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Abstract
This paper provides an overview of speaker adaptation research
carried out in the EMIME speech-to-speech translation (S2ST)
project. We focus on how speaker adaptation transforms can be
learned from speech in one language and applied to the acous-
tic models of another language. The adaptation is transferred
across languages and/or from recognition models to synthesis
models. The various approaches investigated can all be viewed
as a process in which a mapping is defined in terms of either
acoustic model states or linguistic units. The mapping is used
to transfer either speech data or adaptation transforms between
the two models. Because the success of speaker adaptation in
text-to-speech synthesis is measured by judging speaker simi-
larity, we also discuss issues concerning evaluation of speaker
similarity in an S2ST scenario.
Index Terms: speech-to-speech translation

1. Introduction
EMIME (Effective Multilingual Interaction in Mobile Environ-
ments) is a European FP7 project concerned with speech-to-
speech translation (S2ST)1. The main goal of EMIME is to de-
velop a mobile device that performs personalised S2ST, such
that a user’s spoken input in one language is used to produce
spoken output in another language, while continuing to sound
like the user’s voice.

The idea for the EMIME project arose out of recent ad-
vances in hidden Markov model-based speech synthesis. In re-
cent years, speech synthesis systems based on hidden Markov
models (HMMs) have reached performance levels compara-
ble to state-of-the-art unit selection systems [1, 2]. This has
sparked interest in whether unified models for both recogni-
tion and synthesis are possible. One of the motivations for
pursuing such unified models is the success of speaker adap-
tation techniques, developed for automatic speech recognition
(ASR), in text-to-speech (TTS) synthesis, including for unsu-
pervised speaker adaptation [3]. Figure 1 gives an overview of
the EMIME system.

However, despite a common HMM statistical framework
there remain substantial differences between HMM-based ASR
and TTS. This should not be surprising: ASR is concerned with
minimising speaker (and environment) specific effects, aiming

1htt://www.emime.org
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Figure 1: Overview of the system.

to be as general as possible. This is characterised by systems
that use as few parameters as possible, smearing out speaker
differences. By contrast, synthesis is concerned with producing
intelligible speech, that sounds like a specific speaker, and that
is as natural as possible. This is characterised by parametrically
rich systems that model specific speaker traits.

We have explored the gap between ASR and TTS [4], and
concluded that many of the techniques or configurations used
in ASR (or TTS) cannot simply be used in TTS (or ASR)
without negative consequences. In particular, a single acous-
tic feature type and order that worked well for ASR and TTS
could not be found. We have also investigated the transfer of
adaptation transforms from ASR models to TTS models within
one language – which enables unsupervised speaker adapta-
tion for TTS – with good results. Initial experiments on cross-
language speaker adaptation have demonstrated the feasibility
of the approach and recently this has been extended to multi-
lingual acoustic modelling. When describing cross-lingual ex-
periments in this paper, we will refer to the input language (L1
– the language of the adaptation data) and the output language
(L2 – the language of the synthesized speech); we will avoid the
terms source language and target language since these may be
ambiguous in some situations.

An important issue that arises when speaker adaptation is
carried out across languages is whether or not a speaker is
recognisable as him/herself in the output language (L2). A
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few experiments have been conducted to explore this issue, but
many questions are still open – the issues surrounding the eval-
uation of speaker similarity are discussed towards the end of the
paper.

2. Basic system
This section gives a brief description of the general set-up of
the EMIME system. We are targeting four languages: English,
Finnish, Japanese and Mandarin.

2.1. ASR

The initial work of the project has included the development of
baseline speech recognition systems for all languages. These
are broadly similar in design, being based on HMMs and us-
ing large word or sub-word vocabularies. The Hidden Markov
Toolkit (HTK), one of the de-facto standards used for train-
ing HMMs for ASR was used, as well as HTS (H triple-S, or
HMM speech synthesis system) a significant set of patches for
HTK that allow it to train models suitable also for synthesis.
The acoustic models are speaker-independent, but they can be
adapted to new speakers. The baseline systems differ in the
acoustic features extracted from the speech signal, the set of
phonemes used in acoustic models, and the construction of the
n-gram language models [5].

2.2. Machine translation

In the first instance, general machine translation architectures
are used in EMIME since the focus is on recognition, synthe-
sis and cross-lingual speaker adaptation. In the demonstration
S2ST system, existing systems and resources [6] are used to
translate from L1 to L2. However, there are interesting chal-
lenges in speech translation that will be addressed. For ex-
ample, in Finnish-to-English translation there are complex is-
sues in reconciling morphological analyses used in translation
with those used in ASR. For statistical machine translation, the
role of analysis is to make it easier to map Finnish to English
whereas in ASR the role is to make it easier to build and in-
tegrate language and acoustic models. Rather than try to find
a Finnish morphological analysis scheme which is ideal for
both ASR and statistical machine translation (SMT), combina-
tion procedures which allow for considering multiple analyses
in translation have been developed: [7] found that translation
performance and robustness is improved.

2.3. TTS

The TTS systems in EMIME are built using the framework from
the HTS-2007 system [3], which is a speaker-adaptive system
that was entered for the Blizzard Challenge 2007. The HTS-
2007 system consists of four main components: speech analy-
sis, average voice training, speaker adaptation and speech gen-
eration. Speech analysis generates an acoustic feature vector
comprising high-order STRAIGHT-analysed Mel-generalised
cepstral coefficients (MGCEP), fundamental frequency and a
5-band representation of the aperiodic component of the sig-
nal. The “average voice model” approach to speaker adaptation
is used in which HMMs are trained on multiple speakers’ data
using speaker adaptive training (SAT) [8]. These HMMs are
then adapted to a single target speaker’s data. To synthesise an
utterance, an excitation signal is generated using mixed excita-
tion and PSOLA and then a synthesised waveform is generated
using the MLSA filter corresponding to the STRAIGHT mel-

cepstral coefficients.

2.4. Evaluation

ASR performance is calculated using the standard word error
rate (WER) measure. TTS performance is measured through
formal listening tests as well as a number of objective measures
which are used to pre-select systems for listening evaluation.
The key properties of synthetic speech that are evaluated are:
naturalness, intelligibility and similarity to the original speaker.
To evaluate naturalness and similarity to the target speaker, 5-
point mean opinion score (MOS) scales are used. To evaluate
intelligibility, the subjects are asked to transcribe semantically
unpredictable sentences; the average WER is calculated from
these transcripts. Evaluation is discussed in Section 4.

2.5. Data

The main data sets used for ASR and TTS are the following.
For English it is the Wall Street Journal corpus (WSJ) [9] and
CMU-ARCTIC (http://festvox.org/cmu arctic/).
For Finnish and Mandarin Speecon [10] was employed, and
for Japanese the Japanese Newspaper Article Sentences (JNAS)
database [11] and a 6-speaker corpus from Nitech were used.

3. Speaker adaptation
All of the speaker adaptation experiments conducted in EMIME
can be described within a common framework. This frame-
work involves the construction of a mapping to link two acous-
tic models (whether that is an ASR model and a TTS model for
the same language, or models for different languages). Once
the mapping is constructed, it is used to adapt one of the models
by either a) learning the adaptation using the other model, then
transferring the adaptation transforms through the mapping, or
b) transferring data associated with one model through the map-
ping, and then using it to learn the adaptation transform for the
other model. This is illustrated in the bottom tier of Figure 1.

The mapping can be formed in a number of ways, linking
either acoustic model states or linguistic units in the two models
(Section 3.2). Since our goal is unsupervised adaptation (i.e.,
the only external input to the system is a speech waveform),
the adaptation data must be automatically transcribed (Section
3.3). Once a transcription has been obtained, adaptation trans-
forms are learned. Techniques used for adaptation are derived
from the Maximum Likelihood Linear Regression (MLLR) and
maximum a posterior (MAP) methods [8]. The mapping can be
thought of of having a root node where vocal tract length nor-
malisation (VTLN) sits and leaves where the MLLR transforms
are. We summarise VTLN (Section 3.1) and then intra-lingual
(Section 3.4) and cross-lingual (Section 3.5) experiments.

3.1. VTLN

Vocal tract length normalisation (VTLN) is a simple adaptation
technique based on the facts that different people have differ-
ent sized vocal tracts, and that vocal tract lengths are directly
related to formant frequencies. VTLN warps the feature spec-
trum. Whilst it is not capable of adapting to the extent available
from MLLR, it can be done using much fewer data; as little
as a few tens of seconds worth. VTLN also fits well with the
MGCEP feature extraction used in HTS-based synthesis.

In the framework presented here, VTLN forms the root of
the adaptation hierarchy, being class agnostic. It is basically
a feature transform which effectively provides a prior (initial-



isation) for the more powerful adaptation techniques. It was
shown in [12] that VTLN can quickly produce a synthesised
output voice matching rough gender characteristics of the in-
put voice, and sounding more natural than other transforms for
small amounts of adaptation data. It was also confirmed to have
additive effects with respect to MLLR.

3.2. Linking two acoustic models via a mapping

Two acoustic models, each comprising a set of context-
dependent models of sub-word units (e.g., phones), can be
linked by a mapping which associates one or more parameters
in one model with one or more parameters in the other model.
Mappings can be defined in terms of acoustic model states or
linguistic units. The intra-lingual experiments discussed in this
paper used either phoneme mappings constructed using expert
knowledge or state mappings derived from state-clustering de-
cision trees (Section 3.4). The cross-lingual experiments used
either phoneme mappings constructed using expert knowledge
or state mappings learned automatically using the Kullback-
Leibler (KL) divergence between the state’s probability density
functions (Section 3.5).

3.3. Transcribing the adaptation data

In order to carry out unsupervised speaker adaptation, we need
to automatically obtain a transcription of the adaptation speech
waveforms. This transcription might be words, phones (or tri-
phones), or “full context” labels. “Full context” is the term used
to refer to the type of models used for HMM-based synthesis,
which are typically quinphones (phones conditioned on two left
and two right phones of context) conditioned on suprasegmen-
tal prosodic features such as syllable structure, word and phrase
boundaries, etc. These full context transcriptions are usually
predicted from the word transcription by using the front-end of
the TTS system, which predicts the segmental and supraseg-
mental information using a variety of methods (pronunciation
dictionary, letter-to-sound model, intonation model etc.).

An obvious way to obtain a transcription is by using an ASR
system. A TTS front-end can be used to generate full context
labels from the words. A potential drawback with this approach
is that errors present in the word level transcription might cause
wide-ranging errors in the full-context labelling, because of the
wide context taken into account in these labels and in the TTS
front end. Phone labels can be produced easily using an ASR
system, either by deriving them from the words, or by running
the ASR models as a phoneme recogniser. Another way to tran-
scribe the data is to decode the speech using TTS-style full con-
text acoustic models. However, this is infeasible as a first-pass
decoding due to the very long context dependencies in these
models and the consequently vast decoding network. The ex-
plicit duration model used in TTS models also adds significant
complexity. These problems can be worked around, by limit-
ing the span over which context constraints are obeyed in the
decoding network, or by running a multi-pass system.

All of the above methods assume that we are attempting to
transcribe the input (L1) speech using L1 labels (words, phones,
etc), prior to either learning adaptation transforms or sending
the data through the mapping. It is also possible to directly ob-
tain an L2 transcription of the input speech, by running an L2
ASR system on the data (e.g., run Mandarin ASR on English
speech waveforms). Of course, it will not produce meaningful
output, but the sub-word labels may still be used to learn adap-
tation transforms directly with respect to the L2 model.

3.4. Intra-lingual speaker adaptation

In EMIME, intra-lingual adaptation is not really the target.
However, it formed a very useful means for baseline experi-
ments, especially before multilingual data was available. Gen-
erally, a technique that does not work on intra-lingual adaptation
is unlikely to work on cross-lingual adaptation. In particular, it
was of interest whether adaptation would work on ASR data,
and (hence) would be suitable for unsupervised adaptation in
TTS. This section describes this background and baseline work,
and re-interprets it in terms of the common framework intro-
duced earlier. King et al. [13] reports the first (intra-lingual) un-
supervised speaker adaptation experiments, which used a trivial
mapping between full context and triphone models. In [14] and
[15], we reported two approaches in which the mapping was
derived from the decision trees used to perform state-clustering
for both the ASR model and the TTS model.

King et al. [13] used a simple phone recogniser, based on
triphone acoustic models and a bigram phone language model,
to transcribe the adaptation data. These ASR acoustic models
used TTS-type acoustic features (high order spectral features +
source features) and were derived from the full context synthe-
sis models by untying all states, then reclustering them into tri-
phone models. After transcribing the adaptation data in terms of
triphone labels, adaptation transforms were learned with respect
to the ASR acoustic models. The construction of the mapping
was trivial: each full context synthesis model was mapped to the
corresponding triphone. Transferring the adaptation transform
through this mapping resulted in adapting the TTS full context
models using these transforms.

Gibson [14] used a two-pass decision tree construction
method which allowed the same set of underlying models to be
used to transcribe the adaptation data and to generate adapted
synthetic speech. Pass 1 only asks questions about left, right and
central phonemes to construct a phonetic decision tree. The tree
is used to generate a set of tied-state triphone models which are
used for ASR. Pass 2 extends the tree by asking additional ques-
tions about suprasegmental information, to arrive at full context
models for TTS. The mapping between full context TTS models
and triphone ASR models is defined by the decision tree: every
full context model has, somewhere further towards the tree’s
root, an ancestor triphone model.

The adaptation data are transcribed using triphone models.
These ASR models are adapted and the transforms are mapped
to the full context models via the tree. This method was com-
pared to a second approach in which the word transcription is
expanded to full context labels using the TTS front end. These
labels are then used to adapt the full context models. The map-
ping in the second approach is defined by the prediction of full
context labels from the word sequence, and it is the adaptation
data that is being transferred via this mapping to the TTS model.

Gibson [14] found that, with regard to similarity to the tar-
get speaker, significant improvements over an average voice
system were observed for all adapted systems. No significant
performance degradation or improvement was observed when
using direct adaptation of the full context models compared to
triphone model adaptation followed by transfer of the trans-
forms via the mapping.

Dines et al. [15] focused on how to share parameters be-
tween ASR and TTS models. Like Gibson [14], the approach
uses the state clustering tree to define a mapping between ASR
and TTS models. Dines et al. [15] generated the ASR model by
starting with a trained TTS model, then marginalising over the
leaves of the state clustering decision tree. ASR results show



some degradation (compared to a conventionally-built baseline)
as a result of the decision tree marginalisation procedure. Since
the ASR and TTS models share parameters, it is then possible
to perform intra-lingual speaker adaptation by using the adapta-
tion transforms generated during ASR.

3.5. Cross-lingual speaker adaptation

Ultimately the goal of EMIME is to perform unsupervised
speaker adaptation across languages: what we are seeking to
achieve is a system where the synthesised speech at the output
in L2 sounds like it was spoken by the same person who spoke
the L1 input. The mapping between the ASR and TTS models
must now take differences in the languages (such as their phone
inventory) into account. A number of experiments have been
conducted on this so far. In the first two studies the correct la-
bels for the input data were known (i.e., a supervised setting)
and the mappings were based on either manually-constructed
cross-language phone mappings or a learnt state-level mapping.
In more recent work [16, 17, 18], unsupervised cross-lingual
speaker adaptation has been investigated.

3.5.1. Supervised

In the first series of experiments, Wu et al. [19] performed
Mandarin to English speaker adaptation. Two different pho-
netic label mapping schemes were employed, both manually
constructed: a one-to-one mapping and a one-to-sequence map-
ping. The Mandarin phone labels for the Mandarin adapta-
tion data were mapped to English phone labels, using one of
the mapping schemes. The mapping was in terms of linguis-
tic units, and it was speech data that was transferred between
the models via this mapping. Once the Mandarin speech had
been transcribed using English labels, adaptation transforms for
a set of English triphone models were estimated, which were
then transferred to the English full context TTS models using
the method from King et al. [13] described above.

In a subsequent paper [20], Wu et al. introduced a state-
based mapping for cross-lingual speaker adaptation, this time
for English and Japanese. The mapping is learned by exam-
ining the KL divergence between each state in an L1 average
voice model and each state in an L2 average voice model. The
mapping can be used to transfer either transforms or data from
L1 to L2. In the case of transforms, these are estimated using
L1 data with respect to the L1 model, then transferred via the
mapping and used to adapt the L2 model. In the case of data,
the L1 data is aligned with the L1 model, the result of which is
to associate frames of data with states in the L1 model – a ‘state
transcription’ of the data. These L1 states are mapped to L2
states, with the result that frames of L1 data are now associated
with L2 states. Adaptation transforms can now be estimated
with respect to the L2 model.

In a final experiment, using Japanese adaptation data man-
ually transcribed with full context labels, the state mapping ap-
proach outperformed the phone mapping approach [20] and, in
terms of speaker similarity, the data sharing method resulted in
higher mean opinion scores than transform sharing, although
transform sharing was better in terms of naturalness.

Mapping at the state-level outperforms knowledge-based
phone-level mapping, presumably because it is finer grained
and because it is learned from data. In state mapping, it is
more likely that acoustically-similar units in L1 and L2 will be
mapped onto one another. One disadvantage of the state-level
mapping is that average voice models for the two languages are
needed. The approach also assumes that the model space in

L1 is similar to the model space in L2, which is not necessar-
ily the case, particularly if the training data are from different
corpora. This may be why the transform mapping approach de-
grades speaker similarity.

Our preliminary conclusions regarding the relative merits
of mapping transforms or data are that transform mapping min-
imises the chance that the L2 output will be “L1 accented”,
but at the cost of the speaker identity characteristics being less
strong, so perceived speaker similarity suffers. On the other
hand, data mapping can achieve better speaker similarity but at
the cost of imposing an L1 accent on the L2 output.

3.5.2. Unsupervised

In order to perform unsupervised cross-lingual speech adapta-
tion a transcription of the adaptation data is needed. Oura et al.
[16] extended supervised adaptation using the state level trans-
form mapping [20] to unsupervised adaptation by automatically
transcribing the adaptation data using ASR HMMs. All acoustic
models were trained on ASR databases both for ASR and TTS.
Listening tests showed that the adapted speech was a bit more
similar to the original speaker than the average voice model.

Gibson’s two-pass decision tree construction method was
extended from intra-lingual to cross-lingual speaker adaptation
by treating the L2 adaptation data as if it were uttered in L1
[18]. Listening tests show that there is no significant difference
in similarity nor naturalness for any of the tested systems. Both
intra-lingual and cross-lingual unsupervised adaptation deliver
performance approaching that of supervised adaptation.

Liang et al. [17] combined decision tree marginalization
[15] and state level mapping [20] using both data and transform
mapping to perform unsupervised cross-lingual speaker adapta-
tion. An important finding in [17] is that the difference between
similarity scores for supervised and unsupervised adaptation is
larger when the reference utterance and test utterance are in the
same language. A language mismatch, i.e., reference utterance
is Mandarin, test utterance is English, leads to listeners judg-
ing both systems (supervised and unsupervised) as equally sim-
ilar/dissimilar to the original speaker. There is also no differ-
ence between data and transform mapping in the mismatched
condition whereas transform mapping outperforms data map-
ping in a matched language condition. Furthermore, in contrast
to [20] Liang et al. [17] found that transform mapping resulted
in lower naturalness scores than data mapping.

The three approaches described here all show that unsuper-
vised cross-lingual adaptation achieves comparable results - in
terms of similarity and naturalness - to supervised cross-lingual
speaker adaptation. However, similarity scores are all around 2
on MOS scales ranging from 1-5 indicating that although adap-
tation does make the synthesis sound more similar to the orig-
inal speaker it is not yet recognisable as the original speaker.
Naturalness scores range from 2 - 3. Section 4 discusses the
issues that exist with these similarity scores and alternatives are
suggested.

4. Speaker similarity evaluation
We now discuss issues of evaluation, focusing on how to mea-
sure the success of cross-lingual speaker adaptation. Measuring
speaker similarity in a meaningful way is obviously a key aspect
of the evaluation of any type of voice conversion or speaker-
adaptive text-to-speech synthesis. However, a survey of pre-
vious cross-lingual voice conversion research shows that none
of the studies give a precise explanation of what is being mea-



sured. It also appears that no current techniques achieve what
we could call “good” cross-lingual speaker similarity.

4.1. Voice conversion literature

Research in voice conversion, including across languages, has
a longer history than cross-language speaker-adaptive HMM-
based text-to-speech synthesis, so it is worthwhile surveying the
literature in this area to see what it can tell us about evaluation.
[21] used bilingual data (Japanese/English) and measured simi-
larity by calculating mutual information between speaker pairs.
[22] also used bilingual data (Japanese/English) and used the
objective measure Mel Cepstral Distortion (MCD) to evaluate
speaker individuality. In the S2ST project TC-STAR [23] data
from monolingual speakers was used in a unit selection system.
Evaluation was carried out using mean opinion scores (MOS)
for similarity and quality. The work of Latorre and colleagues
[24] has a slightly different focus: multilingual synthesis, which
is the ability to generate utterances in more than one language,
or utterances of mixed language, from a single system. They
also use MOS, for intelligibility, similarity and native accent.

A common technique, used in several of these studies, is
to compare cross-lingual voice conversion to intra-lingual voice
conversion. However, this does not directly measure how sim-
ilar the speech sounds to that of the original speaker. Using
mean opinion scores to evaluate similarity, although a widely-
used technique, is not without problems: judging how similar
utterances are on a scale from 1 to 5 may be too difficult for
listeners, especially if the utterances are in different languages.
The results in [17] support this. Judgements of speaker sim-
ilarity are also strongly correlated with the overall quality or
naturalness of the synthetic speech: listeners are probably un-
likely to rate an utterance as sounding like the target speaker if
the quality is poor.

In summary, the methods commonly employed to evaluate
speaker similarity for voice conversion are no more sophisti-
cated than those already used to evaluate text-to-speech. Whilst
listening tests based on pairwise comparisons or MOS ratings
are simple to administer and analyse statistically, they offer no
guarantee that what is being evaluated really is speaker similar-
ity, independent of other factors such as quality or naturalness.

4.2. Re-evaluation of speaker similarity

Clearly, more research focussed on the evaluation of speaker
similarity is needed. The research needs to address two impor-
tant questions: does a speaker actually sound the like the same
person in L1 and L2, and can listeners judge speaker similarity
across languages? Our own impressions are that, although there
are voice quality differences for an individual speaker when
speaking L1 vs L2, it is still possible to identify them (e.g., pick
them out from a group of speakers) in either language.

With regard to the second question, speech perception lit-
erature suggests that this is not necessarily a straightforward
task for listeners. For instance, language familiarity plays a
significant role in voice identification [25]. Furthermore, [26]
found that, when asked to focus on voice quality to judge voice
similarity in a foreign language, monolingual listeners were not
able to ignore language characteristics. In [27] it was found
that monolingual English speakers can identify English speak-
ers significantly more successfully than they can identify Span-
ish speakers speaking Spanish. Winters et al. [28] describe two
experiments which look at respectively, identification and dis-
crimination of bilingual talkers across languages (English and
German). The results of these experiments indicate that there is

sufficient language-independent speaker-specific information in
speech for listeners to generalize knowledge of speakers’ voices
across English and German and to successfully discriminate be-
tween bilingual speakers regardless of the language they are
speaking. The lessons we draw from these studies are that it
is important to pay attention to which language(s) the listeners
speak and how familiar they are with the pairs of languages they
are listening to.

An in-depth investigation of whether a speaker sounds the
same in two different languages goes beyond the scope of
EMIME, but we have investigated the rephrased question “Do
these two sentences (in L1 and L2) sound like they were spoken
by the same person?”. In Wester [29], native English listeners
were presented with two sentences spoken by bilingual speak-
ers (English/German and English/Finnish) and were asked to
judge whether the sentences were spoken by the same person or
not. The results showed that listeners perform well on this task,
they are able to discriminate between speakers significantly bet-
ter than chance. However, we also found that listeners are sig-
nificantly less accurate on cross-lingual trials than on matched-
language pairs. These initial findings are promising for EMIME
as listeners are at least able to discriminate between bilingual
talkers when the stimuli are natural speech.

Ongoing work is expanding on the experiments in [29] by
running the same listening test, using the same data, but in syn-
thesized form, i.e. the bilingual data is used as adaptation data
to create synthetic stimuli. These synthetic speech stimuli will
be used in a listening test rather than natural speech stimuli. If
listeners also perform well on this task, it will bring us one step
closer to the EMIME scenario in which cross-lingual speaker
adaptation comparing natural and synthetic speech must be as-
sessed.

5. Discussion
We have provided an overview of several speaker adaptation ex-
periments, and have brought them together under a common de-
scriptive framework: first form a mapping between two acoustic
models, then use the mapping to transfer either speech data or
adaptation transforms from one model to the other.

The experiments using phone recognisers or LVCSR to
transcribe the adaptation data, the two pass decision tree method
[14] and the decision tree marginalisation approach [17] all sug-
gest that errors in transcription do not lead to poorer quality
speech synthesis. The precise reasons for this require further in-
vestigation, but the explanation is probably that erroneous tran-
scriptions are still “close enough” to be useful for learning adap-
tation transforms. For example, a word error will still contain
many correct phones, a phone error will often be of a similar
class to the correct phone, and very often in the same adapta-
tion regression class.

Adaptation transforms learned with respect to triphone
models perform as well as adaptation of full context models
[13, 14] even though this neglects prosody. That is not to say
that the F0 and duration parameters are not adapted, it just
means than the adaptation classes for these prosodic parame-
ters are formed on a phonetic basis only. Performing linguistic
analysis (i.e., the TTS front end), to predict prosodic informa-
tion from the word sequence, on estimated word transcriptions
containing errors does not seem to affect synthesis in terms of
naturalness or speaker similarity. In general, unsupervised sys-
tems were not significantly different from supervised compari-
son systems. Overall these are very positive results: unsuper-
vised adaptation of a TTS voice is possible using ASR models.



We should always keep in mind that the data on which the
average voice models are trained also have noisy full context
labels, because there is no guarantee that the TTS-frontend pre-
dicts full context labels that exactly correspond to the acoustic
signal (i.e., to how the speaker read that sentence). This is par-
ticularly true of the suprasegmental labels but also applies to
phenomena such as vowel reduction and segment deletions. It
may seem obvious that better average voice models could be
built if the training data full context labels were a more accu-
rate reflection of the speech signal. However, this may result
in better synthetic speech only if the full context used during
synthesis were equally accurate. It is possible that consistency
between training and synthesis (i.e., using the same front-end to
produce the labels in both cases) is more important than accu-
rate labelling of the training data.

We hope that the research being conducted in the EMIME
project has implications extending beyond the narrow goals
of speaker-adaptive speech-to-speech translation, to areas such
as unsupervised adaptation more generally, unified models for
ASR and TTS, voice conversion, multilingual ASR and mul-
tilingual TTS. Specific challenges common to several applica-
tions include inter-corpus normalisation and the investigation of
new parameter sharing and labelling schemes for multilingual
modelling.
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[18] M. Gibson, T. Hirsimäki, R. Karhila, M. Kurimo, and W. Byrne,
“Unsupervised cross-lingual speaker adaptation for HMM-based
speech synthesis using two-pass decision tree construction,” in
Proc. ICASSP ’10, 2010.

[19] Y.-J. Wu, S. King, and K. Tokuda, “Cross-lingual speaker adap-
tation for HMM-based speech synthesis,” in Proc. ISCSLP ’08,
2008.

[20] Y.-J. Wu, Y. Nankaku, and K. Tokuda, “State mapping based
method for cross-lingual speaker adaptation in HMM-based
speech synthesis,” in Proc. Interspeech ’09, 2009.

[21] M. Abe, K. Shikano, and H. Kuwabara, “Statistical analysis of
bilingual speaker’s speech of cross-language voice conversion,” J.
Acoust. Soc. Am., vol. 90, no. 1, pp. 76–82, July 1991.

[22] M. Mashimo, T. Toda, K. Shikano, and N. Campbell, “Eval-
uation of cross-language voice conversion based on GMM and
STRAIGHT,” in Proc. Eurospeech ’01, 2001.
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