

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429713182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

From High Level Architecture Descriptions to
Fast Instruction Set Simulators

Harry Wagstaff
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2015

iii

Abstract
As computer systems become increasingly complex and diverse, so too do the architec-

tures they implement. This leads to an increase in complexity in the tools used to design

new hardware and software. One particularly important tool in hardware and software

design is the Instruction Set Simulator, which is used to prototype new architectures and

hardware features, verify hardware, and test and debug software. Many Architecture

Description Languages exist which facilitate the description of new architectural or

hardware features, and generate a tools such as simulators. However, these typically

suffer from poor performance, are difficult to test effectively, and may be limited in

functionality.

This thesis considers three objectives when developing Instruction Set Simulators:

performance, correctness, and completeness, and presents techniques which contribute

to each of these. Performance is obtained by combining Dynamic Binary Translation

techniques with a novel analysis of high level architecture descriptions. This makes use

of partial evaluation techniques in order to both improve the translation system, and to

improve the quality of the translated code, leading a performance improvement of over

2.5x compared to a naïve implementation.

This thesis also presents techniques which contribute to the correctness objective.

Each possible behaviour of each described instruction is used to guide the generation

of a test case. Constraint satisfaction techniques are used to determine the necessary

instruction encoding and context for each behaviour to be produced. It is shown that

this is a significant improvement over benchmark-driven testing, and this technique

has led to the discovery of several bugs and inconsistencies in multiple state of the art

instruction set simulators.

Finally, several challenges in ‘Full System’ simulation are addressed, contributing

to both the performance and completeness objectives. Full System simulation generally

carries significant performance costs compared with other simulation strategies. Cru-

cially, instructions which access memory require virtual to physical address translation

and can now cause exceptions. Both of these processes must be correctly and efficiently

handled by the simulator. This thesis presents novel techniques to address this issue

which provide up to a 1.65x speedup over a state of the art solution.

iv

Lay Summary
In the modern world, computers are everywhere - from Desktop PCs, to Smart-

phones, to fridges and microwaves. In the last decade, the number of different types

of computer processor has exploded. However, designing a new computer processor is

extremely complex. One tool typically used is the ‘Instruction Set Simulator’, which

allows programs designed for one type of system (such as smartphones) to be run on

a different type of system (such as a Desktop PC). Usually these systems are known

as the ‘Guest’ and ‘Host’, respectively. These simulators can be created from scratch,

or a description of the desired processor (an ‘Architecture Description’) can be used to

generate a simulator. However, these generated simulators are usually slow, are difficult

to test, and may not include useful simulation features.

This thesis presents techniques which allow improved simulators to be generated.

These simulators provide improved performance, are easier to test, and provide en-

hanced functinoality versus what might otherwise be available. Improved performance

is obtained using new DBT (Dynamic Binary Translation) techniques. DBT involves

translating the simulated program into a new program which can run directly on the

host. DBT is already well known, but usually generated simulators do not use DBT

or use it extremely inefficiently. This thesis presents techniques which can be used to

perform DBT much more efficiently, in order to generate a much faster simulator. Also

presented is a novel technique to create tests for the Architecture Description and the

generated simulator. Each possible behaviour of each instruction in the description is

analysed and used to create a test. This is shown to be a very effective testing method,

and several bugs are discovered in popular simulators. Finally, this thesis presents a

new technique to speed up ‘Full System’ simulation. This style of simulation can be

very slow, but by handling memory reads and writes more efficiently, the performance

of a simulator can be significantly improved.

v

Acknowledgements
I would like to thank my PhD. supervisor, Dr. Björn Franke, for his continual support

and guidance throughout my research, as well as invaluable proof-reading and feedback.

Thanks also go to my second supervisor, Prof. Nigel Topham, for the many valuable

discussions, and encouragement, that he has provided.

I would also like to acknowledge the many friends and colleagues I have encoun-

tered during my time at the University of Edinburgh, both as an undergraduate and

during my time at ICSA and in the PASTA office. These include (but are in no way

limited to) Oscar Almer, Matthew Bielby, Igor Böhm, Tobias Edler von Koch, Marco

Elver, Miles Gould, Stephen Kyle, Dan Powell, Volker Seeker, Tom Spink, and Christo-

pher Thompson. I’m sure that no matter where our careers and travels might take us,

working together has been a singular experience.

Finally, I would like to thank my family for the endless support and encouragement

that they have provided, and for instilling in me the ambition to aim high, and the drive

and ability to get there.

vi

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material in this thesis has been published in the following papers:

• H. Wagstaff, M. Gould, B. Franke, and N. Topham, "Early Partial Evaluation

in a JIT-Compiled, Retargetable Instruction Set Simulator Generated From a

High-Level Architecture Description", in Proceedings of the 50th Annual Design

Automation Conference (DAC’50), 2013

• T. Spink, H. Wagstaff, B. Franke, and N. Topham, "Efficient Code Generation in

a Region-Based Dynamic Binary Translator", in Proceedings of the 2014 ACM

SIGPLAN/SIGBED conference on Languages, Compilers, Tools and Theory for

Embedded Systems (LCTES’14), 2014

• H. Wagstaff, T. Spink, and B. Franke, "Automated ISA Branch Coverage Anal-

ysis and Test Case Generation for Retargetable Instruction Set Simulators", in

Proceedings of the 2014 International Conference on Compilers, Architectures

and Synthesis of Embedded Systems (CASES’14), 2014

• T. Spink, H. Wagstaff, B. Franke, and N. Topham, "Efficient Asynchronous In-

terrupt Handling in a Full-System Instruction Set Simulator", under review for

the 2015 ACM SIGPLAN/SIGBED conference on Languages, Compilers, Tools

and Theory for Embedded Systems (LCTES’15), 2015

• T. Spink, H. Wagstaff, B. Franke, and N. Topham, "Efficient Dual-ISA Support

in a Retargetable, Asynchronous Dynamic Binary Translator", under review for

the International Conference on Embedded Computer Systems: Architectures,

Modeling and Simulation (SAMOS’15), 2015

(Harry Wagstaff)

vii

Table of Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Contributions . 3

1.4 Thesis Structure . 4

2 Background & Related Work 7

2.1 Introduction . 7

2.2 Overview of Simulation . 8

2.3 Instruction Decoding . 9

2.4 Interpretation . 11

2.5 Static Binary Translation . 13

2.6 Dynamic Binary Translation . 14

2.6.1 Block Based Translation . 14

2.6.2 Trace Based Translation . 15

2.6.3 Region Based Translation 17

2.7 Full System Simulation . 18

2.8 Performance/Power Modelling . 21

2.9 Retargetability . 24

2.9.1 High Level Descriptions . 25

2.9.2 Low Level Descriptions . 27

2.9.3 Correctness . 28

2.10 Conclusion . 30

3 Infrastructure 31

3.1 Introduction . 31

viii

3.2 Arcsim . 32

3.3 LLVM . 32

3.4 CVC4 . 33

3.5 QEMU . 33

3.6 Evaluation . 33

3.6.1 Equipment . 34

3.6.2 Methodology . 34

3.6.3 Artefacts . 35

4 Efficient Simulator Generation 39

4.1 Introduction . 39

4.2 The GenC Architecture Description Language 40

4.2.1 Existing Architecture Description Languages 40

4.2.2 Our ADL . 41

4.2.3 Implementation of the GenC Tool 46

4.3 Generating a Simulator Module . 46

4.3.1 Instruction Decoding . 47

4.3.2 Interpretation . 50

4.3.3 A Naïve DBT . 51

4.4 High Speed Dynamic Binary Translation 51

4.4.1 Fixedness Analysis . 54

4.4.2 Generating LLVM Bitcode For An Instruction 57

4.5 Evaluation . 61

4.5.1 Comparison Against Naïve 61

4.5.2 Comparison Against QEMU 64

4.6 Conclusion . 65

5 Automated Test Generation 67

5.1 Introduction . 67

5.2 Motivation . 69

5.3 Coverage Analysis . 70

5.3.1 Basic Block Coverage . 71

5.3.2 Path Coverage . 72

5.3.3 Coverage Results . 74

ix

5.4 Test Generation . 75

5.4.1 Constraint Generation . 76

5.4.2 Constraint Satisfaction . 78

5.4.3 Instruction Encoding . 82

5.5 Evaluation . 83

5.5.1 Empirical Methodology . 83

5.5.2 Key Results . 85

5.5.3 Comparison . 88

5.5.4 Strengths and Limitations 89

5.6 Conclusion . 91

6 Efficient Full-System Simulation 93

6.1 Introduction . 93

6.2 Full System Simulation . 94

6.3 Interrupt Handling . 95

6.4 Memory Management . 96

6.4.1 Introduction to Virtual Memory 97

6.4.2 Memory in Simulators . 99

6.4.3 Virtual Memory In Simulation 100

6.4.4 Software Cache Based Approaches 101

6.4.5 Efficiently Handling Invalidations 103

6.4.6 Memory Translation Functions 106

6.5 Evaluation . 111

6.5.1 Key Results . 112

6.5.2 Analysis . 114

6.5.3 Analysis of Invalidation . 119

6.6 Conclusion . 122

7 Conclusion 123

7.1 Introduction . 123

7.2 Contributions . 123

7.2.1 Efficient Simulator Generation 124

7.2.2 Automated Test Generation 124

7.2.3 Efficient Full-System Simulation 125

x

7.3 Critical Analysis . 125

7.3.1 Efficient Simulator Generation 125

7.3.2 Automated Test Generation 125

7.3.3 Efficient Full-System Simulation 126

7.4 Future Work . 127

7.5 Final Remarks . 129

A Detailed Results - Efficient Simulator Generation 131

B Detailed Results - Automated Test Generation 137

C Detailed Results - Efficient Full-System Simulation 139

xi

List of Figures

2.2 Examples of difficulties in decoding instructions 10

2.3 Interpretation in a simulator . 11

2.4 Basic Blocks and Control Flow . 15

2.5 Simple and complex traces . 16

2.6 Region Based Translation . 17

4.1 Simulation using our ADL . 41

4.2 Example of an ARMv5 system description for user-mode simulation . 42

4.3 Example snippets of ISA syntax description using GenC 43

4.4 Instruction decoding using formats and constraints 43

4.5 Example snippet of ISA semantic description. 45

4.6 Example decode tree for a simple 8-bit instruction set 47

4.7 Optimising nodes in the decode tree 49

4.8 LLVM-based DBT using a function-call based translation method. . . 50

4.9 Naïve and Partial Evaluation based translation 52

4.10 Comparison of Partial Evaluation against traditional techniques 53

4.11 An example semantic description, and which elements are fixed. . . . 54

4.12 Pseudocode for Fixedness Algorithm 55

4.13 Contiguous vs demand-paged simulated memory 59

4.14 Comparison of performance for Naïve and Novel DBT over SPEC . . 62

4.15 Comparison of performance for Naïve and Novel DBT over EEMBC . 63

4.16 Comparison of LLVM bitcode counts for Naïve and Novel DBT modules 63

4.17 Comparison of QEMU and both Novel DBT modules on SPEC 64

5.1 An example instruction sequence in x86, ARM, and MIPS assembly. . 68

5.2 Example of ARM assembly, and the GenC for this instruction 68

xii

5.3 Comparison of block and path coverage on simple instruction 71

5.4 An example control flow graph containing a loop. 73

5.5 Basic block and path coverage of SPEC CPU2006 benchmarks 74

5.6 High level flow diagram of the operation of GenTest 75

5.7 Overall flow diagram for generating and executing tests 76

5.8 Example of a constraint set formatted as input to CVC4 79

5.9 Input and output from CVC4 when considering a simple instruction . 80

5.10 Example GenC and constraints produced, when there is a conflicting path 81

5.11 An output test instruction . 82

5.12 Aggregate path and block coverage for EEMBC and SPEC 84

5.13 Graph showing the paths covered by large numbers of random tests . . 88

6.1 Diagram comparing user-mode simulation with full-system simulation 94

6.2 Interrupts in Full System simulation 95

6.3 Proportion of memory instructions in SPEC benchmark suite 97

6.4 Memory mapping with Virtual Memory 98

6.5 Memory in Full System Simulation 99

6.6 Translation of guest virtual addresses into host virtual addresses . . . 100

6.7 Overview of data and control flow for Cache based memory translation 102

6.8 LLVM code required to perform a Cache-based memory access 104

6.9 Data and control flow for Memory Translation Function based translation107

6.10 Outline of code generated for a successful memory translation 109

6.11 Memory Translation Function for a simple memory access 109

6.12 Memory Translation Function when using Generational Invalidation . 110

6.13 Memory Translation Function when a translation fails 110

6.14 Memory Translation Function for an access requiring kernel permissions110

6.15 LLVM code for a memory access using Memory Translation Functions 111

6.16 Graph comparing Key memory access translation models 113

6.17 Graph comparing Function configuration against Cache configuration 113

6.18 Graph comparing speedup against frequency of invalidations 114

6.19 Graph comparing translated code size when using each configuration . 115

6.20 Graph comparing total translation time when using each configuration 115

6.21 Graph microbenchmarks performance with each configuration 117

6.22 Code for Access Cost Microbenchmark 117

xiii

6.23 Code for Invalidation Cost Microbenchmark 118

6.24 Code for Generation Cost Microbenchmark 118

6.25 Graph comparing frequency of invalidations across SPEC benchmarks 120

6.26 Graph comparing frequency of invalidations for 403.gcc benchmark . 121

6.27 Graph comparing speedup with invalidation frequency for SPEC datasets121

xv

List of Tables

3.1 DBT Host Configuration. 34

3.2 A summary of the SPEC CPU2006 Integer benchmark suite 36

3.3 A summary of the EEMBC benchmark categories 36

5.1 Instructions excluded from testing 85

5.2 A summary of the reference and test platforms 87

6.1 DBT System Configuration. 112

6.2 The ‘Key’ configurations selected for detailed study 112

A.1 Detailed timing results for P.E. when applied to SPEC suite 132

A.2 Detailed speedup results for P.E. when applied to SPEC suite 133

A.3 Detailed timing results for P.E. when applied to EEMBC suite 134

A.4 Detailed speedup results for P.E. when applied to EEMBC suite . . . 135

B.1 Statistics on tests generated using GenTest 138

C.1 Detailed timing results for Full System Simulation of SPEC suite . . . 140

C.2 Detailed speedup results for Full System Simulation of SPEC suite . . 141

C.3 Proportion of dynamic memory instructions in each SPEC benchmark. 142

C.4 Timing results for Full System Simulation microbenchmarks 142

C.5 Speedup results for Full System Simulation microbenchmarks 142

1

Chapter 1

Introduction

1.1 Background

In today’s connected world, rapid prototyping and development are becoming ever

more important in the race to bring embedded products to market before competitors.

Not only are systems becoming larger, as multi-core technologies continue to grow in

the embedded space, but they are also becoming more heterogeneous, both in terms of

heterogeneity within a single system (such as the ARM big.LITTLE [43] platforms)

and, as custom ASICs and accelerators continue to grow in popularity, across systems.

Effective tools are a vital part of the infrastructure required to design and implement

new computer systems and components. Much research has been done in improving

compilers, designing new programming languages, and improving run time and operat-

ing systems for embedded platforms.

However, as embedded systems have become more complex, the effort required

to debug these systems, as well as the software built on top of them, has increased

exponentially. When developing a new embedded product or platform, it is no longer

feasible to wait until silicon is available before beginning software development and

debugging. RTL simulation and FPGA prototyping is possible, but these require that

system development be complete or almost complete, and have significant time and

resource costs. Additionally, these techniques often do not allow improved observability

of the system compared with debugging directly on the target platform.

Simulation tools are able to bridge this gap between hardware specification and

implementation, allowing both improved hardware prototyping, such as experimenting

with new instruction set extensions and application specific accelerators, and also allow-

2 Chapter 1. Introduction

ing software development and debugging to begin sooner. They also frequently offer

greater visibility than FPGA or silicon implementations of the same platform, as event

counters and debugging features can be inserted into the simulator arbitrarily, easily,

and often with little runtime performance cost.

These tools are used in many areas in academic computer science, such as in ar-

chitectural and microarchitectural design space exploration [52, 45, 103] and design of

new cache coherence protocols [33]. However, the market for simulation tools is also

growing in the industrial sector. Most CPU vendors provide some kind of simulation

platform, such as ARM’s DS-5 [39], but simulation is also increasingly important in

real-world software development [98, 89], system verification [91], lower-power system

design [28], and many other areas.

From a high level perspective, a simulator is a software model of a computer system.

The objective is to examine the behaviour of software running on a guest system, using

a model on a host system. The guest software may be a single application, or a full

operating system, and the simulation may vary in detail - Functional simulation seeks to

replicate the expected behaviour of the guest, while Cycle-Accurate simulation provides

a detailed microarchitectural model in order to predict performance or energy usage.

Instruction Set Simulation is a subset of this field, mainly geared around simulating

processing units such as CPUs, microcontrollers, and specialised processing units such

as Digital Signal Processors (DSPs). This is in contrast to e.g. circuit simulations (which

might simulate the complete system as an electronic circuit) or simulation of complex

accelerators such as the fixed-function portions of Graphics Processing Units (GPUs)

(although many accelerators can be modelled as processing units). This thesis is mainly

addressing problems around Instruction Set Simulators, rather than physical circuit or

accelerator simulation.

Simulation platforms are clearly useful tools in embedded system development.

However, they also have unique requirements and pose additional challenges. The

three main objectives when developing a simulator - completeness, correctness, and

performance - are often in tension and must be traded against each other. Simulators

also require specific implementation skills and a breadth of knowledge covering both

low level architectural detail and high level software engineering.

This thesis presents methods for separating out these knowledge and skill require-

ments, by separating the description of the system to be simulated, from the implemen-

1.2. Motivation 3

tation of the simulator. The system designer provides a description of the system to be

simulated, and receives an instrumentable and high performance simulator.

1.2 Motivation

Instruction set simulation technologies have advanced significantly in recent years. In

order to boost performance, several technologies such as DBT (Dynamic Binary Trans-

lation) have been integrated into many simulators. DBT enables improved simulation

performance, by selectively translating parts of the target program into instructions

which can be executed directly on the host machine. DBT has also been used in runtime

environments, such as Java and Microsoft’s CLR, and similar technologies are used in

modern web browsers in order to accelerate the execution of JavaScript.

While Dynamic Binary Translation is one of the key technologies used to accelerate

simulation, it is also one of the most challenging to implement correctly and efficiently.

Simulation platforms such as QEMU, which support DBT, provide high simulation

speeds, but retargeting these platforms to new guest architectures is a significant chal-

lenge. Conversely, systems such as LISA and ArchC provide easy retargetability but

compromise on performance, producing a simulator which is of limited use when large

or long running applications are to be simulated.

It would be desirable to have a simulator framework which is easily retargetable,

but which is still competitive with a hand tuned simulator.

1.3 Contributions

This thesis seeks to outline techniques which contribute to each of our three simulation

objectives (correctness, completeness, and performance). Three such techniques are

presented.

First, this thesis covers the generation of many of the simulator components from

a high level description. This contributes primarily to our performance objective, as

many optimisations can only be efficiently performed algorithmically, and from a high

level description. Rather than require that the user hand-write complex Dynamic Bi-

nary Translation (DBT) components, a method is presented which allows a high-level

architectural description to be processed into a high-speed DBT frontend using Partial

4 Chapter 1. Introduction

Evaluation techniques. Also presented are novel contributions in DBT code generation,

particularly in control flow handling and memory accesses. This thesis then demon-

strates the performance gains obtained using these techniques, by implementing them

on top of the state of the art Arcsim simulation platform, compared with both a naïve

approach, and against the high speed QEMU instruction set simulator.

Secondly, this thesis presents a technique for generating tests for generated simu-

lators. First, it is demonstrated that even large and complex benchmark workloads are

insufficient for testing the correctness of instruction set simulators as they leave a major-

ity of the instruction space uncovered. Then the high level description is analysed, and

the extracted information used to generate targeted and complete tests for the described

architecture. This contributes to our correctness objective, as we are able to use these

tests to determine whether the architectural behaviour of our system is functionally

correct at an instruction-by-instruction level. These techniques are further applied to

the architectural model used elsewhere in this thesis in order to show its correctness,

as well as two modern simulation platforms, and discover several bugs in each when

compared against a reference hardware platform.

Finally, a novel technique for performing address translations in the context of

a virtual memory system is introduced. Rather than using a cache-based approach,

as is common, small machine code fragments which implement the functionality of

the MMU for each virtual page, including address translation and permission/privilege

checking, are generated. This contributes to both our completeness objective, as it allows

us to perform ‘full-system’ simulation (where both user and kernel mode execution is

simulated), and the performance objective, as it improves the efficiency of address

translations, which typically contribute significantly to simulation runtime.

1.4 Thesis Structure

This thesis is organised as follows:

Chapter 2 describes simulation techniques such as DBT in more detail. The various

components of Instruction Set Simulation are covered, including Dynamic Binary Trans-

lation, and the existing work in these fields is discussed. Several existing approaches to

simulator generation are discussed, as well as the testing of such simulators.

1.4. Thesis Structure 5

Chapter 3 examines the existing artefacts used by this thesis, as well as the perfor-

mance evaluation methodology used in Chapters 4 and 6. Artefacts include the Arcsim

simulator and the LLVM compiler framework on which the presented contributions are

built, and the SPEC and EEMBC benchmark suites used for evaluation.

Chapter 4 looks at techniques for generating high performance DBT systems from

high level Architecture Descriptions. An overview of the GenC ADL, as well as how the

various simulation components are generated, is presented. The presented Partial Evalu-

ation technique for DBT module generation provides a large performance improvement

compared to a naïve implementation. This chapter is based on material published in

[107].

Chapter 5 shows techniques for confirming the accuracy of high level Architecture

Descriptions. By analysing the possible control flow paths through each instruction

description, a comprehensive test suite can be generated. By running this test suite in

simulation, and on a reference platform, the accuracy of the high level Architecture

Description can be confirmed. This chapter is based on material published in [106].

Chapter 6 extends the previous techniques into ‘full-system’ simulation, and presents

methods for tackling many of the additional challenges which this poses. A novel tech-

nique for performing memory translations and accesses in a full system context is

presented, leading to a significant speedup over state of the art techniques.

Finally, Chapter 7 concludes this thesis, summarising contributions, analysing the

thesis, and proposing future work.

7

Chapter 2

Background & Related Work

2.1 Introduction

This chapter seeks to introduce the reader to the many techniques used to construct

modern Instruction Set Simulators. In particular, many of the techniques discussed later

in this thesis are introduced. The ‘architectural’ view of a simulator (that is, what is

happening from the perspective of the user) is briefly introduced. Methods to actually

perform the simulation, and improve simulation performance, are then described.

The existing literature on each field of Instruction Set Simulation relevant to this

thesis is also covered, particularly work on general simulation, Dynamic Binary Transla-

tion, and automatic generation of simulators and simulator components. Some work in

related fields is also covered where relevant. There is significant overlap in the fields of

Dynamic Binary Translation, Instruction Set Simulation, Virtualisation, and Managed

Language Runtimes.

How this chapter is structured

• An overview of modern techniques for fast instruction set simulation

• A description of how simulators can be generated using a high level ADL (Ar-

chitecture Description Language)

• Existing literature and related work on both of the above topics

8 Chapter 2. Background & Related Work

CPU

Memory

Devices

Input Output

(a)

CPU

Memory

Devices

Input Output

Statistics

Cycle
Count

Pipeline
Model

Statistic
Counters

(b)

Figure 2.1: In (a), a computer system takes input (including a program), executes instructions
in one or more CPUs, communicates with memory and external devices, and produces output.
In simulation (b), the same input and output are processed. The simulator may also provide ad-
ditional features such as detailed performance models or collect statistics/profiling information.

2.2 Overview of Simulation

As stated above, a simulator is a model of the guest system, designed to run on a host

system. That model usually includes, at the very least, the expected functional behaviour

of the guest system. An Instruction Set Simulator typically replicates the expected

functional behaviour of the system, and may also include features to predict the running

time of an application on the guest system. An Instruction Set Simulator might also

include instrumentation or debugging features in order to aid software development

(see Figure 2.1).

Instruction Set Simulators have a wide variety of uses. The most direct use of such

simulators is in hardware and software development, both commercially and academ-

ically. Many hardware features such as new pipeline designs, cache layouts, cache

coherence protocols etc. are first prototyped using simulators. Simulation is also fre-

quently used to assess the effectiveness of new software techniques such as compiler

optimisations, as simulators typically allow for greater observability than real hardware.

A common use of simulation is in Design Space Exploration. Simulations of a

large number of configurations of a particular system are performed, and the results

used to guide further research and development. The large number of configurations

2.3. Instruction Decoding 9

examined typically means that it would be infeasible to physically construct all of the

tested systems or to use FPGAs to test all of the configurations. A large number of

simulations can be quickly set up and executed on a compute cluster.

Simulation has also found extensive use in the video games industry in order to pro-

vide backwards compatibility. Many video games for consoles make extensive use of

‘tricks’ and specific timing behaviours in order to maximise performance, meaning that

highly detailed models are required in order to obtain correct behaviour. A notable ex-

ample of this is the backwards compatibility features present in some models of Sony’s

PlayStation 3 console. While early versions of the Playstation 3 supported previous-

generation PlayStation 2 games using direct hardware support (i.e., the PlayStation 3

consoles contained an almost complete PlayStation 2 chipset), later versions switched

to a software solution in order to save costs. However, the simulation is not perfect,

meaning that many games produce bugs, suffer from poor performance, or simply do

not work.

A more successful example of backwards compatibility using simulation technolo-

gies is Apple’s Rosetta [2]. Based on QuickTransit by Transitive [105], Rosetta allowed

older PowerPC Mac applications to run on newer x86 based machines. In contrast

with Sony’s PlayStation 2 emulation, Rosetta performs so-called ‘user-mode’ Dynamic

Binary Translation, meaning that many of the behaviours of the guest system, such

as precise exceptions and virtual memory translations, do not have to be faithfully

reproduced, greatly aiding performance.

At a bare minimum, an Instruction Set Simulator must be capable of decoding and

executing instructions. Although a wide range of techniques exist for performing these

actions, some may not be suitable or applicable to particular pairs of guest and host, or

may not work well with other techniques in use. The rest of this chapter will discuss

these techniques, giving a brief overview of what is involved, and how they have been

explored and examined in the literature.

2.3 Instruction Decoding

At a basic level, Instruction Decoding is the process of taking a region of memory repre-

senting one or more guest instructions, and determining what kind of instructions they

10 Chapter 2. Background & Related Work

1 01 c2 : addl %eax, %edx

(a) An example x86 instruction with no prefixes.

1 66 41 01 c2 : addw %ax, %r9w

(b) The same x86 instruction again, but with several prefixes. The prefixes have changed the
destination register of the instruction, as well as the data width of the operation. This type of
‘stateful’ instruction complicates the decode process.

1 e5912010 : ldr r2, [r1, #16]

(c) Here a single ARM instruction can be seen.

1 2010 : movs r0, #16
2 e591 : b -0x4da

(d) If the binary representation of the above ARM instruction is decoded in Thumb mode, two
completely different instructions are produced.

Figure 2.2: Examples of difficulties in decoding instructions. How an instruction is decoded can
depend on context, such as with instruction prefixes ((a) and (b)) or system state ((c) and (d)).

are, and what their operands are. This can typically be achieved using bit manipulation

operations and lookup tables.

Some care needs to be taken when decoding instructions which are in any way

stateful. A classic example of an Instruction Set containing stateful instructions is x86:

an instruction can consists of one or more prefixes (which may change the nature of the

instruction, or the nature of its operands), followed by an opcode, a ‘ModR/M’ byte, a

‘SIB’ byte, and finally any immediates or offsets, which vary in length according to the

instruction. Many of these components of an instruction are optional and their presence

depends on the nature of previous parts of the instruction (see Figures 2.2a and 2.2b).

A simpler but still important example might be the ARM and Thumb instruction

sets. Modern processors implementing the ARMv5 instruction set and above are able

to switch into the Thumb (and later, Thumb-2) instruction set, which provides a more

compact encoding for situations where code size is critical. In this case, the decoding

of a particular region of memory depends on the state of the CPU at the time when it is

decoded (see Figures 2.2c and 2.2d).

For orthogonal, non-stateful instruction decoders, automatically generated decision

trees are typically used. This has been investigated by Fournel [36] and Qin [82]. De-

coding of x86 instructions has been discussed by Krishna [56], who assume that much

2.4. Interpretation 11

switch(opcode) {
 case mov:
 a = read_reg(rn)
 write_reg(rd,a)
 case add:
 ...
 case sub:
 ...
 case load:
 ...
 case store:
 ...

Fetch Decode Execute

PC

38

00

01

d4

0c

05

40

50

40

05

00

01

2d

a0

a0

00

9f

a0

e9

e1

e1

eb

e5

e1

e1a05000
11100001101000000101000000000000

mov r5, r0

cond
op

func
s
rn

rd
rm

subop1
shift

1 2 3

Figure 2.3: Interpretation is an almost direct implementation of the Fetch-Decode-Execute cycle.
Instructions are fetched one at a time from memory 1 , decoded 2 , and then executed 3 , with
control flow instructions updating the PC, and thus the address of the next instruction to be
fetched.

of the ‘stateful’ nature has already been parsed out of the instruction, and that the many

possible x86 instruction prefixes are collapsed into a single byte.

The Gem5 simulation framework includes a partially generated x86 instruction

decoder [110]. Here, a state machine is used first to filter entire instructions out of the

instruction stream. The instructions are then classified according to their general type

(i.e., whether they are microcoded). Parts of the decoder are instruction implementation

are generated from an ISA description. However, significant amounts of the generation

flow are tailored to x86 and it is not clear whether these would be able to support other

mixed length instruction sets.

GDSL [96] provides a complete x86 decoder implementation, describing the in-

struction set using an abstract grammar. Monads are used to provide a grammar which

is stateless, but which decodes the stateful x86 instruction set.

2.4 Interpretation

Interpretation is the simplest execution model for a simulator. After instructions are

fetched and decoded, the opcode of the instruction is looked up in a switch statement or

jump table and the instruction implementation is executed directly, as shown in Figure

12 Chapter 2. Background & Related Work

2.3. The next instruction is then decoded and fetched, and the process repeats until the

simulation ends.

While the simplicity of an interpreter is something of an advantage during imple-

mentation, it also means that performance is typically limited. Each executed guest

instruction must be fetched and decoded (although caches can be used to accelerate this

process) individually, and then the correct behaviour for the instruction must be selected

and executed. This presents no opportunity for intra- or inter-instruction optimisations

(as will be discussed below) and also gives poor host instruction cache performance, as

the instruction implementations are scattered in memory.

Some work has been done on accelerating interpreter performance using techniques

such as interpreter threading and specialisation or partial evaluation. However, threading

is typically only suitable for bytecode-based systems (which have instructions with few

or no explicit operands). A high-profile example of a simulation platform featuring

threaded interpretation is SimIcs [67], which also makes use of various automated

generation techniques.

Instruction specialisation involves generating multiple implementations of each

instruction to be interpreted, with each one tuned to support a particular execution path

through the interpreted instruction. For example, in the ARM ISA, separate versions

of arithmetic instructions might be generated for the flag-setting and non-flag-setting

versions of each instruction.

Although this can improve simulation throughput by reducing the amount of hard-

to-predict control flow, the large amount of extra host machine code exacerbates the

host instruction cache pressure. Additional interpreter cases can also increase decode

complexity, as the correct specialisation must be selected, although this can usually

be amortized using decode caching (such as in [104]). In an interpretive simulation

environment, instructions are fetched and decoded one at a time. However, the same

instruction might be fetched and decoded many times if it is part of a hot loop or

frequently called function. Decode caching seeks to reduce the costs associated with

decoding an instruction (including determining the type of the instruction and extracting

the interesting fields from the instruction) by caching the results of this operation.

2.5. Static Binary Translation 13

2.5 Static Binary Translation

Static Binary Translation (also known as ‘Compiled Instruction Set Simulation’) at-

tempts to convert a binary program compiled for the guest instruction set, into one

which will execute directly in the host environment. Some analysis is done in order to

extract control flow information from the binary program, in order to permit optimisa-

tions on the translated binary.

There are several major problems facing Static Binary Translation. Firstly, arbi-

trary and indirect control flow (such as jump tables and ‘return’ statements, which are

typically implemented as indirect branches) mean that an accurate mapping between

each guest instruction, and their host equivalents, must be maintained. Secondly, any

program making use of self modifying code, or which generates and executes new code

at runtime, cannot be supported purely by Static Binary Translation.

One of the major concerns with static binary translation is the amount of time spent

translating and compiling the target binary. This can be a significant overhead, espe-

cially considering that the entire binary must be fully translated and compiled before

any simulation can begin (in contrast with interpretive or Dynamic Binary Translation-

based simulation). Obsim [29] seeks to reduce these compilation time overheads by

supporting partial and incremental compilation, rather than requiring that the full target

binary be translated each time a small change is made. Some performance enhance-

ments are also described, including the optimisation of various control flow structures.

Reshadi [87] seeks to improve the flexibility of Static Binary Translation by in-

troducing elements typically found in ‘dynamic’ (Interpretive and Dynamic Binary

Translation-based) simulators. The key idea is to generate a simulator module which

is tailored to the target binary or binaries. The instruction types present in the target

binary are identified statically, and an interpreter is generated which is specialised to

the binaries to be simulated.

A more frequent approach than full Static Binary Translation is to combine some

static analysis with either interpreted simulation or a Dynamic Binary Translation ap-

proach. This is typically combined with some performance modelling or prediction in

order to produce a high speed cycle-approximate simulation. Performance modelling

simulators will be discussed below, in Section 2.8.

Bansal [8] presents a superoptimisation-based technique. First, sequences of guest

instructions are automatically extracted from target programs. Then, functionally equiv-

14 Chapter 2. Background & Related Work

alent sequences of host instructions are automatically generated using a superoptimiser.

Although the presented work is implemented in a static binary translator, the paper

claims that transferring the techniques to a DBT system would be straightforward.

2.6 Dynamic Binary Translation

While Static Binary Translation seeks to translate guest instructions to host instructions

in an offline context, Dynamic Binary Translation does this translation in an online

context, that is, at runtime. This translation is typically achieved using JIT Compilation

techniques. Dynamic Binary Translation is able to achieve very high guest instruction

throughput, making it very useful for high-speed simulation.

There are several main approaches to Dynamic Binary Translation. One of the most

popular is to translate straight-line sections of guest instructions, either basic blocks or

traces. However, this presents limited opportunities for control flow optimisation and

loop optimisations. Region based translation involves translating large regions of guest

instructions are translated, including complex control flow structures. This provides

improved simulation speed, although translation throughput typically suffers.

Once a translation is performed, the translated host instructions are stored for future

use, typically in a one- or two-level Translation Cache. In the event that one or more

guest instructions are modified, any translations which cover those instructions will

have to be abandoned.

2.6.1 Block Based Translation

The simplest DBT approach typically used is to translate one basic block at a time from

the guest ISA to the host ISA. A basic block is defined as a code region with a single

entry and a single exit (Figure 2.4a). A block may have multiple predecessors and

successors (Figure 2.4b). Basic Block Translation can be done with very little overhead,

as discovering the extents of a basic block can be done by simply looking for control

flow instructions.

Once the beginning and end of the basic block is identified, the instructions are

translated one at a time. The method for translating the instructions varies, but usually

involves emitting some form of Intermediate Representation (IR) such as LLVM bit-

code, or QEMU’s Tiny Code Generator IR. Once the block is fully translated into IR,

2.6. Dynamic Binary Translation 15

push {r3, r4, r5, lr}
mov r5, r0
mov r4, r1
bl 977c

ldr r0, [pc, #12]
mov r1, r5
mov r2, r4
pop {r3, r4, r5, lr}
b 8354

1

2

3

4

(a) Two basic blocks connected by a control
flow instruction 1 . Each block has a single
entry point 2 , 3 and exit point 1 , 4 .

str r0, [r5, #4]
ldr r0, [r0, r6]
add r0, #3

mov r5, r0
subs r6, r0
bne 1038

mov r0, #0
ldr r1, [pc, #8]
b 10c4

ldr r0, [r0, #8]
add sp, #4
bl 10c4

add r0, #8
mul r0, r0, r1
bx lr 1

2 3

4 5

(b) Basic blocks can have multiple predeces-
sors 2 , 3 . Indirect branches 1 can also
cause a block to have multiple successors
4 , 5 .

Figure 2.4: Basic blocks are one of the fundamental structures used when analysing the control
flow graph for a program.

some optimisations may be performed, and then the IR is translated into host instruc-

tions.

A Block Based Translation system can be improved in several ways, such as by

chaining blocks together, so that host control flow is able to move directly from one

translated block to the next, without performing a lookup in the Translation Cache.

This technique is used in QEMU [14]. HQEMU extends QEMU to use LLVM as a

JIT compiler [48]. HQEMU also performs translation in parallel, performing costly

optimisation operations away from the critical path of the simulator.

Brandner et al. [19] also use LLVM as a JIT compiler. However, instead of extending

QEMU, guest basic blocks are translated directly into individual LLVM functions. The

simulator is cycle accurate (although no accuracy figures are given) and the LLVM

translation system is generated from an architectural description.

2.6.2 Trace Based Translation

While Block Based Translation can be effective, basic blocks are typically quite small

(For example, SPEC2000 has an average block length of 4.5 [44] when compiled for

16 Chapter 2. Background & Related Work

A

B C

D E

F

G

A B

G

C D

F

G

E

F

G

A C D F G

Figure 2.5: On the left a simple control flow graph can be seen. On the top right, the extracted
simple traces. Notice how several basic blocks appear in multiple traces. At the bottom right
there is an example of a more complex trace with multiple exit points. Progression through the
trace at A and C depends on each branch taking the ‘correct’ path.

the ARM architecture). This severely inhibits opportunities for optimisation, and also

means that translation lookup may become a bottleneck if it is not implemented ef-

ficiently. Trace Based Translation seeks to solve these problems. A trace is defined

similarly to a block, except that a trace may have multiple exit points (Figure 2.5).

The most primitive form of trace is one which groups together multiple basic blocks,

connected by unconditional control flow (i.e., each block, except for the first and last,

has only one predecessor and one successor). More complex schemes attempt to include

blocks which end in conditional control flow. When encountering conditional or indirect

control flow, some profiling may be performed in order to evaluate which branch target

should be included in the trace.

Trace Based Translation exposes many more opportunities for optimisation than

a block based approach. However, it is not without drawbacks. In particular, it can

impose a large memory cost, as each guest basic block may be included in many traces.

As with Block Based Translation, traces may be chained together in order to provide

a performance benefit. DynamoSim is an example of a trace based instruction set

simulator [72].

Several optimisations are described in [86], including grouping, ordering and opti-

mising groups of contiguous basic blocks. Here, multiple basic blocks are translated

into a single trace provided that there are only direct, statically calculable branches

2.6. Dynamic Binary Translation 17

Interpret + Profile

Fetch

Decode

Execute

Interpret Profile Select

Execute Translations

Fetch

Translated?

Interpret
N

Y

Translate Region

movl %rax
addb %al,
movq (%rsp
cmpl %eax
jne 0x400
mov 10(%rbp)
callq *%rax

Compile

%66 = load i32* %3
%67 = load i8* %5
%68 = lshr i32 %66, 30
%69 = and i32 %68, 1
%70 = trunc i32 %69 to i8
%71 = shl i32 %66, 2
store i32 %71, i32* %1
%72 = load i32* %rb0_r0
store i32 %72, i32* %3
%73 = load i32* %3
%74 = load i32* %1
 %75 = add i32 %73, %74
 store i32 %75, i32* %4

%68 = lshr i32 %66, 30
%69 = and i32 %68, 1
%70 = trunc i32 %69 to i8
%71 = shl i32 %66, 2
store i32 %71, i32* %1
%72 = load i32* %rb0_r0
store i32 %72, i32* %3
%73 = load i32* %3
%74 = load i32* %1
 %75 = add i32 %73, %74
 store i32 %75, i32* %4

%66 = load i32* %3
%67 = load i8* %5
%68 = lshr i32 %66, 30
%69 = and i32 %68, 1
%70 = trunc i32 %69 to i8
%71 = shl i32 %66, 2
store i32 %71, i32* %1
%72 = load i32* %rb0_r0
store i32 %72, i32* %3
%73 = load i32* %3
%74 = load i32* %1
 %75 = add i32 %73, %74
 store i32 %75, i32* %4

Translate to IR

Optimise

-O3

%66 = load i32* %3
%67 = load i8* %5
%68 = lshr i32 %66, 30
%69 = and i32 %68, 1
%70 = trunc i32 %69 to i8
%71 = shl i32 %66, 2
store i32 %71, i32* %1
%72 = load i32* %rb0_r0
store i32 %72, i32* %3
%73 = load i32* %3
%74 = load i32* %1
 %75 = add i32 %73, %74
 store i32 %75, i32* %4

%66 = load i32* %3
%69 = and i32 %68, 1
%71 = trunc i32 %69 to i8
store i32 %71, i32* %1
%73 = load i32* %3
%74 = load i32* %1

movl %rax
addb %al,
movq (%rsp
cmpl %eax
jne 0x400
mov 10(%rbp)
callq *%rax

movl %rax
addb %al,
movq (%rsp
cmpl %eax
jne 0x400
mov 10(%rbp)
callq *%rax

movl %rax
addb %al,
movq (%rsp
cmpl %eax
jne 0x400
mov 10(%rbp)
callq *%rax

Figure 2.6: Region Based Translation translates entire regions, typically guest pages. The re-
gions are first executed using a tracing interpreter, in order to gather direct and indirect control
flow information. The regions are then translated, along with a dispatcher which allows execu-
tion to begin at the correct position in the region.

between each block. Previously translated blocks may also be retranslated into, and

optimised as, a single trace. This enables more aggressive optimisations to be applied.

2.6.3 Region Based Translation

In contrast with Block Based- and Trace Based Translation, which translate only straight

line sections of code, Region Based Translation involves extracting ‘regions’ of the

guest program in order to form a control flow graph, and then translating these regions,

including their loops and other complex control flow structures. This approach has the

immediate advantage that cross-basic-block and loop optimisations can be used in order

to improve the run time performance of the translated host code.

However, these additional optimisation opportunities come at a cost. The region

profiling step, which includes forming control flow graphs, can be expensive. Executing

the additional loop optimisations also comes at a cost, as they can be expensive to

perform. It is particularly important to balance the cost of each optimisation against the

performance benefit it provides.

Unlike Block Based and Trace Based Translation systems, translated Regions are

typically not individually chained when simulating a 32-bit guest system. This is be-

cause there are a fixed number of Regions in the guest address space. For example, if

Regions are specified to be of size 4 Kilobytes, then there are 220 = 1048576 possible

Region start addresses. Since the number of possible Region start addresses is much

18 Chapter 2. Background & Related Work

smaller than the number of possible Block or Trace start addresses (which may be

several billion), translated regions can be stored in a flat table.

Although region based translation is not as popular as trace or basic block based

translation (mainly due to the additional complexity of implementation), it is becoming

more popular as compilation infrastructures such as LLVM are increasingly able to do

the ‘heavy lifting’ of JIT compilation. Notable region based simulators include Arcsim

(discussed in Section 3.2, which performs control flow analysis and optimisation, and

Simit-ARM [83], which attempts to translate full guest pages at a time.

Arcsim is a full system simulation environment for the ARC architecture. Arcsim

supports both user-mode and full system simulation, and can perform cycle accurate

simulations for several ARC implementations (including branch predictors and complex

cache hierarchies). High simulation speed is achieved using a region based DBT and

aggressive LLVM based optimisations and JIT compilation. Simulation occurs in two

phases: first, an interpreter executes instructions and forms a control flow graph for

the binary code under simulation. After a specified interval (usually several thousand

basic blocks), the control flow graph is analysed and ‘hot’ regions (regions containing

code which has been executed a large number of times) are dispatched for translation

to native (host) code. Translation occurs in separate threads to execution, and multiple

translations can be in progress simultaneously. Once the translation of a region is

complete, that translation will be used the next time simulated control flow returns to

that region. Arcsim’s cycle accurate simulation implementation is discussed below.

Simit-ARM [83] is a full system simulator for the ARM instruction set. Simit-ARM

supports region based DBT, by translating instructions to C code and compiling using

GCC. Only basic profiling is performed, in order to determine which pages of code are

‘hot’ and should be compiled. Simit-ARM also supports parallel JIT compilation, either

via threads or via network sockets.

2.7 Full System Simulation

While user mode simulators are capable of dealing with many simulation tasks, they

are not capable of hosting a full operating system, nor simulating systems which do

not include an operating system. In these cases, full system simulators must be used

instead. These simulators include virtual memory models, exception and interrupt mod-

2.7. Full System Simulation 19

els, external devices, etc. These additional requirements typically mean that full system

simulators are much more complex than user mode simulators, and they typically have a

considerable performance penalty due to the increased complexity of memory accesses.

There have been many schemes developed to accelerate these memory translations.

For example, EMBRA, presented by Witchell [109] keeps a ‘relocation array’ which

acts as a cache of translated page addresses. Each entry in this array contains the physi-

cal address of the mapped virtual page, as well as any page protection bits. Lookups in

this array are then inlined using EMBRA’s DBT system.

QEMU also supports full system simulation. The approach taken in QEMU is to

keep a small cache of translations, similar to EMBRA. QEMU extends this by indexing

DBT translations by physical address. This means that these translations no longer need

to be flushed when MMU mappings change (which is extremely frequently in a full-

system environment, where a guest operating system is frequently context switching).

Koju [55] also seeks to improve translated code performance in a full system simu-

lation context, by optimising indirect branches. Indirect branch targets are not known

at DBT compile time, and so address translations for these branches must be performed

as part of virtual memory emulation. Koju develops an intra-page offset calculation

optimisation, but does not offer an efficient solution for virtual page address translation

and relies on standard approaches.

Arcsim, described above, also supports full system simulation. In a paper by Topham

et al. [104], a variant on the caching approach taken elsewhere is presented. Here,

multiple caches are kept each for reads, writes, and instruction fetches. Each cache is a

direct mapped software cache, indexed by low-order target virtual address bits. While

improving on approaches taken elsewhere, this technique does not significantly differ

from standard translation caching.

Hardware-accelerated approaches have also been examined by Argollo et al. [3].

Here, a proprietary AMD extension, SimNow, is used to accelerate virtual memory

simulation. However, this technique is only applied to same-ISA simulation, and has

not been applied to cross-architectural simulation. Hardware support for memory trans-

lations has also been developed by Transmeta [1], by using a single TLB containing

both host and guest entries. This avoids costly TLB flushes when context switching

between executing the host and guest processes. Transmeta have also described a spec-

ulative address translation system, where host memory segmentation features are used

20 Chapter 2. Background & Related Work

to speculate on the host virtual address corresponding to the guest virtual address in

question [13].

Such hardware support provides very efficient memory translations, but might not

be suitable if the host memory page size is larger than the guest page size. In this

situation, the host machine cannot provide native memory protection which matches

that of the guest, and so a software or combined hardware/ software solution must be

used instead. One such solution is presented in [24], where translated code speculates

on a particular guest page size for each memory access. If the speculation is frequently

incorrect, then the guest code is retranslated.

Much research has focused on efficient implementation of dynamic binary optimisa-

tion (DBO) and instrumentation (DBI). DBO and DBI present many similar problems

to simulation, but typically require that the guest and host have the same architecture.

Examples include DynamoRio [20] and Pin [64]. However, these systems operate on

individual user applications within a single address space, and so do not face the ad-

dress translation challenges of full-system simulation. Other cross-architectural DBT

systems, e.g. [73], are often limited to application-level simulation, but cannot host an

OS due to missing full-system simulation support.

PinOs [22], which is built on the Xen [10] virtualisation platform, uses Intel’s

Vt technology [51] to perform full system instrumentation. Another prototype cross-

architectural virtualisation platform, MagiXen has been presented [25]. This system

is a virtual machine monitor with an integrated binary translator, which is capable of

hosting an IA-32 virtual machine on an Itanium platform. While performance is good

for numerical benchmarks, memory intensive workloads perform poorly. Similar work

has been done by Baraz [9].

The efficient handling of dynamically generated or self-modifying guest code is

also an important factor in simulation performance. A technique is presented in [7] for

extending the host MMU with a ‘T’ bit which tracks host memory pages containing

translated guest instructions. Writes to host memory pages with this T bit set cause an

exception. The host pages are further subdivided so that modifying data (rather than

instructions) on such a page does not trigger the translation to be discarded.

Other problems in full system simulation include efficient interrupt and exception

handling. A checkpoint-and-rollback technique is presented in [59], in order to allow the

reordering of guest operations during translation, permitting a much more aggressive

2.8. Performance/Power Modelling 21

optimisation strategy. If an exception or interrupt is generated during a section of re-

ordered code, the section is re-executed using the original instruction ordering.

A different technique for efficiently handling interrupts and exceptions, presented

in [85]. Here, each guest register is mapped to two host registers or memory locations.

During execution, the mapping is alternated between the two host registers, providing

an efficient checkpoint-and-restore system, should an exception take place during the

block.

2.8 Performance/Power Modelling

While issues of performance or power modelling are not addressed in this thesis, it

is important to note that many Instruction Set Simulation platforms support these in

some form. Performance modelling (sometimes known as ‘Cycle Accurate Simulation’

or ‘Cycle Approximate Simulation’) seeks to predict how many cycles (and thus how

much ‘wall-clock’ time) a system will consume in order to perform a particular opera-

tion. Power modelling seeks to predict how much dynamic energy may be consumed.

These technologies typically require highly detailed pipeline, interconnect and mem-

ory models in order to obtain accurate results, and evaluating these models typically

dominates simulation execution time.

Some work has been done in improving both the evaluation costs and accuracies

of performance and power models. Techniques for simulation vary significantly, as

simulators for different configurations benefit from different optimisations. For example,

Arcsim [18] focuses on high-speed simulation of an in-order core with a relatively

simple memory system by compiling pipeline updates into DBT-generated code. An

extension [103] presents techniques for fast and accurate simulation of cache-incoherent

multi-core systems, by only invoking the interconnect model when required by non-

cached memory accesses.

Other simulators such as Gem5 [15] and MARSS [79] aim for highly accurate

simulation of complex microarchitectures. Gem5 seeks to provide a detailed struc-

tural simulation of the CPU microarchitecture, including complex memory systems

and memory delay simulations. The Gem5 infrastructure is a combination of the M5

core simulator and Gems memory system simulator. Multiple architectures and mi-

croarchitectural models are supported, and many parts of a processor model can be

22 Chapter 2. Background & Related Work

automatically generated. However, this involves a macro/template based description of

the model source code rather than a direct description of the simulated system (as in

‘true’ ADLs). In addition, the default release of Gem5 supports only a limited selection

of microarchitectural models with an interface defined between the architectural and

microarchitectural components of the simulator, rather than specific and separate mod-

els for each simulated microarchitecture. For example, a simulation of an ARM system

must be performed as a simulation of the ARM architecture, tied to a simulation of

the included Alpha 21264 microarchitecture ‘tweaked’ to behave more similarly to the

ARM system.

PtlSim [112] provides a highly configurable and detailed microarchitectural sim-

ulation of processors implementing the x86 ISA, including caches and SMT support.

High accuracy is achieved by simulating the micro-op decoding process present in

most modern x86 implementations, as well as the complex x86 memory management

unit and page fault handling mechanisms. The Xen hypervisor platform is used to sup-

port full system and multicore simulation, and there is support for ‘fast-forwarding’ by

switching between executing natively using Xen, or using the detailed model provided

by PtlSim.

MARSS [79] is a hybrid approach, combining the DBT-based functionality of

QEMU with the microarchitectural modelling of PtlSim. Support for newer architec-

tural extensions (such as MMX) has also been introduced, as well as an improved

execution model for complex instructions in order to improve accuracy. A simple mem-

ory system simulation has also been introduced, replacing the constant delays used in

the original PtlSim.

McPat [61] provides timing, power, and area estimates and is based on the Cacti

[74] cache modelling framework. Cactiaims to estimate cache power and area usage

using a complex physical model of the electrical properties of cache structures and the

wires used to connect them together and to other structures. McPat extends this model,

adding support for core microarchitectural features and for processor power modes,

interconnects, etc.

Strazdins et al. [101] model the UltraSPARC III CPU efficiently using a variety of

time-saving techniques. In particular, a detailed microarchitectural model is not main-

tained, and instead only approximate models of important microarchitectural features

are used. Although speedups are reported over highly detailed simulations, evaluations

are only using small kernels rather than realistic workloads. Additionally, this simula-

2.8. Performance/Power Modelling 23

tion technique relies on knowing which architectural features are ‘important’, which

would not necessarily be known when prototyping a new microarchitecture.

Schnarr and Larus [93] use memoisation techniques (also known as ‘dynamic pro-

gramming’) to accelerate cycle accurate simulation of a MIPS R10000-like microar-

chitecture. Microarchitectural configurations are cached, alongside the actions taken

to advance those configurations, meaning that when similar microarchitectural states

are repeatedly encountered (such as when executing loops), the simulator can perform

the cached actions rather than re-evaluating the microarchitectural model. Not all mi-

croarchitectural features are memoised. For example, caches are not memoised as these

typically have very data-driven behaviour which is not effectively captured by the mem-

oisation technique.

Arcsim performs cycle accurate simulation of a range of in-order single issue ARC

microcontrollers and microprocessors. Simulation is highly accurate and includes the

correct behaviour of pseudo-random cache replacement policies and branch prediction

units. Very high accuracy is possible partly due to the simple nature of the system under

simulation (usually single-core, in-order single issue processors), and high simulation

speed is achieved using a ‘functional-first’ simulation scheme, where the functional

behaviour of the system is simulated for each instruction, and the microarchitectural

state is then updated to reflect the correct behaviour. This can cause some inaccuracies

in rare circumstances (for example, instruction cache misses along speculated branch

paths are not modelled). Arcsim is discussed more in Section 3.2.

Due to the high cost of evaluating high-accuracy architectural models at runtime,

some work has been done on using machine learning and static analysis techniques

to extract some timing information from application source or binary code statically.

This does not allow the simulation of self modifying or dynamically generated code.

However, an alternative approach is to build the model dynamically i.e. at runtime,

so that when new code is generated or code is modified, a new or updated model can

be built. Once the model has been built, it can be evaluated more cheaply than the

full microarchitectural model. Some microarchitectural features which have complex

behaviours such as caches and branch predictors may still be fully modelled in order to

improve the accuracy of the simulation.

Schnerr et al. [94] first perform static timing analysis of each basic block of a target

binary. Once a timing model is extracted, the original C source code of the executable

to be simulated is translated into a SystemC TLM model, and annotated with the timing

24 Chapter 2. Background & Related Work

model. Structures such as caches and branch predictors are still evaluated dynamically,

as well as any other data-dependent microarchitectural structures such as load/store

stalls. Good simulation performance is obtained, although method is evaluated only on

a few short-running benchmarks, making it difficult to assess the simulation accuracy

obtained by this approach.

Ottlik et al. [76] perform offline static analysis in order to produce context based

timing information. Possible control flow paths through the binary program are anal-

ysed in terms of ‘execution contexts’. Use of execution contexts rather than explicit

control flow paths greatly improves the efficiency of the model both in terms of required

memory and lookup time. The paper reports good results for both simulation perfor-

mance and accuracy, although complex microarchitectural features such as caches and

branch predictors are not covered.

Powell et al. [81] use a continuous and online machine learning based approach,

enabling accurate modelling of dynamically generated and self modifying code. Their

approach is capable of adapting itself, depending on the confidence of each prediction,

and predictions include effects caused by caches and branch prediction units. A high

speedup over pure cycle-accurate simulation is reported with a relatively low degrada-

tion in accuracy.

2.9 Retargetability

As customisable architectures and instruction set extensions have become more preva-

lent, the extensibility and retargetability of Instruction Set Simulators has become more

important. However, implementing these new features can be challenging, especially

when high performance is desired.

Generally, using a retargetable simulation system involves creating a description of

the desired architecture in a domain specific ADL (Architecture Description Language).

This description is then passed through a tool to produce a module, which can then

be ‘plugged’ into the simulation infrastructure. While many different systems exist for

this, most with their own specific ADL, they can be broken down generally into two

categories: high-level abstract descriptions, and low level structural descriptions.

2.9. Retargetability 25

2.9.1 High Level Descriptions

High level ADLs typically seek to describe the desired architecture at an abstract level.

They typically deal directly with guest instructions, and often ignore much of the un-

derlying microarchitecture. This style of ADL is particularly amenable to high level

analysis and optimisation, and are typically capable of producing high speed simulators.

However, performance and power modelling simulators can not be easily generated

from this type of description, as the description lacks microarchitectural information

such as pipeline structure. A high level description could be coupled with a microarchi-

tectural model in order to provide both high simulation throughput and performance

modelling but this would require producing and synchronizing two different descrip-

tions of the same system which presents maintenance and validation problems.

Due to its popularity, a large body of work regarding SystemC and Transaction

Level Modelling (TLM) also exists [40, 77]. TLM involves building models which

abstract away low level details of a system and instead focus on transactions within the

simulated system. This approach avoids the overheads of having a detailed structural

model of the entire simulated system, while still allowing the mixing of highly detailed

component models with less detailed models which are faster to evaluate.

ArchC [90, 5] is a SystemC based instruction set simulation platform, essentially

providing an interface for easily describing microprocessors at the instruction level, as

well as a simulation infrastructure. ArchC can be used for functional simulation, or

can have pipeline information included in order to enable cycle accurate simulation.

However, the instruction and cycle accurate descriptions are typically very different,

meaning that these two models must be kept in sync if both forms of simulation are

desired for a particular architecture.

Blanqui et al. [16] present a method for generating an architectural model directly

from the reference documentation provided by the ISA vendor. The PDF format doc-

uments are parsed and ISA syntax and semantic descriptions are extracted from the

instruction encoding tables and implementation pseudocode contained within the docu-

ment. However, reference document formatting is not consistent between different ISA

vendors, meaning that different parsing and extraction strategies would be needed for

each model.

Simit-ARM [83] is a simulator partially generated from a high level description.

An abstract instruction decoding scheme is used to implement an efficient jump-table

26 Chapter 2. Background & Related Work

based instruction decoder, and snippets of C are attached to particular instruction fields

(to allow for ARM’s multiple immediate encoding formats and addressing modes), and

to the leaf instructions. Although flexible, this mixes instruction syntax and semantics

in a way which can make following the flow of execution of an instruction’s semantic

action quite difficult.

A ‘Generic Instruction Model’ is presented in [88]. A flexible method for describing

the syntax and semantics of the instruction set is provided, as well as a detailed descrip-

tion of their method for automatically generating an instruction decoder. However, only

a straightforward interpreter implementation is described.

SLED, a Specification Language for Encoding and Decoding, is presented in [84].

SLED is flexible enough to describe both fixed length RISC and variable length CISC

instructions, and can be used to generate various binary utilities and code analysis tools.

However, no method for describing instruction semantics is included in the language.

The SSL language [30] takes the opposite approach, allowing the description of

instruction semantics but not bitwise instruction representations. SSL is also capable

of describing complex ‘higher order’ instructions (such as delay-slot instructions from

SPARC and repeat string instructions from x86).

The nML [38] machine description language uses a top-down approach. The de-

scription forms a grammar, for which each valid derivation represents one valid machine

instruction. So, the structure of the grammar reflects the structure of the instruction set.

As with SSL, complex and high level machine behaviours such as delay slots can be

described fairly succinctly.

EXPRESSION [45] is another machine description language taking an abstract,

high level view of the machine. EXPRESSION is designed to support generation of

both retargetable simulators and compilers, while still supporting the simulation of

microarchitectural details such as memory hierarchy and instruction pipelines. This

system is designed to support efficient design space exploration, so it is easy to modify

microarchitectural details such as the number of execution units. Although EXPRES-

SION supports the generation of compiler backends, this is only possible if the user

provides a mapping back from compiler IR structures to architectural instructions.

Pydgin [63] uses a set of libraries embedded into RPython (also used by the PyPy

Python implementation) to allow for the implementation of fast instruction set sim-

ulators using the Python programming language. Several specific optimisations are

presented in order to improve the performance of the generated simulators.

2.9. Retargetability 27

2.9.2 Low Level Descriptions

This style of ADL describes systems at a very low level, typically involving direct

descriptions of the hardware under simulation. This style of ADL is typically more

flexible than a high-level ADL, as it is capable of describing systems at both high

and low levels of abstraction depending on the detail contained within the provided

description.

Low level descriptions are particularly amenable to providing simulators with ac-

curate timing or power models. These simulators often operate on a cycle-by-cycle

basis, where the simulation runs on each described architectural or microarchitectural

component one cycle at a time. Simulation therefore involves, in each cycle, reading in-

formation from ‘input’ registers, processing it some way, and placing the processed data

in ‘output’ registers. This closely matches the behaviour of the real system, although

internal details are often abstracted away.

However, generating high performance simulators is much more difficult when

using this style of ADL, as such descriptions lack many of the high level details which

makes this possible in high level description languages. Less detailed descriptions can

provide greater performance (for example, a description where the processor completes

exactly one instruction per cycle), but the simulation rate is still held back by the cycle-

by-cycle model, which is intrinsic to many low level simulation platforms.

While LISA [115, 80] still operates at the level of instructions, it provides a detailed

method for describing the encoding, scheduling, and stage-by-stage pipeline behaviour

of the system. This allows for highly detailed and performance modelling simulations.

The descriptions are tied to a generic machine model which includes superscalar instruc-

tion scheduling logic, and which can be ‘tweaked’ to behave similarly to the modelled

machine.

HARMLESS [53] is similar to LISA in that instructions are treated as an abstract

concept. However, HARMLESS allows the model to separately describe the ISA syntax,

the semantic behaviours, and the microarchitecture. For functional simulations, only

the syntax and semantic descriptions are used and the microarchitectural description

is ignored. This separation of descriptions also means that for certain architectures,

a single architectural description can be compiled against multiple microarchitectural

descriptions to produce performance modelling simulators for multiple processors with-

out rewriting the common ISA components. For example, in the paper the PowerPC

28 Chapter 2. Background & Related Work

behavioural model is extended with two microarchitectural models, for the e200z1 and

e200z6 embedded cores.

SystemC is also a popular platform for cycle accurate simulation [35, 21, 26]. Sys-

temC is widely used in both structural and so-called TLM forms, depending on the

desired accuracy of the simulation. The structural form of SystemC supports many

features present in hardware description languages such as four-value logic.

2.9.3 Correctness

Once a processor model has been constructed, it must be tested in order to check the

correctness objective. The scheme for checking the correctness of a model depends on

the type and structure of the model under test: a low level structural model requires a

very different testing approach than a high level abstract model. For low level and cycle

accurate models it is also often desirable to test against real hardware. This can be used

either to verify the correctness of the model, or if the model is taken to be a golden

reference, to verify the correctness of the hardware.

The testing of an instruction set simulator might be done by treating it as a general

piece of software and using generic software testing methodologies. Methods for test

generation on restricted languages (e.g. [42]) might be applied to ADLs, or more general

techniques might be used. These typically include so-called ‘Concolic’ testing, where

parts of the program are executed symbolically and some ‘concretely’. This mixed-

mode execution allows us to formally reason about large parts of the program without

requiring that the entire program be formalisable. This allows us to generate tests for

each possible execution path through a program or subprogram. Such an approach is

taken for general programs by Sen et al. [95] and Burnim et al.[23].

Ma et al. [66, 65] generate a simulator and tests from the x86 ISA manual, including

tests for the complex addressing modes available in that architecture. These tests are

then run against a ‘hardware oracle’ to confirm the behaviour of the simulator. However,

the test generation is rather ad-hoc and requires a large number of test cases and different

testing methodologies. They also examine the existence of ambiguity or inaccuracy

in the ISA reference manuals, such as where particular behaviours are defined to be

unpredictable but actually produce consistent results.

Randomized testing, known as ‘fuzzing’ is another approach common when veri-

fying both processor hardware and processor simulators. Fully randomized testing is

2.9. Retargetability 29

often difficult, as a truly randomly generated instruction may attempt to access an arbi-

trary memory location which may be mapped to a device, or simply be unmapped. The

space of possible instruction encodings is also fairly large (232 for a 32-bit instruction

word) but the space of possible tests is even larger when input register and memory

contexts are considered. Of course, many of these configurations are redundant, such as

differences in memory space for a non-memory instruction, and differences in registers

which are unused by the instruction under test. Martignoni et al. attempt to tackle this in

[68]. They present both ‘naive’ and ‘optimised’ approaches to test generation in order

to attempt to cover a large portion of the ‘interesting’ space of instructions without

executing an excessive number of tests.

Another approach again is to show that the model under test is equivalent to another

formal model, as in [71]. However, this requires that a second model be produced and

maintained, and that both models are in a form suitable for this kind of formal analysis.

Alternatively, benchmark-driven testing seeks to use standard benchmark programs

as comprehensive tests, reasoning that if a model is able to correctly execute a large and

complex application, then it can be reasonably believed to be correct. Glamm et al. [41]

build upon this by taking a hardware reference and comparing, after each instruction,

the current state of both the simulated and reference register files. Although thorough,

this approach is fairly slow, as communication between the reference hardware and the

simulation host must be done via a debugging device.

The topic of testing hardware CPU implementations against an ISS reference has

also received considerable research interest. In these cases, the microarchitectural state

is also often compared, rather than just the architecturally visible effects. For example,

Yang [111] tests a hardware implementation directly against an ‘oracle’ ISS. Analysis

of test coverage for complex circuits is a related problem, e.g. Ho [47]. Generation of

test cases for verification of hardware designs has also been examined by Mathaikutty

[69] and Kodakara [54], where microarchitectural details of the system under test are

compared against a low-level reference model. Test cases are generated by examining

an architectural description and using a constraint satisfier. Although testing hardware

is a related problem to testing simulators, techniques applied to hardware testing are

often not applicable to software testing and so they will not be further examined.

30 Chapter 2. Background & Related Work

2.10 Conclusion

This chapter has provided a basic description of Instruction Set Simulation, as well

as some of the key technologies used to provide improved performance in Instruction

Set Simulators such as Decode Caching and Static and Dynamic Binary Translation.

Additionally, existing work relating to Instruction Set Simulation, and the Automatic

Generation of Simulators, has been reviewed.

While a lot of work exists on generating simulators from high level descriptions,

such simulators tend to suffer from poor performance. Separately, the performance of

instruction set simulators has been studied extensively, with techniques ranging from

novel DBT code generation techniques, to improved handling of control flow instruc-

tions. However, many of the techniques rely on hand tuning or specific architectural

features, or have simply not been demonstrated in the context of a generated simulator.

This chapter has also discussed the testing and verification of simulators. Software

testing is a huge and complex field, with many general testing methodologies, and

techniques for generating tests for general software. However, these techniques may

not be as effective or as efficient as a possible domain specific method which is designed

to operate on simulators or on high level architectural descriptions. Additionally, many

of the techniques developed for the verification of hardware are not applicable to high

level models since these techniques tend to focus on cycle by cycle behaviour, or on

hardware structures which do not exist in a high level software model.

31

Chapter 3

Infrastructure

3.1 Introduction

This chapter outlines the various software artefacts referred to by other chapters in this

thesis. While the contributions presented in this thesis are of course the author’s own

work, building the infrastructure required to demonstrate and evaluate these contribu-

tions from the ground up would be an impossible task for a single individual. This

chapter seeks to provide information on these artefacts in order to provide context for

their use elsewhere in this thesis.

These are Arcsim, which is used as a base for the simulation framework presented

in Chapter 4, LLVM, which is used as a JIT compiler backend, and CVC4, which

is a constraint solver used for test generation in Chapter 5. The SPEC and EEMBC

benchmark suites are also used, as they provide realistic computational workloads.

QEMU is also used for comparison purposes, as it represents a hand-tuned, state of the

art instruction set simulator.

How this chapter is structured

• We begin by outlining the major artefacts used to demonstrate the contributions

presented in this thesis.

• We then briefly describe the benchmark suites used for the evaluation of these

contributions

32 Chapter 3. Infrastructure

3.2 Arcsim

Arcsim is a high speed instruction set simulator developed at the University of Edin-

burgh. It was originally developed to act as a ‘golden-reference’ model for the EnCore

microprocessor, also developed in Edinburgh. Arcsim makes use of cutting edge simu-

lation technologies in order to provide high speed, true cycle-accurate simulations for

the ARC architecture [102]. Arcsim makes use of LLVM to perform binary translation,

which is briefly discussed in the section below (Section 3.3).

Arcsim integrates many novel techniques for high speed DBT [104, 18], high speed

cycle accurate simulation [17, 81, 37], and high speed multi-core simulation [57]. It has

also been used to evaluate interconnect designs for many-core systems-on-chips [103],

as well as in assessing the feasibility of auto-parallelisation [32]. In this thesis Arcsim

is extended to accept automatically generated simulator modules, in order to simulate

the described architectures instead of the hard-coded ARC architecture.

Many of the techniques presented and discussed in this thesis have been applied to a

heavily modified version of Arcsim, known as GenSim. Although GenSimis originally

based on Arcsim, very little of the original code now remains. However, GenSim in-

cludes many of the techniques used by Arcsim to obtain high simulation performance,

including Arcsim’s signature region-based, parallel, asynchronous DBT.

3.3 LLVM

LLVM [58] is a modern, object-orientated compiler framework designed to provide a

high level, abstract representation of machine code, and to provide the means to analyse

and optimise this code, and finally lower it to machine code. The core LLVM frame-

work provides a means of constructing and analysing LLVM ‘bitcode’ (called LLVM

IR), which consists of abstract Single-Static Assignment form (SSA-form) instructions

representing a wide range of machine operations.

LLVM has seen widespread adoption both academically and commercially, and a

large number of powerful optimisations have been developed, as well as back-ends for

many different architectures. It has been used to develop a number of static analysis

tools such as AddressSanitizer [97] and MemorySanitizer [100], as well as the Clang

C/C++ compiler. LLVM also provides components optimised for JIT compilation, mak-

ing it especially useful in the context of DBT.

3.4. CVC4 33

3.4 CVC4

CVC4 [11] (Cooperating Validity Checker, version 4) is a SMT (Satisfiability Modulo

Theories) solver, developed as a joint project between New York University and the

University of Iowa. In the context of this thesis, CVC4 is used as a constraint solver in

Chapter 5, in order to generate tests which exercise specific control flow paths. As this

thesis is not specifically related to the large and complex areas of constraint satisfaction

and theorem proving, this thesis treats CVC4 essentially as a ‘black box’.

3.5 QEMU

QEMU is a high speed instruction set simulator supporting a wide variety of architec-

tures and platforms, originally developed by Fabrice Bellard [14]. QEMU is capable

of simulating in both user mode and full system modes, and can simulate x86, MIPS,

ARM, Power, and many more architectures and platforms. A high speed DBT code

generator, TCG, is used. Each guest architecture is implemented primarily as a CPU

data structure and TCG frontend which must be hand-written. As well as its cross-

architecture DBT mode, QEMU also supports accelerated x86-on-x86 using hardware

virtualisation extensions.

QEMU has been used throughout the literature as a base for more complex simu-

lation setups, including cycle-accurate and cycle-approximate simulation [76, 108, 79,

26], parallel multicore simulation [31], software testing [12], and many other areas. As

QEMU is primarily a performance-focused application (i.e., for performance reasons it

is not designed to directly support any manner of microarchitectural simulation, instruc-

tion observability, automatic retargetability etc.) it is used in this thesis as a performance

comparison.

3.6 Evaluation

Evaluating the performance characteristics of instruction set simulation technologies

typically involves executing a known, deterministic workload on both a baseline sim-

ulator, and on the simulator incorporating the novel technology. Rather than using

workloads specifically designed to test the simulation technologies directly, standard

34 Chapter 3. Infrastructure

Vendor & Model DELL™POWEREDGE™ R610
Processor Type 2× Intel©Xeon™ X5660
Number of cores 2×6
Hyperthreading Disabled
Clock Frequency 2.8 GHz
L1-Cache 2×6× 32K Instruction/Data
L2-Cache 2×6× 256K
L3-Cache 2× 12 MB
Memory 36 GB
Operating System Linux version 2.6.32 (x86-64)

Table 3.1: DBT Host Configuration.

benchmark suites are used, as these are more representative of the kinds of workloads

simulated in practice.

3.6.1 Equipment

In all cases, experiments have been carried out on the machine described in Table 3.1.

This is a fairly powerful workstation-class computer with many CPU cores and plenty

of memory. The large number of CPU cores is particularly important in our case since

the ArcSim simulator (upon which most of the work presented in this thesis is based)

makes use of an asynchronous, parallel DBT system which scales well across multicore

systems [18].

3.6.2 Methodology

This thesis presents several techniques for improving the performance of instruction

set simulators. In this case, a reduction in the total run time of a benchmark or other

application is considered to be an improvement in performance. Results will typically

be given as speedup against some baseline, where speedup is considered to be:

Speedup =
Runtimeold

Runtimenew

Speedup will typically be presented for each benchmark in a suite, as well as a

"Total" value. This total speedup is computed as:

Total Speedup =
∑Runtimeold

∑Runtimenew

3.6. Evaluation 35

Such aggregate measures should typically be taken with a grain of salt, since they in-

evitably weight some benchmarks more heavily than others. For this reason, individual

results are always provided alongside aggregate results in this thesis. Direct measure-

ments of performance, such as run time and MIPS (Millions of Instructions per Second)

are not given, since these are only relevant to a particular simulator implementation

running on a particular host machine.

3.6.3 Artefacts

In this thesis the integer benchmarks of the SPEC CPU2006 suite are used. These

represent large, complex workloads typical of high-end embedded and ‘desktop’ ap-

plications (such as compilers, compression algorithms, video decoding, etc.), and the

EEMBC benchmark suite, which contains a wide range of small benchmark kernels

typical of more deeply embedded systems, such as automotive applications, audio and

text processing, etc.

3.6.3.1 SPEC

SPEC (The Standard Performance Evaluation Corporation) is an organisation which

produces and maintains a wide range of benchmark suites for a variety of computer

platforms and tasks. SPEC provide benchmark suites for computer systems ranging

from Java-based server applications to Virtualisation technologies. In this thesis, eval-

uations are primarily based on results from the SPEC CPU benchmark suite, which

contains a range of benchmarks testing integer and floating point performance on a

variety of realistic applications. This thesis also omits the floating point portion of

the benchmark suite. This is to remove the requirement to implement a bit-accurate

floating point model in any architecture descriptions used for evaluations in this thesis,

since this would represent an extremely large time investment. The benchmarks could

be run in a so-called soft-float configuration (i.e., with the floating point instructions

replaced by sequences of integer instructions), however this would only produce ad-

ditional coverage of the integer instructions, which are already well exercised by the

integer benchmarks.

These benchmarks, outlined in Table 3.2 are considered representative of a large

array of computation workloads, and are commonly used when evaluating simulation

technologies and improvements in computer architecture and microarchitecture.

36 Chapter 3. Infrastructure

Benchmark Application
400.perlbench Mail filtering using the Perl programming language
401.bzip2 Data compression using the BZIP2 algorithm
403.gcc C Compilation
429.mcf Vehicle scheduling using combinatorial optimisation
445.gobmk Artificial intelligence for the ‘Go’ board game
456.hmmer Protein sequencing using hidden Markov models
462.libquantum Prime factorisation by simulated quantum computation
464.h264ref The h.264 video codec
471.omnetpp Networked system simulation
473.astar The A* Pathfinding algorithm
483.xalancbmk XSLT transformation

Table 3.2: A summary of the SPEC CPU2006 Integer benchmark suite. All of the SPEC bench-
marks are based on slightly modified ‘real world’ applications.

Category Description
Automotive FFTs, cosine transforms, and general compute benchmarks
Consumer JPEG encoding/decoding and image filtering kernels
Networking Pathing and packet handling kernels common in network equipment
Office Text and image processing and manipulation kernels
Telecom Signal processing kernels including Viterbi and FFT transformations

Table 3.3: A summary of the categories of benchmarks included in the EEMBC v1.1 Embedded
benchmark suite. Most of the benchmarks are small kernels executed in a benchmark harness.

3.6.3.2 EEMBC

EEMBC (The Embedded Microprocessor Benchmark Consortium) [34, 60] develop

and maintain an industry standard benchmark suite for embedded systems. In contrast

with the SPEC benchmark suite discussed above, EEMBC benchmarks tend to be small,

single-kernel benchmarks capable of operating on a ‘bare-metal’ system. As there are

over 30 individual benchmarks, they are not listed individually here. However, they fall

into the categories outlined in Table 3.3.

3.6.3.3 The Linux Kernel

The Linux kernel is one of the most well-known and influential open source projects,

and certainly the most popular open-source operating system kernel. The first version

of the kernel was released by Linus Torvalds in 1991, and it has grown to be the operat-

ing system of choice on servers, forms the basis for many desktop operating systems

3.6. Evaluation 37

(known as ‘Linux Distributions’, and including Ubuntu, Fedora, and ArchLinux), and

is also extremely popular in the mobile and embedded world.

For full-system simulation, the simulated (guest) operating system is ArchLinux

for ARM, with benchmark binaries compiled for Linux. When performing full system

simulation, all operating system operations and system calls are fully simulated. Ex-

periments performed with user-mode simulation also use Linux system calls, but these

system calls are performed via an emulation layer on the host machine.

39

Chapter 4

Efficient Simulator Generation

4.1 Introduction

As modern computer architectures become increasingly complex, simulating these ar-

chitectures becomes increasingly difficult. At the same time, constant advances in sim-

ulation technologies intended to keep pace with the desire for increasing simulation

speeds makes it ever more difficult to implement a fast, modern simulator. Automat-

ically generating a simulator module, rather than hand-writing a simulator each time

a new architecture or simulation technology is developed, seems a reasonable way of

tackling this problem: new architecture descriptions can be written in order to cover new

architectures, and new simulation technologies can be implemented on the simulator

generation platform, allowing all generated simulators to use these improvements.

This chapter presents a new ADL (Architecture Description Language), GenC, and

describes how the language is used to describe architectures and generate high speed

Instruction Set Simulators. In particular, this chapter presents a novel Partial Evaluation

technique for generating high speed DBT modules, which provide a significant speedup

over the state of the art despite being generated from a high level description.

How this chapter is structured

• First, GenC, an ArchC based architecture description language is discussed.

• A novel partial evaluation technique for generating fast simulators is presented.

• Finally, this technique is integrated into the ArcSim simulator, producing GenSim,

and this is compared against the state of the art.

40 Chapter 4. Efficient Simulator Generation

4.2 The GenC Architecture Description Language

In this section, the design and implementation of the GenC Architecture Description

Language will be presented and discussed. This language was developed in order to

investigate the potential for the generation of high speed simulators, but still remains

flexible enough to form the base for other analyses (in particular, the test generation

performed in Chapter 5) and to produce other tools.

4.2.1 Existing Architecture Description Languages

There are several existing architecture description languages. These are typically di-

vided into three types, each with different objectives and focused on a different part of

system design. First, there are the structural languages. These are the languages which

provide a low-level, detailed description of the system, typically described in terms

of hardware structures. These might be used for verification and hardware generation.

These include true hardware description languages such as Verilog and VHDL. There

also exist behavioural descriptions (such as ArchC), which seek to describe the system

in an abstract sense. Although these might be capable of modelling performance charac-

teristics of the described system, they typically abstract away the implementation details

of the system. So, for example, the processor is described in terms of instructions, and

their pipeline behaviour, rather than describing the pipeline directly. These behavioural

languages are typically used for high speed simulation and the generation of tools such

as compilers, linkers, assemblers, etc. Lastly, mixed-mode languages incorporate fea-

tures of both behavioural and structural descriptions. A mixed-mode description might

be used for various purposes, but are typically too high level for hardware generation

and too detailed for efficient simulation. Typically a single description can be used

to generate either a fast, or a performance-modelling, instruction set simulator. Sys-

temC is an example of such as language as it can be used to produce both abstract and

cycle-accurate models.

Another popular option for simulation development is to hand-write portions of the

simulator (such as logic for specialised instructions, external devices, or system events

such as exceptions), but generate the rest from a high level description. This is often

the case in full-system behavioural simulators since it is often more efficient to develop

system components in a general purpose high level language such as C or C++, rather

4.2. The GenC Architecture Description Language 41

Processor
Module

Target
Binary

ISA Description

System
Description

Instruction
Formats

Instruction
Semantics

GenC Tool

Decode
Generator

Interpreter
Generator

DBT
Generator

Source
Files

Compiler GenSim

Fetch Next
Instruction

Look up in
translation

cache

Execute JITed
Code

Interpret
Single

Instruction

Was
Instruction

control flow?

Add
instruction to
region profile

Dispatch hot
regions for
translation

Not Found

Found

Yes

No

Figure 4.1: Diagram showing the process for simulating a binary application using our ADL
based simulation framework. Details on the region profiling and translation system can be found
in [18].

than in an ADL. Other times, the ADL may have been designed with a particular type

of system in mind and it may be difficult to efficiently describe unusual operations

or instructions. Examples of both of these situations can be found in the Simit-ARM

simulator [83], which has a description and auto-generation system for the architectural

portion of the simulator, (i.e., the syntax and semantics of instructions) but implements

certain instructions, and the system model, directly in C++.

4.2.2 Our ADL

Our ADL, GenC, is based on a modified ArchC [90, 5]. While ArchC is implemented

as a set of classes and templates on top of SystemC, GenC produces modules for a

standalone simulation platform, GenSim. GenC models are first processed using a

simulator generation tool (also called GenC), which outputs several C++ source files.

This files can then be compiled to produce a module, which is then dynamically linked

into our simulator framework, GenSim. The overall flow of this process can be seen

in Figure 4.1. GenC can be considered to be a behavioural ADL, as it deliberately

lacks many of the features required to accurately describe microarchitectural details

(although some work has been done to extend the language in this direction).

The general philosophy of the design and implementation of the language is that it

should be intuitive, so that the user is able to write the model in a way in which they feel

42 Chapter 4. Efficient Simulator Generation

1 AC_ARCH(armv5e)
2 {
3 // General Purpose Registers
4 ac_regbank<uint32 > RB:16; 1
5
6 // General Flags
7 ac_reg<uint8 > C; 2
8 ac_reg<uint8 > V;
9 ac_reg<uint8 > Z;

10 ac_reg<uint8 > N;
11
12 ac_wordsize 32; 3
13
14 ARCH_CTOR(armv5e)
15 {
16 ac_isa("armv5e_isa.ac"); 4
17 ac_isa("armv5e_thumb_isa.ac");
18 };
19 };

Figure 4.2: Example of an ARMv5 system description for user-mode simulation. The general
purpose register bank 1 and each status flag 2 are individually described, as well as the system
word size 3 . Finally, the two instruction sets supported (ARM and Thumb) are included in the
model by referring to the files in which they are described 4 .

comfortable, compact, so each object in a description has only a single definition, aiding

maintainability, and efficient, both in terms of the tools which process descriptions, and

the artefacts which they generate.

Architecture descriptions in our ADL have three main components:

• A system description, outlining the basic architectural features such as the register

file.

• An ISA Syntax description, describing how instructions are encoded.

• An ISA Semantic description, describing how instructions are executed.

GenC also supports architectures which have multiple ISA Modes, for example

ARM/Thumb and MIPS/MIPS16e. In these cases, there is one ISA Syntax and Semantic

description per ISA mode.

4.2.2.1 System Description

The system description portion of the architecture description contains basic informa-

tion about the architecture such as the native word length, the register file and status

flags, and the endianness. This part of the description also links to each of the required

ISA Syntax descriptions. An example system description for a simple ARM user mode

simulation model can be seen in Figure 4.2.

4.2. The GenC Architecture Description Language 43

1 AC_ISA(arm)
2 {
3 ac_format Type_DPI1 = "%cond:4 %op!:3 %func1!:4 %s:1 %rn:4 %rd:4 %shift_amt:5 \
4 %shift_type:2 %subop1!:1 %rm:4";
5 ac_format Type_MBXBLX = "%cond:4 %op!:3 %func1!:4 %s:1 0xfff:12 %subop2!:1 \
6 %func2!:2 %subop1!:1 %rm:4";
7 ...
8 ac_instr<Type_DPI1 > and1 , eor1 , sub1 ... ;
9 ac_instr<Type_MBXBLX > bx, blx2;

10 ...
11
12 ISA_CTOR(armv5e) {
13
14 and1.set_decoder(op=0, subop1=0, func1=0); 1
15 and1.set_behaviour(and1);
16 and1.set_asm("and%[cond]%sf %reg, %reg, %reg", cond , s, rd, rn, rm, ...); 2
17
18
19 bx.set_decoder(op=0,subop1=1,subop2=0,func1=0x9,s=0,func2=0);
20 bx.set_behaviour(bx);
21 bx.set_asm("bx%[cond] %reg", cond , rm);
22 bx.set_end_of_block(); 3
23 bx.set_variable_jump();
24
25 ...
26 }
27 }

Figure 4.3: Example snippets of ISA syntax description using GenC, our ArchC-based ADL.
Here two instruction formats (Type_DPI1 and Type_MBXBLX) are described. Several instruc-
tions associated with these formats, and the encoding and assembly of each instruction, are also
described. Each instruction is also associated with a behaviour, and any branching behaviour is
specified.

MBXBLX template

cond op func1 s 1 1 1 1 1 1 1 1 1 1 1 1 subop1 func2 subop1 rm

BX constraints

- - - - 0 0 0 1 0 0 1 0 - - - - - - - - - - - - 0 0 0 1 - - - -

Final Bitstring

X X X X 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 X X X X

Figure 4.4: Diagram showing how an instruction format, combined with decode constraints for
multiple instructions, gives the final bit string used to perform instruction decoding. ‘X’s in
the final bitstring represent unconstrained bits, meaning that the cond and rm fields can carry
arbitrary values in a BX instruction.

44 Chapter 4. Efficient Simulator Generation

4.2.2.2 ISA Syntax

GenC ISA Syntax descriptions are very similar to the original ArchC descriptions. In

fact, an unmodified ArchC description can be used provided that only the interpretive

execution mode of our simulator is used (i.e., no DBT is performed).

Figure 4.3 shows a stripped-down example of an ISA description. Here, two instruc-

tion formats are described, one for data processing instructions (DPI), and the other for

branching instructions (MBXBLX). Several instructions associated with each of these

formats are also described. Then, in the ISA_CTOR portion of the description, the prop-

erties of each instruction are given. For example, 1 lists ‘decode constraints’, which,

when combined with the instruction format string, provide the instruction template bit

string inserted into the decode tree. Figure 4.4 shows how instruction templates and

constraints are combined in to decode bitstrings to be inserted into the decode tree. 2

describes how to disassemble the instruction for debugging purposes, using a printf-like

format string. Mappings from numerical values to strings, described elsewhere in the

syntax description, provide a flexible way of describing these. For example, the cond,

sf, and reg formats used within the assembly format string are all defined elsewhere

in the syntax description. Finally, 3 provides additional information on the nature of

branching instructions, used by the DBT system to generate faster code.

ISA Syntax descriptions provide a clear separation between the available instruction

formats, the set of actual instructions available, and the mapping between instructions

and formats. An instruction format describes the set of bitfields contained within an in-

struction encoding. Instruction formats are not directly used when decoding instructions

and may overlap with each other partially or fully.

Once instruction formats are described, the set of actual instructions is provided.

Each instruction is assigned to a format, so there is a many to one relationship between

instructions and formats. The remainder of the description contains information on how

each instruction is actually encoded, how it should be assembled/disassembled (the

original ArchC implementation supports the generation of binary utilities including

assemblers, GenC uses this information to disassemble instructions when producing

debugging output from our simulator), and some information used by our DBT system

which is not in the original ArchC and which will be covered in Section 4.4.

4.2. The GenC Architecture Description Language 45

1 uint32 pc_check(uint8 reg_index) ...
2 uint32 decode_imm(uint8 type , uint8 shft , uint32 val, uint8 c_i, uint8 &c_o) ... 1
3 void update_ZN_flags(uint32 value) ...
4
5 execute(and1)
6 {
7 uint32 val; 2
8 uint32 imm32;
9 uint32 decode_input = read_register_bank(RB, inst.rm) + pc_check(inst.rm); 3

10 uint8 carry_in = read_register(C);
11 uint8 c;
12 imm32 = decode_imm(inst.shift_type , inst.shift_amt , decode_input , carry_in , c); 4
13 uint32 src1m = read_register_bank(RB, inst.rn) + pc_check(inst.rn);
14 val = src1m & imm32;
15 if(inst.s) 5
16 {
17 update_ZN_flags(val);
18 write_register(C, c);
19 }
20 write_register_bank(RB, inst.rd, val); 6
21 }

Figure 4.5: Example snippet of ISA semantic description. ISA semantic actions are implemented
using a high-level but restricted C-like language.

4.2.2.3 ISA Semantics

The original ArchC implementation has instruction semantics described using SystemC

functions. These functions are then called, in order to execute the simulated instructions.

This is essentially an interpretive model of execution. SystemC is a complex language,

and the fact that arbitrary language constructs could be used inside instruction seman-

tics makes analysing these descriptions difficult. So, GenC removes the reliance on

SystemC and instead implements a simpler language for describing instruction seman-

tics.

This instruction semantic description language is C-like, although there are some

significant differences which reduce the power of the language (in order to aid analysis).

These limitations do not adversely affect the description of instruction semantics, since

individual instructions tend to have simple behaviours which do not require the full

power of a language such as C++ to describe. For example, the instruction semantic

description language does not allow the use of arbitrary pointers or pointer types. Host

memory cannot be directly accessed, and Guest memory can only be accessed via

special memory access intrinsic functions. Most operations on the guest machine are

performed via calls to intrinsic functions.

Figure 4.5 shows an example snippet of our ARMv5 ISA description. Here the

and1 instruction (for which the syntax was defined in Figure 4.3) is described. First

1 , some helper functions are defined. The decode_imm function implements ARM’s

46 Chapter 4. Efficient Simulator Generation

sophisticated shifter unit. Note that the c_o argument is defined with an ampersand,

meaning that it will be passed by reference.

The instruction behaviour begins by defining some variables 2 . The language sup-

ports a full set of signed and unsigned integer data types. At 3 , the read_register_bank

intrinsic is used, in order to obtain a value from the register file. A helper function is

also used. 4 shows a call to the shifter function. Note that the variable c is passed by

reference as c_o. At 5 , the instruction is inspected to determine whether status flags

should be updated. Inlining this as control flow rather than as a separate instruction

type (as is done in several other simulators) means that the ISA description is much

more concise. Finally, at 6 , the output is written to the destination register.

4.2.3 Implementation of the GenC Tool

The GenC tool is a modular C++ application used to analyse GenC descriptions and

produce useful artefacts such as simulation modules (described in this chapter) and

test suites (described in Chapter 5. A set of ANTLR [78] generated parsers are used

to process the descriptions into an ANTLR AST, which is then transformed into a set

of GenC-specific data structures. These data structures contain information such as the

structure of the register file and information on instruction formats.

Instruction semantic descriptions are further processed into an SSA form, where

simulation-specific actions (such as accessing guest registers and memory) have dedi-

cated SSA node types. This SSA representation can then be walked in order to generate

interpreters, DBT modules, and to perform the test generation described in Chapter 5.

4.3 Generating a Simulator Module

High level functional simulators are typically constructed from a number of individual

components. While some simulators may merge or mix these components (e.g., QEMU

mixes instruction decoding and implementation), these components are kept separate

in GenC in order to allow for reuse of components in other contexts (such as the

same instruction decoding structure being used in both the simulator, and in a binary

disassembler), and to allow for easy swapping of implementations to test new ideas and

implementations.

GenC typically generates four types of component for simulation:

4.3. Generating a Simulator Module 47

add sub cmp

jmp br scl

0 1

0 1 0 1

xxxxxx xxxxxx xxxxxx xxx

0 1

00 xx 11

(a)

add sub cmp

jmp br scl

0 1

0 1 0 1

xxxxxx xxxxxx xxxxxx xxx

0 1

00 xx 11

(b)

Figure 4.6: A decode tree for a simple 8-bit instruction set. Figure (b) shows the path taken
through the tree in order to decode a br instruction such as 0b11101011. xs represent ‘don’t-care’
bits. These may carry important information about the instruction (e.g. source or destination
registers) but do not contribute to decoding the instruction type.

• An instruction decoder,

• A disassembler (for debugging/tracing purposes),

• An interpreter,

• A DBT frontend.

Of these, the decoder, interpreter and DBT frontend are the most interesting, and

there are discussed in the section below.

4.3.1 Instruction Decoding

Instruction Decoding is one of the first steps in executing any instruction, whether in

hardware or simulation, and whether interpreted or via a DBT system. There are mul-

tiple possible approaches to decoding instructions in simulation, and the suitability of

each of these depends on the ISA under simulation. For example, when decoding x86

instructions, a finite state machine is necessary due to the possibility of instruction pre-

fixes and the complex encodings of register and memory accesses. VLIW instructions

also require a different strategy, due to ‘bundling’. Our ADL primarily targets RISC

instruction sets which do not require these complex features, but they must be kept in

mind to ensure that compatibility could be added in future if desired.

48 Chapter 4. Efficient Simulator Generation

The approach taken by GenC when generating instruction decoders is to build and

optimise a decision tree for the ISA. At each node of the tree, one or more bits of the

input instruction encoding are examined and compared against several possibilities. If

no available possibility matches the values of the bits, then the tree backtracks and

moves along the last encountered ‘don’t care’ edge.

Special care must be taken when decoding variable length instructions sets such as

Arcompact and Thumb-2. Instruction formats in these architectures can contain fields

which cross the boundaries between each fetched unit of the instruction which means

that the complete instruction word must be rearranged relative to how it is stored in

memory in order to decode the instruction correctly. For this reason, GenC handles

such fields by splitting the field for the purposes of constructing the decision tree.

4.3.1.1 Constructing the Tree

In order to construct the decode tree, GenC first starts with an empty tree which contains

a single ‘invalid’ node. A ternary bit representation of each instruction is then generated,

and these are processed in turn in order to generate the full tree. The ternary instruction

representation contains ones, zeros and ‘don’t care’ bits which represent variable fields

in the instruction encoding (such as register indices, immediate values, etc.). This bit

representation is then split into ‘care’ and ‘don’t care’ sections, and these sections are

added to the tree ‘left to right’ (i.e., MSB to LSB). An example tree can be seen in

Figure 4.6.

Constructing the tree in this way means that each node has at most one ‘don’t

care’ edge, which is important as it eliminates ambiguity in the tree. This allows us

to implement these fall throughs as ‘default’ cases in switch statements rather than

requiring a more sophisticated backtracking system. Individual edges may also encode

multiple bits, so the leaf nodes may not all have the same tree height. This is usually

the case with ISAs with mixed instruction lengths such as Thumb-2 - the section of the

decode tree for the 32-bit instructions will have a much greater height than that for the

16-bit instructions.

4.3.1.2 Optimising the Tree

Once the full tree is constructed, it is then optimised. Each node of the tree is considered

in turn. If a node has edges with similar prefixes, these edges are merged and a new node

4.3. Generating a Simulator Module 49

011 101 100

a b c

0 1

11 01 00

a b c

Figure 4.7: Optimising nodes in the decode tree. Nodes in the tree may be merged or split, based
on some user-tuned heuristics.

is produced. On the other hand, if a node A has too few outgoing edges then these edges

are moved to the parent node B and node A is removed from the tree. This is essentially

the same operation happening forwards and in reverse (Figure 4.7). Currently, user-

tuned parameters determine when the optimisation is applied, and in which direction,

since the best set of values differs by host machine and guest architecture.

4.3.1.3 Generating the Decoder

Once a decode tree is constructed, the final step in generating a decoder is to produce the

code actually implementing the decode logic. There are several possible methods for

doing this, including as a switch statement tree (which is the implementation technique

used by GenC) or as a set of nested jump tables (used by Simit-Arm [83]).

Although determining the instruction type is an important part of the decode process,

the data fields, e.g. the source and destination registers, immediate values, etc., must also

be extracted. This can be done eagerly (where the value is extracted from the instruction

and stored in a data structure) or lazily (where the shifting and masking operations are

done each time the value is accessed). GenC uses an eager decoder, in order to avoid

the overhead of shifting and masking the fields each time they are accessed. This means

that our data structure for storing a decoded instruction is somewhat larger (since it must

include space for each instruction field). However, these structures can be efficiently

cached [104], so this does not significantly impact simulation performance.

50 Chapter 4. Efficient Simulator Generation

1 ...
2 add r0, r1, #3
3 cmp r0, r4
4 beq 400
5 ...

(a) A simple example frag-
ment of ARM assembly

1 ...
2 call void @add(%struct.cpu* %0, [instruction fields]);
3 call void @cmp(%struct.cpu* %0, [instruction fields]);
4 %pred = call i1 @pred_eq(%struct.cpu* %0);
5 br i1 %pred , label %beq_taken , label %beq_not_taken;
6
7 beq_taken:
8 call void @b(%struct.cpu* %0, [instruction fields]);
9 br label control_flow_handler

10
11 beq_not_taken:
12 br label control_flow_handler

(b) The LLVM which might be emitted for that fragment

Figure 4.8: LLVM-based DBT using a function-call based instruction translation method. While
this is straightforward to implement, it provides very poor runtime performance.

4.3.2 Interpretation

Generating an interpreter from a GenC model is simple since the ISA Semantic de-

scriptions are a strict subset of C++. The instruction semantic functions can be inserted

directly into a C++ source file, provided that the required intrinsic functions for ac-

cessing memory, registers etc. are available. For most RISC architectures, the flow of

instruction execution - Fetch, Decode, Execute - is general enough that a generic inter-

preter structure can be provided which performs each of these functions in a loop, with

the GenC model filling in the actual decode and instruction execution behaviour.

However, it is also possible to generate an interpreter from the parsed AST of the

ISA semantic descriptions. This allows much greater flexibility in the implementation

of the interpreter. For example, this feature is used in Chapter 5 in order to instrument

the flow of execution through each instruction implementation and profile instruction

block and path coverage. This could also be used to generate other special features in

interpreters, or be used to generate optimised interpreters using e.g. instruction special-

isation.

Although the partial evaluation techniques discussed later in this chapter could be

applied to interpreters, this is not generally necessary as the code size and compile time

reductions are not as important when compiling an interpreter (which is done in an

Ahead-Of-Time context) when compared with DBT translations (which are performed

in a Just-In-Time context).

4.4. High Speed Dynamic Binary Translation 51

4.3.3 A Naïve DBT

The simplest approach to generating a LLVM-based DBT system for an instruction

set simulator is to compile each instruction implementation into a function, and then

translate each instruction into a call to its associated function (Figure 4.8). LLVM can

then be used to inline and optimise these functions, before finally generating native host

machine code. Note that this is not particular to the context in which an instruction is

translated (i.e., block-based, trace-based, region-based etc.), but instead is concerned

with translating individual instructions.

So, GenC is able to generate a naïve LLVM based DBT by using Clang (a C/C++

compiler based on the LLVM framework, which can be configured to emit LLVM

bitcode) to compile each ISA semantic instruction implementation into a separate

LLVM bitcode function. The bitcode for these functions can then be packaged into

the generated processor module, and at translation time, GenSim can generate calls to

each of these functions.

Note that the reason this is considered to be a ‘naïve’ implementation is that it gives

very poor performance. LLVM is quite poor at performing optimisations on functions

containing a very large number of basic blocks, and since each GenC ISA semantic de-

scription can contain arbitrary control flow structures such as loops, switch statements

and if-then statements, the compiled LLVM bitcode function for each instruction can

consist of many basic blocks. The LLVM optimisation for inlining this large number

of basic blocks (which consists of cloning the data structures for each block) is there-

fore expensive, in addition to the increased cost of performing further optimisations

on these functions. In addition, many of these basic blocks are ‘dead’, that is to say

they are never encountered at runtime. Although they may be removed by a dead code

elimination optimisation pass, this means that time is spent constructing the data struc-

tures representing these blocks, analysing them to determine if they are dead, and then,

assuming that they are dead, tearing them down again.

4.4 High Speed Dynamic Binary Translation

Although the naïve DBT system described above provides an improvement over simple

interpretation, it has a major drawback: the reliance on high-power LLVM optimisations

causes the translation speed to be extremely poor (see Section 4.5.1). This causes a large

52 Chapter 4. Efficient Simulator Generation

1 %1 = sub i32 32, i32 %ror
2 %2 = shl i32 %imm , i32 %1
3 %3 = shr i32 %imm , i32 %ror
4 %4 = or i32 %2, i32 %3
5 %5 = load i32* %r0_ptr
6 %6 = sub i32 %5, i32 %4
7 store i32* %r0_ptr , i32 %6

(a) LLVM bitcode emitted by a Naïve JIT.
The LLVM bitcode must be optimised us-
ing expensive analysis and transformation
passes, otherwise the rotated immediate is
computed each time the instruction exe-
cutes.

1 uint32_t imm_l_shift = 32 - rotate;
2 uint32_t imm_l = imm << imm_l_shift;
3 uint32_t imm_r = imm >> rotate;
4 uint32_t imm_val = imm_l | imm_r;

(b) A partial evaluation JIT knows to com-
pute the value at JIT time...

1 %5 = load %r0_ptr
2 %6 = sub %5, 0xa000000a
3 store %r0_ptr , %6

(c) ... and then emit LLVM code using the
computed value

Figure 4.9: Consider the ARM instruction sub r0, #0xa000000a. The 32-bit immediate value is
encoded using only 12 bits. While a naïve DBT might emit the LLVM instructions required to
decode the value, and then (hopefully) optimise them away, a partial evaluation based approach
calculates the value in advance, and emits only the final decoded constant value.

‘warm-up’ time in the simulator and means that simulation of short-running programs

performs no-better than when using a simple interpretive simulator. Additionally, the

complex and large code regions produced are not particularly suitable for analysis and

so overall simulation speed also suffers.

In order to solve these problems, a partial-evaluation optimisation on the generated

DBT (presented in [107]) is performed. Rather than simply passing our ISA semantic

descriptions to Clang, to be compiled into LLVM instructions, GenC produces a LLVM

bitcode generator directly. This should provide us with much better ‘warm-up’ time

(only the required code is generated and optimised), as well as giving better overall

simulator performance (since the generated LLVM bitcode is much more amenable to

complex optimisation passes).

While a naïve DBT might generate IR, and then optimise it afterwards, the key

idea presented here is to generate optimised IR in the first instance, by identifying op-

portunities for optimisations at generation time, and exploiting these opportunities at

JIT time. For example, while the naïve DBT described above would generate LLVM

bitcode to perform an immediate decoding calculation (which may or may not be opti-

mised by LLVM), our partial-evaluation DBT would perform this immediate decoding

calculation at JIT time, then use the result at runtime (Figure 4.9).

In order to generate this DBT, it must be determined what can be calculated at JIT

time and what must be put off until runtime. If a computation can be completed at

JIT time, it is referred to as being ‘fixed’. Analysing the ISA semantic description to

4.4. High Speed Dynamic Binary Translation 53

for(i in [0..15]) {
 if(pushregs[i]) {
 *addr = RB[i];
 addr -= 4;
 }
}

for(i in [0..15]) {
 if(pushregs[i]) {
 *addr = RB[i];
 addr -= 4;
 }
}

*addr = RB[0];
*(addr-4) = RB[2];
*(addr-8) = RB[5];
*(addr-12) = RB[7];

if(pushregs[0]) {
 *addr = RB[0];
 addr -= 4;
}
if(pushregs[1]) {
 *addr = RB[1];
 addr -= 4;
}
...

*addr = RB[0];
addr -= 4;
*addr = RB[2];
addr -= 4;
*addr = RB[5];
addr -= 4;
*addr = RB[7];
addr -= 4;

Unroll

DCE

Constant
Folding

Analyse
(Offline) Instantiate

Figure 4.10: Comparison of Partial Evaluation (top) against traditional optimisation techniques
(bottom), applied to a snippet of pseudocode. The Partial-Evaluation based system analyses the
code at generation time, and at JIT time immediately produces optimised IR. In contrast, the
traditional scheme must apply expensive loop unrolling, dead code elimination, and constant
folding transformations, all at JIT time.

determine which computations are ‘fixed’ is referred to as ‘Fixedness Analysis’. An

example of a ‘fixed’ computation would be the computation of an immediate value

which depends only on constant numbers and instruction fields. An example of a non-

fixed computation would be one which includes one or more values read from registers

or from memory.

Control flow in the ISA semantic description is also determined to be fixed or non-

fixed. An example of a fixed control flow statement would be an if statement which

has as its condition a fixed computation. A basic block in our ISA semantic description

which has only fixed incoming control flow edges is itself fixed. Importantly, a fixed

basic block can contain non-fixed computations, and vice-versa.

Many of the transformations performed by the partial evaluation process could be

accomplished using traditional constant propagation, dead code elimination, and loop

unrolling techniques. However, traditional techniques require that a) both analysis and

transformation phases of the optimisation are performed at JIT time, and b) the full,

non-optimised IR is built up prior to analysis (which might itself be expensive). In

contrast, use of partial evaluation techniques means that the analysis and much of the

transformation can be performed at generation time, and optimised IR is produced in the

54 Chapter 4. Efficient Simulator Generation

1 uint32 imm = ror(inst.imm, inst.rotate);
2 uint32 rn = read_register(inst.rn)
3 uint32 res = rn + imm;
4 write_register(inst.rd, res);
5 if(inst.s) {
6 if(res) write_Z(0);
7 else write_Z(1);
8 }

(a) A simple instruction semantic description
for an add immediate instruction

if(inst.s)

if(res)

(always) (always)

imm

rn

res

inst

res

(return)

(b) Control Flow Graph for this description

Figure 4.11: Figure (a) shows an example ISA semantic description. The GenC user writes
a C-like description as normal. Figure (b) shows how GenC has analysed this description to
identify fixed (green) and non-fixed (red) variables and control flow elements.

first instance, rather than constructing non-optimised IR and then optimising it. Figure

4.10 shows a high-level comparison of these two approaches.

4.4.1 Fixedness Analysis

In order to compute the fixedness of each statement in the SSA-form representation

of the ISA semantic description, each of the SSA statements has a fixedness attached

to it. For some types of statement, the fixedness can be easily evaluated. For example,

constant values are always fixed, and values read from registers or memory are never

fixed. Arithmetic statements are fixed if and only if all of their inputs are fixed. More

complex analysis is required for determining the fixedness of statements which read

from variables, as they are fixed if and only if all writes dominating the read statement

are fixed. This process of computing whether these variable read statements are fixed

is known as ‘fixedness analysis’.

Fixedness analysis can be considered to be similar to liveness analysis. Liveness

analysis concerns itself with determining which values are ‘live’ throughout the control

flow graph of a function. A value is ‘live’ at the point where it is assigned to a variable,

and is ‘killed’ at the point where it is overwritten by a new value. This analysis can be

4.4. High Speed Dynamic Binary Translation 55

1: function INSNIMPLFIXEDNESS(action)
2: for all b← BB ∈ action do
3: b.dyn_in← []
4: b.dyn_out← []
5: b.ctrl f low← invalid
6: b.mark_variable_accesses_as_ f ixed()
7: wl← [action.entry_block]
8: while wl is not empty do
9: b← wl.pop_ f ront()

10: result←BBFIXEDNESS(b)
11: if result = False then
12: wl.insert(b.successors)
13: function BBFIXEDNESS(block)
14: for all p← BB ∈ block.predecessors do
15: if p.ctrl f low = dynamic∨¬p. f inal_stmt.is_ f ixed then
16: block.ctrl f low← dynamic
17: block.dyn_in← block.dyn_in∪ p.dyn_out
18: dyn_now← block.dyn_in
19: for all s← Statement ∈ block.statements do
20: if s writes a dynamic value to a variable v then
21: dynamic_now← v
22: if s reads a variable in dyn_now then
23: mark s as dynamic
24: block.dyn_out← dyn_now
25: if block.ctrl f low changed ‖dyn_now 6= dyn_in then
26: return False
27: return True

Figure 4.12: Computing ‘fixedness’ of variable modifying statements in an instruction imple-
mentation.

56 Chapter 4. Efficient Simulator Generation

done in a single pass for functions with simple control flow structures (i.e., no loops).

However, when loops are involved a more complex approach must be taken to ensure

that the liveness of each value is computed correctly.

Fixedness analysis differs in several important ways. Basic statements such as con-

stant values and instruction fields are considered to be fixed, as well as expressions

containing these values. A read from a variable is considered to be fixed if all domi-

nating writes to that variable are fixed. If a non-fixed value is written into a variable,

that variable is considered to be non-fixed until a fixed value overwrites it. A simple

example can be seen in Figure 4.11.

The fixedness analysis algorithm can be seen in Figure 4.12, and operates on a SSA-

form representation of a ISA semantic description. In order to maximise the possible

savings in terms of bitcode generation and optimisation, all non-intrinsic functions are

inlined at each call site in each ISA semantic description. Certain complex functions

(such as those used to implement exception and interrupt handling logic) are marked

as ‘noinline’ - in this case the return value of the function is always considered to be

non-fixed.

The function INSNIMPLFIXEDNESS considers the semantic description for a single

instruction. First (Line 2), data structures for each basic block are initialised. These

include dyn_in, which is a set of variables which carry dynamic (non fixed) values at

the start of the block, dyn_out, which is a set of dynamic variables at the end of the block,

and ctrlflow, which states whether the block has fixed or dynamic incoming control flow.

The mark_variable_accesses_as_fixed function marks each read and write to a variable

as fixed.

Once initialisation is complete (Line 7), a work list wl is initialised to contain the en-

try block of the instruction semantic. Then, each entry in the work list is processed using

the BBFIXEDNESS function, until the work list becomes empty. If the BBFIXEDNESS

function returns false (Line 11), this indicates that some element (variable or control

flow) has changed from fixed to dynamic, and so each successor of the block currently

being processed should be reprocessed (since their incoming control flow or dyn_in

may have changed).

The BBFIXEDNESS function begins (Line 13) by assessing the control flow of this

block, and calculating the current dyn_in set. The control flow for a block is dynamic if

any predecessor of that block has dynamic control flow, or if the terminating statement

of that block is not fixed (Line 14). For example, a branch which has a condition relying

4.4. High Speed Dynamic Binary Translation 57

only on fixed variables is considered to be fixed. A branch which has a condition whose

calculation includes dynamic variables is itself dynamic. The current block’s dyn_in set

is computed to be the union of its predecessors’ dyn_out sets (Line 17).

Each statement s in the block is then considered in turn (Line 19). If s writes a

dynamic value to a variable v (e.g. a read from a register or from memory) then v

is considered to be dynamic and is added to the dyn_now set. If s reads a dynamic

variable, then any values produced by s are considered to be dynamic. Finally (Line

24), the block’s dyn_out set is set to dyn_now. If new dynamic variables have been

discovered, or if the control flow status of this block has changed, then BBFIXEDNESS

returns false, indicating that the block’s successors should be added to the work list. All

blocks start with ‘invalid’ control flow, so all blocks will be processed at least once.

4.4.2 Generating LLVM Bitcode For An Instruction

Once the fixedness of each basic block and statement in the SSA-form representation of

an instruction has been evaluated, a function to generate LLVM bitcode for this instruc-

tion is then generated. This function takes a guest machine instruction as input, and

outputs the LLVM bitcode required to execute that instruction in simulation. A single

guest instruction is likely to require many LLVM bitcode instructions, and potentially

several LLVM basic blocks, so generating this bitcode is not a trivial operation. Care

must also be taken to generate code which is efficient, taking into account the strengths

and limitations of LLVM and of the information which can be quickly extracted from

the SSA-form ISA semantic description.

4.4.2.1 Instruction Predication

One major feature of the ARM architecture which must be addressed is instruction

predication. Instruction predication allows individual instructions to be conditional,

reducing the number of very small basic blocks and reducing the requirement of a

large, accurate branch predictor for high performance. The ARMv5 ISA allows most

instructions to be predicated, including branches, arithmetic instructions, and loads

and stores. The Thumb-2 ISA takes this a step further by providing context-based

predication. Rather than the instruction predicate being stored in a constant instruction

field, special instructions are used (known as ‘If-Then‘ or IT instructions) to load values

58 Chapter 4. Efficient Simulator Generation

into a special register. This special register is then checked on each instruction to

determine whether the instruction should be predicated.

While ARMv5’s ‘static’ predication could potentially be addressed in an ad-hoc

manner in an ISA description (i.e., by wrapping each instruction implementation in an if-

then statement), Thumb-2’s more complex ‘dynamic’ predication cannot be efficiently

implemented in this way. The fact that instruction predication information is read from

a register means that no predicated instruction body can be ‘fixed’, meaning that much

of the benefit of the partial evaluation techniques described above is lost.

So, in order to implement these predication features, predicated instructions are

identified during interpretation. During translation, predication logic is emitted for only

these instructions. This takes advantage of the fact that branching into or out of a pred-

icated block is specified to produce Undefined behaviour in the Thumb-2 instruction

set. Efficiently handling predication on an architecture where such an operation was

permitted would be more complex.

4.4.2.2 Register Accesses

Certainly the most common operation for an instruction to perform is a register access.

Most instructions, across most architectures, perform at least two register accesses, and

instructions such as ARM’s ldm and stm instructions allow a large number of register

(and memory) accesses to be performed in a single instruction. For a high performance

simulator, register accesses must therefore be highly optimised, both in interpretation

and DBT execution modes.

GenC implements the register file for each described architecture as a structure in

memory consisting of ‘Registers’ and ‘Register Banks’. An individual Register might

be an architectural status register (such as ARM’s CPSR), or, for performance reasons,

an individual field in such a register (such as the C (carry), V (overflow), Z (zero), and

N (negative) fields of the CPSR). Splitting these fields out in to separate ‘Registers’

allows for reads and writes to be performed on these registers with a single memory

access, rather than requiring that the fields be masked out of a composite register.

Register Banks then typically consist of e.g., ARM and MIPS’s General Purpose

registers. These are laid out as flat arrays, meaning that accesses can be performed using

Base+Offset memory access instructions on the host machine. Aliasing registers (such

as the various access modes to x86 registers) are not currently directly supported by the

4.4. High Speed Dynamic Binary Translation 59

Guest Virtual Address Space

Map

(a) Demand-paged memory

Guest Virtual Address Space

Contiguous Allocated Block

(b) Contiguous memory

Figure 4.13: Diagram showing contiguous vs demand-paged simulated memory. Demand-
paging requires no up-front allocation but memory accesses must be performed via a map
or cache of a map, reducing performance.

language, meaning that they require ad-hoc implementation. This must be addressed in

future work if a high performance x86 model is to be produced. Multiple register banks

are permitted, although the bank accessed by a particular instruction is fixed and so

bank-switching operations (such as those produced by an ARM mode change) require

backing up and restoring register values.

4.4.2.3 Memory Accesses

High speed memory access is an important factor for high performance simulation.

This section focusses only on user-mode memory accesses, since Full System memory

access techniques are discussed in Chapter 6.

While memory allocation can be considered a different issue to memory access,

the manner in which memory is allocated can influence the possible memory access

schemes. In previous generations of simulators, user mode memory was demand-paged

by the simulator itself, meaning that whenever the simulator attempted to access a

memory page which it had permission to use, but which had not yet been allocated, the

simulator would step in and allocate the page. This provides reasonable performance

with low overheads compared to more naïve schemes such as using direct maps.

60 Chapter 4. Efficient Simulator Generation

Such a demand paged system is usually implemented using a page table and cache

(e.g. [104]). The generated LLVM bitcode for this typically involves either a table or

cache look up, including control flow structures since the page may or may not be

allocated, and may or may not be present in the cache.

However, a demand paging scheme implemented in a simulator is simply doing the

job of the operating system in managing memory. A faster, and less complex approach

to allocating memory is to allocate a flat block of memory ‘up-front’ at the start of

simulation, and treat this flat virtual memory block as the simulated system’s memory.

This provides high performance, as only an addition needs to be performed in order

to translate from guest to host addresses. However, allocating a full address space for

e.g. a 32-bit guest on a 32-bit simulation host obviously presents difficulties: the full

address range cannot be mapped while still leaving memory available for the simulation

infrastructure. This is less of an issue when simulating a 32-bit guest on a 64-bit host,

which is a fairly common use case. Figure 4.13 compares contiguous memory allocation

and demand paging.

Endianness also becomes an issue when simulating e.g. a big-endian guest on a little-

endian host (or vice-versa). While the endianness of a user-mode application is typically

fixed, many architectures support selecting endianness at boot time, dynamically at run

time, or even selecting endianness on a page-by-page basis.

4.4.2.4 Other Operations

In order to perform I/O, user mode programs typically use syscall instructions. In hard-

ware, and in full-system simulation, these instructions cause a synchronous exception,

which is then handled by the processor, and the desired operation is performed. This in-

terface is typically well defined, and so it is possible for a simulated system to intercept

these syscall instructions in the guest, determine the desired operation, and perform

this operation on the host machine. This allows simulated user-mode applications to

communicate with the outside world, by reading/writing files, reading and manipulating

system state, etc. Trapping these syscalls can be done by having the instruction perform

a function call on the host, into an emulation layer tailored to the guest environment

(i.e., a MIPS-Linux user mode application will require a different emulation layer to an

ARM-Windows CE application).

4.5. Evaluation 61

Finally, while memory accesses are often used to manipulate memory mapped

devices, this is not a concern in user mode applications since these devices cannot

usually be manipulated in user space and must instead be accessed via OS syscalls.

This is also partially true of coprocessors, although floating point units and vector

processing units are usually available directly to user mode applications and so require

special handling.

4.5 Evaluation

In this section, the overall performance of a partial evaluation based DBT module will

be assessed. The partial evaluation technique will first be compared against a call-based

naïve technique using the SPEC and EEMBC benchmark suites. Overall performance

will be assessed, and the performance gains obtained by the partial evaluation based

module will be analysed. The evaluation will be done by executing the SPEC and

EEMBC benchmark suites, compiled for ARM, on an x86 host machine, using GenSim.

The partial evaluation based DBT module will then be augmented with the optimi-

sations outlined in [99], and compared against the state of the art QEMU instruction

set simulator. This will demonstrate that despite the GenC DBT module having been

generated from a high level description, rather than being hand-written, performance is

still extremely competitive. Furthermore, both Partial Evaluation modules were gener-

ated from the same high-level GenC description, reinforcing the original statement that

GenC descriptions can benefit from improvements in simulation technology without

requiring modification.

4.5.1 Comparison Against Naïve

In this section the Partial Evaluation based DBT module will be compared directly

against a Naïve implementation, both in terms of overall performance on the SPEC

and EEMBC benchmark suites, and in terms of quantity of generated LLVM bitcode

(representing total compilation/optimisation time in the DBT engine).

Figure 4.14 shows a comparison of the performance of both DBT modules when

executing the SPEC benchmark suite. A large speedup of at least 2x can be observed

on each benchmark, with a 2.5x speedup over a run of the entire benchmark suite.

The 462.libquantum and 471.omnetpp benchmarks display a particularly high speedup

62 Chapter 4. Efficient Simulator Generation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m
er

458.sjeng

462.libquantum

464.h264

471.om
netpp

473.astar

483.xalanc

T
otal

S
p
ee

d
u
p

Naive P.E.

Figure 4.14: Graph showing the performance of the Partial Evaluation based DBT module,
compared against that of a Naïve call based module. Using the Partial Evaluation based module
results in a large speedup across all SPEC benchmarks.

of over over 3.5x. The 464.h264ref benchmark shows a reduced but still significant

speedup of approximately 2.0x.

Figure 4.15 shows a comparison of both DBT modules when executing the EEMBC

benchmark suite. Although large speedups are observed on most of the EEMBC bench-

marks, the range of speedups is much wider. This is likely to be due to the much simpler

nature of the EEMBC benchmarks (which are typically small kernels) when compared

against the SPEC benchmark suite (which are large applications). Speedups of at least

2x can be observed on almost all of the EEMBC benchmarks, with an overall speedup

of approximately 3x.

Considerably less LLVM bitcode is generated when using the Partial Evaluation

based module when running both the SPEC and EEMBC benchmark suites, as can be

seen in Figure 4.16. A large reduction can be seen in the amount of bitcode after light

JIT-time optimisations have been applied (O1 bars). This is due to the partial evaluation

process eliminating much dead code ‘in advance’ of actual code generation. This is

particularly pronounced on the EEMBC benchmark suite: light O1 optimisations when

using the Partial Evaluation module already result in less LLVM bitcode than when

using the naïve module with much heavier O3 optimisations.

Interestingly a significant reduction can also be seen in the bitcode present after

both modules have applied heavier (O3) optimisations. This suggests that the bitcode

4.5. Evaluation 63

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

a2
tim

e
aifftr
aifirf
aiifft
b
asefp

b
itm

n
p

cach
eb

can
rd

r
id

ctrn
iirflt
m

atrix
p
n
trch

p
u
w

m
o
d

rsp
eed

tb
lo

o
k

ttsp
rk

cjp
eg

d
jp

eg
rg

b
cm

y
rg

b
h
p
g

rg
b
yiq

o
sp

f
p
k
tflo

w
ro

u
telo

o
k
u
p

b
ezier

d
ith

er
ro

tate
text

au
tco

r
co

n
ven

fb
ital

fft
viterb
T

o
tal

S
p
ee

d
u
p

TelecomOfficeNetworkingConsumerAutomotive

Naive P. E

Figure 4.15: Graph showing the performance of the Partial Evaluation based DBT module,
compared against that of a Naïve call based module. Using the Partial Evaluation based module
results in a large speedup across all EEMBC benchmarks.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

O1 O3

L
L
V
M

 B
it
co

d
e

(%
 o

f
O

1
N

ai
ve

)

Naive P.E.

(a) SPEC benchmark suite

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

O1 O3

L
L
V
M

 B
it
co

d
e

(%
 o

f
O

1
N

ai
ve

)

Naive P.E.

(b) EEMBC benchmark suite

Figure 4.16: Graphs showing generated LLVM bitcode size for Naïve and Partial Evaluation
based DBT modules, using both standard -O1 and -O3 DBT-time optimisation levels. Using
the Partial Evaluation based module results in a large reduction in the number of generated
bitcodes initially generated, and a small reduction in the number once strong optimisations have
been applied.

64 Chapter 4. Efficient Simulator Generation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m
er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

T
otal

S
p
ee

d
u
p

QEMU P.E. P.E. (Opt)

Figure 4.17: Comparison of performance of QEMU and both Novel DBT modules on SPEC.

presented by the Partial Evaluation module is more amenable to optimisation than the

‘messier’ bitcode presented by the naïve module.

4.5.2 Comparison Against QEMU

In this section, the novel Partial Evaluation based DBT module will be compared

against the state of the art QEMU instruction set simulator. The Partial Evaluation

based module will be considered both in isolation, and with the optimisations described

in [99] applied. This will show that although the baseline performance of the Partial

Evaluation based module is good, when combined with suitable optimisations it can

outperform even a hand-tuned simulator such as QEMU.

Figure 4.17 compares the performance of each simulator across the SPEC bench-

mark suite. Both the baseline and optimised Partial Evaluation DBT modules give a

significant speedup over QEMU over most of the SPEC benchmarks. The baseline mod-

ule gives an overall speedup of around 1.9x over QEMU, while the optimised module

gives a speedup of 2.7x.

This shows that an automatically generated simulator module, making use of Par-

tial Evaluation techniques, can outperform even a hand-written and carefully tuned

simulator such as QEMU by almost 2x. Once more aggressive optimisations are intro-

duced (i.e., the custom alias analysis and control flow handling techniques described

in [99]), this speedup increases significantly with no change to the ISA description,

demonstrating the flexibility of automatically generating a simulator.

4.6. Conclusion 65

One of the frequently described weaknesses of region based DBT is that the trans-

lation latency is much higher than that of block based systems. Building up the data

structures describing a page of guest code, and then analysing, optimising, and compil-

ing that code, is intuitively much more costly than doing the same for a single basic

block. However, using the described Partial Evaluation techniques, a region based DBT

is able to outperform a block based DBT even on highly phase-orientated workloads

such as 403.gcc.

4.6 Conclusion

This chapter presented a methodology for generating high speed functional instruction

set simulator modules, including a description of how each component of the module

can be produced, and a comparison of differing implementations and techniques for the

most performance-critical component: the DBT module.

By leveraging existing DBT techniques, and combining them with novel partial-

evaluation based code generation, it is possible to produce simulator modules which

are easy to describe, but which are competitive with hand written and tuned simulation

platforms such as QEMU across a range of large and complex benchmark workloads,

especially when combined with the domain-specific alias analysis and control flow

handling techniques described in [99]. It has also been shown that this analysis is

necessary for high performance, i.e. that a naïve approach results in a large slowdown

due to the extreme pressure placed on optimisations provided by the DBT backend.

While the presented Partial Evaluation techniques have been applied in the con-

text of instruction set simulation, there are also applications in the implementation of

virtual machines and execution environments in general, and in the implementation

of bytecode-based domain specific languages. Both of these currently require that the

runtime implementation for each bytecode be implemented by hand, which can be com-

plex and error prone, especially when generating native host code. Using the partial

evaluation techniques presented above, descriptions of each bytecode could be provided

and automatically implemented in an efficient manner.

67

Chapter 5

Automated Test Generation

5.1 Introduction

While the previous chapter covered the performance objective, there is no way of

knowing whether the generated simulator is correct. Software testing is an area of

active academic and commercial research. The cost of releasing broken hardware or

software cannot be overstated, both in terms of the immediate financial cost of repairing

the problems, and in terms of long term damage to the reputation of an organisation.

In this chapter the importance of automated testing in the context of instruction set

simulators is demonstrated. In particular, it is shown that ad-hoc functional testing is

not sufficient, covering only 20% of possible ISA behaviours. Instead, a more thorough

technique for generating test suites based on ADL descriptions, known as GenTest, is

demonstrated. Finally, strengths and weaknesses of this technique are identified, and

possible improvements that might be made in future work are suggested.

How this chapter is structured

• A motivation for automated testing in instruction set simulators

• A novel approach to automated testing for high level ADL models

• Strengths of this approach and how any weaknesses might be addressed

68 Chapter 5. Automated Test Generation

1 ; Base in %rax
2 ; Index in %rdi
3 ; Destination is %ecx
4
5 movl 0x20(%rax ,%rdi ,4), %ecx

1 ; Base in r0
2 ; Index in r1
3 ; Destination is r2
4
5 add r0, #0x20
6 ldr r2, [r0, r1 lsl 2]

1 ; Base in $a0
2 ; Index in $a1
3 ; Destination is $v0
4
5 sll $a1 , $a1, 2
6 add $a0 , $a0, $a1
7 lw $v0 , 0x20($a0)

Figure 5.1: An example instruction sequence in x86, ARM, and MIPS assembly. A complex
addressing operation can be achieved in one instruction when using the x86 ISA. However, when
using ARM or MIPS, two or three instructions are required, respectively. Clearly, architectures
incorporating instructions with complex addressing modes require more complex descriptions.

1 ; compare the values in r0 and r1
2 cmp r0, r1
3 ; if comparison failed , add to PC
4 addne r0, pc, #0x3fc

(a) ARM V5 Assembly snippet making use
of an addne instruction

1 if(condition_passed(inst.cond))
2 {
3 uint32 imm = ROR(inst.imm, inst.rot);
4 uint32 rnval = read_register(inst.rn);
5 uint32 rdval = rnval + imm;
6 write_register(inst.rd, rdval);
7 }

(b) Actual fragment of semantic action ex-
ercised by the addne instruction from Fig-
ure (a)

1 if(condition_passed(inst.cond))
2 {
3 uint32 imm = ROR(inst.imm, inst.rot);
4 uint32 rnval = read_register(inst.rn);
5 uint32 rdval = rnval + imm;
6 write_register(inst.rd, rdval);
7
8 if(inst.S)
9 {

10 write_flag(N, !!(rdval & 0x80000000));
11 write_flag(Z, rdval == 0);
12 write_flag(C, carry_from(rnval + imm));
13 write_flag(V, ovrflw_from(rnval + imm));
14 }
15 }

(c) Simplified high-level GenC description of
the behaviour of an add instruction in ARM V5

Figure 5.2: Figure (a) shows a snippet of ARM assembly. The addne instruction is predicated,
and does not write back to the status flags. When this instruction is considered given the generic
add semantic description in Figure (c), the result is the specialised semantic action shown in
Figure (b).

5.2. Motivation 69

5.2 Motivation

As computer architectures become more complex, so too must descriptions of these

architectures. Many modern instruction sets feature complex immediate encoding meth-

ods and addressing modes. For example, the ARM architecture allows for the second

operand of most arithmetic instructions to be bit shifted in various ways, and also

supports a large number of addressing modes on memory instructions, including auto-

incrementing, indexing, etc. An example of a computation being performed using three

different architectures, ARM, MIPS, and x86 can be seen in Figure 5.1.

These complex behaviours increase the chance that errors are introduced into ar-

chitectural descriptions, in the form of misinterpreted or ambiguous specification doc-

uments, edge cases, and logic errors. Small errors in uncommon instructions or in-

struction paths can easily lead to a description which appears correct, and which will

correctly execute many programs, but which fails in certain cases.

In an architecture description, these complex behaviours are described in terms

of control and data flow structures. For example, selecting an addressing mode from

several possibilities may be done using a switch statement. A particular instantiation

of an instruction will only ever exercise a single case of the switch statement as it can

only encode a single addressing mode. Optional behaviours may be described using if

statements, as seen in Figure 5.2.

Many simulators are advertised as being capable of executing complex benchmark

suites such as SPEC and EEMBC. These are made up of ‘real-world’ code and consist

of applications such as compilers, industrial control and automation, graphics manip-

ulation, etc. While many of these applications are large and highly complex, it can

be easily shown that they still do not provide good coverage of the overall instruction

space under test (see Figure 5.5). What’s more, many of these applications can easily

appear to succeed, even in the presence of serious simulation bugs. For example, the

Simit-Arm simulator has been used several times in the literature[37, 46, 75], despite

containing several bugs as seen in Section 5.5.2.3.

The popular QEMU simulator has a variety of test suites and tools available. As

much QEMU development is distributed, the testing of QEMU guests is typically done

by third parties. For example, QEMU’s ARM guest is tested by the Linaro project [62]

using an automatically generated test suite, produced by a tool known as risu [70].

However, this tool requires that the architecture syntax is separately described (and so

70 Chapter 5. Automated Test Generation

must be kept in sync with QEMU development), and has no knowledge of what an

instruction might do, or what interesting edge cases might exist in the architecture.

In order to be useful, an architecture description must be correct. However, ‘correct-

ness’ can mean different things in different contexts. For example, if the architecture

specification is taken to be a reference, then a correct simulator must behave exactly

according to spec (ignoring any behaviours explicitly specified to be unpredictable or

undefined). However, if a particular hardware implementation of the architecture is used,

then a ‘correct’ simulator might also include any bugs present in that implementation. A

decision must also be made about simulating behaviours which are considered incorrect

or undefined. The outcome of this decision will likely depend on the intended use of

the simulator. If the simulator is to be used for debugging software under development,

then it is important to reproduce bugs caused by incorrect usage of architectural fea-

tures. However, if the simulator is to be used for design space exploration and will only

run programs reasonably believed to be correct then accurately reproducing incorrect

behaviours becomes less important.

5.3 Coverage Analysis

Although there are many possible methods for testing correctness of an ISA imple-

mentation, many are either inadequate (such as ensuring that one instruction of each

type is executed, which may leave certain features or edge cases in each instruction

untested) or are impractical (such as enumerating and testing all possible instructions

with all possible inputs, which for a single 2-input instruction gives at least 232 times

232 possible inputs). The problem is compounded by the fact that instruction behaviours

may be modified by runtime information: a simple example of this is that an instruction

may or may not execute depending on its predicate and the current condition flags. A

more complex example might be the large variety of shifting operations available to

most ARM instructions and their various different edge-case behaviours. This context

sensitivity means that such exhaustive testing is completely infeasible.

A useful method for testing correctness must adequately cover all instruction be-

haviours. It must also be straightforward to perform the tests, i.e. to execute and check

the results of each test. Two possible control flow orientated instruction test cover-

5.3. Coverage Analysis 71

A

C

E F

G

B

D

(a) Block Coverage

A

C

E F

G

B

D

(b) Path Coverage

Figure 5.3: A comparison of block and path coverage on an instruction with a simple control
flow graph. The paths ACEG, ACFG, and ABDG have been taken. Figure (a) shows block
coverage, where the taken blocks have been shaded red. Figure (b) shows path coverage, where
the taken paths have been shaded red. Although every block has been touched, there are still a
path (ABG) which has not been covered, showing the limitation of block coverage versus path
coverage.

age metrics can be considered: Basic Block Coverage (discussed in terms of general

software testing in [49, 50], and Path Coverage (discussed in [114]).

While such metrics are well known in existing software testing methodologies,

here they are applied specifically to high level ADLs. This provides a different enough

context that the best solution for general software testing may not necessarily be the best

solution for ADL testing. For example, while a general function under test may have

restricted and well structured data as input and output, individual machine instructions

have the entire machine state as their context, including multiple registers and register

banks, multiple machine modes, and if the instruction accesses memory, typically the

entire address space. Conversely, most instructions do not read and write from the same

memory locations, so modelling an entire memory system is not generally necessary.

5.3.1 Basic Block Coverage

One of the simpler general-purpose coverage metrics available is basic block coverage.

Here it is applied to individual instruction behaviours, which may contain branching or

looping control flow. Basic block coverage information is collected by instrumenting

the high-level instruction descriptions with block profiling code. During execution of

each test case, the entry of each block is then recorded, and any blocks which are not

executed (and therefore not tested) can be identified for each instruction.

72 Chapter 5. Automated Test Generation

This coverage metric is most useful for testing a generated ISS, rather than for

verification of hardware, since the hardware structures involved in the execution of a

particular instruction are unlikely to correspond with the control flow structure of the

same instruction in an ISS. A block based analysis of an instruction can be seen in

Figure 5.3a.

5.3.2 Path Coverage

While block coverage is extremely straightforward to implement, one of the biggest

disadvantages is that it does not cover interactions between blocks. The behaviour

inside and control flow out of a particular block may be affected by control or dataflow

occurring in a previous block. Thus, it would be useful to examine not just the blocks

covered in an instruction, but also the paths through it (see Figure 5.3b). These paths

can then be used either for further analysis (such as identifying complex instructions),

or for generating tests as will be examined later.

One important caveat here is that many modern ISAs include instructions designed

to either block-copy data or efficiently manipulate the stack. For example, the ARM

ISA includes ldm and stm instructions, which loop over a bit vector representing the

register file in order to determine which registers should be saved or restored. An

intuitive way of implementing this instruction in an ISS is using a for loop. The ARM

ldm/stm instructions are also described in this way in the ARM Architecture Reference

Manual [4]. However, considering all of the possible paths through such a loop can

produce an explosion in the number of possible paths with little actual benefit (see

Figure 5.4). Care must be taken when testing these instructions as some registers have

special purposes. For example, while the ARM ldm instruction could be seen as a

straightforward memory manipulation instruction, it is also capable of writing into the

PC register and thus affecting program control flow.

In order to tackle this problem, each path containing a loop is ‘collapsed’ into mul-

tiple paths, each containing the same prologue/epilogue, but with only one iteration

through the loop. For example, consider the control flow graph in Figure 5.4b. Suppose

the path ABCEFBCDFBG is encountered, which involves two iterations of the loop.

This path contains the prologue A, the epilogue G, and the loop iterations BCEF and

BCDF . Two new paths, ABCDFBG and ABCEFBG (as well as the degenerate path

ABG), can be formed by combining the prologue, loop iterations, and epilogue. This

5.3. Coverage Analysis 73

A

B

C

D E

F

G

(a)

A

B

C

D E

F

G

(b)

Figure 5.4: An example control flow graph containing a loop. In Figure (a), the path ABCEFBG
(i.e., one loop iteration) is taken. In Figure (b), the path ABCEFBCDFBG (i.e. two loop itera-
tions) is taken. In order to simplify analysis, these two paths can be transformed into ABCDFBG
and ABCEFBG, removing paths with multiple loop iterations. Without this analysis, the ARM
ldm and stm instructions would require around 215 test vectors (one for each valid combination
of registers), making efficient testing impossible.

method can also be scaled to handle multiple or nested loops although these are rare

within real-world instructions. Although this does not capture e.g. all possible combi-

nations of registers for ldm/stm instructions, it hugely reduces the space of instructions

required to be tested while still maintaining good coverage from an ISS perspective.

In terms of real instructions, this means that an instruction such as the ARM instruc-

tion pop {r4, r5, pc} might be translated into two separate instructions pop r0 (which

exercises popping a stack entry into a general purpose register) and pop pc (which

would exercise popping a stack entry into the PC and performing a branch). Each of

these two behaviours can then then be analysed and tested separately.

An example path-based analysis can be seen in Figure 5.3b. It is possible that ‘im-

possible’ paths might be discovered, which place conflicting constraints on variables.

For example, it is impossible to take a path which includes control flow requiring both

X and ¬X . In the case of ARM, these might represent edge cases or particular combi-

nations of shift operations and input values which are invalid or which are incapable

of setting certain flags. However, this kind of control flow is not problematic and can

be easily detected, either by analysis done directly by GenTest, or later on by CVC4.

These paths can then be discarded.

74 Chapter 5. Automated Test Generation

Figure 5.5: Basic block and path coverage of SPEC CPU2006 benchmarks compiled with GCC

4.7.2 and Clang 3.5. While each benchmark may individually cover up to 18% of testable
instruction paths, large groups of these overlap, and so only 228 of the 1122 possible paths
(20.3%) are covered.

5.3.3 Coverage Results

By instrumenting the ARM model and simulator described in Chapter 4, the path and

block coverage across each instruction during the execution of a program can be mea-

sured. Figure 5.5 shows the percentages of blocks and paths covered by executing the

SPEC benchmark suite.

This instrumentation was performed automatically by modifying the GenC tool to

track instruction entry and instruction semantic block execution events. This stream of

events was then processed in order to determine which paths had been taken through

each instruction during the execution of a particular application.

Despite the large number of diverse benchmarks evaluated, a large portion of the

ARM ISA model are untouched by the SPEC benchmark suite. In fact, most benchmarks

cover less than 20% of the instruction path space, meaning that even a simulator capable

of correctly executing these complex applications might be hiding bugs in 80% of the

possible execution paths. In total, 1122 paths were discovered in the ARM model

(which includes only the user mode and integer portion of the instruction set).

This poor block and path coverage shows that simply testing a simulator against a

commonly used benchmark suite is inadequate for ensuring that it is correct. While an

instruction set simulator capable of correctly executing these complex programs might

5.4. Test Generation 75

Instruction
Semantic

Test
Suite

Generate
Paths

Generate
Constraints

Solve
Constaints

Generate
Tests

Invalid Paths

Impossible
Paths

Paths
Constraints

Models

1

23

GenTest

CVC4

Figure 5.6: High level flow diagram of the operation of GenTest. For our example instruction
in Figure 5.2, 1 can be seen in Figure 5.9a, 2 in Figure 5.9b, and 3 in Figure 5.11.

be naïvely seen to be reasonably correct, this poor path and block coverage shows that a

more comprehensive testing method (such as that described in Section 5.4) is required.

5.4 Test Generation

By examining the paths not covered by a particular test suite (or by simply considering

all available paths through an instruction), new test cases can be constructed. This may

require that both static factors (i.e., the precise type of the instruction), and dynamic

factors (such as any data which is read from the register file or from memory) are

taken into account. For example, overflow is typically calculated using slightly different

methods for addition and subtraction (a static factor), and a processor may switch ISA

mode (e.g. between ARM and Thumb modes) depending on a value read from a register

(a dynamic factor).

The remainder of this chapter describes and evaluates a test generation methodology

for high level ADL descriptions, known as GenTest. For each individual instruction to

be tested, GenTest generates tests in three steps (also outlined in Figure 5.6):

1. Generate a suitable set of constraints for the execution of the particular path

through the instruction, which may include constraints on instruction field values,

and values written to/from registers and memory.

2. Solving those constraints to generate valid instruction field and initial register

values.

76 Chapter 5. Automated Test Generation

Test
Harness

ISA Description

System
Description

Instruction
Formats

Instruction
Semantics

Test
Suite

GenC Tool

Path
Analysis

Constraint
Formatting

Test
Encoding

Reference Hardware GenSim

Processor
Module

Test
Results

Test
Results

Compare

CVC4

Figure 5.7: Overall flow diagram for generating and executing tests. Rather than generate a
Gensim Processor Module, the ISA description is analysed, and tests are created. These tests
are then executed using a test harness on both GenSim and reference hardware, and the results
are compared.

3. Using the generated instruction field values to encode an instantiation of the

instruction to test, and the generated register values to produce a context in which

that instruction should be executed.

Once these tests are generated, they can be executed using a test harness application

on both GenSim and matching reference hardware. The results of each test (i.e., the state

of the register file) can then be collected and compared in order to detect inconsistencies

between executing the test using GenSim, or using the reference hardware platform.

This is shown in Figure 5.7.

5.4.1 Constraint Generation

In order to ensure that the execution through the instruction under test takes a spe-

cific path, constraints can be applied to expressions used by control flow statements in

the instruction. For example, given the instruction and path shown in Figure 5.2, the

following constraints might be applied:

(condition_passed(inst.cond) = 1)∧ (inst.S = 1)

This would ensure that the generated instruction takes the missing control flow path

outlined in Figure 5.2.

5.4. Test Generation 77

However, there are several problems remaining. Imagine testing a variation on the

above instruction, where the destination register is the PC, i.e. the instruction generated

is a branch. In this case, the test generation system must ensure that any branches are to

a safe region, so that the generated instruction successfully executes when tested (for

example, by using a large nop slide). This can be addressed by introducing additional

constraints: if the destination register is the PC, then the value written must be within a

specific range. Although memory protection features could also be used to detect where

a branch lands (by intercepting the exception generated when executing code marked

‘no-execute’), this requires hardware support (which is not present in e.g. ARMv5), and

still requires that we constrain the instruction branch target to avoid e.g. a self branch,

or branching into test harness code.

Since here an ARM model is tested, which supports Thumb interworking, con-

straints that the simulated core will not switch between ARM and Thumb during a test

are also added. These interworking features could still be tested using this test genera-

tion technique, but would require special handling, to ensure that a branch into Thumb

code lands on a Thumb safe region, and a branch into ARM code lands on an ARM

safe region.

Similar constraints must be applied to memory accesses, to ensure that the test does

not read or write outside of a safe area. The test generation methodology must also

ensure that memory accesses are correctly aligned when testing for architectures which

do not support unaligned memory accesses. A safe memory region could be used such

that the contents of each memory word in this region is equal to the address of the end

of the nop slide described above. This ensures that an instruction, which loads a value

from memory and then writes it into the PC can be successfully generated.

Crucially, GenTest does not need to model the memory system in detail. Very few

instructions make repeated accesses to the same memory location, so unlike in conven-

tional unit test generation frameworks such as CUTE [95], which must track accesses

to memory in order to reason correctly about the program under test, GenTest does not

need to track values as they change in memory. This greatly simplifies the implementa-

tion of GenTest as it does not need to build and use a memory graph nor do any pointer

alias analysis.

Generating constraints for each of the instruction control flow paths produces a num-

ber of constraint sets. In order to avoid the constraint solver wasting time, constraint

sets which are obviously unsolvable are filtered out, e.g. constraint sets including con-

78 Chapter 5. Automated Test Generation

straints such as N 6= N, or pairs of constraints (A = B)∧ (A 6= B). Although this is not

guaranteed to catch all impossible instruction paths, it significantly reduces the number

of paths passed to the more expensive constraint solver.

In order to more exhaustively test against hardware, GenTest can also generate ad-

ditional constraint sets which test control flow and dataflow edge cases. As a practical

example, in the case of an ARM shift instruction where the shift amount is encoded

as 0, the actual shift amount is 32 in order to allow the encoding of shifts by 32 with-

out requiring an extra bit in the instruction field. By including these extra constraint

sets, GenTest can check for edge cases not exposed by the architecture description but

which may exist in the reference implementation. These extra constraint sets are also

useful for exhaustively testing the correctness of status flags, by attempting to generate

constraint sets such that tests are generated which attempt, for each instruction, to set

all combinations of flags.

5.4.2 Constraint Satisfaction

Once GenTest has generated a full set of constraints for a given instruction path, those

constraints must be solved in order to generate valid instruction fields and register

values which explores the particular instruction path.

In order to solve path constraints, GenTest uses CVC4 [11], which is an SMT

(Satisfiability Modulo Theories) theorem prover. CVC4 is able to check validity or

satisfiability of theories with respect to a number of built in theories (such as theories

of linear integer arithmetic or bit vectors). GenTest uses it to solve the constraints over

register and instruction field values described above, making use of CVC4’s built in

theories of integer arithmetic and bit vectors.

While CVC4 is thought to be sound and complete over linear arithmetic and bitvec-

tor operations, it may report that it cannot determine the validity or satisfiability of a

context with non-linear arithmetic terms. This is not a problem for most instruction

semantic descriptions as they do not typically produce different behaviours depending

on the result of non-linear arithmetic expressions. However, some instructions such

as flag-setting multiplies, divides etc. may have control flow dependent on non-linear

arithmetic. GenTest can flag such paths as requiring direct user intervention.

When solving constraints for a particular path P using CVC4, GenTest first converts

these constraints into a set of formulae, with each formula representing a constraint or

5.4. Test Generation 79

1 OPTION "produce -models";
2
3 %%% Define various flag registers
4 N : BITVECTOR(1);
5 Z : BITVECTOR(1);
6 C : BITVECTOR(1);
7 V : BITVECTOR(1);
8
9 %%% Define general purpose register bank as an array of bitvectors

10 %%% indexed by another bitvector (the register number)
11 Reg : ARRAY BITVECTOR(4) OF BITVECTOR (32);
12
13 %%% Define instruction fields
14 insn_cond : BITVECTOR(4);
15 insn_op : BITVECTOR(3);
16 ...
17 ...
18
19 %%% Require that the PC to be the location of the
20 %%% test instruction location in the test harness
21 ASSERT Reg[0b1111] = 0hex00008bd0;
22
23 %%% Now list the constraints
24 constraint_1 : BOOLEAN;
25 ASSERT constraint_1 = ...;
26 constraint_2 : BOOLEAN;
27 ASSERT constraint_2 = ...;
28
29 %%% Group constraints into a single formula to check
30 constraintset : BOOLEAN = constraint1 AND constraint2;
31
32 %%% Check the satisfiability of the constraints and
33 %%% produce a satisfying model
34 CHECKSAT constraintset;
35 COUNTERMODEL;

Figure 5.8: Example of a constraint set formatted as input to CVC4. Registers and instruction
fields are represented as bit vectors of varying lengths. Each control flow decision is represented
as one or more intermediate formulae. To generate an instruction and register context, CVC4 is
instructed to check the satisfiability of these formulae and provide a satisfying model.

80 Chapter 5. Automated Test Generation

1 %%% Input Constraints
2
3 constraint_1 : BOOLEAN;
4 ASSERT constraint_1 = insn_S == 0;
5
6 constraintset : BOOLEAN = constraint1;

(a) Input constraints for our example in Figure 5.2. In this case, only a single simple constraint
is required.

1 %%% Output model
2
3 %%% Initial flag values
4 N : BITVECTOR(1) = 0bin0;
5 Z : BITVECTOR(1) = 0bin0;
6 C : BITVECTOR(1) = 0bin0;
7 V : BITVECTOR(1) = 0bin0;
8
9 %%% Initial register file

10 Reg : ARRAY BITVECTOR(4) OF BITVECTOR(32) = ... ;
11
12 %%% Constrained instruction field values
13 insn_cond : BITVECTOR(4) = 0bin1111;
14 insn_S : BITVECTOR(1) = 0bin0;
15
16 constraint_1 : BOOLEAN = TRUE;

(b) The result of using CVC4 on the input in Figure 5.9a.

Figure 5.9: Input constraints (excluding environment) and output from CVC4 when considering
the example in Figure 5.2.

set of constraints. These formulae exist in the context of a set of variables, including

registers and instruction fields, modelled as fixed-length bit vectors. As mentioned

above, the memory system is not modelled in detail. An abstract example of an input

file presented to CVC4 can be seen in Figure 5.8.

Once the constraints have been processed, GenTest requests that CVC4 determine

the satisfiability of a formula C representing the logical conjunction of each of the

constraints. CVC4 is also instructed to generate a model – if the formula C is satisfiable,

then this model represents a single example of instruction fields and register values

which would produce the desired path through the instruction. These fields and register

values are then used to encode a test instruction.

If the formula C is not satisfiable, then the path P cannot be exercised by any instruc-

tion. The path may contain conflicting control flow statements or have requirements

which cannot be satisfied by the testing environment. A practical example of this can

be seen in Figure 5.10. In this example, the path requires that the result of the addition

result causes both the N and Z flags to be set. However, an integer cannot be both

negative and zero, so this path cannot be exercised.

5.4. Test Generation 81

1 int32 a = read_register(inst.Rn);
2 int32 b = read_register(inst.Rm);
3 int32 result = a + b;
4 write_register(inst.Rd, result);
5 if(result == 0) write_Z(1); 1
6 else write_Z(0);
7
8 if(result < 0) write_N(1); 2
9 else write_N(0);

(a) An instruction implementation which contains conflicting paths – Z and N cannot both be
set simultaneously. However, an enumeration of all of the paths through this instruction would
include a path requiring that both Z and N are set.

1 %%% Constraint set preamble
2 ...
3 ...
4
5 %%% Constraints for conflicting path
6 constraint1 : BOOLEAN;
7 ASSERT constraint1 = 1
8 ((Reg[insn_Rn] + Reg[insn_Rm]) == 0);
9 constraint2 : BOOLEAN;

10 ASSERT constraint2 = 2
11 (((Reg[insn_Rn] + Reg[insn_Rm]) < 0) != 0);
12
13 contraintset : BOOLEAN = constraint1 AND constraint2;
14 CHECKSAT constraintset;
15 COUNTERMODEL;

(b) The CVC4 input generated for Figure (a)

Figure 5.10: These listings show an example instruction implementation which contains a
conflicting path, and the constraints generated in order to evaluate the conflicting path. In this
case, CVC4 will report that the constraints are unsatisfiable. The if statements marked 1 and
2 in Figure (a) produce the matching constraints in Figure (b).

82 Chapter 5. Automated Test Generation

1 add r3, r9, #60

(a) The assembly code for the encoded instruction

Add Instruction Group Template

Cond 0 0 I 0 1 0 0 S Rn Rd Shift

Add Register-Immediate Template

Cond 0 0 1 0 1 0 0 S Rn Rd Rotate Immediate

Encoded Instruction

1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0

(b) The bitwise encoding of the instruction. Fields with values selected by the constraint satis-
faction process are in bold. Fields randomly selected are in blue.

Figure 5.11: The resultant instruction, given the constraint set solution in Figure 5.9b

5.4.3 Instruction Encoding

Once a set of constraints for a particular path have been generated and solved, the model

provided by CVC4 can be used to encode an instruction and register file context. The

instruction can then be executed with the given context in order to exercise the original

path to be tested. The instruction encoding process is relatively straight-forward and

simply involves inserting the values provided by CVC4 into the appropriate fields in

the instruction format for the instruction under test. Once an instruction and context

have been generated, they can be stored for later use as part of a test suite.

For the motivating example (Figure 5.2), a set of test cases can be produced, includ-

ing register context, which will exercise the paths through the instruction not tested so

far. For example, the instruction given in Figure 5.11 can be generated given the con-

straint set solution in Figure 5.9b. Note that the constraint set solution does not select

source or destination registers, or an immediate value, since these do not influence con-

trol flow through the instruction and so can be selected to have default values (such as

zeroes) or at random (as in the example). However, the instruction is guaranteed to exer-

cise the non-flag-setting behaviour of the add instruction due to the correct selection of

the ‘s’ bit of the instruction encoding. Although this example is quite simple (requiring

only one field be assigned a value), paths which make use of the ARM shifting func-

tionality, or which have control flow which is dependent on run-time information, can

result in much more complex constraint systems and final instruction encodings.

5.5. Evaluation 83

5.5 Evaluation

This section demonstrates the effectiveness of the test generation techniques used by

GenTest, as compared with testing using only standard benchmark suites (as outlined

in Section 5.3.3). It is also demonstrated that GenTest is useful in practice, i.e. that it is

capable of identifying errors and inconsistencies in the model when compared against

a reference platform.

First, the evaluation methodology is described, before the ISA coverage for the

generated tests is compared to that of the SPEC and EEMBC benchmark suites. GenTest

is then applied to an ARMv5 model, and the results of executing the tests on GenSim,

the state of the art QEMU simulator, and the Simit-ARM simulator, using a Raspberry

Pi as a reference hardware platform, are presented.

5.5.1 Empirical Methodology

The GenTest testing methodology has been applied to most instructions of the ARMv5

ISA model first described in Chapter 4, excluding those which have special behaviours

such as system and coprocessor control instructions. While these instructions could

be covered by GenTest, their complex behaviours mean that they produce extremely

large numbers of possible paths and thus skew the results. Section 5.5.2.1 compares the

path and block coverage of the generated tests against two standard benchmark suites –

EEMBC 1.1 and SPEC CPU2006 (integer).

Each test consists of a single instruction encoding, alongside general-purpose reg-

ister and flag values providing context for the instruction. The output for each test is

the general-purpose register file and flag values of the processor after the instruction

has been executed. To evaluate GenTest, a test harness was constructed, which loads

each test, executes the test, and then records the result. This harness was then used to

execute tests generated by GenTest, using the GenSim simulator platform, the state of

the art QEMU simulator, and Simit-ARM [83], a fast simulator for the XScale archi-

tecture. Although not as well known as QEMU, Simit-ARM has seen significant use in

academia, such as in [37, 46, 92].

Since there is plenty of ARM reference hardware available, the same application

and test set is also executed, with no modification, on a reference hardware platform

(in this case a Raspberry Pi), and the final register and status flag values are recorded.

84 Chapter 5. Automated Test Generation

Figure 5.12: Aggregate path and block coverage for EEMBC and SPEC benchmark suites
compiled with GCC 4.7.2 and Clang 3.5 for ARMv5T, compared with coverage obtained using
GenTest’s generated tests. Even when testing with both EEMBC and SPEC benchmark suites,
only a small subset of paths are covered, meaning a large number of paths are untested and may
produce simulation bugs. In total, 1122 paths exist in the ARMv5T model.

These final register and status flag values can then be compared in order to detect faults

in the ARMv5 GenSim model.

This approach to testing is quite heavyweight and requires that some basic function-

ality in the simulator already exists, as the loading, execution and recording of results

is all done in the context of a guest program. In particular, this requires that some in-

structions are known to be correctly implemented. In situations where this is not the

case, test execution could instead be done using debug interfaces to the simulator and

reference hardware.

In the case where no such reference hardware is available, such as when prototyping

a new architecture or a new extension to an existing architecture, the user would need

to manually check the results of each test. However, since the user can be sure that any

given path is covered, a minimal test set can be generated, reducing the number of tests

results which need to be examined.

5.5. Evaluation 85

Instruction Reason for Exclusion
bkpt System-level instruction
cdp Coprocessor access instruction
ldc Coprocessor access instruction
mcr Coprocessor access instruction
mrc Coprocessor access instruction
mrs System-level instruction
msr System-level instruction
stc Coprocessor access instruction
swi System-level instruction
clz Operation does not exist in constraint system
ldm Looping control flow
stm Looping control flow

Table 5.1: Instructions excluded from testing. The top group consists of system instructions
which can have effects not visible to the architectural model. The bottom group consists of
instructions which have not been included for implementation reasons.

5.5.2 Key Results

5.5.2.1 Test Coverage

Once GenTest is applied, tests which cover a much wider range of blocks and paths

compared to standard benchmark suites are generated, as can be seen in Figure 5.12.

GenTest more than triples the path coverage over the entire SPEC benchmark suite. For

this vastly improved coverage, test cases for 851 paths are required as opposed to over

26 trillion dynamic instructions for a full run of SPEC.

However, GenTest is not yet able to handle the complete looping control flow in the

ldm and stm ARM V5T instructions (which account for 56 paths, including paths which

produce conflicts and thus cannot be tested). The ‘count leading zeroes’ operation is

also not currently supported (the clz instruction contains a single path). The remaining

non-tested but valid instruction paths consist of system instructions and instructions

which always produce an ISA mode switch (which are not tested here). The full list of

excluded instructions can be seen in Table 5.1.

Note also that the testing of memory accessing instructions is limited to only their

defined architectural behaviours in a user-mode context. The testing of these instruc-

tions in a full system context might also include the testing of the exception system

and of memory mapped I/O devices. Similarly, care must be taken when testing integer

divide or floating point instructions, since these have the capability to produce division

86 Chapter 5. Automated Test Generation

by zero and general floating point exceptions. The base ARM architecture does not

include such instructions, so this is not a problem in this case.

There are also 214 invalid instruction paths, half of which are detected and discarded

by a basic conflict detection system. The rest are passed to, and rejected by, CVC4.

Although this could be caused by flaws in the constraint solver, manual inspection

of these paths reveals that they do indeed contain conflicting control flow constraints

(mainly produced by combinations of edge cases in the ARM shifting operations).

So, in all, we have 851 tested paths (75.8%), 57 valid but untested paths (5.1%),

and 214 paths detected as invalid (19.1%) giving us a total of 1122 considered paths.

The ISA model analysis and test generation takes approximately 12 seconds. The tests

themselves execute in simulation in around 6 seconds. Even without taking into account

repeated use of the same test suite, this is much faster than a multi-hour run of the SPEC

suite.

5.5.2.2 Generated Tests

Table B.1 shows statistics about the tests which GenTest was able to generate. Al-

though the actual architecture description separates many instruction types by their

operand encoding mode (e.g., register-immediate, register-register shifted by immedi-

ate, register-register shifted by register), Table B.1 groups these into instruction types in

order to declutter the table. The instruction type name is listed in the left-most column.

The Tested Paths column displays the number of paths for which a test was success-

fully generated. Cvc4 Rejected Paths refers to the paths where the constraint set was

unsolvable by Cvc4. The Average Path Length and Average Constraints columns

refer to the average length of each successfully tested path, and the average number of

constraints in solvable constraint systems.

So, on average, the add instruction has the longest paths to be tested. Other arith-

metic instructions also had long path lengths, probably due to the presence of the com-

plex ARM operand shifting behaviours. The instructions with the most complex paths

(i.e., those with the largest number of constraints) were memory access instructions

such as ldr and str (and their variants). In these cases, GenTest has introduced additional

constraints on the range of addresses allowed to be accessed, which has increased the

constraint count compared to the arithmetic instructions. These instructions also have

multiple addressing modes (such as post- and pre-increment, immediate and register

5.5. Evaluation 87

Platform Type Native Architecture Faults
Raspberry Pi Hardware Platform ARMv6T2 –
GenSim Generated Simulator ARMv5T 3
QEMU Hand-Written Simulator ARMv7 2
SimIt-Arm Partially Generated Simulator ARMv5T 10

Table 5.2: A summary of the reference and test platforms. Although QEMU and the reference
hardware platform implement later versions of the ARM architecture, the architecture is fully
backwards compatible, so test instructions run on an ARMv6 platform will have the same
outputs as those run on an ARMv5T platform.

indexed etc.), each of which requires a specific set of instruction field values (and thus,

additional constraints) to select.

On the other hand, instructions which do not have access to the advanced ARM

operand shifting functions have considerably fewer paths. For example, the smull and

smlal (Signed Multiply Long and Signed Multiply Accumulate Long) instructions have

only two paths each: one path for a flag-setting behaviour, and one for a non-flag-setting

behaviour. However, as will see in Section 5.5.2.3, the low number of possible paths

through these instructions does not preclude them from being incorrectly implemented.

5.5.2.3 Test Results

Of course, automated test generation is not useful unless the tests are capable of detect-

ing faults in the ISA model or in its implementation. As mentioned above, the generated

tests were run on a reference hardware platform and several simulators (including Gen-

Sim). A summary of these test platforms can be seen in Table 5.2.

After generating and running a full set of tests on each platforms, it can be seen that

GenSim and QEMU performed well. Although several faults were detected, these were

related to behaviours which are specified to be UNDEFINED or UNPREDICTABLE in

the ARM Architecture Reference Manual [4]. Specifically, these faults were related to

the setting of flags in 64 bit multiply instructions when the instruction attempts to write

both halves of the result to the same register.

While faults relating to undefined behaviour are not problematic when executing

‘correct’ programs, there may be issues when perfect simulation is required, such as

when verifying hardware or observing the behaviour of malware. In these cases, the

correct simulation of even Unpredictable and Undefined operations is extremely im-

88 Chapter 5. Automated Test Generation

 0

 20

 40

 60

 80

 100

10000 100000 1000000

%
 C

ov
er

ag
e

Total number of randomized tests

Path coverage obtained using randomized tests

Figure 5.13: Graph showing the number of tests required to obtain a given path coverage by
randomised and path-based test generation systems. The result is given as a percentage of paths
covered by the path-based test generator. Even when using large numbers of randomised tests
(>1,000,000), the path coverage obtained is poor.

portant. In particular, malware may be able to detect that it is running in a simulated

environment by attempting these undefined operations and examining the results.

On the other hand, several bugs were discovered in Simit-ARM. Of the 10 faults

detected, 4 were related to the setting of the carry flag under certain circumstances,

and 1 was related to incorrect implementation of signed multiply instructions. These

behaviours are architecturally incorrect, meaning that even correct and ‘well behaved’

programs would behave incorrectly if these instructions were executed. The 5 remaining

faults were due to UNDEFINED behaviour (as with QEMU and GenSim).

The incorrect carry flag behaviour in Simit-ARM is caused by an edge case in

the shift-by-register operand mode in the implementation of certain ARM arithmetic

instructions. The affected instructions are bic, orr, eor, and teq. In these instructions, a

left shift of 1 by 32 should result in the carry flag being set (as can be seen on page 450

of [4]). However, executing such an instruction in Simit-ARM does not result in the

carry flag being set.

5.5.3 Comparison

In this section GenTest is compared to a simple fuzzing test approach, whereby random

but valid instructions, and register contexts for those instructions, are generated and

5.5. Evaluation 89

evaluated. Although this scheme is simple to implement, it is incapable of generating

tests for memory-accessing instructions, since it cannot guarantee that such an access

will be to a mapped or valid region of memory. It is also incapable of generating

branching instructions as the branch target cannot be guaranteed to be safe. The fuzz

tester used was generated from the same ADL description as used in the rest of this

chapter.

Fuzz testing is typically used when testing software libraries and APIs (as in [27]),

and systems with well-structured inputs (e.g. [113]). Inputs may be generated com-

pletely from scratch, or based on known-correct inputs which have been mutated

in some way. In this case (i.e., the testing of an instruction set simulator), the well-

structured input is considered to be a single instruction and register context. In order

to ensure that valid instructions are generated, the instruction decode and disassembly

information provided in the ArchC architecture description is used to guide values for

instruction fields. This gives 86 instruction ’templates’ to be tested (excluding branch

and memory instructions, as described above). The fuzz tester then generates a number

of randomised instantiations of these templates.

In order to compare the randomised test suite against GenTest, the number of instruc-

tion paths covered by the randomised test suite using different quantities of template

instantiations is recorded. This is presented in Figure 5.13 as a proportion of paths

covered by GenTest.

The randomised test suite was also executed on the Raspberry Pi reference platform

and the results of the tests were compared. The randomised test suite did not cover any

additional paths, nor discover any additional bugs, when compared to the test suite gen-

erated by GenTest. As can be seen in Figure 5.13, even large numbers of randomised

tests are unable to cover more than 60% of possible paths compared to the path-based

test generation. Such large numbers of tests also present a significant problem if refer-

ence hardware is resource limited or unavailable, or if simulation speed is slow such as

in cycle accurate simulation.

5.5.4 Strengths and Limitations

While GenTest has been useful during the development and testing of the GenC proces-

sor models, there are several limitations. The main limitation is that the system cannot

test anything which has not been described. For example, it would be impossible for

90 Chapter 5. Automated Test Generation

this system to test the behaviour of an edge case which exists in hardware but which

has not been described in the processor model, as the test generation system does not

know that the edge case exists.

This is true of all test generation systems which rely on analysing either an abstract

processor model, or directly analysing the source code of an ISS. While comprehensive

randomised testing can (eventually) detect such behaviours, randomised testing is not a

practical solution to the problem, as shown in Section 5.5.3.

This system also requires that the instruction decoding and disassembly information

provided by the model is correct and reasonably complete. However, this portion of

the architecture description is much simpler to exhaustively test than the instruction

semantics. Very little work has been done in this specific area and instruction decode

systems are usually assumed to be correct. This does cause problems in architectures

such as ARM, where ‘gaps’ in the instruction encoding are gradually filled by newer

architecture versions and instruction decode becomes increasingly complex. For exam-

ple, the ‘Media Instruction Space’ is provided for multimedia acceleration instructions.

This space was empty in ARMv5, and has been populated by a considerable number of

instructions in ARMv6 and above.

GenTest is also unable to model instructions which make multiple accesses to the

same memory location. Instructions which atomically access memory (such as swap

and compare-and-exchange instructions) are usually implemented in this way and so

GenTest is unable to test these kinds of instructions. This is not a significant issue in

practise as this presents a minority of instructions. Two such instructions are present

in ARMv5 (swp and swpb) and these instructions are deprecated in newer versions of

the architecture, which uses a Load-Linked/ Store-Conditional synchronisation model

rather than a Compare-and-Swap model [4].

Instructions which modify system state in some way (e.g., switching between ARM

and Thumb mode, raising a software interrupt, breakpoint instructions etc.) are also not

practically testable by this system although the state-changing nature of this instructions

often mean that they cannot be effectively tested in isolation and thus require larger

and more detailed test suites. This type of instruction also typically interacts with

components of the system (such as syscall emulation models, system components, etc.)

which are not included in the GenC simulation model and are instead implemented

using e.g. C++ classes.

5.6. Conclusion 91

The current implementation of this system also does not support generating tests

for instructions which contain loops. This is an implementation problem rather than a

problem with the concept itself. Since tests are generated only for paths which contain

one loop iteration, many of the issues surrounding tests for such structures do not

apply here. However, this is not a significant concern as these kinds of instructions are

relatively uncommon in RISC architectures, other than in specific cases such as the

ARM ldm and stm instructions.

5.6 Conclusion

This chapter has demonstrated that an ad-hoc, benchmark-driven approach to testing for

instruction set simulators is not sufficient to obtain good test coverage or to detect many

bugs, by using novel intra-instruction path profiling techniques. The coverage of both

the SPEC 2006 and EEMBC benchmark suites was examined, and it was demonstrated

that despite the wide range of complex workloads, neither suite produced good ISA

coverage and thus are both unsuitable for use as comprehensive test cases.

A novel test generation infrastructure for testing instruction semantic descriptions

was presented, which operates by enumerating all paths through an instruction, formu-

lating a set of constraints based on the instruction and context leading to this path, and

then solving those constraints using a standard constraint satisfaction package. These

generated tests are able to obtain improved coverage of the instruction space compared

with ad-hoc testing, and several bugs in two popular instruction set simulators were

detected, as well as in the architecture description described in Chapter 4.

Although this chapter has shown the presented test generation methodology to

be effective, several key limitations based on dataflow bugs and ISA syntactic bugs

were identified, and solutions to these problems were suggested. Finally, GenTest was

compared against a ‘fuzzing’ based tester, and it was demonstrated that even large

numbers of randomised tests are unable to obtain path coverage comparable to the

targeted test suites produced by GenTest.

Both the demonstrated coverage analysis and test generation techniques contribute

significantly to the correctness objective, as it is now possible to determine the effec-

tiveness of test cases applied to the GenSim simulator, and to generate new, useful test

cases to cover any gaps.

93

Chapter 6

Efficient Full-System Simulation

6.1 Introduction

Up until now we have concerned ourselves mainly with so-called ‘user-mode’ simula-

tion, where OS related operations are trapped and handled by our simulator infrastruc-

ture. In this simulation mode, no interrupts or exceptions are handled by the simulated

processor. For all intents and purposes, the simulated program ‘believes’ itself to be

running in a typical Linux environment.

Although this mode of simulation can be useful for testing and debugging user-

mode software, it is impossible to simulate a full operating system or bare metal runtime

environment. For this we need ‘full-system’ simulation, where a full guest machine

is simulated, including memory mapped I/O devices, a Memory Management Unit

(if one exists in the real guest system), and exception and interrupt mechanisms. Full

system simulation is much more capable than user mode simulation, since it allows for

the simulation of a full operating system rather than just individual applications, but

typically comes with a performance penalty, mainly due to the increased complexity of

memory accesses due to the presence of an MMU.

How this chapter is structured

• We begin by discussing the additional requirements for full system simulation.

• We then discuss improvements to interrupt handling in functional simulation.

• Finally, we discuss techniques for improving the performance of memory ac-

cesses in the context of a simulated MMU.

94 Chapter 6. Efficient Full-System Simulation

User-Mode Simulation

Simulated
CPU

Syscall Emulation Layer

Flat
Memory

Host
Console

Host
Timers

Host
File System

Full System Simulation

Simulated
CPU

Simulated
MMU

Simulated
Serial Port

Host
Console

Simulated
Timers

Host
Timers

Simulated
Storage
Device

Host
File System

Physical
Memory

Figure 6.1: Diagram comparing user-mode simulation with full-system simulation. While user
mode simulation involves using a system call emulation layer to abstract away details of device
accesses and memory management, full system simulation must address these issues directly.

6.2 Full System Simulation

Simulation of a user-mode program is analogous to running a program using a managed

runtime environment such as Java or the Microsoft CLR. The program is encoded in

a form which must be interpreted or translated prior to execution, and a well-defined

interface is used to communicate between the program and the ‘host’ environment. The

program begins executing at a defined entry point, and the system usually has a defined

termination condition (i.e., some kind of ‘exit’ syscall).

However, full-system simulation is much more complex. We must now worry about

the guest system architecture, such as the interrupt and exception model, the virtual

memory model, and external devices which now provide the interface between the

simulated system and the host. Execution typically begins with the system taking a

‘reset’ exception, and there may be no explicit termination condition for the system.

Full System simulation also requires that we simulate the individual hardware devices

in a system, rather than providing a system call interface, as can be seen in Figure 6.1.

Additionally, while most instruction set architectures have a conceptually similar

instruction execution model (i.e., most architectures fetch, decode, and execute instruc-

tions which perform arithmetic and/or memory operations), system architectures are

much more diverse. System configuration might be done via auxiliary registers (as with

ARC), via a system coprocessor (as with most ARM architectures), or via a memory

6.3. Interrupt Handling 95

Simulated
Serial Port

Simulated
Interrupt

Controller

Simulated
CPU

1

2

3

(a) The flow of interrupts
through a simulated system

1 ldr r0, [r1, #8]
2 INTERRUPT CHECK
3 adds r0, r0, r2
4 INTERRUPT CHECK
5 beq 0x1234
6 INTERRUPT CHECK
7 str r0, [r1, #12]
8 INTERRUPT CHECK
9 add r1, #4

10 INTERRUPT CHECK
11 b 0x1220
12 INTERRUPT CHECK

(b) Interrupt checking
after each instruction

1 ldr r0, [r1, #8]
2 adds r0, r0, r2
3 beq 0x1234
4 INTERRUPT CHECK
5 str r0, [r1, #12]
6 add r1, #4
7 b 0x1220
8 INTERRUPT CHECK

(c) Interrupt checking
after each branch in-
struction

Figure 6.2: Interrupts must be propagated through the simulated system (Figure (a)). Once they
reach the simulated CPU, there is some leeway in when they are handled (Figures (b) and (c)).

mapped configuration device (as with ARM Cortex-M series devices). Virtual memory

models are similarly diverse: the ARC architecture directly exposes its TLB, requiring

that the operating system manage it directly, while x86 and ARM systems manage the

TLB as a cache and perform page table lookups automatically. This image is further

complicated by the many differences between individual versions of the same architec-

ture: early versions of the x86 architecture such as 286 share very few similarities with

modern x86-64 architectures.

6.3 Interrupt Handling

As we are simulating a full system, we must now concern ourselves with devices in

our simulated system which are external to the processor, such as timers, serial commu-

nications devices, graphics devices etc. These devices are typically attached to a bus

and accessed by manipulating memory mapped hardware registers. External devices

may also raise interrupts which must then be serviced by the processor. Interrupts are

typically handled via an interrupt controller, which may itself be an external device

with memory mapped registers.

96 Chapter 6. Efficient Full-System Simulation

In an example system (Figure 6.2a), some data might be received by the serial port

device 1 . This might cause an interrupt to be generated, and propagate to the interrupt

controller 2 . Depending on the configuration of the interrupt controller, the interrupt

might be masked or manipulated in some way, and eventually an interrupt line into the

processor itself may be raised 3 . The processor will check for interrupts at instruction

boundaries, provided that the processor is in a state where interrupts can be taken, and

the interrupt will eventually be serviced.

In simulation, the architectural behaviours involved in handling interrupts must be

faithfully reproduced, both at the system level and in the processor itself. The internal

behaviour of the interrupt controller must be modelled as much as is required to obtain

architecturally correct behaviour. However, due to the asynchronous nature of external

interrupts, there exists some leeway in when an interrupt is serviced when performing

functional simulation. Since no precise timing behaviour is considered in the simulation

systems outlined in this thesis (i.e., GenSim is not intended to be a cycle accurate

simulator), the handling of interrupts can be slightly delayed, provided any interrupts

which arrive at the core are eventually serviced. This means that we do not need to check

for interrupts at every instruction boundary (Figure 6.2b). The common approach is to

check for interrupts approximately at each basic block (Figure 6.2c) or trace boundary

(depending on how the simulator is implemented). This is critical in region based DBT

systems such as GenSim, since these rely heavily on inter-instruction optimisations,

which are inhibited by frequent interrupt checks.

6.4 Memory Management

One of the largest costs when simulating a full system is that of accurately modelling

the potentially complex behaviours of the guest Memory Management Unit (MMU).

The MMU is the primary hardware structure required to implement virtual memory in

the guest system. Different architectures tend to have vastly different virtual memory

architectures, and thus they require different strategies for MMU simulation. A particu-

larly notable example is the x86 virtual memory system, which has been shown to be

Turing complete independently of the CPU core itself [6].

In this Section, we will briefly introduce Virtual Memory, and the complexities

it presents in a simulation environment, before discussing various techniques for ef-

6.4. Memory Management 97

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m
er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

In
st

ru
ct

io
n
 R

at
io

Loads Stores

Figure 6.3: Proportion of memory instructions in SPEC benchmark suite. Instructions are
counted only once, even if they cause multiple memory accesses, such as with the ldm and stm
instructions.

ficiently handling memory translations and virtual memory systems. Management of

memory, and efficiency of memory access, is extremely important for the overall perfor-

mance of a simulator. Memory accesses typically constitute 30% - 55% of all instruc-

tions (see Figure 6.3), and so simulated virtual memory translations, and the conversion

of a guest physical address to a host virtual address must be performed as efficiently as

possible if a high speed simulation is desired.

6.4.1 Introduction to Virtual Memory

Virtual Memory is a technique implemented in hardware and software used to enforce

separation of user programs and to allow paging techniques to be used. This is achieved

by using a Memory Management Unit to translate virtual memory addresses into phys-

ical memory addresses on a page-by-page basis. Contiguous virtual memory pages do

not need to map to contiguous physical memory pages, and paging techniques mean

that a given virtual memory page need not be present physical memory at all. This

allows a system to give each process its own complete view of a flat and contiguous

address space (see Figure 6.4).

In order to describe how virtual addresses should map to physical addresses, a page

table is used. This is a data structure stored in memory, which contains a complete

description of how the address for each memory page should be translated. Often a

98 Chapter 6. Efficient Full-System Simulation

Process 1 Process 2 Process 3
Physical
Memory

Operating
System

MMU

Page
Tables

Figure 6.4: When using Virtual Memory, each process has an isolated memory image. Physical
regions can be mapped into multiple virtual regions (Green), and contiguous virtual pages do
not need to map to contiguous physical pages (Red).

multi-level page table is used in order to save memory space. A page table can also

contain additional information, such as describing the permissions required to access

a particular page of virtual memory. A page of memory may be marked as readable,

writeable, executable, or any combination of these. If an invalid operation is attempted

on a page of virtual memory (for example, writing to a page which is not marked as

writeable), then a memory system exception (usually called a page fault or permission

fault) is produced. This is typically implemented as a synchronous exception on the

processor, which, in contrast with external interrupts, must be handled immediately.

When encountering an instruction which should access memory, a processor which

has virtual memory enabled will first compute the virtual address to be accessed, and

then use the MMU to convert this virtual address into a physical address. The access

permissions described by the page table are checked, and then this physical address is

then used to access the memory system. Since doing a page translation via the MMU

might require several memory accesses in order to traverse the page table, a Translation

Lookaside Buffer (TLB) is often used as a cache of page translations.

Although virtual memory is often used in conjunction with several other techniques

such as swapping, where increased memory pressure causes some pages of memory to

be temporarily moved out of memory and onto a backing store, these are implemented

at the OS layer rather than in hardware, so they should operate correctly in our simu-

6.4. Memory Management 99

Device

Guest Physical Address Space

Map

Code DeviceContiguous or Demand-Paged memory

Figure 6.5: When simulating a full system, memory mapped devices and self modifying code
must be correctly dealt with. Although a scheme such as those outlined in Figure 4.13 can be
used to allocate guest physical memory, device and code regions must still be tracked.

lator provided that we correctly implement the required hardware features for virtual

memory.

6.4.2 Memory in Simulators

Several approaches exist for the implementation of memory systems in instruction set

simulators. The most popular, and most flexible, is to demand-allocate pages of guest-

physical memory as they are required by the guest. This has several advantages over

alternative approaches such as allocating the full guest address space up-front, which

typically requires a host system with a larger address space than the guest system. In

particular, this up-front allocation scheme can be difficult to implement when simulating

64-bit guest systems as there is not enough host address space available to hold even a

reasonably restricted 64-bit guest address space.

However, in user space simulation of a 32-bit guest system, a demand-paged imple-

mentation introduces unnecessary overheads, as each guest memory translation must

be done via a simulated page table. Using an up-front allocation scheme avoids these

overheads, instead relying on the host OS to manage memory effectively. Flatly allocat-

ing the 2-4GB of memory required in this approach is not typically a problem, as the

host OS will itself only reserve these pages, and only allocate them to the simulator as

they are required.

The situation becomes more complex when full system simulation is introduced.

The simulated system now might include memory mapped devices and virtual memory

systems. All guest memory accesses must now have their addresses translated from

guest virtual to guest physical addresses, and these physical addresses might point to a

memory mapped device rather than a memory page. When using a DBT system, care

100 Chapter 6. Efficient Full-System Simulation

Target
Machine

Host
Machine

(A) (B)

(C) (D)

Virtual Address Physical AddressISS Software
MMU

ISS Memory
Emulation System

Virtual Address Physical AddressHost Machine
Hardware MMU

Figure 6.6: A diagram showing the progression of a guest virtual address into a host physical
address. Initially a memory access is made by a guest application with a guest virtual address
(A). The ISS software MMU uses the guest page tables to translate this address into a guest
physical address (B). This address is then further translated into a host virtual address (C), rep-
resenting the actual storage location on the host machine before being served by the underlying
host machine hardware, and translated into a
host physical memory address (D)

must be taken to invalidate any translated code pages which are modified. Figure 6.5

gives an outline of full system memory simulation.

Due to the large number of memory accessing instructions encountered in most

applications (as well as the instruction fetch operations which are also present on real

hardware), it is extremely important to handle guest memory accesses as efficiently as

possible in order to obtain good simulation performance.

6.4.3 Virtual Memory In Simulation

When running natively, virtual memory addresses are translated into physical addresses

using the Memory Management Unit. In simulation, an additional step is present, as

guest physical addresses must then be further translated into host virtual addresses. This

process is shown in Figure 6.6.

To perform guest virtual to guest physical address translation, each of the structures

required for hardware virtual memory must be modelled. For cycle accurate simulation,

this includes detailed models of the MMU (including any state machine it implements

in order to perform page table lookups), as well as a detailed model of the TLB, which

may have a complex or pseudo-random replacement policy. In functional simulation,

6.4. Memory Management 101

the TLB is often not accurately modelled, and can often be omitted entirely, provided

that the architectural behaviour of the system does not depend on the presence of the

TLB.

Somewhat surprisingly, omitting the TLB in simulation comes with a cost: travers-

ing the guest page table for each memory access is very expensive, especially if a lookup

is required for instruction fetches. Just as the TLB is used in hardware to amortise ex-

pensive page table lookups, a similar structure can be used to accelerate simulated

memory accesses. Other techniques can also be used to eliminate or reduce translation

overheads.

Virtual memory simulation can also be extended to allow efficient detection of self-

modifying code. Detection of self-modifying code in a simulator using Dynamic Binary

Translation has similar costs to support for virtual memory as each guest memory write

must be checked to see if it modifies a translated region of the guest application. Self

modifying code is not particularly prevalent in ‘normal’ software outside of dynamic

language runtimes such as Java, Microsoft’s CLR, and the JavaScript runtimes em-

bedded in modern web browsers. However, when simulating a full operating system,

application code can be arbitrarily loaded and moved by the operating system and so

support for this becomes critical.

6.4.4 Software Cache Based Approaches

The obvious way to avoid the cost of a full MMU translation, including a page table

walk, on each guest memory access, is to implement a simulated structure similar

to a TLB. On systems where the contents of the TLB is not architecturally visible

(which includes most commonly used architectures such as x86 and ARM), the structure

of this cache does not need to match that of a real TLB. A software cache can be

made much larger than would be feasible for a hardware TLB, although typically the

associativity is much lower. Hardware TLBs are typically highly associative, which

can be implemented efficiently in hardware but such parallel lookups are expensive to

perform in software.

One disadvantage with using this cache based approach is that memory mapped

devices, as well as the potentially complex permission systems must be correctly han-

dled. When implemented in a DBT, this means that a large amount of code, including

several additional basic blocks, must be emitted for each memory accessing instruction.

102 Chapter 6. Efficient Full-System Simulation

Tag

Host V. Page Base
Flags

Page Index Offset

Host Virtual AddressGuest Virtual Address

Page Index Offset

Cache
Cache Entry1 2

3

(a) Data structures/data flow

Guest
Virtual

Address

Lookup
Cache
Entry

Does
Tag Match?

Permission
Check OK?

Page is
a device?

Compute
Address

Perform
'slow-path'

access

Host
Virtual

address

1 2

3

Y

N

Y

Y

N

(b) Control flow

Figure 6.7: An overview of the data and control flow when using Cache based memory transla-
tion. Figure (a) shows a high level overview of the data structures and data flow involved, while
Figure (b) shows a flow diagram of control flow for a memory access.

The typical execution flow when evaluating the cache can be seen in Figure 6.7. In

1 , the page index is extracted from the guest virtual address. This is converted to a

cache index using a modulo operation. Once the correct entry is found, the entry’s tag is

compared against the page index 2 . If the tag does not match, a ‘slow-path’ translation

is performed and the entry replaced. If the tag does match, a permission check must be

performed using the flags stored in the cache entry. If this check fails, a memory fault

is triggered and the access is aborted. Finally, the host virtual page base is combined

with the guest virtual page offset to form the final host virtual address 3 .

Several caches, each intended for different classes of memory access (e.g., reads,

writes and fetches) or privilege levels (user/kernel mode) might be kept (such as the

‘Page Translation Caches’ in [104]), which reduces but does not eliminate the problem

of checking permissions. Keeping additional caches also increases data cache pressure

on the host machine, means that pages which are both read and written must be loaded

into the cache twice, and increases the cost of invalidations.

Several operations require the invalidation of some or all of this cache. Guest TLB

manipulation operations (such as the TLB flush often required when a guest OS context

6.4. Memory Management 103

switch occurs) require that some or all of the cache is invalidated. Similarly, the cache

may require invalidation when new regions of code are translated into host machine

code, in order to ensure that any guest self-modifying code is correctly detected and

those translations invalidated.

6.4.4.1 Generated Code

Figure 6.8 shows an example of the LLVM code required to implement a memory access

when using the cache-based approach to memory translations. A fairly considerable

amount of code is required, since we must:

1. Look up the correct entry in the cache

2. Check that the cache entry is valid and compare the tags

3. Perform any necessary permission checks

4. Determine if this page points to a memory mapped device

5. Perform a ‘slow path’ lookup if the cache entry is not valid

6. Translate the guest virtual address to a host virtual address if the memory access

should succeed

7. Raise a memory exception if the access should fail

As can be seen from Figure 6.8, this requires a considerable number of additional

basic blocks. Although this code can be extracted into a separate function, the frequency

of memory accesses means that it should be inlined. This places a large amount of

pressure on both the applied LLVM optimisations, and on the back-end code generator.

6.4.5 Efficiently Handling Invalidations

There are several techniques possible for handling partial and full invalidations of the

structures required for memory translation. These invalidations are required in a variety

of contexts, including guest TLB invalidations and page table modifications, as well as

when required by the simulation infrastructure, such as when DBT translations occur.

We will discuss three possible schemes for invalidation:

• A Naïve scheme, where each entry in the structure is overwritten by default

entries.

• A Generational scheme, where each entry carries a generation which is used to

determine if it is valid.

• A Lazy memory protection based scheme, where host memory protection is used.

104 Chapter 6. Efficient Full-System Simulation

1 ...
2 %reg_val = load %rb0_r11
3 %addr = add %59, -32
4 %addr_shift = lshr %addr , 12
5 %addr_index = and %addr_shift , 2047
6 %addr_tag = and %addr , -4096
7 %tag_ptr = getelementptr %tlb , 0, %addr_index , 0 1
8 %tag = load %tag_ptr
9 %tag_matches = icmp eq %addr_tag , %tag 2

10
11 br %tag_matches , label %permission_check_block , label %not_matched
12
13 permission_check_block:
14 %perms_ptr = getelementptr %tlb , 0, %addr_index , 4 3
15 %perms = load %perms_ptr
16 %cpu_mode_ptr = getelementptr %cpu , 0, %mode_index
17 %cpu_mode = load %cpu_mode
18 %allowed = icmp gte %cpu_mode , %perms
19
20 br %allowed , label %device_check_block , label %exit
21
22 device_check_block:
23 %flags_ptr = getelementptr %tlb , 0, %addr_index , 3 4
24 %flags = load %flags_ptr
25 %8 = and %flags , 1
26 %9 = icmp eq %8, 0
27 br %9, label %memory_access , label %device_access
28
29 not_matched: 5
30 %rslt = call @cpuRead32(%ctx , %addr , %value)
31 %fail = icmp ne %rslt , 0
32 br %fail , label %exit , label %continue
33
34 device_access:
35 br label %exit
36
37 memory_access:
38 %base_ptr = getelementptr %tlb , 0, %addr_index , 2 6
39 %base = load %base_ptr
40 %aligned = lshr %addr , 2
41 %offset = and %aligned , 1023
42 %host_virt_addr = getelementptr %base , %offset
43 %tmp = load %host_virt_addr
44 store %tmp , %value
45 br label %continue
46
47 exit: 7
48 call memory_exception(%cpu)
49 ret 0
50
51 continue:
52 store %value , %rb0_r0
53 ...

Figure 6.8: Example LLVM assembly for performing a memory translation using the cache-
based technique. A large number of basic blocks and branching instructions, as well as memory
accesses, are required on every memory access.

6.4. Memory Management 105

6.4.5.1 Naïve Scheme

This scheme involves simply overwriting each entry of the structure (be it a cache or

translation function table) with a default, invalid entry. This is the simplest to implement,

and block memory accesses can be performed fairly efficiently on modern processors.

However, the large number of invalidations required, combined with the potentially

large size of the structure being invalidated, mean that memory bandwidth can become

a problem in this situation. This scheme has an extremely large invalidation cost for

reasonably sized caches relative to the other schemes we will consider, so we will not

consider it further.

6.4.5.2 Generational Scheme

In this scheme, a generation is attached to each entry, and a global generation counter

is kept. On invalidation, the global generation counter is simply incremented, making

invalidations extremely cheap. When an entry is inserted into the structure, a copy of

the current global generation counter is attached. When an access is performed, the

current global generation counter is compared against the local generation count. If

they differ, then an invalidation must have been performed since the entry was inserted,

and so the entry is treated as invalid. So, although invalidations are very cheap, this

check must be performed on every single access to the structure.

Care must be taken since it is possible over a reasonably long simulation for the

generation number to overflow, which might cause problems if a short data type is

used to represent the generation number and some pages are infrequently accessed.

For this reason, we perform a complete flush (similarly to the Naïve scheme) when

the generation counter overflows. This happens extremely infrequently since a 32-bit

unsigned counter is used.

6.4.5.3 Lazy Scheme

This scheme uses host memory protection features in order to detect accesses to invali-

dated or stale data. When the structure is invalidated, each host page of the structure is

set to be inaccessible using host memory protection features (such as mprotect). When

a page of the structure is later accessed, the access generates a memory protection fault

(known in Linux as a ‘segfault’). This fault can be trapped, and in the fault handler the

page protections are reset and the page is individually invalidated. This reduces the cost

106 Chapter 6. Efficient Full-System Simulation

of a full invalidation compared to the Naïve scheme while avoiding the per-access cost

of the generational scheme. However, it does rely on efficient memory protection and

fault handling in the host operating system, and is also more complex to implement.

Note that crucially, the guest page size is not relevant to this technique, as the

memory being protected is e.g. the cache structures described above (Section 6.4.4), or

the Memory Translation Function table described below (Section 6.4.6.

6.4.6 Memory Translation Functions

This thesis presents a novel approach for accelerating memory translations. Rather than

keeping maintaining a TLB data structure, small memory translation functions for each

page of virtual memory are generated. A table is kept with an entry for each page of

guest virtual memory. Each entry in the table points to a function tailored to translating

addresses for that guest virtual page directly into a host virtual address. At startup, each

entry in the table points to a ‘default’ handler which will perform a full guest MMU

translation, and then generate a tailored function. The entry in the table is then updated

to point to this newly generated function, so that future memory accesses to the same

guest virtual page are able to directly translate the guest virtual address into a host

virtual address. If an access should succeed, it returns a host virtual address, otherwise

it returns an error code indicating why the access failed.

Figure 6.9 shows the process for performing a guest memory access when using

this memory translation approach. First 1 , the guest virtual page index is used to look

up the correct memory translation function in a table. The table has one entry per

possible virtual page, so no modulus operation is required. This value is guaranteed to

be a function pointer: once it has been looked up, it is called directly, taking the page

offset as a parameter. In the common case, the called function performs any necessary

permission checks 2 , and then combines the host virtual page base with the page offset,

to form the host virtual address 3 .

This memory translation function approach to virtual memory translations has a

key advantage over a cache-based approach: the generated function can be tailored to

the virtual page which is being accessed. A different function ‘template’ can be used

for each of the outcomes of a memory translation, which include:

1. The virtual address is valid and can be translated to a page of physical memory

(the common case)

6.4. Memory Management 107

Page Index Offset

Host Virtual AddressGuest Virtual Address

Page Index Offset

1

3

Translation Function

xorl %eax, %eax
movq host_page_ptr
andl $0xffff, %esi
orq %rsi, %rdx
retq

Table
2

(a) Data structures/data flow

Guest
Virtual

Address

Lookup
Table
Entry

Function
Returned

Error?

Perform
'slow-path'

access

1

Call
Function

Host
Virtual

address

2 3

Y

N

(b) Control flow

Figure 6.9: An overview of the data and control flow when using Function based memory
translation. Figure (a) shows a high level overview of the data structures and data flow involved,
while Figure (b) shows a flow diagram of control flow for a memory access.

2. The virtual address is valid and points to a memory mapped device

3. The virtual address is valid but the running guest process does not have permis-

sion to access it

4. The virtual address is not valid

The first situation, where the memory translation should succeed, is the common

case, and so this should be made to be the most efficient. In this case, we can generate

a simple function which will mask off the bits of the address corresponding with the

page base, so that we are left with the bits representing the page offset for the memory

access. We then combine these bits with the pre-translated address of the base address

of the correct host virtual page. We can then return this address and the memory access

can proceed.

In other situations, we have several options. A key aspect of these memory transla-

tion functions is that they do not perform the memory access themselves. If they did,

we would need to generate a large variety of functions (one for each possible memory

access length, and versions for reading and writing) which would negatively impact

108 Chapter 6. Efficient Full-System Simulation

host instruction cache performance. This means that for situation 2 , we cannot simply

perform the device access directly in the translation function.

Similarly, when differentiating between situations 1 and 3 , a choice can be made.

For example, permissions checks could be performed directly in the translated func-

tion. This would increase the size of the translation functions and slightly slow down

translations. Alternatively, these checks could be performed once when the function is

generated, in which case the function table must be invalidated or switched whenever

the guest system changes privilege level. One additional benefit of the second approach

is that it is easy to port to new architectures. If we need to check permissions in the

memory translation function, then the function generator needs to know the details

of how permissions are implemented on the guest system. If we instead perform the

permissions check at function generation time, then the permission check needs only to

be implemented in the guest MMU model, rather than in both the MMU model and in

the function generator. In practice, the first approach tends to be more efficient, since

the majority of memory accesses are to unprivileged pages, and privilege level changes

tend to happen fairly frequently (e.g. for system calls).

So, for these four different situations, we generate two types of function. The first

kind, used in situation 1 , actually performs a translation from a guest virtual address

into a host virtual address. The second type of function, used in situations 2 , 3 , and

4 , immediately returns an error code, indicating that the memory access should be

attempted using a method which can correctly handle the presence of devices and

translation faults. In this way we separate our memory accesses into an optimised

‘fast-path’, where the memory translations succeeds and the access can be immediately

performed, and a conservative ‘slow-path’, where the additional complex behaviours

required for accurate memory access handling can be correctly produced.

6.4.6.1 Generated Code

In this section we will briefly outline the actual generated x86 machine code used in

several of the memory translation function configurations. Figure 6.10 shows the gen-

eral template for the code for a successful memory translation. First, if the Generational

Invalidation Scheme is in use, the current generation is checked. If the function is still

valid, any permission checks are performed. If the permission check fails, then the

function returns an error code. Otherwise, the correct host virtual address is computed

6.4. Memory Management 109

Generation Check

Permissions Check

Address Computation

Tail-call Default Handler

Only in Generation Invalidation scheme

Only for pages requiring permissions

Only in Generation Invalidation scheme

Figure 6.10: Outline of code generated for a successful memory translation. Some sections
may be omitted depending on if privilege checks must be performed, or if the Generational
Invalidation scheme is in use.

1 ; Incoming guest virtual address in %esi, Guest CPU state struct pointer in %rdi
2 mem_txln_fun:
3 xorl %eax, %eax ; Zero out the %eax register
4 movq host_page_ptr(%rip), %rdx ; Load the host virtual page pointer
5 andl $0xfff , %esi ; Mask off the page offset
6 orq %rsi, %rdx ; Combine host page base and guest offset
7 retq ; Return the translated address
8 host_page_ptr:
9 .long 0x7f46a81b000

Figure 6.11: A simple example of a memory translation function using the Naïve or Lazy
invalidation technique. No privileges are required to access the page.

and returned. If the Generational Scheme is in use and the function is found to have

been invalidated, then a tail call to the default handler is performed, which will cause

a new function to be generated. The colours in this diagram match those used in the

assembly listings in Figures 6.11, 6.12, and 6.14,.

In Figure 6.11, we have example machine code generated for a function translat-

ing writes, using the Naïve or Lazy invalidation scheme. In this example, no special

permissions are required to access the page.

In Figure 6.12, we show machine code generated for translating accesses when us-

ing the Generational invalidation scheme. Here, an additional basic block is used. If the

generation in which the translation function is produced (in this case, ‘3’) differs from

the current generation (read from the CPU state data structure), then a new function

is generated by tail-calling the DefaultReadHandler function. Although this invali-

110 Chapter 6. Efficient Full-System Simulation

1 ; Incoming guest virtual address in %esi, Guest CPU state struct pointer in %rdi
2 mem_txln_fun:
3 cmpl $3, 0x24(%rdi) ; Compare the ’generation ’ entry of the CPU
4 jne 1f ; struct with the generation of this function
5 xorl %eax, %eax ; Zero out the %eax register
6 movq host_page_ptr(%rip), %rdx ; Load the host virtual page pointer
7 andl $0xfff , %esi ; Mask off the page offset
8 orq %rsi, %rdx ; Combine host page base and guest offset
9 retq ; Return the translated address

10 1:
11 movq DefaultReadHandler , %rax ; Load the address of the default handler
12 jmp *%rax ; and perform a tail -call
13 host_page_ptr:
14 .long 0x7f46a81b000

Figure 6.12: An example of a memory translation function for translating addresses for reads,
using the Generational invalidation technique. Again, no special privileges are required to access
the page.

1 ; Incoming guest virtual address in %esi, Guest CPU state struct pointer in %rdi
2 mem_txln_fun:
3 movl $0x1 , %eax ; Load an error code into the %eax register
4 retq ; Return the error code

Figure 6.13: When a translation fails for any reason (e.g., the virtual address is not mapped),
the generated memory translation function immediately returns an error code.

1 ; Incoming guest virtual address in %esi, Guest CPU state struct pointer in %rdi
2 mem_txln_fun:
3 xorl %eax, %eax ; Zero out the %eax register
4 cmpl $1, 0x20(%rdi) ; Compare the ’mode ’ entry of the CPU struct
5 adcl %eax, %eax ; with the value ’1’ (kernel mode)
6 movq host_page_ptr(%rip), %rdx ; Load the host virtual page pointer
7 andl $0xfff , %esi ; Mask off the page offset
8 orq %rsi, %rdx ; Combine host page base and guest offset
9 retq ; Return the translated address

10 host_page_ptr:
11 .long 0x7f46a81b000

Figure 6.14: Permission checks can also be performed as part of the translation function. Here,
if the CPU is not in Kernel mode, the access fails. Note that even if the permission check fails,
the translated address is still returned, and no additional branching is performed in this function.

6.5. Evaluation 111

1 %regval = load %rb0_r11
2 %addr = add %105 , -32
3 %page_index = lshr %addr , 12
4 %fn_ptr = getelementptr %txln_funcs , %page_index 1
5 %fn = load %fn_ptr
6 %txln = call %fn(%ctx , %addr) 2
7 %result = extractvalue %txln , 0
8 %fail = icmp ne %114 , 0 3
9 br %fail , label %exit , label %continue

10
11 continue: 4
12 %host_virt_addr = extractvalue %txln , 1
13 %value = load %host_virt_addr
14 store %value , %rb0_r0
15 br label %next_instruction
16
17 exit:
18 ret 0 5

Figure 6.15: Example Function Based LLVM assembly for the ARM instruction ldr r0,
[r11, #-28]

dation technique requires additional control flow compared to the others, the branch is

trivially predictable not-taken.

Figure 6.13 shows the code generated when the page translation fails. This imme-

diately returns an error code, which then signals to the simulation infrastructure that a

memory exception should be triggered.

Figure 6.14 demonstrates code similar to the first example, Figure 6.11, except that

in this case Kernel privileges are required to complete the memory access. The current

privilege level is read from the CPU state data structure and compared against the value

‘1’ (representing the Kernel privilege level). The error code is then set using an assembly

trick (using the adc instruction). Notice that no additional control flow is required to

implement this privilege check.

Figure 6.15 shows example LLVM assembly code for actually calling a memory

translation function. The correct function pointer is first looked up in the table 1 , before

it is called 2 . The error code returned by the function is checked 3 . If the error code is

0, the access succeeds and we perform a read from the pointer returned 4 . Otherwise,

we signal an exception 5 .

6.5 Evaluation

In order to evaluate each of the described memory access systems, as well as each of

the invalidation schemes, they have been added to GenSim. Due to the large number

of combinations of results, as well as the long run time of a full run of the SPEC

112 Chapter 6. Efficient Full-System Simulation

DBT Parameter Setting
Target architecture ARMv5T
Host architecture x86-64
Translation/Execution Model Asynch. Mixed-Mode
Tracing Scheme Region-based [18, 99]
Tracing Interval 30000 blocks
JIT compiler LLVM 3.5
No. of JIT Compilation Threads 11
JIT Optimisation -O3 & Part. Eval. [107]
Initial JIT Threshold 20
Dynamic JIT Threshold Adaptive [18]

Table 6.1: DBT System Configuration.

Name Translation Model Invalidation Scheme
Naïve Naïve Lazy
Cache Cache-based Lazy
Function Function-based Generational

Table 6.2: The ‘Key’ configurations selected for detailed study

benchmark suite, we present complete results for several key configurations, outlined in

Table 6.2. The ‘Naïve’ translation model is the same as the Cache model, except that a

function call is involved and the accesses cannot be optimised by LLVM. Additionally,

Table 6.1 shows the GenSim configuration used during evaluation. The host machine

used is described in Table 3.1.

Each SPEC benchmark has been run with its reference input (shorter input sets have

been used when the reference runtime is excessively long). Where multiple data sets

make up the complete reference input, these have all been executed and the total run

time of all data sets is presented. For example, the 473.astar benchmark has two input

sets, BigLakes2048 and Rivers. So, the run time presented for the 473.astar benchmark

is the sum of the run time for the BigLakes2048 data set and the run time for the Rivers

data set. We also present a Total run time, which represents the sum of the run times of

all reference data sets for all tested benchmarks.

6.5.1 Key Results

Figure 6.16 presents the overall performance of each of our memory access translation

configurations in terms of speedup versus the slowest. In all cases, the Cache and

Function configurations outperform the Naïve configuration, typically providing at least

6.5. Evaluation 113

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m
er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.Xalan

T
otal

S
p
ee

d
u
p
 o

ve
r

N
ai

ve
Naive Cache Function

Figure 6.16: A graph showing speedups obtained using each ‘Key’ configuration, treating the
slowest configuration as a base line. The Function configuration outperforms both other con-
figurations on all benchmarks except for Gcc, and delivers an overall speedup of 2.25x when
compared against the Naïve scheme.

Figure 6.17: Graph comparing Function configuration against Cache configuration. The Func-
tion configuration delivers a 1.2x speedup over a full run of the benchmark suite, with a maxi-
mum speedup of 1.65x on the 473.astar benchmark.

114 Chapter 6. Efficient Full-System Simulation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

462.libquantum

471.om
netpp

483.xalancbm
k

403.gcc

473.astar

445.gobm
k

458.sjeng

429.m
cf

400.perlbench

401.bzip2

456.hm
m
er

464.h264ref

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4
In

st
ru

ct
io

n
 R

at
io

S
p
ee

d
u
p

Loads Stores Speedup

Figure 6.18: This graph plots the ratio of memory access instructions for each SPEC benchmark,
and a linear regression on the speedup obtained using the Function model versus the Naïve
model on that benchmark. The benchmarks are sorted by ratio of memory instructions. The line
shows the speedup trend. It can be clearly seen that as the ratio of memory access instructions
increases, speedup trends upwards.

a 1.5x speedup. When considering total run time, the Cache configuration provides a

1.8x speedup, and the Function configuration a 2.25x speedup, when compared to the

Naïve configuration.

Furthermore, the Function configuration outperforms the Cache configuration in all

cases except for on the 403.gcc benchmark (the slowdown on this benchmark is exam-

ined in Section 6.5.2). Figure 6.17 shows the speedup of the Function configuration

when compared to the Cache configuration for each benchmark. Over the full bench-

mark suite, a speedup of 1.23x can be observed when using the Function configuration,

compared to the Cache configuration.

6.5.2 Analysis

Figure 6.18 shows a graph comparing the ratio of memory access instructions (split

into loads and stores) against the speedup obtained using the Function configuration

compared to the Naïve configuration, presented as a linear regression. As the ratio of

memory accesses increases (i.e., as more memory accesses are performed), the speedup

trends upwards significantly.

Two interesting outliers are present when examining these results. Firstly, that a

slowdown is observed on the 403.gcc benchmark when comparing the Function con-

6.5. Evaluation 115

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m
er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.Xalan

Average

Cache Function

Figure 6.19: This graph compares the total size of code produced for each SPEC benchmark,
when using the Cache and Function configurations, normalized against the Cache configuration.
A reduction in code size is observed on every SPEC benchmark, with an overall improvement
of 18%.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m
er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.Xalan

Average

Cache Function

Figure 6.20: This graph compares the total sequential code generation time for each SPEC
benchmark, when using the Cache and Function configurations, normalized against the Cache
configuration. An improvement is observed on all but two SPEC benchmarks, with an overall
improvement of 4%.

116 Chapter 6. Efficient Full-System Simulation

figuration against the Cache configuration, and secondly, that the 473.astar benchmark

obtains such a high speedup despite having a low ratio of memory access instructions

(see Figures 6.16 and 6.18).

The large speedup obtained by the 473.astar benchmark may be due to reduced

compilation latency of a critical section of code. Due to the asynchronous nature of the

DBT system used, reducing compilation latency can have unpredictable (but generally

positive) effects on performance, as pages will be translated in a different order.

Figures 6.19 and 6.20 show the overall translated code size and the total code

generation time (i.e., the time spent by LLVM optimising IR, and then translating it

into native x86 binary code) for each of the SPEC benchmarks, normalised against the

Cache configuration. Code size improvements are seen on all benchmarks, and code

generation speed improvements are seen on all but three benchmarks when using the

Function configuration.

Three benchmarks (429.mccf, 471.omnetpp and 483.Xalan) show an increased code

generation time when using the Function configuration when compared against the

Cache configuration. This could be due to code produced in the Function configuration

being smaller, but more complex to analyse and generate. By examining Figures 6.19

and 6.20, a correlation can be observed between code generation time and total code

size. On most benchmarks, code size is reduced enough to balance out the complexity

of analysis. However, in these three cases, code size is not reduced by enough (due to

some property of these three benchmarks) and so code generation time is increased.

Code generation speed is critical when executing highly phase-orientated workloads,

since new regions of code are constantly becoming hot and requiring compilation. Over

the full SPEC suite, a generated code size improvement of around 18% is observed, as

well as a 4% improvement in code generation speed.

In order to more accurately assess the various costs associated with each memory

access configuration, three microbenchmarks were executed using each configuration:

1. Access Cost: A microbenchmark which repeatedly access the same memory

location (Figure 6.22).

2. Invalidation Cost: A microbenchmark which repeatedly accesses a memory loca-

tion, and then performs a TLB flush (Figure 6.23).

3. Generation Cost: A microbenchmark which accesses one word each from a large

number of memory pages (Figure 6.24).

6.5. Evaluation 117

 0

 1

 2

 3

 4

 5

 6

Access Cost Invalidation Cost Generation Cost

Naive Cache Function

Figure 6.21: This graph shows the performance of each memory access configuration, on three
microbenchmarks, in terms of speedup over the Naïve configuration.

1 void bmark() {
2 // Get a pointer to a mapped memory location
3 volatile char *ptr = (volatile char*)0x60000000;
4
5 // Flush all TLB structures
6 flush_tlb();
7 for(int i = 0; i < 1000000; ++i) {
8 *ptr;
9 }

10 }
11
12 void main() {
13 // Set up page tables , exception vectors , etc.
14 setup_environment();
15
16 // Call the benchmark function in a loop
17 for(int i = 0; i < 20000; ++i) {
18 bmark();
19 }
20 }

Figure 6.22: Overview of the Access Cost microbenchmark. Over the run of the benchmark,
approximately 20 thousand TLB flushes and 20 billion memory accesses are performed. Each
memory access touches the same virtual page. The benchmark function is called a large number
of times in order to amortise the cost of the environment setup.

118 Chapter 6. Efficient Full-System Simulation

1 void bmark() {
2 // Get a pointer to a mapped memory location
3 volatile char *ptr = (volatile char*)0x60000000;
4
5 // Perform a memory access in order to ensure TLB structures are ’dirty’
6 *ptr;
7
8 // Perform a TLB flush
9 flush_tlb();

10 }
11
12 void main() {
13 // Set up page tables , exception vectors , etc.
14 setup_environment();
15
16 // Call the benchmark function in a loop
17 for(int i = 0; i < 10000000; ++i) {
18 bmark();
19 }
20 }

Figure 6.23: Overview of the Invalidation Cost microbenchmark. Over the run of the benchmark,
approximately 10 million TLB flushes and 10 million memory accesses are performed. Each
memory access touches the same virtual page. The benchmark function is called a large number
of times in order to amortise the cost of the environment setup.

1 void bmark() {
2 // Get a pointer to a mapped memory location
3 volatile char *ptr = (volatile char*)0x60000000;
4
5 // Perform a TLB Flush
6 flush_tlb();
7
8 // Touch a large number of pages
9 for(i = 0; i < 4096; ++i) {

10 *p;
11 p += 4096;
12 }
13 }
14
15 void main() {
16 // Set up page tables , exception vectors , etc.
17 setup_environment();
18
19 // Call the benchmark function in a loop
20 for(int i = 0; i < 50000; ++i) {
21 bmark();
22 }
23 }

Figure 6.24: Overview of the Generation Cost microbenchmark. Over the run of the benchmark,
approximately 50 thousand TLB flushes and 200 million memory accesses are performed. 4096
different pages are touched. The benchmark function is called a large number of times in order
to amortise the cost of the environment setup.

6.5. Evaluation 119

These three microbenchmarks are designed to assess the costs associated with each

of the major events relating to memory emulation. The Access Cost microbenchmark

simply assesses the time taken to access a memory location which is already in the

cache/has a generated function (i.e., it has already ‘warmed up’). The Invalidation Cost

microbenchmark assesses the cost of performing a TLB flush. A memory location is

first accessed on each iteration as TLB flush commands are ignored by each memory

model if the TLB is not ‘dirty’. Finally, the Generation Cost microbenchmark assesses

the cost of a ‘cache miss’ for each benchmark. This is performed by accessing one

word from each page of a large memory region, so that the cost of inserting an entry

into the cache or generating a function is paid once, but that cost is not amortized over

multiple memory accesses.

Each microbenchmark was executed a large number of times with each memory

access configuration, and the total run time for each was recorded. Figure 6.21 shows the

speedup obtained using each memory access configuration, when compared to the Naïve

configuration. The Function configuration obtains a speedup of around 5x compared to

the Naïve configuration, and around 2x compared to the Cache configuration, on the

memory access microbenchmark. This shows that it is indeed significantly faster when

performing individual memory accesses. We can also see that the invalidation costs

for the Function configuration are significantly lower than for the Naïve and Cache

configurations. However, the Generation Cost is somewhat higher for the Function

configuration than for the Cache or Naïve configurations, reflected in a small slowdown

on the Generation Cost microbenchmark. This is likely due to the increased complexity

of generating a memory translation function versus filling in a cache entry: memory

must be allocated from a dedicated memory zone, and the host Data/Instruction cache

coherence operations must occur, on top of the cost of performing the MMU lookup

(which is constant across all three configurations) and emitting the function binary code

itself (which is fairly cheap).

6.5.3 Analysis of Invalidation

The high function generation cost when compared with inserting entries into the cache

suggests that these costs may have something to do with the slowdown observed on the

403.gcc benchmark. Figure 6.25 shows a graph of the number of invalidations (i.e., TLB

flushes) performed per memory accessing instruction. While most of the benchmarks

120 Chapter 6. Efficient Full-System Simulation

0x10
0

1x10
-6

2x10
-6

3x10
-6

4x10
-6

5x10
-6

6x10
-6

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m
er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

In
va

lid
at

io
n
s

p
er

 M
em

 I
n
st

ru
ct

io
n

Figure 6.25: Graph showing invalidations per memory accessing instruction for each SPEC
benchmark. The 403.gcc benchmark produces TLB/memory model invalidations much more
frequently than any other benchmark.

perform such an invalidation much less frequently than once every 500,000 memory

instructions (i.e., less than 2× 10−6 invalidations per memory instruction), 403.gcc

performs invalidations much, much more frequently (approximately once per 180,000

memory instructions). This invalidation, and the consequent re-generation of memory

access functions, is likely to be what contributes to the slowdown on this benchmark

when using the Function configuration. Note that these invalidations are architectural

(e.g. TLB flushes) and do not depend on the memory translation model in use.

Many of the SPEC benchmarks have multiple input data sets making up their full

workload. 403.gcc is one such benchmark, and the full ‘Reference’ data set is composed

of 8 individual inputs. As might be guessed from the name, the 403.gcc benchmark is

essentially a packaged version of the GCC compiler. The inputs are preprocessed C

source files, which are then compiled into x86 assembly. Figure 6.26 shows a graph of

the number of invalidations performed per memory instruction for each of the datasets

for this benchmark. The s04 dataset causes a much larger number of invalidations to

occur than any other dataset.

Finally, Figure 6.27 shows the speedup obtained when using the Function configu-

ration versus the Cache configuration, against the frequency of invalidations (expressed

as invalidations per memory instruction). A clear trend can be seen: the more frequently

memory invalidations occur, the lower the speedup. The s04 dataset can be seen cir-

cled at the bottom right of the graph. This dataset performs invalidations much more

6.5. Evaluation 121

0.0x10
0

2.0x10
-6

4.0x10
-6

6.0x10
-6

8.0x10
-6

1.0x10
-5

1.2x10
-5

1.4x10
-5

1.6x10
-5

166 200 Cp-decl ctypeck expr g23 s04 scilab

In
va

lid
at

io
n
s

p
er

 M
em

 I
n
st

ru
ct

io
n

Figure 6.26: Graph showing invalidations per memory accessing instruction for each dataset of
the 403.gcc benchmark. The s04 dataset produces invalidations much more frequently than any
other dataset.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

10
-7

10
-6

10
-5

S
p
ee

d
u
p

Invalidations per Mem Instruction

Figure 6.27: Graph showing the speedup of each dataset of each SPEC benchmark when using
the Function configuration, relative to the Cache configuration, plotted against the frequency of
invalidations. 403.gcc’s data sets are plotted with ×s, and 403.gcc’s s04 dataset is circled.

122 Chapter 6. Efficient Full-System Simulation

frequently than any other SPEC dataset. In addition, the only three points which fall

below the 1x speedup line are data sets from the 403.gcc benchmark.

6.6 Conclusion

This chapter has presented a novel method for performing high speed memory transla-

tions in a full system simulator. A variety of memory translation configurations were

evaluated, and the novel Memory Translation Function based approach provided a large

speedup over all measured SPEC benchmarks when compared with a naïve implemen-

tation, and a significant speedup when compared against a state of the art approach on

all but one measured SPEC benchmark.

Memory translation and access speed is critical to the overall performance of an

instruction set simulator, due to the large proportion of memory accessing instructions.

While the state of the art approach, i.e. to use a cache similar to the TLB used in hard-

ware, provides good performance, this chapter has shown that more can be done to ac-

celerate memory accesses, mainly by improving the technique used to translate a guest

virtual address into a host virtual address, and to develop new techniques to invalidate

any cache structures used. This chapter has also investigated the costs of invalidating

these structures, and shown that although the novel Memory Translation Function ap-

proach provides improved memory access time, function generation is somewhat more

expensive than refilling a cache entry. Future work might focus on reducing function

generation costs in order to provide improved all-round performance.

The presented techniques contribute significantly to our performance objective, by

providing a significant speedup when compared against state of the art techniques,

and also our completeness objective, by providing a flexible method for implementing

memory translations in simulation.

123

Chapter 7

Conclusion

7.1 Introduction

This thesis has attempted to address three key objectives for Instruction Set Simulators:

performance, correctness, and completeness. This chapter will first assess each of the

contributions presented in this thesis in terms of these objectives (Section 7.2), as well

as being critically analysed, particularly in terms of trade-offs made in order to make the

evaluation of each contribution feasible, in Section 7.3. Finally, in Section 7.4, future

work and extensions to each contribution will be suggested, motivated again by each of

the original three objectives.

How this chapter is structured

• This chapter begins with a summary of the main contributions of this thesis

• Secondly, these contributions are critically analysed

• Finally, possible future work to extend these contributions is discussed

7.2 Contributions

This thesis has attempted to demonstrate solutions to a variety of relevant and difficult

problems in the field of high speed instruction set simulation. Three key objectives

were originally proposed: performance, completeness, and correctness, and techniques

have been presented which address each of these objectives. First, in Chapter 4, a Par-

tial Evaluation-based analysis was performed in order to enable the generation of a

124 Chapter 7. Conclusion

high-speed DBT system from abstract ADL descriptions, addressing the performance

objective. Then, in Chapter 5, the correctness objective was tackled: ADL descriptions

were used to evaluate a benchmark driven ad-hoc testing scheme, showing it to be insuf-

ficient, and then to generate a much more complete test suite based on constraint solving

techniques. Finally, in Chapter 6, challenges relating to full-system simulation were

addressed, and improvements to both interrupt handling and efficient memory address

translation were presented, contributing to both the performance and completeness

objectives.

7.2.1 Efficient Simulator Generation

The main contribution presented in Chapter 4 is a technique to produce a high speed

DBT module from a high level ADL description, integrated into our GenC ADL. While

several fully or partially generated simulation frameworks have generated DBT modules

in the literature, GenC is the first to perform a partial-evaluation driven analysis in

order to improve DBT performance, both in terms of compilation time, and runtime

performance, and obtains a 2.5x speedup over a naïve approach, and a similar speedup

over a state of the art simulator when domain specific optimisations are applied.

Although initially aimed only at improving simulation performance, the ADL pars-

ing and analysis techniques developed for this contribution were then reused for the

implementation of the test generation techniques described in Chapter 5. In Section 7.4,

further uses for the information provided by this analysis are also suggested.

7.2.2 Automated Test Generation

Chapter 5 began by evaluating the effectiveness of benchmark-driven testing. Although

not designed with simulator testing or ISA coverage in mind, many modern benchmark

suites find themselves used as simulator test suites, or as measures of the correctness or

completeness of a simulator. However, Section 5.3.3 shows that these benchmark suites

provide very poor instruction set coverage. Rather than relying on these benchmark

suites to show correctness, a more thorough testing methodology is required.

Section 5.4 presents such a methodology. By identifying possible paths through

each instruction semantic implementation, and identifying the constraints which these

paths place on the instruction and context in which the instruction is executed, constraint

solving techniques can be used to generate a test suite which provides almost complete

7.3. Critical Analysis 125

path coverage for most instructions. This contributes to our correctness objective, since

we are now able to show that our architecture description is correct with much more

confidence.

7.2.3 Efficient Full-System Simulation

Although interrupt handling is a major part of any full system simulation model, one

of the most major components in terms of performance is the method by which guest

virtual addresses are translated first into guest physical, and then into host virtual ad-

dresses. It was shown in Section 6.4 that memory instructions constitute between 30%

and 55% of the dynamic instruction mix when executing the SPEC benchmark suite. In

Section 6.4.6, a novel technique for accelerating these memory translations, namely to

generate fast memory translation functions, gave a significant speedup of up to 1.65x

over state of the art techniques, with a 1.2x speedup observed over a full run of the

SPEC benchmark suite. Although a slowdown was observed on one benchmark, the

cause of this slowdown has been investigated and some suggestions have been made

on how to further improve performance.

7.3 Critical Analysis

7.3.1 Efficient Simulator Generation

Although models for a number of architectures exist for the original ArchC language

(upon which GenC is based), so far the only complete GenC model is for the ARM ar-

chitecture. This is partly due to a lack of development time, but also partly due to a lack

of flexibility in the GenC language. The original ArchC language extends SystemC di-

rectly, meaning that many features can be described which would not be possible in the

current version of GenC. However, this flexibility is traded off against performance, as

the current ArchC implementation does not support DBT-based simulation. In any case,

GenC must be made much more flexible before many new architectures are describable.

7.3.2 Automated Test Generation

The constraint generation and satisfaction model presented in Chapter 5 is capable

of handling most instructions which contain non looping control flow. However, it

126 Chapter 7. Conclusion

is not capable of handling instructions which do contain looping control flow, such

as the ldm and stm instructions in the ARM architecture. These instructions therefore

currently require special handling, i.e. by hand-writing tests rather than generating them

automatically. Test generation systems for general purpose programming languages e.g.

CUTE [95] do support the generation of test for programs which contain looping control

flow, so this is clearly not a limitation of the concept of path-based testing, rather it is a

limitation of the presented implementation.

The presented constraint satisfaction and generation system also does not support

the generation of tests for system instructions, such as ARM’s mcr/mrc instructions

which handle coprocessor communication. These instructions have effects beyond the

architectural state of the CPU, which makes them challenging to test, as their effects

must be described in a generic manner (for example, in our full-system ARM model

the mcr and mrc instructions use special intrinsic functions to perform communication

with simulated coprocessors), and must be comparable between implementations, i.e. it

must be possible to compare the behaviour of the simulator against a reference model.

Finally, the testing framework presented has a number of limitations: it does not sup-

port the testing of the ‘full-system’ effects of instructions (such as memory instructions

causing memory protection or page faults), and since it runs as a user-mode program,

it requires that a significant number of instructions be known to work. A more flex-

ible testing framework might use a debug interface to perform testing, meaning that

instructions can be run totally in isolation, meaning that exceptions, updates to system

registers, etc. can be observed.

7.3.3 Efficient Full-System Simulation

In Chapter 6, a novel technique for accelerating memory accesses under full system

simulation was presented. This technique gives improved performance when compared

with the state of the art, and is highly flexible. However, generating such a memory ac-

cess function is somewhat more time consuming than inserting an entry into a software

cache. In most instances, the improved memory access speed balanced this, but some

improvements should be made to the function generation cost.

While the contributions presented in Chapters 4 and 5 rely on the presence of an

architecture description, and an ADL-based simulator generation framework, the use

of memory translation functions can be easily applied to other functional simulators

7.4. Future Work 127

such as QEMU. Some work would need to be performed to generate these functions in

a portable manner, since QEMU supports a variety of host and guest platforms.

7.4 Future Work

Although some analysis of instruction semantics described using the GenC ADL is

performed, the analysis is restricted to identifying opportunities for optimisation in

the DBT module at quite a low level. For example, although the partial evaluation

framework is capable of performing limited constant folding and dead code elimination

effectively ‘in advance’, it cannot currently identify properties of instructions useful for

higher level optimisations. There are several instances in current descriptions where this

information could be extracted from instruction semantics, but must instead be provided

separately by the user. For example, if an instruction can read the PC, it must be marked

as such. Control flow instructions must also be marked up, including information about

the type of jump (i.e., if it is a direct or indirect branch), in order to support the region

forming algorithm used by the DBT system. This places a significant burden on the

user, as this information must be correct in order to obtain correct simulation behaviour,

and incorrect information can result in subtle and confusing simulation bugs.

While the base GenC ADL has proven flexible enough to model the base ARM ISA

in full, as well as supporting models for MIPS, Power, the Texas Instruments C6x DSP

series, as well as several microcontrollers, certain features in these architectures (such

as many of the DSP features, and branch delay slots in MIPS) have required direct mod-

ification of the simulator framework. The main issue is that the GenC ADL describes

only behaviours at the level of an individual instruction, and so behaviours which in-

volve multiple instructions cannot be efficiently handled. A possible extension of the

GenC ADL would be to support a high level system description, effectively involving

a description of the fetch-execute cycle of the described architecture. A description at

this level would be able to handle many of the advanced features of modern architec-

tures, such as delay slot branches, VLIW instruction bundling, multiple ISA modes,

instruction prefixes in x86 architectures, etc. Careful analysis of the description could

potentially allow for high levels of flexibility, allowing not just multiple CPU architec-

tures, but also potentially allowing for the description of DSP and GPU architectures,

while maintaining high performance.

128 Chapter 7. Conclusion

GenTest, the test methodology outlined in Chapter 5 has been proven to be use-

ful, and has discovered several bugs in several popular simulators. However, a critical

limitation with our evaluation of GenTest is that the methodology was tested only

in a user-mode simulation context. Full system simulation presents many additional

complex behaviours which must be properly handled for correct simulation, such as

multiple types of memory fault, exception return behaviours, register banking, mode

and privilege switching, etc. Although generating such tests is likely to be straightfor-

ward (as test generation is performed strictly in terms of intra-instruction control flow,

which is in no way different or ‘special’ in a full-system context), actually executing

the tests and collecting their results is much more complex. It may also be desirable to

place limits on the scope of the tests. For example, in the ARM architecture, a memory

fault has both architectural effects (including a privilege change, a mode and register

bank switch, and potentially an instruction set switch if working in Thumb mode) and

system-level effects, causing changes to coprocessor registers and other state outside

of the CPU itself. In such cases, it is difficult to assess what should be included directly

in the architectural description (and thus exposed to the test generation infrastructure)

and what should be compared when executing the tests against a reference model.

A further limitation which has been placed on our test generation methodology is

that we have mainly applied it to simple integer and bitwise arithmetic instructions.

However, the most complex part of modern architectures tends to be in floating point,

vector, cryptographic, and other media instructions. Floating point instructions present a

particular problem as relying on the host FPU to perform guest floating point operations

may not produce bit-accurate results due to differences in the underlying floating point

model. On the other hand, directly implementing a bit-accurate floating point model

can be extremely complex. For this reason, evaluating the test generation methodology

outlined in Chapter 5 in the context of more complex instructions would be a true test

of the effectiveness of the methodology.

Finally, fast full system simulation poses many challenges in addition to those of

user mode only simulation. The efficient implementation of the guest virtual memory

system certainly has one of the largest impacts on simulation performance in a full

system context. The memory translation function technique presented in Chapter 6

goes some way to addressing this problem, but full system simulation still experiences

a significant slowdown when compared to user mode simulation. Most modern architec-

tures now include extensions intended to allow same-ISA virtualisation. In particular,

7.5. Final Remarks 129

AMD’s AMD-V and Intel’s VT-x extensions enable efficient x86-on-x86 virtualisation

with very low overheads. It is possible that these extensions could be used instead to

allow simulation of an arbitrary architecture on top of an x86 machine, provided that

some basic similarities exist between the system models. In particular, the page table

caching structures described in Chapter 6 and accelerated by the use of memory trans-

lation functions could instead be implemented directly using a virtualised page table

and performed by the host system’s MMU, essentially reducing the overhead of a guest

memory access to zero.

7.5 Final Remarks

This thesis has presented several techniques for improving the performance, correct-

ness, and completeness of simulators generated from high level descriptions. It has

been shown that such generated simulators can obtain performance exceeding that of

hand-written simulators by using novel DBT techniques, without requiring significant

additional user effort. Such descriptions have also been shown to be highly testable

in an automated fashion, greatly aiding the model debugging process. Techniques for

improving full system simulation have also been covered. In particular, this thesis has

presented novel techniques for accelerating memory accesses in a system including a

virtual memory model.

However, these techniques barely touch the surface of what is possible - and nec-

essary - when constructing a high speed simulator. As the performance gap closes be-

tween high end ‘embedded’ systems such as modern smartphones, and the full-power

workstation machines used to simulate these systems, the shortfall in simulation per-

formance has increased. While the simulation techniques discussed in this thesis might

aid in improving the performance of functional simulation, these techniques address

just some of the problems in one small section of the large field of system simulation.

New simulation techniques will need to be developed across the field if the simulation

of interesting workloads on interesting systems is to remain feasible.

131

Appendix A

Detailed Results - Efficient Simulator
Generation

132 Appendix A. Detailed Results - Efficient Simulator Generation

Benchmark Dataset Naïve Dynamic
400.perlbench diffmail.pl 5316.00 2344.29
400.perlbench splitmail.pl 5355.00 1987.03
401.bzip2 input.source 3278.50 724.98
401.bzip2 chicken.jpg 1326.24 234.02
401.bzip2 liberty.jpg 2139.45 339.39
401.bzip2 input.program 4260.00 793.20
401.bzip2 text.html 4626.00 900.50
401.bzip2 input.combined 2689.16 569.44
403.gcc 166 1059.44 529.85
403.gcc 200 1954.93 912.13
403.gcc ctypeck 1861.22 960.57
403.gcc cp-decl 1249.32 635.47
403.gcc expr 1358.63 701.47
403.gcc g23 2068.19 1038.71
403.gcc s04 1894.40 954.89
403.gcc scilab 784.72 374.32
429.mcf (reference) 2462.53 633.14
445.gobmk 13x13 3703.00 1191.02
445.gobmk nngs 9638.00 2949.48
445.gobmk score2 4297.00 1310.95
445.gobmk trevorc 3727.00 1191.35
445.gobmk trevord 5134.00 1554.18
456.hmmer nph3 8973.00 1330.27
456.hmmer retro 24038.00 4285.00
458.sjeng (train) 6289.00 1795.55
462.libquantum (reference) 20872.00 6591.00
464.h264ref foreman baseline 5070.00 1490.81
464.h264ref foremain main 3397.91 1177.59
464.h264ref sss main 30262.00 9969.00
471.omnetpp (reference) 17914.00 8684.00
473.astar BigLakes2048 2705.22 770.89
473.astar rivers 5455.00 1365.97
483.xalancbmk (reference) 15784.00 7445.00

Table A.1: Time taken, in seconds, to execute SPEC benchmarks in user mode simulation with
Naïve and Partial-Evaluation based DBT frontends when using -O3 JIT-time optimisation.

133

Benchmark Dataset Speedup
400.perlbench diffmail.pl 2.267
400.perlbench splitmail.pl 2.694
401.bzip2 chicken.jpg 5.667
401.bzip2 input.combined 4.722
401.bzip2 input.program 5.370
401.bzip2 input.source 4.522
401.bzip2 liberty.jpg 6.303
401.bzip2 text.html 5.137
403.gcc 166 1.999
403.gcc 200 2.143
403.gcc cp-decl 1.965
403.gcc ctypeck 1.937
403.gcc expr 1.936
403.gcc g23 1.991
403.gcc s04 1.983
403.gcc scilab 2.096
429.mcf (reference) 3.889
445.gobmk 13x13 3.109
445.gobmk nngs 3.267
445.gobmk score2 3.277
445.gobmk trevorc 3.128
445.gobmk trevord 3.303
456.hmmer nph3 6.745
456.hmmer retro 5.609
458.sjeng train 3.502
462.libquantum (reference) 3.166
464.h264ref foreman baseline 3.400
464.h264ref foreman main 2.885
464.h264ref sss main 3.035
471.omnetpp (reference) 2.062
473.astar BigLakes2048 3.509
473.astar rivers 3.993
483.xalancbmk (reference) 2.120

Table A.2: Speedup when executing SPEC benchmarks in user mode simulation with Partial-
Evaluation based DBT frontend compared to Naïve when using -O3 JIT-time optimisation.

134 Appendix A. Detailed Results - Efficient Simulator Generation

Benchmark Iterations Naïve-O1 Naïve-O3 Dynamic-O1 Dynamic-O3
a2time01 12000000 664.06 185.41 131.44 53.75
aifftr01 120000 1453.06 481.95 304.43 60.23
aifirf01 20000000 841.29 320.12 164.15 40.72
aiifft01 120000 1391.02 456.99 294.62 55.94
basefp01 4000000 1477.94 443.00 341.68 130.88
bezier01 80000 1050.09 327.40 237.88 65.78
bitmnp01 600000 835.09 238.99 170.84 62.94
cacheb01 200000000 560.90 176.19 159.80 64.74
canrdr01 300000000 654.27 182.91 176.45 66.53
cjpeg 2000 835.55 247.59 174.65 48.78
conven00 1200000 2148.89 549.17 393.33 61.75
dither01 30000 1422.42 371.91 276.49 65.88
djpeg 3000 982.04 296.87 210.15 49.97
fft00 2000000 2531.35 667.81 441.91 55.33
idctrn01 1600000 844.04 278.59 203.77 62.67
iirflt01 12000000 940.89 344.82 203.85 58.00
matrix01 10000 634.51 180.13 153.62 64.65
ospf 1000000 1081.32 284.80 273.29 71.99
pktflow 400000 483.76 150.56 140.81 64.63
pntrch01 2000000 1125.57 322.92 249.22 52.98
puwmod01 300000000 941.21 241.74 215.07 53.80
rgbcmy01 30000 1445.57 443.18 306.22 69.10
rgbhpg01 40000 1553.16 467.07 341.15 63.72
rgbyiq01 25000 2535.08 825.10 508.25 61.10
rotate01 80000 909.08 237.57 194.60 54.35
routelookup 150000 631.75 196.55 172.63 69.88
rspeed01 200000000 773.04 202.67 166.11 52.76
tblook01 4000000 463.99 155.11 126.71 61.93
text01 30000 567.31 161.42 158.21 81.88
ttsprk01 8000000 911.76 272.96 209.49 72.53
viterb00 250000 1523.56 488.77 284.83 61.09

Table A.3: Time taken, in seconds, to execute EEMBC benchmarks in user mode simulation
with Naïve and Partial-Evaluation based DBT frontends.

135

Benchmark Iterations Naïve-O1 Naïve-O3 Dynamic-O1 Dynamic-O3
a2time01 12000000 1.000 3.582 5.052 12.355
aifftr01 120000 1.000 3.015 4.773 24.125
aifirf01 20000000 1.000 2.628 5.125 20.660
aiifft01 120000 1.000 3.044 4.721 24.866
basefp01 4000000 1.000 3.336 4.326 11.292
bezier01 80000 1.000 3.207 4.414 15.964
bitmnp01 600000 1.000 3.494 4.888 13.268
cacheb01 200000000 1.000 3.183 3.510 8.664
canrdr01 300000000 1.000 3.577 3.708 9.834
cjpeg 2000 1.000 3.375 4.784 17.129
conven00 1200000 1.000 3.913 5.463 34.800
dither01 30000 1.000 3.825 5.145 21.591
djpeg 3000 1.000 3.308 4.673 19.653
fft00 2000000 1.000 3.791 5.728 45.750
idctrn01 1600000 1.000 3.030 4.142 13.468
iirflt01 12000000 1.000 2.729 4.616 16.222
matrix01 10000 1.000 3.523 4.130 9.815
ospf 1000000 1.000 3.797 3.957 15.020
pktflow 400000 1.000 3.213 3.436 7.485
pntrch01 2000000 1.000 3.486 4.516 21.245
puwmod01 300000000 1.000 3.893 4.376 17.495
rgbcmy01 30000 1.000 3.262 4.721 20.920
rgbhpg01 40000 1.000 3.325 4.553 24.375
rgbyiq01 25000 1.000 3.072 4.988 41.491
rotate01 80000 1.000 3.827 4.672 16.726
routelookup 150000 1.000 3.214 3.660 9.040
rspeed01 200000000 1.000 3.814 4.654 14.652
tblook01 4000000 1.000 2.991 3.662 7.492
text01 30000 1.000 3.514 3.586 6.929
ttsprk01 8000000 1.000 3.340 4.352 12.571
viterb00 250000 1.000 3.117 5.349 24.940

Table A.4: Speedup when executing EEMBC benchmarks in user mode simulation with Naïve
and Partial-Evaluation based DBT frontends.

137

Appendix B

Detailed Results - Automated Test
Generation

138 Appendix B. Detailed Results - Automated Test Generation

Tested Paths Cvc4 Rejected Paths Avg. Path Length Avg. Constraints
adc 46 4 8.52 5.12
add 86 16 10.00 5.96
and 46 4 8.02 5.12
b 1 0 1.00 3.00
bic 46 4 8.02 5.12
bl 1 0 1.00 3.00
blx 1 1 3.00 3.00
bx 1 1 3.00 3.00
cmn 25 2 6.48 3.11
cmp 23 2 6.52 3.12
eor 46 4 8.02 5.12
ldr 15 29 6.73 7.50
ldrb 14 4 5.78 6.50
ldrbt 7 13 6.42 6.50
ldrd 4 0 4.50 8.50
ldrh 4 0 4.50 5.50
ldrsb 4 0 4.50 5.50
ldrsh 4 0 4.50 5.50
ldrt 7 17 6.57 6.66
mla 2 0 2.50 2.00
mov 58 8 8.29 5.39
mul 2 0 2.50 2.00
mvn 46 4 8.02 5.12
orr 46 4 8.02 5.12
rsb 46 4 8.52 5.12
rsc 46 4 8.47 5.12
sbc 46 4 8.52 5.12
smlal 2 0 2.50 3.00
smull 2 0 2.50 3.00
str 14 4 5.78 5.50
strb 14 4 5.78 5.50
strbt 7 11 6.28 5.50
strd 4 0 4.50 6.50
strh 4 0 4.50 4.50
strt 7 11 6.28 5.50
sub 50 4 8.56 5.11
swp 1 0 1.00 3.00
swpb 1 0 1.00 3.00
teq 23 2 6.52 3.12
tst 23 2 6.52 3.12
umlal 2 0 2.50 3.00
umull 2 0 2.50 3.00

Table B.1: Statistics on tests generated using GenTest. Some instructions such as system instruc-
tions, ldm, and stm must have tests written by hand and are not included in this table. A list of
these instructions can be found in Table 5.1.

139

Appendix C

Detailed Results - Efficient
Full-System Simulation

140 Appendix C. Detailed Results - Efficient Full-System Simulation

Benchmark Dataset Naïve Cache Function
400.Perlbench diffmail.pl 9645.63 6170.87 5231.39
400.Perlbench splitmail.pl 10980.46 6314.80 5215.63
401.bzip2 input.source 5361.91 2475.48 2028.09
401.bzip2 chicken.jpg 1718.92 705.59 550.03
401.bzip2 liberty.jpg 2539.01 1040.98 822.16
401.bzip2 input.program 6366.48 2810.21 2140.96
401.bzip2 text.html 7347.59 3137.15 2648.14
401.bzip2 input.combined 4124.51 1832.02 1497.43
403.gcc 166.i 1523.57 896.18 744.94
403.gcc 200.i 2871.38 1733.32 1491.85
403.gcc c-typeck.i 2742.23 1507.81 1246.82
403.gcc cp-decl.i 2261.77 1295.53 1501.23
403.gcc expr.i 3017.74 1968.82 2453.28
403.gcc g23.i 3495.06 2036.93 1736.86
403.gcc s04.i 5259.30 3658.21 5580.91
403.gcc scilab.i 1131.55 705.22 599.04
429.mcf (test) 53.92 33.62 31.16
445.gobmk 13x13.tst 5100.22 3160.01 2478.95
445.gobmk nngs.tst 13121.46 8089.76 6481.77
445.gobmk score2.tst 5570.73 3371.97 2683.27
445.gobmk trevorc.tst 5055.43 3149.31 2541.34
445.gobmk trevord.tst 7050.78 4382.06 3466.45
456.hmmer nph3.hmm 12566.35 5325.39 2970.98
456.hmmer retro.hmm 29927.77 12228.95 8253.61
458.sjeng ref.txt 41435.97 25584.33 21327.69
462.libquantum (reference) 20607.46 12388.54 10378.41
464.h264ref foreman baseline 12109.86 6110.50 4290.02
464.h264ref foreman main 10104.07 4364.67 3141.46
464.h264ref sss main 82673.48 39266.49 28075.68
471.omnetpp (reference) 29280.79 21110.07 19314.54
473.astar BigLakes2048.cfg 5557.92 3423.73 1873.51
473.astar rivers.cfg 8237.01 3860.14 2517.54
483.xalancbmk (reference) 20296.02 14468.40 13129.11

Table C.1: Time taken, in seconds, for each SPEC dataset in each of the tested full-system
configurations.

141

Benchmark Dataset Naïve Cache Function
400.Perlbench diffmail.pl 1.00 1.56 1.84
400.Perlbench splitmail.pl 1.00 1.74 2.11
401.bzip2 input.source 1.00 2.17 2.64
401.bzip2 chicken.jpg 1.00 2.44 3.13
401.bzip2 liberty.jpg 1.00 2.44 3.09
401.bzip2 input.program 1.00 2.27 2.97
401.bzip2 text.html 1.00 2.34 2.77
401.bzip2 input.combined 1.00 2.25 2.75
403.gcc 166.i 1.00 1.70 2.05
403.gcc 200.i 1.00 1.66 1.92
403.gcc c-typeck.i 1.00 1.82 2.20
403.gcc cp-decl.i 1.00 1.75 1.51
403.gcc expr.i 1.00 1.53 1.23
403.gcc g23.i 1.00 1.72 2.01
403.gcc s04.i 1.00 1.44 0.94
403.gcc scilab.i 1.00 1.60 1.89
429.mcf (test) 1.00 1.60 1.73
445.gobmk 13x13.tst 1.00 1.61 2.06
445.gobmk nngs.tst 1.00 1.62 2.02
445.gobmk score2.tst 1.00 1.65 2.08
445.gobmk trevorc.tst 1.00 1.61 1.99
445.gobmk trevord.tst 1.00 1.61 2.03
456.hmmer nph3.hmm 1.00 2.36 4.23
456.hmmer retro.hmm 1.00 2.45 3.63
458.sjeng ref.txt 1.00 1.62 1.94
462.libquantum (reference) 1.00 1.66 1.99
464.h264ref foreman baseline 1.00 1.98 2.82
464.h264ref foreman main 1.00 2.31 3.22
464.h264ref sss main 1.00 2.11 2.94
471.omnetpp (reference) 1.00 1.39 1.52
473.astar BigLakes2048.cfg 1.00 1.62 2.97
473.astar rivers.cfg 1.00 2.13 3.27
483.xalancbmk (reference) 1.00 1.40 1.55

Table C.2: Speedup, compared to Naïve for each SPEC dataset in each of the tested full-system
configurations.

142 Appendix C. Detailed Results - Efficient Full-System Simulation

Benchmark Read Write
400.perlbench 0.297 0.117
401.bzip2 0.294 0.131
403.gcc 0.189 0.127
429.mcf 0.334 0.046
445.gobmk 0.229 0.109
456.hmmer 0.373 0.179
458.sjeng 0.268 0.078
462.libquantum 0.082 0.155
464.h264ref 0.430 0.174
471.omnetpp 0.165 0.107
473.astar 0.259 0.059
483.xalancbmk 0.244 0.034

Table C.3: Proportion of dynamic memory instructions in each SPEC benchmark.

Benchmark Naïve Cache Function
Access Cost 222.21 83.99 43.65
Invalidation Cost 121.13 119.82 46.65
Generation Cost 136.14 124.43 173.68

Table C.4: Time taken, in seconds, for each microbenchmark in each of the tested full-system
configurations.

Benchmark Naïve Cache Function
Access Cost 1.00 2.64 5.09
Invalidation Cost 1.00 1.01 2.59
Generation Cost 1.00 1.09 0.78

Table C.5: Speedup for each microbenchmark in each of the tested full-system configurations,
compared to Naïve.

143

Bibliography

[1] H. Peter Anvin. “Method and system for providing hardware support for mem-
ory protection and virtual memory address translation for a virtual machine”.
Pat. US 7111146 B1. 2006.

[2] Apple Rosetta (via Web Archive). https://web.archive.org/web/20110107211041/
http://www.apple.com/rosetta. 2011. (Visited on 03/26/2015).

[3] Eduardo Argollo et al. “COTSon: Infrastructure for Full System Simulation”.
In: ACM SIGOPS Operating Systems Review 43.1 (Jan. 2009), pp. 52–61. ISSN:
0163-5980. DOI: 10.1145/1496909.1496921.

[4] ARM Limited. ARMv5 Architecture Reference Manual, DDI0100I. ARM Lim-
ited, 2007.

[5] Rodolfo Azevedo et al. “The ArchC architecture description language and
tools”. In: International Journal of Parallel Programming 33.5 (Oct. 2005),
pp. 453–484. ISSN: 08857458. DOI: 10.1007/s10766-005-7301-0.

[6] Julian Bangert et al. “The page-fault weird machine: lessons in instruction-less
computation”. In: Presented as part of the 7th ldots. https://www.usenix.
org / system / files / tech - schedule / woot13 - papers - archive . zip.
USENIX Association, 2013.

[7] John Banning et al. “Fine grain translation discrimination”. Pat. US 6363336
B1. 2002.

[8] Sorav Bansal and Alex Aiken. “Binary Translation Using Peephole Superopti-
mizers”. In: Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation. OSDI’08. San Diego, California: USENIX Asso-
ciation, 2008, pp. 177–192. URL: http://dl.acm.org/citation.cfm?id=
1855741.1855754.

[9] Leonid Baraz et al. “IA-32 Execution Layer: a Two-Phase Dynamic Transla-
tor Designed to Support IA-32 Applications on Itanium-Based Systems”. In:
Proceedings of the International Symposium on Microarchitecture. IEEE, 2003,
pp. 191–201. ISBN: 0-7695-2043-X. DOI: 10.1109/MICRO.2003.1253195.

[10] Paul Barham et al. “Xen and the Art of Virtualization”. In: Proceedings of the
Symposium on Operating Systems Principles. ACM, 2003, pp. 164–177.

https://web.archive.org/web/20110107211041/http://www.apple.com/rosetta
https://web.archive.org/web/20110107211041/http://www.apple.com/rosetta
http://dx.doi.org/10.1145/1496909.1496921
http://dx.doi.org/10.1007/s10766-005-7301-0
https://www.usenix.org/system/files/tech-schedule/woot13-papers-archive.zip
https://www.usenix.org/system/files/tech-schedule/woot13-papers-archive.zip
http://dl.acm.org/citation.cfm?id=1855741.1855754
http://dl.acm.org/citation.cfm?id=1855741.1855754
http://dx.doi.org/10.1109/MICRO.2003.1253195

144 Bibliography

[11] Clark Barrett et al. “CVC4”. In: Proceedings of the International Conference
on Computer Aided Verification. CAV’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 171–177. ISBN: 978-3-642-22109-5.

[12] Markus Becker et al. “XEMU: An Efficient QEMU Based Binary Mutation
Testing Framework for Embedded Software”. In: Proceedings of the Interna-
tional Conference on Embedded Software. ACM, 2012, pp. 33–42. ISBN: 978-
1-4503-1425-1. DOI: 10.1145/2380356.2380368.

[13] Richard Belgard. “Speculative address translation for processor using segmen-
tation and optical paging”. Pat. US 6430668 B2. 2002.

[14] Fabrice Bellard. “QEMU , a Fast and Portable Dynamic Translator”. In: USENIX
Annual Technical Conference. Proceedings of the 2005 Conference on. https:
/ / www . usenix . org / legacy / publications / library / proceedings /
usenix05 / tech / freenix / bellard . html. USENIX Association, 2005,
pp. 41–46.

[15] Nathan Binkert et al. “The gem5 simulator”. In: ACM SIGARCH Computer
Architecture News 39.2 (Aug. 2011), p. 1. ISSN: 01635964. DOI: 10.1145/
2024716.2024718.

[16] F Blanqui et al. “Designing a CPU model : from a pseudo-formal document to
fast code”. In: Proceedings of the Workshop on Rapid Simulation and Perfor-
mance Evaluation: Methods and Tools. ACM, 2011, pp. 2–7.

[17] Igor Böhm, Björn Franke, and Nigel Topham. “Cycle-Accurate Performance
Modelling in an Ultra-Fast Just-In-Time Dynamic Binary Translation Instruc-
tion Set Simulator”. In: Proceedings of the International Conference on Embed-
ded Computer Systems. IEEE, July 2010, pp. 1–10. DOI: 10.1109/ICSAMOS.
2010.5642102.

[18] Igor Böhm et al. “Generalized Just-In-Time Trace Compilation Using a Parallel
Task Farm in a Dynamic Binary Translator”. In: Proceedings of the Conference
on Programming Language Design and Implementation. PLDI ’11. New York,
NY, USA: ACM, 2011, pp. 74–85. ISBN: 978-1-4503-0663-8. DOI: 10.1145/
1993498.1993508.

[19] Florian Brandner et al. “Fast and accurate simulation using the llvm compiler
framework”. In: Proceedings of the 1st Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools, RAPIDO. Vol. 9. Jan. 2009, pp. 1–
6.

[20] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. “An infrastructure
for adaptive dynamic optimization”. In: Code Generation and Optimization,
2003. CGO 2003. International Symposium on. CGO ’03. http://dl.acm.
org/citation.cfm?id=776261.776290. Washington, DC, USA: IEEE,
2003, pp. 265–275. ISBN: 0-7695-1913-X.

http://dx.doi.org/10.1145/2380356.2380368
https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/freenix/bellard.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/freenix/bellard.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/freenix/bellard.html
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/ICSAMOS.2010.5642102
http://dx.doi.org/10.1109/ICSAMOS.2010.5642102
http://dx.doi.org/10.1145/1993498.1993508
http://dx.doi.org/10.1145/1993498.1993508
http://dl.acm.org/citation.cfm?id=776261.776290
http://dl.acm.org/citation.cfm?id=776261.776290

Bibliography 145

[21] Richard Buchmann and Alain Greiner. “A fully static scheduling approach for
fast cycle accurate SystemC simulation of MPSoCs”. In: Proceedings of the
International Conference on Microelectronics, ICM. December. IEEE, 2007,
pp. 101–104. ISBN: 9781424418473. DOI: 10.1109/ICM.2007.4497671.

[22] Prashanth P Bungale and Chi-Keung Luk. “PinOS: A Programmable Frame-
work for Whole-system Dynamic Instrumentation”. In: Proceedings of the In-
ternational Conference on Virtual Execution Environments. VEE ’07. New
York, NY, USA: ACM, 2007, pp. 137–147. ISBN: 978-1-59593-630-1. DOI:
10.1145/1254810.1254830.

[23] J Burnim and K Sen. “Heuristics for Scalable Dynamic Test Generation”. In:
ASE ’08: Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering. IEEE/ACM. 2008, pp. 443–446. ISBN:
978-1-4244-2187-9. DOI: 10.1109/ASE.2008.69.

[24] Neil Campbell, Geraint North, and Graham Woodward. “Memory Management
for a Dynamic Binary Translator”. Pat. US 20120117355 A1. 2012.

[25] Matthew Chapman and Dj Magenheimer. MagiXen: Combining binary transla-
tion and virtualization. Tech. rep. HPL-2007-77. HP Labs, 2007.

[26] Ming Chao Chiang, Tse Chen Yeh, and Guo Fu Tseng. “A QEMU and SystemC-
Based Cycle-Accurate ISS for Performance Estimation on SoC Development”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 30.4 (2011), pp. 593–606. ISSN: 02780070. DOI: 10.1109/TCAD.
2010.2095631.

[27] Younghan Choi, Hyoungchun Kim, and Dohoon Lee. “An Empirical Study for
Security of Windows DLL Files Using Automated API Fuzz Testing”. In: Ad-
vanced Communication Technology. 2008, pp. 473–475. ISBN: 9788955191363.

[28] Calvin Chow. Using Simulation-based Approach to Ensure Power Integrity and
Reliability of SoC and System. Tech. rep. 2015, pp. 1–5.

[29] Moo-kyoung Chung. “Improvement of Compiled Instruction Set Simulator by
Increasing Flexibility and Reducing Compile Time”. In: Proceedings of the
International Workshop on Rapid System Prototyping. Ieee, 2004, pp. 38–44.
ISBN: 0-7695-2159-2. DOI: 10.1109/IWRSP.2004.1311093.

[30] C Cifuentes and S Sendall. “Specifying the Semantics of Machine Instructions”.
In: Proceedings of the International Workshop on Program Comprehension.
IWPC ’98. http://dl.acm.org/citation.cfm?id=580914.858217.
Washington, DC, USA: IEEE Computer Society, 1998, p. 126. ISBN: 0-8186-
8560-3.

[31] Jiun Hung Ding et al. “PQEMU: A parallel system emulator based on QEMU”.
In: Proceedings of the International Conference on Parallel and Distributed
Systems. IEEE, 2011, pp. 276–283. ISBN: 9780769545769. DOI: 10.1109/
ICPADS.2011.102.

http://dx.doi.org/10.1109/ICM.2007.4497671
http://dx.doi.org/10.1145/1254810.1254830
http://dx.doi.org/10.1109/ASE.2008.69
http://dx.doi.org/10.1109/TCAD.2010.2095631
http://dx.doi.org/10.1109/TCAD.2010.2095631
http://dx.doi.org/10.1109/IWRSP.2004.1311093
http://dl.acm.org/citation.cfm?id=580914.858217
http://dx.doi.org/10.1109/ICPADS.2011.102
http://dx.doi.org/10.1109/ICPADS.2011.102

146 Bibliography

[32] Tobias J.K. Edler von Koch and Björn Franke. “Limits of Region-Based Dy-
namic Binary Parallelization”. In: Proceedings of the International Conference
on Virtual Execution Environments. ACM, 2013, p. 13. ISBN: 9781450312660.
DOI: 10.1145/2451512.2451518.

[33] Marco Elver and Vijay Nagarajan. “TSO-CC: Consistency directed cache co-
herence for TSO”. In: Proceedings of the International Symposium on High-
Performance Computer Architecture. IEEE, 2014, pp. 165–176. ISBN: 9781479930975.
DOI: 10.1109/HPCA.2014.6835927.

[34] Embedded Microprocessor Benchmark Consortium. EEMBC Benchmark Suite.
http://www.eembc.org/. 2008.

[35] L. Formaggio, F. Fummi, and G. Pravadelli. “A Timing-Accurate HW/SW
Cosimulation of an ISS with SystemC”. In: Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis. IEEE, 2004,
pp. 152–157. ISBN: 1-58113-937-3. DOI: 10.1109/CODESS.2004.240910.

[36] Nicolas Fournel, Luc Michel, and Fr’ed’eric P’etrot. “Automated Generation
of Efficient Instruction Decoders for Instruction Set Simulators”. In: Proceed-
ings of the International Conference on Computer Aided Design. IEEE, 2013,
pp. 739–746. ISBN: 9781479910717.

[37] Björn Franke. “Fast cycle-approximate instruction set simulation”. In: Proceed-
ings of the 11th international workshop on Software & compilers for embedded
systems. ACM. 2008, pp. 69–78.

[38] M Freericks. The nML Machine Description Formalism. Tech. rep. http://
www6.in.tum.de/Main/Publications/Freericks1991a.pdf. 1991.

[39] Getting Started with DS-5, DUI0478B. ARM Limited.

[40] Frank Ghenassia. Transaction Level Modeling With SystemC. 2005th ed. http:
//link.springer.com/content/pdf/10.1007/b137175.pdf. Springer,
2005. ISBN: 9780387262321.

[41] B Glamm and D J Lilja. “Automatic Verification of Instruction Set Simulation
Using Synchronized State Comparison”. In: Proceedings of the Annual Sim-
ulation Symposium. IEEE, 2001, pp. 72–77. DOI: 10.1109/SIMSYM.2001.
922117.

[42] Arnaud Gotlieb, Bernard Botella, and Michel Rueher. “Automatic Test Data
Generation Using Constraint Solving Techniques”. In: Proceedings of the In-
ternational Symposium on Software Testing and Analysis. ISSTA ’98. New
York, NY, USA: ACM, 1998, pp. 53–62. ISBN: 0-89791-971-8. DOI: 10.1145/
271771.271790.

[43] Peter Greenhalgh. big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7.
Tech. rep., pp. 1–8.

http://dx.doi.org/10.1145/2451512.2451518
http://dx.doi.org/10.1109/HPCA.2014.6835927
http://www.eembc.org/
http://dx.doi.org/10.1109/CODESS.2004.240910
http://www6.in.tum.de/Main/Publications/Freericks1991a.pdf
http://www6.in.tum.de/Main/Publications/Freericks1991a.pdf
http://link.springer.com/content/pdf/10.1007/b137175.pdf
http://link.springer.com/content/pdf/10.1007/b137175.pdf
http://dx.doi.org/10.1109/SIMSYM.2001.922117
http://dx.doi.org/10.1109/SIMSYM.2001.922117
http://dx.doi.org/10.1145/271771.271790
http://dx.doi.org/10.1145/271771.271790

Bibliography 147

[44] M.R. Guthaus et al. “MiBench: A Free, Commercially Representative Em-
bedded Benchmark Suite”. In: Proceedings of the International Workshop on
Workload Characterization. IEEE, 2001, pp. 3–14. ISBN: 0-7803-7315-4. DOI:
10.1109/WWC.2001.990739.

[45] Ashok Halambi, Peter Grun, and Alex Nicolau. “EXPRESSION : A Language
for Architecture Exploration through Compiler / Simulator Retargetability”.
In: Proceedings of the Conference on Design, Automation and Test in Europe.
IEEE, 1999.

[46] Alex Heunhe Han et al. “Virtual ARM Platform for Embedded System Devel-
opers”. In: Proceedings of the International Conference on Audio, Language
and Image Processing. IEEE. 2008, pp. 586–592.

[47] R C Ho and M A Horowitz. “Validation Coverage Analysis for Complex Digital
Designs”. In: Digest of Technical Papers of the International Conference on
Computer-Aided Design. ICCAD-96. ACM/IEEE, 1996, pp. 146–151. DOI:
10.1109/ICCAD.1996.569537.

[48] DY Hong et al. “HQEMU: a Multi-Threaded and Retargetable Dynamic Binary
Translator on Multicores”. In: Proceedings of the International Symposium on
Code Generation and Optimization. http://dl.acm.org/citation.cfm?
id=2259030. ACM/IEEE, 2012, pp. 104–113.

[49] J R Horgan and S London. “Data Flow Coverage and the C Language”. In:
Proceedings of the Symposium on Testing, Analysis, and Verification. ACM,
1991, pp. 87–97. ISBN: 0-89791-449-X. DOI: 10.1145/120807.120815.

[50] Joseph R. Horgan, Saul London, and Michael R. Lyu. “Achieving Software
Quality with Testing Coverage Measures”. In: Computer 27.9 (1994), pp. 60–
69. ISSN: 00189162. DOI: 10.1109/2.312032.

[51] Intel Corporation. Enabling Intel Virtualization Technology Features and Bene-
fits. Tech. rep. Intel Corporation, 2010.

[52] AB Kahng et al. “ORION 2.0: a Fast and Accurate NoC Power and Area Model
for Early-Stage Design Space Exploration”. In: Proceedings of the Confer-
ence on Design, Automation and Test in Europe. http : / / dl . acm . org /
citation.cfm?id=1874721. European Design and Automation Association,
2009, pp. 423–428.

[53] Rola Kassem et al. “Harmless, a hardware architecture description language
dedicated to real-time embedded system simulation.” In: Journal of Systems
Architecture - Embedded Systems Design 58.8 (2012), pp. 318–337.

[54] Sreekumar V Kodakara et al. “Model Based Test Generation for Microprocessor
Architecture Validation”. In: Proceedings of the International Conference on
VLSI Design. IEEE, 2007, pp. 465–472.

http://dx.doi.org/10.1109/WWC.2001.990739
http://dx.doi.org/10.1109/ICCAD.1996.569537
http://dl.acm.org/citation.cfm?id=2259030
http://dl.acm.org/citation.cfm?id=2259030
http://dx.doi.org/10.1145/120807.120815
http://dx.doi.org/10.1109/2.312032
http://dl.acm.org/citation.cfm?id=1874721
http://dl.acm.org/citation.cfm?id=1874721

148 Bibliography

[55] Toshihiko Koju et al. “Optimizing Indirect Branches in a System-level Dynamic
Binary Translator”. In: Proceedings of the Annual International Systems and
Storage Conference. SYSTOR ’12. New York, NY, USA: ACM, 2012, 5:1–5:12.
ISBN: 978-1-4503-1448-0. DOI: 10.1145/2367589.2367599.

[56] Rajeev Krishna and Todd Austin. “Efficient Software Decoder Design”. In:
Workshop on Binary Translation. 2001.

[57] Stephen Kyle et al. “Efficiently Parallelizing Instruction Set Simulation of
Embedded Multi-Core Processors Using Region-Based Just-In-Time Dynamic
Binary Translation”. In: Proceedings of the International Conference on Lan-
guages, Compilers, Tools and Theory for Embedded Systems. ACM, 2012, pp. 21–
30. ISBN: 9781450312127. DOI: 10.1145/2248418.2248422.

[58] Chris Lattner. “LLVM: An Infrastructure for Multi-Stage Optimization”. PhD
thesis. Urbana, IL: Computer Science Dept., University of Illinois at Urbana-
Champaign, Dec. 2002.

[59] Bich-Caue Le. “Emulation system that uses dynamic binary translation and
permits the safe speculation of trapping operations”. Pat. US 6631514 B1.
2003.

[60] Markus Levy. “EEMBC and the Purposes of Embedded Processor Benchmark-
ing”. In: Proceedings of the International Symposium on Performance Analysis
of Systems and Software, IEEE, 2005, p. 1. DOI: 10.1109/ISPASS.2005.
1430553.

[61] Sheng Li Sheng Li et al. “McPAT: An integrated power, area, and timing mod-
eling framework for multicore and manycore architectures”. In: Proceedings of
the International Symposium on Microarchitecture. IEEE, 2009, pp. 469–480.
ISBN: 978-1-60558-798-1. DOI: 10.1145/1669112.1669172.

[62] Linaro Project. http://www.linaro.org/. (Visited on 07/07/2015).

[63] Derek Lockhart, Berkin Ilbeyi, and Christopher Batten. “Pydgin: Generating
Fast Instruction Set Simulators from Simple Architecture Descriptions with
Meta-Tracing JIT Compilers”. In: Proceedings of the International Symposium
on Performance Analysis of Systems and Software. 2015.

[64] Chi-Keung Luk et al. “Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation”. In: Proceedings of the Conference on Programming
Language Design and Implementation. PLDI ’05. New York, NY, USA: ACM,
2005, pp. 190–200. ISBN: 1-59593-056-6. DOI: 10.1145/1065010.1065034.

[65] Weiqin Ma, Alessandro Forin, and Jyh-Charn Liu. “Rapid Prototyping and
Compact Testing of CPU Emulators”. In: Proceedings of the International
Symposium on Rapid System Protyping. RSP. IEEE, June 2010, pp. 1–7. ISBN:
978-1-4244-7073-0. DOI: 10.1109/RSP.2010.5656339.

[66] Weiqin Ma, Jyh-Charn Liu, and Alessandro Forin. Design and Testing of a CPU
Emulator. Tech. rep. Microsoft Research, 2009.

http://dx.doi.org/10.1145/2367589.2367599
http://dx.doi.org/10.1145/2248418.2248422
http://dx.doi.org/10.1109/ISPASS.2005.1430553
http://dx.doi.org/10.1109/ISPASS.2005.1430553
http://dx.doi.org/10.1145/1669112.1669172
http://www.linaro.org/
http://dx.doi.org/10.1145/1065010.1065034
http://dx.doi.org/10.1109/RSP.2010.5656339

Bibliography 149

[67] P.S. Magnusson and M. Christensson. “Simics: A full system simulation plat-
form”. In: Computer 35.2 (2002), pp. 50–58. ISSN: 00189162. DOI: 10.1109/
2.982916.

[68] Lorenzo Martignoni et al. “Testing CPU emulators”. In: Proceedings of the
International Symposium on Software Testing and Analysis. ISSTA ’09. New
York, NY, USA: ACM, 2009, pp. 261–272. ISBN: 978-1-60558-338-9. DOI:
10.1145/1572272.1572303.

[69] Deepak A Mathaikutty et al. “Design Fault Directed Test Generation for Micro-
processor Validation”. In: Proceedings of the Conference on Design, Automa-
tion and Test in Europe. IEEE, 2007, pp. 1–6.

[70] Peter Maydell. risu - random instruction sequence generator for userspace
testing. https://wiki.linaro.org/PeterMaydell/Risu.

[71] Valerio Medeiros and David Deharbe. “Formal Modelling of a Microcontroller
Instruction Set in B”. In: Formal Methods: Foundations and Applications. Ed.
by Marcel Vinicius Medeiros Oliveira and Jim Woodcock. Vol. 5902. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 282–289.
ISBN: 978-3-642-10451-0. DOI: 10.1007/978-3-642-10452-7_19.

[72] WS Mong and J Zhu. “DynamoSim: a trace-based dynamically compiled in-
struction set simulator”. In: Proceedings of the 2004 IEEE/ACM International
conference on Computer-aided design. http://dl.acm.org/citation.cfm?
id=1112266. 2004, pp. 131–136.

[73] Ryan W Moore et al. “Addressing the Challenges of DBT for the ARM Ar-
chitecture”. In: Proceedings of the Conference on Languages, Compilers, and
Tools for Embedded Systems. LCTES ’09. New York, NY, USA: ACM, 2009,
pp. 147–156. ISBN: 978-1-60558-356-3. DOI: 10.1145/1542452.1542472.

[74] Naveen Muralimanohar and Rajeev Balasubramonian. CACTI 6.0: A tool to
understand large caches. Tech. rep. http://www.cs.utah.edu/~rajeev/
cacti6/cacti6-tr.pdf. 2009.

[75] A. Muttreja et al. “Hybrid Simulation for Embedded Software Energy Estima-
tion”. In: Proceedings of the Design Automation Conference. ACM/IEEE, 2005,
pp. 23–26. ISBN: 1-59593-058-2. DOI: 10.1109/DAC.2005.245623.

[76] Sebastian Ottlik et al. “Context-Sensitive Timing Simulation of Binary Em-
bedded Software”. In: Proceedings of the 2014 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems. http://dl.acm.
org/citation.cfm?id=2656117. 2014. ISBN: 9781450330503.

[77] Preeti Ranjan Panda. “SystemC - A Modeling Platform Supporting Multiple
Design Abstractions”. In: Proceedings of the International Symposium on Sys-
tems Synthesis. IEEE, 2001, pp. 75–80.

[78] Terence J. Parr and Russell W. Quong. “ANTLR: A predicated-LL (k) parser
generator”. In: Software: Practice and Experience 25.7 (1995), pp. 789–810.

http://dx.doi.org/10.1109/2.982916
http://dx.doi.org/10.1109/2.982916
http://dx.doi.org/10.1145/1572272.1572303
https://wiki.linaro.org/PeterMaydell/Risu
http://dx.doi.org/10.1007/978-3-642-10452-7_19
http://dl.acm.org/citation.cfm?id=1112266
http://dl.acm.org/citation.cfm?id=1112266
http://dx.doi.org/10.1145/1542452.1542472
http://www.cs.utah.edu/~rajeev/cacti6/cacti6-tr.pdf
http://www.cs.utah.edu/~rajeev/cacti6/cacti6-tr.pdf
http://dx.doi.org/10.1109/DAC.2005.245623
http://dl.acm.org/citation.cfm?id=2656117
http://dl.acm.org/citation.cfm?id=2656117

150 Bibliography

[79] A Patel et al. “MARSS: a full system simulator for multicore x86 CPUs”. In:
Proceedings of the Design Automation Conference. http://dl.acm.org/
citation.cfm?id=2024954. ACM/IEEE, 2011.

[80] Stefan Pees et al. “LISA - Machine Description Language for Cycle-accurate
Models of Programmable DSP Architectures”. In: Proceedings of the Design
Automation Conference. DAC ’99. New York, NY, USA: ACM/IEEE, 1999,
pp. 933–938. ISBN: 1-58113-109-7. DOI: 10.1145/309847.310101.

[81] DC Powell and B Franke. “Using continuous statistical machine learning to
enable high-speed performance prediction in hybrid instruction-/cycle-accurate
instruction set simulators”. In: Proceedings of the 7th IEEE/ACM international
ldots. http://dl.acm.org/citation.cfm?id=1629478. 2009, pp. 315–
324.

[82] Wei Qin and Sharad Malik. “Automated Synthesis of Efficient Binary Decoders
for Retargetable Software Toolkits”. In: Proceedings of the Design Automation
Conference. 2003, pp. 764–769.

[83] Wei Qin and Sharad Malik. “Flexible and formal modeling of microprocessors
with application to retargetable simulation”. In: Proceedings of the Conference
on Design, Automation and Test in Europe. DATE ’03. Washington, DC, USA:
IEEE, 2003, pp. 556–561. ISBN: 0-7695-1870-2. DOI: 10.1109/DATE.2003.
1253667.

[84] Norman Ramsey and Mary F Fern’andez. “Specifying representations of ma-
chine instructions”. In: ACM Transactions on Programming Languages and
Systems 19.3 (May 1997), pp. 492–524. ISSN: 0164-0925. DOI: 10.1145/
256167.256225.

[85] Alasdair Rawsthorne, John Harold Sandham, and Jason Souloglou. “Exception
handling method and apparatus for use in program code conversion”. Pat. US
7353163 B2. 2008.

[86] Alasdair Rawsthorne et al. “Block translation optimizations for program code
conversation”. Pat. US 20040255279 A1. 2004.

[87] M Reshadi, P Mishra, and N Dutt. “Hybrid-compiled simulation: An efficient
technique for instruction-set architecture simulation”. In: ACM Transactions on
Embedded Computing Systems 8.3 (2009). http://dl.acm.org/citation.
cfm?id=1509292.

[88] Mehrdad Reshadi et al. “An efficient retargetable framework for instruction-
set simulation”. In: Proceedings of the International Conference on Hard-
ware/Software Codesign and System Synthesis. New York, New York, USA:
IEEE/ACM/IFIP, 2003, pp. 13–18. ISBN: 1581137427. DOI: 10.1109/CODESS.
2003.1275249.

[89] Victor Reyes. Using Virtual Prototypes to Address the Growing Software Com-
plexity in Automotive. Tech. rep. November. Synopsys, 2013, pp. 1–18.

http://dl.acm.org/citation.cfm?id=2024954
http://dl.acm.org/citation.cfm?id=2024954
http://dx.doi.org/10.1145/309847.310101
http://dl.acm.org/citation.cfm?id=1629478
http://dx.doi.org/10.1109/DATE.2003.1253667
http://dx.doi.org/10.1109/DATE.2003.1253667
http://dx.doi.org/10.1145/256167.256225
http://dx.doi.org/10.1145/256167.256225
http://dl.acm.org/citation.cfm?id=1509292
http://dl.acm.org/citation.cfm?id=1509292
http://dx.doi.org/10.1109/CODESS.2003.1275249
http://dx.doi.org/10.1109/CODESS.2003.1275249

Bibliography 151

[90] Sandro Rigo and G Araujo. “ArchC: A SystemC-Based Architecture Descrip-
tion Language”. In: Proceedings of the Symposium on Computer Architecture
and High Performance Computing. http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=1364738. IEEE, 2004, pp. 66–73.

[91] J.A. Rowson. “Hardware/Software Co-Simulation”. In: Proceedings of the De-
sign Automation Conference. ACM/IEEE, 1994, pp. 439–440. ISBN: 0-89791-
653-0. DOI: 10.1109/DAC.1994.204143.

[92] Patrick Schaumont and Ingrid Verbauwhede. “A Component-Based Design
Environment For ESL Design”. In: Design & Test of Computers 23.5 (2006),
pp. 338–347.

[93] Eric Schnarr and James R. Larus. “Fast Out-of-Order Processor Simulation
Using Memoization”. In: Proceedings of the International Conference on Ar-
chitectural support for Programming Languages and Operating Systems. New
York, New York, USA: ACM, 1998, pp. 283–294. ISBN: 1581131070. DOI:
10.1145/291069.291063.

[94] J Schnerr and O Bringmann. “High-performance timing simulation of embed-
ded software”. In: Proceedings of the 45th annual Design Automation Confer-
ence. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
4555825. 2008, pp. 290–295.

[95] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: a concolic unit testing
engine for C”. In: Proceedings of the European software engineering confer-
ence. Ed. by Michel Wermelinger and Harald Gall. ACM, 2005, pp. 263–272.
ISBN: 1-59593-014-0.

[96] Alexander Sepp, Julian Kranz, and Axel Simon. “GDSL: A Generic Decoder
Specification Language for Interpreting Machine Language”. In: Electronic
Notes in Theoretical Computer Science 289 (2012), pp. 53–64. ISSN: 15710661.
DOI: 10.1016/j.entcs.2012.11.006.

[97] Konstantin Serebryany and Derek Bruening. “AddressSanitizer: a fast address
sanity checker”. In: Proceedings of the Usenix Annual Technical COnference.
https://www.usenix.org/system/files/conference/atc12/atc12-
final39.pdf. USENIX Association, 2012, p. 28. ISBN: 978-931971-93-5.

[98] Marc Serughetti. Software Development Using Virtual Hardware Platform.
Tech. rep. CoWare, 2007.

[99] Tom Spink et al. “Efficient code generation in a region-based dynamic binary
translator”. In: Proceedings of the Conference on Languages, Compilers and
Tools for Embedded Systems. ACM, 2014, pp. 3–12.

[100] Evgeniy (Google) Stepanov and Konstantin (Google) Serebryany. “Memo-
rySanitizer: Fast Detector of Uninitialized Memory Use in C++”. In: Proceed-
ings of the International Symposium on Code Generation and Optimization.
ACM/IEEE, 2015, pp. 46–55.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1364738
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1364738
http://dx.doi.org/10.1109/DAC.1994.204143
http://dx.doi.org/10.1145/291069.291063
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4555825
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4555825
http://dx.doi.org/10.1016/j.entcs.2012.11.006
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf

152 Bibliography

[101] Peter Strazdins, Bill Clarke, and Andrew Over. “Efficient Cycle-Accurate Sim-
ulation of the UltraSPARC III CPU”. In: Proceedings of the Australasian con-
ference on Computer science. 2007, pp. 221–228.

[102] Synopsys. Synopsys DesignWare ARC Processor Cores. http://www.synopsys.
com/IP/ProcessorIP/ARCProcessors/. 2015.

[103] Christopher Thompson, Miles Gould, and Nigel Topham. “High Speed Cycle
Approximate Simulation for Cache-Incoherent MPSoCs”. In: Proceedings of
the International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation. IEEE, July 2013, pp. 88–95. ISBN: 978-1-4799-
0103-6. DOI: 10.1109/SAMOS.2013.6621110.

[104] Nigel Topham and Daniel Jones. “High Speed CPU Simulation using JIT Bi-
nary Translation”. In: Proceedings of the Annual Workshop on Modeling, Bench-
marking and Simulation. MOBS’07. Springer-Verlag, 2007, pp. 50–64.

[105] Transitive technology: The Rosetta Stone for binary translation. http://www.
cs.manchester.ac.uk/our-research/research-impact/transitive-
technology/. (Visited on 03/26/2015).

[106] Harry Wagstaff, Thomas Spink, and Björn Franke. “Automated ISA branch
coverage analysis and test case generation for retargetable instruction set simu-
lators”. In: Proceedings of the International Conference on Compilers, Archi-
tectures and Synthesis of Embedded System. http://dl.acm.org/citation.
cfm?id=2656113. ACM, 2014.

[107] Harry Wagstaff et al. “Early partial evaluation in a JIT-compiled, retargetable
instruction set simulator generated from a high-level architecture description”.
In: Proceedings of the Design Automation Conference. DAC ’13. New York,
NY, USA: ACM/IEEE, 2013, 21:1–21:6. ISBN: 978-1-4503-2071-9. DOI: 10.
1145/2463209.2488760.

[108] VM Weaver and S McKee. Are Cycle Accurate Simulations a Waste of Time?
Tech. rep. http://www.csl.cornell.edu/~vince/papers/wddd08/
wddd08_workshop.pdf. 2008.

[109] Emmett Witchel and Mendel Rosenblum. “Embra: Fast and Flexible Machine
Simulation”. In: Proceedings of the International Conference on Measurement
and Modeling of Computer Systems. SIGMETRICS ’96. New York, NY, USA:
ACM, 1996, pp. 68–79. ISBN: 0-89791-793-6. DOI: 10.1145/233013.233025.

[110] X86 Instruction Decoding (Gem5). http://m5sim.org/wiki/index.php/
X86_Instruction_decoding. 2009. (Visited on 02/11/2015).

[111] Hoonmo Yang and Moonkey Lee. “Embedded Processor Validation Environ-
ment Using a Cycle-Accurate Retargetable Instruction-Set Simulator”. In: The
Journal of Supercomputing 33.1-2 (2005), pp. 19–32. ISSN: 0920-8542. DOI:
10.1007/BF02764138.

http://www.synopsys.com/IP/ProcessorIP/ARCProcessors/
http://www.synopsys.com/IP/ProcessorIP/ARCProcessors/
http://dx.doi.org/10.1109/SAMOS.2013.6621110
http://www.cs.manchester.ac.uk/our-research/research-impact/transitive-technology/
http://www.cs.manchester.ac.uk/our-research/research-impact/transitive-technology/
http://www.cs.manchester.ac.uk/our-research/research-impact/transitive-technology/
http://dl.acm.org/citation.cfm?id=2656113
http://dl.acm.org/citation.cfm?id=2656113
http://dx.doi.org/10.1145/2463209.2488760
http://dx.doi.org/10.1145/2463209.2488760
http://www.csl.cornell.edu/~vince/papers/wddd08/wddd08_workshop.pdf
http://www.csl.cornell.edu/~vince/papers/wddd08/wddd08_workshop.pdf
http://dx.doi.org/10.1145/233013.233025
http://m5sim.org/wiki/index.php/X86_Instruction_decoding
http://m5sim.org/wiki/index.php/X86_Instruction_decoding
http://dx.doi.org/10.1007/BF02764138

Bibliography 153

[112] Matt T. Yourst. “PTLsim: A Cycle Accurate Full System x86-64 Microarchi-
tectural Simulator”. In: Proceedings of the IEEE International Symposium on
Performance Analysis of Systems & Software. http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=4211019. IEEE, Apr. 2007,
pp. 23–34. ISBN: 1-4244-1081-9. DOI: 10.1109/ISPASS.2007.363733.

[113] Michal Zalewski. American Fuzzy Lop. http://lcamtuf.coredump.cx/
afl/. (Visited on 03/01/2015).

[114] Hong Zhu, Patrick a. V. Hall, and John H. R. May. “Software Unit Test Cov-
erage and Adequacy”. In: ACM Computing Surveys 29.4 (1997), pp. 366–427.
ISSN: 03600300. DOI: 10.1145/267580.267590.

[115] Vojin Zivojnovic, S Pees, and Heinrich Meyr. “LISA-Machine Description Lan-
guage and Generic Machine Model for HW/SW Co-Design”. In: Proceedings
of the Workshop on VLSI Signal Processing. http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=558311. IEEE, 1996, pp. 127–136. ISBN:
0780331346.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4211019
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4211019
http://dx.doi.org/10.1109/ISPASS.2007.363733
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://dx.doi.org/10.1145/267580.267590
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=558311
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=558311

	cover sheet
	thesis
	Introduction
	Background
	Motivation
	Contributions
	Thesis Structure

	Background & Related Work
	Introduction
	Overview of Simulation
	Instruction Decoding
	Interpretation
	Static Binary Translation
	Dynamic Binary Translation
	Block Based Translation
	Trace Based Translation
	Region Based Translation

	Full System Simulation
	Performance/Power Modelling
	Retargetability
	High Level Descriptions
	Low Level Descriptions
	Correctness

	Conclusion

	Infrastructure
	Introduction
	Arcsim
	LLVM
	CVC4
	QEMU
	Evaluation
	Equipment
	Methodology
	Artefacts

	Efficient Simulator Generation
	Introduction
	The GenC Architecture Description Language
	Existing Architecture Description Languages
	Our ADL
	Implementation of the GenC Tool

	Generating a Simulator Module
	Instruction Decoding
	Interpretation
	A Naïve DBT

	High Speed Dynamic Binary Translation
	Fixedness Analysis
	Generating LLVM Bitcode For An Instruction

	Evaluation
	Comparison Against Naïve
	Comparison Against QEMU

	Conclusion

	Automated Test Generation
	Introduction
	Motivation
	Coverage Analysis
	Basic Block Coverage
	Path Coverage
	Coverage Results

	Test Generation
	Constraint Generation
	Constraint Satisfaction
	Instruction Encoding

	Evaluation
	Empirical Methodology
	Key Results
	Comparison
	Strengths and Limitations

	Conclusion

	Efficient Full-System Simulation
	Introduction
	Full System Simulation
	Interrupt Handling
	Memory Management
	Introduction to Virtual Memory
	Memory in Simulators
	Virtual Memory In Simulation
	Software Cache Based Approaches
	Efficiently Handling Invalidations
	Memory Translation Functions

	Evaluation
	Key Results
	Analysis
	Analysis of Invalidation

	Conclusion

	Conclusion
	Introduction
	Contributions
	Efficient Simulator Generation
	Automated Test Generation
	Efficient Full-System Simulation

	Critical Analysis
	Efficient Simulator Generation
	Automated Test Generation
	Efficient Full-System Simulation

	Future Work
	Final Remarks

	Detailed Results - Efficient Simulator Generation
	Detailed Results - Automated Test Generation
	Detailed Results - Efficient Full-System Simulation

