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Abstract

This thesis presents an exploration of various aspects relating to the formation and

evolution of structure in the Universe. It focuses on two main observables which pro-

vide information on two distinct epochs of the Universe: Part I analyses the Cosmic

Microwave Background (CMB) which is used to test early Universe theories and val-

idate current methods for cosmological parameters estimation; Part II analyses the

distribution, history and content of local galaxies with a view to learn about type Ia

supernovae progenitors, assembly of stellar mass in galaxies and galaxy evolution.

In Part I, a search for signs of non-Gaussianity in the Wilkinson Microwave Anisotropy

Probe is conducted, using the two-point correlation function of peaks (hot and cold

spots) in the temperature field. A clear deviation from Gaussianity is found in both

data releases, which is associated with cold spots, the southern hemisphere, large-scales

and the galactic plane. The results indicate that the presence of un-subtracted fore-

grounds in the data are a more likely explanation for this signal than a cosmological

origin, but the latter cannot be excluded. Part I further explores the two-point corre-

lation function of temperature peaks as an estimator to constrain fNL, a specific type

of non-Gaussianity. Using sets of non-Gaussian simulated maps with the correct cos-

mology and resolution, this thesis explores how accurately one can hope to constrain

fNL when data from the upcoming CMB experiment Planck is available.

Part II presents a novel method developed to extract the star formation history of

a galaxy from its spectrum: VErsatile SPectral Analysis (VESPA). VESPA dynami-

cally adapts the number of parameters it recovers from each spectrum to each galaxy,

only recovering as much information as the data warrant. This insures the recovered

solutions are dominated by the signal, not the noise, and allows robust recovery of star

formation and metallicity histories and up to two dust extinction values per galaxy.

VESPA was applied to the fifth data release of the Sloan Digital Sky Survey (SDSS)
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to construct a catalogue of histories for nearly half a million galaxies. Part II also

explores how this catalogue can provide important information about the formation of

structure in the local Universe. Specifically, this thesis: shows evidence for the pres-

ence of a short-lived progenitor to SNIa and explores VESPA’s potential role in future

Dark Energy SNIa experiments; explores how changes in the Initial Mass Function af-

fect stellar mass estimates and its consequences; and by using estimates of the galaxy

mass function as a function of redshift (calculated using both the spectral fossil record

and instantaneous star formation rate methods) explores the possibility of putting con-

straints on the merger history of present-day galaxies.
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Chapter 1

Introduction

Our current Standard Model is the Λ Cold Dark Matter model, in which the Universe

went through a period of inflationary expansion at very early times. This expansion

was driven by one or more scalar fields and inflated a small, causally-connected region

of the Universe, to a size comparable to or larger than the size of the observable

Universe today. The result was an almost uniform Universe, populated with small

density fluctuations which grew under gravity to give rise to the structure we see today.

We observe a hierarchical build-up of galaxies, with smaller galaxies merging together

to form larger galaxies, of many and varied types. Furthermore, supernova observations

have shown that the universe has recently become dominated by Dark Energy, causing

its expansion to accelerate. This thesis probes the Universe at a variety of epochs, and

aims to test observationally several stages of this model. In this Chapter we briefly

summarise our current understanding of the Universe, from its content and large-scale

dynamics, to the creation and evolution of structure and galaxies. We also describe two

of the observables which are central to this thesis: the Cosmic Microwave Background

and integrated galactic spectra.

1.1 The smooth Universe

The currently observed large-scale distribution of matter in the Universe has largely

confirmed that we live in an isotropic and homogenous Universe, in accordance to

the Cosmological Principle. Isotropy signifies that the Universe looks the same in all
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CHAPTER 1. INTRODUCTION

directions, and homogeneity means that the Universe is the same everywhere. Treating

the Universe as being uniformly smooth, homogeneous and isotropic allows us to gain

insight on its dynamics as a whole, which in turn depend on its geometry and content.

This section concerns the description of the Universe under these assumptions. We will

see later that to explain the formation of structure that we observe today, we must

allow for a departure from this assumption - this is discussed in section 1.4.

1.1.1 The geometry of the Universe

Homogeneity and isotropy, together with General Relativity, allow us to describe four-

dimensional space time in the form of the Robertson-Walker metric

c2dτ2 = c2dt2 −R(t)2
[

dr2 + S2
k(r)dΨ2

]

, (1.1)

where R(t) is the scale factor and has units of distance, r is a dimensionless comoving

distance, k is the curvature constant, Ψ is the angular separation between the two

events, τ is the proper time and t is the cosmological time. The form of Sk(r) depends

on the curvature

Sk(r) =















sin(r) if k = 1

sinh(r) if k = −1

r if k = 0.

The curvature constant describes the local geometry of the Universe: k = 1 implies

a closed Universe, k = −1 an open Universe, and k = 0 a flat Universe.

1.1.2 The dynamic Universe

Expansion

In 1929 Edward Hubble observed a tenuous but true correlation between the distance

of a galaxy, d, and its apparent recession velocity from the Earth, v

v = Hd. (1.2)

This led him to infer that the Universe is expanding, going against the view at the time

that we lived in a static Universe. The rate of this expansion is nowadays represented

by the Hubble parameter H(t) and

H(t) =
˙R(t)

R(t)
. (1.3)

2



1.1. THE SMOOTH UNIVERSE

Here the dot is used to represent the derivative with respect to cosmological time,

t - this notation is used throughout this thesis. Constraints on the current value of the

rate of expansion put H0 = 71.9 km s−1 Mpc −1 (Komatsu et al. 2008).

Redshift

An immediate consequence of an expanding universe is that we expect a change in the

frequency of a light signal caused by the relative velocity between the light source and

the observer. We define the redshift, z as the change in frequency of the emitted and

observed signal:
νem

νobs
= 1 + z (1.4)

For small changes in frequency we can write this in terms of the Doppler shift,

which relates the change in frequency with the velocity of the source. This in turn can

be associated with the Hubble parameter and the scale factor:

δν

ν
=
δv

c
= −Hd

c
= Hδt = −Ṙ

R
δt = −δR

R
. (1.5)

The minus sign in the second step arises from the fact that the observer and the

source have opposite relative velocities (i.e., they are receding from one another) and

gives rise to the result

ν ∝ 1

R
. (1.6)

Practically we are concerned with the shift in frequency for a signal emitted by an

object at a redshift z and measured by us, sitting at z = 0. Combining equations (1.4)

and (1.6) we can write

R0

R(t)
= 1 + z. (1.7)

For convenience we also define a normalised scale factor as a(t) = R(t)/R0.

The Friedmann equation

The dynamics of the Universe can be described by the Friedmann equation, which

relates the energy content of the Universe with its dynamical evolution and geometry

and arises from solving Einstein’s equations:

Ṙ2(t) − 8πG

3
ρ(t)R2(t) = −kc2, (1.8)

3



CHAPTER 1. INTRODUCTION

where G is Newton’s constant of gravity. We can define a critical density, ρcrit,

which marks the density needed for a flat Universe and therefore the transition from

the closed to the open case. By setting k = 0 in equation (1.8) and using equation (1.3)

ρcrit(t) =
3H(t)2

8πG
. (1.9)

It is common to express the energy content of the Universe as a ratio in relation to

ρcrit:

Ω(t) =
ρ(t)

ρcrit(t)
. (1.10)

The present-day value of the energy density, scale factor and the Hubble parame-

ter are normally denoted with a 0 subscript, e.g. H0. In this thesis we will drop the

subscript from Ω0, and explicitly write-down the time or redshift dependence when we

are referring to its value at some time other than the present-day.

Taking the derivative of equation (1.8) with respect to time gives an expression

for the acceleration of the Universe. To do this we need to know how the density

evolves with time, but using an argument of conservation of energy coupled with the

assumption that the expansion of the Universe is adiabatic we can write dE = −pdV ,

where E is the total energy, p is pressure, and V is the expanding volume V ∝ R3. We

can write

R̈ = −4π

3
GR

(

ρ+
3p

c2

)

. (1.11)

Formally, both equation (1.8) and (1.11) arise independently from a full treatment

using General Relativity and the Robertson-Walker metric. Written in this form, we

see how the pressure can act as an extra form of gravity which is not an intuitive result.

For the moment we simply note that the contribution of pressure is important in many

cosmological applications, as we will see later.

1.1.3 The equation of state

Solving Friedmann’s equation gives the evolution of the expansion of the Universe at

large-scales. To do this, we need an explicit form for the energy density, and that

in turn depends on its nature. Pressureless matter has an energy density which goes

as ρm ∝ R−3, because number density of particles must be conserved within a given

comoving volume. Radiation’s energy density contribution loses an extra power of R,

arising from the redshifting of energy (E = hν), and we have ρr ∝ R−4. The steeper
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dependence of ρr on the expansion, compared to ρm tells us immediately that, for a

small enough R, radiation dominated over matter. We will review this epoch of the

Universe in section 1.5.

We also consider the existence of a vacuum energy component. First introduced

by Einstein in order to explain the static Universe which was at the time observed,

it was then later dropped when improved observations revealed a Universe which was

expanding. Today, a non-negative vacuum energy density, ρv is invoked to explain the

fact that the expansion of the Universe is accelerating (see section 1.2.4 and Figure

1.1). For the moment we need only consider that, as a property of empty space, ρv is

constant and has no dependence on R.

We can now write a general form for Friedmann’s equation, which includes the

contributions from the three components mentioned above. Using ρ = ρ0,m

(

R
R0

)−3
+

ρ0,r

(

R
R0

)−4
+ ρv, together with equations (1.8) and (1.3) and in terms of critical den-

sities as defined in (1.10) we write

H2(z) = H2
0

[

Ωv + Ωm(1 + z)3 + Ωr(1 + z)4 − (Ω − 1)(1 + z)2
]

, (1.12)

where the final term comes directly from the curvature term in Friedmann’s equa-

tion.

1.2 The components of the Universe

The Universe is composed of a mixture of radiation, matter and Dark Energy. As we

have seen, each of these components has a different dependence on the scale factor,

R. What this means is that the history of the Universe is dominated by different

components at different times, resulting in dramatic changes throughout its lifetime.

1.2.1 Radiation

As we have seen in section 1.1.3, we expect that at very early times the Universe was

dominated by radiation. If we assume an adiabatic expansion (by which we mean the

entropy change in any comoving region is zero), then T ∝ V (1−γ), where γ is the ratio

of specific heats and is equal to 4/3 for radiation. Therefore we get T ∝ R3(1−γ), which

simply gives T ∝ 1/R - i.e. the Universe was very hot at very early times.
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The temperature and rate of expansion in the early Universe dictate the abundance

of photons (γ) and neutrinos (ν) we see today. Briefly, we generally assume that

at early times the Universe was in thermal equilibrium. As the expansion develops

the temperature drops and, one by one, the reactions that keep each of the species

in equilibrium cease when the interaction time scale is longer than the expansion rate.

When the temperature reaches 1010 K, the only species still in equilibrium are photons,

neutrinos and electron-positron pairs. The latter annihilate when the temperature

reaches 109.7 K, in a reaction which creates an excess of photons relative to neutrinos.

Conservation of entropy requires (Peacock 1999):

Tν =

(

4

11

)1/3

Tγ . (1.13)

We will see later that today we measure Tγ = 2.725 K in the Cosmic Microwave

Background - the photon radiation relic from the Big Bang. This implies a neutrino

background with Tν = 1.94 K.

If neutrinos and photons are the only contributions to the radiation energy density

then the redshift for the matter-radiation equality, zeq, is (Peacock 1999):

1 + zeq = 23900Ωh2

(

T

2.73K

)4

. (1.14)

We will see later that this is a very important epoch for the formation of structure

in the Universe. Its value is observationally constrained to be approximately 3100. At

this point the temperature was still high enough that atoms were fully ionized and

matter was coupled to radiation via Thomson scattering. Matter and radiation finally

decouple at a redshift zdec ≈ 1100. This marks another crucial moment in the evolution

of the Universe, and the creation of the Cosmic Microwave Background.

1.2.2 Baryonic matter

The high temperature in the early Universe, which up to a point exceeded that found

at the centre of stars, suggests that primordial nucleosynthesis must have happened.

Whilst the temperature is high enough, protons and neutrons are in thermal equilib-

rium. Once the temperature is low enough, they combine to form nuclei - this happens

when the temperature reaches ≈ 1010 K. The first element to form is Deuterium, which

can in turn combine to form Helium. The temperature drops too quickly before any

significant amount of other nuclei has the opportunity to form. The wide variety of

6
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elements we are familiar with today, comes from nuclear reactions at the centre of stars

or supernovae explosions. Observed Deuterium abundances can be used to estimate

the baryon critical density Ωb, since Deuterium is normally destroyed in stellar nuclear

reactions. Estimates for Ωb from primordial nucleosynthesis and other methods (e.g.

CMB) are in good agreement and give Ωb ≈ 0.04.

1.2.3 Dark Matter

There is solid evidence for a matter component beyond baryonic matter. Some form

of unseen matter which would respond to gravity was proposed first by Zwicky (1933),

to explain galaxy velocities in the Coma cluster. Further evidence since then includes

the rotation curves of galaxies, which are much flatter than the 1/r2 expected from

the luminous component, and the recently found Bullet Cluster (Clowe et al. 2006),

which clearly shows a separation between the baryonic gas and the dark component.

Despite our ignorance about its nature, Dark Matter is now an important part of our

current model of galaxy formation which, as we will see, we also do not yet completely

understand. Advancement in our understanding on the nature of Dark Matter is most

likely to come from underground experiments which aim to detect Dark Matter particles

directly (e.g. the Boulby mine project in North Yorkshire, Paling 2005).

Even though they are presently not favoured by observations, a lot of work is

going into developing modified theories of gravity. First proposed by Milgrom (1983),

modified theories of gravity propose a change to the laws of gravity, either in the

framework of Newtonian dynamics or General Relativity, in an attempt to explain the

Universe without the need for Dark Matter. Very many theories have been proposed

since 1983 but none, so far, explains the observable Universe as well as the assumption

of Dark Matter.

1.2.4 Dark Energy

The first evidence that our Universe is dominated by Dark Energy came from the ob-

servation of distant type Ia supernovae (SNIa). The experiment is conceptually very

simple: if we can find a standard candle in the Universe, then by measuring its apparent

brightness we can calculate its distance to us. As we will see, this will depend both

on the redshift and but also on the cosmological model and this allows us to constrain

the geometry of space between us and the standard candle. SNIa are very good candi-

dates for standard candles, and in 1998 and 1999 two experiments revealed that distant

7
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SNIa are much dimmer than was expected at the time (Perlmutter et al. 1999; Riess

et al. 1998), implying these objects are at a greater distance from us. Figure 1.1, from

Perlmutter et al. (1999), shows how the data is able to differentiate between different

cosmological models for intermediate to high redshift. In practice, SNIa are not perfect

standard candles, and demand a great deal of care when making plots such as the one

in Figure 1.1 - see Chapter 6 for more details.

The SNIa experiments require the Universe’s expansion to have become accelerated

in recent times. Recall equation (1.11). We see immediately that for R̈ > 0 we require

ρ+3p/c2 < 0. We therefore require a form of energy density which has negative pressure.

This energy component of the Universe has been named Dark Energy because we do

not know what it is. One of the goals of modern cosmology is to constrain its equation

of state

pv = wρvc
2. (1.15)

w = −1 would correspond to Einstein’s cosmological constant, with which observa-

tional constraints are consistent. From the condition ρ + 3p/c2 < 0, we immediately

get an upper limit of w < −1/3. Assuming a flat Universe and a constant equation

of state with redshift CMB constraints yield w = −0.967+0.073
−0.07 (Spergel et al. 2007),

SNIa experiments w = −1.07+0.09
−0.09 (Wood-Vasey et al. 2007), and a combination of

large-scale structure with SNIa and CMB gives w = −1.004 ± 0.089 (Percival et al.

2007a), to name only a few.

1.3 Observational cosmology tools

It is useful to summarise some of the relations we derived, in the context of observational

cosmology. As observers, we measure the redshift z and angular sizes or distances in

the sky, dψ, and we would like to relate them to quantities such as size or distance,

volume and age. Let us start by relating time and redshift. By taking the derivative

of equation (1.7) with respect to time we get

dz = −(1 + z)H(z)dt, (1.16)

where H(z) is defined in equation (1.12). Integrating this relation between the

appropriate limits then gives us either the age of the Universe at a redshift z, or the

8
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Figure 1.1: From Perlmutter et al. (1999): panel a) shows evidence for an accelerated expan-

sion using SNIa; panels b) and c) show residuals for the cosmological fit.
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lookback time since redshift z.

To get the relation between redshift and comoving distance, we first need the equa-

tion of motion of a photon, which relates r and t. General Relativity tells us that pho-

tons move along geodesic paths (dψ = 0) and have zero proper time dτ = 0. It can be

seen immediately from the Robertson-Walker metric (equation 1.1) that cdt = R(t)dr.

Using equation (1.16) gives:

R0dr =
c

H(z)
dz. (1.17)

This is a particularly useful relation in observational cosmology, as it allows us to

calculate sizes and volumes. Consider the Robertson-Walker metric once more. The

spatial part can clearly be divided into a radial and an angular component, both of

which are parametrized by the scale factor to account for the expansion. The proper

transverse size of an object is given by its angular component:

dℓ⊥ = dψR(z)Sk(r) = dψR0Sk(r)(1 + z)−1 (1.18)

We are interested in the scale factor at the redshift of the observation because this

is the proper size of an object - and that is not affected by the expansion. We can

combine the radial and angular parts to write down the volume element of a shell of

area dψ2 and comoving radius dr to get:

dV = R3(z)S2
k(r)dψ2dr. (1.19)

In this case we are generally interested in the comoving volume, since this is the

volume in which number densities of galaxies remain constant in the Hubble flow:

dVc = R3
0S

2
k(r)dψ2dr2. (1.20)

We now define two measurements of distance as a function of redshift, each defined

as an attempt to connect our notions of Euclidean space with a RW space. One def-

inition comes directly from equation (1.18): we can see by inspection that it is very

similar to what we would expect from Euclidean geometry (i.e. dℓ⊥ = DAdψ) if we

define

DA =
R0Sk(r)

1 + z
. (1.21)
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The other definition comes from considering the observed bolometric flux, Ftot of a

source at a redshift z, with an assumed power law spectrum L ∝ να and total luminosity

Ltot (more details in Peacock (1999) and section 5.2.1):

Ftot =
Ltot

4πR2
0S

2
k(r)(1 + z)2

. (1.22)

Once again we make the observation that equation (1.22) can a take a similar form

for that obtained in Euclidean space (Ftot = Ltot/(4πD
2
L)) if we define:

DL = R0Sk(r)(1 + z) (1.23)

All of the relations in this section are model dependent. This is not a problem in

practice - nowadays cosmological parameters are well constrained (see Table 1.1), but

this demands care when comparing observational results across different cosmologies.

1.4 Structure formation

The Universe described in section 1.1 is a smooth Universe, and although it provides a

good description of the real Universe on large scales, it crucially fails to explain the large

gradients in density we see today. In this section we will see how structure is seeded

and how it evolves. A full treatment is a technical challenge, and here we concentrate

on important results which give an insight on how different physical mechanisms shape

the evolution of the Universe as it goes through key stages of this process. Firstly we

will introduce Inflation as a mechanism which introduces small density fluctuations in

the Universe. If these fluctuations are small, one can use linear perturbation theory to

follow their growth until the time they enter the non-linear regime. After this stage

there are no analytical models to describe the evolution of the perturbations, and we

mostly rely on numerical simulations for accurate answers. We will see however, that

there are analytical approximations which provide recipes to treat perturbations in the

non-linear regime and which give an insight on how galaxies form and on how matter

is distributed in the Universe.

1.4.1 Inflation

Inflation was introduced in 1981 by Alan Guth (Guth 1981) as an early Universe theory

which aimed to solve what was known as the horizon problem. This arises because re-

gions of sky which today are further apart than roughly one degree in the sky were not
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within causal contact at the time the Cosmic Microwave Background was created (see

section 1.5.2 for more details), therefore providing no apparent reason as to why the

Universe seems to be homogeneous on larger scales. Inflation solves this problem by

proposing an accelerated expansion at early times, which quickly and briefly expanded

a small region of Universe to a size at least as large as the size of the observable Uni-

verse today. The attraction of Inflation is that it also solves three more problems with

the standard Big Bang model.

Firstly, it solves the flatness problem: the fact that we observe a Universe very

close to flat requires it to have been very close to flat in the past, which suggests

some fine-tuning. Consider Friedmann’s equation in the case of a vacuum-dominated

Universe:

Ṙ2 =
8πGρvR

2

3
− kc2. (1.24)

As ρv has no dependence on R, we have a simple solution for R as

R ∝ exp

(

±
√

8πGρ

3

)

. (1.25)

The exponential expansion with time means that the term ρvR
2 will dominate over

the curvature term until it becomes negligible - making the Universe tend to flat. In

this argument we also connected the idea of Inflation with the idea of vacuum energy

density. The connection arises because Inflation requires accelerated expansion which

is precisely the behaviour a vacuum energy term gives.

In doing so, we are solving another problem with the classic Big Bang theory - Infla-

tion provides us with a reason as to why the Universe is expanding today. Even though

the Inflationary period had to be brief, it gave the Universe an initial momentum which,

in the absence of a vacuum energy dominated era in recent times (see Section 1.2.4), is

enough to explain its current expansion.

Finally, Inflation takes us from a smooth Universe into one populated by density

fluctuations. To understand how, we need to briefly look at the nature of the physics

behind Inflation. Most commonly, Inflation is associated with a scalar field, φ which is

quantum in nature, and the associated potential V (φ). For a homogenous field we can

write (Dodelson 2003)
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φ̈+ 3Hφ̇+
∂V

∂φ
= 0 (1.26)

with

ρ =
1

2
φ̇2 + V (φ) and p =

1

2
φ̇2 − V (φ). (1.27)

To have an inflationary behaviour, we want a field which has ρ + 3p < 0. This

condition is normally cast in the following relations (Peacock 1999):

3Hφ̇ =
−∂V
∂φ

(1.28)

ǫ ≡ m2
P

16π

(

V ′

V

)2

≪ 1 (1.29)

η ≡ m2
P

8π

(

V ′′

V

)

≪ 1 (1.30)

We are mostly interested in the output of this framework, in terms of its observables.

The first thing to appreciate is that statistical quantum fluctuations in the inflation

field, δφ create scalar perturbations in the metric, which ultimately give rise to the

inhomogeneities in the gravitational potential, δΦ, needed to seed cosmic structure.

These are the perturbations we are mostly interested in for this thesis. However, ten-

sor fluctuations in the gravitational metric are also expected, and these in turn give

rise to a background of gravitational waves. This background is yet undetected, and

if detected would provide one of the best pieces of evidence for Inflation. Dodelson

(2003) provides a clear treatment for both cases. The mean of the scalar perturbations

is zero at any given time, but we are mostly interested in its variance 〈Φ2〉 - essentially

the power-spectrum of the resulting fluctuations after Inflation has come to an end.

These fluctuations are expected to be Gaussian distributed around zero, which is an

important aspect we will return to in more detail.

We define the power-spectrum of perturbations as

〈δkδ∗k′〉 ≡ (2π)3P (k)δ(k − k′). (1.31)

and we write the primordial power-spectrum as (Dodelson 2003)

PΦ(k) =
50π2

9k3

(

k

H0

)n−1

δ2H

(

Ωm

D1(a=1)

)

(1.32)
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where δH defines the scalar perturbation amplitude at the time of horizon crossing,

and D is the growth function (see next section). n is called the spectral index and is

related to the potential V (φ) by the quantities η and ǫ defined in equations (1.29) and

(1.30). In practice, most theoretical models predict n to be close to, but not necessarily

one. We will see in the next section how we cannot observe this primordial spectrum

directly because its shape is changed by the evolution of the density fluctuations af-

ter Inflation has ended. However, if we understand the growth of these fluctuations

with time, we can understand the observed matter power-spectrum as to allow us to

constrain the value of n and give insight on the shape of the potentials which are still

unconstrained from a theoretical (and observational) point of view. We will refer to

a spectrum in which k3PΦ(k) = constant (n = 1) as a scale-invariant spectrum, or a

Harrison-Zel’dovich spectrum, after the two people who first suggested a spectrum of

this form (long before the idea of Inflation).

We will see that these fluctuations will also propagate themselves into the primor-

dial radiation field, which we can observe today as the Cosmic Microwave Background.

Section 1.5 looks at the origin of the CMB in more detail, but for now we would like to

stress the point that the propagation of δΦ to the observed temperature fluctuations

on the CMB is predicted to be linear or nearly-linear, which in turn means that tem-

perature fluctuations will also exhibit Gaussian statistics.

Perturbations in the density field are related to perturbations in the gravitational

potential by Poisson’s equation: ∇2δΦ = 4πGδρ. Consider the two main components

of the energy density: matter and radiation. There are two types of perturbations

which are normally considered, which relate these two quantities in different ways. For

an adiabatic perturbation, with T ∝ 1/R and constant entropy, we have δr = 4
3δm.

For an isocurvature perturbation, the total change in the energy density is zero and

δrρr = −δmρm (Peacock 1999). Observationally, adiabatic perturbations are favoured

to isocurvature perturbations (e.g. Efstathiou and Bond 1986).

1.4.2 The linear regime

Inflation left us with perturbations in the density field around a background which is

smoothly and uniformly expanding. In this section we will delineate the formal treat-

ment generally used to follow the evolution of these perturbations, which combines

linear perturbation theory and fluid dynamics. Particularly clear derivations, which fill

14
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the gaps between the key steps we mention next can be found in Peacock (1999) and

Binney and Tremaine (2008).

We will be working with density fluctuations, defined as:

1 + δ(x) ≡ ρ(x)

〈ρ〉 (1.33)

and we will mainly work in Fourier space, as then the modes grow independently:

δ(x) =
1

V

∑

k

δke
ikx and δk =

∫

V
d3xδ(x)e−ikx. (1.34)

The fluid dynamics equations behind this treatment are: a) the Continuity equation

which tells us that the total mass must be conserved; b) the Euler equation, which tells

us what the acceleration due to pressure gradients and gravity is; and c) Poisson’s

equation. For the case of collisionless dark matter we reach the following relation:

δ̈k + 2Hδ̇k = 4πGρ0δk. (1.35)

If we for a moment ignore the term 2Hδ̇k, the equation has a simple exponential

solution, as exp(±√
4πGρ0). Formally, every linear combination of the two solutions is

also a solution to the initial differential equation. However, given the context we are

interested in the growing modes so we will concentrate on these. What we find is that

the perturbations grow exponentially under gravity. The effect of re-introducing the

expansion term 2Hδ̇k, is to slow down this collapse and the solutions are now more

like power-laws. For this reason this is normally called the damping factor. For a

matter-dominated Universe, with Ωm = 1, the growing mode is

δ(t) ∝ t2/3 ∝ a(t). (1.36)

If we now add photons to our fluid, we are effectively introducing a pressure term,

via the Euler equation, which is related to the density through the speed of sound

cs = ∂p/∂ρ. This gives:

δ̈k + 2Hδ̇k = δ̇k

(

4πGρ0 − c2s
k2

a2

)

. (1.37)

We can identify two regimes, in which either gravity or pressure dominate. The scale

at which the two terms are balanced is called the Jeans length, λJ = cs
√

π
Gρ which,

for the radiation-dominated era, is of the order of the horizon size. The growth of the

perturbations is now qualitatively very different for small and large scales. Whereas in
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a Ωm = 1 Universe δ(t) continues to grow as δ(t) ∝ t2/3 for scales larger or comparable

to the size of the horizon, on smaller scales pressure acts as a restoring force which

stops the collapse and sets up oscillations in the fluid. The general solution can be

written as δ(a) ∝ af (Ω(a)) with f(Ω) approximated as (Carroll et al. 1992):

f(Ω) ≃ 5

2
Ωm

[

Ω4/7
m − Ωv + (1 +

1

2
Ωm)(1 +

1

70
Ωv)

]−1

. (1.38)

At early enough times, we have seen that the Universe was dominated by radiation

and the analyses we have used so far are no longer valid. The reason is that for a

radiation fluid the mass-density continuity equation no longer applies: the total energy

of a body of radiation decreases with expansion. A full relativistic treatment is needed,

or a short-cut using the conservation of entropy can be found in Binney and Tremaine

(2008). Here we will simply write down the equation of motion:

δ̈k + 2Hδ̇k = δk

(

k2c2

3a2
− 32π

3
Gρ0

)

. (1.39)

Similarly to what happened in the baryon-fluid case, we find that for scales smaller

than the horizon we expect radiation pressure and gravity to set up oscillations in the

fluid: sound waves. For large scales:

δ(t) ∝ t. (1.40)

The baryonic component of the energy density has, at this stage, little influence

on the evolution of the perturbations and δm follows δr. Baryonic matter is fully ion-

ized, and is coupled to the radiation through Thompson scattering (which couples the

photons to the electrons) and Coulomb interactions (which couples the electrons to the

baryons). Perturbations in collisionless dark matter are also prevented from collapsing

in sub-horizon scales, but clearly the reason must be something other than radiation

pressure. In this case this happens because the expansion rate is faster than the char-

acteristic growth time for dark matter, and fluctuations freeze.

Let us summarise this section by identifying three key stages in the evolution of the

perturbations:

• Radiation-dominated era: matter and radiation are coupled through Thomson

scattering. δ(t) ∝ t on scales larger than Jeans length, which at this stage is of

the order of the horizon size. On scales smaller than the Jeans length radiation

and matter are prevented from collapsing further due to radiation pressure - this
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sets up oscillations. Dark matter perturbations are frozen on these scales due to

the rate of expansion.

• Radiation-matter equality: at zeq ≈ 3100, the Universe becomes matter-dominated.

δ ∝ t2/3 both for matter and radiation (which are still coupled) and now also for

dark matter, given that the rate of expansion slows down.

• Decoupling: at zcmb ≈ 1100 radiation and matter de-couple and evolve separately.

Photons are no longer trapped, and free stream. Dark matter continues to self-

gravitate, and baryonic matter traces dark matter from now on, due to gravity.

The description we gave above is a simplification, even in the context of linear

theory. All contributions to the energy density are coupled and do not form a simple

fluid. The overall physics which shapes the evolution of the perturbations is normally

encapsulated in the transfer function, which we define as

Tk =
δk(z = 0)

δk(z)D(z)
(1.41)

where D(z) is called the growth factor which traces the linear evolution of the

perturbations.

1.4.3 The matter power-spectrum

Let us define a useful dimensionless form for the power-spectrum as

∆2(k) =
k3P (k)

2π2
. (1.42)

The matter power-spectrum we measure today is the result of a matter density

distribution described by a Harrison-Zel’dovich spectrum at the end of Inflation and

which is subsequently changed by effects such as gravitational collapse and pressure.

We introduced the transfer function in equation (1.41) as a short-hand to write these

effects. The observed power-spectrum is therefore

∆2(k) ∝ k3+nT 2
k (1.43)

Mainly due to practical reasons, we are often interested in the density field convolved

with a Gaussian or a top-hat spherical function, Wk(Rs) with an associated radius Rs.

The crucial quantity here is the rms of this quantity, given by

σ2(Rs) =

∫

∆2(k)|Wk(Rs)|2d ln k. (1.44)
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This also provides a route to an empirical normalization of the linear, matter power-

spectrum, which is unconstrained by theory, through its value for Rs = 8 Mpc/h.

Constraints from WMAP5 put this value at σ8 = 0.796 ± 0.036 (Komatsu et al. 2008).

Figure 1.2 shows the observed matter power-spectrum, estimated from a variety of

sources each probing different scales. The turn in the power-spectrum corresponds to

the horizon size at the time of matter-radiation equality. As we saw in the previous

section, at this epoch perturbations at sub-horizon scales see their growth damped

by pressure terms. As the Universe expands, different scales enter the horizon. The

smallest scales enter the horizon first, and therefore have their growth more damped

in relation to the other scales, which continue to grow for longer. An imprint of these

acoustic oscillations can also been seen in the galaxy distribution, although the signal

is mostly hidden by the data points in Figure 1.2. This signal has now been detected

both in the Sloan Sky Digital Survey (SDSS) (e.g. Percival et al. 2007b) and in the

2dF Galaxy Survey (Cole et al. 2005).

1.4.4 The hierarchical model

Effectively, the transfer function acts to reduce the amplitude of the small scale pertur-

bations via two main mechanisms: Jeans-mass effects as we have seen above, but also

through damping. At very early times dark matter particles will be highly relativistic

and free stream without much trouble, erasing any fluctuations on scales below the

horizon size at that time. The time at which this ceases to happen is of crucial impor-

tance for the nature of structure formation. For massive particles, such as cold dark

matter, this will happen long before the matter-radiation equality time, and scale fluc-

tuations smaller than the horizon size at zeq are able to survive. For hot dark matter,

such as massive neutrinos, this only happens at zeq. The result is that only fluctuations

larger than the size of the horizon at zeq are able to survive. To explain the fact that

today’s observed power-spectrum sees fluctuations below that scale, one must invoke a

top-bottom scenario: i.e., galaxies formed from the dissipation of larger structures. The

cold dark matter scenario however, appeals to a bottom-up growth, with the smaller

scales being the first to collapse after zeq and then merging to form larger structures,

in what we call a hierarchical model. This can also be seen from equation (1.44). For

a top-hat spherical filter, and n = 1 we find σ2(R) ∝ R−2.5 - i.e., smaller scales are the

first to collapse.
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Figure 1.2: From Tegmark et al. (2004): the observed matter power-spectrum, measured at

a variety of scales using different physical probes.
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1.4.5 Beyond the linear regime

When the density perturbations become too large, linear perturbation theory is no

longer valid. The density in a luminous red galaxy is roughly 105 times larger than the

critical density ρcrit (equation 1.9), so to explain the growth of structure to that level

we are beyond the realm of linear perturbation theory. An exact answer of the growth

of perturbations up to high densities can only be achieved with numerical simulations.

Here we will briefly outline one of the many analytical approximations to the problem.

We are interested in tracking the growth of the perturbations such that we can

predict real observables, which we can choose to look for. Perhaps two of the most

fundamental properties about a galaxy are its luminosity and its mass. Let us then

start then by deriving a mass function n(M), defined such that n(M)dM is the co-

moving number density of objects of mass in [M,M + dM ]. We will also discuss the

implications in terms of the luminosity function which is defined in a similar way, i.e.,

the comoving number density of galaxies with luminosity in [L,L+ dL].

To do this we will need to use results from two standard formalisms: the spherical

collapse model, and the Press-Schechter theory (Press and Schechter 1974). Detailed

descriptions of these can be found in Peacock (1999); Coles and Lucchin (1995) and of

course, Press and Schechter (1974). Here we will simply quote the results that we need.

The spherical collapse model tracks the growth of a perfectly spherical perturba-

tion with constant density inside of it. This spherical inhomogeneity sits in a smoothly

expanding background, and we aim to track its evolution with time. The symmetry

of the situation means this perturbation can be treated as an isolated closed Universe

and Friedmann’s equations apply (e.g. Peacock (1999)). Its evolution has three dis-

tinct phases: it initially expands with the background, then stops, collapses and finally

virializes at a time tv. What we want to know is the value of δ, in the linear regime, at

the time tv. We will call this value the critical overdensity for collapse, δc. The density

of the perturbation in the non-linear regime will be greater that δc, but we are inter-

ested in identifying the regions in the density field which should undergo gravitational

collapse. We can do this by seeing when δ(x) = δc.

For each mass M , we can identify a scale Rs which corresponds to the radius of

a sphere which contains a mass M , assuming a uniform background mean density ρ0,

20



1.4. STRUCTURE FORMATION

M = 4π
3 ρ0R

3). We have already seen that δ is Gaussian distributed with the rms given

by equation (1.44), so we write down the probability that a fluctuation associated with

the scale Rs is greater than δc:

p(δ > δc|Rs) =
1

√

2πσ(R)

∫ ∞

δc

exp

( −δ2
2σ2(Rs)

)

dδ. (1.45)

The Press-Schechter formalism now states that this probability is proportional to

the probability that this point has ever been in a region with δ > δc. There is quite

a subtle point in here, in that this assumes that any objects with δ > δc are the ones

which are just now undergoing gravitational collapse, i.e. it assumes δ = δc. If a point

has δ > δc then it would have δ = δ′c, associated with a different mass and scale, M ′

and R′
s, and would enter the mass function with that mass instead. This argument

fails to account for underdense regions, and a factor of 2 is added to account for missed

objects. We will accept this factor here, although an improvement on it can be found

for example, in Peacock and Heavens (1990).

The mass function is then related to p as

Mn(M)

ρ0
=

∣

∣

∣

∣

dp

dM

∣

∣

∣

∣

(1.46)

and we can write

n(M) =
2δc√
2π

ρ0

M2

∣

∣

∣

∣

d ln σ

d lnM

∣

∣

∣

∣

exp−1

2

δ2c
σ2
. (1.47)

For a power-law mass fluctuations σ(M) ∝M−α we get

n(M) ∝
(

M

M∗

)α−2

exp

[

−
(

M

M∗

)2α
]

. (1.48)

Detailed numerical simulations give solutions which are different in detail, but the

qualitative behaviour is correct. We find that the distribution of objects has a sharp

cut-off at high masses, meaning large objects are more rare. Conversely, at the low

mass end we have a shallower power-law slope. The Press-Schechter formalism has

been extended and modified by subsequent work, which aim to find analytical routes

that give more exact answers, and with them more insight (e.g. Lacey and Cole 1993,

Sheth and Tormen 2002).
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The analysis above is dominated by gravity, and appropriate for dark matter fluc-

tuations which are governed by gravity interactions only. Nonetheless, we are now in

a very good position - we have a recipe to identify and count dark matter virialised

objects (dark matter halos) of any given mass in a density field evolved linearly. We

now expect baryonic matter to form galaxies within the potential wells created by these

objects (White and Rees 1978). However, it is gas dynamics and dissipative processes

that shape the luminosity distribution of galaxies we see today.

If the mass to light ratio of galaxies was constant across luminosity or mass, the

predicted luminosity function would be readily available from the mass function in

(1.48), but this is far from being the case. White and Rees (1978) propose that galaxy

formation is mainly regulated by how quickly gas is able to cool within a halo, which

depends on its mass. Processes which regulate star formation within these gravitational

wells are needed to explain the observed galaxy luminosity function, and the physics

can get messy from now on. The observed galaxy luminosity function shows slopes

for the high and low mass end which suggest that different star formation regulation

mechanisms are at play at each extreme, measuring α − 2 ≈ −1 when fixing 2α = 1

(e.g. Bell et al. 2003). We will review some ways to tackle this problem in the next

section.

Even though it is possible nowadays to detect the distribution of dark matter with

weak gravitational lensing (Massey et al. 2007), the classical and easiest way to trace

matter in the Universe is to map the luminous matter. The mission of constraining

the matter power-spectrum would be easy if luminous matter was an unbiased proxy

for matter, but this is not the case. This leads us to the concept of galaxy bias, which

relates the luminous mass in the Universe, with the total amount matter which is

present. The simplest case is a linear bias (Peacock 1999):

∆2
light = b2∆2

matter. (1.49)

In reality this relation is likely to be more complicated, but the thing to keep in

mind is that when we probe the galaxy population we are not directly probing the

underlying density field and some assumptions are needed.

22



1.4. STRUCTURE FORMATION

1.4.6 Galaxy formation models

Having reached this point we are now faced with the really difficult physics left to solve.

We do not have, at this stage, a model for galaxy formation. This is largely due to the

complexity of the system, rather than ignorance of the basic physical processes behind

it. Our understanding of this highly complex process has been shaped by two different

approaches.

One of them is sheer computational brute force. Ideally we would like to turn a set

of potential wells and a primordial distribution of gas into a distribution of galaxies, by

only inputting basic physics using hydrodynamic simulations (e.g. Pearce et al. 2001;

Weinberg et al. 2004; Kereš et al. 2005). This is far from being within reach, and cur-

rent simulations are limited in resolution and number of particles they work with. The

upside is that computer power and numerical methods can only get better with time,

and we expect this sort of simulations to give more accurate results as time goes on.

In the meantime, processes which are beyond the resolution of the simulations have to

be dealt with by analytical approximations.

A very different approach is to simulate only the gravitational interactions of dark

matter, and use the resulting distribution as a starting point to a semi-analytical anal-

ysis (e.g. Kauffmann et al. 1999; Benson et al. 2003; De Lucia et al. 2006; Bower

et al. 2006). Semi-analytical models rely on analytical approximations to complicated

processes, such as star formation, gas cooling or feedback in order to predict a set of ob-

servables which can be matched to the real Universe. The advantage of semi-analytical

modelling is that there is a very clear connection between the input and the output,

which allows us to gain insight on which processes might be important in real galaxies.

Common between the two, and of particular relevance in this thesis, is their current

inability to understand star formation. We also do not have a model for star formation

in galaxies: given a galaxy of a given mass, luminosity or environment we are currently

unable to predict what the star formation rate in that galaxy should be. Fundamental

observables, such as the luminosity and stellar mass functions are shaped principally

by star formation and merging. Given the theoretical difficulty in modelling these

processes, observational constraints on how star formation depends on redshift, mass,

luminosity, clustering, etc, are particularly crucial for the development of galaxy for-
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mation models and consequently our own understanding of how they form and evolve.

Many of these observables depend on an assumed initial mass function (IMF) - the pre-

dicted number of stars per unit mass formed from a single cloud of gas. An assumed

IMF lies at the heart of any interpretation process relating to star formation within

galaxies, as well as being an input for galaxy formation models.

This thesis aims to advance the current knowledge on this area by using the inte-

grated spectra of galaxies. The spectrum of a galaxy holds vasts amounts of information

about that galaxy’s history and evolution. Finding a way to tap directly into this source

of knowledge would not only provide us with crucial information about that galaxy’s

evolutionary path, but would also allow us to integrate this knowledge over a large num-

ber of galaxies and therefore derive cosmological information. These ideas are explored

in Chapters 4 and 5.

1.5 The Cosmic Microwave Background as an observable

We have followed the evolution of primordial fluctuations in the inflation scalar fields to

the stage where we can tentatively predict how the distribution and content of galaxies

looks like today. In section 1.4.1 we mentioned how these primordial fluctuations δφ

would also leave their signature in the radiation field. We now take a detour back in

time, to look in more detail at how the observed Cosmic Microwave Background came

to be, what it tells us about the Universe, and introduce some formalisms we will need

in Chapter 2.

The CMB is an open window to the early Universe. It is a nearly-uniform and

isotropic radiation field, which exhibits a measured perfect black-body spectrum at a

temperature of 2.72K. This primordial radiation field is a prediction from a Big Bang

universe - if in its early stages the Universe was at a high enough temperature to be

fully ionized then processes such as Thompson scattering and Bremsstrahlung would

thermalize the radiation field very efficiently. Assuming an adiabatic expansion of the

Universe, one would then expect to observe a radiation field which would have retained

the black-body spectrum, but at a much lower temperature.

As observers, we can measure three things about this radiation: its frequency spec-

trum f(ν), its temperature T (n̂) and its polarization states. Each of these observables
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contains information about the creation and evolution of the field and are fully packed

with cosmological information. Although the study of the polarization of the CMB

radiation has been a recent and promising area of research (propelled by technology

advancements which now allow this signal to be measured), this thesis concentrates on

the temperature signal.

1.5.1 The CMB observables

The frequency spectrum of the CMB radiation was measured to high accuracy in the

early nineties by FIRAS (as part of the COBE mission, which also gave us the first

full-sky map of the CMB), and it was found to be that of a black-body at a temperature

T=2.72K over a large range of frequencies. This profile indicates thermal equilibrium

and it is to date the best example of a black-body known in the Universe. This alone

can tell us something about the early Universe. If we assume an adiabatic expansion

we expect T ∝ 1/R. Relating the present day temperature to the temperature at a

redshift z and using equation (1.7) we get

T0 =
T (z)

1 + z
. (1.50)

This allows us to estimate the temperature of the radiation at the time the CMB

was created. Our best estimate for the last scattering surface (LSS) redshift zLS is

approximately 1100, which gives us a temperature of around 3000K at the time of last

scattering. And since ν0 = ν/(1 + z), we expect a black-body spectrum to remain so

in an adiabatic expansion (recall the flux of a black-body Bν = 2hν3c2

ehν/KT −1
).

However, the vast majority of information lies not in the frequency spectrum of

the CMB, but in its temperature field. Although the observed average temperature is

amazingly uniform across the sky, a good signal-to-noise experiment will reveal small

fluctuations around this average. These fluctuations are small (1 part in 10,000!), and in

2003 the satellite experiment WMAP provided the first high resolution, high signal-to-

noise, full-sky map of these fluctuations. Since we are interested in the deviation from

the average temperature, we generally define a dimensionless quantity Θ(n̂) = T (n̂)−〈T 〉
〈T 〉 ,

where n̂ is a direction in the sky, n̂ ≡ (θ, φ).

We see these temperature fluctuations projected in a 2D spherical surface sky, and so

it has become common in the literature to expand the temperature field using spherical
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harmonics. The spherical harmonics form a complete orthonormal set on the unit

sphere and are defined as

Ylm =

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm

ℓ (cosθ)eimφ (1.51)

where the indices ℓ = 0, ...,∞ and −ℓ ≤ m ≤ ℓ and Pm
ℓ are the Legendre polyno-

mials. ℓ is called the multipole and represents a given angular scale in the sky α, given

approximately by α = 180/ℓ (in degrees).

We can expand our temperature fluctuations field using these functions

Θ(n̂) =

ℓ=∞
∑

ℓ=0

ℓ
∑

m=−ℓ

almYlm(n̂) (1.52)

where

alm =

∫ π

θ=−π

∫ 2π

φ=0
Θ(n̂)Y ∗

lm(n̂)dΩ (1.53)

and, analogously to what we do in Fourier space, we can define a power spectrum

of these fluctuations, Cℓ, as the variance of the harmonic coefficients

〈alma
∗
l′m′〉 = δℓℓ′δmm′Cℓ (1.54)

where the above average is taken over many ensembles and the delta functions

arise from isotropy. We only have one Universe, so we are intrinsically limited on the

number of independent m-modes we can measure - there are only (2ℓ+ 1) of these for

each multipole. We can write the following expression for the power spectrum:

Cℓ =
1

2ℓ+ 1

ℓ
∑

m=−ℓ

〈|alm|2〉. (1.55)

This leads to an unavoidable error in our estimation of any given Cℓ of ∆Cℓ =
√

2/(2ℓ + 1): how well we can estimate an average value from a sample depends on

how many points we have on the sample. This is normally called cosmic variance.

In real space, the power spectrum is related to the expectation value of the corre-

lation of the temperature between two points in the sky:

ξΘΘ(θ) =
〈

Θ(n̂)Θ(n̂′)
〉

=
1

4π

∞
∑

ℓ=0

(2ℓ+ 1)CℓPℓ cos θ, n̂.n̂′ = cos θ. (1.56)
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Cosmological models normally predict what the variance of the alm coefficients is

over an ensemble, so they predict the power spectrum. Each Universe is then only one

realisation of a given model.

Under the Inflation paradigm, the temperature fluctuations are Gaussian, which

means that the harmonic coefficients have Gaussian distributions with mean zero and

variance given by Cℓ. In this case, all we need to characterise the statistics of our tem-

perature fluctuations field is the power-spectrum - higher-order correlation functions can

be written in terms of the two-point function or the power spectrum. The Gaussian

hypothesis is now being questioned by detections of non-Gaussianity and deviations

from isotropy in the WMAP data. Part I of this thesis concentrates on testing the

Gaussian hypothesis using the peaks of the temperature field.

The sum in equation (1.52) will generally start at ℓ = 2 and go on to a given ℓmax

which is dictated by the resolution of the data. We exclude the first two terms for the

following reasons: the monopole (ℓ = 0) term is simply the average temperature over

the whole sky (Y00 = 1/2
√
π which makes Θ(n̂)ℓ=0 = 1/4π

∫ ∫

Θ(n̂)dφdcosθ ≡ 〈Θ(n̂)〉,
where the integrals are done over the entire surface), and so from our definition of Θ(n̂)

it should average to zero. The monopole temperature term would be a valuable source

of cosmological information in its own right, but its value can never be determined

accurately because of cosmic variance - essentially we have no way of telling if the

average temperature we measure locally is different from the average temperature of

the Universe. The dipole term (ℓ = 1, α ≈ 180◦) is affected by our own motion across

space - CMB photons that we are moving towards will appear blueshifted and those

that we are moving away from will appear redshifted. This creates an anisotropy at

this scale which dominates over the intrinsic cosmological dipole signal and therefore

we normally subtract the monopole/dipole from a CMB map or discard the first two

values of the power spectrum prior to any analysis.

Our best estimate at what the power spectrum of the observed CMB fluctuations

looks like can be seen in Figure 1.3. It is usually plotted as ℓ(ℓ+1)Cℓ/2π. This is related

to the contribution towards the variance of the temperature fluctuations in a patch of

sky of size ∝ 1/ℓ:
〈

Θ2
〉

= ξΘΘ(0) = 1
4π

∑

ℓ(2ℓ+1)Cℓ (since Pℓ(1) = 1). The contribution

over a range of values of ℓ is given approximately given by
∫∞
ℓ 2ℓ′Cl′dℓ′ =

∫∞
ℓ 2ℓ′2C ′

ℓ
dℓ′

ℓ′

(for ℓ≫ 1) and so 2ℓ2Cℓ is proportional to the contribution to the variance per unit ln ℓ.
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Figure 1.3: From Nolta et al. (2008). The CMB power spectrum as a function of angular scale,

as derived from WMAP’s five years of integrated data and three other small scale experiments:

ACBAR (Reichardt et al. 2008), Boomerang (Jones et al. 2006) and CBI (Readhead et al.

2004). The red line is our best fit to the data.

This gives a flat plateau at large angular scales, and brings out a lot of the structure

at smaller scales (see later).

1.5.2 Relating angular sizes with linear scales

It is useful to relate angular scales in the sky with linear sizes at the time of last scat-

tering. We take the LSS as being a spherical surface at a redshift zLS from us. We will

take the comoving distance to this surface as being rLS . We want to relate a small angle

in the sky θ to the linear comoving distance x at last scattering, such that θ ≈ x/r (for

θ ≪ 1 and in flat space).

The comoving distance-redshift relation is given by equations (1.17) and (1.12).

The integration can only be done numerically for most cases, but for the case of a

matter-dominated, flat Universe then equation (1.12) simplifies to H(z) = (1 + z)3/2

and we get
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rLS =
c

R0H0

∫ zLS

0
(1 + z)−3/2dz =

2c

H0R0

(

1 − (1 + zLS)−1/2
)

. (1.57)

For zLS ≫ 1 then rLS is given simply by 2c
H0R0

. Formally, by taking zLS to infinity we

are effectively calculating the present-day particle horizon length which is the maximum

comoving distance light could have travelled since the Big Bang, dH . So a small angle

in the sky θ corresponds to a linear comoving distance x at last scattering given by (in

radians)

θ = x
R0H0

2c
(1.58)

One particular comoving distance at the time of last scattering which we might be

interested in is the particle horizon length, which is given by

dH(z = zLS) =

∫ ∞

zLS

dz

H(z)
=

2c

H0R0
(1 + zLS)−1/2 (1.59)

which, from (1.58) and for zLS ≈ 1100, means that

θLS
H = (1 + zLS)−1/2 ≈ 1.7◦. (1.60)

This tells us that scales larger than 1.7◦ in the sky were not in causal contact at the

time of last scattering. However, the fact that we measure the same mean temperature

across the entire sky suggests that all scales were once in causal contact. This was

solved by the idea of Inflation, as introduced in section 1.4.1. In that section we saw

how Inflation is a mechanism which provides us with primordial spatial inhomogeneities

in the gravitational field, δΦ, and with uniformity across the whole sky. We also saw

how these inhomogeneities are the seeds of the large scale structure we see today. In the

next section we will explore how they create the temperature fluctuations we observe

in the CMB today.

1.5.3 Physical mechanisms: the origin of the anisotropies

CMB anisotropies can be classified into primary or secondary anisotropies, according

to whether they were created at last scattering or during the photons’ path along the

line of sight. Photons can be affected by a range of things after last-scattering e.g.

re-ionization, passing through hot clusters’ gas, evolving potential wells, gravitational

lensing, etc. While secondary anisotropies hold a good deal of information about the

more recent Universe, they are not the subject of this thesis. Mostly, their effect on

the temperature power spectrum lies at very small scales (very large ℓ) just beyond our

current technical abilities. The exception is the Integrated Sachs-Wolf effect (related
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to time-evolving potential wells) whose effect shows up at very large scales (very small

ℓ), and causes a slight rise in the power spectrum.

Our interest in this thesis lies in the primary anisotropies. These, in turn, are

created by two main mechanisms: gravitational and adiabatic

Θ = Θgrav + Θad. (1.61)

Perturbations in the gravitational potential δΦ left from Inflation can affect the

radiation in two different ways. Firstly, through gravitational redshift, which in the

weak field regime is given by
δν

ν
= Θ ≈ δΦ

c2
. (1.62)

Secondly, by causing a time dilation at the time of last scattering δt/t = δΦ/c2,

which means we are looking at a younger universe when we look towards overdensities.

In early times, R ∝ t2/3 and recalling that T ∝ 1/R we promptly get

Θ ≈ −2

3

δΦ

c2
(1.63)

where we have again taken a weak-field approximation and assumed an adiabatic

expansion. The added effect is simply

Θgrav ∼ 1

3

δΦ

c2
(1.64)

which is commonly known as the Sachs-Wolf effect. These fluctuations happen at all

scales, but dominate at large scales, where causal effects such as fluid dynamics (see

next) do not come into account. For a spatial matter power-spectrum P (k) ∝ kn, the

angular power-spectrum Cℓ reduces to (for n = 1) Cℓ ∝ 1/ℓ(ℓ + 1). This dependency

gives rise to the flat part of the plot in Figure 1.3, which is usually called the Sachs-Wolf

plateau.

We now turn to adiabatic perturbations. We have been slowly building up a picture

the Universe at last scattering. Due to the high temperature, the Universe was fully

ionized and consisted of a plasma mixture which, amongst others, contained photons

and baryons. Thompson scattering meant that the photons were tightly coupled to the

electrons which were in turn coupled to the baryons via Coulomb interactions. This

coupling, together with radiation pressure acting as a restoring force, allows us to treat

the primordial plasma as a perfect photon-baryon fluid to which normal fluid dynamics
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equations apply.

As mentioned before, the Universe also displayed small local potential wells into

which matter falls. These potential perturbations, δΦ can be related to matter den-

sity perturbations by Poisson’s equation ∇2Φ = 4πGρm. For an adiabatic expansion,

the matter density perturbations are related to the radiation density and temperature

perturbations by
1

3

δρm

ρm
=

1

4

δργ

ργ
= Θad (1.65)

remembering that ρm ∝ R−3 and ργ ∝ R−4.

We are interested in the dynamics of these temperature perturbations within this

system. Let us take a simple model, in which we ignore gravity and the effect of the

mass/intertia of the baryons (we are essentially taking a photon fluid), and see what

happens to these temperature fluctuations under the influence of radiation pressure

over time. The treatment we follow next is based on the excellent review by Hu and

Dodelson (2002). We will be working in Fourier space: since the perturbations are

small and evolve linearly we expect each k-mode to be independent.

The first thing to appreciate is that the number of photons is conserved. We can

write down a continuity equation for photon number density, nγ , as

ṅγ + ∇.(nγvγ) = 0 (1.66)

where the derivative is with respect to conformal time dη ≡ cdt/R(t), which scales

out the expansion, and vγ is the photon fluid velocity. Taking into account the Uni-

verse’s expansion, what is actually conserved is nγ/R
3, and so ṅγ+3nγ

Ṙ
R+∇.(nγvγ) = 0

which reduces to

˙(

δnγ

nγ

)

= −∇.vγ (1.67)

for linear perturbations δnγ = nγ − n̄γ .

We can relate this to temperature fluctuations by nγ ∝ T 3 to give 3Θ = δnγ/nγ .

This reduces our continuity equation to Θ̇ = −(1/3)∇.vγ or, in Fourier space, to

Θ̇ = −1

3
ik.vγ . (1.68)
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We now consider the momentum of the radiation. Momentum is given by q =

(ργ + pγ)vγ where (ργ + pγ) is the effective mass and, for radiation, pγ = (1/3)ργ .

Ignoring gravitational effects and viscosities, the only force is given by the pressure

gradient ∇pγ = (1/3)∇ργ . We can then write q̇ = F as

4

3
ργv̇γ =

1

3
∇ργ (1.69)

and so v̇γ = ∇Θ or, in Fourier space,

v̇γ = ikΘ. (1.70)

We now consider only the velocity component along the direction k̂, as this is

the only one with a gravitational source and we write our final continuity and Euler

equations as

Θ̇ = −1

3
kvγ (Continuity) (1.71)

v̇γ = kΘ (Euler). (1.72)

These can quickly be combined to give

Θ̈ +
1

3
k2Θ = 0 (1.73)

which is a simple harmonic oscillator equation. The 1/3 factor is generally the

adiabatic sound speed which is defined as c2s ≡ ṗγ/ρ̇γ which in this case is equal to 1/3.

The general solution for equation (1.73) is given by

Θ(η) = Θ(0) cos (kcsη) +
Θ̇(0)

kcs
sin (kcsη) . (1.74)

By assuming negligible initial velocities and by defining a sound horizon as s ≡
∫

csdη, we simplify our solution to Θ(η) = Θ(0) cos(ks).

Let us briefly summarise how far we have got. We are trying to analyse the dy-

namical behaviour of a photon-baryon fluid, and study how temperature fluctuations

behave in this system. We took some very constraining assumptions (such as ignoring

gravity and the baryons) and worked on a system whose only force was given by radi-

ation pressure gradients. What we found is that this pressure acts as a restoring force

to initial perturbations and we are left with oscillations which propagate at the speed of

sound. This is an important result, which holds even when we take into account other

effects to make our system a realistic one. This behaviour continues until we hit the
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temperature of recombination, at which time matter and radiation de-couple and any

temperature fluctuations are essentially frozen into the photons’ temperature, which

we measure (nearly unchanged!) today.

Let us emphasise that these oscillations are happening at all scales, and we are

interested in those which, at the time of recombination, happen to be at one of their

extrema. If this happens at a conformal time ηrec (corresponding to a sound horizon

srec), then modes will be frozen with an amplitude given by

Θ(ηrec) = Θ(0) cos(ksrec) (1.75)

and those caught at their extrema will have knsrec = nπ. We can therefore find a

fundamental scale of oscillation by taking n = 1

kF = k1 =
π

srec
. (1.76)

This is our largest oscillating mode, and of course, all of the corresponding over-

tones will be caught at their extrema too. These will correspond to higher values of kn

and are simply oscillations which have had time to go another complete half-oscillation:

k1 corresponds to the oscillation which has had time to compress fully once, k2 = 2k1

to the oscillation which has had time to compress and then decompress fully, and so on.

We see that the maximum scale at which these fluctuations will happen (related to

1
kF

) is related to the sound horizon at the time of recombination, which was close to

the particle horizon. This means that scales larger than this will not be affected by

acoustic oscillations, and we would not expect otherwise given that acoustic oscillations

can only happen in regions which are causally connected.

However, there is a caveat to this toy model. These oscillations also set up velocities

in the fluid, which will in turn produce Doppler shifts in the frequencies of the photons.

Velocity oscillations are precisely π/2 out of phase with acoustic oscillations which in

this case cancels the temperature oscillations in the radiation completely and gives a

flat Θ.

A full treatment should take into account gravity, mass and inertia of the baryons,

the evolution of the photon/baryon ratio, viscosity, diffusion and so on. A full solution
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looks more like (Hu 1995):

〈∆T
T

2

(η)〉 =

[

1

3
(1 + 3R)Φ cos(kcsη) −RΦ

]2

+

[

1

3
(1 +R)(1 +R)−1/2Φ sin(kcsη)

]2

(1.77)

where R is fluid momentum density and R ≡ 3ρb
4ργ

≈ 450
1+z

Ωbh2

0.015 . The first term rep-

resents the acoustic oscillations which are equivalent to what we derived with our toy

model and the second term represents the Doppler oscillations, which in this case are

much smaller than the acoustic oscillations, but still π/2 out of phase (we notice the

sine instead of the cosine).

However, we do not need a full treatment to understand what the effect of gravity

and the introduction of baryons does to this system, at least qualitatively. Gravity’s

main effect is to introduce another force into the system, Fgrav = −m∇Φ, which adds

a term to our Euler equations. This in effect creates a potential well and changes the

range of the temperature oscillations, effectively their amplitude. If we now introduce

baryons to the system, then we are introducing mass into the system. As in a classical

system consisting of a spring (restoring force) and a mass attached to the end of the

spring (the photon-baryon fluid), increasing the mass will cause the spring to fall fur-

ther, but it will not change the maximum rebound height. Recall that our peaks in the

temperature fluctuations alternate between compression and expansion of the plasma,

so introducing matter into the system changes only every other peak - those corre-

sponding to compression of the fluid (matter is falling further into the potential well).

Hence we expect even-numbered peaks to be suppressed in relation to odd-numbered

peaks.

We also expect curvature to affect the observed angular temperature anisotropies,

as it affects the path the CMB photons will have taken to get to us. It is essentially

a problem of geometry: in a closed Universe, a given angle subtended in the sky will

correspond to a smaller linear distance at last scattering than in a flat Universe, and so

curvature shifts the peaks along the multipole axis. The detection of the first acoustic

peak at an ℓ ≈ 200 provided a good constraint on the flatness of our Universe.

At smaller scales, however, we see that these oscillations are clearly damped. This

comes from the fact that the last scattering surface has a finite thickness, and therefore

recombination and last scattering do not happen at the same time. This damps out

34



1.6. THE INTEGRATED SPECTRUM OF A GALAXY AS AN
OBSERVABLE

small scale fluctuations (where the scale is related to the thickness of the scattering

surface), as photons still have to random walk out of this shell before they are essen-

tially free, smoothing out the fluctuations.

The WMAP satellite has launched us into the era of precision cosmology. Within

the Gaussian hypothesis, all the information in the CMB is compressed in the power-

spectrum and its analysis has revealed the most precise picture of the Universe to date -

Table 1.1 summarises this picture. The extraction of cosmological information from the

power-spectrum is a complex process in itself, and there are a number of degeneracies

within the model that can only be lifted with the use of other datasets, such as type

Ia supernovae or large scale structure surveys.

Parameter Value

h 0.719+0.026
−0.027

Ωb 0.0441 ± 0.0030

Ωc 0.214 ± 0.027

ΩΛ 0.742 ± 0.030

Ωm 0.258 ± 0.030

τ 0.087 ± 0.017

zdec 1087.9 ± 1.2

zeq 3176+151
−150

n 0.963+0.014
−0.015

σ8 0.796 ± 0.036

t0 13.69 ± 0.13 Gyr

zreion 11.0 ± 1.4

Table 1.1: Summary of cosmological information derived from the analysis of the temperature

power-spectrum, as estimated by WMAP5 (Komatsu et al. 2008). Parameters included on the

table which have not been previously defined in this thesis are: τ as the optical depth at the

time or recombination, t0 as the age of Universe and zreion as the redshift for reonization.

1.6 The integrated spectrum of a galaxy as an observable

In this section we will focus on the second observable used in this thesis - the optical

spectra of a galaxy. Even though the stellar content of a galaxy is only the small tip

of the iceberg, it remains a very important component of the Universe. Firstly because
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we can see it, and secondly because it holds an imprint of that galaxy’s star formation

history, which combined with other galaxies’ provides information of when, how and

where luminous mass formed in the Universe.

Galaxies’ integrated colours alone can provide insight about their evolution. The

known bimodality of blue and red galaxies on a variety of observables seems to tell us

that these two populations are intrinsically different. Whereas this is useful in its own

right, there is a considerable amount of more information to extract from galactic light.

Part II of this thesis concerns the problem of extracting information from a galaxy’s

integrated spectrum in a reliable way, and then using it to find out about the formation

of structure in the Universe.

1.6.1 Stellar population models

First and foremost, this requires a means of physically interpreting galactic light. A

galaxy’s spectrum can be modelled as a superposition of stellar populations of different

ages and metallicities, if we know the expected flux of each stellar population. This is

given by stellar population models.

Single stellar population models (SSPs) have three main ingredients. First we need

a description of the evolution of a star of given mass and metallicity in terms of ob-

servable parameters, such as effective temperature and luminosity (e.g. Alongi et al.

1993; Bressan et al. 1993; Fagotto et al. 1994a; Girardi et al. 1996; Marigo et al. 2008.

This can be calculated (or at least approximated) analytically, to produce the so called

isochrones: evolutionary lines for stars of constant metallicty in a colour-magnitude

diagram. Secondly we need to assume an initial mass function (IMF), which gives

the number of stars per unit stellar mass, formed from a single cloud of gas (e.g.

Salpeter 1955; Chabrier 2003; Kroupa 2007). Different mass stars evolve with differ-

ent time-scales, and we can use the IMF to populate different evolutionary stages of

the colour-magnitude diagram with the correct proportion of stars of any given mass.

Finally we need spectral libraries, which for a combination of parameters such as lu-

minosity or colour index, assign a spectrum to a star. Spectral libraries can either be

drawn from our local neighbourhood, by taking high quality spectra of nearby stars

(Le Borgne et al. 2003), or they can be theoretically motivated (e.g. Coelho et al. 2007).

Stellar population models are limited in two main ways. Certain advanced stages of
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stellar evolution, such as the supergiant phase, or the asymptotic giant-branch phase,

are still poorly understood. This leads to uncertainties in the construction of the SSP

models, which are in this case worsened by the fact that these are bright stars which

contribute significantly to the overall luminous output. If using empirical spectral

libraries, stellar population models are also limited by any bias of the stars in the solar

neighbourhood. For example, the Milky Way is deficient in α-elements (O, Ne, Mg, Si,

S, Ca, Ti), which are indicators of fast star formation. Nearby stars are biased towards

low [α/Fe], which in turn bias the sample of high quality stellar spectra available for

collection. In this case theoretical models might help, by explicitly calculating spectra

for a variety of [α/Fe] models (Coelho et al. 2007).

1.6.2 Dust models

There is a further complication which arises from the fact that the light from each

galaxy does not get to us without interference. Dust absorbs and re-emits light with

a non-trivial wavelength dependence, both within each galaxy we want to observe and

our own Milky Way.

For a uniform slab of dust, the emitted and observed flux are related by

F obs
λ = F em

λ e−τλ (1.78)

where τλ is the optical depth of the obscuring material. This is clearly a simplifica-

tion of the problem, and more sophisticated dust geometries can be found in Charlot

and Fall (2000). These give a dependence on the optical depth which is more complex

than the one in equation (1.78).

When talking about Galactic dust, it is more common to express the problem as a

difference in magnitudes by writing

mλ,obs −mλ,em = −2.5 log10

(

F obs
λ

F em
λ

)

= 1.086τλ ≡ Aλ. (1.79)

The difference in extinction in the B and V magnitude is called the colour excess

defined as A(B) − A(V ) ≡ E(B − V ). For a given extinction curve, kλ, which holds

the wavelength dependence of the problem, we generally write

Aλ = kλE(B − V ) (1.80)
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Figure 1.4: Two examples of dust extinction curves. The solid line shows a simple model

that follows λ−0.7 and is used throughout most of this thesis. The dashed line shows the the

extinction curve estimated directly from the Large Magellanic Cloud by Gordon et al. (2003).

Curves have been normalised to unity at λ = 5550Å.

where the colour excess essentially provides the means for quantifying the amount

of dust. kλ can be theoretically or observationally motivated. Figure 1.4 shows the

example of two absortion curves: one which simply goes as λ−0.7 as mostly used in

Charlot and Fall (2000) and in this thesis, and the extinction curve estimated directly

from the Large Magellanic Cloud (LMC) by Gordon et al. (2003).

1.6.3 Extracting the information

Extracting information from galactic spectra is a much more complex problem than

that of extracting information from, for example, the CMB’s power-spectrum. Firstly

we must be clear about the parameters we want to extract from the data. We are faced

with a non-trivial decision, since any parametrization we might choose will undoubtedly

be an over-simplification of the problem - a galaxy is almost infinitely more complex

than the early Universe. However, the quality of the data will often impose a limit on

how many parameters we can safely recover from the data and one must be careful not

to ask for more than what the data allows. The risk is getting back a solution which is

largely dominated by noise, rather than real physics.
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From emission to absorption lines, continuum shape and spectral large scale fea-

tures, a galaxy’s spectrum is packed with information about the physics of that galaxy.

Stellar population and dust models provide us with a theoretical framework for their

interpretation, and there are various ways in which one can do this.

Certain isolated spectral features are known to be well correlated with physical

parameters, such as mass, star formation rate, mean age, or metallicity of a galaxy

(e.g. Kauffmann et al. 2003; Tremonti et al. 2004; Gallazzi et al. 2005; Barber et al.

2006). Emission lines are a sign of recent star formation: young, massive stars are the

only ones with enough UV emission to ionize their surroundings. The recombination of

the ionized gas creates signature emission lines, such as Hα and Hβ , whose intensity (in

the absence of dust) can tell us about the abundance of young stars in a galaxy. UV

emission is, in itself, also a good probe for star formation for exactly the same reasons

(e.g. Madau et al. 1996; Kennicutt 1998; Hopkins et al. 2000; Bundy et al. 2006; Erb

et al. 2006; Abraham et al. 2007; Noeske et al. 2007; Verma et al. 2007).

Absorption features are directly related to the chemical abundances of a stellar

population, as they are created when the black-body emission from the centre of the

star passes through its cooler outer regions. Certain absorption features, such as the

Lick indices, have been well measured and calibrated so as to provide a standard set of

tools which aid in assigning a physical meaning to a given absorption line (e.g. Worthey

1994; Thomas et al. 2003).

This thesis focuses on using all of the available absorption features, as well as the

shape of the continuum, in order to interpret a galaxy in terms of its star formation

history. Emission lines are not included in the stellar population models (and are not

present in every galaxy) and so we do not concentrate on these. We will show how, by

using the integrated spectrum of a galaxy, we can find an appropriate parametrization

which will allow us to recover the maximum amount of information from a galaxy

without running into the risk of over-parametrizing.

1.7 Summary

We have seen how the origin and growth of the density fluctuations is connected to

the distribution of galaxies we see today. The picture presented in this Introduction is

normally referred to as the Standard Model of cosmology, or the Λ Cold Dark Matter
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(Λ CDM) model. Even though this is perhaps the first time we stand with a cosmo-

logical model that describes the vast majority of our observations, there are thankfully

many areas which leave our knowledge vastly unsatisfied. We have highlighted some

throughout this introduction, but let us summarise the ones this thesis is particularly

concerned with:

• What is the nature of Inflation? We are vastly ignorant about this crucial moment

of the history of the Universe. There are very many proposed theoretical models,

but without adequate observational constraints it is not possible to move theory

forward. Inflation, if true, left its imprint on the statistics of the CMB, which we

explore in Chapters 2 and 3.

• What is the nature of Dark Energy? Evidence that our Universe has recently

entered an accelerated expansion state is clear in the luminosity-distance to type

Ia supernovae. This exciting and direct probe of Dark Energy requires accurate

knowledge of these explosions and their progenitor stars, for which we lack a

theoretical understanding. We put observational constraints on the nature of

these progenitors in Chapter 6.

• How do galaxies assemble their stellar mass? Our model predicts a hierarchical

growth of galaxies, with smaller objects forming first and merging to form larger

objects. We estimate robust stellar masses of a large number of galaxies and

explore various issues relating to the formation and assembly of stellar mass in

Chapter 5.

This thesis naturally splits into two parts because it focuses on two distinct funda-

mental observables of our Universe: the Cosmic Microwave Background, and the light

from nearby galaxies. Both parts however, share the same goal: to further constrain

or test our current model of cosmology and structure formation. We begin with non-

Gaussianity studies of the CMB in Part I. Part II introduces VESPA, a novel algorithm

which extracts information from a galactic spectra and which we then use to explore

the local Universe.
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Part I

Non-Gaussianity in the Cosmic

Microwave Background
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Chapter 2

Background and methodology

The hypothesis that the cosmic microwave background (CMB) is an isotropic Gaussian

random field is a direct prediction from a large number of Inflation models. This

Chapter describes how we have tested this hypothesis using the clustering properties

of temperature peaks in the temperature field.

2.1 Background

According to the simplest scenarios, the initial conditions set by Inflation in the early-

Universe produce Gaussian (or very nearly Gaussian) temperature fluctuations at the

time of recombination. Testing the statistical property of Gaussianity in the observed

CMB today therefore puts real constraints on the inflationary mechanism which laid

down the primordial seeds of our Universe.

Testing the Gaussian hypothesis is not only of importance for its potential to tell

us something about Inflation. Current analyses of the CMB, which aim to extract cos-

mological information from the observed temperature fluctuations, use the two-point

correlation function (or angular power-spectrum in harmonic space) of the CMB as a

compressed data-vector which statistically describes the underlying field completely.

If the CMB is in fact Gaussian, then higher order statistics are null, and all the in-

formation is indeed accessible in the angular power spectrum. However, a significant

detection of non-Gaussianity in the data could have important consequences not only
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for our knowledge of the early-Universe, but also for our current cosmological model.

2.1.1 Searches for non-Gaussianity

It is therefore not surprising that a large number of studies have been dedicated to

test the Gaussian hypothesis in the CMB. These searches started soon after the very

first detection of the temperature fluctuations themselves with the Cosmic Background

Explorer (COBE, Smoot et al. 1992), but it was not until the Wilkinson Microwave

Anisotropy Probe experiment (WMAP, Bennett et al. 2003) that the data available

were of enough angular resolution and signal-to-noise ratio to allow these studies to

produce significant results.

Without a physically-motivated model for non-Gaussianity there are an infinite

number of ways to modify a Gaussian random field so that it deviates from Gaussian-

ity. It then becomes impossible to predict how sensitive a given estimator will be to

a signal of unknown nature. This makes it advantageous to use a broad range of esti-

mators, and CMB data has been analysed with an enormous array of statistics in real,

harmonic and wavelet space.

The WMAP team have recently made their 3rd data release, corresponding to five

years of integrated data. The first year data release very quickly yielded a large number

of searches for non-Gaussianity (Colley and Gott 2003; Komatsu et al. 2003; Park

2004; Vielva et al. 2004; Coles et al. 2004; Copi et al. 2004; Cruz et al. 2005; Eriksen

et al. 2004b,a, 2005; Land and Magueijo 2005a,b,c; McEwen et al. 2005; Mukherjee

and Wang 2004; Gurzadyan et al. 2005; Liu and Zhang 2005; Tojeiro et al. 2006).

Some of these studies reported anomalies, and some found the data consistent with

Gaussianity. Most notably a north-south assymetry, an alignment of the low multipoles

and a localised feature named the Cold Spot were found repeatedly by different teams

and using different methods. Although some of these detections remained in subsequent

data-releases (e.g. Cruz et al. 2007; Wiaux et al. 2008; McEwen et al. 2008), some have

not (e.g. Dennis and Land 2008). It can be somewhat frustrating to conduct searches for

non-Gaussianity that have no a priori physical mechanism behind them. A detection of

a particular non-Gaussian feature more often than not offers little clue about its origin,

even if we believe it to be cosmological. It is also instrinsically difficult to assess the

significance of such detections, especially if we consider the infinite number of tests one
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can conduct. Nevertheless, given a set of anomalies one can look for alternative models

which might explain them. An example is a class of anisotropic cosmological models,

the Bianchi models (Barrow et al. 1985), which have been investigated as a way to

explain some of the CMB anomalies (e.g. Jaffe et al. 2005; McEwen et al. 2006). Even

though there are problems reconciling these models with the concordance cosmological

model, they demonstrate how one might learn from CMB anomalies.

2.1.2 fNL models

Even within the inflationary paradigm, there is room for some level of non-Gaussianity

if the evolution of the initial fluctuations from δφ to Θ is not completely linear. Specif-

ically, there are three main possible sources: non-linearity in inflaton fluctuations δφ,

non-linearity in the δφ− Φ relation and non-linearity in the Φ − Θ relation.

It has become customary to parametrize all of these effects into one number as:

Φ(x) = ΦL(x) + f loc
NL(Φ2

L(x) − 〈Φ2(x)〉) (2.1)

where ΦL is Gaussian and f loc
NL parametrizes what in the literature is called the local

non-Gaussianity. Single-field, slow-roll models of inflation predict f loc
NL to be less than

unity, whereas more complicated models predict much higher values of f loc
NL. What

does it mean to measure a positive value of f loc
NL? Given that f loc

NL parametrizes three

potentially non-linear relations, it might not be immediately obvious which one causes

the signal. However, models affect each stage of this evolution by different amounts, so

a large value of fNL would at the very least rule out a section of Inflationary models.

Predicted experimental limits, based on the bispectrum, suggest that even an ideal

experiment could only exclude the Gaussian hypothesis if f loc
NL > 3, whereas WMAP

and Planck require f loc
NL > 5 and 20, respectively (Komatsu and Spergel 2001).

Finding the range of f loc
NL values allowed by the data is therefore a way to directly

differentiate between models. The most stringent constraint on f loc
NL from the CMB

comes from the analysis of the 5-year WMAP dataset by Komatsu et al. (2008) which

finds −9 < f loc
NL < 111 at a 95% confidence level. Finding a slighly broader constraint,

but a more controversial central value, Yadav and Wandelt (2008) have estimated

27 < f loc
NL < 147 at the 95% level, therefore excluding the fNL = 0 Gaussian hypothesis

with high confidence.
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The bispectrum (the Fourier transform of the three-point correlation function) is a

widely-used estimator for f loc
NL due to its high sensitivity to this type of non-Gaussianity

(e.g. Komatsu and Spergel 2001). We can write

〈Φ(k1)(k2)(k3)〉 = (2π)3δ3(k1 + k2 + k3)F (k1, k2, k3) (2.2)

where F is the three-point function. For the type of non-Gaussianity mentioned

above, F is large for configurations that have k1 ≪ k2, k3. Recently, another type of

non-Gaussianity has been introduced in which F is large for equilateral configurations:

i.e. k1 ∼ k2 ∼ k3. With this type of non-Gaussianity we associate f equil
NL . WMAP5

constraints on this type of non-Gaussianity: 151 < f equil
NL < 253 at the 95% level (Ko-

matsu et al. 2008). The advantage is that, between the two types on fNL models, they

are sensitive to most inflationary models proposed in the literature.

Non-Gaussianity in Φ will also propagate into the distribution of galaxies. There

is a further complication here, in that the distribution of galaxies is affected by non-

linearities both from gravitational evolution and galaxy bias (Sefusatti and Komatsu

2007). So to probe primordial non-Gaussianity using large-scale structure, we first must

understand these. The returns, however, are high. The scales probed by large scale

structure are smaller than those present in the CMB, and the two measurements are

complementary. Sefusatti and Komatsu (2007) have shown that an all-sky survey up

to redshift 5 would detect f loc
NL ∼ 0.2 and f equil

NL ∼ 2, which is a vast improvement on

CMB hopes. Slosar et al. (2008), using a formalism introduced by Dalal et al. (2008),

combine the WMAP5 dataset and large scale structure to estimate −29 < f loc
NL < 69 at

the 95% level.

2.1.3 Interpretation

The difficulty in interpreting a detection of non-Gaussianity goes beyond a sound sta-

tistical analysis for two reasons. Firstly, secondary anisotropies such as the Sunyaev-

Zel’dovich (SZ) effect (Sunyaev and Zeldovich 1972), the Ostriker-Vishniac effect (Os-

triker and Vishniac 1986; Castro 2003) or the Rees-Sciama effect (Rees et al. 1968),

created along the line-of-sight, act on the CMB photons in a way which produces devi-

ations from non-Gaussianity. Packed with cosmological information in their own right,
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these secondary anisotropies manifest themselves at too small scales to be measurable

in the WMAP data. The exception is the integrated Sachs-Wolfe (ISW) effect, which

is significant at scales ℓ < 30. Francis & Peacock (2008; in prep) reconstruct the local

density field for z < 0.3, which they then use to estimate the ISW contribution to the

observed CMB. Removing this contribution therefore allows a better estimation of the

cosmological signal at large scales.

Secondly, Galactic and extragalactic emission present a serious problem. Highly

non-Gaussian in nature, foreground emission needs to be carefully separated from the

CMB signal prior to analysis. The WMAP team has produced foreground-cleaned

maps for three of the observed frequencies (see section 2.2.1). Nevertheless, it is still

unclear how much residual foreground power can be found in the temperature maps,

and in what way this power might affect a given estimator. The potential existence of

un-removed foregrounds and systematic instrumental effects not accounted for in the

data-reduction pipelines remain the usual suspects for any detection of non-Gaussianity,

although it is also normally not possible to completely exclude a cosmological origin.

This section focuses on using the two-point correlation function of temperature

maxima and minima (hot and cold spots) as a probe of non-Gaussianity. The two-

point correlation function of peaks of a Gaussian random field depends only on its

power-spectrum. In brief, we use Gaussian simulations of the CMB with the same

observed power spectrum as the observed CMB and compare the resulting peak-peak

auto- and cross-correlation functions to that estimated directly from the data. Using

non-Gaussian simulations with f loc
NL 6= 0, we also explore how sensitive peak statistics

are to this particular type of non-Gaussianity. The rest of this chapter describes the

data (in Section 2.2) and methodology used to generate the Gaussian maps (in Section

2.3.2) and estimate the peak statistics (in Section 2.3.5). This method was applied to

the first and the third WMAP data releases, and the results are presented in the next

Chapter.

2.2 Data

The WMAP satellite probed the CMB at five different frequencies with two radiome-

ters, producing ten differencing assemblies (DAs): four on the W-band (94GHz), two

on the V-band (61GHz), two on the Q-band (41GHz), one on the Ka-band (33GHz)
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and one on the K-band (23GHz). Each of these assemblies, after calibration and re-

moval of the monopole and dipole, is available for download1. The satellite has been in

operation for over five years, producing three data releases corresponding to one, three

and five years of integrated data.

All the maps are provided in the Hierarchical Equal Area isoLatitude Pixelisation

(HEALPix) scheme2, which has proved to have several advantages over other methods

for pixelising the surface of a sphere, in particular the fact that the pixel area is kept

constant throughout the surface of the sphere. However, the pixel shapes can vary

largely between the equatorial and polar regions and distance between pixel centres is

not kept constant. The HEALPix scheme divides the sphere surface into 12 faces of

4 sides each, giving a minimum resolution of 12 pixels. Each side is divided in Nside

pixels, giving a total number of pixels in a map of 12N2
side. The WMAP maps were

provided at a resolution of Nside = 512 giving a total of 3,145,728 pixels separated on

average by θpix = 0.115 degrees = 6.87 arc minutes.

Each DA map pixel p contains the temperature field (in mK) and a field containing

the number of observations, Nobs(p), which allows the noise per pixel to be estimated

using

σ(p) =
σ0

√

Nobs(p)

(2.3)

where σ0 is the noise dispersion per map and which has been published for each of the

different assemblies (Bennett et al. 2003). Also available is a foreground-cleaned map

of each of the DAs (see 2.2.1), from which a Galactic foreground template has been

removed, consisting of synchrotron, free-free and dust emission; and the beam transfer

functions of each receptor b(ℓ) from which the corresponding window function W (ℓ)

can be calculated (W (ℓ) = b2(ℓ)).

2.2.1 Foreground emission

As mentioned in section 2.1, galactic and extra-galactic radio emissions need to be

identified and subtracted from the observed data. Radio emission from galaxies arises

mainly from three mechanisms: non-thermal synchotron emission from relativistic elec-

trons which spiral along the lines of large-scale magnetic fields; free-free (bremsstrahlung)

1http://lambda.gsfc.nasa.gov/product/map/m products.cfm
2http://www.eso.org/science/healpix/
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emission from the decceleration of electrons by charged particles; and thermal dust

emission in the radio band. The first two dominate at lower frequencies and decline

with frequency, whereas the latter has the opposite behaviour. Figure 2.1 sketches the

relative contributions of each of these mechanisms against the CMB power.

Figure 2.1: From Bennett et al. (2003): contribution of diffuse radio emission mechanisms

from within the Milky Way and their frequency behavious in comparison with the CMB signal.

The problem of separating the foreground from the CMB signal can be tackled with

two different approaches. One relies simply on CMB data, and combines CMB maps at

different frequencies with weights chosen as to minimise the temperature variance on

a pixel-by-pixel basis. Examples are the Internal Linear Combination (ILC) map from

Bennett et al. (2003) and the Tegmark Cleaned Map (TCM) from Tegmark et al. (2003).

The other approach is to explicitly construct models for the frequency dependence

of the radio emission of each of the foreground components, and use a fitting tech-

nique to construct a model of the galactic emission. Once constructed, it can then

be removed from the data. This approach has the additional advantage of providing

insight into the physical mechanisms involved, although it often relies on outside data

to construct template maps as starting points for the fitting processes. Galactic tem-

plates have been constructed for the WMAP data for all of its data releases (Bennett

et al. 2003; Hinshaw et al. 2007; Gold et al. 2008), and subtracted from each DA to

provide foreground-cleaned maps at for the 8 radiometers in the Q-, V- and W-band.

This approach is more flexible from a user point of view, as it allows us to construct

foreground-cleaned maps at any frequency, and to linearly combine different frequencies
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in order to boost the CMB signal (see section 2.2.4).

On small scales, the problem lies not with diffuse Galactic emission but with extra-

galactic point sources. These can be estimated by looking for bright temperature peaks

which approximate the beam profile, and cross-matching with known radio sources (see

Wright et al. 2008 for full details). Some sources will be missed due to being faint, but

their contribution to the power-spectrum can be estimated (e.g. Komatsu and Spergel

2001; Komatsu et al. 2003, using the bispectrum).

Even after a foreground model has been removed some pixels still contain a large

contribution from Galactic emission. Sky masks have been produced by the WMAP

team which flag such pixels allowing the user to exclude them from a CMB analysis.

Depending on the level of residual foreground deemed acceptable, several masks have

been produced and made publicly available. The masks kp2 and KQ85 have been sug-

gested as appropriate by the WMAP team for cosmology analysis of the CMB, for the

1st and 3rd data releases respectively.

2.2.2 Instrumental systematic effects

There are a vast number of instrumental systematic effects which need to be taken into

account before interpreting and simulating CMB data. A comprehensive description

and treatment can be found in Hinshaw et al. (2003a). Here we will briefly discuss two

of the aspects which impact directly on the task of simulating a CMB sky.

The WMAP is a differencing instrument, which measures the difference in temper-

ature between two parts of the sky. Whereas this is easy to do for two points observed

at nearby times, time-drifts of the instrumental and other background sources means

that it can be hard to do when the points are observed some time apart. In practice, it

leads to an additional noise term which is commonly called 1/f noise (due to the typical

frequency dependence observed in this type of noise). 1/f noise becomes important at

large scales and it presents a deviation from the white-noise spectrum which dominates

the experiment at smaller scales. Figure 2.2 shows the power-spectrum of simulated

noise with in-flight properties compared to the power-spectrum of the CMB for each of

the eight DAs. Fortunately, the signal dominates at the scale at which 1/f noise could

be a problem, and we do not have to worry about it when simulating Gaussian maps,
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with few exceptions (see Section 2.3.2).

The CMB observed with each of the WMAP radiometers is a convolution of the

true signal with the window function of each of the receptors. It therefore becomes

essential to have an accurate characterisation of the beam transfer functions. This was

done using observations of the planet Jupiter (Page et al. 2003; Jarosik et al. 2007; Hill

et al. 2008) to construct beam profiles, which in turn were used to estimate the beam

transfer functions. The third- and fifth-year data releases introduced improvements to

the modelling of the beam profiles, as more observations became available.

2.2.3 Estimating the temperature power-spectrum

In the ideal case where the CMB can be observed free of noise and foregrounds across

the sky, and in which the window function is known exactly, the temperature power-

spectrum Cℓ as defined in equation (1.55) can be easily calculated by estimating the

harmonic coefficients aℓm, using equation (1.53) directly from the data. The only limi-

tation would be cosmic variance. However, in the real world the function T (n̂) is not

known exactly. At low-ℓ we have the inevitable presence of foregrounds as discussed in

2.2.1, which often lead to cuts across the sky. At high-ℓ the noise dominates over the

signal.

The exact methodology employed by the WMAP team to estimate the temperature

power spectrum evolved over the three data releases. In the first year analysis, they used

a quadratic estimator that computes a pseudo-power spectrum, C̃ℓ, from a masked map

using essentially equation (1.53). Even though the pseudo-power spectrum is clearly

different from the true one, their ensemble averages can be associated via a coupling

matrix which itself depends on the form of the window function (see Hinshaw et al.

(2003b), Appendix A for full details). An advantage of this method is that it allows

C̃ℓ to be estimated from the cross-correlation of two different DAs, replacing equation

(1.53) by

C̃ℓ =
1

2ℓ+ 1

ℓ
∑

m=−ℓ

ãi
lmã

j∗
lm. (2.4)

If the noise between the two DAs is uncorrelated, then the estimation of the pseudo

power spectrum is independent of the noise in any given channel.
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Figure 2.2: From Hinshaw et al. (2003b): the power-spectrum of noise as a function of ℓ,

simulated with a full end-to-end pipeline and including 1/f noise is shown in the black line.

The grey line shows the power-spectrum of the temperature fluctuations. At large scales, where

the 1/f noise becomes important, the signal dominates over the noise and at small scales the

noise is white and uncorrelated.
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In the subsequent two data releases this method was only used for small scales, and

the WMAP team adopted other methods to estimate Cℓ for ℓ < 30. One of them relies

simply on using a full-sky ILC map to estimate the power spectrum directly. The other

option is to use a maximum likelihood estimate, which estimates the best-fit power

spectrum by maximising the probability of Cℓ given the observed data (details in Hin-

shaw et al. (2007)). This gives the optimal estimate of Cℓ, but it is computationally

expensive.

The WMAP team has settled for a hybrid method for power spectrum estimation,

in which the large scale power is estimated using a maximum likelihood estimate and

the power at small scales is computed using a quadratic estimator.

2.2.4 CMB maps

To increase the signal-to-noise ratio of the data, we use linear combinations of the

foreground-cleaned assemblies in the Q, V and W bands. We combine the maps in real

space, at the original resolution, which keeps the noise uncorrelated at small scales. To

combine two or more assemblies (e.g. X and Y ) we calculate, for each pixel p:

TXY (p) =

∑

j={X,Y } Tj(p)wj(p)
∑

j={X,Y } wj(p)
(2.5)

with the weights being given by

wj(p) =
1

σ2
j (p)

(2.6)

The index j corresponds to the different DAs: j = 1, 2 corresponds to the V band,

j = 3, 4 to the Q band and j = 5 to 8 to the W band. This allows us to construct

co-added or single frequency maps.

In spite of the foreground cleaning process no map is suitable for a full-sky analysis

of the CMB and we mask all maps prior to analysis (see section 2.2.1).

2.3 Methodology

Our approach is to simulate an ensemble of Gaussian and non-Gaussian maps with the

observed temperature power spectrum of the CMB and instrumental properties of the
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WMAP satellite. This allows us to estimate the two-point peak-peak auto- and cross-

correlation functions and their variance from the simulations, and compare it with that

estimated directly from the data.

The methodology used can be separated into three main parts: the construction of

simulated CMB maps (sections 2.3.2, 2.3.4 and 2.3.3), the estimation of the peak-peak

correlation function from the maps (section 2.3.5), and the statistics used to analyse

the results (section 2.3.6). We start by summarising some HEALPix routines, which

were extensively used whilst doing this work.

2.3.1 HEALPix

In conjunction with defining a pixelisation scheme for the surface of the sphere, HEALPix

provides a software suite to act on the maps both in real and harmonic space and per-

form a series of useful operations:

• hotspot: returns the position and value of all local extrema in a map,

• anafast: returns the harmonic coefficients alm of a map,

• synfast: generates a map in real space, given either the collapsed alm coefficients

or a power-spectrum C(ℓ),

• smoothing: convolves a map with a gaussian beam,

• ud_grade: changes the resolution of a map.

2.3.2 The Gaussian maps

To construct Gaussian simulations of the CMB, we follow the method suggested by

Komatsu et al. (2003) and proceed in the following way:

1. We generate one sky realisation from the best fit ΛCDM model power spectrum,

published for each data-release, using synfast.

2. We copy this map n times, one for each assembly, and convolve each of the copies

with the appropriate window function, using the harmonic coefficients extracted

with anafast.

3. We add uncorrelated noise to each of the maps in real space, according to equation

(2.3) (a more accurate noise model is used for difference maps).
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Figure 2.3: The power spectrum of our working maps. WMAP data in the black line and one

of our Gaussian maps in the dashed red line.

4. We combine the n resulting maps using equations (2.5) and (2.6).

We repeat this procedure to create many Gaussian simulations of the CMB, each being

a random Gaussian realisation of the same initial power spectrum. We used different

numbers of Gaussian maps in different types of analysis, and we quote each number

within the appropriate section. The maps are time-consuming to produce but in each

case we check convergence of χ2 (see Figures 3.2, 3.7 and 3.9 for examples). A compar-

ison of the power spectrum of the real and a simulated map can be seen in Figure 2.3.

Although at small angular scales the noise properties are white, fully understood

and easily modelled, at large angular scales individual Q, V and W assemblies present

noise characteristics which are non-white. Fortunately these are entirely dominated by

the signal and one does not need to worry about them (section 2.2.2). The WMAP

team have produced a set of 110 noise maps which include white noise (dominating at

small scales), 1/f noise (dominating at large scales) and inter-channel correlations for

each of the radiometers. Ideally one would like to incorporate all known effects into the

analysis. However, being limited by the relatively small number of full noise simulations

and due to the high signal-to-noise ratio at the scales where the noise properties deviate

from white, we choose to include only white noise in our Gaussian co-added and single

frequency maps.
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2.3.3 High-pass filtered maps

In order to limit the effect of cosmic variance on the peak statistics (see section 2.3.5)

we have also analysed high-pass filtered maps, which remove the large-scale signal. This

operation was performed on real, Gaussian and non-Gaussian maps.

We constructed several window functions given by Wℓcut(ℓ) = 0 for ℓ ≤ ℓcut,

Wℓcut(ℓ) = 1 otherwise. We mask the real maps before filtering. This is necessary

because of the presence of foregrounds - the strong ringing effect in pixel space which

results from such a sharp cut-off in harmonic space causes unwanted foreground signal

to leak from the masked region. We follow the algorithm described below:

• We mask the WMAP data,

• We convolve the map with Wℓcut , using the harmonic coefficients extracted by

anafast from the masked map,

• We generate the map in pixel space using synfast,

• We re-mask the map and remove any residual monopole/dipole from the un-

masked regions.

Since there is no foreground contamination in the Gaussian maps, there is no need

to apply the initial mask. For testing purposes, we applied both methods to a number

of Gaussian maps and found them to produce the same final results.

2.3.4 Non-Gaussian maps

In our analysis of the fifth-year data, we use non-Gaussian maps with f loc
NL 6= 0 to esti-

mate the sensitivity of peaks statistics to f loc
NL. We will not consider f equi

NL for the rest

of this thesis, so we will drop the loc subscript. We use high-resolution (ℓmax = 2901,

Nside = 1024) fNL maps to simulate the 70GHz and the 100GHz bands of the upcoming

Planck satellite.

An algorithm to generate non-Gaussian maps following equation (2.1) is given by

Liguori et al. (2003) This generates Gaussian and non-Gaussian harmonic coefficients

(aG
lm and aNG

lm , respectively) which can be used to construct the coefficients of a given

map by

alm = aG
lm + fNLa

NG
lm . (2.7)
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We assume perfectly Gaussian beams and anisotropic noise (the number of obser-

vations per pixel was given by the Planck Sky Model), and use the predicted instru-

mental properties. We mask the maps using the WMAP kp0 mask and smooth with a

FWHM=10 arcseconds beam.

The power-spectrum of these maps is matched to that of the data we wish to

analyse. For each set of aG
lm and aNG

lm we generate one sky realisation, and produce a

non-Gaussian map following the steps 2-4 described in section 2.3.2.

2.3.5 Estimating ξ(θ)

There are several estimators suggested in the literature to estimate ξ(θ) directly from

the data. They all work by comparing the sample of points to an uniform, random

catalogue with the same spatial distribution as the real data. We used the Hamilton

(1993) estimator, which promises fast convergence:

ξ(θ) =
RR(θ).DD(θ)

DR(θ)2
− 1 (2.8)

where RR(θ) and DD(θ) are the number of random and data pairs respectively at

a distance θ from each other and DR(θ) is the number of cross-pairs separated by

a distance θ (all weighted by the number of total random, data and cross pairs in

the catalogue). Indeed, we found it to converge faster than the standard estimator,

ξ(θ) = DD(θ)
DR(θ) − 1. We use large random catalogues with the same sky cut as the

appropriate WMAP map, and ensure that the estimator has converged to a stable

value. A hot spot (cold spot) is defined for the purposes of this analysis as the centre of

any pixel whose temperature is higher (lower) than the temperature of all pixels with

which it shares a boundary.

In our analysis of the third-year data, we also explore the use of the cross-correlation

function of peaks between different maps of different frequencies as a probe of non-

Gaussianity. If the noise is uncorrelated from one detector to the next we should

expect a higher sensitivity to real temperature peaks by cross-correlationg the mea-

surement from two frequencies. Again we use the Hamilton estimator, modified do as

to take into account two independent sources of peaks (Mann et al. 1996):

ξ(θ) =
AB(θ)RR(θ)

AR(θ)BR(θ)
− 1 (2.9)

where the pair counting is defined as above, with the difference that instead of one we

have two data catalogues, corresponding to the letters A and B.
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Both estimators are calculated using simple pair-counting methods. The code was

tested by comparison with the analytic prediction from Heavens and Gupta (2001) in

the ideal case of an unmasked sky without the addition of noise.

We consider all temperature hot spots above νσ and cold spots below −νσ. There

is no a priori reason to choose any particular temperature threshold. As we increase

the threshold the number of peaks decreases and we are limited by cosmic variance -

the amplitude of the large scale multipoles can easily change the number of hot and

cold spots above a given threshold. As we decrease the threshold the number of peaks

increases and the calculation becomes computationally prohibitive. We want to choose

the value of ν which allows us to analyse the most number of peaks within a reason-

able time scale. In our first year analysis this value was ν = 1.5, which as we will

see leaves us limited by cosmic variance. Given improvements in hardware and com-

puter code, we were able decreased this value down to ν = −1 in our fifth-year analysis.

However, increasing the number of peaks might not be the most appropriate thing

to do when searching for fNL. At large scales for example, we know the temperature

fluctuations are dominated by the Sachs-Wolfe effect (equation 1.64) and Θ ∝ δΦ.

Adding a non-linear component to the potential then only changes the amplitude of the

temperature fluctuations relatively to the Gaussian case, but not the peaks’ positions.

This in fact suggests that on large scales, we might increase the sensitivity to fNL by

selecting threshold which selects only some of peaks, as for each value of fNL we expect

this threshold to select a different set of peaks. The optimum choice of threshold is

a balance between noise, computational time and sensitivity, and for each case it can

only be found empirically right now.

2.3.6 Statistics

Testing the Gaussian hypothesis

We use the χ2 statistic to interpret our results. For each map we calculate

χ2 =
∑

i,j

(ξi − ξ̄i
G
)C−1

ij (ξj − ξ̄j
G
) (2.10)

where the covariance matrix Cij and the mean values ξ̄G are estimated from the Gaus-

sian maps. i and j identify bins at a given angular separation. The results will be

presented in terms of the reduced χ2, obtained by dividing χ2 by the number of de-
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grees of freedom. In our case, this is simply the number of points used to evaluate

equation (2.10). We specify this number at each relevant section.

We compare the value of χ2 obtained from the observed CMB map with the one-

point distribution function of the values of χ2 obtained from an ensemble Gaussian

maps in order to interpret the significance of a detection. We should note, however,

that any significance that is estimated in this way is likely to be over-estimated. A full

treatment should take into account the total number of independent non-Gaussianity

tests performed in any given map.

We also note that we do not assume Gaussianity when assigning confidence levels

to any χ2 value. We use χ2 as a statistic whose probability distribution is empirically

estimated from Monte Carlo simulations.

Constraining fNL

When trying to constrain fNL we find the minimum of

χ2(fNL) =
∑

i,j

(ξi − ξ̄i(fNL))C−1
ij (ξj − ξ̄j(fNL)) (2.11)

with respect fNL. The mean values of ξ and the covariance matrix are estimated

directly from the data.
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Chapter 3

Results

This chapter presents the results from applying the method described in Chapter 2 to

the first- and fifth-year WMAP data releases. Even though the general methodology

is the same, some of the technical details changed from one analysis to the next - these

differences are pointed out in the relevant sections.

3.1 Year one

We use the peak-peak correlation function in a number of different ways to investigate

the properties of the maps. We will use the following nomenclature: H for Hot, C for

Cold, N for North and S for South:

• The most obvious way is to conduct a full-sky analysis in the unmasked regions

of the maps, which we do for hot and cold spots separately - ξH and ξC .

• Motivated by a detection of a cold spot in the southern hemisphere and other

hints of asymmetry (see Chapter 2), we also compute the peak-peak correlation

function in each of the hemispheres individually, again looking at hot and cold

spots separately in each case - ξNH , ξNC , ξSH and ξSC .

• In addition we look at the difference of correlation between the two hemispheres

at a given angular scale and we define ∆ξH = ξSH − ξNH (similar for cold spots).

• Finally, we take the average of the peak-peak correlation function in the Northern
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and Southern hemispheres in order to produce a computationally faster way to

estimate the full-sky function - ξ̃H (similarly for cold spots).

For each we estimate ξ in 300 equally-spaced bins up to a maximum separation

of 1800 arc minutes. Previously to computing equation (2.10) we rebin all data to 19

bins, of which we discard the first one1. Rebinning is necessary, otherwise Cij is close

to singular and numerically unstable to inversion. We explain each of our estimators

in detail in the following sections.

3.1.1 All-sky analysis

We first consider all the hot spots above a certain threshold νσ (or cold spots below

a negative threshold −νσ) for the entire sky, except for the masked regions of galactic

plane and point sources. The results for a threshold of ν = 1.5 are shown in Figure

3.1. We also plot the peak-peak correlation function averaged over 100 Gaussian maps

and the error bars on the Gaussian curve are the errors on the mean. The small er-

ror bars show good convergence of the average of the peak-peak correlation function

from the 100 Gaussian maps. Figure 3.2 shows the convergence χ2 for ξH and ξC with

increasing number of maps. Although not optimally sampled, the structure we see at

small angular scales is real structure, as expected from Heavens and Sheth (1999) and

Heavens and Gupta (2001).

We see immediately that neither the hot spots nor the cold spots follow the Gaus-

sian simulations - the cold spots show an excess of correlation whereas the hot spots

show a lack of correlation with respect to the Gaussian simulations. These differences

are, however, not significant; one disadvantage of the correlation function is that the

errors can be highly correlated. The distribution of the χ2 values for all of the Gaussian

maps can be seen in Figure 3.1, together with the values for the WMAP data. We find

both statistics are within the Gaussian 1σ confidence level. So the maps analysed in

this way do not show any sign of non-Gaussianity. This is in agreement with Larson

and Wandelt (2005) who also find no significant deviation from Gaussianity when they

1HEALPix defines neighbouring pixels as ones which share a pixel face. However, due to the highly

variable pixel shapes in the surface of the sphere, these are not necessarily the closest pixels to the

central one. This occasionally results in HEALpix selecting two very close pixels as being separate

peaks which in turn results in unexpected (but explainable) features in the first few bins. Hence we

choose to ignore these bins (which fall into the first one after rebinning). The effect these extra peaks

have at large angular scales was tested for and found to be negligible.
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Figure 3.1: Left: the peak-peak correlation function of WMAP’s data hot spots in the dashed

(red) line and cold spots in the solid (blue) line. Simulated data (averaged over 100 Gaussian

simulations) in the middle (black) line - the error bars shown are the errors on the mean. The

threshold for peaks is ν = 1.5. Right: The distribution of reduced χ2 values for all of the 100

Gaussian maps: hot spots in the dashed (red) line and cold spots in the solid (blue) line. The

χ2 values for the WMAP data are represented by the small triangles and vertical lines

compute the peak-peak correlation of hot and cold spots in the first year data (although

they work with lower resolution maps).

At the time this work was conducted, there were claims in the literature (see 2.1)

concerning a cold spot in the southern hemisphere, and that the WMAP maps show

an asymmetry in their statistical properties between the Northern and the Southern

hemispheres, so we turn to this next.

3.1.2 North-South analysis

To further investigate any discrepancy between the WMAP data and our Gaussian sim-

ulations we estimate the peak-peak correlation function in the Northern and Southern

hemispheres separately.

Figure 3.3 shows the peak-peak correlation function of the WMAP data for cold and

hot spots calculated in the Northern and Southern hemispheres. We find a difference

between the correlation of cold spots in the different hemispheres. Again we use a χ2

statistic for ∆ξC and ∆ξH , with the mean and covariance matrix estimated from 250
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Figure 3.2: Convergence of ξC (solid, blue line) and ξH (dashed, red line) with number of

Gaussian maps used to estimate ξ̄G
i and Cij as defined in Section 3.
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Figure 3.3: Left: the peak-peak correlation for the WMAP data in the two hemispheres -

solid lines show the South and dashed lines the North. The inner pale (red) lines show hot

spots and the outer (blue) lines show cold spots. The threshold for peaks is ν = 1.5. Right:

the distribution of reduced χ2 for all 250 Gaussian maps. Hot spots in the dashed (red) line

and cold spots in the solid (blue) line. The χ2 values for the WMAP data are represented by

the small triangles and vertical lines.
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Gaussian maps. By analysing each hemisphere seperately, we are reducing the number

of peaks available for the estimation of the peak-peak correlation function. Hence we

found that a greater number of maps was needed to ensure good convergence of the

average peak-peak correlation function and of the covariance matrix. See Figure 3.7

in the next section for convergence of some of the statistics with increasing number of

maps.

We calculate χ2 for our ensemble of Gaussian maps, whose distribution can be seen

in Figure 3.3, together with the χ2 value calculated for the WMAP data, for hot and

cold spots.

We note that the fact we are finding the South-North difference not to be significant

may be due to the fact that the peak-peak correlation function of threshold-selected

peaks is highly sensitive to cosmic variance in the low multipoles. All the estimators are

highly correlated and are shifted up and down in synchrony from Gaussian realisation

to Gaussian realisation: the noisy low-ℓ multipoles can shift large numbers of peaks

above or below the threshold depending on the mode amplitude. This suggests that

the use of a high-pass filter - effectively removing the signal from cosmic variance for

ℓ ≤ ℓcut - may be an efficient way to increase the sensitivity to non-Gaussian features.

3.1.3 Constraining in harmonic space

We construct an ensemble of 250 Gaussian maps, as described in section 2.3.3 for

ℓcut = 0, 5, 10, 15, 20, 25, 30 and 40. We compute ∆ξH , ∆ξC , ξNH , ξNC , ξSH , ξSC , ξ̃H

and ξ̃C for all our Gaussian maps as well as the WMAP data. Figure 3.7 shows conver-

gence of ξSC and ∆ξC with number of maps in the solid and dashed lines respectively.

The same plot also shows the convergence of the same statistics but this time calcu-

lated in a single-frequency Q-band map (see section 4.5 for a single-frequency analysis).

Figure 3.4 shows ∆ξC(θ) for some different ℓcut in the WMAP data. We note that

the difference between the Southern and Northern hemispheres decreases as we remove

more and more of the low order multipoles. This could be either due to the fact that

cosmic variance alone is to blame for the North/South difference we see, or it could be

due to the fact that whatever is causing this North/South difference is intrinsically a

large scale effect.
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Figure 3.4: ∆ξC(θ) for the WMAP map high-pass filtered with different values of ℓcut.

We test the significance of each of these differences by using χ2. Figure 3.5 shows

χ2
NS(ℓcut) for cold and hot spots. We plot the distribution of χ2 using all the different

ℓcut Gaussian maps - these maps are not strictly independent (although the statistics

share the same underlying χ2 distribution over all values of ℓcut) so we use only the

250 independent maps at each ℓcut to draw conclusions about the significance of each

detection - see section 3.1.7. The added histogram over the 2000 maps can be seen in

Figure 3.5.

We do the same test and construct identical plots for all our statistics: (ξ̃H ,ξ̃C) in

Figure 3.6 and (ξNH ,ξNC ,ξSH ,ξSC) in the right panel of the same figure. The added

histograms across all values of ℓcut for these statistics are very similar to that shown in

Figure 3.5.

The first point to make is that the non-Gaussianity is consistently absent at ℓcut =

40: there is no evidence from the peak-peak correlation function of non-Gaussianity on

scales with ℓ > 40.

The most significant non-Gaussian detections come from the cold spots in the

Southern hemisphere, ξSC , at ℓcut = 10, where we also find significant detections in
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Figure 3.5: Left: χ2 as a function of ℓcut for the WMAP data. Hot spots in the solid (red)

line, cold spots in the dashed line (blue). The circle (blue) and the diamond (red) are the χ2

value (cold spots and hot spots respectively) for runs with the regions of sky within 30 degrees

of the galactic plane removed (see Section 3.1.4). Right: The added distribution of χ2
NS values

for all our Gaussian maps at all different ℓcut. Hot spots in the dashed (red) line, cold spots

in the solid (blue) line. Similar histograms were produced for all of our other statistics, and all

show a very similar added distribution of reduced χ2 values.

the South-North difference for cold spots, ∆ξC , and in the average of Northern and

Southern hemispheres for cold spots, ξ̃C . In addition to this, we have less significant

detections at ℓcut = 20, 25 and 30 in ξSC and ξ̃C , see Figure 3.6. All of these do not

appear in a North minus South analysis. This could be simply because the signal is not

significant enough to show up in such analysis (we are roughly doubling the variance

of our estimator by subtracting the data of the Sourthern and Northern hemispheres).

3.1.4 Constraining in real space

We further investigate the origin of this detection by removing extra regions near the

masked Galactic plane. We work on the maps where the significance of the signal is

the strongest (those with ℓcut = 10), which we mask with an extended mask which

additionally excludes all sky within 30 degrees of the galactic plane.

We proceed the same way as before and compute the full set of estimators: ∆ξH ,

∆ξC , ξNH , ξNC , ξSH , ξSC , ξ̃H and ξ̃C for all our Gaussian maps as well as the WMAP
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Figure 3.6: Left: χ2(ℓcut) for ξ̃C solid (blue) line and ξ̃H dashed (red) line for the WMAP

data. The single points at ℓcut = 10 are the χ2 values for cold spots (blue cross) and hot spots

(red circle) in runs with the regions of sky within 30 degrees of the Galactic plane removed (see

section 3.1.4). Right: χ2(ℓcut) for ξNC (blue dotted line), ξNH (red dot-dashed line), ξSC (blue

solid line) and ξSH (red dashed line) for the WMAP data. The points at ℓcut = 10 are the χ2

values for runs with the regions of sky within 30 degrees of the Galactic plane removed (see

section 3.1.4): ξNH in the red circle, ξNC in the blue square, ξSH in the red triangle and ξSC

in the blue cross.
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Figure 3.7: Convergence of some of our statistics which yielded detections of non-Gaussianity

with increasing number of Gaussian maps used to estimate the mean and the covariance ma-

trices. For the QVW map we show ξSC in the solid line and ∆ξC in the dashed line. For the

single-frequency Q-band map we show ξSC in the dotted line and ∆ξC in the dot-dashed line
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data and use the adequate χ2 statistic for each of them to test the WMAP data for

non-Gaussianity (we generate new random catalogues whose spatial distribution follows

that of the new masks).

Figures 3.5 and 3.6 show how the new χ2 values compare with the ones previously

obtained when we did not use any extra galactic cut - all values drop significantly to

values which are perfectly consistent with the Gaussian hypothesis (the most extreme

value being for ∆ξC), indicating that our significant non-Gaussian detection in the

cold spots is located within 30 degrees of the galactic plane. This hints at residual

foreground contamination associated with the Milky Way.

We note that we have only tested this on maps with ℓcut = 10 since this is where we

have found our strongest detection. We cannot discard the possibility that the effect

that yields detections on maps with ℓcut = 15, 25 and 30 is a different effect altogether

which does not lie in the galactic region.

3.1.5 A single-frequency analysis

To check whether the non-Gaussian signal we detect is related to possible residual

foregrounds in the WMAP data we conduct a single frequency analysis of the maps.

Indeed, the expected Galactic foreground contribution to the WMAP maps consists

mainly of synchrotron, free-free and dust emission. All of these effects are frequency-

dependent and obviously non-Gaussian. If any foreground residuals are still present

in the foreground-cleaned data then we would expect them to contribute differently

to each of the different frequency maps. We note that any residual noise may also

contribute differently to each frequency.

We construct the real map and each of the 250 simulated single frequency maps, at

the Q, V and W bands. We then smooth the WMAP and Gaussian maps with a 12 arc

minute FWHM Gaussian beam and high-pass filter with a ℓcut = 10 window function

(where we had the most significant non-Gaussian detection).

We calculate the full set of estimators for each of the frequencies: ∆ξH , ∆ξC , ξNH ,

ξNC , ξSH , ξSC , ξ̃H and ξ̃C , for which the χ2 values can be seen in Figure 3.8.
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Figure 3.8: χ2 for all three frequencies: Q (41 GHz), V (61 GHz) and W (94 GHz) on maps

with ℓcut = 10. Statistics for cold spots in the solid (blue) line, for hot spots in the dashed

(red) line. Right: ∆ξH (red) and ∆ξC (blue). Middle: ξNH in the dot dashed (red) line, ξNC

in the dotted (blue) line, ξSH in the dashed (red) line and finally for ξSC in the solid (blue)

line. Right: ξ̃H in the dashed (red) line and for ξ̃C in the solid (blue) line.

We find significant non-Gaussian signals coming from the cold spots ∆ξC in the Q

band and ξSC in all three bands, although it is strongest in the Q band. We also find

detections in our full-sky estimates in the cold spots in all three bands, and, for the

first time, in the hot spots in bands Q and W (left panel. Figure 3.8).

We may be seeing a frequency-dependent type of non-Gaussianity, although we can

not put aside the possibility of a cosmological origin. To improve readability we do not

present the plots with the χ2 distributions of the 250 Gaussian maps for each of the fre-

quencies and for each of the estimators. We do, however, quote the number of Gaussian

maps with a χ2
Gaussian ≥ χ2

WMAP for all significant detections in Table 3.1, section 3.1.7.

3.1.6 Removing the cosmological signal

In order to investigate the possibility of any contributions from foregrounds or unex-

plained noise properties, we remove what is taken to be the cosmological signal from

our analysis. To do so we subtract different single-frequency maps to produce three

maps which contain only a mix of subtracted residual foregrounds (if any) and noise.

We produce a V −Q, a V −W and a Q−W map, which are simply a pixel-by-pixel

subtraction of each of the single frequency maps, constructed as described in section

2.2.4.
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With the cosmological signal removed, the detailed noise properties of these three

subtracted maps at large angular scales now become important for our analysis and one

should be careful when constructing equivalent Gaussian maps (see 2.2.2). We therefore

take a slightly different route to construct the Gaussian simulations with which we com-

pare the WMAP data, and we now make use of the 110 noise simulations supplied by

the WMAP team. We construct single-frequency noise maps by adding the respective

individual radiometer simulations following the same weighting scheme as described in

section 2.2.4, which we then smooth and high-pass filter with a ℓcut = 10 window. We

then subtract different frequency noise maps in order to produce 110 simulations with

which we compare our real V −Q, V −W and Q−W maps. We re-emphasize that for

maps which include the signal, the non-white nature of the noise at low-ℓ is essentially

irrelevant, as the signal dominates entirely (Section 2.2.2).

We construct ∆ξH , ∆ξC , ξNH , ξNC , ξSH , ξSC , ξ̃H and ξ̃C for the simulations and

the real data as before and use the respective χ2 statistic to probe for non-Gaussian

signatures. In this case, our total number of maps was constrained by the number of

noise simulations provided by the WMAP team. Figure 3.9 shows how the reduced χ2

values for ∆ξH , ∆ξC , ξNH , ξNC , ξSH and ξSC in the Q−W map change with number

of simulated maps used (the Q − V and V −W maps produced very similar results).

The results show clear convergence to some value well within the 1σ confidence levels.

The reason why we observe faster convergence in these maps could simply be due to

the fact that we are removing the cosmological signal from the analysis and with it

much of the variance.

Figure 3.9 also shows ξNC and ξSC for the WMAP data and also ξ̄G
NC and ξ̄G

SC

where the average is done over the 110 simulated V −Q noise maps.

Some comments on this figure are appropriate. Firstly we note that there is a

large intrinsic North/South asymmetry in the Gaussian noise maps. This is due non-

stationary noise due to the uneven scanning pattern of the WMAP satellite. We recall

that pixel noise is weighted according to the number of times a pixel has been observed,

and as such this feature is fully simulated in all our previous maps. This large-scale

structure combined with the fact we are applying an asymmetric mask to the data re-

sults in the non-zero and North/South asymmetric peak-peak correlation function we
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Figure 3.9: Left: Convergence of the reduced χ2 values for ∆ξH , ∆ξC , ξNH , ξNC , ξSH and ξSC

in the Q−W map as a function of number of Gaussian maps. Right: ξNC and ξSC estimated

from the V − Q subtracted maps. WMAP’s data are the solid line for Southern hemisphere

and dashed line for Northern hemisphere (both in blue). Gaussian averaged data in dotted line

for Southern hemisphere, dot dashed line for Northern hemisphere (both in black)

see. We draw attention to the fact that this asymmetry is qualitatively different from

what we found in sections 3.1.2, 3.1.3, 3.1.4 and 3.1.5, since we now find an excess in

correlation in the Northern hemisphere, as opposed to in the South2. This excess in

correlation in the North is indeed seen in the Gaussian-averaged peak-peak correlation

function of all our previous maps, although on a much smaller scale. Finally we note

that there is a more noticeable deviation of the WMAP data from the Gaussian simu-

lations in the Southern hemisphere. However, we find none of these to be significant.

In fact, this statement extends to the other two cases: V −W and Q −W . We find

no signs of non-Gaussianity in any of the estimators in any of our combined noise and

foreground maps, with all the χ2 values well within values which are consistent with

the Gaussian hypothesis (our most extreme χ2 value comes from ξSH in the V − Q

map, where we find χ2 = 1.49 - see Table 3.1 in the next section for a summary of the

most extreme values in all three maps).

2As a sanity test, we have also performed an identical analysis on purely white noise maps which

include the WMAP’s satellite scanning pattern and found them to have the same North/South asym-

metry behaviour.
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3.1.7 Summary

In this subsection we take the opportunity to summarise our results into one table and

to elaborate on the confidence levels we have quoted throughout the paper. We do this

by presenting a table with all the statistics for which we have found the WMAP1 data

to have a reduced χ2
WMAP ≥ 2, Table 3.1.

We recall that in all cases we have rebinned the data into 19 linearly-spaced bins,

of which we use the last 18 to compute each of the χ2 statistics. The Ptheory column

gives the probability of randomly obtaining a given value of χ2 ≥ χ2
WMAP assuming

the underlying distribution is a χ2 distribution with 18 degrees of freedom, and the

NGaussian column shows how many Gaussian maps have a χ2 ≥ χ2
WMAP for the corre-

sponding estimator (the number in brackets in the total number of Gaussian maps). It

is worth noting that the χ2 distribution we estimate from the Gaussian maps fits a χ2

distribution with 18 degrees of freedom which has been shifted slightly by ∆χ2 ≈ 0.1 to

lower values. Hence any limit on high values of χ2 based on this theoretical distribution

is a conservative one. Shifting the Gaussian χ2 distribution by ∆χ2 = 0.1 results in

the Ptheory values in Table 3.1 roughly being halved.

We draw attention to our most striking detections, which come from the cold spots

in the Southern hemisphere, appearing both in the co-added QVW map and in the

single frequency Q band map with reduced χ2 values of 3.877 and 3.831 respectively.

3.1.8 Conclusions on the first year analysis

Our main results are summarised in Table 3.1 in Section 3.1.7 - we find strong evidence

for non-Gaussianity, mainly associated with the cold spots and with the Southern hemi-

sphere; this non-Gaussianity disappears completely if we filter out the harmonic modes

ℓ ≤ 40 and at least partially if we exclude sky within |b| < 30◦, so it is a large-scale

effect associated with the galactic plane.

Recently, Larson and Wandelt (2005) have also used the peak-peak correlation func-

tion of cold and hot spots in their search for non-Gaussianity. Direct comparison of

results is not straightforward as the resolutions of the maps used in the two studies are

significantly different. However, in the simplest case where both groups looked at the

full sky CMB temperature field (with equivalent masks based on the standard kp0 mask
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Table 3.1: Our main detections. We present all situations which yielded vales of χ2 ≥ 2. In

addition to this and for the sake of completeness we also present the most extreme χ2 values

obtained in Section 3.1.6. Ptheory is the theoretical probability of randomly obtaining a reduced

χ2 ≥ χ2
WMAP assuming a reduced χ2 distribution with 18 degrees of freedom and NGaussian is

the total number of Gaussian maps with χ2 ≥ χ2
WMAP . In brackets is the number of Gaussian

realisations used for each statistic.

Map ℓcut Estimator χ2
WMAP Ptheory NGaussian

QVW 10 ∆ξC 2.302 1.32 × 10−3 0 (250)

QVW 5 ξSC 2.358 9.58 × 10−4 0 (250)

QVW 10 ξSC 3.877 4.91 × 10−8 0 (250)

QVW 20 ξSC 2.747 9.15 × 10−5 0 (250)

QVW 25 ξSC 2.764 8.23 × 10−5 0 (250)

QVW 30 ξSC 2.756 8.65 × 10−5 0 (250)

QVW 10 ξ̃C 3.011 1.71 × 10−5 0 (250)

QVW 20 ξ̃C 2.658 1.59 × 10−4 0 (250)

QVW 25 ξ̃C 2.923 3.01 × 10−5 0 (250)

QVW 30 ξ̃C 2.601 2.25 × 10−4 0 (220)

Q 10 ∆ξC 2.081 4.57 × 10−3 2 (250)

Q 10 ξSC 3.831 6.78 × 10−8 0 (250)

V 10 ξSC 2.571 2.70 × 10−4 0 (250)

W 10 ξSC 2.729 1.02 × 10−4 0 (250)

Q 10 ξ̃C 2.156 3.02 × 10−3 0 (250)

V 10 ξ̃C 2.695 1.26 × 10−4 0 (250)

W 10 ξ̃C 2.325 1.16 × 10−3 0 (250)

Q 10 ξ̃H 2.029 6.04 × 10−3 0 (250)

W 10 ξ̃H 2.215 2.17 × 10−3 1 (250)

V-Q 10 ξSH 1.494 8.10 × 10−2 10 (110)

Q-W 10 ∆ξH 1.328 1.58 × 10−1 22 (110)

V-W 10 ∆ξC 1.426 1.07 × 10−2 10 (110)
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applied), both results are in agreement in the sense that both fail to yield a detection.

We believe this lack of detection is a result of large cosmic variance in low-ℓ multipoles.

We investigate this further by removing some of the low order multipoles from the

maps, in the hope that by doing so we are increasing our sensitivity to non-Gaussian

features by reducing the effects of cosmic variance. Once we remove all harmonic

modes with ℓ ≤ 10 we systematically find anomalies related to the cold spots in the

WMAP data and, when looking at both hemispheres separately, we not only find a

striking North/South asymmetry, we repeatedly find the strongest anomalies to be in

the Southern hemisphere. This is not unheard of: Vielva et al. (2004) first found an

anomalous large cold spot in the Southern hemisphere (nicknamed The Spot), a de-

tection which was followed by Cruz et al. (2005), Mukherjee and Wang (2004) and

McEwen et al. (2005) and confirmed repeatedly. However, we do find that our detec-

tions disappear when we exclude sky regions within 30 degrees of the Galactic plane

(we recall that The Spot is localised at approximately (b = −57◦, l = 209◦), well outside

our cut regions of sky). We therefore conclude that our detections come mainly from

something other than The Spot.

We also find a difference between the northern and southern hemispheres. The

asymmetry we find in this study seems to be a large scale effect, once again related

only to the cold spots and to be contained within 30 degrees of the Galactic plane.

We investigate our detections further by firstly conducting an analysis in single fre-

quency maps. We find some evidence for a dependence of the signal with frequency

when we look at different hemispheres (peaking at 41GHz, corresponding to the Q

band and in agreement with Liu and Zhang 2005), but this detection does not appear

in a full-sky analysis. Secondly we remove the cosmological signal from the analysis by

subtracting different frequency maps and testing the resulting foreground/noise com-

bination maps for non-Gaussian signals. We find no signs of non-Gaussianity in these

subtracted maps.

Finally we note that even though a contamination of residual point sources would

affect the hot spots statistics, they would not show in the cold spots analysis.

How do we make sense of these results? A simple explanation seems untenable.
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The fact that the signal becomes insignificant when the Galactic plane is removed sug-

gests unsubtracted Galactic foregrounds are responsible; the large-scale nature of the

signal is certainly consistent with this picture. One would then expect the individ-

ual frequency maps to show a significant signal, and this we do find, most strikingly

in the Q band. However, the difference maps do not show a significant detection;

these maps should directly test the residual foregrounds and noise, so the absence of

detected non-Gaussianity does not obviously support this picture. We can reconcile

these observations if the residual foregrounds affect more than one frequency band,

and the subtraction removes the contamination to some extent. The fact that we find

non-Gaussianity in all the single-frequency bands adds some support to this complex

picture. In our view this is the most likely explanation for the results we find, but we

cannot exclude a primordial origin for at least part of the non-Gaussian signal.

3.2 Year five

Given the unclear picture which emerged from our analysis of the first year WMAP

data, it is interesting to revisit the problem with a new dataset. In this section we

analyse WMAP’s fifth-year data release and take the opportunity to extend our study

by:

• considering the cross-correlation of peaks over different frequencies (equation 2.9),

• explicitly considering fNL models, and

• considering the effect of the observed ISW effect in the peak-peak auto- and

cross-correlation functions.

The differences in the WMAP data-analysis pipeline from year-one to year-five

were mainly associated with a better estimation of the beam profile (section 2.2.2)

and foreground contributions, both Galactic and extra-Galactic (section 2.2.1). As a

consequence, and similarly to what happened for the 3rd year data analysis, the Q-

band was excluded from the estimation of the temperature angular power spectrum in

the 5th year data by the WMAP team. The reason is a combination of unremoved

foregrounds and beam-asymetry problems (Hinshaw et al. 2007). This makes this band

unsuitable for a non-Gaussianity analysis, not only due to the unremoved foregrounds

but indeed also given the slight difference in the power-spectrum of the temperature

fluctuations observed in the Q-band and of a Gaussian map, based on the published
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best-fit Cℓ and with the same instrumental properties. This potentially sheds some

light over the results yielded by your first analysis of the data, as the Q-band stood

out as being the least Gaussian of all frequencies analysed. We therefore choose to still

analyse the CMB at this frequency in order to investigate whether our previous results

will hold given the new dataset. However, we feel that any deviation from Gaussianity

detected in this band alone should be attributed primarily to unsubtracted foregrounds.

We will use the following nomenclature: ξQQ corresponds to the auto-correlation

function of peaks in the Q-band map (similar for other frequencies), ξV W to the cross-

correlation function of peaks in the V- and W-band, and ξV +W to the auto-correlation

of peaks in the V +W co-added map.

Before any analysis, all maps are smoothed with a Gaussian beam of full-width

half-maximum (FWMF) of 10 arc min. We estimate ξ in 49 equally spaced bins of

0.1 degrees, for separations between zero and five degrees. We increased the sampling

of ξ and restrained our analysis to smaller scales, given that this is where most of the

structure is located. We discard the first bins for the same reasons given in the footnote

in section 3.1. We do not rebin the data - instead we use SVD to insure the inversion

of the covariance matrix used is stable. In an attempt to beat down cosmic variance

without having to remove the large-scale modes, we have reduced the threshold ν from

ν = 1.5 to ν = −1. This has pros and cons, as discussed in section 2.3.5 and we will

have a closer look at this issue later.

3.2.1 Full-sky analysis

The auto-correlation function

The simplest approach is to use all of the available sky and calculate the auto-correlation

of peaks in the unmasked regions. We calculate ξQQ, ξV V , ξWW and ξV +W for 200 Gaus-

sian maps with the respective noise and instrumental properties and for the observed

CMB at the correspondent frequencies. Figure 3.10 shows ξQQ for hot and cold spots,

along side with the mean estimated from the simulations (ξV V , ξWW and ξV +W look

similar and are not plotted here). The error bars shown are calculated from the di-

agonal of the covariance matrix, and we can see that the variance from realisation to

realisation is small, and the mean is well constrained. We have checked for convergence

by looking at the evolution of χ2 with increasing number of maps. This can be seen in

Figure 3.11.

Figure 3.12 shows the distribution of reduced χ2 values for these Gaussian realisa-
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Figure 3.10: The auto-correlation function of hot (in the red) and cold (in the blue) spots in the

Q-band, compared to the mean estimated from the Gaussian simulations. The error bars plotted

on the line for hot spots are C
1/2

ii . θ is in arc-seconds.

Figure 3.11: The evolution of χ2 as we increase the number of maps for four of our estimators:

ξQQ, ξV V , ξWW and ξV +W for the cold spots. The curves for the hot spots are similar.
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Figure 3.12: The distribution of values of reduced χ2 for a set of 200 Gaussian simulated maps

at the Q-, V- and W-frequencies, as well as a V+W co-added map. Coldspots are shown in the

solid line, and hot spots in the dashed line. The χ2 value of the observed CMB at each frequency

is represented by the vertical line.

tions in each of the different frequencies. The value of the reduced χ2 for the observed

CMB is represented by a vertical line. We find that the data shows some signs of non-

Gaussianity, in the V- and W-bands with cold spots, and in the Q-band with hot spots.

As mentioned in section 2.2.4, the Q-band has a larger contribution from unremoved

foregrounds than the other two bands, which likely explains the signal in the hot spots,

but the signals in the V- and W-bands are worth investigating further.

The cross-correlation function

We also calculate the cross-correlation of peaks between the V- and W-frequencies,

ξV W , for the same 200 Gaussian maps - see Figure 3.13. We see immediately that the

cross-correlation function looks remarkably different from the auto-correlation function

shown in Figure 3.10, particularly at small scales. The high power seen at small θ

arises from the fact that even though the underlying temperature field is the same

in both bands, differences in the beam profiles and noise properties mean that the

same temperature peak generally falls on a different pixel in each of the frequencies.
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Figure 3.13: The cross-correlation function of hot (in the red) and cold (in the blue) spots

between the V- and W-bands, compared to the mean estimated from the Gaussian simulations.

The error bars plotted on the line for hot spots are C
1/2

ii . θ is in arc-seconds.

This means that there are peaks which are very close to each other across frequencies,

although not at any given frequency.

Figure 3.14 shows the distribution of reduced χ2 values for the Gaussian realisations

for hot and cold spots. The goodness of fit value for the observed CMB is given by the

vertical line - again we see some evidence for non-Gaussianity in the cold spots.

3.2.2 North-South analysis

The auto-correlation function

In the first-year data we detected a significant difference between the correlation of

temperature peaks in the northern and southern hemispheres, relative to the galactic

plane. As a follow up to that detection, we conduct a similar analysis on the year-five

data. The procedure is identical to our full-sky analysis, but we extend the mask kq85

to exclude the northern or the southern hemisphere. We change our random catalogue

accordingly. Similarly to what we found in our analysis of the first year data, we found

that a higher number of maps was necessary to analyse each hemisphere separately.

All of the north-south analysis in this and the next section were done using 300 maps

- convergence can be seen in Figure 3.15.

The distribution of χ2 values for each estimator is shown in Figure 3.16 and 3.17,

for the northern and southern hemispheres. The V- and W-band signal associated with

cold spots seen in the full-sky maps seems come mostly from the southern hemisphere.

However, we see new detections when we look at each hemisphere separately which we
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Figure 3.14: The distribution of values of reduced χ2 for the cross-correlation of peaks between

200 Gaussian simulated maps at the V and W frequencies. Coldspots are shown in the solid

line, and hot spots in the dashed line. The χ2 values of the observed CMB are represented by

the vertical line.

Figure 3.15: The evolution of χ2 as we increase the number of maps for four of our estimators:

ξQQ, ξV V , ξWW and ξV +W for hot spots, in the northern hemisphere. Curves for the cold spots

and the southern hemisphere are similar.
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Figure 3.16: Histograms for the values of χ2 for our auto-correlation estimators in the northern

hemisphere. Coldspots are shown in the solid line, and hot spots in the dashed line. The χ2

value of the observed CMB at each frequency is represented by the vertical line.

did not see in the full-sky analysis, especially associated with the hot spots, and most

clearly in the V-band. A signal can appear in the two hemispheres separately, but not

in the full-sky analysis, if they deviate from the mean with opposite signs. This is

indeed what we see here.

The cross-correlation function

The cross-correlation between the V- and the W- bands in the two hemispheres can be

seen in the top two panels of Figure 3.18. We see further evidence that the cold spots

signal is predominantly coming from the south.
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Figure 3.17: Histograms for the values of χ2 for our auto-correlation estimators in the southern

hemisphere. Coldspots are shown in the solid line, and hot spots in the dashed line. The χ2

value of the observed CMB at each frequency is represented by the vertical line.

3.2.3 Constraining in real space

The auto-correlation function

Again prompted by what we found in our first-year analysis, we remove all regions

around the Galactic plane for which |b| < 30 degrees. The resulting histograms can be

seen in Figures 3.19 and 3.20. The values of χ2 in the southern hemisphere are now

all fully consistent with Gaussianity. The anomaly in the hot spots seen in the V-band

remains although with a smaller significance level, and surprisingly we now see a signal

in the cold spots which was unseen before, predominantly in the V-band but also in

the W-band.
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Figure 3.18: χ2 distribution for ξV W in the northern and southern hemispheres. Top two

panels show the results using the KQ85 mask (section 3.2.2), and the bottom two panels show

the results excluding the regions within 30 degrees of the galactic plate (section 3.2.3).
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Figure 3.19: Histograms for the values of χ2 for our auto-correlation estimators in the regions

of sky out-width 30 degrees of the galactic plate, in the northern hemisphere. Coldspots are

shown in the solid line, and hot spots in the dashed line. The χ2 value of the observed CMB

at each frequency is represented by the vertical line.

The cross-correlation function

The results for the cross-correlation function of temperatures out-with 30 degrees of

the Galactic plane can be seen in the bottom two panels of Figure 3.18. We see the

same behaviour as we saw with the auto-correlation function results: the signal in the

southern hemisphere disappears, but we see a signal emerging in the northern hemi-

sphere which we did not see before.

This curious signal, present both in the cross- and auto-correlation functions suggests a

very unclear picture. The most immediate explanation is that we are seeing a localised

source of non-Gaussianity which is too weak to show up when we analyse the whole

northern hemisphere. If this is the case, we would expect the signal to come predom-
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Figure 3.20: Histograms for the values of χ2 for our auto-correlation estimators in the regions

of sky out-width 30 degrees of the Galactic plate, in the southern hemisphere. Cold spots are

shown in the solid line, and hot spots in the dashed line. The χ2 value of the observed CMB

at each frequency is represented by the vertical line.

inantly from scales associated to its angular size. We estimate the contribution to χ2

from each scale by calculating

χ2
i =

∑

i

(ξi − ξ̄i)
2

Cii
(3.1)

which although ignores the correlation between non-adjacent scales, might provide

insight about the cause of our results. Figure 3.21 shows χ2
i for the estimators ξV V and

ξWW , as calculated in the northern hemisphere for |b| > 30 degrees. We see that even

though the signal comes from specific scales in each of these frequencies, it does not

seem to be caused by the same scales in each frequency. This only adds to the difficulty

of interpreting what is causing the appearance of this signal. The signal is robust to

different bin widths, matrix-inversion methods and number of maps used. Its origin
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Figure 3.21: χ2
i for the estimators ξV V (black line) and ξWW (red line), as calculated in the

northern hemisphere for |b| > 30 degrees. The dotted line shows the predicted mean value of

one.

remains unknown to the time of writing.

3.2.4 The integrated Sachs-Wolfe effect

All of our detection of non-Gaussianity in the WMAP5 data, as they stand, offer very

little insight about the causes behind them. Next we explore the possibility that a

well known physical mechanism is behind at least part of our signal. The integrated

Saches-Wolfe effect is a large-scale signal present the observed CMB which arises from

the fact that CMB photons travel through evolving potential wells in their paths to us.

The late ISW refers to changes occurring in the recent Universe. Francis & Peacock

(2008, in prep) use the 2MASS survey in order to produce a reconstruction of the local

density field, that together with a cosmological model - which describes the dynamics

of the local Universe - can be used to calculate the contribution of the low-redshift

density field to the late ISW contamination of the CMB. Using a local density field

estimated up to z = 0.3, they have produced a late ISW temperature map, seen in

Figure 3.22. In practice we analyse two reconstructed ISW maps, produced using two

different methods but using the same dataset. In principle, the two maps represent the

same thing and they should give identical results. Significant differences would indicate

some error associated with the method for reconstruction. We will refer to these maps

as the 2D and the 3D reconstructions (more details in Francis and Peacock 2008, in

prep).
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Figure 3.22: The ISW contribution to the observed CMB, as calculated by Francis & Peacock

2008 (in prep) using an estimation of the local density field up to z=0.3 and the cosmological

model described in the text.

It is of interest to see how much the ISW signal affects different non-Gaussianity

detections and other CMB anomalies. In this section we remove the ISW temperature

map from the observed, foreground-reduced frequency maps. This gives us a CMB

signal which is closer to the primordial CMB than the observed. We use the same

Gaussian simulations as in section 2.3.2 given that the difference to the power-spectrum

is small. We do the following

1. We subtract the predicted ISW map from the observed, full-resolution foreground-

cleaned frequency maps.

2. We smooth the maps with a Gaussian beam of FWHM = 10 arc-min.

3. We re-mask the resulting map and remove the residual monopole and dipole.

In general, we find that the difference in the estimators induced from removing the

estimated ISW signal from the maps is small, resulting in the goodness of fit values

fluctuating with ∆χ2
reduced ≈ 0.05. The results are summarised in the Tables 3.2 and

3.3.

We only find one case in which a detection falls down to a level consistent with

Gaussianity - ξV V , in hot spots and in the southern hemisphere sees its value of χ2
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reduced from 1.43 to 1.27 in the 2D reconstruction and 1.25 in the 3D reconstruction.

However, given the fact that this is a lone event, we feel that it is unwise to over-

interpret it. We conclude that the ISW does not play a role in the signals we see.

3.2.5 Summary

Table 3.4 summarises our detections in the 5th-year data. Our analysis have revealed

a complicated picture which does not lend itself to any simple explanation. In spite of

this, we can make the following statements:

1. All signals are frequency-dependent - we found no consistent signal over the three

frequency bands in any of the cases.

2. Signals associated with the southern hemisphere (cold spots) disappear when we

exclude the regions of sky within 30 degrees of the galactic plane.

3. Anomalies associated with hot spots are heavily associated with the northern

hemisphere.

3.2.6 Conclusions on the fifth-year analysis

Once again we have found signs of non-Gaussianity in the WMAP data. We find that,

by large, the signal that we found in the first-year data remains in the data today: once

more we see an anomaly which is associated with cold spots, the southern hemisphere,

and which disappears when we exclude the sky within 30 degrees of the galactic plane.

We continue to see some asymmetry in data, with each hemisphere showing qualita-

tively different signatures of non-Gaussianity. Finally, we see a clear frequency depen-

dence, with none of the maps analysed showing consistent departures from Gaussianity.
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Map Before ISW removal
After ISW removal ∆χ2 After ISW removal ∆χ2

(2D reconstruction) (2D reconstruction) (3D reconstruction) (3D reconstruction)

Q, full-sky 1.3952871 1.4681376 -0.072850528 1.4846097 -0.089322581

V, full-sky 0.79310205 0.87312254 -0.080020498 0.88383181 -0.090729770

W, full-sky 0.92917691 0.93906113 -0.0098842192 0.96733246 -0.038155552

VW, full-sky 1.1623042 1.2101251 -0.047820921 1.1391697 0.023134443

Q, north 1.3573654 1.4127977 -0.055432266 1.4380926 -0.080727208

V, north 1.6602231 1.7218205 -0.061597424 1.6835322 -0.023309068

W, north 1.3099210 1.2732031 0.036717923 1.2816250 0.028295979

VW, north 1.1800490 1.1823953 -0.0023462838 1.1682028 0.011846198

Q, south 1.0284363 1.0471984 -0.018762142 1.0300560 -0.0016197646

V, south 1.4340021 1.2696905 0.16431159 1.2511920 0.18281010

W, south 1.2267701 1.2346055 -0.0078353685 1.2146827 0.012087417

VW, south 1.1967236 1.2438003 -0.047076727 1.0989857 0.097737822

Q, north, b30 1.0762889 1.2270067 -0.15071785 1.1857015 -0.10941267

V, north, b30 1.4738409 1.3970624 0.076778518 1.3752341 0.098606821

W, north, b30 0.96735869 1.0356369 -0.068278205 0.98193783 -0.014579136

VW, north, b30 0.71655327 0.70757045 0.0089828194 0.67361681 0.042936464

Q, south, b30 1.3449225 1.5053141 -0.16039165 1.3554369 -0.010514465

V, south, b30 1.0637318 1.1492181 -0.085486298 1.0901810 -0.026449264

W, south, b30 0.92875987 0.91198110 0.016778766 0.92085898 0.0079008842

VW, south, b30 1.0181098 1.1449669 -0.12685710 1.1424981 -0.12438834

Table 3.2: The change in the value of χ2
reduced for our hot spots statistics estimators due to the removal of the local ISW effect, as shown in Figure

3.22. Results for cold spots shown in Table 3.3.
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Map Before ISW removal
After ISW removal ∆χ2 After ISW removal ∆χ2

(2D reconstruction) (2D reconstruction) (3D reconstruction) (3D reconstruction)

Q, full-sky 1.2503281 1.2631188 -0.012790703 1.2882714 -0.037943363

V, full-sky 1.5823175 1.6095117 -0.027194188 1.6341854 -0.051867965

W, full-sky 1.3675620 1.2981338 0.069428233 1.2926912 0.074870805

VW, full-sky 0.94410902 0.89016865 0.053940366 0.93707981 0.0070292085

Q, north 1.2111371 1.1942278 0.016909282 1.2035917 0.0075453963

V, north 0.69247865 0.77365559 -0.081176943 0.80510400 -0.11262536

W, north 1.0209923 1.0615326 -0.040540314 1.0966578 -0.075665517

VW, north 1.6188697 1.5731120 0.045757675 1.6602142 -0.041344575

Q, south 1.2959187 1.3493766 -0.053457891 1.4198268 -0.12390808

V, south 1.7318566 1.7736560 -0.041799365 1.7548880 -0.023031425

W, south 1.5134875 1.5098637 0.0036238470 1.5001770 0.013310541

VW, south 1.1418154 1.1615992 -0.019783743 1.1540705 -0.012255101

Q, north, b30 1.1804753 1.1118426 0.068632766 1.1698382 0.010637094

V, north, b30 1.5618955 1.5143797 0.047515794 1.4868579 0.075037616

W, north, b30 1.4007526 1.4206091 -0.019856493 1.4868357 -0.086083103

VW, north, b30 1.0740224 1.0773703 -0.0033479143 1.0521836 0.021838821

Q, south, b30 0.89582892 0.98654480 -0.090715882 0.99464386 -0.098814943

V, south, b30 0.75207740 0.74092975 0.011147656 0.80429209 -0.052214688

W, south, b30 1.0515784 0.97421249 0.077365906 1.0115846 0.039993788

VW, south, b30 1.2770933 1.3112545 -0.034161187 1.3543291 -0.077235763

Table 3.3: The change in the value of χ2
reduced for our cold spots statistics estimators due to the removal of the local ISW effect, as shown in

Figure 3.22. Results for hot spots in Table 3.2.
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In addition, we see some unexplained features in the fifth-year data, namely the

appearance of a signal in the coldpots in the V-band (and the W-band to a lower sig-

nificance) only when we mask out the regions within 30 degrees of the Galactic plane.

These two signals are robust to numerical tests (such as number of maps or size of data

vector), and the fact that they appear both in the auto- and cross-correlation functions

suggests that they are caused by a real feature present in the data. The fact that we

only detect them when we exclude the regions outwith the Galactic plane suggests a

localised feature might be responsible but we could not associate the two signals with a

single physical scale in the sky. At the time of writing we have been unable to explain

what is behind these two detections.

The erratic nature of our detections suggests that we are seeing something which is

not cosmological in origin. We have investigated whether the ISW could be the cause

of part of the signal we see, but we have found this is not likely to be be the case.

As we emphasised before, whilst point sources might be behind the signal we see in

the hot spots, they do not affect cold spots.

One possibility is that unsubtracted (or over subtracted) foregrounds remain in the

data. A residual component with a frequency dependence would explain at least part of

what we see. We finally conclude that this continues to be the most likely explanation

to what we see.

3.3 fNL constraints

We now turn to a different type of analysis, in which we assume an fNL model and

test the sensitivity of our estimators to changes in fNL. This is in principle a much

more rewarding approach to searching for non-Gaussianity, since we can directly infer

a physical reason behind a detection.

At the time of writing this thesis we lack CMB simulated maps which incorporate

both the correct cosmology from WMAP’s 5th year results and have fNL 6= 0. Our

method requires the power-spectrum of the simulated Gaussian maps to match that of

the observations, which cannot be done with the present maps. However, the cosmology

is close enough to allow us to investigate how sensitive our estimators are to changes

in fNL, and we test this in maps of Planck resolution. With the correct maps it will
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Map Estimator χ2
WMAP NGaussian

Q, full-sky Hot spots 1.39 7 (200)

V, full-sky Cold spots 1.58 0 (200)

W, full-sky Cold spots 1.37 5 (200)

V&W, full-sky Cold spots 1.47 1 (200)

Q, north Hot spots 1.35 10 (300)

V, north Hot spots 1.66 1 (300)

W, north Hot spots 1.31 14 (300)

V&W, north Cold spots 1.62 0 (300)

V, south Hot spots 1.43 2 (300)

V, south Cold spots 1.73 0 (300)

W, south Cold spots 1.51 3 (300)

V&W, south Cold spots 1.44 3 (300)

V, north, |b| > 30 Cold spots 1.56 1 (300)

V, north, |b| > 30 Hot spots 1.47 1 (300)

W, north, |b| > 30 Cold spots 1.40 6 (300)

V&W, north, |b| > 30 Cold spots 1.42 4 (300)

Table 3.4: The main indications of non-Gaussianity in the 5th-year data. NGaussian is the

total number of Gaussian maps with χ2 ≥ χ2
WMAP . In brackets is the number of Gaussian

realisations used for each statistic.

be straightforward to calculate the range of fNL values allowed by the WMAP5 data.

We construct 200 maps as described in section 2.3.4, at the frequencies of 70 and

100GHz for fNL = [−100, 0, 30, 40, 50, 70, 100, 200]. For each map we then calculate

ξ70, ξ100 and ξ100,70 where the first two are the auto-correlation of peaks in the 70GHz

and 100GHz respectively, and the third is the cross-correlation of peaks between the

two frequencies. We do this for hot and cold spots, and then construct a data vector

consisting of the two arrays: yi = ξH for i = 1, . . . , k and yi = ξC for i = k+ 1, . . . , 2k,

where H and C stand for hot and cold respectively and k = 50 is the number of bins

in which each function is estimated. Whereas the peak-peak correlation function of

hot and cold spots is the same in a Gaussian map, this is not true for fNL 6= 0. Thus

adding the two data vectors potentially increases the sensitivity of our estimators to

changes in fNL. Due to the large size of the data-vector we find the need to rebin the

data to 25 data points for hot and cold spots, giving us 50 estimators in total. We
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Figure 3.23: ξ100−100 averaged over 200 maps for fNL = 40 (black line), fNL = −100 (blue

line) and fNL = 200 (red line). We show the curve for cold spots tagged at the end of the curve

for hot spots - this is the data vector used in the analysis (see text). The error bars plotted

on the black like are C
1/2

ii . The temperature threshold for the selection of peaks is −σ. Even

though there is a qualitative change in the mean correlation function as a function of fNL which

is different for hot and cold spots, these changes are well within the 1σ level.

initially include all peaks above −1σ.

Figure 3.23 shows the average auto-correlation function in the 100GHz band, for

fNL = 0, 40 and 200, calculated over 200 maps. In the same figure we also plot C
1/2
ii

for the fNL = 40 case, which shows clearly that the scatter from one realisation to the

next is large compared to the differences in the models we are trying to differentiate.

This can also be seen by looking at the probability distribution of χ2 given an

fNL model, for an assumed true value of fNL. Figure 3.24 shows this for a test value

of fNL = 40. Even though there is a shift in the centre of these distributions, this

illustrates by eye how distinguishing between these values of fNL with only one observed

CMB is simply too ambitions. We see similar results with the cross-correlation function.

3.3.1 Summary

Even though this first attempt suggests that the sensitivity to fNL of the auto- and

cross-correlation function of peaks is far from being competitive, there are routes still

to be explored. One of them is to increase the threshold, for the reasons mentioned in

section 2.3.6. Even though this undoubtedly increases the variance of our estimators
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Figure 3.24: The probability distribution of χ2 for three values of fNL assuming a true value

of fNL = 40, as estimated from 200 maps in each case. fNL = 40 in the thick black line,

fNL = −100 in the blue line, and fNL = 200 in the red dashed line.

due to the effects of cosmic variance on the low-ℓ multipoles, it is possible to use high-

pass filters to decrease this effect and investigate how sensitive the resulting statistics

are. This work has in fact already been largely done, but due to serious hardware

failure it remains incomplete at the time of submission.
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Chapter 4

VESPA

As we have reviewed in section 1.4.6, galaxy formation and evolution are still far from

being well understood. Galaxies are extremely complex objects, formed via compli-

cated non-linear processes, and any approach (be it semi-analytical or computational)

inevitably relies on simplifications. For this reason, this is an area very much driven

by observations. This Chapter introduces VErsatile SPectral Analysis (VESPA) - an

algorithm which recovers robust star formation and metallicity histories from galactic

spectra.

4.1 Background

The stellar mass of a galaxy has been shown to correlate with properties such as lumi-

nosity, morphology, star formation rate, mass density and stellar age, to name only a

few (e.g. Bell et al. 2007; Zheng et al. 2007; Brinchmann and Ellis 2000; Borch et al.

2006; Bell et al. 2003). Knowing how these relations evolve with redshift has been the

goal of many observational studies, in an attempt to understand the main physical pro-

cesses that drive star formation in galaxies. They can also provide strong constraints

for models - these are normally “tuned” for the local Universe, and seeing how well

they predict the evolution of these quantities with redshift is a very powerful test.
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4.1.1 The cosmic star formation history

Measuring and understanding the star formation history of the Universe is therefore

essential to our understanding of galaxy evolution - when, where and in what conditions

did stars form throughout cosmic history? The traditional and simplest way to probe

this is to measure the observed instantaneous star formation rate in galaxies at differ-

ent redshifts. This can be achieved by looking at light emitted by young stars in the

ultra-violet (UV) band or its secondary effects (e.g. Madau et al. 1996; Kennicutt 1998;

Hopkins et al. 2000; Bundy et al. 2006; Erb et al. 2006; Abraham et al. 2007; Noeske

et al. 2007; Verma et al. 2007). A complementary method is to look at present day

galaxies and extract their star formation history, which spans the lifetime of the galaxy.

Different teams have analysed a large number of galaxies in this way, whether by using

the full available spectrum (Glazebrook et al. 2003b; Panter et al. 2003; Cid Fernandes

et al. 2004; Heavens et al. 2004; Mathis et al. 2006; Ocvirk et al. 2006; Panter et al.

2007; Cid Fernandes et al. 2007), or by concentrating on particular spectral features or

indices (e.g. Kauffmann et al. 2003; Tremonti et al. 2004; Gallazzi et al. 2005; Barber

et al. 2006), which are known to be correlated with age or metallicities (e.g. Worthey

1994; Thomas et al. 2003). A compilation of the recent measurements can be seen in

Figure 4.1, from Hopkins and Beacom (2006). In spite of the large scatter, it is clear

from Figure 4.1 that there is a clear peak at z ≈ 2 − 3, and the star formation history

of the Universe has been steeply declining since. As we will see next, this sharp decline

seems to be associated with high-mass galaxies.

4.1.2 Downsizing

An interesting recent result is the idea of downsizing (Cowie et al. 1996), first defined

as a “smooth downward evolution in the maximum luminosity of rapidly star-forming

galaxies”, i.e. intense star formation is associated with increasingly less massive galaxies

with decreasing redshift. There is good observational support for this trend (e.g. Cowie

et al. 1996; Bell et al. 2005; Papovich et al. 2006).

However, the word’s meaning has become somewhat less defined with time. Another

interpretation of the word downsizing relates to the epoch of dominant mass build-up,

which has been shown to be earlier for massive galaxies than for less massive ones

(e.g. Zheng et al. 2007; Panter et al. 2007; Thomas et al. 2005; Gallazzi et al. 2005;

Kauffmann et al. 2003). This effect can be clearly seen in Figure 4.2, from Panter et al.

100



4.1. BACKGROUND

Figure 4.1: From Hopkins and Beacom (2006): the cosmic star formation history.

(2007). The lower panel of the same figure also shows that today star formation is

dominated by low-mass galaxies. A similar trend was found by Sheth et al. (2006),

who using clustering statistics showed that galaxies in the densest regions formed their

stars earlier.

It is important to note that the former definition does not imply the latter. The

former implies that star formation in massive galaxies has been decreasing with time,

which culminates in a nearly complete lack of star formation in massive galaxies today.

The latter simply states that mass assembly began earlier for galaxies which are mas-

sive today.

There is an apparent contradiction with the hierarchical model of galaxy forma-

tion, which suggests that if the largest galaxies are the last ones to form, then their

star formation rate should be most active now. However, the largest objects, which sit

in the densest peaks, are also the ones which start to assemble earlier. This reconciles

our second definition of downsizing with the hierarchical model without much problem.

But the first definition essentially seems to tell us that there must be a mechanism to

quench star formation in massive galaxies. This must be due to what has been called
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Figure 4.2: From Panter et al. (2007): the star formation rate of galaxies, estimated from the

fossil record, as a function of present-day stellar mass. In the top panel the lines have been

offset for clarity - we can see clearly that most massive stars formed their stars earlier. We can

also see from the bottom panel that star formation today is dominant in low mass galaxies.
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gastrophysics, a term which aims to separate the evolution of the dark matter potential

wells from the less well understood gas dynamics and star formation, to which it refers.

It is easy to think of a number of mechanisms that might cause this, for exam-

ple: active galactic nuclei (AGN) feedback, a depletion of gas reservoirs or a change in

the infall rate of gas, a decrease in the merging rate of galaxies, or supernova feedback.

Each of these would leave a different imprint in the distribution of star formation across

galaxies (as a function of mass, environment, metallicity, or others - e.g. Bower et al.

2006), so again keen observation is the key here.

4.1.3 Stellar mass assembly

Integrating the cosmic star formation history of the Universe up to any given redshift

(taking into account the fact that some stellar material will have been recycled, in the

form of winds or star death) gives us the total stellar mass density of the Universe.

Current estimates vary, but Panter et al. (2007) estimate that this number is 0.00174

in units of the critical density. An immediate thought is that this is very low com-

pared to the estimates of Ωb from for example WMAP5 constraints, which estimates

Ωb = 0.046± 0.0012. This begs the question: where have the rest of the baryons gone?

Such an answer is not the immediate concern of this thesis, but one should keep in

mind that there is a lot more to the baryonic Universe than stars.

A measure of how stellar mass evolves as a function of redshift provides, in principle,

the same information as the cosmic star formation history. However, direct measure-

ments of stellar mass densities at different redshifts (obtained by integrating the galaxy

stellar mass function over mass) show a surprising amount of disagreement with the

numbers obtained from integrating the star formation history over time. Figure 4.3

from Wilkins et al. (2008) shows this disagreement quite clearly.

The two measurements, although formally identical, are in practice obtained by

very different methods. Star formation rates are more sensitive to young stars, whereas

mass estimates are biased towards old stars. Different methods are also sensitive to

different systematic errors and it is possible that, for example, our understanding of

dust corrections for young stars at higher redshifts is simply not good enough. This

discrepancy gains particular interest within the context of the IMF. The two different
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Figure 4.3: From Wilkins et al. (2008): a compilation of stellar mass density measurements.

The dotted line that lies above the data points is the resulting stellar mass density from inte-

grating the star formation history of Hopkins and Beacom (2006). There is clear disagreement

between the two lines.

measurements are sensitive to mass ranges, and there would be an IMF which would

bring the two measurements into agreement.

A step up from the stellar mass density, in terms of information, is of course the

galaxy stellar mass function. The evolution of the shape of the galaxy stellar mass

function is dictated by two main processes: the halo mass function and star formation

processes. The former evolves through gravitational collapse of the dark matter and

mergers, and the second through gas dynamics. A galaxy formation model must be

able to explain these two processes and their change with redshift.

Some of these ideas are explored further in Chapter 5.

4.1.4 The fossil record

If we try to analyse a galaxy’s luminous output in terms of a history parametrized by

some chosen physical quantities, a simplification is in order. The reason is two-fold:

firstly we are limited by our knowledge and ability to model all the physical processes

which happen in a galaxy and produce the observed spectrum we are analysing; sec-
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ondly, the observed spectrum is inevitably perturbed by noise, which intrinsically limits

the amount of information we can recover.

To do this, we rely on synthetic stellar population models to describe a galaxy in terms

of its stellar components, but by modelling a galaxy in this way we are intrinsically lim-

ited by the quality of the models. There are also potential concerns with flux calibration

errors. However, using the full spectrum to recover the fossil record of a galaxy - or of

an ensemble of galaxies - is an extremely powerful method, as the quality and amount of

data relating to local galaxies vastly outshines that which concerns high-redshift galax-

ies. Splitting a galaxy into simple stellar populations of different ages and metallicities

is a natural way of parameterising a galaxy, and it allows realistic fits to real galaxies

(e.g. Bruzual and Charlot 2003). Galactic archeology has become increasingly popular

in the literature recently, largely due to the increase in sophistication of stellar popu-

lation synthesis codes and the improvement of the stellar spectra libraries upon which

they are based, and also due to the availability of large well-calibrated spectroscopic

databases, such as the Sloan Digital Sky Survey (SDSS) (York et al. 2000b; Strauss

et al. 2002a).

In any case, without imposing any constraints on the allowed form of the star formation

history, or perhaps an age-metallicity relation, the parameter space can become unsus-

tainably large for a traditional approach. Ideally, one would like to do without such

pre-constraints. Recently, different research teams have come up with widely differ-

ent solutions for this problem. MOPED (Heavens et al. 2000) and STARLIGHT (Cid

Fernandes et al. 2004) explore a well-chosen parameter space in order to find the best

possible fit to the data. In the case of MOPED, this relies on compression of the full

spectrum to a much smaller set of numbers which retains all the information about the

parameters it tries to recover; STARLIGHT on the other hand, searches for its best fit

using the full spectrum with a Metropolis algorithm. STECMAP (Ocvirk et al. 2006)

solves the problem using an algebraic least-squares solution and a well-chosen regular-

ization to keep the inversions stable. All of these and other methods acknowledge the

same limitation - noise in the data and in the models introduces degeneracies into the

problem which can lead to unphysical results. MOPED, for example, has produced

some remarkable results concerning the average star formation history of the Universe

by analysing a large sample of galaxies. However, MOPED’s authors have cautioned

against over-interpreting the results on a galaxy-by-galaxy basis, due to the problem
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mentioned above. This is directly related to the question of how finely one should

parameterise a galaxy, and what the consequences of this might be.

4.1.5 VESPA

Much of the motivation for VESPA came from the realisation that this problem will

vary from galaxy to galaxy, and that the method of choosing a single parametrization

to analyse a large number of galaxies can be improved on.

VESPA is based on three main ideas, which we present here and develop further in the

rest of this Chapter:

• There is only so much information one can safely recover from any given set of

data, and the amount of information which can be recovered from an individual

galaxy varies.

• The recovered star formation fractions should be positive.

• Even though the full unconstrained problem is non-linear, it is piecewise linear

in well-chosen regions of parameter space.

VESPA’s ultimate goal is to derive robust information for each galaxy individually, by

adapting the number of parameters it recovers on a galaxy-by-galaxy basis and increas-

ing the resolution in parameter space only where the data warrant it. In a nutshell,

this is how VESPA works: we estimate how many parameters we can recover from a

given spectrum, given its noise, shape, spectral resolution and wavelength range using

an analysis given by Ocvirk et al. (2006). In that paper, Singular Value Decomposition

(SVD) is used to find a least squares solution, and this solution is analysed in terms

of its singular vectors. VESPA uses this method only as an analysis of the solution,

and uses Bounded-Variable Least-Squares (BVLS) (Stark and Parker 1995) to reach a

non-negative solution in several regimes where linearity applies.

This chapter is organised as follows: in Section 4.2 we present the method, in Section

4.3 we apply VESPA to a variety of synthetic spectra, in Section 4.4 we apply VESPA to

a sample of galaxies from the Sloan Digital Sky Survey (SDSS) spectroscopic database

and we compare our results to those obtained with MOPED, and finally in Section 4.5
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we present some final remarks on VESPA. Scientific results are presented in Chapter 5

and 6.

4.2 Method

In this section we lay down the problem to solve in detail, and explain the different

steps VESPA uses to find a solution for each galaxy.

4.2.1 The problem

We assume a galaxy is composed of a series of simple stellar populations (SSPs) of vary-

ing ages and metallicities. The unobscured rest frame luminosity per unit wavelength

of a galaxy can then be written as

Fλ =

∫ t

0
ψ(t)Sλ(t, Z)dt (4.1)

where ψ(t) is the star formation rate (solar masses formed per unit of time) and Sλ(t, Z)

is the luminosity per unit wavelength of a single stellar population of age t and metal-

licity Z, per unit mass. The dependency of the metallicity on age is unconstrained,

turning this into a non-linear problem.

In order to solve this problem, we start by discretizing in wavelength and time, by

averaging these two quantities into well chosen bins. For now we present the problem

with a generalised parametrization, and discuss our choice in Section 4.2.3. We will use

greek indices to indicate time bins, and roman indices to indicate wavelength bins.

The problem becomes

Fj =
∑

α

xαG(Zα)αj (4.2)

where Fj = (F1, ..., FD) is the luminosity of the jth wavelength bin of width ∆λ,

G(Zα)αj is the jth luminosity point of a stellar population of age tα = (t1, ..., tS)

(spanning an age range of ∆tα) and metallicity Zα, and xα = (x1, ..., xS) is the total

mass of population G(Z)αj in the time bin ∆tα.

Although the full metallicity problem is non-linear, interpolating between tabulated

values of Z gives a piecewise linear behaviour:

G(Zα)αj = gαG(Za,α)αj + (1 − gα)G(Zb,α)αj , (4.3)
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and the problem then becomes

Fj =
∑

α

xα [gαG(Za,α)αj + (1 − gα)G(Zb,α)αj ] (4.4)

where G(Za,α)αj and G(Zb,α)αj are equivalent to G(Zα)αj as above, but at fixed metal-

licities Za and Zb, which bound the true Z. If this interpolation matches the models’

resolution in Z, then we are not degrading the models in any way.

Solving the problem then requires finding the correct metallicity range. One should

not underestimate the complexity this implies - trying all possible combination of con-

secutive values of Za and Zb in a grid of 16 age bins would lead to a total number of

calculations of the order of 109, which is unfeasible even in today’s fast personal work-

stations. We work around this problem using an iterative approach, which we describe

in Section 4.2.3.

Dust extinction

An important component when describing the luminous output of a galaxy is dust, as

different wavelengths are affected in different ways. The simplest possible approach is

to use one-parameter dust model, according to which we apply a single dust screen to

the combined luminosity of all the galactic components. Equation (4.1) becomes

Fλ = fdust(τλ)

∫ t

0
ψ(t)Sλ(t, Z)dt (4.5)

where we are assuming the dust extinction is the same for all stars, and characterised

by the optical depth, τλ.

However, it is also well known that very young stars are likely to be more affected by

dust. In an attempt to include this in our modelling, we follow the two-parameter dust

model of Charlot and Fall (2000) in which young stars are embebbed in their birth

cloud up to a time tBC , when they break free into the inter-stellar medium (ISM):

Fλ =

∫ t

0
fdust(τλ, t)ψ(t)Sλ(t, Z)dt (4.6)

and

fdust(τλ, t) =







fdust(τ
ISM
λ )fdust(τ

BC
λ ), t ≤ tBC

fdust(τ
ISM
λ ), t > tBC

(4.7)
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where τ ISM
λ is the optical depth of the ISM and τBC

λ is the optical depth of the birth

cloud. Following Charlot and Fall (2000), we take tBC = 0.03 Gyrs.

There is a variety of choices for the form of fdust(τλ). To model the dust in the ISM, we

use the mixed slab model of Charlot and Fall (2000) for low optical depths (τV ≤ 1),

for which

fdust(τλ) =
1

2τλ
[1 + (τλ − 1) exp(−τλ) − τ2

λE1(τλ)] (4.8)

where E1 is the exponential integral and τλ is the optical depth of the slab. This model

is known to be less accurate for high dust values, and for optical depths greater than

one we take a uniform screening model with

fdust(τλ) = exp(−τλ). (4.9)

We only use the uniform screening model to model the dust in the birth cloud and we

use τλ = τV (λ/5500Å)−0.7 as our extinction curve for both environments.

As described, dust is a non-linear problem. In practice, we solve the linear problem

described by equation (4.4) with a number of dust extinctions applied to the matrices

G(Z)ij and choose the values of τ ISM
V and τBC

V which result in the best fit to the data.

We initially use a binary chop search for τ ISM
V ∈ [0, 4] and keep τBC

V fixed and equal

to zero, which results in trying out typically around nine values of τ ISM
V . If this initial

solution reveals star formation at a time less than tBC we repeat our search on a two-

dimensional grid, and fit for τ ISM
V and τBC

V simultaneously. There is no penalty except

in CPU time to apply the two-parameter search, but we find that this procedure is

robust (see section 3.4).

4.2.2 The solution

In this section we describe the method used to reach a solution for a galaxy, given a

set of models and a generalised parametrization. The construction of these models and

choice of parameters is described in Sections 4.2.3 and 4.2.4.

We re-write the problem described by equation (4.4) in a simpler way

Fj =

2S
∑

κ=1

cκAκj(Zκ) (4.10)
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where Zκ = Za for κ < S and Zκ = Zb for κ ≥ S. A is a D × 2S matrix composed of

synthetic models at the corresponding metallicities, and c = (c1, ..., c2S) is the solution

vector, from which the xα and gα in equation (4.4) can be calculated. We can then

calculate a linearly interpolated metallicity at age tα

Zα = gαZa + (1 − gα)Zb. (4.11)

For every age tα we aim to recover two parameters: xα - the total mass formed at that

age (within a period ∆tα) - and Zα - a mass-weighted metallicity.

At this stage we are not concerned with our choice of tα and ∆tα - although these are

crucial and will be discussed later. For a given set of chosen parameters, we find c,

such that

χ2 =
(Fj −

∑

κ cκAκj)
2

σ2
j

(4.12)

is minimised (where σj is the error in the measured flux bin Fj).

A linear problem with a least squares constraint has a simple analytic solution which,

for constant σj (white-noise) is

cLS = (AT · A)−1·AT·F (4.13)

In principle, any matrix inversion method, e.g. Singular Value Decomposition (SVD),

can be used to solve (4.13). However, we would like to impose positivity constraints on

the recovered solutions. Negative solutions are unphysical, but unfortunately common

in a problem perturbed by noise.

BVLS and positivity

We use Bounded-Variable Least-Squares (BVLS) (Stark and Parker 1995) in order to

solve equation (4.13). BVLS is an algorithm which solves linear problems whose vari-

ables are subject to upper and lower constraints. It uses an active set strategy to choose

sets of free variables, and uses QR matrix decomposition to solve the unconstrained

least-squares problem of each candidate set of free variables using (4.13):

cLS = (ET ·E)−1·ET·F (4.14)

where E is effectively composed of those columns of A for which ck is unconstrained,

and of zero vectors for those columns for which ck is set to zero. BVLS is an extension
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of the Non-Negative Least Squares algorithm (Lawson and Hanson 1974), and they

are both proven to converge in a finite number of iterations. Positivity is the only

constraint in VESPA’s solution.

BVLS and positivity have various advantages. Most obvious is the fact that we do

away with negative solutions. In a non-constrained method (such as SVD) negative

values are a response to the fact that the data is noisy. Similarly, we find that zero

values returned by BVLS (in, for example, a synthetic galaxy with continuous star

formation across all time) are also an artifact from noisy data. It should be kept in

mind that, if the method is unbiased, this problem is solved by analysing a number of

noisy realisations of the original problem - what we find is that the true values of the

parameters we try to recover are consistent with the distributions yielded by this pro-

cess. In this sense, not even a negative value presents a problem necessarily, as long as

it is consistent with zero (or the correct solution). Although formally one might expect

a solution bias from imposing positivity, empirically we have found it to be negligible

when using BVLS. We therefore feel it is an advantage to discard a priori solutions we

know to be unphysical.

Another advantage to using BVLS is the fact that, by fixing some parameters to the

lower boundary (zero, in this case), it effectively reduces the number of fitting param-

eters to the number of those which keeps unconstrained. Given the overall aims of

VESPA, this has proven to be advantageous.

Noise

The inversion in equation (4.13) is often highly sensitive to noise, and care is needed

when recovering solutions with matrix inversion methods. The fit in data-space will al-

ways improve as we increase the number of parameters, but these might not all provide

meaningful information. We follow an analysis given in Ocvirk et al. (2006) in order to

understand how much this affects our results, and to choose a suitable age parametriza-

tion for each galaxy. This is not an exact method, and it does not guarantee that the

solutions we recover have no contribution from noise. However, we found that in most

cases it provides a very useful guideline (see section 4.3.3, in particular Figure 4.15).

We refer the reader to the above paper for a full discussion, and we reproduce here the

steps used in our analysis.
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We use SVD to decompose the model matrix E as

E = U ·W · VT (4.15)

where U is a D × 2S orthonormal matrix with singular data-vectors uκ as columns,

V is a 2S × 2S orthonormal matrix with the singular solution-vectors vκ as columns,

and W is a 2S × 2S diagonal matrix W = diag(w1, ..., w2S) where wκ are the matrix

singular values in decreasing order. Replacing E by this decomposition in equation

(4.13) gives

cLS = V ·W−1·UT ·F =

2S
∑

κ=1

uT
κ ·F
wκ

vκ (4.16)

The solution vector is a linear combination of the solution singular values, parametrized

by the dot product between the data and the corresponding data singular vector, and

divided by the kth singular value. The data vector itself is a combination of the true

underlying emitted flux and noise: F = Ftrue + e. Equation (4.16) becomes

cLS =
2S
∑

κ=1

uT
κ ·Ftrue

wκ
vκ +

2S
∑

κ=1

uT
κ ·e
wκ

vκ ≡ ctrue + ce (4.17)

where ctrue is the solution vector to the noiseless problem and ce is an unavoidable

added term due to the presence of noise.

It is extremely informative to compare the amplitudes of the two terms in the sum

(4.17), and to monitor their contributions to the solution vector with varying rank.

In Figure 4.4 we plot |uT
κ · F| and uT

κ ·e as a function of rank κ, for a synthetic spec-

trum with a SNR per pixel of 50 (at a resolution of 3Å) and an exponentially-decaying

star formation history. We observe the behaviour described and discussed in Ocvirk

et al. (2006). The combinations associated with the noise terms maintain a roughly

constant power across all ranks, with a an average value of 〈F〉 /SNR. The data terms,

however, drop significantly with rank, and we can therefore identify two ranges: a

noise-dominated κ-range, in which the noise contributions match or dominate the true

data contributions, and a data-dominated range, where the contributions to the solu-

tion are largely data motivated. We call the transition rank κcrit. Overall, high-κ ranks

tend to dominate the solution, since the singular values wκ decrease with κ. This only

amplifies the problem by giving greater weight to noise-dominated terms in the sum

(4.16). Figure 4.5 shows the contribution coming from each rank κ to the final solution
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Figure 4.4: The behaviour of the singular values with matrix rank k. The stars are |uT
κ ·F|

and the squares are uT
κ ·e. The line is 〈F〉 /SNR, which in this case has a value of approximately

0.06.

- the coefficient (uT
κ ·F)/wκ. We see this weight increases with rank.

Whereas this analysis gives us great insight into the problem, we do not in fact use the

sum (4.16) to obtain cLS , for the reasons given in section 4.2.2.

For real data we are only able to calculate uT
κ ·F and estimate the noise level at 〈F〉 /SNR

and we use this information to estimate the number of non-zero parameters to recover

from the data. Our aim is to a have a solution which is dominated by the signal, and

not by the noise. We therefore want our number of non-zero recovered parameters to

be less than or equal to κcrit. Estimating where this transition happens is always a

noisy process. In this thesis we take the conservative approach of setting κcrit to be

the rank at which the perturbed singular values first cross the 〈F〉 /SNR barrier. In

the case of Figure 4.4 this happens at κcrit = 7.

4.2.3 Choosing a galaxy parametrization

One of the advantages of VESPA is that it has the ability to choose the number of pa-

rameters to recover in any given galaxy. This is possible due to a time grid of varying
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Figure 4.5: The coefficients in sum (4.16) as a function of rank κ. We see that the highest

rank modes (corresponding to the smaller singular values) tend to contribute the most to the

solution.

resolutions, which VESPA can explore to find a solution. This section describes this

grid and the criteria used to reach a final parametrization.

The grid

We work on a grid with a maximum resolution of 16 age bins, logarithmically spaced

in lookback time from 0.02 up to 14 Gyr. The grid has three further resolution levels,

where we split the age of the Universe in eight, four and finally two age bins, also

logarithmically spaced in the same range. A schematic view of this grid can be seen in

Figure 4.6.

The idea behind the multi-resolution grid is to start our search with a low number of

parameters (in coarser resolution, so that the entirety of the age of Universe is covered),

and then increase the resolution only where the data warrant it by splitting the bin with

the highest flux contribution in two, and so on. In effect, we construct one such grid

for each of the tabulated metallicities, Za and Zb. We work with five metallicity values,

Z = [0.0004, 0.004, 0.008, 0.02, 0.05] which correspond to the metallicity resolution of
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Figure 4.6: Schematic view of the grid of bins used by VESPA. The top line of black numbers

indicates the age of each boundary. The red numbers in each of the bins is an unique bin

identifier number, which can be used to quickly retrieve properties of a given bin (see Chapter

5 for more information).

the models used, where Z is the fraction of the mass of the star composed of metals

(Z⊙ = 0.02). The construction of the models for each of the time bins is discussed in

Section 4.2.4.

To each of the grids we can apply a dust extinction as explained in Section 4.2.1.

The search

We go through the following steps in order to reach a solution:

1. We begin our search with three bins: two bins of width 4 and one bin of width 8

(oldest), where here we are measuring widths in units of high-resolution bins.
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2. We calculate a solution using equation (4.10) for every possible combination of

consecutive boundaries Za and Zb, and we choose the one which gives the best

value of reduced χ2.

3. We calculate the number of perturbed singular values above the noise level, as

described at the end of Section 4.2.2.

4. We find the bin which contributes the most to the total flux and we split it into

two.

5. We find a solution in the new parametrization, this time by trying out all possible

combinations of Za and Zb for the newly split bins only, and fixing the metallicity

boundaries of the remainder bins to the boundaries obtained in the previous

solution. If a bin had no stars in the previous iteration, we set Za = 0.0004 and

Zb = 0.05.

6. We return to step 3 and we proceed until we have reached the maximum resolution

in all populated bins.

7. We look backwards in our sequence of solutions for the last instance with a number

of non-zero recovered parameters equal to or less than κcrit as calculated in step

3 and take this as our best solution.

We illustrate this sequence in Figure 4.7, where we show the evolution of the search in

a synthetic galaxy composed of two stellar bursts of equal star formation rates - one

young and one old. VESPA first splits the components which contribute the most to the

total flux. In this case this is the young burst which can be seen in the first bin. Even

though VESPA always resolves bins with any mass to the possible highest resolution,

it then searches for the latest solution which has passed the SVD criterion explained in

Section 4.2.2. In this case, this corresponds to the fifth from the top solution. VESPA

chooses this solution in favour of the following ones due to the number of perturbed

singular values above the solid line (right panel). In this case, the solution chosen by

VESPA is a better fit in parameters space (note the logarithmic scale in the y-axis - the

following solution put the vast majority of the mass in the wrong bin). We observed

this type of improvement in the majority of all cases studied (see Figure 4.15).

The final solution

Our final solution comes in a parametrization such that the total number of non-zero

recovered parameters is less than or equal to the number of perturbed singular values
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Figure 4.7: The evolution of the fit, as VESPA searches for a solution. Sequence should be

read from top to bottom. Each line shows a stage in the sequence: the left panel shows the input

star formation history in the dashed line, and the recovered mass fractions on the solid line

for a given parametrization ; the middle panel shows the input metallicities in the dashed line,

and the recovered metallicities on the solid line; the right panel shows the absolute value of the

perturbed singular values |uκ ·F| (stars and solid line) and the estimated noise level 〈F〉 /SNR.

In this panel we also show the value of κcrit and the number of non-zero elements of cLS in

each iteration. The chosen solution is the fifth from the top, and indicated accordingly. This

galaxy consists of two burst events of equal star formation rate - a very young and an old burst.

It was modelled with a resolution of 3Å and a signal-to-noise ratio per pixel of 50. We see the

recovery is good but not perfect - there is a 1 per cent leakage from the older population - but

better than the following solutions, where this bin is split. See text in Section 4.2.3 for more

details.
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above the estimated noise level.

The above sequence is performed for each of several combinations of τBC
V , τ ISM

V , and

we choose the attenuation which provides the best fit.

For each galaxy we recover N star formation masses, with an associated metallicity,

where N is the total number of bins, and a maximum of two dust parameters.

4.2.4 The models

The backbone to our grid of models is the BC03 set of synthetic SSP models (Bruzual

and Charlot 2003), with a Chabrier initial mass function (Chabrier 2003) and Padova

1994 evolutionary tracks (Alongi et al. 1993; Bressan et al. 1993; Fagotto et al. 1994a,b;

Girardi et al. 1996). Although any set of stellar population models can be used, these

provide a detailed spectral evolution of stellar populations over a suitable range of

wavelength, ages and metallicities: S(λ, t, Z). The models have been normalised to one

solar mass at the age t = 0.

High-resolution age bins

At our highest resolution we work with 16 age bins, equally spaced in a logarithmic

time scale between now and the age of the Universe. In each bin, we assume a constant

star formation rate

fHR
α (λ,Z) = ψ

∫

∆tα

S(λ, t, Z)dt (4.18)

with

ψ = 1/∆tα. (4.19)

Low-resolution age bins

As described in Section 4.2.3, we work on a grid of different resolution time bins and

we construct the low resolution bins using the high resolution bins described in Section

4.2.4. We do not assume a constant star formation rate in this case, as in wider bins

the light from the younger components would largely dominate over the contribution

from the older ones. Instead, we use a decaying star formation history, such that the
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light contributions from all the components are comparable. Recall equation (4.1)

fLR
α (λ,Z) =

∫

∆tα

ψ(t)S(λ, t, Z)dt, (4.20)

which we approximate to

fLR
β (λ,Z) =

∑

α∈β f
HR
α (λ,Z)ψα∆tα

∑

β∈α ψα∆tα
(4.21)

where low resolution bin β incorporates the high resolution bins α ∈ β, and we set

ψα∆tα =
1

∫

λ f
HR
α (λ,Z)dλ

. (4.22)

Depending on the galaxy, the final solution obtained with the sequence detailed in

Section 4.2.3 can be described in terms of low-resolution age bins. In this case we

should interpret the recovered mass as the total mass formed during the period implied

by the width of the bin, but we cannot make any conclusions as to when in the bin the

mass was formed. Similarly, the recovered metallicity for the bin should be interpreted

as a mass-weighted metallicity for the total mass formed in the bin.

4.2.5 Errors

The quality of our fits and of our solutions is affected by the noise in the data, the

noise in the models, and the parametrization we choose (which does not reflect the

complete physical scenario within a galaxy). We aim to apply VESPA firstly to SDSS

galaxies, which typically have a SNR ≈ 20 per resolution element of 3Å, which puts us

in a regime where the main limitations come from the noise in the data.

To estimate how much noise affects our recovered solutions we take a rather empirical

approach. For each recovered solution we create nerror random noisy realisations and

we apply VESPA to each of these spectra. We re-bin each recovered solution in the

parametrization of the solution we want to analyse and estimate the covariance matrices

C(x)αβ = 〈(xα − x̄α)(xβ − x̄β)〉 (4.23)

C(Z)αβ =
〈

(Zα − Z̄α)(Zβ − Z̄β)
〉

. (4.24)

All the plots in Sections 4.3 and 4.4 show error bars derived from C
1/2
αα , although it is

worth keeping in mind that these are typically highly correlated.
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Figure 4.8: Two examples of VESPA’s analysis on synthetic galaxies. The top panels show the

original spectrum in the dark line and fitted spectrum in the red line. The middle panels show

the input (dashed, red) and the recovered (solid, black) star formation rates and the bottom

panel shows the input (dashed, red) and recovered (solid, black) metallicities per bin. Note

that even though many of the recovered metallicities are wrong, these tend to correspond to

bins with very little star formation, and are therefore virtually unconstrained.

4.2.6 Timings

A basic run of VESPA (which consists of roughly 5 runs down the sequence detailed in

Section 4.2.3, one for each value of dust extinction) takes about 5 seconds. If accurate

error estimations are needed per galaxy, this will add another one or two minutes to

the timing, depending on how accurately one would like to estimate the covariance

matrices, and depending on the number of data points. With nerror = 10, a typical

SDSS galaxy takes around one minute to analyse.

4.3 Tests on Simulated Data

We tested VESPA on a variety of synthetic spectra, in order to understand its capa-

bilities and limitations. In particular, we tried to understand the effect of three factors

in the quality of our solutions: the input star formation history, the noise in the data,

and the wavelength coverage of the spectrum. We have also looked at the effects of

dust extinction. Throughout we have modelled our galaxies in a resolution of 3Å.

Even though we are aware that showing individual examples of VESPA’s results from
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Figure 4.9: The distribution of Gx, GZ and total mass recovered for 50 galaxies with a SNR

per pixel of 50. Solid lines correspond to dual burst and dashed lines to exponentially decaying

ones. See text in Section 4.3.1 for details.

synthetic spectra can be extraordinarily unrepresentative, we feel obliged to show a few

for illustration purposes. We will show a typical result for most of the cases we present,

but we also define some measurements of success, so that the overall performance of

VESPA can be tracked as we vary any factors. We define

Gx =
∑

α

∣

∣

∣

∣

xα − xI
α

xI
α

∣

∣

∣

∣

ωα (4.25)

and

GZ =
∑

α

∣

∣

∣

∣

Zα − ZI
α

ZI
α

∣

∣

∣

∣

ωα (4.26)

where xI
α and ZI

α are the total mass and correspondent metallicity in bin α (re-binned

to match the solution’s parametrization if necessary), and ωα is the flux contribution

of population of age tα. Gx and GZ are a flux-weighted average of the total absolute

fractional errors in the solution, and give an indication of how well VESPA recovers the

most significant parameters. A perfect solution gives Gx = GZ = 0. It is also worth

noting that this statistic does not take into account the associated error with each

recovered parameter - deviations from the true solution are usually expected given the

estimated covariance matrices. We will also show how these factors affect the recovered

total mass for a galaxy. In all cases we have re-normalised the total masses such that

total input mass for each galaxy is 1.

4.3.1 Star formation histories

We present here some results for synthetic spectra with two different star formation
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Figure 4.10: Same galaxies as in Figure 4.8, but results obtained by using a smaller wavelength

range. The goodness-of-fit in data space is still excellent, but it becomes more difficult to break

certain degeneracies.

Figure 4.11: The distribution of Gx, GZ and total mass recovered for 50 galaxies with a

SNR per pixel of 50 and two different wavelength coverage. Solid line corresponds to λ ∈
[1000, 9500]Å and dashed line to λ ∈ [3200, 9500] Å.
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histories. All of the spectra in this section were synthesised with a SNR per pixel of

50, and we initially fit the very wide wavelength range λ ∈ [1000, 9500]Å.

We choose two very difference cases: firstly a star formation history of dual bursts,

with a large random variety of burst age separations and metallicities (where we set

the star formation rate to be 10 solar masses per Gyr in all bursts). Secondly, we chose

a SFH with an exponentially decaying star formation rate: SFR ∝ exp(γtα), where tα

is the age of the bin in lookback time in Gyr. Here we show results for γ = 0.3 Gyr−1.

Rather than being physically motivated, our choice of γ reflects a SFH which is not

too steep as to essentially mimic a single old burst, but which is also not completely

dominated by recent star formation. In all cases the metallicity in each bin is randomly

set. Figure 4.8 shows a typical example from each type.

Figure 4.9 shows the distribution of Gx, GZ and of the recovered total masses for a

sample of 50 galaxies. We see differences between the two cases. Firstly, in dual burst

galaxies, we seem to do better in recovering data from significant individual bins, but

worse in overall mass. This reflects the fact that Gx is dominated by the fractional

errors in the most significant bins, but the total mass can be affected by small flux

contributions in old bins which can have large masses. On the other hand, with an

exponentially decaying star formation rate, we do worse overall (although this is mainly

a reflection that more bins have significant contributions to the flux) but we recover

the total mass of the galaxy exceptionally well.

4.3.2 Wavelength range

Wavelength range is an important factor in this sort of analysis, as different parts of the

spectrum will help to break different degeneracies. Since we are primarily interested in

SDSS galaxies, we have studied how well VESPA does in the more realistic wavelength

range of λ ∈ [3200, 9500] Å.

Figure 4.10 shows the results for the same galaxies shown in Figure 4.8, obtained with

the new wavelength range. In these particular cases, we notice a more pronounced dif-

ference in the dual bursts galaxy, but looking at a more substantial sample of galaxies

shows that this is not generally the case. Figure 4.11 shows Gx, GZ and total mass

recovered for 50 exponentially decaying star formation history galaxies, with a signal

to noise ratio of 50 and the two different wavelength ranges. We do not see a largely
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Figure 4.12: The recovered number of non-zero parameters in 50 galaxies with an expo-

nentially decaying star formation history, using different wavelength ranges: λ ∈ [1000, 9500]

Å(solid line) and λ ∈ [3200, 9500] Å(dashed line). Please note that these correspond to the total

number of non-zero components in the solution vector cκ and not to the number of recovered

stellar populations.

significant change in both cases, and we observe a less significant difference in the dual

bursts galaxies (not plotted here).

We find it instructive to keep track of how many parameters we recover in total, as we

change any factors. Figure 4.12 shows an histogram of the total number of non-zero

parameters we recovered from our sample galaxies with exponentially-decaying star for-

mation histories and both wavelength ranges. Note that these are the components of

the solution vector cκ which are non-zero - they do not represent a number of recovered

stellar populations. In this case there is a clear decrease in the number of recovered

parameters, suggesting a wider wavelength range is a useful way to increase resolution

in parameter space.
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Figure 4.13: The distribution of Gx, GZ and total mass recovered for 50 galaxies with an

exponential decaying star formation history and different signal-to-noise ratios. Solid lines

correspond to SNR = 50 and dashed lines to SNR =20. See text in Section 4.3.3 for details.

4.3.3 Noise

It is of interest to vary the signal-to-noise ratio in the synthetic spectra. We have re-

peated the studies detailed in the two previous sections with varying values of noise,

and we investigate how this affects both the quality of the solutions and their resolution

in parameter space.

Figure 4.14 shows how the recovered number of parameters changed by increasing the

noise in the galaxies with an exponentially decaying star formation rate and wide wave-

length range. In this case the increase in the noise leads to a significant reduction of

the number of parameters recovered for each galaxy. This behaviour is equally clear

for different star formation histories and different wavelength coverage, and is directly

caused by the stopping criterion defined in Section 4.3.3.

The quality of the solutions is also affected by this increase in noise, as can be seen

in figure 4.13, where we have plotted Gx, GZ and the total recovered mass for two

different values of SNR. The quality of the solutions decreases with the higher noise

levels, as is to be expected. However, a more interesting question to ask is whether this

decrease in the quality of the solutions would indeed be more pronounced without the

SVD stopping criterion. Figure 4.15 shows a comparison between Gx obtained as we

have described and obtained without any stopping mechanism (so letting our search

go to the highest possible resolution and taking the final solution) for 50 galaxies with

an exponentially decaying star formation history and a signal-to-noise ratio of 20. The

results show clearly that there is a significant advantage in using the SVD stopping
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Figure 4.14: The recovered number of non-zero parameters as we change the noise in the

data from 50 (solid line) to 20 (dashed line), in a sample of galaxies with an exponentially

decaying star formation rate. Please note that these correspond to the total number of non-zero

components in the solution vector cκ and not to the number of recovered stellar populations.

criterion. Naturally, the goodness of fit in data space is consistently better as we

increase the number of parameters but this improvement is illusory - the parameter

recovery is worse. This is exactly the expected behaviour - we choose to sacrifice

resolution in parameter space in favour of a more robust solution - even though naively

one could think a lower χ2 solution would indicate a better solution. The significance

of this improvement changes with the amount of noise and wavelength range of the

data (and to a lesser extent with type of star formation history) but we observed an

improvement in all cases we have studied.

As expected, further decreasing the signal-to-noise ratio leads to a further degradation

of the recovered solutions. This is accompanied by a suitable increase in the error bars

and correlation matrices, but in cases of a SNR≈ 10 and less it becomes very difficult

to recover any meaningful information from individual spectra.
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Figure 4.15: Testing the SVD stopping criterion. Plots show goodness of fit Gx for the

solution of 50 galaxies obtained with and without the SVD stopping criterion. We see that by

recovering only as many parameters as the data warrants gives improved parameter estimation

in almost all cases, and a striking improvement in many.

4.3.4 Dust

In this section we use simulated galaxies to study the effect of dust in our solutions.

As explained in Section 4.2.1, due to the non-linear nature of the problem, we cannot

include dust as one of the free parameters analysed by SVD. Instead, we fit for a max-

imum of two dust parameters using a brute-force approach which aims to minimise χ2

in data-space by trying out a series of values for τ ISM
V and τBC

V .

For each galaxy we assign random values of τ ISM
V ∈ [0, 2] and τBC

V ∈ [1, 2] and we are

interested in how well we recover these parameters and any possible degeneracies.

Figure 4.16 shows the input and recovered values for τ ISM
V for galaxies with a signal-to-

noise ratio of 50, and which were analysed using the wavelength range λ ∈ [3200, 9500]Å.

We show results for two different cases of star formation history: 50 galaxies with an

exponentially-decaying SFR and 50 galaxies formed by dual-bursts. We observe a good

recovery of τ ISM
V in both cases, especially at low optical depths.
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Figure 4.16: Testing the recovery of τISM
V for 50 galaxies with a exponentially-decaying star

formation history (triangles) and 50 galaxies formed with a random combination of dual bursts

(stars). The input values are randomly chosen and continuously distributed between 0 and 2.

The recovered values are chosen from a tabulated grid between 0 and 4.

However, we mostly observe a poor recovery of τBC
V , especially at high optical depths.

This is unsurprisingly flagging up a certain level of degeneracy between mass and degree

of extinction, which gets worse as the optical depth increases. Essentially, it becomes

difficult to distinguish between a highly obscured massive population and a less massive

population surrounded by less dust. It is worth keeping in mind that young popula-

tions are affected by both dust components simultaneously, and generally, even though

the recovery of the second dust parameter may not be accurate, it allows for a better

estimation of the dominant dust component.

This can be tested by simulating galaxies on a two-component dust model and by

analysing them using both a single component model, and a two-component model.

E.g., when using the more sophisticated model, we noted that the mean error on τ ISM
V

on a subsample of dual-burst galaxies (synthesised as explained in section 4.3.1, but

chosen to have young star formation) was reduced from 35 to 28 per cent. This simple

test also revealed that we are less likely to underestimate the mass of young popula-

tions by allowing an extra dust component, but that we are also introducing an extra
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degeneracy, especially so in the case of faint young populations. However, we feel that

the two-parameter dust model brings more advantages than disadvantages, with the

caveat being that dusty young populations can be poorly constrained. In any case, we

note that each galaxy is always analysed with a one-parameter model before being po-

tentially analysed with a two-parameter model, and both solutions are kept and always

available for analysis.

Finally, our test also partly justifies our choice to first run a single dust component

model and only apply a two-component model if we detect stars in the first two bins

- we find that although a one-component model might underestimate the amount of

young stars, it does not fail to detect them. We repeated a similar test in real data, by

analysing the same sample with and one- and a two-parameter dust model. We found

similar results, with a one-parameter model failing to yield star formation in young

bins only around 1 per-cent of the time (compared to the two-parameter model), and

only in cases where the contribution of the light from the young populations was very

small (of the order of 1 to 2 per cent).

4.4 Tests on real data

In this section we present some results obtained by applying VESPA to galaxies in the

SDSS. Our aim is to analyse these galaxies, and to produce and publish a catalogue of

robust star formation histories, stellar masses and dust contents, from which a wealth

of information can be derived. This catalogue is described in Chapter 5. A description

of the SDSS survey, data, and our pre-processing of the spectra before analysis can also

be found in Chapter 5.

Here we present results from a sub-sample of galaxies, which we used to test VESPA

in a variety of ways.

4.4.1 Duplicate galaxies

There are a number of galaxies in the SDSS database which have been observed more

than once, for a variety of reasons. This provides an opportunity to check how varia-

tions in observation-dependent corrections affect the results obtained by VESPA.

We have used a subset of the sample of duplicate objects in Brinchmann et al. (2004)1

1Available at http://www.mpa-garching.mpg.de/SDSS/
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Figure 4.17: Average star formation fraction as a function of lookback time for the 2000

galaxies in list A (solid line) and list B (dashed line). The error bars shown are the errors bars

on the mean for each age bin. We show only the errors from list A to avoid cluttering - the

errors from list B are of similar amplitude.

to create two sets of observations for 2000 galaxies, which we named list A and list B.

We are interested in seeing how the errors we estimate for our results compare to errors

introduced by intrinsic variations caused by changing the observation conditions (such

as quality of the spectra, placement of the fibre, sky subtraction or spectrophometric

calibrations).

Figure 4.17 shows the average star formation fraction as a function of lookback time

for both sets of observation. The error bars showed are errors on the mean. We see no

signs of being dominated by systematics when estimating the star formation fraction

of a sample of galaxies.

Figure 4.18 shows the total stellar mass obtained for a set of 500 galaxies in both ob-

servations (details of how we estimate the total stellar mass of a galaxy are included

in section 4.4.3). The error bars are obtained directly from the estimated covariance

matrix C(x) (equation 4.23). Even though most of the galaxy duplicates produce mass

estimates in agreement with each other given the error estimates, a minority does not.

Upon inspection, these galaxies show significant differences in their continuum, but
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Figure 4.18: Total stellar mass recovered for two sets of observations of 500 galaxies in the

main galaxy sample. The error bars are calculated from C(x).

after further investigation it remains unclear what motivates such a difference. The

simplest explanation is that the spectrophotometric calibration differs significantly be-

tween both observations, and that might have been the reason the plate or object was

re-observed. Whatever the reason however, the clear conclusion is that stellar mass

estimates are highly sensitive to changes in the spectrum continuum, and the errors we

estimate from the covariance matrix alone might be too small.

We did not find any signs of a systematic bias in any of the analysis we carried out.

4.4.2 Real fits

In this section we discuss the quality of the fits to SDSS galaxies obtained with VESPA.

As explained in Section 2, VESPA finds the best fit solution in a χ2 sense for a given

parametrization, which is self-regulated in order to not allow an excessive number of

fitting parameters. We have shown that this self-regularization gives a better solution

in parameter space (Figure 4.15), despite often not allowing the parametrization which

would yield the best fit in data space (Figure 4.7). However, our aim is still to find
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a solution which gives a good fit to the real spectrum. Figure 4.19 shows the 1-point

distribution of reduced values of reduced χ2 for 1 plate of galaxies. This distribution

peaks at around χ2
reduced = 1.3, and figure 4.20 shows a fit to one of the galaxies with

a typical value of goodness of fit.

It is worth noting that the majority of the fits which are most pleasing to the eye,

correspond to the ones with a high signal to noise ratio and high value of reduced χ2.

One would expect the best fits to come from the galaxies with the best signal. However,

we believe the fact that they do not is not a limitation of the method, but a limita-

tion of the modelling. There are a number of reasons why VESPA would be unable

to produce very good fits to the SDSS data. One is the adoption of a single velocity

dispersion (170 kms−1) which could easily be improved upon at the expense of CPU

time. However, the dominant reason is likely to be lack of accuracy in stellar and dust

modelling - whereas BC03 models can and do reproduce a lot of the observed features,

it is also well known that this success is limited as there are certain spectral features

not yet accurately modelled, or even modelled at all. There are similar deficiencies in

dust models and dust extinction curves. The effect of the choice of modelling should

not be overlooked, and we refer the reader to a discussion in Section 4.5 of Panter et al.

(2007), where these issues are discussed.

4.4.3 VESPA and MOPED

In this section we take the opportunity to compare the results from VESPA and

MOPED, obtained from the same sample of galaxies. The VESPA solutions used

here are obtained with a one-parameter dust model, to allow a more fair comparison

between the two methods. Both methods make similar assumptions regarding stellar

models, but MOPED uses an LMC (Gordon et al. 2003) dust extinction curve, and

single screen modelling for all optical depths.

Our sample consist of two plates from the SDSS DR3 (Abazajian et al. 2005) (plates

0288 and 0444), from which we analyse a total of 821 galaxies. We are mainly interested

in comparing the results in a global sense. MOPED in its standard configuration

attempts to recover 23 parameters (11 star formation fractions, 11 metallicities and 1

dust parameter), so we might expect considerable degeneracies. Indeed, in the past

the authors of MOPED have cautioned against using it to interpret individual galaxy
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Figure 4.19: The distribution of reduced values of χ2 for a sample of 360 galaxies analysed

by VESPA.

spectra too precisely. We have observed degeneracies between adjacent bins in MOPED,

but on the other hand a typical MOPED solution has many star formation fractions

which are essentially zero, so the number of significant contributions is always much

less than 23.

Figure 4.21 shows the recovered average star formation history for the 821 galaxies

using both methods. In the case of VESPA, solutions parametrized by low-resolution

bins had to be re-parametrized in high-resolution bins, so that a common grid across

all galaxies could be used. This was done using the weights given by (4.22). The lines

show a remarkably good agreement between the two methods.

Having recovered a star formation history for each galaxy, one can then estimate the

stellar mass of a galaxy. We calculated this quantity for all galaxies using the solutions

from both methods, and with similar assumptions regarding cosmological parameters

and fibre-size corrections. Explicitly, we have done the following:

1. We converted from flux to luminosity assuming the set of cosmological parameters

given by Spergel et al. (2003).

2. We recovered the initial mass in each age bin using each method.
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Figure 4.20: Typical fit to a galaxy from the SDSS. The dark line is the real data (arbitrary

normalisation), and the red line is VESPA’s fit to the data.

134



4.4. TESTS ON REAL DATA

Figure 4.21: The recovered average star formation history for the 821 galaxies as recovered

by VESPA (solid line) and MOPED (dashed line). Both were initially normalised such that

the sum over all bins is 1, and the MOPED line was then adjusted by 11/16 to account for the

different number of bins used in each method, to facilitate direct comparison.

3. We calculated the remaining present-day mass for each population after recycling

processes. This information is supplied by the synthetic stellar models, as a

function of age and metallicity.

4. We summed this across all bins to calculate the total stellar present-day mass in

the fibre aperture, M .

5. We corrected for the aperture size by scaling up the mass to Mstellar using the

petrosian and fibre magnitudes in the z-band, Mp(z) and Mf (z), with: Mstellar =

M × 100.4[Mp(z)−Mf (z)]

Figure 4.22 shows the recovered galaxy masses as recovered from MOPED and from

VESPA. We see considerable agreement between VESPA and MOPED. Over 75 per

cent of galaxies have 0.5 ≤MV ESPA/MMOPED ≤ 1.5. There is a tail of around 10 per

cent of galaxies where VESPA recovers 2 to 4 times the mass recovered by MOPED.

The main reason for this difference is in the dust model used - we find a correlation

between dust extinction and the ratio of the two mass estimates. This again reflects the

fact that total stellar mass estimates are highly sensitive to changes in the spectrum

continuum (see also section 4.4.1).
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Figure 4.22: Galaxy stellar mass (in units of solar masses) as recovered by VESPA and

MOPED for a sub-sample of 821 SDSS galaxies. The small percentage of galaxies with signifi-

cantly larger VESPA masses have large extinction. The difference is accounted for by the fact

that MOPED and VESPA use different dust models.

Our sub-sample of 821 includes galaxies with a wide range of signal-to-noise ratios,

star formation histories and even wavelength range (mainly due to each galaxy hav-

ing different masks applied to it, according to the quality of the spectroscopic data).

Figure 4.23 shows the number of recovered non-zero parameters in the sample, using

VESPA. As an average, it falls below the synthetic examples studied in Section 3. This

is not surprising, though, as each galaxy will have a unique and somewhat random com-

bination of characteristics which will lead to a different number of parameters being

recovered. The total combination of these sets of characteristics would be impossible

to investigate using the empirical method described in Section 3, and here lies the ad-

vantage of VESPA of dynamically adapting to each individual case. Also important to

note is the fact that the wavelength coverage is normally not continuous in an SDSS

galaxy, due to masked regions. This was not modelled in Section 3, and is likely to

further reduce the number of recovered parameters in any given case.

Perhaps more useful is to translate this number into a number of recovered significant

stellar populations for each galaxy. We define a significant component as a stellar
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Figure 4.23: Number of non-zero parameters in solutions recovered from 821 SDSS galaxies

with VESPA. Please note that these correspond to the total number of non-zero components in

the solution vector cκ and not to the number of recovered stellar populations. For information

about the number of recovered populations see Figure 14.

population which contributes 5 per cent or more to the total flux. Figure 4.24 shows

the distribution of the number of significant components for our sub-sample of galaxies,

as recovered by MOPED and VESPA. It is interesting to note that both methods recover

on average a similar amount of components, even though MOPED has no explicit self-

regularization mechanism, as VESPA clearly does.

4.5 Final remarks on VESPA

We have developed a new method to recover star formation and metallicity histories

from integrated galactic spectra - VESPA. Motivated by the current limitations of other

methods which aim to do the same, our goal was to develop an algorithm which is ro-

bust on a galaxy-by-galaxy basis. VESPA works with a dynamic parametrization of the

star formation history, and is able to adapt the number of parameters it attempts to

recover from a given galaxy according to its spectrum. In this thesis we tested VESPA

against a series of idealised synthetic situations, and against SDSS data by comparing

our results with those obtained with the well-established code, MOPED.
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Figure 4.24: The distribution of the total number of recovered stellar populations which

contribute 5 per-cent or more to the total flux of the galaxy, as recovered from MOPED (dashed

line) and VESPA (solid line).

Using synthetic data we found the quality and resolution of the recovered solutions

varied with factors such as type of star formation history, noise in the data and wave-

length coverage. In the vast majority of cases, and within the estimated errors and

bin-correlations, we observed a reliable reproduction of the input parameters. As the

signal-to-noise decreases, it becomes increasingly difficult to recover robust solutions.

Whereas our method cannot guarantee a perfect solution, we have shown that the self-

regularization we imposed helped obtain a cleaner solution in an overwhelming majority

of the cases studied.

On the real data analysis, we have studied possible effects from systematics using du-

plicate observations of the same set of galaxies, and have also compared VESPA’s to

MOPED’s results obtained using the same data sample. We found that in the majority

of cases our results are robust to possible systematics effects, but that in certain cases

and particularly when calculating stellar masses, VESPA might underestimate the mass

errors. However, we found no systematic bias in any of our tests. We have also shown

that VESPA’s results are in good agreement with those of MOPED for the same sample

of galaxies. VESPA and MOPED are two fundamentally different approaches to the
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same problem, and we found good agreement both in a global sense by looking at the

average star formation history of the sample, and in an individual basis by looking at

the recovered stellar masses of each galaxy. VESPA typically recovered between 2 to 5

stellar populations from the SDSS sample.

VESPA’s ability to adapt dynamically to each galaxy and to extract only as much infor-

mation as the data warrant is a completely new way to tackle the problem of extracting

information from galactic spectra. Our claim is that, for the most part, VESPA’s re-

sults are robust for any given galaxy, but our claim comes with two words of caution.

The first one concerns very noisy galaxies - in extreme cases (SNR≈10 or less, at a

resolution of 3 Å), it becomes very difficult to extract any meaningful information from

the data. This uncertainty is evident in the large error bars and bin-correlations, and

the solutions can be essentially unconstrained even at low-resolutions. We are therefore

limited when it comes to analysing individual high-noise galaxies, which is the case of

many SDSS objects. Our second word of caution concerns the stellar models used to

analyse real galaxies - any method can only do as well as the models it bases itself upon.

We are limited in our knowledge and ability to reproduce realistic synthetic models of

stellar populations, and this is inevitably reflected in the solutions we obtain by using

them. On the plus side, VESPA works with any set of synthetic models and can take

advantage of improved versions as they are developed.

VESPA is fast enough to use on large spectroscopic samples (a typical SDSS galaxy

takes 1 minute on an average workstation), and we have applied VESPA to SDSS’s

Data Release 5 (DR5), which consists of roughly half a million galaxies. The resulting

catalogue and science results are presented in the next two chapters.
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A catalogue of star formation

histories

VESPA can be applied to any spectrum, in any wavelength range and at any resolu-

tion. We have applied VESPA to SDSS’s 5th data release (Adelman-McCarthy et al.

2007), and constructed a public catalogue of star formation histories and other derived

products. This Chapter describes the survey, the main galaxy sample which we anal-

ysed, and the VESPA catalogue itself. We also present some basic results obtained by

exploiting this catalogue, such as a local and evolved galaxy stellar mass function.

5.1 The Sloan Digital Sky Survey

The SDSS is a photometric and spectroscopic survey which images the sky from a ded-

icated 2.5m telescope in Apache Point, New Mexico. The photometry is done in five

bands: u, g, r, i and z corresponding to central effective wavelengths of 3590Å 4810Å

6230Å 7640Å and 9060Å respectively. For details on the hardware, software and data

products see York et al. (2000a) and Stoughton et al. (2002). Briefly, the survey is

carried out by a mosaic CCD camera (Gunn et al. 1998), two 3 arcsec bre-fed spectro-

graphs, and an auxiliary 0.5m telescope for photometric calibration.

The sky area covered has been incremented since the first area release, and at the

time of writing the latest data release (data release 6, Adelman-McCarthy et al. (2008))
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covers 9583 square degrees, whereas the spectroscopic survey covers 7425 square degrees

- and supplies over 1 million spectra. The key technical aspects of DR5, which is the

data release used in this Chapter, are summarised in Table 5.1.

Imaging area 8000 sq. deg

Imaging catalogue 215 million unique objects

Magnitude limits 22.0(u′), 22.2(g′), 22.2(r′), 21.3(i′), 20.5(z′)

Spectroscopic area 5740 sq. deg.

Wavelength coverage 3800-9200 Å

Resolution 1800

Signal to noise > 4 per element at g=20.2

Galaxy spectra 674,749

Table 5.1: SDSS’s fifth data release.

5.1.1 The main galaxy sample

The main galaxy sample (Strauss et al. 2002b) is a magnitude-limited, high-completeness

(> 99%) galaxy sample, selected in the r-band. At the time of the fifth data release,

it yields approximately 90 galaxies per square degree with a median redshift z̃ = 0.11,

totalling over 465,000 galaxies.

Galaxies are selected according to three criteria: a star-galaxy separation test, a cut

in the r′-band petrosian magnitude (from here on we will refer to SDSS’s r′- as r-band),

and a cut in surface brightness. The star-galaxy separation is obtained by comparing

the best fit of exponential or de Vaucouleurs model magnitude with the object’s point

spread function magnitude and requires rPSF − rmodel ≥ 0.3. The petrosian radius,

θp, is defined as the radius at which the local surface brightness in an annulus about

θp is 1/5 of the mean surface brightness within θp. This leads to the definition of

petrosian magnitude, rp, as the flux within an aperture of 2θp and is required to obey

15.0 ≤ rp ≤ 17.77. The surface brightness is not calculated within θp, but θ50 instead

- the half-light radius which is defined as the radius which encloses half the petrosian

flux - and µ50 = rp + 2.5(2πθ2
50) must follow µ50 ≤ 24.4. To avoid very poor quality

data we impose a further limit of µ50 < 23, and do not analyse galaxies which have all

their flux pixels masked.
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5.1.2 Spectro-photometric callibrations

In DR5 the spectra are calibrated using standard stars. On each spectroscopic plate

16 standards are observed, mostly sub-dwarf stars. A model spectrum is fitted to each

standard, and a flux calibration vector is constructed by calculating the average ratio

of each standard’s spectrum to its best-fit model. The calibration is done separately

in the blue and red channels. The observed spectra in the blue and red arms are

then multiplied by the flux calibration method, combined, and re-binned to a constant

dispersion.

5.1.3 Galactic extinction

Spectra in DR5 do not include a correction for dust extinction due to our own galaxy.

We use the Galactic dust maps by Schlegel et al. (1998) to obtain a value of E(B-V)

for each spectroscopic plate. Using the dust extinction curve of O’Donnell (1994) and

equation (1.80) we calculate Aλ. We multiply our flux and noise vectors by 100.4Aλ (λ

in the Earth’s frame), giving us an estimate of the un-obscured flux. This assumes a

uniform dust screen.

5.1.4 Handling SDSS data

Prior to any analysis, we processed the SDSS spectroscopic data, so as to accomplish

the desired spectral resolution and mask out any unwanted signal.

The SDSS data-files supply a mask vector, which flags any potential problems with the

measured signal on a pixel-by-pixel basis. We use this mask to remove any unwanted

regions and emission lines. In practical terms, we ignore any pixel for which the pro-

vided mask value is not zero.

The BC03 synthetic models produce outputs at a resolution of 3Å, which we convolve

with a Gaussian velocity dispersion curve with a stellar velocity σV = 170kms−1, this

being a typical value for SDSS galaxies (Panter et al. 2007). We take the models’ tab-

ulated wavelength values as a fixed grid and re-bin the SDSS data into this grid, using

an inverse-variance weighted average. We compute the new error vector accordingly.

Note that the number of SDSS data points averaged into any new bin is not constant,

and that the re-binning process is done after we have masked out any unwanted pixels.

Additionally to the lines yielded by the mask vector, we mask out the following emission
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line regions in every spectrum’s rest-frame wavelength range: [5885-5900, 6702-6732,

6716-6746, 6548-6578, 6535-6565, 6569-6599, 4944-4974, 4992-5022, 4846-4876, 4325-

4355, 4087-4117, 3711-3741, 7800-11000] Å. These regions were determined by visual

inspection of over 1000 galaxy fit residuals (Panter et al. 2007).

These re-binned data- and noise-vectors are essentially the ones we use in our analysis.

However, since the linear algebra assumes white-noise, we pre-whiten the data and

construct a new flux vector F ′
j = Fj/σj , which has unit variance, σ′j = 1,∀j, and a new

model matrix A′
ij = Aij/σj.

The wavelength vector is shifted to the galaxy’s rest frame.

5.2 The catalogue

The catalogue is published as a query-based T-SQL database. The data is organised in

tables, which we describe in section 5.2.6. The principal physical properties provided

by VESPA are summarised in Table 5.2 .

Symbol Units Description

xα - star formation fractions in bin α

uα M⊙ stellar mass formed in bin α

mα M⊙ recycled stellar mass in bin α

Cαβ M2
⊙ covariance matrix for the star formation fractions

Zα - mass-weighted metallicity for bin α

CZ
αβ - covariance matrix for the metallicities

M∗ M⊙ recycled stellar mass in galaxy

Mu
∗ M⊙ total stellar mass formed in galaxy

τ ISM
V - dust extinction due to the inter-stellar medium for all populations

τBC
V - dust extinction due to the birth cloud for young populations

Table 5.2: Galaxy properties which are derived by VESPA.

Additionally, some derived quantities are calculated, as shown in Table 5.3.

Next we describe the meaning and calculation of each of these quantities.
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Symbol Units Description

Vmax Mpc3 maximum volume a galaxy could be observed in, given its petrosian

r magnitude, surface brightness and star formation history

M∗(z) M⊙ stellar mass in a given galaxy at a redshift z > zgal, where zgal is the

redshift of the galaxy, and assuming a history with no mergers

Table 5.3: Additional properties derived from VESPA’s output.

5.2.1 Masses and mass fractions

VESPA recovers stellar mass fractions per age bin. We transform these mass fractions

into absolute masses as follows.

We measure a flux, F = Energy
∆t∆λ∆A , whereas the models are given in units of solar

luminosity, L = Energy
∆t∆λ . In relation to the source, we sit on the surface of a sphere

of proper radius R0Sk and surface area 4πR2
0S

2
k but the relation between flux and

luminosity is not as simple as Fλ = Lλ

4πR2

0
S2

k
due to the effects of the expansion of the

universe. We have time dilation: ∆tobs → ∆tem(1+z); photon energies being redshifted:

Eobs → Eem/(1+z), and bandwidth in wavelength being increased: ∆λobs → ∆λem(1+

z). Combining all of these effects we get

Fλ =
Lλ/(1+z)

4πD2
L(1 + z)

(5.1)

where DL is the luminosity distance, as defined by equation (1.23).

In practical terms we do the following. Recall equation (4.2):

Fj =
∑

α

xαGαj (5.2)

where Fj has been shifted to the rest frame of the source. Both the observed flux

and the models are normalised to numbers of a few orders of magnitude, to ensure the

computational calculations are not affected by very large (or very small) numbers. We

write

Fj

〈Fj〉
=
∑

α

xα
Gαj

〈G00〉
. (5.3)
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The luminosity of a galaxy, written in terms of our models, is simply Lj =
∑

α uαGαj ,

where uα is the stellar mass formed at age α. From (5.1):

Fj =

∑

α uαGαj

4πD2
L(1 + z)

. (5.4)

For any given age bin α, combining equations (5.3) and (5.4) gives the mass formed

in each bin α in units of solar masses:

uα = xα
〈Fj〉
〈G00〉

4πD2
L(1 + z). (5.5)

We distinguish between the stellar mass ever formed in a galaxy, and the stellar mass

remaining in a galaxy today:

M(t) =

∫ t

0
ψ(t′)

(

1 −R(t− t′)
)

dt′ (5.6)

where R(t− t′) is the fraction of stellar mass lost to the ISM at time t, by a stellar

population aged t′ and ψ(t′) is the star formation rate at age t′. In practical terms we

calculate the following:

mα = uαRα (5.7)

Mu
∗,fibre =

∑

α

uα (5.8)

M∗,fibre =
∑

α

mα (5.9)

where Rα, known as the recycling fraction is given by the BC03 models, for each of

the metallicities.

Finally, we correct for the fact that the fibre has an aperture of 3 arcseconds, which

means we do not typically observe the entirety of the galaxy. We use the observed fibre

and petrosian magnitudes in the z-band to scale up the stellar mass as

M∗ = M∗,fibre × 100.4(zp−fzp) (5.10)

where zp and fzp are the petrosian and fibre magnitudes in the z-band respectively.

This scaling assumes that the parts of the galaxy which do not fall under the fibre’s

aperture have an identical star formation history as that observed. For an ensemble of

galaxies fibre aperture corrections are not important, in the sense that the mean colour

from the fibre is the same as the mean colour from the photometry (Glazebrook et al.
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2003a). However, one should keep in mind that they remain important for individual

galaxies, or at very low redshift.

5.2.2 Error estimates

As mentioned in section 4.2.5, we estimate the effect of the noise in our recovered

solutions by explicitly calculating a number of noisy realisations in order to estimate the

covariance matrices in (4.23) and (4.24). For convenience, we also define a covariance

matrix of the unrecycled mass per bin as (using equation 5.5)

Cαβ(u) = Cαβ(x)

( 〈Fj〉
〈G00〉

4πD2
L(1 + z)

)2

(5.11)

from which we can estimate the error in the unscaled mass formed in bin α as

σu(α) =
√

Cαα(u). This ignores the uncertainty in the estimation of the redshift, which

is of little significance compared to the variance of uα across realisations. From σu(α)

we can calculate errors in σm(α) by multiplying by the corresponding recycling fraction

Rα. The error on the metallicity is simply
√

Cαα(Z).

We use the full covariance matrix to estimate the statistical error on the total stellar

mass, M∗:

σ2(M∗) = σ2(M∗,fibre)γ
2 +M2

∗,fiberσ
2(γ) (5.12)

where γ is the conversion factor between fibre and galaxy mass of equation (5.10),

and σ(γ) is the error associated with this factor, calculated using the errors in the

petrosian and fibre z-band magnitudes. σ2(M∗,fibre) is estimated from the unrecycled

mass covariance matrix and the total recycling fraction of the galaxy, R:

σ2(M∗,fibre) =
∑

α,β

Cαβ(u)R2. (5.13)

This assumes that there is no error in the recycling fractions - i.e., that we know

the SFH exactly.

5.2.3 Mass and metallicity per age bin

The history of each individual galaxy is likely to be parametrized by a combination

of high and low resolution age bins. One must be careful to interpret the masses and

metallicities associated with low-resolution bins. We recall that in these cases the mass
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recovered should be interpreted as the total mass recovered in the bin, but we have

little information of when, within the bin, it formed. Similarly, we should interpret the

metallicity values recovered as a mass-weighted metallicity for the whole duration of

the bin.

5.2.4 Dust

We recover two values of dust extinction, one associated with young stars (τBC
V - applied

to stellar populations younger than 0.03 Gyrs) and one associated with the whole galaxy

(τ ISM
V - applied to all stellar populations), following the mixed slab model of Charlot

and Fall (2000). These values relate to a dust extinction curve that follows

τλ = τV

(

λ

5500Å

)−0.7

. (5.14)

A comparison of this curve with the estimated extinction curve of the LMC by Gor-

don et al. (2003) can be seen in Figure 1.4. In this figure both curves are calibrated such

that τ
5550Å

= 1. Uncalibrated optical depth values are related as τLMC

5550Å
= τ

5550Å
/3.37.

5.2.5 Vmax

The main galaxy sample is a magnitude-limited sample, which means that in any given

volume we are only observing all of the objects up to a certain magnitude, and will miss

fainter objects. If we want to calculate densities of quantities over the entire volume of

the survey we must correct for this incompleteness. A common method is the so-called

Vmax method, which calculates the maximum comoving volume in which a given galaxy

could be observed. We can then estimate the comoving density of the quantity F by

nF =
∑

i

Fi

Vmax,i
. (5.15)

A faint galaxy will have a small Vmax, and a larger weight. Conversely, a very

bright galaxy will be observed wherever it is within the survey volume, and be given

a weight of one, in units of the volume of the survey. This assumes that the galaxies

are uniformly distributed across the sky, which even though it is clearly not true is an

acceptable approximation for a volume as large as the one we are dealing with.

The maximum volume is then calculated as

Vmax =

∫ zmax

zmin

dV

dz
dz (5.16)
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where zmax = min{zcut
max, z(rp, µ50)} and zmin = max{zcut

min, z(rp, µ50)}, where zcut
max, z

cut
min

are the redshift limits of the survey or sample selection and rp(z) and µ50(z) are cal-

culated as a function of a galaxy’s observed r-band and surface brightness magnitudes,

and its star formation history.

The r-band magnitude of a galaxy, as a function of redshift, changes due to three

main reasons: firstly simply because of distance; secondly because the observed band

shifts along the galaxy’s spectrum with changing redshift (the so called K-correction),

and thirdly because galaxies are evolving objects, whose intrinsic brightness changes

across their lifetimes (the E-correction). We can write

rp(z) = Mp + 5 log
DL(z)

10pc
+ C(z) (5.17)

where the second term accounts for distance effects, and the third term for the

K- and E-corrections. C(z) is the magnitude difference arising from the ratio of the

emitted and observed r-band luminosities:

C(z) = −2.5 log

( ∫∞
−∞ Lev

λ/(1+z)Tλ
dλ

1+z
∫∞
−∞ Lem

λ/(1+zgal)
Tλ

dλ
1+zgal

)

(5.18)

where Lev is the evolved luminosity of a galaxy at a redshift z, Lem is the luminosity

emitted at z = zgal, Tλ is SDSS’s r-band filter response and λ is in the Earth’s frame.

If at any given redshift the luminous output of the galaxy is greater than the emitted

at zgal then the magnitude correction is negative (brighter), as expected. For z < zgal

we have no information on Lem. In this case we take the flux to be that observed at

zgal and calculate a K-correction only.

With VESPA’s star formation histories, one could in principle reconstruct the flux

Lev at any redshift z > zgal. However, there are computational implications because

of the way the high- and low-resolution bins are constructed - we would have to recon-

struct a whole new set of bins at ages dictated both by the redshift of the galaxy and

the redshift at which we would like to calculate the correction. This is too computa-

tionally expensive, so we have approximated the problem as follows.

For each tabulated metallicity, we estimate the r-band flux as a function of age for

a stellar population of 1M⊙ at t = 0, and construct the vector

l(t, Z, z) =

∫ ∞

−∞
Lλ/(1+z)(t, Z)Tλ

dλ

1 + z
(5.19)
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which corresponds to the observed r-band luminosity of a population of stars aged t,

metallicity Z, at a redshift z. We calculate this quantity for the five tabulated metallic-

ities and 16 ages corresponding to the high resolution bins detailed in section 4.2.3. For

each galaxy, we then simplify its star formation history to a series of bursts which occur

at the center of each of its bins. For each bin α we calculate lα(tα, Zα, z) by linearly

interpolating the quantity pre-calculated by equation (5.19) over the correct range in

age, metallicity and redshift. The age of each burst, tα, depends on the redshift z and

is shifted for each new evaluation at a different redshift. When a population has an age

tα which is less than zero its contribution is set to zero.

We then estimate the total r-band evolved luminosity of any galaxy at a redshift z

by adding up the contributions from all its stellar populations:

lev(z) =
∑

α

f(tα, Zα, z)xα (5.20)

and approximate equation (5.18) by

C(z) ≈ lem(zgal)

lev(z)
(5.21)

where lem is simply lev(z) evaluated at zgal.

Changes in surface brightness can be calculated by the changes in magnitude:

µ50(z) = rp(z) + 2.5 log10(2πθ
2
50(z)). (5.22)

If we assume that the physical size of the galaxy does not change with redshift, then

changes in θ50 are given by the ratio of the angular-diameter distances. This is a good

approximation for the local Universe. We write θ50(z) = θ50(zgal)
DA(zgal)
DA(z) .

This enables us to track the evolution of observed magnitude and surface brightness

for each galaxy as a function of redshift. To calculate Vmax we need to estimate the

total volume in which a given galaxy would have been observed. We use equations

(5.17) and (5.22) to estimate where any given galaxy drops in and out of the survey,

using the survey selection limits of section 5.1.1 and integrate equation (5.16) over the

relevant values of zmin and zmax.
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5.2.6 The database

The catalogue has been published as a relational T-SQL database, which provides max-

imum flexibility and interoperability with other databases. The database is split into

a number of tables, each with a number of fields (columns), which can be accessed and

queried via SQL.

We have split the database into four tables: GalProp includes results relative to the

galaxy as a whole, BinProp has results which refer to each bin individually, DustProp

holds dust information and BinID identifies each VESPA low- or high-resolution bin.

Tables 5.4, 5.5, 5.6 and 5.7 detail each of the fields included in the tables. Galaxies are

identified by an identifier which is common with SDSS - specObjID. This means that

object properties which are already included in the SDSS need not be included in this

database, as cross-matching can be done in a straightforward way using specObjID.

Field Units Description

specObjID Matches SDSS’s specObjID and uniquely identifies a spectrum.

m stellar M⊙ M∗ - equation (5.10).

m stellar error M⊙ σ(M∗) - equation (5.12).

t lb Gyr Lookback time of galaxy.

chi2 χ2 of the spectral fit - equation (4.12).

SNR Signal to noise ratio of the used (unmasked) spectrum, at 3Å resolution.

nbins Number of recovered bins in a galaxy.

Vmax Mpc3 Vmax as defined by equation (5.16).

Table 5.4: GalProp

5.3 Basic results

The catalogue described in the previous section can be explored in a variety of ways.

Here we describe an investigation into the assembly of stellar mass in galaxies. We

use both the total stellar mass of each galaxy, alongside its star formation history to

calculate a galaxy stellar mass function of the local Universe, a present-day stellar mass

density, and the evolution of both of these quantities as a function of redshift.
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Field Units Description

specObjID Matches SDSS’s specObjID and uniquely identifies a spectrum.

binID Bin identifier as given by Figure 4.6.

mass M⊙ Mass formed in bin - equation (5.5).

mass error M⊙ σu(α) - as derived from equation (5.11).

SFR M⊙Gyr−1 Star formation rate in bin.

Z Metallicity in bin.

Z error σZ(α) as derived from equation (4.24).

Table 5.5: BinProp

Field Units Description

specObjID Matches SDSS’s specObjID and uniquely identifies a spectrum.

dustID Dust identifier: 1 for τBC
V and 2 for τ ISM

V .

dustVal Either τBC
V or τ ISM

V , according to dustID.

Table 5.6: DustProp

Field Units Description

binID Bin identifier, as given by Figure 4.6.

ageStart Gyr Age of the young boundary of the bin.

ageEnd Gyr Age of the old boundary of the bin.

width Gyr Width of the bin in Gyrs.

Table 5.7: BinID
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5.3.1 The observed galaxy stellar mass function

The galaxy stellar mass function (GSMF) gives the comoving number density of galax-

ies per unit of logarithmic stellar mass, φ(M)d logM = n(M)d logM.

It provides a description of how stellar mass is distributed within galaxies, and

is one of the fundamental observables which drives models for galaxy formation and

evolution. As introduced in section 1.4.5, the current hierarchical model for galaxy

formation provides a good explanation for the galaxy stellar mass function we observe,

within the context of cold dark matter.

Figure 5.1 shows the galaxy stellar mass function estimated from SDSS’s DR5 main

galaxy sample. The error bars in each mass bin are estimated using the jackknife

method, as described in Wall and Jenkins (2003), pp 132. Briefly, jackknife methods

estimate the error on a parameter, θ, estimated from a dataset using the data set alone.

This works by creating suitable sub-samples of data points and estimating θs from each

subsample, as well as σ2(θs) - the variance of θs across these subsamples. This can

then be related to σ2(θ). The GSMF is normally fitted with a Schechter function of

the form

φ(M)dM = φ∗
(

M

M∗

)α

exp

(−M
M∗

)

d

(

M

M∗

)

(5.23)

which we write as

φ(M)d logM = φ∗
′

(

M

M∗

)α′

exp

(−M
M∗

)

d logM (5.24)

where α′ = α+1 and φ∗
′

= φ∗ ln(10). The best fitting parameters, for the mass range

9 < logM/M⊙ < 12, are: φ∗
′

= 0.00432 ± 0.000186, M∗ = 1.668 × 1011 ± 2.247 × 109

and α′ = −0.255 ± 0.0147.

A comparison with other local estimates of the galaxy stellar mass function, both

from SDSS and other datasets, is seen in Figure 5.2. Cole et al. (2001) use the 2dF

and 2MASS surveys to estimate stellar masses using broadband colours and SSP fits.

Bell et al. (2003) cross-match SDSS’s early data release with 2MASS using a similar

method. Panter et al. (2007) use full spectral fitting to obtain stellar mass estimates

for the SDSS-DR3 galaxies. All results are in good agreement within the mass ranges
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Figure 5.1: The measured galaxy stellar mass function of the SDSS’s main galaxy sample

for 0.005 < z < 0.35. The error bars are jackknife estimates and the red line is the best fit

Schechter function - see text for details.

in which they overlap, after correcting for differences in the IMF.

We see some evidence for an upturn on the low mass (faint) end. A similar upturn

has been seen, both in the luminosity function (e.g. Blanton et al. 2005) and also

in the mass function (e.g. Baldry et al. 2008). Baldry et al. (2008) also looked at

how the slope of this upturn changes with environment, finding that it is significantly

steeper in dense environments. The type of galaxies which populate this mass range

is also correlated with environment, suggesting that the physical mechanisms behind

the steepening of the slope at low masses are different in clusters and in the field. The

downturn for M/M⊙ < 8 is most likely due to incompleteness in the sample at these

masses.

At the high mass end, forM∗ > 1012M⊙, we see a clear deviation from the Schechter

fit or the GSMF of Panter et al. (2007), which is the only one to probe equally high

masses. One should be careful not to over-interpret this excess - the number of galaxies
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Figure 5.2: The same curve shown in Figure 5.1, this time plotted alongside other estimates

of the local GSMF from the literature. Cole et al. (2001) in the solid line, Bell et al. (2003) in

the dotted line and Panter et al. (2007) in the solid blue line, all corrected for changes in the

assumed IMF if necessary.

per bin decreases steeply from 72 galaxies at M∗ = 1012.1M⊙ to one galaxy at M∗ =

1012.8M⊙.

5.3.2 The evolution of the GSMF

We have already seen how the observed current population of galaxies can be explained

by invoking a hierarchical scenario, in which small galaxies merge to form larger galax-

ies. This means that the galaxy stellar mass function must have looked very different

in past times - we expect both a change in the total number of galaxies in a comoving

volume (due to merging) and a qualitative change in the shape of the GSMF due to

evolution in stellar mass of individual galaxies, due to star formation and recycling

processes. Knowing how the GSMF changes as a function of redshift tells us about

how galaxies assemble their stellar mass, which in turn is a fundamental constraint for

galaxy formation and evolution models.
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The observed evolution of the GSMF

Traditionally one looks at galaxies at different redshift ranges. Figure 5.3 shows the

GSMF calculated in four redshift bins, with upper boundaries at 0.05, 0.15, 0.25 and

0.35. Within each redshift slice, a simple 1/Vmax weighting will fail to correct for

the galaxies which are too faint to be observed at that redshift at all. This starts at

M∗ ≈ 1010M⊙ for 0.05 < z < 0.15 and goes up to M∗ ≈ 1011.5M⊙ at 0.25 < z < 0.25.

For this reason, we only plot the GSMF above these mass limits for each redshift slice.

We can note however that the information from the lowest redshift bin can be used

to correct for this incompleteness at higher redshifts, and we intend to do this in the

future. At low redshift (z < 0.05) SDSS’s selection function descriminates against high-

mass galaxies for fear of shredding. This is an effect caused by large galaxies at low

redshift having an apparent angular size which is too large and leads to them being

treated as many smaller-sized objects.

The agreement between the lines at different redshifts indicates no evidence for

evolution in the galaxy stellar mass function between z = 0.05 and z = 0.35 for masses

higher than 1011.5M⊙.

The inferred evolution of the galaxy stellar mass function

Given the information provided by VESPA, we can also estimate the total stellar mass

content formed up to any given time in any individual galaxy by the means of equation

(5.6). This takes into account both the stars formed up to a time t and the amount

of material returned to the inter-galactic medium, and is an estimate of the current

stellar mass of a galaxy at time t. In practice, for any redshift z and a galaxy with

redshift zgal, we calculate the corresponding lookback time in the galaxy’s frame. We

then integrate equation (5.6), taking into account whether the time we are interested

in has fallen in a high- or low-resolution age bin, given that each assumes a different

star formation rate within it - see equations (4.19) and (4.22). This means that, in

principle, we can construct a galaxy mass function as a function of redshift, φ(M,z).

It is not, however, a true representation of the galaxy mass function at those red-

shifts. The reason is simple: in doing so we are conserving the total number of galaxies

between then and now. i.e., we assume a history with no mergers. This limitation

arises from the fact that VESPA tells us when stars formed and in which galaxies they
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Figure 5.3: The SDSS DR5 galaxy stellar mass function split by redshift bins. The black line

shows the mass function for all the galaxies, the red line for galaxies in 0.005 < z < 0.05, the

blue line for galaxies in 0.05 < z < 0.15, the green line for galaxies in 0.15 < z < 0.25 and finally

the brown line for galaxies in 0.25 < z < 0.35. The incompleteness limits can be seen creeping

up in mass as we go further in redshift (see text). At low redshift we see some effect at high

masses due to the SDSS’s selection function which discriminates against high mass galaxies due

to fear of shredding (see text). We see no sign of evolution in the mass range fully covered by

all the redshifts.
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end up today (or at the redshift of observation), but not in which galaxies they formed.

Even though, at least formally, we cannot draw any definite conclusions from evolu-

tionary changes in the GSMF as calculated above, it is still very instructive to see how

large the differences are. The main reason is that even though one cannot interpret

any difference with much confidence, if these differences are significant one might hope

to compare the inferred GSMF at a redshift z as calculated from VESPA with one at

the same redshift, estimated from methods which directly probe the galaxies at that

redshift.

The difference between the two measurements would provide a simple galaxy-

counting mechanism, which corresponds to disentangling galaxy stellar mass growth

due to star formation (and recycling) and galaxy stellar mass growth through mergers.

The idea of using the galaxy stellar mass function and its derivative with respect to

time, together with information on the star formation history, has already been explored

in Drory and Alvarez (2008). In this paper, the authors used the data in the Fors Deep

Field, which spans a redshift range 0 < z < 5 and mass range 109 < M∗/M⊙ < 1012

to estimate how much of galaxy stellar growth is due to mergers, as a function of

galaxy stellar mass and redshift. They are mainly limited by their data, and the lack

of star formation histories per galaxy. Instead, the authors fit the measured average

star formation rate as a function of mass with an analytical expression, which they

then integrate to obtain average star formation histories as a function of mass. We

therefore expect a dataset as the one provided by VESPA to be a vast improvement on

the amount and reliability of information one can extract concerning the merger rate

using this kind of analysis.

Figure 5.4 shows the inferred GSMF at the redshifts of 0.5 and 0.9. On the face

of it we see no evolution in galaxies with M > 1011M⊙, and see some evidence of

low mass galaxies turning into intermediate mass galaxies between the two redshifts.

We re-iterate that this keeps track of the changes in mass due to star formation and

recycling only - in reality we do not know in how many pieces each of our present-day

galaxies are at these redshifts.

Even though the changes are significant within our own sample, we find they are

overshadowed when compared to measurements from different samples and their un-
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Figure 5.4: The inferred evolution of the GSMF between the redshift of 0.5 (black line) and

0.9 (red line), constructed by integrating the star formation history of each galaxy up to these

redshifts.

certainties, as shown in Figure 5.5. This makes it difficult to interpret any difference

between the observed and the inferred GSMF at any redshift - they are probably mostly

due to differences in data analysis methods, and small compared to estimated errors.

A possible way forward is to use the rate of change of each of the measurements sep-

arately. As an example, consider the change in the GSMF between z = 0.5 and z = 0.9

from the COMBO-17 analysis, shown in Figure 5.6. We show the Schechter fits as pub-

lished in Borch et al. (2006). The evolution in the parameters is small compared with

their uncertainties and we advise caution against interpreting this too closely. However,

we can observe how the change in the observed GSMF is qualitatively similar to the

change in the inferred GSMF at the high mass end - both measurements see no clear

sign of evolution. The same can be said for the mass range down to log(M/M⊙) ≈ 9,

below which we are most likely incomplete - in this case we see tenuous hints of evolu-

tion in both cases. If we could quantify these changes robustly, we would be able to get

a handle on how much of the change in the observed GSMF was due to something other
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Figure 5.5: The inferred evolution of the GSMF between the redshift of 0.5 as estimated from

VESPA on the solid line compared to two estimates of φ(M, z = 0.5) measured directly at those

redshifts: stars from Fontana et al. (2006) and the GOODS-MUSIC survey, and the blue lines

are the best-fit Schechter function from Borch et al. (2006) and the COMBO-17 survey (dotted

lines are 1-sigma uncertainties). The interpretation of VESPA’s curve is different from that of

the other two, see text.

than star formation. Unfortunately, the uncertainties are too high for such a study.

Ideally one would like to estimate the inferred and observed GSMF from the same

sample or, given the lack of redshift surveys which are complete across a long redshift

baseline, to use the exact same analysis methods for spectral or photometric analysis,

mass estimates and completeness corrections. We plan to extend this work in this way,

taking advantage of future redshift surveys. In the meantime, a public catalogue of

M∗(z) for SDSS’s DR5 galaxies is available to the community.

5.3.3 Stellar mass density

We can integrate the GSMF over the available mass range in order to estimate a stellar

mass density:
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Figure 5.6: The observed evolution of the GSMF between the redshift of 0.5 (black line) and

0.9 (red line), from the COMBO-17 data.

ρ∗(z) =

∫

φ(M,z)M(z)dM. (5.25)

We now lose all sensitivity to how stellar mass is distributed within galaxies, and

are simply interested in the total stellar content of the Universe. We describe the stellar

mass density in terms of the critical density Ω∗, defined by equation (1.9). Table 5.8

and Figure 5.7 show Ω∗(z) as calculated from VESPA, integrating masses from 107M⊙

to 1013M⊙. The points in Figure 5.7 have been converted to a Salpeter IMF to allow

comparison with published values.

Overall we find good agreement between the stellar mass density obtained from

VESPA and other methods. The large scatter in the black stars of Figure 5.7, corre-

sponding to the coloured points in Figure 4.3, is due to the wide range of data sets and

mass estimate methods, but a clear decrease in stellar mass content of the Universe can

be seen, as we would expect. VESPA’s last point however, at z = 1.8, indicates a slight

increase in the stellar mass function which is not seen in other measurements. For the
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Figure 5.7: Red points: Ω∗(z) from the VESPA analysis. Green points: Ω∗(z) from the

MOPED analysis (Panter et al. 2007). Black points: Ω∗(z) as compiled by Wilkins et al.

(2008), matching the points of Figure 4.3.

Redshift Ω∗(z) Salpeter Ω∗(z) Chabrier

0.005-0.35 0.00292 0.00204

0.4 0.00240 0.00169

0.5 0.00231 0.00161

0.9 0.00227 0.00159

1.8 0.00234 0.00163

Table 5.8: Ω∗(z) as calculated by VESPA using equation (5.25).
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majority of galaxies in the SDSS, a redshift of 1.8 falls in the last bin of star formation

which, if fully resolved, spans 9 to 14 Gyr in the galaxy’s rest frame. It is possible that

this loss of resolution at high lookback is responsible for an overestimation of the mass

at any given time within that bin. Even though we can constrain the total mass formed

within any given bin, we have no information about when in the bin the mass formed.

This problem is further aggravated in galaxies where the final bin has not been fully

resolved.

The large width of the last bin is a reflection of the fact that old populations are

more degenerate than younger populations, and it becomes increasingly hard to resolve

their ages from an integrated galaxy spectrum. This sets a limit on how far back we

can use VESPA’s catalogue to infer the properties of galaxies at redshifts of 1.8 and

higher. This limitation can be lifted by very high quality spectra, or higher redshift

galaxy surveys.

5.3.4 IMF studies

Even though VESPA is only as good as the underlying models, the advantage is that

VESPA can be used to compare different models with observations in an attempt to

find out which models best fit the data. An example of this is the study of Wilkins,

Hopkins, Trentham and Tojeiro (2008, in print), in which we attempted to conciliate

the discrepancy observed between different measurements of the stellar mass density

shown in Figure 4.3 and introduced in section 4.1.2.

The idea is to estimate the dependence of both the stellar mass density as calculated

from integrating the cosmic star formation history over time, ρ∗,SFH , and the observed

stellar mass density calculated by directly estimating the stellar mass of galaxies, ρ∗,obs,

on the underlying IMF. The two methods are sensitive to changes in the IMF in dif-

ferent ways: instantaneous methods probe the presence of high mass stars, and stellar

mass estimates are more sensitive to older, lower mass stars. We can therefore hypoth-

esise that there is an IMF which brings the two measurements into agreement.

To test this we define a base IMF as a three-part power law:
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ξ(M) ∝















Mα0 if 0.01 < M/M⊙ < 0.08

Mα1 if 0.08 < M/M⊙ < 0.5

Mα2 if 0.5 < M/M⊙ < 150

(5.26)

with α0 = 0.3, α1 = 1.3 and α2 = 2.35. There is an infinite number of ways in

which to parametrize an IMF, but a three-part power-law is in agreement with the

local measurements (Kroupa 2007). In practice we want to estimate the dependence of

ρ∗,SFH and ρ∗,obs on αi and find the solution which minimises the difference between the

two measurements. This relies on finding accurate calibration factors between masses

or star formation rates across different values of αi. Figure 5.8 shows how α2 and α1

affect the estimation of stellar masses in the two cases.

Figure 5.8: From Wilkins et al. (2008, in print). The main figure shows the dependence of

ρ∗,SFH (dotted line) and ρ∗,obs (solid line and filled dots) on the high mass slope, α2. The filled

dots were obtained with VESPA - see main text for detail. The inset shows the dependence on

the low mass slope, α1.

The effect on ρ∗,SFH is estimated by considering how a change in IMF changes the

UV luminosity calibration normally used to infer an instantaneous star formation rate.

This was done by considering PEGASE.2 (Fioc and Rocca-Volmerange 1999) stellar
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population models with varying underlying IMFs, and the resulting changes in UV

luminosity - the result can be seen in the dotted lines. The effects on other indicators

used to estimate the instantaneous SFR, such as Hα or the rate of core-collapse SN

have also been calculated. The dependency of stellar masses and ρ∗,SFH on the IMF

changes somewhat, but the general behaviour is the same.

The dependency of ρ∗,obs on the IMF is harder to estimate given the widely different

methods used to estimate stellar masses. One can start from a luminosity function,

which combined with a mass-to-light ratio provides an estimate of the stellar mass

density. This normally relies on near-IR colours, which are more representative of the

underlying population as a whole (unlike UV light, which is dominated by emission

from young stars). In this case, we can estimate how stellar mass estimates change

with IMF by considering the changes in the near-IR light of stellar populations with

a star formation history assumed to be that of the cosmic star formation history, as

calculated by PEGASE.2 models - this can be seen in the solid lines. Another widely

used method to estimate stellar masses is to use either broadband colours, spectral

features or the full spectral range to estimate the star formation history given a set of

models. To estimate the dependence of ρ∗,obs on the IMF for masses estimated in this

way, we have adapted VESPA to work with PEGASE.2 models, and have analysed a

fixed sub-sample of 2000 galaxies with a range of IMFs. The resulting correction on

the recovered masses gives the filled black circles in Figure 5.8.

We see that the high-mass slope affects the two measurements in significantly dif-

ferent ways, whereas the dependence on the low mass slope is very similar for the two

cases. A changing high-mass slope affects ρ∗,SFH more pronouncedly as expected from

its dependence on light from young stars. From the figure alone we see that a flatter

slope for high masses might bring the two local measurements in agreement. Using the

star formation history of Hopkins and Beacom (2006) and the set of ρ∗,obs compiled by

Wilkins et al. (2008) we can apply the corrections derived above to obtain Figure 5.9.

Varying the value of α2 only (given that this is the only slope to significantly affect

the difference between the two measurements) and performing a χ2 minimisation gives

the area between the vertical lines in Figure 5.9. This corresponds to a best-fit value

of α2 = 2.15. Even though this brings the local stellar mass density estimates into

agreement, it does not solve the discrepancy at higher redshifts. We can repeat the

analysis using all the available points in redshift, and ask for the value of α2 which

165



CHAPTER 5. A CATALOGUE OF STAR FORMATION HISTORIES

Figure 5.9: From Wilkins et al. (2008, in print). The predicted local stellar mass density

as derived from integrating the cosmic star formation history (dark shaded area) and from

direct stellar mass measurements (light shaded area) as a function of the IMF high-mass slope,

α2. The vertical lines give the range in α2 which brings the two measurements into statistical

agreement: 1.95 < α2 < 2.35.

best fits the data. The answer is a shallower slope, 1.85 < α2 < 2.15 with a best fit

value α2 = 2.0. Whereas this is formally the model (within our parametrization) which

best describes the data, it gives a formally poor fit, in particular at low redshift where

the data is more trustworthy. This might be because the errors at high redshift are

underestimated, or because there is not an IMF which follows our model which fits the

data at all redshifts in a satisfactory way, or a combination of both.

We conclude from this study that an IMF as described by equation (5.26), with

a modified high-mass slope α2 = 2.15 is able to reconcile measurements of ρ∗,SFH

and ρ∗,obs at z < 0.5. However, a similar parametrization fails to find a model which

simultaneously fits the data at low and high redshift. Systematic errors in either of the

measurements could be the cause, or one might have to consider an IMF which has a

dependence on some quantity which is in turn redshift dependent. Given the lack of

full physical arguments to derive an IMF, constraints such as the ones presented in this
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study are valuable observables which can drive theoretical models forward.
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Chapter 6

Progenitors of supernovae type Ia

The observation of supernovae type Ia (SNIa) at a variety of redshifts has revealed the

local Universe’s expansion is accelerating (section 1.2.4 and references therein). Even

though a range of cosmology experiments have confirmed that the best fit cosmolog-

ical model is consistent with an accelerating Universe, SNIa experiments continue to

provide the only direct piece of evidence for Dark Energy. Recent advancements on

the measurement of the rate of SNIa has revealed that they are likely to have more

than one type of progenitor star. This might have far-reaching consequences to both

theoretical models of SNIa, as well as future Dark Energy experiments. In this Chapter

we use the catalogue described in Chapter 5 to analyse the star formation histories of

SNIa host galaxies, and extract information on their progenitor systems.

This chapter is organised as follows: in section 6.1 we discuss the current views

and work on the type of SNIa progenitors and their evolution with redshift; in section

6.2 we present our method and in section 6.3 our results; in section 6.4 we discuss our

findings and finally in section 6.5 we lay down the path for the future.

6.1 Introduction

SNIa are the product of a thermonuclear explosion of a white dwarf reaching its Chan-

drasekhar mass - the mass limit allowed by the supporting electron degeneracy pressure.

This requires the white dwarf to accrete mass, and two models are proposed to explain
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this: the single-degenerate model proposes that the mass is accreted from a companion

main-sequence star; the double-degenerate model instead suggests the mass accretion

comes from merging with another white-dwarf. Even though we currently lack a stan-

dard model for SNIa, the simple fact that they arise from the thermonuclear explosion

of a star at a fixed mass suggests that they might have a tight distribution in bright-

ness. In fact, this is not strictly true, and there is an intrinsic scatter in luminosity

associated with these explosions. The success of SNIa as cosmological probes lies not

in the fact that they are standard candles, but rather ‘standardisable’ candles.

Phillips (1993) showed that this intrinsic scatter on the peak luminosity of SNIa

could be as high as 0.8 mag in the B-band, but more importantly they showed that

there is a tight correlation between the peak luminosity and the decay-time of the light

curve. This, and similar relations which correlate peak brightness with the width of

the light-curve (the stretch factor), allow for the peak-magnitudes of a sample of SNIa

to be empirically calibrated, and luminosity distances to be estimated with a small

enough scatter as to allow us to differentiate between cosmological models. However,

as illustrated by the panel (b) of Figure 1.1, a scatter remains in the Hubble diagram.

If this scatter is purely statistical, then larger numbers of SNIa observations will always

allow for a better constraint of cosmological parameters. However, as statistical errors

are reduced in this way, we are likely to hit the wall of systematic errors. A possibility

is that our model for the correction of peak-luminosities is too simple - in fact, it almost

certainly is - and that the peak luminosity of any given SNIa depends on more than

its decay time or light-curve shape. If it depends on something which is evolving with

redshift, then we are introducing a systematic bias in the estimation of cosmological

parameters.

What does this mean for cosmology? Future Dark Energy surveys have high hopes,

which must be matched by high quality data. To keep systematic errors subdominant

relative to statistical errors in a mission like the Supernova Acceleration Probe (SNAP),

the scatter in magnitudes after correction should not be larger than 0.02 mag. This

in itself demands a better understanding of SNIa properties (Ellis et al. 2008). Fur-

thermore, if the properties of the supernovae change in a way as to introduce biased

residuals which evolve with redshift, then this can introduce a bias in the estimation

of the equation of state for Dark Energy (Howell et al. 2007; Sarkar et al. 2008).
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The motivation for this project is two-fold. Firstly, given the information in the

SFH of a galaxy, one can hope to learn about the type of progenitors of SNIa and put

some constraints on their properties, such as mass, age and metallicity. This provides

insight which can feed into and motivate SNIa stellar models. Secondly, VESPA has

the potential to provide information on the most likely type of progenitor for a sample

of SNIa. If the properties of progenitors are correlated with observables such as stretch

or peak luminosity, which in turn might be correlated with residuals in the Hubble

diagram, VESPA can contribute by identifying which stellar properties correlate with

residuals, with a view to reducing them.

6.1.1 SNIa progenitors

The hypothesis that SNIa have more than one type of progenitor star is well motivated -

brightest events (higher stretch) mostly happen in star-forming galaxies, whilst dimmer

explosions (lower stretch) are associated with red, passive galaxies (Hamuy et al. 1996;

Howell 2001; van den Bergh et al. 2005); the observed SNIa rate in blue galaxies is

higher than that in red galaxies (Mannucci et al. 2005), and higher SNIa rates are also

associated with radio-loud galaxies, when compared to a sample of radio-quiet galaxies

(Della Valle and Panagia 2003).

Mannucci et al. (2006) explored this possibility. The delay-time distribution (DTD

- D(t)) describes the range of delay-times between when a progenitor system is born

and the creation of a SNIa explosion, for a given population of progenitors. The DTD

therefore provides the connection between the observed SNR and the star formation

history

SNR(t) =

∫ t

0
D(t− t′)ψ(t′)dt′ (6.1)

where φ(t′) is the star formation rate at time t′ and D(t − t′) can be read as the

probability that a star of age t′ will produce a SNIa at time t.

Mannucci et al. (2006) explicitly explored different shapes and types of DTDs, so

as to better explain the observables mentioned in the previous paragraph which are

inconsistent with a single-peaked DTD. They found that a two-peaked DTD is the best

fit for their data, suggesting the presence of two distinct populations of progenitors.
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The A+B model

A simpler and now popular model for these two populations is the so called A+B

model, in which the observed SNR is described by two parameters - one proportional

to the total stellar mass of the galaxy, and one proportional to the instantaneous star

formation rate:

SNR(t) = AM∗(t) +BṀ∗(t) (6.2)

where M∗(t) is the mass in stars and Ṁ∗(t) the star formation rate at time t.

This formally corresponds to a DTD which is a δ-function at time t and associated

with young stars (the prompt component), and a DTD which is constant in time and

associated with older stars (the delayed component). Table 6.1 summarises some of

the A and B rates measured in the literature. There is significant scatter across the

different measurements for both rates. This is largely due to differences in the SNIa

samples, methods for deriving A and B, definition for stellar masses and proxies for

star formation rates.

Publication A [SN yr−1M−1
⊙ ] B [SN (M⊙ yr−1)−1 yr−1]

Neill et al. (2006) 1.2 ± 1.0 × 10−14 8.0 ± 2.6 × 10−4

Sullivan et al. (2006) 5.3 ± 1.1 × 10−14 3.9 ± 0.7 × 10−4

Scannapieco and Bildsten (2005) 4.4+1.6
−1.4 × 10−14 2.6 ± 1.1 × 10−4

Scannapieco and Bildsten (2005) 4.4+1.6
−1.4 × 10−14 1.2+0.7

−0.6 × 10−4

Dilday et al. (2008) 2.8 ± 1.2 × 10−14 9.3+3.4
−3.1 × 10−4

Table 6.1: Summary of A and B rates calculated in the literature. The two B rates from

Scannapieco and Bildsten (2005) are calculated using two different estimators for the star

formation rate.

Figure 4.1 shows that the cosmic star formation rate has evolved strongly with

redshift. This suggests that if equation (6.2) is a good model for the SNIa rate, then

we should expect the weight of each of the routes to SNIa to change significantly with

redshift. This is well illustrated in Figure 6.1, in which the contribution of the two

components is estimated as a function of redshift. As expected, the prompt compo-

nent is dominant at higher redshifts when the SFR was higher and declines in more

recent times, whereas the delayed component shows the opposite behaviour. If the

two populations are intrinsically different, one can ask the question of whether a single

empirical calibration relation applies. If it does not, then calibrating peak luminosi-

ties of SNIa at higher redshifts using empirical relations estimated at low redshift (or
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Figure 6.1: From Sullivan et al. (2006): Prediction of SNR as a function of redshift, assuming

equation (6.2). A and B were estimated using the SNLS sample at 0.2 < z < 0.75 and assumed

not to evolve with redshift. The star formation rate history of Hopkins and Beacom (2006) was

assumed.

vice-versa) will introduce systematic errors which have a strong dependence on redshift.

Beyond the A+B model

There have also been attempts to explicitly measure the DTD from the data. Pritchet

et al. (2008) use the relationship between the SNR and SFR to find D(t) ∝ t−0.5±0.2.

Using a theoretical argument to calculate the rate of white-dwarfs per unit stellar

mass, they find that a single-degenerate model can yield a DTD of this form only if

the fraction of white dwarfs which explodes as SNIa (constrained in that paper to be

0.01) is independent of mass. Given that this is unlikely to be the case, they conclude

that there must be another route to SNIa. Totani et al. (2008) find D(t) ∝ t−1 in the

range 0.1 < t < 10 Gyr, by looking at the ages of SNIa hosts in a sample of passive

red galaxies, but cannot put any constraints on the DTD of SNIa which occur in star-

forming galaxies. The wide range of DTD models allowed by the data at this stage can

be seen simply as an indication that the data is not of yet good enough to allow a clear
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distinction.

6.1.2 SNIa evolution

If there are more than one progenitor to SNIa, or if SNIa properties evolve with redshift

for one reason or another, then one can hope to find changes in the properties of SNIa at

low and high redshifts. Hook et al. (2005), using 14 spectra of SNIa with 0.17 < z < 0.83

from the Supernovae Cosmology Project found no evidence for evolution, but due to

the small size of the sample the only conclusion is that there is a population at high

redshift which has similar spectral properties to those at low redshift. Bronder et al.

(2008), based on a larger sample of 87 SNIa from the SNLS sample (z̃ = 0.720) which

they compare to a local sample from the literature also find that the two samples have

spectral properties which are consistent with a single population. Foley et al. (2007)

construct composite spectra of low (0.15 < z < 0.77) and high (z > 1) SNIa, which

they compare. Even though they found the two samples to be remarkably similar, they

found some minor deviations. However, the interpretation of these deviations is not

straightforward, mainly due to a lack of theoretical support. Even though they found

an excess in the UV (a good probe of the progenitor’s metallicity) in the high-redshift

sample, different models offer opposite interpretations for the significance of this excess.

Ellis et al. (2008) look at the spectral properties in the UV of a sample of 36 SNIa

at an intermediate redshift (z̄ = 0.5), which they compare to a local sample. Again,

no evidence for evolution was found. Interestingly, they find a large scatter in the

UV (λ < 3000 − 4000 Å ) spectrum from one SNIa to another which is inconsistent

with metallicity changes offered by current models, or changes associated with dust

extinction. This scatter remains even after colour corrections, which normalise the

colours at other wavelengths. The lack of theoretical understanding of this scatter is

worrying. At high-redshift surveys, cross-colour k-corrections are necessary in order to

estimate rest-frame light curves, and this requires a template that is reliable in the UV.

The observed scatter in the UV colours introduces on itself a statistical uncertainty of

0.05 to 0.1 magnitudes. This need not be a concern - if these residuals are randomly

distributed around the template then one needs only to increase the size of the SNIa

sample. However, they also find that the average UV spectrum of low and high stretch

objects is different. This introduces the risk of using the wrong template to calculate

cross-colour corrections. Given the correlation between high-stretch with bright explo-

sions in star forming galaxies, and low stretch explosions with dimmer SNIa in passive
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galaxies, the A+B model predicts an evolution of the average stretch with redshift.

This was observed by Howell et al. (2007), who found an increase in the average stretch

with redshift that is consistent with the A+B model.

6.2 VESPA and SNIa

Given the star formation history of a sample of SNIa host galaxies and the observed

SNR, one can hope to recover the DTD of the progenitor population(s) - the supernovae

rate at any time t is a convolution of the star formation history as a function of time,

with the DTD (equation 6.1).

Given the lack of direct observations of SNIa progenitors, the DTD distribution

provides an important link between theoretical models and observations. This is to

say, the information about the progenitors of SNIa of a given sample is encoded in its

star formation history.

6.2.1 Sample selection

We gathered a sample of around 1300 confirmed SNIa from IAU circulars1, the CfA

supernovae list2 and the SDSS-SN public list of supernovae (Frieman et al. 2008), which

we cross-matched with the SDSS DR5 (Adelman-McCarthy et al. 2007) spectroscopic

sample. This yielded a list of 256 galaxies which are known to be hosts to 257 SNIa

(one galaxy had two SNIa). Even though this number is not enough to attempt a full

deconvolution of equation (6.1), we can use the star formation history of the hosts to

test the existence of a short-lived progenitor to SNIa and to put a constraint on its age,

which in turn allows us to put a constraint on its mass.

As a control sample we use a randomly selected set of SDSS galaxies from DR5,

weighted as to provide the same redshift distribution as the hosts sample.

6.2.2 Method

We follow a parametrization similar to equation (6.2):

SNR = αM∗ + βMrecent (6.3)

1http://www.cfa.harvard.edu/iau/cbat.html,
2http://www.cfa.harvard.edu/iau/lists/Supernovae.html,
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where SNR is the observed SNIa rate, M∗ is the current stellar mass in a galaxy

and Mrecent is the current stellar mass in stars formed at t = ∆trecent. We can re-write

equation (6.3) as
SNR

M∗
= α

(

1 +
β

α

Mrecent

M∗

)

. (6.4)

Given the way in which we collect our sample, we have no way to estimate absolute

efficiencies of the supernovae rates. However, we can estimate the quantity SNR
M∗

as a

function of Mrecent
M∗

, up to an unknown constant of proportionality and from there infer

the value of the quantity β/α.

The observed SNR, per unit of stellar mass, is simply

SNR

M∗
= ǫ

NSN

Mtotal
(6.5)

where ǫ represents the SNIa detection efficiency for the sample, which is unknown

to us. For a given value of ∆trecent we do the following:

1. We divide the hosts and control sample into sub-samples according to their value

of recent star formation, Mrecent
M∗

, as derived by VESPA.

2. We estimate SNR
M∗

= ǫ NSN
Mtotal

for the galaxies in each sub-sample. Mtotal is esti-

mated from the much larger control sample.

3. We use the relation (6.4) to find the value of β/α which best fits the data.

In doing so we are making two key assumptions: a) we are assuming that ǫ, the

detection efficiency, is independent of host type, and b) we assume that our sample is

an un-biased sample of SDSS galaxies. We discuss these two issues in section 6.4.

VESPA provides both the stellar masses and the star formation fractions necessary

for this project. Given that the hosts’ spectra varied in quality, we choose to use a

one-parameter dust model to analyse both the hosts and the control sample, as the

data often does not call for a more sophisticated model.

We choose values of ∆trecent which match VESPA’s bin boundaries. This is the

natural choice, even though it limits our resolution somewhat. For a given value of

∆trecent we can calculate Mrecent
M∗

in the corresponding bins for the hosts and control

sample. Together with equation (6.5), we can then constrain the relation given by
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equation (6.4) and get a value for β/α. Given the hypothesis that there is a component

of the SNR which is proportional to the amount of young stars, we expect β/α to be

highest for ∆trecent of the order of the age of the progenitors. On the other hand, a

value of β/α = 0 corresponds to zero contribution to the SNR from stars formed in

∆trecent.

6.3 Results

Each galaxy has its star formation history cast into a different configuration of bins. As

mentioned in section 4.2.3, each VESPA iteration begins with 3 low-resolution bins, the

youngest of which spans the ages from t = 0.02 to t = 0.74Gyr. This means that this

boundary is resolved for all galaxies. This is an advantage because for unresolved bins

we cannot pin down when in the bin the recovered mass formed. For ∆trecent = 74 Myr

we find β/α = 465 ± 83, meaning that stars of this age have a significant contribution

to the observed SNR. This has important consequences in itself, given that the masses

associated with such short-lived progenitors are very high (> 5.5M⊙).

To investigate how older stars contribute to the SNR we include older bins in our

analysis. We find that β/α is significant up to 180 Myr (β/α = 454 ± 78) after which

the correlation decreases. Stars aged between 180 and 660 Myr contribute very little

to β/α, as do even older stars. Table 6.2 and Figure 6.2 summarise our results. Given

the decrease in contribution from stars older than 180 Myr to β/α we put a constraint

of 180 Myr on the age of progenitor systems which are associated with the prompt route.

There is a subtlety here with respect to the fact that the boundary at 180 Myr is

not one which is necessarily resolved for all objects. For the host sample however, we

find that the vast majority of hosts do indeed resolve this boundary. We also do not

find any significant difference in our results if we exclude the hosts which do not.

6.4 Interpretation

We find a significant correlation between a SNIa and stars formed in the last 180

Myr, which we identify as the progenitors of SNIa formed by the prompt route. This

correlation decreases significantly in older bins, and we therefore, for the first time, put
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∆trecent (Myr) β/α Error on β/α Significance

0 - 180 454 78 5.8σ

180 - 660 56 16 3.4σ

660 - 2440 18.4 3.5 5.2σ

2440 - 13700 -3 1.0 -

Table 6.2: Best-fit values of β/α for different aged populations and the respective significances.

We see that there is a high correlation between SNIa and stars younger than 180 Myr, which

decreases significantly when we move to older stars. We interpret this as the prompt route to

SNIa, and postulate that the progenitors associated with this route are younger than 180 Myr.

Figure 6.2: SNIa rate per unit stellar mass, unnormalised, as a function of fraction of stellar

mass formed in ∆t = [0 − 180], [180 − 660], [660 − 2444] and [2444, 13700]Myr. We see that

there is a high correlation between SNIa and stars younger than 180 Myr, which decreases

significantly when we move to older stars. We interpret this as the prompt route to SNIa, and

postulate that the progenitors associated with this route are younger than 180 Myr.
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an upper limit on the age of the progenitor stars associated with the prompt route.

6.4.1 Sample selection effects

Our result would be mimicked if our hosts sample was biased towards high recent star

formation for reasons other that SNIa related physics. This might happen if for exam-

ple the SNIa came from targeted surveys which preferentially pick out events in blue

galaxies. The only targeted survey which contributes towards our sample is the Lick

Observatory Supernova Search (LOSS, Richmond et al. 1998). Removing the SNIa

from this survey from our analysis changes our results without significance. We also

find no significant difference in the distribution of dust values between the host and

control sample, meaning the hosts sample is not biased towards low or high dust values.

A similar issue is the question of whether the efficiency of detection ǫ can introduce

such a bias. We might expect the detection efficiency to depend on the host type:

fainter (low stretch) SNIa, typically from massive red galaxies are harder to detect,

especially at high redshifts. If this was a strong effect we should expect to see our

hosts sample deficient in high-mass galaxies. In fact we see the opposite behaviour

- the stellar mass distribution of the hosts sample is skewed to high masses. This is

not unexpected: the SNR is proportional to stellar mass, which partially confuses the

picture and does not allow us to conclude that this sort of variation in efficiency is

irrelevant for our analysis. A quick sanity check is to re-do the analysis using only

hosts with z < 0.1, where we might expect this effect to be least pronounced. This

is certainly important for the SDSS SNIa, for which the efficiency is less than one for

z > 0.1 and where they miss a higher proportion of the faint hosts (Dilday et al. 2008).

Doing this analysis reduces the sample to 190 hosts, but the result remains consistent

with our initial measurement: β/α = 514 ± 104.

6.4.2 Comparing with previous results

Given that we cannot calculate absolute α and β rates, we cannot directly compare

our results to others in the literature. However, if we transform the B rate in the

literature - usually in SN M−1
⊙ - to SN M−1

⊙ yr−1 by dividing by 180Myr, we can

compare published values of B/A with our β/α. Clearly, given that the instantaneous

SFRs used to calculate B were averaged over different time scales means that even this

comparison is hard to interpret. Using the values from Neill et al. (2006) gives B/A
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≈ 300. Using the same method, values from Sullivan et al. (2006) yield B/A ≈ 40 and

those from Scannapieco and Bildsten (2005) give 300 and 150.

6.4.3 On the nature of the progenitors

Such a short time delay strongly constrains the nature of possible progenitors. They

must be stars that evolve fast enough, i.e. with a mass above ∼ 3.5M⊙, but must be

below the super-AGB mass threshold (∼ 8M⊙) above which one gets electron-capture

supernovae (Poelarends et al. 2008). Pinsonneault and Stanek (2006) have also sug-

gested that a significant fraction of binaries are twins (i.e. pairs of stars with essentially

identical masses), and that such twin binaries could produce a short (< 0.1 Gyr) path to

SNIa. Considering common envelope evolution phenomena, Pinsonneault and Stanek

(2006) argue that such twin systems could yield double degenerate SNIa in a way that

would be both fast and efficient.

Are there enough high-mass progenitors to account for the observed SNIa rate?

Only a fraction of these stars fβ will actually explode as a SNIa. We take into

account five factors: the fraction of stars in binaries (fa), the fraction of the bi-

naries both of whose components lie in the range 3.5 to 8 M⊙ (fb), the fraction

of stars at a suitable separation for mass transfer (fc), the fact that every binary

yields a single explosion, (fd), and an overall efficiency (ηβ , as not all possible pro-

genitors may explode). Maoz (2008) has estimated the first four factors, and finds

fa ∈ [2/3, 1], fb ∈ [1/6, 1/3], fc ∈ [1/4, 1/2] and fd = 1/2. Crudely multiplying these

factors together gives the fraction of objects in the appropriate mass range that explode

as prompt SNIa: fβ ∈ [0.014, 0.083]ηβ .

The fraction of stars which will explode as a SNIa progenitor, is given by

fβ =
Nβ

N3.5−8
(6.6)

where Nβ is the total number of SNIa from the fast route, and N3.5−8 is the total

number of stars in the correct mass range. Our result only allows us to estimate the

ratio of the two components. We can however use published values of A in order

to infer an absolute value of β from our ratio - we call this value B′. Using the A

value from Neill et al. (2006) gives B′ = (5.4 ± 4.2) × 10−12SN yr−1 M−1
⊙ . We can

now estimate Nβ = B′ × 180Myr × M180 and N3.5−8 = 0.0157 × M180, assuming a
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Salpeter IMF of the form N(M) ∝ M−2.35. This gives fβ = 0.063 ± 0.048, within the

values given by Maoz (2008). Using the A value from Sullivan et al. (2006) gives a

value of B′ = (2.41 ± 0.65) × 10−11SN yr−1 M−1
⊙ and fβ = 0.28 ± 0.07. Similarly, A as

published by Scannapieco and Bildsten (2005) results in roughly B′ = (1.99 ± 0.69) ×
10−11SN yr−1 M−1

⊙ and fβ = 0.23 ± 0.08. With the slow A rate of Neill et al. (2006)

there is complete consistency with the theoretical expectations of SNIa rates from Maoz

(2008). However, with the higher A rates of Sullivan et al. (2006) or Scannapieco and

Bildsten (2005), there is some tension with our results. It is hard to know exactly how

much meaning to extract from this: firstly we are relying on external measurements

of the A rate, which show significant scatter themselves. Secondly an excess of SNIa

explosions with respect to the predicted number of progenitors is observed in a large

number of SNIa studies (Maoz 2008). This tension can be alleviated in a number of

ways - some of them discussed in the above paper - but generally indicates that the

efficiency of the mechanism which produces SNIa explosions must be very high.

6.5 Future prospects

With the current size of the hosts sample we were already able to put the first tight

constraint on the age of the progenitor stars associated with the prompt route.

We are currently analysing a larger sample of SNIa hosts, which will allow us to

extract more information on the DTD. A tight measurement of the DTD would in itself

be an extremely valuable observational constraint on theoretical models of SNIa.

With the public release of the SDSS SNIa sample, we will investigate how resid-

ual scatter around the Hubble diagram correlates with physical parameters such as

progenitor age and metallicity. VESPA’s contribution here is essential, as we need

robust star formation and metallicity histories of the hosts. Ultimately we hope to de-

velop a method which contributes towards a better understanding of SNIa explosions,

light-curve calibrations, and the nature of Dark Energy.
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Chapter 7

Summary and future work

This thesis has presented work done on a variety of scales and epochs and explores sev-

eral aspects related to the evolution of the Universe. Even though we have presented

a summary and our conclusions at the end of each relevant section or Chapter, for the

sake of completeness and clarity we take the opportunity to expand and collect all of

our main conclusions and discussion in this final Chapter.

7.1 Non-Gaussianity studies of the CMB

We first looked at non-Gaussianity studies of the cosmic microwave background. Infla-

tion predicts Gaussianity in the temperature fluctuations, which we analysed using the

peak-peak auto- and cross-correlation of temperature peaks. We studied the first- and

fifth-year data releases, and looked for signs of non-Gaussianity.

In the first year analysis, using the auto-correlation of peaks, we detected a signal

that was associated with cold spots in the southern hemisphere. Removing the regions

of sky within 30 degrees of the galactic plane, or scales with ℓ < 40, removed the non-

Gaussian signal. An analysis of individual frequencies showed that the Q-band was

the most affected by this signal, but not the only one. We concluded that the signal

we see is most likely due to the presence of unsubtracted or oversubtracted foregrounds.
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We revisited the problem with the fifth year data, and introduced a number of

improvements over our first year analysis: in addition to the auto-correlation we also

calculated the cross-correlation of peaks across different frequencies and we introduced

computational improvements which allowed us to analyse more peaks, as well as reach

better angular resolution. Once again we found a signal that was associated with cold

spots in the southern hemisphere, and the Galactic plane. Our interpretation is that

this is the same signal we saw in the first year analysis, which we again attribute to

a non-cosmological origin. In addition to this signal, however, we are puzzled by a

detection which appears only in the northern hemisphere, outwith 30 degrees of the

galactic plane, in the V and W band. This signal is robust to the choice of binning,

matrix-invertion methods and number of simulated maps, and it does not seem to be

associated with any particular angular scale on the sky. Further investigation is re-

quired to pin down its origin. The next obvious steps are to increase our constraints in

real space, and also in harmonic space, which we plan to do. We also observed some

anomalies associated with hot spots, mostly confined to the northern hemisphere.

We explored the possibility that the local integrated Sachs-Wolfe (ISW) effect is

the reason for these detections. We removed a physically-motivated ISW map, recon-

structed from matter-density estimated to z = 0.3, from the WMAP data but did not

find it to consistently resolve any of our detections. Our conclusion from this analysis

is that the ISW is not the reason behind the non-Gaussianity we see.

Finally we note that the first and fifth year analyses were done using a different set

of peaks, each selected according to a temperature threshold which was different in the

two analyses. A lower threshold does in principle make us more susceptible to residual

point-sources contamination, given that strong point sources are more likely to have

been detected and masked. This might be the reason behind our hot spots detections

in the V-band, although further investigation is required.

Our conclusion from the first and fifth year analyses, principally taking into ac-

count the frequency-dependence of our detections, is that there is substantial evidence

for a temperature component in the WMAP data which is not primordial. Based on

our analysis we suggest this component is strongest in the southern hemisphere, in the

regions close to the Galactic plane.
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Using non-Gaussian simulated maps, we investigated how sensitive peak statistics

are to an fNL type of non-Gaussianity. This is in principle a much more rewarding

and exciting way to probe non-Gaussianity, as there is a clearer relationship between a

signal and a physical cause. We note, however, that a detection of a positive fNL could

be misinterpreted if the temperature fluctuations are tainted with non-cosmological

anomalies. The analysis given above suggests that we must still be careful when draw-

ing conclusions about the physical origin of fNL detections in the current WMAP data.

Using a low threshold for peak-selection (corresponding to a large number of points

being selected) we are drawn to conclude that peak statistics are not a competitive es-

timator. However, we have argued that the threshold selection might be an important

factor when it comes to sensitivity to fNL. We have in fact already explored a range of

temperature threshold values, as well as high-pass filters to help with the problem of

cosmic variance. However, after roughly two months of computational time, the results

were lost due to serious hardware failure. The simulations will be re-done once new

harware comes online, which will allow us to investigate what the optimal threshold

and filter are and finally apply our method to WMAP data, as well as Planck data in

the future.

7.2 VESPA

A significant amount of time during this PhD was devoted to the development and test-

ing of VESPA - a new algorithm for recovering star formation and metallicity histories

from galactic spectra. We were motivated by current limitations of other methods,

which use a single parametrization for every analysed spectrum, independent of its

quality. Whereas this is a perfectly valid approach when analysing large ensembles of

galaxies, we wanted to have a method which would reflect the quality of the spectrum

in the solutions it provides, on a galaxy-by-galaxy basis.

After significant tests with synthetic and real data, we found that VESPA is very

successful at doing this. Particularly, we note that the self-regularization that we im-

pose does a much better job at finding a solution which is closer to the true solution

than one without such a regularization imposed. This will always happen at the ex-

pense of goodness of fit in data space, but that is the nature of the game - we sacrifice
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precision for the sake of accuracy.

Our analysis of SDSS spectra showed that we can, on average, recover between

two and five populations, and very rarely did we get more than six. We should note

however, that this number is attached to the binning we chose. This binning already

reflects the fact that older populations are more degenerate, so our rule of thumb of

2-5 populations would not apply if one was interested exclusively in a population older

than, for example, 5Gyr.

One of the main contributions of this project to the community is the publication

of a catalogue with robust star formation and metallicity histories, stellar masses, dust

values and other derived quantities. The catalogue is easily cross-matched with SDSS’s

database, opening up the opportunities for almost instant science.

As any other method or algorithm, VESPA is in a state of constant improvement.

Future work in this area will include:

• adding IR and UV photometry to SDSS spectra and investigating how the recov-

ered quantities are affected,

• exploring how much information one can get using photometry alone, and

• exploring how much information is lost by removing the large-scale information

in the spectrum, which is often riddled with systematics.

Finally we should remind ourselves that VESPA’s analysis is ultimately model de-

pendent, for which the importance of up-to-date models and an understanding of their

successes and shortcomings cannot be overstated.

7.3 Mass assembly in galaxies

With robust stellar masses and star formation histories for DR5’s 465,000 galaxies, we

explored the galaxy stellar mass function and stellar mass density in SDSS. As others

had done before, we found a galaxy stellar mass function (GSMF) that is well fit by

a Schechter function and found no evidence for evolution in the GSMF between the

redshifts of 0.005 and 0.35 for the high mass range.
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We took this analysis one step further and attempted to put a constraint on the

role of mergers to the mass assembly of present-day galaxies. The idea is on paper

very simple. We aim to disentangle growth due to star formation from growth due

to merging by evolving each galaxy back in time, and find how many of its stars had

formed at any given redshift. Integrating this knowledge over all galaxies tells us how

much stellar mass had formed by that redshift, per unit volume. What it does not tell

us is over how many galaxies that stellar mass was distributed. We therefore need an

external measurement, which provides the final piece of information. This is the GSMF

observed directly at that redshift and it tells us what the mass distribution of galaxies

was like at that time.

We found that the data are currently not good enough to conduct this measurement.

We look forward to future redshift surveys, which will allow us to analyse galaxies at

low and high redshifts in a consistent way. This should provide us with the opportunity

for the first clean measurement of galaxy growth for reasons other than star formation,

as a function of mass.

The opportunity remains to do a model-dependent version of this analysis, i.e. given

a merging rate per galaxy stellar mass, is the observed GSMF compatible with the in-

ferred GSMF from VESPA? Our feeling is that the data are presently not good enough

to differentiate between theoretically interesting models, but that will change once new

surveys become available.

We also looked at the evolution of the stellar mass density, which does not require

any knowledge beyond the information that we have. Our results are consistent with

previous estimates all the way up to redshift of 1.8. Here VESPA predicts a higher

stellar mass density than those published in the literature, which we interpret as a

limitation of the modelling. We simply cannot reliably distinguish between periods

of star formation of ages higher than 9 Gyrs. In many cases, and depending on the

quality of each spectrum, VESPA will say that this range is even more limiting and we

cannot robustly pin down events of old star formation; the fossil record can only go so

far. High-redshift spectroscopic surveys or better quality data are the key here, and we

expect these degeneracies to be lifted with future datasets.

The evolution of the stellar mass density is not only an important observational
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constraint for galaxy formation models. Recently it has been thrown into the spotlight

due to unexpected discrepancies between different measurements. The reason for this

discrepancy could be as simple as systematic effects, but it might also be telling us

about the shape and potential evolution of the IMF. We used VESPA to estimate how

stellar mass estimates are affected by different IMFs and investigate whether there is

an universal IMF which resolves this discrepancy. The data tell us that there is not a

universal power-law IMF which is able to do so. One exciting possibility is that the

IMF has evolved with redshift, but one should consider this possibility with caution.

The implications for galaxy formation would be substantial, and we must first make

sure we understand all systematic effects associated with these measurements.

7.4 Progenitors to SNIa

One of the most recent additions to the collection of mysteries of the Universe is Dark

Energy. It came as a true surprise, 10 years ago, that the Universe is now dominated

by an energy component characterized by a negative pressure. Finding out more about

its nature has become the primary goal of many scientists and scientific experiments.

SNIa experiments are particularly good probes of Dark Energy, but they rely on

empirical calibrations of their light-curves. The suitability of these calibrations over a

large range of redshifts has recently been questioned, and the possibility of a calibration

law which evolves with redshift has been raised. This could lead to a higher uncertainty

in the measurement of w, a bias, or both. The problem here is that we do not yet have

a theoretical model for SNIa progenitors. Observational constraints on the nature of

SNIa progenitors are badly needed both by those who study SNIa and those who use

them as cosmological probes.

By studying the star formation history of SDSS galaxies which are known to be

SNIa hosts, we were able to put the first tight constraint on the age of one type of

progenitor, at 180 Myr.

This work has enormous potential for the future. We are already analysing a larger

sample of SNIa hosts, which in itself will tell us more about the full range of progenitors

to these important events. We also plan to use future SNIa datasets in order to look for

a correlation between residuals on the Hubble diagram and physical properties of the
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progenitors which can be assigned - at least in a statistical sense - by VESPA. Ideally

one would like to do this one step up in the pipeline - i.e., to correlate residuals of the

light-curve fit with progenitor properties, but this depends of the availability of suitable

datasets.

7.5 Final remarks

It is nothing short of inspiring that we stand here today with a cosmological model

that can take us from primordial perturbations in a scalar quantum field to a Universe

populated with a wide range of galaxies. Whereas the big picture certainly seems to be

in place, attention is now divided between fundamental questions such as the nature

of Dark Energy, Inflation and structure formation, and the slightly messier non-linear

physics such as star formation in galaxies, stellar mass assembly and all the feedback

processes involved. This thesis is a small reminder that the two are intrinsically related.

As we approach the era of the great cosmology experiments, we are reminded of the

fact that beating down statistical errors with larger surveys has its own natural barrier.

We take the example of SNIa experiments, which now demand a true understanding of

the physical processes behind these explosions and the host galaxies they inhabit if we

are to interpret the data with confidence. The same is true in CMB analysis. Planck

will be close to a perfect experiment, but non-Gaussianity studies - which will be yet

again thrown into a new era with Planck - will always be plagued by the suspicion of a

non-primordial temperature component in the data. In these two cases, and certainly

in others too, the solution must be a combination of thorough and relevant observations

with a better theoretical framework. As the physics gets more and more complicated,

observations tend to, but do not always, lead the way.

This thesis makes intellectual and practical contributions in some of these areas,

and paves the way for more and exciting future work. I hope the results and meth-

ods presented here will continue to contribute towards a better understanding of the

formation, evolution and ultimate fate of our Universe.
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Liguori, M., Matarrese, S., and Moscardini, L.: 2003, ApJ 597, 57

Liu, X. and Zhang, S. N.: 2005, ApJ 633, 542

199



BIBLIOGRAPHY

Madau, P., Ferguson, H. C., Dickinson, M. E., Giavalisco, M., Steidel, C. C., and

Fruchter, A.: 1996, MNRAS 283, 1388

Mann, R. G., Saunders, W., and Taylor, A. N.: 1996, MNRAS 279, 636

Mannucci, F., Della Valle, M., and Panagia, N.: 2006, MNRAS 370, 773

Mannucci, F., Della Valle, M., Panagia, N., Cappellaro, E., Cresci, G., Maiolino, R.,

Petrosian, A., and Turatto, M.: 2005, A&A 433, 807

Maoz, D.: 2008, MNRAS 384, 267

Marigo, P., Girardi, L., Bressan, A., Groenewegen, M. A. T., Silva, L., and Granato,

G. L.: 2008, A&A 482, 883

Massey, R., Rhodes, J., Ellis, R., Scoville, N., Leauthaud, A., Finoguenov, A., Capak,

P., Bacon, D., Aussel, H., Kneib, J.-P., Koekemoer, A., McCracken, H., Mobasher,

B., Pires, S., Refregier, A., Sasaki, S., Starck, J.-L., Taniguchi, Y., Taylor, A., and

Taylor, J.: 2007, Nature 445, 286

Mathis, H., Charlot, S., and Brinchmann, J.: 2006, MNRAS 365, 385

McEwen, J. D., Hobson, M. P., Lasenby, A. N., and Mortlock, D. J.: 2005, MNRAS

359, 1583

McEwen, J. D., Hobson, M. P., Lasenby, A. N., and Mortlock, D. J.: 2006, MNRAS

369, 1858

McEwen, J. D., Hobson, M. P., Lasenby, A. N., and Mortlock, D. J.: 2008, ArXiv

Astrophysics e-prints 0803.2157

Milgrom, M.: 1983, ApJ 270, 365

Mukherjee, P. and Wang, Y.: 2004, ApJ 613, 51

Neill, J. D., Sullivan, M., Balam, D., Pritchet, C. J., Howell, D. A., Perrett, K., Astier,

P., Aubourg, E., Basa, S., Carlberg, R. G., Conley, A., Fabbro, S., Fouchez, D., Guy,

J., Hook, I., Pain, R., Palanque-Delabrouille, N., Regnault, N., Rich, J., Taillet, R.,

Aldering, G., Antilogus, P., Arsenijevic, V., Balland, C., Baumont, S., Bronder, J.,
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