off-diagonal entries of norm greater than four from future consideration.

That is, we need only consider L-matrices or their corresponding L-graphs.

6.2.3 L-Graphs with Vertices of Charge ±2

Since the matrix

(2)

is maximal cyclotomic, any extension is noncyclotomic, and thus can only be minimal if it

equivalent to one of the form  2 x

x y


Testing each choice of y ∈ {0,±1,±2} and n = xx ∈ {1, 2, 3, 4} we find that any matrix of this

form has Mahler measure at least 1.722 (attainable with n = 1, y = −1, so an integer symmetric

matrix example exists).

Thus we may restrict our attention to L-graphs with charges from {0,±1}.

6.2.4 L-Graphs with Weight 4 Edges

For t a weight 4 edge, an L-graph with a ± ∗t

subgraph is necessarily noncyclotomic, so

the minimal noncyclotomics with such a feature are (up to equivalence)

+ t + +t + −t
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where t = 2, 3
2 +

√
−7
2 or 1

2 +
√
−15
2 as appropriate; the first has Mahler measure 2.081 . . ., the

others 2.618 . . ..

As the only connected cyclotomic L-graphs to feature a weight 4 edge are of the form S2, any

minimal noncyclotomic L-graph containing such an edge between uncharged vertices must be

equivalent to one of the form

∗
x

t

βα

with t = 2, 3
2 +

√
−7
2 or 1

2 +
√
−15
2 , x ∈ {0,±1} and (α, β) ∈ C2′(L).

Testing for each d we find that the Mahler measure of an L-graph of the above form is greater

than 2.08, with a charged signed graph example being

−

2

We may thus exclude weight 4 edges from future consideration, and assume L = L3∪L2∪L1∪{0}

for the rest of the Chapter.

6.2.5 L-Graphs with Weight 3 Edges

For d = −2,−3 or −11, any cyclotomic L-graph containing a weight 3 edge is equivalent to an

L-graph of form S ′2, S ′4 or an induced subgraph of such an L-graph.

If G is a minimal noncyclotomic L-graph containing an L-graph of form S ′2 it is necessarily

equivalent to one of the form

−+

∗
x

t

βα

with t = 1 +
√
−2, 3

2 +
√
−3
2 or 1

2 +
√
−11
2 , x ∈ {0,±1} and (α, β) ∈ C2′(L).

Testing for each suitable d we find that the smallest Mahler measure of an L-graph of the above

form is ≈ 2.52, with a representative L-graph being

−+
t
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Otherwise, G must induce a subgraph equivalent to one of the S ′4 representative

−t

t

where t = 1 +
√
−2, 3

2 +
√
−3
2 or 1

2 +
√
−11
2 as appropriate.

By constructing all noncyclotomic 5-vertex supergraphs of this L-graph - subject to the earlier

constraints on relevant edge labels (those from L1 ∪ L2 ∪ L3 ∪ {0}) and charges (0,±1 only)

- we may find a representative of any such G by generating successively smaller subgraphs,

discarding cyclotomic or disconnected examples and noting minimal noncyclotomics as they

occur.

In this way, we find classes of 4,3 and 2-vertex minimal noncyclotomics for each d; in all three

cases the smallest Mahler measure observed is ≈ 1.56, with an example being the L-graph

32
+
1

t

We may thus exclude weight 3 edges from future consideration, and assume L = L2 ∪L1 ∪ {0}

for the rest of the Chapter. For d < 0, 6∈ {−1,−2,−3,−7}, squarefree this gives L = {−1, 0, 1}

and so the results of Sections 6.2.1 - 6.2.5 plus those of [15] give a complete classification of

minimal noncyclotomics over such OQ(
√
d).

6.3 Minimal Noncyclotomic L-Graphs Over OQ(
√
−2),OQ(

√
−7)

With Weight 2 Edges

6.3.1 Excluded Subgraphs

We first note the following results, which will be of use for the subsequent sections.

Lemma 6.3.1. If G is a connected L-graph with six or more vertices and contains a weight 2

edge adjacent to a charged vertex (that is, induces some ± ∗ subgraph H), then G cannot

be cyclotomic or minimal noncyclotomic.

Proof. By Section 3.6.1 the only connected cyclotomic L-graphs to induce such a subgraph H

have at most four vertices, so G is necessarily noncyclotomic. Let G have vertices v1, . . . , vn,

n ≥ 6, such that H is the subgraph induced on vertices v1, v2. Then it suffices to show that G

induces a connected proper subgraph G′ with at least five vertices including v1, v2, since G′ is
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then also noncyclotomic by Section 3.6.1 and so G cannot be minimal.

If G − {vn} is connected, then clearly we are done. If not, then G − {vn} has connected

components X1, . . . , Xk, k ≥ 2, and for each l there is some xl ∈ Xl a neighbour of vn. W.l.o.g,

let v1, v2 ∈ X1 and 1 ≤ |X2| ≤ ... ≤ |Xk|.

If |X1| ≥ 4 then the subgraph induced on X1 ∪{vn} is connected, contains at least five vertices

including v1, v2 and is a proper subgraph of G since it contains none of the vertices in X2, so

we are done.

If |X1| = 3 then the subgraph induced on X1 ∪ {v, x2} is connected and contains precisely five

vertices including v1, v2.

If |X1| = 2 and additionally |X2| = 1 then G − {x2} is a connected (n − 1)-vertex subgraph

of G containing v1, v2 as desired. Else 2 ≤ |X2| and there exists x′2 ∈ X2 a neighbour of x2;

the subgraph induced on X1 ∪ {v, x2, x
′
2} is hence connected, has five vertices, and contains

v1, v2.

Lemma 6.3.2. If G is a connected L-graph with six or more vertices that induces a subgraph

H of form

∗∗

∗

then G cannot be cyclotomic or minimal noncyclotomic.

Proof. If any of the vertices of H are charged then Lemma 6.3.1 applies. Otherwise, H is

noncyclotomic by Lemma 3.5.5 and thus G 6= H is noncyclotomic yet not minimally so.

Lemma 6.3.3. If G is a connected L-graph with six or more vertices that induces a subgraph

H of form

then G cannot be cyclotomic or minimal noncyclotomic.

Proof. For d = −1,−7 the subgraph H is necessarily noncyclotomic, so G 6= H is noncyclotomic

but not minimally so. For d = −2, let the vertices of H be v1, v2, v3. Then by connectedness of

G, there exists a vertex v4 which is a neighour of at least one of v1, v2, v3. If the graph induced

on H ∪ {x4} is noncyclotomic, then we are done; else there exists a vertex v5 a neighbour of

at least one of v1, . . . , v4 so the subgraph induced on v1, . . . , v5 is a connected proper 5-vertex
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subgraph of G containing H. But by the results of Section 3.5.1 it cannot be cyclotomic, so G

is noncyclotomic but cannot be minimally so.

Lemma 6.3.4. If G is a connected L-graph with ten or more vertices that induces a subgraph

H of form

then G cannot be cyclotomic or minimal noncyclotomic.

Proof. Let G have n ≥ 10 vertices, and let the vertices of H be v1, v2, v3, v4. By the results of

Section 3.5.1, the largest connected cyclotomic graph to induce a subgraph of form H has eight

vertices. Thus for both noncyclotomicty and nonminimality it suffices to show that G induces

a connected subgraph with at least nine vertices including v1, v2, v3, v4. However, there must

exist a sequence of vertices v5, . . . , v9 such that for each i ≥ 5, vi is a neighbour of at least one

of v1, . . . , vi−1: if for a given i no such vi could be found then v1, . . . , vi−1 would be a connected

component of G yet not all of G, contradicting connectedness. But then the subgraph induced

on v1, . . . , v9 has the desired properties.

Lemma 6.3.5. For d = −2,−7, If G is a connected L-graph with nine or more vertices that

induces a subgraph H of form

then G cannot be cyclotomic or minimal noncyclotomic.

Proof. By Theorems 5.6.1 and Theorem 5.6.2 the only maximal cyclotomic L-graphs to induce

such an H are equivalent to either T6 or S7. Thus for both noncyclotomicty and nonminimality

of an n-vertex L-graph G it suffices to show that it induces a connected proper subgraph with at

least eight vertices including the vertices v1, v2, v3 of H. However, there must exist a sequence

of vertices v4, . . . , v8 such that for each i ≥ 4, vi is a neighbour of at least one of v1, . . . , vi−1:

if for a given i no such vi could be found then v1, . . . , vi−1 would be a connected component of

G yet not all of G, contradicting connectedness. But then the subgraph induced on v1, . . . , v8

has the desired properties.

Lemma 6.3.6. By Theorem 2.5.2, any vertex in a cyclotomic L-graph has weighted degree at

most four. Thus any minimal noncyclotomic L-graph with seven or more vertices also has all

vertices of weighted degree at most four.
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Lemma 6.3.7. There are no cyclotomic L-graphs of the form

∗

Corollary 6.3.8. For n ≥ 5, If vertices i, j of an n-vertex L-graph G share a common neighbour

k such that ei,k, ej,k ∈ L2, then i, j must have the same set of neighbours for G to be minimal

noncyclotomic.

6.3.2 Small Minimal Noncyclotomic Graphs

In this Section we determine all remaining minimal noncyclotomic L-graphs for d = −2,−7

with at least one weight 2 edge label and at most ten vertices. Such an L-graph G necessarily

induces as a subgraph some cyclotomic L-graph H of form ∗ ∗ . By negating, taking

complex conjugates and/or switching, we may assume that H is one of the following:

H1 := + +
ω

H2 := + −ω

H3 :=
ω

H4 := +
ω

where ω =
√
−2 or 1

2 +
√
−7
2 for d = −2,−7 respectively. We note immediately that the L-graph

H1 is noncyclotomic (with Mahler measure 1.883. . . ) and clearly minimal.

Let G have vertices x1, . . . , xn; by the above, we may assume that the subgraph induced on

vertices x1, x2 is from the seed set {H2, H3, H4}. Further, by minimality the subgraph induced

on x1, . . . , xn−1 is cyclotomic. A representative of G can therefore be found by a series of

n − 3 cyclotomic additions to one of the seeds, followed by a noncyclotomic addition. Thus,

representatives of all minimal noncyclotomic L-graphs up to a given number of vertices can be

found by repeated application of the following growing algorithm:

Definition 6.3.9. The mncyc algorithm

Let Sk be a seed set of k × k cyclotomic matrices. Let C be a suitable column set and X

a suitable charge set. Then the following algorithm performs a round of cyclotomic/minimal

noncyclotomic growing :
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Algorithm 4: mncyc
Input: Sk, X,C

Output: Sets Sk+1,MNCY Ck+1 of cyclotomic, minimal noncyclotomic supermatrices

Sk+1 = ∅

MNCY Ck+1 = ∅

for m ∈ Sk do
Sm = ∅

MNCY Cm = ∅

for x ∈ X do

for c ∈ C do

mc,x =

 m c

c x


if mc,x is cyclotomic then

Sm = Sm ∪ {mc,x}

else

if mc,x is minimal noncyclotomic then
MNCY Cm = MNCY Cm ∪ {mc,x}

Sk+1 = Sk+1 ∪ Sm
MNCY Ck+1 = MNCY Ck+1 ∪MNCY Cm

return Sk+1,MNCY Ck+1

Recall from Definition 3.2.1 the näıve column set Ck(L) of nonzero vectors from Lk, where here

we may take L = L1 ∪ L2 ∪ {0}.

Then, for C = Ck(L) and X = {0,±1}, starting mncyc with S2 = {H2, H3, H4}, then using

each Sk+1 as the input for the next round for m − 2 iterations will recover successive sets

MNCY C3, . . . ,MNCY Cm such that for any n ≤ m-vertex minimal noncyclotomic G contain-

ing a weight 2 edge, there is a representative of G in MNCY Cn.

However, as in Section 3.2.2, if the matrix mc,x is cyclotomic or minimal noncyclotomic for some

c, then, by (complex) switching at the new vertex, so are the matrices mλc,x for any λ ∈ L1,

and they are equivalent to mc,x. In each round, we may thus avoid redundant supermatrices

by restricting our attention to the following:

Definition 6.3.10. Recall from Section 3.2.2 the reduced näıve column set Ck′(L) := Ck(L)/ ∼,

where

c = (c1, . . . , ck) ≡ c′ if and only if c′ = (λc1, . . . , λck) for some λ ∈ L1

For a k × k matrix representative m of a k-vertex cyclotomic graph, let the reduced näıve
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cyclotomic addition set of m be the set of (k + 1)× (k + 1) matrices

super′(m,L, X) :=

mc,x =

 m c

c x

 ∣∣∣ c ∈ Ck′(L) , x ∈ X , mc,x cyclotomic


With C = Ck′(L) and a charge set X, the set Sk+1 produced by mncyc is thus

⋃
m∈Sk

super′(m,L, X)

For small n, it is also possible to directly test matrices in the supersets for equivalence. Between

rounds we may reduce sets Sk, MNCY Ck in this way since if m1,m2 are strongly equivalent

then any m′1 ∈ super′(m1,L, X) is equivalent to some m2
′ ∈ super′(m2,L, X). However, the

size of column sets grows exponentially, and since for an n × n noncyclotomic matrix testing

minimality requires checking up to n (n − 1) × (n − 1) matrices for cyclotomicity, it rapidly

becomes computationally infeasible. We thus seek to further optimise the search by excluding

addition columns that cannot yield either a cyclotomic or minimal noncyclotomic supermatrix

of a given seed matrix; thus saving the time required for their construction and testing. For

later rounds, we may achieve this by using the results of Section 6.3.1 and a refinement of the

growing algorithm:

Corollary 6.3.11. For k ≥ 6, the following modification of mncyc does not alter its output,

but reduces computation time by preemptively discarding columns which (by Theorem 2.5.2 and

Lemma 6.3.6) cannot yield supermatrices in Sk+1 or MNCY Ck+1:
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Algorithm 5: bounded mncyc

Input: Sk, X,C

Output: Sets Sk+1,MNCY Ck+1 of cyclotomic, minimal noncyclotomic supermatrices

Sk+1 = ∅

MNCY Ck+1 = ∅

for m ∈ Sk do
Sm = ∅

MNCY Cm = ∅

Cm = C

for l from 1 to k do

rowWeightsl =
∑k
i=1ml,iml,i

for c ∈ C do
newWeightsl = rowWeightsl +Norm(cl)

if max(newWeights) > 4 then Cm = Cm − {c}
for x ∈ X do

for c ∈ Cm do

mc,x =

 m c

c x


if mc,x is cyclotomic then

Sm = Sm ∪ {mc,x}

else

if mc,x is minimal noncyclotomic then
MNCY Cm = MNCY Cm ∪ {mc,x}

Sk+1 = Sk+1 ∪ Sm
MNCY Ck+1 = MNCY Ck+1 ∪MNCY Cm

return Sk+1,MNCY Ck+1

The search

We therefore proceed as follows for the eight rounds necessary to generate representatives of all

minimal noncyclotomic L-graphs of ten or less vertices containing a weight 2 edge:

n = 3 We grow the seed set {H2, H3, H4} with reduced column set C2′(L) and charge set

{0,±1}. This yields 13 (13) 3-vertex cyclotomics, and 80 (161) minimal noncyclotomics for

d = −2 (d = −7). We reduce these modulo equivalence (by brute force comparison of signed

permutations) to 6 cyclotomics (both d) and 34 (67) minimal noncyclotomics for d = −2

(d = −7).

n = 4 We grow the sets S3 with reduced column set C3′(L) and charge set {0,±1}. This yields

16 (20) 4-vertex cyclotomics, and 129 (131) minimal noncyclotomics for d = −2 (d = −7). We
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reduce these modulo equivalence (by brute force) to 12 (15) cyclotomics and 51 (61) minimal

noncyclotomics for d = −2 (d = −7).

n = 5 We grow the sets S4 with reduced column set C4′(L) and charge set {0,±1}. This

yields 36 (47) 5-vertex cyclotomics, and 48 (108) minimal noncyclotomics for d = −2 (d = −7).

We reduce these modulo equivalence (by brute force) to 14 (17) cyclotomics, 14 (25) minimal

noncyclotomics.

n = 6 From now on, we may apply Lemma 6.3.1. Thus we generate S6, MNCY C6 from S5 by

two runs of mncyc- one uncharged only with C = C5′(L) and X = {0}, the other necessarily

charged with C = C5′(L1 ∪ {0}), X = {±1} (that is, excluding addition vectors with entries

from L2, since for such a v mv,±1 is not in S6 or MNCY C6). In this way we obtain 54 (64)

6-vertex cyclotomics and 30 (40) minimal noncyclotomics for d = −2 (d = −7). Brute force

reduction is no longer feasible, but by manipulation of graphical representatives we reduce the

set of minimal noncyclotomics to 12 (17).

n = 7 As Lemmata 6.3.1 and 6.3.6 both now apply, we generate S7 and MNCY C7 from S6

by mncyc with C = C4
6′(L), X = {0} and C = C3

6′(L1 ∪ {0}), X = {±1}. This ensures that

the vertex x being added has weighted degree at most four, and that there is not a weight 2

edge incident at x if it is charged. We may also use bounded mncyc as described in Corollary

6.3.11. For both d we obtain only three minimal noncyclotomics, which are easily seen to be

equivalent.

n = 8 Using Lemmata 6.3.1, 6.3.6 and Corollary 6.3.11, we generate S8 and MNCY C8 from

S7 by runs of bounded mncyc with C = C4
7′(L), X = {0} and C = C3

7′(L1 ∪ {0}), X = {±1}.

For both d we obtain only three minimal noncyclotomics, which are easily seen to be equivalent.

n = 9 Using Lemmata 6.3.1, 6.3.6 and Corollary 6.3.11, we generate S9 and MNCY C9 from

S8 by runs of bounded mncyc with C = C4
8′(L), X = {0} and C = C3

8′(L1 ∪ {0}), X = {±1}.

For both d we obtain only three minimal noncyclotomics, which are easily seen to be equivalent.

n = 10 For d = −2, using Lemmata 6.3.1, 6.3.6 and Corollary 6.3.11, we generate S10 and

MNCY C10 from S9 by runs of bounded mncyc with C = C4
9′(L1 ∪ L2 ∪ {0}), X = {0} and

C = C3
9′(L1 ∪ {0}), X = {±1}.

For d = −7, we run bounded mncyc with C = C3
9′(L1∪{0}), X = {±1}; C = C4

9′(L1∪{0}), X =

{0}; and C = C4
9′(L2∪{0}), X = {0}. By Lemmata 6.3.1, 6.3.6 and Corollary 6.3.11 this covers

all potential cyclotomic additions from C = C4
9′(L), X = {0,±1} with the exception of vectors

from C = C4
9′(L) containing entries from both L1 and L2.
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Let c be such a vector and consider a seed matrix m ∈ S9; we wish to determine whether mc,x

can be cyclotomic/minimal noncyclotomic. By Lemma 6.3.1 we need only consider x = 0. Let

ci ∈ L2 and cj , cj′ ∈ L1 (if c has weight 3, take j′ = j). Then if ∃k such that mi,k ∈ L1 then

mc,x is noncyclotomic but not minimal by Lemma 6.3.3 (if k = j or k = j′) or by Lemma

6.3.4 if k 6= j, j′. If there is no such k then by connectedness of m there exists k such that

mi,k ∈ L2. Now by Corollary 6.3.8 mc,x is noncyclotomic but not minimal if either mk,j = 0 or

mk,j′ = 0. This leaves only a few cases, which (after further discarding m, c pairs that would

violate Lemma 6.3.6) we test for membership of S10,MNCY C10.

For each d we obtain only three minimal noncyclotomics, which are easily seen to be equivalent.

Representatives and Least Mahler Measures

Throughout, let ω =
√
−2 or ω = 1

2 +
√
−7
2 for d = −2,−7 respectively.
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n = 3, d = −7 We have 67 classes, with Mahler measure at least 1.401... and representatives
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n = 4, d = −2 We have 51 classes, with Mahler measure at least 1.401... and representatives
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7 ≤ n ≤ 10 For each such n there is only a single minimal noncyclotomic class, with repre-

sentative Gn (where ω =
√
−2, 1

2 +
√
−7
2 for d = −2,−7 respectively):

1 2 3 n− 3 n− 2 n− 1

n

ω

and Mahler measures 1.506 . . . , 1.458 . . . , 1.425 . . . , 1.401 . . . for n = 7, 8, 9, 10 respectively.

We note that the L-graph Gn for n ≥ 11 is not minimal noncyclotomic, since the induced

subgraph Hn−1 on vertices 2, . . . , n is not cyclotomic. However, for n ≥ 11 we may obtain

an L-graph with Mahler measure smaller than the value 1.401 . . . observed for n = 10 but, as

Hn−1 is a noncyclotomic signed graph it has Mahler measure at least λ0 and thus so does Gn

by Interlacing.

6.3.3 Large Minimal Noncyclotomic L-Graphs

We will prove that the results of the previous Section provide a complete classification of the

minimal noncyclotomics for d = −2,−7, by showing the following:

Theorem 6.3.12. For d = −2,−7, Let G be a connected L-graph including at least one edge

label from L2. If G has eleven or more vertices, then it is not minimal noncyclotomic.

6.3.4 Supersporadics

For d = −2,−7, let Sd be the set of representatives of the sporadic 4-cyclotomic graphs with

edges of weight at most 2 over OQ(
√
d). So (from Theorem 5.6.1)

S−2 = {S4, S
∗
4 , S7, S8, S

′
8, S
∗
8 , S14, S16}

and (from Theorem 5.6.2)

S−7 = {S4, S
†
6, S7, S8, S

′
8, S
∗
8 , S14, S16}

Definition 6.3.13. For d = −2,−7 we describe a minimal noncyclotomic L-graph with n-

vertices as supersporadic if it has a connected subgraph with n − 1 vertices that is equivalent

to a subgraph H of some G ∈ Sd.

The set of supersporadic minimal noncyclotomic L-graphs is finite, and could (in principle) be

computed from the set of all subgraphs of each G ∈ Sd by considering all possible single-vertex
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additions to each such subgraph. Supersporadic minimal noncyclotomic charged signed graphs

have been classified in [15], so we need only identify L-graphs with at least one edge label from

L2. As such, by the results of the previous Section, we need only consider graphs with at

least 11 vertices. Thus we seek connected minimal noncyclotomic L-graphs G obtained by the

noncyclotomic addition of a vertex x to a k-vertex subgraph H of S14 or S16, for k ≥ 10. As G

therefore has k+1 ≥ 11 vertices, Lemma 6.3.6 applies, so (determining G up to equivalence) the

addition column c may be assumed to be from C4
k′(L). Since all the H are cyclotomic signed

graphs, the addition vector c necessarily contains an entry from L2, and so by Lemma 6.3.1 x

(and hence the whole of G) is uncharged.

Lemma 6.3.14. Let c ∈ C4
k′(L) with ci ∈ L2 for some i. Let m be a representative of a

connected n ≥ 10-vertex subgraph H of S14 or S16. If c 6∈ C4
k′(L2 ∪ {0}) then the L-graph G

with representative mc,0 cannot be minimal noncyclotomic.

Proof. Let j be any neighbour of vertex i in H; by connectedness, there is at least one, and

ei,j ∈ L1 since H is a signed graph. Now suppose there exists l such that cl ∈ L1. If l = j then

the subgraph on vertices x, i, j ensures the nonminimality of G by Lemma 6.3.3. Otherwise,

the subpath on vertices l, x, i, j ensures the non-minimality of G by Lemma 6.3.4.

Lemma 6.3.15. For k ≥ 10, let H be a disconnected k-vertex subgraph of S14 or S16 with

matrix representative m such that no connected component of H consists of a single vertex. If

G is the graph of mc,0 for any c ∈ C4
k′(L) such that at least one entry of c has weight 2, then

G is not minimal noncyclotomic.

Proof. We may assume that G is connected, else it cannot be minimal noncyclotomic. Let i

be such that ci ∈ L2. H contains at least two distinct connected components X1, X2; w.l.o.g

let i ∈ X1. For connectedness, the vertex x added must have neighbours in both X1, X2: pick

any j ∈ X2 such that cj 6= 0, plus a neighbour l ∈ X1 of i. If cj ∈ L1 then the subgraph on

vertices l, i, x, j contains a L1,L2,L1 path; as G has at least 11 vertices it cannot be minimal

noncyclotomic by Lemma 6.3.4. If instead cj ∈ L2, then vertices i, j both have x as a neighbour

yet l is not a neighbour of j, so by Corollary 6.3.8 G is not minimal noncyclotomic.

Thus for each 10 ≤ k ≤ 16 we determine seed sets Sk of representatives of the k-vertex

subgraphs of S14 and S16 and partition each into two subsets: connected and disconnected. By

Lemma 6.3.15, we may discard any disconnected seed that does not have at least one vertex

which is its own connected component. For the connected seeds, by Lemma 6.3.14 we use

mncyc with C = C4
k′(L2 ∪ {0}), X = {0}, whilst for the remaining disconnected seeds we take

C = C4
k′(L), X = {0}, with the restriction that at least one entry of each c ∈ C is of weight 2.

In both cases, we may apply bounded mncyc as described in Corollary 6.3.11. For each m we

may further discard any addition column c that induces a triangle in the graph G of mc,0: such
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a triangle will be uncharged and contain at most two weight 2 edges, so by Lemma 6.3.3, 6.3.2

or 6.3.5 G cannot be minimal noncyclotomic.

Subject to these conditions, for each seed set the bounded mncyc process yields no minimal

noncyclotomic L-graphs. In [15] it is shown that a minimal noncyclotomic charged signed graph

has at most ten vertices. Thus:

Proposition 6.3.16. For d = −2,−7, a supersporadic minimal noncyclotomic L-graph has at

most ten vertices.

6.3.5 Non-Supersporadics

Let G be an n-vertex minimal noncyclotomic L-graph with a weight 2 edge. If n ≤ 10, then G

has already been classified. Otherwise n ≥ 11 and each of the (n− 1)-vertex subgraphs G′i of G

must be cyclotomic. By the previous Section G cannot then be supersporadic so the G′i (and

hence their subgraphs) are equivalent to subgraphs of some T2k, C+±2k , C2±2k or T 4
2k. The following

result thus completes the proof of Theorem 6.3.12:

Proposition 6.3.17. Let G be an (n ≥ 11)-vertex connected L-graph such that every proper

connected subgraph of G is equivalent to a subgraph of some T2k, C+±2k , C2+2k or T 4
2k. Then G is

also equivalent to a subgraph of some T2k, C+±2k , C2+2k or T 4
2k.

From [15], this result holds for any connected charged signed graph G and so we may assume

that G contains a weight 2 edge.

Profiles

The following definitions and notation are essentially as in [15] Section 4.1.

Definition 6.3.18. An uncharged L-graph has a profile if its vertex set can be partitioned

into a sequence of k ≥ 3 subsets V1, . . . , Vk so that either

• two vertices are adjacent if and only if for some i one belongs to Vi and the other to Vi+1;

or

• two vertices are adjacent if and only if for some i one belongs to Vi and the other to Vi+1

or one belongs to Vk and the other to V1 (in this case, the profile is described as cycling).

The Vi are described as the columns of the profile; we will be interested only in profiles where

each column contains at most two vertices. For a vertex v in a 2-vertex column, the other

vertex in that column will be denoted v, the conjugate of v.
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For charged graphs, we extend the definition by introducing the requirement that each column

contains only neutral vertices or only charged vertices all of the same charge, but relaxing the

adjacency rule such that xy is an edge in G if and only if either x and y are in adjacent columns

or are charged vertices in the same column.

Definition 6.3.19. If G has a profile, then we define the rank to be the number of columns in

this profile.

Definition 6.3.20. For an L-graph G we describe a path or cycle P as chordless if it has the

property that if two vertices of P are adjacent in G then they are also adjacent in P . Then the

path rank of G is the maximum number of vertices taken over all chordless paths and chordless

cycles of G.

Proposition 6.3.21. The 2k-vertex graph T2k has a cycling profile of rank k:

B

A A

B

V1 V2 V3 V4 Vk−2 Vk−1 Vk V1

Proposition 6.3.22. The 2k-vertex graph C++
2k has a profile of rank k:

+

+ +

+

V1 V2 V3 V4 Vk−3 Vk−2 Vk−1 Vk

as does C+−
2k .

Proposition 6.3.23. The 2k-vertex graphs T 4
2k, T

4
2k
′ (with A,B as in Corollaries 2.6.20,2.6.21)

have a profile of rank k + 1:

A

A

B

−B

V1 V2 V3 V4 V5 Vk−2 Vk−1 Vk Vk+1

179



Proposition 6.3.24. The 2k+1-vertex graph C2+
2k (with A as in Corollary 2.6.26) has a profile

of rank k + 1:

+

+
A

−A

V1 V2 V3 V4 Vk−2 Vk−1 Vk Vk+1

Lemma 6.3.25. Let G be equivalent to a connected subgraph of one of T2k, C
+±
2k , C2+

2k , T
4
2k or

T 4
2k
′. If G has path rank at least 5 then this equals its profile rank, and its columns are uniquely

determined. Moreover, their order is determined up to reversal or cycling.

For G equivalent to a connected subgraph of T2k, C
++
2k or C+−

2k , this is the content of Lemma

6 in [15]; we note the remark there that the result is best possible, in the sense that it is false

if ‘5’ is replaced with ‘4’ (as the example of T8 shows). The proof carries over immediately to

the remaining cases C2+
2k and T 4

2k, but we include it here for completeness.

Proof. Let P be a chordless path or cycle with the maximal number of vertices r. As r ≥ 5 no

two of these vertices are in the same column. Each column of G contains exactly one vertex

in P , so the profile rank equals the path rank. Each column in the profile of P inherited from

that of G contains only a single vertex; we may recover the profile of G by adding the vertices

of G− P to those columns. Because r ≥ 5 there is only one valid column for each such vertex,

determined by its neighbours in G. The last sentence is clear.

Subgraph Conditions

As drawn in Propositions 6.3.21-6.3.5, any induced 4-cycle in a subgraph of rank at least 5 must

be one of the following:

Hourglass 4-cycles Underlying graph of form
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Parallelogram 4-cycles Underlying graph of one of the forms

∗

∗

∗

∗

Triangular 4-cycles Underlying graph of one of the forms

∗ ∗

∗ ∗

Further, choosing a numbering on the L-graphs T 4
2k, T

4′

2k and C2+
2k as in Corollaries 2.6.20, 2.6.21,

2.6.26 fixes their weight 2 edge labels. For d = −2, we define an edge to be positive if it has

label +1 or ω =
√
−2; otherwise (label from {−1,−

√
−2}) we call it negative. For d = −7, we

define an edge to be positive if it has label from {+1, ω = 1
2 +

√
−7
2 , ω} or negative if it has label

from {−1,−ω,−ω}.

Proposition 6.3.26. (i) Let H be a signed graph of rank at least 5 that has, for some k, an

underlying graph of the same form as a subgraph of T2k, as drawn in Proposition 6.3.21. Then

H is equivalent to a subgraph G of T2k if and only if

• The hourglass 4-cycles all have an even number of positive edges;

• The parallelogram 4-cycles all have an odd number of positive edges;

• The triangular 4-cycles all have an odd number of positive edges.

(ii) Let H be a charged signed graph of rank at least 5 that has, for some k, the same underlying

graph as a subgraph of C++
2k or C+−

2k , drawn as in Proposition 6.3.22. Then H is equivalent to

a subgraph G of C++
2k or C+−

2k if and only if

• The hourglass 4-cycles all have an even number of positive edges;

• The parallelogram 4-cycles all have an off number of positive edges;

• The triangular 4-cycles all have an odd number of positive edges;

• The triangles containing two charged vertices in the subgraph have the property that if

the charges are positive (respectively negative) then the triangle has an even number of

positive (resp. negative) edges.

(iii) Let H be an uncharged L-graph of rank at least 5 that has, for some k, an underlying graph

of the same form as a subgraph of T 4
2k or T 4′

2k, as drawn in Proposition 6.3.23 with numbering

181



as in Corollary 2.6.20/2.6.21. Then H is equivalent to a subgraph G of T 4
2k or T 4′

2k if and only

if

• The hourglass 4-cycles all have an even number of positive edges;

• The parallelogram 4-cycles all have an odd number of positive edges;

• The triangular 4-cycles all have an odd number of positive edges.

(iv) Let H be a charged L-graph of rank at least 5 that has, for some k, an underlying graph of

the same form as a subgraph of C2+
2k or C2−

2k , as drawn in Proposition 6.3.5 with numbering as

in Corollary 2.6.26. Then H is equivalent to a subgraph G of C2+
2k if and only if

• The hourglass 4-cycles all have an even number of positive edges;

• The parallelogram 4-cycles all have an off number of positive edges;

• The triangular 4-cycles all have an odd number of positive edges;

• The triangles containing two charged vertices in the subgraph have the property that if

the charges are positive (respectively negative) then the triangle has an even number of

positive (resp. negative) edges.

Proof. We note that (i) and (ii) hold by Proposition 7 of [15]; we will adopt the same techniques

to prove (iii) and (iv).

We first show that the conditions given in Proposition 6.3.26 are necessary. Since H has rank

at least 5, by Lemma 6.3.25 the columns of its profile are uniquely determined. Thus by our

standard drawings in Propositions 6.3.21-6.3.5 each 4-cycle of H is either

• an hourglass

or

• a parallelogram 4-cycle or triangular 4-cycle. (Interchanging the position of conjugate

vertices in the drawing may cause parallelograms to become triangular, and vice versa).

Since each 4-cycle is even length and contains zero or two edges of weight 2, the equivalence

relation operations (permutation, switching, conjugation) will preserve the parity of the number

of positive edges in each cycle, proving necessity. We now assume that the given conditions

hold, and prove that they are sufficient: that our given subgraph is equivalent to a subgraph of

T2k, C
+±
2k , C2+

2k , T
4
2k or T 4

2k
′. To do this, we need to embed an L-graph equivalent to H into one

of T2k, C
+±
2k , C2+

2k , T
4
2k or T 4

2k
′ so that the resultant embedding G inherits its edge and vertex

signs from the L-graph it is embedded into. Cases (i) and (ii) hold by Proposition 7 of [15]; for

(iii) and (iv) we may assume that H contains at least one edge of weight 2 else the conditions

for that result are met with H equivalent to a subgraph of T2k, C
++
2k or C+−

2k .
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(iii) Given that H contains a weight 2 edge it cannot be equivalent to a a subgraph of T2k, C
++
2k

or C+−
2k , and as it is uncharged we therefore seek to embed an equivalent of H in T 4

2k (or

T 4
2k
′ for d = −7).

Let P be a maximum-length chordless path or cycle in H; since no chordless cycle in the

underlying graph of T 4
2k or T 4′

2k has length greater than 4 but H has rank at least 5, P is

necessarily a chordless path. Let it have length l′, joining vertices v1, . . . , vl; by switching,

we can ensure that it has all edge labels positive.

Let e be an edge of weight 2 in H; w.l.o.g we may draw H such that e is the leftmost edge

joining vertices 1 and 2L+ 1 (as numbered in Corollaries 2.6.20 and 2.6.21). Any longest

rational integer path P ′ in T 4
2k or T 4′

2k is at most L = k − 1 vertices long. Consider its

leftmost vertices v1, v2. If v1 = 1 then a longer chordless path is obtained by starting at

2L+ 1 then proceeding as in P ′ via 1; if column V1 6= {1} then both vertices 1 and L+ 1

are in H (else redraw and take L+ 1 as 1) so there is a longer path through 2L+ 1, 1, v2

then proceeding as in P ′. So the longest chordless path cannot have all edges rational

integers and we may assume that the first edge of P is of weight 2.

Now either the edge between vertices vl−1, vl of P is weight 2, or it isn’t. If it is, we may

embed P into the top edge of T = T 4
2l−2 (or, for d = −7, T = T 4

2l−2
′ if the second weight

2 edge label is complex conjugate to the first); otherwise, embed into T = T 4
2l. In either

case, all the relevant edges are positive as required. We may now proceed as in case (i)

in [15]; the next two paragraphs are essentially identical to that proof.

We can now embed into T those conjugates of v1, . . . , vl that are present in H, by placing

them in their appropriate columns on the bottom row of T : note that triangular 4-cycles

in H may become parallelogram 4-cycles, and vice versa, by this process (if P moved

between the top and bottom rows of the original drawing). This induces an embedding G

of H in T , though without the signs of the edges yet agreeing. To achieve this agreement,

we switch at these newly embedded vertices, if necessary, to ensure that all edges of

negative slope have positive sign. We also switch at any vertex in the bottom row that

has no incident edge of negative slope, if necessary, to ensure that the incident edge of

positive slope has negative sign.

We next claim that, after making these switchings, all edges of the embedding G do

indeed have the same sign as the edges of T . First consider an edge of G of positive slope.

If not already made to have negative sign, such an edge must be part of a triangular

4-cycle where the two horizontal edges and the edge of negative slope all have positive

sign. Hence, by the stated triangular 4-cycle condition, the edge of positive slope must

have negative sign. (Note that because both the stated parallelogram 4-cycle condition

and the triangular 4-cycle condition hold for H, the triangular 4-cycle condition holds

for G.) Finally, every horizontal edge on the second row is part of an hourglass 4-cycle,
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which implies that it must have negative sign.

(iv) Again, consider a maximum length chordless path P in H. If no vertex is charged then P

could be embedded in T 4
2k or T 4′

2k. So we may assume that P contains a charged vertex:

by the profile of C2±
2k , this must be an end vertex of P . Further, by maximality, P must

terminate with a weight 2 edge. Negating if necessary we may assume that the charged

vertex is positive, and by switching we may ensure that all edges of P are positive, and

by taking the complex conjugate if necessary that the weight 2 edge is ω. Then such a

P with k′ vertices can be embedded sign-consistently into the top row of C2+
2(k′−1). We

then proceed as in (iii), which ensures that all horizontal edges, and those of positive

or negative slope, have the correct sign. Finally, the triangle condition ensures that the

vertical edge must have positive sign as required.

We may now complete the proof of Proposition 6.3.17. By Proposition 8 in [15], if G is a

charged signed graph then the result holds, so it suffices to prove the following:

Proposition 6.3.27. For d = −2,−7 let G be an L-graph with n ≥ 11 vertices, such that every

proper connected subgraph of G is equivalent to a subgraph of some T2k, C
+±
2k , C2+

2k or T 4
2k. If G

contains an edge label of weight 2, then G is equivalent to a subgraph of some T 4
2k, T

4′

2k or C2+
2k .

It follows immediately that a minimal noncyclotomic L-graph with a weight 2 edge that is

not supersporadic can have no more than ten vertices. Since there are also no supersporadic

examples with more than ten vertices, Theorem 6.3.12 holds.

Proof. Let G be such a graph: we seek a profile of G. Take a chordless path or cycle P with

the maximal number of vertices (given a tie, take P to be a path), and let x and y be the

endvertices of P if P is a path, or any two adjacent vertices of P if P is a cycle. Note that

no vertex of G is adjacent to x but to no other vertex on P , else we could either grow P to

a longer chordless path, or replace a chordless cycle P by a chordless path of equal length. It

follows that G−{x} (similarly, G−{y}) is connected, and since it contains at least 10 vertices

it has rank at least 5, so P contains at least 5 vertices. Hence by the following Lemma P is

necessarily a path, not a cycle:

Lemma 6.3.28. For n ≥ 5, G cannot contain a chordless n-cycle.

Proof. Let G contain a chordless n-cycle on vertices v1, . . . , vn. Further, by assumption there

exist vertices v, v′ (possibly in {v1, . . . , vn}) such that ev,v′ ∈ L2. Now let G′ be the smallest

connected subgraph of G to include all of v1, . . . , vn, v, v′. If G′ is a proper subgraph of G, then

we have a contradiction: G′ must be equivalent to a subgraph of some T2k, C
+±
2k , C2+

2k , T
4
2k or
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T 4′

2k, but none of those contain both an L2 edge and a chordless n-cycle on more than 4 vertices.

Thus G′ = G, and deleting any vertex not from {v1, . . . , vn, v, v′} gives a disconnected graph.

If v, v′ ∈ {v1, . . . , vn} G is therefore a chordless n-cycle with n = |G|. Delete any vertex of G;

the resulting path on 10 or more vertices is by assumption equivalent to a subgraph of a 4-

cyclotomic graph and hence cyclotomic, so a subpath of weight-2 edges is at most 2 edges long.

But by Lemmata 6.3.4 and 6.3.7 isolated weight 2 edges or pairs of such are also impossible.

So the n-cycle must contain weight 1 edges only, with one of v, v′ (w.l.o.g., v) not amongst the

vi. Deleting v gives a subgraph with an n-cycle that must embed into some cyclotomic graph,

so necessarily the cycle is uncharged.

Given the connectivity property, G is therefore either of the form:

v1

vn

v2

v

which for n ≥ 5 induces as a proper subgraph on vertices v, v1, v2, vn, vn−1 an L-graph equivalent

to
v v1 vn vn−1

v2

ω

yet no such L-graph is cyclotomic for any ω ∈ L2;

or, for some m ≥ 1:

v1

vn

v2

x1xmv′

but then the subgraph on vertices v1, . . . , vn, x1 is necessarily a subgraph of some T2k, yet this

is impossible: if - for a suitable profile - each vi ∈ Vi then, as a neighbour of v1, x1 ∈ V2 or

x1 ∈ Vn; yet x1 is not a neighbour of v3 or vn−1.

We may now complete the proof of Proposition 6.3.27.

If there were a vertex not on P adjacent to both x and y but no other vertex on P , then P

could be extended to a longer chordless cycle, which is impossible. So G− {x, y} is connected.
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It has at least 9 vertices and thus rank r at least 5, so by Lemma 6.3.25 it has a uniquely

determined profile. As the profiles of G− {x}, G− {y} are also uniquely determined, they can

each be obtained by adding y or x to the profile of G − {x, y}. Since P is not a cycle, x and

y are non-adjacent in G, and all other possible adjacencies of x in G can be read off from the

profile of G− {y}, and all other possible adjacencies of y in G can be read off from the profile

of G− {x}. Thus we can merge the profiles of G− {x} and G− {y} to obtain a new sequence

of columns C, which we shall show is the profile of G. In this merging, columns 2, 3, . . . , r − 1

carry over unchanged, and as x, y are the endpoints of a maximal chordless path they must lie

in opposite end columns 1 and r.

Now, no vertex in the column of x is adjacent to one in the column of y, else, deleting column

3 of G − {x, y} we obtain another proper subgraph of G which thus has a profile that would

force all vertices in the column of x to be adjacent to all in the column of y. In particular, this

would make x a neighbour of y and thus P a cycle. Hence no vertex in column 1 is adjacent to

any in column r, and C is a non-cycling profile of G. The local conditions of Proposition 6.3.26

hold for G, since they hold for both G− {x} and G− {y}, so by that result G is equivalent to

a subgraph of some T2k, C
+±
2k , C2+

2k , T
4
2k or T 4′

2k.

6.4 Summary

6.4.1 d ≤ −17 or d ∈ {−5,−6,−10,−13,−14}

For R = OQ(
√
d) where d ≤ −17 or d ∈ {−5,−6,−10,−13,−14}, we have a classification of all

minimal noncyclotomic graphs with edge labels from R, whereby such an R-graph G is one of

the following:

• A 1-vertex R-graph with large modulus charge and Mahler measure at least 2.618 as in

Section 6.2.1 (else all charges {0,±1,±2});

• A 2-vertex R-graph with an edge of weight n ≥ 5 and Mahler measure at least 2.36 as in

Section 6.2.2 (else all charges {0,±1,±2} and all edge labels from L = L1);

• A 2-vertex R-graph with a ±2 charge and Mahler measure at least 1.722 as in Section

6.2.3;

• Else all charges {0,±1} and all edge labels from L1 = {±1}; thus G is a minimal noncy-

clotomic charged signed graph as classified in [15] with Mahler measure at least λ0.

Thus Lehmer’s conjecture holds for d < −17 and d ∈ {−5,−6,−10,−13,−14}: if A is an

OQ(
√
d)-matrix then M(A) ≥ λ0.
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6.4.2 d = −15

For R = OQ(
√
−15), we have a classification of all minimal noncyclotomic graphs with edge

labels from R, whereby such an R-graph G is one of the following:

• A 1-vertex R-graph with large modulus charge and Mahler measure at least 2.618 as in

Section 6.2.1 (else all charges {0,±1,±2});

• A 2-vertex R-graph with an edge of weight n ≥ 5 and Mahler measure at least 2.36 as in

Section 6.2.2 (else all charges {0,±1,±2} and all edge labels from L = L1 ∪ L4);

• A 2-vertex R-graph with a ±2 charge and Mahler measure at least 1.722 as in Section

6.2.3 (else all charges {0,±1} and all edge labels from L = L1 ∪ L4);

• An L-graph of at most 3 vertices with a weight 4 edge and Mahler measure at least 2.08

as in Section 6.2.4;

• Else all charges {0,±1} and all edge labels from L1 = {±1}; thus G is a minimal noncy-

clotomic charged signed graph as classified in [15] with Mahler measure at least λ0.

Thus Lehmer’s conjecture holds for d = −15: if A is an OQ(
√
−15)-matrix then M(A) ≥ λ0.

6.4.3 d = −11

For R = OQ(
√
−11), we have a classification of all minimal noncyclotomic graphs with edge

labels from R, whereby such an R-graph G is one of the following:

• A 1-vertex R-graph with large modulus charge and Mahler measure at least 2.618 as in

Section 6.2.1 (else all charges {0,±1,±2});

• A 2-vertex R-graph with an edge of weight n ≥ 5 and Mahler measure at least 2.36 as in

Section 6.2.2 (else all charges {0,±1,±2} and all edge labels from L = L1 ∪ L3 ∪ L4);

• A 2-vertex R-graph with a ±2 charge and Mahler measure at least 1.722 as in Section

6.2.3 (else all charges {0,±1} and all edge labels from L = L1 ∪ L3 ∪ L4);

• An L-graph of at most 3 vertices with a weight 4 edge and Mahler measure at least 2.08

as in Section 6.2.4 (else all charges {0,±1} and all edge labels from L = L1 ∪ L3);

• An L-graph of at most 4 vertices with a weight 3 edge and Mahler measure at least 1.56

as in Section 6.2.5;

• Else all charges {0,±1} and all edge labels from L1 = {±1}; thus G is a minimal noncy-

clotomic charged signed graph as classified in [15] with Mahler measure at least λ0.

Thus Lehmer’s conjecture holds for d = −11: if A is an OQ(
√
−11)-matrix then M(A) ≥ λ0.
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6.4.4 d = −7

For R = OQ(
√
−7), we have a classification of all minimal noncyclotomic graphs with edge labels

from R, whereby such an R-graph G is one of the following:

• A 1-vertex R-graph with large modulus charge and Mahler measure at least 2.618 as in

Section 6.2.1 (else all charges {0,±1,±2});

• A 2-vertex R-graph with an edge of weight n ≥ 5 and Mahler measure at least 2.36 as in

Section 6.2.2 (else all charges {0,±1,±2} and all edge labels from L = L1 ∪ L2 ∪ L4);

• A 2-vertex R-graph with a ±2 charge and Mahler measure at least 1.722 as in Section

6.2.3 (else all charges {0,±1} and all edge labels from L = L1 ∪ L2 ∪ L4);

• An L-graph of at most 3 vertices with a weight 4 edge and Mahler measure at least 2.08

as in Section 6.2.4 (else all charges {0,±1} and all edge labels from L = L1 ∪ L2);

• An L-graph of at most 10 vertices with a weight 2 edge and Mahler measure at least 1.35

as in Section 6.3;

• Else all charges {0,±1} and all edge labels from L1 = {±1}; thus G is a minimal noncy-

clotomic charged signed graph as classified in [15] with Mahler measure at least λ0.

Thus Lehmer’s conjecture holds for d = −7: if A is an OQ(
√
−7)-matrix then M(A) ≥ λ0.

6.4.5 d = −2

For R = OQ(
√
−2), we have a classification of all minimal noncyclotomic graphs with edge labels

from R, whereby such an R-graph G is one of the following:

• A 1-vertex R-graph with large modulus charge and Mahler measure at least 2.618 as in

Section 6.2.1 (else all charges {0,±1,±2});

• A 2-vertex R-graph with an edge of weight n ≥ 5 and Mahler measure at least 2.36 as in

Section 6.2.2 (else all charges {0,±1,±2} and all edge labels from L = L1∪L2∪L3∪L4);

• A 2-vertex R-graph with a ±2 charge and Mahler measure at least 1.722 as in Section

6.2.3 (else all charges {0,±1} and all edge labels from L = L1 ∪ L2 ∪ L3 ∪ L4);

• An L-graph of at most 3 vertices with a weight 4 edge and Mahler measure at least 2.08

as in Section 6.2.4 (else all charges {0,±1} and all edge labels from L = L1 ∪ L2 ∪ L3);

• An L-graph of at most 4 vertices with a weight 3 edge and Mahler measure at least 1.56

as in Section 6.2.5 (else all charges {0,±1} and all edge labels from L = L1 ∪ L2);
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• An L-graph of at most 10 vertices with a weight 2 edge and Mahler measure at least 1.35

as in Section 6.3;

• Else all charges {0,±1} and all edge labels from L1 = {±1}; thus G is a minimal noncy-

clotomic charged signed graph as classified in [15] with Mahler measure at least λ0.

Thus Lehmer’s conjecture holds for d = −2: if A is an OQ(
√
−2)-matrix then M(A) ≥ λ0.
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Chapter 7

Curiosities

7.1 Overview

In this Chapter we adapt the satgrow algorithm to determine all L-graphs with all eigenvalues

either
√

3 or −
√

3. We note the relation between these and several sporadic 4-cyclotomic

L-graphs, and deduce a construction for L-graphs with minimal polynomial x2 − n for each

n ∈ Z.

7.2 3-cyclotomic Matrices and Graphs

Definition 7.2.1. If an indecomposable L-matrix M satisfies M2 = 3I, then we describe it

(and its associated connected L-graph) as 3-cyclotomic.

If M2 = 3I then σ(m) = {±
√

3} ⊂ [−2, 2], so M is cyclotomic. Thus all the restrictions of

Chapter 2 apply, and in particular if M has entries from R = OQ(
√
d) for d < 0, then M is

necessarily an integer symmetric matrix unless d ≥ −15. Further, each vertex in the L-graph

of M has weighted degree 3, and thus in any subgraph has weighted degree at most 3.

Any 3-cyclotomic M can be grown from an induced submatrix M ′ satisfying σ(M ′) ⊆ [−
√

3,
√

3]

by a modified satgrow algorithm such that a vertex is saturated if and only if it has weighted

degree 3; we may also use bounded column sets C3
k′(L) instead of C4

k′(L). Proceeding in this

way from a seed set of the suitable 2× 2 matrices M ′, we find that there are only finitely many

classes of 3-cyclotomic L-graphs.

Rational Integer Matrices

Proposition 7.2.2. If G is a 3-cyclotomic charged signed graph then G is equivalent to one of

the charged signed graphs given in Fig. 7.1.
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+ −

+ − −

−

Figure 7.1: The 3-cyclotomic charged signed graphs.

d = −1

Proposition 7.2.3. If G is a 3-cyclotomic L-graph for d = −1, then G is equivalent to one of

the charged signed graphs given in Fig. 7.1, or one of the L-graphs given in Fig. 7.2.

+ −
1 + i

1 21 + i

3 4−1− i

1

2

3 4

Figure 7.2: The 3-cyclotomic L-graphs for d = −1.
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d = −2

Proposition 7.2.4. If G is a 3-cyclotomic L-graph for d = −2, then G is equivalent to one of

the charged signed graphs given in Fig. 7.1, or one of the L-graphs given in Fig. 7.3.

1 +
√
−2

+ −
√
−2

1 2√
−2

3 4−
√
−2

Figure 7.3: The 3-cyclotomic L-graphs for d = −2.

d = −3

.

Proposition 7.2.5. If G is a 3-cyclotomic L-graph for d = −3, then G is equivalent to one of

the charged signed graphs given in Fig. 7.1, or one of the L-graphs given in Fig. 7.4.

3
2 +

√
−3
2

1

5

6

2

3

4

Figure 7.4: The 3-cyclotomic L-graphs for d = −3.

d = −7

Proposition 7.2.6. If G is a 3-cyclotomic L-graph for d = −7, then G is equivalent to one of

the charged signed graphs given in Fig. 7.1, or one of the L-graphs given in Fig. 7.5.
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+ −
1
2 +

√
−7
2

1 21
2 +

√
−7
2

3 4− 1
2 −

√
−7
2

Figure 7.5: The 3-cyclotomic L-graphs for d = −7.

d = −11

Proposition 7.2.7. If G is a 3-cyclotomic L-graph for d = −11, then G is equivalent to one

of the charged signed graphs given in Fig. 7.1, or the L-graph given in Fig. 7.6.

1
2 +

√
−11
2

Figure 7.6: The 3-cyclotomic L-graph for d = −11.

d ≤ −13 or d ∈ {−5,−6,−10}

If M is a Hermitian 3-cyclotomic R-matrix for R = OQ(
√
d) with d ≤ −13 or d ∈ {−5,−6,−10},

then M is an integer symmetric matrix, since R admits no non-rational integer elements of norm

three or less. Thus M is the adjacency matrix of a charged signed graph equivalent to one of

the graphs given in Fig. 7.1.

7.3 Connected Sums of Graphs

Definition 7.3.1. Let G and H be n-vertex L-graphs with matrix representatives MG,MH .

Then we define the connected sum G⊕H to be the L-graph with matrix representative MG In

In MH


G⊕H can thus be constructed by attaching each vertex i of G to the corresponding vertex in

H by a positive edge.

Proposition 7.3.2. If M2 = mIn, then (M ⊕−M)2 = (m+ 1)I2n.
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Proof. By multiplication of block matrices,

(M ⊕−M)2 =

 M In

In −M

 M In

In −M

 =

 M2 + I2
n M −M

M −M I2
n + (−M)2


=

 mIn + In 0n

0n In +mIn

 =

 (m+ 1)In 0n

0n (m+ 1)In


= (m+ 1)I2n

Corollary 7.3.3. If M is 3-cyclotomic, then (M ⊕−M) is 4-cyclotomic.

Remark 7.3.4. The 4-cyclotomic forms S4,S ′4,S8,S ′8,S∗8 ,S
†
8 ,S12,S16 all admit as representa-

tive the connected sum of a 3-cyclotomic and its negation.

Example 7.3.5. The 12-vertex graph S12 given in Fig. 4.14 is necessarily equivalent to the

connected sum of the 6-vertex 3-cyclotomic graph from Fig. 7.4 and its negation:

1

5

6

2

3

4

7

11

12

8

9

10

Definition 7.3.6. Let G be an n-vertex L-graph with matrix representative M . We define the

k-th connected power of G, G⊕k to be the 2kn-vertex L-graph with matrix representative M⊕k

given iteratively by

M⊕0 = M

M⊕k =

 M⊕k In

In −M⊕k


Proposition 7.3.7. If M2 = mIn then, by induction, M⊕k = (m+ k)I2kn.

By considering the possible “1-cyclotomic” charged signed graphs we obtain the following re-

sults:

Corollary 7.3.8. For all n ∈ N, there exists a connected signed graph with all eigenvalues

±
√
n. That is, for all n there exists an integer symmetric matrix M with all entries from
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{−1, 0, 1} and minimal polynomial x2 − n.

Proof. Let G = . Then for all n, G⊕(n−1) is a connected 2n-vertex uncharged signed

n-hypercube with all eigenvalues ±
√
n.

Example 7.3.9. The first 5 signed graphs generated in this way are
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Remark 7.3.10. By Geršgorin’s Circle Theorem1, any uncharged signed n-hypercube H has

all eigenvalues in [−n, n]; this result shows that for large n we can always do significantly better.

Corollary 7.3.11. For all n ∈ N, there exists a charged, signed (n − 1)-hypercube (that is, a

2n−1-vertex charged signed graph where each vertex is charged and has n − 1 neighbours) with

minimal polynomial x2 − n.

Proof. For n = 1, let G be the single-vertex charged signed graph ⊕, then take connected

powers.

From the classification of 4-cyclotomics, we can say more:

Corollary 7.3.12. For n ≥ 4, there exist infinitely many connected signed graphs with all

eigenvalues ±
√
n. That is, for all n there exists infinitely many integer symmetric matrices M

with all entries from {−1, 0, 1} and minimal polynomial x2 − n.

Proof. For any k ≥ 3 any matrix representative M of T2k satisfies M2 = 4I2k. Thus any

representative M⊕(n−4) of (T2k)⊕(n−4) satisfies (M⊕(n−4))2 = nI2n−42k as required.

1See e.g., [10] Section 19.7 Theorem 1
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Appendix A

Implementation

This appendix contains SAGE source code for the ‘growing’ algorithms used in this thesis, writ-

ten for the version [S+08] available on the ECDF cluster (on which larger tasks were performed

via parallelisation). These procedures also depend upon [GAP], [Maxima] and [PARI]. Com-

patibility has been confirmed with SAGE version 4.0.1, but cannot be guaranteed for future

releases.

A.1 Initialisation and Basic Procedures

A.1.1 Field Setup

For each d, we may populate a SAGE session with label sets Li as follows:

d = −1

K1=NumberField ( xˆ2+1 , ’u ’ )

u=K1. 0

v=1+u

a1=K1(1) ; a2=K1(−1) ; a3=u ; a4=−u

b1=v ; b2=−v ; b3=v . conjugate ( ) ; b4=−b3

d1=K1(2) ; d2=K1(−2) ; d3=2∗u ; d4=−2∗u

charge s e t=a1 , a2 ,K1(0 )

L1=[a1 , a2 , a3 , a4 ]

L2=[b1 , b3 , b3 , b4 ]

L4=[d1 , d2 , d3 , d4 ]

L1zero =[K1(0) , a1 , a2 , a3 , a4 ]

L2zero =[K1(0) , b1 , b2 , b3 , b4 ]

L12=[a1 , a2 , a3 , a4 , b1 , b2 , b3 , b4 ]

L12zero =[K1(0) , a1 , a2 , a3 , a4 , b1 , b2 , b3 , b4 ]

L=[K1(0) , a1 , a2 , a3 , a4 , b1 , b2 , b3 , b4 , d1 , d2 , d3 , d4 ]
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d = −2

K2=NumberField ( xˆ2+2 , ’u ’ )

u=K2. 0

w=1+u

a1=K2(1) ; a2=K2(−1)

b1=u ; b2=−u

c1=w; c2=−w; c3=w. conjugate ( ) ; c4=−c3

d1=K2(2) ; d2=K2(−2)

cha rge s e t=a1 , a2 ,K2(0 )

L1=[a1 , a2 ]

L2=[b1 , b2 ]

L3=[c1 , c2 , c3 , c4 ]

L4=[d1 , d2 ]

L1zero =[K2(0) , a1 , a2 ]

L2zero =[K2(0) , b1 , b2 ]

L12=[a1 , a2 , b1 , b2 ]

L12zero =[K2(0) , a1 , a2 , b1 , b2 ]

L123zero =[K2(0) , a1 , a2 , b1 , b2 , c1 , c2 , c3 , c4 ]

L=[K2(0) , a1 , a2 , b1 , b2 , c1 , c2 , c3 , c4 , d1 , d2 ]

d = −3

K3=NumberField ( xˆ2+3 , ’u ’ )

u=K3. 0

v=1/2+u/2

w=3/2+u/2

t=1+u

a1=K3(1) ; a2=K3(−1) ; a3=v ; a4=−v ; a5=v . conjugate ( ) ; a6=−a5

c1=w; c2=−w; c3=w. conjugate ( ) ; c4=−c3 ; c5=u ; c6=−u ;

d1=t ; d2=−t ; d3=t . conjugate ( ) ; d4=−d3

charge s e t=a1 , a2 ,K3(0 )

L1=[a1 , a2 , a3 , a4 , a5 , a6 ]

L3=[c1 , c2 , c3 , c4 , c5 , c6 ]

L4=[K3(2) ,K3(−2) , d1 , d2 , d3 , d4 ]

L1zero =[K3(0) , a1 , a2 , a3 , a4 , a5 , a6 ]

L13zero =[K3(0) , a1 , a2 , a3 , a4 , a5 , a6 , c1 , c2 , c3 , c4 , c5 , c6 ]

L=[K3(0) , a1 , a2 , a3 , a4 , a5 , a6 , c1 , c2 , c3 , c4 , c5 , c6 ,K3(2) ,K3(−2) , d1 , d2 , d3 , d4 ]

d = −7

K7=NumberField ( xˆ2+7 , ’u ’ )

u=K7. 0

v=1/2+u/2

w=3/2+u/2

a1=K7(1) ; a2=K7(−1)

b1=v ; b2=−v ; b3=v . conjugate ( ) ; b4=−b3

d1=K7(2) ; d2=K7(−2) ; d3=w; d4=−w; d5=w. conjugate ( ) ; d6=−d5

charge s e t=a1 , a2 ,K7(0 )
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L1=[a1 , a2 ]

L2=[b1 , b2 , b3 , b4 ]

L4=[d1 , d2 , d3 , d4 , d5 , d6 ]

L1zero =[K7(0) , a1 , a2 ]

L2zero =[K7(0) , b1 , b2 , b3 , b4 ]

L12=[a1 , a2 , b1 , b2 , b3 , b4 ]

L12zero =[K7(0) , a1 , a2 , b1 , b2 , b3 , b4 ]

L=[K7(0) , a1 , a2 , b1 , b2 , b3 , b4 , d1 , d2 , d3 , d4 ]

d = −11

K11=NumberField ( xˆ2+11 , ’u ’ )

u=K11 . 0

v=1/2+u/2

a1=K11(1) ; a2=K11(−1)

c1=v ; c2=−v ; c3=v . conjugate ( ) ; c4=−c3

d1=K11(2) ; d2=K11(−2)

cha rge s e t=a1 , a2 , K11 (0 )

L1=[a1 , a2 ]

L3=[c1 , c2 , c3 , c4 ]

L4=[d1 , d2 ]

L1zero =[K11(0 ) , a1 , a2 ]

L13zero =[K11(0 ) , a1 , a2 , c1 , c2 , c3 , c4 ]

L=[K11(0 ) , a1 , a2 , c1 , c2 , c3 , c4 , d1 , d2 ]

d = −15

K15=NumberField ( xˆ2+15 , ’u ’ )

u=K15 . 0

v=1/2+u/2

a1=K15(1) ; a2=K15(−1)

d1=K15(2) ; d2=K15(−2) ; d3=v ; d4=−v ; d5=v . conjugate ( ) ; d6=−d5

charge s e t=a1 , a2 , K15 (0 )

L1=[a1 , a2 ]

L4=[d1 , d2 , d3 , d4 , d5 , d6 ]

L1zero =[K15(0 ) , a1 , a2 ]

L=[K15(0 ) , a1 , a2 , d1 , d2 , d3 , d4 , d5 , d6 ]

A.1.2 Testing Cyclotomicity

Having appropriately configured SAGE as in Section A.1.1, we may construct candidate matri-

ces by iteration over label sets and test them for cyclotomicity with the following function:

def i sCyc lotomic (m) :

C2=PolynomialRing ( ComplexField (100) , ’ x ’ )

return max ( [ abs ( r [ 0 ] ) for r in C2(m. charpoly ( ) ) . r oo t s ( ) ] )<=2
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Example A.1.1. We construct a matrix representative of T6, check that it is 4-cyclotomic,

confirm that isCyclotomic returns true then add a charge to vertex 1 and confirm the graph

obtained is noncyclotomic.

sage : T6=matrix ( [ [ 0 , 1 , 1 , 0 , 1 , −1 ] , [ 1 , 0 , 1 , −1 ,0 , 1 ] , [ 1 , 1 , 0 , 1 , −1 ,0 ] ,

[0 ,−1 ,1 ,0 ,−1 ,−1] , [1 ,0 ,−1 ,−1 ,0 ,−1] , [−1 ,1 ,0 ,−1 ,−1 ,0] ])

sage : T6ˆ2

[ 4 0 0 0 0 0 ]

[ 0 4 0 0 0 0 ]

[ 0 0 4 0 0 0 ]

[ 0 0 0 4 0 0 ]

[ 0 0 0 0 4 0 ]

[ 0 0 0 0 0 4 ]

sage : i sCyc lotomic (T6)

True

sage : T6[0 ,0 ]=1

sage : i sCyc lotomic (T6)

Fa l se

A.2 Testing Equivalence

We may test a pair m1,m2 of matrices for equivalence by iterating over the possible conjugates

Xm1X
−1 (where X is a signed permutation matrix) and testing for equality with m2. As this

requires testing up to |L|nn!, it is only suitable for small n and invariants such as the number

of charged vertices or presence of edges of a given weight should be considered first!

A.2.1 Support Functions

Given the field K defined in Section A.1.1 and a K-matrix M , ConjugateMatrix(K,M) returns

M as a K-matrix:

def ConjugateMatrix (K,m) :

M=Matrix (K,m. nrows ( ) ,m. nco l s ( ) )

for i in range (m. nrows ( ) ) :

for j in range (m. nco l s ( ) ) :

M[ i , j ]=K(m[ i , j ] ) . con jugate ( )

return M

Given the field K defined in Section A.1.1, an integer n and a list oneset corresponding to L1

for K, SwitchingMatrices returns the |L1|n possible (complex) switching matrices as a list of

K-matrices:

def Switch ingMatr ices (K, n , onese t ) :

s w i t c h l i s t=l i s t ( )
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base=len ( oneset )

for k in range ( base ˆn) :

L=ZZ( k ) . d i g i t s ( base )

while l en (L)<n :

L . append (0 )

S=matrix (K, n , n)

for j in range (n) :

S [ j , j ]= oneset [ L [ j ] ]

s w i t c h l i s t . append (S)

return s w i t c h l i s t

Given the field K defined in Section A.1.1 and an integer n, PermutationMatrices returns the

n! permutation matrices as a list of K-matrices:

def PermutationMatrices (K, n) :

G=SymmetricGroup (n)

MS=VectorSpace (K, n)

X=MS. b a s i s ( )

return [ Matrix ( [X[ g ( i +1)−1] for i in range (n) ] ) for g in G]

A.2.2 Equivalence Testing

For a pair of K-matrices m1,m2 of dimension n, with S = SwitchingMatrices(K,n,L1) and

P = PermutationMatrices(K,n) the following function returns true if and only if m1 is

equivalent to m2 after at most |L1|nn! steps:

def i sEquiv (K,m1,m2,P, S) :

i s e q u i v=f a l s e

j=0

m2 l i s t =[m2,−m2,−ConjugateMatrix (K,m2) , ConjugateMatrix (K,m2) ]

while not ( i s e q u i v ) and j<l en (P) :

p=P[ j ]

pm=p∗m1∗pˆ(−1)

k=0

while not ( i s e q u i v ) and k<l en (S) :

s=S [ k ]

spm=s ∗pm∗ s ˆ(−1)

i f spm in m2l i s t :

i s e q u i v=true

else :

k=k+1

j=j+1

return i s e q u i v

If mlist is a list of dimension n K-matrices, then unless all entries of mlist are equivalent to m1

it is quicker to compute all conjugates of m1 once, comparing each to m,−m,m,−m for each
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m in mlist to establish which are equivalent to m1. With S = SwitchingMatrices(K,n,L1)

and P = PermutationMatrices(K,n) the following function returns the sublist of mlist of

matrices equivalent to m1:

def getEquiv (K,m1, ml i s t ,P, S) :

m1equivs=l i s t ( )

ml i s t 2=l i s t ( )

for m2 in ml i s t :

m2 l i s t =[m2,−m2,−ConjugateMatrix (K,m2) , ConjugateMatrix (K,m2) ]

m l i s t 2 . append ( m2 l i s t )

for p in P:

pm=p∗m1∗pˆ(−1)

for s in S :

spm=s ∗pm∗ s ˆ(−1)

for m2l i s t in ml i s t2 :

i f spm in m2l i s t :

i f not ( m2 l i s t [ 0 ] in m1equivs ) :

m1equivs . append ( m2 l i s t [ 0 ] )

return m1equivs

Iterating getEquiv we may thus reduce a list of matrices modulo equivalence:

def reduceModEquivalence (K, ml i s t ,P, S) :

c and ida t eL i s t =[m for m in ml i s t ]

r e p l i s t=l i s t ( )

while l en ( cand ida t eL i s t )>0:

newrep=cand ida t eL i s t [ 0 ]

r e p l i s t . append ( newrep )

newrepEquiv=getEquiv (K, newrep , cand idateL i s t ,P, S)

for m in newrepEquiv :

cand ida t eL i s t . remove (m)

return r e p l i s t

Finally, if we require only strong equivalence we can use the following:

def getStrongEquiv (K,m1, ml i s t ,P, S) :

m1equivs=l i s t ( )

ml i s t 2=l i s t ( )

for p in P:

pm=p∗m1∗pˆ(−1)

for s in S :

spm=s ∗pm∗ s ˆ(−1)

for m2 in ml i s t :

i f spm==m2:

m1equivs . append (m2)

return m1equivs
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which gives reduceModStrongEquivalence by substituting the call to getEquiv for getStrongEquiv

in reduceModEquivalence. Note that if getStrongEquiv is run with P = {In} then it tests

for matrices equivalent to m1 by (complex) switching only.

Example A.2.1. For d = −1 we determine all possible cyclotomic triangles with weight 1

edges, then reduce this to a list of representatives:

sage : T l i s t=l i s t ( )

sage : for x1 in cha rge s e t :

. . . . : for x2 in cha rge s e t :

. . . . : for x3 in cha rge s e t :

. . . . : for a in L1 :

. . . . : for b in L1 :

. . . . : for c in L1 :

. . . . : m=matrix ( [ [ x1 , a , b ] , [ a . conjugate ( ) , x2 , c ] , [ b .

conjugate ( ) , c . conjugate ( ) , x3 ] ] )

. . . . : i f i sCyc lotomic (m) :

. . . . : T l i s t . append (m)

. . . . :

sage : l en ( T l i s t )

576

sage : P3=PermutationMatrices (K1, 3 )

sage : S3=Switch ingMatr ices (K1, 3 , L1)

sage : time Tl i s tReps=reduceModEquivalence (K1, T l i s t , P3 , S3 )

CPU times : user 10 .02 s , sys : 0 .18 s , t o t a l : 10 .21 s

Wall time : 10 .21

sage : l en ( Tl i s tReps )

7

The same calculation in a session configured for d = −2 (where now L1 = {±1}) gives (after

the same construction of Tlist)

sage : l en ( T l i s t )

88

sage : P3=PermutationMatrices (K2, 3 )

sage : S3=Switch ingMatr ices (K2, 3 , L1)

sage : time Tl i s tReps=reduceModEquivalence (K2, T l i s t , P3 , S3 )

CPU times : user 1 .02 s , sys : 0 .03 s , t o t a l : 1 .05 s

Wall time : 1 .05

sage : l en ( Tl i s tReps )

5

A.3 Column sets

For a given k and L, the näıve column set Ck(L) can easily be constructed by looping over

L. However, for larger k generating the bounded weight column set Cbk(L) by discarding the
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overweight columns of Ck(L) is inefficient; we instead construct such a column set iteratively.

We assume that we wish to construct Cbk(L) where b ≤ 4. Then, given C = Cbk−1(L), if

c = (c1, . . . ck−1) ∈ C then we require the vectors (c1, . . . , ck−1, l) such that

(
k−1∑
i=1

Norm(ci)

)
+Norm(l) ≤ b

We determine such vectors with the function boundedColIterate:

def boundedColIterate (K,C, b , L) :

o n e l i s t=l i s t ( ) ; t w o l i s t=l i s t ( )

t h r e e l i s t=l i s t ( ) ; f o u r l i s t=l i s t ( )

newC=l i s t ( )

for l in L :

i f K( l ) . norm ( ) ==1:

o n e l i s t . append ( l )

e l i f K( l ) . norm ( ) ==2:

t w o l i s t . append ( l )

e l i f K( l ) . norm ( ) ==3:

t h r e e l i s t . append ( l )

e l i f K( l ) . norm ( ) ==4:

f o u r l i s t . append ( l )

for c in C:

currentWeight=ZZ(sum ( [K( c [ i ] ) ∗K( c [ i ] ) . con jugate ( ) for i in range

( l en ( c ) ) ] ) )

i f currentWeight<=b :

newc=[c [ k ] for k in range ( l en ( c ) ) ]

newc . append (K(0) ) ; newC . append ( newc )

i f currentWeight<=b−1:

for l in o n e l i s t :

newc=[c [ k ] for k in range ( l en ( c ) ) ]

newc . append ( l ) ; newC . append ( newc )

i f currentWeight<=b−2:

for l in t w o l i s t :

newc=[c [ k ] for k in range ( l en ( c ) ) ]

newc . append ( l ) ; newC . append ( newc )

i f currentWeight<=b−3:

for l in t h r e e l i s t :

newc=[c [ k ] for k in range ( l en ( c ) ) ]

newc . append ( l ) ; newC . append ( newc )

i f currentWeight<=b−4:

for l in f o u r l i s t :

newc=[c [ k ] for k in range ( l en ( c ) ) ]

newc . append ( l ) ; newC . append ( newc )

return newC

Then, since Cb0(L) can be treated as the list containing the empty vector, we can construct
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Cbn(L) for an appropriate field K with the function

def generateBoundedCol (K, b , L , n) :

C=[ l i s t ( ) ]

for j in range (n) :

C=boundedColIterate (K,C, b , L)

return C

(This gives all k-tuples of weight at most b ≤ 4 over L; for Cbk(L) the zero vector should be

removed.)

Note that if several successive Cbj (L) are to be computed in a session it is better to com-

pute the first with generateBoundedCol and the others by boundedColIterate than to run

generateBoundedCol from scratch for each j; clearly for a fixed K,L, b we may also store these

column sets for repeated use.

Given any column set Ck (näıve or bounded) we may require the reduced column set Ck′(L).

For this we keep one representative of the class {λc |λ ∈ L1}; for a fixed ordering L we choose

as representative c such that the first nonzero entry of c has lowest index in that ordering. For

a vector c and a fixed listing L (such as given in Section A.1.1) we therefore compute the score

of c 6= 0 via

def s c o r e ( c , L) :

r=0

while c [ r ]==0: #nonzero c assumed !

r=r+1

return L . index ( c [ r ] )

Then, assuming colList is a list of nonzero vectors such that if c ∈ colList then λc ∈ colList

for all λ ∈ L1, we may obtain a reduced list of representatives colList by the procedure

def reduceCols (K, c o l L i s t , L1 , L) :

co lListCopy =[C for C in c o l L i s t ]

r e p L i s t=l i s t ( )

while l en ( co lListCopy )>0:

c=colListCopy [ 0 ]

L1c =[ [ l ∗c [ k ] for k in range ( l en ( c ) ) ] for l in L1 ]

scoreMin=min ( [ s c o r e ( l c , L) for l c in L1c ] )

cClassRep =[ l c for l c in L1c i f s c o r e ( l c , L)==scoreMin ] [ 0 ]

r e p L i s t . append ( cClassRep )

for l c in L1c :

co lListCopy . remove ( l c )

return r e p L i s t

Example A.3.1. For d = −3 we construct C4
3 (L):

sage : c o l s 3=generateBoundedCol (K3, 4 , L , 3 )
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sage : c o l s 3 . remove ( [ 0 , 0 , 0 ] )

sage : co l s3Reps=reduceCols (K3, co l s3 , L1 , L)

sage : l en ( c o l s 3 )

594

sage : l en ( co ls3Reps )

99

A.4 Growing Algorithms For Cyclotomics and 4-Cyclotomics

Given a Hermitian K-matrix m, vector c from some column set over L and a charge x from

charge set X, we can construct the Hermitian supermatrix

mc,x =

 m c

c x


with the function:

def matrixExtendCharged (K,m, c , x ) :

n=m. nrows ( )

newrows=l i s t ( [ ] )

for k in range (n) :

newrowk=(m. rows ( ) [ k ] ) . l i s t ( )

newrowk . append ( c [ k ] )

newrows . append ( newrowk )

la s t row =[K( z ) . conjugate ( ) for z in c ]

l a s t row . append (K( x ) )

newrows . append ( la s t row )

return matrix ( newrows )

For a field K, column set cols, charge set charges and list of matrices mList we can thus

recover all corresponding cyclotomic supermatrices, and identify the matrices for which there

are none, with the following:

def getCycExtensions (K, mList , co l s , charges ) :

cy cL i s t=l i s t ( )

maxList=l i s t ( )

for m in mList :

mSupers=l i s t ( )

for c in c o l s :

for x in charges :

newm=matrixExtendCharged (K,m, c , x )

i f i sCyc lotomic (newm) :

mSupers . append (newm)

i f l en ( mSupers )==0:

maxList . append (m)
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print ”Maximal found”

else :

c y cL i s t . extend ( mSupers )

print l en ( mSupers )

return cycLi s t , maxList

If we set mList = Sk, cols = C4
k′(L) and charges = X then getCycExtensions implements

equivgrow - that is, performs a round of reduced bounded weight growing.

For the bounded variant of equivgrow we first require the list rowWeightsl(m) of row weights

for a matrix m over field K:

def rowWeights (K,m) :

return [ ZZ(sum ( [K(m[ i , j ] ) ∗K(m[ i , j ] ) . con jugate ( ) for j in range (m. nrows ( )

) ] ) ) for i in range (m. nrows ( ) ) ]

Then for m and some column set C = {(c1, . . . , ck)} we then define the safe weight columns to

be the subset of C satisfying

rowWeightsl(m) +Norm(cl) ≤ 4 for all 1 ≤ l ≤ k

which can be obtained by:

def getSa f ewe ightCo l s (K,m,C) :

w l i s t=rowWeights (K,m)

newColList=l i s t ( )

for c in C:

i f max ( [ w l i s t [ k]+c [ k ] . norm ( ) for k in range ( l en ( w l i s t ) ) ] )<=4:

newColList . append ( c )

return newColList

We can then implement bounded equivgrow by modifying getCycExtensions to call getSafeweightCols

for each m. However, we note a further refinement - if we are attempting an extension with a

nonzero charge then under the assumption of boundedness we need only consider c ∈ C3
k′(L) -

which we also include:

def getCycExtensionsBounded (K, mList , co l s , charges ) :

we ight4L i s t=l i s t ( ) ; weightNot4List=l i s t ( )

cycL i s t=l i s t ( ) ; maxList=l i s t ( )

for v in c o l s :

i f sum ( [K( v [ i ] ) ∗K( v [ i ] ) . conjugate ( ) for i in range ( l en ( v ) ) ] ) ==4:

we ight4L i s t . append ( v )

else :

weightNot4List . append ( v )

for m in mList :

mSupers=l i s t ( )

we ightNot4SafeLi s t=getSa fewe ightCo l s (K,m, weightNot4List )
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we ight4Sa f eL i s t=getSa f ewe ightCo l s (K,m, we ight4L i s t )

for c in weightNot4SafeLi s t :

for x in charges :

newm=matrixExtendCharged (K,m, c , x )

i f i sCyc lotomic (newm) :

mSupers . append (newm)

i f 0 in charges :

for c in we ight4Sa f eL i s t :

newm=matrixExtendCharged (K,m, c , 0 )

i f i sCyc lotomic (newm) :

mSupers . append (newm)

i f l en ( mSupers )==0:

maxList . append (m)

print ”Maximal found”

else :

c y cL i s t . extend ( mSupers )

print l en ( mSupers )

return cycLi s t , maxList

If we set mList = Sk, cols = C4
k′(L) and charges = X then getCycExtensionsBounded

implements bounded equivgrow - that is, performs a round of reduced bounded weight growing.

This is advantageous when the time required for determining safe weight columns is less than

that of testing all of cols, which is true for larger matrices or those with higher saturation.

In particular, a 4-cyclotomic matrix will be recognised as maximal due to there being no safe

weight columns!

Example A.4.1. We demonstrate the proof of Proposition 3.3.1 for d = −11.

sage : S2=l i s t ( )

sage : for x1 in cha rge s e t :

. . . . : for x2 in cha rge s e t :

. . . . : m=matrix ( [ [ x1 , v ] , [ v . conjugate ( ) , x2 ] ] )

. . . . : i f i sCyc lotomic (m) :

. . . . : S2 . append (m)

. . . . :

sage : l en ( S2 )

3

sage : c o l s 2=generateBoundedCol (K11 , 4 , L , 2 )

sage : c o l s 2 . remove ( [ 0 , 0 ] )

sage : co l s2Reps=reduceCols (K11 , co l s2 , L1 , L)

sage : time S3 ,M2=getCycExtensions (K11 , S2 , cols2Reps , cha rge s e t )

Maximal found

Maximal found

2

CPU times : user 0 .46 s , sys : 0 .00 s , t o t a l : 0 .46 s

Wall time : 0 .46

sage : c o l s 3=generateBoundedCol (K11 , 4 , L , 3 )
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sage : c o l s 3 . remove ( [ 0 , 0 , 0 ] )

sage : co l s3Reps=reduceCols (K11 , co l s3 , L1 , L)

sage : time S4 ,M3=getCycExtensions (K11 , S3 , cols3Reps , cha rge s e t )

1

1

CPU times : user 0 .90 s , sys : 0 .01 s , t o t a l : 0 .91 s

Wall time : 0 .91

sage : c o l s 4=generateBoundedCol (K11 , 4 , L , 4 )

sage : c o l s 4 . remove ( [ 0 , 0 , 0 , 0 ] )

sage : co l s4Reps=reduceCols (K11 , co l s4 , L1 , L)

sage : time S5 ,M4=getCycExtensions (K11 , S4 , cols4Reps , cha rge s e t )

Maximal found

Maximal found

CPU times : user 3 .04 s , sys : 0 .03 s , t o t a l : 3 .07 s

Wall time : 3 .07

sage : l en ( S5 )

0

sage : l en (M2)

2

sage : l en (M3)

0

sage : l en (M4)

2

sage : M2[ 0 ]

[ 1 1/2∗u + 1/2 ]

[−1/2∗u + 1/2 −1]

sage : M2[ 1 ]

[ −1 1/2∗u + 1/2 ]

[−1/2∗u + 1/2 1 ]

sage : M4[ 0 ]

[ 0 1/2∗u + 1/2 0 1 ]

[−1/2∗u + 1/2 0 1 0 ]

[ 0 1 0 1/2∗u − 1/2 ]

[ 1 0 −1/2∗u − 1/2 0 ]

sage : M4[ 1 ]

[ 0 1/2∗u + 1/2 1 0 ]

[−1/2∗u + 1/2 0 0 1 ]

[ 1 0 0 −1/2∗u − 1/2 ]

[ 0 1 1/2∗u − 1/2 0 ]

Note that with bounded equivgrow, performance improves to

sage : time S3 ,M2=getCycExtensionsBounded (K11 , S2 , cols2Reps , cha rge s e t )

Maximal found

Maximal found

2

CPU times : user 0 .04 s , sys : 0 .00 s , t o t a l : 0 .04 s

Wall time : 0 .04
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sage : time S4 ,M3=getCycExtensionsBounded (K11 , S3 , cols3Reps , cha rge s e t )

1

1

CPU times : user 0 .16 s , sys : 0 .00 s , t o t a l : 0 .16 s

Wall time : 0 .16

sage : time S5 ,M4=getCycExtensionsBounded (K11 , S4 , cols4Reps , cha rge s e t )

Maximal found

Maximal found

CPU times : user 0 .07 s , sys : 0 .00 s , t o t a l : 0 .08 s

Wall time : 0 .08

If row r of M corresponds to the first unsaturated vertex of G then rowWeightl(M) = 4 for

all l < r and so any c returned by getSafeWeightCols must satisfy c1 = · · · = cr−1 = 0.

Thus such a c should be included in a round of saturating growing if and only if cr 6= 0. We

may therefore modify getCycExtensionsBounded to include this check; setting C = C4
k′(L) it

is then an implementation of the satgrow algorithm, with the additional refinement of only

using saturating additions of safe weight with respect to row weights and charges:

def getCycExtensionsBoundedSat (K, mList , co l s , charges ) :

n=mList [ 0 ] . nrows ( )

we ight4L i s t=l i s t ( ) ; weightNot4List=l i s t ( )

cycL i s t=l i s t ( ) ; maxList=l i s t ( )

for v in c o l s :

i f sum ( [K( v [ i ] ) ∗K( v [ i ] ) . conjugate ( ) for i in range ( l en ( v ) ) ] ) ==4:

we ight4L i s t . append ( v )

else :

weightNot4List . append ( v )

for m in mList :

r=0

while r<n and sum ( [K(m[ r , j ] ) ∗K(m[ r , j ] ) . con jugate ( ) for j in

range (n) ] ) ==4:

r=r+1

i f r==n :

maxList . append (m)

print ”Maximal found e a r l y ”

else :

mSupers=l i s t ( )

we ightNot4SafeLi s t=getSa fewe ightCo l s (K,m, weightNot4List )

weightNot4SatList=l i s t ( )

for c in weightNot4SafeLi s t :

i f c [ r ] ! = 0 :

weightNot4SatList . append ( c )

we ight4Sa f eL i s t=getSa f ewe ightCo l s (K,m, we ight4L i s t )

we ight4SatL i s t=l i s t ( )

for c in we ight4Sa f eL i s t :

i f c [ r ] ! = 0 :
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weight4SatL i s t . append ( c )

for c in weightNot4SatList :

for x in charges :

newm=matrixExtendCharged (K,m, c , x )

i f i sCyc lotomic (newm) :

mSupers . append (newm)

i f 0 in charges :

for c in weight4SatL i s t :

newm=matrixExtendCharged (K,m, c , 0 )

i f i sCyc lotomic (newm) :

mSupers . append (newm)

i f l en ( mSupers )==0:

maxList . append (m)

print ”Maximal found”

else :

c y cL i s t . extend ( mSupers )

print l en ( mSupers )

return cycLi s t , maxList

Example A.4.2. We demonstrate the results of Section 3.4.2 for d = −3 - any 4-cyclotomic L-

graph with all edges from L1 inducing an uncharged triangle has at most 7 vertices - by showing

that iteration of satgrow terminates with S8 = ∅ (appropriate column sets C4
k′(L1 ∪ {0})

k = 3, . . . , 7 are precomputed).

sage : preS3=l i s t ( )

sage : for a in L1 :

. . . . : for b in L1 :

. . . . : for c in L1 :

. . . . : m=matrix ( [ [ 0 , a , b ] , [ a . conjugate ( ) ,0 , c ] , [ b . conjugate ( ) , c .

conjugate ( ) , 0 ] ] )

. . . . : i f i sCyc lotomic (m) :

. . . . : preS3 . append (m)

. . . . :

sage : P3=PermutationMatrices (K3, 3 )

sage : Sw3=Switch ingMatr ices (K3, 3 , L1)

sage : S3=reduceModEquivalence (K3, preS3 , P3 , Sw3)

sage : l en ( S3 )

2

sage : time S4 ,M3=getCycExtensionsBoundedSat (K3, S3 , cols3Reps , cha rge s e t )

6

8

CPU times : user 1 .23 s , sys : 0 .01 s , t o t a l : 1 .24 s

Wall time : 1 .24

sage : l en ( S4 )

14

sage : P4=PermutationMatrices (K3, 4 )

sage : Sw4=Switch ingMatr ices (K3, 4 , L1)
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sage : time S4b=reduceModEquivalence (K3, S4 , P4 , Sw4)

CPU times : user 149 .60 s , sys : 1 .64 s , t o t a l : 151 .24 s

Wall time : 151 .27

sage : l en ( S4b )

7

sage : time S5 ,M4=getCycExtensionsBoundedSat (K3, S4b , cols4Reps , cha rge s e t )

1 , 1 , 1 , 1 , 1 , 1 , 1

CPU times : user 24 .63 s , sys : 0 .17 s , t o t a l : 24 .80 s

Wall time : 24 .80

sage : time S6 ,M5=getCycExtensionsBoundedSat (K3, S5 , cols5Reps , cha rge s e t )

1 ,1

Maximal found e a r l y

1 ,1 ,1 ,1

CPU times : user 18 .84 s , sys : 0 .14 s , t o t a l : 18 .98 s

Wall time : 18 .98

sage : time S7 ,M6=getCycExtensionsBoundedSat (K3, S6 , cols6Reps , cha rge s e t )

1

Maximal found e a r l y

Maximal found e a r l y

Maximal found e a r l y

Maximal found e a r l y

Maximal found e a r l y

CPU times : user 19 .20 s , sys : 0 .11 s , t o t a l : 19 .31 s

Wall time : 19 .31

sage : time S8 ,M7=getCycExtensionsBoundedSat (K3, S7 , cols7Reps , cha rge s e t )

Maximal found e a r l y

CPU times : user 10 .45 s , sys : 0 .23 s , t o t a l : 10 .68 s

Wall time : 10 .68

sage : l en ( S4 ) , l en ( S5 ) , l en ( S6 ) , l en ( S7 ) , l en ( S8 )

(14 , 7 , 6 , 1 , 0)

sage : l en (M3) , l en (M4) , l en (M5) , l en (M6) , l en (M7)

(0 , 0 , 1 , 5 , 1)

A.5 Mahler Measure and Minimal Noncyclotomics

We can compute the Mahler measure of a polynomial P by

def mahlerMeasure (P) :

C2=PolynomialRing ( ComplexField (100) , ’ x ’ )

R=[abs ( r [ 0 ] ) for r in C2(P) . r oo t s ( ) ]

mahlmeasure=1

for l in R:

i f l >1:

mahlmeasure=mahlmeasure∗ l

return mahlmeasure
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For a matrix m its Mahler measure is that of its associated reciprocal polynomial:

def assocRec ipPoly (m) :

L=PolynomialRing (ZZ , ’ z ’ )

z=L. 0

g=m. charpoly ( )

return zˆg . degree ( ) ∗g ( z+1/z )

giving

def matrixMahler (m) :

return mahlerMeasure ( assocRec ipPoly (m) )

Given a dimension n matrix m we can delete the kth row and column to recover an induced

dimension n− 1 submatrix

def removeRowCol k (K,m, k ) :

n=m. nrows ( )−1

M=Matrix (K, n , n)

for i in range ( k ) :

for j in range ( k ) :

M[ i , j ]=m[ i , j ]

for j in range (k , n) :

M[ i , j ]=m[ i , j +1]

for i in range (k , n) :

for j in range ( k ) :

M[ i , j ]=m[ i +1, j ]

for j in range (k , n) :

M[ i , j ]=m[ i +1, j +1]

return M

A dimension n matrix is then minimal noncyclotomic if it is noncyclotomic but each induced

submatrix of dimension n− 1 is cyclotomic:

def i sMinNoncyclotomic (K,m) :

k=m. nrows ( )

r=0

a l l c y c=true

while a l l c y c and r<k :

subm=removeRowCol k (K,m, r )

a l l c y c=isCyc lotomic (subm)

r=r+1

return a l l c y c

Example A.5.1. We confirm the value of λ0 for Lehmer’s polynomial, that the graph 5U given

in [15] has Mahler measure λ0, and that it is minimal noncyclotomic:

sage : Zz=PolynomialRing (ZZ , ’ z ’ ) ; z=Zz . 0
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sage : lehmerPoly=zˆ10+zˆ9−zˆ7−zˆ6−zˆ5−zˆ4−zˆ3+z+1

sage : mahlerMeasure ( lehmerPoly )

1.1762808182599175065440703385

sage : A=matrix ( [ [ 1 , 1 , 0 , 0 , 0 ] , [ 1 , −1 ,1 ,0 , 0 ] ,

[ 0 , 1 , 0 , 1 , − 0 ] , [ 0 , 0 , 1 , 0 , 1 ] , [ 0 , 0 , 0 , 1 , 1 ] ] )

sage : matrixMahler (A)

1.1762808182599175065440703385

sage : isMinNoncyclotomic (K1,A)

True

A.6 Growing Algorithms For Minimal Noncyclotomics

For a given column set cols (for convenience, not containing the zero vector) and charge set

X the following gives an implementation of the mncyc algorithm:

def getCycMinNonCycExtensions (K, mList , co l s , charges ) :

cy cL i s t=l i s t ( )

minNonCycList=l i s t ( )

for m in mList :

for c in c o l s :

for x in charges :

newm=matrixExtendCharged (K,m, c , x )

i f i sCyc lotomic (newm) :

cycL i s t . append (newm)

e l i f i sMinNoncyclotomic (K,newm) :

minNonCycList . append (newm)

return cycLi s t , minNonCycList

Note that for the results of Chapter 6 we initially use mncyc with C = Ck′(L) the reduced

näıve column set, which is generated by looping over L. For sufficiently large k both cyclotomic

and minimal noncyclotomic supermatrices mc,x of a dimension k matrix m satisfy the condition

that

max rowWeights(mc,x) ≤ 4

and so we may switch to c ∈ C4
k′(L) and the bounded mncyc algorithm. Incorporating the

earlier modifications of getCycExtensionsBounded to the pseudocode description, this can be

implemented as

def getCycMinNonCycExtensionsBounded (K, mList , co l s , charges ) :

we ight4L i s t=l i s t ( ) ; weightNot4List=l i s t ( )

cycL i s t=l i s t ( ) ; minNonCycList=l i s t ( )

for v in c o l s :

i f sum ( [K( v [ i ] ) ∗K( v [ i ] ) . conjugate ( ) for i in range ( l en ( v ) ) ] ) ==4:

we ight4L i s t . append ( v )
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else :

weightNot4List . append ( v )

for m in mList :

we ightNot4SafeLi s t=getSa fewe ightCo l s (K,m, weightNot4List )

we ight4Sa f eL i s t=getSa f ewe ightCo l s (K,m, we ight4L i s t )

for c in weightNot4SafeLi s t :

for x in charges :

newm=matrixExtendCharged (K,m, c , x )

i f i sCyc lotomic (newm) :

cycL i s t . append (newm)

e l i f i sMinNoncyclotomic (K,newm) :

minNonCycList . append (newm)

i f 0 in charges :

for c in we ight4Sa f eL i s t :

newm=matrixExtendCharged (K,m, c , 0 )

i f i sCyc lotomic (newm) :

cycL i s t . append (newm)

e l i f i sMinNoncyclotomic (K,newm) :

minNonCycList . append (newm)

print l en ( cycL i s t ) , l en ( minNonCycList )

return cycLi s t , minNonCycList

Example A.6.1. We demonstrate the first round of the search for small minimal noncyclotomic

graphs for d = −2 as in Section 6.3.2.

sage : H1=matrix ( [ [ 1 , u ] , [−u , 1 ] ] )

sage : H2=matrix ( [ [ 1 , u ] , [−u , −1 ] ] )

sage : H3=matrix ( [ [ 0 , u ] , [−u , 0 ] ] )

sage : H4=matrix ( [ [ 1 , u ] , [−u , 0 ] ] )

sage : [ matrixMahler (m) for m in [ H1 , H2 , H3 , H4 ] ]

[1 .8832035059135258641689474654 , 1 , 1 , 1 ]

sage : S2=[H2 , H3 , H4 ]

sage : na iveCols=l i s t ( )

sage : for a in L12zero :

. . . . : for b in L12zero :

. . . . : na iveCols . append ( [ a , b ] )

. . . . :

sage : na iveCols . remove ( [ 0 , 0 ] )

sage : co l s2Reps=reduceCols (K2, naiveCols , L1 , L)

sage : time S3 ,MNCYC3=getCycMinNonCycExtensions (K2, S2 , cols2Reps , cha rge s e t )

2 24

12 50

13 80

CPU times : user 0 .58 s , sys : 0 .01 s , t o t a l : 0 .59 s

Wall time : 0 .59

sage : l en (MNCYC3)

80

sage : P3=PermutationMatrices (K2, 3 )
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sage : Sw3=Switch ingMatr ices (K2, 3 , L1)

sage : time MNCYC3Reps=reduceModEquivalence (K2,MNCYC3, P3 , Sw3)

CPU times : user 4 .71 s , sys : 0 .11 s , t o t a l : 4 .82 s

Wall time : 4 .82

sage : l en (MNCYC3Reps)

34
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