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Lay summary

It is common in mathematics to consider structures that consist of a collection of elements

that can be combined in various ways, which we call operations, such that certain equations

always hold. For example, two integers can be combined by adding them together, and the

order in which they are added does not change the result. Thus, the collection of all integers

has addition as an operation, and it satisfies the equation x ` y “ y ` x, which says that the

order in which we add two numbers does not matter.

Often we do not consider such structures in isolation, but consider an entire class of struc-

tures with similar operations and equations; this allows us to prove things about many structures

simultaneously. To continue our example from above, the collection of rational numbers (i.e.

fractions) also has an addition operation that satisfies the equation x ` y “ y ` x. Thus if

we prove some result that only depends on the fact that we can combine two elements and

the order in which they are combined does not matter, that result will apply equally to both

integers and to rational numbers.

An algebraic theory is a way of describing such a class of structures by specifying some

operations abstractly, and some equations that they should satisfy. A model of an algebraic

theory consists of a collection of elements that can be combined in the ways prescribed by the

operations of the theory such that the equations hold. Thus there is an algebraic theory with

“`” as an operation and the equation x` y “ y`x, and both the collection of all integers and

the collection of all rational numbers are models of this theory.

Algebraic theories are very useful, but they have limitations. Sometimes we want to define a

class of structures using operations and equations, but where the object underlying the structure

is not just a collection of elements, but something more complicated. In some contexts we may

want to place restrictions on the kinds of operations and equations allowed, or allow more

general types of operation. Over the years, many different variants of the notion of an algebraic

theory have been developed to cope with all these different situations.

The goal of this thesis is to develop a general notion of algebraic theory that unifies many

of these variants. We then use this general notion to give an extension of one of the variants

in particular, called monads, adding certain desirable properties that monads themselves lack.

We do this using ideas from topology, the branch of mathematics that studies spaces with a
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notion of continuity. Although algebraic theories are used to describe mathematical structures,

they are also structures in their own right. We draw an analogy between our general notion of

algebraic theories as structures, and another kind of structure called a group.
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Abstract

Algebraic theories describe mathematical structures that are defined in terms of operations

and equations, and are extremely important throughout mathematics. Many generalisations

of the classical notion of an algebraic theory have sprung up for use in different mathematical

contexts; some examples include Lawvere theories, monads, PROPs and operads. The first

central notion of this thesis is a common generalisation of these, which we call a proto-theory.

The purpose of an algebraic theory is to describe its models, which are structures in which

each of the abstract operations of the theory is given a concrete interpretation such that the

equations of the theory hold. The process of going from a theory to its models is called

semantics, and is encapsulated in a semantics functor. In order to define a model of a theory in

a given category, it is necessary to have some structure that relates the arities of the operations in

the theory with the objects of the category. This leads to the second central notion of this thesis,

that of an interpretation of arities, or aritation for short. We show that any aritation gives rise

to a semantics functor from the appropriate category of proto-theories, and that this functor

has a left adjoint called the structure functor, giving rise to a structure–semantics adjunction.

Furthermore, we show that the usual semantics for many existing notions of algebraic theory

arises in this way by choosing an appropriate aritation.

Another aim of this thesis is to find a convenient category of monads in the following sense.

Every right adjoint into a category gives rise to a monad on that category, and in fact some

functors that are not right adjoints do too, namely their codensity monads. This is the structure

part of the structure–semantics adjunction for monads. However, the fact that not every functor

has a codensity monad means that the structure functor is not defined on the category of all

functors into the base category, but only on a full subcategory of it.

This deficiency is solved when passing to general proto-theories with a canonical choice of

aritation whose structure–semantics adjunction restricts to the usual one for monads. However,

this comes at a cost: the semantics functor for general proto-theories is not full and faithful,

unlike the one for monads. The condition that a semantics functor be full and faithful can be

thought of as a kind of completeness theorem — it says that no information is lost when passing

from a theory to its models. It is therefore desirable to retain this property of the semantics of

monads if possible.
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The goal then, is to find a notion of algebraic theory that generalises monads for which

the semantics functor is full and faithful with a left adjoint; equivalently the semantics functor

should exhibit the category of theories as a reflective subcategory of the category of all functors

into the base category. We achieve this (for well-behaved base categories) with a special kind of

proto-theory enriched in topological spaces, which we call a complete topological proto-theory.

We also pursue an analogy between the theory of proto-theories and that of groups. Un-

der this analogy, monads correspond to finite groups, and complete topological proto-theories

correspond to profinite groups. We give several characterisations of complete topological proto-

theories in terms of monads, mirroring characterisations of profinite groups in terms of finite

groups.
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Chapter 1

Introduction

This thesis is concerned with algebraic theories and their category-theoretic generalisations.

The “structure” and “semantics” of the title refer to a certain type of adjunction that arises

naturally for many different notions of algebraic theory including Lawvere theories, monads,

PROPs, PROs, operads and monoids. We have two broad objectives. First, we wish to find a

common generalisation of all of these in such a way that their structure–semantics adjunctions

arise naturally via the same mechanism. Second, we search for a “convenient category of

monads”, that is, an extension of the category of monads on a given base category that remedies

certain deficiencies of the category of monads, while maintaining other desirable properties.

1.1 Algebraic Theories

Algebraic theories (in the classical sense of universal algebra, also sometimes called equational

presentations) are logical theories of an extremely simple type. They describe structures de-

fined by a collection of operations of various arities and equations between terms built up from

these operations. Despite their simplicity, many of the structures of greatest interest to math-

ematicians are described by algebraic theories. For example, the theory of groups has three

operations, namely multiplication of arity 2 (denoted by concatenation), inversion of arity 1 (de-

noted p´q´1) and a constant identity element (denoted e), which is thought of as an operation

of arity 0. The axioms of the theory of groups are

xpyzq “ pxyqz,

ex “ x,

xe “ x and

xx´1 “ e.
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A model of this theory is just a group; it is a set equipped with instantiations of these operations

of the appropriate arities such that the axioms hold universally.

The theory of fields is an example of a logical theory that is not algebraic. The theory of

fields is the same as the theory of rings (which is an algebraic theory) but with the additional

axioms

@x.p px “ 0q ùñ Dy.pxy “ 1qq and  p0 “ 1q.

Since these involve logical quantifiers and connectives (besides the implicit universal quantifica-

tion present in algebraic theories), the usual axiomatisation of fields is not an algebraic theory,

and indeed one can show that there is no algebraic theory that describes fields.

The simplicity of algebraic theories makes them very amenable to category-theoretic gen-

eralisation. Let us consider the two most well-known categorical notions of algebraic theory:

Lawvere theories and monads.

Lawvere theories provide perhaps the most direct translation of algebraic theories into

category-theoretic terms. Indeed, when they were first introduced by Lawvere in [28], he

referred to what we now call a Lawvere theory simply as an algebraic theory. Every alge-

braic theory gives rise to a Lawvere theory and vice versa, but this is not quite a one-to-one

correspondence: many algebraic theories can give rise to the same Lawvere theory.

Given an algebraic theory, the Lawvere theory it gives rise to describes not the algebraic

theory itself, but the structure possessed by the collection of all terms-up-to-equivalence of the

theory. It is this structure that is relevant when talking about models of a theory, and so in

some sense Lawvere theories are the more fundamental notion, with algebraic theories merely

providing presentations of their Lawvere theories. Just as a group may have many different

presentations in terms of generators and relations, so a Lawvere theory may have many different

presentations in terms of algebraic theories.

Monads are the second major category-theoretic notion of algebraic theory, and they are

closely related to Lawvere theories; for a historical overview, see Hyland and Power [15]. Indeed,

monads actually generalise Lawvere theories: the category of Lawvere theories is equivalent to

the category of finitary monads on Set (that is, the monads whose underlying endofunctor

preserves filtered colimits). This result is due to Linton [31]. Thus one might wonder why we

would look for a common generalisation of Lawvere theories and monads when we already have

one, namely monads themselves.

The answer (aside from the fact that there are other notions of algebraic theory that we

would also like to generalise) is that there is an important sense in which monads do not

generalise Lawvere theories: their semantics. A monad naturally exists attached to a particular

base category, and algebras (i.e. models) for the monad are objects of that base category

equipped with structure defined in terms of the monad. Thus if we view a Lawvere theory

as a finitary monad on Set, then a priori it only makes sense to talk about models of the
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Lawvere theory in Set. However, there is a natural notion of a model of a Lawvere theory in

any finite product category, not just in Set. Of course, models of the Lawvere theory in Set do

coincide with algebras for the corresponding monad, but the more flexible semantics available

to Lawvere theories cannot be explained by viewing them just as a special kind of monad.

We can now clarify what we mean when we say that we are looking for a common gener-

alisation of Lawvere theories and monads that is compatible with their semantics. We would

like a general notion of algebraic theory with its own notion of semantics, with Lawvere theo-

ries and monads appearing as special cases, in such a way that when the general semantics is

specialised to these cases, we recover the semantics of Lawvere theories and of monads in their

full generality.

As mentioned above, there are other notions of algebraic theory we would like to generalise.

These include:

• PROPs and PROs, which are analogues of Lawvere theories that take models in symmetric

and non-symmetric monoidal categories as opposed to finite product categories;

• operads, whose models take values in arbitrary multicategories;

• monads with arities, which are monads on a category that are determined by their values

on a given subcategory, in the same way that a finitary monad on Set is determined by

its values on the subcategory of finite sets; and

• monoids, which can be thought of as very simple algebraic theories with their actions as

models.

These notions are reviewed in Chapter 3, alongside classical algebraic theories, Lawvere theories

and monads.

1.2 Proto-theories

Let us consider in more detail why we might want to find a common generalisation of these

notions. The goal is not to replace them with something superior or necessarily to prove a

large number of results about them simultaneously. Indeed, this would probably be impossible;

there are very significant differences between these notions, for the good reason that they were

developed for use in different contexts. In the words of Saunders Mac Lane ([33], Chapter 4),

“good theory does not search for the maximum generality, but the right generality”.

Rather, we would like to see what they have in common and where they diverge from one

another, and in particular what it is that they share that allows them all to be called notions of

algebraic theory. Because these notions differ from each other in so many important respects,

this common core will necessarily be very simple, almost trivial; nevertheless, it is enough to

develop a good notion of semantics. Our common generalisation should be seen not as something
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that supersedes the existing notions of algebraic theory, but as something that precedes them,

like a common ancestor from which they have all evolved (albeit in a conceptual sense, not a

historical one). The name we use for this common generalisation, proto-theory, is intended to

evoke this idea.

The definition of a proto-theory is extremely simple; it is simply a 1-cell in some 2-category

that lies in the left class of a given factorisation system. In practice what this often amounts to

is a bijective-on-objects functor between categories, possibly preserving some extra structure.

Why then give it a special name? The idea is to promote a point of view that makes certain

constructions more intuitive. Consider the definition of a generalised element: a generalised

element of an object of a category is simply a morphism with that object as its codomain.

Nevertheless, in some contexts thinking of morphisms as element-like-things makes certain

constructions more intuitive. Similarly, thinking of bijective-on-objects functors as theory-like-

things makes the construction of structure–semantics adjunctions more intuitive.

We think of a bijective-on-objects functor L : A Ñ L as an algebraic theory as follows.

The objects of A are thought of as shapes for the inputs and outputs for some operations.

The morphisms in A are then canonical ways of transforming one shape into another. The

morphisms in L are the operations (or terms-up-to-equivalence) of the theory; each one has

an input shape (also called its arity) and an output shape. Composition in L corresponds to

substitution of terms, and the equations of the theory are encoded in the equations that hold

between composites in L.

Suppose we have some proto-theory L : A Ñ L and we wish to consider models of L in a

category B. Intuitively, a model of L in B should consist of an object b of B together with an

interpretation of each operation of the theory. More precisely, if l : La Ñ La1 is an operation

of L with arity a and output shape a1, then the L-model structure on b should give us a way of

transforming “a-indexed families of elements of b” into a1-indexed families.

This does not make sense a priori ; for arbitrary categories A and B there is no canonical

notion of a family of elements of an objects in B indexed by an object of A. Instead, we need

to specify such a notion as extra structure. This leads to the second major definition of this

thesis, that of an interpretation of arities or aritation for short. Once we have specified an

interpretation of arities from A in B, then we can define models of L in B, and such models

form a category equipped with a canonical forgetful functor to B. This is encapsulated in a

semantics functor

Sem: PThpAqop Ñ CAT{B,

where PThpAq denotes the category of proto-theories with arities in A. This semantics func-

tor always has a left adjoint which is called a structure functor, and together they form the

structure–semantics adjunction for the chosen aritation.

The existence of the structure functor comes at a cost, namely that we must be willing to
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tolerate categories that are much larger than those that are commonly dealt with. The reason

is as follows. Let B be some category, and M some category of objects of B equipped with

extra structure, with forgetful functor U : MÑ B. Then if we have an interpretation of arities

from A in B, we can apply the corresponding structure functor to U to obtain a proto-theory

with arities in A, which is a bijective-on-objects functor StrpUq : AÑ ThpUq for some category

ThpUq defined in terms of U . Suppose the cardinality of the set obpMq of objects of M is κ;

then each hom-set in ThpUq can have cardinality as large as 2κ. In particular, even if M is

locally small but has a large set of objects, the hom-sets of ThpUq can not only fail to be small,

but can have cardinality as large as the power set of obpMq.

There are several ways to avoid having to deal with such large sets. The first would be to

restrict our attention to small categories. If κ above is small, then so is 2κ, and we never have

to deal with large categories at all. However this is undesirable because many of the categories

we are most interested in are not in fact small; in particular we are often interested in the

category of all small sets, or categories of all small sets equipped with some structure and these

categories are of course not small.

The second way is to give up on the existence of a left adjoint to the semantics functor

and restrict our attention to proto-theories and categories of structures satisfying some size

constraints. This seems like a reasonable approach, although not the one we pursue in this

thesis. We have chosen rather to see how the theory develops naturally without imposing size

restrictions, allowing sets to get as large as they need to in order for the constructions we

are interested in to make sense. Having gained this “big picture” view, one can later impose

whatever size conditions are appropriate for the particular situation one is interested in, but

if this were done from the start one might miss out on useful insights granted by a broader

perspective.

In Chapter 4, we develop the notions of proto-theories, aritations and their structure–

semantics adjunctions in the special case of proto-theories in CAT, which are just bijective-on-

objects functors. Aside from the definitions, the main content here is the construction of the

structure–semantics adjunction for an arbitrary aritation. We repeat this process in Chapter 6,

but now for proto-theories in the full generality of an arbitrary 2-category. Again we define

the appropriate notions of proto-theory and aritation and construct the structure–semantics

adjunction. We then show that all the examples of notions of algebraic theory from Chapter 3

arise in this way, with the exception of monoids, which are dealt with in Section 4.6, and monads

(possibly with arities), which are dealt with in Chapter 5.

As mentioned above, since the definition of proto-theory is extremely simple one would not

necessarily expect there to be many interesting theorems that hold in the full generality of

completely arbitrary proto-theories. However there are a few results that can be proved at

this level of abstraction, or at least with mild assumptions on the proto-theories and aritations

in question; a few such results are explored in Chapter 7. In particular, the bird’s-eye-view
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provided by proto-theories allows us to give a uniform proof of the fact that forgetful functors

from categories of algebras for both monads and Lawvere theories create all limits, while also

explaining why this is not the case for other classes of proto-theory. We also prove that the for-

getful functors from categories of models of proto-theories have the property of being amnestic

isofibrations, at least in the examples we are most interested in. Along the way we show that a

choice we made when defining the semantics of proto-theories that may have seemed somewhat

arbitrary (namely that semantics is defined by a strict, rather than weak pullback in CAT)

was not arbitrary after all, in the sense that the two choices result in equivalent categories of

models.

1.3 A convenient category of monads

Our second broad objective in this thesis is to find a well-behaved extension of the category of

monads on a given category. In particular, we would like a notion of semantics for this exten-

sion, generalising that of monads, with certain desirable properties that the usual semantics of

monads lacks.

Recall that every adjunction gives rise to a monad. More precisely, there is a canonical (con-

travariant) functor from the category of right adjoints into a given category B (with commuting

triangles as morphisms) to the category of monads on B. This functor is adjoint to the seman-

tics functor that sends a monad to the forgetful functor from its category of Eilenberg–Moore

algebras. This is the classical structure–semantics adjunction for monads.

We could instead regard the semantics functor as a functor into the category of all functors

into B rather than just the right adjoints, and ask whether this version of the semantics functor

has an adjoint; that is, do arbitrary functors have a best approximation by a monadic functor?

One can show that such an approximation exists for a given functor if and only if the right Kan

extension of that functor along itself exists and is a pointwise Kan extension; in this case the

resulting monad is the pointwise codensity monad of the functor. However, codensity monads

do not always exist and so the answer to our question is negative. Nevertheless, one can ask

whether there is some generalisation of the notion of a monad, with a semantics extending the

usual semantics of monads such that such a left adjoint to the semantics functor does exist. In

Chapter 5 we show that the notion of proto-theories with arities in B provides such a notion,

where the semantics is provided by an aritation that we call the canonical aritation on B.

However, when we pass from monads to proto-theories, a desirable property of the semantics

of monads is lost. The semantics functor from the category of monads on B to the category of

right adjoints into B is full and faithful. This is a kind of completeness theorem; it implies that

no information is lost when passing from a monad to its category of algebras. More precisely,

since the semantics functor has a left adjoint, it being full and faithful is equivalent to the

counit of this adjunction being an isomorphism, so the semantics functor exhibits (the opposite
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of) the category of monads as a reflective subcategory of the category of right adjoints into

B. Since the counit is an isomorphism, we can recover a monad (up to isomorphism) from

its category of algebras. Thinking of monads as algebraic theories, this means that a monad

gives a complete description of the algebraic structure possessed by its models. There is no

superfluous information in the monad that is not reflected in its algebras, and its algebras do

not possess any additional algebraic structure other than that described by the monad; this is

a very desirable property for a notion of algebraic theory to have.

We can now say precisely what we mean when we say that we are looking for a convenient

category of monads. A convenient category of monads on B is a category C in which the category

MndpBq of monads on B can be embedded as a full subcategory, equipped with an adjunction

CAT{B K

Str //
Cop

Sem
oo

that extends the structure–semantics adjunction for monads, with Sem full and faithful.

Unfortunately, the semantics of proto-theories induced by the canonical aritation on B does

not have this property. We prove this in Chapter 8, by establishing a relationship between

proto-theories and groups. One can define an action of a group G on an object b of an ar-

bitrary category B — it is simply a monoid homomorphism from G to the monoid Bpb, bq of

endomorphisms of that object. There is also an appropriate notion of equivariant map between

such G-objects, and so they form a category with a forgetful functor to B. This describes

the semantics part of a structure–semantics adjunction with groups as the notion of algebraic

theory.

We define a full and faithful functor from the category of groups to the category of proto-

theories with arities in FinSet, the category of finite sets, in such a way that the structure–

semantics adjunction for proto-theories induced by the canonical aritation on FinSet extends

the structure–semantics adjunction for groups described above. In particular, the monad on the

category of proto-theories on FinSet induced by the former adjunction restricts to the monad

on the category of groups induced by the latter adjunction. We then show that this monad

on the category of groups is the profinite completion monad. This monad is known not to be

idempotent, meaning that the monad on the category of proto-theories is not idempotent. It

follows that the structure–semantics adjunction for proto-theories on FinSet is not idempotent,

and in particular the semantics functor is not full and faithful. Thus proto-theories do not in

general satisfy the completeness theorem.

However, this negative result suggests an analogy between proto-theories and groups that

turns out to be very fruitful, and the rest of this thesis is spent pursuing it with the ultimate goal

of finding a convenient category of monads. Under this analogy, the structure–semantics monad

on the category of proto-theories corresponds to the profinite completion monad on the category

7



of groups. The profinite completion monad is the codensity monad of the inclusion of the

category of finite groups, and we might wonder whether there is a similar characterisation of the

structure–semantics monad as a codensity monad, and if so what the analogue of the category

of finite groups is. In the second part of Chapter 8, we show that, under mild assumptions on

B, the structure–semantics monad is the codensity monad of the inclusion of the category of

monads into the category of proto-theories, and so in some sense monads play a role analogous

to that of finite groups.

Although the profinite completion monad on the category of groups is not idempotent, there

is a closely related monad which is, namely the profinite completion monad on the category of

topological groups. This suggests that by considering some notion of topological proto-theories,

analogous to topological groups, we may find a structure–semantics monad that is idempotent,

which is a first step towards a convenient category of monads. We do this in Chapter 9, giving a

definition of topological proto-theory and showing that their semantics extends the semantics of

monads. Then we show that, under certain conditions on the base category B, the topological

structure–semantics adjunction is idempotent. The conditions we impose on B appear to be

quite restrictive, however they hold in the most important examples, namely the categories of

sets and finite sets, as well as in the category of vector spaces over any field.

Any idempotent adjunction can be factored as reflection and a coreflection. Thus we have

a reflective subcategory of the category of topological proto-theories, and the restriction of

the topological semantics functor to this subcategory is full and faithful. We call the objects

of this subcategory complete topological proto-theories. As the algebras for the topological

structure–semantics monad, they are analogous to profinite groups, which are the algebras for

the topological profinite completion monad.

In Chapter 10 we first show that monads are complete topological proto-theories, from which

it follows that the category of complete topological proto-theories is a convenient category of

monads. We then pursue the analogy between complete topological proto-theories and profinite

groups, giving several characterisations of the category of complete topological proto-theories

that mirror similar characterisations of the category of profinite groups. In particular we can

define complete topological proto-theories without even mentioning the structure–semantics

adjunction: they are precisely the topological proto-theories that can be written as limits of

diagrams of monads. In addition, the category of complete topological proto-theories is the

smallest reflective subcategory of the category of topological proto-theories that contains the

monads.

The final section of Chapter 10 deals with some examples of categories of models of complete

topological proto-theories that are not monadic. These categories are described by equational

presentations in the sense of Manes [35], and include the categories of complete lattices and com-

plete Boolean algebras. These are structures that can be defined by operations and equations

that are highly infinitary in nature. Indeed, they may have operations of arbitrarily high arity,

8



and as a result free algebras do not exist and so these categories are not monadic. Nonetheless,

we show that every category that is equationally presentable over Set is the category of models

for some complete topological proto-theory on Set.

Our use of the term “convenient category of monads” is inspired by the idea of a “convenient

category of topological spaces” from Steenrod [41]. In both cases a “convenient category of X”

refers to a modified version of the category of X, that has certain desirable properties that

the category of X itself lacks. However, the specific requirements we ask for in a convenient

category of monads are unrelated to the requirements for a convenient category of topological

spaces.

1.4 Further work

Finally, in Chapter 11, we discuss some questions that remain unanswered and which could

provide interesting directions for further work. First there is the question of what are the most

appropriate notions of morphisms between proto-theories and aritations. Many of the existing

notions of algebraic theory are closely related; for example Lawvere theories can be described

by finitary monads, and there are various canonical functors between the categories of Lawvere

theories, PROPs, PROs and operads, and these are compatible with their semantics to varying

degrees. It would be illuminating to understand these relationships in terms of morphisms

between aritations or proto-theories.

There is a sense in which the theory of proto-theories, aritations and structure–semantics

adjunctions can be generalised from CAT to other symmetric monoidal categories; we do not

emphasise this generalisation in this thesis because all of the known examples of interest are

in the context of CAT. Our second open question is whether there are examples of structure–

semantics adjunctions in this more general context that have mathematical significance.

The third open question concerns the analogy between groups and proto-theories, and specif-

ically between profinite groups and complete topological proto-theories. There are many char-

acterisations of the category of profinite groups. In Chapter 10 we prove the proto-theory ana-

logues of some, but not all of these. Thus it remains an open question whether proto-theoretic

analogues of the other characterisations of profinite groups exist.

9
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Chapter 2

Background material

In this chapter we review some background material that will be used throughout the rest of

this thesis. In Section 2.1, we introduce the set-theoretic assumptions necessary for dealing

with the large categories that appear later in the thesis. Section 2.2 covers 2-categories and 2-

monads, which will be used in Chapter 6 to describe certain notions of algebraic theory in terms

of proto-theories. In Section 2.3 we recall the notions of factorisation systems and enhanced

factorisation systems, and in particular the bijective-on-objects/full and faithful factorisation

system on CAT, and in Section 2.4 we describe some additional properties of bijective-on-

objects functors. Section 2.5 covers density and codensity, including codensity monads, and

Section 2.6 recalls the notions of idempotent monads and adjunctions. Finally in Section 2.7

we recall the definition of a profinite group and some equivalent ways of characterising them.

2.1 Set-theoretic preliminaries

As mentioned in the introduction, in order to define and prove results about general structure–

semantics adjunctions, we will need to deal with categories that are larger than usual. The

appropriate way to do this is using the notion of a Grothendieck universe. Informally, this

means that there is a set U of sets that is closed under all the usual set forming operations,

such as unions, products, power sets, and so on.

We think of the elements of U as “small” sets. We can then do most ordinary mathematics

while only ever referring to small sets — it is usually only necessary to talk about sets that are

not elements of U when we wish to discuss the totality of all small structures of a given type

as a mathematical structure in its own right. For example, we could talk about the collection

of all groups that have small underlying sets. Since U is a set, such collections are themselves

sets (albeit not small) and we can manipulate them using the usual set-forming operations.

More precisely, in the context of Zermelo–Fraenkel set theory with the axiom of choice

(ZFC), a Grothendieck universe is defined as follows.
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Definition 2.1.1. A set U is a Grothendieck universe if

i. whenever X P U and Y P X, then Y P U ;

ii. whenever X,Y P U , then tX,Y u P U ;

iii. whenever X P U , then PpXq P U , where PpXq is the power set of X; and

iv. whenever I P U and Xi P U for each i P I, then
Ť

iPI Xi P U .

For the rest of this thesis, we will assume the existence of a Grothendieck universe U .

Definition 2.1.2. i. A set X is small if X is in bijection with some X 1 P U .

ii. We define large set to be synonymous with “set”, and use it when we wish to emphasise

that the set in question is not necessarily small.

iii. A properly large set is a large set that is not small.

iv. A class is a collection of sets defined by some first-order formula, not necessarily forming

a set.

By default, the collections of objects and morphisms of a category may be classes. If we

wished to avoid this, and only deal with categories with sets of objects and morphisms, we could

posit the existence of a second Grothendieck universe above the first. However, since we will

not need to perform any complex set-theoretic manipulations on categories with proper classes

of morphisms, we prefer to avoid this and deal with these categories on a somewhat informal

basis.

Definition 2.1.3. Let C be a category with object class obpCq and morphism class morpCq.

Then:

• if morpCq (and hence obpCq) is a small set, then C is small;

• if morpCq is a large set then C is large (this implies that obpCq is a large set);

• if obpCq is a large set and each Cpc, c1q is a small set, then C is locally small; and

• we call a category C huge when we wish to emphasise that it does not necessarily satisfy

any of the above size conditions.

If C is large and not small it is called properly large, and if C is huge and not large it is called

properly huge. If C is equivalent to a small category then C is called essentially small,

and if C is equivalent to a large category then C is called essentially large. Similarly, if C is

essentially large and each Cpc, c1q is small, then C is called essentially locally small.

For almost all purposes an essentially small category may be treated as if it were small.

We may sometimes abuse terminology slightly by calling categories small when in fact they are

only essentially small, and similarly for large and essentially large categories.
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We now define notation for some categories of various sizes that we shall use frequently.

Definition 2.1.4. i. Write SET for the (properly huge) category of sets.

ii. Write Set for the (properly large) category of small sets.

iii. Write FinSet for the (essentially small) category of finite sets.

iv. Write CAT for the (properly huge) category of large categories.

v. Write Cat for the (properly large) category of small categories.

vi. Write TOP for the (properly huge) category of topological spaces.

vii. Write Top for the (properly large) category of small topological spaces.

viii. Write MON for the (properly huge) category of large monoids.

ix. Write Mon for the (properly large) category of small monoids.

x. Write TopMon for the (properly large) category of small topological monoids.

xi. Write Gp for the (properly large) category of small groups.

xii. Write FinGp for the (essentially small) category of finite groups.

xiii. Write TopGp for the (properly large) category of small topological groups.

2.2 Categories with algebraic structure and 2-monads

At several points in this thesis we will have reason to consider categories equipped with some

kind of extra structure. The kinds of structure we are most interested in are best characterised

in terms of 2-monads on the category CAT of all large categories. We collect here the basic

2-categorical definitions and notation that we shall use in later chapters. The definitions of

2-category, 2-functor and 2-natural transformation were first developed by Kelly and Street

in [25], and the theory of 2-monads was developed by Blackwell, Kelly and Power in [7].

Definition 2.2.1. A 2-monad on the 2-category CAT of large categories consists of a 2-

functor T : CAT Ñ CAT together with 2-natural transformations η : idCAT Ñ T and µ : TT Ñ

T such that the usual monad axioms hold strictly.

Definition 2.2.2. Let T “ pT, η, µq be a 2-monad on CAT. A T-algebra consists of a category

C together with a functor Y : TC Ñ C such that the usual axioms for an algebra for a monad

hold strictly.
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Definition 2.2.3. Let T “ pT, η, µq be a 2-monad on CAT, and pC, Y q and pD, Zq be T-

algebras. A pseudo-T-morphism pC, Y q Ñ pD, Zq consists of a functor F : C Ñ D together

with a natural isomorphism f : Z ˝ TF Ñ F ˝ Y such that

C
ηC //

F
��

TC Y //

TF
��

=Ef

C

F
��

D
ηD
// TD

Z
// D

“

C

F
��

C

F
��

D D

and

TTC
µC //

TTF
��

TC Y //

TF
��

=Ef

C

F
��

TTD
µD
// TD

Z
// D

“

TTC TY //

TTF
��

?GTf

TC Y //

TF
��

>Ff

C

F
��

TTD
TZ
// TD

Z
// D.

Definition 2.2.4. Let T “ pT, η, µq be a 2-monad on CAT, let pC, Y q and pD, Zq be T-algebras

and let pF, fq and pG, gq be pseudo-T-morphisms pC, Y q Ñ pD, Zq. A T-transformation

pF, fq Ñ pG, gq consists of a natural transformation φ : F Ñ G such that

TC
TF

))

TG

55�� Tφ

Y

��

}� g

TD

Z

��
C

G
// D

“

TC TF //

Y

��

}� f

TD

Z

��
C

F
((

G

66�� φ D.

Definition 2.2.5. Let T be a 2-monad on CAT. We write T- Alg for the 2-category of T-

algebras, pseudo-T-morphisms and T-transformations.

2.3 Factorisation systems

Factorisation systems generalise some of the important properties of the classes of surjective

and injective functions between sets. The notion of a factorisation system was introduced by

Freyd and Kelly in [14]. Over the years many variants have been defined, however, when we

write “factorisation system”, we always refer to this original notion, which is also sometimes

called an orthogonal factorisation system.

Definition 2.3.1. Let e : a Ñ c and n : b Ñ d be morphisms in a category C. Then we say

that e is left orthogonal to n or n is right orthogonal to e and write e K n if, for every

commutative square of the form

a
f //

e

��

b

n

��
c

g
// d
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there is a unique h : c Ñ b such that h ˝ e “ f and n ˝ h “ g. We call such an h a fill-in for

this square.

Definition 2.3.2. Let C be a category. A factorisation system on C consists of two classes

E and N of morphisms in C that are each closed under composition and each contain all the

isomorphisms, such that

i. every morphism f in C can be written as a composite e ˝ n where e P E and n P N ; and

ii. for every e P E and n P N we have e K n.

It is possible to define factorisation systems without reference to the orthogonality relation;

the following characterisation is due to Joyal (Definition C.0.19 in [19]).

Lemma 2.3.3. Let E and N be two classes of morphisms in a category C. Then pE ,N q is a

factorisation system on C if and only if E and N are both closed under composition and contain

all the isomorphisms, and in addition every morphism in C can be factored as a map in E

followed by a map in N and this factorisation is unique up to unique isomorphism.

Remark 2.3.4. Another way to express the fact that a morphism e : aÑ c is left orthogonal

to a morphism n : bÑ d is that the square

Cpc, bq
n˚ //

e˚

��

Cpc, dq

e˚

��
Cpa, bq

n˚
// Cpa, dq

is a pullback in SET.

The prototypical factorisation system is on the category of sets, with E being the class of

all surjections and N being the class of all injections. The main example that shall concern us

in this thesis is as follows.

Lemma 2.3.5. There is a factorisation system pE ,N q on the category CAT of all large cate-

gories, with E being the class of all functors that are bijective on objects, and N being the class

of full and faithful functors.

Proof. This is well-known and the proof is elementary; we therefore omit it.

The observation in Remark 2.3.4 that orthogonality can be expressed in terms of pullbacks

in SET allows us to generalise the notion of a factorisation system to enriched categories, and

in particular to 2-categories, which are categories enriched in CAT.

Definition 2.3.6. Let X be a 2-category, and let pE ,N q be a factorisation system on the

underlying 1-category of X . The pE ,N q is a CAT-factorisation system on X if, for every

pE : AÑ Cq P E and pN : B Ñ Dq P N , the square
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X pC,Bq
N˚ //

E˚

��

X pC,Dq

E˚

��
X pA,Bq

N˚

// X pA,Dq

is a pullback in CAT.

On the level on objects, the fact that this square is a pullback is orthogonality of E and N in

the unenriched sense, as per Remark 2.3.4. On the level of morphisms however, the condition

of being a pullback says the following.

Let E : A Ñ C and N : B Ñ D be 1-cells in X with E P E and N P N . Let F1, F2 : A Ñ B

and G1, G2 : C Ñ D be 1-cells such that the square

A Fi //

E
��

B

N
��

C
Gi

// D

commutes for i “ 1, 2, and let H1, H2 : C Ñ B be the fill-ins for these two squares respectively.

Then, given 2-cells α : F1 Ñ F2 and β : G1 Ñ G2 such that

A
F2

''

F1

77
KS

α

E

��

B

N

��
C

G1

// D

“

A F2 //

E

��

B

N

��
C

G2

((

G1

66
KS

β D,

there is a unique 2-cell γ : H1 Ñ H2 such that

A F2 //

E

��

B

C

H2

66

H1

HH

[c
γ

“ A
F2

''

F1

77
KS

α B

and
B

N

��
C

H2

66

H1

HH

[c
γ

G1

// D

“ C
G2

((

G1

66
KS

β D.

There is a further strengthening of the notion of factorisation system that is available in the

setting of 2-categories (and not in general enriched categories).
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Definition 2.3.7. Let X be a 2-category, and let E : A Ñ C and N : B Ñ D be 2-cells in X .

We say that E is strongly left orthogonal to N or that N is strongly right orthogonal

to E if, for all 1-cells F : AÑ B and G : C Ñ D and invertible 2-cells

A F //

E
��

<Dφ

B

N
��

C
G
// D

there is a unique 1-cell H : C Ñ B and invertible 2-cell θ : GÑ N ˝H such that H ˝E “ F and

A F //

E
��

B

N
��

C

H

??

G

θ ò
// D

“

A F //

E
��

<Dφ

B

N
��

C
G
// D.

We say that pH, θq is a fill-in for φ.

Definition 2.3.8. Let pE ,N q be a CAT-factorisation system on a 2-category X . We say that

pE ,N q is an enhanced factorisation system if in addition every element of E is strongly left

orthogonal to every element of N .

Lemma 2.3.9. The bijective-on-objects/full-and-faithful factorisation system on CAT is an

enhanced factorisation system.

Proof. This follows from Proposition 23 in Street and Walters [43].

An enhanced factorisation system on a 2-category X is a factorisation system on the under-

lying 1-category of X with two additional properties: we have the 2-dimensional orthogonality

property as described after Definition 2.3.6, and we have the strong orthogonality property of

Definition 2.3.7. In the case of the bijective-on-objects/full-and-faithful factorisation we have an

additional “two-dimensional strong orthogonality” property that combines the two. I was un-

able to find any mention of this additional property in the literature, although it may be known.

I also do not know whether the analogous result holds in any enhanced factorisation system; in

any case, we shall only need it for the bijective-on-objects/full-and-faithful factorisation system

on CAT.

Lemma 2.3.10. Let E : A Ñ C be a bijective-on-objects functor and let N : B Ñ D be a full

and faithful functor. Let F1, F2 : AÑ B and G1, G2 : C Ñ D be functors. For i “ 1, 2, let

A Fi //

E
��

<Dφi

B

N
��

C
Gi

// D
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be a natural isomorphism with fill-in

B

N

��
C

Gi

θiò
//

Hi

??

D,

and let

A
F2
%%

F1

99
KS

α B and C
G2
&&

G1

88
KS

β D

be natural transformations such that

A
F2

''

F1

77
KS

α

E

��

<Dφ1

B

N

��
C

G1

// D

“

A F2 //

E

��

<Dφ2

B

N

��
B

G2

((

G1

66
KS

β D.

(2.1)

Then there is a unique natural transformation γ : H1 Ñ H2 such that

A F2 //

E

��

B

C

H2

66

H1

HH

[c
γ

“

A
F2

''

F1

77
KS

α

E

��

B

C

H1

??

and

B

N

��
C

H2

77

H1

GG

[c
γ

G1

θ1ò
// D

“

B

N
θ2ò

��
C

G2

))

G1

55
KS

β

H2

??

D.

Proof. Let us define γ component-wise. Given c P C, there is a unique a P A such that c “ Epaq,

and then Hic “ Fia. Thus αa gives a map H1cÑ H2c; we define γc “ αa. We must check that

this does define a natural transformation γ : H1 Ñ H2.

Let f : cÑ c1 in C, and let a, a1 P A such that Ea “ c and Ea1 “ c1. We wish to show that

pH1Ea “ F1aq
αa //

H1f

��

pH2Ea “ F2aq

H2f

��
pH1Ea

1 “ F1a
1q

αa1 // pH2Ea
1 “ F2a

1q
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commutes. Since N is full and faithful, it is sufficient to check that this square commutes after

applying N to it. Consider the following cube:

G1Ea
βEa //

pφ1qa

yy

G1f

��

G2Ea

pφ2qayy
G2f

��

NH1Ea
Nαa //

NH1f

��

NH2Ea

NH2f

��

G1Ea
1

βEa1 //

pφ1qa1

yy

G2Ea
1

pφ2qa1yy
NH1Ea

1

Nαa1
// NH2Ea

1.

The back square commutes by naturality of β, and the top and bottom squares commute by

Equation (2.1). Recall that φi “ θiE as part of what it means for θi to be a fill-in for φi.

Noting this, the left and right-hand squares commute by naturality of θ1 and θ2 respectively.

Since all the morphisms from the back of the cube to the front are isomorphisms, it follows that

the front face of the cube commutes, and this is precisely what was required to show that γ is

a natural transformation H1 Ñ H2.

It is clear from the definition that γ is unique such that γE “ α. Thus, all that remains is

to establish the equality

B

N

��
C

H2

77

H1

GG

[c
γ

G1

θ1ò
// D

“

B

N
θ2ò

��
C

G2

))

G1

55
KS

β

H2

??

D.

Since E : AÑ C is bijective on objects, it is sufficient to show that these two natural transfor-

mations become equal when whiskered with E. But we have

A F2 //

E

��

B

N

��
C

H2

77

H1

GG

[c
γ

G1

θ1ò
// D

“

A
F2

((

F1

66
KS

α

E

��

B

N

��
C

G1

θ1ò

//

H1

??

D

“

A
F2

((

F1

66
KS

α

E

��

<Dφ1

B

N

��
C

G1

// D

19



and

A F2 //

E

��

B

N
θ2ò

��
C

G2

((

G1

66
KS

β

H2

??

D

“

A F2 //

E

��

<Dφ2

B

N

��
B

G2

))

G1

55
KS

β D,

so these two natural transformations are equal by Equation (2.1), as required.

2.4 Bijective-on-objects functors

Let A and L be large categories and suppose L : A Ñ L is a bijective-on-objects functor. We

shall often consider functors of the form

L˚ : rL, Cs Ñ rA, Cs

where C is some other category. Such functors enjoy several useful properties. These properties

are likely to be well-known but I was not able to find them in the literature.

Definition 2.4.1. Let D : I Ñ A and G : AÑ C be functors. We say that G creates limits

of D if, for every limit cone pλi : cÑ GDiqiPI for G˝D, there is a unique cone pµi : aÑ DiqiPI

on D such that Ga “ c and Gµi “ λi for each i P I, and this cone is a limit cone.

We say that G creates limits of shape I if G creates limits of D : I Ñ A for all such D.

This is the definition of creation of limits from Section V.1 of [33]; note that this is somewhat

stricter than the definition that is sometimes used by more recent authors.

Similarly, when we speak of monadic functors we mean this in the sense of VI.7 of [33],

rather than the slightly weaker sense that is commonly used by modern authors. Explicitly:

Definition 2.4.2. A functor G : C Ñ B is monadic if it has a left adjoint and the canonical

comparison functor from C to the category of algebras for the induced monad on B is an

isomorphism of categories. We say that G is weakly monadic if it has a right adjoint and the

comparison functor is an equivalence.

Lemma 2.4.3. Let C and I be categories and suppose C has limits of shape I. Let L : AÑ L be

a bijective-on-objects functor between large categories. Then L˚ : rL, Cs Ñ rA, Cs creates limits

of shape I. Dually, if C has colimits of shape I, then L˚ creates such colimits.

Proof. Recall that if C has limits of shape I, so does the functor category rB, Cs for any category

B. Furthermore, given a limit cone λb on

I D
ÝÑ rB, Cs evb

ÝÑ C
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for each b P B, then there is a unique functor X : B Ñ C and a unique cone λ on D with vertex

X such that each evb sends λ to λb, and furthermore this cone is a limit cone.

Let D : I Ñ rL, Cs, and suppose

pµi : Y Ñ L˚pDpiqqqiPI

is a limit cone on L˚ ˝D. Then, for each a P A,

ppµiqa : Y aÑ DpiqpLaqqiPI

is a limit cone for eva ˝L
˚ ˝D : I Ñ C. But

rL, Cs L˚ //

evLa
$$

rA, Cs

eva

��
C

commutes, and so the pµiqa also define limit cones on each evLa ˝D. Since every object of L is

of the form La for a unique a P A, we therefore have a unique functor X : LÑ C and a unique

cone λ on D with vertex X such that

pλiqLa “ pµiqa : XLa “ Y aÑ DpiqpLaq

for each a P A and i P I, and furthermore λ is a limit cone. But then by construction, this

cone is unique such that L˚pλq “ µ, as required.

This has the following immediate consequence.

Corollary 2.4.4. Let L : AÑ L be a bijective-on-objects functor, and let C be a category with

coequalisers. Then the functor

L˚ : rL, Cs Ñ rA, Cs

is monadic if and only if it has a left adjoint.

Proof. The monadicity theorem (Theorem 1 in VI.7 of [33]) states that a functor is monadic if

and only if it has a left adjoint and creates certain coequalisers. But by the above lemma, L˚

creates all coequalisers.

Thus functors of the form L˚ with L bijective on objects are closely related to monadic

functors. Indeed, even when they fail to have a left adjoint they have the following properties

in common with monadic functors.

Definition 2.4.5. Let U : D Ñ C be a functor. We say that U is an isofibration if, for every

d P D, c P C and isomorphism i : UdÑ c, there is an object d1 in D and isomorphism j : dÑ d1
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such that Ud1 “ c and Uj “ i.

Definition 2.4.6. Let U : D Ñ C be a functor. We say that U is amnestic if U reflects

identities in the following sense: an isomorphism in D is an identity if and only if it is sent to

one by U .

Lemma 2.4.7. A functor U : D Ñ C is an amnestic isofibration if and only if, for every d P D,

c P C and isomorphism i : UdÑ c, there is a unique pair pd1, jq where d1 P D and j : dÑ d1 is

an isomorphism such that Ud1 “ c and Uj “ i.

Proof. Suppose U has this property; then clearly U is an isofibration. Suppose j : dÑ d1 is an

isomorphism such that Uj “ idUd. Then by assumption j is unique such, but idd : d Ñ d is

another such isomorphism, so d “ d1 and j “ idd.

Conversely suppose U is an amnestic isofibration, and let d P D, c P C and i : Ud Ñ c be

an isomorphism. By the isofibration property there is some d1 P D and isomorphism j : dÑ d1

such that Ud1 “ c and uj “ i; let us show that they are unique. Suppose d2 P D and j1 : dÑ d2

such that Ud2 “ c and Uj1 “ i. Then j1 ˝ j´1 : d1 Ñ d2 is an isomorphism and

Upj1 ˝ j´1q “ Upj1q ˝ Upjq´1 “ i ˝ i´1 “ idc.

Since U is amnestic, it follows that d1 “ d2 and j1 ˝ j´1 “ idd1 , so j1 “ j.

Lemma 2.4.8. Let L : A Ñ L be a bijective-on-objects functor. Then for any category C, the

functor

L˚ : rL, Cs Ñ rA, Cs

is an amnestic isofibration.

Proof. We will show that L˚ satisfies the condition in the previous lemma. Let F : L Ñ C

and G : A Ñ C be functors and φ : F ˝ L Ñ G be a natural isomorphism. We define a functor

G1 : LÑ C as follows.

Given an object La P L (every object of L is of this form for a unique a P A), define

G1pLaq “ Ga. Given a morphism l : LaÑ La1 in L, define G1l to be the composite

G1pLaq “ Ga
φ´1
a
ÝÑ FLa

Fl
ÝÑ FLa1

φa1
ÝÑ Ga1 “ G1pLa1q.

This is clearly functorial, and defining θLa “ φa for a P A makes θ into a natural isomorphism

F Ñ G1, and it is unique such that L˚pθq “ φ.

Before continuing we pause to make note of the relationship between monadic and weakly

monadic functors; this will be used in Section 2.7 to show that the category of profinite groups

is monadic over various categories.
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Lemma 2.4.9. A functor U : D Ñ C is monadic if and only if it is a weakly monadic amnestic

isofibration.

Proof. The following argument appears at [1]. Suppose U has a left adjoint, inducing a monad

T on C, and K : D Ñ CT is the comparison functor. It is clear that UT : CT Ñ C is an amnestic

isofibration, as is any isomorphism. Since amnestic isofibrations are closed under composition

and U “ UT ˝K, it follows that if U is monadic, it is an amnestic isofibration.

Conversely suppose U is a weakly monadic amnestic isofibration. The facts that U “ UT˝K

and UT is an amnestic isofibration implies that K is also an amnestic isofibration. Since K is

an equivalence it is essentially surjective on objects, but then the fact that it is an isofibration

implies that it is actually surjective on objects. Meanwhile, the fact that K is full and faithful

and amnestic implies that it must be injective on objects. Thus it is full and faithful and

bijective on objects, so it is an isomorphism.

2.5 Density and codensity

The notions of density and codensity were introduced by Isbell in [16] under the names left

adequacy and right adequacy respectively. We will make use of both of these notions; density

when discussing monads with arities in Sections 3.6 and 5.3, and codensity in its relation to

codensity monads. Throughout this section let A and B be locally large categories and let

F : AÑ B be a functor.

Definition 2.5.1. We define the nerve functor of F to be the composite

NF : B ãÑ rBop,SETs
pF op

q
˚

ÝÑ rAop,SETs,

where the first factor is the Yoneda embedding. Dually, the conerve functor of F is the

composite

NF : B ãÑ rB,SETsop pF
˚
q
op

ÝÑ rA,SETsop.

Definition 2.5.2. We say that F is dense if NF is full and faithful, and that F is codense

if NF is full and faithful.

An important special case is when A is a full subcategory of B and F is the inclusion; in

this situation we call A a dense (respectively codense) subcategory of B. In particular, dense

subcategories are always assumed to be full.

Density of F is equivalent to the condition that every object of B is canonically a colimit of

objects in A, in a sense that we now make precise.

Definition 2.5.3. For every object b P B there is a canonical functor

pF Ó bq Ñ A F
ÝÑ B

23



where the functor pF Ó bq Ñ A is the evident forgetful functor. There is a canonical cocone on

this diagram with vertex b, and whose component at pf : FaÑ bq P pF Ó bq is f itself. We call

this the F -cocone on b.

Dually, there is a functor

pb Ó F q Ñ A F
ÝÑ B

and a canonical cone on this diagram with vertex b, which we call the F -cone on b.

Lemma 2.5.4. The following are equivalent:

i. the functor F is dense;

ii. for every b P B, the F -cocone on B is a colimit cocone; and

iii. the identity functor B Ñ B is the pointwise left Kan extension of F along itself.

Dually, the following are equivalent:

i. the functor F is codense;

ii. for every b P B, the F -cone on B is a limit cone; and

iii. the identity functor B Ñ B is the pointwise right Kan extension of F along itself.

Proof. This is well-known; see for example Propositions 1 and 2 in X.6 of [33].

The third of these conditions makes it clear that there is a connection between density and

codensity and Kan extensions. In particular we can use the left and right Kan extensions of

a functor along itself to measure the failure of a functor to be dense or codense. It turns out

that these Kan extensions naturally come equipped with the structure of a comonad or monad

respectively; this was observed by Kock in [27].

Definition 2.5.5. Let T : B Ñ B be a functor and κ : T ˝ F Ñ F be a natural transformation

exhibiting T as the right Kan extension of F along itself. We define natural transformations

η : idB Ñ T and µ : T ˝T Ñ T , using the universal property of Kan extensions, to be the unique

natural transformations such that we have

A F //

F

��

{� κ

B

idB

��

T

��

ks
η

B

“

A F //

F

��

B

B
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and

A

F

��

F //

t|
κ

B

T

��

T

��
ks
µ
B

T

��
B

“

A F //

F

%%
F

��

�	 κ

x� κ

B

T

��
B

T

��
B.

It is straightforward to check that pT, η, µq is a monad, and we call it the codensity monad

of F . If the Kan extension T is a pointwise Kan extension (as defined in e.g. Definition 1.3.4

of [40]), then we call pT, η, µq the pointwise codensity monad of F . Dually there is a notion

of a (pointwise) density comonad.

Thus a functor is codense if and only if its codensity monad is trivial.

Definition 2.5.6. Let T “ pT, η, µq be the codensity monad of F with κ : T ˝ F Ñ F the

natural transformation making T the right Kan extension of F along itself. Then for each

a P A the map

κa : TFaÑ Fa

makes Fa into a T-algebra, and if f : a Ñ a1 in A, then Ff is a T-algebra homomorphism

pFa, κaq Ñ pFa1, κa1q. Thus the assignments a ÞÑ pFa, κaq and f ÞÑ Ff define a functor

K : AÑ BT such that

A K //

F   

BT

UT

��
B

commutes, where UT : BT Ñ B is the forgetful functor from the category of T-algebras. We call

K the canonical comparison functor for F .

We now record here some lemmas that will aid us in identifying codensity monads.

Lemma 2.5.7. Let U : AÑ C and G : D Ñ C be functors and suppose G has a left adjoint F .

Then the monad induced by the adjunction F % G is the pointwise codensity monad of U if and

only if for each c, c1 P C there is a bijection

Φ: DpFc, Fc1q Ñ rA,SetspCpc1, U´q, Cpc, U´qq (2.2)

such that

i. if f : FcÑ Fc1 and f 1 : Fc1 Ñ Fc2 then Φpf 1 ˝ fq “ Φpfq ˝ Φpf 1q and

ii. if g : cÑ c1 then ΦpFgq “ g˚ : Cpc1, U´q Ñ Cpc, U´q.
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Proof. The pointwise codensity monad T “ pT, η, µq of U exists if and only if for each c1, the

canonical functor

pc1 Ó Uq Ñ A U
ÝÑ C

has a limit. Unpacking the definition of a cone on this diagram, this is equivalent to the

existence of an object Tc1 such that natural transformations Cpc1, U´q Ñ Cpc, U´q correspond

to morphisms cÑ Tc1, naturally in c P C. But if there is a correspondence as in Equation (2.2),

then GFc1 is such an object, so the pointwise codensity monad exists.

But now the category with the same objects as C, and whose morphisms are natural trans-

formations Cpc1, U´q Ñ Cpc, U´q is precisely the Kleisli category of the codensity monad. And

the category with the same objects as C and whose morphisms are morphisms Fc Ñ Fc1 is

the Kleisli category of the monad induced by F % G. But if two monads have isomorphic

Kleisli categories, and the isomorphism is compatible with their respective free functors, then

the monads are isomorphic.

Conversely, if the pointwise codensity monad exists and is isomorphic to the monad induced

by F % G, then the two monads have isomorphic Kleisli categories, yielding the required

functorial correspondence.

Lemma 2.5.8. Let I : AÑ D be a codense functor, and let G : D Ñ C be a functor with a left

adjoint F . Then the pointwise codensity monad of G ˝ I exists and is isomorphic to the monad

induced by F % G.

Proof. It is sufficient to establish a bijection

rA,SETspCpc1, G ˝ I´q, Cpc,G ˝ I´qq – DpFc, Fc1q

satisfying the conditions of Lemma 2.5.7. But we have

rA,SETspCpc1, G ˝ I´q, Cpc,G ˝ I´qq – rA,SETspCpFc1, I´q, CpFc, I´qq (since F % G)

– DpFc, Fc1q (since I is codense),

and this bijection is compatible with composition. Furthermore, tracing f˚ through this se-

quence of bijections gives Ff .

2.6 Idempotent adjunctions and monads

In this section we review what it means for an adjunction or monad to be idempotent, and

some of the consequences of these properties.

Lemma 2.6.1. Let T “ pT, η, µq be a monad on a category C, and let UT : CT Ñ C be the

forgetful functor from the category of T-algebras. Then the following are equivalent:

26



i. the functor UT : CT Ñ C is full and faithful;

ii. the natural transformation µ : TT Ñ T is an isomorphism; and

iii. for every T-algebra pa, αq, the map α : TaÑ a is an isomorphism.

Proof. See Proposition 4.2.3 in [9].

Definition 2.6.2. A monad satisfying the conditions of the previous lemma is called an idem-

potent monad.

Recall the following definitions.

Definition 2.6.3. Let C be a category and A a full subcategory of C. We say that A is replete

in C if, whenever we have an isomorphism a – c in C where a P A then c P A. We say that A

is reflective in C if the inclusion A ãÑ C has a left adjoint.

Proposition 2.6.4. Let C be a category. There is a bijective correspondence between idempotent

monads on C and reflective, replete subcategories of C. This correspondence sends an idempotent

monad to its category of algebras, and sends a reflective subcategory to the monad induced by

the reflection.

Proof. See Corollary 4.2.4 of [9].

Let us now consider a type of adjunction that is closely related to the notion of an idempotent

monad.

Lemma 2.6.5. Let F : C Ñ D be a functor with right adjoint G, with unit η and counit ε.

Then the following conditions are equivalent:

i. Fη is an isomorphism;

ii. εF is an isomorphism;

iii. GεF is an isomorphism, that is, the monad induced by the adjunction is idempotent;

iv. GFη “ ηGF ;

v. Gε is an isomorphism;

vi. ηG is an isomorphism;

vii. FηG is an isomorphism, that is, the comonad induced by the adjunction is idempotent;

viii. FGε “ εFG; and

ix. FGεF “ εFGF .

Proof. This is well-known; see for example 3.4 in [11].
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An adjunction satisfying the conditions of the above lemma is called an idempotent ad-

junction.

Lemma 2.6.6. Let F : C Ñ D be a functor with a right adjoint G with unit η and counit ε,

and suppose the adjunction F % G is idempotent. Define A to be the full subcategory of C on

those objects c for which ηc : cÑ GFc is an isomorphism. Write:

• R : A ãÑ C for the inclusion;

• F 1 : AÑ D for F ˝R;

• G1 : D Ñ A for the factorisation of G through A, which exists by Lemma 2.6.5.(vi); and

• L : C Ñ A for the composite G1 ˝ F .

Then we have L % R and F 1 % G1, with R and F 1 full and faithful, and the adjunction F % G

is isomorphic to the composite adjunction

C K

L //
A

R
oo K

F 1 //
D.

G1
oo

Furthermore A is replete in C, and can be identified up to isomorphism with the category of

algebras for the monad induced by F % G.

Proof. See 3.6 of [11].

Finally we note some of the consequences of a codensity monad being idempotent. This

result may already be known, but I am not aware of it in the literature.

Lemma 2.6.7. Let U : M Ñ B be a functor with a codensity monad T. Suppose that T

is idempotent, so that its category of algebras BT can be identified with a reflective, replete

subcategory of B. Then

i. the canonical comparison functor K : MÑ BT is codense;

ii. the full subcategory BT ãÑ B consists precisely of those objects of B of the form limiPI UDi,

where D : I ÑM is a diagram in M; and

iii. the full subcategory BT ãÑ B is the smallest reflective, replete subcategory of B through

which U factors.

Proof. i. Let b P BT Ď B. To show that K is codense, we must show that b is the limit of

the canonical diagram

pb Ó Kq ÑM K
ÝÑ BT.

But since BT is reflective in B, limits computed in BT coincide with limits computed in

B, and the limit of this diagram in B is by definition Tb. But since T is idempotent and

b P BT Ď B, we have b – Tb, and so b is a limit of this diagram.
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ii. As a reflective, replete subcategory, BT is closed under limits in B and so contains every

object of this form. On the other hand, since K is codense, every object b of BT is the

limit of the diagram

pb Ó Kq ÑM K
ÝÑ BT.

which is of the form described.

iii. Any reflective, replete subcategory must be closed under limits, and so by (ii), if U factors

through such a subcategory then it must contain BT. Thus, since BT is itself reflective

and replete, it is the smallest such.

2.7 Profinite groups

In Chapters 8, 9 and 10, we will develop an analogy between the notion of algebraic theory

developed in this thesis and some aspects of group theory. As part of this comparison, we will

make frequent reference to profinite groups and we take the opportunity here to collect some

basic definitions and results concerning these.

In particular, there are many ways of characterising the category of profinite groups up

to equivalence. Although these are well-known, I could not find a comprehensive list of these

characterisations.

Definition 2.7.1. A profinite group is a small topological group that can be written as

a small limit of finite discrete groups in the category of small topological groups. We write

ProfGp for the full subcategory of TopGp consisting of the profinite groups.

Proposition 2.7.2. A small topological group is profinite if and only if it is compact, Hausdorff

and totally disconnected.

Proof. See for example Corollary 1.2.4 in [45].

Proposition 2.7.3. The codensity monad of the functor FinGp ãÑ TopGp that sends a finite

group to the corresponding discrete group is idempotent.

Proof. This was proved by Deleanu in Theorem 3.1 of [12].

Proposition 2.7.4. The category of algebras for the codensity monad of FinGp ãÑ TopGp is

ProfGp, and the forgetful functor to TopGp is the usual inclusion. Furthermore, FinGp is

codense in ProfGp, and ProfGp is the smallest reflective subcategory of TopGp containing

FinGp.

Proof. By the previous proposition, this codensity monad is idempotent, and so its category

of algebras can be identified with the closure of FinGp ãÑ TopGp under small limits by

Lemma 2.6.7.(ii), but this is precisely the definition of ProfGp. The other assertions then

follow from Lemma 2.6.7.(i) and Lemma 2.6.7.(iii).
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We will show that ProfGp is monadic over Set, Top and Gp by applying a result of

Gildenhuys and Kennison, namely Theorem 3.1 from [26], which we will restate for convenience.

First however, we recall some definitions.

Definition 2.7.5. Let T be a monad on Set. Then a Birkhoff subcategory of SetT is a full

subcategory closed under products, subalgebras and homomorphic images.

The celebrated Birkhoff Variety Theorem states that every Birkhoff subcategory of the

category of algebras for a finitary algebraic theory is itself the category of algebras for a finitary

algebraic theory. However, we shall not need this result, but only the fact that any Birkhoff

subcategory is in particular a reflective subcategory, which can be seen by a routine application

of the General Adjoint Functor Theorem.

The following definition is from Section 2 of Gildenhuys and Kennison [26].

Definition 2.7.6. Let U : M Ñ Set with M small, and let T be the codensity monad of

U . Then the category of M-objects, denoted M-obj, is defined to be the smallest full

subcategory of SetT through which the comparison functor K : M Ñ SetT factors and which

is closed under small limits.

The following notion is defined in Section 1 of [26], under the name “separating triple”

rather than “separating monad”.

Definition 2.7.7. Let U : M Ñ Set be a functor with M small. A separating monad for

U consists of a monad T0 and a full and faithful functor S : MÑ SetT0 whose image is closed

under the formation of subalgebras, such that

M
S //

U ""

SetT0

UT0

��
Set

commutes.

Definition 2.7.8. We say that a monad T on Set admits a group operation if there exists

a morphism of monads from the free group monad on Set to T.

Proposition 2.7.9. Let U : M Ñ Set with M small, let T be the codensity monad of U , and

let T̃ be the codensity monad of the composite

M
U
ÝÑ Set

D
ÝÑ Top

where D is the discrete space functor. Let T0 be a finitary separating monad for U such that T0

admits a group operation. Suppose M has and U preserves finite products, and suppose U takes

values in the finite sets. Then SetT can be identified with the smallest Birkhoff subcategory of
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the category of compact Hausdorff T0-algebras through which the comparison functor from M

factors. Furthermore, we have equivalences

M-obj » TopT̃
» SetT,

compatible with the forgetful functors to Set.

Note that speaking of Birkhoff subcategories of the category of compact Hausdorff T0-

algebras does make sense, because this category is monadic over Set; this is Proposition 7.1 in

Manes [34].

Proof. This is Theorem 3.1 in [26].

Proposition 2.7.10. The category ProfGp of profinite groups is monadic over Set, Top and

Gp. Furthermore, in each case the corresponding monad is the codensity monad of the forgetful

functor from FinGp to each of these categories.

Proof. It is clear that the forgetful functors to each of these categories are amnestic isofibrations,

therefore it is enough to show that these functors are weakly monadic by Lemma 2.4.9.

Consider Proposition 2.7.9 with M being FinGp and T0 the free group monad (which cer-

tainly admits a group operation and is finitary), and write T for the codensity monad of FinGp

over Set. The proposition then tells us that SetT can be identified with a Birkhoff subcategory,

and thus a reflective subcategory, of the category of compact Hausdorff groups. Limits in the

category of compact Hausdorff groups are computed as in the category of topological groups,

and hence so are limits in SetT.

But in addition, we have FinGp-obj » SetT, that is every object of SetT is a small limit

(in SetT) of finite groups. But SetT is complete and limits are computed as in the category

of topological groups as noted above. Thus we can identify SetT up to equivalence with the

category of topological groups that are limits of finite discrete groups, which by Definition 2.7.1

is exactly ProfGp. Thus ProfGp is weakly monadic over Set.

Again by Proposition 2.7.9, we have

SetT » TopT̃

where T̃ is the codensity monad of the forgetful functor from the category of finite discrete

groups to Top. In particular the latter is also equivalent to ProfGp in a way compatible with

the forgetful functors, so ProfGp is weakly monadic over Top.

To see that ProfGp is monadic over Gp we use a standard argument, applying the monadic-

ity theorem (Theorem 1 in VI.7 of [33]). The forgetful functor V : ProfGp Ñ Gp has a left

adjoint by a standard application of the General Adjoint Functor Theorem. To see that V
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creates coequalisers of V -split pairs; consider the commuting diagram of forgetful functors

ProfGp
V //

V 1 $$

Gp.

V 2||
Set

Let f, g : G Ñ H be a V -split pair. Then f, g are also V 1 split, and so their coequaliser is

created by V 1 since V 1 is monadic. Thus f and g have a coequaliser e in ProfGp and it is

preserved by V 1. Thus V e˝V f “ V e˝V g ,and V 2V e is the coequaliser of V 2V f and V 2V g, so

since V 2 is monadic, it follows that V e is the coequaliser of V f and V g; that is, the equaliser

of f and g is preserved by V .

Furthermore, if e1 is some morphism in ProfGp such that e1 ˝ f “ e1 ˝ g and V e1 is a

coequaliser of V f and V g, then V 1e1 “ V 2V e1 is a coequaliser of V 1f and V 1g (since the

coequaliser of V f and V g is split and so is absolute). Thus, since V 1 creates coequalisers of

V 1-split pairs, e1 must be a coequaliser of f and g. Thus V creates coequalisers of V -split

pairs, so is monadic. The fact that the corresponding monad on Gp is the codensity monad of

FinGp ãÑ Gp follows from the fact that FinGp is codense in ProfGp and Lemma 2.5.8.

Remark 2.7.11. To summarise the results of this section, the category of profinite groups can

be characterised up to isomorphism in the following equivalent ways:

i. the full subcategory of TopGp consisting of the small limits of finite discrete groups;

ii. the full subcategory of TopGp consisting of the compact Hausdorff, totally disconnected

groups;

iii. the smallest replete reflective subcategory of TopGp containing the finite discrete groups;

iv. the category of algebras for the codensity monad of FinGp ãÑ TopGp;

v. the category of algebras for the codensity monad of FinGp ãÑ Gp;

vi. the category of algebras for the codensity monad of the forgetful functor FinGp Ñ Top;

and

vii. the category of algebras for the codensity monad of the forgetful functor FinGp Ñ Set.

In fact there are many variants of (ii), characterising profinite groups in terms of other properties

of their underlying topological spaces. These characterisations will not be relevant for our

purposes so we omit them here; for a full account see Section II.4 of [17].
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Chapter 3

Notions of algebraic theory

In this chapter we recall various notions of algebraic theory, and their associated structure–

semantics adjunctions. One of the main goals of this thesis is to find a common generalisation

of these, in order to identify which features unite them and allow them all to be regarded as

notions of algebraic theory, and which features distinguish them from one another. A first

approximation to this common generalisation will be defined in Chapter 4, and this will be

refined in Chapter 6.

In Section 3.1 we recall the classical notion of algebraic theory. We then discuss the various

categorical generalisations of this notion that have been developed. Specifically we review

Lawvere theories (Section 3.2), monads (Section 3.3), PROPs and PROs (Section 3.4), operads

(Section 3.5), monads with arities (Section 3.6) and monoids (Section 3.7). Finally in Section 3.8

we summarise and compare all of these.

3.1 Classical algebraic theories

First, let us recall the original, non-categorical definition of an algebraic theory. The following

definitions are adapted from Chapter 1 of [18], but a similar presentation can be found in

Chapter 1 of [35], or any textbook on universal algebra.

Definition 3.1.1. An operational type consists of a set Ω, whose elements we call operation

symbols, together with, for each ω P Ω, a natural number αpωq called the arity of ω. We write

Ωn for the subset of Ω consisting of all operation symbols with arity n P N.

Definition 3.1.2. Given a natural number n, we define the set FΩpnq of Ω-terms in the

variables x1, . . . , xn to be the smallest set such that:

i. for i “ 1, . . . , n, we have xi P FΩpnq (where xi is just thought of as an abstract variable),

and

ii. if ω P Ωm and t1, . . . , tm P FΩpnq then ωpt1, . . . , tmq P FΩpnq.
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If t P FΩpnq, we call n the arity of t.

Remark 3.1.3. If t P FΩpnq and n ď m, then t can also be regarded as an element of FΩpmq,

so the arity of t is not in fact well defined. Strictly speaking then, we should define a term to

be a pair pn, tq where n is a natural number and t P FΩpnq, and then define the arity of such

a term to be n. However we usually omit explicit mention of n for the sake of brevity, in a

mild abuse of notation. Note however, that when we speak of the arity of a term t, we do not

necessarily mean the smallest number n such that t P FΩpnq.

Definition 3.1.4. An algebraic theory consists of an operational type Ω together with a set

E of pairs of Ω-terms where, within each pair, both terms have the same arity (but different

pairs may have different arities).

One should think of the pairs in E as “formal equations” between Ω-terms — these are the

axioms of the algebraic theory. We now turn to semantics.

Definition 3.1.5. Let Ω be an operational type. Then an Ω-structure consists of a set A

together with, for each ω P Ωn, a function

rωsA : An Ñ A

called the interpretation of ω in A.

If A and B are Ω-structures, a function h : A Ñ B is called a Ω-structure homomorphism

if, for every ω P Ωn, the diagram

An
hn //

rωsA
��

Bn

rωsB
��

A
h
// B

commutes.

In order to say what it means for a structure to satisfy certain equations, we must extend

the interpretations of operation symbols to interpretations of terms.

Definition 3.1.6. Let A be an Ω-structure, for an operational type Ω. The interpretation of

a term t P FΩpnq in A is a function

rtsA : An Ñ A

defined recursively as follows:

i. if t “ xi for some i, then rtsA “ πi : A
n Ñ A, the product projection onto the i-th factor;

and
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ii. if t “ ωpt1, . . . , tmq for some ω P Ωm and ti P FΩpnq, then rtsA is defined to be the

composite

An
∆
ÝÑ pAnqm

rt1sAˆ¨¨¨ˆrtmsA
ÝÑ Am

rωsA
ÝÑ A,

where ∆: An Ñ pAnqm is the diagonal map.

Definition 3.1.7. Let pΩ, Eq be an algebraic theory, and A an Ω-structure. Then A is a

model of, or algebra for pΩ, Eq if, for each ps, tq P E, with s, t P FΩpnq, we have an equality

of functions

rssA “ rtsA : An Ñ A.

A pΩ, Eq-model homomorphism between pΩ, Eq-models is an Ω-structure homomorphism

between the underlying Ω-structures.

Example 3.1.8. Define an operational type Ω with

Ω0 “ teu, Ω1 “ tiu, Ω2 “ tmu,

and Ωn “ ∅ for all other values of n. Define

E “ tpmpx1,mpx2, x3qq,mpmpx1, x2q, x3qq,

pmpe, x1q, x1q,

pmpx1, eq, x1q,

pmpx1, ipx1qq, equ.

Then pΩ, Eq is the theory of groups and a model of pΩ, Eq is a group.

Remark 3.1.9. There is a problem with the definition of algebraic theory given in Defini-

tion 3.1.4. Suppose A is a group, and define a binary operation q : AˆAÑ A by

qpa, bq “ rmsApa, risApbqq.

Then we can describe the multiplication and inverses of A in terms of q as follows:

rmsApa, bq “ qpa, qpqpb, bq, bqq

risApaq “ qpqpa, aq, aq.

Therefore, we could express the group axioms entirely in terms of the identity and q, and obtain

a new algebraic theory with a single constant e and a single binary operation symbol q, but

whose category of models is isomorphic to the category of groups. Thus it seems incorrect to
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describe the theory described in Example 3.1.8 as the theory of groups, since there are in fact

multiple theories whose models are groups. Rather, we should think of what is described as an

algebraic theory in Definition 3.1.4 as a presentation (or axiomatisation) of a theory, and any

given theory (whatever we ultimately decide that means) as potentially having multiple distinct

presentations. In the rest of this section, we try to identify what features such a “presentation-

independent” notion of algebraic theory should have, so that we can generalise them to other

categorical contexts.

Definition 3.1.10. Let Ω be an operational type, and let t P FΩpnq and psiq
n
i“1 be a family of

terms si P FΩpmq indexed by i “ 1, . . . , n. Then we write

trpsi{xiq
n
i“1s P FΩpmq

for the term obtained by replacing each occurrence of xi in t with the corresponding term si.

Definition 3.1.11. Given an algebraic theory pΩ, Eq, define a family of relations „nĎ FΩpnqˆ

FΩpnq indexed by all natural numbers n to be the smallest such that

i. each „n is an equivalence relation on FΩpnq;

ii. if ps, tq P E, where s, t P FΩpnq, then s „n t;

iii. if s „n t and ui P FΩpmq for each i “ 1, . . . , n, then srpui{xiq
n
i“1s „m trpui{xiq

n
i“1s; and

iv. if u P FΩpnq and si „m ti for each i “ 1, . . . n, where si, ti P FΩpmq, then urpsi{xiq
n
i“1s „m

urpti{xiq
n
i“1s,

in the sense that if p„1nqnPN is another such family of equivalence relations, then „nĎ„
1
nĎ

FΩpnq ˆ FΩpnq for each n P N.

An equivalence class of „n is called an operation of the theory pΩ, Eq with arity n. Write

Opnq for the set of operations of pΩ, Eq of arity n.

Remark 3.1.12. It is helpful to think of the conditions (i)–(iv) above as describing deduction

rules for the logic of algebraic theories. Then the elements of E are the axioms of the theory,

and an expression of the form s „n t is a theorem, and a proof is a sequence of applications of

the rules (i)–(iv), starting from the axioms.

Theorem 3.1.13 (The Completeness Theorem). Let pΩ, Eq be an algebraic theory, and let

s, t P FΩpnq. Then s „n t if and only if, for every model A of pΩ, Eq we have an equality of

functions

rssA “ rtsA : An Ñ A.

Proof. This is Corollary 1.5 in [18].
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Informally, the completeness theorem states that the properties possessed by all models of

pΩ, Eq (that is, the only equations that hold between interpretations of terms in all models) are

precisely those that can be derived syntactically via the process described in Remark 3.1.12.

Let us note some features of the collection of all operations of a theory.

i. Every operation has an arity n P N, since every term does.

ii. Every i “ 1, . . . , n gives rise to an n-ary operation (namely the equivalence class of

xi P FΩpnq).

iii. If t is an operation with arity n, and psiq
n
i“1 is a family of operations of arity m, indexed by

i “ 1, . . . , n, then there is an operation trpsi{xiq
n
i“1s of arity m, obtained by substituting si

in for each occurrence of xi in t, for each i “ 1, . . . , n (note that this is well-defined, since

conditions (iii) and (iv) of Definition 3.1.11 imply that equivalence of terms is preserved

by substitution from both sides respectively).

Remark 3.1.14. We may abstract from the observations above to obtain a list of some features

that we might expect a notion of algebraic theory to have; we will later examine how both

Lawvere theories and monads display these features. First of all, independently of any particular

theory:

0. there is a collection of arities A.

Next, any individual theory should have the following features.

i. For each arity a, there is a totality Opaq of a-ary operations of the theory.

ii. Every element of an arity a gives rise to an a-ary operation; that is, there is in some sense

a map aÑ Opaq;

iii. Given an a-ary operation τ P Opaq and a family pσiqiPa of b-ary operations indexed by

the arity a, we can substitute the σi’s into τ to form a new b-ary operation. That is, in

some sense we have a map Opaq ˆOpbqa Ñ Opbq.

The points above are left deliberately vague, and we make no assertions at this stage about what

kind of entity the arities, operations and totalities of operations are. In particular, the notation

and terminology may suggest that we treat each arity a and totality of a-ary operations as if

they are sets, but this is intended as a guide for intuition only. When we make these features

precise for particular notions of algebraic theory, we will take a and Opaq to be various different

kinds of mathematical objects.

3.2 Lawvere theories

Lawvere theories provide the most direct translation of the classical notion of algebraic theory

into category-theoretic terms. Indeed, every algebraic theory gives rise to a Lawvere theory

37



(and every Lawvere theory arises in this way), and two algebraic theories give rise to isomorphic

Lawvere theories if and only if they have isomorphic categories of models. Lawvere theories were

first defined in Lawvere’s PhD thesis [28], where they are called simply “algebraic theories”.

Lawvere theories have been generalised to an enriched setting in Power [38] and Nishizawa and

Power [36], however we will deal only with the ordinary non-enriched version. Some of the

differences between our approach and that of [36] Are discussed in Section 6.6 in the subsection

on Lawvere theories.

Definition 3.2.1. Let F be a skeleton of FinSet, so that the objects of F are sets of the form

n “ tx1, . . . xnu,

where the elements xi are arbitrary. We think of the xi as abstract variables.

Definition 3.2.2. A Lawvere theory consists of a large category L together with a functor

L : Fop Ñ L that is bijective on objects and preserves finite products (that is, it sends coproducts

in F to products in L). A Lawvere theory morphism from L1 : Fop Ñ L1 to L : Fop Ñ L is a

functor P : L1 Ñ L such that P ˝ L1 “ L. We write LAW for the category of Lawvere theories

and Law for the category of locally small Lawvere theories.

It is common to require Lawvere theories to be locally small; note that we do not make this

restriction.

Remark 3.2.3. Let pΩ, Eq be an algebraic theory in the sense of Definition 3.1.4. Then we may

define an associated Lawvere theory L : Fop Ñ L as follows. The objects of L are the same as

the objects of F, and the hom-set Lpm,nq is given by the set Opmqn, the set of n-tuples of m-ary

operations (that is, equivalence classes of m-ary terms) for the theory pΩ, Eq. Composition is

induced by substitution of terms: if pτiq
n
i“1 P Lpm,nq “ Opmqn and pσjq

m
j“1 P Oppqm “ Lpp,mq,

their composite is the n-tuple of p-ary operations whose i-th member is τirpσj{xjq
m
i“js. The

functor L : Fop Ñ L sends f : nÑ m to the n-tuple of m-ary operations whose i-th member is

(the equivalence class of the term) fpxiq; this also determines the identities in L.

Conversely, given a Lawvere theory L : Fop Ñ L, we may define an algebraic theory pΩ, Eq,

where Ωn “ LpLn,L1q, and where the equations in E are precisely those that hold in L,

when a variable xi is interpreted as a projection LnÑ L1, and formal substitution of terms is

interpreted as composition in L.

Remark 3.2.4. Let us highlight how the features of a general notion of algebraic theory

described in Remark 3.1.14 manifest themselves in the case of Lawvere theories. Let L : Fop Ñ L

be a Lawvere theory.

0. The arities for Lawvere theories are the natural numbers.

i. For n P N, the n-ary operations of a Lawvere theory form the set LpLn,L1q.
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ii. For each n, we have a function n Ñ LpLn,L1q that sends xi to the n-ary operation it

represents.

iii. Suppose we have an n-ary operation τ P LpLn,L1q, and a family pσiq
n
i“1 of m-ary oper-

ations indexed by i “ 1, . . . , n. Then the σi correspond to a morphism σ P LpLm,Lnq,

since Ln is the n-fold power of L1 (because in F, the object n is the n-th copower of 1).

The result of substituting the σi into τ is given by the composite τ ˝ σ P LpLm,L1q.

We now turn to the semantics of Lawvere theories.

Definition 3.2.5. By a finite product category we mean a category B equipped with,

for each finite family b1, . . . , bn of objects of B, a specified object b1 ˆ ¨ ¨ ¨ ˆ bn and maps

πi : b1ˆ ¨ ¨ ¨ˆ bn Ñ bi exhibiting b1ˆ ¨ ¨ ¨ˆ bn as the product of b1, . . . , bn. This is in contrast to

a category with finite products, which is a category in which all finite products exist, but

are not specified.

A finite product preserving functor between finite product categories, however, is still

only required to preserve the property of being a product, not the distinguished choice of

product.

For the rest of this section, fix a large finite product category B.

Remark 3.2.6. Note that for each b P B, the assignment n ÞÑ bn has a unique extension to a

product preserving functor bp´q : Fop Ñ B, and every morphism f : b Ñ c extends uniquely to

a natural transformation f p´q : bp´q Ñ cp´q.

Definition 3.2.7. Let L : Fop Ñ L be a Lawvere theory. Then a model x of L in B consists

of an object dx and a functor Γx : LÑ B such that

Fop L //

pdxqp´q !!

L

Γx

��
B

commutes.

A L-model homomorphism xÑ y consists of a morphism h : dx Ñ dy in B together with

a natural transformation κ : Γx Ñ Γy such that

Fop L // L

Γx

%%

Γy

99�� κ B “ Fop

pdxqp´q

&&

pdyqp´q

88�� hp´q B.

Remark 3.2.8. In the definition of an L-model homomorphism, note that the components of

κ are completely determined by the components of hp´q because L is bijective on objects, and

these are in turn determined by h itself. Thus, being an L-model homomorphism is in fact a
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property of a morphism h between L-models, rather than an additional structure. Furthermore,

given any natural transformation κ : Γx Ñ Γy, we can define h “ κL1 and then h is an L-model

homomorphism. Thus we could have defined a homomorphism of L-models to be a natural

transformation, but we want to emphasise that such a natural transformation is determined by

its component at L1, which is a morphism between the underlying models of the L-models.

Definition 3.2.9. Let L : Fop Ñ L be a Lawvere theory. We write ModLawpLq for the category

whose objects are models of L in B, and whose morphisms are L-model homomorphisms. We

write SemLawpLq : ModLawpLq Ñ B for the obvious forgetful functor.

Remark 3.2.10. Our definition of a model of a Lawvere theory in Definition 3.2.7 is slightly

non-standard — usually a model is defined as a finite-product preserving functor out of L.

However, Lemma 3.2.11 below shows that the two definitions yield equivalent categories of

models.

We have chosen this non-standard definition partly for pragmatic reasons; it will make

it easier to fit Lawvere theories into the general framework to be described in subsequent

chapters. However there is also a conceptual reason, namely that the forgetful functor from

the category of models not only reflects isomorphisms, but also reflects equalities. That is, if

an object can be equipped with two model structures such that the identity on that object is a

homomorphism between them then the two model structures are in fact identical. This is not

the case with the less restrictive definition. This matches mathematical practice: for example,

one does not distinguish between two group structures on the same underlying set that differ

only in the choice of which binary cartesian product of the underlying set was used to define

the multiplication.

Lemma 3.2.11. Let L : Fop Ñ L be a Lawvere theory. Then ModLawpLq is equivalent to the

full subcategory of rL,Bs consisting of the finite product preserving functors.

Proof. Suppose x “ pdx,Γxq is a model of L, so by definition Γx ˝ L “ pdxqp´q. The product

projections in L all lie in the image of L : Fop Ñ L, and each pdxqp´q : Fop Ñ B preserves finite

products, so the condition that Γx˝L “ pdxqp´q implies that Γ does send the product projections

to product projections in B. Hence Γx is a finite product preserving functor. As noted in

Remark 3.2.8, every natural transformation between L-models defines a homomorphism, so we

can identify ModLawpLq with a full subcategory of the category of finite product preserving

functors L Ñ B. Thus to show that the two categories are equivalent, it is sufficient to show

that every finite product preserving functor is isomorphic to an L-model.

Let Γ: L Ñ B be a functor that preserves finite products. Let d “ ΓpL1q. Every n P F is

the n-th copower of 1; write ιi : 1 Ñ n for the i-th copower coprojection for i “ 1, . . . , n. Then,
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since Γ preserves finite products, we have isomorphisms γn : ΓpLnq Ñ dn such that

ΓpLnq
γn //

ΓpLιiq %%

dn

πi

��
ΓpL1q “ d

commutes for each n P F and i “ 1, . . . , n. We define a functor Γ1 : LÑ B by setting Γ1pLnq “

dn, and, given l : LnÑ Lm, by setting Γ1plq to be the unique morphism dn Ñ dm such that

ΓpLnq
γn //

Γplq

��

dn

Γ1plq

��
ΓpLmq

γm //

ΓpLιiq
##

dm

πi

��
d

commutes for each i “ 1, . . . ,m. It is then clear that pd,Γ1q is an L-model and the γn form the

components of a natural isomorphism Γ Ñ Γ1.

Let us unpack the definition of a model of a Lawvere theory. Let L : Fop Ñ L be a Lawvere

theory and pd,Γq a model of L in B. By the lemma above, Γ preserves finite products and so,

since every object of Fop is a finite power of 1, it follows that Γ is determined by its values

on morphisms of the form l : Ln Ñ L1 in L. Such morphisms are the n-ary operations of

the corresponding algebraic theory, so to equip d with an L-model structure is to provide an

interpretation of each n-ary operation of the theory.

Functoriality of Γ says that, if l : LnÑ L1 and ki : LmÑ L1 in L for i “ 1, . . . , n then

Γplq ˝ pΓpk1q, . . . ,Γpknqq “ Γpl ˝ pk1, . . . , knqq : d
m Ñ d,

or in other words, the interpretations of the operations of the theory are compatible with the

process of substituting operations into one another.

Definition 3.2.12. Let

L1 P // L

Fop
L1

aa

L

>>

be a morphism of Lawvere theories, and define a functor SemLawpP q : ModLawpLq Ñ

ModLawpL
1q as follows. Given x “ pdx,Γxq P ModLawpLq, we set dSemLawpP qpxq “ dx and

set ΓSemLawpP qpxq to be the composite

L1 P
ÝÑ L Γx

ÝÑ B.
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If h : xÑ y is an L-model homomorphism then SemLawpP qphq is the L1-model homomorphism

SemLawpP qpxq Ñ SemLawpP qpyq with the same underlying morphism in B (and this is neces-

sarily a homomorphism).

Proposition 3.2.13. Together, Definitions 3.2.9 and 3.2.12 define a functor LAWop
Ñ

CAT{B.

Proof. This is immediate.

Let pU : M Ñ Bq P CAT{B. Imagine that U is the forgetful functor from the category

of models of some Lawvere theory L : Fop Ñ L, but we do not know anything about L. How

might we attempt to recover it from M and U?

We know that for every morphism l : LnÑ Lm in L we would have a map Γxplq : pUxqn Ñ

pUxqm for each x P M (that is, for each L-model). Furthermore, we know that for each

morphism h : xÑ y in M, the square

pUxqn
Γxplq //

pUhqn

��

pUxqm

pUhqm

��
pUyqn

Γyplq
// pUyqm

commutes. In other words, every morphism l : Ln Ñ Lm in L gives rise to a natural trans-

formation Un Ñ Um. Therefore, if we wanted to recover a Lawvere theory from U , we might

reasonably attempt to do so by defining the morphisms LnÑ Lm in our Lawvere theory to be

the natural transformations Un Ñ Um. This motivates the following definition.

Definition 3.2.14. Let U : M Ñ B be an object of CAT{B. Then we define a category

ThLawpUq to have the same objects as F, and with hom-sets given by

ThLawpUqpn,mq “ rM,BspUn, Umq,

with composition as in rM,Bs. We define a functor StrLawpUq : Fop Ñ ThLawpUq to be the

identity on objects, and sending f : nÑ m in F to the unique natural transformation f˚ : Um Ñ

Un such that

Um
f˚ //

πfpiq ""

Un

πi

��
U

commutes for each i “ 1, . . . , n.

Here, and elsewhere, Str stands for “structure” and Th stands for “theory”. Together

StrLawpUq and ThLawpUq give the Lawvere theory of the most general kind of algebraic structure
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possessed by all the objects of M, when we regard them as objects of B equipped with extra

structure.

Definition 3.2.15. Let

M1
Q //

U 1   

M

U~~
B

be a morphism in CAT{B. We define a functor StrLawpQq : ThLawpUq Ñ ThLawpU
1q, sending

a natural transformation

γ : Um Ñ Un

to the natural transformation

γQ : Um ˝Q “ pU 1qm Ñ Un ˝Q “ pU 1qn.

Proposition 3.2.16. Together, Definitions 3.2.14 and 3.2.15 define a functor

StrLaw : CAT{B Ñ LAWop.

Proof. The only part that is not obvious is that StrLawpUq : Fop Ñ ThLawpUq preserves finite

products. Note that

Fop
StrLawpUq//

��

ThLawpUq

��
rB,Bs

U˚
// rM,Bs

commutes, where the left-hand vertical arrow sends n P F to idnB : B Ñ B, and the right-hand

vertical arrow is a full inclusion. But the left and bottom sides of this square preserve finite

products (since finite products commute with finite powers), and hence so does the top-right

composite. Since the inclusion ThLawpUq ãÑ rM,Bs is full and faithful, and so reflects limits,

it follows that StrLawpUq preserves finite products.

Proposition 3.2.17. The functors from Propositions 3.2.13 and 3.2.16 form an adjunction

CAT{B K

StrLaw //
LAWop.

SemLaw

oo

Proof. A version of this is Theorem 2 in III.1 of [28], which deals with the case when B “ Set,

and with slightly stronger size restrictions on the categories and functors involved. The general

result is presumably known, but I was unable to find it in the literature. In fact it will follow

from Proposition 6.6.2, but it is also straightforward to prove directly, and we sketch such a

proof here.
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Let L : Fop Ñ L be a Lawvere theory and pU : M Ñ Bq P CAT{B. We will describe a

bijection

CAT{BpU,SemLawpLqq – LAWpL,StrLawpUqq.

Let

M
Q //

U ��

ModLawpLq

SemLawpLq
zzB

be a morphism in CAT{B. We will define a morphism sQ : L Ñ StrLawpUq in LAW. Given

l : LnÑ Ln1 in L, for every model x “ pdx,Γxq of L in B, we have a map

Γxplq : pdxqn “ Unpxq Ñ pdxqn
1

“ Un
1

pxq,

and by the definition of L-model homomorphisms, these are natural in x P ModLawpLq. Thus

Γp´qplq is a natural transformation Un Ñ Un
1

, that is, a morphism n Ñ n1 in ThLawpUq; we

define sQplq “ Γp´qplq.

In the other direction, let

L P // ThLawpUq

Fop

L

``

StrLawpUq

99

be a morphism in LAW; we must define a corresponding morphism sP : U Ñ SemLawpLq in

CAT{B. That is, for each object m P M, we must equip Um with an L-model structure

such that for any map f : m Ñ m1 in M, the map Um becomes an L-model homomorphism.

To define an L-model structure on Um we must give, for each l : Ln Ñ Ln1 in L, a map

pUmqn Ñ pUmqn
1

. We take this map to be P plqm.

It remains to check that these are inverse bijections natural in U and L; this is straightfor-

ward and we omit it.

Definition 3.2.18. Let M be a large category and U : MÑ Set a functor. We say that U is

tractable if, for all n, n1 P N, the set of natural transformations Un Ñ Un
1

is small. We write

CAT{Settract for the full subcategory of CAT{Set consisting of the tractable functors.

Recall that Law denotes the full subcategory of LAW consisting of those Lawvere theories

L : Fop Ñ L where L is locally small.

Proposition 3.2.19. In the case when B “ Set, the adjunction of Proposition 3.2.17 restricts

to an adjunction

CAT{Settract K

StrLaw //
Lawop,

SemLaw

oo
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and SemLaw : Lawop
Ñ CAT{Settract is full and faithful.

Proof. The fact that the adjunction restricts in this way is Theorem 2 in III.1 of [28], and the

fact that SemLaw is full and faithful is Theorem 1 in the same section.

Remark 3.2.20. Recall that a right adjoint is faithful if and only if every component of the

counit of the adjunction is an epimorphism, and is full and faithful if and only if the counit is

an isomorphism (See Theorem 1 in IV.3 of [33]). Let us interpret each of these conditions in the

case of the adjunction from Proposition 3.2.19. The monomorphisms in Law (corresponding

to epimorphisms in Lawop) are precisely the morphisms of Lawvere theories given by faithful

functors. The component of the counit at a Lawvere theory L : Fop Ñ L is the functor

EL : LÑ ThLawpSemLawpLqq

that sends l : Lm Ñ Ln to the natural transformation ELplq “ Γp´qplq : SemLawpLq
m Ñ

SemLawpLq
n with x-component

Γxplq : SemLawpLq
mpxq “ pdxqm Ñ SemLawpLq

npxq “ pdxqn

for each x P ModLawpLq. Since L preserves finite products and every object of F is a copower of

1, this functor is faithful if and only if, whenever l, l1 : LnÑ L1 in L are such that Γxplq “ Γxpl1q

for every x P ModLawpLq, we in fact have l “ l1. That is, any two operations of the theory

L that have the same interpretation in every model, are in fact equal. Thus faithfulness of

SemLaw is very closely analogous to the completeness theorem (Theorem 3.1.13) for classical

algebraic theories.

Next we interpret what it means for SemLaw to be full and faithful, or equivalently for each

EL to be an isomorphism. This occurs precisely when, for any Lawvere theory L : Fop Ñ L,

every natural transformation SemLawpLq
n Ñ SemLaw is of the form Γp´qplq for some l : LnÑ L1.

A natural transformation SemLawpLq
n Ñ SemLawpLq can be thought of as an n-ary operation

possessed by every L-model and preserved by every L-model homomorphism — that is, it is a

kind of additional algebraic structure possessed by L-models. Thus, the assertion that SemLaw

is full and faithful, or equivalently that each EL is an isomorphism says that L-models do not

possess any extra algebraic structure other than that already described by the theory L. This

is a kind of “structural completeness theorem”.

3.3 Monads

Throughout this section, let B be any large category. We assume the reader is familiar with the

basic theory of monads, as described, for example, in Chapter VI of [33] or Chapter 4 of [9].

Note however, that when we refer to “morphisms of monads”, we mean this in the sense of
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Definition 4.5.8 of [9], rather than as in Section 1 of [42]. In particular, morphisms of monads

are always between monads on the same category, and a morphism pT, η, µq Ñ pT 1, η1, µ1q

consists of a natural transformation T Ñ T 1 making certain diagrams commute. We write

MndpBq for the category of monads and monad morphisms on B.

Remark 3.3.1. Let us make sense of the conditions of Remark 3.1.14 in the context of monads

as algebraic theories. Let T “ pT, η, µq be a monad on B.

0. The arities for monads on the category B are the objects of B.

i. Given an arity b (that is, an object of B), the totality of all b-ary operations for T is given

by the object Tb P B.

ii. The unit of the monad gives a map ηb : bÑ Tb for each b.

iii. One way of restating condition 3.1.14.(iii) is that, any a-indexed family of b-ary operations

should give rise to a way of turning a-ary operations into b-ary operations. A morphism

f : a Ñ Tb can be thought of as an a-indexed family of b-ary operations in some sense,

and every such morphism canonically gives rise to a morphism TaÑ Tb (which is a way

of turning a-ary operations into b-ary operations), namely the composite

Ta
Tf
ÝÑ TTb

µb
ÝÑ Tb.

Definition 3.3.2. We write pCAT{Bqr.a. for the category whose objects are functors U : MÑ

B withM large, equipped with a specified left adjoint and choice of unit and counit, and whose

morphisms from U 1 : M1 Ñ B to U : MÑ B are functors Q : M1 ÑM such that U ˝Q “ U 1.

There is an evident forgetful functor pCAT{Bqr.a. Ñ CAT{B, and this is full and faithful.

Definition 3.3.3. We write SemMnd : MndpBqop Ñ pCAT{Bqr.a. for the functor defined as

follows. On objects, SemMnd sends a monad T to the forgetful functor UT : BT Ñ B from

the category of Eilenberg–Moore algebras for T with its usual left adjoint, unit and counit. On

morphisms, SemMnd sends a monad morphism φ : T1 Ñ T to the functor SemMndpφq : BT Ñ BT
1

that sends a T-algebra a : TdÑ d to the T1-algebra a˝φb : T 1bÑ TbÑ b, and sends a T-algebra

homomorphism to the T1-algebra homomorphism with the same underlying morphism in B.

Proposition 3.3.4. There is a functor StrMnd : pCAT{Bqr.a. Ñ MndpBqop that, on objects,

sends a right adjoint to the monad induced by the adjunction, and this gives a structure–

semantics adjunction

pCAT{Bqr.a. K

StrMnd//
MndpBqop.

SemMnd

oo

Proof. We could prove this directly, however, it follows from the more general result Corol-

lary 3.3.8, and so we defer the proof until then.
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One may ask whether it is possible to extend the definition of StrMnd to a larger subcategory

of CAT{B than pCAT{Bqr.a.. In other words, is it possible that for a functor U : M Ñ B

without a left adjoint there may nonetheless exist a monad StrMndpUq such that there is an

isomorphism

CAT{BpU,SemMndpTqq – MndpBqpT,StrMndpUqq,

natural in T P MndpBq? Indeed this does sometimes occur; more precisely it occurs whenever

the codensity monad of U exists, as defined in Definition 2.5.5.

Definition 3.3.5. Write pCAT{Bqc.m. for the full subcategory of CAT{B on those functors

into B that have a codensity monad.

Proposition 3.3.6. Let pU : MÑ Bq P pCAT{Bqc.m. have codensity monad T. Then there is

a bijection

CAT{BpU,SemMndpSqq – MndpBqpS,Tq,

natural in S P MndpBq.

Proof. This is Theorem II.1.1 in Dubuc [13].

Proposition 3.3.7. Let pU : MÑ Bq P pCAT{Bqr.a. have left adjoint F with unit η and counit

ε. Then pGF, η,GεF q is a codensity monad of G. In particular, there is a natural inclusion

pCAT{Bqr.a. ãÑ pCAT{Bqc.m..

Proof. This is well-known; see for example Proposition 6.1 in [30].

Corollary 3.3.8. There is an adjunction

pCAT{Bqc.m. K

StrMnd//
MndpBqop,

SemMnd

oo

where StrMnd sends a functor to its codensity monad, and SemMnd sends a monad to the

forgetful functor from its category of algebras. Furthermore, this adjunction restricts to the

adjunction

pCAT{Bqr.a. K

StrMnd//
MndpBqop

SemMnd

oo

described in Proposition 3.3.4.

Proof. The first part is immediate from the Proposition 3.3.6. The right adjoint SemMnd

evidently takes values in the full subcategory pCAT{Bqr.a., and so the adjunction does restrict

as claimed. The fact that the values of StrMnd on the objects of pCAT{Bqr.a. are as claimed

in Proposition 3.3.4 is the content of the previous proposition.

Recall from Remark 3.2.20 that a semantics functor being full and faithful can be thought of

as a kind of completeness theorem: it says that no information is lost when passing from theories
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to models, and that the models do not have any algebraic structure besides that specified by the

theory. The following result shows that the semantics of monads satisfies such a completeness

theorem.

Proposition 3.3.9. The semantics functor

SemMnd : MndpBqop Ñ pCAT{Bqc.m.

from Corollary 3.3.8 is full and faithful. Equivalently, the counit of the adjunction in Proposi-

tion 3.3.4 is an isomorphism.

Proof. This is part of Theorem 6 in Street [42].

3.4 PROPs and PROs

Lawvere theories allow us to uniformly describe algebraic structures in finite product categories.

However there are many algebraic structures that make sense in more general categories: for

example, one can define monoids in arbitrary monoidal categories, and commutative monoids

in any symmetric monoidal category. The notion of a PROP (which stands for PROduct and

Permutation category) was first developed by Mac Lane in [32], and has a relationship to

symmetric monoidal categories analogous to that between Lawvere theories and finite product

categories. Likewise, PROs (dropping the permutations) play this role for (non-symmetric)

monoidal categories.

Definition 3.4.1. A PROP is a large strict symmetric monoidal category, whose objects

are the natural numbers, and whose tensor product is given on objects by addition of natural

numbers. A morphism of PROPs is a strict symmetric monoidal functor that is the identity on

objects.

A PRO is a large strict monoidal category whose objects are the natural numbers and

whose tensor product is given by addition. A morphism of PROs is a strict monoidal functor

that is the identity on objects.

We write PROP for the category of PROPs and their morphisms, and we write PRO for

the category of PROs and their morphisms.

Remark 3.4.2. In this thesis, when we speak of “monoidal categories”, we implicitly mean

“unbiased monoidal categories”. That is, we assume that a monoidal category B is equipped,

not just with a unit object and a binary tensor product B ˆ B Ñ B, but with a choice of

n-fold tensor product Bn Ñ B for each n P N. In particular, there is canonical n-th power

functor p´qbn : B Ñ B for each n, rather than just an isomorphism class of such functors. This

definition is equivalent to the usual definition in which only a binary tensor product and unit are
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specified, in that they yield equivalent categories of monoidal categories. This is Corollary 3.2.5

in [29].

Definition 3.4.3. Let P be a PROP. Then a model of P in a symmetric monoidal category B

is a symmetric monoidal functor (that is, a functor that preserves the tensor, unit and symmetry

up to specified coherent isomorphisms) Γ: P Ñ B such that, for each n P N, the distinguished

isomorphism

Γp1qbn
–
ÝÑ Γpnq

arising from the fact that n is the n-th tensor power of 1 in P, is in fact an identity.

Similarly, a model of a PRO P in a monoidal category B is a monoidal functor Γ: P Ñ B

(that is, a functor preserving the tensor and unit up to coherent isomorphism) such that the

distinguished isomorphism

Γp1qbn
–
ÝÑ Γpnq

is an identity for each n P N.

Definition 3.4.4. A homomorphism Γ Ñ Γ1 between models of a PROP (respectively PRO)

P is a monoidal natural transformation Γ Ñ Γ1.

Definition 3.4.5. Let B be a large symmetric monoidal category and P a PROP. We write

ModPROPpB) for the category of models and model homomorphisms of P in B. We write

SemPROPpPq : ModPROPpPq Ñ B for the functor sending a model Γ to Γp1q and a homomor-

phism to its component at 1.

Similarly if we let B be a large monoidal category and P a PRO, then we define

SemPROpPq : ModPROpPq Ñ B similarly.

Remark 3.4.6. Definition 3.4.3 is non-standard; it is more common to define a model of a

PROP as a symmetric monoidal functor out of P without the requirement of strictly preserving

tensor powers of 1. The situation here is analogous to that in Remark 3.2.10: the categories

of models obtained according to our definition and the standard definition are equivalent (the

proof of which is similar to Lemma 3.2.11) and our definition has the advantage that the

forgetful functor reflects equalities as well as isomorphisms, which more closely matches how

mathematicians usually think about algebraic structures.

Note that a model of a PROP as we have defined it is not the same as a strict symmetric

monoidal functor: tensor powers of 1 are preserved strictly, but other tensor products need only

be preserved up to coherent isomorphism.

Definition 3.4.7. Let P : P 1 Ñ P be a morphism of PROPs. We define a functor

SemPROPpP q : ModPROPpPq Ñ ModPROPpP 1q
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by sending a model Γ: P Ñ B to Γ ˝ P : P 1 Ñ B, and sending a homomorphism α : Γ Ñ Γ1

to αP . If instead we let P be a morphism of PROs, we define SemPROpP q : ModPROpPq Ñ

ModPROpP 1q similarly.

Proposition 3.4.8. Definitions 3.4.5 and 3.4.7 define functors

SemPROP : PROPop
Ñ CAT{B

and

SemPRO : PROop
Ñ CAT{B.

Proof. This is a straightforward check.

These semantics functors have left adjoints that can be constructed in a straightforward

manner. However, these left adjoints will fall out of the general machinery we develop in this

thesis, so we postpone discussion of them until Section 6.6.

3.5 Operads

Before defining operads, we first define multicategories, since these provide the context in which

operads will take their models, and operads themselves are a special case of multicategories.

Definition 3.5.1. A multicategory B consists of

• a (possibly large) set obpBq of objects;

• for all n P N and b1, . . . , bn, b P obpBq, a (possibly large) set Bpb1, . . . , bn; bq of morphisms

with domain b1, . . . , bn and codomain b;

• for all b P obpBq a distinguished identity morphism idb P Bpb; bq;

• for all n, k1, . . . , kn P N and b, bi, b
j
i P obpBq for i “ 1, . . . , n and j “ 1, . . . , ki, a function

Bpb1, . . . , bn; bq ˆ Bpb11, . . . , b
k1
1 ; b1q ˆ ¨ ¨ ¨ ˆ Bpb1n, . . . , bknn ; bnq

Ñ Bpb11, . . . , b
k1
1 , . . . , b

1
n, . . . , b

kn
n ; bq

called composition,

satisfying identity and associativity axioms, that are described explicitly in Definition 3.5.1

of [29].

Definition 3.5.2. A morphism of multicategories F : B Ñ B1 consists of

• a function F : obpBq Ñ obpB1q, and
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• for all n P N and b1, . . . , bn, b P obpBq, a function, also denoted F ,

Bpb1, . . . , bn; bq Ñ B1pFb1, . . . , F bn;Fbq,

that preserves identities and composition in the obvious sense.

Definition 3.5.3. A transformation F Ñ F 1 between morphisms of multicategories B Ñ B1

consists of, for each b P obpBq, a unary morphism αb P B1pFb;F 1bq, such that, for any

f : b1, . . . , bn Ñ b

in B, we have

αb ˝ Ff “ F 1f ˝ pαb1 , . . . , αbnq.

Definition 3.5.4. We write MultiCAT for the 2-category of large multicategories, with their

morphisms and transformations.

Definition 3.5.5. An operad is a multicategory with a single object. If P is an operad with

object ˚, we usually write P pnq for

P p˚, . . . , ˚
loomoon

n times

; ˚q

in order to simplify notation. A morphism of operads is simply a morphism of multicategories.

We write OPD for the full subcategory of (the underlying 1-category of) MultiCAT consisting

of the large operads.

Note that the unique object of an operad regarded as a one-object multicategory is still part

of the data defining that operad; in particular, if two operads have identical sets of operations

and composition functions but distinct objects we still regard them as being distinct (albeit

isomorphic). This is a minor technicality, but we will make use of it in Proposition 6.6.24 to

obtain an isomorphism of categories, rather than an equivalence.

Definition 3.5.6. Given a multicategory B, write B0 for the category whose objects are the

objects of B, and with B0pb, b
1q “ Bpb; b1q. That is, it is the category obtained by discarding all

the morphism of B except for the unary ones.

Definition 3.5.7. Let P be an operad and B a multicategory. We write ModOPDpP q to be the

category MultiCATpP,Bq of multicategory morphisms P Ñ B and transformations between

them. We call the objects of ModOPDpP qmodels of P , and the morphisms homomorphisms

of P -models.

We write SemOPD : ModOPDpP q Ñ B0 for the functor that sends a model Γ: P Ñ B to

Γp˚q (where ˚ is the unique object of the operad P regarded as a multicategory), and sends a

transformation α : Γ Ñ Γ1 to its unique component α˚.
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Definition 3.5.8. Given an operad morphism F : P 1 Ñ P , define a functor

SemOPDpF q : ModOPDpP q Ñ ModOPDpP
1q by sending a P -model Γ: P Ñ B to Γ˝F : P 1 Ñ B,

and sending a homomorphism α : Γ Ñ Γ1 to the result of whiskering α with P in the 2-category

MultiCAT, namely αP .

Proposition 3.5.9. Definitions 3.5.7 and 3.5.8 together define a functor

SemOPD : OPDop
Ñ CAT{B0.

Proof. Again, this is a straightforward check.

As with PROPs and PROs, we postpone discussion of the left adjoint to this structure

functor until Section 6.6, although it is straightforward to describe explicitly.

3.6 Monads with arities

The theory of monads with arities generalises that of ordinary monads, and is developed in

Weber [44] and Berger, Melliès and Weber [6]. All of the definitions and results of this section

appear in [6]. Roughly speaking, a monad with arities is a monad T on some category B that is

completely determined by the values Ta for a in some subcategory A ãÑ B, called the category

of arities. The object Tb for general b P B is built up out of the Ta’s in a canonical way. The

prototypical example to keep in mind is that of finitary monads on Set — in this case, the

category of arities consists of the finite sets.

Recall from Definition 2.5.2 that a functor I : AÑ B is dense if its nerve functor

NI : B Ñ rBop,SETs
I˚
ÝÑ rAop,SETs

is full and faithful. If I is the inclusion of a full subcategory A of B, then we say that A is a

dense subcategory of B, and write NA for NI .

Definition 3.6.1. The 2-category CATwA has objects, morphisms and 2-cells as follows.

Objects of CATwA are of the form pB,Aq where B is a large category and A is a dense

subcategory of B; we call pB,Aq a large category with arities.

Morphisms pB,Aq Ñ pB1,A1q are functors F : B Ñ B1 such that the composite NA1 ˝ F

sends the A-cocones in B to colimit cocones in rA1op,SETs. Such a functor is called

arity-respecting.

2-cells are just ordinary natural transformations between functors.
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Definition 3.6.2. A monad with arities is a monad in the 2-category CATwA. Explicitly,

a monad with arities on a category with arities pB,Aq is a monad T “ pT, η, µq on B such that

the composite NA ˝ T sends the A-cones in B to colimit cocones in rAop,SETs.

For the rest of this section, fix a large category with arities pB,Aq.

Definition 3.6.3. Let T be a monad with arities on pB,Aq. Write ΘT for the full subcategory

of BT consisting of the algebras of the form pTa, µaq where a P A. Write jT : A Ñ ΘT for

FT : B Ñ BT with domain restricted to A and codomain restricted to ΘT.

Proposition 3.6.4. The subcategory ΘT is dense in BT so pBT,ΘTq is an object of CATwA,

and the forgetful functor UT : BT Ñ B is arity respecting. In addition, UT exhibits pBT,ΘTq

as an Eilenberg–Moore object for the monad T in the 2-category CATwA, in the sense of

Street [42].

Proof. This is Proposition 2.3 in [6].

This concludes our short review of [6]; we pause to note one consequence of the previous

Proposition.

Definition 3.6.5. Write pCATwA{pB,Aqqr.a. for the category whose objects are morphisms

in CATwA whose codomain is pB,Aq that have a left adjoint (in the 2-category CATwA),

and whose morphisms are commutative triangles of arity respecting functors. Explicitly, an

object of pCATwA{pB,Aqqr.a. is an arity-respecting functor into pB,Aq with a left adjoint that

is also arity-respecting.

Write MndwApB,Aq for the category of monads with arities on pB,Aq, as a full subcategory

of MndpBq.

Proposition 3.6.6. There is an adjunction

pCATwA{pB,Aqqr.a. K

StrMndwA//
MndwApB,Aqop

SemMndwA

oo

where SemMndwA sends a monad with arities T to pBT,ΘTq as defined in Definition 3.6.3 with

its forgetful functor to B, and StrMndwA sends an adjunction to the monad it induces.

Proof. This follows from the fact pBT,ΘTq is an Eilenberg–Moore object for T in CATwA and

Theorem 6 of Street [42].

This structure–semantics adjunction for monads with arities both generalises and specialises

the adjunction for ordinary monads from Proposition 3.3.4. It generalises it in the sense that

by setting A “ B we recover the usual structure–semantics for monads, and it is a specialisation
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of it in the sense that both squares in

pCATwA{pB,Aqqr.a. K

StrMndwA//

��

MndwApB,Aqop

SemMndwA

oo

��
pCAT{Bqr.a. K

StrMnd //
MndpBqop

SemMnd

oo

commute, where the vertical arrows are the evident forgetful functors.

3.7 Monoids

Our final example of a notion of algebraic theory is extremely simple: an ordinary monoid

in SET can be viewed as an algebraic theory with only unary operations. A model of this

theory is simply an action of the monoid. We deal with them separately rather simply noting

that every monoid gives rise to, say, a Lawvere theory, because their simplicity makes their

semantics much more widely applicable. Indeed, one can define actions of a monoid in any

category whatsoever. For this section, we fix a large category B.

Definition 3.7.1. Let M be a large monoid. A model of M (or an object equipped

with an M-action) in B consists of an object b P B together with a monoid homomorphism

α : M Ñ Bpb, bq. A homomorphism of M -models from pb, αq to pb1, α1q consists of a morphism

h : bÑ b1 such that

M
α //

α1

��

Bpb, bq

h˚

��
Bpb1, b1q

h˚
// Bpb, b1q

commutes.

Together the M -models and homomorphisms in B form a category ModMONpBq, and there

is a natural forgetful functor SemMON : ModMON Ñ B.

Definition 3.7.2. Let f : M 1 ÑM be a monoid homomorphism. We define a functor

SemMONpfq : ModMONpMq Ñ ModMONpM
1q

by sending an M -model pb, αq to the M 1-model pb, α ˝ fq, and sending an M -model homomor-

phism to the M 1-model homomorphism with the same underlying morphism in B.

Proposition 3.7.3. Together, Definitions 3.7.1 and 3.7.2 define a functor

SemMON : MONop
Ñ CAT{B.

Definition 3.7.4. Let pU : MÑ Bq P CAT{B. Define StrMONpUq to be the monoid of natural

transformations U Ñ U .
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Now let

M1
Q //

U 1   

M

U~~
B

be a morphism in CAT{B. Define StrMONpQq : StrMONpUq Ñ StrMONpU
1q by sending a

natural transformation γ : U Ñ U to

γQ : U ˝Q “ U 1 Ñ U ˝Q “ U 1.

This defines a functor StrMON : CAT{B Ñ MONop.

Proposition 3.7.5. We have an adjunction

CAT{B K

StrMON//
MONop.

SemMON

oo

Proof. Given a monoid M and a functor U : MÑ B, we sketch a bijection

CAT{BpU,SemMONpMqq – MONpM,StrMONpUqq;

the remaining details are straightforward to fill in.

Let

M P //

U ��

ModMONpMq

SemMONpMq
yyB

be a morphism in CAT{B. Then we define a monoid homomorphism sP : M Ñ StrMONpUq as

follows. For x P M and m PM, the functor P equips m with an M -action, and in particular

x gives rise to a morphism Um Ñ Um. These morphisms, indexed by m P M, form the

components of a natural transformation U Ñ U , i.e. an element of StrMONpUq. We define

sP pxq to be this natural transformation.

In the other direction, suppose

Q : M Ñ StrMONpUq

is a monoid homomorphism. Then for each m PM, we equip Um with an M -action by letting

x P M act on Um via Qpxqm : Um Ñ Um. This assignment of an M -action to Um for each

m PM defines a functor sQ : MÑ SemMONpMq.
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3.8 Comparison of notions of algebraic theory

In this chapter we have discussed several existing notions of algebraic theory. In subsequent

chapters we will describe a general notion of algebraic theory that generalises all of these, but

first let us pause to summarise and compare them to one another. Each has its own notion

of arity, and its own context in which models of a theory make sense. These features of the

various notions of algebraic theory are summarised in Table 3.1.

Notion of algebraic theory Takes models in Arities

Lawvere theories A finite product category B Natural numbers

Monads A category B Objects of B

PROPs A symmetric monoidal cate-
gory B

Natural numbers

PROs A monoidal category B Natural numbers

Operads A multicategory B Natural numbers

Monads with arities A category B Objects of a dense subcate-
gory A of B

Monoids A category B A single arity 1

Table 3.1: Notions of algebraic theory.
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Chapter 4

The structure–semantics

adjunction

In this chapter we define a special case of the general notion of proto-theories and their

structure–semantics adjunctions, with the fully general version being introduced in the Chap-

ter 6. We begin with this special case because it is easier to motivate from a conceptual point

of view, although the more general notion encompasses more examples.

In Section 4.1 we give the definition of a proto-theory and compare them to Lawvere theories

in order to indicate how they serve as a kind of algebraic theory. In Section 4.2 we discuss how

we need some extra data before we can interpret a proto-theory in a given category, leading

up to the definition of an aritation and the induced semantics functor. We then define the

structure functor for a given aritation in Section 4.3, and in Section 4.4 we show that structure

is left adjoint to semantics. In Section 4.5 we investigate proto-theories from the point of view

of profunctors, and in Section 4.6 we discuss the simplest examples of proto-theories, namely

monoids, and their semantics.

4.1 Proto-theories

In this section we define proto-theories in CAT, which will serve as a general notion of algebraic

theory.

Definition 4.1.1. Let A be a large category. A proto-theory with arities A is a functor

L : A Ñ L that is bijective on objects. A morphism of proto-theories from L1 : A Ñ L1 to

L : A Ñ L consists of a functor P : L1 Ñ L such that P ˝ L1 “ L. We write PThpAq for the

category of proto-theories with arities A and their morphisms.

Proto-theories clearly generalise Lawvere theories, as defined in Definition 3.2.2: a Lawvere

theory is just a proto-theory with arities Fop, with the extra condition that L : Fop Ñ L preserves

57



finite products. In order to gain some intuition for how a proto-theory can be thought of as a

kind of algebraic theory, it is therefore useful to consider how the various features of a proto-

theory are interpreted in the special case of a Lawvere theory.

Fundamental to any notion of algebraic theory is a notion of arities, that are thought of

as shapes for possible configurations of elements. For classical algebraic theories, the arities

are the natural numbers, and a “configuration of elements of shape n” in a set X is simply an

n-tuple of elements of X. Lawvere theories also have the natural numbers as their arities — this

is reflected in the fact the objects of Fop can be identified with the natural numbers. Thus, for

a general proto-theory L : AÑ L, one should think of the objects of A as “arities” for possible

configurations of elements. We will discuss what plays the role of such an “a-ary configuration”

when we come to the semantics of proto-theories; for now keep in mind the intuition that for

Lawvere theories, an n-ary configuration in a set is an n-tuple of elements.

In a Lawvere theory L : Fop Ñ L, the operations of a particular arity n are the morphisms

LnÑ L1. An n-ary operation is thought of as something that transforms an n-tuple of elements

(that is, a n-ary configuration) into a single element (in an abstract sense — operations of a

theory only have the “potential” to turn tuples into elements; this potential is only realised

when they are given a concrete interpretation in a particular model). Morphisms in L with

arbitrary codomain Lm can then be identified with m-tuples of operations, since Lm “ pL1qm.

However, for a general category of arities A, there will not necessarily be a distinguished object

to play the role that 1 plays here. Thus, for a proto-theory L : AÑ L, if we want to think of a

morphism l P LpLa1, Laq as an operation of the proto-theory, then such an operation will not

only have an arity of its input, given by a1, but also a shape of its output, given by a. Thus,

l should be though of as something that has the potential to turn a1-ary configurations into

a-ary configurations (again, in an abstract sense).

For Lawvere theories, the morphisms in Fop describe permissible ways of transforming

a configuration of elements of one shape into another. More precisely, if f is a function

t1, . . . , nu Ñ t1, . . . ,mu (defining a morphism mÑ n in Fop), and we have an m-tuple peiq
m
i“1

of elements of some set, then we can define an n-tuple pefpiqq
n
i“1. This allows such morphisms

to act on operations of a proto-theory by transforming their input arities: if τ is an opera-

tion of an algebraic theory with arity n, and f is as above, then we obtain an m-ary opera-

tion τ rpxfpiq{xiq
n
i“1s. Similarly, if L : A Ñ L is a proto-theory and we are given a morphism

f : a2 Ñ a1 in A and an operation l : La1 Ñ La of L (with arity a1), then we obtain a new

operation l ˝ Lf with arity a2 (and the same shape). Similarly morphisms in a can transform

the shape of the output of an operation. Thus we should think of morphisms in A as ways

of transforming configurations of one shape into configurations of another; not as part of any

particular theory, but as part of the underlying logic that A represents.

Composition in a Lawvere theory represents the process of building compound operations

by substituting operations into one another, and should be thought of similarly in a proto-
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theory. Then the “axioms” of the proto-theory are encoded in the equations that hold between

composites in L.

4.2 The semantics of proto-theories

In classical universal algebra, an interpretation of an n-ary operation ω from some theory on a

set X consists of a function Xn Ñ X; that is, it is something that turns n-ary configurations

of elements of X into elements of X. Let A and B be large categories, and L : AÑ L a proto-

theory. Then we would like to say something like “an interpretation of an a1-ary operation

l P LpLa1, Laq on an object b P B is something that turns a1-ary configurations of elements of b

into elements of b”.

There are two problems with this: firstly, it does not take the “output shape” a of the oper-

ation l into account. This is easily fixed by amending our statement to “an interpretation of an

a1-ary operation l P LpLa1, Laq on an object b P B is something that turns a1-ary configurations

of elements of b into a-ary configurations of elements of b”.

Secondly, we do not yet have a notion of an “a-ary configuration of elements of b”. We

solve this problem by fiat: we just suppose that for each a P A and b P B there is a totality of

a-ary configurations of elements of b, denoted xa, by. We remain completely agnostic as to what

sort of thing this should be, except that we want it to be functorial in both a and b; (recall

that we interpret morphisms in A as abstract ways of transforming configurations of elements,

and a morphism bÑ b1 should extend to a map between the totalities of configurations of any

given shape). Thus, xa, by could live in some third category C. This motivates the following

definition.

Definition 4.2.1. Let A, B and C be large categories. An interpretation of arities from

A in B, with values in C (called an aritation for short) is a functor

x´,´y : Aˆ B Ñ C.

For such an aritation, A is called the category of arities and B is called the base category.

For a given such aritation, write

H‚ : B Ñ rA, Cs

and

H‚ : AÑ rB, Cs

for the functors obtained by currying x´,´y.

Example 4.2.2. Let B be a locally small category. Then the hom-functor

Bp´,´q : Bop ˆ B Ñ Set
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can be regarded as an aritation x´,´y “ Bp´,´q. The corresponding

H‚ : B Ñ rBop,Sets

and

H‚ : Bop Ñ rB,Sets

are the two Yoneda embeddings. This example will be explored in more detail later in this

thesis, especially in Chapters 5 and 8.

Example 4.2.3. Let B be a large finite product category. Then define an aritation

x´,´y : Fop ˆ B Ñ B

sending pn, bq ÞÑ bn. A version of this aritation is closely related to the semantics of Lawvere

theories, as we shall see in Section 6.6.

Recall that, if L : AÑ L is a proto-theory, then a morphism l P LpLa1, Laq is thought of as

an operation of input arity a1 and output shape a. Thus, an interpretation of such an operation

in some object b P B should send a1-ary configurations of elements of b to a-ary configurations;

that is, it should be a morphism xa1, by Ñ xa, by. A model of the proto-theory should be an

object with an interpretation of each such operation, respecting the process of substitution of

operations and the axioms of the proto-theory, which, recall, are encoded in the composition of

L. Putting this all together gives the following definition.

Definition 4.2.4. Let x´,´y : A ˆ B Ñ C be an aritation, and L : A Ñ L a proto-theory

with arities A. Then the category ModpLq and the functors SempLq : ModpLq Ñ B and

IpLq : ModpLq Ñ rL, Cs are defined by the following pullback square in CAT:

ModpLq
IpLq //

SempLq

��

rL, Cs

L˚

��
B

H‚

// rA, Cs.

We call ModpLq the category of models of L.

Note that ModpLq and SempLq depend crucially on the aritation x´,´y. This dependence

is usually clear from the context, so we do not make it explicit.

Definition 4.2.5. Let x´,´y : A ˆ B Ñ C be an aritation, and pL : A Ñ Lq P PThpAq. We

introduce the following terminology for the objects and morphisms of ModpLq.

i. An object of ModpLq is called a model of L or an L-model. Explicitly, an L-model
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x P ModpLq consists of an object dx P B and a functor Γx : LÑ C such that

Γx ˝ L “ x´, dxy : AÑ C.

ii. A morphism in ModpLq is called an L-model homomorphism. Explicitly, an L-model

homomorphism x Ñ y consists of a morphism h : dx Ñ dy in B such that for every

l P LpLa1, Laq, the square

`

xa1, dxy “ ΓxpLa1q
˘ xa1,hy //

Γxplq

��

`

xa1, dyy “ ΓypLa1q
˘

Γyplq

��
`

xa, dxy “ ΓxpLaq
˘ xa,hy //

`

xa, dyy “ ΓypLaq
˘

commutes.

Let x “ pdx,Γxq be a model of a proto-theory L : A Ñ L for a particular aritation

x´,´y : Aˆ B Ñ C. Then Γx provides an interpretation of the operations of the proto-theory

in the following sense. An operation of L is a morphism l : La1 Ñ La in L. The functor Γx

gives an interpretation of such an operation as a morphism

xa1, dxy Ñ xa, dxy,

which we can think of as a way of turning a1-ary configurations of elements of dx into a-ary

configurations as desired. The functoriality of Γx means that these interpretations respect the

process of substituting one operation into another, which is encoded in the composition of L.

A homomorphism of L-models is simply a map between their underlying objects

that commutes with the interpretations of each operation of L. The forgetful functor

SempLq : ModpLq Ñ B sends an L-model to its underlying object in B and sends a homo-

morphism to its underlying morphism.

Definition 4.2.6. Let x´,´y : Aˆ B Ñ C be an aritation, and let

L1 P // L

A
L1

``

L

??

be a morphism in PThpAq. Then SempP q : ModpLq Ñ ModpL1q is defined to be the unique
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functor making

ModpLq
IpLq //

SempP q

%%
SempLq

��

rL, Cs
P˚

zz
L˚

��

ModpL1q
IpL1q //

SempL1q
yy

rL1, Cs

L1˚ $$
B

H‚

// rA, Cs

commute. The universal property of the pullback defining ModpL1q ensures that such a SempP q

exists and is unique.

Explicitly, SempP q sends an L-model x to the L1-model SempP qpxq with dSempP qpxq “ dx

and ΓSempP qpxq “ Γx ˝ P , and is the identity on morphisms.

A morphism of proto-theories

L1 P // L

A
L1

``

L

??

is an interpretation of L1 in L; that is, it assigns to every operation of L1 a corresponding

operation of L of the appropriate arity and shape. This gives a canonical way of turning

an L-model x “ pdx,Γxq into an L1-model: given an operation for the proto-theory L, its

interpretation for the new L1-model structure on dx is the interpretation (for the L-model x) of

the operation of L that it is sent to by P . This is precisely what the functor SempP q : ModpLq Ñ

ModpL1q does.

Proposition 4.2.7. The assignments denoted Sem in Definitions 4.2.4 and 4.2.6 together

define a functor

Sem: PThpAqop Ñ CAT{B.

Proof. Functoriality of Sem is immediate from the universal property of pullbacks.

Let us consider the semantics functors that arise from the aritations of Examples 4.2.2

and 4.2.3.

Example 4.2.8. For a locally small category B, the aritation defined in Example 4.2.2 gives

rise to a functor

Sem: PThpBopqop Ñ CAT{B.

Given a proto-theory L : Bop Ñ L, a model of L (that is, an object of ModpLq) consists of

an object dx P B together with a functor Γx : L Ñ Set such that the composite Γx ˝ L is the

representable Bp´, dxq : Bop Ñ Set. An L-model homomorphism pdx,Γxq Ñ pdy,Γyq consists
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of a morphism h : dx Ñ dy such that the natural transformation

h˚ : Bp´, dxq Ñ Bp´, dyq

extends to a (necessarily unique) natural transformation Γx Ñ Γy.

Example 4.2.9. Let B be a large finite product category, and consider the aritation defined

in Example 4.2.3. This aritation gives rise to a functor

PThpFopqop Ñ CAT{B.

Given a proto-theory L : Fop Ñ L, a model of L consists of an object dx P B together with

a functor Γx : L Ñ B such that the composite Γx ˝ L is the functor pdxqp´q : Fop Ñ B. An

L-model homomorphism pdx,Γxq Ñ pdy,Γyq consists of a morphism h : dx Ñ dy such that for

every l : LnÑ Lm in L, the square

pdxqn
hn //

Γxl

��

pdyqn

Γyl

��
pdxqm

hm
// pdyqm

commutes. In particular, if L P PThpFopq is a Lawvere theory (that is, L preserves finite prod-

ucts) then the notions of L-model and L-model homomorphism agree with those for Lawvere

theories.

4.3 The structure functor

Let x´,´y : AˆB Ñ C be an aritation. Let pU : MÑ Bq P CAT{B be any functor, but let us

think of it for now as a forgetful functor, so that U sends objects and morphisms ofM to their

“underlying” objects and morphisms in B. Let L : A Ñ L be a proto-theory, and consider a

morphism Q : U Ñ SempLq in CAT{B. Such a morphism is a way of assigning, for each object

of M, an L-model structure to its underlying object in B in such a way that the underlying

morphism of each morphism in M becomes a homomorphism between the corresponding L-

models.

If there were an initial such Q (that is, an initial object in the comma category pU Ó Semq),

then we could think of the corresponding ModpLq as the “best approximation toM by algebraic

structure”. The proto-theory L would in some sense describe the most general kind of algebraic

structure possessed by all the objects ofM, in that for any other proto-theory L1, an assignment

of L1-model structures to all objects ofM (that is, a morphism U Ñ SempL1q in CAT{B) would

be the same thing as an interpretation of L1 in L.
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Of course, the existence of such an algebraic approximation for each U is the same thing as

the existence of a left adjoint to Sem: PThpAqop Ñ CAT{B; in this section we construct such

an adjoint.

Definition 4.3.1. Let x´,´y : A ˆ B Ñ C be an aritation and let pU : M Ñ Bq P CAT{B.

Define a category ThpUq and functors StrpUq : A Ñ ThpUq and JpUq : ThpUq Ñ rM, Cs via

the bijective-on-objects/full-and-faithful factorisation of the composite

A H‚
ÝÑ rB, Cs U

˚

ÝÑ rM, Cs.

That is, StrpUq : AÑ ThpUq is the identity on objects, and JpUq : ThpUq Ñ rM, Cs is full and

faithful, and

A H‚ //

StrpUq

��

rB, Cs

U˚

��
ThpUq

JpUq
// rM, Cs

commutes.

Explicitly, the objects of ThpUq are the objects of A, and a morphism a1 Ñ a in ThpUq is

a natural transformation

xa1, U´y Ñ xa, U´y,

and composition is the usual composition of natural transformations. The functor StrpUq is the

identity on objects, and sends a morphism f : a1 Ñ a to the natural transformation

xf,´y : xa1, U´y Ñ xa, U´y.

The functor JpUq : ThpUq Ñ rM, Cs sends an object a to the functor xa, U´y and is the identity

on morphisms.

Lemma 4.3.2. Let x´,´y : Aˆ B Ñ C be an aritation and let

M1
Q //

U 1   

M

U~~
B

be a morphism in CAT{B. Then the square

A
StrpU 1q //

StrpUq

��

ThpU 1q

JpU 1q

��
ThpUq

JpUq
// rM, Cs

Q˚
// rM1, Cs
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commutes, and there is a unique functor StrpQq : ThpUq Ñ ThpU 1q making

A
StrpU 1q //

StrpUq

��

ThpU 1q

JpU 1q

��
ThpUq

StrpQq

44

JpUq
// rM, Cs

Q˚
// rM1, Cs

commute.

Proof. In the diagram

A
StrpU 1q //

StrpUq

��

H‚

$$

ThpU 1q

JpU 1q

��

rB, Cs

U˚

��

U 1˚

%%
ThpUq

JpUq
// rM, Cs

Q˚
// rM1, Cs,

the upper right triangle and lower left quadrilateral commute by definition of Str (Defini-

tion 4.3.1), and the lower right triangle commutes since U ˝ Q “ U 1. Hence the outer square

commutes.

The existence and uniqueness of StrpQq : ThpUq Ñ ThpU 1q then follows from the fact that

StrpUq is bijective on objects and JpU 1q is full and faithful, and the fact that the bijective-on-

objects and full-and-faithful functors form a factorisation system on CAT (Lemma 2.3.5).

Definition 4.3.3. Let x´,´y : A ˆ B Ñ C be an aritation and let Q be a morphism from

U 1 : M1 Ñ B to U : M Ñ B in CAT{B. Then StrpQq : ThpUq Ñ ThpU 1q is defined as in

Lemma 4.3.2. Explicitly, StrpQq is the identity on objects, and sends a natural transformation

γ : xa, U´y Ñ xa1, U´y to the natural transformation

γQ : xa, U ˝Q´y “ xa, U 1´y Ñ xa1, U ˝Q´y “ xa1, U 1´y.

Proposition 4.3.4. Given an aritation x´,´y : A ˆ B Ñ C, the assignments denoted Str in

Definitions 4.3.1 and 4.3.3 together define a functor Str : CAT{B Ñ PThpAqop.

Proof. We must show that if we have morphisms

M2
Q1 //

U2 ""

M1
Q //

U 1

��

M

U}}
B

65



in CAT{B, then StrpQ ˝Q1q “ StrpQ1q ˝ StrpQq. The diagram

A
StrpU2q //

StrpU 1q

$$

StrpUq

��

ThpU2q

JpU2q

��

ThpU 1q

JpU 1q %%

StrpQ1q

44

rM1, Cs
Q1˚

%%
ThpUq

StrpQq

CC

JpUq
// rM, Cs

pQ˝Q1q˚
//

Q˚
99

rM2, Cs

commutes, and so StrpQ1q˝StrpQq is a diagonal fill-in for the outer square. But so is StrpQ˝Q1q

by definition, so by uniqueness, StrpQ ˝Q1q “ StrpQ1q ˝ StrpQq.

Let us examine the structure functor in more detail for the aritations defined in Exam-

ples 4.2.2 and 4.2.3.

Example 4.3.5. Let B be a locally small category and consider the aritation from Exam-

ple 4.2.2. This aritation gives rise to a structure functor

Str : CAT{B Ñ PThpBopqop;

let us examine what this functor does explicitly. Given U : M Ñ B, the category ThpUq has

the same objects as B and a morphism bÑ b1 in ThpUq is a natural transformation

Bpb, U´q Ñ Bpb1, U´q,

and StrpUq : Bop Ñ ThpUq sends f : b1 Ñ b to f˚ : Bpb, U´q Ñ Bpb1, U´q.

Example 4.3.6. Let B be a finite product category. Then the aritation from Example 4.2.3

gives rise to a structure functor

Str : CAT{B Ñ PThpFopqop.

Given U : M Ñ B, the category ThpUq has the natural numbers as objects, and a morphism

nÑ m in ThpUq is a natural transformation Un Ñ Um.

4.4 The structure–semantics adjunction

Throughout this section, fix an aritation x´,´y : A ˆ B Ñ C. We show that for any such

aritation, Str does indeed provide a left adjoint for Sem. We do this by establishing, for
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L P PThpAq and U P CAT{B, a bijection of hom-sets

CAT{BpU,SempLqq – PThpAqpL,StrpUqq

that is natural in L and U .

Lemma 4.4.1. Let

M R //

U ��

ModpLq

SempLq
{{
B

be a morphism in CAT{B, where pU : MÑ Bq P CAT{B, and pL : AÑ Lq P PThpAq. Then

for every l : La1 Ñ La in L, there is a natural transformation

ΓRp´qplq : xa1, U´y Ñ xa, U´y

with components

ΓRmplq : ΓRmpLa1q “ xa1, Umy Ñ ΓRmpLaq “ xa, Umy.

Proof. We must show that for each morphism f : mÑ m1 in M, the square

xa1, Umy
xa1,Ufy//

ΓRmplq

��

xa1, Um1y

ΓRm
1
plq

��
xa, Umy

xa,Ufy
// xa, Um1y

commutes. But since SempLq ˝ R “ U , we know that Uf is the underlying map of the L-

model homomorphism Rf : RmÑ Rm1. So the commutativity of this square follows from the

definition of L-model homomorphism (Definition 4.2.5(ii)).

We now construct, for U P CAT{B and L P PThpAq, a function (in fact a bijection)

ΨU,L : CAT{BpU,SempLqq Ñ PThpL,StrpUqq.

Definition 4.4.2. Let

M R //

U ��

ModpLq

SempLq
{{
B

be a morphism in CAT{B, where pU : MÑ Bq P CAT{B, and pL : AÑ Lq P PThpAq. Then

we define ΨU,LpRq : LÑ ThpUq as follows.
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On objects: For an arbitrary object La P L, define ΨU,LpRqpLaq “ a (Recalling that L is

bijective on objects so any object of L is of this form for a unique a, and the objects of

ThpUq are exactly the objects of A);

On morphisms: Given l : La1 Ñ La in L, define ΨU,LpRqplq to be the natural transformation

ΓRp´qplq : xa1, U´y Ñ xa, U´y from the previous lemma.

It is clear that this is a functor LÑ ThpUq. We will usually omit explicit mention of U and L

and write ΨU,L “ Ψ.

Lemma 4.4.3. For U , L and R as above, we have ΨpRq ˝ L “ StrpUq.

Proof. It is clear that the two functors are equal on objects. Given f : a1 Ñ a in A, the natural

transformation StrpUqpfq : xa1, U´y Ñ xa, U´y has components

xf, Umy : xa1, Umy Ñ xa, Umy,

for each m P M, whereas ΨpRqpLfq has components ΓRmpLfq for m P M. But by the

definition of L-algebra (Definition 4.2.5(i)), we have ΓRm ˝ L “ x´, dRmy “ x´, Umy. Hence

StrpUqpfq “ ΨpRqpLfq, as required.

We have constructed a mapping Ψ: CAT{BpU,SempLqq Ñ PThpAqpL,StrpUqq; to establish

that Str % Sem, we must show that Ψ is a bijection and is natural in U and L.

Lemma 4.4.4. The mapping ΨU,L is natural in U and L.

Proof. First we show Ψ is natural in U . Let

M1
Q //

U 1   

M

U~~
B

and

M R //

U ��

ModpLq

SempLq
{{
B

be morphisms in CAT{B. We must show that ΨU 1,LpR ˝ Qq “ StrpQq ˝ ΨU,LpRq. It is clear

that these two functors L Ñ ThpU 1q are equal on objects. Let l : La1 Ñ La in L. Then both

ΨU 1,LpR˝Qqplq and StrpQq˝ΨU,LpRqplq are natural transformations xa1, U 1´y Ñ xa, U 1´y, and,
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taking the component at m1 PM1, we have

pStrpQq ˝ΨU,LpRqqm1 “ ΨU,LpRqQpm1q (by Definition 4.3.3)

“ ΓR˝Qpm
1
qplq (by Definition 4.4.2)

“ ΨU 1,LpR ˝Qqplqm1 (by Definition 4.4.2)

as required. Now let

L1 P // L

A
L1

``

L

??

be a morphism in PThpAq and let R : U Ñ SempLq in CAT{B as before. We must show that

ΨU,LpRq ˝ P “ ΨU,L1pSempP q ˝ Rq. As before, these functors are clearly equal on objects. Let

l1 : L1a1 Ñ L1a. Then, taking the component at m PM, we have

ΨU,LpRqpPl
1qm “ ΓRmpPl1q (by Definition 4.4.2)

“ ΓRm ˝ P pl1q

“ ΓpSempP q˝Rqmpl1q (by Definition 4.2.6)

“ ΨU,L1pSempP q ˝Rqpl1qm (by Definition 4.4.2)

as required.

We now construct an inverse

ΘU,L : PThpAqpL,StrpUqq Ñ CAT{BpU,SempLqq

to ΨU,L.

Definition 4.4.5. Let

L S // ThpUq

A
L

__

StrpUq

<<

be a morphism in PThpAq, where pU : MÑ Bq P CAT{B. Define

ΘU,LpSq : MÑ ModpLq

as follows.
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On objects: Given m PM, define dΘU,LpSqpmq “ Um and, for l : La1 Ñ La in L, define

ΓΘU,LpSqpmqplq “ Splqm : xa1, Umy Ñ xa, Umy.

On morphisms: Given a morphism h : m Ñ m1, we define ΘU,LpSqphq : ΘU,LpSqpmq Ñ

ΘU,LpSqpm
1q to be the L-model homomorphism with underlying morphism Uh : Um Ñ

Um1 in B.

We will omit mention of U and L and write ΘU,L “ Θ when it is convenient and unambiguous

to do so.

We must check that this definition makes sense.

Lemma 4.4.6. The functor ΘU,LpSq : M Ñ ModpLq described in Definition 4.4.5 is well-

defined.

Proof. We must check that for m PM the proposed definition of ΘpSqpmq is indeed an L-model,

and that for h : mÑ m1, the map Uh does give a homomorphism ΘpSqpmq Ñ ΘpSqpm1q.

First we must show that for f : a1 Ñ a in A, we have

ΓΘpSqpmqpLfq “ xf, Umy : xa1, Umy Ñ xa, Umy.

But

ΓΘpSqpmqpLfq “ SpLfqm “ StrpUqpfqm “ xf, Umy,

since S ˝ L “ StrpUq.

To check that Uh gives a homomorphism of L-models, we must check that, for each l : La1 Ñ

La, the square

xa1, Umy
xa1,Uhy//

ΓΘpSqpmq
plq“Splqm

��

xa1, Um1y

ΓΘpSqpm1q
plq“Splqm1

��
xa, Umy

xa,Uhy
// xa, Um1y,

commutes, but this is simply a naturality square for Splq : xa1, U´y Ñ xa, U´y.

Lemma 4.4.7. The mappings

Ψ: CAT{BpU,SempLqq Ñ PThpAqpL,StrpUqq

and

Θ: PThpAqpL,StrpUqq Ñ CAT{BpU,SempLqq

are inverse bijections.
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Proof. Let

M R //

U ��

ModpLq

SempLq
{{
B

be a morphism in CAT{B. We must show that ΘΨpRq “ R. First we show they are equal on

objects. Let m PM. Then

dΘΨpRqpmq “ SempLq ˝ΘΨpRqpmq “ Um “ SempLq ˝Rpmq “ dRm,

so ΘΨpRqpmq and Rm have the same underlying object. Let l : La1 Ñ La in A. Then

ΓΘΨpRqpmqplq “ ΨpRqplqm (by Definition 4.4.5)

“ ΓRmplq (by Definition 4.4.2)

so ΓΘΨpRqpmq “ ΓRm. Thus ΘΨpRqpmq “ Rm, as required.

Now, note that

SempLq ˝ΘΨpRq “ U “ SempLq ˝R.

Since SempLq is faithful by construction, it follows that ΘΨpRq and R are equal on morphisms,

hence ΘΨpRq “ R.

Now let

L S // ThpUq

A
L

__

StrpUq

<<

be a morphism in PThpAq. We must show that ΨΘpSq “ S. Evidently they are equal on

objects, since they are both morphisms L Ñ StrpUq in PThpAq. Suppose l : La1 Ñ La in L.

Then, for m PM, we have

ΨΘpSqplqm “ ΓΘpSqpmqplq (by Definition 4.4.2)

“ Splqm (by Definition 4.4.5)

as required. Hence Θ and Ψ are mutually inverse.

Theorem 4.4.8. We have an adjunction

CAT{B K

Str //
PThpAqop,

Sem
oo

called the structure–semantics adjunction for the aritation x´,´y.
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Proof. This follows from Lemmas 4.4.4 and 4.4.7.

4.5 Profunctor viewpoint

In this section we explore another way of looking at proto-theories and their semantics for a

given aritation.

Definition 4.5.1. Let A and A1 be large categories. A profunctor M : A ÝÞÑ A1 (also

known as a module or bimodule) is a functor M : pA1qop ˆ A Ñ SET. Given profunctors

M : A ÝÞÑ A1 and M 1 : A1 ÝÞÑ A2, the composite profunctor M 1 bM : A ÝÞÑ A2 is defined by

the following coend:

M 1 bMpa2, aq “

ż a1PA1

M 1pa2, a1q ˆMpa1, aq

for a2 P A2 and a P A.

Proposition 4.5.2. There is a bicategory PROF, with large categories as objects, profunc-

tors as 1-cells, and natural transformations as 2-cells. Given a large category A, the identity

profunctor on A is given by the hom-functor Ap´,´q : Aop ˆAÑ SET.

Proof. This is well-known. The bicategory PROF was first defined by Bénabou in [5]; see also

Section 7.8 of [8] for an overview.

Proposition 4.5.3. There is a canonical bicategory homomorphism P : CATop
Ñ PROF that

is the identity on objects, sends a functor F : C Ñ D to the profunctor PpF q : D ÝÞÑ C given

by DpF´,´q : Cop ˆ D Ñ SET, and sends a natural transformation α : F Ñ G to the natural

transformation Dpα´,´q : DpF´,´q Ñ DpG´,´q.

Proof. This is essentially Proposition 7.8.5 of [8].

Recall from Street [42] that one can talk about monads in an arbitrary 2-category, or indeed

bicategory, not just in CAT. In particular we can consider monads in PROF.

Proposition 4.5.4. The category PThpAq is equivalent to the category MndPROFpAq of

monads on A in the bicategory PROF.

Proof. This follows from Corollary 3.8 in Cheng [10], which shows that monads in PROF can

be identified with identity-on-objects functors, yielding an isomorphism between MndPROFpAq

and the full subcategory of PThpAq of identity-on-objects proto-theories. Since every proto-

theory on A is isomorphic in PThpAq to one that is the identity on objects, this yields the

desired equivalence.

For the rest of this section, fix an aritation x´,´y : Aˆ B Ñ C.
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Lemma 4.5.5. Let pL : AÑ Lq P PThpAq. Then the functor

PpLq˚ : PROFpC,Lq Ñ PROFpC,Aq

is monadic.

Proof. We have PROFpC,Lq “ rLop ˆ C,SETs and PROFpC,Aq “ rLop ˆ A,SETs, and

viewed in this light the functor PpLq˚ is

pLop ˆ idCq
˚ : rLop ˆ C,SETs Ñ rAop ˆ C,SETs.

Since Lop ˆ idC : Aop ˆ C Ñ Lop ˆ C is bijective on objects, it follows from Corollary 2.4.4 that

the functor above is monadic if and only if it has a left adjoint. But since Aop ˆ C is large and

SET has large limits, it follows that left Kan extensions along Lop ˆ idC exist, giving a left

adjoint to pLop ˆ idCq
˚.

Corollary 8.1 of Street [42] says that a 1-cell in a 2-category is monadic if and only if it is sent

to a monadic functor by each covariant representable 2-functor. The corresponding result holds

for bicategories as well, and it follows that PpLq : L ÝÞÑ A exhibits L as the Eilenberg–Moore

object for the monad on A in PROF corresponding to L.

Proposition 4.5.6. Let pL : AÑ Lq P PThpAq. The square

rL, Cs P //

L˚

��

PROFpC,Lq

PpLq˚
��

rA, Cs
P
// PROFpC,Aq

is a pullback.

Proof. Recall that an object of the pullback of PpF q˚ and P consists of a pair pF,Mq where

F : A Ñ C and M : C ÝÞÑ L such that PpF q “ PpLq b M : C ÝÞÑ A, and morphisms in

the pullback are defined similarly. We will construct an isomorphism between this explicit

description of the pullback and rL, Cs, compatible with the functors to PROFpC,Lq and rA, Cs.

We will construct this isomorphism on objects; it is straightforward to extend it to morphisms.

Let pF,Mq be as above. This means that

MpL´,´q “ CpF´,´q : Aop ˆ C Ñ SET.

We define a functor G : LÑ C as follows. On objects, we set GpLaq “ Fa (recalling that every

object of L is of the form La for a unique a). Suppose l : LaÑ La1 in L. This defines a natural

transformation

Mpl,´q : MpLa1,´q ÑMpLa,´q
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which is equivalently a natural transformation CpFa1,´q Ñ CpFa,´q, which, by the Yoneda

lemma, is given by a unique morphism Fa Ñ Fa1; we define Gl to be this morphism. The

uniqueness in the definition of each Gl then guarantees that G is a functor LÑ C.

We check that G ˝ L “ F and PpGq “ M and that this characterises G uniquely. By

definition G ˝ L “ F on objects. If f : aÑ a1, then

MpLf,´q “ CpFf,´q : CpFa1,´q Ñ CpFa,´q

by assumption, so GLf “ Ff as required. We have PpGq “ M if and only if Mp´,´q “

CpG´,´q, but this is clear from how G is defined, and G is clearly unique such that these to

properties hold.

Proposition 4.5.7. Any functor of the form SempLq : ModpLq Ñ B for some aritation

x´,´y : A ˆ B Ñ C and proto-theory L : A Ñ L is a pullback of a monadic functor whose

codomain is locally large.

Proof. Consider the diagram

ModpLq
JpLq //

SempLq

��

rL, Cs

L˚

��

P // PROFpC,Lq

PpLq˚
��

B
H‚

// rA, Cs
P
// PROFpC,Aq.

The left-hand square is a pullback by definition of SempLq, and the right-hand square is a

pullback by the previous proposition. Thus the outer rectangle is a pullback, and the morphism

on its right-hand edge is monadic by Lemma 4.5.5.

By definition, PROFpC,Aq “ rAopˆC,SETs, and this is locally large since AopˆC is large

and SET is locally large.

Remark 4.5.8. The pullback square appearing in the above proof gives a new perspective

on models of a proto-theory. Recall that L is the Eilenberg–Moore object of the monad T “

pT, η, µq on A in PROF corresponding to L : A Ñ L. But, as in any bicategory, morphisms

into the Eilenberg–Moore object of a monad on A correspond to morphisms into A equipped

with an action of the monad. Thus to equip an object d P B with the structure of an L-model is

to equip the profunctor Ppx´, dyq : C ÝÞÑ A with an action of the monad T; that is, a morphism

T b Ppx´, dyq Ñ Ppx´, dyq that is compatible with the unit and multiplication of the monad.

We can refine Proposition 4.5.7 slightly. We saw that any functor of the form

SempLq : ModpLq Ñ B for an aritation x´,´y : A ˆ B Ñ C and proto-theory L : A Ñ L is

a pullback of a monadic functor along

B H‚
ÝÑ rA, Cs P

ÝÑ PROFpC,Aq.
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But the category PROFpC,Aq is huge, since its objects are arbitrary functors AopˆC Ñ SET.

Thus we might still wonder whether SempLq can be expressed as a pullback of a monadic functor

whose codomain is only large. The answer is yes:

Proposition 4.5.9. Let x´,´y : A ˆ B Ñ C be an aritation and L P PThpAq. Then there is

a large category D P CAT, a monad T on D and a functor H : B Ñ D such that we have a

pullback square

ModpLq

SempLq

��

// DT

UT

��
B

H
// D.

Proof. By the previous proposition, there is a locally large category E , a monad S “ pS, η, µq

on E , a functor K : B Ñ E and a pullback square

ModpLq

SempLq

��

// ES

US

��
B

K
// E .

Let D be the smallest full subcategory of E that contains the image of K and such that S

restricts to an endofunctor of D. Then D is large: it has a large set of objects since B does and

only countably many iterates of S are needed to close the image of K under S, and it is locally

large since E is. Write H : B Ñ D for the factorisation of K through D.

Clearly S restricts to a monad T on D, and a T-algebra is just an S-algebra whose underlying

object lies in D. That is, we have a pullback square

DT //

UT

��

ES

US

��
D // E .

It follows that we have a commutative diagram

ModpLq

SempLq

��

// DT //

UT

��

ES

US

��
B

H
// D // E ,

in which the bottom composite is K. But the right-hand square is a pullback, and so is the

outer rectangle. It follows that the left-hand square is also a pullback.

We can use the viewpoint of proto-theories as monads in the bicategory PROF to deduce

some useful properties of the category of proto-theories.
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Proposition 4.5.10. If pV,b, Iq is a monoidal biclosed category with small colimits, then the

forgetful functor MonpVq Ñ V is monadic.

Proof. The following is a well-known argument. We apply the monadicity theorem (Theorem 1

in VI.7 of [33]). It is straightforward to see that the forgetful functor creates the relevant

coequalisers, so all that is necessary is to show that it has a left adjoint.

Theorem 23.4 of Kelly [23] states that if V has countable coproducts and, for each V P V

both of the functors V b´ and ´bV preserve countable coproducts then this forgetful functor

has a left adjoint. This is in particular the case when V is biclosed since then these functors

are left adjoints, so preserve all colimits.

Proposition 4.5.11. The functor U : PThpAq Ñ rAop ˆ A,SETs sending L : A Ñ L to

LpL´, L´q : Aop ˆAÑ SET is weakly monadic.

Proof. Recall that a bicategory with one object is precisely a monoidal category. In particu-

lar, composition of profunctors makes the functor category rAop ˆ A,SETs into a monoidal

category. The category of monoids in this monoidal category is equivalent to PThpAq, by

Proposition 4.5.4, and under this equivalence, the forgetful functor MonprAop ˆA,SETsq Ñ

rAop ˆA,SETs corresponds to the functor described above.

But rAop ˆ A,SETs – PROFpA,Aq is biclosed (This follows from Theorem 2.3.3 in

Bénabou [5]) and cocomplete and so by the previous proposition, the forgetful functor

MonprAop ˆA,SETsq Ñ rAop ˆA,SETs

is monadic. Hence U (as a composite of a monadic functor with an equivalence) is weakly

monadic.

Corollary 4.5.12. The category PThpAq has all large limits.

Proof. By the previous proposition, this category is monadic over rAop ˆA,SETs, which has

all large limits since SET does. Since monadic functors create all limits, the result follows.

4.6 Example: monoids

As seen in Section 3.7, monoids can be thought of as an extremely simple kind of algebraic

theory, and as such they have their own structure–semantics adjunction, as in Proposition 3.7.5.

We will explore how more complicated notions of algebraic theory arise from proto-theories in

later chapters, but for now let us see how monoids fit into this framework. Throughout this

section, fix a large category B.

Definition 4.6.1. Let 1 denote the category with a single object, and just an identity mor-

phism.
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Lemma 4.6.2. We have an isomorphism of categories

PThp1q – MON,

where MON is the category of large monoids.

Proof. A functor out of 1 just picks out an object of its codomain, and such a functor is bijective

on objects if and only if its codomain has a single object, that is, it is a monoid. So the objects

of PThp1q can be identified with the monoids. Furthermore, any functor between 1-object

categories (i.e. any monoid homomorphism) makes the appropriate triangle commute, and so

defines a morphism in PThp1q.

Definition 4.6.3. Define an aritation

x´,´y : 1ˆ B Ñ B

to be the projection onto the second factor (note that this is an isomorphism of categories).

Remark 4.6.4. The aritation defined above gives rise to an adjunction

CAT{B K

Str //
PThp1qop

Sem
oo

as in Theorem 4.4.8.

Proposition 4.6.5. The adjunction in the above remark coincides under the isomorphism

PThp1q – MON from Lemma 4.6.2 with the adjunction

CAT{B K

StrMON//
MONop

SemMON

oo

from Proposition 3.7.5.

Proof. Let M be a monoid, and write L : 1ÑM for the unique such functor. Then the category

ModMONpMq of actions of M in the category B can be identified with the functor category

rM,Bs, and the forgetful functor with the functor rM,Bs Ñ B given by evaluation at the unique

object of M .

Now SempMq : ModpMq Ñ B is defined by the pullback

ModpMq //

SempMq

��

rM,Bs

L˚

��
B

H‚

// r1,Bs.
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But H‚ is an isomorphism, so we can identify ModpMq with rM,Bs, and SempMq with the

composite H´1
‚ ˝ L˚, which is precisely the evaluation functor described above.

4.7 Chu spaces

In this section we look at aritations and their structure–semantics adjunctions from the point of

view of Chu spaces and the Chu construction for closed symmetric monoidal categories. These

notions were first developed by Barr and Chu in [3], and a historical overview can be found

in [4]. In particular, the definition below first appeared in the appendix to [3].

Definition 4.7.1. Let V be a closed symmetric monoidal category with tensor b and internal

hom r´,´s, and let C be an object of V. Then the category ChupV, Cq of Chu spaces (in V

over C) is defined as follows.

Objects: An object of ChupV, Cq consists of two objects A and B of V together with a mor-

phism x´,´y : AˆB Ñ C in V.

Morphisms: A morphism pA,B, x´,´yq Ñ pA1, B1, x´,´y1q consists of morphisms f : AÑ A1

and g : B1 Ñ B in V such that

AbB1
idAbg //

fbidB1

��

AbB

x´,´y

��
A1 bB1

x´,´y1
// C

commutes.

For a Chu space x´,´y : AbB Ñ C of ChupV, Cq in V we call A the object of points, B the

object of states, C the object of truth values and x´,´y the pairing.

Clearly an aritation x´,´y : AˆB Ñ C is a Chu space in CAT over C. Let us interpret the

semantics and structure functors for such an aritation in terms of Chu spaces.

Let L : AÑ L be a proto-theory. Recall that by definition we have a pullback square

ModpLq
JpLq //

SempLq

��

rL, Cs

L˚

��
B

H‚

// rA, Cs.

The functor JpLq : ModpLq Ñ rL, Cs corresponds to a functor x´,´y1 : L ˆModpLq Ñ C and

we can think of pL,ModpLq, x´,´y1q as an object of ChupCAT, Cq. The commutativity of the
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above pullback corresponds to the commutativity of

AˆModpLq
Lˆid //

idAˆSempLq

��

LˆModpLq

x´,´y1

��
Aˆ B

x´,´y
// C,

which says that pL,SempLqq is a morphism pA,B, x´,´yq Ñ pL,ModpLq, x´,´y1q in

ChupCAT, Cq.

Let B1 P CAT, and x´,´y2 : L ˆ B1 Ñ C, so that pL,B1, x´,´y2q P ChupCAT, Cq, and let

G : B1 Ñ B be such that pL,Gq is a Chu space morphism pA,B, x´,´yq Ñ pL,B1, x´,´y2q.

Then

B1 K //

G

��

rL, Cs

L˚

��
B

H‚

// rA,Ls

commutes, where K is the transpose of x´,´y2. Thus, by the universal property of pullbacks,

there is a unique functor G1 : B1 Ñ ModpLq such that SempLq ˝ G1 “ G and JpLq ˝ G1 “

K. Equivalently, G1 is unique such that pidL, G
1q is a morphism pL,ModpLq, x´,´y1q Ñ

pL,B1, x´,´y2q in ChupCAT, Cq with

pidL, G
1q ˝ pL,SempLqq “ pL,Gq.

In other words, pL,ModpLq, x´,´y1q and pL,SempLqq provide the universal way of extending L

to a Chu space and L to a morphism of Chu spaces out of pA,B, x´,´yq.

Now let M P CAT and U : MÑ B; we will give a similar universal property of StrpUq : AÑ

ThpUq in terms of Chu spaces. First let us fix some terminology: call a morphism

pF,Gq : pA,B, x´,´yq Ñ pA1,B1, x´,´y1q

of Chu spaces in CAT bijective on objects if F : AÑ A1 is a bijective-on-objects functor.

Recall that by definition, we have a commutative square

A H‚ //

StrpUq

��

rB, Cs

U˚

��
ThpUq

IpUq
// rM, Cs.

Writing x´,´y1 : ThpUq ˆM Ñ C for the transpose of IpUq, this corresponds to the commu-
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tativity of

AˆM
StrpUqˆid //

idAˆU

��

ThpUq ˆM

x´,´y1

��
Aˆ B

x´,´y
// C

which says that pStrpUq, Uq is a Chu space morphism pA,B, x´,´yq Ñ pThpUq,M, x´,´y1q,

and it is bijective on objects since StrpUq is.

Let A P CAT, and x´,´y2 : A1 ˆM Ñ C, so that pA1,M, x´,´y2q is an object of

ChupCAT, Cq. Let F : A Ñ A1 be a bijective-on-objects functor such that pF,Uq is a mor-

phism pA,B, x´,´yq Ñ pA1,M, x´,´y2q in ChupCAT, Cq. This means that the bottom-left

triangle in

A

F

��

StrpUq //

H‚

!!

ThpUq

IpUq

��

rB, Cs
U˚

$$
A1

M
// rM, Cs

commutes, where M is the transpose of x´,´y2 : A1ˆMÑ C. The top-right triangle commutes

by definition of StrpUq. Since F is bijective on objects and IpUq is full and faithful, there exists

a unique F 1 : A1 Ñ ThpUq making both triangles in

A
StrpUq//

F

��

ThpUq

IpUq

��
A1

F 1
;;

M
// rM, Cs.

commute. That is, F 1 is the unique bijective-on-objects functor such that pF 1, idMq is a Chu

space morphism pA1,M, x´,´y2q Ñ pStrpUq,M, x´,´y1q such that

pF 1, idMq ˝ pF,Uq “ pStrpUq, Uq.

Thus pThpUq,M, x´,´y1q and pStrpUq, Uq provide the universal way of extendingM to a Chu

space and U to a morphism of Chu spaces out of pA,B, x´,´yq.
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Chapter 5

Monads and the canonical

aritation

In this chapter we define a canonical aritation associated with each locally small category,

and show that the resulting structure–semantics adjunction generalises the structure–semantics

adjunction for monads described in Section 3.3 of Chapter 3.

Definition. Let B be a locally small category. The canonical aritation on B is given by the

hom-functor

x´,´y “ Bp´,´q : Bop ˆ B Ñ Set.

In particular, the category of arities for this aritation is Bop, the base category is B, and it

takes values in Set.

This aritation gives rise to a structure-semantics adjunction of the form

CAT{B K

Str //
PThpBopqop.

Sem
oo

In Section 5.1 we give an alternative definition of a model of a proto-theory for the canonical

aritation. This alternative formulation is often more convenient to work with in practice, but is

only available for the canonical aritation. In Section 5.2 we show how we can think of monads as

proto-theories, and how the canonical aritation provides an extension of the usual semantics of

monads. Finally in Section 5.3 we describe a variant of the canonical aritation for when the base

category is equipped with a specified dense subcategory and we show that the corresponding

semantics generalises the semantics of monads with arities as discussed in Section 3.6.
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5.1 An alternative description of L-models

In the case of the canonical aritation, there is an alternative formulation of the definition of a

model of a proto-theory with arities B, which is often more convenient to work with. In this

section we state this alternative definition and show that it is equivalent to Definition 4.2.5. In

this section only, we shall refer to models in the alternative formulation as “algebras”. Once

we have shown that models and algebras are the same thing, we shall use the term “model” to

refer to them both, relying on notation to distinguish between the two equivalent formulations.

For the rest of this section, let B be a fixed locally small category and let pL : Bop Ñ Lq P

PThpBq. Whenever we refer to structure and semantics functors, we mean those induced by

the canonical aritation on B.

Definition 5.1.1. An algebra x of L consists of an object dx P B together with a collection

of maps

αxb : LpLdx, Lbq Ñ Bpb, dxq

natural in b P B, such that

i. αxdxpidLpdxqq “ iddx ; and

ii. for all l : Ldx Ñ Lb and k : LbÑ Lb1, we have

αxb1pk ˝ lq “ αxb1pk ˝ Lpα
x
b plqqq.

Definition 5.1.2. An algebra homomorphism between L-algebras x Ñ y consists of a

morphism h : dx Ñ dy in B such that for all b P B and l : Ldx Ñ Lb in L, we have

h ˝ αxb plq “ αyb pl ˝ Lphqq.

Let us compare the definitions of L-algebras and L-models. An L-model structure on d P B

consists of a functor Γ: LÑ B such that Γ˝L “ Bp´, dq; in particular, for all b, b1 P B, we have

a map

LpLb, Lb1q Ñ SetpBpb, dq,Bpb1, dqq.

An element of LpLb, Lb1q is an operation of the proto-theory L with arity b and output shape

b1; the L-model structure on d gives a concrete interpretation of such an operation as a way of

turning (generalised) elements of d of shape b into elements of shape b1.

An L-algebra structure on d consists of, for each b P B, a map

LpLd,Lbq Ñ Bpb, dq;

that is, a way of turning operations of arity d and output shape b into elements of d of shape b.
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Thus the equivalence between the two, which we establish below, says that in order to interpret

operations of L of arbitrary arity in the object d, it is enough to give a way of turning d-ary

operations into elements of d.

This may seem surprising, but the same phenomenon occurs with monads. For a monad

T “ pT, η, µq on B, we think of Tb as the “object of b-ary operations” of T, for any object

B. Thus we might think of generalised elements of Tb of shape b1 (that is, maps b1 Ñ Tb) as

operations with arity b and output shape b1. Reasoning a priori then, we might think that

a T-model structure on d P B should provide for each morphism b1 Ñ Tb a way of turning

elements of d of shape b into elements of shape b1. That is, we should have a map

Bpb1, T bq Ñ SetpBpb, dq,Bpb1, dqq.

We could define a T-model along these lines and end up with a definition equivalent to the

usual notion of T-algebra. However we know, of course, that a T-algebra structure on d can

be described much more simply, by a map TdÑ d. Since elements of Td are d-ary operations,

such a map gives a way of turning d-ary operations into elements of d.

This similarity between algebras of an arbitrary proto-theory and algebras for a monad is

not a coincidence: we show below that the semantics of proto-theories for the canonical aritation

generalises the semantics of monads.

The following simple consequence of the definition shall often be useful.

Lemma 5.1.3. Let x “ pdx, αxq be an L-algebra. Then for all b P B and f : bÑ dx, we have

αxb pLfq “ f.

Proof. We have

αxb pLfq “ αxb pLf ˝ idLdxq “ αxdxpidLdxq ˝ f “ f,

where the second equality is by naturality of αx, and the third is by Definition 5.1.1.(i).

We now show that the notions of L-model and L-algebra coincide.

Proposition 5.1.4. i. Given an L-model x “ pdx,Γxq, we may define an L-algebra pdx, αxq

with the same underlying object by defining

αxb : LpLdx, Lbq Ñ Bpb, dxq

l ÞÑ Γxplqpiddxq

for each b P B, recalling that Γx is a functor LÑ Set with Γx ˝L “ Bp´, dxq, so Γxplq is

a function Bpdx, dxq Ñ Bpb, dxq.
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ii. Given an L-algebra x “ pdx, αxq, we may define an L-model pdx,Γxq with the same

underlying object by defining, for each l P LpLb1, Lbq,

Γxplq : Bpb1, dxq Ñ Bpb, dxq

f ÞÑ αxb1pl ˝ Lpfqq.

iii. These two assignments, from model to algebra and vice versa, are inverse.

iv. Given L-models (or equivalently algebras) x and y, a morphism dx Ñ dy is an L-model

homomorphism pdx,Γxq Ñ pdy,Γyq if and only if it is an L-algebra homomorphism

pdx, αxq Ñ pdy, αyq.

Proof. (i): First we check that αx is natural. Given g : b1 Ñ b in B and l : Ldx Ñ Lb in L, we

have

αxb1pLg ˝ lq “ ΓxpLg ˝ lqpiddxq

“ ΓxpLgq ˝ Γxplqpiddxq

“ g˚ ˝ Γxplqpiddxq

“ αxb plq ˝ g

as required. Clearly

αxdxpidLdxq “ ΓxpidLdxqpiddxq “ iddx .

Now let l : Ldx Ñ Lb and k : LbÑ Lb1. Then

αxb1pk ˝ lq “ Γxpk ˝ lqpiddxq

“ ΓxpkqpΓxplqpiddxqq

“ Γxpkqpαxb plqq

“ Γxpkq ˝ αxb plq
˚piddxq

“ Γxpkq ˝ ΓxpLαxb plqqpiddxq

“ Γxpk ˝ Lαxb plqqpiddxq

“ αxb1pk ˝ Lα
x
b plqq

as required. So pdx, αxq is indeed an L-algebra.

(ii): We check that Γx as defined is functorial. Certainly

ΓxpidLbq : Bpb, dxq Ñ Bpb, dxq

f ÞÑ αxb pLfq “ f
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by Lemma 5.1.3. Let l : LbÑ Lb1 and k : Lb1 Ñ Lb2. Then if f P Bpb, dxq, we have

Γxpk ˝ lqpfq “ αxb2pk ˝ l ˝ Lfq

“ αxb2pk ˝ Lα
x
b1pl ˝ Lfqq

“ Γxpkqpαxb1pl ˝ Lfqq

“ ΓxpkqpΓxplqpfqq

“ Γxpkq ˝ Γxplqpfq

and hence Γxpk ˝ lq “ Γxpkq ˝ Γxplq. In addition, if f : bÑ dx and g : b1 Ñ b them

ΓxpLgqpfq “ αxb1pLg ˝ Lfq “ αxb1pLpf ˝ gqq “ f ˝ g

by Lemma 5.1.3, so Γx ˝ L “ Bp´, dxq. Hence pdx,Γxq is an L-model.

(iii): In one direction we must show that for any L-model pdx,Γxq, any l P LpLb, Lb1q and

any f P Bpb, dxq, we have

Γxplqpfq “ Γxpl ˝ Lfqpiddxq.

But

Γxpl ˝ Lfqpiddxq “ Γxplq ˝ ΓxpLfqpiddxq “ Γxplq ˝ f˚piddxq “ Γxplqpfq.

In the other direction, we must show that for any L-algebra pdx, αxq, any b P B and any

l P LpLdx, Lbq, we have

αxb plq “ αxb pl ˝ Lpiddxqq.

But this is immediate.

(iv): Let h : dx Ñ dy be a model homomorphism; that means that for all l P LpLb, Lb1q and

f P Bpb, dxq, we have

Γyplqph ˝ fq “ h ˝ Γxplqpfq, (5.1)

or equivalently,

αyb1pl ˝ Lf ˝ Lhq “ h ˝ αxb1pl ˝ Lfq. (5.2)

But in the case when b “ dx and f “ iddx , this is precisely what is required for h to be an algebra

homomorphism. Conversely, if h in an algebra homomorphism, then (5.2) holds as a special

case of Definition 5.1.2, and hence (5.1) holds, and so h is also a model homomorphism.

From now on, when we write “x is a model of L”, this will be understood to mean we have

both an L-model denoted pdx,Γxq and the corresponding L-algebra denoted pdx, αxq, and we

will freely use whichever manifestation of the structure is most convenient at the time. We will

also use the term “model” to refer to either of these, relying on the difference in notation to

indicate which is intended.
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5.2 Monads

Throughout this section, let B be a locally small category unless stated otherwise. We will

show that the structure–semantics adjunction that arises from the canonical aritation of B

generalises the adjunction between right adjoints into B and monads on B that was described

in Proposition 3.3.4. More precisely, we will show that there is a canonical full and faithful

functor MndpBq ãÑ PThpBopq such that

pCAT{Bqr.a.
StrMnd //

��

MndpBqop

��
CAT{B

Str
// PThpBopqop

and

pCAT{Bqr.a.

��

MndpBqop

��

SemMndoo

CAT{B PThpBopqop

Sem
oo

commute, where the left-hand vertical arrows are the obvious forgetful functor.

First we construct the embedding MndpBq ãÑ PThpBopq.

Definition 5.2.1. Given monads T and T1 on B, a Kleisli morphism P̂ : T Ñ T1 is an

operation P̂ that sends morphisms f : bÑ Tb1 in B to morphisms P̂ pfq : bÑ T 1b1 such that

i. If k : bÑ b1 then P̂ pηb1 ˝ kq “ η1b1 ˝ k, and

ii. If f : bÑ Tb1 and g : b1 Ñ Tb2, then P̂ pµb2 ˝ Tg ˝ fq “ µ1b2 ˝ T
1P̂ pgq ˝ P̂ pfq.

Clearly a Kleisli morphism P̂ : TÑ T1 is precisely the same as a functor P : BT Ñ BT1 such

that P ˝FT “ FT1 , where FT : B Ñ BT is the canonical free functor from B to the Kleisli category

of T.

The following lemma will be used in the proof of Proposition 5.2.7.

Lemma 5.2.2. For any Kleisli morphism P̂ : TÑ T1 and for every f : bÑ Tb1 in B, we have

P̂ pfq “ P̂ pidTb1q ˝ f .

Proof. We have

P̂ pfq “ P̂ pµb1 ˝ ηTb1 ˝ fq “ P̂ pµb1 ˝ T pidTb1q ˝ ηTb1 ˝ fq

“ µ1b1 ˝ T
1P̂ pidTb1q ˝ P̂ pηTb1 ˝ fq (by Definition 5.2.1.(ii))

“ µ1b1 ˝ T
1P̂ pidTb1q ˝ η

1
Tb1 ˝ f (by 5.2.1.(i))

“ µ1b1 ˝ T
1P̂ pidTb1q ˝ P̂ pηTb1q ˝ f (by 5.2.1.(i))

“ P̂ pµb1 ˝ T pidTb1q ˝ ηTb1q ˝ f (by 5.2.1.(ii))

“ P̂ pidTb1q ˝ f

as required.

Definition 5.2.3. Given a monad T on B, define the proto-theory KlpTq P PThpBopq to be

F op
T : Bop Ñ Bop

T .
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Remark 5.2.4. Clearly a bijective-on objects functor out of Bop is essentially the same thing

as a bijective-on-objects functor out of B. In order to avoid a proliferation of op’s, we can

therefore identify KlpTq (which we have defined to be F op
T : Bop Ñ Bop

T ) with FT : B Ñ BT.

Similarly, when we define Kl : MndpBq Ñ PThpBopq on monad morphisms φ : T Ñ T1 (as we

are about to), we will define Klpφq as a functor BT Ñ BT1 , even though strictly speaking it

should be a functor Bop
T Ñ Bop

T1 . This minor abuse of notation should not cause any confusion,

but is worth keeping in mind.

Definition 5.2.5. Given a monad morphism φ : T Ñ T1, define Klpφq : KlpTq Ñ KlpT1q in

PThpBopq to be the functor BT Ñ BT1 with corresponding Kleisli morphism {Klpφq : T Ñ T1

given by

{Klpφqpfq “ φb ˝ f

for f : b1 Ñ Tb.

Lemma 5.2.6. Definitions 5.2.3 and 5.2.5 together give a well-defined functor Kl: MndpBq Ñ

PThpBopq; that is, for each monad morphism φ : TÑ T1, the given definition of Klφ is indeed

a Kleisli morphism.

Proof. First we check Definition 5.2.1.(i). Given k : bÑ b1,

{Klpφqpηb1 ˝ kq “ φb1 ˝ ηb1 ˝ k “ η1b1 ˝ k

as required. And if f : bÑ Tb1, g : b1 Ñ Tb2, then

{Klpφqpµb2 ˝ Tg ˝ fq “ φb2 ˝ µb2 ˝ Tg ˝ f

“ µ1b2 ˝ T
1φb2 ˝ φTb2 ˝ Tg ˝ f

“ µ1b2 ˝ T
1φb2 ˝ T

1g ˝ φb1 ˝ f

“ µ1b2 ˝ T
1
{Klpφqpgq ˝{Klpφqpfq

as required.

We have defined the proto-theory associated to a monad T to be given by its Kleisli category.

This makes precise the standard intuition that Tb is “the object of b-ary operations” in the

following way. Recall that, in an arbitrary category B, we cannot talk about elements of an

object b P B, but we can talk about “generalised elements”; a generalised element of b is simply

a morphism with codomain b, and the domain of that morphism is sometimes called the “shape”

of the generalised element. So, given a monad T “ pT, η, µq on B, a generalised element of Tb

with shape b1 is a morphism b1 Ñ Tb, which is precisely the same as an operation of KlpTq with

arity B and shape b1 in the sense of proto-theories.
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Proposition 5.2.7. The functor Kl: MndpBq Ñ PThpBopq is full and faithful, and its essen-

tial image consists of the bijective-on-objects functors out of B with right adjoints.

The first part of this proposition says that when we pass from monads to proto-theories we

are not throwing away any structure — having an associated monad is merely a property of a

proto-theory.

The second part tells us exactly what this property is. Recall that an arbitrary functor

F : B Ñ D has a right adjoint if and only if the presheaf DpF´, dq is representable for each

d P D. Thus, a proto-theory L : Bop Ñ L comes from a monad if and only if, for each b P B, the

“presheaf of b-ary operations” LpLb, L´q : Bop Ñ SET (with variable shape) is representable.

In that case, the object that represents it is Tb, the “object of b-ary operations”, for the

corresponding monad.

Proof. First let us show that Kl is faithful. Suppose φ, θ : T Ñ T1 with φ ‰ θ. Then there is

some b P B for which φb ‰ θb. Then

{KlpφqpidTbq “ φb ‰ θb “ zKlpθqpidTbq,

so Klpφq ‰ Klpθq as required.

Next we check that Kl is full. Suppose P : BT Ñ BT1 with PFT “ FT1 . For each b P B, define

φb “ P̂ pidTbq : TbÑ T 1b.

We must show that φ is natural. Given f : bÑ b1,

T 1f ˝ φb “ T 1f ˝ P̂ pidTbq “ µ1b1 ˝ T
1η1b1 ˝ T

1f ˝ P̂ pidTbq

“ µ1b1 ˝ T
1P̂ pηb1 ˝ fq ˝ P̂ pidTbq (by 5.2.1.(i))

“ P̂ pµb1 ˝ T pηb1 ˝ fq ˝ idTbq (by 5.2.1.(ii))

“ P̂ pTfq “ P̂ pidTb1q ˝ Tf (by Lemma 5.2.2)

“ φb1 ˝ Tf

as required. Next we check that φ is compatible with the units:

φb ˝ ηb “ P̂ pidTbq ˝ ηb “ P̂ pηbq “ η1b,

using Lemma 5.2.2 and Definition 5.2.1.(i). Finally we check compatibility with the multipli-

88



cations:

µ1b ˝ T
1φb ˝ φTb “ µ1b ˝ T

1P̂ pidTbq ˝ P̂ pidTTbq

“ P̂ pµb ˝ T idTb ˝ idTTbq “ P̂ pµbq (by 5.2.1.(ii))

“ P̂ pidTbq ˝ µb “ φb ˝ µb. (by Lemma 5.2.2)

Thus φ is a monad morphism TÑ T1, and it is clear from Lemma 5.2.2 that Klpφq “ P , which

concludes the proof that Kl is full.

All that remains is to show that the essential image of Kl consists of the bijective-on-objects

functors with right adjoints. Certainly every object of PThpBopq in the image of Kl does have

a right adjoint, since all functors of the form FT do. Let L : B Ñ L be a bijective on objects

functor with a right adjoint. Then let T be the monad on B generated by L and its right adjoint.

The comparison functor K : BT Ñ L is always full and faithful. However it is also bijective on

objects since both FT and L are, and K ˝ FT “ L. Hence K is an isomorphism, so L is in the

essential image of Kl.

We have shown that Kl exhibits MndpBq as a full subcategory of PThpBopq.

Proposition 5.2.8. Let pU : MÑ Bq P CAT{B. Then U has a pointwise codensity monad if

and only if StrpUq P PThpBopq lies in the essential image of Kl: MndpBq ãÑ PThpBopq, and

then the codensity monad of U is the essentially unique monad T such that StrpUq – KlpTq.

Proof. The functor U has a pointwise codensity monad if and only if, for each b P B, the

diagram

pb Ó Uq ÑM U
ÝÑ B

has a limit. But a cone on this diagram with vertex b1 is essentially the same as a natural

transformation

Bpb, U´q Ñ Bpb1, U´q.

Thus U has a pointwise codensity monad if and only if, for each b P B, the presheaf sending an

arbitrary b1 P B to

rM,SetspBpb, U´q,Bpb1, U´qq

is representable. But this presheaf is precisely ThpUqpb,StrpUq´q, so it being representable for

each b is equivalent to StrpUq : Bop Ñ ThpUq having a left adjoint. By the previous proposition

this is the same as StrpUq being in the essential image of Kl.

Before examining how the semantics of monads relates to the semantics of proto-theories,

we note the following:

Proposition 5.2.9. Suppose B admits all small limits. Then the inclusion Kl: MndpBq ãÑ

PThpBopq preserves all small limits.
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Proof. Since B has all small limits, small limits of monads on B can be computed component-

wise; that is, the forgetful functor MndpBq Ñ rB,Bs creates and preserves limits.

Write

Q : rB,Bs Ñ rBop ˆ B,SETs

for the functor sending an endofunctor F of B to Bp´, F´q : Bop ˆ B Ñ SET. It is clear that

Q preserves limits.

Now consider the square

MndpBq Kl //

��

PThpBopq

��
rB,Bs

Q
// rBop ˆ B,SETs,

where the right-hand vertical arrow is the forgetful functor from Proposition 4.5.11. This

diagram commutes, and the left and the bottom functors preserve small limits as already noted.

But the right-hand functor is monadic by Proposition 4.5.11 and so creates limits. It follows

that Kl preserves limits.

Now we show that Str % Sem restricts to the adjunction StrMnd % SemMnd.

Proposition 5.2.10. The diagram

pCAT{Bqr.a.
StrMnd //

��

MndpBqop

Klop

��
CAT{B

Str
// PThpBopqop

commutes up to isomorphism.

Proof. Let pM, U, F, η, εq P pCAT{Bqr.a.. Both ThpUq and BpUF,η,UεF q have as objects the

objects of B, and we have

ThpUqpb, b1q “ rM,SetspBpb, U´q,Bpb1, U´qq

– rM,SetspMpFb,´q,MpFb1,´qq

–MpFb1, F bq

– Bpb1, UFbq

“ BpUF,η,UεF qpb1, bq.

Tracing through the steps in this isomorphism, a natural transformation γ : Bpb, U´q Ñ

Bpb1, U´q is sent to γFbpηbq : b
1 Ñ UFb. In particular, the identity natural transformation

on Bpb, U´q is sent to ηb, so identities in ThpUq agree with those in Bop
pUF,η,UεF q. Now suppose

90



γ : Bpb, U´q Ñ Bpb1, U´q and δ : Bpb1, U´q Ñ Bpb2, U´q. Then the composite of γFbpηbq and

δFb1pηb1q in the Kleisli category is given by

UεFb ˝ UFγFbpηbq ˝ δFb1pηb1q “ δFbpUεFb ˝ UFγFbpηbq ˝ ηb1q

“ δFbpUεFb ˝ ηUFb ˝ γFbpηbqq

“ δFbpγFbpηbqq,

which corresponds to the composite δ ˝ γ. So composition in ThpUq agrees with composition in

Bop
pUF,η,UεF q. Hence we have an isomorphism ThpUq – Bop

pUF,η,UεF q. Furthermore, this isomor-

phism is compatible with the functors StrpUq : Bop Ñ ThpUq and FStrMndpUq : B Ñ BStrMndpUq:

for f : b1 Ñ b in B, the natural transformation StrpUqpfq : Bpb, U´q Ñ Bpb1, U´q is given by

composition with f , and so corresponds to

f˚b pηbq “ ηb ˝ f P Bpb1, UFbq,

and this is precisely FStrMndpUqpfq P BStrMndpUqpb
1, bq.

We have shown that the two composites in the diagram in the proposition are equal on

objects; we now show that they are equal on morphisms. Suppose Q : pM, U, F, η, εq Ñ

pM1, U 1, F 1, η1, ε1q in pCAT{Bqr.a.. We must show that

ThpU 1q
– //

StrpQq

��

Bop
StrMndpU 1q

pKl ˝ StrMndpQqq
op

��
ThpUq

–
// Bop

StrMndpUq

commutes. Let γ : Bpb, U 1´q Ñ Bpb1, U 1´q. Then the bottom composite sends this to

γQFbpηbq : b
1 Ñ UFb “ U 1QFb

(since ηb : b Ñ UFb “ U 1QFb, it is valid to apply γQFb to it). The top composite sends γ to

the composite

b1
γbpη

1
bq

ÝÑ U 1F 1b
U 1F 1ηb
ÝÑ U 1F 1UFb “ U 1F 1U 1QFb

U 1ε1QFb
ÝÑ U 1QFb “ UFb.
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But

U 1ε1QFb ˝ U
1F 1ηb ˝ γbpη

1
bq “ γQFbpU

1ε1QFb ˝ U
1F 1ηb ˝ η

1
bq

“ γQFbpU
1ε1QFb ˝ η

1
UFb ˝ ηbq

“ γQFbpU
1ε1QFb ˝ η

1
U 1QFb ˝ ηbq

“ γQFbpηbq,

as required.

Proposition 5.2.11. The diagram

pCAT{Bqr.a.

��

MndpBqop

Klop

��

SemMndoo

CAT{B PThpBopqop

Sem
oo

commutes up to isomorphism.

This follows from Theorem 14 of Street [42], however we prove it here for completeness.

Proof. Let T “ pT, η, µq be a monad on B. First we show that a T-algebra structure on an

object of B is the same as a KlpTq-model structure, and the two notions of homomorphism

coincide. First let us spell out explicitly what a KlpTq-model is. It consists of an object dx

together with a family of maps

αxb : Bpb, Tdxq Ñ Bpb, dxq

that are natural in b P B, such that

αxdxpηdxq “ iddx , (5.3)

which is Definition 5.1.1.(i), and such that for any l : b1 Ñ Tb and k : bÑ Tdx, we have

αxb1pµdx ˝ Tk ˝ lq “ αxb1pµdx ˝ Tηdx ˝ Tα
x
b pkq ˝ lq;

the left-hand side here is αxb1 applied to the composite of k and l in the Kleisli category of T, and

the right-hand side is αxb1 applied to the composite of FTpα
x
b pkqq and l in the Kleisli category, so

this is the appropriate instantiation of Definition 5.1.1.(ii). This last equation can be written

equivalently as

αxb1pµdx ˝ Tk ˝ lq “ αxb1pTα
x
b pkq ˝ lq. (5.4)

By the Yoneda lemma, natural transformations αx : Bp´, Tdxq Ñ Bp´, dxq correspond to mor-
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phisms sx “ αxTdxpidq : Td
x Ñ dx, and then αx “ sx˚. Equation (5.3) is satisfied if and only if

sx ˝ ηdx “ iddx , which is the unit axiom for sx to be a T-algebra. If sx is a T-algebra structure,

then for k and l as above,

αxb1pµdx ˝ Tk ˝ lq “ sx ˝ µdx ˝ Tk ˝ l

“ sx ˝ Tsx ˝ Tk ˝ l

“ αxb1pTα
x
b pkq ˝ lq

so Equation (5.4) is satisfied. Conversely if Equation (5.4) holds for all k and l, then in particular

it holds when k “ idTdx and l “ idTTdx , which gives

sx ˝ µdx “ sx ˝ Tsx,

so sx is a T-algebra structure.

Let x “ pdx, αxq and y “ pdy, αyq be two KlpTq-model structures with corresponding T-

algebra structures sx and sy. Then h : dx Ñ dy is a T-algebra homomorphism if and only if

sy ˝ Th “ h ˝ sx. But this is equivalent to the commutativity of

Bp´, Tdxq

αx“sx˚

��

pThq˚ // Bp´, Tdyq

αy“sy˚
��

Bp´, dxq
h˚

// Bp´, dyq,

which is what it means for h to be a KlpTq-model homomorphism.

We have shown that there is an isomorphism ModpKlpTqq – BT. Now suppose φ : T “

pT, η, µq Ñ T1 “ pT 1, η1, µ1q is a monad morphism. We must show that

ModpKlpT1qq – //

SempKlpφqq

��

BT1

SemMndpφq

��
ModpKlpTqq

–
// BT

commutes. Let x “ pdx, αxq be a KlpT1q-model, with corresponding T1-algebra structure

sx : T 1dx Ñ dx. Then the top composite sends this to the T-algebra

Tdx
φdx
ÝÑ T 1dx

sx
ÝÑ dx.

On the other hand, SempKlpφqq sends x to the T-model structure

Bp´, Tdxq pφdx q˚ÝÑ Bp´, T 1dxq
αx“sx˚
ÝÑ Bp´, dxq,
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and this corresponds to the T-algebra structure

sx˚ ˝ pφdxq˚pidTdxq “ sx ˝ φdx ,

so the two T-algebra structures coincide. Hence the two composites in the diagram are equal on

objects. They are equal on morphisms because they both commute with the forgetful functors

to B, which are all faithful.

Proposition 5.2.12. Writing

pCAT{Bqr.a.
StrMnd //

��

MndpBqop

Klop

��
CAT{B

Str
// PThpBopqop

DL
ζ and

MndpBqop

Klop

��

SemMnd// pCAT{Bqr.a.

��
PThpBopqop

Sem
// CAT{B

DL
ξ

for the natural isomorphisms from Propositions 5.2.10 and 5.2.11 respectively, we have an

equality

MndpBqop

SemMnd

&&
Kl

��

MndpBqop

Kl

��

pCAT{Bqr.a.

��

StrMnd

88

PThpBopqop

Sem &&

CKξ

PThpBopqop

CKζ

CAT{B
Str

88

“

MndpBqop

Kl

��

MndpBqop

Kl

��
PThpBopqop

Sem %%

PThpBopqop

CAT{B
Str

99
E ò

where E : Str ˝ Sem Ñ id is the counit of the Str % Sem adjunction.

Note that we do indeed have an equality StrMnd ˝ SemMnd “ idMndpBq.

Proof. First let us explicitly describe the natural transformations in question. First consider

an arbitrary proto-theory L : Bop Ñ L. Then the component EL of the counit of the Str % Sem

adjunction is as follows: given b1, b P B, the map

EL : LpLb1, Lbq Ñ ThpSempLqqpb1, bq “ rModpLq,SetspBpb1,SempLq´q,Bpb,SempLq´qq

sends l : Lb1 Ñ Lb to the natural transformation whose component at x “ pdx, αxq sends

f : b1 Ñ dx to αxb1pl ˝ Lfq. In particular, if L is of the form KlpTq for T P MndpBq then, for

g P KlpTqpb1, bq “ Bpb, T b1q
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we have

EKlpTqpgqxpfq “ αxb pµdx ˝ T pTf ˝ ηb1q ˝ gq “ αxb pTf ˝ gq.

Now let us consider ζSemMndpTq. Note that T “ StrMnd ˝ SemMndpTq “ StrMndpU
Tq so we

have

ζUT : KlpTq “ KlpStrMndpU
Tqq Ñ StrpUTq.

For b, b1 in B, the map

ζUT : KlpStrMndpU
Tqqpb1, bq “ Bpb, T b1q Ñ ThpUTqpb1, bq “ rM,SetspBpb1, UT´q,Bpb, UT´qq

sends g : b Ñ Tb1 to the natural transformation Bpb1, UT´q Ñ Bpb, UT´q whose component at

x “ pdx, sxq P BT sends f : b1 Ñ dx to the composite

b
g
ÝÑ Tb1

Tf
ÝÑ Tdx

sx
ÝÑ dx.

In addition,

ξT : ModpKlpTqq Ñ BT

sends a KlpTq-model x “ pdx, αxq to dx equipped with the T-algebra structure

sx “ αxTdxpidTdxq : Td
x Ñ dx

and is the identity on morphisms.

It follows that, for b, b1 P B, and

g P KlpTqpb1, bq “ Bpb, T b1q

the natural transformation

StrpξTq ˝ ζUTpgq : Bpb1,SempKlpTqq´q,Bpb,SempKlpTqq´qq

has component at x “ pdx, αxq P ModpKlpTqq sending f : b1 Ñ dx to

StrpξTq ˝ ζUTpgqxpfq “ ζUTpgqξTpfq

“ αxTdxpidTdxq ˝ Tf ˝ g

“ αxb pTf ˝ gq,

and this is precisely the same as EKlpTqpgqxpfq as required.

Thus we have
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Theorem 5.2.13. The structure–semantics adjunction

CAT{B K

Str //
PThpBopqop

Sem
oo

restricts along the inclusions

pCAT{Bqr.a. ãÑ CAT{B and Kl: MndpBq ãÑ PThpBopq

to the adjunction

pCAT{Bqr.a. K

StrMnd//
MndpBqop.

SemMnd

oo

Proof. This is precisely Propositions 5.2.10, 5.2.11 and 5.2.12 together.

We can now prove the converse of Proposition 4.5.9.

Proposition 5.2.14. Let B be any large category (not necessarily locally small) and let

pU : M Ñ Bq P CAT{B. Then U is of the form SempLq : ModpLq Ñ B for some aritation

x´,´y : A ˆ B Ñ C in CAT and L P PThpAq if and only if it is the pullback of a monadic

functor with large codomain.

Proof. In Proposition 4.5.9 we saw that a functor of the form SempLq is a pullback of a monadic

functor with large codomain; now we show the converse.

Suppose we have a monad T on a large category D and a pullback square

M

U

��

// DT

UT

��
B

H
// D.

Let κ be the supremum of the cardinalities of the hom-sets of D and write SETκ for the

large category of sets of cardinality at most κ; note that SETκ is large. Then by Theorem 14

of Street [42], we have a pullback square

DT

UT

��

// rDop
T ,SETκs

pF op
T q

˚

��
D

H‚

// rDop,SETκs.
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Putting the two pullback squares together, the outer rectangle of

M

U

��

// DT

UT

��

// rDop
T ,SETκs

pF op
T q

˚

��
B

H
// D

H‚

// rDop,SETκs

is a pullback, and so we can identify U : M Ñ B with the functor SempF op
T q : ModpF op

T q Ñ B

given by the aritation

Dp´, H´q : Dop ˆ B Ñ SETκ

as required.

5.3 Monads with arities

Recall from Section 3.6 that monads can be generalised to monads with arities. Berger, Melliès

and Weber showed in [6] that monads with arities on pB,Aq can equivalently be described

as certain bijective-on-objects functors out of A, which they called theories with arities. In

this section we show how the semantics of theories with arities (and thus monads with arities)

arises from an aritation. More precisely, we define an aritation whose structure–semantics

adjunction extends the structure–semantics adjunction for monads with arities described in

Proposition 3.6.6, in the same way that the structure–semantics adjunction for the canonical

aritation extends that of ordinary monads. Throughout this section, let pB,Aq be a category

with arities as defined in Definition 3.6.1, so that B is a large category, and A is a dense

subcategory of B. Assume in addition that B is locally small.

Definition 5.3.1. A pB,Aq-theory is a proto-theory L : Aop Ñ L with arities Aop such that

the composite

rAop,SETs
L!
ÝÑ rL,SETs

L˚
ÝÑ rAop,SETs

restricts to an endofunctor on the essential image of NA : B Ñ rAop,SETs, where L! denotes

left Kan extension along L. The category of pB,Aq-theories is the full subcategory of PThpAopq

on such theories.

Remark 5.3.2. This is Definition 3.1 of Berger, Melliès and Weber [6], where such theories

are called simply theories with arities.

Recall from Definition 3.6.3 that, for a monad with arities T “ pT, η, µq on a category with

arities (B,Aq, the category ΘT is defined to be the full subcategory of BT consisting of the

algebras of the form pTa, µaq where a P A. Recall also that jT : A Ñ ΘT is FT : B Ñ BT with

domain restricted to A and codomain restricted to ΘT. Note that jT is bijective on objects.
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Lemma 5.3.3. The assignment T ÞÑ pjop
T : Aop Ñ Θop

T q defines a full and faithful functor

MndCATwApB,Aq Ñ PThpAopq

whose essential image is the category of pB,Aq-theories.

Proof. This is a rewording of Theorem 3.4 of [6].

In order to define the semantics of general proto-theories with arities Aop, and in particular

pB,Aq-theories, we need to be able to interpret the arities Aop in B. Since A is a subcategory

of B, we can do this with a suitable restriction of the canonical aritation: writing I : A ãÑ B

for the inclusion, we have an aritation

BpI´,´q : Aop ˆ B Ñ Set,

and thus we obtain a structure–semantics adjunction

CAT{B K

Str //
PThpAopqop.

Sem
oo

The following proposition relates this adjunction to the adjunction of Proposition 3.6.6.

Proposition 5.3.4. Both squares in

pCATwA{pB,Aqqr.a. K

StrMndwA//

��

MndwApB,Aqop

SemMndwA

oo

��
CAT{B K

Str //
PThpAopqop

Sem
oo

commute up to equivalence, where the left-hand vertical arrow is the obvious forgetful functor,

and the right-hand vertical arrow is the inclusion from Lemma 5.3.3.

Proof. In [6], the category of models of a pB,Aq-theory pΘ, jq is defined to be the full subcategory

of rΘop,Sets consisting of those presheaves Γ such that Γ ˝ jop belongs to the essential image

of NA : B Ñ rAop,Sets. Proposition 3.2 of [6] shows that the category of models so defined is

equivalent to the category of algebras for the corresponding monad on B. Thus if we can show

that the category of models of pΘ, jq in the sense of [6] is equivalent to the category of models

of pΘ, jq as a proto-theory, we will have shown that the square involving Sem and SemMndwA

commutes up to equivalence.
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The category of models of pΘ, jq as a proto-theory is defined by the pullback

ModpΘ, jq
JpΘ,jq //

SempΘ,jq

��

rΘop,Sets

pjop
q
˚

��
B

NA

// rAop,Sets.

Since NA is full and faithful (because A is dense in B), it follows that JpΘ, jq is also full and

faithful. Therefore we can identify ModpΘ, jq, up to equivalence, with the full subcategory of

rΘop,Sets consisting of those Γ such that Γ˝ jop “ NApbq for some b P B. Thus to establish the

required equivalence, it is sufficient to show that if Γ: Θop Ñ Set is such that Γ ˝ jop – NApbq

for some B, then there is some Γ1 : Θop Ñ Set such that Γ – Γ1 and Γ1 ˝ jop “ NApbq. But this

follows from the fact that pjopq˚ is an isofibration; see Lemma 2.4.8.

We now show that the square involving StrMndwA and Str commutes. Let U : pM,N q Ñ

pB,Aq be an arity-respecting functor with arity-respecting left adjoint F . Write T “ pT, η, µq

for the induced monad with arities on pB,Aq. Then we have, for a, a1 P A,

ΘTpjTpa
1q, jTpaqq –BTppTa1, µa1q, pTa, µaqq

–Bpa1, Taq

–Bpa1, UFaq

–MpFa1, Faq

–rM,SETspMpFa,´q,MpFa1,´qq

–rM,SETspBpa, U´q,Mpa1, U´qq

–ThpUqpa, a1q,

and this composite isomorphism is functorial, hence we have Θop
T – ThpUq in PThpAopq, as

required.
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Chapter 6

Proto-theories with structure

In Chapter 4 we described a general notion of algebraic theory (namely a proto-theory) and the

corresponding structure–semantics adjunction. In this chapter, we generalise further, allowing

us to encompass all of the notions of theory described in Chapter 3. A proto-theory will now live

in an arbitrary 2-category rather than CAT; this makes the theory considerably more abstract

and less intuitive, however it is worth keeping in mind that, although we work in an arbitrary

2-category, in all the examples of interest the 2-category in question will in fact be a category

of categories equipped with some extra structure. Thus the intuition developed in Chapter 4

will carry over at least for these examples, with some added caveats about compatibility with

the extra structure.

In particular, the 2-categories that will be of most interest to us, besides CAT, are

FinProdCAT, the 2-category of large finite product categories, SymMonCAT, the 2-

category of large symmetric monoidal categories, MonCAT, the 2-category of large monoidal

categories and MultiCAT, the 2-category of large multicategories.

We call a 2-category equipped with the relevant structure for interpreting proto-theories

and aritations a setting. In Section 6.1 we give the definition of a setting and the notions of

proto-theory and aritation within a setting, and in Section 6.2 we define the semantics functor

arising from an aritation in a general setting. Then in Section 6.3 we define the corresponding

structure functor and show that the two are adjoint to one another. In Section 6.4 we discuss a

particular type of setting in which the 2-category in question has a suitable forgetful functor to

CAT. We show how concrete settings can arise from certain 2-monads on CAT in Section 6.5,

and in Section 6.6 we see how the remaining notions of algebraic theory from Chapter 3 and

their semantics can be described in terms of proto-theories and aritations in various settings.
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6.1 Settings, proto-theories and aritations

In this section we introduce settings, which are 2-categories equipped with the structure neces-

sary to talk about proto-theories and aritations within them. We also define these notions for

a general setting, generalising the definitions of Chapter 4.

Definition 6.1.1. A setting consists of a locally large 2-category X equipped with:

• a factorisation system pE ,N q on its underlying 1-category, and

• cotensors over CAT; that is, there is a 2-functor r´,´s : CATop
ˆX Ñ X and a specified

isomorphism of categories

CATpB,X pA, Cqq – X pA, rB, Csq

natural in A, C P X and B P CAT.

Definition 6.1.2. Given a setting pX , E ,N q, a proto-theory in X with arities A P X consists

of a 1-cell

L : AÑ L

such that L P E .

A morphism of proto-theories from L1 : AÑ L1 to L : AÑ L is simply a 1-cell P : L1 Ñ L in

X such that P ˝L1 “ L. We write PThpAq for the category of proto-theories in X with arities

A and their morphisms. Thus PThpAq depends on the setting pX , E ,N q, leading to potential

ambiguity. However it is usually clear from the context which setting is intended, and so we

omit making this dependence explicit in order to simplify the notation.

Definition 6.1.3. Let X be a setting, and suppose A, C P X and B P CAT. Then an inter-

pretation of arities from A in B, with values in C, or just an aritation, consists of a

functor

H‚ : B Ñ X pA, Cq,

or equivalently a 1-cell

H‚ : AÑ rB, Cs

in X .

Remark 6.1.4. These definitions generalise those of Chapter 4 as follows. Recall that the

2-category CAT has a factorisation system given by the bijective-on-objects and full-and-

faithful functors, and it is also cotensored over itself, with the cotensor rB, Cs being given

by the usual functor category. Thus CAT is a setting, and the category of proto-theories

with arities A P CAT in this setting is precisely the category of proto-theories as defined in

Definition 4.1.1.
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An aritation in this setting, meanwhile, consists of a functor B Ñ rA, Cs, which corresponds

to a functor x´,´y : AˆB Ñ C as in Definition 4.2.1. Indeed, if X is also tensored over CAT,

then a third way to define an aritation is as a 1-cell

B bAÑ C

in X .

6.2 Semantics for proto-theories in a general setting

Throughout this section, fix a setting pX , E ,N q and an aritation H‚ : B Ñ X pA, Cq in X . We

explain how such an aritation gives rise to a semantics functor

Sem: PThpAqop Ñ CAT{B.

Definition 6.2.1. We define three functors as follows.

• The functor ι : PThpAq Ñ A{X is simply the full inclusion;

• the functor G : pA{X qop Ñ CAT{X pA, Cq sends pK : A Ñ Kq P A{X to K˚ : X pK, Cq Ñ

X pA, Cq, and acts similarly on morphisms; and

• the functor H˚‚ : CAT{X pA, Cq Ñ CAT{B is given by pullback along H‚ : B Ñ X pA, Cq.

Definition 6.2.2. We define Sem: PThpAqop Ñ CAT{B to be the composite

PThpAqop ιop

ÝÑ pA{X qop G
ÝÑ CAT{X pA, Cq H

˚
‚

ÝÑ CAT{B.

Explicitly, given pL : A Ñ Lq P PThpAq, the functor SempLq : ModpLq Ñ B is defined by

the pullback

ModpLq
JpLq //

SempLq

��

X pL, Cq

L˚

��
B

H‚

// X pA, Cq,

and, given a morphism

L1 P // L

A
L1

``

L

??

in PThpAq, the functor SempP q : ModpLq Ñ ModpL1q is defined to be the unique functor
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making

ModpLq
IpLq //

SempP q

%%
SempLq

��

X pL, Cq
P˚

yy
L˚

��

ModpL1q
IpL1q //

SempLq
yy

X pL1, Cq

L1˚ %%
B

H‚

// X pA, Cq

commute.

Remark 6.2.3. It is clear that in the setting CAT with the bijective-on-objects/full-and-

faithful factorisation system, this definition coincides with the definition of Sem given in Defi-

nitions 4.2.4 and 4.2.6.

Note that the definition of Sem does not make use of the assumption that X has cotensors;

this assumption will only be used when we construct a left adjoint to Sem. Thus, if we were

not concerned with the existence of such a left adjoint we could drop this requirement and talk

about the semantics of proto-theories in a wider range of contexts.

6.3 The structure functor in a general setting

In this section we define the structure functor arising from an aritation in a general setting,

and show that it is left adjoint to the semantics functor. As in the previous section, we fix a

setting pX , E ,N q and an aritation H‚ : B Ñ X pA, Cq in X .

Such a left adjoint exists if and only if, for each pU : MÑ Bq P CAT, the comma category

pU Ó Semq has an initial object. Explicitly, this means that there is a commutative square

M P//

U

��

X pThpUq, Cq

StrpUq˚

��
B

H‚

// X pA, Cq

where pStrpUq : AÑ ThpUqq P PThpAq, such that for every other square

M R //

U

��

X pL, Cq

L˚

��
B

H‚

// X pA, Cq

(6.1)
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where pL : AÑ Lq P PThpAq, there exists a unique Q : LÑ StrpUq in PThpAq such that

M P //

R

##
U

��

X pThpUq, Cq

StrpUq˚

��

Q˚

xx
X pL, Cq

L˚ &&
B

H‚

// X pA, Cq

commutes (noting that squares of the from (6.1) correspond to morphisms U Ñ SempLq in

CAT{B, by the universal property of the pullback defining SempLq).

We will see that such an adjoint exists for any aritation in any setting. The construction

of this adjoint will make use the existence of cotensors which was part of the definition of a

setting; recall that this assumption was not used in constructing the semantics functor itself. In

the absence of cotensors, it could still be the case that the adjoint exists for particular choices of

aritation, and in such cases the theory we develop in this thesis will still apply. The reason we

require cotensors to exist as part of the definition of a setting is to have an explicit description

of the left adjoint in terms of familiar constructions, and this requirement is satisfied in all

known examples of interest.

Definition 6.3.1. We define three functors that will soon be seen to be adjoint to those defined

in Definition 6.2.1.

• We define a functor ρ : A{X Ñ PThpAq as follows. Recall that any K : AÑ K in X has

a distinguished (and essentially unique) factorisation

A EK
ÝÑ LK

NK
ÝÑ K

where EK P E and NK P N . On objects, ρ sends K to EK . On morphisms, it sends a

morphism P from K 1 : AÑ K1 to K : AÑ K to the diagonal fill-in of

A EK //

EK1

��

LK

NK

��
LK1

NK1
// K1

P
// K

which exists and is unique since EK1 P E and NK P N .

• We define F : CAT{X pA, Cq Ñ pA{X qop on objects by sending

V : MÑ X pA, Cq
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to the morphism

AÑ rM, Cs

that corresponds to it under the universal property of cotensors. The action of F on

morphisms is given by the fact that rM, Cs is functorial and contravariant in the first

argument.

• We define the functor pH‚q! : CAT{B Ñ CAT{X pA, Cq to be given by post-composition

with H‚ : B Ñ X pA, Cq.

Lemma 6.3.2. The functors defined in Definition 6.3.1 are adjoint to those defined in Defini-

tion 6.2.1. Specifically, ρ is right adjoint to ι, whereas F is left adjoint to G and pH‚q! is left

adjoint to H˚‚ .

Proof. This is straightforward, therefore we only sketch the proof. First we show that ι % ρ.

Let K : A Ñ K, and L : A Ñ L, with L P E . Then a morphism ιpLq Ñ K consists of a 1-cell

LÑ K making

A EK //

L

��

K

  

LK

NK
��

L // K

commute, but since L P E and NK P N , these are in bijective correspondence with 1-cells

LÑ LK making

A LK //

L

��

LK

L

>>

commute, which are precisely morphisms LÑ ρpKq.

Next we show that F % G. Let V : P Ñ X pA, Cq and K : A Ñ K. Then a morphism

V Ñ GpKq in CAT{X pA, Cq is a functor P Ñ X pK, Cq making

P //

V ##

X pK, Cq

K˚

��
X pA, Cq

commute. But by the universal property of cotensors, these are in bijective correspondence

with 1-cells KÑ rP, Cs such that

A
F pV q//

K

��

rP, Cs

K

<<

commutes, but these are precisely morphisms K Ñ F pV q in A{X .
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Now we show that pH‚q! % H˚‚ . Let U : M Ñ B and V : P Ñ X pA, Cq. Then a morphism

pH‚q!pUq Ñ V consists of a functor MÑ P such that

M //

U

��

P

V

��
B

H‚

// X pA, Cq

commutes, and by the universal property of pullbacks, these are the same as functors from M

to the pullback of V along H‚ making

M //

U   

‚

H˚‚ pV q

��
B

commute, that is, morphisms U Ñ H˚‚ pV q.

Thus we have three composable adjunctions:

CAT{B K

pH‚q! //
CAT{X pA, Cq K

F //

H˚‚

oo pA{X qop
K

ρop

//

G
oo PThpAqop.

ιop
oo

Definition 6.3.3. Write Str : CAT{B Ñ PThpAq for the composite

CAT{B pH‚q!ÝÑ CAT{X pA, Cq F
ÝÑ pA{X qop ρop

ÝÑ PThpAqop.

Theorem 6.3.4. The functors defined in Definitions 6.2.2 and 6.3.3 form an adjunction

CAT{B K

Str //
PThpAqop,

Sem
oo

called the structure–semantics adjunction induced by the aritation H‚ : B Ñ X pA, Cq.

Proof. This is immediate from Lemma 6.3.2.

6.4 Concrete settings

So far we have dealt with settings as completely abstract 2-categories. In this section we

consider settings equipped with a forgetful 2-functor to CAT, and consider how the theory of

proto-theories in such settings relates to the theory of proto-theories in the setting CAT as

developed in Chapter 4.

Definition 6.4.1. A concrete setting consists of a setting pX , E ,N q together with a 2-functor

Und: X Ñ CAT that preserves cotensors strictly, sends 1-cells in E to bijective-on-objects
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functors, and sends 1-cells in N to full and faithful functors. For brevity, we will also write A0,

F0 and γ0 for the result of applying Und to an object A, 1-cell F and 2-cell γ in X respectively.

For the rest of this section, fix a concrete setting pX , E ,N ,Undq and an aritation H‚ : B Ñ

X pA, Cq in X .

Definition 6.4.2. We define pH0q‚ to be the composite

B H‚
ÝÑ X pA, Cq Und

ÝÑ rA0, C0s

and write

x´,´y0 : A0 ˆ B Ñ C0

and

pH0q
‚ : A0 Ñ rB, C0s

for the functors corresponding to pH0q‚ under the cartesian closed structure of CAT. The ari-

tation that is defined in any of these equivalent ways is called the underlying plain aritation

of H‚.

Remark 6.4.3. Since Und is required to preserve cotensors, we can identify rB, C0s “ rB, Cs0,

and it can be easily checked that we have

pH0q
‚ “ UndpH‚q : A0 Ñ rB, Cs0 “ rB, C0s.

Definition 6.4.4. Write Sem0 and Str0 for the semantics and structure functors for the un-

derlying plain aritation of H‚. Thus we have

CAT{B K

Str0 //
PThpA0q

op.
Sem0

oo

Proposition 6.4.5. The triangle

CAT{B Str //

Str0 &&

PThpAqop

Und

��
PThpA0q

op

commutes up to isomorphism, where the vertical arrow marked Und is the evident functor

induced by Und: X Ñ CAT.
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Proof. Consider the diagram

CAT{B
pH‚q! //

ppH0q‚q! ''

CAT{X pA, Cq

Und!

��

F // A{X
ρ //

Und

��

PThpAq

Und

��
CAT{rA0, C0s

F
// A0{CAT

ρ
// PThpA0q,

where Und! : CAT{X pA, Cq Ñ CAT{rA0, C0s is the functor given by post-composition with

Und: X pA, Cq Ñ rA0, C0s, and the other two vertical arrows are induced in the evident way by

Und: X Ñ CAT.

The top-right composite in this diagram is Und ˝Str, whereas the bottom-left composite is

Str0. Thus if we can show that each of the cells in this diagram commutes, we will be done.

But the left-hand triangle commutes since pH0q‚ is by definition the composite Und ˝H‚, the

middle square commutes because Und preserves cotensors, and the right-hand square commutes

because Und respects the factorisation systems on X and CAT.

6.5 Settings arising from 2-monads

In this section we examine how certain 2-monads on CAT naturally give rise to concrete

settings. Throughout the section, we fix a 2-monad T “ pT, η, µq on CAT. Recall from

Definition 2.2.5 that T- Alg denotes the 2-category of strict T-algebras, pseudo-T-morphisms

and T-transformations.

Proposition 6.5.1. The category T- Alg is cotensored over CAT, and cotensors are preserved

by the forgetful functor to CAT.

Proof. This is Proposition 2.5 in Blackwell, Kelly and Power [7].

Proposition 6.5.2. Suppose the 2-functor T : CAT Ñ CAT preserves bijective-on-objects

functors. Then there is a factorisation system pE ,N q on T- Alg, where E and N are the classes

of pseudo-T-morphisms whose underlying functors are bijective-on-objects and full and faithful

respectively. Furthermore, in the factorisation of any morphism of T- Alg as a member of E

followed by a member of N , the first factor can be taken to be a strict T-morphism.

This result is known, however it does not appear in the existing literature as far as I know.

The condition that T preserve bijective-on-objects functor is well-known and important in the

literature on 2-monads. In particular it is shown in Power [37] that such 2-monads satisfy a

strong coherence result, namely that every pseudo-algebra is equivalent to a strict algebra. In

fact the proof of the main result (Theorem 3.4) of [37] and the proof of Proposition 6.5.2 make

use of the bijective-on-objects/full-and-faithful factorisation system in a similar way, using it

to factor a certain 1-cell and equipping each factor with an algebra morphism structure.
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Proof. It is clear that E and N both contain all the isomorphisms and are closed under com-

position. To show that they form a factorisation system (Definition 2.3.2), we must show that

every pseudo-T-morphism factors as a member of E followed by a member of N , and that every

member of E is left orthogonal to every member of N .

We begin by showing that any pseudo-T-morphism pH,hq : pA,W q Ñ pC, Y q factors as a

member of E that is in addition a strict T-morphism, followed by a member of N . Let

A L
ÝÑ K J

ÝÑ C

be the bijective-on-objects/full-and-faithful factorisation of the underlying functor H. We must

equip K with a T-algebra structure V : TK Ñ K and J with a pseudo-T-morphism structure

j : Y ˝ TJ Ñ J ˝ V such that L becomes a strict T-morphism pA,W q Ñ pK, V q and pH,hq “

pJ, jq ˝ L.

We have a natural isomorphism

TA W //

TL
��

DL
h

A L // K

J
��

TK
TJ
// TC

Y
// C

and TL is bijective on objects and J is full and faithful. Therefore, since the bijective-on-objects

and full and faithful functors form an enhanced factorisation system (Lemma 2.3.9) this square

has a unique fill-in. That is, there is a unique functor V : TK Ñ K and an isomorphism

j : Y ˝ TJ Ñ J ˝ V such that V ˝ TL “ L ˝W , and jTL “ h : Y ˝ TH “ Y ˝ TJ ˝ TL Ñ

J ˝L ˝W “ H ˝W . Diagrammatically, we have the following equality of natural isomorphisms:

TA W //

TL
��

A L // K

J
��

TK
TJ
//

V

66

TC
Y

j ò
// C

“

TA W //

TL
��

DL
h

A L // K

J
��

TK
TJ
// TC

Y
// C.

(6.2)

We must check that V is a T-algebra structure, that L is a strict T-morphism and that pJ, jq

is a pseudo-T-morphism. It is then clear from the above that pJ, jq ˝ L “ pH,hq.

It is evident that if V is an algebra structure, then L is a strict T-morphism since by

definition V ˝ TL “ L ˝W . So we check that V is an algebra structure, and simultaneously

show that pJ, jq is a pseudo-T-morphism.

First we show that V ˝ηK “ idK. One of the conditions for pH,hq to be a pseudo-T-morphism
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is that we have an equality of two-cells

A
ηA //

L
��

TA W //

TH
��

DL
h

A L // K

J
��

K
J
// C

ηC
// TC

Y
// C

“

A L //

L

��

K

J

��
K

J
// C,

noting that these two two-cells do have the same domain and codomain since W ˝ηA “ idA and

similarly for Y . But the identity is clearly a fill-in for the right-hand square, and the left-hand

square is equal to

A
ηA //

L

��

TA W //

TL
��

A L // K

J

��

TK

TJ
��

V

66

DL
j

K
J
//

ηK

77

C
ηC
// TC

Y
// C

by Equation (6.2), so pV ˝ηK, jηKq is a fill-in. Hence, by uniqueness of fill-ins, we have V ˝ηK “

idK as required, and in addition the two cell

K
ηK //

J
��

TK V //

TJ
��

=Ej

K

J
��

C
ηC
// TC

Y
// C

is the identity on J , which is one of the axioms required for j to be a pseudo-T-morphism.

Now we show that V ˝ TV “ V ˝ µK. One of the conditions that pH,hq satisfies as a

pseudo-T-morphism is the equality of two-cells

TTA
µA //

TTL

��

TA W //

TL
�� 9Ah

A L // K

J

��

TK

TJ
��

TTK
TTJ
// TTC

µC
// TC

Y
// C

“

TTA TW //

TTL

��

=ETh

TA W //

TL
�� :Bh

A L // K

J

��

TK

TJ
��

TTK
TTJ
// TTC

TY
// TC

Y
// C.

Note that these two two-cells do have the same domain and codomain, since W ˝µA “W ˝TW ,
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and similarly for Y . But the left-hand two-cell is equal to

TTA
µA //

TTL

��

TA W //

TL
��

A L // K

J

��

TK

TJ

��

V

66

DL
j

TTK
TTJ

//

µK

55

TTC
µC
// TC

Y
// C,

by Equation (6.2) and so pV ˝ µK, jµKq is a fill-in. On the other hand, the right-hand square is

equal to

TTA TW //

TTL

��

TA W //

TL
��

A L // K

J

��

TK

TJ

��

V

66

DL
j

TTK
TTJ

//

TV

55

TTC
TY

Tj ò
// TC

Y
// C,

by Equation (6.2) (and the result of applying T applied to the same equation), so pV ˝TV, jTV ˝

Y pTjqq is a fill-in. By the uniqueness of fill-ins, it follows that V ˝TV “ V ˝µK, and in addition,

we have an equality of two-cells

TTK
µK //

TTJ
��

TK V //

TJ
��

=Ej

K

J
��

TTC
µC
// TC

Y
// C

“

TTK TV //

TTJ

��

?GTj

TK V //

TJ

��

=Ej

K

J

��
TTC

TY
// TC

Y
// C,

which is one of the identities required for pJ, jq to be a pseudo-T-morphism. That completes the

proof that V is a T-algebra structure on K, and that pJ, jq is a pseudo-T-morphism pK, V q Ñ

pC, Y q.

Now we must show that for any commutative square

pA,W q
pF,fq //

pE,eq

��

pB, Xq

pN,nq

��
pC, Y q

pG,gq
// pD, Zq

(6.3)

in T- Alg where E is bijective on objects and N is full and faithful, there is a unique

pH,hq : pC, Y q Ñ pB, Xq such that pH,hq ˝ pE, eq “ pF, fq and pN,nq ˝ pH,hq “ pG, gq. Since

the corresponding square of underlying functors commutes, there is a unique functor H : C Ñ B
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such that both triangles in

A F //

E
��

B

N
��

C
G
//

H

??

D

commute. Thus we just need to show that there is a unique pseudo-T-morphism structure h

on H such that pH,hq ˝ pE, eq “ pF, fq and pN,nq ˝ pH,hq “ pG, gq.

Consider the square

TA W //

TE
��

DLe

A E // C

TC
Y

// C.

Let the unique fill-in of this natural isomorphism be given by Y 1 : TC Ñ C and κ : Y Ñ Y 1.

Then we have

TA W //

TE
��

=Ee

A F //

E
��

B

N
��

TC
Y
// C

G
// D

“

TA W //

TE

��

A F //

E

��

B

N

��
TC

Y 1

%%

Y

99
KS

κ C
G
//

H

>>

D,

that is, pH ˝ Y 1, Gκq is a fill-in for the natural isomorphism displayed on the left.

The commutativity of the square (6.3) implies an equality of natural transformations

TA W //

TF ""
TE

��

KS
f

A F // B

N

��

TB
X

==

TN
��

=En

TC
TG
// TD

Z
// D

“

TA W //

TE

��

>Fe

A

E
��

F // B

N

��

C
G

!!
TC

TG
//

Y

<<
KS

g

TD
Z
// D.

It follows from Lemma 2.3.10 that there is a unique natural transformation h1 : X˝TH Ñ H˝Y 1

such that

TA W //

TE

��

A F //

E
��

B

C
H

  
TC

Y 1
<<

TH
//

KS
h1

TB
X
// B

“

TA W //

TE
��

TF

""

A F //

=Ef

B

TC
TH
// TB

X
// B

(6.4)
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and

C H // B

N

��

TC

Y 1
<<

TG ""

TH //

RZ
h1

TB

TN
��

X

==

=En

TD
Z
// D

“

C H //

G

��

B

N

��

TC

Y 1
33

Y

HH
Ya
κ

TG ""

DLg

TD
Z
// D.

(6.5)

The first of these equalities implies that h1 is an isomorphism, since f is an isomorphism and

TE is bijective on objects.

Let h : X ˝ TH Ñ H ˝ Y be the composite natural isomorphism

TC
Y

''

Y 1

77
KS

κ´1

TH

��

=Eh1

C

H

��
TB

X
// B.

We will shortly show that pH,hq is a pseudo-T-morphism pC, Y q Ñ pB, Xq. First however, note

that

TA TE //

W
��
~� e

TC H //

Y
��
~� h

TB

X
��

A
E
// C

H
// B

“

TA TE //

W
��

TC H //

Y
��

Y 1

��
ks
κ

~� h

TB

X
��

A
E
// C

H
// B

“

TA TE //

W
��

TC H //

Y 1

��
~� h1

TB

X
��

A
E
// C

H
// B

“

TA TF //

W

��
~� f

TB

X

��
A

F
// B,

with the first equality following from the definition of κ, the second from the definition of h,

and the third from Equation (6.4). Thus we will have pH,hq ˝ pE, eq “ pF, fq, and the fact that

h1 is unique satisfying Equation (6.4) implies that h is the unique pseudo-T-morphism structure

on H making this equality hold. Similarly we have

TC TH //

Y
��
~� h

TB TN //

X
��
~� n

TD

Z
��

C
H
// B

N
// D

“

TC TH //

Y 1

��
Y
��
ks
κ´1 ~� h1

TB TN //

X
��
~� n

TD

Z
��

C
H
// B

N
// D

“

TC

Y

~~

ks
κ

  

Y ks
κ´1

}� g
Y 1

��

TG // TD

Z

��
C

G
// D

“

TC TG //

Y

��
~� g

TD

Z

��
C

G
// D,
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where the first equality follows from the definition of h, and the second from Equation (6.5).

Thus we will have pN,nq ˝ pH,hq “ pG, gq.

So all that remains is to show that h is in fact a pseudo-T-morphism structure on H. First

we show that the natural isomorphism

C
ηC //

H
��

TC Y //

TH
��

=Eh

C

H
��

B
ηB
// TB

X
// B

is the identity. Since E : A Ñ C is bijective on objects, it is sufficient to show that it becomes

the identity when whiskered with E. Note however, that the natural isomorphism

A
ηA //

E
��

TA W //

TE
��

=Ee

A

E
��

C
ηC
// TC

Y
// C

is an identity since pE, eq is a pseudo-T-morphism, so the natural isomorphism above is an

identity if and only if it becomes the identity when pasted with this one. But we have

A
ηA //

E
��

TA W //

TE
��

=Ee

A

E
��

C
ηC //

H
��

TC Y //

TH
��

=Eh

C

H
��

B
ηB
// TB

X
// B

“

A
ηA //

F
��

TA W //

TF
��

=Ef

A

F
��

B
ηB
// TB

X
// B

as established above. And the right-hand natural isomorphism is the identity as required since

pF, fq is a pseudo-T-morphism. Finally we show that

TTC
µC //

TTH
��

TC Y //

TH
��

=Eh

C

H
��

TTB
µB
// TB

X
// B

“

TTC TY //

TTH
��

?GTh

TC Y //

TH
��

=Eh

C

H
��

TTB
TX

// TB
X
// B.

(6.6)

As before, it is sufficient to show that these natural transformations become equal when

whiskered with the bijective-on-objects TTE : TTAÑ TTC. In addition, the natural transfor-

mation

TTA
µA //

TTE
��

TA W //

TE
��

=Ee

A

E
��

TTC
µC
// TC

Y
// C

is an isomorphism, so it is sufficient to check that they become equal when pasted with this.
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We have

TTA
µA //

TTE
��

TA W //

TE
��

=Ee

A

E
��

TTC
µC //

TTH
��

TC Y //

TH
��

=Eh

C

H
��

TTB
µB
// TB

X
// B

“

TTA
µA //

TTF
��

TA W //

TF
��

=Ef

A

F
��

TTB
µB
// TB

X
// B

“

TTA TW //

TTF
��

?GTf

TA W //

TF
��

=Ef

A

F
��

TTB
TX

// TB
X
// B

“

TTA TW //

TTE
��

?GTe

TA W //

TE
��

=Ee

A

E
��

TTC TY //

TTH
��

?GTh

TC Y //

TH
��

=Eh

C

H
��

TTB
TX

// TB
X
// B

“

TTA
µA //

TTE

��

TA W //

TE �� :Be

A

E

��
TC

Y

&&
TTC

µC
66

TY

((
TTH

��

C

H

��
CK

Th
TC

Y
88

TH ��
BJ

h

TTB
µB
// TB

X
// B,

where the last equality comes from the fact that pE, eq is a pseudo-T-morphism.

Corollary 6.5.3. Suppose T preserves bijective-on-objects functors and let pE, eq : pA,W q Ñ

pL, Uq be a bijective-on-objects pseudo-T-morphism. Then there is a bijective-on-objects strict

T-morphism E1 : pA,W q Ñ pL1, U 1q and a pseudo-T-isomorphism pI, iq : pL1, U 1q Ñ pL, Uq such

that pI, iq ˝ E1 “ pE, eq.

Proof. By the previous theorem, pE, eq has a factorisation as a bijective-on-objects strict T-

morphism E1 : pA,W q Ñ pL1, U 1q followed by a full and faithful pseudo-T-morphism pI, iq. But

since E and E1 are both bijective on objects, I must be as well. Therefore pI, iq P E XN , so is

an isomorphism in T- Alg.

Theorem 6.5.4. If T preserves bijective-on-objects functors then T- Alg is a concrete setting

in a canonical way. In particular, for each pA,W q, pC, Y q P T- Alg, B P CAT and H‚ : B Ñ

T- AlgppA,W q, pC, Y qq there is a structure–semantics adjunction

CAT{B K

Str //
PThpA,W qop.

Sem
oo

Proof. Let E be the class of pseudo-T-morphisms whose underlying functors are bijective on

objects, and let N be the class of pseudo-T-morphisms whose underlying functors are full and
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faithful. Then by Proposition 6.5.2, pE ,N q is a factorisation system on T- Alg, and it is evidently

preserved by Und. By Proposition 6.5.1, T- Alg has cotensors over CAT and they are preserved

by Und. Thus pT- Alg, E ,N ,Undq is a concrete setting.

6.6 Examples

We saw how the structure–semantics adjunction for monoids arises from an aritation in Sec-

tion 4.6, and monads (possibly with arities) were discussed in Chapter 5. In this section we

examine how the remaining notions of algebraic theory from Chapter 3 arise via proto-theories

and aritations in general settings.

Theorem 6.6.1. There are 2-monads T1, T2 and T3 on CAT such that:

• For T1, the strict algebras are the finite product categories, the pseudo-T1-morphisms are

finite product preserving functors, and the T1-transformations are natural transforma-

tions;

• For T2, the strict algebras are the symmetric monoidal categories, the pseudo-T2-

morphisms are symmetric monoidal functors, and the T2-transformations are symmetric

monoidal natural transformations; and

• For T3, the strict algebras are the monoidal categories, the pseudo-T3-morphisms are

monoidal functors, and the T3-transformations are monoidal natural transformations.

Furthermore, each of these 2-monads preserves bijective-on-objects functors.

Proof. In [22] and [21], Kelly shows that these three 2-categories arise via a special kind of

2-monad, arising from a structure known as a “club”. But it is clear from the way a 2-monad

is constructed from a club (outlined in Section 3 of [21]) that such 2-monads preserve bijective-

on-objects functors.

Lawvere theories

It follows from Theorems 6.5.4 and 6.6.1 that the 2-category FinProdCAT of finite product

categories, product-preserving functors and natural transformations is a concrete setting. Note

also, that for any finite product category B (writing B also for the underlying category of B)

we have an aritation in FinProdCAT determined by the functor

B Ñ FinProdCATpFop,Bq

sending b P B to the functor bp´q : Fop Ñ B. This gives rise to a structure–semantics adjunction

CAT{B K

Str //
PThpFopqop.

Sem
oo
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But the categories PThpFopq and LAW are clearly isomorphic by definition, and comparing

Definitions 6.2.2 and 3.2.9, we obtain the following.

Proposition 6.6.2. The functors

Sem: PThpFopqop Ñ CAT{B

and

SemLAW : LAWop
Ñ CAT{B

coincide.

In particular, Proposition 3.2.17 now follows from Theorem 6.3.4, and the structure–

semantics adjunction for Lawvere theories is an instance of a structure–semantics adjunction

for an aritation in a concrete setting.

In this thesis we have considered a notion of Lawvere theory that is very close to Lawvere’s

original definition. However, Lawvere theories can be generalised beyond this basic notion; for

example, a theory of Lawvere theories relative to an arbitrary (possibly enriched) locally finitely

presentable category is developed by Nishizawa and Power in [36]. Let us briefly discuss how

this theory relates to ours; first let us fix some notation. Let V be a locally finitely presentable

symmetric monoidal category, and A a locally finitely presentable V-category in the sense of

[24]. Write ι : Af ãÑ A for the full V-inclusion of the category of finitely presentable objects of

V; then we have a corresponding nerve functor

Nι : A ãÑ rAop,Vs pι
op
q
˚

ÝÑ rAop
f ,Vs.

The following two definitions are Definitions 2.1 and 2.2 in [36].

Definition 6.6.3. A Lawvere A-theory consists of a V-category L together with an identity-

on-objects strict finite V-limit preserving functor L : Aop
f Ñ L.

Definition 6.6.4. Given a Lawvere A-theory L : Aop
f Ñ L, we define its V-category ModpLq

of models via the pullback

ModpLq //

��

rL,Vs

L˚

��
A

Nι

// rAop
f ,Vs

in V-Cat.

This definition is evidently closely related to the semantics of proto-theories defined in

Definition 4.2.4. It is likely that this general notion of Lawvere theory could be reconciled with

the theory of proto-theories and aritations that we have developed. However to do so, we would
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need notions of proto-theory and aritation relative to V-CAT rather than CAT. Such notions

are available (indeed, in Section 11.2 we shall observe that one can discuss proto-theories and

aritations in any symmetric monoidal category), but developing them is beyond the scope of

this thesis.

Note that a Lawvere A-theory is defined to be the identity on objects, whereas for us

Lawvere theories and other notions of proto-theory are merely bijective on objects. This is a

minor distinction: for every notion of proto-theory in this thesis there is an appropriate notion

of an identity-on-objects proto-theory, and every proto-theory is isomorphic to an identity-on-

objects one. However, in the full generality of an arbitrary setting we want the proto-theories

to be those 1-cells that come from the left class of a specified factorisation system. This is the

case for bijective-on-objects functors but not identity-on-objects functors. For this reason we

require Lawvere theories (and other proto-theories) to be merely bijective on objects.

Another difference between our approach and that of [36] is that Nishizawa and Power

emphasise the role of V-categories with finite cotensors (which are finite powers in the unenriched

case), whereas we typically consider models of Lawvere theories only in categories with all finite

products. This is not an essential limitation: all of the theory we have developed for Lawvere

theories could be translated in a straightforward way to the setting of finite power categories.

Similarly the results in the following subsections on PROPs and PROs could be translated into

settings of “categories with (possibly symmetric) tensor powers” in an appropriate sense, rather

than (possibly symmetric) monoidal categories. The reason we chosen to restrict our attention

to finite product categories and (symmetric) monoidal categories is that these categories are

more familiar and well documented in the literature.

PROPs

Again by Theorems 6.5.4 and 6.6.1, the 2-category SymMonCAT of large symmetric monoidal

categories, (strong) symmetric monoidal functors and symmetric monoidal transformations is

a concrete setting.

Definition 6.6.5. Let B be the (non-full) sub-symmetric monoidal category of the finite prod-

uct category Fop consisting of the same objects, but only the invertible morphisms. Thus B

has the natural numbers as objects, and Bpn,mq is empty unless n “ m, and Bpn, nq “ Sn, the

symmetric group on n elements.

Lemma 6.6.6. The category PROP of PROPs is equivalent to the category PThpBq of proto-

theories with arities B in the setting SymMonCAT.

Proof. By Corollary 6.5.3, every object of PThpBq is isomorphic to a bijective-on-objects strict

monoidal functor out of B, and so the full subcategory of such proto-theories is equivalent to

PThpBq itself. Thus it is sufficient to show that PROP is isomorphic to this full subcategory.
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Let P be a PROP; then there is a unique strict monoidal functor B Ñ P that is the identity

on objects, and sends a permutation σ P Sn “ Bpn, nq to the corresponding automorphism of

n “ 1bn in P induced by the symmetry. Conversely, given a bijective-on-objects strict monoidal

functor P : BÑ P, we can identify the objects of P with the natural numbers via P , and then

P becomes a PROP. It is clear that any strict monoidal functor F : P Ñ P 1 between PROPs

makes the triangle

B P //

P 1   

P

F
��
P 1

commute.

Definition 6.6.7. Let pB,b, Iq be a symmetric monoidal category. Write H‚ : B Ñ

SymMonCATpB,Bq for the canonical functor that sends b P B to the functor bbp´q that

sends n P B to bbn, the distinguished n-th tensor power of b, and sends a permutation σ P Sn

to the automorphism of bbn induced by σ via the symmetry of B.

Remark 6.6.8. For every large symmetric monoidal category B, we can regard H‚ : B Ñ

SymMonCATpB,Bq defined above as an aritation, inducing a structure–semantics adjunction

CAT{B K

Str //
PThpBqop.

Sem
oo

Lemma 6.6.9. Let P : B Ñ P be an identity-on-objects, strict symmetric monoidal functor.

Then a symmetric monoidal functor Γ: P Ñ B is a model of P as a PROP if and only if

Γ ˝ P “ Γp1qbp´q : BÑ B.

Proof. This condition says precisely that Γ preserves the distinguished tensor powers of 1 not

only up to isomorphism, but strictly. But this is exactly what is required for Γ to be a model

of the PROP P, as per Definition 3.4.3.

Proposition 6.6.10. Under the equivalence of Lemma 6.6.6, the semantics functor

Sem: PThpBqop Ñ CAT{B from Remark 6.6.8 corresponds to the semantics functor

SemPROP : PROPop
Ñ CAT{B from Proposition 3.4.8.

Proof. This is immediate from the preceding lemma.

PROs

We can repeat all of the previous subsection with PROs in place of PROPs, and monoidal

categories in place of symmetric monoidal categories. Specifically the 2-category MonCAT of

large monoidal categories, monoidal functors and monoidal natural transformations is a concrete

setting, and the following results hold, with proofs identical to (or simpler than) the PROP
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case. Write N for the monoid of natural numbers with addition, regarded as a discrete strict

monoidal category.

Lemma 6.6.11. The category PRO of PROs is equivalent to the category PThpNq of proto-

theories with arities N in the setting MonCAT.

Definition 6.6.12. Let pB,b, Iq be a monoidal category. Write H‚ : B Ñ MonCATpN,Bq

for the canonical functor that sends b P B to the functor bbp´q that sends n P N to bbn, the

distinguished n-th tensor power of b.

Remark 6.6.13. For every large monoidal category B, we can regard H‚ : B Ñ

MonCATpN,Bq defined above as an aritation, inducing a structure–semantics adjunction

CAT{B K

Str //
PThpNqop.

Sem
oo

Lemma 6.6.14. Let P : N Ñ P be an identity-on-objects, strict monoidal functor. Then a

monoidal functor Γ: P Ñ B is a model of P as a PRO if and only if Γ ˝P “ Γp1qbp´q : NÑ B.

Proposition 6.6.15. Under the equivalence of Lemma 6.6.11, the semantics functor

Sem: PThpNqop Ñ CAT{B from Remark 6.6.13 corresponds to the semantics functor

SemPRO : PROop
Ñ CAT{B from Proposition 3.4.8.

Operads

Operads can also be described as proto-theories in a certain setting, and their semantics in an

arbitrary multicategory, as described in Section 3.5, then arises naturally as part of a structure–

semantics adjunction for a certain aritation. However, the setting in question does not arise

from a 2-monad as for Lawvere theories, PROPs and PROs; we must construct it by hand.

Definition 6.6.16. Define a 2-functor Und: MultiCAT Ñ CAT by sending a multicategory

C to its category of unary morphisms; that is, the objects of UndpCq are the objects of C and

UndpCqpc, c1q “ Cpc; c1q. The 2-functor Und behaves in the obvious way on 1-cells and 2-cells.

As usual we use p´q0 : MultiCAT Ñ CAT synonymously with Und.

Remark 6.6.17. Although we label this 2-functor Und, which stands for “underlying”, and it

is clearly in a sense “forgetful”, this 2-functor is not faithful (i.e. injective on 1-cells). That is,

Und forgets not only structure and properties, but also “stuff”, in the sense described in 2.4

of Baez and Shulman [2]. In fact, Und does not even reflect isomorphisms. This tells us that

MultiCAT is not of the form T- Alg for any 2-monad on CAT.

Lemma 6.6.18. The 2-category MultiCAT is cotensored over CAT, and cotensors are pre-

served by Und.
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Proof. Given a multicategory C and an ordinary category B, we must define a multicategory

rB, Cs whose category of unary morphisms is the functor category rB, C0s. Thus we must define

the objects of rB, Cs to be the functors B Ñ C0. Given functors F1, . . . , Fn, G : B Ñ C0, define

a morphism

F1, . . . , Fn Ñ G

to be a family of morphisms

αb : F1b, . . . , FnbÑ Gb

in C indexed by b P B such that for every f : bÑ b1 in B we have

αb1 ˝ pF1f, . . . , Fnfq “ Gf ˝ αb.

Composition and identities in rB, Cs are defined component-wise via the corresponding structure

in C; then the multicategory axioms for rB, Cs follow from those for C.

It remains to make r´, Cs into a 2-functor CAT Ñ MultiCATop, and show that it is left

adjoint to MultiCATp´, Cq : MultiCATop
Ñ CAT. This is straightforward, and we omit it

here.

Definition 6.6.19. Let E be the class of morphisms of multicategories that are bijective on

objects, and let N be the class of morphism that are full and faithful in the appropriate

multicategorical sense; that is F : C Ñ D is in N if

F : Cpc1, . . . , cn; c1q Ñ DpFc1, . . . , F cn;Fc1q

is a bijection for all c1, . . . , cn, c
1 P C.

Proposition 6.6.20. The classes E and N form a factorisation system on MultiCAT.

Proof. It is clear that E and N are closed under composition and that every isomorphism of

multicategories lies in both E and N . Thus, to show that pE ,N q is a factorisation system it is

sufficient to show that every morphism factors as a member of E followed by a member of N ,

and that every member of E is left orthogonal to every member of N .

Let F : C Ñ D be a morphism of multicategories. Define a multicategory K as follows; the

objects of K are the same as the objects of C, and the hom-sets in K are defined by

Kpc1, . . . , cn; c1q “ DpFc1, . . . , F cn;Fc1q.

The identities and composition in L are inherited from D. Then we have a morphism of

multicategories E : C Ñ K that is the identity on objects and acts by F on morphisms, and a

multicategory morphism N : KÑ D that acts by F on objects and is the identity on morphisms.

Clearly E P E and N P N and N ˝ E “ F .
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Now suppose that we have a commutative diagram

A F //

E
��

B

N
��

C
G
// D

in MultiCAT where E is bijective on objects and N is full and faithful. We must show that

there is a unique H : C Ñ B such that H ˝ E “ F and N ˝H “ G.

Given c P C, there is a unique a P A such that c “ Ea; define Hc “ Fa in B. Suppose

f : c1, . . . , cn Ñ c1 in C, and a1, . . . , an, a
1 P A such that Eai “ ci, Ea

1 “ c1. Then NFai “ Gci

and NFa1 “ Gc1, so

Gf : NFa1, . . . , NFan Ñ NFa1.

Since N is full and faithful, there is a unique g : Fa1, . . . , Fan Ñ Fa1 such that Ng “ Gf ; we

define Hf “ g. The uniqueness property of g ensures that H as defined is a multicategory

morphism, and it is clear that it is unique such that H ˝ E “ F and N ˝H “ G.

Proposition 6.6.21. The 2-category MultiCAT together with Und: MultiCAT Ñ CAT

and pE ,N q is a concrete setting.

Proof. By Lemma 6.6.18, MultiCAT has cotensors and they are preserved by Und. By Propo-

sition 6.6.20, pE ,N q is a factorisation system on MultiCAT and it is clearly preserved by

Und.

Definition 6.6.22. Write O for the initial operad. Explicitly, Opnq is empty except when

n “ 1 and then Opnq contains only the identity.

Remark 6.6.23. Recall that an operad is a multicategory with a single object. Thus O P

MultiCAT, and we can talk about PThpOq, the category of proto-theories with arities O in

the concrete setting MultiCAT.

Proposition 6.6.24. We have an isomorphism of categories

PThpOq – OPD.

Proof. An object of PThpOq consists of a multicategory L together with a bijective-on-objects

multicategory morphism O Ñ L. But such a morphism exists for any given L if and only if

L is an operad (i.e. has one object) and in that case is unique. So we can identify the objects

of PThpOq with the operads. Given operads L and L1, a morphism L Ñ L1 in PThpOq is a

multicategory morphism (which is the same thing as an operad morphism) F : L Ñ L1 such
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that

O //

  

L

F
��
L1

commutes. But since O is the initial operad, this diagram commutes for every F . Thus the

morphisms in PThpOq can be identified with the operad morphisms.

Lemma 6.6.25. There is an isomorphism of 2-functors

MultiCATpO,´q – Und: MultiCAT Ñ CAT.

Proof. Since O has one object and no non-trivial morphisms, a multicategory morphism O Ñ C

just picks out a single object of C and a multicategory transformation between such morphisms

picks out a single unary morphism between the corresponding objects. It remains to check

that the two 2-functors agree on 1-cells and 2-cells; this is straightforward and we omit the

details.

Definition 6.6.26. Write

H‚ : B0 Ñ MultiCATpO,Bq

for the isomorphism from the previous lemma regarded as an aritation in the setting

MultiCAT.

Remark 6.6.27. The aritation defined above gives rise to a structure–semantics adjunction

CAT{B0 K

Str //
PThpOqop – OPDop.

Sem
oo

Proposition 6.6.28. The semantics functor arising from the aritation defined in Defini-

tion 6.6.26 coincides with the semantics functor

SemOPD : OPDop
Ñ CAT{B0

from Proposition 3.5.9.

Proof. Let L : O Ñ L be an operad, together with its unique morphism from O. Then SempLq

is defined by the pullback

ModpLq //

SempLq

��

MultiCATpL,Bq

L˚

��
B0

H‚

//MultiCATpO,Bq
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in CAT. But H‚ is an isomorphism, so we can take ModpLq to be MultiCATpL,Bq and

SempLq to be the composite H´1
‚ ˝ L˚, which sends a multicategory morphism Γ: L Ñ B to

the object Γp˚q P B. This is exactly how SemOPD was defined in 3.5.7.
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Chapter 7

Limits, colimits, and other

properties of categories of models

In this chapter we explore some general properties of categories of models of proto-theories.

First we consider the question of limits and colimits; it is well-known that monadic functors

create limits, and it is straightforward to see that forgetful functors from categories of models of

Lawvere theories do as well. In Section 7.1 we give a unified proof of these, and other, results.

The category of models for a proto-theory is defined by a certain pullback in CAT. However,

since CAT is a 2-category, we have some choice as to how strict this pullback should be: we

have chosen the strictest possible version. In Section 7.2 we show that we would obtain an

equivalent category of models using a weaker notion of pullback, at least in all of the examples

of interest.

7.1 Limits and colimits in categories of models

In this section we explore the conditions under which the category of models for a proto-

theory inherits limits and colimits from the base category, or in other words, when a functor

of the form SempLq creates limits. In particular we give a unified proof that forgetful functors

from categories of algebras for monads and categories of models for Lawvere theories create all

limits. However, this unified proof comes at the cost of some quite messy details. Recall from

Definition 2.4.1 that we use the term “creation of limits” in the sense defined in V.1 of [33],

which is somewhat stricter than how some more recent authors use the term.

Lemma 7.1.1. Let

A F //

G
��

B

H
��

C
K
// D
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be a pullback square in CAT, and let I P CAT. Suppose that C has and K preserves limits of

shape I, and H creates limits of shape I. Then G creates limits of shape I.

Proof. Let D : I Ñ A be a diagram in A of shape I, and let c be a limit of G˝D with limit cone

pλi : cÑ GDiqiPI . Then since K preserves limits of shape I, the cone pKλi : KcÑ KGDiqiPI

is a limit cone for K ˝G ˝D “ H ˝ F ˝D. Since H creates limits of shape I, there is a unique

b P B and cone pµi : bÑ FDiqiPI such that Hb “ Kc and Hµi “ Kλi, and furthermore this is

a limit cone for F ˝D.

SinceA is the pullback of H and K, we have an object pc, bq P A and a cone ppλi, µiq : pc, bq Ñ

DiqiPI on D. Morphisms pc1, b1q Ñ pc, bq correspond bijectively to pairs of morphisms f : c1 Ñ c

and g : b1 Ñ b such that Kf “ Hg, which correspond to pairs of cones pσ, τq on G˝D and F ˝D

such that Kσ “ Hτ , which correspond to cones on D. Thus pλiµiqiPI is a limit cone for D.

Since G : A Ñ C is just the projection, it is clear that Gpλi, µiq “ λi. Furthermore, if

ppλi, µ
1
iq : pc, b

1q Ñ DiqiPI were some other cone on D sent to pλiqiPI by G, then we would have

Hpµ1i : b
1 Ñ F ˝DiqiPI “ Kpλi : cÑ G ˝DiqiPI .

But pµiqiPI was chosen to be unique with this property. Thus pλi, µiq is the unique cone on D

that is sent to λi by G, as required.

Proposition 7.1.2. Let pX , E ,N ,Undq be a concrete setting and let I P CAT. Fix C P X

such that C0 P CAT has limits of shape I. Suppose that for every D P X , and every d P D0,

the functor

Und: X pD, Cq Ñ rD0, C0s

creates limits of shape I.

Let H‚ : B Ñ X pA, Cq be an aritation such that B has limits of shape I, and they are

preserved by each xa,´y0 : B Ñ C0 for a P A0. Then for each proto-theory pL : AÑ Lq P E, the

functor SempLq : ModpLq Ñ B creates limits of shape I.

Proof. Recall that we have a pullback

ModpLq //

SempLq

��

X pL, Cq

L˚

��
B

H‚

// X pA, Cq.

Thus, by Lemma 7.1.1, it is enough to show that H‚ : B Ñ X pA, Cq preserves limits of shape I,

and L˚ : X pL, Cq Ñ X pA, Cq creates them.

First we show that H‚ : B Ñ X pA, Cq preserves limits of shape I. Suppose D : I Ñ B; this
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has a limit since B has all limits of shape I. The composite

B H‚
ÝÑ X pA, Cq Und

ÝÑ rA0, C0s

sends the limit cone pπj : limiPI DiÑ DjqjPI to

px´, πjy0 : x´, lim
iPI

Diy0 Ñ x´, Djy0qjPI .

This cone is component-wise a limit cone, since by assumption each xa,´y0 preserves limits

of shape I, and hence it is a limit cone. Thus Und ˝H‚ preserves limits of shape I. Since

Und: X pA, Cq Ñ rA0, C0s creates such limits, it follows that H‚ preserves them.

Now we show that L˚ : X pL, Cq Ñ X pA, Cq creates limits of shape I. Consider the commut-

ing square

X pL, Cq L˚ //

Und

��

X pA, Cq

Und

��
rL0, C0s

L˚0

// rA0, C0s.

Since rA0, C0s has all limits of shape I and Und creates them, it follows that X pA, Cq has

limits of shape I and Und preserves them. Thus, if λ is a limit cone on L˚ ˝ D for some

D : I Ñ X pL, Cq, then Undpλq is a limit cone on Und ˝L˚ ˝D “ L˚0 ˝Und ˝D. Since L˚0 ˝Und

creates limits of shape I, there is a unique cone µ on D such that L˚0 ˝Undpµq “ Undpλq, and

this is a limit cone. Since Und: X pA, Cq Ñ rA0, C0s creates limits of shape I, it follows that

L˚pµq “ λ. If µ1 were any other such cone we would have L˚0 ˝ Undpµq “ L˚0 ˝ Undpµ1q which

implies that µ “ µ1.

Example 7.1.3. Let B be a locally small category and consider the canonical aritation

Bp´,´q : Bop ˆB Ñ Set. This aritation lives in the setting CAT, which is trivially a concrete

setting with Und: CAT Ñ CAT given by the identity. Identity functors create all limits, so

the first hypothesis of Proposition 7.1.2 is satisfied. For this aritation we have xb,´y “ Bpb,´q

which preserves all limits, so the second hypothesis is satisfied. Thus by Proposition 7.1.2, for

any proto-theory L : Bop Ñ L, the forgetful functor

SempLq : ModpLq Ñ B

creates all limits. In particular, for any monad T, the forgetful functor UT : BT Ñ B creates all

limits.

Example 7.1.4. Consider the setting FinProdCAT and the aritation from Section 6.6 for a

finite product category B giving rise to the structure–semantics adjunction for Lawvere theories.
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The functor

Und: FinProdCATpFop,Bq Ñ rFop,Bs

is the inclusion of the full subcategory of finite product preserving functors. This subcategory is

closed under all limits, since finite products commute with limits, so the functor above creates

all limits. For the same reason, every n P N, the functor p´qn : B Ñ B preserves all limits. It

follows from Proposition 7.1.2 that for any Lawvere theory L, the forgetful functor

SempLq : ModpLq Ñ B

creates all limits.

Example 7.1.5. Consider the case of PROPs, where we take X “ SymMonCAT, and con-

sider the aritation giving rise to the semantics of PROPs in a symmetric monoidal category B

as in Section 6.6. In this case, the functors p´qbn : B Ñ B need not preserve limits: for example

when B “ Vect with the usual tensor product, we have

pV ‘W qb2 – pV b V q ‘ pW b V q ‘ pV bW q ‘ pW bW q

fl V b2 ‘Wb2.

Thus we do not necessarily expect SempPq : ModpPq Ñ B to create limits for a PROP P.

Let us now consider limits and colimits, not in the category of models for a particular

proto-theory, but in the category of proto-theories itself.

Proposition 7.1.6. Let pX , E ,N q be a setting and A P X . If X has all large limits (respectively

colimits) then so does PThpAq.

Proof. The inclusion PThpAq ãÑ A{X has a right adjoint, namely the functor ρ : A{X Ñ

PThpAq defined in Definition 6.3.1. Thus if A{X has all large colimits, so does PThpAq,

since inclusions of coreflective subcategories are comonadic and in particular create all colimits.

Furthermore, if A{X has all limits, then so does PThpAq, with the limit of a diagram in

PThpAq being computed by taking its limit in A{X and then applying the right adjoint ρ.

So it is sufficient to show that A{X has limits or colimits respectively if X does. But the

forgetful functor A{X Ñ X creates all limits (Lemma in Section V.6 of [33]). If X has all

colimits, then colimits in A{X can be computed as follows: (large) coproducts in A{X are

given by wide pushouts in X , and coequalisers in A{X are the same as in X .

130



7.2 Weak pullbacks and isofibrations

Recall from Definition 6.2.2 that for an aritation H‚ : B Ñ X pA, Cq in a general setting X , the

semantics of a proto-theory L : AÑ L is defined by the pullback

ModpLq
JpLq //

SempLq

��

X pL, Cq

L˚

��
B

H‚

// X pA, Cq.

In particular, a model of L consists of an object d P B together with a 1-cell Γ: L Ñ C in X

such that Γ ˝ L “ H‚pdq. One may wonder why we require an equality here; it may seem more

natural to only require a specified isomorphism between H‚pdq and Γ˝L. This would amount to

replacing the (strict) pullback above with a weak pullback in the 2-category CAT, in the sense

defined below. In this section, we show that under certain conditions which are satisfied in all

the cases of interest, the strict pullback above is also a weak pullback, at least up to equivalence

(which is all we can hope for — weak pullbacks are only unique up to unique-up-to-isomorphism

equivalence).

Definition 7.2.1. Let F : A Ñ C and G : B Ñ C be functors between large categories. The

weak pullback of G and F is the category whose objects are of the form pa, b, φq where a P A,

b P B and φ : FaÑ Gb is an isomorphism, and whose morphisms pa, b, φq Ñ pa1, b1, φ1q are pairs

pf, gq where f : aÑ a1 in A, g : bÑ b1 in B and φ1 ˝ Ff “ Gg ˝ φ.

Remark 7.2.2. This definition is taken from Joyal and Street [20] in which it is called a

pseudo-pullback. Sometimes this is called an iso-comma object rather than a weak pullback

or pseudo-pullback, with the latter terms being used for the category whose objects consist of

a P A, b P B and c P C and isomorphisms Fa Ñ c and Gb Ñ c. However, these two categories

are always equivalent (indeed, iso-comma objects and weak pullbacks are equivalent in any

2-category).

In general the strict and weak pullbacks of a pair of functors need not coincide, even up to

equivalence. However, if one of the functors is an isofibration as defined in Definition 2.4.5 then

they do.

Proposition 7.2.3. Let F : A Ñ C and B Ñ C be functors, with F an isofibration. Then the

strict pullback of F and G is equivalent to the weak pullback.

Proof. This is Theorem 1 in Joyal and Street [20].

The following result generalises Lemma 2.4.8.
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Lemma 7.2.4. Let T “ pT, η, µq be a 2-monad on CAT and let pL, lq : pA,W q Ñ pL, Uq be a

bijective-on-objects pseudo-T-morphism between T-algebras. Then

pL, lq˚ : T- AlgppL, Uq, pC, Y qq Ñ T- AlgppA,W q, pC, Y qq

is an amnestic isofibration for every pC, Y q P T- Alg.

Proof. We will verify the condition from Lemma 2.4.7. Let pF, fq : pL, Uq Ñ pC, Y q and

pG, gq : pA,W q Ñ pC, Y q be pseudo-T-morphisms and let φ : pF, fq ˝ pL, lq Ñ pG, gq be an

isomorphism.

By Lemma 2.4.8, the functor L˚ : rL, Cs Ñ rA, Cs is an amnestic isofibration, so there is a

unique functor G1 : L Ñ C and natural isomorphism θ : F Ñ G1 such that L˚pG1q “ G and

L˚pθq “ φ.

It remains to be seen that G1 can be given a unique pseudo-T-morphism structure g1 in such

a way that θ becomes a T-transformation pF, fq Ñ pG1, g1q and pG1, g1q ˝ pL, lq “ pG, gq. We

define g1 : Y ˝ TG1 Ñ G1 ˝ U to be the natural isomorphism

TL TG1 //

U

��

}� g1

TC

Y

��
L

G1
// C

“

TL

U

��

}� f

TG1

))

TF

55�� Tθ´1TC

Y

��
L

F
((

G1

66�� θ C.

The equations that must be satisfied in order for g1 to be a pseudo-T-morphism structure follow

from those for f together with 2-naturality of η and µ, and g1 is clearly unique such that

TL

U

��

}� g1

TF
))

TG1

55�� Tθ TC

Y

��
L

G1
// C

“

TL

U

��

TF //

}� f

TC

Y

��
L

F
((

G1

66�� θ C,
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that is, such that θ is a T-transformation pF, fq Ñ pG1, g1q. Finally, we have

TA TL //

W

��

}� l

TL TG1 //

U

��

}� g1

TC

Y

��
A

L
// L

G1
// C

“

TA TL //

W

��

}� l

TL

U

��

}� f

TG1

))

TF

55�� Tθ´1TC

Y

��
A

L
// L

F
((

G1

66�� θ C

“

TA TG

Tφ´1ó

//

TL &&

W

��

TC

Y

��

�� l

TL
TF

88

U
�� �
 f

L
F

&&A

L

88

G

φó

// C

“

TA TG //

W

��

}� g

TC

Y

��
A

G
// C,

so pG1, g1q ˝ pL, lq “ pG, gq as required.

Lemma 7.2.5. Let A,L and C be multicategories, and suppose L : A Ñ L is a bijective-on-

objects multicategory morphism. Then

L˚ : MultiCATpL, Cq Ñ MultiCATpA, Cq

is an amnestic isofibration.

Proof. Let F : LÑ C and G : AÑ C be multicategory morphisms and let φ : F ˝ LÑ G be an

isomorphism. Define a multicategory morphism G1 : LÑ C as follows.

Recall that every object of L is of the form La for a unique a P A. Define G1La “ Ga.

Given a morphism l : La1, . . . , Lan Ñ La1 in L, define G1l to be the composite

φa1 ˝ Fl ˝ pφ
´1
a1
, . . . , φ´1

an q : Ga1, . . . , Gan Ñ Ga1.

This clearly does define a multicategory morphism G1 : L Ñ C with G1 ˝ L “ G, and setting

θLa “ φa defines a multicategory transformation θ : F Ñ G1 such that θL “ φ. Furthermore,

G1 and θ are the unique such.

Remark 7.2.6. Recall the settings and aritations that we have considered so far in this thesis:

• the canonical aritation Bp´,´q : Bop ˆ B Ñ Set for a locally small category B in the

setting CAT, whose semantics generalises the semantics of monads;

• the aritation 1ˆ B –
ÝÑ B in the setting CAT giving rise to the semantics for monoids;
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• the aritation B Ñ FinProdCATpFop,Bq for a finite product category B sending b ÞÑ bp´q

in the setting FinProdCAT, giving rise to the semantics of Lawvere theories;

• the aritation B Ñ SymMonCATpB,Bq for a symmetric monoidal category B sending

b ÞÑ bbp´q in the setting SymMonCAT, giving rise to the semantics of PROPs;

• the aritation B Ñ MonCATpN,Bq for a monoidal category B sending b ÞÑ bbp´q in the

setting MonCAT giving rise to the semantics for PROs; and

• the aritation B0
–
ÝÑ MultiCATpO,Bq for a multicategory B in the setting MultiCAT,

giving rise to the semantics of operads.

Proposition 7.2.7. For all of the aritations listed above (indeed for any aritation in any of

the settings listed), the pullback defining the semantics of a proto-theory is equivalent to the

corresponding weak pullback.

Proof. This will follow from Proposition 7.2.3 if we can show that for any proto-theory L : AÑ C

in any of the settings X discussed, the functor L˚ : X pL, Cq Ñ X pA, Cq is an isofibration. For

X “ MultiCAT, this follows from Lemma 7.2.5. All of the other settings are of the form

T- Alg for a 2-monad on CAT preserving bijective-on-objects functors, so in these cases the

result follows from Lemma 7.2.4.

Lemma 7.2.8. Amnestic isofibrations are stable under pullback in CAT.

This is presumably well-known, however I was unable to find a reference.

Proof. Let

A F //

G
��

B

H
��

C
K
// D

be a pullback in CAT in which H is an amnestic isofibration. We identify the objects of

A with pairs pc, bq where c P C, b P B and Hb “ Kc and similarly with morphisms in A.

Suppose we have pc, bq P A and an isomorphism φ : c Ñ c1 in C. Then Kφ is an isomorphism

Kc “ Hb Ñ Kc1 in D, so since H is an amnestic isofibration, there is a unique b1 P B and

isomorphism θ : b Ñ b1 such that Hb1 “ Kc1 and Hθ “ Kφ. So then we have an isomorphism

pφ, θq : pc, bq Ñ pc1, b1q in A with Gpφ, θq “ φ, and it is unique by the uniqueness of b1 and θ.

Proposition 7.2.9. For any of the aritations listed in Remark 7.2.6 (or any other aritation in

these settings), the forgetful functor from the category of models of a proto-theory to the base

category is an amnestic isofibration.

Proof. This follows from Lemma 7.2.8 together with Lemma 7.2.5 in the case of operads, or

Lemma 7.2.4.
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Recall from Remarks 3.2.10 and 3.4.6 that we have adopted a slightly non-standard definition

of algebra for Lawvere theories, PROPs and PROs. This is essential in the above result; if one

defines a model of a Lawvere theory L : Fop Ñ L simply as a finite product preserving functor

out of L, then the forgetful functor from the category of L-models in some finite product

category would not be an amnestic isofibration. The situation is similar with PROPs and

PROs.

This can be seen as a point in favour of our non-standard definition: intuitively, there should

be a unique way of transferring algebraic structure along an isomorphism.
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Chapter 8

The structure–semantics monad

for the canonical aritation

Recall from the Introduction that one of our goals in this thesis is to find a “convenient cat-

egory of monads”. More precisely, we would like a category that contains the category of

monads on a given category B as a full subcategory, and an extension of the semantics functor

SemMnd : MndpBqop Ñ CAT{B to this larger category, such that this extended semantics

functor has a left adjoint defined on the whole of CAT{B (rather than just pCAT{Bqr.a.).

We saw in Chapter 5 that proto-theories on Bop with the semantics provided by the canonical

aritation provide one such extension.

However, as we will show in the Section 8.1, in passing from monads to more general proto-

theories, we lose a desirable property of the semantics of monads. Namely, unlike the semantics

functor for monads, the functor Sem: PThpBopqop Ñ CAT{B need not be full and faithful.

We demonstrate this by showing that, in the case B “ FinSet the monad on PThpFinSetop
q

induced by the structure–semantics adjunction extends the profinite completion monad on the

category of groups. This monad is known not to be idempotent, from which it follows that the

structure–semantics adjunction is not idempotent and in particular the semantics functor is not

full and faithful.

Having a full and faithful semantics functor is a desirable feature of a notion of algebraic

theory, because it can be thought of as a kind of completeness theorem, as explained in Re-

mark 3.2.20. We would therefore like an extension of MndpBq and an extension of the semantics

functor that both has a left adjoint and is full and faithful. We will pursue this goal in later

chapters of this thesis by developing the analogy between proto-theories and groups that is

suggested above. In Section 8.2, we begin to explore this analogy by giving a characterisation

of the structure–semantics monad on PThpBopq as a codensity monad, mirroring a similar

characterisation of the profinite completion monad on Gp.
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8.1 Relation to profinite groups

In this section we specialise to the case where B “ FinSet, and consider a special type of

proto-theory with arities FinSetop. Such a proto-theory is a bijective-on-objects functor out

of FinSetop, however in this section we will identify such functors with bijective-on-objects

functors out of FinSet for the sake of notational convenience, as we did in Remark 5.2.4.

Whenever we refer to a structure or semantics functor in this section, we mean those induced

by the canonical aritation on FinSet.

Definition 8.1.1. Let M be a small monoid, with unit eM PM and multiplication µM : M ˆ

M ÑM . Recall that M gives rise to a monad on SET whose algebras are sets equipped with an

action of M . We write SETM for the Kleisli category of this monad and FM : SET Ñ SETM

for the corresponding free functor.

More explicitly, the objects of SETM are sets, and if S, S1 are sets, a morphism S Ñ S1 in

SETM is a function S ÑM ˆS1. Given f : S ÑM ˆS1 and g : S1 ÑM ˆS2, their composite

in SETM is the composite function

S
f
ÝÑM ˆ S1

idMˆg
ÝÑ M ˆM ˆ S2

µMˆidS2
ÝÑ M ˆ S2.

The identity morphism on S in SETM is the function ηM,S : S : ÑMˆS sending s ÞÑ peM , sq.

Definition 8.1.2. We define a functor E : Mon Ñ PThpFinSetop
q as follows. Given a monoid

M , consider the composite functor

FinSet ãÑ SET
FM
ÝÑ SETM .

Let

FinSet
EpMq
ÝÑ EpMq NpMqÝÑ SETM

be the bijective-on-objects/full and faithful factorisation of this composite.

A monoid homomorphism h : M ÑM 1 induces a functor h˚ : SETM Ñ SETM 1 that is the

identity on objects and sends f : S ÑM ˆ S1 to

S
f
ÝÑM ˆ S1

hˆidS1
ÝÑ M 1 ˆ S1;

then we have h˚ ˝ FM “ FM 1 . We define Ephq : EpMq Ñ EpM 1q to be the unique functor such

that

SET
EpMq //

EpM 1
q ##

EpMq
NpMq //

Ephq

��

SETM

h˚

��
EpM 1q

NpM 1
q

// SETM 1
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commutes. Functoriality of E : Mon Ñ PThpFinSetop
q then follows from functoriality of the

assignments M ÞÑ SETM and h ÞÑ h˚.

Lemma 8.1.3. Let M,M 1 be small monoids, and let K be any morphism EpMq Ñ EpM 1q in

PThpFinSetop
q. Then EpMq : FinSet Ñ EpMq and K : EpMq Ñ EpM 1q both preserve finite

coproducts.

Proof. First note that since the composite FinSet ãÑ SET
FM
ÝÑ SETM preserves finite co-

products (since each factor does), and NpMq : EpMq ãÑ SETM reflects them (since it is

full and faithful), the functor EpMq : FinSet Ñ EpMq preserves finite coproducts. Likewise

EpM 1q : FinSet Ñ EpM 1q preserves finite coproducts.

Thus, given any finite family of objects of EpMq their coproduct is the image under EpMq of

the corresponding coproduct in FinSet, and in particular the coprojections are the images under

EpMq of the corresponding coprojections in FinSet. The same is true for the coprojections

for the corresponding coproduct in EpM 1q. But since K ˝ EpMq “ EpM 1q, this means that K

must send the coprojections in EpMq to the coprojections in EpM 1q, that is, it preserves the

coproduct.

Proposition 8.1.4. The functor E : Mon Ñ PThpFinSetop
q is full and faithful.

Proof. An endomorphism of 1 “ t˚u in EpMq is a function

1 ÑM ˆ 1

and so can be identified with an element of M ; composition of such endomorphisms then corre-

sponds to the multiplication in M . Thus, any morphism EpMq Ñ EpM 1q in PThpFinSetop
q

induces a monoid homomorphism

EpMqp1, 1q –M Ñ EpM 1qp1, 1q –M 1

and it is clear that the monoid homomorphism induced in this way by Ephq for h : M ÑM 1 is

h itself. In particular, if h ‰ h1 : M ÑM 1 then Ephq ‰ Eph1q, so E is faithful.

Let K : EpMq Ñ EpM 1q in PThpFinSetop
q, and let h : M ÑM 1 be the monoid homomor-

phism induced by the action of K on endomorphisms of 1 in the way described above. We must

show that K “ Ephq.

By Lemma 8.1.3, every object of EpMq is a finite copower of 1, and these copowers are

preserved by both K and Ephq. Thus in order to check that K “ Ephq, it is sufficient to check

that they agree on hom-sets of the form EpMqp1, Sq. An element of such a hom-set is a function

1 ÑM ˆ S
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and so can be identified with a pair pm, sq P M ˆ S. The functor Ephq sends this pair to

phpmq, sq PM 1 ˆ S; we must show that K does the same.

This morphism can be decomposed as

m : 1 ÑM ˆ 1

followed by

peM , sq : 1 ÑM ˆ S.

The former is sent to hpmq : 1 ÑM 1 ˆ 1 by definition of h. The latter is EpMq applied to the

morphism 1 Ñ S in FinSet that picks out the element s. Since K ˝ EpMq “ EpM 1q, we must

have

KpeM , sq “ EpM 1qpsq “ peM 1 , sq : 1 ÑM 1 ˆ S

in EpM 1q. Thus functoriality of K means that it sends pm, sq to the composite of hpmq : 1 Ñ

M 1ˆ1 and peM 1 , sq : 1 ÑM 1ˆS in EpM 1q, which is phpmq, sq. Thus K “ Ephq, as required.

Lemma 8.1.5. Let M be a small monoid. Then ModpEpMqq is isomorphic to the category of

finite sets equipped with an action by M and M -equivariant maps, and SempEpMqq is the usual

forgetful functor.

Proof. Let X be a finite set. Write I : FinSet ãÑ Set for the inclusion. To define an

EpMq-model structure on X is to give a natural transformation α : EpMqpEpMq´, Xq Ñ

FinSetp´, Xq – SetpI´, Xq satisfying the conditions of Definition 5.1.1. But by definition,

EpMqpEpMq´, Xq – SetM pFMI´, FMXq

– SetpI´,M ˆXq.

Since FinSet is dense in Set, such a natural transformation is given by a morphism a : MˆX Ñ

X. The identity morphism idEpMqpXq P EpMqpX,Xq corresponds to the map ηM,X : X Ñ

M ˆX, so condition 5.1.1.(i) corresponds to the commutativity of

X
ηM,X// M ˆX

a

��
X.

Condition 5.1.1.(ii) corresponds to, for arbitrary f : S1 Ñ M ˆ S and g : S Ñ M ˆ X, the
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commutativity of

S1
f // M ˆ S

idMˆg // M ˆM ˆX
µMˆidX//

idMˆa

��

M ˆX

a

��
M ˆX

a
// X.

(The top-right composite corresponds to αS1pg ˝ fq, regarding g and f as morphisms in EpMq,

and the bottom-left composite corresponds to αS1pEpMqpαSpgqq ˝ fq.) Certainly the associa-

tivity axiom for an M -action implies that this diagram commutes. Conversely we recover the

associativity axiom by taking g and f to be identities. An EpMq-model homomorphism between

models pX,αq Ñ pX 1, α1q, with corresponding M -actions a and a1 is a morphism h : X Ñ X 1

such that

M ˆX
idMˆh//

a

��

M ˆX 1

a1

��
X

h
// X 1

commutes — that is, an M -equivariant map.

The next proposition characterises the proto-theories that arise from monoids in this way.

Proposition 8.1.6. Let L : FinSet Ñ L be a proto-theory with arities in FinSetop. Then L

is in the essential image of E : Mon Ñ PThpFinSetop
q if and only if:

i. L is locally small,

ii. L preserves finite coproducts, and

iii. for every l : L1 Ñ LS in L, there is a unique m : L1 Ñ L1 in L and s : 1 Ñ S in FinSet

such that l “ Ls ˝m.

When these conditions hold, L is isomorphic to EpMq, where M is the monoid LpL1, L1q (with

composition as multiplication).

Proof. First let us check that every proto-theory with arities FinSetop of the form EpMq for a

small monoid M satisfies these properties.

i. It is clear from the definition that EpMq is locally small, given that M is a small monoid.

ii. This follows from Lemma 8.1.3.

iii. Let f P EpMqp1, Sq, so f is a function 1 Ñ M ˆ S in Set. Write fp˚q “ pm, sq. Then f

is equal to the composite

1
Ďm
ÝÑM ˆ 1

EpMqpsq
ÝÑ M ˆM ˆ S

µMˆidS
ÝÑ M ˆ S

which is the composite EpMqpsq ˝ sm in EpMq, and s and m are unique such.

141



Thus EpMq does satisfy these properties. Furthermore, a morphism 1 Ñ 1 in EpMq is a function

1 Ñ M ˆ 1 in Set, which clearly corresponds to an element of M , and it is easy to see that

composition in EpMq corresponds to multiplication in M .

All that remains is to check that if L : FinSet Ñ L satisfies the stated properties then there

is an isomorphism L – EpMq where M “ LpL1, L1q. Firstly condition (i) ensures that M is

indeed a small monoid.

Let us define a functor P : L Ñ EpMq. On objects, define PLS “ S. Let l P LpL1, LS1q.

Then by condition (iii), l factors uniquely as Ls1 ˝m with m P LpL1, L1q “M and s1 : 1 Ñ S1.

We must define Pl P EpMqp1, S1q “ Setp1,MˆS1q; define Pl to be the map sending ˚ to pm, s1q.

We can then extend this definition to morphisms with an arbitrary domain, by noting that both

L and EpMq preserve finite coproducts, and every object of FinSet is a finite copower of 1.

Thus a morphism l : LS Ñ LS1 corresponds to a family pls : L1 Ñ LS1qsPS , and we can define

Pl P EpMqpS, S1q to be the morphism corresponding to the family pPls : 1 ÑM ˆ S1qsPS .

Let us check that P is functorial. It is sufficient to check that for l : L1 Ñ LS1 and k : LS1 Ñ

LS2 we have P pk ˝ lq “ P pkq ˝ P plq. Suppose l factors as

L1
m
ÝÑ L1

Ls1
ÝÑ LS1

and that the composite

L1
Ls1
ÝÑ LS1

k
ÝÑ LS2

factors as

L1
m1
ÝÑ L1

Ls2
ÝÑ LS2.

Then

L1
m //

m1¨m !!

l

%%
L1

Ls1 //

m1

��

LS1

k
��

L1
Ls2
// LS2

commutes, so P pk ˝ lq “ pm1 ¨ m, s2q. On the other hand, Pl “ pm, s1q : 1 Ñ M ˆ S1, and

P pkq : S1 Ñ M ˆ S2 sends s1 to pm1, s2q, so their composite in EpMq is also pm1 ¨ m, s2q, as

required. Thus P is functorial.

Finally P is a bijection on each hom-set of the form LpL1, LS1q by condition (iii), and it

follows that it is a bijection on arbitrary hom-sets by (ii).

Proposition 8.1.7. There is a functor T : Mon Ñ Mon that is unique up to isomorphism
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such that

Mon
E //

T

��

PThpFinSetop
q

Sem

��
pCAT{FinSetqop

Str

��
Mon

E
// PThpFinSetop

q

commutes up to isomorphism.

Proof. It is sufficient to check that for a small monoid M , the proto-theory Str ˝Sem ˝EpMq

lies in the essential image of E; since E is full and faithful, it then follows that such a functor T

exists. The uniqueness of T follows from the fact that E is full and faithful (Proposition 8.1.4)

and in particular reflects isomorphisms.

Let M be a small monoid, and write U : M Ñ FinSet for SempEpMqq : ModpEpMqq Ñ

FinSet for brevity — recall (Lemma 8.1.5) that M is the category of finite M -sets, and U is

the usual forgetful functor. A morphism S Ñ S1 in ThpUq is a natural transformation

FinSetpS,U´q Ñ FinSetpS1, U´q

or equivalently US Ñ US
1

.

We show that ThpUq satisfies the conditions of Proposition 8.1.6. Firstly M is isomorphic

to the functor category rM,FinSets, regarding M as a one-object category. Since M and

FinSet are small, so is M, and so the functor category rM,Sets is locally small. But ThpUq

is equivalent to a full subcategory of this category, so it is also locally small.

Recall that by definition of StrpUq, we have a commutative square

FinSetop H‚ //

StrpUq

��

rFinSet,Sets

U˚

��
ThpUq

JpUq
// rM,Sets

in which JpUq is full and faithful (and therefore reflects limits and colimits). Since H‚ and U˚

preserve finite products, and JpUq reflects them, it follows that StrpUq preserves finite products,

or equivalently StrpUqop : FinSet Ñ ThpUqop preserves finite coproducts.

Let S P FinSet, and γ : US Ñ U . We must show that γ factors uniquely as a projection

πs : US Ñ U for some s P S followed by a natural transformation δ : U Ñ U .

Write I : FinSet ÑM for the functor sending a finite set to the same set equipped with

the trivial M -action. Then U ˝ I is the identity on FinSet, so whiskering γ with I gives a
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natural transformation

γI : idSFinSet – FinSetpS,´q Ñ idFinSet – FinSetp1,´q,

which, by the Yoneda lemma, is the same thing as an element s P idFinSetpSq “ S. Then

γI “ πs : idSFinSet Ñ idFinSet, so on trivial M -sets, γ is just the s-th projection.

Let X be a finite M -set. By an orbit of X, we mean an equivalence class for the smallest

equivalence relation „ on X such that for all m P M and x P X, we have m ¨ x „ x. Write

X0, X1, . . . , Xn´1 for the orbits of X. Writing n for the set t0, . . . , n ´ 1u, define a map

h : X Ñ Ipnq by sending each x P X to the unique i such that x P Xi — this is clearly an M -set

homomorphism. Hence, by naturality of γ,

XS hS //

γX

��

IpnqS

γIpnq“πs

��
X

h
// Ipnq

commutes. But πs ˝ h
S is also equal to h ˝ πs. So it follows that if x “ pxsqsPS is an arbitrary

element of XS , then γXpxq lies in the same orbit at xs. Next we will show that in fact γXpxq

only depends on xs.

Let x “ pxtqtPS and x1 “ px1tqtPS be elements of XS with xs “ x1s. We will show that

γXpxq “ γXpx
1q, but first we construct slightly modified versions of X,x and x1 as an interme-

diate step.

Let Z “ S ˆ X, with M acting on each copy of X separately (so m ¨ pt, xq “ pt,m ¨ xq).

Define z, z1 P ZS with components zt “ pt, xtq and z1t “ pt, x1tq respectively, for t P S. Let

k : Z “ S ˆ X Ñ X be the projection — this is a homomorphism. Clearly kSpzq “ x and

kSpz1q “ x1, so the commutativity of

ZS
kS //

γZ

��

XS

γX

��
Z

k
// X

implies that if we can show that γZpzq “ γZpz
1q, it follows that γXpxq “ γXpxq.

Suppose without loss of generality that xs “ x1s lies in the orbit X0. Let Y “ X0 \ t˚u,

with M acting on X0 as in X, and acting trivially on ˚. The orbits of Z are precisely the sets

of the form ttu ˆ Xi, where t P S and i P n. Define l : Z Ñ Y by sending every orbit except

tsu ˆ X0 to ˚, and mapping tsu ˆ X0 to X0 by the projection. This makes l into an M -set
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homomorphism, and so

ZS
lS //

γZ

��

Y S

γY

��
Z

l
// Y

commutes. Now, the s-components of z and z1 are equal, and all other components lie in some

orbit of Z other that tsu ˆX0, so lSpzq “ lSpz1q. Hence

lpγZpzqq “ γY pl
Spzqq “ γY pl

Spz1qq “ lpγZpz
1qq.

But by the above, γZpzq and γZpz
1q lie in the orbit of zs “ z1s, which is tsu ˆ X0. And l is

injective when restricted to this orbit, so it follows that γZpzq “ γZpz
1q, and so γXpxq “ γXpx

1q.

Thus γXpxq depends only on the s-component of x. Let ∆: U Ñ US denote the diagonal.

Then

γ ˝∆ ˝ πs “ γ : US Ñ U

since for any M -set X and any element x P XS , both x and ∆ ˝ πspxq have the same s-

component. Thus if we define δ : U Ñ U to be the composite γ ˝∆, we have γ “ δ ˝ πs.

Furthermore, s and δ are unique; suppose γ “ δ1 ˝πs1 . Note that δ1I is an endomorphism of

the identity functor on FinSet, and therefore must be the identity by the Yoneda lemma, since

the identity functor on FinSet is represented by the terminal object, which has no non-trivial

endomorphisms. Thus we must have πs1 “ γI “ πs, so s1 “ s. It follows that δ1 “ δ, since πs

is an epimorphism, being split by ∆.

Corollary 8.1.8. The structure–semantics monad on PThpFinSetop
q restricts to a monad

pT, ηT, µTq on the full subcategory Mon of small monoids.

Proof. In order for a monad to restrict to a monad on a full subcategory, all that is required is

that the endofunctor part of the monad restricts to an endofunctor of the subcategory. In this

case, this is precisely the previous proposition.

We now specialise to those proto-theories that correspond to groups, rather than all monoids.

Our main reason for doing so is that we will be considering the codensity monad of the inclusion

of finite groups into all groups, which is somewhat more well-behaved than the codensity monad

of the inclusion of finite monoids into monoids. Algebras for this monad on the category of

groups can be identified with profinite groups — that is, topological groups whose underlying

topological space is profinite. In particular, we will make use of the fact that, for any group G,

the unit of this monad has dense image. I do not know whether the corresponding results hold

for monoids.

Definition 8.1.9. Write pp, η, µq for the codensity monad of the inclusion FinGp ãÑ Gp of

finite groups into groups; recall from Proposition 2.7.10 that this is the profinite completion
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monad, whose category of algebras is the category of profinite groups and continuous group

homomorphisms. For a group G, the group pG is given by the end

pG “

ż

HPFinGp

HGppG,Hq.

Explicitly, the elements of pG are families

ξ “ pξhqh : GÑH

of elements ξh P H with h ranging over all group homomorphisms from G to finite groups H,

such that, for any group homomorphism k : H Ñ H 1 between finite groups, ξk˝h “ kpξhq. The

identity, multiplication and inverses in pG are defined component-wise. If l : GÑ G1 is a group

homomorphism, then pl : pGÑ xG1 sends ξ “ pξh P Hqh : GÑH P pG to the element plpξq P xG1 whose

ph1 : G1 Ñ Hq-th component is ξh1˝l P H.

The unit of the monad has components ηG : G Ñ pG sending g P G to the family phpgq P

Hqh : GÑH . The multiplication has components µG :
p

pG Ñ pG sending pζh1 P Hqh1 : pGÑH to the

element µGpζq P pG with ph : GÑ Hq-th component

ζπh P H,

where πh : pGÑ H is projection onto the h-th factor, sending ξ P pG to ξh P H.

Proposition 8.1.10. The monad pT, ηT, µTq on Mon from Corollary 8.1.8 restricts to a monad

on the full subcategory Gp ãÑ Mon that is isomorphic to the profinite completion monad

pp, η, µq.

Proof. First we must show that the square

Gp //

p

��

Mon

T

��
Gp //Mon

commutes up to isomorphism.

We construct an isomorphism Φ: pG Ñ rG-FinSet,FinSetspU,Uq “ TG, where

U : G-FinSet Ñ FinSet is the forgetful functor. Let ξ P pG. A finite G-set X with under-

lying set X0 is determined by a group homomorphism ρX : G Ñ SympX0q, where SympX0q

is the group of automorphisms of X0 in FinSet. Since SympX0q is a finite group, we may

define ΦpξqX “ ξρX : X0 Ñ X0. We must check that Φpξq thus defined actually is a natural
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transformation U Ñ U , that is, for any G-set homomorphism k : X Ñ Y , that

X
k //

ΦpξqX
��

Y

ΦpξqY
��

X
k
// Y

commutes. Note that this square commutes for each ξ P pG if and only if the right-hand diamond

in

SymX0

k˚

''
G

ρX

66

//

ρY
((

pG

Φp´qX

<<

Φp´qY

""

FinSetpX0, Y0q

SymY0

k˚

77

commutes. But the outer diamond in this diagram commutes, since k is a G-set homomorphism.

Also the two left-hand triangles commute by definition of Φ. Suppose we equip pG with its

canonical profinite topology, and all the other sets in this diagram with the discrete topology.

Then all the maps in this diagram are continuous. Furthermore, since the image of G is dense

in pG (by, for example, Lemma 3.2.1 of [39]), and all the spaces involved are Hausdorff, it follows

that the right-hand diamond commutes, since maps with dense image are epic in the category

of Hausdorff spaces.

Hence each Φpξq is indeed a natural transformation U Ñ U . In addition,

Φ: pGÑ rG-FinSet,FinSetspU,Uq

is a monoid homomorphism since each Φp´qX is by construction. Now we check that it is

natural in G. Let f : G Ñ G1 be a group homomorphism, and let us first describe the monoid

homomorphism

Tf : TG “ rG-FinSet,FinSetspU,Uq Ñ TG1 “ rG1-FinSet,FinSetspU 1, U 1q

(where U 1 : G1-FinSet Ñ FinSet is the forgetful functor). Let γ : U Ñ U be a natu-

ral transformation and X be a G1-set, with action determined by a group homomorphism

ρ1X : G1 Ñ SympX0q, where X0 is the underlying set of X. Then Tfpγq is the natural transfor-

mation U 1 Ñ U 1 whose component at such an X is the component of γ at the G-set with the

same underlying set as X and G-action determined by the group homomorphism

G
f
ÝÑ G1

ρ1X
ÝÑ SympX0q.
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Now let ξ P pG. Then Tf ˝ Φpξq : U 1 Ñ U 1 is the natural transformation whose component at a

G1-set X corresponding to ρ1X : G1 Ñ SympX0q is ξρ1X˝f .

On the other hand, pfpξq P pG has, for h1 : G1 Ñ H with H finite,

p pfpξqqh1 “ ξh1˝f .

In particular,

pΦ ˝ pfpξqqX “ p pfpξqqρ1X “ ξρ1X˝f .

Thus Tf ˝ Φ “ Φ ˝ pf , and so Φ is natural.

Now we construct an inverse Ξ for Φ. Let γ : U Ñ U ; we wish to construct an element

Ξpγq P pG. Given a finite group H and a group homomorphism h : G Ñ H, we obtain a G-set

Hh with underlying set H, and with g P G acting by multiplication on the left by hpgq. Thus

we have γHh : H Ñ H. Define Ξpγqh “ γHhpeHq, where eH denotes the group identity of H.

We must check that Ξpγq so defined is indeed an element of pG, that is, that if k : H Ñ

H 1 is a homomorphism between finite groups, that Ξpγqk˝h “ kpΞpγqhq. But such a group

homomorphism k is also a G-set-homomorphism Hh Ñ H 1k˝h, so

H
k //

γHh
��

H 1

γH1
k˝h

��
H

k
// H 1

commutes. Thus,

Ξpγqk˝h “ γH1k˝hpeH1q “ γH1k˝hpkpeHqq “ kpγHhpeHqq “ kpΞpγqhq

as required.

Now we show that Ξ is inverse to Φ. Let ξ P pG. Then for any finite G-set X and x P X, we

have ΦpξqXpXq “ ξρX pxq. Thus for h : GÑ H with H finite,

ΞΦpξqh “ ΦpξqHhpeHq “ ξρHf peHq.

So we need to show that ξρHh peHq “ ξh. Define i : H Ñ SympH0q by sending m P H to left

multiplication by m, where H0 is the underlying set of H. Then i is a group homomorphism

and

G
h //

ρHh $$

H

i

��
SympH0q
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commutes. Thus we have

ξρHh peHq “ ξi˝hpeHq “ ipξhqpeHq “ ξh

as required. So Ξ ˝ Φ “ id
pG.

Now let γ : U Ñ U . For any finite G-set X and x P X, we have

ΦΞpγqXpxq “ ΞpγqρX pxq “ γpSymX0qρX
pidX0

qpxq.

Note that we have a G-set homomorphism evx : pSymX0qρX Ñ X, since, given σ P SymX0 and

g P G,

evxpg ¨ σq “ ρXpgq ˝ σpxq “ g ¨ σpxq “ g ¨ evxpσq.

Hence

SymX0
evx //

γpSymX0qρX

��

X

γX

��
SymX0 evx

// X

commutes, and so

γpSymX0qρX
pidXqpxq “ evx ˝γpSymX0qρX

pidXq

“ γX ˝ evxpidXq

“ γXpxq.

Hence ΦΞpγq “ γ, and we have shown that Φ and Ξ are inverses. Hence we have a natural

monoid (and therefore group) isomorphism

pG – rG-FinSet,FinSetspU,Uq,

as claimed.

Now we must show that Φ is in fact an isomorphism of monads. For a given group G,

consider the diagram

G
ηG //

ηTG ((

pG

Φ

��
rG-FinSet,FinSetspU,Uq.

The map ηTG sends g P G to the natural transformation U Ñ U whose component at a G-set X

sends x to g ¨ x. On the other hand,

pΦ ˝ ηGpgqqXpxq “ pηGpgqqρX pxq “ ρXpgqpxq “ g ¨ x,
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so this diagram commutes. Now consider

p

pG
yΦG //

µG
��

yTG
ΦTG // TTG

µT
G

��
pG

ΦG

// TG.

Let us describe the map µT
G. Write V : TG-FinSet Ñ FinSet for the forgetful functor. Every

G-set X can be canonically made into a TG set: let γ P TG, so that γ is a natural transformation

U Ñ U . Then γ acts on X via γX : X Ñ X. Thus, given a natural transformation δ : V Ñ V , we

may consider δX : X Ñ X, with X regarded as a TG-set as above. This defines the components

δX “ pµ
T
GpδqqX of the natural transformation µT

Gpδq : U Ñ U .

Now let us describe the composite ΦTG ˝ xΦG. Let ζ P
p

pG so that ζh P H for each group

homomorphism h : pGÑ H with H finite. Then xΦGpζq PyTG has

pxΦGpζqqh “ ζh˝ΦG P H

for each h : TG Ñ H with H finite. And ΦTG ˝ xΦGpζq is the natural transformation V Ñ V

with components as follows: given a finite TG-set Y defined by λ : TGÑ SympY0q, and y P Y

we have

pΦTG ˝ xΦGpζqqY pyq “ xΦGpζqλpyq “ ζλ˝ΦGpyq.

Thus the top-right composite sends ζ P
p

pG to the natural transformation U Ñ U whose compo-

nent at a G-set X defined by ρ : GÑ SympX0q sends x P X to

ζevX ˝ΦGpxq “ ζevρX
pxq

where evX : TGÑ SympX0q sends γ ÞÑ γX and evρX : pGÑ SympX0q sends ξ ÞÑ ξρX .

On the other hand, the bottom-left composite sends ζ to the natural transformation whose

component at X sends x to

ΦG ˝ µGpζq “ µGpζqρX “ ζevρX
.

Since these agree, the square commutes, and so Φ does define an isomorphism of monads

(p, η, µq Ñ pT, ηT, µTq.

Corollary 8.1.11. The structure–semantics monad on PThpFinSetop
q restricts to the profi-

nite completion monad on the full subcategory Gp ãÑ PThpFinSetop
q.

Proof. This is immediate from Corollary 8.1.8 and Proposition 8.1.10.

This result suggests that in order to gain a better understanding of the theory of structure–

150



semantics adjunctions in general, it may be profitable to compare it to the theory of profinite

completions of groups. This shall be pursued in the chapters that follow, but for now we have

the following immediate consequence.

Corollary 8.1.12. The structure–semantics adjunction for the canonical aritation on FinSet

is not idempotent, and in particular

Sem: PThpFinSetop
qop Ñ CAT{FinSet

is not full and faithful.

Proof. Recall that an idempotent adjunction induces an idempotent monad and comonad re-

spectively on the two categories involved in the adjunction. By Proposition 8.1.10, the monad

on PThpFinSetop
q induced by the structure–semantics adjunction restricts to profinite comple-

tion monad on Gp. This monad is not idempotent; to see this it is sufficient to find a profinite

group that is not the profinite completion of its underlying discrete group. Any infinite power

of a non-trivial finite group is such a profinite group, as shown in Example 4.2.12 of [39]. It

follows that the structure–semantics adjunction is not idempotent.

Remark 8.1.13. Recall from Remark 3.2.20 that if the semantics functor for a given notion

of algebraic theory is full and faithful, this can be interpreted as a kind of completeness the-

orem: faithfulness says roughly that two theories are isomorphic if and only if they have the

same models, and fullness says that a theory really does describe all of the algebraic structure

possessed by its models.

Recall from Proposition 3.3.9 that such a completeness theorem holds for the usual semantics

of monads; that is, the functor

SemMnd : MndpBqop Ñ pCAT{Bqr.a.

is full and faithful for any B. One part of our motivation for passing from monads to more

general proto-theories (with semantics given by the canonical aritation) was that it allowed us

to define a proto-theory StrpUq for all functors U with codomain B. However in doing so, we

have had to sacrifice the completeness theorem.

One of our goals for the remainder of this thesis is to develop a notion of algebraic theories

generalising that of monads that (at least for certain well-behaved categories) maintains both

of these desirable features: a semantics functor that is full and faithful and that has a left

adjoint defined on the whole of CAT{B. More precisely, we would like a convenient category

of monads in the following sense.

Definition 8.1.14. A convenient category of monads on a category B consists of a cat-

egory Convt together with a full and faithful functor Inc : MndpBq ãÑ Convt and a functor
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Sem: Convtop
Ñ CAT{B such that:

i. the diagram

Convtop Sem // CAT{B

MndpBqop

SemMnd

88

Inc

OO

commutes;

ii. the functor Sem has a left adjoint; and

iii. the functor Sem is full and faithful.

The category MndpBq itself satisfies the first (trivially) and third of these criteria but not

the second, whereas PThpBopqop satisfies the first and second but not the third.

In our search for a convenient category of monads, we will take inspiration from the analogy

we found in this section between groups and proto-theories. We continue to expand on this

analogy in the following section.

8.2 The structure–semantics monad as a codensity monad

Throughout this section, fix a locally small category B. We will give another characterisation

of the structure–semantics monad on PThpBq induced by the adjunction

CAT{B K

Str //
PThpBopqop

Sem
oo

for the canonical aritation Bp´,´q : Bop ˆ B Ñ Set.

In the previous section we saw that, when B “ FinSet, this monad restricts to the profinite

completion monad on Gp. The profinite completion monad can also be characterised as the

codensity monad of the inclusion FinGp ãÑ Gp. We may wonder whether there is a simi-

lar characterisation of the structure–semantics monad for B as the codensity monad of some

subcategory of PThpBopq. How can we find a candidate for such a subcategory?

Let G be a finite group. Recall from Definition 8.1.2 that EpGq P PThpFinSetop
q was

defined in terms of the Kleisli category of the monad Gˆ´ on SET. But for any finite set S,

the free G-set GˆS on S is finite since G is. Hence Gˆ´ restricts to a monad on FinSet, and

the Kleisli category of this monad is precisely the full subcategory of the Kleisli category for the

monad on SET consisting of the finite sets. In other words, the proto-theory EpGq is isomorphic

to KlpGˆ´q (recall from Lemma 5.2.6 that Kl is a functor MndpFinSetq Ñ PThpFinSetop
q).

Moreover, for a group G, the proto-theory EpGq is given by a monad if and only if G is

finite, since if G is not finite then G ˆ S is not finite for a non-empty finite set S. In other
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words, we have a pullback

FinGp //

��

MndpFinSetq

Kl

��
Gp

E
// PThpFinSetop

q.

Thus, in some sense at least, monads on B stand in the same relation to general proto-theories

with arities Bop as finite groups do to groups. We might therefore wonder whether the structure–

semantics monad can be defined as the codensity monad of Kl : MndpBq ãÑ PThpBopq. Indeed,

this is the case, as we shall now show.

As in Remark 5.2.4, we identify objects of PThpBopq with bijective-on-objects functors out

of B, rather than Bop, for the sake of notational convenience.

Proposition 8.2.1. Suppose B admits pointwise codensity monads of all finite diagrams. Then

the structure–semantics adjunction for the canonical aritation is the codensity monad of

Kl: MndpBq ãÑ PThpBopq.

The condition that B admits pointwise codensity monads of finite diagrams says that, for

functors D : IÑ B with I finite, and b P B, the composite

pb Ó Dq Ñ I
D
ÝÑ B

has a limit. Since B is locally small the comma category pb Ó Dq is always small, so in particular

this condition holds when B admits all small limits. But it also holds when B admits only finite

limits, provided B is locally finite, since then pb Ó Dq is finite. This is the case for FinSet for

example, despite FinSet not admitting arbitrary small limits.

Proof. Let L : B Ñ L and L1 : B Ñ L1 be proto-theories with arities Bop. We will establish

bijection between morphisms

SempLq Ñ SempL1q

in CAT{B and natural transformations

PThpBopqpL,Kl´q Ñ PThpBopqpL1,Kl´q

satisfying the conditions of Lemma 2.5.7.

First let Q : SempLq Ñ SempL1q in CAT{B, that is, Q is a functor ModpLq Ñ ModpL1q

such that SempL1q ˝Q “ SempLq. We construct a natural transformation

ΣpQq : PThpBopqpL,Kl´q Ñ PThpBopqpL1,Kl´q.
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Let T “ pT, η, µq be a monad on B and S : LÑ KlpTq in PThpBopq. Recall that for any monad

T we have

KlpTq – StrpUT : BT Ñ Bq – StrpSemMndpTqq.

Hence S corresponds to a morphism ΘpSq : SemMndpTq Ñ SempLq in CAT{B, where Θ is

the bijection from Definition 4.4.5 defining the structure–semantics adjunction. Then we can

compose this with Q, giving a morphism

Q ˝ΘpSq : SemMndpTq Ñ SempLq Ñ SempL1q,

to which we can apply the inverse bijection Ψ (defined in Definition 4.4.2), giving a morphism

L1 Ñ StrpSemMndpTqq – KlpTq

in PThpBopq. Thus we define the natural transformation ΣpQq component-wise by

ΣpQqTpSq “ ΨpQ ˝ΘpSqq.

This is evidently natural in T by the naturality of Ψ and Θ.

Let us show that Σ is compatible with composition. It is immediate from the definition

that Σ preserves identities. Suppose Q : SempLq Ñ SempL1q and Q1 : SempL1q Ñ SempL2q in

CAT{B, and S : LÑ KlpTq in PThpBopq. Then

pΣpQ1q ˝ ΣpQqqTpSq “ ΨpQ1 ˝ΘpΣpQqTpSqqq (Definition of ΣpQ1q)

“ ΨpQ1 ˝ΘpΨpQ ˝ΘpSqqqq (Definition of ΣpQq)

“ ΨpQ1 ˝Q ˝ΘpSqq (Ψ and Θ are inverses)

“ ΣpQ1 ˝QqTpSq (Definition of ΣpQ1 ˝Qq)

as required.

We should also check that for P : L1 Ñ L in PThpBopq, we have

ΣpSempP qq “ P˚ : PThpBopqpL,Kl´q Ñ PThpBopqpL1,Kl´q.

But if S : LÑ KlpTq, then

ΣpSempP qqTpSq “ ΨpSempP q ˝ΘpQqq “ ΨpΘpQqq ˝ P “ Q ˝ P,

by naturality of Ψ.

Now we construct an inverse Π of Σ. Let χ : PThpBopqpL,Kl´q Ñ PThpBoppL1,Kl´q. Let

b be an object of B and write sb : 1Ñ B for the functor that just picks out the object B (where
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1 here denotes the terminal category). Then an L-model x with underlying object dx “ b is

precisely a morphism sx : sbÑ SempLq in CAT{B. Such a morphism corresponds to Ψpsxq : LÑ

Strpsbq in PThpBopq. But since 1 is finite and B and B admits pointwise codensity monads of

finite diagrams, the pointwise codensity monad Tsb of sb exists, and so, by Proposition 5.2.8, the

proto-theory Strpsbq – KlpTsbq lies in the essential image of Kl. Thus we may apply χTsb to Ψpsxq

to obtain

χTsbpΨpsxqq : L1 Ñ Strpsbq.

Now we can apply Θ to obtain

ΘpχTsbpΨpsxqqq : sbÑ SempL1q

in CAT{B, which corresponds to an L1-model Πpχqpxq with the same underlying object as x.

This defines the functor Πpχq : ModpLq Ñ ModpL1q on objects.

In order to define Πpχq on morphisms, consider the category 2 with two objects 0, 1 and a

single non-identity morphism u : 0 Ñ 1. Let h : x Ñ y be a homomorphism in ModpLq with

underlying morphism h0 : dx Ñ dy in B. Define Ďh0 : 2 Ñ B to be the functor sending u to h0

and sh : 2Ñ ModpLq to be the functor sending u to h. Then sh is a morphism Ďh0 Ñ SempLq in

CAT{B. Furthermore, pre-composing sh with s0: 1 Ñ 2 or s1: 1 Ñ 2 gives sx or sy respectively.

That is, we have a commuting diagram

Ďdx

s0
��

sx

##
Ďh0

sh // SempLq

Ďdy

s1

OO

sy

;;

in CAT{B. Thus naturality of Ψ implies we have a commuting diagram

StrpĎdxq

L

Ψpsxq
<<

Ψpshq//

Ψpsyq ""

StrpĎh0q

Strps1q

��

Strps0q

OO

StrpĎdyq.

Since 2 is finite, Ďh0 has a pointwise codensity monad TĎh0 , and StrpĎh0q – KlpTĎh0q. So the

right-hand side of this diagram lies entirely in the essential image of the full and faithful
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Kl: MndpBq Ñ PThpBopq. So, applying χ yields a commutative diagram

StrpĎdxq

L1

χ
TĚdx

pΨpsxqq

==

χ
TĚh0

pΨpshqq
//

χ
TĚdy

pΨpsyqq

!!

StrpĎh0q

Strps0q

OO

Strps1q

��
StrpĎdyq,

and applying Θ gives

Ďdx

s0

��

Θpχ
TĚdx

pΨpsxqqq

""
Ďh0

Θχ
TĚh0

pΨpshqqq
// SempL1q

Ďdy.

s1

OO

Θpχ
TĚdy

pΨpsyqqq

<<

We define Πpχqphq to be the morphism in ModpL1q corresponding to ΘχTĚh0 pΨpshqqq : 2 Ñ

ModpL1q— the commutativity of this last diagram implies that this has the appropriate domain

and codomain. Furthermore, note that since

2

Θpχ
TĚh0

pΨpshqqq
//

Ďh0
''

ModpL1q

SempL1q

��
B

commutes, Πpχqphq has the same underlying morphism h0 as h.

It remains to check that Σpχq : ModpLq Ñ ModpL1q is functorial. Let h : xÑ y and k : y Ñ z

in ModpLq with underlying morphisms h0 : dx Ñ dy and k0 : dy Ñ dz respectively. We have

already observed that Πpχq preserves both underlying objects and underlying morphisms. So

Πpχqpk ˝ hq has the same underlying morphism as k ˝ h, namely k0 ˝ h0. But since composition

in ModpL1q is defined by composing underlying morphisms in B, this is also the underlying

morphism of the composite Πpχqpkq ˝ Πpχqphq. The forgetful functor SempL1q : ModpL1q Ñ B

is faithful, so this implies Πpχqpk ˝ hq “ Πpχqpkq ˝Πpχqphq.

Similarly, for x P ModpLq, the morphism Πpχqpidxq is a morphism Πpχqpxq Ñ Πpχqpxq with

underlying morphism iddx , and idΠpχqpxq is the unique such morphism, so they are equal.
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That completes the definition of Π; it remains to show that it is inverse to Σ.

Let χ : PThpBopqpL,Kl´q Ñ PThpBopqpL1,Kl´q and S : L Ñ KlpTq. We wish to show

that ΣpΠpχqqTpSq “ χTpSq. Equivalently, applying the bijection Θ, we will show that

ΘpΣpΠpχqqTpSqq “ ΘpχTpSqq.

Now, by definition of Σ,

ΘpΣpΠpχqqTpSqq “ ΘΨpΠpχq ˝ΘpSqq “ Πpχq ˝ΘpSq : SemMndpTq Ñ SempL1q.

To check that this is equal to ΘpχTpSqq : SemMndpTq Ñ SempL1q, it is sufficient to check that

they are equal on an arbitrary object of SemMndpTq — equality on morphisms then follows

from the fact that they are both morphisms in CAT{B and that SempL1q is faithful. Hence we

need to show that for an arbitrary object x P SemMndpTq with underlying object dx, the two

morphisms

Ďdx
sx
ÝÑ SemMnd T ΘpSq

ÝÑ SempLq
Πpχq
ÝÑ SempL1q (8.1)

and

Ďdx
sx
ÝÑ SemMnd T ΘpχTpSqq

ÝÑ SempL1q (8.2)

in CAT{B are equal.

Consider the composite ΘpSq ˝ sx : Ďdx Ñ SempLq. By naturality of Θ, this is the result of

applying Θ to the composite

L
S
ÝÑ KlpTq – StrpSemMndpTqq

Strpsxq
ÝÑ StrpĎdxq.

And by definition of Π, the result of composing ΘpStrpsxq ˝Sq with Πpχq (that is, the composite

displayed in Diagram (8.1)) is

ΘpχTĚdx pΨpΘpStrpsxq ˝ Sqqqq “ ΘpχTĚdx pStrpsxq ˝ Sqq,

since Θ and Ψ are inverses. But now note that

Strpsxq : StrpSemMndpTqq – KlpTq Ñ StrpĎdxq – KlpTĎdxq

lies in the essential image of Kl : MndpBq Ñ PThpBopq, and so applying naturality of χ, we

may further rewrite the composite from Diagram (8.1) as

ΘpStrpsxq ˝ χTpSqq,
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and this, by naturality of Θ, is equal to

ΘpχTpSqq ˝ sx,

which is the composite displayed in Diagram (8.2). This completes the proof that Σ ˝Π “ id.

Now we prove that Π ˝ Σ “ id. Let Q : SempLq Ñ SempL1q in CAT{B. We need to show

that ΠpΣpQqq “ Q : ModpLq Ñ ModpL1q. Again, it is sufficient to check that these functors are

equal on objects, since they have equal composites with the faithful SempL1q. So let x P ModpLq.

Then by definition of Π,

1

sx

��

ΘpΣpQq
TĚdx

pΨpsxqqq

&&
ModpLq

ΠpΣpQqq
// ModpL1q

commutes. But by definition of Σ, we have

ΘpΣpQqTĚdx pΨpsxqqq “ ΘpΨpQ ˝ΘpΨpsxqqqq “ Q ˝ sx,

since Θ and Ψ are inverses. Thus ΠpΣpQqq “ Q as required, so Π and Σ are inverses.

We summarise the analogy between the theory of groups and the theory of proto-theories in

Table 8.1. We shall add further rows to this table as more aspects of the analogy are developed

in the next two chapters.

Theory of groups Theory of proto-theories

Gp PThpBopq

FinGp ãÑ Gp Kl: MndpBq ãÑ PThpBopq

The functor Gpop
Ñ CAT{FinSet sending

G to the category G-FinSet of finite G-sets
The functor Sem: PThpBopqop Ñ CAT{B for
the canonical aritation

The profinite completion monad on Gp The structure–semantics monad on PThpBopq

The profinite completion monad is the coden-
sity monad of FinGp ãÑ Gp.

The structure–semantics monad is the coden-
sity monad of Kl : MndpBq ãÑ PThpBopq.

Table 8.1: Some aspects of the analogy between groups and proto-theories on a locally small
category B with pointwise codensity monads of finite diagrams.
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Chapter 9

Topological proto-theories

In this chapter we continue our search for a convenient category of monads. Recall from

Remark 8.1.13 that we hope to find a notion of algebraic theory generalising that of monads

on a locally small category B, for which the semantics functor is full and faithful, and has a

left adjoint defined on the whole of CAT{B. To do so we make use of the analogy between

proto-theories and groups developed in the previous chapter.

Under this analogy, the structure–semantics monad on PThpBopq corresponds to the profi-

nite completion monad on Gp. They are both the codensity monads of inclusions of full

subcategories; the categories of monads and finite groups respectively. Algebras for the profi-

nite completion monad on Gp can be identified with profinite topological groups, but these can

also be described as algebras for a different codensity monad, namely the codensity monad of

the inclusion of finite discrete groups into all topological groups.

Crucially, this codensity monad is idempotent: the inclusion of profinite groups into topolog-

ical groups has a left adjoint. This suggests that to find a notion of algebraic theory generalising

monads for which the structure–semantics monad is idempotent (which is a first step towards

the semantics functor being full and faithful), it might be useful to consider a topological notion

of proto-theory.

In Section 9.1, we define such a notion and prove some of its basic properties, and in

Section 9.2 we show that the semantics of topological proto-theories generalises the semantics

of monads. We then move on to describing the conditions under which the structure–semantics

adjunction for topological proto-theories is idempotent: we define the relevant conditions in

Section 9.3, and prove that the adjunction is idempotent under these condition in Section 9.4.

Finally, in Section 9.5 we show that the topological structure-semantics monad on the category

of topological proto-theories extends the topological profinite completion monad on the category

of topological groups.
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9.1 The topological structure–semantics adjunction

In this section we define a topological notion of proto-theory that plays a role relative to

ordinary proto-theories that is analogous to the role played by topological groups relative to

discrete groups.

Definition 9.1.1. Write TOP-CAT for the 2-category of large categories enriched in the

category TOP of large topological spaces (with the cartesian product). We make TOP-CAT

into a concrete setting as follows: let E be the class of TOP-functors that are bijective on

objects, and let N be the class of TOP-functors that are homeomorphisms on each hom-space;

that is, a TOP-functor F : A Ñ B between TOP-categories is in N if for each a, a1 P A, the

map

F : Apa, a1q Ñ BpFa, Fa1q

is a homeomorphism. Define Und: TOP-CAT Ñ CAT to be the evident forgetful 2-functor,

that forgets the topology on each hom-space of each TOP-category.

Lemma 9.1.2. The 2-category TOP-CAT together with pE ,N q and Und: TOP-CAT Ñ

CAT is a concrete setting.

Proof. The only part of Definition 6.4.1 that is not obvious is that pE ,N q is a factorisation

system on TOP-CAT. This follows from the more general fact that for any monoidal category

V, the category V-CAT of V-enriched categories has a bijective-on-objects/full-and-faithful

factorisation system. This result is well-known and straightforward to prove, so we omit it.

Definition 9.1.3. Given a TOP-category A, write PThtpAq for the category of proto-theories

with arities A in the setting TOP-CAT.

Definition 9.1.4. Let C and D be two TOP-categories. We write rC,Dst for the category of

TOP-functors from C Ñ D.

Definition 9.1.5. Write Sett for the category of small sets regarded as a TOP-category in

the following way: given sets X and Y , we define a topology on SetpX,Y q as the X-fold power

of the discrete space Y ; that is the smallest topology such that for each element x P X, the

map evx : SetpX,Y q Ñ Y is continuous, where Y is given the discrete topology.

Lemma 9.1.6. The category Sett defined above is a well-defined TOP-category.

Proof. We must check that for all sets X, Y and Z, the composition map

SetpX,Y q ˆ SetpY,Zq Ñ SetpX,Zq

is continuous. It is sufficient to check that its composite with each evx : SetpX,Zq Ñ Z is
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continuous with Z discrete, by definition of the topology on SetpX,Zq. This composite sends

pf, gq P SetpX,Y q ˆ SetpY,Zq

to gfpxq. We must show that the preimage of each element of Z under this map is open. The

preimage of z P Z under this map is

Ux,z “ tpf, gq | gfpxq “ zu.

Let pf0, g0q P Ux,z; we will find an open neighbourhood of pf0, g0q that is contained in Ux,z. Let

V “ tf P SetpX,Y q | fpxq “ f0pxqu.

This is open in SetpX,Y q since it is the preimage of the point f0pxq under evx. Similarly

W “ tg P SetpY, Zq | gpf0pxqq “ zu

is open in SetpY,Zq. Therefore V ˆW is open in SetpX,Y q ˆ SetpY, Zq, and

pf0, g0q P V ˆW Ď Ux,z

as required.

Lemma 9.1.7. The 2-functor Und: TOP-CAT Ñ CAT has a left 2-adjoint Disc : CAT Ñ

TOP-CAT.

Proof. This is immediate since the forgetful functor TOP Ñ SET has a left adjoint sending a

set to the corresponding discrete space. The 2-functor Disc therefore sends an ordinary category

to the same category regarded as a TOP-category in which every hom-space is discrete.

For the rest of this section, we fix a locally small (ordinary, not TOP-enriched) category B.

Corollary 9.1.8. We have an isomorphism of categories

rBop,Sets – rDiscpBopq,Settst.

Proof. This is immediate from Lemma 9.1.7 since UndpSettq “ Set.

Remark 9.1.9. It follows that we can view the canonical aritation on B as an aritation

H‚ : B Ñ rBop,Sets – rDiscpBopq,Settst
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in TOP-CAT, giving rise to a structure–semantics adjunction

CAT{B K

Strt //
PThtpDiscpBopqqop.

Semt

oo

From now on we will usually identify DiscpBopq with Bop itself (and likewise for other ordinary

categories), and so we write this adjunction as

CAT{B K

Strt //
PThtpBopqop.

Semt

oo

This adjunction is our focus for the rest of this chapter.

Definition 9.1.10. We call a proto-theory with arities DiscpBopq in the setting TOP-CAT a

topological proto-theory with arities Bop.

If L : Bop Ñ L is a topological proto-theory, we have two possible notions of L-model. There

are the models of L arising from the topological structure–semantics adjunction of Remark 9.1.9,

which we call topological L-models, and models of the underlying discrete proto-theory of L

arising via the ordinary structure–semantics adjunction, which we call discrete L-models.

Lemma 9.1.11. A discrete model x “ pdx, αxq of a topological proto-theory L : Bop Ñ L is a

topological L-model if and only if each

αxb : LpLdx, Lbq Ñ Bpb, dxq

is continuous, where the codomain is given the discrete topology.

Proof. Recall that a model x of L as a discrete proto-theory may be described equivalently either

in terms of a functor Γx : LÑ Set or in terms of a natural transformation αx : LpLdx, L´q Ñ

Bp´, dxq satisfying the conditions set out in Definition 5.1.1, and the two descriptions are related

by the following diagram, which commutes for each f : bÑ dx:

LpLb, Lb1q
pLfq˚ //

Γx

��

LpLdx, Lb1q

αx
b1

��
SetpBpb, dxq,Bpb1, dxqq

evf
// Bpb1, dxq.

Now, the map along the top is always continuous, so if αxb1 is continuous then so is the bottom

left composite. But the topology on

SettpBpb, dxq,Bpb1, dxqq

is generated by the maps evf for f P Bpb, dxq, so it follows that Γx is continuous. Conversely,
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if we take b “ dx and f “ iddx , then the map along the top becomes the identity, so αxb1 is the

composite eviddx ˝Γ
x, which is continuous if Γx is.

Definition 9.1.12. We reuse the notation Disc for the functor PThpBopq Ñ PThtpBopq that

sends a proto-theory L : Bop Ñ L to L regarded as a topological proto-theory on Bop in which

the hom-sets of L are equipped with the discrete topology.

Note that the term “discrete topological category” is potentially ambiguous: there are

unrelated notions of discreteness for both topological spaces and for categories. When we refer

to discrete topological categories, we mean topological categories in which every hom-space is

discrete, rather than in which the only morphisms are identities. Likewise, a discrete topological

proto-theory is a proto-theory L : Bop Ñ L for which L is a discrete topological category.

Lemma 9.1.13. The triangle

CAT{B PThtpBopqopSemtoo

PThpBopqop

Sem

gg

Disc

OO

commutes.

Proof. A topological model of a topological proto-theory L : Bop Ñ L consists of a model

x “ pdx,Γxq of the underlying ordinary proto-theory such that

Γx : LÑ Sett

is a continuous functor. But if the hom-spaces of L are all discrete, then every functor out of

L is continuous, so the notions of L-model and topological L-model coincide.

Lemma 9.1.14. Let L : Bop Ñ L be a topological proto-theory with arities Bop, and suppose

that B has limits of shape I for some finite category I. Then the functor Semt : ModtpLq Ñ B

creates limits of shape I.

Proof. By Proposition 7.1.2, it is sufficient to show that each xb,´y0 : B Ñ pSettq0 preserves

such limits, and

Und: rA,Settst Ñ rA0,Sets

creates them for each A P TOP-CAT. The first of these is trivial, since xb,´y0 “ Bpb,´q : B Ñ

pSettq0 “ Set and representables preserve all limits.

Let us show that

Und: rA,Settst Ñ rA0,Sets
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creates finite limits. This amounts to showing that a finite limit of continuous functors into

Sett is continuous. Let D : I Ñ rA,Settst be a functor; write Di for Dpiq. We must check that

for each a, a1 P A, the map

lim
iPI

Di : Apa, a1q Ñ Settplim
iPI

Dia, lim
iPI

Dia1q

is continuous. By the definition of the topology on hom-sets in Sett it is sufficient to check that it

becomes continuous when composed with each evx : SettplimiPI D
ia, limiPI D

ia1q Ñ limiPI D
ia1

for x P limiPI D
ia, where the codomain is discrete. Recall that an element x P limiPI D

ia

consists of a family pxiqiPI indexed by i P I where xi P D
ia and for any f : iÑ j in I, we have

Dfxi “ xj .

Since I is finite, and a finite limit of discrete spaces is discrete, the topology on limiPI D
ia1

as a limit of the discrete spaces Dia1 is also discrete. Thus in order to check that evx ˝ limiPI D
i

is continuous, it is sufficient to check that it is continuous when composed with each

πj : limiPI D
ia1 Ñ Dja1. Now let x “ pxiqiPI P limiPI D

ia and j P I, and consider the di-

agram

Apa, a1q limiPI D
i

//

Dj

��

SettplimiPI D
ia, limiPI D

ia1q

evx

��
limiPI D

ia1

πj

��
SettpD

ja,Dja1q
evxj

// Dja1.

This diagram commutes: both legs send g : aÑ a1 to Djgpxjq. The top-right composite is the

map we wish to show is continuous. But the bottom-left composite is continuous, since Dj is

a continuous functor and by definition of the topology on hom-sets in Sett. Thus limiPI D
i is

continuous, as required.

9.2 Monads as topological proto-theories

Throughout this section, fix a locally small category B. Recall from Section 5.2 that we can view

monads on B as proto-theories with arities in Bop, and then the usual semantics for monads is

recovered via the canonical aritation. In this section we show that the same is true when we

replace proto-theories with topological proto-theories.

Lemma 9.2.1. Let pU : M Ñ Bq P CAT{B have a left adjoint F , with unit η and counit ε.

Then StrtpUq P PThtpBopq is discrete.

Proof. For b, b1 P B, we must show that

ThtpUqpb, b
1q “ rM,SettspBpb, U´q,Bpb1, U´qq,
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equipped with its canonical topology as a limit of the discrete spaces Bpb1, Umq for m PM, is

discrete. Let γ : Bpb, U´q Ñ Bpb1, U´q; we will show that tγu is open in ThtpUqpb, b
1q.

The map

evηb : rM,SetspBpb, U´q,Bpb1, U´qq Ñ Bpb1, UFbq

that sends δ : Bpb, U´q Ñ Bpb1, U´q to δFbpηbq is continuous, since it is the composite

rM,SetspBpb, U´q,Bpb1, U´qq p´qFbÝÑ SettpBpb, UFbq,Bpb1, UFbqq
evηb
ÝÑ Bpb1, UFbq

and both of these factors are continuous by definition. Thus, the preimage of tγFbpηbqu under

this map is an open set. Let δ : Bpb, U´q Ñ Bpb1, U´q be an element of this preimage. Then

evηbpγq “ evηbpδq, that is, γFbpηbq “ δFbpηbq. For any m PM and f : bÑ Um, we have

γxpfq “ γxpUεm ˝ ηUm ˝ fq (Triangle identity)

“ γxpUεm ˝ UFf ˝ ηbq (Naturality of η)

“ Uεm ˝ UFf ˝ γFbpηbq (Naturality of γ)

Similarly,

δxpfq “ Uεm ˝ UFf ˝ δFbpηbq,

but δFbpηbq “ γFbpηbq, and so it follows that δxpfq “ γxpfq. Hence δ “ γ and the open set

ev´1
ηb
ptγFbpηbquq

is in fact tγu. So the space is discrete, as claimed.

Definition 9.2.2. Write Klt : MndpBq Ñ PThtpBopq for the composite

MndpBq Kl
ÝÑ PThpBopq

Disc
ÝÑ PThtpBopq.

Proposition 9.2.3. Both squares in the diagram

pCAT{Bqr.a. K

StrMnd //

��

MndpBqop

SemMnd

oo

Klop
t

��
CAT{B K

Strt //
PThtpBopqop

Semt

oo

commute up to isomorphism, and these isomorphisms are compatible with the adjunction struc-

ture as in Proposition 5.2.12.
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Proof. The square involving StrMnd and Strt commutes since, by Theorem 5.2.13

pCAT{Bqr.a.
StrMnd //

��

MndpBqop

Klop

��
CAT{B

Str
// PThpBopqop

commutes, and by Lemma 9.2.1, for any right adjoint U : M Ñ B, we have StrtpUq “

Discop
˝ StrpUq. The commutativity of the square involving Alg and Semt follows from the

fact that

pCAT{Bqr.a.

��

MndpBqop

Klop

��

SemMndoo

CAT{B PThpBopqop

Sem
oo

commutes (Theorem 5.2.13), and the fact that Sem “ Semt ˝Discop (Lemma 9.1.13). The proof

that the counits of the adjunctions are compatible is identical to that of Proposition 5.2.12.

9.3 Categories with enough subobjects

We would like to show that the topological structure–semantics adjunction is idempotent, in an

effort to find a notion of algebraic theory for which the completeness theorem holds. However,

this is unlikely to be the case in an arbitrary category B; in this section we define a technical

condition that a category may satisfy, and in the next section we show that this guarantees

idempotency. This condition appears to be very restrictive, however, it holds in the most

important example, namely the category of small sets, as well as the category of vector spaces

over any field.

Definition 9.3.1. We say that a category B has enough subobjects if every presheaf

P : Bop Ñ SET that

• preserves all small products that exist in Bop, and

• is a sub-presheaf of a representable presheaf

is itself representable.

Lemma 9.3.2. The category Set has enough subobjects.

Proof. Let P : Setop
Ñ SET be a functor that preserves small products, and let m : P Ñ

Setp´, Xq be a monomorphism, that is, component-wise injective. As usual write 1 “ t˚u

for an arbitrary one-element set. Then P p1q is a small set since it admits an injection to

Setp1, Xq – X P Set. We show that

P – Setp´, P p1qq.
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Let Y P Set. Then Y can be regarded as the coproduct of Y copies of 1. Hence, since P sends

small coproducts to products, we have

P pY q – P p1qY – Setp1, P p1qY q – SetpY, P p1qq

and each of these isomorphisms is natural in Y .

Lemma 9.3.3. The category FinSet has enough subobjects.

Proof. The proof is identical to that of the previous lemma.

Lemma 9.3.4. For any small field k, the category Vectk of small vector spaces over k has

enough subobjects.

Proof. Let P : Vectop
k Ñ SET be a functor that preserves small products and let m : P Ñ

Vectkp´, V q be a monomorphism. We can view k as a 1-dimensional vector space over itself,

and so we have mk : P pkq Ñ Vectkpk, V q. Define

W “ tv P V | Dp P P pkq such that mkppqp1kq “ vu Ď V.

First we show that W is a subspace of V . Write 0 for the trivial vector space over k. Then

since 0 is the initial object (i.e. empty coproduct) in Vectk, and P preserves products, P p0q

must be the terminal object of SET. There is a unique map 0: k Ñ 0, and applying P we

obtain a map P p0q : 1 – P p0q Ñ P pkq; let q P P pkq be the unique value of this map. Then the

commutativity of

P p0q
m0 //

P p0q

��

Vectkp0, V q

0˚

��
P pkq

mk
// Vectkpk, V q

implies that mkpqq is the zero map k Ñ V , so in particular mkpqqp1kq “ 0V , so 0V PW .

Let w “ mkppqp1kq PW and let c P k. We show that cw PW . Consider the map c¨´ : k Ñ k

given by multiplication by c. The diagram

P pkq
mk //

P pc¨´q

��

Vectkpk, V q

pc¨´q˚

��
P pkq

mk // Vectkpk, V q

commutes, and hence the map mkppq ˝ pc ¨ ´q : k Ñ V lies in the image of mk. But this map

sends 1k to mkppqpc ¨ 1kq “ c ¨mkppqp1kq “ cw, so cw PW .
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Now let w,w1 PW , say w “ mkppqp1kq and w1 “ mkpp
1qp1kq. Consider the diagram

P pkq ˆ P pkq
mkˆmk//

–

��

Vectkpk, V q ˆVectkpk, V q

–

��
P pk ‘ kq

mk‘k //

P p∆q

��

Vectkpk ‘ k, V q

∆˚

��
P pkq

mk
// Vectkpk, V q,

where ∆: k Ñ k ‘ k sends x P k to px, xq P k ‘ k. The top square commutes since both P

and Vectkp´, V q preserve small products, and the bottom square commutes by naturality of

m. We have pp, p1q P P pkq ˆ P pkq, and the top-right composite sends this to mkppq `mkpp
1q,

so in particular this element of Vectkpk, V q lies in the image of mk. But

pmkppq `mkpp
1qqp1kq “ mkppqp1kq `mkpp

1qp1kq “ w ` w1,

so w ` w1 PW .

Now we have established that W is a subspace of V , and in particular that it is a vector

space over k, we show that we have a factorisation

P
m //

n
%%

Vectkp´, V q.

Vectkp´,W q

66

Let U be an arbitrary small k-vector space, and let p P P pUq. We show that mU ppq : U Ñ V

takes values in W . Let u P U . Then we have a unique f : k Ñ U such that fp1kq “ u, and

mU ppqpuq “ mU ppq ˝ fp1kq “ mkpP pfqppqqp1kq PW,

by definition. Hence we have such a factorisation n : P Ñ Vectkp´,W q.

Now we show that n is an isomorphism. First note that n is monic, since m is; thus we only

need to show that for each vector space U , the map

nU : P pUq Ñ VectkpU,W q

is a surjection. Let f : U Ñ V be a map taking values in W Ď V ; we must show that there

exists p P P pUq such that muppq “ f . Recall that any vector space, and in particular U , has a

basis (and this basis is small since U is). This means that for some small set S we may choose a

family of maps ιs : k Ñ U indexed by s P S that exhibit U as an S-fold copower of k in Vectk.
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For each s P S, consider the composite

k
ιs
ÝÑ U

f
ÝÑ V.

Since f ˝ ιsp1kq PW , there exists ps P P pkq such that

f ˝ ιsp1kq “ mkppsqp1kq,

and since a map out of k is determined by its value on 1k we must have f ˝ ιs “ mkppsq. Since

U is the S-th copower of k, and P preserves small products, we have a commutative diagram

P pkqS
mSk//

–

��

Vectkpk, V q
S

–

��
P pUq

mU
// VectkpU, V q.

(9.1)

We claim that the element ppsqsPS P P pkq
S is mapped by the upper-right composite to f P

VectkpU, V q. Since the isomorphism Vectkpk, V q
S – VectkpU, V q is such that

Vectkpk, V q
S – //

πs ((

VectkpU, V q

ι˚s
��

Vectkpk, V q

commutes for each s P S, this is equivalent to the condition that f ˝ ιs “ mkppsq for each

s P S, which was established above. Thus, by the commutativity of Diagram (9.1), there is

some p P P pUq (namely the image of ppsqsPS under the isomorphism P pkqS – P pUq) that is

mapped to f by mU , so mU is surjective.

We have shown that n : P Ñ Vectkp´,W q is an isomorphism, so P is representable, as

required.

Lemma 9.3.5. The category FinVectk, of finite-dimensional vector spaces over a small field

k has enough subobjects.

Proof. The proof is identical to that of the previous lemma.

Lemma 9.3.6. Let Q be a small poset with arbitrary joins. Then Q, regarded as a category,

has enough subobjects.

Proof. For any q P Q, a sub-presheaf of the representable Qp´, qq can be identified with a

subset P of Q that is downwards closed, and with p ď q for every p P P . The condition that

the presheaf preserves products corresponds to the condition that the join of any subset of
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P is in P . In particular, the join of P itself lies in P , so P has a largest element, and so is

representable.

9.4 Idempotency of the topological structure–semantics

adjunction

In this section we show (Theorem 9.4.7) that, for a category with finite products and enough

subobjects, the topological structure–semantics adjunction is idempotent. Fix a locally small

category B throughout.

Definition 9.4.1. Let L : Bop Ñ L be an object of PThtpBopq. Write

EL : LÑ StrtpSemtpLqq

for the L-component of the counit of the Strt % Semt adjunction. Explicitly, EL sends a

morphism l : LbÑ Lb1 to the natural transformation

Γp´qplq : Bpb,Semtp´qq Ñ Bpb1,Semtp´qq.

Definition 9.4.2. We say that a morphism

L1 P // L

Bop
L1

aa

L

==

in PThtpBopq is topologically dense if, for all b, b1 P B, the continuous map

P : L1pL1b1, L1bq Ñ LpLb1, Lbq

has dense image.

Lemma 9.4.3. Let L : Bop Ñ L be a topological proto-theory and suppose EL is topologically

dense. Then

SemtpELq : Semt ˝Strt ˝SemtpLq Ñ SemtpLq

is an isomorphism in CAT{B.

Proof. We know that SemtpELq is split epic by one of the triangle identities for the Strt % Semt

adjunction. So it is enough to show that it is monic — that is, faithful and injective on objects.

But it commutes with the forgetful functors to B which are both faithful, thus it is itself faithful.

Suppose EL is topologically dense, and that x “ pdx,Γxq and y “ pdy,Γyq are two objects

of ModtpStrtpSemtpLqqq such that SemtpELqpxq “ SemtpELqpyq. Then certainly dx “ dy since
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SemtpLq ˝ SemtpELq “ SemtpStrtpSemtpLqqq, so x and y have the same underlying objects.

Note that ΓSemtpELqpxq is given by the composite

L EL
ÝÑ ThtpSemtpLqq

Γx
ÝÑ Sett,

and similarly for y. Since these two functors are equal, for each b, b1 P B we have a fork

LpLb1, Lbq EL // ThtpSemtpLqqpb
1, bq

Γx //
Γy
// SettpBpb1, dxq,Bpb, dxqq

in TOP. If a parallel pair of continuous maps have Hausdorff codomain and agree on a dense

subset of their domain, then they are equal. But SettpBpb, dxq,Bpb, dxqq is Hausdorff, as a

limit of discrete spaces, and EL has dense image by assumption, so Γx “ Γy. Thus x “ y and

SemtpELq is injective on objects, as required.

Recall that the surjections and injections form an orthogonal factorisation system on SET,

and it lifts to a factorisation system on any category of presheaves rBop,SETs, in which the

left and right classes consist of the natural transformations that are component-wise surjections

and injections respectively.

Lemma 9.4.4. Let P,Q,R P rBop,SETs, and σ : Q Ñ P , τ : P Ñ R with σ component-wise

surjective and τ component-wise injective. If Q and R preserve small products then so does P .

Proof. Let pbs P BqsPS be a family of objects of B indexed by some small set S. Then we have

a commutative diagram

Qp
ř

sPS bsq
σř

bs //

–

��

P p
ř

sPS bsq
τř bs //

��

Rp
ř

sPS bsq

–

��
ś

sPS Qpbsq ś

σbs

// ś
sPS P pbsq ś

τbs

// ś
sPS Rpbsq

in which the vertical morphisms are the canonical comparison maps, and the left and right ones

are isomorphisms since Q and R preserve small products. Now,

ź

sPS

σbs :
ź

sPS

Qpbsq Ñ
ź

sPS

P pbsq

is clearly surjective by the construction of products in SET, since each σbs is. Similarly,

ź

sPS

τbs :
ź

sPS

P pbsq Ñ
ź

sPS

Rpbsq

is injective. But then by the uniqueness of epi-mono factorisations in SET, the middle vertical

map must be an isomorphism, so P preserves small products.
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Lemma 9.4.5. Suppose B has finite products. Let L : Bop Ñ L be a topological

proto-theory, and consider, for b, b1 P B, the topological space ThtpSemtpLqqpb, b
1q “

rModtpLq,SetspBpb,SemtpLq´q,Bpb1,SemtpLq´qq. This space has a basis for its topology con-

sisting of the sets

Uf,g “ tδ : Bpb,SemtpLq´q Ñ Bpb1,SemtpLq´q | δxpfq “ gu,

indexed by x P ModtpLq, f : bÑ dx and g : b1 Ñ dx.

Proof. Recall that the topology on rModtpLq,SetspBpb,SemtpLq´q,Bpb1,SemtpLq´qq is gener-

ated by the maps

p´qx : rModtpLq,SetspBpb,SemtpLq´q,Bpb1,SemtpLq´qq Ñ SettppBpb, dxq,Bpb1, dxqq

for x P ModtpLq. But the topology on SettpBpb, dxq,Bpb1, dxqq is generated by the maps

evf : SettpBpb, dxq,Bpb1, dxqq Ñ Bpb1, dxq

for f : b Ñ dx. Hence the topology on rModtpLq,SetspBpb,SemtpLq´q,Bpb1,SemtpLq´qq is

generated by the maps

evf : rModtpLq,SetspBpb,SemtpLq´q,Bpb1,SemtpLq´qq Ñ Bpb1, dxq

for x P ModtpLq and f : bÑ dx, sending γ to γxpfq. Thus

rModtpLq,SetspBpb,SemtpLq´q,Bpb1,SemtpLq´qq

has a basis of open sets consisting of finite intersections of preimages of points under such maps.

That is, the sets of the form

tδ : Bpb,SemtpLq´q Ñ Bpb1,SemtpLq´q | δxipfiq “ gi for i “ 1, . . . , nu (9.2)

form a basis, where xi P ModtpLq, fi : bÑ dxi , and gi : b
1 Ñ dxi for i “ 1, . . . , n. In particular,

the sets described in the lemma statement are of this form, by taking n “ 1. Now, recall that

SemtpLq creates finite limits by Lemma 9.1.14, and in particular finite products, hence the

product x1 ˆ ¨ ¨ ¨ ˆ xn exists in ModtpLq and dx1ˆ¨¨¨ˆxn “ dx1 ˆ ¨ ¨ ¨ ˆ dxn . This means that, for
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any δ : Bpb,SemtpLq´q Ñ Bpb1,SemtpLq´q, we have a commutative diagram

Bpb, dx1 ˆ ¨ ¨ ¨ ˆ dxnq
δx1ˆ¨¨¨ˆxn //

–

��

Bpb1, dx1 ˆ ¨ ¨ ¨ ˆ dxnq

–

��
Bpb, dx1q ˆ ¨ ¨ ¨ ˆ Bpb, dxnq

δx1
ˆ¨¨¨ˆδxn

// Bpb1, dx1q ˆ ¨ ¨ ¨ ˆ Bpb1, dxnq.

It follows that δxipfiq “ gi for i “ 1, . . . , n if and only if

δx1ˆ¨¨¨ˆxnpxf1, . . . , fnyq “ xg1, . . . , gny,

where xf1, . . . , fny : bÑ dx1 ˆ ¨ ¨ ¨ ˆ dxn is the unique map such that πi ˝ xf1, . . . , fny “ fi, and

similarly for xg1, . . . , gny. Thus, the set displayed in (9.2) is equal to the set

tδ : Bpb,SemtpLq´q Ñ Bpb1,SemtpLq´q | δx1ˆ¨¨¨ˆxnpxf1, . . . , fnyq “ xg1, . . . , gnyu

which is of the form given in the lemma statement.

Proposition 9.4.6. Suppose B has finite products and enough subobjects. Then, for any

L : Bop Ñ L in PThtpBopq such that L preserves small products, EL is topologically dense.

Proof. We must show that for all b, b1 P B the continuous map

EL : LpLb, Lb1q Ñ rModtpLq,SetspBpb,SemtpLq´q,Bpb1,SemtpLq´qq

that sends a morphism l : LbÑ Lb1 to the natural transformation ELplq with components

ELplqx : Bpb, dxq Ñ Bpb1, dxq

f ÞÑ αxb1pl ˝ Lfq

has dense image. It is sufficient to show that for every γ : Bpb,SemtpLq´q Ñ Bpb1,SemtpLq´q,

every basic open neighbourhood of γ contains ELplq for some l : LbÑ Lb1. But by the previous

lemma, a basic open neighbourhood of γ is of the form

tδ : Bpb,SemtpLq´q Ñ Bpb1,SemtpLq´q | γxpfq “ δxpfqu

for some x P ModtpLq and f : b Ñ dx. Thus we must show that, for any such x and f , there

exists some l : Lb1 Ñ Lb such that

αxb1pl ˝ Lfq “ γxpfq. (9.3)

Define a presheaf P : Bop Ñ SET and natural transformations σ : LpLb, L´q Ñ P and τ : P Ñ
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Bp´, dxq via the epi–mono factorisation of the composite

LpLb, L´q Lf
˚

ÝÑ LpLdx, L´q αx
ÝÑ Bp´, dxq.

Now, L : Bop Ñ L preserves small products, and the representable LpLb,´q : L Ñ SET pre-

serves small products, so it follows that their composite LpLb, L´q : Bop Ñ SET preserves prod-

ucts. Also, the representable Bp´, dxq preserves small products. It follows from Lemma 9.4.4

that P also preserves small products. In addition, since τ : P Ñ Bp´, dxq is monic by defini-

tion, P is a sub-presheaf of a representable, and so is itself representable since B has enough

subobjects. Since epi-mono factorisations are only defined up to isomorphism, we may assume

that P is actually equal to the presheaf Bp´, dyq for some object dy P B. By the Yoneda lemma,

there is a unique t : dy Ñ dx such that

τ “ t˚ : P “ Bp´, dyq Ñ Bp´, dxq

and there is a unique s : bÑ dy such that s˚ : Bp´, bq Ñ Bp´, dyq is equal to the composite

Bp´, bq L
ÝÑ LpLb, L´q σ

ÝÑ Bp´, dyq “ P.

Note that since τ is monic, so is t. Also, note that the composite

Bp´, bq s˚
ÝÑ Bp´, dyq t˚

ÝÑ Bp´, dxq

sends an arbitrary morphism g : cÑ b in B to

τc ˝ σcpLgq “ αxc pLg ˝ Lfq “ f ˝ g,

and so t ˝ s “ f .

We now equip dy with an L-model structure αy : LpLdy, L´q Ñ Bp´, dyq. Since

σ : LpLb, L´q Ñ Bp´, dyq is component-wise surjective, we may choose k P LpLb, Ldyq such

that σdy pkq “ iddy . Given such a k, define αy to be the composite

LpLdy, L´q k˚
ÝÑ LpLb, L´q σ

ÝÑ Bp´, dyq.

First let us show that αy does not depend on the choice of k. For any c P B and l : Ldy Ñ Lc
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in L, we have

t ˝ αyc plq “ t ˝ σcpl ˝ kq (Definition of αy)

“ τcpσcpl ˝ kqq (Definition of t)

“ αxc pl ˝ k ˝ Lfq (Definition of τ, σ)

“ αxc pl ˝ Lα
x
dy pk ˝ Lfqq (Definition 5.1.1(ii))

“ αxc pl ˝ Lpτdy ˝ σdy pkqqq (Definition of τ, σ)

“ αxc pl ˝ Lpt ˝ σdy pkqqq (Definition of t)

“ αxc pl ˝ Ltq (Choice of k) (9.4)

which clearly does not depend on the choice of k. But since t is monic, this implies that αyc plq

does not depend on the choice of k either.

Now we show that αy does make y “ pdy, αyq into an L-model. Certainly

αydy pidLdy q “ σdy pidLdy ˝ kq “ σdy pkq “ iddy

by choice of k, so condition 5.1.1.(i) holds. Let l : Ldy Ñ Lc and l1 : Lc Ñ Lc1 for c, c1 P B.

Then we have

t ˝ αyc1pl
1 ˝ lq “ αxc1pl

1 ˝ l ˝ Ltq (By (9.4))

“ αxc1pl
1 ˝ Lαxc pl ˝ Ltqq (Definition 5.1.1(ii))

“ αxc1pl
1 ˝ Lpt ˝ αyc plqqq (By (9.4))

“ αxc1pl
1 ˝ Lαyc plq ˝ Ltq (Functoriality of L)

“ t ˝ αyc1pl
1 ˝ Lαyc plqq (By (9.4))

and so, since t is monic, we have αyc1pl
1 ˝ lq “ αyc1pl

1 ˝Lαyc plqq, so αy satisfies condition 5.1.1.(ii).

So y “ pdy, αyq is an L-model.

Now we check that y satisfies the condition in Lemma 9.1.11, that is, y is a topological

L-model. We must show that

αyc : LpLdy, Lcq Ñ Bpc, dyq

is continuous for each c, where the codomain is given the discrete topology. But the diagram

LpLdy, Lcq Lt˚ //

αyc
��

LpLdx, Lcq

αxc
��

Bpc, dyq
t˚

// Bpc, dxq
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commutes by (9.4). The continuity of Lt˚ follows from the fact that L is enriched in TOP,

and αxc is continuous, since x is a topological L-model. Hence t˚ ˝ α
y
c is continuous. But since

t˚ is the inclusion of one discrete space in another, it follows that αyc is itself continuous.

Hence y “ pdy, αyq is a topological L-model, and Equation (9.4) says that t : dy Ñ dx is an

L-model homomorphism y Ñ x.

Now we check that

LpLb, L´q

σ
''

Ls˚ // LpLdy, L´q

αy

��
Bp´, dyq

commutes. For any c P B and l : LbÑ Lc, we have

t ˝ αyc pl ˝ Lsq “ αxc pl ˝ Ls ˝ Ltq (By (9.4))

“ αxc pl ˝ Lfq (Since t ˝ s “ f)

“ τc ˝ σcplq (Definition of τ, σ)

“ t ˝ σcplq (Definition of t)

and so, since t is monic, we have αyc pl ˝ Lsq “ σcplq.

Now we are ready to complete the proof. Since σb1 is surjective, we may choose l P LpLb, Lb1q

such that σb1plq “ γypsq. Then,

αxb1pl ˝ Lfq “ τb1 ˝ σb1plq (Definition of τ, σ)

“ t ˝ σb1plq (Definition of t)

“ t ˝ γypsq (Choice of l)

“ γxpt ˝ sq (Since t is a homomorphism y Ñ x )

“ γxpfq (Since t ˝ s “ f)

as required.

Theorem 9.4.7. Suppose B has finite products and enough subobjects. Then the topological

structure–semantics adjunction

CAT{B K

Strt //
PThtpBopqop

Semt

oo

is idempotent.

Proof. Let U : MÑ B be an object of CAT{B. Then recall that, by definition of Strt, we have
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a commutative square

Bop H‚ //

StrtpUq

��

rB,Sets

U˚

��
ThtpUq

JpUq
// rM,Sets

where JpUq is full and faithful. But H‚ preserves all limits, and U˚ preserves small limits

(since small limits in each of the functor categories are computed pointwise). Hence the top-

right composite in the square preserves small limits. But JpUq is full and faithful and so reflects

limits, so StrtpUq preserves small limits, and in particular, small products.

It follows that StrtpUq : B Ñ ThtpUq satisfies the hypotheses of Proposition 9.4.6, and so

EStrtpUq : ThtpUq Ñ ThtpSemtpStrtpUqqq

is topologically dense. Hence by Lemma 9.4.3, the morphism

SemtpEStrtpUqq : Semt ˝ Strt ˝Semt ˝ StrtpUq Ñ Semt ˝StrtpUq

in CAT{B is an isomorphism. This says that the monad on CAT{B induced by the structure–

semantics adjunction is idempotent. But this is one of the equivalent conditions for the adjunc-

tion itself to be idempotent, as in Lemma 2.6.5.

Corollary 9.4.8. If B has finite products and enough subobjects, then the topological structure–

semantics adjunction for B factors via a category that embeds as a reflective subcategory of

CAT{B and as a replete, coreflective subcategory of PThtpBqop.

Proof. Every idempotent adjunction admits such a factorisation by Lemma 2.6.6.

Definition 9.4.9. Denote the factorisation from the previous corollary as

CAT{B K

Strct //
PThctpBopqop

Semct

oo K

Incop
//
PThtpBopqop.

Cpltop
oo

Explicitly,

• PThctpBopq is the full subcategory of PThtpBopq consisting of those topological proto-

theories L for which EL is an isomorphism. We call such a proto-theory a complete

topological proto-theory with arities in Bop (and the subscript ct stands for “com-

plete topological”).

• Strct is obtained by restricting the codomain of Strt from PThtpBopq to PThctpBopq.

• Semct is obtained by restricting the domain of Semt from PThtpBopq to PThctpBopq; it

is full and faithful.
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• Inc is the full inclusion.

• Cplt is defined to be the composite Strct ˝Semt. For a topological proto-theory L, we call

CpltpLq the completion of L.

Lemma 9.4.10. We have Incop
˝Strct – Strt and Semct ˝Cpltop

– Semt.

Proof. This is immediate from properties of idempotent adjunctions and reflective subcate-

gories.

Remark 9.4.11. Recall that we hoped to find a notion of algebraic theory that

• generalises monads and their semantics,

• has a full and faithful semantics functor (that is, it satisfies the completeness theorem),

and

• has a structure functor defined on the whole of CAT{B.

The first of these properties will be shown in the next chapter (Proposition 10.1.1), and the

second and third are immediate from Definition 9.4.9, and so, when B has finite products and

enough subobjects, complete topological proto-theories provide such a notion. In fact they have

many additional good properties, which shall be explored in the next chapter.

9.5 Relation to profinite groups

Recall from Section 8.1 that we may regard Gp as a full subcategory of PThpFinSetop
q and

that the structure–semantics monad on PThpFinSetop
q restricts to the profinite completion

monad on Gp. Similarly, in this section we show that TopGp can be regarded as a full sub-

category of PThtpFinSetop
q and that the topological structure–semantics adjunction restricts

to the profinite completion monad on TopGp.

As we did in Section 8.1, we identify objects of PThpFinSetop
q with bijective-on-objects

functors out of FinSet (rather than FinSetop), and similarly with objects of PThtpFinSetop
q.

Definition 9.5.1. Let M be a small topological monoid; we will define a TOP-category EtpMq

as follows. Recall from Definition 8.1.2 that we have EpMq : FinSet Ñ EpMq, where the objects

of EpMq are the finite sets, and EpS, S1q “ SetpS,M ˆS1q – pM ˆS1qS . We equip such a hom-

set with a topology by regarding M ˆ S1 as the product in Top of M with the discrete space

S1, and pM ˆS1qS as a finite power of this space. We write EtpS, S1q for EpS, S1q topologised in

this way.

Lemma 9.5.2. For a topological monoid M , the definition above does give a well-defined TOP-

category EtpMq.
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Proof. We must show that composition in EtpMq is continuous. Let S, S1 and S2 be finite

sets. Then composition EtpMqpS, S1q ˆ EtpMqpS1, S2q Ñ EtpMqpS, S2q can be written as the

composite

pM ˆ S1qS ˆ pM ˆ S2qS
1

–MS ˆ pS1qS ˆ pM ˆ S2qS
1

pidMS qˆc

��
MS ˆ pM ˆ S2qS – pM ˆM ˆ S2qS

pµMˆidS2 q
S

��
pMS ˆ S2qS

where c : pS1qS ˆ pM ˆS2qS
1

Ñ pM ˆS2qS is composition of functions, and µM : M ˆM ÑM

is the multiplication for M . All of the maps involved in the above are clearly continuous except

a priori for c; hence it is sufficient to check that c is continuous. First note that since S1 is

discrete and S is finite, pS1qS is also discrete, so pS1qS ˆ pM ˆ S2qS
1

is the pS1qS-th copower of

pM ˆ S2qS
1

in Top. Hence it is sufficient to check that each of the composites

pM ˆ S2qS
1 ιf
ÝÑ pS1qS ˆ pM ˆ S2qS

1 c
ÝÑ pM ˆ S2qS

is continuous, where, for f : S Ñ S1, the map ιf sends an element f 1 P pM ˆ S2qS
1

to pf, f 1q.

And since pM ˆ S2qS is a power in Top, it is sufficient to check that this is continuous when

composed with the projection πs : pM ˆ S2qS ÑM ˆ S2 for each s P S. But the composite

pM ˆ S2qS
1 ιf
ÝÑ pS1qS ˆ pM ˆ S2qS

1 c
ÝÑ pM ˆ S2qS

πs
ÝÑM ˆ S2

is just the projection πfpsq : pM ˆ S2qS
1

ÑM ˆ S2, which is continuous.

Lemma 9.5.3. Given a continuous monoid homomorphism h : M Ñ M 1 between small topo-

logical monoids, the functor Ephq : EpMq Ñ EpM 1q is continuous as a functor EtpMq Ñ EtpM 1q.

Proof. Recall that a hom-space in EtpMq is of the form pMˆS1qS , and on each such hom-space,

Ephq is the map

phˆ idS1q
S : pM ˆ S1qS Ñ pM 1 ˆ S1qS

which is evidently continuous since h : M ÑM 1 is.

Definition 9.5.4. Let h : M Ñ M 1 be a continuous monoid homomorphism between small

topological monoids. Write Etphq for the functor Ephq : EpMq Ñ EpM 1q, regarded as a TOP-

functor EtpMq Ñ EtpM 1q.

Definition 9.5.5. Write Et : TopMon Ñ PThtpFinSetop
q for the functor that sends M to

EtpMq : FinSet Ñ EtpMq as defined in Definition 9.5.1 and sends a continuous homomorphism

h : M ÑM 1 to the continuous functor Etphq : EtpMq Ñ EtpM 1q defined in Definition 9.5.4.
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Lemma 9.5.6. The functor Et : TopMon Ñ PThtpFinSetop
q is full and faithful.

Proof. Since E : Mon Ñ PThpFinSetop
q is full and faithful by Proposition 8.1.4 it is sufficient

to show that, for small topological monoids M,M 1, a monoid homomorphism h : M Ñ M 1 is

continuous if and only if Ephq is continuous as a functor EtpMq Ñ EtpM 1q.

Given S, S1 P FinSet, the action of Ephq on the hom-space EtpMqpS, S1q is the map

Ephq “ phˆ idS1q
S : EtpMqpS, S1q “ pM ˆ S1qS Ñ EtpMqpS, S1q “ pM 1 ˆ S1qS

which is continuous if h is.

Conversely, if Ephq is continuous, then in particular its action on the hom-space EtpMqp1, 1q

is. But this is given by

h : M – pM ˆ 1q1 ÑM 1 – pM 1 ˆ 1q1,

and so h is continuous.

Lemma 9.5.7. The composite

TopMonop Et
ÝÑ PThtpFinSetop

q
Semt
ÝÑ CAT{FinSet

sends a topological monoid M to the category of finite, continuous M -sets, with its forgetful

functor to FinSet.

By a finite continuous M -set, we mean a finite set X together with an action M ˆX Ñ X

that is continuous when X is regarded as a discrete space and MˆX is given the usual product

topology.

Proof. Recall from Lemma 8.1.5 that for a small monoid M , a model of EpMq can be identi-

fied with a finite M -set, and a homomorphism of EpMq-models is a M -equivariant map. We

must show that if M is a topological monoid then a model is continuous if and only if the

corresponding M -set is.

Recall that an EpMq-model structure on a finite set X consists of a natural transformation

α : EpMqpEpMq´, Xq – pM ˆXqp´q Ñ FinSetp´, Xq – Xp´q,

satisfying the conditions of Definition 5.1.1, which by the Yoneda lemma, is of the form

ap´q : pM ˆXqp´q Ñ Xp´q for a unique a : M ˆX Ñ X, and this a defines the corresponding

action of M on X. Clearly if a is continuous, then so is

αS “ aS : pM ˆXqS Ñ XS

for each S. On the other hand, if αS is continuous for each S (that is, if we have a continuous
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model structure) then by taking S “ 1, we see that

a : M ˆX – pM ˆXq1
α1
ÝÑ X1 – X

is continuous. Hence the EpMq-model structure on X defines a continuous EtpMq-model struc-

ture if and only if the corresponding M -action is continuous.

Let L : FinSet Ñ L be a topological proto-theory on FinSet, and suppose the underlying

discrete proto-theory of L is in the essential image of E : Mon Ñ PThpFinSetop
q, that is, it

satisfies the conditions of Proposition 8.1.6. Then L preserves finite coproducts, and so we have

a bijection

LpLS,LS1q – LpL1, LS1qS (9.5)

for all finite sets S and S1. Similarly, by Proposition 8.1.6.(iii), we have a bijection

S ˆ LpL1, L1q – LpL1, LSq (9.6)

for all finite sets S.

Lemma 9.5.8. Let L : FinSet Ñ L be topological proto-theory. Then L is in the essential

image of Et : TopMon Ñ PThtpFinSetop
q if and only if its underlying proto-theory is in the

essential image of E : Mon Ñ PThpFinSetop
q (that is, it satisfies the conditions of Proposi-

tion 8.1.6), and in addition, the bijections (9.5) and (9.6) above are in fact homeomorphisms.

When these conditions hold, L is isomorphic to EtpMq, where M is the topological monoid

LpL1, L1q.

Proof. It is clear from the definitions that if a topological proto-theory is in the essential image

of Et, then its underlying discrete proto-theory is in the essential image of E. So we just

need to check that a topological proto-theory L : FinSet Ñ L whose underlying theory is

EpMq for some monoid M arises from a topology on M if and only if these bijections are

homeomorphisms. But these conditions imply that the topology on each hom-set is determined

by that on LpL1, L1q. Since the underlying monoid of LpL1, L1q is M , it is sufficient to check

that if M is equipped with a topological monoid structure then EtpMq does satisfy the above

conditions. But this is clear since by definition,

EtpMqpS, S1q – pM ˆ S1qS – pEtpMqp1, 1q ˆ S1qS .

Proposition 9.5.9. There is a functor T : TopMon Ñ TopMon that is unique up to isomor-
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phism such that

TopMon
Et //

T

��

PThtpFinSetop
q

Semop
t

��
pCAT{FinSetqop

Strop
t

��
TopMon

Et

// PThtpFinSetop
q

commutes up to isomorphism.

Proof. Similarly to Proposition 8.1.7, it is sufficient to check that for M P TopMon the topo-

logical proto-theory Strt ˝ Semt ˝EtpMq lies in the essential image of Et. Since Et is full and

faithful by Lemma 9.5.6, the existence of such a T is then guaranteed, and uniqueness follows

from the fact that full and faithful functors reflect isomorphisms.

Write U : M Ñ FinSet for the forgetful functor from the category of finite, continuous

M -sets to FinSet. Then, for finite sets S and S1, the hom-space

ThtpSemtpEtpMqqqpS, S
1q

can be identified with the set rM,FinSetspUS , US
1

q of natural transformations US Ñ US
1

,

with the smallest topology such that for any finite continuous M -set X and f P XS , the map

sending a natural transformation γ : US Ñ US
1

to γXpfq is continuous.

We show that StrtpSemtpEtpMqqq satisfies the conditions of Lemma 9.5.8. The proof that

the underlying discrete proto-theory is in the essential image of E : Mon Ñ PThpFinSetop
q

is exactly the same as in Proposition 8.1.7, noting that if the M -set X from the proof of

Proposition 8.1.7 is assumed to be continuous, then all the M -sets constructed subsequently

are easily seen to be continuous.

Now we show that StrtpSemtpEtpMqqq satisfies the additional conditions from Lemma 9.5.8.

First we must show that, for finite sets S and S1, the bijection

rM,FinSetspUS , US
1

q – rM,FinSetspUS , UqS
1

is a homeomorphism. First we check it is continuous in the forwards direction. It is sufficient to

check that it is continuous when composed with the projection πs1 : rM,FinSetspUS , UqS
1

Ñ

rM,FinSetspUS , Uq for s1 P S1. But this composite can be identified with

pπs1q˚ : rM,FinSetspUS , US
1

q Ñ rM,FinSetspUS , Uq

which is continuous, since ThtpSemtpEtpMqqq is a TOP-category. In the backwards direction,
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it is sufficient to show that the bijection is continuous when composed with the map

evf : rM,FinSetspUS , US
1

q Ñ US
1

sending γ to γXpfq for each finite, continuous M -set X and map f : S Ñ X. But this composite

is

pevf q
S1 : rM,FinSetspUS , UqS

1

Ñ US
1

which is continuous.

Now we must show that for each finite set S, the bijection

S ˆ rM,FinSetspU,Uq Ñ rMmFinSetspUS , Uq

that sends ps, γq to γ ˝πs is a homeomorphism. It is continuous in the forwards direction, since

it can be written as the composite

S ˆ rM,FinSetspU,Uq – FinSetp1, Sq ˆ rM,FinSetspU,Uq

StrtpUqˆid

��
rM,FinSetspUS , Uq ˆ rM,FinSetspU,Uq

��
rM,FinSetspUS , Uq,

where the last map is composition, and each of these maps is continuous. Now note that

rM,FinSetspU,Uq is a profinite space, as a limit of finite spaces, and in particular is com-

pact and Hausdorff. Thus S ˆ rM,FinSetspU,Uq is also compact and Hausdorff, as a finite

copower of such spaces. Similarly rM,FinSetspUS , Uq is compact and Hausdorff. But any

continuous bijection between compact Hausdorff spaces, and in particular the above map, is a

homeomorphism.

Corollary 9.5.10. The topological structure–semantics monad on PThtpFinSetop
q restricts

to a monad pT, ηT, µTq on the full subcategory TopMon of small topological monoids.

Proof. This is immediate from the previous proposition, since Et : TopMon ãÑ

PThtpFinSetop
q is full and faithful (Lemma 9.5.6).

Recall that, for a topological group G, the profinite completion of G is the topological group

pG defined as follows. The elements of pG are families ξ “ pξh P Hqh indexed by discrete finite

groups H and continuous group homomorphisms h : GÑ H, such that for any homomorphism

k : H Ñ H 1 between finite groups, we have

kpξhq “ ξk˝h.
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The topology on pG is the smallest topology such that each map

evh : pGÑ H

ξ ÞÑ ξh

is continuous, where H is finite and h : GÑ H is continuous.

Proposition 9.5.11. The monad pT, ηT, µTq on TopMon from Corollary 9.5.10 restricts to a

monad on the full subcategory TopGp ãÑ TopMon that is isomorphic to the profinite comple-

tion monad pp, η, µq.

Proof. The proof is essentially identical to that of Proposition 8.1.10 but with the word

“continuous” inserted as appropriate. We shall construct an isomorphism Φ: pG Ñ TG “

rG-FinSet,FinSetspU,Uq, where G is a topological group and U : M Ñ FinSet is the for-

getful functor from the category of finite continuous G-sets. We omit the proofs that this

isomorphism is natural, and that it is compatible with the monad structure.

A finite continuous G-set X with underlying set X0 is determined by a continuous group

homomorphism ρX : G Ñ SympX0q, where SympX0q is the group of automorphisms of X0 in

FinSet. Since SympX0q is a finite group, we may define ΦpξqX “ ξρX : X0 Ñ X0. We must

check that Φpξq thus defined actually is a natural transformation U Ñ U , that is, for any G-set

homomorphism k : X Ñ Y between finite continuous G-sets, that

X
k //

ΦpξqX
��

Y

ΦpξqY
��

X
k
// Y

commutes. Note that this square commutes for each ξ P pG if and only if the right-hand diamond

in

SympX0q

k˚

''
G

ρX

66

//

ρY
((

pG

Φp´qX

;;

Φp´qY

##

FinSetpX0, Y0q

SympY0q

k˚

77

commutes. But the outer diamond in this diagram commutes, since k is a G-set homomorphism.

Also the two left-hand triangles commute by definition of Φ. All the maps in this diagram are

continuous, where SymX0, SymY0 and FinSetpX0, Y0q are discrete. Recall that if a parallel

pair of continuous maps have Hausdorff codomain and agree on a dense subset of their domain,

then they are equal. The canonical map G Ñ pG has dense image; this is shown as part of the

proof of Theorem 3.1 of Deleanu [12]. Since FinSetpX0, Y0q is Hausdorff (since it is discrete),
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it therefore follows that the right-hand diamond does indeed commute.

Hence each Φpξq is indeed a natural transformation U Ñ U . In addition,

Φ: pGÑ rG-FinSet,FinSetspU,Uq

is a monoid homomorphism since each Φp´qX is by construction. It is also continuous: for any

finite, continuous G-set X and x P X, the composite

pG
Φ
ÝÑ rG-FinSet,FinSetspU,Uq

evx
ÝÑ X

sends ξ to ΦpξqXpxq “ ξρX pxq, so it can also be written as the composite

pG
evρX
ÝÑ SympX0q

evx
ÝÑ X,

and both of these maps are continuous. Both pG and rG-FinSet,FinSetspU,Uq are profinite

and in particular compact Hausdorff, so if we can show that Φ is a bijection it will follow from

continuity that it is a homeomorphism. We construct an inverse Ξ to Φ.

Let γ : U Ñ U ; we wish to construct an element Ξpγq P pG. Given a finite group H and a

continuous group homomorphism h : GÑ H, we obtain a continuous G-set Hh with underlying

set H, and with g P G acting by multiplication on the left by hpgq. Thus we have γHh : H Ñ H.

Define Ξpγqh “ γHhpeHq, where eH denotes the group identity of H.

We must check that Ξpγq so defined is indeed an element of pG, that is, that if k : H Ñ

H 1 is a homomorphism between finite groups, that Ξpγqk˝h “ kpΞpγqhq. But such a group

homomorphism k is also a G-set-homomorphism Hh Ñ H 1k˝h, so

H
k //

γHh
��

H 1

γH1
k˝h

��
H

k
// H 1

commutes. Thus,

Ξpγqk˝h “ γH1k˝hpeH1q “ γH1k˝hpkpeHqq “ kpγHhpeHqq “ kpΞpγqhq

as required.

Now we show that Ξ is inverse to Φ. Let ξ P pG. Then for any finite continuous G-set X

and x P X, we have ΦpξqXpXq “ ξρX pxq. Thus for continuous h : GÑ H with H finite,

ΞΦpξqh “ ΦpξqHhpeHq “ ξρHf peHq.

So we need to show that ξρHh peHq “ ξh. Define i : H Ñ SympH0q by sending m P H to left
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multiplication by m, where H0 is the underlying set of H. Then i is a group homomorphism

and

G
h //

ρHh ##

H

i

��
SymH0

commutes. Thus we have

ξρHh peHq “ ξi˝hpeHq “ ipξhqpeHq “ ξh

as required. So Ξ ˝ Φ “ id
pG.

Now Let γ : U Ñ U . For any finite continuous G-set X and x P X, we have

ΦΞpγqXpxq “ ΞpγqρX pxq “ γpSymX0qρX
pidXqpxq.

Note that we have a G-set homomorphism evx : pSymX0qρX Ñ X, since, given σ P SymX0 and

g P G,

evxpg ¨ σq “ ρXpgq ˝ σpxq “ g ¨ σpxq “ g ¨ evxpσq.

Hence

SymX0
evx //

γpSymX0qρX

��

X

γX

��
SymX0 evx

// X

commutes, and so

γpSymX0qρX
pidXqpxq “ evx ˝γpSymX0qρX

pidXq

“ γX ˝ evxpidXq

“ γXpxq.

Hence ΦΞpγq “ γ, and we have shown that Φ and Ξ are inverses. Hence we have a topological

monoid isomorphism

pG – rG-FinSet,FinSetspU,Uq,

as claimed.

Corollary 9.5.12. The topological structure–semantics monad on PThtpFinSetop
q restricts

to the profinite completion monad on the full subcategory TopGp ãÑ PThtpFinSetop
q.

Proof. This is immediate from Corollary 9.5.10 and Proposition 9.5.11.

In Table 9.1 we extend Table 8.1 to include the topological aspects of the analogy between
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groups and proto-theories that have been developed in this chapter.

Theory of groups Theory of proto-theories

Gp PThpBopq

FinGp ãÑ Gp Kl: MndpBq ãÑ PThpBopq

The functor Gpop
Ñ CAT{FinSet sending

G to the category G-FinSet of finite G-sets
The functor Sem: PThpBopqop Ñ CAT{B for
the canonical aritation

The profinite completion monad on Gp The structure–semantics monad on PThpBopq

The profinite completion monad is the coden-
sity monad of FinGp ãÑ Gp.

The structure–semantics monad is the coden-
sity monad of Kl : MndpBq ãÑ PThpBopq.

TopGp PThtpBopq

The subcategory ProfGp ãÑ TopGp of profi-
nite groups

PThctpBopq ãÑ PThtpBopq

The functor TopGpop
Ñ CAT{FinSet send-

ing a topological group G to the category of
finite continuous G-sets

The functor Semt : PThtpBopqop Ñ CAT{B

The profinite completion monad on TopGp The topological structure–semantics monad
on PThtpBopq

The profinite completion monad on TopGp
is idempotent, corresponding to the reflective
subcategory ProfGp

The topological structure–semantics monad
on PThtpBopq is idempotent, corresponding
to the reflective subcategory PThctpBopq

Table 9.1: Some further aspects of the analogy between groups and proto-theories, for a locally
small category B with enough subobjects and pointwise codensity monads of finite diagrams.
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Chapter 10

Complete topological

proto-theories

In this chapter we explore the properties of the category PThctpBopq of complete topological

proto-theories with arities Bop, for a suitable category B. Recall from Definition 9.4.9 that we

can decompose the topological structure–semantics adjunction

CAT{B K

Strt //
PThtpBopqop

Semt

oo

as a pair of adjunctions

CAT{B K

Strct //
PThctpBopqop

Semct

oo K

Incop
//
PThtpBopqop.

Cpltop
oo

where Semct and Inc are full and faithful.

In Section 10.1 we show that the structure–semantics monad on PThtpBopq arises as the

codensity monad of the full subcategory of monads. In Section 10.2 we turn to the question

of what limits and colimits exist in PThctpBopq and how they relate to those in MndpBq and

PThtpBopq. Finally in Section 10.3 we see how an important class of categories that are not

described by monads but are in a sense algebraic can be described by complete topological

proto-theories.

10.1 The topological structure–semantics monad as a co-

density monad

In this section we will show that when a locally small category B has pointwise codensity

monads of finite diagrams and enough subobjects, the topological structure–semantics monad
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on PThtpBopq arises as the codensity monad of the inclusion Klt : MndpBq ãÑ PThtpBopq. We

could presumably show this by an argument almost identical to that of Proposition 8.2.1 (and

indeed, such a proof would work even if B did not have enough subobjects). However, when

B has enough subobjects an alternative, shorter proof is available, which proves some other

interesting and useful results along the way.

Throughout this section we fix a locally small category B with finite products and enough

subobjects.

Proposition 10.1.1. The functor Klt “ Disc ˝Kl: MndpBq Ñ PThtpBopq factors through

Inc : PThctpBopq ãÑ PThtpBopq.

Proof. Recall that PThctpBopq is defined as the full subcategory of PThtpBopq consisting of

those topological proto-theories L : Bop Ñ L such that

EL : LÑ StrtpSemtpLqq

is an isomorphism. Recall from Proposition 3.3.9 that for any monad T on B, we have T –

StrMndpSemMndpTqq, that is, the monad generated by the Eilenberg–Moore adjunction for T

is isomorphic to T. By Proposition 9.2.3, this implies that

KltpTq – KltpStrMndpSemMndpTqqq – StrtpSemtpKltpTqqq,

and this isomorphism is indeed given by EKltpTq.

Definition 10.1.2. Write Klct : MndpBq Ñ PThctpBopq for the factorisation of

Klt : MndpBq Ñ PThtpBopq through Inc: PThctpBopq ãÑ PThtpBopq.

Proposition 10.1.3. Let I : D ãÑ C be a dense and full and faithful functor, and let b P C.

Then the induced inclusion

J : pI Ó bq Ñ C{b

is also dense.

Proof. We must show that, for every pf : cÑ bq P C{b, the canonical cocone on

pJ Ó fq Ñ pI Ó bq
J
ÝÑ C{b

with vertex f is a colimit cocone. Consider the commutative diagram

pJ Ó fq //

��

pI Ó bq
J //

��

C{b

��
pI Ó cq // D

I
// C
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where the vertical arrows are the evident forgetful functors. The left-most vertical arrow is

in fact an isomorphism: an object of pJ Ó fq consists of an object d P D, and morphisms

f 1 : IdÑ b and g : IdÑ c such that f ˝ g “ f 1, but such an object is determined by g : IdÑ c

alone, which is an object of pI Ó cq. Thus we can identify cocones on diagrams of shape pJ Ó fq

with cocones on diagrams of shape pI Ó cq.

The forgetful functor C{bÑ C sends the canonical cocone on

pJ Ó fq Ñ pI Ó bq
J
ÝÑ C{b

with vertex f to the canonical cocone on

pI Ó cq Ñ D I
ÝÑ C

with vertex c. But this latter cocone is a colimit cocone since I is dense. Furthermore, the

forgetful functor C{b Ñ C creates all colimits (Lemma in Section V.6 of [33]) so the former

cocone is also a colimit cocone. Hence J is dense, as claimed.

Proposition 10.1.4. Let I : D ãÑ C be a dense and full and faithful functor, and let G : E ãÑ C

be a full and faithful functor with left adjoint F . Then the full image of FI is dense in E.

Proof. Write J : F ãÑ E for the full image of FI. Let α : EpJ´, eq Ñ EpJ´, e1q. We define a

natural transformation β : CpI´, Geq Ñ CpI´, Ge1q as follows. Let d P D and g : IdÑ Ge. This

corresponds under the adjunction F % G to ḡ : FId Ñ e in E , and since FId P F , we have

αFIdpḡq : FIdÑ e1. Define βdpgq to be the composite

Id
ηId
ÝÑ GFId

GαFIdpḡq
ÝÑ Ge1,

where η : idC Ñ GF is the unit of the adjunction.

We now show that β is natural. Let f : d1 Ñ d in D. Then

αFId1pĞg ˝ Ifq “ αFId1pḡ ˝ FIfq “ αFIdpḡq ˝ FIf,

and so the right-hand triangle in

Id1
ηId1 //

If

��

GFId1

GαFId1 p
Ğg˝Ifq

##
GFIf

��
Id

ηId
// GFId

GαFIdpḡq
// Ge1

commutes, and the left-hand square commutes by naturality of η. It follows that βd1pg ˝ Ifq “

βdpgq ˝ If , so β is a natural transformation CpI´, Geq Ñ CpI´, Ge1q.
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Since I is dense, there exists a unique h1 : Ge Ñ G1e such that β “ h1˚. Since G is full and

faithful, there is a unique h : eÑ e1 such that h1 “ Gh. We will show that α “ h˚. Any object

of F is of the form FId for some d P D. Let f : FIdÑ e. We wish to show that h˝f “ αFIdpfq.

This equality holds if and only if Gph ˝ fq ˝ ηId “ GαFIdpfq ˝ ηId. But if we set g “ Gf ˝ ηId,

then f “ ḡ, and so

Gh ˝Gf ˝ ηId “ h1 ˝ g “ βdpgq “ GαFIdpḡq ˝ ηId “ GαFIdpfq ˝ ηId

as required.

Finally we show that h : e Ñ e1 is unique such that α “ h˚. Let k : e Ñ e1, and suppose k

has the property that for all d P D and f : FIdÑ e, we have k ˝ f “ h ˝ f . Then for any d P D

and g : IdÑ Ge, we have

Gh ˝ g “ Gh ˝Gḡ ˝ ηId “ Gk ˝Gḡ ˝ ηId “ Gk ˝ g,

where we have taken f “ ḡ. Since I is dense, it follows that Gh “ Gk, so h “ k, since G is

faithful.

Thus J is dense, as required.

Proposition 10.1.5. If B admits pointwise codensity monads of finite diagrams, then the

inclusion Klct : MndpBq ãÑ PThctpBopq is codense.

Proof. The full subcategory ∆ of non-zero finite ordinals is dense in CAT; this is well-known.

Hence, by Proposition 10.1.3, the induced inclusion

∆{B ãÑ CAT{B

is also dense. Now we apply Proposition 10.1.4, with C “ CAT{B, and D “ ∆{B, and I the

inclusion, and with E “ PThctpBopqop, G “ Semct and F “ Strct. It follows that the image

of ∆{B under Strct in PThctpBopqop is dense, so its opposite is codense in PThctpBopq. But

B admits pointwise codensity monads of finite diagrams and all of the categories in ∆ Ď CAT

are finite. Thus every functor into B with domain in ∆ has a pointwise codensity monad, and

so the image of ∆{B is contained in the essential image of Klct : MndpBq ãÑ PThctpBopq by

Proposition 5.2.8. But a subcategory of PThctpBopq that contains a subcategory codense in

PThctpBopq is itself codense in PThctpBopq. Hence Klct : MndpBq ãÑ PThctpBopq is codense.

Theorem 10.1.6. If B has pointwise codensity monads of finite diagrams, then the structure–

semantics monad on PThtpBopq is the codensity monad of Klt : MndpBq Ñ PThtpBopq.

Proof. Under these conditions, Klct : MndpBq Ñ PThctpBopq is codense by Proposition 10.1.5,
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and so by Lemma 2.5.8, the codensity monad of the composite

MndpBq Klct
ÝÑ PThctpBopq

Inc
ÝÑ PThtpBopq

is the monad induced by the adjunction Cplt % Inc. But this composite is Klt : MndpBq Ñ

PThtpBopq by definition, and this monad is the topological structure–semantics monad.

10.2 Limits and colimits in PThctpBopq

In this section, we examine whether limits and colimits exist in PThctpBopq, and whether the

inclusion Klct : MndpBq ãÑ PThctpBopq preserves them; since PThctpBopq is supposed to be in

some sense a “convenient category of monads”, it is desirable for it to have limits and colimits

and for them to coincide with those in MndpBq at least reasonably often. These results lead to

two further characterisations of the subcategory PThctpBopq ãÑ PThtpBopq (Theorems 10.2.7

and 10.2.8) which do not involve the structure–semantics adjunction, and which deepen the

analogy between proto-theories and groups.

Throughout this section we fix a locally small category B with finite products and enough

subobjects.

Proposition 10.2.1. Both PThtpBopq and PThctpBopq have all large limits and colimits.

Proof. If a monoidal category V has large limits then so does V-CAT, and they are easy to

compute: given a diagram D : I Ñ V-CAT, the set of objects of its limit is given by the limit

obplimDq “ lim
iPI

obpDiq

in SET, and, for pxiqiPI and pyiqiPI in limiPI obpDiq, the hom-object is given by the limit

limDppxiqiPI , pyiqiPIq “ lim
iPI

Dipxi, yiq

in V. If V has large colimits then so does V-CAT, although they are less straightforward —

this is the main result (Corollary 2.14) of Wolff [46]. In particular, since TOP has large limits

and colimits, so does TOP-CAT. Thus by Proposition 7.1.6, it follows that PThtpBopq has

large limits and colimits. Since PThctpBopq is a reflective subcategory of PThtpBopq, it does

too.

Lemma 10.2.2. For all b, b1 P B, the functor evb,b1 : PThtpBopq Ñ TOP that sends L : Bop Ñ

L to LpLb, Lb1q preserves large limits.

Proof. Limits in PThtpBopq are computed as follows: given D : I Ñ PThtpBopq, write

Di : Bop Ñ Di for Dpiq. Then the Di form a diagram in TOP-CAT and the Di give a
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cone on this diagram with vertex Bop. Thus there is an induced TOP-functor from Bop to

the limit of this diagram in TOP-CAT. The limit of D is the bijective-on-objects part of this

induced TOP-functor.

Writing L : Bop Ñ L for this limit, it follows from the general form of limits in TOP-CAT

that

LpLb, Lb1q “ lim
iPI
DipDib,Dib

1q

as claimed.

The following result is well-known but I could not find it in the existing literature.

Lemma 10.2.3. Any codense, full and faithful functor I : A Ñ D preserves all colimits that

exist in A.

Proof. Since I is full and faithful, it follows that the Yoneda embedding pH‚qop : A Ñ

rA,SETsop is isomorphic to the composite

A I
ÝÑ D NG

ÝÑ rA,SETsop

where NG sends d P D to Dpd, I´q. Since pH‚qop preserves all colimits, so does this composite.

But codensity of I means that NG is full and faithful, and in particular it reflects all colimits,

and hence I preserves all colimits.

Corollary 10.2.4. If B has pointwise codensity monads of finite diagrams, then the inclusion

Klt : MndpBq ãÑ PThctpBopq preserves all colimits that exist in MndpBq.

Proof. Under these conditions, Klct : MndpBq Ñ PThctpBopq is codense by Proposition 10.1.5.

And Klct is always full and faithful, so by Lemma 10.2.3, it preserves all colimits that exist in

MndpBq.

Remark 10.2.5. In contrast to this corollary, and to Proposition 5.2.9, it is not necessarily

the case that the inclusion Klct preserves large limits, or even all small limits. For example,

let T be any monad on B. Then if B has small limits, the countable power TN of T exists in

MndpBq. Also, the countable power KltpTqN exists in PThtpBopq, and by Lemma 10.2.2, the

hom-spaces in this proto-theory are obtained by taking the N-th power of the corresponding

hom-spaces of KltpTq. Recall that KltpTq and KltpTNq are both topologically discrete (since Klt

of any monad is), but an infinite power of a discrete space (with more that one element) is not

discrete. Thus we cannot have KltpTNq – KltpTqN.

However, we do have the following:

Proposition 10.2.6. The inclusion Klct : MndpBq ãÑ PThctpBopq preserves finite limits.
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Proof. It is sufficient to show that the inclusion Klt : MndpBq ãÑ PThtpBopq preserves finite

limits, since limits in PThctpBopq are the same as in PThtpBopq.

We show that Disc : PThpBopq Ñ PThtpBopq preserves finite limits; this is sufficient, since

Klt is the composite

MndpBq Kl
ÝÑ PThpBopq

Disc
ÝÑ PThtpBopq

and Kl preserves finite limits by Proposition 5.2.9.

By Lemma 10.2.2, limits in PThtpBopq are computed by taking limits in TOP on each

hom-set individually, so to show that Disc : PThpBopq Ñ PThtpBopq preserves finite limits, it

is sufficient to show that its composite with each evb,b1 : PThtpBopq Ñ TOP does. But the

diagram

PThpBopq

evb,b1

��

Disc // PThtpBopq

evb,b1

��
SET

Disc
// TOP

commutes, and both Disc : SET Ñ TOP and evb,b1 : PThpBopq Ñ SET preserve finite limits.

It is now straightforward to give further characterisations of complete topological proto-

theories in terms of monads, without mentioning the structure–semantics adjunction.

Theorem 10.2.7. Suppose B has pointwise codensity monads of finite diagrams. Then a

topological proto-theory with arities Bop is complete (that is, it lies in the full subcategory

PThctpBopq of PThtpBopq) if and only if it can be expressed as a large limit of monads in

PThtpBopq.

Proof. Since Klct : MndpBq ãÑ PThctpBopq is codense by Proposition 10.1.5, every object

of PThctpBopq is a limit of monads in PThctpBopq itself, and the inclusion into PThtpBopq

preserves limits.

Conversely, the inclusion PThctpBopq ãÑ PThtpBopq creates limits, that is, PThctpBopq is

closed under limits in PThtpBopq. Since every monad is a complete topological proto-theory,

it follows that every limit of monads is.

Theorem 10.2.8. Suppose B has pointwise codensity monads of finite diagrams. Then

PThctpBopq is the smallest replete reflective subcategory of PThtpBopq containing MndpBq.

Proof. First note that PThctpBopq is a replete reflective subcategory of PThtpBopq contain-

ing the monads. Any replete reflective subcategory of PThtpBopq is closed under limits in

PThtpBopq, and so if such a subcategory contains all the monads, then it contains all limits of

monads. Thus, by the previous theorem, it contains PThctpBopq.
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Finally, we once again summarise in Table 10.1 the analogy between groups and proto-

theories, extending Tables 8.1 and 9.1, including the characterisations of complete topological

proto-theories in terms of monads found in this chapter.

Theory of groups Theory of proto-theories

Gp PThpBopq

FinGp ãÑ Gp Kl: MndpBq ãÑ PThpBopq

The functor Gpop
Ñ CAT{FinSet sending

G to the category G-FinSet of finite G-sets
The functor Sem: PThpBopqop Ñ CAT{B for
the canonical aritation

The profinite completion monad on Gp The structure–semantics monad on PThpBopq

The profinite completion monad is the coden-
sity monad of FinGp ãÑ Gp.

The structure–semantics monad is the coden-
sity monad of Kl : MndpBq ãÑ PThpBopq.

TopGp PThtpBopq

The subcategory ProfGp ãÑ TopGp of profi-
nite groups

PThctpBopq ãÑ PThtpBopq

The functor TopGpop
Ñ CAT{FinSet send-

ing a topological group G to the category of
finite continuous G-sets

The functor Semt : PThtpBopqop Ñ CAT{B

The profinite completion monad on TopGp The topological structure–semantics monad
on PThtpBopq

The profinite completion monad on TopGp is
the codensity monad on FinGp ãÑ TopGp.

The topological structure–semantics monad
is the codensity monad of Klt : MndpBq ãÑ

PThtpBopq.

The profinite completion monad on TopGp
is idempotent, corresponding to the reflective
subcategory ProfGp.

The topological structure–semantics monad
on PThtpBopq is idempotent, corresponding
to the reflective subcategory PThctpBopq.

FinGp ãÑ ProfGp is codense. Klct : MndpBq ãÑ PThtpBopq is codense.

ProfGp is the smallest replete reflective sub-
category of TopGp containing FinGp.

PThctpBopq is the smallest replete reflec-
tive subcategory of PThtpBopq containing
MndpBq.

The profinite groups are precisely the small
limits of discrete finite groups in TopGp.

The complete topological proto-theories are
precisely the large limits of discrete monads
in PThtpBopq.

Table 10.1: Some further aspects of the analogy between groups and proto-theories, for a locally
small category B with enough subobjects and pointwise codensity monads of finite diagrams.

10.3 Equationally presentable categories

In this section we examine the relationship between proto-theories with arities in Set and the

notion of an equational presentation, as defined by Manes in [35]. Roughly speaking, equational

presentations are to arbitrary monads on Set as classical finitary algebraic theories are to

finitary monads. There is, however, an important point at which this analogy breaks down.
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Every finitary monad gives rise to a finitary algebraic theory and vice versa. Similarly, every

monad on Set can be described by an equational presentation, however not every equational

presentation gives rise to a monad. This is because an equational presentation may have a large

set of operations of a given arity, meaning that the forgetful functor from its category of models

to Set will not have a left adjoint and so cannot be monadic.

The following definitions are taken from 5.34 in Chapter 1 of [35].

Definition 10.3.1. An operator domain Ω consists of, for each small cardinal n, a set Ωn.

Definition 10.3.2. Given an operator domain Ω, an Ω-model pX, δq consists of a small set

X together with, for each small cardinal n and each ω P Ωn, a function δω : Xn Ñ X.

If pX, δq and pX 1, δ1q are Ω-models, then an Ω-model homomorphism pX, δq Ñ pX 1, δ1q

is a function h : X Ñ X 1 such that for each n and each ω P Ωn, the diagram

Xn hn //

δω
��

X 1n

δ1ω
��

X
h
// X 1

commutes.

We writeMΩ for the category of Ω-models and UΩ : ModpΩq Ñ Set for the evident forgetful

functor.

Definition 10.3.3. Given an operator domain Ω, and a small cardinal n, an n-ary operation

of Ω is a natural transformation γ : UnΩ Ñ UΩ, where UnΩ denotes the n-th power of UΩ defined

pointwise. An n-ary Ω-equation is just a pair pγ, γ1q of n-ary operations of Ω, and an Ω-

equation is an n-ary equation for some n.

Definition 10.3.4. An equational presentation consists of an operator domain Ω together

with a possibly large set E of Ω-equations. The category MpΩ,Eq of models of pΩ, Eq is the

full subcategory of MΩ consisting of those Ω-models pX, δq such that whenever pγ, γ1q is an

n-ary equation in E, we have an equality of functions

γpX,δq “ γ1pX,δq : X
n Ñ X.

We write UpΩ,Eq : MpΩ,Eq Ñ Set for the restriction of UM to this subcategory.

Note that in [35], Manes uses the word “algebra” instead of “model” in the definitions

above. We have made this change of terminology to avoid confusion with our use of “algebra”

in Section 5.1.

Manes shows in Theorem 5.40 in Chapter 1 of [35] that every monad on Set can equivalently

be described by an equational presentation. However, not every functor of the form UpΩ,Eq for

an equational presentation pΩ, Eq is monadic: in 5.46 and 5.48 in Chapter 1 of [35], Manes
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gives equational presentations for the categories of small complete lattices and small complete

Boolean algebras respectively, while showing that these categories are not monadic over Set.

Thus monads are not sufficiently powerful to describe equationally presentable categories.

We now show that they can be described in a natural way by complete topological proto-theories.

For the rest of this section, fix an equational presentation pΩ, Eq.

Definition 10.3.5. Write K for the set of all small cardinals.

Definition 10.3.6. Define a functor Sem0 : pSETK
qop Ñ CAT{Set as follows. We may regard

the objects of SETK as operator domains. Given Ω P SETK we define Sem0pΩq to be

UΩ : MΩ Ñ Set

as defined in Definition 10.3.2. Let f be a morphism Ω Ñ Ω1 in SETK , that is, a family of

maps fn : Ωn Ñ Ω1n. Given an Ω1-model pX, δq, we define Sem0pfqpX, δq to be the Ω-model

with underlying set X, and for which the interpretation of ω P Ωn is

δfnpωq : X
n Ñ X.

We define Sem0pfq to be the identity on morphisms.

Definition 10.3.7. Define a functor Str0 : CAT{Set Ñ pSETK
qop as follows. Given U : MÑ

Set, let Str0pUq be the operator domain with

Str0pUqn “ rM,SetspUn, Uq

for any small cardinal n. Given

M1
Q //

U 1 ""

M

U}}
Set

in CAT{Set, define Str0pQq : Str0pUq Ñ Str0pU
1q by sending γ : Un Ñ U to γQ : U 1n Ñ U 1.

Lemma 10.3.8. We have an adjunction

CAT{Set K

Str0 //
pSETK

qop.
Sem0

oo

Proof. Let Ω P SETK and U : MÑ Set; we will establish a bijection

CAT{SetpU,Sem0pΩqq – SETK
pΩ,Str0pUqq.
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Let f : Ω Ñ Str0pUq. Then f consists of, for every n P K and ω P Ωn, a natural transformation

fnpωq : U
n Ñ U . Equivalently, to specify such an f is to specify, for each n P K, ω P Ωn and

m PM, a function

fnpωqm : pUmqn Ñ Um,

such that for each g : mÑ m1 in M, the diagram

pUmqn
pUgqn //

fnpωqm

��

pUm1qn

fnpωqm1

��
Um

Ug
// Um1

commutes. But this is clearly the same as specifying, for each m PM, an Ω-model structure

(given by all the fnpωqm as n and ω vary) such that for each g : mÑ m1, the map Ug becomes

an Ω-model homomorphism. But this is precisely a morphism

U Ñ Sem0pΩq

in CAT{Set. Thus we have such a bijection; it is straightforward to check that this bijection

is natural in Ω and U .

Definition 10.3.9. Define a functor S : PThpSetop
q Ñ SETK , sending L : Setop

Ñ L to the

family SpLq P SETK with

SpLqn “ LpLn,L1q

for n P K, and sending a morphism P : L1 Ñ L to the map sending l P L1pL1n,L11q to P plq P

LpLn,L1q.

Lemma 10.3.10. The diagram

CAT{Set
Str //

Str0 ''

PThpSetop
q

S
��

SETK

commutes up to isomorphism.

Proof. Recall that for U : MÑ Set and small sets X and Y , we have

ThpUqpX,Y q “ rM,SetspSetpY, U´q,SetpX,U´qq

and in particular

SpStrpUqqn “ ThpUqpn, 1q “ rM,SetspSetpn,U´q,Setp1, U´qq – rM,SetspUn, Uq – Str0pUq.
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It is straightforward to check that the two functors agree on morphisms.

Lemma 10.3.11. The functor S : PThpSetop
q Ñ SETK has a left adjoint.

Proof. Regarding K as a discrete category (i.e. a category with only identity morphisms), define

a functor F : K Ñ Setop
ˆSet sending n P K to pn, 1q. Then we can write S as the composite

PThpSetop
q Ñ rSetop

ˆ Set,SETs
F˚
ÝÑ rK,SETs – SETK ,

where the first factor sends L : Setop
Ñ L to LpL´, L´q : Setop

ˆ Set Ñ SET. This first

factor is monadic by Proposition 4.5.11, and in particular has a left adjoint, and F˚ has a left

adjoint given by left Kan extensions along F . Thus the composite S has a left adjoint.

Definition 10.3.12. Write T : SETK
Ñ PThpSetop

q for the left adjoint of S.

Proposition 10.3.13. The diagram

CAT{Set PThpSetop
qopSemoo

pSETK
qop

T

OO

Sem0

gg

commutes up to isomorphism.

Proof. This follows from Lemmas 10.3.8, 10.3.10, Definition 10.3.12 and the uniqueness of

adjoints.

Theorem 10.3.14. Every equationally presentable category over Set is of the form SemctpLq

for some complete topological proto-theory L.

Proof. Let pΩ, Eq be an equational presentation. Let Ω1 be the operator domain defined by

setting Ω1n to be the set of n-ary equations in E for each n P K. Consider the operator domain

Str0pSem0pΩqq; the elements of Str0pSem0pΩqqn are the natural transformations

UnΩ Ñ UΩ

for n P K. Thus, E defines two canonical morphisms f1, f2 : Ω1 Ñ Str0 ˝Sem0pΩq; given n P K

and e “ pγ1, γ2q P Ω1n, the map pfiqn sends e to γi for i “ 1, 2.

Since Str0 $ Sem0, these correspond to a pair of morphisms F1, F2 : Sem0pΩq Ñ Sem0pΩ
1q

in CAT{Set. An object of MΩ1 is a set X equipped with an n-ary operation for each n-ary

equation of E, satisfying no equations. Given pX, δq PMΩ, the functor Fi sends pX, δq to the

set X equipped with, for each n-ary equation e “ pγ1, γ2q P E, the n-ary operation

pγiqpX,δq : X
n Ñ X.

200



Thus pX, δq is a model of pΩ, Eq if and only if F1pX, δq “ F2pX, δq, so the category of pΩ, Eq

models is the equaliser of F1 and F2 in CAT{Set.

Since Semct : PThctpSetop
qop Ñ CAT{Set is full and faithful, the full subcategory of

CAT{Set consisting of those functors isomorphic to one of the from SemctpLq for some L P

PThctpSetop
q is reflective, and in particular is closed under equalisers. Thus if we can show

that a functor of the form Sem0pΩq for an operator domain Ω lies in this subcategory, the result

will follow. But each triangle in

PThctpSetop
qop

Semct

vv
CAT{Set PThtpSetop

qop

Cpltop

OO

Semtoo

PThpSetop
qop

Sem

hh

Discop

OO

pSETK
qop

T op

OOSem0

``

commutes up to isomorphism, and so Sem0 takes values in this subcategory as required.
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Chapter 11

Open questions

In this thesis we have developed the notions of proto-theory and aritation, leading to a gen-

eral structure–semantics adjunction that generalises the semantics of many existing category-

theoretic notions of algebraic theory. We have also seen that complete topological proto-theories

provide a generalisation of monads for which the semantics functor has a left adjoint, while

maintaining the desirable property that the semantics functor is full and faithful. However,

there are many questions that remain to be answered both about proto-theories in general,

and about complete topological proto-theories in particular. In this chapter we discuss some of

these questions.

In Section 11.1 we consider the question of what the most appropriate notion of morphism

is between proto-theories in different settings and between aritations. Then in Section 11.2 we

discuss whether even more general notions of proto-theory and aritation, that appear to make

sense formally, have any practical relevance. Finally in Section 11.3 we ask whether we can

further extend the analogy we have developed between complete topological proto-theories and

profinite groups.

11.1 Relating different aritations and settings

In category theory, whenever one encounters a new type of mathematical object, it is natural

to ask what the appropriate morphisms between those objects are. The two main new con-

cepts introduced in this thesis are proto-theories and aritations, so we should ask what the

corresponding morphisms are. Doing so may also help us further understand the relationships

between the different notions of algebraic theory that are generalised by proto-theories.

If one picks any two of the notions of algebraic theory from Chapter 3 at random there

are likely to be canonical functors in either direction between the corresponding categories

of theories, and these functors will be compatible with the semantics to various extents. In

addition there are various notions of morphisms of monads, not just between monads on the
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same category, but between monads on different categories as described in Street [42], which

again are compatible with the semantics to different extents. One may hope that these different

ways of relating algebraic theories of different types can be understood in terms of morphisms

of proto-theories and aritations.

Given a setting X , and an object A of that setting we have considered the category PThpAq

of proto-theories with arities A from the beginning. However we may still ask whether there is

a sensible notion of morphism between proto-theories with different objects of arities in X , or

even between proto-theories in different settings.

Here is one possible approach. Let X and X 1 be settings, let A P X and A1 P X 1, and let

L : AÑ L and L1 : A1 Ñ L1 be proto-theories in X and X 1 respectively. Then one could define

a morphism LÑ L1 to consist of a morphism of settings F : X Ñ X 1 (meaning a 2-functor that

preserves cotensors and is compatible with the factorisation systems on X and X 1), together

with 1-cells G : FAÑ A1 and H : FLÑ L1 such that

FA FL //

G
��

FL

H
��

A1
L1
// L1

commutes up to equality, up to a specified isomorphism, or up to a specified 2-cell in either

direction in X 1. Alternatively one could take G and H to be in the opposite directions and

again ask for the resulting square to commute in one of the senses above. This yields 8 possible

definitions, and no doubt there are yet more variations one could think of.

Question 11.1.1. What is the most appropriate notion of morphism between general proto-

theories in different settings?

Before one can talk about the semantics of a proto-theory, one needs an interpretation of

the arities of that proto-theory. Thus, if we want to relate the semantics of two proto-theories,

we will probably need not only a morphism of proto-theories, but also a morphism between the

aritations we are using to define their semantics.

Recall from Section 4.7 that an aritation x´,´y : A ˆ B Ñ C in the setting CAT can be

viewed as a Chu space in CAT and so morphisms of Chu spaces provide a notion of morphisms

of aritations. An important class of aritations in CAT are given by the canonical aritation

associated with an arbitrary locally small category B, given by the hom-functor

Bp´,´q : Bop ˆ B Ñ Set.

If B1 is another locally small category then a Chu space morphism between the corresponding
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Chu spaces consists of functors F : B Ñ B1 and G : B1 Ñ B such that

Bop ˆ B1 idˆG //

Fˆid

��

Bop ˆ B

Bp´,´q
��

B1op ˆ B1
B1p´,´q

// Set

commutes. However, asking for this square to commute strictly is too strong; it is more appro-

priate to consider F and G as above such that this square commutes up to specified isomor-

phism. A morphism of aritations in this sense consists of F : B Ñ B1, G : B1 Ñ B and specified

isomorphisms

B1pFb, b1q – Bpb,Gb1q

natural in b P B, b1 P B1. In other words, morphisms of aritations in this sense are precisely

adjunctions.

Chu space morphisms provide a good candidate for a notion of morphism of aritations.

However, the interpretation of aritations as Chu spaces is only available in the setting CAT,

and Chu space morphisms only make sense between aritations that take values in the same

category C. Therefore if we wish to use morphisms of aritations to compare proto-theories in

different settings, we will need a more general notion.

Recall that an aritation in a setting X consists of a functor of the form

H‚ : B Ñ X pA, Cq

where B is a category and A, C P X . Thus we might define a morphism from this aritation to

another, say

H 1‚ : B1 Ñ X pA1, C1q

to consist of a functor F : B Ñ B1 and 1-cells G : A1 Ñ A and K : C Ñ C1 in X such that

B H‚ //

F

��

X pA, Cq
K˚��

X pA, C1q
G˚��

B1
H1‚

// X pA1, C1q

commutes.

On the other hand, the aritation H‚ corresponds to a 1-cell

A H‚
ÝÑ rB, Cs
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in X and there is a similar pH‚q1 corresponding to H 1‚. Viewing the aritations this way, we

might be tempted to define a morphism of aritations to consist of a functor F : B1 Ñ B and

1-cells G : AÑ A1 and K : C Ñ C1 such that

A H‚ //

G

��

rB, Cs
K˚��

rB, C1s
F˚��

A1
pH‚q1

// rB1, C1s

commutes.

If X admits tensors, meaning that for each B P CAT the 2-functor rB,´s : X Ñ X admits

a left adjoint B b´, then the aritation H‚ corresponds to a 1-cell

H : B bAÑ C

and similarly we have H 1 for H 1‚. Then a morphism of aritations could be defined to consist of

a functor F : B Ñ B1 and 1-cells G : AÑ A1 and K : C Ñ C1 such that

B bA H //

FbG

��

C

K

��
B1 bA1

H1
// C

commutes. Thus there are at least three different candidates for how to define a morphism of

aritations. If in each case we allow the relevant square to commute up to equality, isomorphism

or a 2-cell in either direction, there are 12 candidates.

Each of these candidates may be compatible (or fail to be compatible) with the structure–

semantics adjunction in at least four different ways. A functor F : B Ñ B1 induces an adjunction

CAT{B K

F! //
CAT{B1

F˚
oo

where the left adjoint is given by composition with F , and the right adjoint by pullback along

F . A 1-cell G : AÑ A1 induces an adjunction

PThpAq K

G˚ //
PThpA1q

G!

oo

with the left adjoint given by pushout alongG, and the right adjoint given by first pre-composing

with G and then taking the factorisation.

Thus for each of the 12 notions of morphism of aritation, we can ask whether each of the

206



four squares in

CAT{B K

Str //

��

PThpAqop

Sem
oo

��
CAT{B1 K

Str //

OO

PThpA1qop

Sem
oo

OO

commutes, where the vertical arrows are induced by the functor and 1-cells comprising the

morphism of aritations as described above.

Question 11.1.2. What is the most appropriate notion of morphism between aritations, and

to what extent are such morphisms compatible with structure–semantics adjunctions?

11.2 Structure–semantics adjunctions in more general

contexts

Recall that a setting consists of a 2-category with cotensors and a factorisation system, and an

aritation in a setting X consists of B P CAT, together with A, C P X and H‚ : B Ñ X pA, Cq.

From this data, we automatically obtain an adjunction

CAT{B K

Str //
PThpAqop.

Sem
oo

The process by which this adjunction is constructed, as described in Sections 6.2 and 6.3, does

not make use of any special properties of CAT other than it being a symmetric monoidal

closed category. Thus we can repeat this process to obtain notions of proto-theory, aritation

and structure–semantics adjunctions for any symmetric monoidal category. Let us make this

more precise.

Definition 11.2.1. Let V be a symmetric monoidal closed category. Then a V-setting consists

of a V-category X that is cotensored over V and whose underlying ordinary category is equipped

with a factorisation system pE ,N q.

Definition 11.2.2. Let V be a symmetric monoidal closed category and pX , E ,N q a V-setting.

Write X0 for the underlying ordinary category of X and let A be an object of X (and hence also

of X0). Then we write PThpAq for the full subcategory of A{X0 consisting of those morphisms

out of A that are in E .

Definition 11.2.3. Let V be a symmetric monoidal closed category and X a V-setting. Then

a V-aritation in X consists of objects B P V and A,C P X together with a morphism

H‚ : B Ñ X pA,Cq

207



in V, or equivalently

H‚ : AÑ rB,Cs

in X0.

Given a symmetric monoidal closed category V, a V-setting X and a V-aritation H‚ : B Ñ

X pA,Cq in X , we may define functors

• ι : PThpAq Ñ A{X0

• G : pA{X0q
op Ñ V{X pA,Cq

• H˚‚ : V{X pA,Cq Ñ V{B

exactly as in Definition 6.2.1, and these have adjoints defined exactly as in Definition 6.3.1.

Composing these three adjunctions gives

V{B K

Str //
PThpAqop.

Sem
oo

Thus the formalism of proto-theories, aritations and structure–semantics adjunctions makes

sense in a more general context than the one we have focused on in this thesis. However,

the intuition of proto-theories as consisting of operations of different arities no longer makes

sense in this general context, so it is not clear how it is best to interpret these more general

structure–semantics adjunctions.

We saw in Section 4.7 that aritations in CAT are a special case of Chu spaces. But in fact

a Chu space in any closed symmetric monoidal category V is a V-aritation in the V-setting V

as defined above. Thus every Chu space gives rise to a structure–semantics adjunction.

Chu spaces in Set encompass an enormous range of mathematical structures; all algebraic

structures, relational structures and topological spaces can be regarded as Chu spaces. A

study of the structure–semantics adjunctions arising from all the various types of Chu space is

beyond the scope of this thesis, but let us briefly consider the adjunction obtained by regarding

a topological space X as a Chu space.

We regard X as a Chu space by taking the set of points to be the underlying set of X and

the set of states to be the set OpXq of open sets of X. We take the set of truth values to be

2 “ t0, 1u and the pairing

X ˆOpXq Ñ 2

to be the map sending px, Uq to 1 if x P U and 0 otherwise.

We think of this as an aritation in Set, equipped with the usual surjection/injection fac-

torisation system. Thus a Set-proto-theory with arities OpXq is a surjection out of OpXq, and

we have an adjunction

Set{X K

Str //
PThpOpXqqop.

Sem
oo
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Given a set Y and a function g : Y Ñ X we obtain Strpgq : OpXq Ñ Thpgq as the image

factorisation

OpXq //

Strpgq

��

2X

g˚

��
Thpgq // 2Y .

We can thus interpret Thpgq as consisting of those subsets V of Y of the form g´1pUq for some

open U Ď X. But these are precisely the open sets for the topology induced by g; that is, the

smallest topology on Y such that g is continuous.

Thus we recover an important construction in topology from a structure–semantics adjunc-

tion. This suggests that this very general notion of structure–semantics adjunction is potentially

significant in contexts besides CAT, and is worthy of further study.

Question 11.2.4. What is the general significance of aritations, proto-theories and structure–

semantics adjunctions in closed symmetric monoidal categories other than CAT?

11.3 Complete topological proto-theories and profinite

groups

In Chapters 8, 9 and 10, we explored an analogy between proto-theories and groups, in which

complete topological proto-theories corresponded to profinite groups, culminating in Table 10.1.

In particular we have given several characterisations of the category of complete topological

proto-theories on a locally small category B with small limits and enough subobjects, mirroring

similar characterisations of the category of profinite groups, as displayed in Table 11.1.

ProfGp PThctpBopq

The smallest subcategory of TopGp contain-
ing FinGp and closed under small limits

The smallest subcategory of PThtpBopq con-
taining MndpBq and closed under large limits

The smallest replete reflective subcategory of
TopGp containing FinGp

The smallest replete reflective subcategory of
PThtpBopq containing MndpBq

The category of algebras for the codensity
monad of the inclusion FinGp ãÑ TopGp

The category of algebras for the coden-
sity monad of the inclusion MndpBq ãÑ

PThtpBopq

Table 11.1: Characterisations of PThctpBopq and ProfGp.

Note, however that several of the characterisations of ProfGp from Remark 2.7.11 do not

yet have analogues for proto-theories, namely that ProfGp is:

i. the full subcategory of TopGp consisting of the compact, Hausdorff, totally disconnected

groups;
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ii. the category of algebras for the codensity monad of FinGp ãÑ Gp;

iii. the category of algebras for the codensity monad of the forgetful functor FinGp Ñ Top;

and

iv. the category of algebras for the codensity monad of the forgetful functor FinGp Ñ Set.

The most obvious analogue of the first of these is the assertion that the complete topological

proto-theories are those topological proto-theories L : Bop Ñ L for which each hom-space of

L is compact, Hausdorff and totally disconnected. This is evidently false; any monad whose

Kleisli category is not locally finite is a counterexample, since infinite discrete spaces are not

compact. However, there may still be some similar characterisation of the complete topological

proto-theories in terms of topological properties of their hom-spaces. We can also ask whether

the corresponding analogues of the other characterisations above hold in the proto-theoretic

case.

Question 11.3.1. Can the category PThctpBopq of complete topological proto-theories on a

locally small category B with small limits and enough subobjects be characterised as any of the

following:

i. the full subcategory of PThtpBopq consisting of those topological proto-theories whose

hom-spaces satisfy some topological property;

ii. the category of algebras for the codensity monad of Kl : MndpBq ãÑ PThpBopq;

iii. the category of algebras for the codensity monad for the functor MndpBq Ñ rBop ˆ

B,TOPs that sends a monad T “ pT, η, µq to the discrete-space-valued functor

Bp´, T´q : Bop ˆ B Ñ TOP; or

iv. the category of algebras for the codensity monad for the functor MndpBq Ñ rBop ˆ

B,SETs that sends a monad T “ pT, η, µq to Bp´, T´q : Bop ˆ B Ñ SET?

Recall that, for a suitable category B, the category PThctpBopq of complete topological

proto-theories is defined to be the reflective subcategory of PThtpBopq corresponding to the

idempotent monad generated by the structure–semantics adjunction. In particular, we can only

talk about complete topological proto-theories on B if this adjunction is idempotent, which we

saw (Theorem 9.4.7) is the case when B has finite products and enough subobjects. However,

it is not clear how crucial this condition is; it may still be the case that the structure–semantics

adjunction is idempotent for many categories that do not have enough subobjects.

As noted in Theorem 10.1.6, one can show that the structure–semantics monad on

PThtpBopq is the codensity monad of the inclusion MndpBq ãÑ PThtpBq. Thus, the idem-

potency of the structure–semantics adjunction is equivalent to idempotency of this codensity

210



monad. In [12], Deleanu gives a necessary and sufficient condition for a codensity monad to be

idempotent.

Specifically, if a functor U : M Ñ C has a pointwise codensity monad pT, η, µq, then that

monad is idempotent if and only if, for every m PM and c P C the map

η˚m : CpTc, Umq Ñ Cpc, Umq

is an injection.

This could potentially be used to give a different proof of idempotency of this monad,

possibly under weaker assumptions on B than having enough subobjects.

Question 11.3.2. Are there other conditions on a category B that ensure that the structure–

semantics monad on PThtpBopq is idempotent?
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