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Abstract
This thesis contributes to recent interest within medical imaging regarding the development and clini-
cal application of magnetic resonance elastography (MRE) to the human brain. MRE is a non-invasive
phase-contrast MRI technique for measurement of brain mechanical properties in vivo, shown to reflect
the composition and organisation of the complex tissue microstructure. MRE is a promising imaging
biomarker for the early characterisation of neurodegeneration due to its exquisite sensitivity to vari-
ation among healthy and pathological tissue. Neurodegenerative diseases are debilitating conditions
of the human nervous system for which there is currently no cure. Novel biomarkers are required to
improve early detection, differential diagnosis and monitoring of disease progression, and could also
ultimately improve our understanding of the pathophysiological mechanisms underlying degenerative
processes. This thesis begins with a theoretical background of brain MRE and a description of the
experimental considerations. A systematic review of the literature is then performed to summarise
brain MRE quantitative measurements in healthy participants and to determine the success of MRE
to characterise neurological disorders. This review further identified the most promising acquisition
and analysis methods within the field. As such, subsequent visits to three brain MRE research centres,
within the USA and Germany, enabled the acquisition of exemplar phantom and brain data to assist in
discussions to refine an experimental protocol for installation at the Edinburgh Imaging Facility, QMRI
(EIF-QMRI). Through collaborations with world-leading brain MRE centres, two high-resolution - yet
fundamentally different - MRE pipelines were installed at the EIF-QMRI. Several optimisations were
implemented to improve MRE image quality, while the clinical utility of MRE was enhanced by the
novel development of a Graphical User Interface (GUI) for the optimised and automatic MRE-to-
anatomical coregistration and generation of MRE derived output measures. The first experimental
study was performed in 6 young and 6 older healthy adults to compare the results from the two MRE
pipelines to investigate test-retest agreement of the whole brain and a brain structure of interest:
the hippocampal formation. The MRE protocol shown to possess superior reproducibility was subse-
quently applied in a second experimental study of 12 young and 12 older cognitively healthy adults.
Results include finding that the MRE imaging procedure is very well tolerated across the recruited
population. Novel findings include significantly softer brains in older adults both across the global
cerebrum and in the majority of subcortical grey matter structures including the pallidum, putamen,
caudate, and thalamus. Changes in tissue stiffness likely reflect an alteration to the strength in the
composition of the tissue network. All MRE effects persist after correcting for brain structure volume
suggesting changes in volume alone were not reflective of the detected MRE age differences. Inter-
estingly, no age-related differences to tissue stiffness were found for the amygdala or hippocampus.
As for brain viscosity, no group differences were detected for either the brain globally or subcortical
structures, suggesting a preservation of the organisation of the tissue network in older age. The third
experiment performed in this thesis finds a direct structure-function relationship in older adults be-
tween hippocampal viscosity and episodic memory as measured with verbal-paired recall. The source
of this association was located to the left hippocampus, thus complementing previous literature sug-
gesting unilateral hippocampal specialisation. Additionally, a more significant relationship was found
between left hippocampal viscosity and memory after a new procedure was developed to remove voxels
containing cerebrospinal fluid from the MRE analysis. Collectively, these results support the transition
of brain MRE into a clinically useful neuroimaging modality that could, in particular, be used in the
early characterisation of memory specific disorders such as amnestic Mild Cognitive Impairment and
Alzheimer’s disease.
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Lay Summary

Neurodegenerative disorders (ND) are an umbrella term for a range of conditions primarily affecting
the neurons (i.e. nerve cells) in the human brain. Alzheimer’s disease (AD) is the most common
progressive ND, currently effecting 850,000 people in the UK with an annual cost to the economy of
£26 billion. AD is characterised by increasing cognitive decline, typically involving memory, leading
to substantial difficulties in activities of daily living. Currently there is no cure, with medication
being used to alleviate some of the symptoms in mild-moderate cases and resulting in only modest
and temporary effects. There is now evidence that the brain undergoes pathological changes up to
20 years before symptoms are noticeable. As a result, the diagnostic focus has increasingly shifted to
the accurate detection of the earliest phase of the disease as this might enable early medical interven-
tions that could slow the disease process. As such, the new diagnostic focus is on prevention rather
than cure. Alternative methods are being sought to identify the earlier stages of disease and include
the development of more sensitive forms of brain imaging. One such method is magnetic resonance
elastography (MRE); an enhancement to traditional magnetic resonance imaging (MRI) that allows
the stiffness (i.e. viscoelasticity) of biological tissue to be visualised and quantified. The properties
measured by MRE have been shown to have a direct link with the health of biological tissue. MRE has
had remarkable success in characterising the severity of diseases of the liver and has largely replaced
liver biopsy in hospitals within the USA. The aim of this thesis was to investigate whether MRE could
also be clinically useful to characterise the early stages of neurodegeneration. Recent advances in
MRE methods now offer images with a high spatial resolution, thus enabling the study of small brain
structures of interest including the hippocampus; a region well known for its role in memory. Two
high-resolution techniques were installed in Edinburgh. Through scanning a small cohort of partici-
pants, one method was found to be more reliable than the other, which is important for any technique
aiming to accurately monitor changes over time. In a larger group of subjects, the preferred method
identified differences in brain viscoelasticity between young and healthy older adults across a range
of brain structures. These finding was unrelated to differences in the size of each structure, which
has traditionally been used to diagnose ND. Interestingly, no age-related differences were detected in
the hippocampus, suggesting a preservation of the strength in the composition of the hippocampus
in cognitively healthy older adults. Finally, hippocampal viscoelasticity was directly linked with per-
formance on a memory test in older adults, whereas the size of the hippocampus was not associated
with memory performance. In particular, assessment of left hippocampal viscoelasticity possessed a
stronger relationship to memory recall, which may be linked to previous work suggesting that the left
hippocampus is responsible for the recollection of verbal material. Overall, work presented in this
thesis demonstrates that brain MRE provides unique information regarding brain tissue health and
thus has potential for the characterisation of early pathological brain alterations. Work presented in
this thesis, however, will need to be replicated in a larger group of participants to support these initial
promising findings.
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CHAPTER 1.

Preface

This chapter begins by outlining the clinical research question and the thesis objectives. First, a brief

description is given of the cellular components of the human nervous system, including an overview

of basic brain anatomy. The concept and possible causes of neurodegeneration are explained, and

examples provided of some of the more common forms of neurodegenerative diseases (ND). The lack

of successful treatments for ND and the important role biomarkers have to play in assisting with the

development of new therapies are explained. The strengths and limitations of current brain imaging

modalities for detecting or predicting the progression of ND are highlighted, while the importance of the

development of a new imaging contrast mechanism is emphasised. An emerging MRI based technique

capable of measuring soft tissue mechanical properties, known as Magnetic Resonance Elastography

(MRE) is introduced, while its success in diagnosing liver disease has led to recent interest in its

application for characterising disorders of the brain. By the end of this chapter, the key clinical

research question, the necessity of a new imaging biomarker, and the exciting opportunities that MRE

affords, will have been described.
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CHAPTER 1. 1.1. HUMAN NERVOUS SYSTEM

1.1 Human Nervous System

1.1.1 Cellular Components

The human brain contains approximately 100 billion neurons; the basic structural and functional unit

of the central nervous system (CNS). Neurons, or nerve cells, are electrically excitable cells that are

highly specialised for the receipt, integration, and transmission of information via rapid electrochemical

impulses. A single neuron, which is between 5-120 µm in diameter, consists of various parts including

the nucleus, dendrites, and myelinated axons, and may be connected to up to 10,000 other neurons.

Figure 1.1 shows both a schematic representation of a neuron, and an image from the discipline of

histology.

Figure 1.1: (a) Schematic and, (b) histological representation of neuron anatomy showing cell body,
dendrites, axon, nucleus and neuroglial cells (100X). Source: Human Anatomy and Physiology [1].

Dendrites form extensions from the neuron to conduct electrical messages to the neuron cell body

for the cell to function, whereas axons extend from the cell body to send signals to other neurons

to release neurotransmitters at junctions known as synapses. There are believed to be as many as

1,000 trillion synaptic connections throughout the human brain. In addition to neurons, the nervous

system contains a variety of support cells known collectively as glial, derived from the Greek word for

"glue". Glia are ten times more common than neurons, and are responsible for maintaining homeostasis,

forming myelin, and providing neuronal support and protection. The glial matrix, largely made up of

astrocytes, oligodendrocytes, and microglia cells, also play an important role in the nutrition of neurons

that are not connected to the blood circuit, and are part of the brain’s immune response [2].
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1.1.2 Brain Anatomy

The human brain can be divided into three main parts: the forebrain, midbrain and hindbrain. The

forebrain is made up of the cerebrum and limbic system, the midbrain consists of the tectum and

tegmentum, whereas the hindbrain contains the cerebellum, pons and medulla. The cerebrum forms

the largest part of the human brain, divided into the frontal, parietal, occipital and temporal lobes,

as shown in Figure 1.2. The cerebrum contains two hemispheres separated by a deep groove known

as the longitudinal cerebral fissure, however, communication between hemispheres is enabled through

the corpus callosum, located at the floor of the cerebral fissure [3].

Figure 1.2: Schematic representation of the cerebrum highlighting the four main lobes of the brain, the
cerebellum, and brainstem. Source: 2018 Physiotherapy @ Home [4].

The outer few millimetres of each hemisphere are known as the cerebral cortex which form both

gyri (i.e. elevations) and sulci (i.e. depressions) and are associated with higher-order brain functions.

The cerebral cortex is defined by the presence of neuronal cell bodies, dendrites, myelinated as well

as unmyelinated axons, glial cells, including astroglia and oligodendrocytes, synapses, and capillaries.

The cerebral cortex is known as grey matter, even though in living tissue it actually has a very light

grey colour with yellowish or pinkish hues, which come from capillary blood vessels and neuronal cell

bodies [5].

The majority of the cerebrum consists of white matter; white matter is distinguished from grey

matter in that it contains relatively few cell bodies and is largely composed of bundles of long-range

myelinated axons or tracts [3]. Myelin is a fatty white sheath wrapped around axons, hence the term
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white matter. Through its special construction, myelin accelerates the propagation of impulses along

nerve fibres by up to 100 times. Long thought to be passive tissue, white matter has been found

to modulate the distribution of action potentials, thus coordinating communication between different

parts of the brain [6].

The entire CNS is suspended in cerebrospinal fluid (CSF), effectively embedding the brain into

a fluid cushion. The CSF is a clear fluid manufactured in the ventricles, a cavernous system of four

interconnected cavities. These are located in the centre of the two hemispheres (lateral ventricles), the

diencephalon (third ventricle) and between the brainstem and the cerebellum (fourth ventricle). Apart

from the role of mechanical protection of the brain, the CSF is also the recipient of brain metabolites

and with that plays an important role in the maintenance of a constant extracellular environment.

A further fluid component of the brain is the vascular system, which occupies 3-5% of the entire

brain volume [7]. The location of the ventricular system within the cerebrum is illustrated in Figure

1.3.

Figure 1.3: Schematic representation of the cerebral ventricles. Source: Sinauer Associates, Inc (2016)
[8].

1.2 Neurodegeneration

The term neurodegeneration is composed of the prefix “neuro-,” which designates neurons, and “de-

generation,” which refers to the process of losing structure or function and indicates the progressive

and often irreversible loss of cells, and their synaptic function, within the CNS. Much of what is known

about the causes of neurodegeneration have been learnt from examination of post-mortem tissue and

studies of animal or tissue culture models. Suggested causes include toxic protein accumulation, and
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the inadequate degradation of inappropriately folded proteins [9], reduced mitochondrial energy pro-

duction, resulting in toxic molecules that damage neurons [10,11], and viral infection or inflammatory

processes, for which the influx of microglia, - the immune response cells - eventually damage neuron

structure in attempting to remove virus-infected cells [12]. Furthermore, almost all neurodegenerative

conditions are additionally marked by disruption of the glial matrix that leads to oligodendrocyte

death and axonal demyelination. As a result of these processes, programmed cell death, known as

apoptosis, results in self destruction of the neuron for the purpose of protecting other nearby neurons

from toxic substances [13, 14]. A small proportion of neurodegenerative diseases are known to be

caused purely by genetic mutations (∼5%), however, the greatest risk factor for their development is

increasing age [15]. Other risk factors may include gender, endocrine conditions, oxidative stress, vas-

cular conditions, depression, head trauma, tumours, level of education, and environmental pollutants

such as pesticides [16–18].

1.2.1 What are neurodegenerative diseases?

Neurodegenerative diseases are debilitating conditions of the CNS and cause problems with movement

(i.e. ataxias), or cognitive functioning (i.e. dementias) and primarily affect older adults. Some forms,

however, such as Creutzfeldt-Jakob disease, can affect younger individuals [19]. For decades, chronic

disorders affecting the CNS have been classified into two major groups: neurodegenerative and neu-

roinflammatory diseases. However, typical degenerative disorders such as Alzheimer’s disease (AD)

and Parkinson’s disease (PD) are demonstrably affected by inflammation, while classical neuroinflam-

matory diseases such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) present aspects

of neurodegeneration [20]. As such, typical neuroinflammatory disorders may now be broadly classified

within the term neurodegeneration.

The number of neurodegenerative diseases is currently estimated to be several hundred, with dis-

eases displaying disparate, but sometimes overlapping clinical presentation and aetiologies, rendering

their practical classification quite challenging [21]. AD is the most common age-related neurodegen-

erative disease [22]. AD is characterised by increasing cognitive decline; most commonly involving

memory, language and executive functioning, leading to substantial difficulties in activities of daily

living. According to the Alzheimer’s Society, as of 2015, there are an estimated 850,000 people in

the UK living with AD with a cost to the economy of £26 billion per annum [23]. Age is the most

significant risk factor with 1/6 of people over the age of 80 developing the condition. The hippocam-

pus, a brain structure located within the medial temporal lobe and an area critical for learning and
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memory, is especially vulnerable to damage in Alzheimer’s disease (AD) [24]. In Parkinson’s disease,

dopamine producing neurons concentrated within the substantia nigra of the midbrain progressively

degenerate [25]. Dopamine is a chemical that relays messages between the substantia nigra and other

parts of the brain to control smooth, coordinated muscle movements.

1.2.2 Treatments

In the face of great clinical need with the incidence of neurodegenerative diseases on the rise, there

has been little success in developing effective treatments. Between 2002 and 2012, 413 clinical trials

assessing 214 compounds to treat AD yielded just one new approval by the U.S. Food and Drug

Administration; a success rate of 0.4% [26]. Even for those with a well-defined aetiology, such as

Huntington’s disease (HD), no treatment can meaningfully modify disease progression. Medication

can only help alleviate symptoms and may help improve quality of life. For example, cholinesterase

inhibitors can sometimes slow the progression of cognitive and functional symptoms in mild-moderate

cases of AD, usually with only modest and temporary effects [27], and even after 40 years of clinical

experience, levodopa remains the most effective method of managing the symptoms of PD [28].

The brain has an incredible capacity to overcome large deficits, which means that by the time

clinical symptoms emerge, neuronal cell loss is extensive. In the case of AD, the brain can undergo

pathological changes up to 20 years before a diagnosis is given [29]; the compensatory mechanisms

of the brain are so great that there are no obvious outward behavioural symptoms for many years.

Similarly, in the case of PD, up to 75% of the substantia nigra may undergo degeneration without any

obvious symptoms; exceeding this threshold, however, leads to the appearance of the hallmark motor

symptoms [30]. Unfortunately, the development of treatment that can repair the destruction that has

occurred by the time the disease is detected, appears extremely unlikely at this time. Currently, many

potential disease-modifying therapies are being developed and evaluated at the preclinical stage, and

will lead to clinical trials in the near future for which biomarkers are urgently needed [31].

1.2.3 Biomarkers

A major goal of current clinical research into neurodegenerative diseases is to improve early detection

of disease by characterising presymptomatic neuronal dysfunction. There is consensus that predicting

disease development offers the best hope in accelerating the development of new therapeutic targets. As

such, the diagnostic focus in neurology has shifted towards prevention rather than cure. A biomarker,

short for biological marker, is objectively measured and evaluated as an indicator of normal biological

9



CHAPTER 1. 1.3. NEUROIMAGING

processes, pathogenic processes or pharmacological responses to a therapeutic intervention [32] The

sensitivity, specificity and ease-of-use are the most important factors that ultimately define the diag-

nostic utility of a biomarker. The ideal biomarker also needs to be reproducible, not subject to wide

variation in the general population and unaffected by co-morbid factors [31].

Currently, a definitive diagnosis of AD is only available at post-mortem; however a combination

of brain imaging, biochemistry and neuropsychological assessments can permit a probable AD diagnosis.

In most instances, the lack of presymptomatic markers and knowledge about the true kinetics of

cell demise precludes our ability to determine disease onset. Many different approaches are being

undertaken to identify biomarkers within the disciplines of biochemistry, genetics, and radiology. This

thesis focuses on the role of brain imaging and, in particular, a novel form of brain imaging that shows

promise for assisting with these objectives and could even enrich our understanding of the possible

causes of degeneration. Ultimately, however, it should not be forgotten that it seems likely that only a

combined analysis of several biomarkers will define a patient-specific signature to diagnose early signs

of neurodegeneration in the future to ensure excellent specificity and sensitivity.

1.3 Neuroimaging

The primary aim of a medical imaging modality is to ensure that there is sufficient contrast be-

tween healthy and pathological tissue to as to enable accurate diagnosis. Brain imaging provides a

non-invasive assessment of brain structures [e.g. magnetic resonance imaging (MRI)/computed tomog-

raphy (CT)], function [functional MRI (fMRI), positron emission tomography (PET), single positron

emission computerized tomography (SPECT)], metabolites [magnetic resonance spectroscopy (MRS)]

or perfusion [arterial spin labelling (ALS)] [31]. Magnetic resonance imaging (MRI) is the most com-

mon imaging modality for assessing neurodegenerative diseases since it is non-invasive, does not emit

ionising radiation, and can provide many different and complementary contrast mechanisms with

three-dimensional resolution.

1.3.1 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) is a widespread medical imaging technique that has become an

essential tool for the diagnosis of disorders of the central nervous system (CNS). MRI is based on the

magnetisation properties of atomic nuclei and involves imaging of the proton; the positively charged

spinning nucleus of hydrogen atoms that are abundant in tissues containing water and proteins. MRI

employs a powerful, uniform, external magnetic field that causes protons in the body to absorb and
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emit radio frequency energy. Energy from an oscillating magnetic field temporarily is applied at the

appropriate frequency [called the Larmor of resonance frequency (RF)], which excite protons causing

them to emit a radiofrequency signal, moving them out of the equilibrium state. Magnetic field

gradients then localise the signal in space, and the MRI receiver coils (i.e. sensors), are able to detect

the energy released as the protons realign with the magnetic field. The time it takes for the protons

to realign with the magnetic field (i.e. return to equilibrium state, or relax) is determined by the T1

and T2 relaxation times, which are dependent on the tissue environment and the chemical nature of

the molecules.

Different MRI contrasts can be generated between tissues based on the relaxation properties

of the hydrogen atoms. Figure 1.4 illustrates three different MRI contrasts including T1-weighted,

T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images. For most clinical studies, all

three types of images may be used as they each contribute to the diagnosis of normal and abnormal

structures. The degree of weighting depends on the selected pulse sequence, repetition time (TR),

and echo time (TE). TR is the interval between repetitions of the pulse sequence, whereas TE is

the interval between delivery of the RF excitation and the measurement of the magnetic resonance

signal.

Figure 1.4: (a) T1-weighted; (b)T2-weighted; and (c) fluid-attenuated inversion recovery (FLAIR)
images have different contrasts that reveal specific information about various structures in the brain.

While structural MRI, such as the image contrasts described previously, can be used to measure

volumes of specific brain structures and thus quantify volume decline, atrophy can be subtle and hard to

detect in the preclinical and early stages of neurodegenerative disorders. Furthermore, volume changes

represent neuronal cell loss in which case pharmaceutical treatment is unlikely to be effective. Diffusion

tensor imaging (DTI), a variant of conventional MRI, has become an increasingly prevalent and popular
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imaging modality for imaging the brain’s white matter tracts. DTI has unparalleled sensitivity to water

movements within tissue architecture and has been used to estimate white matter connectivity and

microstructural tissue integrity [33]. However, DTI lacks specificity and researchers have stated that

assumptions regarding white matter integrity should be made with extreme caution [34].

As a result, a new contrast mechanism may be needed to reliably evaluate microstructural

tissue health to identify the specific processes causing clinical symptoms before the final, and what is

considered irreversible, stages of neurodegeneration. One such property is the mechanical properties,

stiffness, or viscoelasticity of tissue - terms that can be used synonymously - which through manual

palpation has succeeded as a diagnostic tool throughout the history of medicine. The use of palpation

can be traced back to the early physicians of ancient Egypt and to Traditional Chinese Medicine [35,36].

Even today, physicians routinely measure mechanical parameters by applying a strain to the tissue (by

pushing it) to “measure” the resulting deformation through the sense of touch. For example, clinicians

can differentiate between subcutaneous masses that are hard and more likely to be malignant and

those that are soft and likely to be benign.

The success of diagnosing disease through palpation has no doubt been influential in the evo-

lution of mechanobiology; an emerging field of science at the interface of biology and engineering.

Mechanobiology focuses on how physical forces and changes in the mechanical properties of cells and

tissues contribute to development, cell differentiation, physiology, and disease. Research now provides

growing evidence of the importance of changes to cell mechanics or extracellular matrix structure

tissue in the development of many diseases, including fibrosis and cancer [37]. Mechanical properties

vary over a dynamic range much greater than MR relaxation time - the measurement of which pro-

vides the foundation for conventional structural images - with variations over 5 orders of magnitude

among various physiological states of normal and pathologic tissues [38] A way to directly measure

such properties, therefore, offers the prospect of an imaging technique with high sensitivity.

Developments within medical imaging have enabled the quantitative measurement of soft tissue

mechanical properties [39]. The discipline of Elastography describes the use of imaging modalities

such as ultrasound, optical coherence tomography and MRI to indirectly measure tissue mechanical

properties. A mechanical stimulus of some kind must be used, as tissue mechanics cannot be measured

directly, with modes of tissue excitation being either static, quasi-static, or dynamic in nature. The

quasi-static methods measure strain resulting from macroscopic compression and attempt to compute

elasticity based on a model of internal stress distribution [40], whereas dynamic elastography does not

require such a model and is therefore applicable to structures such as the brain. Elastography with

MRI, known as magnetic resonance elastography (MRE), has a distinct advantage over ultrasonic
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methods as it benefits from being both non-invasive and capable of generating images with a high

spatial resolution.

1.3.2 Magnetic resonance elastography (MRE)

Magnetic resonance elastography (MRE) was first described by researchers from the Mayo Clinic

through a seminal paper published in the journal Science in 1995 [41]. MRE is a non-invasive MRI-

based technique that can directly map and quantify the mechanical properties, or stiffness, of biological

tissue by imaging the propagation of applied acoustic waves. The advance which made MRE possi-

ble was the discovery of a way to include motion-encoding-gradients (MEGs) within a typical MRI

sequence to capture multiple snapshots of the wave propagation. Original studies manually measured

the wavelength in an image to estimate tissue stiffness [42, 43], before the subsequent development of

automatic image processing techniques or mathematical inversion algorithms. A full summary of the

MRE procedure, including details of data acquisition and data analysis, are provided in Chapter 2.

An important milestone in the evolution of MRE was the demonstration that it can serve as a reliable,

painless, and less-expensive alternative to liver biopsy for measuring the degree of liver fibrosis [44–46].

Importantly, MRE parameters have been corroborated with histological samples [45], and displays high

diagnostic accuracy and inter-reader agreement [47]. Previously, conventional MRI had not been able

to detect fibrosis as it does not change the anatomical appearance of the liver.

MRE became available as an FDA-approved upgrade for MRI scanners in 2009 and is now

available on nearly any existing 1.5 T or 3 T systems from all major vendors (Siemens, GE Healthcare

and Phillips). Between 2012 and 2016, more than 2,500 patients have undergone hepatic MRE exams

at the Mayo Clinic, highlighting a successful laboratory to clinical translation. As of late 2017, MRE

technology is available at over 800 Radiology and imaging centres across the world, as shown in Figure

1.5. Other organs to have been investigated with MRE include heart [48, 49], breast [50–52] skeletal

muscle [53,54], lungs [55,56], kidney [57,58], and prostate [59,60], highlighting the capability of MRE

to investigate a wide range of organs and associated pathologies.

1.3.3 MRE of the Brain

The next widely accepted clinical use of MRE is likely to be for preoperative surgical planning for pa-

tients with brain tumours and is already being used as part of the clinical work-up by neurosurgeons at

the Mayo Clinic. Tumours of interest include meningioma, pituitary adenoma, and vestibular schwan-

noma [62, 63]. Prior knowledge of tumour consistency, including the tumour’s intrinsic cohesiveness,
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Figure 1.5: Availability of MRE technology across the world. Most of these centres have the technology
to perform liver MRE which is increasingly becoming available for clinical use. Source: Resoundant
(MRE: connect) [61]. Note: very few of these centres currently have the resources to perform brain
MRE. At this time, approximately 5-10 research centres have published studies on brain MRE, in-
cluding the Mayo Clinic in Minnesota, the University of Illinois at Urbana-Champaign, Charité –
Universitätsmedizin Berlin, and the University of Edinburgh.

heterogeneity or infiltration into surrounding tissue, could assist surgeons in preoperative planning.

The resection of stiff, fibrous tumours is typically more difficult and may require ultrasonic extraction

which presents an increased risk to the patient. On the other hand, soft tumours are usually more

easily removed with a minimally-invasive suction technique. Figure 1.6 illustrates two examples of a

Grade I meningioma; the tumours are clearly on opposite ends of the mechanical spectrum despite the

same histological characteristics underling the pathophysiological classification. Research groups are

continuing to apply MRE to the diagnosis of other neurological conditions; a full summary is provided

in Chapter 3.

1.4 Thesis Overview

1.4.1 Objectives

The primary objective of this thesis is to evaluate the clinical utility of MRE as an imaging biomarker

for the early characterisation of neurodegeneration. MRE with a high-spatial resolution is sought

to be able to more accurately investigate specific neuroanatomical regions of interest. This is first
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Figure 1.6: (a-e) MRI and MRE data from 59-year-old female with meningioma: (a) axial T2-weighted
image demonstrating the tumour and associated oedema; (b) wave image shows longer wavelength
throughout the tumour; (c) MRE elastogram shows the tumour to be substantially stiffer, whereas
oedema is softer, in relation to unaffected tissue. (d-f) data from 39-year-old male with a glioma (grade
IV): (d) T2-weighted image showing the tumour mass; (e) wave image displays shorter wavelengths in
the tumour; (f) MRE elastogram showing the tumour to be softer compared to unaffected brain tissue.
Image adapted from Hiscox et al., 2016 [64] and used with permission.

achieved by reviewing the experimental methods used across the literature with a particular focus

on identifying approaches that provide images with a high-spatial resolution. A systematic review
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is then performed to evaluate results from studies that have investigated the mechanical properties

of the brain in healthy participants, and to consider the success of MRE in characterising disease

in patients with neurological disorders. Due to the wide range of reported methodologies, I discover

widely different reports of brain stiffness in healthy participants despite the mathematical conversion of

results to common MRE parameters. Importantly, there has been little to no cross-centre comparisons

or validation studies. Consequently, I obtain both phantom and brain data from three leading brain

MRE centres to perform a phantom validation study and to evaluate exemplar brain MRE images of the

same subject. Collaborations are then established with the University of Illinois at Urbana-Champaign

and Charité – Universitätsmedizin Berlin, to install two high-resolution brain MRE protocols at the

Edinburgh Imaging Facility, QMRI. With the two high-resolution MRE protocols at my disposable, the

reproducibility of each method is investigated. The optimal protocol is then utilised to investigate the

mechanical properties of the brain in a larger sample of young and healthy older adults. Concurrently,

the relationship between memory performance and hippocampal viscoelasticity is assessed in the older

adult group.

1.4.2 Structure

The introduction chapter has introduced the relevant topics, the clinical research question, and the

aims of this thesis.

In Chapter 2, I explain the theoretical basis of rheology and the experimental design to consider

when performing a brain MRE investigation. Each phase of the experiment is described with promi-

nence given to emerging techniques for performing high-resolution MRE. I also provide a summary of

the biological correlates of MRE measures, as determined through the use of animal models of disease.

In Chapter 3, I perform a systematic review of the MRE literature to identify studies that have

measured the mechanical properties of the human brain. From the data collected, results are math-

ematically converted to common parameters, to allow for a valid comparison, with values for global

brain tissue (GBT), grey and white matter, and lobar regions (i.e. the frontal lobe), provided for

healthy participants. In addition, data collected from clinical studies are summarised and linked to

pathological manifestations.

In Chapter 4, MRE phantom and human brain data of the same volunteer (LH) are presented from
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three leading brain MRE research institutes. The CIRS phantom data is validated against the quasi-

static measurements provided by the phantom manufacturer. The quality of human brain data is

assessed visually and compared with published values reported in the literature.

Chapter 5 describes the installation and optimisation process of introducing two high resolution and

widely published brain MRE protocols to the Edinburgh Imaging Facility, QMRI. The MRE images

subsequently obtained in Edinburgh are compared with the images acquired at the associated research

centres, as provided in Chapter 4. I also introduce a novel Graphical User Interface (GUI) MRE pro-

cessing pipeline for the automatic coregistration and quantitative measurement of regions of interest

(ROI).

In Chapter 6, I investigate the test re-test agreement of the two high-resolution brain MRE proto-

cols whose installation had been described in Chapter 5. This study involves the recruitment and

analysis of 6 young and 6 healthy older adult participants. Inter-method reliability, and biological

sensitivity of each technique are also evaluated.

Chapter 7 applies the most reliable high-resolution MRE protocol in a cross-sectional study to in-

vestigate the effects of healthy ageing on brain mechanical properties. The global cerebrum and a

range of subcortical grey matter structures are investigated in 12 young, and 12 cognitively healthy

older adults. A particular emphasis is on whether MRE can provide novel information unrelated to

volumetric information typically provided by conventional structural imaging.

In Chapter 8 I investigate the possible structure-function relationship between hippocampal viscoelas-

ticity and episodic memory performance in the older adult cohort.

Finally, I provide a summary of the work performed throughout this thesis in Chapter 9. I also

suggest incorporating emerging MRE methodological developments that will further enhance spatial

resolution, reliability and accuracy. I finish with the suggestion that this thesis provides the necessary

framework for future validation investigations and that brain MRE should be expected to contribute

to diagnostic neuroimaging in the future.
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CHAPTER 2. 2.1. THEORETICAL BACKGROUND

Plan for the Chapter

The first part of this chapter describes the concept of rheology with a focus on defining mechanical

models such as linear-elasticity, viscosity, and viscoelasticity. The second part of this chapter introduces

specific experimental considerations for performing a brain MRE investigation, with prominence given

to methods that can provide images with a high spatial resolution. Details are provided including the

choice of actuator, selection of vibration frequency, MRI pulse sequence, image pre-processing options,

and alternative forms of inversion for calculating tissue mechanical properties. The mathematical

assumptions required for different inversion techniques are also provided. Finally, an overview of the

biological correlates of MRE measurements are provided through experimental work in animal models

of disease, which have been essential for providing the link between the mechanical signature and the

underlying microstructural profile.

2.1 Theoretical background

2.1.1 Rheology

Rheology is the branch of physics that is defined as the study of the deformation and flow of matter. The

measurement of rheological properties is applicable to all materials and formulations, where elasticity,

viscosity and viscoelasticity can vary depending upon the external conditions applied including stress,

strain, timescale and temperature.

Hooke’s law, law of elasticity discovered by the English scientist Robert Hooke in 1660, states

that for relatively small deformations of an object, the displacement or size of the deformation is

directly proportional to the deforming force (i.e. stress). As a result, an idealised elastic solid whose

response to deformation that is only a function of displacement is known as a Hookean solid. On

the other hand, an idealised viscous fluid whose response to deformation is only a function of the

rate of displacement is known as a Newtonian fluid. Hooke’s law of elasticity or Newton’s law of

viscosity, however, lack the ability to describe realistic solids and fluids due to the complex structure

of matter. Thus, rheology tends to characterise materials as a combination of these two properties (i.e.

viscoelasticity), in order to provide a more complete description of their behaviour. This next section

further outlines the basic principles of rheology relevant to this thesis.
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2.1.2 Linear Elasticity

Traditionally, solids have been described by Hooke’s law. In one-dimension, this states that the strain

(displacement) ε, undergone by a material is proportional to the stress (force) σ, that is placed upon

it:

σ = Cε (2.1)

where C is a real-valued constant dependent on the material under investigation. The constant prop-

erty of the material often depends on physical state variables, including the material microstructure or

underlying molecular level. This equation implies that the material will always return to its original

shape once the stress, or load, is removed, meaning all energy is restored to the material. This theory

also implies that the final deformation has no dependence upon the rate at which the load is applied,

and thus the concept of time is not considered. Elastic materials therefore show time-independent

material behaviour, deform instantaneously when they are subjected to externally applied loads, and

resume their original (unstressed) shapes almost instantly when the applied loads are removed. While

these conditions can be approximated for some materials under certain conditions, they do not hold

true in general; the strain in a solid medium cannot be described by a single constant.

The concept of stress and strain can be extended to three-dimensions (3D), which complicates

the mathematics considerably. Here, the stress σij and strain εkl, tensors are related to one another

by the material stiffness tensor, Cijkl, a rank-4 tensor (indicial notation):

σij = Cijklεkl (2.2)

C is now a fourth order elasticity tensor mapping each of the nine terms to each for a total of 81 terms;

a formation known as Generalised Hooke’s Law. The nine stress components acting upon the stress

matrix is illustrated in Figure 2.1.

The number of terms can be reduced by assuming that shear stresses on the solid are equal, i.e.

the cube must not be experiencing body torque. These symmetries reduce the independent stresses

to 36 independent material parameters [2]. Additionally, since the stress and strain tensors and the

stiffness tensor contain symmetries, they are often writen as vectors and a matrix, respectively. As a

result, the simplest form of Hooke’s law, for an isotropic 3D solid, is often written in Voigt notation

as:
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Figure 2.1: Illustration to show the nine stress components of the stress matrix acting upon a cube in
three-dimensions. The diagonal components of the rank 2 stress tensor, σij, are the normal strains
whilst the non-diagonal components represent the shear strains. Source: Hollis et al., 2016 [1].
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Where C is the stiffness matrix and σ = C·ε. Due to the inherent symmetries of σ, ε, and C, only 21

elastic coefficients are independent.

At this stage, material models such as isotropy, orthotropy, and transverse isotropy can be con-

sidered. For isotropic materials, which have the same physical properties in any direction - a common

assumption made in brain MRE - C can be reduced to only two independent material constants, known

as the Lamé parameters: λ and the shear modulus G. Since the strain tensor is dimensionless, the

Lamé parameters are, like the stress tensor itself, measured in units of pressure. The shear modulus G

is the proportionality constant between shear stress and shear strain and defined as the shear strain of a

material along an axis when stressed perpendicular to that axis (i.e. magnitude of shear (off-diagonal)

stresses). λ does not have a simple physical interpretation, it is defined to provide algebraic simplicity
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in the resulting elasticity equations. λ is related to the compressibility of the material, λ → ∞ as

a material approaches the incompressible limit. In other words, λ represents the relationship of the

shear modulus to the bulk modulus K (i.e. the ratio of the pressure increase due to resulting decrease

of a volume):

K = λ+ 2
3µ (2.4)

The isotropic assumption simplifies Eq. 2.2 to:

σij = 2Gεij + λδijεkk (2.5)

where σij is the strain tensor, εij is the stress tensor and δ is the Kronecker delta. Of note, Hooke’s

law for isotropic materials, expressed by the linear relationship between stress and strain, is only valid

for stresses up to a certain value, called the proportionality limit. Beyond the proportionality limit,

nonlinearities set in.

2.1.3 Viscosity

Viscosity is the physical property that characterises the flow resistance of simple fluids; this resistance

results from interactions between particles travelling at different velocities. In contrast to a linear

elastic material, a viscous material does not return any of the energy stored during loading; all energy

is lost once the load is removed. Newton’s law of viscosity defines the simple linear relationship between

the shear stress and shear rate of a fluid subjected to a mechanical stress. For a Newtonian fluid the

shear rate, γ̇, defined as the gradient of the velocity across the fluid layers, is directly proportional to

the shear stress acting upon the solid over which the fluid is flowing:

τ = ηγ̇ (2.6)

where τ is the viscous stress tensor and the viscosity of the fluid, η, is defined as the constant of

proportionality. A Newtonian fluid requires that the viscosity remains constant, regardless of the

force or rate of the shear stress. Examples of Newtonian fluids include water, organic solvents, and

honey.
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2.1.4 Viscoelasticity

Viscoelasticity is the property of materials that exhibit both elastic and viscous characteristics when

undergoing deformation. Linear elasticity and viscosity offer descriptions in idealised situations that are

often not representative of complex materials such as biological tissue. Instead, viscoelasticity combines

these two concepts to provide a more accurate description of more complex material behaviour.

The most significant difference between viscoelastic and linear elastic models is that the strain

the material is undergoing is not simply dependent upon the instantaneous stress placed upon it but

additionally upon the stress history. As such, viscoelastic materials have several new properties that

are not seen in linear elastic properties. First of all, if a constant stress is applied to the material, the

strain will continue to increase through the phenomenon termed creep. Second, if a constant strain

is maintained, the stress will decrease though relaxation. Finally, there will be a lag between the

application of stress and the strain response through the process of hysteresis.

When considering dynamic MRE and the introduction of mechanical waves acting as the shear

stress, the assumption of tissue viscoelasticity, and harmonic motion at angular frequency ω, the strain

and stress oscillate with the same frequency but out of phase: From the time shift ∆t and ω, the phase

angle shift δ can be obtained. For an oscillating load this phase lag results in a dissipation of energy

within the material and attenuation of propagating waves, such that stress and strain can be written

as time-dependent sine functions:

ε = ε0sin(ωt− δ) (2.7)

σ = σ0sin(ωt) (2.8)

where t is time, ω is the angular frequency, ε0 and σ0 represent the amplitudes of the strain and stress,

respectively, and δ is defined as the phase lag between the oscillating stress and the strain response.

Equation 2.7 can be redefined using a complex valued amplitude, ε∗0 = ε′0+iε′′0 , where i is the imaginary

number equal to
√
−1.:

ε(t) = Re{ε∗0eiwt)} (2.9)

where

ε′0 = ε0cos(δ) (2.10)

ε′′0 = ε0sin(δ) (2.11)
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Simple trigonometric relations imply that:

|ε∗0| = ((ε′02 + (ε′′0)2)1/2 (2.12)

δ = tan−1
(
ε′′0
ε′0

)
(2.13)

For viscoelastic materials, Eq. 2.5 can be rewritten using complex-valued Lamé parameters via the

correspondence principle [3]. The correspondence principle states that the harmonic viscoelastic re-

sponse can be calculated by converting the undamped elastic moduli to complex amplitudes and

moduli:

σ∗ij = 2G∗ε∗ij + λ∗ε∗ij (2.14)

The real part of G∗ describes energy storage, and is known as the storage modulus, G′, and the

imaginary part describes attenuation behaviour and is known as the loss modulus, G′′.

This implies that the phase lag δ between the stress and the strain can also be defined in terms

of the storage G′ and loss G′′ moduli:

δ = tan−1
(
G′′

G′

)
(2.15)

Shown in this equation, there is no phase lag δ in an elastic material as the imaginary component will

be 0, whereas in a purely viscous material the phase lag is equal to π/2 radians.

The magnitude of the complex shear modulus |G∗| is the ratio of the amplitudes of the stress

to strain waves:

G∗ = σ0

ε0
(cos(δ) + isin(δ))

→ |G∗| = σ0

ε0

(2.16)

This also means that knowledge of |G∗| allows for the determination of the storage G′ and loss G′′

moduli using the vector analysis and the phase angle shift δ, through the equations:

G′ = |G∗|cos δ (2.17)

G′′ = |G∗|sin δ (2.18)

The reason that a material with tan δ >1 shows more dampening is because the loss modulus G′′ of
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the material is greater than the storage modulus G′. This suggests that the energy dissipating, vis-

cous component of the complex modulus dominates the material behaviour. Brain MRE has reported

variations of the complex shear modulus. Table 2.1 provides a summary of MRE parameters generally

reported across the literature.

Table 2.1: Summary of MRE parameters

Symbol Name Description Units

G′ Storage modulus Real component of the complex shear modulus and
a measure of the restoration of mechanical energy
due to the elastic properties of the material. Re-
lated to the inherent mechanical rigidity of the tis-
sue matrix, and has a strong frequency dependence.

kPa

G′′ Loss modulus Imaginary component of the complex shear modu-
lus and a measure of the energy dissipated in tis-
sue, represented by the wave attenuation, also has
a strong frequency dependence; a greater loss in
amplitude of a travelling wave indicating greater
material viscosity [4, 5]

kPa

|G∗| Complex shear modu-
lus magnitude

A measure of the total response of tissue to har-
monic vibration determined by |G∗| =

√
G′2 +

G′′2. Includes both elastic and viscous information
and thus may relate to haptic distinction between
stiff and soft materials, and is the parameter most
similar to the information afforded by manual pal-
pation [6].

kPa

µ Shear stiffness Another composite measure of the complex shear
modulus µ = 2 |G∗|2/(G′ + |G∗|). Determines the
wavespeed in an attenuating material.

kPa

φ Phase angle A common measure of relative tissue viscosity, with
a higher value indicating greater dissipative be-
haviour. φ is usually reported as a measure of rela-
tive viscosity as the measurement is not dependent
on stiffness. φ = arctan G′′/G′.

rad

ξ Damping ratio Similar in meaning to phase angle and related to
complex shear modulus through G′′/2G′. Term
used in engineering and thus has a physical con-
struct unlike φ.

Unitless
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2.2 Measuring brain viscoelasticity

An MRE investigation involves a conventional MRI scanner, the modified pulse sequence incorporating

motion-encoding gradients (MEG), and a source of harmonic motion to generate continuous shear

waves in to the tissue of interest. The degree of tissue displacement is estimated to ultimately infer

the inherent material property through the so-called inverse problem. In this chapter, a thorough

description of the steps involved in performing a typical brain MRE investigation is provided, including

an introduction to the types of vibration source, a description of how cyclic motion is encoded in MRI,

and how the motion encoded wave images can be processed to measure tissue mechanical properties.

Essentially, there are three key components to consider when performing an MRE investigation: (1)

methods of actuation including frequency of vibration; (2) choice of MRE pulse sequence to record the

MRE signal; and (3) choice of MRE inversion algorithm including assumed material model.

2.2.1 Methods of actuation

The first stage in an MRE experiment is the generation of a dynamic source of motion. Passive drivers

are utilised to induce shear vibrations into the targeted tissue, causing shear deformation because of

mode conversion and complex phenomena at boundaries and interfaces. External sources of motion

have included electromagnetic [7,8], acousto-mechanical [9,10] pneumatic [11,12], and piezoelectric [13]

devices, which transmit vibrations to the head via a passive driver such as a bite-bar, head cradle, or soft

pillow. A soft mat has also been placed on the thorax to induce vibrations to the head indirectly [14].

The pneumatic design, which has gained recent popularity within the field, is illustrated in Figure 2.2.

Each set-up causes the head to experience a gentle nodding motion on the order of microns (typically

between 5 - 50 µm). The obvious limitation for all external actuation methods involves the need for

extra hardware, which constrains the ease of which MRE can be installed at research and clinical

centres. The concept of the additional equipment may also make participants feel claustrophobic, or

they might be concerned about the vibration component in itself. As such, pilot studies have been

performed to investigate whether brain MRE can be performed without external mechanical hardware.

An MRE technique termed intrinsic activation (IA) has been developed to measure the low frequency

motion generated by the natural pulsations of the brain’s blood vessels [16, 17]. This approach uses a

phase contrast MR angiography sequence to measure tissue displacements at multiple cardiac phases,

where the arterial pulse wave passes through the branched arterial system from the circle of Willis to

parenchymal arteries. Further work is needed to validate such a technique, although IA holds promise

32



CHAPTER 2. 2.2. MEASURING BRAIN VISCOELASTICITY

Figure 2.2: (a) Pneumatic actuator design in which compressed air is transmitted through a plastic
tube from an active driver, situated in the MRI control room, to a passive soft pillow-like device placed
beneath the head (Resoundant, Mayo Clinic, Rochester, MN, USA). Source: Klatt et al., 2015 [15]; (b)
photograph of the pillow-like driver within a MRI head-coil, taken at the Edinburgh Imaging Facility,
QMRI.

for the future in improving the clinical utility of brain MRE.

The frequency at which the brain tissue is vibrated typically ranges between 10-100 Hertz (Hz).

The amplitudes of vibration at the prescribed frequencies are well within the safety margins permit-

ted by the European Union whole-body vibration standard - designed to limit chronic occupational

exposure [18]. Lower frequency waves attenuate less rapidly than higher frequency waves, enabling

the analysis of deeper brain tissue. Frequencies below 10 Hz, however, will generate waves with too

large a wavelength, resulting in the inability to sample the wave appropriately. On the other hand,

high frequency waves with a shorter wavelength, can theoretically provide higher spatial resolution,

however, frequencies above 100 Hz are generally not used due to discretisation errors [19] (i.e. where

the wave cannot be sampled correctly), and for participant comfort. A standardised frequency has
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not been set across different research groups, largely due to the use of alternative MRE acquisition

sequences and analysis protocols. However, the chosen frequency is selected by balancing the trade-off

between depth of penetration, resolving power and noise levels. Generally speaking, the majority of

brain MRE studies have used a frequency of 50 Hz - 60 Hz. However, within a limited frequency range

(i.e. 10 - 100 Hz), brain mechanical properties have been shown to follow a power-law frequency depen-

dence [20]. Some studies have therefore utilised a range of vibration frequencies to enable modelling

of the frequency-dependent material properties, providing an opportunity to enhance tissue character-

isation [21, 22]. Alternatively, data from multiple frequencies have been combined to improve image

resolution [23,24], more details of which are provided in section 2.2.4.

2.2.2 Recording the MRE signal

Conventional MRI applies a sequence of radiofrequency (RF) excitation pulses and phase and frequency

encoding gradients to produce an image by encoding the spatial position of hydrogen nuclei (spins) in

voxels within a tissue [25]. MRE further utilises the motion sensitivity of the spin phase of the protons.

This sensitivity is a result of the high gyromagnetic ratio of protons which govern the scale of interaction

of magnetic field gradients, as well as the position of a group of spins resonating at the same frequency

(i.e. isochromat). The addition of a cyclic motion-encoding gradient (MEG) can be incorporated into

nearly any MRI sequence between the excitation pulse and signal read-out to encode tissue oscillation

into the signal phase. MEGs are typically trapezoidal, as opposed to sinusoidal, as they have previously

been determined to provide more sensitivity to strain wave transmission [26].

In the presence of a magnetic field gradient, ~Gr(t), the application of the MEGs will encode the

spins with trajectory, ~r(t), into the phase image, providing a single shot measure of the total amount

of accrued phase φ.

φ(τ) = γ

∫ τ

0
~Gr(t) · ~r(t) dt, (2.19)

where γ is the gyromagnetic ratio characteristic of the nuclear isochromat under investigation. From

the phase accumulation calculated at a single time point, it is possible to infer the amount of tissue

displacement at each voxel; the phase of harmonically vibrating tissue is directly proportional to its

displacement [27,28].

Synchronisation of the externally applied motion with the MEG, is a critical step in the MRE

acquisition process. Protons moving in synchronisation with the switching of the MEG, from one

polarity to the other, will continually accumulate phase. Importantly, the MEG waveforms are always

balanced, so that only moving spins experience phase accrual. In contrast, the effects of positive
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and negative gradient lobes on resting spins cancel each other out. Manipulation of the synchrony

between the MEG and the external vibration can be created by the trigger pulse, causing a small

delay, known as a phase offset θ. Four or eight phase offset images are usually sampled throughout the

wave cycle, to capture the propagating wave over the vibration period. Two-dimensional (2D) MRE

datasets are faster to require due to only one encoding direction being captured. However, accurate

determination of tissue mechanical properties requires the capture of the full vector displacement field

in three dimensions (3D) [29]. To capture the full wave field, the acquisition is repeated with the

MEG in turn imposed along all three orthogonal directions, increasing the imaging time by a factor of

three.

MEGs have been incorporated into sequences such as gradient-recalled (GR) [30,31], and spin-

echo (SE) Echo Planar Imaging (EPI) [8, 32, 33], multi-shot, variable density spiral [34, 35] and a

3D multi-slab multi-shot spiral acquisition [11]. Producing reliable estimates of brain mechanical

properties relies on MRE sequences to obtain images with adequate resolution and signal-to-noise

ratio (SNR). Low resolutions do not allow regional estimates of mechanical properties, whereas noise

will warrant excessive filtering, limiting the ability to detect fine scale features. The most common

sequence for brain MRE has been a single-shot spin-echo EPI sequence, which has an excellent temporal

resolution, allowing the acquisition of entire images after a single excitation pulse [23]. The sequence

begins by sending an external trigger pulse to the waveform generator to initiate mechanical vibrations.

After an appropriate delay to allow for wave propagation into the region of interest, the imaging

procedure occurs, comprising a sequence of 90◦ excitation pulse, MEG, 180◦ refocusing pulse and the

full k-space readout in the typical EPI fashion, as shown in Figure 2.3. The main disadvantage of EPI,

however, is that the entire range of phase encoding steps are acquired in one TR, thus leading to a

long readout time. This renders EPI susceptible to B0 inhomogeneities which inevitably lead to image

artefacts - especially in regions adjacent to air-filled cavities, such as the parts of the brain surrounding

the paranasal sinuses.

An advance in the acquisition of brain MRE data was achieved through the development of

a multi-shot multi-slab spiral MRE sequence [11]. The so-called spiral sequence can capture MRE

displacement data in a shorter scan time by using multiple 3D volumes, or slabs, that cover the

entire brain. Previous brain MRE studies have either compromised imaging coverage to maintain

an acceptable scan time or employed reduced spatial resolutions to obtain full-brain coverage. The

reduced number of imaging volumes allows for the use of a short TR to maximise SNR efficiency,

whereas spiral filling of k-space, which have the entire readout after the echo time, enables shorter echo
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Figure 2.3: Diagram of a modified spin-echo EPI pulse sequence. Bipolar motion encoding gradients
are shown on the slice-select (SS) axis. Two more acquisitions are required on the phase-encode (PE)
and read-out (RO) axes so that full 3D information about the displacement vector field is recorded. In
this example, only one MEG cycle is incorporated.

times resulting in less distortion from field inhomogeneities. MEGs are applied on either side of the

refocusing pulse and before the in-plane spiral readout gradients. Following a second refocusing pulse,

a low-resolution 3D navigator is acquired for motion-induced phase error correction. Correction for

motion-induced phase errors has been shown to improve the quality of phase data with improved SNR

and reduced slab-to-slab phase inconsistencies. The pulse sequence diagram is illustrated in Figure

2.4.

Once the time series has been acquired, the raw phase images undergo a number of processes

prior to analysis, in order to remove unwanted noise contributions. The amplitude of vibration must

be sufficient to produce waves deep within the brain [27]. However, too great an amplitude can create

heavy phase wrap, particularly near the edges of the brain due to the phase of the wave shifting by

more than 2π. Phase is bounded by the interval (-π, +π); if the original phase exceeds these limits,

the measured phase will be wrapped back into this range, creating discontinuities in the data. These

discontinuities can be eliminated using so-called phase unwrapping algorithms. Several unwrapping

algorithms have been developed each with their own strengths and weaknesses relating to delivery

of the exact solution, robustness to high noise, or full automation [36–38]. The tissue displacements

encoded into the phase of the signal are then Fourier-transformed along the temporal axis to create
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Figure 2.4: Diagram of MRE sequence incorporating multishot, variable-density spiral readout gradi-
ents for generating high-resolution displacement data. Bipolar motion encoding gradients (dashed) are
shown on each gradient axis, though are only applied one at a time. Source: Johnson et al., 2014 [11].

a complex wave field in place of a time series. This procedure filters out noise and off-frequency

behaviour, to isolate the harmonic motion of interest, see Figure 9.1. The tissue displacement data are

then inverted through the equations of motion using an inversion algorithm, as described in the next

section.

2.2.3 MRE inversion

Consider that the equation of conservation of linear momentum is:

∇ · σ = ρü (2.20)

with ρ the density and u the displacement field. By substituting the isotropic stress-strain equation,

as shown in Eq. 2.5, into this equation, provides the Navier-Cauchy equation. To do this, this

equation needs to be rewritten in terms of displacements rather than stress and strain, to arrive at

the displacement form of the Navier-Cauchy equation. If harmonic oscillations are considered, it can

be assumed that u(x, t) = Re{u∗(x)eiωt} and therefore use the harmonic form of the Navier-Cauchy

equation, which governs motion in an isotropic, heterogeneous, viscoelastic solid:

− ρω2u∗ = ∇ · (G∗(∇u∗ +∇u∗T ) +∇(λ∗∇ · u∗) (2.21)
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Figure 2.5: Phase unwrapping and fast Fourier transform (FFT) are a pre-requisite for all MRE
phase images: (a) stack of raw wrapped phase images capturing the wave at different phases of the
vibration cycle; (b) phase images have been unwrapped using the Laplacian-Based Estimate (LBE)
algorithm (available within PhaseTools software [38]); (c) images are then temporally transformed.
In the resulting frequency-resolved representation, the static offset is contained in the zero-frequency
component, whereas the wave information falls into the first harmonic frequency image. The higher
harmonic frequencies contain no information.

where G∗ is the complex valued viscoelastic shear modulus, λ∗ is the second Lamé parameter, ρ is the

tissue density (∼1000kg/m3), u∗ is the complex-valued amplitude of the harmonic vector displacement

field, ∇ is the gradient operator, T represents tensor transposition, and ω the angular frequency, ω =

2πf, where f is the applied mechanical frequency (Hz). Some groups solve this form of the equation,

typically using finite-element based methods (FEM). The second Lamé parameter λ is approximately

six orders of magnitude greater than G. Longitudinal waves travel at a high velocity (1540m/s) in soft

tissue in the frequency range used in MRE, resulting in much longer wavelengths [39]. To solve this

equation directly, a large value for λ is used with a stabilized incompressible finite element solution to

model a nearly incompressible material - a reasonable assumption for the brain due to the large water

content.

Another approach is to assume that the material is homogenous, treating G, λ, and ρ as locally

constant, to arrive at the homogenous form of the equation for harmonic motion:

− ρω2u = G∇2u + (λ+G)∇(∇ · u) (2.22)

For a nearly incompressible material, λ→∞ and ∇ · u→ 0, which results in numerical issues for the

second LHS term of equation 2.22 as ∞× 0 is difficult to evaluate. High pass filtering techniques have
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been applied prior to inversion [27]. Alternatively, calculating the curl of the displacement field will

also remove the compression terms. Other times, their contribution is simply ignored [27].

Once the bulk term has been removed, Eq 2.22 can be simplified to the Helmholtz-type equa-

tion:

− ρω2u = G∇2u (2.23)

This equation directly relates the measured displacements to the complex shear modulus G, by the

angular frequency ω and the material density ρ, to allow direct algebraic inversion of shear wave data,

(i.e. direct inversion).

These equations can be solved using techniques such as so-called direct inversion (DI - homoge-

nous form - Eq. 2.23) and non-linear inversion (NLI - heterogeneous form Eq. 2.21). Additionally,

further processing has been performed by utilising the DI equation across multiple frequencies to allow

for viscoelastic modelling or multi-dual elasto-visco inversion (MDEV), as described in the next section.

Direct Inversion

Direct inversion (DI) calculates tissue mechanical properties by directly inserting the measured dis-

placements into the appropriate wave equation governing the material, and was first introduced to

MRE by Oliphant et al., 2001 [2]. The constitutive equation of motion for an isotropic, homogeneous,

viscoelastic material was found in Eq. 2.23. The central aspect of DI involves calculating the Lapla-

cian, which requires estimating second order derivatives in space from the measured displacement data.

This process is repeated for each displacement direction and used to solve G* using a least-squares

approach, however the determination of spatial derivatives is particularly challenging in the presence

of noise. The main drawback of a DI approach is the assumption that tissue mechanical properties

are locally constant and contradicts what is known about brain anatomy; the brain is a heterogeneous

structure whose different constituents likely have different non-linear, viscoelastic and anisotropic me-

chanical properties. Due to the violation of the heterogeneity assumption, values near interfaces are

questionable, and heavy filtering is required to remove displacement contributions that do not fit the

model of slowly varying material properties.

Non-linear inversion (NLI)

The alternative to direct inversion (DI) is the use of finite-element modelling (FEM) to perform so-

called non-linear inversion (NLI). FEM is a numerical method of achieving approximate solutions to

problems in solid mechanics using partial differential equations. FEM methods are known as the "for-
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ward problem", as prior knowledge of tissue geometry, boundary conditions, and mechanical properties

are needed to initially build a model simulation [40,41]. NLI invokes a computational model of the me-

chanical motion of heterogeneous, isotropic, viscoelastic tissue (the forward problem - Eq. 2.16), and

estimates a set of mechanical property parameters that best reproduces the measured displacements

(the inverse problem) [40,42,43]. The process is repeated iteratively until the calculated displacements

sufficiently match the measured displacements. Iterative methods use optimisation techniques, where

an estimate of the unknown property distribution is iteratively updated, such that the displacements

predicted by solution of the forward problem closely match the measured displacements.

More specifically, the optimisation problem is formulated in terms of minimizing an objective

function (i.e. error function, Φ), which quantifies the difference between the measured displacements,

(um), and a set of displacements generated by a computational model of the system, (uc), with some

estimate of the unknown material properties, (θ = [G′,G′′]). Once the minimum of the error function

Φ is reached and the computational model is the closest possible match to the measured data, the

current estimate of Ω will be close to the true distribution, assuming that the forward model is a good

match for the tissue’s behaviour. The material property estimation is iteratively updated to minimize

a mean-squared error cost function:

Φ =
∑
Ω
||uc(θ)− um||2 (2.24)

where the summation is over the physical domain of interest, Ω. The result of the reconstruction is

a spatial map of the complex shear modulus G∗. Due to the enormous computational cost, mini-

mization of Eq. 2.24 is reformatted in parallel as subzone subdomains of the full physical domain, Ω.

The subzones are selected at random, properties are estimated on each subzone, and the results are

reassembled in order to repeat with new zones until a global minimum is achieved allowing process-

ing of the full-volume displacement data acquired. See Figure 2.6 for an illustration of the subzone

concept.

The biggest limitation with NLI is that Gaussian smoothing is required to stabilise the inver-

sion. This creates a large resel or effective resolution element, resulting in the loss of boundaries and

interfaces. Further, NLI is computationally expensive with processing speed on the order of hours.

This contrasts with direction inversion (DI) which can be performed within seconds. The ease of use

and quick processing time partly explains the popularity of DI across the literature, as it would more

readily allow brain MRE to fit within a typical clinical neuroimaging protocol.
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Figure 2.6: Schematic representation of subzone concept. The global problem domain is represented
by Ω, with boundary Γ. The subzone domain is represented by Ωz, with boundary Γz. Boundaries are
chosen arbitrarily, allowing for the global problem domain to be broken up into a number of smaller
sub-domains for more efficient computation. Source: McGarry et al., 2013a [44].

Additional processing - Multi-frequency MRE

(i) Viscoelastic modelling

Mechanical properties derived from single wave frequency studies are a function of frequency, and

therefore bound to specific experimental conditions. An alternative analysis technique has utilised the

DI equation over multiple vibration frequencies in order to captures a wide spectrum of experimental

results to improve the physical significance of MRE data [21, 22]. Multifrequency acquisitions have

been acquired at, for example, 25, 37.5, 50 and 62.5 Hz, and the dispersion of waves across this fre-

quency range are analysed for the ability to fit a prescribed rheological viscoelastic model. Viscoelastic

models include the Maxwell model, Kelvin-Voigt model, and the Zener model, among others [45, 46].

The spring-dashpot parameter model has been determined to be the most suitable viscoelastic model

for biological tissue, in which tissue is characterised by a hierarchical arrangement of elastic springs

µ and viscous dashpots η [22]. While linear models do not show a power-law frequency dependence,

shear moduli data can be fitted to a fractional spring-dashpot model:

G∗ = κ(i · 2π · f)α (2.25)

with κ = µ(1−α)ηα yielding frequency independent elasticity µ, (not to be confused with shear stiff-

ness, µ), frequency independent viscosity η and a tissue characterisation constant α. As µ and η
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are co-dependent, η is assumed constant and assigned a value of 3.7 Pa - previously calculated as

an approximate value of viscosity in human brain tissue [21]. Ultimately, two frequency-independent

material parameters are reported. µ combines elasticity (stiffness) and viscosity (friction) in one pa-

rameter to describe the solid-fluid behaviour of the tissue, and is thus a measure of adhesion and soft

tissue connectivity. The slope of the modulus dispersion is analysed to provide parameter α, which

characterises the alignment of mechanical structure-building elements in the tissue. α is known as the

geometry parameter due its correlation with the fractal dimension, indicating the sensitivity of α to

material complexity [4]. As a side note, α is not comparable to the loss tangent φ, which in general is

frequency dependent. However, in some complex and irregular materials, φ becomes less sensitive to

frequency and thus φ = α × π/2, may hold true [47]. In general, modelling may be able to improve

the physical significance of MRE data, however, this approach does not readily fit into the framework

of this thesis with the objective to acquire images with a high-spatial resolution.

(ii) Multi-frequency dual parameter elasto-visco inversion (MDEV)

Another alternative and innovative MRE analysis approach is to combine wave images from several

actuation frequencies in one inversion [23]. Whereas the above mentioned modelling studies seek to

determine the potential frequency dependence of tissue stiffness, MDEV is implicitly based on the

assumption that the shear modulus is independent of the vibration frequency, i.e. G*=G*(r) rather

than G*(r,ω).

The term dual, which forms part of the MDEV acronym, alludes to the fact that each parameter

is retrieved from mutually independent calculation steps [48]. Making the usual assumptions such as

homogeneity, linear viscoelasticity, and isotropy, both parameters provide just another representation

of the storage and loss modulus usually parameterised in MRE. MDEV was created due to problems

with single frequency schemes utilising direct inversion. Problems include inhomogeneous regions of

interest due to standing wave nodes and attenuation; standing waves are characterised by nodes with

zero displacement amplitude. In contrast, in MDEV inversion-based MRE, the information provided by

frequency-resolved complex shear moduli is sacrificed for generating spatially highly resolved maps [49].

As a result, |G∗| and φ refer to the amplitude and phase angle of the oscillatory response to a harmonic

stress, respectively. In other words, the effective harmonic frequency of |G∗| and φ is given by the mean

of all vibration frequencies weighted by the wave amplitudes they produced. It is a true multifrequency

inversion since the wave fields are first averaged over all components and frequencies before the division

is performed [48]. For the mathematical calculation, the reader is referred to Streitberger et al.,
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2014 [49]. Additionally, MDEV has been combined a new image processing pipeline known as the

Elastography Software Pipeline (ESP) with the objective to preserve fine-scale image information [24].

One of the strengths of the analysis is the preservation of boundaries and interfaces due to regularisation

in the wavelet domain using a complex dual-tree wavelet transform [50]; this approach does not force

a window on the data and run the risk of losing useful information. ESP also applies a newly designed

filter bank to extend the MDEV equations so that local directional spatial frequency information is

used to weight the inversion at each voxel. MDEV and ESP, like single-frequency based DI, however,

assumes local homogeneity, and thus the quantitative performance in heterogeneous tissue is expected

to be limited.

2.3 Determinants of brain stiffness

The contributors to brain stiffness is an active field of research. Investigating the mechanical response

of the mouse brain in disease models is a viable way to infer the relationship between MRE parameters

and microstructural alterations, and promises to enhance the clinical utility of MRE. There is growing

evidence that the following effects are relevant for brain mechanical parameters:

• demyelination of neurons

• inflammatory processes

• neuronal network density

• Aβ protein accumulation

Results are summarised in Table 2.2, and the studies which have performed these investigations are

described in more detail below:

Table 2.2: Determinants of brain stiffness

Process Population Brain structure Author(s) Stiffness

Toxic demyelination MS mice Cerebrum Schregel et al., 2012 [51] ↓
Inflammation EAE mice Cerebrum Riek et al., 2012 [52] ↓

EAE mice Cerebellum Millward et al., 2015 [53] ↓
Reduced neuron density MCAO mice Cerebrum Freimann et al., 2013 [54] ↓
Neurogenesis MPTP mice Hippocampus Klein et al., 2014 [55] ↑
Amyloid (Aβ) plaques APP23 mice Hippocampus Munder et al., 2017 [56] ↑

43



CHAPTER 2. 2.3. DETERMINANTS OF BRAIN STIFFNESS

2.3.1 Demyelination and inflammation

The first investigation into the biological correlates of MRE parameters was undertaken by Schregel

et al., 2012 [51] who induced reversible toxic demyelination in a mouse model of MS. Schregel et al.,

2012 demonstrated that stiffness decreases with both progressive demyelination and alterations in the

structural integrity of the extracellular matrix. This work was supported by a follow up study by Riek

et al., 2012 [52] who performed MRE in a mouse model of experimental autoimmune encephalomyelitis

(EAE). Higher levels of inflammation (perivascular T-cell infiltration) correlated with a decrease in

stiffness in the cerebrum. Of note, EAE related decrease in brain stiffness was not correlated with

demyelination but instead sensitive to the early inflammatory processes in the brain. In another EAS

mouse model, Millward et al., 2015 quantified macrophages and microglia cells in the cerebellum, and

also found that increased levels of inflammation was associated with a reduction in tissue stiffness

[53].

2.3.2 Neuronal network density

Two complementary MRE studies in mouse models suggest that brain stiffness correlates with the

number of neurons. In a commonly used stroke model, Freimann et al., 2013 demonstrated a clear

correlation between brain tissue softening and reduced neuronal density after middle cerebral artery

occlusion (MCAO) [54]. Neurons were counted histologically in both affected and contralateral hemi-

spheres. Inducing neuronal loss with MCAO within one hemisphere was associated with a reduction

in macroscopic brain stiffness, as shown in Figure 2.7 A. The second experiment employed a mouse

model of Parkinsonism based on the administration of 1 methyl-4-phenyl-1,2,3,6-tetrahudropyidine hy-

drochloride (MPTP) to induce dopaminergic neurodegeneration and thus enhance neurogenesis [55].

Figure 2.7 B shows how enhanced proliferation of neurons in the hippocampus was associated with

an increase in hippocampal stiffness. Taken together both studies shed light onto the important role

of neurons as a supporting structure of the brain. Additionally, findings from single cell recordings

suggest that neurons have higher stiffness than glial cells, which further supports the hypothesis that

neurons establish the mechanical scaffold of the brain [57].

2.3.3 Beta-amyloid (Aβ) protein accumulation

In an established transgenic mouse model of AD, Munder et al., 2017 reported a significant correlation

between the stiffness of the hippocampus and the number of beta-amyloid (Aβ) cells in APP23 mice,
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Figure 2.7: Correlation between the storage modulus G′ and number of neurons in the murine brain;
(a) a decrease in the number of neurons by middle cerebral artery occlusion (MCAO) correlates with
a decline in G′ [54]; (b) complementary to (a), the time course of G′ in the hippocampal region in a
Parkinson mouse model. MPTP was administered on day 20, causing a short-term increase in neuronal
proliferation. The significant increase to G′ on day 6 after injection followed by a decay to baseline
values is correlated with the number of new neurons [55]. Graphs adapted from Hirsch et al., 2017 [48],
and used with permission.

suggesting that the increased number of cells accumulating Aβ, may cause the rise in tissue stiffness

[56]. Alternatively, the increase in hippocampal stiffness may be reflective of neurons undergoing

apoptosis; it is expected that neurons undergoing programmed cell death, as a result of intracellular

Aβ accumulation, will exhibit differing mechanical properties compared to healthy, fully functional

neurons.

2.4 Conclusions

The brain has a large fluid component, resulting in a time lag between the stress and the resulting

strain, which suggests that the brain is more accurately described by a viscoelastic model as opposed

to an elastic model. Reported MRE output parameters for describing brain viscoelasticity are all

derived from the complex shear modulus, and thus mathematically related to one another. The design

of an MRE experiment includes considerations for the actuation, imaging and inversion components.

In this chapter, many of the common elements of a brain MRE investigation have been outlined,

which show how the acquisition and analysis pipelines can be wide-ranging. Finally, I describe how
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MRE measurements can be related to biological events in vivo. In the next chapter, I will perform a

systematic search of the literature to summarise results obtained to date concerning measurements for

healthy participants. Due to the reporting of various forms of the complex shear modulus, all results

will be mathematically converted to the same parameters of shear stiffness, µ and loss tangent, φ in

order to provide a valid summary. I will also further consider the initial contribution brain MRE has

had in characterising neurological disorders in clinical populations.
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CHAPTER 3. 3.1. INTRODUCTION

Plan for the Chapter

Magnetic resonance elastography (MRE) of the liver has had success as a diagnostic marker, in part

due to establishing cut-off values for the healthy liver and stages of fibrosis. The purpose of this

chapter is to establish whether MRE quantitative measurements can be established for the brain in

healthy participants. A systematic literature review is performed according to the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to identify studies that have

specifically utilised MRE to investigate the human brain. From the data identified from these studies,

reference values for the mechanical properties of the brain will be provided in healthy participants for:

1) global brain tissue (GBT); 2) grey matter (GM) and white matter (WM), and 3) lobar regions (i.e.

frontal lobe, temporal lobe, etc.). A further aim of this literature review is also to identify studies that

have performed preliminary clinical investigations, and thus the extent to which MRE has revealed

significant alterations to the brain in patients with neurological disorders is assessed and discussed in

terms of known pathophysiology.

3.1 Introduction

An increasing body of research has now investigated the use of MRE to study the mechanical properties

of the brain in vivo. As highlighted in the previous chapter, MRE research groups use different methods

and report alternative MRE-derived variables, thus results must be standardised according to the same

parameter to represent the same underlying mechanical response. Shear stiffness, µ, describes the

resistance of a material to a harmonic shear stress at the given actuation frequency, and is related to

the wavespeed in a viscoelastic material with density of 1000kg/m3 [1, 2]. The relationship between

µ and the complex shear modulus |G∗|, was defined in Chapter 2 - Table 2.1. For studies that have

reported spring-pot modelling parameters µ and α, shear stiffness, µ can be calculated from |G∗| at

any frequency (for the purpose of this review, 50 Hz is chosen). Results are converted to the shear

stiffness, µ as opposed to |G∗|, as it provides the most data to summarise and review. Studies that

typically report µ do not usually include values for G′ and G′′, rendering it impossible to calculate

|G∗|. Furthermore, µ describes the effective stiffness in a viscoelastic material and is a concept more

readily understood. Where possible, the loss tangent (G′′/G′) will also be calculated, with a great

This chapter contains material previously published, and is reprinted with permission. LV Hiscox, CL Johnson, E
Barnhill, MDJ McGarry, J Huston III, EJR van Beek, JM Starr, N Roberts. Magnetic Resonance Elastography (MRE)
of the Human Brain: Technique, Findings, and Clinical Applications. Phys Med Bio, 61, R401-R437. The published
version can be found in Appendix I.
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CHAPTER 3. 3.2. METHODS

angle indicating more dissipative (i.e. viscous) behaviour.

3.2 Methods

Search Strategy - All searches were performed on 9th August 2016. Search terms related to Magnetic

Resonance Elastography (MRE) and the brain were included. Search filters included keyword, title

and abstract information. Relevant publications were identified through searches of Medline (including

work in progress from 1946 until 9th August 2016), Embase (1980 until 9th August 2016), and Web

of Science (1900 until 9th August 2016). Articles with any combination of any of the MRE terms and

any brain term were reviewed. The full search strategy can be found in Appendix II.

Data Extraction - A breakdown of the full review process is presented in Figure 3.1. A PRISMA

(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Flow Diagram was used to

report the number of records identified and summarise those included and excluded [3]. A total of

1101 articles were identified. After duplicates were removed, the titles and abstracts of 765 articles

were screened for eligibility. 652 were excluded on review of title and/or abstract (for example MRE

applied to other organs such as liver, to a murine model or phantom, or other MRI methods (excluding

MRE) used to investigate the brain). One hundred and thirteen articles considered to be relevant were

retrieved and assessed for agreement between two independent researchers, with the following inclusion

and exclusion criteria:

Inclusion criteria - This review aimed to include all published studies that utilised MRE and re-

ported the acquisition and analysis methods used to determine tissue mechanical properties of the

human brain in healthy volunteers and/or patients with neurological disorders.

Exclusion criteria - (i) Unpublished studies, dissertations, theses, conference abstracts and poster

presentations, (ii) editorials or comments in journals, (iii) MRE review articles, (iv) MRE applied to

phantoms, (v) MRE applied to murine or other animal models, (vi) non-English articles, (vii) ex-vivo

studies, (viii) engineering advancements in the technical design of MRE, (ix) MRE safety studies, (x)

MRE applied to tissues/organs other than brain, (xi) studies with n < 2 subjects. Seventy-two studies

were then excluded at this stage due to not being relevant to the research aims.
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CHAPTER 3. 3.3. RESULTS OF LITERATURE REVIEW

Figure 3.1: PRISMA flow diagram showing manuscript selection

3.3 Results from literature review

3.3.1 Studies identified

Forty-one studies referring to MRE investigations performed in a total of 914 subjects met the inclusion

criteria. The corresponding authors represented MRE research groups in four different countries: USA,

Germany, Australia, and China. Twenty-four studies utilised MRE in the study of healthy participants,

see Table 3.1, and seventeen studies investigated neurological disorders in patient populations, see Table

3.2. Ten of the seventeen clinical studies included a control group of healthy participants.
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Table 3.1: Twenty-four MRE studies which have investigated the mechanical properties of the human brain in healthy participants.

Author Brain structure N Age range
Klatt et al., 2007 [4] GBT 5 25-46
Sack et al., 2008 [5] GBT 6 34.5*
Sack et al., 2009 [6] GBT 55 18-88
Weaver et al., 2012 [7] GBT 6 22-55
Hatt et al. 2015 [8] GBT 9 32.6*
Dittmann et al., 2015 [9] GBT 8 25-54
Sack et al., 2011 [10] GBT & inner, cortical, frontal, dorsal regions 66 18-72
Murphy et al., 2013b [11] GBT & frontal, occipital, parietal, temporal lobes, cerebellum, deep GM/WM 10 23-55
Arani et al., 2015 [12] GBT & frontal, occipital, parietal, temporal lobes, cerebellum, deep GM/WM 45 56-89
McCracken et al., 2005 [13] GM & WM 6 n/a
Xu et al., 2007a [14] GM & WM 3 28-32
Green et al., 2008 [15] GM & WM 5 23-61
Kruse et al., 2008 [16] GM & WM 25 23-79
Clayton et al., 2012 [17] GM & WM 6 19-42
Johnson et al., 2013a [18] GM & WM 3 24-52
Braun et al., 2014 [19] GM & WM 5 26-55
Zhang et al., 2011 [20] GM & WM & cerebellum 8 22-43
Johnson et al., 2013b [21] GM & WM, corpus callosum, corona radiata 6 24-52
Johnson et al., 2014 [22] GM & WM, brain stem, cerebellum 3 26-38
Romano et al., 2012 [23] Corticospinal tract 5 25-50
Guo et al., 2013 [24] WM, thalamus, corpus callosum genu, caudate nucleus 23 22-72
Fehlner et al., 2015 [25] Crus cerebri, capsula interna, pons 12 27-54
Johnson et al., 2016 [2] Amygdala, hippocampus, putamen, caudate, pallidum, thalamus 28 18-33
Schwarb et al., 2016 [26] Hippocampus, parahippocampal gyrus, entorhinal cortex 20 18-33

GBT= Global Brain Tissue, WM = White Matter, GM= Grey Matter

*Mean age of subjects.
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Table 3.2: Seventeen MRE studies which have investigated the mechanical properties of the human brain in patient populations

Author Disorder Brain structure Population N Age range
Xu et al., 2007b [27] Intracranial tumours (various) GBT Patients 6 16-63
Murphy et al., 2013a [28] Meningioma TR Patients 12 n/a
Simon et al., 2013 [29] Intracranical tumours (various) TR, HRT Patients 16 26-78
Reiss-Zimmermann et al., 2014 [30] Intracranical tumours (various) TR, HRT Patients 27 36-86
Streitberger et al., 2014b [31] Glioblastoma Multiforme TR, HRT Patients 22 64.5*
Hughes et al. 2015 [32] Meningioma TR Patients 14 59*
Wuerfel et al. 2010 [33] Multiple sclerosis (Relapse-Remitting) GBT Patients 45 21-51

Controls 34 18-59
Murphy et al. 2011 [34] Alzheimer’s disease GBT Patients 7 76-94

Controls 14 75-89
Streitberger et al., 2010 [35] Normal Pressure Hydrocephalus GBT Patients 20 69.1*

Controls 25 62.1*
Freimann et al., 2012 [36] Normal Pressure Hydrocephalus GBT Patients 20 51-85

(pre/post shunt)
Streitberger et al., 2012 [37] Multiple sclerosis (Chronic-Progressive) GBT Patients 23 51.5*

Controls 38 48*
Lipp et al., 2013 [38] Parkinson’s disease & Progressive GBT, basal ganglia PD Patients 18 63*

Supra-nuclear Palsy PSP Patients 16 70*
Controls 18 64*

Romano et al., 2014 [39] Amyotropic lateral sclerosis Corticospinal tract Patients 14 46-70
Controls 14 45-69

Huston et al., 2015 [40] Fronto-temporal dementia GBT, frontal, occipital, parietal Patients 5 53-65
temporal lobes, cerebellum, deep Controls 9 55-66
GM/WM, sensory/motor strip

Fattahi et al., 2015 [41] Normal Pressure Hydrocephalus GBT, frontal, occipital, parietal Patients 10 67-79
temporal lobes, cerebellum, deep Controls 21 67-80
GM/WM

Fehlner et al., 2016 [42] Clinically Isolated Syndrome GBT, WM Patients 17 22-47
Controls 33 18-53

Murphy et al., 2016 [43] Alzheimer’s disease & GBT, frontal, occipital, parietal AD patients 8 n/a
Mild Cognitive Impairment (MCI) temporal lobes, cerebellum, deep MCI patients 8 n/a

GM/WM, sensory/motor, FPT CN + controls 16 n/a
CN - controls 16 n/a
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CHAPTER 3. 3.4. HEALTHY SUBJECTS

3.4 Brain MRE results in healthy subjects

3.4.1 MRE results for global brain tissue (GBT)

Table 3.3 shows mean MRE values for GBT in healthy subjects from 12 studies, and converted to µ

(kPa) and φ (rad), where possible. Values for µ range between 0.62 - 2.99 kPa, with a mean value

of 2.07 kPa ± 0.42 kPa at 50 Hz, see Figure 3.2 A. Lower stiffness values are apparent at lower

frequencies, which can be attributed to the fact that biological tissue exhibits a frequency-dependent

response [44]. To investigate the effect of frequency on µ, mean values from all studies was averaged

at each frequency, and calculated from spring-pot studies at all four frequencies (25, 37.5, 50 and 62.5

Hz). A simple linear regression analysis was performed to determine the relationship between µ and

actuation frequency for GBT in healthy participants. A significant regression equation was found (F(1,

4) = 15.31, p = 0.02, with an R2 of 0.793. Participants’ predicted µ is equal to 0.44 + 0.04 (frequency)

(kPa) when frequency is measured in Hz, equating to an increase in brain stiffness of 0.4 kPa for each

10 Hz increase in frequency. Studies that employ alternative frequencies should bear this in mind when

making comparisons with other research groups. I should, however, mention that subject age is also

likely to contribute to variations to mechanical properties, as reported in a number of studies [6,10,12].

Table 3.3: MRE studies investigating GBT in healthy participants

Author Inversion f in Hz µ (kPa) φ (rad)

Dittmann et al., 2015 MDEV 10, 15, 20 0.62 ± 0.08 0.09 ± 0.17
10, 20, 30, 40, 50 1.38 ± 0.20 .24 ± 0.10

Hatt et al., 2015 DI 30 1.03 ± 0.09 0.70 ± 0.21
Sack et al., 2009 MF-SP 50 1.69 ± 0.26 0.38 ± 0.06
Wuerfel et al., 2010* MF-SP 50 1.82 ± 0.22 0.38 ± 0.08
Streitberger et al., 2011* MF-SP 50 2.30 ± 0.30 0.47 ± 0.12
Sack et al., 2011 MF-SP 50 2.52 ± 0.32 0.47 ± 0.07
Lipp et al., 2013* DI 50 2.05 ± 0.19 0.26 ± 0.04
Murphy et al., 2013b DI 60 2.99 ± 0.02 n/a
Arani et al., 2015 DI 60 2.59 ± 0.10 n/a
Huston et al., 2015* DI 60 2.76 ± 0.08 n/a
Fattahi et al., 2015* DI 60 2.55 ± 0.11 n/a
Murphy et al., 2016* DI 60 2.51 ± 0.09 n/a

Values show mean ± standard deviation (SD). *Control data from clinical studies. n/a = not available.

Calculation of φ for GBT was possible in six studies, where values range between 0.09rad - 0.70
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CHAPTER 3. 3.4. HEALTHY SUBJECTS

Figure 3.2: (a) shear stiffness, µ (kPa) and (b) loss tangent, φ (rad) of global brain tissue (GBT) in
healthy participants. Values show mean and standard deviation (SD). First x-axis displays the actuation
frequency f, secondary axis displays study reference.

rad with a mean value of 0.41 rad ± 0.06 rad at 50 Hz, see Figure 3.2 B. A wide disparity of values

is evident, which may be attributed to variation in frequency and MRE methodology. For example,

Dittmann et al., 2015 [9] used low frequencies for MDEV inversion (10-20 Hz) and a revised calculation

of φ to account for systemic noise bias and tissue heterogeneities, with the authors suggesting that

previous values may have been overestimated [19,45].
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3.4.2 Grey and white matter results

MRE values for GM andWM for healthy participants were reported in 10 studies, however, quantitative

data is only available for 8 of the 10 studies. Exclusion of two studies is due to one study providing

a qualitative analysis of wave propagation [14], whereas data from only 1 subject is provided in the

other [22]. Results are presented in Table 3.4.

Nine out of the 10 studies reported WM to be stiffer than GM, with 6 of these studies finding

a statistically significant difference between the two types of tissue. This difference is interpreted to

be due to the fact that WM primarily consists of tightly aligned myelinated highly orientated axons,

whereas grey matter is largely composed of cell bodies, unmyelinated axons and neuroglia [46]. In

contrast, one study reported that GM was stiffer than WM [15]. Potential explanations for this

anomaly include the utilisation of a bite-bar actuator, which may not be effective at transmitting

waves into the very centre of the brain, with low motion affecting SNR and resulting measurements.

Interestingly, it has been suggested that cell body density has a larger impact on local tissue stiffness

than cell stiffness itself [47]. The fact that MRE reports greater WM stiffness is not surprising due

to the global measurement of an entire organ, where WM fibres are dense and compact. In contrast,

GM has been found to be stiffer than WM on an individual cell level [48]. GM contains more (stiffer)

neuronal cell bodies that WM, whereas WM is dominated by softer neuronal and glial cell processes;

thus on alternative scales, mechanical properties of tissue may vary.

Table 3.4: MRE studies investigating GM and WM in healthy participants

Author Approach f in Hz GM WM
µ (kPa) φ (rad) µ (kPa) φ (rad)

Braun et al., 2014 MDEV 30, 40, 50, 60 0.98±0.25 0.95±0.03 1.16±0.29 1.03±0.04
Johnson et al., 2013b NLI 50 2.01±0.08 0.37±0.18 2.86±0.13 0.46±0.15
Johnson et al., 2013a NLI 50 2.41±0.19 0.48±0.17 3.30±0.35 0.52±0.20
Clayton et al., 2012 LFE 60 3.77±0.50 0.50±0.27 4.16±0.17 0.54±0.08
McCracken et al., 2005 DI 80 5.30±1.30 n/a 10.70±1.40 n/a
Zhang et al., 2011 DI 80 2.72±0.22 0.44±0.14 2.85±0.36 0.47±0.28
Green et al., 2008 DI 90 4.48±0.31 0.68±0.10 4.24±0.31 0.75±0.10
Kruse et al., 2008 LFE 100 5.22±1.15 n/a 13.60±3.19 n/a

Values show mean ± standard deviation (SD). n/a = not available.

Values of µ for GM range between GM 0.98 kPa - 5.30 kPa, and for WM 1.16 kPa - 13.60

kPa, see Figure 3.3 A. At 50 Hz, mean GM stiffness is 2.29 kPa and WM stiffness is 3.21 kPa,
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CHAPTER 3. 3.4. HEALTHY SUBJECTS

Figure 3.3: (a) shear stiffness, µ (kPa), and (b) loss tangent, φ (rad), of GM and WM in healthy
participants, showing mean ± standard deviation (SD). First x-axis displays the actuation frequency f,
secondary axis displays study reference.

equating to WM being approximately 40% stiffer than GM. Appreciably higher values were obtained

by Kruse et al. 2008 compared to all other studies, even when taking into consideration the higher

mechanical frequency of 100 Hz [16]. Stiffness of GM was 5.22 kPa and 13.60 kPa for WM. The higher

measurements have been attributed to the 2D LFE inversion technique, which may not have been

optimised to minimize through-plane wave propagation. Through-plane propagating waves can appear
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in 2D data as waves with longer wavelengths, thus overestimating tissue stiffness [34]. Furthermore,

lower µ values are notable in a study by Braun et al., 2014, who utilised multifrequency MRE and

MDEV inversion [19]. Stiffness of GM was 0.98 kPa and 1.16 kPa for WM. Direct comparison of values

with µ reported by other groups is not possible because of the inherent frequency averaging implied

by MDEV inversion, and greater contribution of the lower frequency images due to naturally higher

amplitudes [24]. This study also utilised an MRI scanner at 7 T. Field-strength per se is not expected

to influence MRE measurements [49], however, higher image resolution may improve the ability to

detect fine-scale features and thus measure different parts of the obtained wave profile.

Storage and loss moduli were provided for GM and WM in 6 out of the 10 studies, enabling

the calculation of φ. WM was found to be more viscous than GM in all studies, see Figure 3.3 B.

φ for GM range between 0.44 rad - 0.95 rad, and 0.47 rad - 1.03 rad for WM. Higher WM viscosity,

relative to GM, indicates that the microstructure of WM has a highly complex structure and supports

recent in vitro findings that measured both stress relaxation and relaxation times in both types of

tissue [50]. In addition, higher WM viscosity is also consistent with the microstructural architecture

of GM and WM, and found to reflect the network properties of WM found at the macromolecular

level [51]. Particularly high values for φ are evident in Braun et al., 2014, with 0.95 rad for GM and

1.03 rad for WM [19]. As previously mentioned, these values are likely to have been overestimated

due to systemic noise bias; subsequent work has focused on the recalculation of φ* [9]. Nonetheless,

the original parameter was reported as sensitive to a variety of pathological processes, as described in

both Streitberger et al., 2014b [31] and Reiss-Zimmermann et al., 2014 [30], and detailed within the

second part of this chapter.

3.4.3 Towards a Measure of Regional Neuroanatomy

More recently, brain MRE studies have reported values for specific neuroanatomical regions of interest

(ROIs). Table 3.5 provides measurements from four studies which have investigated the four lobes

of the brain (frontal, temporal, occipital, parietal), the sensory-motor region, deep GM/WM (defined

as containing the thalamus, hypothalamus, subthalamus among other deep-brain structures), and the

cerebellum.

Using the same DI analysis protocol at 60 Hz, all studies report highest µ in the deep GM/WM,

see Figure 3.4. Conflicting evidence has been reported regarding whether the temporal [40, 43] or

occipital [11] lobe displays the greatest stiffness out of the four anatomically distinct lobar regions.

Whether lobar variation in stiffness is explained by fundamental brain architectural differences has not
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Table 3.5: List of MRE studies investigating ROIs in healthy participants

Study Author Murphy Huston Arani Murphy
et al., 2013b et al., 2015 et al., 2015 et al., 2016

N 10 9 45 32
Mean age 23-55 61 74 n/a
Frontal Lobe 3.15 ± 0.04 2.95 ± 0.10 2.70 ± 0.02 2.65 ± 0.15
Temporal Lobe 3.17 ± 0.04 3.00 ± 0.13 2.80 ± 0.02 2.69 ± 0.11
Occipital Lobe 3.21 ± 0.04 2.92 ± 0.09 2.80 ± 0.03 2.65 ± 0.13
Parietal Lobe 2.87 ± 0.03 2.70 ± 0.08 2.60 ± 0.02 2.42 ± 0.10
Deep GM/WM 3.41 ± 0.07 3.12 ± 0.33 3.00 ± 0.02 2.79 ± 0.25
Cerebellum 2.38 ± 0.03 2.36 ± 0.16 2.20 ± 0.02 2.15 ± 0.11
Sensory-motor n/a 2.99 ± 0.18 2.80 ± 0.03 2.82 ± 0.29

Values show mean µ (kPa) ± standard deviation (SD). n/a = not available.

yet been determined, and is the subject of future investigations. In contrast, the cerebellum was found

to be softer than any component of the cerebrum, supporting separate findings from Zhang et al. 201,

who reported greater µ for cerebral WM (2.85 kPa ± 0.36), compared to cerebellar WM (2.31 kPa ±

0.36) [20]. This may be explained by the fact that the cerebellar surface is comprised of thin layers

of tissue with finely spaced parallel grooves, thus displaying a finer microstructure compared to the

broad irregular convolutions of the cerebral cortex. Finally, it is interesting to note that a consistent

relationship between the values for each brain region was largely maintained across the three studies.

Variation in results across studies may be attributed to the mean age of subjects lending support to

studies that suggest increasing age may contribute to a loss of brain stiffness [6, 10,12].

Mechanical properties of a number of neuroanatomical structures have been measured, and

briefly summarised here. Using multifrequency MRE and MDEV inversion, [24] found decreasing |G∗|

values in the order of WM, corpus callosum genu, thalamus, and the head of the caudate nucleus. John-

son et al., 2013b [21] used their multislab, multishot sequence with non-linear FEM, and found WM

to be softer, as determined by G′, than either the corpus callosum or the corona radiata, whereas the

corpus callosum exhibited a higher stiffness and lower viscous damping, represented by G′′, compared

to the corona radiata. The development of a new remote driver was tested by Fehlner et al., 2015,

using MDEV between the frequency range 25-45 Hz [25]. An increase in |G∗| was revealed within the

CST in the cranial-caudal direction from the capsula interna (CI) to the crus cerebri (CC), whereas

the pons was softer than both the CI and CC. The fibres in the superior region of the CST (CC)

showed greater dissipative behaviour, as determined by φ, followed by the CI and pons, respectively.

Finally, Johnson et al., 2014 reported higher values for the storage modulus G′ within the brainstem,

compared to cerebral or cerebellar tissue [22].
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Figure 3.4: Regional shear stiffness, µ (kPa) values in healthy participants

3.5 Brain MRE Results from Clinical Studies

MRE has been used to investigate brain mechanical properties in a wide range of neurological disorders.

These include focal intracranial tumours (ICT), as well as diffuse diseases such as Alzheimer’s disease

(AD) and multiple sclerosis (MS). In the previous section, output parameters for GBT, GM and WM

were converted, where possible, to measures of shear stiffness, µ and loss tangent φ. In the following

review of findings from clinical studies, the original MRE parameters will be maintained in order to

report consistent changes according to the published findings. Although not directly comparable, shear

stiffness µ, |G∗| and spring-pot derived µ are all similar in meaning, referring to stiffness or cellular

strength, whereas both φ and α relate the dissipative behaviour of tissue.

3.5.1 Focal diseases

MRE has been used as an investigative tool to study the mechanical properties of various intracra-

nial tumours that span the full spectrum of gradings determined by the World Health Organization

(WHO), such as meningioma and glioblastoma multiforme (GBM). MRE investigations into brain

tumours can be generally grouped into two categories, (i) studies of the concordance between MRE

results and in vivo surgical manual palpation, or (ii) studies of the sensitivity or specificity of MRE

for the differential diagnosis of intracranial tumours.
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(i) Concordance between MRE results and manual palpation

Knowledge of the consistency of brain tumours prior to surgical resection, could assist sur-

geons in preoperative planning, improving both patient care and work-flow optimisation.

Differentiation of brain tumours from healthy tissue, during surgical resection is, for the

most part, based on their differing mechanical properties, as discussed in the Introduction.

Three studies have obtained MRE measurements in patients prior to surgery and have

subsequently compared results with the surgeon’s manual assessment, in order to assess

the ability of MRE to accurately predict tumour stiffness, and hence procedural difficulty.

The relationship between MRE results and brain palpation was first assessed by Xu et

al., 2007b in 6 patients with diverse tumour classifications [27]. A visual inspection of the

wave propagation was correlated with the intraoperative assessment of tumour consis-

tency determined by the neurosurgeon during the tumour resection. Blinded to the MRE

results, the surgeon evaluated the tumour consistency as either soft (softer than white

matter), intermediate (similar to white matter), or hard (stiffer than white matter). MRE

was 100% accurate at predicting tumour stiffness as decided by the surgeon. Similarly,

Murphy et al., 2013a assessed 12 patients with Meningioma’s, typically a benign lesion

that arises from the meninges [28]. A quantitative analysis of tumour shear stiffness was

used to determine statistical significance. Tumour stiffness determined with MRE signifi-

cantly correlated with the surgeon’s assessment, however an even greater correlation was

found when the ratio of tumour stiffness to the surrounding brain tissue was measured

(p = 0.0032). Furthermore, a higher resolution MRE protocol was developed and used

to assess whether MRE could preoperatively detect intratumoural heterogeneity present

within Meningioma’s [32]. Data were obtained and analysed to measure heterogeneity for

a ROI within the tumour mass. Intraoperative observations regarding softness or hard-

ness were graded on a 5-point scale based on the degree of suction, ultrasonic aspiration,

or scissors and cautery. In 15 patients, MRE measurements and intraoperative findings

correlated in 67% of tumours (p = 0.02), with the correlation perhaps greater if highly

vascular or smaller lesions had been excluded. Importantly, tumour stiffness measured

by MRE outperformed predictions from conventional MRI using and T2-weighted im-

ages [28]. MRI has previously found soft tumours to be hyperintense and less likely to be

associated with oedema on T2 images [52]. However, conventional MRI could only accu-

rately predict the softest and hardest meningioma’s prior to surgical resection, with little
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success determining the tumour consistency between the two extremes. It was suggested

that future studies should aim to assess specific regions within the tumour mass to more

accurately define intrinsic mechanical heterogeneity to enhance the potential utility of

MRE as a pre-surgical tool. Measurement of tumour stiffness could also be normalised to

surrounding brain tissue, as a result of intrasubject variability in presumably unaffected

brain tissue [28].

(ii) MRE for the differential diagnosis of intracranial tumours

MRE has also been investigated as a technique to diagnose the type, grade and malignancy

of tumours, as a possible alternative to routine biopsy procedures used for histological

classification. Simon et al., 2013 analysed a broad range of tumours in 16 patients, includ-

ing those with meningioma, malignant glioma, anaplastic astrocytoma, and glioblastoma

multiforme, among other tumour entities [29]. Using multifrequency MRE and MDEV

inversion, malignant tumours presented with a loss of |G∗|, when compared to a selected

contralateral region of normal appearing white matter (NAWM). Primary brain tumours

of the highest malignancy (WHO IV) were more likely to yield soft tissue results, pre-

senting between 33.6 - 52% softer than NAWM. In addition, the majority of tumours

displayed a reduction in the loss tangent φ. A further pilot study which incorporated

MDEV inversion, allowed for high-resolution imaging of the viscoelastic properties of a

range of tumours in 27 patients [30]. Supporting findings from [29], high grade tumours

(WHO Grade IV) were more likely to be softer, as determined by |G∗|, and less viscous

than those identified as Grade I, II or III. Furthermore, meningioma tumours (Grade I),

were on average much stiffer and displayed higher dissipative behaviour than other tumour

entities. The same protocol was used to assess the mechanical properties of Glioblastoma

Multiforme (GBM), a WHO Grade IV tumour [31]. Results from 22 subjects are provided

in Table 3.6, for both tumour region and normal appearing white matter (NAWM). GBM

was generally softer than healthy tissue, however, 23% of tumours were found to be stiffer

than healthy tissue, supporting evidence of high intratumoural variability. There was a

significant reduction in φ in all patients.

Investigations into the use of MRE as a technique for the differential diagnosis of brain

tumours, suggest that more malignant tumours, determined by WHO classification, are
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Table 3.6: MRE results for GBM and NAWM

NAWM GBM ROI % difference p value

|G∗| (kPa) 1.54 ± 0.27 1.32 ± 0.26 -14.29% <0.001
φ (rad) 0.58 ± 0.07 0.37 ± 0.08 -36.21% <0.001

Values show mean ± standard deviation [31]. Key: GBM, glioblastoma multiforme; NAWM, normal appearing white
matter.

more likely to be less stiff, as determined by |G∗|, and display a reduction in the loss

tangent φ. While a uniform reduction in |G∗| is interpreted as a weakening or softening

of the mechanical rigidity of tissue, an alteration of the phase angle φ is interpreted as a

more severe degradation of the tissue structure due to a change in the complexity of the

tissue architecture [53]. In contrast, Meningioma tumours were the only tumour entity

to display increased stiffness, |G∗|, and a highly cross-linked architecture φ. This may be

attributed to the initial development of pathology in the meninges, which is comprised

of a thick layer of dura mater, arachnoid mater, and pia mater, in addition to their

propensity to calcify.

3.5.2 Diffuse diseases

(i) Multiple Sclerosis (MS)

MS is a demyelinating disease in which the insulating covers (myelin) of nerve cells in the

brain and spinal cord become damaged, with symptoms determined by the location of

lesions within white matter. Two studies have used multifrequency MRE and modelling

to investigate whether MRE is sensitive to detect known microstructural alterations to

the brain in MS. First, Wuerfel et al., 2010 reported that patients with relapsing-remitting

MS (MS-RR) displayed a 13% decrease in µ, (p < 0.001), with no significant changes to

α [33]. Second, Streitberger et al., 2012 found patients with primary or secondary chronic

progressive MS (MS-CP), to exhibit a more pronounced reduction in µ (20%) in addition

to a significant reduction in α (6%), both (p <0.001), as shown in Table 3.7 [37]. These

studies show how disease severity can influence mechanical property measurements; in

the early stages of MS (MS-RR), the strength of the brain is degraded, as indicated by

µ, while the geometrical arrangement α remains intact.

To complement these findings, the underlying cellular and molecular mechanisms behind

67



CHAPTER 3. 3.5. CLINICAL STUDIES

Table 3.7: MRE results for GBT in MS patients and control participants

Subtype MS-RR MS-CP
Author Wuerfel et al., 2010 [33] Streitberger et al., 2012 [37]

Patients Controls % difference p value Patients Controls % difference p value

N 45 23 - - 34 38 - -
µ 1.87 ± 0.25 2.14 ± 0.31 -12.7% p < 0.001 2.61 ± 0.48 3.28 ± 0.31 -20.5% p < 0.001
α 0.27 ± 0.01 0.27 ± 0.01 0.3% n.s. 0.28 ± 0.01 0.29 ± 0.01 -6.1% p < 0.001

Values represent mean ± standard deviation (SD). % difference and p values refer to differences between groups of
patients and healthy controls within the same study. Key: GBT, global brain tissue; MS-RR, multiple sclerosis (relapse-
remitting); MS-CP, multiple sclerosis (chronic-progressive); n.s, non-significant.

these changes were examined in two mouse models of MS, as described in Chapter 2,

which found an association between |G∗| and progressive demyelination [54] and inflam-

mation [55]. In the latter study, there was no significant change to the phase angle φ

indicating that inflammation affects stiffness independently of alterations in tissue archi-

tecture - supporting human patient findings presented here from Wuerfel et al. 2010 [33].

On the other hand, patients with chronic MS (MS-CP), were found to exhibit even softer

brains than patients with MS-RR, as determined by µ, as well as a less complex geo-

metrical arrangement indicated by a significant loss to α. Deficits due to MS-CP are

considered irreversible due to progressive neurodegeneration, and thus may explain the

more drastic changes to the alignment of the tissue network, although to date, animal

models of MS-CP have not been combined with MRE and histopathology. The need

for standardisation across and within research groups becomes apparent when comparing

the mechanical properties between MS-RR and MS-CP directly. Changes in the proto-

col between studies and in particular, the limits of bandpass filtering, have resulted in

different base-line values for healthy control subjects. Nevertheless, the application of

MRE to investigate patients with early or chronic MS, has shown how disease severity

can differentially affect mechanical property measurements, thereby showing potential as

a unique marker of disease progression.

(ii)Alzheimer’s disease (AD)

AD is a progressive impairment of cognitive function, typically beginning with episodic

memory, and is characterised pathologically by extracellular amyloid (Aβ) plaques and

intracellular neuro-fibrillary tangles [56]. Murphy et al., (2011) found that the stiffness of

global brain tissue was decreased in patients with AD compared to age-matched healthy
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control subjects both with (HC+) and without (HC-) significant brain amyloid load, see

Table 3.8. This is contradictory to what was initially hypothesised in AD patients, with

the aggregation of stiff amyloid protein expected to lead to an increase in tissue stiffness.

On reflection, this may be due to patients being in the later stages of disease, at which

stage significant neurodegeneration is likely. Thus, MRE may be more sensitive to wide-

spread cell death caused by the initial protein accumulation. More recently, Murphy et

al., 2016 measured the relationship between brain stiffness and severity of AD pathophys-

iology with 4 groups of subjects including HC-, HC+, MCI (mild cognitive impairment)

and AD [43]. Using the regional MRE processing pipeline, as described in Murphy et

al., 2013b [11], brain stiffness decreased with increasing AD severity, as determined by

existing imaging biomarkers such as hippocampal volume and Aβ load (PIB-SUVR).

An optimised meta-region of interest including the frontal, parietal and temporal (FPT)

lobes; regions known to be affected by the disease, outperformed all other regions for

discriminating between AD patients and healthy control subjects. Interestingly, the re-

lationship between brain stiffness and AD severity was non-linear and non-monotonic,

suggesting that brain stiffness spikes at the onset of MCI, before falling to levels observed

in AD during the later stages of MCI. This would appear to support the theory that the

initial development of Aβ is associated with increased brain stiffness, before a decrease

associated with wide-spread cell death and a loss of tissue integrity. Further investigations

are warranted to corroborate that other aspects of the AD pathological cascade follow

the same trajectory and to link MRE results with histological samples.

Table 3.8: MRE results for GBT in patients with AD and FTD

N Mean age µ (kPa) % difference p value

Murphy et al., 2011 [34]
AD patients 7 85 2.20 ± 0.13 - -
Healthy controls 14 81.5 2.37 ± 0.12 -7.20% p = 0.026

Huston et al., 2015 [40]
bvFTD patients 5 60 2.59 ± 0.17 - -
Healthy controls 9 61 2.76 ± 0.08 -6.50% p = 0.007

Values show mean ± standard deviation (SD). % difference and p values refer to differences between groups of patients
and healthy controls in the same study. Key: GBT, global brain tissue; AD, alzheimer’s disease; FTD, fronto-temporal
dementia.

(iii) Fronto-temporal dementia (FTD)

The behavioural-variant of FTD, (bvFTD), is characterized by prominent changes in per-
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sonality, interpersonal relationships and conduct, and predominantly involves progressive

neuronal loss in the frontal and/or temporal lobes. Specific regions of interest (ROIs)

were investigated with MRE due to the well-known localised origin of pathology [40].

Using the regional MRE processing pipeline, described in Murphy et al., 2013a [28], a

specific pattern of brain softening was found in patients with bvFTD in comparison to

age matched cognitively healthy participants. A 6.5% decrease was detected in global

brain tissue, (p < 0.01), in addition to a 8.5% and 9% decrease in both the frontal lobe

(p < 0.001), and temporal lobes (p < 0.005), respectively. No significant differences were

found between groups for either the occipital or parietal lobes, deep grey/white matter,

cerebellum or the sensory/motor region. This study shows how greater changes to the

MRE-derived parameters are evident in regions (the frontal and temporal lobes), where

neurodegeneration is known to originate [57]. The difference in brain stiffness between

the AD and FTD healthy control subjects, as shown in Table 3.8, is likely due to subject

age, with the AD control group approximately 20 years senior.

(iv) Normal Pressure Hydrocephalus (NPH)

NPH is a reversible neurological disorder that presents with a triad of clinical symptoms

namely, an unusual gait, symptomatic dementia and urinary incontinence. Typical MRI

findings are enlargement of the ventricles, while the onset has been attributed to transient

intracranial pressure peaks, causing chronic mechanical stress on the ventricular wall.

Streitberger et al., 2010 were the first to study NPH patients with MRE, in order to

elucidate whether mechanical changes to brain tissue may play a potential role in the

aetiology of the disorder [35]. Assessment of a 2cm slab of brain tissue, centred through

the ventricular region, found µ to be 25% lower in NPH patients, compared to healthy

control participants. There was also a significant reduction in α, on the order of 10%,

(both p < 0.001), see Table 3.9.

A surgical procedure to relieve some of the symptoms of NPH includes the placement

of a ventriculoperitoneal (VP) shunt within the ventricles to drain excess cerebrospinal

fluid (CSF). MRE was performed on NPH patients before and after shunt placement to

determine the efficacy of treatment and assess mechanical alternations as a result of the

intervention [36]. Prior to surgery, a reduction in both µ and α was found by 27% and

10%, respectively, compared to healthy control data taken from [35], (both p < 0.001).
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Table 3.9: MRE results for GBT in patients with NPH

N µ % difference p value α % difference p value

Streitberger et al. 201 [35]
Healthy controls 25 2.84 ± 0.088 - - 0.287 ± 0.002 - -
NPH patients 20 2.27 ± 0.054 -25.1% < 0.001 0.262 ± 0.002 -9.5% < 0.001

Freimann et al. 2012 [36]
NPH patients pre-shunt 20 2.24 ± 0.085 -26.8% < 0.001 0.258 ± 0.003 -10% < 0.001

Values show mean ± standard deviation (SD). % difference and p values refer to differences between both groups of
patients and healthy controls. Key: GBT, global brain tissue; NPH, normal pressure hydrocephalus.

After the surgical procedure, patients did not exhibit any changes to µ, with data col-

lected on average 3 months later. However, results for α normalised and returned within

3% of values found for healthy control subjects, (p < 0.001). The fact that µ remained

unchanged supports the notion that spring-pot parameters represent two independent

processes. Shunt placement was associated with reordering the geometry alignment of

the mechanical scaffold of the brain, creating a more complex network, without influ-

encing cellular strength or connectivity. More recently, Fattahi et al., 2015 investigated

specific regions of interest (ROIs) in the brain of NPH patients [41]. In contrast to find-

ings from Streitberger et al., 2010 and Freimann et al., 2012, patients with NPH were

found to exhibit an increase to the brain’s shear stiffness, when compared to data col-

lected from age-and-gender-matched controls [41]. An increase in stiffness was apparent

in GBT (3.9%), occipital lobe (12%), parietal lobe (12.6%) and temporal lobe (2.6%).

No significant differences were found in either the frontal lobe, cerebellum, or deep grey

and white matter. An increase in brain stiffness may be caused by the dilation of the

ventricles, leading to brain tissue compression. Resulting cellular alterations are likely to

create a higher tissue-to-fluid ratio within the cerebrum. Importantly, the discrepancy in

findings between studies has been attributed to the use of alternative protocols; however,

it is possible that alternative brain regions will undergo disparate changes throughout the

NPH process.

(v) Parkinson’s disease (PD) and Progressive Supranuclear Palsy (PSP)

PD is characterised by death of dopaminergic neurons in the substantia nigra, which forms

part of the basal ganglia, causing tremor, gait difficulty and rigidity. Patients with PSP

also display a progressive deterioration in motor function, but pathology instead involves
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the widespread degeneration of specific axons, particularly in the brainstem, cerebral

cortex and basal ganglia. PSP is frequently misdiagnosed as PD because of the shared

clinical manifestations, and so MRE was used to elucidate possible alternative mechan-

ical profiles to aid in differential diagnosis [38]. Both a 3D direct inversion approach of

a volumetric slab of brain tissue, and 2D multi-frequency springpot analysis to model a

single image slice, offered enhanced sensitivity to assess regional brain changes in addi-

tion to modelling the frequency-independent material properties. Results for GBT are

given in Table 3.10, with no significant differences found between PD patients and healthy

control participants. In PSP, however, all four parameters including |G∗|, φ, µ, and α,

were reduced with µ in particular, undergoing the most statistically significant change,

(p < 0.001). Regional analysis of the basal ganglia region in patients with PD detected a

significant loss of |G∗| and α in the lentiform nucleus by 6.9% and -7.4%, respectively, (p

< 0.05), with PSP patients displaying even greater losses in all four assessed parameters.

This study suggests that MRE may assist in differential diagnosis as results indicate that

PD and PSP have distinct mechanical profiles. PD patients displayed significant changes

to |G∗| and α during an assessment of the basal ganglia; no significant changes were

detected in GBT. PD pathology involves presynaptic accumulation of α-synuclein which

starts focally and affects axonal integrity only later in the process of degeneration [58],

and thus may explain why changes to GBT were not detected. In contrast, PSP patients

displayed pronounced changes in |G∗|, φ, µ and α, both globally and in the basal ganglia.

PSP typically involves an early loss of neuronal axons, which are essential in maintaining

brain tissue integrity. This study highlights the importance of investigating a specific

brain structure associated with a particular disorder as omission of the basal ganglia in-

vestigation would not have differentiated PD patients from healthy control participants.

(vi) Amyotrophic Lateral Sclerosis (ALS)

The corticospinal tract (CST) consists of nerve fibres that travel from the cerebral cortex

and terminate in the spinal cord. Degeneration of the CST has been implicated in ALS,

causing progressive and irreversible loss of motor function. Due to the highly anisotropic

properties of these fibres, an innovative approach for measuring the mechanical prop-

erties of this structure combines the use of MRE with diffusion tensor imaging (DTI),

and anisotropic equations of motion [23] - a technique termed Waveguide Elastography
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Table 3.10: MRE results for GBT in patients with PD, PSP and control participants

Subtype PD PSP

Controls Patients % difference Patients % difference p value

N 18 18 - 16 -
|G∗| 1.97 ± 0.042 1.88 ± 0.061 n.s 1.68 ± 0.043 -10.6% < 0.01
φ 0.26 ± 0.009 0.22 ± 0.016 n.s 0.17 ± 0.018 -34.6% < 0.001
µ 2.79 ± 0.071 3.04 ± 0.191 n.s 1.98 ± 0.126 -28.8% < 0.001
α 0.30 ± 0.002 0.30 ± 0.005 n.s 0.29 ± 0.003 -4.9% < 0.01

Values represent mean and standard deviation (SD) [38]. % difference and p values refer to differences between both
groups of patients and healthy controls. Key: GBT, global brain tissue; PD, Parkinson’s disease; PSP, progressive
supranuclear palsy.

(WGE). In particular, DTI was used to locate fibre pathways, before the application of

spatial-spectral filtering to identify waves that are travelling in a specific direction relative

to the fibre orientation. Clinically, this method has been used to assess the stiffness of

the CST in 14 patients with ALS in comparison to 14 age-matched healthy controls [39].

Analysis of shear waves identified propagating parallel to the principal direction of nerve

fibres in the CST, revealed a 5.3% decrease in the shear stiffness in the patient cohort,

indicating a significant softening along this tract, (p < 0.01). This technique may prove

to be valuable in the diagnosis of ALS, although further clinical trials are required. The

combination of histological analyses with MRE measurements will be imperative in order

to relate pathological cellular changes to MRE constants. Further, the use of WGE is un-

likely to be useful for the assessment of tissue stiffness among other brain regions. WGE

analysis is reliant on knowledge of the pathways along which the propagating waves will

travel, however, most brain structures or regions do not possess anisotropic properties on

the same scale as the CTS.

3.6 Discussion

In this chapter, I have reviewed the MRE literature to summarise data from studies that have utilised

MRE to report mechanical property values for the human brain. Second, I have standardised MRE-

derived variables reported for global brain tissue (GBT), grey matter (GM) and white matter (WM)

in healthy volunteers, with values for specific brain lobar regions and structures also provided. Finally,

I describe how MRE possesses the ability to detect changes to the brain in patients with a wide range
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of focal and diffuse neurological conditions.

As illustrated by this literature review, providing standardised baseline values for the healthy

brain is very challenging. There is currently no consensus as to MRE values that may constitute a

healthy normal brain, and as such, baseline values cannot be established. As a result, values provided

for a clinical cohort will only be relevant to those who follow the same methodology. Whether brain

MRE can provide accurate quantitative values for mechanical properties will be difficult to determine.

Indentation methods can reliably record the stiffness of, for example, grey and white matter [50],

but it remains an ex vivo technique that cannot predict the mechanical characteristics of living brain

tissue in situ. On the other hand, accurate mechanical values per se may be less important than the

determination of the most clinically sensitive and reliable protocol. More studies have been reporting

repeatability figures, with promising results [2, 43]. Most repeatability measures, however, have been

of a repeated measures design (i.e. scanning the same subject on the same day); there has been a

distinct lack of test-retest agreement measures over a wide range of subjects scanned at two separate

time points.

Initial clinical brain MRE studies show the promise of this technique as a novel biomarker, with

values shown to differ between groups of healthy control participants and neurological patients. How-

ever, the majority of studies have reported values as global averages. Due to the recent enhancement

in MRE methodology, it is now possible to investigate specific neuroanatomical regions of interest.

The importance of such progress is demonstrated in the study into Parkinson’s disease; differences

between controls and patients would not have been detected if the basal ganglia region had not been

investigated. The repeatability of the methods used, to my knowledge, have not been investigated,

which is important considering the low-resolution acquisition sequence used in the study. As such,

there is a specific need to acquire high-resolution images, to enable study of specific brain structures,

which display high test-retest reliability across a wide range of subjects and at alternative time points.

Future work in this thesis will aim to identify such an approach.
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CHAPTER 4. 4.1. INTRODUCTION

Plan for the Chapter

This chapter has four specific objectives: (1) to identify the most widely used and highly published

brain MRE protocols in both research and clinical use; (2) to consider methods of actuation most

suitable for older participants or patient populations; (3) to obtain phantom MRE data using the

aforementioned protocols for comparison with pre-determined quasi-static measurements; and (4) to

obtain exemplar brain MRE images of the same subject. As a result of these objectives, the intention

is to consolidate collaborations with the associated research centres to refine an experimental protocol

for installation at the Edinburgh Imaging Facility, QMRI (EIF-QMRI).

4.1 Introduction

Chapter 3 consisted of a literature search to identify studies that had investigated and reported values

for the mechanical properties of the human brain using MRE. Studies report methods using different

modes of actuation, vibration frequencies, image resolutions, and inversion algorithms. This variability

in methods has caused considerable variation of shear stiffness, µ (kPa) estimates for the cerebrum in

healthy participants [1].

From the literature review, I note that a significant proportion of studies were performed at

three centres, namely: (1) the Department of Radiology, Mayo Clinic, USA; (2) Beckman Institute,

the University of Illinois at Urbana-Champaign, USA, and (3) Department of Radiology, Charité –

Universitätsmedizin Berlin. For a breakdown of the relative contribution from each centre investigating

the brain of heathy participants or patient populations, see Figure 4.1. The three aforementioned

centres contributed 71% of publications that investigated the mechanical properties of the brain in

healthy participants; it is worth mentioning that the other 29% was made up of contributions from five

other centres. For investigations into clinical conditions, the three centres made up 88% of publications,

whereas the other 12% was contributed by three other research groups.

Notably, these research centres employ fundamentally different methods from one another to

study the human brain. For example, the Mayo Clinic have typically used a relatively low-resolution

gradient-echo EPI sequence (3mm) at a single frequency of 60 Hz, and analyse the displacements by

calculating the curl and performing a 3D direct inversion. The shear stiffness, µ (kPa) parameter

is usually reported. From now on, this approach will be referred to as single frequency DI (SF-DI).

In contrast, the University of Illinois at Urbana-Champaign (UIUC) have employed a novel high-

resolution MRE spiral acquisition at 50 Hz in combination with a finite-element-based non-linear
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Figure 4.1: Stacked bar plot to display the composition of brain MRE publications according to research
centre for the study of: (a) healthy participants and, (b) patients with neurological disorders.

inversion algorithm; now to be described as single frequency NLI (SF-NLI). UIUC have more recently

begun to report two parameters of shear stiffness, µ (kPa), and damping ratio, ξ. Finally, the group at

Charité – Universitätsmedizin Berlin typically acquire data at multiple frequencies using a fast single-

shot spin-echo EPI sequence and have more recently used an inversion approach known as multi-dual

elasto-visco inversion (MDEV) or the Elastography Software Pipeline (ESP), to produce maps of the

magnitude of the complex shear modulus |G∗| and its phase angle φ. These approaches will be referred

to as multi-frequency MDEV (MF-MDEV) or multi-frequency ESP (MF-ESP). A summary of each

protocol is illustrated in Figure 4.2.

In this chapter, I visited each of the three research centres to perform a phantom and human

brain study of the same subject (LH). These visits also allowed an opportunity to assess common

methods of actuation with patient comfort and operator convenience essential aspects to consider.

Exemplar MRE phantom and brain images were then evaluated. To achieve this, I introduce a new SNR

measure to MRE that utilises the inherent aspect of repeat acquisitions (i.e. phase offsets and motion

encoding directions) to provide a more robust assessment of MRE raw image signal quality. SNR is a
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Figure 4.2: Summary of the experimental brain MRE protocols used throughout this chapter.

measure of how much true signal (e.g. reflecting actual anatomy) versus random superimposed signals

(background noise). The most commonly used technique is based on the signal statistics in two separate

regions of interest (ROIs) from a single image: one in the tissue of interest to determine the signal

intensity, and one in the image background to measure the noise intensity. However, conventionally

determined SNR, based on separate signal and noise regions in a single image, will in general not

agree with the true SNR measured in images after the application of certain reconstruction filters,

multi-channel reconstruction, or parallel imaging [2]. Since MRE provides repeat acquisitions in terms

of phase offsets and motion encoding directions, SNR will be calculated using the so-called Dietrich

method [2]:

SNRmult = Smult
σmult

(4.1)

where each voxel contains the SNR for that particular location. The ’signal’ part of SNRmult

for an ROI is the mean of the signal over time, whereas the ‘noise’ is represented by the mean standard

deviation over time. Using this equation, the SNR of MRE magnitude images from each protocol

will be calculated. The ability of each MRE elastogram to detect all targets (inclusions 1-4) and

how closely the MRE phantom results match the quasi-static measurements provided by the phantom

manufacturer will be compared. Further, the correlation between MRE results and quasi-static values

for each of the stiffness targets and background (BG) will be evaluated. In addition, the similarity of

the brain MRE elastograms will be assessed visually and the quantitative values compared with one
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another and to those found in the existing literature.

Previous brain MRE images in this thesis have been shown in a colour look up table (LUT)

known as aaasmo. This is routinely used for liver MRE and shows stiffer tissue in red, and softer

tissue in purple. However, this LUT does not have a continuous intensity gradient and therefore

regions of stiffness may look exaggerated. To counteract these issues, I propose using a LUT known as

Parula; the new default colour map used within MATLAB. Parula is red-green colour blind friendly,

has a continuous intensity gradient (i.e. increases monotonically in lightness), and preserves scale

when printing in greyscale. As a result, Parula will now be used throughout the rest of this thesis to

visualise tissue stiffness.

4.2 Methods

4.2.1 Study of Phantom Object

The phantom used in this study was the CIRS elasticity QA model 049 phantom Computerised Imag-

ing Reference Systems Inc., Norfolk, Virginia, USA. The phantom is marketed primarily for use in

ultrasound elastography but was also designed such that it is MR-compatible, and has previously been

used as a validation tool in MRE [3,4]. The phantom is constructed from a synthetic elastic substance,

Zerdine and is a 135 x 95 x 190mm cuboid containing eight spherical inserts. Four of the inserts are

at a depth of 15mm and are 10mm in diameter, whilst the other set, in a separate yz-plane, are at

a depth of 35mm and of 20mm in diameter, see Figure 6.3. For this study, only the larger inserts of

the phantom are investigated. The material properties were provided by the manufacturer as Young’s

moduli and were 8, 18, 48 and 80 kPa for the four inserts, and 23 kPa for the background. This

equates to a shear modulus of 2.70, 6.0, 16.0, and 27 kPa, with a background of 7.70 kPa, as the

Young’s modulus and the shear modulus are related by a simple scale factor of 3: E = 3µ. Due to

factors such as pre-loading and a changing response to small strains [5, 6], quasi-static testing may

produce different stiffness values to dynamic testing in the range of biological tissue. However, the

stiffness values measured by MRE are expected to be in proportion to the manufacturer’s reported

values.

4.2.2 Details of Phantom Data Acquisition and Analysis

Prior to MRE imaging, a localised sequence was used to visualise the location of the inserts. Detailed

imaging parameters for each protocol are provided in Table 4.1. To ensure consistency, the MRE
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Figure 4.3: Computer-aided-design (CAD) illustration showing the design of the CIRS phantom used
in this study. Image taken from Hollis et al., 2016 [7], and used with permission.

acquisition and analysis protocol typically used at each research centre to image the human brain was

used to scan the phantom. The mechanical frequencies, however, were increased as 50-60 Hz, typically

used for the human brain, would be too low to detect the stiffest inclusions. To obtain quantitative

measures of Dietrich SNR and MRE for each insert, the ROI was first identified on the MRE magnitude

image and manually traced using ImageJ [8]. Each ROI was then superimposed onto the SNR and

MRE images. To quantify the background (BG) region, a large rectangular homogeneous region was

selected below the location of the inserts.

(1) Single frequency DI (SF-DI)

Data acquisition

Data presented here represents a typical Mayo Clinic acquisition and analysis pipeline

(collected at UIUC). A gradient-echo EPI sequence was used to capture MRE displace-

ment data at a 3mm isotropic resolution. A MRE liver paddle was positioned underneath

the phantom to cause displacements in the superior-inferior direction, as shown in Figure

4.4 A. Vibrations were generated at 100 Hz, with a vibration amplitude set to 30%, using

the Resoundant actuator (Resoundant; Rochester, MN) as shown in Figure 4.4 B.
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Table 4.1: Imaging parameters used to scan the CIRS phantom

Protocol SF-DI SF-NLI MF-MDEV/ESP

MRI parameters

Scanner Siemens Trio Siemens Trio Siemens Trio
Field Strength 3T 3T 3T
Sequence type GRE-EPI Spiral SE-EPI
TR (ms) 3997 180 4330
TE (ms) 60.8 75/135 83
Matrix size 128 x 128 150 x 150 100 x 100
Flip angle (degree) 90 90 90
Bandwidth (Hz) 250000 3922 1724
Isotropic voxel size 3mm3 1.6mm3 2mm3

No. of slices 36 60 60

MRE parameters

Mechanical Frequency (Hz) 100 100 70, 80, 90, 100
Phase encode R>>L N/A R>>L
Phase offsets 8 4 8

Data analysis

Phase images were processed using MRE-Lab, an in-house software programme developed

at the Mayo Clinic. A direct inversion algorithm, with curl application, produced a map

of shear stiffness, µ.

(2) Single frequency NLI (SF-NLI)

Data acquisition

MR data were acquired at UIUC using a Siemens 3T Trio system (Siemens, Medical

Solutions; Erlangen, Germany). A 3D multislab, multishot spiral sequence was used to

capture whole-brain MRE displacement data at a 1.6mm isotropic resolution [9]. Vibra-

tions were generated at 100 Hz by the liver paddle in combination with the Resoundant

actuator (Resoundant; Rochester, MN).

Data analysis

Nonlinear inversion (NLI) [10], was used to determine the magnitude of the complex shear

modulus |G∗|, from which the shear stiffness µ = 2|G∗|2/ (G′ + |G∗|) was computed. It-

eration structure was set to [1,0,0,1], [2,0,0,2], [3,0,0,2] and spatial filtering weight was

originally set to at .0030 and finished at .0015. (Note: spatial filtering (SF) has a stabil-
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Figure 4.4: (a) Position of the phantom in the scanner at UIUC, and (b) the adjoining Resoundant
actuator; (c) the phantom positioned in the head-cradle at Charité, Berlin, which in turn is attached
to the (d) non-magnetic piezoelectric driver, via a carbon fibre rod.

ising effect on MRE measures; higher SF assists in early iterations when the algorithm is

far from a solution).

(3) Multi-frequency MDEV/ESP (MF-MDEV/ESP)

Data acquisition

MR data were acquired at Charité, Berlin using a Siemens 3T Trio system (Siemens,

Medical Solutions; Erlangen, Germany). A single-shot EPI was used to capture 60 slices

at a 2mm isotropic resolution. Vibrations were generated at 70, 80, 90 and 100 Hz by a

head-cradle attached to a carbon fibre rod and piezoelectric system as shown in Figures

4.4 C and D.

Data analysis

Multi-dual visco-elasto (MDEV) inversion [11], and the Elastography Software Pipeline

(ESP) [12], were used to produce maps of the magnitude of the complex shear modu-
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lus |G∗|. As for typical MDEV processing, a 2D low-pass filter, based on 2D Fourier

transform, and Butterworth Kernel with a 50 m−1 threshold, were applied to all three

components of the wave field. ESP performed a 2D analysis with a denoise method of 1

and interpolation set to zero.

4.2.3 Study of Human Subject

The same participant was scanned at each research centre within 8 months (age 27; female; no known

neurological disorder). Detailed imaging parameters for each protocol are provided in Table 4.2.

Table 4.2: Summary of the MRI/MRE parameters used to study the same human subject

Protocol SF-DI SF-NLI MF-MDEV/ESP

MRI parameters

Scanner SIGNA Excite, GE Siemens Trio Siemens Trio
Field Strength 3T 3T 3T
Sequence type GRE-EPI Spiral SE-EPI
TR (ms) 4320 180 4330
TE (ms) 69.1 75/135 83
Matrix size 128 x 128 150 x 150 100 x 100
Flip angle (degree) 90 90 90
Bandwidth (Hz) 3906 3922 1724
Coverage Whole brain Whole brain Superior region
Isotropic voxel size 3mm3 1.6mm3 2mm3

No. of slices 48 60 20

MRE parameters

Mechanical Frequency (Hz) 60 50 30, 40, 50
Phase encode R>>L N/A R>>L
Phase offsets 8 4 8
MRE scan duration 6.47 minutes 12 mins 5 mins

4.2.4 Details of Human Brain Data Acquisition and Analysis

(1) Single frequency DI (SF-DI)

Data acquisition

MR data were acquired at the Mayo Clinic using a SIGMA Excite, GE 3T MRI scanner.

A gradient-echo EPI sequence was used to capture whole-brain MRE displacement data
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at a 3mm isotropic resolution. Vibrations were generated at 60 Hz by the head-pillow

using the Resoundant actuator (Resoundant; Rochester, MN).

Data analysis

Phase images were automatically processed on the scanner, using a direct inversion algo-

rithm, to produce a map of shear stiffness, µ (kPa).

(2) Single frequency NLI (SF-NLI)

Data acquisition

MR data were acquired at UIUC using a Siemens 3T Trio system (Siemens, Medical So-

lutions; Erlangen, Germany). A 3D multislab, multishot spiral sequence was used to cap-

ture whole-brain MRE displacement data at a 1.6mm isotropic resolution [9]. Vibrations

were generated at 50 Hz by the head-pillow using the Resoundant actuator (Resoundant;

Rochester, MN).

Data analysis

Nonlinear inversion (NLI), was used to determine the magnitude of the complex shear

modulus |G∗|, from which the shear stiffness, µ = 2|G∗|2/ (G′ + |G∗|) was computed.

Iteration structure was set to [1,0,0,1], [2,0,0,2], [3,0,0,2] and spatial filtering weight was

originally set to at .0030 and finished at .0015. (Note: spatial filtering (SF) has a stabil-

ising effect on MRE measures; higher SF assists in early iterations when the algorithm is

far from a solution).

(3) Multi-frequency MDEV/ESP (MF-MDEV/ESP)

Data acquisition

MRE data were acquired at Charité, Berlin using a Siemens 3T Trio system (Siemens,

Medical Solutions; Erlangen, Germany). A single-shot spin-echo EPI sequence was used

to capture 20 slices of the superior region of the brain at a 2mm isotropic resolution. Three

vibration frequencies of 30, 40 and 50 Hz were consecutively applied, as recently published

by the Charité group [13]. MRE was performed utilising a head cradle actuator connected

to a piezo-electrical vibration generator as detailed by Guo et al., 2013 [14].

Data analysis

Multi-dual visco-elasto (MDEV) inversion [11], and the Elastography Software Pipeline

(ESP) [12], were used to produce maps of the magnitude of the complex shear modulus
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|G∗|. As with the phantom, a 2D low-pass filter, based on 2D Fourier transform, and

Butterworth Kernel with a 50 m−1 threshold, were applied to all three components of the

wave field. ESP performed a 3D analysis, with dtnoise z-xy set to 0.3 and interpolation

x 4.

4.3 Results

4.3.1 Phantom Results

Example raw MRE magnitude images, Dietrich SNR maps and MRE elastograms from each protocol

are provided in Figure 4.5.

Figure 4.5: MRE data presented from each protocol for the CIRS phantom: (a) illustration of phantom.
Source: Honarvar et al., 2017 [15]; (b) high-resolution T2-weighted structural image; Representative
image slice of: (c) raw MRE magnitude; (d) Dietrich SNR, and (e) MRE elastogram. Abbreviations:
SF-DI, single-frequency direct inversion; SF-NLI, single-frequency non-linear inversion; MF-MDEV,
multi-frequency multi-dual elasto-visco inversion; MF-ESP, multi-frequency inversion using the elas-
tography software pipeline.
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As shown in Figure 4.5, greatest Dietrich SNR was provided by the use of the gradient-echo EPI

sequence as part of the SF-DI protocol (28.52). This was to be expected due to the larger voxel size of

3mm. In contrast, SF-NLI resulted in the lowest SNR with signal drop out near the periphery (13.82).

However, in terms of elastogram quality, the SF-DI protocol does not clearly define the four inserts,

whereas SF-NLI produces exceptionally clear boundaries for all targets. MF-MDEV clearly defines

all inserts, although a ringing artefact is particularly noticeable in Target 4. There are some minor

distortions visible across the image slice for MF-ESP.

Table 4.3 provides quantitative MRE measurements from all four protocols. Mean differences (%)

between each protocol and the quasi-static value for each target and background (BG) are provided

in Table 4.4. To visualise the accuracy of the MRE protocols, a plot of the recovered values is

provided against the manufacturer values in Figure 4.6. Bland-Altman plots were also used to assess

the agreement between the 2 measures (e.g. the measured in vivo MRE stiffness versus the quasi-

static measurements provided by the manufacturer), and are illustrated in Figure 4.7. The differences

between the 2 measures are provided on the y-axis, and the average of the values are plotted on the

x-axis.

Table 4.3: Phantom results from four different MRE protocols

Target 1 Target 2 Target 3 Target 4 Background

Quasi-static 2.70 6.00 16.00 27.00 7.70
(1) SF-DI 0.86±0.44 1.03±0.37 2.51±0.42 3.51±2.21 2.15±0.21
(2) SF-NLI 1.41±0.13 2.38±0.18 10.86±0.18 15.80±0.57 5.93±0.33
(3) MF-MDEV 3.81±0.32 5.35±0.56 8.51±0.75 10.84±1.88 6.84±0.50
(4) MF-ESP 3.47±0.36 4.44±0.30 11.73±1.72 24.87±3.97 6.97±0.71

SF-DI and SF-NLI elastograms are presented as the shear stiffness, µ, whereas MF-MDEV and MF-ESP elastograms
are presented as |G∗|.

Table 4.4: Difference (%) between MRE values and manufacturer specifications

Target 1 Target 2 Target 3 Target 4 BG Mean difference

(1) SF-DI 214% 483% 537% 669% 72% 395%
(2) SF-NLI 91% 152% 47% 71% 30% 78%
(3) MF-MDEV 29% 12% 88% 149% 13% 58%
(4) MF-ESP 22% 35% 36% 9% 10% 22%
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Figure 4.6: Recovered stiffness values (kPa) from each protocol, plotted against manufacturer specifi-
cations.

All protocols exhibited a very high and significant correlation coefficient with the quasi-static

measurements (in the range of R = 0.95 - 0.99). Values generated by MF-ESP had the most accurate

results on average, with a mean bias of 1.84 kPa when compared to manufacturer values using the

Bland-Altman method, as shown in Figure 4.7. The mean bias was 9.86 kPa for SF-DI, 4.60 kPa

for SF-NLI, and 4.81 kPa for MF-MDEV. On average, the MF-ESP protocol scores best by reporting

values that differ by only 22% from the quasi-static measurements. In contrast, the SF-DI protocol

differs from the manufacturer specifications by nearly 400%. Largely evident, however, is that all are

below the values reported by the manufacturer, particularly for the stiffest inclusion of 27 kPa (Target

4). This is likely to be due to the vibration frequencies chosen to image the phantom (≈100 Hz), and

the need for the use of higher vibration frequencies.

Considering the measurements most closely resembling the stiffness of biological tissue (Target

1), MF-MDEV and MF-ESP, were most accurate with a mean difference of 29% and 22%, respectively.

While both MDEV and ESP use the same inversion equations, they use entirely different filtering

and phase unwrapping techniques. Lower values by MDEV can be ascribed to loss of low-frequency

bandwidth from the inversion, whereas ESP inverts original displacements and uses a divergence-free-
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Figure 4.7: Bland-Altman method, used to evaluate calculated stiffness of the phantom between in vivo
MRE and the quasi-static measurement provided by the manufacturer. The 95% confidence limits of
the bias are shown as two dashed lines, with the mean value of the differences shown as a solid line.
Panel (a) shows SF-DI, (b) NLI, (c) MF-MDEV, and (d) MF-MDEV protocols. (a-c) show increased
variance with increasing stiffness, whereas (d) shows the least bias between measurements.

wavelet to remove bulk wave artefacts, to retain longer wavelengths resulting in the capability to

measure the stiffest inclusion (Target 4) more accurately.

All four protocols provided a largely homogenous map for the background (BG) region. Methods

using the local homogeneity assumption are expected to work well in areas where the elasticity is almost

constant; the homogeneity assumption is not expected to deteriorate the inversion since the region is

homogenous. SF-NLI does not use the local homogeneity assumption, and thus performance in regions

of elasticity variation are expected to be superior, as illustrated.
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4.3.2 Human Brain Results

Example raw MRE magnitude images, Dietrich SNR maps and MRE elastograms from each protocol

are provided in Figure 4.8. Note that the edge profile of the SF-NLI elastogram is altered due to the

data masking process required by the finite-element meshing process of NLI. The quantitative MRE

results of the global cerebrum are provided in Table 4.5. Due to differences in brain coverage acquired

across protocols, only the stiffness of the illustrated slice is measured and quantified, with the slices

matched visually. SF-DI and SF-NLI elastograms are presented as the shear stiffness, µ, whereas

MF-MDEV and MF-ESP elastograms are presented as |G∗|.

Table 4.5: Stiffness values from four different MRE protocols

Protocol Stiffness (kPa)

(1) SF-DI 2.80 ± 0.64
(2) SF-NLI 3.29 ± 0.79
(3) MF-MDEV 2.05 ± 0.74
(4) MF-ESP 2.22 ± 1.12

Dietrich SNR was highest for the SF-DI protocol (64.52); as per the phantom images, this is to be

expected due to the lower spatial resolution of 3mm voxels. The SNR for SF-NLI and MF-MDEV/ESP

was 12.53 and 11.87, respectively. The magnitude images of the MF-MDEV/ESP protocols also display

some distortion in the phase encoding dimension (R>>L). This is a result of the spin-echo EPI sequence

utilised for the acquisition, and the inherent susceptibility of EPI to regions near air-filled cavities (a

regional effect that is determined by the local magnetic susceptibility gradients). On initial visual

inspection of the elastograms, there are few, if any, landmarks of correspondence. The ventricles are

clearly defined on the MDEV and ESP elastograms, whereas there are patches of higher stiffness near

the putamen on the SF-NLI elastogram. Of note, the resulting property map resolution from NLI has

been estimated as approximately half that of the imaging resolution [16], as regularisation is needed

to stabilise results in the presence of noise and model-data mismatch.

Overall, Figure 4.8 indicates that stiffness is highest for SF-NLI and lowest for MF-MDEV.

Comparing the quantitative values generated for the global cerebrum, NLI was indeed highest at 3.29

kPa. As expected, this agrees with values reported published studies at UIUC. Johnson et al., 2016

report a shear stiffness, µ value of 3.20 kPa in a sample of 21 healthy young adults. Second, SF-DI

generates a value of 2.80 kPa which is similar to those reported by Huston et al. 2015 (2.76 kPa), and
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Figure 4.8: MRE data presented from each protocol for the same subject (LH) and similar slice: (a)
3D rendering of T1-weighted MPRAGE highlighting the illustrated slice; (b) the aforementioned high-
resolution T1 axial slice; (c) MRE magnitude image; (d) Dietrich SNR, and (e) MRE stiffness map.
Key: SF-DI, single-frequency direct inversion; SF-NLI, single-frequency non-linear inversion; MF-
MDEV, multi-frequency multi-dual elasto-visco inversion; MF-ESP, multi-frequency inversion using
the elastography software pipeline.

Murphy et al., 2013 (2.99 kPa). MF-MDEV and MF-ESP report considerably lower brain stiffness

estimates in comparison to those mentioned previously. This is to be expected as incorporating lower

frequencies, with naturally higher wave amplitudes, have been shown to be more influential within
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inversion [17]. Low values are particular evident in cortical regions and may be caused by fluid-filled

tissue heterogeneities such as sulci in the brain (thus reflecting edge-related biases). Nevertheless,

MF-MDEV reported a value of 2.05 kPa at frequencies of 30, 40, 50 Hz which is within the range

published by the Charité group. Dittmann et al., 2015 reported a value of 1.56 kPa using 25, 30, 35

Hz and 2.18 kPa using 40, 45, 50 Hz [17].

Moreover, the MF-ESP protocol generates slightly higher values (8% higher) than MF-MDEV

at 2.22 kPa. This is in agreement with Barnhill et al., 2016, who reported ESP brain stiffness to

be 16% higher than MDEV. ESP could potentially be extracting fine features and retaining a wider

stiffness contrast, while removing noise and clutter from known MRE noise sources, thus explaining the

higher regions of stiffness in the right hemisphere. Furthermore, values obtained from both MF-MDEV

and MF-ESP images of the brain have been shown to correlate very well (r = 0.85), suggesting that

both methods may deliver an accurate assessment of the relative viscoelastic properties of anatomical

structures [12].

4.4 Discussion

This chapter had four objectives: (1) to identify the most widely used and highly published brain MRE

protocols in both research and clinical use; (2) to consider methods of actuation most suitable for

older participants or patient populations; (3) to obtain phantom MRE data using the aforementioned

protocols for comparison with pre-determined quasi-static measurements, (4) to obtain exemplar brain

MRE images of the same subject.

The literature review provided in Chapter 3 allowed the identification of centres who contribute

the majority of the research output on brain MRE, namely: Mayo Clinic, University of Illinois at

Urbana-Champaign (UIUC), and Charité – Universitätsmedizin Berlin. Each protocol represents a

fundamentally different approach to the same problem of deriving mechanical properties from dis-

placement fields and can be broadly summarised into three categories: (a) single frequency direct

inversion (SF-DI); (b) single frequency non-linear inversion (SF-NLI), and (c) multifrequency multi-

dual elasto-visco inversion/elastography software pipeline (MF-MDEV/ESP).

The second objective of this chapter was to consider methods of actuation that would be both

comfortable for older and patient populations and convenient for radiographer operators. Through

personal experience of both the pneumatic Resoundant and associated head-pillow, and the piezoelec-

tric device with the associated “head-rocker”, the former was determined to superior for comfort and

convenience. Moreover, it is already in clinical use at the Mayo Clinic for preoperative assessment of

96



CHAPTER 4. 4.4. DISCUSSION

tumour consistency and is soon to be designated as a FDA-approved product. On the other hand, a

piezoelectric system and “head-rocker” actuator would need to be custom-made. Consequently, the

Resoundant actuator system was commissioned on the MRI scanner at EIF-QMRI and the head-pillow

driver was made available through an associated R&D Agreement with the Mayo Clinic. As such, all

experiments performed throughout this thesis will use the Resoundant actuator to generate shear

waves, and the head-pillow driver to transmit the shear waves into the brain, as illustrated in Figure

2.2 within Chapter 2.

For the phantom study, SF-NLI, MF-MDEV and MF-ESP all achieve good spatial accuracy of

the four inserts. The SF-NLI protocol, in particular, clearly delineates each inclusion likely due to

the use of the non-homogenous form of the Navier equation. However, another important factor in

protocol selection is the processing time. MF-MDEV and MF-ESP are orders of magnitude faster than

iterative methods (seconds on a desktop computer compared to hours on a specialised multi-processor

cluster). Largely evident, however, is that all values are below the values reported by the manufacturer,

particularly for the stiffest inclusion of 27 kPa (Target 4). This is likely to be due to the vibration

frequencies chosen to image the phantom (≈100 Hz), and the need for the use of higher vibration

frequencies. To illustrate this, we know that speed of sound changes in different media through the

equation:

s = E

p
(4.2)

with s the wavespeed, E the elasticity of the material (Pa) and p the assumed density. As a result,

the shear waves would travel though the stiffest inclusion of 27 kPa at 5.20m/s assuming a constant

density of 1000kg/3. Further, the wavelength λ is associated with wavespeed s and vibration frequency

f through λ = s
f . The wavespeed s of 5.20m/s at the 100 Hz actuation frequency, would therefore

result in a shear wavelength of 5.2mm. The size of the inclusion is 20mm, demonstrating that only 4

wave lengths can be sampled within the target. Using the same calculation, I could determine that

200 Hz vibration frequency in a material of 27 kPa would provide shear waves of the order of 2.6mm,

which instead allows nearly 8 waves to be sampled within the inclusion. In hindsight, frequencies

within this range would have been needed to more accurately correspond to quasi-static measurements.

Nevertheless, frequencies in this range would not be suitable for the study of the human brain, and of

most interest, was whether MRE values were in proportion to the manufacturer’s reported values. As

for the human brain data, the images visually match those presented in the literature and the values
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are within the range of stiffness values published.

4.4.1 Limitations

Several limitations impede a thorough or complete comparison of protocols within the phantom study.

First of all, it should be recognised that none of the phantom acquisition and analysis protocols were

optimised for phantom imaging. Our aim was to instead run the standard brain MRE protocol from

each centre in the phantom. This has greatly influenced the accuracy of the phantom results for

the SF-DI pipeline. The SF-DI acquisition, typical of the Mayo Clinic, were instead collected from

UIUC which uses a Siemens system and not a GE platform. Further, a typical Mayo Clinic protocol

would perform edge adaptive processing, which has been shown to provide significant improvements in

stiffness measurements for the 6 pixels adjacent to any boundary. Finally, to get accurate stiffness for

a region of interest, (an inclusion in the case of the phantom), the ROI would usually be segmented

from the T1-weighted image with the application of mask edge adaptive operations and pixel erosions

from each edge. Here, only a global stiffness map is provided without edge adaptive processing. As for

the SF-NLI and MF-MDEV protocols, identical inversion parameters were used for the phantom as

what would be typical for brain. MF-ESP, however, would usually use an interpolation factor (x4) for

brain imaging, but interpolation was omitted for the phantom study due to the presence of significant

artefacts.

Importantly, the brain acquisitions were entirely typical of the pipelines used at each research

centre. This is confirmed by near identical values found from each protocol within the published

literature. However, these results highlight the current discrepancies within brain MRE. Identical

stiffness values for the same brain slice from the same subject would be expected. Another aspect of the

acquisition that may also be contributing to these discrepancies is the direction of the primary source

of motion. The principal direction of motion for MF-MDEV and MF-ESP is in the superior-inferior

direction, whereas the primary source of motion in SF-NLI is in the anterior-posterior direction. MRE

measurements have previously been shown to be direction-dependent, particularly in highly anisotropic

regions such as white matter, and so this is another aspect of the study to take into consideration [18].

Nevertheless, this study has been useful in understanding the relative differences in MRE measurements

that are apparent across the literature that simply arise because of the choice of MRE protocol.
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4.5 Conclusion

All future work in this thesis will utilise the SF-NLI and MF-MDEV pipelines to generate high-

resolution brain MRE elastograms. SF-NLI is chosen for its superior ability to clearly delineate each

inclusion within the phantom and the inherent use of the non-homogenous form of the Navier equation.

The brain is a highly heterogeneous organ and therefore it stands to reason that a heterogeneous model

will be more spatially accurate, especially at tissue boundaries, where there are slowly varying material

properties. MF-MDEV will also be used due to high accuracy for phantom measurements that closely

match those expected for biological tissue. While MF-ESP was determined to be more accurate than

MF-MDEV, there has been significantly less use of MF-ESP within the literature. MF-ESP holds

promise for the future, but was omitted for use throughout this thesis, as significant developments

are necessary to ensure stability. Furthermore, SF-NLI and MF-MDEV both offer a two-parameter

approach, unlike SF-DI, which will increase sensitivity for meeting the thesis objectives. In the next

chapter, both high-resolution pipelines are installed, optimised and validated at the EIF-QMRI through

the collaborations established as a result of this study.
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CHAPTER 5. 5.1. INTRODUCTION

Plan for the Chapter

This chapter relates to my role in establishing state-of-the-art high-resolution brain MRE in Edinburgh.

In particular, my contribution included: (a) establishing collaborations with leading brain MRE re-

search institutes to obtain access to the required MRE pulse sequences and inversion algorithms; (b)

the optimisation and validation of MRE pulse sequence design for implementation on the 3 T Siemens

Verio MRI system in Edinburgh, and, (c) the novel development of a reliable and user-friendly graphi-

cal user-interface (GUI) to perform an automatic and optimised T1-to MRE image coregistration and

subsequent extraction of ROI quantitative measurements.

5.1 Introduction

In the previous chapter, a description was given of the collaborations that have been established with

leading brain MRE research groups, and how during a visit to each laboratory, exemplar phantom

and brain MRE images were obtained to assist in discussions and evaluations to establish the main

experimental MRE protocol back at the Edinburgh Imaging facility, QMRI (EIF-QMRI).

The high-resolution MRE protocols introduced to Edinburgh represent two distinct and funda-

mentally different pipelines namely: (1) single frequency NLI (SF-NLI), and (2) multifrequency MDEV

(MF-MDEV), associated with the University of Illinois at Urbana-Champaign and Charité, Berlin, re-

spectively. Resolution is gained in the former from the multi-shot multi-slab spiral MRE acquisition

sequence, whereas the multifrequency inversion scheme (i.e. MDEV) is the source of resolution in

the latter. The reader is referred to Chapter 2 to obtain further information regarding each aspect

of the protocol. In this chapter, installation information is provided and, where possible, optimised

for implementation on the 3 T Siemens Verio MRI system. Results are then validated against those

previously obtained at the respective research institutes as shown in Chapter 4. The validation process

is performed at both the acquisition and analysis stage. Dietrich-method SNR, as expressed in Eq.

4.1, and an octahedral shear strain signal-to-noise ratio (OSS-SNR), are used to assess the quality of

the raw MRE data. OSS-SNR is a measure of the three-dimensional deformation [1], where values

above 3 have been shown to be stable for inversion [2,3]. Visual correspondence and MRE quantitative

values are used to assess the similarity of the processed MRE elastograms.

Later in the chapter, details of the T1 image segmentation and MRE coregistration process is

described. This is an essential component of each pipeline with regard to generation of reliable mea-

sures of specific neuro-anatomical regions of interest (ROIs). A user-friendly graphical user interface
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(GUI) was developed and integrated in MATLAB, to perform an automated optimised T1 to MRE

coregistration and quantitative extraction of mechanical property measurements.

5.2 Single frequency with non-linear inversion (SF-NLI)

5.2.1 Acquisition

Multi-slab multishot spiral MRE

Whereas, the traditional MRI approach has been to divide the total imaging volume into thin slices,

the 3D multi-slab multi-shot acquisition obtains whole brain coverage by dividing the total imaging

volume into multi-slice slabs. In particular, the sequence used throughout this thesis employs ten slabs

of eight 1.6mm thick slices; the number and size of slabs were specifically chosen with considerations

of coverage for key brain structures. Imaging is repeated to encode motion each of the three gradient

axes separately, with both positive and negative polarities, and at four time points spaced over a single

vibration period. The acquisition can generate full vector field, complex displacement data at 1.6 x

1.6 x 1.6mm isotropic spatial resolution. Only four samples of the vibration are captured, as opposed

to the typical eight of most MRE acquisitions, which halves the total acquisition time resulting in a

total scan time of 12 minutes.

Installation:

Access to the 3D multi-slab multishot MRE sequence was obtained after a collaboration was

established with Dr. Curtis Johnson at the University of Illinois at Urbana-Champaign (UIUC)

- now based at the Mechanical Neuroimaging laboratory at the Department of Biomedical En-

gineering, University of Delaware. A successful Edinburgh NeuroResearcher’s fund award pro-

vided additional finance to support the visit. The sequence was then shared with Edinburgh

and installed on the 3 T Siemens Verio MRI system at EIF-QMRI. Image reconstruction of each

dataset is performed offline using MATLAB on graphics processing units (GPUs). The k-space

trajectory shifts for motion correction are incorporated, while the independently acquired sen-

sitivity map performs a field inhomogeneity correction.

Optimisation:

Prior to running the spiral MRE acquisition, a 3D interactive shim and manual adjustments

are implemented to homogenize the main magnetic field. While the magnetic fields produced
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by MRI scanners are specifically designed and manufactured to achieve fairly high levels of ho-

mogeneity, local supplemental magnetic fields (i.e. shim fields) are sometimes added to achieve

the desired level of magnetic field homogeneitya. Further, the amplitude of vibration on the

Resoundant system was set to 20%, which is within the range used by other centres; UIUC

typically use 15% whereas the Mayo Clinic use 20%, although groups rarely report the vibration

of amplitude in published work. I chose to implement an amplitude of 20% for the acquisition

at EIF-QMRI as this is likely to increase the quality of displacement data (i.e. an increase to

the OSS-SNR), whilst having a negligible effect on participant comfort.

Validation:

Multi-slab multi-shot data acquired at EIF-QMRI was then compared with the data acquired

of the same subject (LH) at UIUC, as shown in Figure 5.1. Dietrich SNR was 12.53 and 9.51

for UIUC and EIF-QMRI, respectively. This is likely due to differing scanner models (i.e.

Siemens Trio vs Siemens Verio), and the availability of MR head different coils. Higher number

of channels will increase MR signal; therefore, it is expected that greater image quality will be

obtained at UIUC with a 32-channel coil, compared with the 12-channel coil used at EIF-QMRI.

OSS-SNR was 2.33 at UIUC and 8.11 at EIF-QMRI, corresponding to an improved OSS-SNR

of over 110%. As the OSS-SNR was less than 3 at UIUC, this dataset is not stable for inversion,

and supports the decision to use a slightly higher vibration amplitude at the EIF-QMRI. The

UIUC acquisition, however, shows signs of subject movement which is also likely to affect the

OSS-SNR distribution.

5.2.2 Analysis

Non-linear finite-element-based inversion (NLI)

Within the MRE literature, the high-resolution spiral acquisition has been paired with a non-linear

finite-element-based inversion (NLI) algorithm. The NLI algorithm is coded in FORTRAN using paral-

lelised programming with Message Passing Interface (MPI) and run on a distributed UNIX computing

cluster with 64 processors. 100 iterations are run leading to a computer processing time of approxi-

mately 18 hours. The initial estimate for the real G′ and imaginary G′′ shear modulus is set to 3.30 kPa

and 1.19 kPa, respectively, with density set to 1000kg/m3. MATLAB files are returned to EIF-QMRI

consisting of spatial maps of the complex shear modulus G∗.
aThe shims are needed because of the residual field variations resulting from the magnet’s manufacturing as well as

alterations occurring by the presence of the subject to be imaged.
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Figure 5.1: Comparison of MRE data acquired of the same subject (LH) at UIUC and EIF-QMRI, with
the 3D multi-slab multishot MRE sequence. Representative image slice of (a) raw T2 MRE magnitude,
(b) Dietrich method SNR; and (c) the resulting OSS-SNR distribution. Differences in SNR are likely
due to different scanner models (Siemens Trio vs Siemens Verio), and the availability of different MR
head coils (32-channel vs. 12-channel). Higher OSS-SNR at EIF-QMRI is most likely due to selecting
a higher vibration amplitude on the Resoundant actuator system. Increasing the % amplitude by 5%
resulted in an improved OSS-SNR score of over 110%.
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Installation:

A collaboration was established with Dr. Matthew McGarry, currently based at Thayer School

of Engineering, Dartmouth College, Hanover, USA. Dr. McGarry has implemented several new

aspects of the NLI algorithm including so-called subzone based multiresolution NLI [4]. Mul-

tiresolution NLI has the benefit of subsampling both parameters simultaneously to smooth and

stabilize both estimates of the storage G′ and loss G′′ modulus - resulting in a more stable G′′.

As such, multi-slab, multishot displacement data were specifically formatted (i.e. generation of

a binary mask and separation of the x, y and z components of motion), and sent to Dartmouth

College for processing.

Optimisation:

Settings of the NLI algorithm (v7.34) used throughout this thesis are identical to those used in

other brain MRE NLI publications [2, 3, 5, 6], and include subzone size of 25mm, spatial filter

width of 1.5mm, with two conjugate gradient iterations per subzone. A high bulk modulus is

used to provide a Poisson ratio close to 0.5.

Validation:

NLI was used to process the 1.6mm multi-slab multishot displacement data acquired at both

UIUC and EIF-QMRI of the same subject (LH), as shown in Figure 5.2. Data was converted

to shear stiffness µ to maintain consistent reporting. Whole brain µ was 2.81 kPa at UIUC and

2.90 kPa at EIF-QMRI. The EIF-QMRI elastogram appears to have better neuroanatomical

agreement with the T2-weighted image provided in Figure 5.1. The ventricles, in particular,

are very well defined in the coronal view. The brainstem appears especially stiff in the UIUC

elastogram which, however, is not apparent in the EIF-QMRI elastogram. This is most likely

to be an artefact which could be attributed to subject motion, and therefore not a real feature.

As previously mentioned, the OSS-SNR did not score above 3 to suggest the motion data was

stable for inversion. As a result, quantitative stiffness values will not be reliable.

107



CHAPTER 5. 5.2. SF-NLI PROTOCOL

Figure 5.2: Representative MRE images of the same subject (LH) acquired at UIUC and EIF-QMRI.
Whole-brain shear stiffness, µ map in (a) axial, (b) sagittal, and (c) coronal orientation from non-linear
inversion (NLI) of high-resolution MRE displacement data captured with the 3D multislab, multishot
acquisition. Note: UIUC motion data did not reach the threshold required for stable inversion as
calculated with the OSS-SNR. As a result, the MRE elastograms are unlikely to be reliable. In particular,
the stiff brain stem visualised in the coronal view is unlikely to be a “real” feature. Similar results for
the brainstem have been reported previously [2], and the reliability of brainstem MRE results is currently
under investigation.
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5.3 Multi-frequency EPI with MDEV (MF-MDEV)

5.3.1 Acquisition

Spin-Echo Echo-Planar Imaging (EPI)

The acquisition sequence used as part of the MF-MDEV protocol is a Cartesian Spin-Echo Echo Pla-

nar Imaging (SE-EPI) sequence, with parallel imaging capabilities equipped with additional motion

encoding gradients (MEGs) [7, 8]. To ensure the 3D displacement is captured, three sets of measure-

ments are performed, each with the MEG incorporated along one of the three Cartesian axes, and 8

phase offsets are obtained to track the wave propagation in time.

Installation:

A modified spin-echo echo planar imaging (EPI) sequence was already available at EIF-QMRI

from a previous PhD study investigating the mechanical properties of the musculoskeletal sys-

tem [9].

Optimisation:

The selected mechanical frequencies to be used within the protocol at EIF-QMRI were 20, 30,

40, 50, and 60 Hz; within the range utilised in recent brain MRE publications from the Charité

group [10–12]. In the next section, I perform four particular optimisations including: (1) choice

of echo time (TE); (2) selection of optimal MEG frequencies; (3) preferred phase-encode direc-

tion; and (4) the addition of a whole-brain EPI for coregistration purposes.

(1) Choice of TE

Choice of TE is influential as a longer echo time allows for longer motion-encoding periods (i.e.

an increase to the max encoding time)b. In general, longer motion-encoding periods with multi-

ple MEG cycles offer superior motion sensitivity, as the sensitivity increases proportionally with

the number of gradient pairs. The caveat being that a longer echo time (TE) invariably causes

lower signal quality due to T2 decay. For the EIF-QMRI protocol, a TE of 92 was selected as

the brain has longer T2 times compared to other tissues, enabling a longer encoding time and

thus higher encoding efficiencies.
bThe max encoding time refers to how much time is available to incorporate the MEG before the full k-space readout

and can be found within the special tab on the scanner console.
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(2) MEG frequency

Another important aspect of the acquisition is the selected MEG frequency for each mechanical

frequency. Studies have previously matched the MEG frequency to the mechanical frequency,

however, determination of the optimal MEG frequency can accomplish a higher encoding ef-

ficiency according to the principles of fractional motion encoding [13]. To assist with these

calculations, a “plotSensitivity” MATLAB script, developed by Dr. Sebastian Hirsch - a mem-

ber of the Charité MRE group, was used to ensure the highest encoding efficiency for the given

TE. A demonstration for calculating the optimal MEG frequency for 50 Hz, is provided in

Figure 5.3. The same calculation was then applied to determine the optimal MEG frequencies

for the remaining mechanical frequencies.

(3) Phase encode (PE) direction

Susceptibility-induced distortions can be problematic in data acquired along the left-to-right

(R>>L) PE orientation, causing the blurring of signal across the midline and hampering the

natural symmetry of the left and right cerebral hemispheres. Data acquired in the anterior-to-

posterior (A>>P) PE direction is more frequently applied in diffusion MRI [14], and therefore

I propose using the A>>P PE direction in combination with this sequence, and within brain

MRE in general.

(4) Acquisition of whole-brain EPI

Due to the multifrequency aspect of the MF-MDEV pipeline, a limited number of slices are

acquired to enable a shorter acquisition time. A partial field-of-view acquisition, however, causes

difficulties in the coregistration of the MRE elastogram to the structural T1-weighted image

(more information regarding the coregistration process is provided in section 5.4 ). As a result,

I will acquire a full-brain EPI image, that contains identical parameters, including resolution

and slice orientation, for the purpose of performing a multi-stage registration. This will enable:

(1) a simple (3 degrees of freedom) registration between the partial-EPI with the full-brain EPI;

(2) coregistration between the full brain EPI to T1 space; and (3) the concatenation of the two

steps to minimise resampling, thus enabling the partial-EPI to be transformed into T1 space. A

multi-stage registration has been shown to significantly improve coregistration accuracy.

Further imaging parameters are: 4590/92ms repetition/echo times; 240mm square field-of-view;
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Figure 5.3: Encoding sensitivity with 1 and 2 MEG cycles for a mechanical frequency of 50Hz (TE:92
provides a max encoding time of 25.95 Hz): (a) one MEG cycle results in an optimal MEG frequency
of 37 Hz and an encoding efficiency of 154.6 rad/mm; (b) two MEG cycles result in an optimal MEG
frequency of 52 Hz and an encoding efficiency of 217.9 rad/mm. In this 50 Hz example, a MEG
frequency of 52 would be selected allowing for two complete MEG cycles.

100 x 100 imaging matrix; twenty slices; MEG amplitude 35 mT/mm. The resulting imaging

volume had a 2.3 x 2.3 x 2.3mm3 isotropic voxel size, which was aligned approximately to the

anterior commissure - posterior commissure (AC-PC) line to include the medial temporal lobe

(MTL). The acquisition time for each frequency was 1.55 minutes.
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Validation:

Spin-echo EPI MRE data acquired at the EIF-QMRI was then compared with the data acquired

of the same subject (LH) at Charité, Berlin, as shown in Figure 5.4. Minor distortions are

apparent in both T2 magnitude images; the Charité acquisition in the R>>L direction, and

EIF-QMRI in the A>>P direction, corresponding to the phase encode direction. Dietrich SNR

at 50 Hz was 11.04 (Charité) and 14.49 (EIF-QMRI). Higher SNR in Edinburgh will be due to

the larger voxel size (2.3mm as opposed to 2mm). OSS-SNR was 1.89 at Charité and 3.04 at EIF-

QMRI. The vibration device used at Charité does not specify an exact vibration amplitude. In

Edinburgh, the choice of vibration amplitude for each frequency, involved balancing the trade-off

between sufficient motion seen in real-time on the scanner console, while limiting the presence of

excessive phase wraps. In general, for mechanical frequencies from 20 - 60 Hz, the % amplitude

was set between 15 - 40%.

5.3.2 Analysis

Multi-dual elasto-visco inversion (MDEV)

Within the MRE literature, the multi-frequency spin-echo EPI data has been paired with multi-dual

elasto-visco (MDEV) inversion, or the Elastography Software Pipeline (ESP), as described in Chapter

2.

Installation:

The basic MDEV inversion code is freely available as a MATLAB script, and can be found at

the Charité group’s website: thhttp://elastography.de/support/

Optimisation:

The standard MDEV inversion code was used, as published in numerous studies [11, 15–17].

Interslice artefacts often hamper the full 3D direct inversion, as demonstrated in Hirsch et al.

2013 [18]. As a result, interslice phase inconsistencies were corrected by applying a low-pass filter

along the slice dimension. Additionally, a 2D low-pass filter, based on 2D Fourier transform,

and Butterworth Kernel with a 50 m−1 threshold, were applied to all three components of the

wave field.

Validation:

Figure 5.5 displays the MRE elastograms obtained at both Charité and EIF-QMRI. The ad-
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Figure 5.4: Comparison of 50 Hz MRE data acquired of the same subject (LH) at Charité, Berlin and
EIF-QMRI, with the spin-echo EPI MRE sequence. Representative image slice of: (a) raw T2 MRE
magnitude, (b) Dietrich method SNR; and (c) the resulting OSS-SNR distribution. The Charité MRE
magnitude image shows minor susceptibility-induced distortions along the left-to-right (R>>L) PE
direction. In contrast, the EIF-QMRI magnitude image shows distortions in the anterior-to-posterior
(A>>P) PE direction. I chose to change the phase encoding direction to minimise the blurring of
signal across the midline that may hamper the natural anatomical symmetry of the left and right
cerebral hemispheres. Dietrich method SNR is evidently higher for the EIF-QMRI acquisition due to
the larger in-plane voxel size. The OSS-SNR maps in the final panel suggest that the Resoundant
is providing greater motion, especially to the very centre of the brain, compared to the piezoelectric
system.
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ditional 20 Hz and 60 Hz acquisitions acquired at EIF-QMRI were omitted for this particular

analysis to maintain a valid comparison. Both images are therefore a result of multifrequency

MRE at 30, 40, and 50 Hz. |G∗| at Charité yielded a global value of 2.01 kPa, and 2.30 kPa

at EIF-QMRI. Visual comparison of both elastograms suggest excellent anatomical agreement

as depicted by the arrows placed in Figure 5.5. The positioning of slices was slightly differ-

ent at each research site, as can be seen from the images provided in the coronal and sagittal

orientations.

Figure 5.5: Representative MRE images of the same subject (LH) acquired at Charité, Berlin and
EIF-QMRI. Map of the magnitude of the complex shear modulus |G∗| in (a) axial, (b) sagittal, and
(c) coronal orientation from MDEV of multiple frequency MRE displacement data (i.e. 30, 40, 50
Hz) captured with a spin-echo EPI acquisition. Similar features can be seen in both images, and there
appears to be a number of asymmetries across the hemispheres. The right hemisphere (radiological
convention) is also marked by several regions of stiff “hot-spots”. It is important to note that the
majority of brain MRE groups report asymmetries in their data. Also note that the slices are not
symmetric themselves (i.e. not perfectly axial). The right lateral sulcus (arrowed) is present, but the
left lateral sulcus isn’t in plane.
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5.4 Image segmentation and coregistration

The previous sections (sections 5.2 and 5.3) summarised the data acquisition and data analysis proce-

dures to generate high-resolution elastograms for both of the SF-NLI and MF-MDEV pipelines. After

installation, optimisation and validation of both protocols at the EIF-QMRI, the next important step is

the generation of reliable quantitative MRE-derived values of regions of interest (ROIs), i.e. particular

brain structures.

A number of different processes have been used to define ROIs, dividing into essentially two

approaches, namely (i) manual boundary delineation of the ROI, and (ii) automatic segmentation of

the ROI. Fortunately, for the brain there are a wealth of software programmes available to perform

automatic segmentation. However, very few are open-source and able to generate numerous brain

structures of interest. FREESURFER is one such software package that has also been found to show

excellent reliability for subcortical regions in healthy older adults [19]. For this reason, in the present

work, FREESURFER will be used to generate masks of brain structures of interest. As it is required

to interpret the MRE results with reference to anatomical regions, coregistration will be performed to

align the T1-weighted image (and masks) to the MRE elastogram. As only a linear (affine) registration

will be required, FMRIB’s Linear Image Registration Tool (FLIRT) from the FMRIB Software Library

(FSL) will be used. This particular processing pipeline that incorporates both FREESURFER and FSL

is mostly identical to one used in previous work to segment and coregister ROI masks for MRE

[3, 6]. While it was reported that there is variability in mask creation from both volume estimation

during automatic segmentation and during registration, these differences contributed negligibly to

the uncertainty of MRE measurements [3]. To maintain consistency with previously published work,

I have adopted a similar (but not identical) pipeline. Both processes are described in more detail

below.

Segmentation:

FREESURFER (Athinoula A. Martinos Center for Biomedical Imaging, Boston, USA), provides a

suite of tools for the visualisation and analysis of human brain MRI data, which is open-source,

documented, and free for download online [20]. Briefly, T1-weighted images are input into

FREESURFER through the recon-all pipeline (v. 5.3). The process automatically performs the

following: skull stripping, automated Talairach transformation, segmentation of the subcortical

white/grey matter structures, intensity normalization, automated topology correction, and reg-

istration to a spherical atlas. Manual corrections are sometimes necessary at any of the stages,
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Figure 5.6: FREESURFER output: (a) coronal, (b) sagittal, and (c) axial slice showing the T1-weighted
slice and the corresponding ‘aseg’ segmentations. The look-up table (LUT) (d) indicates the neuro-
anatomical structure based on colour and number.

and are performed when appropriate. The FREESURFER output file aseg.mgz is of particular

interest, as it contains the subcortical segmentation volumetric masks of approximately 40 brain

structuresc.

Coregistration: Coregistration serves the purpose of accurately aligning anatomical information with

the high-resolution MRE parameter maps. First of all, T2-weighted magnitude MRE images

are co-registered to the structural T1-weighted MPRAGE using FLIRT - the linear registration

tool within FSL [21]. A 12 parameter affine model is used, with tri-linear interpolation and
cThese include Cerebral White Matter, Cerebral Cortex, Lateral Ventricle, Inferior Lateral Ventricle, Cerebellum

White Matter, Cerebellum Cortex, Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, Lesion, Accum-
bens area, Vessel, Third Ventricle, Fourth Ventricle, Brain Stem, Cerebrospinal Fluid, as illustrated in Figure 5.6.
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a correlation ratio cost function. The registration is optimised by using weighting volumes

specified using -refweight, -inweight, or both, and allows the cost function to have a

different weighting at each voxel. This is useful for excluding areas of no interest (weight=0),

or increasing the weighting around important structures such as the ventricles. Weighting of 1

was applied to the entire brain, whereas a weighting of 10 was applied to the lateral ventricles.

Adding extra weighting to the ventricles may be especially important for coregistration accuracy

in older subjects who are likely to have moderate atrophy and enlarged ventricles. Second, the

inverse transform is calculated so that the T1-weighted MRPAGE image can be transformed

into MRE space. Most essential, is that use of this transform allows for the generated masks

from FREESURFER to be transferred into MRE native space, to serve as ROIs for obtaining

quantitative values. As MRE images contain quantitative information, it is preferential to keep

MRE in its native space so as to not distort measures. FREESURFER ROI masks, however,

are transformed using a nearest neighbour interpolation to preserve accurate boundaries. See

Figure 5.7 for an illustration of the coregistration process.

5.5 Development of an automated coregistration GUI pipeline

for ROI measurements

Prior to the present study a graphical user interface (GUI) did not exist to perform the automatic

coregistration and generation of MRE-derived quantitative measures. It is important for research

groups using brain MRE to develop a standardised method of calculating values, particularly of cer-

tain brain structures. This would also ensure consistency and reliability, and be of great use in a clinical

environment. Consequently, a GUI was developed using guide within MATLAB known as Mechan-

ical Neuroanatomy (MeNA). Two separate GUIs were developed for the SF-NLI and MF-MDEV

pipelines; this is because the latter requires a three part registration due to limited brain coverage in

the z-direction.

5.5.1 Procedure

In this section, the use of the SF-NLI GUI procedure is described. Prior to running the GUI,

FREESURFER data, the raw but reconstructed spiral data, and post-inversion MRE data should al-

ready be availabled. After downloading the script files and setting the path to the MeNA folder, the
dWithin the subject directory, output files from FREESURFER should be named “FREESURFER”, files containing

the processed NLI data should be in a parent folder called “inv”, and the raw spiral should be in a folder called
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Figure 5.7: Overview of the FSL coregistration pipeline. The MRE T2-weighted images are first coreg-
istered to the T1-weighted MPRAGE using FLIRT. To optimise the registration, extra weighting is given
to the lateral ventricles. Once this transform has been generated, the inverse transform is obtained to
move the T1-weighted MPRAGE into T2-weighted MRE space. The inverse transform can then be
used to transform the FREESURFER segmentations (i.e. aseg) into MRE space using a nearest neigh-
bour interpolation for boundary preservation. Note: MRE elastograms are in the same space as the
T2-weighted MRE magnitude image.

user simply needs to type MeNA into the command window within MATLAB, to access the GUI as

shown in Figure 5.8.

(1) Prepare files: The first step in this process is the creation of a new folder called CoReg_NLI.

FREESURFER data is converted from FREESURFER conformed space back to native anatomical

space. Shear stiffness, µ and damping ratio ξ are calculated from the complex shear modulus

|G∗| and NiFTI image files are created for |G∗|, φ, µ and ξ. All data required for coregistration

is then automatically transferred to the new folder CoReg_NLI e.

“finished_recon”.
eThe prepare files for SPR button simply uses data processed with soft prior regularisation (SPR) and creates a

CoReg_NLI_SPR folder instead.
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Figure 5.8: Mechanical Neuroanatomy (MeNA) GUI for the SF-NLI pipeline.

(2) Coregistration: This button performs the automatic and optimised coregistration as discussed in

section 5.4 and illustrated in Figure 5.7, and takes approximately 30 seconds. Once completed,

Freeview within FREESURFER is opened automatically so the user can check coregistration

accuracy.

(3) ROI measurements: Finally, the user can click any of the ROIs to automatically generate values

for all four MRE-derived parameters for the selected brain structuref. Non-zero voxels in the

(binary) mask are established and transferred to the |G∗|, φ, µ, and ξ images to obtain values

only for that region. All masks are thresholded at a conservative value of 95%, as it is important
fA range of ROIs have been added to the GUI, but more can be easily added as the masks are generated depending

on the numbers provided in the LUT as shown in Figure 5.6.
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to not include contamination from surrounding areas. Finally, values are presented and a new

folder is created (i.e. the hippocampus) with the associated masks and measurements.

5.5.2 MeNA highlights

• Quick and easy to use.

• Reliable and consistent values.

• Optimal coregistration.

• Separate GUIs for SF-NLI and MF-MDEV pipelines.

• Values provided for four MRE parameters, i.e |G∗|, φ, µ, and ξ.

5.6 Summary

This chapter has focused on the installation, optimisation, and validation process for the introduction

of two widely-published, high-resolution brain MRE protocols at the EIF-QMRI. Comparison of images

acquired in Edinburgh with the respective research institutes show similar quality MRE elastograms.

Furthermore, the image segmentation and coregistration process, used throughout this thesis, is de-

scribed thoroughly to encourage researchers to use a similar approach for standardisation benefits. To

aid this objective, I have developed an automated image coregistration and ROI measurement GUI

(i.e. MeNA), to be user friendly and improve the measurements of local mechanical properties, which

both enhance the clinical applicability of brain MRE. Chapter 6 will focus on the repeatability of

the quantitative measures generated in a small sample of both young and older subjects, across two

separate time points, using the high-resolution schemes presented here. The test re-test agreement of

each protocol has not been previously evaluated, while reliability is essential for the clinical adoption

of any potential biomarker.
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Chapter 6

An evaluation of the test re-test

agreement of Brain MRE
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Plan for the Chapter

This chapter contains a rigorous evaluation of the test-retest agreement of the two brain MRE protocols

described in Chapter 5. The previous chapter focused on the installation and optimisation of both

approaches at the Edinburgh Imaging Facility, QMRI, broadly categorised as single frequency non-

linear inversion (SF-NLI) and multifrequency multi-dual elasto-visco inversion (MF-MDEV). This

study will evaluate the test re-test agreement of each method in a sample of six younger (mean age:

24 years), and six older (mean age: 70 years) adult participants, scanned once over two separate time

points within approximately 2-3 weeks. MRE measurements are provided for the global cerebrum

(Ce), as well as a smaller brain structure of interest, i.e. the hippocampus (Hp). Secondary aims were

to examine inter-method reliability, and the sensitivity of each protocol to ageing effects.

6.1 Introduction

Rapid improvements in magnetic resonance imaging (MRI) technology continue to provide new oppor-

tunities to deepen our understanding of brain structure and function in health and disease. Evaluation

of neurodegenerative disease progression may be assisted by quantification of the brain’s mechanical

properties using magnetic resonance elastography (MRE). Through preliminary clinical investigations,

as described in Chapter 3, brain MRE has displayed excellent potential as a diagnostic biomarker. Re-

cent improvements in actuator design, imaging resolution, and inversion algorithms has only further

enhanced the feasibility of using brain MRE as a clinical neuroimaging modality.

The construction of a new biomarker requires the examination of its psychometric properties.

Any measurement tool is almost always prone to various sorts of error, causing the measured value to

differ from the true value. Validity studies, therefore, are essential in order to examine whether the test

can provide what is required (i.e. aiding diagnosis, predicting future patient outcomes, or serving as

end points in randomised control trials). In other words, validity studies can assist in the calculation

of whether the bandwidth of error is acceptable; a technique cannot be used to detect a change when

its measurement error is larger that the change we want to be able to detect [1].

The successful transformation of liver MRE from lab to clinic is marked by numerous studies

finding high agreement across raters and sessions [2], and small variability between imager manufac-

turers, field strengths, and pulse sequences [3]. As such, cut-off values have been established for liver

fibrosis, with a shear stiffness µ value of below 2.5 kPa indicating normal liver tissue, values above

5 kPa indicating stage 4 fibrosis, with intermediary values accounting for stages 1-3. Of note, liver
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MRE is overwhelmingly performed at 60 Hz vibration using a direct inversion algorithm. Images are

then automatically generated and made available on the scanner console. For the brain, however,

it has been more difficult to establish “normative” values of brain stiffness. This was highlighted in

Chapter 3. Even when results for global brain tissue are standardised according to a mathematical

common parameter, shear stiffness µ still deviates between 0.62 - 2.99 kPa for healthy normal sub-

jects [4]. Values for white matter, in particular, have varied between 1.27 kPa and 13.60 kPa. There

is clearly a wide disparity in values, which may be attributed to variation in frequency and MRE

methodology. Whether brain MRE can provide accurate quantitative values for mechanical properties

will be difficult to determine, as examining the mechanical characteristics of living brain tissue in situ

has proved challenging. However, accurate mechanical values per se, may be less important than the

determination of the most reliable and clinically sensitive protocol.

More studies have been reporting test re-test measurements, with promising results [5–8]. For

example, Murphy et al. 2013b report that their MRE processing pipeline possesses a typical coefficient

of variation (CV) of <1% for global brain stiffness, and <2% for regional lobe stiffness measurements in

10 young healthy subjects [7]. At a higher 1.6 mm spatial resolution, Johnson et al. 2016 report a test

re-test repeated measures CV of 1–2% for global measures, and 3–7% for measures of subcortical grey

matter structures [6]. However, brain MRE has so far lacked a test-retest agreement study assessing

a range of subjects over two separate time points, while directly comparing performance of more than

one MRE protocol.

In this chapter, the validity of two widely published protocols for generating brain mechanical

property measurements are examined, to include single frequency non-linear inversion (SF-NLI) and

multifrequency multi-dual elasto-visco inversion (MF-MDEV), as installed and optimised at the Ed-

inburgh Imaging Facility, QMRI as described in Chapter 5. Additionally, the SF-NLI protocol was

incorporated with soft prior regularisation (SF-NLI-SPR), whereas the multifrequency data were re-

analysed with MDEV using a smaller band, or limited range (LR) of frequencies (MF-MDEV-LR),

resulting in the availability of four experimental protocols. The SPR inversion scheme incorporates

prior anatomical information to penalise heterogeneity in a ROI, thereby avoiding effects from neigh-

bouring tissue or cerebrospinal fluid [9], with previous studies demonstrating improved sensitivity and

less uncertainty (i.e. decreased coefficient of variation), of subcortical grey matter measurements [6].

A limited range of frequencies are also analysed with MDEV to assess whether this improves test-retest

results. Previously, Dittman et al. 2015 suggested that the applied frequency range for brain MRE

should be small to ensure that waves at different frequencies obey similar damping properties. This is

126



CHAPTER 6. 6.1. INTRODUCTION

because low frequencies cause values in the centre of the brain to be dominated by nearly undamped

low-frequency waves [10]. More specifically, the present study will examine validity of each protocol

for measurements of the global cerebrum (Ce) and the hippocampus (Hp). Results of Ce test re-test

agreement can be compared with results obtained from other studies, as mentioned, whereas Hp is a

particular brain structure of interest due its implication in Alzheimer’s disease.

In order to understand the conducted analyses, it may be necessary to provide a description

of the terms agreement and reliability. Across the literature, the distinction between both concepts

remains anything but clear, and the term “repeatability” is commonly used for both agreement as well

as reliability [11]. The first objective of this chapter is to assess test re-test agreement of each of the

four brain MRE protocols. The term agreement is the capacity of a measurement tool applied twice on

the same participants to provide strictly identical results. In this instance, we would expect the same

brain MRE protocol, administered on different days, to provide identical values for each subject. It is

acknowledged that in real conditions, perfect agreement is more of a theoretical concept than a reality,

since there are many factors that are impossible to control for which can influence measurements.

However, a perfect agreement should always be the objective because lowering expectations can only

lead to unsatisfactory tools [11]. Test re-test agreement will be measured with the intraclass correlation

efficient ICC (absolute agreement model), the coefficient of variation (CV) and Bland-Altman plots.

An additional interest is to determine the reliability of measurements between protocols. Reliability

refers to the ability of a test to replicate the same ordering between participants when measured twice;

in this case, the two measurements correspond to results obtained by two different MRE protocols.

We do not expect different protocols to provide identical quantitative values (i.e. show agreement),

largely due to alterative actuation frequencies and MRE-derived output parameters, but it is essential

that they are reliable (i.e. whether the stiffest brain measured using one method would also be the

stiffest determined with another). Understandably, however, if agreement is found to be unacceptable,

the reliability of the protocol is likely to be poor. Inter-method reliability will be measured using ICC,

but with model type consistency. A further aim of this chapter is to establish whether one particular

method is more sensitive at detecting mechanical differences between young and healthy older adults,

as previously published using other brain MRE protocols [12–14].
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6.2 Materials and methods

6.2.1 Subjects

Twelve apparently healthy participants were recruited from the Join Dementia Research (JDR) database;

six were young adult participants (mean age: 23.8±3.5 years) and six were older participants (mean age:

69.5±1.8 years). Criteria for exclusion included: 1) history or current diagnosis of a psychiatric disor-

der, and 2) history of major head injury. Older participants were required to complete the Montreal

Cognitive Assessment (MoCA) [15] and score within the normal range (>26/30) to rule out significant

underlying memory problems. An equal number of female and male participants were recruited into

each group to consider the known differences in brain viscoelasticity between men and women [12,14].

As in previous studies of MRI reliability, the interval between sessions included sources of variability

that cannot be practically excluded such as instrument drift and subtle physiological changes, including

hydration status or blood pressure [16]. The study was approved by the NHS Lothian ethics committee

and all study participants gave written, informed consent prior to the examination.

6.2.2 MRI protocol

All volunteers underwent two MRI scanning sessions, with an average time of nineteen days between

sessions (range = 6 - 31 days). MRI and MRE data were collected using a Siemens 3T Verio whole-body

MRI scanner with a 12-channel head receive coil (Siemens Medical Solutions; Erlangen, Germany).

The imaging protocol included high-resolution T1-weighted and MRE series. T1-weighted images

were acquired using an MPRAGE sequence (magnetization-prepared rapid gradient echo; 1 x 1 x

1mm3 voxel size; 2400/1000/2.97ms repetition/inversion/echo times).

6.2.3 Anatomical segmentation and mask generation

Masks of the hippocampus (Hp) were obtained via automatic segmentation of T1-weighted images

using FREESURFER v. 5.3 through the recon-all pipeline [17]. FREESURFER without user interven-

tion (‘recon-all –i subjectid.mgz –all’) was run, since this is the mode of operation that would be

used in an automated pipeline processing patient data. However, all segmentations were visually

inspected for accuracy and manual corrections were made when necessary. An in-house graphical

user interface (MeNA), was used to perform MRE to T1 coregistration and extraction of quantitative

measurements. Briefly, the T2-weighted magnitude MRE images are co-registered to the structural
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T1-weighted MPRAGE using the FLIRT tool within FSL [18]. The inverse transform is calculated

so that the generated Hp mask from FREESURFER can be transferred into MRE space, to serve as a

mask for soft prior regularisation (SPR), and as a ROI for quantitative measurements.

6.2.4 MRE protocol

A pneumatic actuator (Resoundant; Rochester, MN, USA) was used to vibrate the brain through a

soft pad placed below the occipital portion of the head. Two fundamentally different, and widely

published, brain MRE protocols were employed: The first pairs a high-resolution single vibration

frequency spiral acquisition [19], with a finite-element based non-linear inversion (SF-NLI) [20–22].

The second combines data from multiple vibration frequencies in one inversion, known as multi-dual

elasto-visco inversion (MF-MDEV) [23,24]. Further details of each protocol are provided below:

MRE acquisition

SF-NLI: multi-slab multishot spiral acquisition:

The MRE acquisition employed a 3D multi-slab multishot spiral sequence to capture high-

resolution displacement data, as previously described [19]. Imaging parameters included:

1800/75ms repetition/echo times; 240mm square field-of-view; 150 x 150 imaging matrix;

and sixty 1.6mm thick slices acquired in ten overlapping slabs. The resulting imaging

volume had a 1.6 x 1.6 x 1.6mm3 isotropic voxel size with 96mm of coverage in the slab

direction, which was aligned approximately to the anterior commissure - posterior com-

missure (AC-PC) line and included the medial temporal lobe (MTL). MRE acquisition

time was 12 minutes.

MF-MDEV: spin-echo echo-planar imaging:

This acquisition involved the use of a single-shot spin-echo EPI sequence to acquire MRE

images at five mechanical drive frequencies (20, 30, 40, 50 and 60 Hz) with eight acqui-

sitions over one wave cycle. A 2.3mm isotropic resolution was achieved with 20 slices

covering the MTL. Further imaging parameters were: 4590/92ms repetition/echo times;

240mm field-of-view, 100 x 100 imaging matrix, phase-encoding direction(A⇒P). MEG

frequencies were optimised based on the principles of fractional encoding [25], and were

as follows: MEG frequency (number of cycles): 22 (1), 26 (1), 30 (1), 52 (2), 54 (2).

MRE acquisition time was 1.55 per frequency, resulting in a total MRE scan time of

approximately 10 minutes.
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MRE analysis

An octahedral shear strain-based SNR measure (OSS-SNR) was performed to ensure sufficient data

quality for stable inversion [26]. Datasets with a OSS-SNR score <3, will be excluded from the final

analysis due to low quality displacement SNR [26].

SF-NLI: Single frequency non-linear inversion (NLI):

Nonlinear inversion (NLI) was used to estimate brain viscoelasticity from MRE displace-

ment data [20–22, 27]. NLI estimates the complex shear modulus, G∗ = G′ + G′′, from

which I determined the shear stiffness µ, and damping ratio, ξ, to maintain consistent

reporting with published work.

SF-NLI-SPR: NLI with soft-prior regularisation (SPR):

Furthermore, NLI was combined with SPR [9] to estimate viscoelasticity from MRE dis-

placement data, as recently utilised in a number of brain MRE studies [6, 28]. Both of

the MRE displacement data and Hp masks in MRE space were input into the NLI algo-

rithm with a weighting of α = 10−11. This weighting was chosen to balance homogeneity

enforcement while ensuring convergence.

MF-MDEV: multi-dual elasto-visco inversion (MDEV)

Multifrequency data (20, 30, 40, 50, 60 Hz) was processed by a multifrequency MRE pro-

cessing pipeline known as multifrequency dual elasto-visco inversion (MDEV), as outlined

previously [24, 29]. MDEV inversion provides high-resolution maps of the magnitude of

the complex shear modulus |G∗| and phase angle φ. A 2D low-pass filter, based on 2D

Fourier transform, and Butterworth Kernel with a 50 m−1 threshold, were applied to all

three components of the wave field.

MF-MDEV-LR: MDEV with limited frequency range (LR)

The typical MDEV pipeline was used, but only the data from actuation frequencies of

30, 40 and 50 Hz were incorporated.
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6.2.5 Statistical analyses

A well-established measure of agreement and reliability is the intra-class correlation coefficient (ICC)

[30]. When measuring the agreement between pairs of observations, it represents the between-pair

variance expressed as a proportion of the total variance of the observations (i.e., it is the proportion

of the total variability in the observations that is due to the differences between pairs). It is suggested

that ICC values less than 0.5 are indicative of poor reliability, values between 0.5 and 0.75 indicate

moderate reliability, values between 0.75 and 0.9 indicate good reliability, and values greater than

0.90 indicate excellent reliability [31]. The coefficient of variation (CV), which expresses the standard

deviation as a percent of the mean, was also computed. Since the CV is a dimensionless (unit-less)

statistical measure, it can be validly used to compare the variability of data recorded in different

units or magnitudes. Level of agreement was assessed using Bland-Altman plots [32]. To demonstrate

agreement, it is mandatory to show that values measured on two successive occasions are equal at the

individual level for each participant. All analyses were performed with SPSS software version 23.0.0

(SPSS Inc., Chicago, IL). The statistical methods used to meet the primary and secondary objectives,

are summarised below.

1) Test re-test agreement: The test re-test agreement of µ and ξ obtained from SF-NLI, and |G∗|

and φ from MF-MDEV, involved the computation of the intra-class correlation coefficient (ICC), using

a two-way mixed effects model (single measures) and type absolute agreement [33]. The coefficient of

variation (CV), also known as % error, was calculated, whereas level of agreement was assessed using

Bland-Altman plots, with mean differences specified.

2a) Inter-method reliability: Results from time point 1 and 2 were averaged to give an overall score

for each protocol for each participant. Inter-method agreement was similarly assessed with the intra-

class correlation coefficient (ICC), using a two-way mixed effects model (single measures), however the

model was of type consistency [33]. Here, we are only interested in the relative ranking of scores rather

on their exact value, and thus this particular model allows for values of variable magnitudes.

2b) Biological sensitivity: The averaged MRE results from time point 1 and 2 were also used

to assess suspected age differences. An independent samples t-test was then used to assess MRE

measurements between 6 young and 6 older subjects for all protocols and for both MRE parameters.

Level of significance was set at p < .05.

131



CHAPTER 6. 6.3. RESULTS

6.3 Results

Brain MRE was successfully performed on all participants. For simplicity, µ and |G∗| are referred to

as stiffness parameters, and ξ and φ are known as viscosity parameters, with protocol abbreviations

condensed to: NLI, NLI-SPR, MDEV and MDEV-LR. Table 6.1 contains the mean MREmeasurements

obtained at visits 1 and 2, from all four experimental protocols, for both Ce and Hp, and illustrated in

Figure 6.1. Immediately obvious is the higher stiffness values obtained from NLI-based methods. This

is expected due to MDEV incorporating lower frequencies within the averaged inversion. As for the

viscosity parameter, MDEV based methods provide much higher values. Of note: φ = arctan G′′/G′,

whereas ξ = G′′/2G′, meaning that φ values are approximately twice as large compared to those

provided for ξ. However, results would still not be comparable, as can be seen from Table 6.1.

Table 6.1: Mean MRE results for Ce and Hp from all protocols at two separate time points

Protocol Stiffness (kPa) Viscosity
Visit 1 Visit 2 Visit 1 Visit 2

Cerebrum
NLI 2.70±0.26 2.68±0.28 .259±.018 .261±.019
MDEV 1.97±0.24 1.95±0.19 .775±.033 .767±.027
MDEV-LR 1.94±0.22 1.92±0.21 .750±.023 .750±.024
Hippocampus
NLI 2.74±0.32 2.65±0.34 .184±.037 .184±.030
NLI-SPR 2.72±0.32 2.61±0.34 .182±.038 .182±.031
MDEV 1.54±0.18 1.59±0.17 .778±.058 .777±.079
MDEV-LR 1.48±0.17 1.50±0.19 .760±.053 .757±.071

6.3.1 Test re-test agreement

First of all, the test-retest agreement of Ce using three experimental protocols was investigated. NLI-

SPR results are not provided as SPR is typically used to promote homogeneity in small pre-defined

regions (i.e. specific brain structures, or ROIs), and not the entire cerebral volume.

Cerebrum: Assessment of test re-test agreement for the stiffness parameter was good for the NLI

(ICC: 0.89; CI: 0.67-0.97) and MDEV (ICC: 0.86; CI: 0.60-0.96) pipelines, and excellent for the MDEV-

LR protocol (ICC: 0.90; CI: 0.71-0.97), see Table 6.2. Bland-Altman analysis revealed that the mean
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Figure 6.1: MRE-derived values for Cp and Hp measured at two separate time points; (a) Ce stiffness
results, measured as µ for NLI methods, and |G∗| for MDEV methods; (b) relative viscous-to-elastic
properties of Ce measured as ξ and φ, for NLI and MDEV protocols, respectively; (c) Hp stiffness
results and, (d) Hp relative viscous-to-elastic measurements. Subjects 1-6 were young adults (mean
age: 24 years), whereas subjects 7-12 were healthy older adults (mean age: 70 years).

difference in stiffness for NLI, MDEV and MDEV-LR was 0.02 kPa (95% agreement limits: -0.23 -

0.28 kPa), 0.03 kPa (95% agreement limits: -0.20 - 0.25 kPa), and 0.02 kPa (95% agreement limits:

-0.17 - 0.21 kPa), respectively. Mean within subject coefficient of variation (CV) was 2.54% for NLI,

3.32% for MDEV, and 2.80% for MDEV-LR.

For the viscosity parameters, test re-test agreement for NLI was moderate (ICC: 0.61; CI: 0.06-0.87),
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and poor for both MDEV (ICC: 0; CI: -0.65,0.52) and MDEV-LR (ICC: 0.37; CI:-0.28-0.77). Bland-

Altman analysis revealed that the mean difference in viscosity for NLI, MDEV and MDEV-LR was

-.001 kPa (95% agreement limits: -.035 - .032 kPa), .008 kPa (95% agreement limits: -.078 - .095 kPa),

and .0001 kPa (95% agreement limits: -.053 - .053 kPa), respectively. Mean within subject coefficient

of variation (CV) was 3.16% for NLI, 3.08% for MDEV, and 2.03% for MDEV-LR.

Table 6.2: Ce ICC results for visit 1 versus visit 2

Protocol Stiffness (kPa) Viscosity

ICC 95% CI Mean CV ICC 95% CI Mean CV
NLI 0.89 (0.67, 0.97) 2.54% 0.61 (0.06, 0.87) 3.16%

MDEV 0.86 (0.60, 0.96) 3.32% 0 (-0.65, 0.52) 3.08%

MDEV-LR 0.90 (0.71, 0.97) 2.80% 0.37 (-0.28, 0.77) 2.03%

Hippocampus: Assessment of test re-test agreement for Hp stiffness was moderate for all four brain

MRE protocols: NLI (ICC: 0.70; CI: 0.27-0.90), NLI-SPR (ICC: 0.68; CI: 0.22-0.89), MDEV (ICC: 0.51;

CI: -0.05-0.83) and MDEV-LR (ICC: 0.68; CI: 0.19-0.90), as summarised in Table 6.3. Bland-Altman

analysis revealed that the mean difference in stiffness for NLI, NLI-SPR, MDEV, and MDEV-LR was

0.09 kPa (95% agreement limits: -0.41 - 0.58 kPa), 0.11 kPa (95% agreement limits: -0.41 - 0.62 kPa),

-0.05 kPa (95% agreement limits: -0.38 - 0.29 kPa), and -0.02 kPa (95% agreement limits: -0.31 - 0.27

kPa), respectively. Mean within subject coefficient of variation (CV) was 5.61% for NLI, 5.99% for

NLI-SPR, 6.18% for MDEV and 5.36% for MDEV-LR.

For the viscosity parameters, test re-test agreement for Hp viscosity was good for NLI and NLI-SPR,

(ICC: 0.84; CI: 0.54-0.95 and ICC: 0.81; CI: 0.45-0.94), respectively, moderate for MDEV-LR (ICC:

0.54; CI: -0.06-0.84) and poor for MDEV (ICC: 0.48; CI: -0.14-0.82). Bland-Altman analysis revealed

that the mean difference in viscosity for NLI, NLI-SPR, MDEV and MDEV-LR was -.0001 kPa (95%

agreement limits: -.039 - .039 kPa), .0008 kPa (95% agreement limits: -.042 - .044 kPa), .0013 kPa

(95% agreement limits: -.140 - .143 kPa), and .0038 kPa (95% agreement limits: -.117 - .125 kPa),

respectively. Mean within subject coefficient of variation (CV) was 6.90% for NLI, 7.84% for NLI-SPR,

4.76% for MDEV, and 4.17% for MDEV-LR.

134



CHAPTER 6. 6.3. RESULTS

Figure 6.2: Bland-Altman method, used to evaluate MRE cerebral stiffness and viscosity concordance
between visits 1 and 2 for three brain MRE pipelines. The 95% confidence limits of the bias are shown
as two dashed lines, with the mean value of the differences shown in purple. The figure suggests that
the measured variance may increase as the stiffness parameter increases.

6.3.2 Inter-method reliability

Reliability of Ce stiffness for NLI with MDEV, and NLI with MDEV-LR was good (ICC: 0.77; CI: 0.37-

0.93) and ICC: 0.80; 0.43-0.94), respectively. Excellent reliability was found for Ce stiffness measures

obtained by MDEV with MDEV-LR (ICC: 0.99; CI: 0.97-1). In contrast, very poor agreement was

found for Ce viscosity between NLI with MDEV, and NLI with MDEV-LR (ICC: 0). Good reliability
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Table 6.3: Hp ICC results for visit 1 versus visit 2.

Protocol Stiffness (kPa) Viscosity

ICC 95% CI Mean CV ICC 95% CI Mean CV

NLI 0.70 (0.27, 0.90) 5.61% 0.84 (0.54, 0.95) 6.90%

NLI-SPR 0.68 (0.22, 0.89) 5.99% 0.81 (0.45, 0.94) 7.84%

MDEV 0.51 (-0.05, 0.83) 6.18% 0.48 (-0.14, 0.82) 4.76%

MDEV-LR 0.68 (0.19, 0.90) 5.36% 0.54 (-0.06, 0.84) 4.17%

was found between MDEV and MDEV-LF (ICC: 0.84; CI: 0.53-0.95), as shown in Table 6.4.

Table 6.4: Mean Ce MRE results from all four experimental protocols

NLI MDEV MDEV-LR

NLI - .77 (.37-.93) .80 (.43-.94)
MDEV 0 (-.73-.31) - .99 (.97-.1)
MDEV-LR 0 (-.72-.33) .84 (.53-.95) -

Note: stiffness parameters in bold. 95% confidence levels in parenthesis.

Table 6.5 illustrates inter-method Hp ICC results. Excellent reliability for Hp stiffness was found

between NLI with NLI-SPR (ICC: 0.98; CI: 0.94-0.99), and MDEV with MDEV-LR (ICC: 0.94; CI:

0.82-0.98). Poor reliability was apparent between NLI with MDEV (ICC: 0.23, CI: 0.37-0.70), NLI with

MDEV-LF (ICC: 0.21; CI: 0.39-0.68), NLI-SPR with MDEV (ICC: 0.29; CI: -0.31-0.73), and NLI-SPR

with MDEV-LR (ICC: 0.26; CI: -0.35-0.71). For Hp viscosity, excellent reliability was found between

NLI with NLI-SPR (ICC: 1; CI: 0.99-1), and MDEV with MDEV-LR (ICC: 0.98; CI: 0.92-0.99),

whereas very poor reliability was found between NLI with MDEV, NLI with MDEV-LR, NLI-SPR

with MDEV, and NLI-SPR with MDEV-LR (ICC: 0).

6.3.3 Biological sensitivity

Mean values for Ce and Hp was determined for each participant from both time point assessments.

The mean stiffness and viscosity measurements for young and older subjects, categorised by protocol,

are provided in Table 6.6. Independent-samples t-tests were performed to compare young and older
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Figure 6.3: Bland-Altman method, used to evaluate MRE hippocampal stiffness and viscosity concor-
dance between visits 1 and 2 for four brain MRE pipelines. The 95% confidence limits of the bias are
shown as two dashed lines, with the mean value of the differences shown in purple.
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Table 6.5: Mean Hp MRE results from all four experimental protocols

NLI NLI-SPR MDEV MDEV-LR

NLI - .98 (.94-.99) .23 (-.37-.70) .21 (-.39-.68)
NLI-SPR 1 (.99-1) - .29 (-.31-.73) .26 (-.35-.71)
MDEV 0 (-.67-.41) 0 (-.68-.40) - .94 (.82-.98)
MDEV-LR 0 (-.71-.34) 0 (-.72-.33) .98 (.92-.99) -

Note: stiffness parameters in bold. 95% confidence levels in parenthesis.

participant MRE results for Ce and Hp for each protocol and both MRE parameters. There was a

significant difference in Ce stiffness between age groups using all protocols: NLI: t=(10)=8.52, p <

.001; MDEV: t=(5.93)=5.03, p = .002 (equal variances not assumed); and MDEV-LR: t=(10)=5.06, p

< .001. In contrast, none of the protocols detected a significant difference between age groups for the

viscosity parameter: NLI: t=(10)= -1.93, p = .083; MDEV: t=(10)= .83, p = .426; and MDEV-LR:

t=(10)=.371, p = .718.

Table 6.6: Mean MRE results for young and older participants according to protocol

Protocol Stiffness (kPa) Viscosity
Young Old t-test Young Old t-test

Cerebrum
NLI 2.93±0.12 2.45±0.05 p < .001 .252±.010 .269±.019 p = .083
MDEV 2.13±0.05 1.79±0.16 p = .002 .776±.021 .766±.021 p = .426
MDEV-LR 2.10±0.07 1.76±0.15 p < .001 .752±.021 .748±.019 p = .718
Hippocampus
NLI 2.88±0.30 2.51±0.18 p = .026 .161±.014 .207±.029 p = .006
NLI-SPR 2.82±0.32 2.51±0.20 p = .067 .159±.015 .205±.028 p = .005
MDEV 1.60±0.08 1.53±0.20 p = .456 .811±.033 .744±.063 p = .042
MDEV-LR 1.53±0.08 1.46±0.22 p = .481 .789±.027 .728±.060 p = .051

Furthermore, there was a significant difference in Hp stiffness between age groups using NLI:

t=(10)=2.62, p = .026; NLI-SPR was approaching significance: t=(10)= 2.06, p = .067; whereas

MDEV: t=(10)=.776, p = .456; and MDEV-LR: t=(10)=.732, p = .481, reported no significant dif-

ferences. NLI, NLI-SPR and MDEV protocols found a significant difference between age groups for

Hp viscosity (t=(10)= -3.52, p = .006; t=(10)= -3.56, p = .005; t=(10)=2.34, p = .042), respectively,

whereas MDEV-LF was approaching significance (t=(10)=2.21, p = .051).
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6.4 Discussion

The primary objective of this study was to investigate the test re-test agreement of two fundamentally

different high-resolution brain MRE protocols: so-called single-frequency non-linear inversion (NLI)

and multifrequency multi-dual elasto-visco inversion (MDEV). The NLI based method was extended

further to incorporate soft-prior regularisation (NLI-SPR), whereas multifrequency data were reanal-

ysed with MDEV using a smaller bandwidth, or limited range of frequencies (MDEV-LR). Secondary

objectives included an assessment of inter-method reliability, and an evaluation of biological sensitivity

to suspected ageing effects.

The first aim involved an evaluation of the test re-test agreement of brain MRE for measuring

the global cerebrum (Ce) and a smaller brain structure of interest, i.e. hippocampus (Hp). That is, the

capacity of each of brain MRE protocol to provide strictly identical results at two separate time points.

NLI, MDEV and MDEV-LR all exhibit good to excellent agreement for measuring Ce stiffness, with a

coefficient of variation between 2.5-3.3%. NLI was found to exhibitmoderate agreement for Ce viscosity,

whereas MDEV methods show poor agreement. As for Hp, all protocols show moderate agreement for

measuring Hp stiffness, with a coefficient of variation between 5.4-6.2%. For Hp viscosity, however,

both NLI-based methods show excellent agreement whereas MDEV and MDEV-LR show poor and

moderate agreement, respectively. A secondary aim of this study was to assess inter-method reliability

(i.e. whether each MRE protocol could replicate the same ordering between subjects). A novel finding

is that Ce stiffness measured with NLI and MDEV show good reliability, however poor reliability was

found for Ce viscosity using the same protocols. Furthermore, neither NLI based pipeline with MDEV

or MDEV-LR was reliable for Hp measurements. As expected, NLI based methods, and MDEV based

methods both show excellent reliability with each other. The final objective was to assess whether any

brain MRE protocol could detect mechanical differences between young and older adults, as previously

reported. All protocols found a significant difference between age group for Ce stiffness, indicating

lower Ce stiffness in older adults, whereas no age affect for Ce viscosity was found by any protocol. NLI

was the only protocol to detect a difference in Hp stiffness between age groups, indicating that older

adults may also possess a softer Hp. Finally, all protocols found a significant age related difference for

Hp viscosity. Of interest, NLI-based methods suggest the Hp is more viscous in older age, whereas

MDEV-based methods suggest Hp viscosity is actually higher in younger adults.

Previous studies investigating brain MRE reliability have not calculated the ICC; it has been

more common to report the within-subject coefficient of variation (CV) as an estimate of the mea-
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surement uncertainty. Therefore, the CV results presented in this study will be compared to the CV

results obtained previously. For example, this study reports a CV of between 2-3% for whole brain

Ce stiffness. More specifically, NLI is 2.5%, MDEV is 3.3%, which decreases to 2.8% using a lim-

ited frequency range (MDEV-LR). These results are comparable to Sack et al., 2009 who reported

variations in Ce stiffness of 4.5% in a single image slice [12] and Murphy et al., 2011 who reported a

CV of 3.1% in whole-brain white matter [34]. More recently, Murphy et al., 2015 reported CVs for

global stiffness of less than 1%, in ten healthy volunteers, scanned three times each on the same day.

However, intra-session variability is expected to be lower than inter-session variability, where there is

likely to be a variety of uncontrolled confounds (i.e. scanner drift, biological effects). Additionally,

Johnson et al. 2016 recently reported Ce stiffness CV of 1.4%, although this was a repeated measures

analysis of one subject scanned 8 times on one day, where lower variation is inevitable. Johnson et

al., 2016 also report a CV of 2.1% for Ce viscosity. This study reports a slightly higher CV of 3.2%

using the same protocol, whereas the use of MDEV-LR again improved the CV from 3.1% (MDEV)

to 2.0%. In this instance, the importance of using additional validity measures is highlighted. While

the CV is lower for MDEV based methods compared to NLI based methods, MDEV also show poor

levels of agreement as shown by ICC measures, whereas in contrast, NLI shows acceptable levels of

agreement.

Considering Hp, only one study has reported a reliability metric [6]. Johnson et al., 2016 report a

CV of 7.1% for Hp stiffness using NLI-SPR, whereas in this study it was 5.6% for NLI and 6.0% for NLI-

SPR. Not only did the CV increase due to the addition of SPR, but the ICC also decreased from 0.70 to

0.68, and the mean difference of agreement increased from 0.09 kPa to 0.11 kPa. Additionally, the use

of SPR also resulted in slightly poorer measures for Hp viscosity (i.e. ICC decreased from 0.84 to 0.81,

and the CV increased from 6.90% to 7.84%). By applying SPR to heterogeneous regions such as the Hp,

there is the possibility of further introducing modelling errors by attempting to enforce homogeneity

where it is not appropriate [35]. However, the experimental literature supports its use [6,9,28,36], and

in the very limited sample size analysed in this study, I acknowledge the possibility of measurement

error. The use of a limited range of frequencies improved MDEV agreement, decreasing CV from

6.2% to 5.4% for Hp stiffness, and from 4.8% to 4.2% for Hp viscosity. In general, MDEV based

methods show poorer agreement compared to NLI. Possible explanations for this include issues with

coregistration accuracy due to the limited field of view acquisition and multi-stage registration process,

as well as the selected slice positioning. Depending on the position of the slices, the entire Hp may

not have been captured, which results in the possibility that different parts of the Hp may have been
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measured across the two time points.

To my knowledge, this study represents the first investigation into brain MRE inter-method

reliability. Due to different experimental paradigms, it is not expected for alternative brain MRE

protocols to provide identical quantitative values. However, an essential finding would be whether

alternative protocols could replicate the same ordering of stiffness, or viscosity, between participants.

In fact, this was found for measuring Ce stiffness using both NLI and MDEV-based methods. In

particular, NLI with MDEV-LR show the highest levels of inter-method reliability with a ICC of

0.80. As discussed previously, higher test re-test agreement was seen for MDEV-LR over MDEV, and

therefore it is not surprising that higher reliability with NLI is reported for MDEV-LR. Importantly,

this finding suggests that the number of frequencies used for MDEV could be reduced to three, thereby

nearly halving the MRE acquisition time. Another important finding from this study is demonstrating

that the two NLI based methods, and the two MDEV methods, are highly reliable. While this might

seem intuitive as the protocols exhibit many similar components, this finding has not been proven

empirically. As such, previous studies that have used variations of these protocols can be assured

that comparable results would be obtained regarding the respective position of each participant on the

mechanical scale. Of concern is the results provided thus far for Ce viscosity. These results suggest

that previous findings in animal models, patient studies, or investigations into cognition, regarding Ce

viscosity, such as those performed by Streitberger et al., 2014, Guo et al., 2013, and Schwarb et al.,

2016, 2017 may have found entirely different results depending on the protocol of choice; the protocols

did not agree on the relative differences between subjects.

These results also suggest that NLI may be more sensitive for detecting age-related mechanical

differences between young and older adults. In this sample of six younger adults (mean age: 24 years),

and older adults (mean age: 70 years), all protocols found a significant age affect that suggests that

the brain softens in older age, supporting previous work from Arani et al., 2015, Sack et al. 2009 and

Sack et al., 2011, who used entirely different MRE methods [12–14]. Furthermore, all protocols agree

that there is no uniform age-related change to Ce viscosity - as reported by Sack et al., 2011. However,

NLI was the only method to find a significant difference in Hp stiffness (p < .026), suggesting the Hp

also softens in older age. This is a novel finding that will require further investigation. Considering

Hp viscosity, NLI and NLI-SPR found a strong significant age effect (p = .006 and p = .005), whereas

MDEV and MDEV-LR report higher p values (p = .042, and p = .051), respectively. Interestingly, the

NLI methods suggest that viscosity, or the dissipative behaviour or tissue, is greater in older adults,

whereas the MDEV methods suggest the opposite (i.e. that viscosity is higher in younger adults).
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NLI based methods have typically suggested that increased viscosity represents a reduction in tissue

integrity, whereas MDEV methods have suggested that higher viscosity represent a more complex, and

thus more healthy, tissue network. The biological correlates of the viscosity parameter is, therefore,

currently open to interpretation. However, given the finding that MDEV and MDEV-LR possess poor

levels of test-retest agreement, significant age effects should be approached with caution.

6.4.1 Limitations

A number of limitations are noted within this study. The first is the small sample size; larger numbers

of participants may be able to more accurately determine the test re-test agreement, reliability, and

biological sensitivity of each protocol. Furthermore, this study did not perform an intra-rater reliability

analysis; a typical validity assessment for many MRI and MRE studies alike [37,38]. However, studies

of liver MRE, for example, typically involve the researcher to manually select regions of interest,

avoiding large vessels, and any areas affected by cardiac and vascular artefacts; a procedure which may

be prone to individual error. This study, however, utilises a largely automated segmentation pipeline

(i.e. FREESURFER) in addition to an optimised coregistration and automatic extraction of quantitative

measurements using an in-house graphical user interface (MeNA) - see Chapter 5 ). Therefore, differences

in intra-rater measurements are expected to be negligible, although this will need to be investigated

in future studies.

Furthermore, while the spiral image acquisition and reconstruction used within the NLI protocol

is designed to minimise residual field inhomogeneity distortions and motion-induced phase errors,

the Hp region may still be particularly sensitive to artefacts, therefore, future strategies may further

minimise the residual artefacts and improve Hp property measures [6]. As for the MDEV pipelines,

while every effort was used to ensure an accurate coregistration between the Hp mask and MDEV-

derived mechanical maps, the inherent image distortions caused by local susceptibility-induced Bo

inhomogeneities from the EPI acquisition may hamper an optimal alignment. Future work could correct

for EPI distortion as recently implemented with MRE [39], as it is well known that correction for EPI

distortions can improve anatomical localisation, thereby also significantly increasing statistical power.

Finally, recent work from the Charité group have used a recalculated version of the phase angle φ*

within MDEV to counteract the well-known overestimation of values due to high noise sensitivity [10].

The present study did not implement the revised calculation, and it stands to reason that the test-retest

agreement of MDEV viscosity may be improved using φ*, however, as yet, the relationship between

the original and the recalculated parameter has not been established.
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Finally, it needs to be mentioned that short term dynamics within the brain may have an

influence on the measured stiffness. Parker et al., 2017 recently theoretically demonstrated that mea-

sureable, time varying changes in brain stiffness are possible simply by accounting for vasodynamic

or electrochemical changes in the state of any region of the brain, and suggest these should either be

controlled for or elicited and measured as part of the experimental protocol [40]. Future studies could

investigate this possible relationship by the use of different types of anaesthesia, or through specific

mixes of oxygen and carbon dioxide, both of which have been to shown to have different effects on

vasodilation [41]. The control of vasodynamic or electrochemical effects, therefore, could potentially

improve the validity of MRE measurements by minimising within subject variability over time.

6.5 Conclusion

The analysis and results presented in this study demonstrate how NLI, MDEV, and MDEV-LR show

comparably high levels of test-retest agreement for measurement of Ce stiffness. NLI was the only

method to possess acceptable test re-test agreement for Ce viscosity. Analysis of a smaller region of

interest (i.e. hippocampus) further demonstrates NLI and MDEV to show high levels of agreement

for Hp stiffness, and that the use of a limited range of frequencies may improve test re-test agreement

of MDEV. Again, agreement for NLI-based methods was much better than MDEV for Hp viscosity.

Generally, the use of SPR was comparable to, or even slightly worse, than standard NLI. However,

this may be attributed to the small sample size or measurement error, as I acknowledge that a wealth

of literature supports its use. An important novel finding was the discovery that NLI and MDEV

based approaches elicit high inter-method reliability in an assessment of Ce stiffness, however, future

work will need to establish the reasons for poor inter-method reliability of the viscosity parameter.

Finally, NLI generally appears to be marginally more sensitive to ageing effects, detecting a possible

age-related change in Hp stiffness that was not apparent with other methods.

In summary, all future work in this thesis will utilise the NLI protocol due to generally supe-

rior test re-test agreement for both Ce and Hp stiffness and viscosity parameters, and its potentially

increased sensitivity to ageing effects. SPR will also be incorporated based on the wealth of pub-

lished experimental evidence that shows its use to stabilise measurements and improve reliability by

decreasing the coefficient of variation. Furthermore, the spiral acquisition scheme, inherent to the NLI

protocol, provides full brain coverage and as such, will allow for the study of a range of other brain

structures of interest. In the next chapter, a larger scale study is conducted to assess the mechanical

properties of the Ce and a range of subcortical grey matter structures (SGM) between young and
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cognitively healthy older adults; it stands to reason that alternative brain regions may be differentially

affected by the ageing process. A particular focus will be on whether MRE can provide additional

information unrelated to conventional volumetric imaging, typically used to measure the extent of

age-related cerebral atrophy.
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CHAPTER 7. 7.1. INTRODUCTION

Plan for the Chapter

A comprehensive investigation into the test re-test agreement of high-resolution brain MRE was pro-

vided in Chapter 6. The single-frequency non-linear inversion (SF-NLI) protocol was determined to

display higher test re-test agreement, compared with multifrequency multi-dual elasto-visco inversion

(MF-MDEV), when considering the global cerebrum (Ce) and a smaller brain structure of interest, i.e.

the hippocampus (Hp). Furthermore, initial results from 6 young and 6 healthy older adults indicated

that SF-NLI may also be more sensitive to potential ageing effects. Despite not finding overwhelming

support for its use in the previous chapter, I will also incorporate soft-prior regularisation (SPR), due

to the significant amount of support from published experimental work. As a result, in this chapter,

I apply the SF-NLI-SPR protocol to evaluate global and regional MRE parameter differences in a

larger cohort of 12 young (mean age: 25 years) and 12 healthy older adults (mean age: 69 years). The

viscoelasticity of Ce and six regions of interest (ROIs) including the amygdala, hippocampus, caudate,

pallidum, putamen, and thalamus, are investigated. Volumetric MRI is also measured, and used as

a covariate, to determine whether MRE can provide additional information not related to traditional

structural MRI. A further aim of this study is to establish baseline MRE values for both young, and

healthy older participants, for a wide range of brain structures including the hippocampus; a brain

structure of interest due to its implication in Alzheimer’s disease.

7.1 Introduction

The use of medical imaging to identify and quantify brain tissue atrophy (i.e. neuronal cell loss) has

been influential in aiding the prediction of onset and progression of many neurodegenerative disor-

ders. Traditional diagnostic magnetic resonance imaging (MRI) is based on the radiologist grading

of atrophy, often semi-quantitatively, through visual inspection of structural images, whereas research

centres or centres involved in clinical trials, typically use manual, semi-automated or fully automated

techniques to study volume changes of regions of interest. As an example, the European Medicines

Agency has deemed low hippocampal volume an acceptable selection marker for clinical trials of people

in the early stages of Alzheimer’s disease [1].

Despite the apparent relationship between brain atrophy and clinical syndromes, the association

This chapter contains material previously published, and is reprinted with permission. LV Hiscox, CL Johnson, MDJ
McGarry, M Perrins, A Littlejohn, EJR van Beek, N Roberts, JM Starr. High-resolution magnetic resonance elastography
reveals differences in subcortical gray matter viscoelasticity between young and healthy older adults.Neurobiol Aging,
65, 158-167. The published version can be found in Appendix III.
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is not simple and linear; atrophy does not necessarily predict clinical symptoms or indeed their sever-

ity. Meta-analysis of results from 33 studies found a surprisingly weak positive relationship between

hippocampal size and episodic memory ability in older adults, in addition to extreme variability among

participants [2]. One possible reason for this weak relationship is that most age-associated behavioural

impairments appear to result from region-specific changes in dendritic morphology, cellular connec-

tivity, axonal integrity, gene expression, or other factors that ultimately alter the network dynamics

of neural ensembles that support cognition [3, 4]. Accordingly, volumetric MRI is the most basic of

neurobiological metrics; a gross proxy of tissue composition and integrity that is not specific to mi-

crostructural tissue characteristics. As a result, volumetric measurements are unlikely to characterise

presymptomatic neuronal dysfunction, thus limiting the utility of volumetry as a clinical biomarker

for the early detection of neurological disorders.

Prior to neurodegeneration, pathological processes, which cause a reduction to, for example,

cellular connectivity, are reflected in the biophysical characteristics of brain tissue such as mechanical

properties like stiffness and viscous energy dissipation. The mechanical properties of soft tissue may

vary over a dynamic range much greater than other physical properties such as magnetic resonance

relaxation time [5], and thus the ability to directly image properties such as tissue stiffness offers

the prospect of an imaging technique with high sensitivity. Magnetic resonance elastography (MRE)

is being actively developed to noninvasively measure the mechanical properties of the brain in vivo.

MRE combines MRI with mechanical wave propagation and records harmonic displacements of soft

tissue in MRI phase images using motion-sensitive magnetic field gradients, which are then inverted

to estimate underlying viscoelasticity [6, 7]. Alterations in the mechanical properties of the brain,

therefore, provide a unique contrast mechanism that appears to reflect the integrity of the underlying

microstructure and health of brain tissue [8]. The sensitivity of MRE measures is confirmed by the

observation of tissue softening in many neurological diseases [9–14], for a review, see Hiscox et al.,

2016 [15] or Murphy and Huston 2017 [16], with animal studies linking this softening to degree of

myelin content [17–19], inflammation [20], and a reduction in neuronal density related to a decrease in

neurogenesis [21,22]. In general, tissue stiffness parameters likely reflect the composition of the tissue

microstructure, whereas viscosity measures, including the phase angle and damping ratio, instead have

been suggested to provide information regarding microstructural organization [8, 23].

Understanding normal mechanical changes in brain tissue with respect to healthy ageing is

necessary before determining the efficacy of MRE for neurological disease diagnosis and therapy mon-

itoring. Previous MRE studies into healthy ageing have assessed either the global cerebrum [24],
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parcellated slices [25], or lobar regional effects [26]. All studies reveal significant softening to the brain

with increasing age, with brain softening occurring at a faster relative rate than brain volume loss with

ageing [25]. In contrast, viscosity parameters remain constant suggesting a global preservation of the

alignment of the tissue microstructure [24, 25]. However, no previous MRE studies into ageing have

investigated specific neuroanatomical structures, including subcortical grey matter (SGM) ROIs such

as the hippocampus. Lying deep within the medial temporal lobes, the hippocampal formation is one

of the most studied neuronal systems in the brain due to its implication in memory-specific disorders

such as AD and mild cognitive impairment. Rapid improvements of MRE imaging protocols have

now transitioned MRE into a high-resolution technique, capable of acquiring whole-brain MRE dis-

placement data at an isotropic resolution of 1.6 mm to enable the study of small brain structures [27].

Ageing effects have also never been studied with nonlinear inversion (NLI); formulated around a finite-

element implementation of the full viscoelastic wave equation, NLI allows for local inhomogeneity and

wave reflection effects [28,29].

In this current cross-sectional exploratory study, I aim to use these methodological developments

to assess the viscoelasticity of the cerebrum globally and 6 SGM matter structures (to include the

amygdala [Am], hippocampus [Hp], caudate [Ca], pallidum [Pa], putamen [Pu], and thalamus [Th]),

in both young and cognitively healthy older adults. First, I will assess the acceptability of the MRE

examination by administering a questionnaire to all participants after the scanning procedure. Second,

based on findings from previous work, I predict that the brain will be softer in older adults (i.e., show

lower shear stiffness, µ), throughout the cerebrum and all SGM regions. Third, I predict that the global

cerebrum will not differ between age groups in its relative viscous-to-elastic behaviour (i.e., damping

ratio, ξ). It is currently unknown whether age-related differences for ξ will be detected in SGM

regions, and thus the analysis is an exploratory one. Finally, I will take into consideration the volume

of the cerebrum and each SGM region within the statistical analyses to investigate whether MRE

results persist even once ROI volume has been accounted for. MRE results that remain significant

after controlling for ROI volume would suggest that MRE parameters provide additive value over

volumetric measures alone.
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7.2 Materials and methods

7.2.1 Subjects

Thirty-one apparently healthy participants were recruited from the Join Dementia Research (JDR)

database; thirteen were young adult participants aged between 18-30 years and eighteen were older

participants aged between 65-75 years. Criteria for exclusion included history or current diagnosis of a

severe medical, neurological, or psychiatric disorder, history of major head injury, and contraindications

for undergoing MRI (such as claustrophobia or the presence of an implanted pacemaker). To ensure

older participants, in particular, had no significant underlying memory problems, all were required

to complete the Montreal Cognitive Assessment (MoCA) [30], and score within the normal range

(>26/30). MRE data quality was measured by octahedral shear-strain based SNR (OSS-SNR) [31],

(see 7.2.4 MRE analysis section). Overall, one young adult was excluded due to OSS-SNR <3, and

six older subjects were excluded from the analysis: three subjects had OSS-SNR <3, two subjects

scored below the required level set for the MoCA, and one subject was excluded due to the presence

of significant white matter abnormalities, as determined by a Consultant Radiologist. As a result, the

final sample included 24 participants (12 young adults (mean age: 25.2±3.0 years) and 12 older adults

(mean age: 69.4±2.5 years). An equal number of female and male participants were recruited into

each group to consider the known differences in brain viscoelasticity between men and women [24,26].

All subjects completed the Edinburgh Handedness Inventory (EHI) and National Adult Reading Test

(NART), to measure handedness and IQ, respectively (see Table 7.1). The study was approved by

the National Health Service (NHS) Lothian Research Ethics Committee (15/SS/0219) and all study

participants gave written, informed consent before the examination.

Table 7.1: Demographic data for subjects included in the study.

Young Old
Number 12 12
Sex 6F/6M 6F/6M
Age 25.2 (19 - 30) 69.4 (66 - 73)
EHI +0.88 (+0.7 - 1) +0.86(+0.3 - 1)
MoCA N/A 28.1 (26 - 30)
NART - Full scale IQ 114 (107 - 121) 123 (115 -128)

All values are mean values, with range in parenthesis.
Key: M, male; F, female; EHI, Edinburgh Handedness Inventory; MoCA, Montreal Cognitive Assessment; NART,

National Adult Reading Test.
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7.2.2 MRI scanning

MRI and MRE data were collected using a Siemens 3T Verio whole-body MRI scanner with a 12-

channel head receive coil (Siemens Medical Solutions; Erlangen, Germany). The imaging proto-

col included high-resolution T1-weighted and MRE series. T1-weighted images were acquired us-

ing an MPRAGE sequence (magnetization-prepared rapid gradient echo; 1 x 1 x 1mm3 voxel size;

2400/1000/2.97ms repetition/inversion/echo times). The MRE acquisition employed a 3D multi-slab

multishot spiral sequence to capture high-resolution displacement data [27]. Imaging parameters in-

cluded: 1800/75ms repetition/echo times; 240mm square field-of-view; 150 x 150 imaging matrix; and

sixty 1.6mm thick slices acquired in ten overlapping slabs. The resulting imaging volume had a 1.6 x

1.6 x 1.6mm3 isotropic voxel size with 96mm of coverage in the slab direction, which was aligned ap-

proximately to the anterior commissure - posterior commissure (AC-PC) line and included the medial

temporal lobe. A pneumatic actuator (Resoundant; Rochester, MN, USA) was used to vibrate the

brain at a single mechanical frequency of 50 Hz through a soft pad placed below the occipital portion

of the head. The resulting tissue deformation was encoded using 26 mT/m motion-sensitive gradients

embedded in the MRE sequence, which was repeated to capture motion along 3 separate axes with

opposite gradient polarities and through 4 phase offsets to observe wave propagation in time. The

total MRE acquisition time was approximately 12 minutes.

7.2.3 Anatomical segmentation and mask generation

SGM masks were obtained via automatic segmentation of the T1-weighted images using FreeSurfer v.

5.3 through the recon-all pipeline [32]. This included skull stripping, automated Talairach transforma-

tion, segmentation of the subcortical white/grey matter structures, intensity normalization, automated

topology correction, and registration to a spherical atlas. The pipeline generated six subcortical masks

for the amygdala (Am), caudate (Ca), hippocampus (Hp), pallidum (Pa), putamen (Pu), and thala-

mus (Th). All segmentations were visually inspected for accuracy and manual corrections were made

when necessary. The T2-weighted magnitude MRE images were then co-registered to the structural

T1-weighted MPRAGE using FMRIB’s Linear Image Registration Tool (FLIRT) within FMRIB Soft-

ware Library (FSL) [33]. The inverse transform was calculated so that the generated SGM masks

from FreeSurfer could be transferred into MRE space, to serve as masks for soft prior regularisation

(SPR) (see 7.2.4 MRE analysis), and as ROIs for obtaining quantitative values for each structure.

This pipeline is similar to the one used in previous work to separate SGM masks for MRE with SPR;

small differences within the pipeline are expected to contribute negligibly to the uncertainty of MRE
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measurements [34].

7.2.4 Volumetric analysis

The FreeSurfer pipeline generated subcortical volumes in cm3 for all six ROIs. Estimated Total

Intracranial Volume (eTIV) was used to normalize the volume of each ROI for head size using an

automated atlas-based head-size normalisation pipeline [35]. Freesurfer output, BrainSegNotVent, was

used as a measure of total cerebral volume. This ROI includes the sum of the volume of the structures

identified in the aseg.mgz volume and the cerebellum, while excluding the brainstem, dura, ventricles

(lateral, inferior lateral, 3rd, 4th, 5th), CSF, and choroid plexus.

7.2.5 MRE analysis

An octahedral shear strain-based SNR measure (OSS-SNR) was performed to ensure sufficient data

quality for stable inversion [31]. Nonlinear inversion (NLI) [28, 36] was combined with SPR [37] to

estimate viscoelasticity from MRE displacement data, as recently utilised in a number of brain MRE

studies [34,38]. The SPR inversion scheme incorporates prior anatomical information to penalize me-

chanical heterogeneity within an ROI and has previously been shown to improve MRE reproducibility

measures [34]. Both the MRE displacement data and SGM structure masks in MRE space were input

into the NLI algorithm with a weighting of α = 10−11. SPR weighting was chosen based on balanc-

ing the need to enforce homogeneity, while ensuring convergence. NLI estimates the complex shear

modulus, G∗ = G′ + G′′, from which I determined the shear stiffness µ, and damping ratio, ξ. Shear

stiffness determines the wavelength in a viscoelastic solid [39], defined as µ = 2 |G∗|2/(G′ + |G∗|),

whereas damping ratio ξ is a dimensionless quantity describing the relative attenuation level in the

material, defined by ξ = G′′/2G′ [40], and is similar to the mechanical phase angle often reported in

brain MRE [10,41]. Higher ξ values mean that oscillations created by the shear waves attenuate more

rapidly and would suggest that tissue exhibits more viscous fluid-like behaviour, as opposed to a more

elastic-solid behaviour. A less densely connected solid phase, which allows more viscous and frictional

losses as tissue constituents slide against each other, is indicative of a reduction in tissue integrity and

is expected to relate to the microstructural organisation of tissue [8].

For illustration purposes only, I have co-registered each data set to the Montreal Neurological

Institute (MNI152_ T1_1mm) template using Advanced Normalization Tools (ANTS) [42], to generate

both young and old average MRE parameter templates.
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7.2.6 Assessment of subject comfort

A questionnaire was administered to participants immediately after the scan, with participants asked

to provide a score between 1:5 for each of the three questions presented. Question (1): Compared to a

conventional MRI scan (where there is no vibration), what is your assessment of the discomfort caused

by the vibrations required for MRE? Possible answers included: 1, severe discomfort; 2, moderate

discomfort; 3, mild discomfort; 4, annoyance; 5, negligible. Question (2): How likely is it that you

would take part in the same or a similar MRE study? Question (3): How likely is it that you would

recommend this study to other potential participants? For questions (2) and (3), participants were

asked to choose from the following options: 1, very unlikely; 2, unlikely; 3, not sure; 4, likely; 5, very

likely.

7.2.7 Statistical analyses

All statistics reported are results obtained in MRE space for each individual. First, a two-way uni-

variate general linear model (analysis of variance [ANOVA]) was used to examine the effect of age

group and sex on cerebral (i.e., whole-brain ROI) MRE parameters µ and ξ. Separate ANOVAs were

conducted for µ and ξ. Second, a two-way multivariate analysis of variance (MANOVA: Pillai’s trace)

was used to assess the effect of age group and sex on the combined ROIs including the Am, Ca, Hp,

Pa, Pu, and Th. µ and ξ were analysed separately, and post hoc univariate analyses were summarised.

A MANOVA was chosen because it effectively acts as a ‘data reduction’ (i.e. ‘hypothesis reduction’)

method. It considers the individual outcomes as representing a single underlying trait as the primary

hypothesis, but also allows one to look at post-hoc at univariate outcomes, which is reasonable to

generate hypotheses for future research. As this is an exploratory study, the effect sizes - rather than

p values, will provide more useful information. Finally, a univariate ANOVA was used to correct for

structure volume, using volume as covariate and age and sex as fixed factors. This was to ensure that

changes to MRE parameters were not simply reflecting changes to brain structure volumes. G* power

3.1 (http://www.gpower.hhu.de/en.html) was used to estimate available statistical power π. The cal-

culations show that for a large effect size, of f = 0.40, [43], the power of ANOVA to detect an effect at

p = 0.05 is π = 0.46. Therefore, we note that the MANOVA is substantially underpowered, resulting

in an increased probability of a type II error (false negative). All analyses were performed using SPSS

software version 24.0.0 (SPSS Inc., Chicago, IL).

155



CHAPTER 7. 7.3. RESULTS

7.3 Results

The average OSS-SNR of the brain MRE data was 5.41± 1.18 and 6.02 ± 1.67, for the young and

older cohorts, respectively, indicating high-quality whole-brain displacement data that was stable to

undergo inversion.

7.3.1 MRE acceptability

The MRE component within the scanning protocol was well tolerated, as indicated by the question-

naire scores provided in Table 7.2 and illustrated in Figure 7.1. Two subjects in the older group felt

a moderate level of discomfort (grade 2) from the vibrations generated by the head-pillow, whereas

two subjects in both the young and older groups felt a mild level of discomfort (grade 3). An inde-

pendent samples t-test found that tolerance of the vibrations was not rated differently between age

groups (t(22)=-.713; p = 0.484). Finally, 100% of all participants answered that they were likely to

recommend that other potential participants take part in the study.

Table 7.2: Subjective assessment of MRE comfort by twenty-four volunteers.

Question Young Old

Q1. Vibration (1, severe discomfort; 5 negligible) 4.00 (0.60, 3-5) 3.75 (1.06, 2-5)
Q2. Would return (1, very unlikely; 5 very likely) 4.92 (0.29, 4-5) 4.58 (0.67, 3-5)
Q3. Recommend to others (1, very unlikely; 5 very likely) 4.83 (0.39, 4-5) 4.42 (0.51, 4-5)

Values in parentheses denote the standard deviation (SD) and the range.

Table 7.3 presents descriptive statistics (mean, standard deviation) for MRI volumetry results

and MRE parameters (shear stiffness, µ and damping ratio, ξ), for young and older participants, with

data illustrated in Figure 7.2. Bilateral values for all 3 parameters were reported as there were no

significant left-right hemispheric differences in any ROI for either population (p < 0.05). Table 7.3

also includes the % difference between young and older participants, as well as ANOVA and MANOVA

p values for the cerebrum and subcortical grey matter regions, respectively. A full summary of the

statistical analyses and results are provided in the following sections.
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Figure 7.1: Pie chart to show participant response to the MRE questionnaire; administered shortly
after the imaging protocol.

7.3.2 Volumetric MRI

Cerebrum (Ce): First, a two-way univariate general linear model (ANOVA) was performed to ex-

amine the effect of age group and sex on the cerebral volume. There was a statistically significant

effect of age on cerebrum volume: [F(1,20) = 5.17, p = 0.034], indicating younger participants had

larger brain volumes than older participants. There was also a significant effect of sex: [F(1,20) = 9.74,

p = 0.005], indicating larger brain volume in males but no interaction between age and sex (p = 0.713).
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Table 7.3: Population statistics for MRI volumetry and MRE parameters

Ce Am Ca Hp Pa Pu Th

Volume (cm3)
Young 1161 ± 117 3.64 ± 0.37 7.39 ± 1.02 9.32 ± 0.62 2.88 ± 0.33 11.38 ± 1.16 16.15 ± 1.65
Older 1078 ± 89 3.11 ± 0.40 6.77 ± 0.75 8.23 ± 1.13 2.64 ± 0.29 9.28 ± 1.04 14.23 ± 1.44
% Difference -3.85 -15.70 -8.76 -12.42 -8.70 -20.33 -12.64
ANOVA p value 0.034
MANOVA (main effect) 0.006** 0.006** 0.006** 0.006** 0.006** 0.006**
MANOVA (post-hoc) 0.002** 0.063 0.011* 0.046* 0.001** 0.004**

µ (kPa)
Young 2.95 ± 0.17 3.60 ± 0.30 2.92 ± 0.23 2.89 ± 0.32 3.59 ± 0.26 3.76 ± 0.15 3.35 ± 0.24
Older 2.70 ± 0.15 3.02 ± 0.42 2.21 ± 0.32 2.65 ± 0.39 3.04 ± 0.39 3.26 ± 0.23 2.76 ± 0.31
% Difference -8.47 -16.11 -24.32 -8.30 -15.32 -13.30 -17.61
ANOVA p value 0.002**
MANOVA (main effect) < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.001***
MANOVA (post-hoc) 0.001** < 0.001*** 0.096 0.001** < 0.001*** < 0.001***

ξ
Young 0.254 ± 0.011 0.159 ± 0.022 0.254 ± 0.035 0.156 ± 0.012 0.211 ± 0.032 0.225 ± 0.014 0.195 ± 0.029
Older 0.260 ± 0.017 0.181 ± 0.025 0.236 ± 0.034 0.188 ± 0.032 0.192 ± 0.025 0.220 ± 0.016 0.205 ± 0.022
% Difference +2.36 +13.84 -7.09 +20.51 -9.00 -2.22 +5.14
ANOVA p value 0.371
MANOVA (main effect) 0.191 0.191 0.191 0.191 0.191 0.191
MANOVA (post-hoc) 0.045* 0.235 0.006** 0.130 0.371 0.355

Values represent mean ± standard deviation (SD).
Key: MRE, magnetic resonance elastography; MRI, magnetic resonance imaging; Am, amygdala; Ca, caudate; Hp,
hippocampus; Pa, pallidum; Pu, putamen; Th, thalamus.

Subcortical grey matter regions of interest: Second, a two-way MANOVA was performed to assess the

effects of age group and sex on volumetric MRI for all 6 SGM structures. There was a statistically

significant effect of age [F(6,15) = 4.89, p = 0.006] and sex [F(6,15) = 3.10, p = 0.035] on the combined

ROIs, with no interaction between age and sex, (p = 0.966). The univariate effects indicated significant

age differences in volume for all individual SGM structures, except for Ca: Am (p = 0.002), Hp (p =

0.011), Pa (p = 0.046), Pu (p < 0.001), Th (p = 0.004), and Ca (p = 0.063). Significant sex differences

in volume were found for Ca (p = 0.008), Pa (p = 0.014), Th (p = 0.034), whereas there were no

differences in volume for Am (p = 0.111), Hp (p = 0.518), or Pu (p = 0.103).

7.3.3 Shear stiffness µ

Cerebrum (Ce): A two-way univariate general linear model (ANOVA) was performed to examine the

effect of age group and sex on cerebral µ. There was a statistically significant effect of age on the

stiffness of the Ce, [F(1, 20)=13.33, p= 0.002, partial η2= 0.400], indicating younger participants

had higher cerebral µ than older participants. There was no significant effect of sex (p= 0.651) or

an interaction between age and sex (p= 0.849). Figure 7.3 shows 3 representative slices in Montreal

Neurological Institute space of Ce stiffness for both young and older adults.
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Figure 7.2: Mean and standard deviation for (a) volume (cm3), (b) shear stiffness, µ (kPa), and (c)
damping ratio, ξ. N = 12 in each group.

159



CHAPTER 7. 7.3. RESULTS

Figure 7.3: Mean shear stiffness, µ properties of the cerebrum (Ce) for young and older adults, showing
widespread softer brains in older age (p < 0.001). MRE parameter maps have been transformed into
standard MNI space, with anatomical information overlaid for illustration purposes. 3D rendering of
the MNI template shows the location of the three representative slices. Abbreviation: MNI, Montreal
Neurological Institute; MRE, magnetic resonance elastography.

Subcortical grey matter regions of interest: A two-way multivariate analysis of variance (MANOVA)

was performed to assess the effects of age group and sex on µ for all six SGM structures. There was

a statistically significant effect of age on the combined regions of interest (ROIs), [F(6,15) = 8.77,

p<0.001, partial η2= 0.778)], with no effect of sex (p= 0.382), or interaction between age and sex (p=

0.408). The univariate effects indicated significant age differences for all individual SGM structures:
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Am (p= 0.001; partial η2= 0.415), Ca (p<0.001; partial η2= 0.649), Pa (p= 0.001; partial η2= 0.437),

Pu (p<0.001; partial η2= 0.654), Th (p<0.001; partial η2= 0.574), except for the Hp (p= 0.096).

Volume correction: Third, univariate analysis of variance (ANOVA) were used to correct µ for volume,

using age and sex as fixed factors and volume as a covariate. Each ROI analysis was performed

separately. µ of the Ce (p= 0.012; partial η2= 0.291), Ca (p<0.001; partial η2= 0.580), Pa (p= 0.002;

partial η2= 0.409), Pu (p= 0.003; partial η2= 0.370), and Th (p= 0.003; partial η2= 0.381) all remained

significantly affected by age group after correcting for ROI volume size. Am was no longer significantly

different between age groups once Am volume was used as a covariate (p= 0.102). Figure 7.4 shows

mean young and older MRE parameter templates that remained significantly different between age

groups after controlling for ROI volume size.

7.3.4 Damping ratio ξ

Cerebrum (Ce): Similarly, a univariate general linear model (ANOVA) was conducted to examine the

effect of age group and sex on cerebral ξ. There was no significant effect of age (p = 0.371), or sex (p

= 0.790) or an interaction between the two (p = 0.596).

Subcortical grey matter regions of interest: Two-way MANOVA was performed to assess the effects of

age group and sex on ξ for all SGM structures. There was a non-significant effect of age group on the

combined ROIs, [F(6,15) = 1.69, p = 0.191, partial η2= 0.404], with no significant effect of sex (p =

0.827), or interaction between the two (p = 0.835). No volume correction or post hoc analyses were

considered due to the non-significant omnibus result.

7.4 Discussion

This proof-of-concept investigation is the first to use a single-frequency, high-resolution, NLI MRE

pipeline to assess the effect of healthy ageing on the viscoelastic properties of specific neuroanatomical

structures in vivo.

First of all, I have demonstrated that the passive MRE driver, consisting of a soft pillow, is

well tolerated, even in older adults aged 70 years and over. All participants also completed the study

without interruption. These results provide the first quantitative measure that the MRE head pillow

driver is acceptable to participants over a wide age range. This finding is essential when considering

the potential clinical utility of MRE as a diagnostic tool. Second, these results indicate that there is

161



CHAPTER 7. 7.4. DISCUSSION

Figure 7.4: Mean shear stiffness, µ properties of SGM structures (Ca, Caudate; Pa, Pallidum; Pu,
Putamen; Th, Thalamus) for young and older adults, in standard MNI space. The stiffness of each of
these brain structures remain significantly different between age groups after correcting for ROI volume,
with all being softer in older adults. *** denotes p < 0.001 and ** denotes p < 0.01 significance levels.
Abbreviation: SGM, subcortical grey matter; ROI, region of interest.

significant softening to the global cerebrum, an area largely composed of white matter, and to most

subcortical grey matter (SGM) structures as a result of increasing age. In older adults, the cerebrum

(8%), caudate (24%), pallidum (15%), thalamus (18%), amygdala (16%), and putamen (13%) are all
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significantly softer compared to younger adults. The hippocampus was the only region of interest (ROI)

to not exhibit a statistically significant difference in µ between age groups. Further, the stiffness of all

the aforementioned ROIs, excluding the amygdala, were influenced by age group even after correcting

these results to take into account ROI volume. Third, I have also demonstrated that there are no

age-related differences in the damping ratio, ξ of the global cerebrum, suggesting no overall change

in the relative viscous-to-elastic properties of the brain generally. Considering the volumetric MRI

analysis independently, the size of the cerebrum and all SGM structures, except for the caudate, is

statistically smaller in older adults, as expected.

These results complement previous MRE studies of cerebral ageing, which also found that

the brain becomes softer with older age [24–26]. The results are not surprising given that numerous

histopathological studies report that the brain undergoes microstructural and metabolic changes due to

normal ageing [44–46], and that stiffness is reflective of degree of myelination and neuronal density [21,

22,47]. This study, however, is the first to investigate microstructural differences in neuro-anatomical

regions due to ageing. The benefits of this approach enable the investigation of specific brain structures

and their associated cognitive functions. Previous work has found a significant correlation between

relational memory and hippocampal damping ratio in young adults [23, 38], whereas more recently, a

double dissociation was demonstrated between the orbitofrontal-fluid intelligence relationship and the

hippocampal-relational memory relationship [48]. These findings provide new opportunities for future

investigations to mechanically map the human brain with respect to ageing and cognition.

This work did not find a reduction in hippocampal µ in older adults in line with a decrease across

other subcortical grey matter regions. However, the magnitude of the difference of the hippocampus

between age groups (8.3%) is similar to that of the global cerebrum (8.5%), which did exhibit a statisti-

cally significant difference. Therefore, it is possible that this study was simply underpowered to detect

age-related differences to hippocampal stiffness: see section 7.2.7 for the post-hoc power calculation.

Nonetheless, these results are in agreement with a force indentation study, which compared brain

stiffness in healthy young-age to late-middle-age adult mice (human equivalent age of ∼20 years and

∼65 years, respectively), and found no age effect on hippocampal stiffness [47]. The finding reported

in the present study may reflect the fact that only cognitively healthy participants were recruited;

thus, the sample population may be more resilient to hippocampal microstructural alterations. This

is especially relevant, given a recent study which found that hippocampal stiffness, determined using

multifrequency MRE (MMRE), was lower in patients with AD when compared with healthy older

adult controls [49]. Taken together, it can be speculated that the stiffness of the hippocampus may be
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maintained across the life span until the point of AD neurodegeneration, suggesting that MRE may

be a promising non-invasive biomarker for early diagnosis. However, longitudinal investigations will

be required to monitor the prodromal stages of disease for the purpose of evaluating whether changes

to the mechanical properties of the hippocampus can predict the onset of dementia symptoms.

In both age groups, the putamen exhibited the highest µ, which complement findings from

Hetzer et al., 2017 who also found the putamen to be the stiffest deep grey matter region while

investigating the amygdala, hippocampus, pallidum, thalamus, and nucleus accumbens [50]. Hetzer

et al., 2017 further analysed the perfusion pressure gradient, a measure of cerebral blood flow, and

found the putamen to display the highest perfusion values, which in turn could predict its stiffness.

The distinct mechano-vascular properties of the putamen, it was argued, could explain the well-known

susceptibility of the ROI to haemorrhages. In the younger age group, the hippocampus was found

to exhibit the lowest µ of all the SGM region, which agrees with previous MRE findings in young

adults [34]. In contrast, the caudate was found to be the softest SGM structure in older adults, which

agrees with Guo et al. 2013 who reported the caudate as being softer than white matter, the thalamus

and, corpus callosum genu, in healthy adults aged between 22-72 years [41].

Considering the damping ratio ξ, no significant difference between age groups was found for

the global cerebrum. These findings support the prediction that the brain globally will possess a

similarly intact microstructure regardless of age. These results complement previous work by Sack et

al., 2009 and Sack et al., 2011, which found the slope of the complex modulus dispersion (i.e. viscous

power-law spring-pot exponent) to remain widely constant throughout the cerebrum with increasing

age, which was attributed to an unaffected geometrical alignment of mechanically relevant structure

elements [24, 25]. No significant age-related regional differences in ξ was found for the 6 selected

subcortical grey matter regions of interest. Future region-specific studies with larger sample sizes may

find age related differences in ξ, such as in the hippocampus. This suggestion is in part driven by

the substantial % difference between young and older adults for hippocampal ξ reported in this study

(21%), and the previous finding of a relationship between hippocampal ξ and relational memory in

young adults [23, 38]. In addition, a recent murine study found that the viscous G′′ properties of the

hippocampus increase with age [47], which the authors suggest may be related to an increase in the

number of mobile tissue components caused by age-related brain modifications.
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7.5 Limitations

The main limitation of this study lies in the small number of participants. This renders the data to lim-

ited statistical power and thus an increased probability of a type II error (false negative). These results,

therefore, should be interpreted with caution and replicated in a larger sample. The cross-sectional

evidence presented here also cannot test causality between MRE measures and ageing, although the

current work provides a necessary foundation for future investigations.

MRE inversion is a complex ill-posed problem and as such is under constant development. Due

to difficulties in solving the MRE inverse problem, we should acknowledge that other geometrical

factors could possibly influence the wave propagation and the quantitative outcomes. Older adults are

known to have larger ventricles and a greater degree of CSF due to cerebral atrophy. While I have

accounted for ROI volume within the statistical analyses and used conservative masks for the ROIs, it

should be acknowledged that there may be atrophy within the ROI itself, thus altering the distribution

of brain tissue and CSF. As CSF is an incompressible fluid, data model mismatch could cause issues for

quantification, although the use of SPR should presumably limit the contribution of CSF-containing

voxels. Another concern may be whether the analysis is biased toward the smaller SGM volumes in

older adults, as reported in this study. However, previous NLI phantom reconstruction work has been

shown to accurately identify changes in stiffness in regions as small as 1cm3 [51]. Considering the

smallest brain structure measured is the pallidum (∼2.5cm3), it is unlikely that volume-related bias is

related to the findings of age-related tissue softening.

Another limitation of this study is the inability to directly relate MRE-derived mechanical age

differences to an underlying micro-structural profile. Most studies that have linked the integrity of

tissue microstructure to MRE measurements have used a multiple-frequency acquisition [17, 20–22].

MMRE can capture a wide spectrum of experimental results, which are then modelled by a combined

viscoelastic element called the spring pot model (a combination of the terms ‘spring’ and ‘dashpot’) [8].

Through these studies, MMRE has been shown to relate the measured dynamics of the complex shear

modulus (i.e., powerlaw) to the fractal geometry of structures that build the mechanical scaffold of

tissue: that is, changes to spring-pot parameters are associated with the material’s complexity, which

in turn have been associated with pathophysiological events. While it has been suggested that the

powerlaw parameter can be determined from the complex shear modulus at a single frequency [52],

further validation studies are required to investigate whether single-frequency MRE can capture the

complex biophysical interactions at the microscopic level. In support of this data, I should mention
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that complementary age-related findings of brain tissue softening in lobar regions were reported using

a single-frequency vibration of 60 Hz [26]. Nevertheless, the underlying neural substrates causing

alterations to mechanical parameters at a single frequency are not fully understood. While tissue

stiffness has correlated with neuronal density, demyelination, and levels of inflammation using MMRE,

the specificity of this parameter needs further investigation. In addition, the biological correlates for

the damping ratio, ξ are less well established, thus ξ currently remains an engineering term in which

its relationship to underlying microstructural alterations can only be speculated.

7.6 Conclusions

In summary, this study is the first to investigate the influence of healthy ageing on the viscoelasticity

of subcortical neuroanatomical structures in vivo. Novel findings are reported for which older adults

displayed globally and regionally specific mechanical brain tissue differences when compared with

younger adults. In older age, there is widespread softening (i.e., decrease in shear stiffness, µ) of

the global cerebrum and in all subcortical grey matter structures investigated (amygdala, caudate,

pallidum, putamen, and thalamus), except for the hippocampus. However, the stiffness of the amygdala

was no longer influenced by age group once amygdala volume was used as a covariate. These results

suggest that group differences in µ exist even when ROI volume is accounted for and that MRE has

additive value over volume. In older age, the brain retains its relative viscous-to-elastic behaviour (i.e.,

damping ratio, ξ) both globally and regionally, suggesting a preservation of the organisation of the

tissue network. These preliminary results suggest that MRE can characterise age-related differences

to neural tissue not captured by volumetric imaging alone and motivate further investigation into the

utility of viscoelastic parameters in patients within the clinical or preclinical stages of neurodegenerative

disease.
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CHAPTER 8. 8.1. INTRODUCTION

Plan for the Chapter

The previous chapter identified significant differences in the mechanical properties of the brain between

young and healthy older adults. In particular, widespread softening to the brain and increased hip-

pocampal relative viscosity were characteristics of the older adult group. Lying deep within the medial

temporal lobe, the hippocampal formation is one of the most studied neuronal systems in the brain.

Its particular role in memory has made the hippocampus a suitable candidate for neuroimaging studies

aiming to characterise the early stages of memory specific disorders such as Alzheimer’s disease (AD).

In this chapter, I conduct an investigation into the possible structure-function relationship of MRE

in combination with psychological testing. More specifically, I am interested in whether hippocampal

MRE measures are associated with episodic memory, and whether this association outperforms that

provided by hippocampal volumetry. For the first time, I isolate this investigation to the study of

a sample of healthy older adults and consider the utility of mechanical asymmetry with regards to

hemispheric lateralisation.

8.1 Introduction

Age-related cognitive decline affects an estimated 40% of an otherwise healthy population over the

age of 60 and reduces both quality of life and independent living [1]. Episodic memory, which refers

to the conscious recollection of a personal experience, is particularly sensitive to cerebral ageing [2],

is more severely affected than other forms of memory [3], and often the first and most prominent

neuropsychological domain altered by Alzheimer’s disease (AD) [4, 5].

Episodic memory has long been recognised as being dependent on the function of an intact

hippocampus (HC), a medial temporal lobe (MTL) structure essential for encoding and consolidating

new memories [6–8]. To study this relationship, many researchers typically rely on structural magnetic

resonance imaging (MRI) to investigate the association between hippocampal volume (i.e. macroscopic

size) and neuropsychological assessments of memory performance [9]. The implicit link is that volume

loss impairs function; however, measures of volume alone are not specific to the microstructural tissue

alterations expected to impact memory function. As such, the conclusion from a large meta-analysis

that the relationship between hippocampal size and episodic memory in normal ageing is weak is

perhaps not surprising [10]. Instead, imaging techniques sensitive to the microscale characteristics of

neural tissue are critically needed to better understand the origins of cognitive decline. Understanding

how changes in hippocampal microstructure impacts cognition in the context of ageing may prove
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important for identifying critical neural underpinnings of the cognitive ageing process and intervention

targets for combating cognitive decline.

Over the last several years, magnetic resonance elastography (MRE) [11] has emerged as a

potentially useful clinical useful neuroimaging technique [12], due to its highly sensitive and unique

contrast mechanism [13]. Unlike traditional magnetic resonance imaging (MRI), MRE provides a quan-

titative measurement of the mechanical properties (e.g. stiffness or viscosity) of the brain. Through

recent advances in MRE technology, reliable in vivo measurements of brain viscoelasticity have been

reported for individual brain structures and regions [14,15]. Previous MRE investigations have found

that brain viscoelasticity is affected by neuro-degeneration [16], intracranial tumours [17], including

cerebral malignancies [18], and healthy ageing [19–21]. Evidence suggests that mechanical signals op-

erate in tandem with biochemical cues to determine tissue characteristics [22], which suggests that

brain viscoelasticity may provide novel information related to the underlying integrity of neural tissue

microstructure [23]. Through animal models of disease, the mechanical properties from MRE have

been directly linked to demyelination [24], and inflammation processes [25], as well as alterations in

neuronal density [26,27].

The high sensitivity of brain tissue viscoelasticity to underlying neural microstructure has also

motivated the use of MRE for exploring brain-behaviour (i.e. structure-function) relationships within

cognitive neuroscience. In particular, several studies have investigated MRE-derived hippocampal

viscoelasticity and its relation to cognition [28–31]. Results revealed a strong correlation between the

relative viscous-to-elastic behaviour (i.e. damping ratio, ξ) of the HC and episodic memory, whereas

measures such as hippocampal volume, and metrics from diffusion tensor imaging (DTI) were not

associated with memory performance [28]. This work was later replicated within a larger sample

and further demonstrated that higher aerobic fitness was associated with hippocampal ξ, which is

interpreted to have mediated the benefits of fitness on memory performance [29]. More recently, a

significant double dissociation between the orbitofrontal cortex-fluid intelligence relationship and the

hippocampal-relational memory relationship was observed, highlighting the potential of using MRE to

map brain mechanical properties with regards to specific cognitive functions [31]. However, in these

studies only healthy young adults were recruited; the impact of changes to hippocampal viscoelasticity

in the context of age-related cognitive decline remains unexplored.

The present study sought to examine the relationship between hippocampal viscoelasticity and

performance on a verbal paired associates task (VPA) in cognitively healthy older men and women.

The VPA task involves learning the association between two pieces of information, with test materials
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presented as either semantically related or unrelated word pairs. This binding of information is thought

to rely heavily on the hippocampal formation [32], and thus verbal paired associate learning tasks have

become emblematic of hippocampal function. As lesion deficit and functional MRI (fMRI) studies have

provided evidence for a material-specific lateralisation of function, with the dominant (usually the left)

HC mediating verbal memory [33], and non-dominant (usually the right) HC mediating nonverbal or

visual memory [34], I explored the potentially unique contributions of left and right HC viscoelasticity

to VPA recall score. Additionally, as simulation experiments have demonstrated how atrophy, and

the concomitant increase in cerebrospinal fluid (CSF), can produce a systematic bias in MRE-based

stiffness measurements [14], I have developed and applied a novel image analysis procedure to remove

CSF voxels from the MRE measurements that is compatible with the current protocol. This issue is of

critical importance in the study of ageing, where on average, older adults are expected to have smaller

brain volumes and higher levels of CSF [35].

Consistent with previous MRE studies of relational memory in young adults, I hypothesised

that: (1) hippocampal viscoelasticity would show a significant correlation with memory performance

in older adults - in particular, I predict that a relatively greater viscous to-elastic hippocampus (higher

damping ratio, ξ), will be associated with poorer performance on the VPA recall task; (2) in a cohort of

right handed participants, left hippocampal ξ would possess a stronger relationship with VPA score due

to the verbal nature of the performance task; and (3) correction to take account of CSF in voxels within

the HC could potentially increase the significance of any observed relationship with cognition.

8.2 Materials and methods

8.2.1 Subjects

The same older participants from the last chapter were included in this study. All subjects had

been required to complete the Montreal Cognitive Assessment (MoCA) [36], and score above the

normal range (>26/30). All participants were English native speakers, with no history of neurological

or psychiatric episodes. No significant structural MRI abnormalities were reported by a consultant

radiologist. The study met all criteria for approval from the National Health Service (NHS) Lothian

Research Ethics Committee (15/SS/0219), and written informed consent was obtained from each

participant prior to neuroimaging and neuropsychological assessment.
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8.2.2 Neuroimaging acquisition

MRI scanning was performed using a Siemens 3T Verio whole-body MRI scanner with a 12- channel

head receive coil (Siemens Medical Solutions; Erlangen, Germany). A high-resolution T1-weighted

MPRAGE (Magnetization-Prepared Rapid Gradient Echo) sequence was obtained consisting of the

following parameters: 1 mm isotropic voxels; TE = 2.97 ms; TR = 2400 ms; FOV = 240 x 240;

acquired in a sagittal orientation. To elicit brain tissue displacements for MRE, a pneumatic actuator

(Resoundant; Rochester, MN, USA) was set to a single frequency of 50 Hz, where the vibrations

were transferred to a soft pad placed below the occipital portion of the head. This particular actuator

design has been found to be acceptable to participants over a wide age range [21]. The MRE acquisition

employed a 3D multislab, multishot spiral sequence to capture high-resolution displacement data at an

isotropic resolution of 1.6 mm, as previously described [37]. Following iterative image reconstruction

and data processing, complex, full vector displacement fields were generated for mechanical property

estimation.

8.2.3 MRE inversion

All octahedral shear strain-based SNR measures (OSS-SNR) were >3, determined to be stable for

inversion [38]. Nonlinear inversion (NLI) [39–41] was combined with soft prior regularisation (SPR) of

the HC to estimate the complex shear modulus (G∗ = G′ + iG′′), from the full vector MRE displace-

ment data by iteratively updating the property description to match the model to the measurements.

SPR penalises heterogeneity within the region of interest (ROI), (see next section for HC mask gen-

eration), and thus reduces variability in measures potentially arising from partial volume effects or

contamination from nearby regions of cerebrospinal fluid (CSF) due to the smoothing effect of the

regularisation required to ensure stable inversion [42]. Maps of the complex shear modulus G∗ were

reformulated in MATLAB to provide quantitative maps of shear stiffness, µ = 2 |G∗|2/(G′ + |G∗|),

and damping ratio, ξ = G′′/2G′.

8.2.4 Hippocampal mask generation

Hippocampal (HC) masks were obtained via automatic segmentation of the T1-weighted images using

FreeSurfer v.5.3 through the recon-all pipeline [43]. Segmentation quality was visually assessed, and

manual adjustments were made when necessary. The MRE T2-weighted magnitude images were then

coregistered to the structural T1-weighted MPRAGE using the FLIRT tool within FSL [44]. A 12-
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parameter affine model was used with tri-linear interpolation and a correlation ratio cost function. The

registration was optimised by using weighting volumes of the ventricles. The inverse of this transform

was calculated to register the HC mask from the anatomical T1 image into MRE space using nearest

neighbour interpolation. A threshold of 95% was applied to the masks to reduce partial volume effects.

To further remove any remaining voxels CSF, FAST (FMRIB’s Automated Segmentation Tool), was

used to extract CSF maps from the T1-weighted image [45]. The output CSF map is a partial volume

map containing intensity values representing the proportion of CSF within each voxel [from 0-100%].

The resulting CSF map from participants was then coregistered to their MRE data using the same

inverse transform as previously described. The CSF maps were subsequently binarised at a 100%

threshold and multiplied by the original masks to generate new smaller HC masks containing no voxels

with CSF. The new HC masks were input into SPR with a weighting parameter of α = 10−11 within

the NLI algorithm, as mentioned in the previous section.

8.2.5 Volumetric analysis

Automated labelling based on a spatial probabilistic atlas was performed to obtain bilateral HC vol-

umes; Estimated Total Intracranial Volume (eTIV) was used to normalise HC volume for participant

head size [46].

8.2.6 Neuropsychological assessments

The Montreal Cognitive Assessment (MoCA) is a widely used 30-point assessment administered in

approximately 10 minutes to screen for global cognitive impairment [36]. All participants were required

to score >26/30 on the MoCA to ensure normal cognitive function. The National Adult Reading

Test (NART) was administered to measure full scale intelligence [47]. The NART can be used as a

proxy for premorbid intelligence since it has been shown to remain impervious to mild-to-moderate

memory decline [48]. All participants also completed the Edinburgh Handedness Inventory to measure

handedness. Episodic memory was assessed by using the Verbal Paired Associates subtest (VPA)

from the Wechsler Memory Scale-Revised (WMS-R) [49]. The VPA is one of the most widely used

instruments for measuring explicit episodic memory [50]. In this study, only the immediate recall test

scores are reported. Delayed recall data was collected, but participants performed at ceiling restricting

inter-subject variability. This test involves the examiner reading eight word pairs to the participant

across three study test trials. The VPA pairs can be divided into four “easy” pairs (semantically

related) and four “hard” pairs (semantically unrelated). After each presentation of the list of eight
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pairs, the first word is given by the examiner and the participant is required to provide its associate.

The maximum score from the three trials was 24.

8.2.7 Statistical analyses

All MRE data reported refer to results obtained in MRE native space for each participant. Due to

significant skewness in the test of memory performance (i.e. the VPA), median absolute deviation

(MAD) methods were used to detect statistical outliers [51,52]. A conservative criterion of 3 times the

MAD was used for outlier detection [53]. One participant was excluded at this stage due to scoring

below the MAD, suggesting a lack of engagement in the task, or an undiagnosed memory disorder with

the score being within the range of that expected for a patient diagnosed with Alzheimer’s disease [49].

MAD did not identify any significant outliers due to hippocampal viscoelastic measures. The analytic

sample therefore included 11 older adults (mean age = 69.1 + 2.3 years, 6 female, 5 male).

Pearson partial correlation coefficients, r, were used to investigate how each HC MRE measure,

µ and ξ, correlated with VPA performance, with age (years), sex, NART full-scale IQ, and HC volume

used as covariates. Age and sex were used as control variables due to previous studies identifying a

link between both variables and brain viscoelasticity [19, 21]. Due to previous reports of associations

between brain structure and intelligence [54], the NART full-scale IQ was used as a control variable.

HC volume provided from FreeSurfer was also used as a covariate to ensure HC size did not account

for the observed relationships between HC viscoelastic measures and VPA recall score. Volumetric

measurements were derived from FreeSurfer, as opposed to the size of the HC masks, as this automatic

procedure is routine for MRI studies of the hippocampus. Identical analyses were then performed on

the right and left HC separately. For investigating the relationship between HC volume and VPA

recall score, age (years), sex and NART full-scale IQ were used as control variables. Correlations were

two-tailed with level of significance set at p <0.05. Statistical analyses were performed with SPSS

software version 24.0.0 (SPSS Inc., Chicago, IL).

Statistical differences between correlations were determined using Steiger’s Z test [55], which

required the computation of a z-score based on the sample size and the correlation coefficients to be

compared (rjk and rjh), along with the correlation of the unshared variable (rkh). The correlation

of the unshared variance is computed along with the appropriate covariates. By convention, z values

greater than 1.96 are considered significant. Calculations were performed using a web utility provided

by Lee et al., 2013 [56].
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8.3 Results

Descriptive statistics (mean, standard deviation, minimum/maximum values, and population coeffi-

cient of variation [CV]) for all study variables for the analytic sample of 11 subjects (6F/5M) are

presented in Table 8.1. The mean OSS-SNR score indicates high quality MRE displacement data,

and the mean NART full-scale IQ indicates that the sample was intellectually high functioning. All

participants were right-handed as determined by the Edinburgh Handedness Inventory. Partial corre-

lation coefficients, r, and associated p values between each HC structural measure and the observed

relationship with VPA score are presented in Table 8.2.

Table 8.1: Demographic data for participants included in the study

Mean SD Min/Max CV

Demographics
Age (years) 69.1 2.3 66/72 3.3%
NART full-scale IQ 123.4 4.25 115/128 3.4%
MoCA 28.3 1.73 26/30 6.1%
VPA Immediate Recall 20.7 1.95 17/24 9.4%

MRE measures
OSS-SNR 5.79 1.54 4.19/8.37 26.5%

Stiffness µ [kPa]
Bilateral HC µ 2.86 0.35 2.17/3.38 12.2%
Left HC µ 2.77 0.51 2.06/3.83 18.6%
Right HC µ 2.91 0.40 1.93/3.47 13.8%

Damping ratio ξ
Bilateral HC ξ 0.176 0.039 0.118/0.243 22.5%
Left HC ξ 0.162 0.052 0.109/0.276 31.9%
Right HC ξ 0.186 0.038 0.126/0.249 20.3%

Volume [cm3]
Bilateral HC volume 8.20 1.17 6.94/10.46 14.3%
Left HC volume 4.02 0.66 3.17/5.16 16.5%
Right HC volume 4.17 0.52 3.61/5.29 12.7%

Abbreviations: MoCA, Montreal Cognitive Assessment; NART, National Adult Reading Test; VPA, verbal paired
associates; OSS-SNR, octahedral shear strain signal-to-noise ratio; HC, hippocampus; CV, coefficient of variation.
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Table 8.2: Relationships between hippocampal viscoelasticity and volumetry and VPA recall score

HC stiffness [kPa] HC damping ratio HC volume [cm3]

Correlation, r p-value Correlation, r p-value Correlation, r p-value

Bilateral -.01 0.98 -.88 0.008** -.19 0.65
Left .18 0.70 -.93 0.002** -.19 0.65
Right -.20 0.67 -.72 0.066 -.18 0.66

**denotes p < 0.01 significance level.

8.3.1 Bilateral hippocampal measures

There was no significant relationship between memory performance and bilateral HC stiffness (µ; r =

-.01, p = 0.98), or bilateral HC volume (r = -.19, p = 0.65). However, bilateral HC ξ was significantly

correlated with VPA score (r = -.88, p =0.008), as shown in Figure 8.1.

To demonstrate a single dissociation, a similar analysis to the above was performed to compare

memory performance and viscoelastic measures for the caudate as a reference region [29]. The caudate

is an optimal control region because it is not reported to be involved in episodic memory [57]. Caudate

ξ was not significantly correlated with episodic memory performance (r=-.64, p=0.12). Furthermore,

Steiger’s z-test revealed that this correlation was significantly smaller than the correlation between HC

ξ and episodic memory (z = 7.5, p < 0.001; rjk = .64, rjh = .88, rkh = .94). To investigate whether

regional specific analyses were warranted, I also performed the same analysis with the global cerebrum

as a reference region. Cerebral ξ was not significantly correlated with episodic memory performance

(r= -.13, p= 0.78), and this correlation was also significantly smaller than the correlation between HC

ξ and episodic memory (z= 3.17, p < 0.001; rjk = -.13, rjh = .88, rkh = .40).

8.3.2 Unilateral hippocampal measures

The individual contributions of left and right HC to the memory relationship were also investigated.

Paired-samples t-tests revealed no significant differences between hemispheres for either viscoelastic

MRE or volumetric MRI parameters: (µ [t (10) = -0.87, p = 0.40]; ξ [t (10) = -1.98, p = 0.08]; vol. [t

(10) = -1.91, p = 0.09]), as shown in Figure 8.2.

Considering unilateral contributions to memory, analyses of unilateral HC ξ showed a stronger

correlation between left HC ξ and VPA score (r = -.93, p = 0.002), whereas the correlation for right

HC ξ was not significant (r = -.72, p = 0.07). Steiger’s Z test revealed that the difference between

the two correlations was statistically significant (z = 3.3, p = <0.001; rjk = .93, rjh = .72, rkh =

180



CHAPTER 8. 8.3. RESULTS

Figure 8.1: Bilateral hippocampal (HC) structural metrics of (a) shear stiffness, (b) damping ratio,
and (c) volume, plotted against episodic memory task performance; positive values indicate better task
performance. Pearson correlation coefficient, r, demonstrates a significant negative correlation for HC
ξ suggesting that greater viscous energy dissipation in the hippocampus indicated by high ξ is correlated
with poor performance in the individual’s episodic memory assessment. Hippocampal stiffness and
volume plotted against VPA task performance, demonstrate no significant relationship with recall score.
MRE data were collected at a 50 Hz vibration frequency. Note that the trend lines do not consider the
impact of covariates.
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Figure 8.2: Box and whisker plots depicting the values for hippocampal (a) shear stiffness, (b) damping
ratio, and (c) volume, according to measurements obtained for the left and right hemisphere. The
central box represents values from the 25th to 75th percentiles and the middle line represents the median
value. Whisker lines extend from minimum to maximum values, excluding outliers (which are displayed
as separate points). Paired samples t tests reveal no significant left-right hemispheric differences in the
hippocampus for any parameter (p > 0.05). MRE data were collected at a 50 Hz vibration frequency.
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.88). Figure 8.3 illustrates the correlation for both left and right HC with VPA score, whereas Figure

8.4 provides example MRE images of the left HC for both a high and low performing participant.

Analyses of left HC µ (r = .18, p = 0.70), and right HC µ (r = -.20, p = 0.67), yielded no significant

correlation with VPA score. Neither did analyses of left and right HC volume reveal any significant

correlation with VPA score (r = -.19, p = 0.65 and r = -.18, p = 0.66, respectively).

Figure 8.3: Unilateral (right and left) hippocampal (HC) damping ratio ξ plotted against episodic mem-
ory task performance; positive values indicate better task performance. Pearson correlation coefficient,
r, demonstrates a significant negative correlation for (a) left HC ξ, suggesting that greater viscous
energy dissipation in HC indicated by high ξ is correlated with poor performance in the individual’s
episodic memory assessment; (b) right HC ξ plotted against VPA task performance demonstrates no
significant relationship with recall score. MRE data were collected at a 50 Hz vibration frequency. Note
that the trend lines do not consider the impact of covariates.

8.3.3 Hippocampal MRE with and without voxels containing CSF

Finally, I sought to investigate whether retaining voxels containing cerebrospinal fluid (CSF) would

have an effect on the statistical significance of the relationships between HC ξ and cognition. Whereas

the mean size of the HC masks excluding CSF was 499 voxels (range: 291 – 863 voxels), the full HC

masks, on average, contained 745 voxels (range: 555 – 1130 voxels). The procedure for removing CSF

voxels, therefore, had removed approximately 34% (range: 22 - 48%) of voxels within the HC mask.

There was no significant correlation between VPA score and HC mask size (without CSF: r = .38, p

= 0.36; with CSF: r = .11, p = 0.80), or between HC ξ and HC mask size (without CSF: r = -.59, p

= 0.13; with CSF: r = -.29, p = 0.49).
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Figure 8.4: Example images of left HC damping ratio, ξ for two participants. Figure (a) shows ξ of
a participant who achieved a high score on the VPA, indicating a more elastic HC, whereas (b) shows
a participant who performed worse on the VPA, and displayed a more viscous HC. MRE information
has been transformed to standard MNI-space for illustration purposes.

An illustration of an original HC mask and the same HC mask after CSF removal is provided

in Figure 8.5. Mean values for HC ξ calculated using both procedures can be found in Table 8.3.

Figure 8.5: Three-dimensional rendering of hippocampal (HC) mask to illustrate the removal of voxels
due to cerebrospinal fluid (CSF). In this example of one participant, 555 voxels were present in the
original HC mask, as shown in white. After CSF removal, there were 291 voxels remaining, as shown
in green. As a result, 48% of voxels were removed from the original mask.

Paired samples t-tests revealed significant differences in HC ξ depending on whether voxels
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Table 8.3: Descriptive statistics for HC ξ and the relationship between HC ξ and VPA score depending
on the exclusion/ inclusion of voxels containing cerebrospinal fluid

Bilateral HC ξ Left HC ξ Right HC ξ

CSF Mean ± SD 0.176 ± 0.039 0.162 ± 0.052 0.186 ± 0.038
excluded Correlation, r, to VPA score -.88 -.93 -.72

p value 0.008** 0.002** 0.07

CSF Mean ± SD 0.184 ± 0.040 0.176 ± 0.052 0.190 ± 0.036
included Correlation, r, to VPA score -.82 -.88 -.69

p value 0.024* 0.010* 0.09

Group
comparisons t test (paired samples) p = 0.003 p = 0.003 p = 0.041

Z score 4.72 4.21 1.39
p value <0.001*** <0.001*** 0.16

***denotes p < 0.001, ** denotes p < 0.01 and * denotes p < 0.05 significance levels.

containing CSF had been included or excluded in the HC measurements: bilaterally [t (10)=-3.83,

p=0.003], the left hemisphere [t (10)= -3.87, p=0.003] and right hemisphere [t (10) = -2.34, p = 0.04].

All results show an increase to HC ξ when CSF voxels are included, as expected, indicating a more

a viscous fluid as opposed to elastic solid. Additionally, the correlation between measurements from

both procedures were highly significant, bilaterally (r =.99, p < 0.001), in the left hemisphere (r =.99,

p < 0.001), and the right hemisphere (r =.99, p < 0.001).

The partial correlation coefficients, r, and associated p-values for each structural measure and

the observed relationship with cognition are presented in Table 8.3. Streiger’s z-test revealed significant

differences between the correlations with memory performance depending on the presence, or absence,

of CSF: bilaterally (z= 4.72, p = <0.001; rjk = -.82, rjh = -.88, rkh = .99), and left hemisphere (z=

4.21, p = <0.001; rjk = -.88, rjh =. -.93, rkh = .99), but not the right hemisphere (z= 1.39, p = 0.16;

rjk = -.69, rjh = -.72, rkh = .99), suggesting a stronger relationship between HC ξ and VPA score

when voxels with CSF were excluded from the analysis.

8.4 Discussion

This preliminary investigation is the first to determine whether hippocampal (HC) viscoelasticity,

measured in vivo using MRE, is associated with episodic memory performance in a group of healthy

older adult participants. First, in a group of healthy older adults, I have demonstrated that the

relative viscous-to-elastic behaviour (i.e. damping ratio, ξ) of HC is associated with explicit episodic
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memory, such that individuals with lower HC ξ performed better on the memory task. In contrast,

neither HC volume nor HC stiffness were significantly associated with memory performance. Second,

I have demonstrated that left HC ξ, as opposed to right HC ξ, possessed a stronger association with

task performance. Finally, the conservative approach of excluding voxels that contain cerebrospinal

fluid (CSF) was shown to improve the correlation with memory performance, when compared to the

standard analysis used in previous publications.

The results presented here are consistent with previous work which has investigated the rela-

tionship between HC MRE and functional performance in healthy young adults [28,29,31]. The current

study extends these findings by replicating this association in cognitively healthy older adults using

a verbal-episodic memory task. However, it should be noted that in these previous studies, adjusted

damping ratio, (ξ’ = 1 - ξ) is reported, so that lower ξ’ would instead be indicative of a reduction in

tissue integrity. These studies, like the present study, also did not find HC stiffness or HC volume to

account for individual differences in memory. While smaller hippocampal volumes, in general, tend to

be associated with poorer memory performance, most studies that have investigated the relationship

between size and memory has been in neurological patients, where smaller volumes are likely to be

accompanied by other neuropathological features such as amyloid plaques and neurofibrillary tangles.

In healthy ageing, however, there appears to be little evidence for the “bigger is better” hypothesis [10]

- but see Erickson et al., 2009 [58] and Erickson et al., 2011 [59], with there being substantial over-

lap between hippocampal volume in healthy controls and patients with Alzheimer’s disease [60], and

a large range of hippocampal volumes in healthy adults [61, 62]. These results suggest that volume

alone does not fully indicate hippocampal integrity, and smaller volumes may not necessarily signify

deterioration. The large population variation found in this study for HC ξ (23%), compared with HC

volume (14%), could suggest that MRE may be more sensitive for identifying the neural underpinnings

of age-related cognitive decline within this older adult population.

All of the previous work highlighting the relationship between HC MRE and memory perfor-

mance measured relational memory performance using a spatial reconstruction task. In the present

study, participants were instead verbally presented with a list of word-pair items and after a very short

delay were asked to provide the associate to a presented word. The current study took advantage of

the VPA task from the WAIS-R, a standard neuropsychological measure of episodic memory. The VPA

includes both an immediate and delayed test, though delayed recall measures were not considered in

this report as performance was at ceiling limiting the utility of the statistical approach. While tra-

ditional views of hippocampal function often emphasise that the hippocampus is necessary only after
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a delay [e.g., Baddeley and Warrington, 1970 [63], and Smith and Milner, 1981 [34]], the relational

memory theory of hippocampal function highlights the role of hippocampus in episodic binding across

domains and delays [32, 64, 65]. Therefore, the data presented in this work is consistent with findings

demonstrating a relationship between hippocampal structure and episodic memory with immediate

recall only. Indeed, hippocampal amnestic patients show impairment on relational memory tasks even

at very short delays [66,67].

Unilateral HC MRE measurements have yet to be reported despite hemispheric asymmetries

in the molecular and morphological characteristics of neuronal connections [68]; it has been suggested

that unilateral specialisation may facilitate greater processing power by using the available neuronal

circuitry more effectively. This study reports a 15% difference between left and right HC ξ, suggesting

left HC exhibits greater relative elastic-to-viscous behaviour, and this will warrant further investigation.

While no statistically significant left-right hemispheric differences were detected, increased statistical

power with a larger number of subjects may detect mechanical hemispheric asymmetries in future

studies.

The report of a stronger correlation of the left HC ξ to VPA recall score may be attributed to the

role of the left HC in the storage of verbal material, as found in memory for immediate and delayed prose

recall [69], free recall of word lists [33,70], and narratives [71] as well as verbal memory, confrontation

naming, and verbal conceptual ability [72]. In contrast, the right HC has been implicated in spatial and

pictorial material, such as geometric faces and figures, not amenable to verbal processing [71, 73, 74],

suggesting a functional hemispheric lateralisation of the right and left hippocampus [70, 75]. In this

study, however, it is acknowledged that a single dissociation is not sufficient to demonstrate specificity

for mapping cognitive function [76], and future MRE studies may identify more precisely the cognitive

functions supported by right HC ξ.

Previous work that has investigated the MRE-cognition relationship has been performed in

young, healthy participants where soft-prior regularisation (SPR) was deemed suitable to reduce par-

tial volume effects and was shown to improve reliability and increase sensitivity of MRE measure-

ments [15]. However, as normative ageing studies generally reveal a decrease in overall brain volume,

and a concomitant increase in volume of CSF, it was deemed that in this population a more conser-

vative approach was required to minimise potential systemic biased caused by CSF. Acknowledging

the bias caused by atrophy, Murphy et al., 2013b created an MRE processing pipeline, which utilised

adaptive techniques to reduce edge artefacts due to the local homogeneity assumption required by

direct inversion methods [14]. This work demonstrated that the edge-related bias can be eliminated by
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eroding the ROI by 1 voxel from the brain’s surface. In the current study, a heterogeneous inversion

protocol was used and a procedure was proposed that is specific for the removal of CSF present within

the ROI itself. Removal of CSF from the HC masks prior to inversion is also likely to minimise the

occurrence of quantitative errors due to data-model mismatch as a result of SPR enforcing CSF voxels

to possess the same mechanical properties as solid tissue. In support of this procedure, this study

has demonstrated that removal of CSF voxels influence HC ξ measures in the expected direction (i.e.

lower ξ - indicating a more elastic solid due to the removal of fluid), remains highly correlated to the

standard procedure, and statistically improves the association observed between HC ξ and memory

performance.

The damping ratio, ξ dictates which component of the complex shear modulus is more domi-

nant; a lower score thereby representing that the loss modulus, or imaginary component, is becoming

increasingly influential in HC tissue behaviour. Accumulating neuroproteomic data demonstrates that

hippocampal ageing involves common themes of dysregulated metabolism, increased oxidative stress,

altered protein processing, and decreased synaptic function [77]. Taking these findings into consider-

ation, one can speculate that age-related disorganised tissue components may manifest in the MRE

signal by being more effective at absorbing strain energy. Alternatively, the mechanism behind alter-

ations in hippocampal ξ have been speculated to potentially relate to neurogenesis [29,78]; however, a

recent study concluded that neurogenesis does not continue, or is extremely rare, in adult humans [79].

As such, research in animal models of disease will be necessary to allow full interpretation of the

neurobiological basis of the MRE signal.

In the future it will be interesting to see if the findings of the present study are replicated and a

number of refinements can be introduced. In particular, a limitation of the present study is the inability

to rule out any covert neuropathology, even though reasonable effort was made to confirm participants

were cognitively healthy. For example, a proportion of older adult participants may have an abnormal

amyloid-beta (Aβ) burden, that would remain undetected with MRI, even though there is currently no

consensus as to whether viscoelastic measures are sensitive to Aβ accumulation [16,78]. Future studies

could also employ a wider range of memory measures and include other imaging biomarkers such as

the microstructural measures obtained from diffusion tensor imaging (DTI). DTI can probe the white

matter pathways in the hippocampus and has previously revealed a loss of integrity with age [80],

and a relationship between hippocampal mean diffusivity (MD) and verbal memory performance [81].

The combination of hippocampal MRE measures, MD from DTI and MR volumetry has recently

been shown to improve the diagnostic accuracy of Alzheimer’s disease (AD) [82]. Accordingly, it is
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conceivable to propose that a combination of imaging modalities that may include MRE could prove

useful in the identification of healthy individuals at greatest risk for cognitive decline.

8.5 Conclusions

This is the first report of a significant structure-function relationship between hippocampal viscoelas-

ticity and episodic memory performance in a sample of cognitively intact older adults. Consistent with

previous studies of younger adults, greater relative viscous-to-elastic behaviour of the hippocampus

(i.e. higher damping ratio, ξ), was associated with poorer performance on the verbal paired associates

subtest, whereas hippocampal stiffness and hippocampal volume was not. Separate unilateral inves-

tigation of the left and right hippocampus found a stronger correlation for the left compared to the

right hippocampus, which may be attributed to the verbal nature of the VPA task, thus supporting

previous reports of hippocampal functional specialisation. Finally, this work demonstrates that the

sensitivity of the MRE-cognition relationship may be improved by removing voxels containing CSF

from the hippocampal mask prior to MRE inversion. Future research is now recommended to build

upon these results in order to establish the causal nature between these variables and whether hip-

pocampal MRE measures can predict future episodic memory decline. Ultimately, understanding how

changes in hippocampal microstructure impacts cognition in the context of ageing may prove important

for identifying intervention targets for combating cognitive ageing, and could suggest a possible role

for MRE as an imaging biomarker for memory specific disorders such as Alzheimer’s disease.
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CHAPTER 9. DISCUSSION AND FUTURE WORK 9.1. OVERVIEW OF RESULTS

9.1 Overview of results

The primary objective of this thesis was to evaluate the clinical utility of brain magnetic resonance

elastography (MRE) for its potential use as a novel imaging biomarker for the early characterisation of

neurodegeneration. New biomarkers are urgently required to predict those at risk of developing condi-

tions such as Alzheimer’s disease and to assist in the identification of new therapeutic targets.

In Chapter 2, theoretical background information required to understand the source of the

MRE contrast was provided. The experimental design of a brain MRE investigation was explained,

with prominence given to methods capable of generating images with a high spatial resolution. In

Chapter 3, a systematic literature review was performed consistent with the guidelines provided by

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The review

aimed to identify studies that had specifically reported MRE measurements for the human brain, in

both healthy participants and patients with neurological disorders. The review had two aims: (1)

to determine whether brain MRE could provide a quantitative threshold of healthy tissue mechanical

properties, and (2) to evaluate the success for MRE to differentiate between healthy control participants

and neurological patients. Considering the first aim, studies were identified and published values were

converted to common mathematical parameters of shear stiffness, µ and loss tangent, φ to provide

a valid summary of results. Despite this, there was large variations in reported brain stiffness for

healthy participants, attributed to the chosen methodological approach. In general, cerebral stiffness

may be determined to be approximately 2.5 kPa, white matter to be stiffer than grey matter, and

for the deep grey matter structures to be stiffer than any of the four main lobar regions. The second

aim of the review showed that brain MRE was sensitive at detecting differences between controls

and patients over a wide range of neurological conditions, including diffuse diseases such as multiple

sclerosis, and Parkinson’s disease, in addition to patients with focal intracranial tumours of varying

malignancy.

Chapter 4 identified three main research centres that contributed the majority of the brain

MRE research output, namely: Mayo Clinic, USA, University of Urbana-Champaign, USA, and Char-

ité – Universtätsmedizin, Berlin, Germany. As a result, I visited each of the centres to perform a

phantom validation and obtain exemplar brain MRE elastograms. Phantom data revealed superior

spatial performance for one protocol, termed single-frequency non-linear inversion (SF-NLI), whereas

another termed multi-frequency MDEV (MF-MDEV) provided the most accurate measurements for

the target most resembling the stiffness of the human brain. Importantly, both approaches provided
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high-resolution images and could therefore be used to study specific neuroanatomical regions of inter-

est. As a result, I consolidated collaborations with the two associated research centres to refine an

experimental protocol for installation at the Edinburgh Imaging Facility, QMRI (EIF-QMRI).

In Chapter 5, the two high-resolution - yet fundamentally different - MRE protocols were in-

stalled, optimised and validated at the EIF-QMRI. Comparison of images obtained in Edinburgh, with

images from the relevant research centre, showed similar quality raw MRE images and reconstructed

elastograms. I also introduced a novel signal-to-noise (SNR) measurement to MRE that could assist in

assessing image quality across research sites. However, this SNR measure will need to be widely used

before suitable thresholds can be established to define “unusable” data from data determined to be

of sufficiently high quality. In this chapter, I also developed a novel Graphical User Interface (GUI),

that can perform the automatic, and optimised coregistration of MRE elastograms to T1-weighted

anatomical images. The GUI can also automatically generate values for a range of brain structures for

four different MRE derived parameters. This advance will accelerate the process of obtaining MRE

results thereby increasing the clinical applicability for the analysis of smaller brain structures.

Chapter 6 focused on the test re-test agreement of both the SF-NLI and MF-MDEV protocols

in 6 young and 6 healthy older adults. Results for global cerebrum stiffness found similar agreement

for SF-NLI (ICC: 0.89; CI: 0.67-0.97) and limited frequency range MDEV (ICC: 0.90; CI: 0.71-0.97),

whereas SF-NLI was clearly superior for the viscosity parameter (ICC: 0.61; CI: 0.06-0.87) when

compared to MDEV (ICC: 0.37; CI: -0.28-0.77). Bland Altman difference plots and between coefficient

of variation were also better for the NLI-based protocols. All repeatability measures related to the

hippocampus were also greater using NLI compared with MDEV methods. Additionally, the NLI

protocols were shown to exhibit increased sensitivity to biological variation explained by the wide age

range of participants. Collectively, these results supported the use of NLI in a larger study of ageing

which was expected to be both highly reliable and biological sensitive.

As a result, Chapter 7 utilised the SF-NLI protocol, with soft prior regularisation (SF-NLI-

SPR) to investigate differences in brain mechanical properties between 12 young (mean age: 25 years),

and 12 cognitively healthy older adults (mean age: 69 years). To my knowledge, this was the first

brain MRE study to ensure cognitive health in older adults as determined through neuropsychological

assessment. The administration of a MRE questionnaire shortly after the imaging procedure found

that the MRE vibration was well tolerated regardless of subject age, quantitatively suggesting that

the actuation component is clinically viable. Novel findings included significantly softer brains in

older adults compared to younger adults, with decreases in stiffness evident for the global cerebrum
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(-8%), caudate (-24%), pallidum (-15%), putamen (-13%), and thalamus (-18%), when compared

to measurements obtained in younger subjects. Interestingly, significant differences were not found

between age groups for the stiffness of either the amygdala or hippocampus once each ROI was corrected

for volume. As for the measure of relative viscosity, no significant differences between age-groups were

reported for either the brain globally or any ROI. The data suggest, however, that with more statistical

power, hippocampal relative viscosity may be higher in the older adult group and thus will be subject

to future investigation. A further advantage of this study was establishing, for the first time, MRE

base-line values for specific brain structures in both young and healthy older adults, to assist in power

calculations for future studies. In addition, the clinical usefulness of MRE as an imaging biomarker for

disease detection requires that thresholds of healthy tissue are clearly defined to enhance sensitivity

and diagnostic potential.

Concurrently, Chapter 8 sought to expand on the hippocampus findings reported in Chapter 7.

Recently published studies have linked hippocampal relative viscosity with performance on sensitive

tests of memory in young adults. Due to well-known cognitive decline in older age, I investigated

whether the higher relative viscosity (i.e. damping ratio, ξ), apparent in older adults was related to

performance in a task of episodic memory. Results found that hippocampal ξ was indeed associated

with performance on verbal-paired recall, (p = 0.008**), whereas hippocampal volume, (p = 0.65), or

hippocampal stiffness, (p = 0.98) was not. No association was found in the control brain regions of

the global cerebrum, or caudate. Delving into this further, I found a stronger association involving

the left hippocampus, (r = -.93, p = .0.002**), as opposed to the right hippocampus, (r = -.72, p=

0.066). This is a particularly interesting finding due to the well-known role of the left hippocampus

in verbal memory, suggesting that MRE could be utilised within the field of psychology to assist with

assessments into the unique contribution from each hemisphere for cognitive functioning (i.e. hemi-

spheric lateralisation). In addition, a statistically significant stronger correlation was found between

hippocampal ξ and memory performance when voxels containing cerebrospinal fluid (CSF) were re-

moved from the analysis. Removal of CSF from the hippocampal masks prior to inversion is likely to

minimise the occurrence of quantitative errors due to data-model mismatch. In support of this pro-

cedure, the study demonstrated that removal of CSF voxels influence HC ξ measures in the expected

direction (i.e. lower ξ - indicating a more elastic solid due to the removal of fluid), and remains highly

correlated to the standard procedure.

Collectively, results presented throughout this thesis support the transition of MRE into a

clinical viable, reliable and sensitive imaging modality. Future studies will need to replicate these
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initial promising findings in a larger number of subjects. There is also a significant need to disentangle

separate forms of neurodegeneration, that could be related to either one of changes to neuronal density,

inflammation or demyelination. The only viable way to achieve this will be to utilise additional animal

models of neurodegeneration to more specifically relate the mechanical signature to a microstructural

profile.

9.2 Future work

9.2.1 Strategies for Improving Imaging Acquisitions

Multiband excitation and nonlinear motion-induced phase error correction

Work is already underway to further improve the acquisition design of the multi-shot multi-

slab sequence used throughout this thesis. A new version for brain MRE has been proposed to include

novel features such as multiband excitation and 3D encoding of the distributed slab with multishot

spirals [1]. Multiband strategies excite multiple imaging volumes separated in the slice direction and

sample both with the same readout. This sequence allows high SNR efficiency and reduced distortions

from field inhomogeneity, in addition to parallel imaging acceleration. Parallel imaging is achieved by

undersampling both in-plane and through-plane (i.e. also in the slice direction), and has shown to

allow higher acceleration factors without the associated artefacts. In addition, correction for nonlinear

motion-induced phase errors is also incorporated to allow for the correction of phase errors not handled

by linear correction, such as from cardiac pulsation. The use of a navigator before readout also reduces

acquisition time by removing a second refocusing pulse. Figure 9.1 demonstrates the performance of

the nonlinear motion-induced phase error correction on MRE magnitude images. Compared with the

uncorrected dataset, the corrected results exhibit clear improvement to phase inconsistencies, and was

also shown to increase OSS-SNR and provide elastograms with improved anatomical agreement. To

date, this sequence has been shown to capture whole-brain MRE data at 2 x 2 x 2 mm3 resolution in

just 3 minutes. The reduction in acquisition time indicates a major advance in the possible clinical

adoption of MRE. On the other hand, the high SNR efficiency afforded by this design may allow for

a higher achievable resolution, although of course, at a cost of an increase in acquisition time.

SLIM-MRE

There exists a complementary need for MRE sequences to reduce scan time to improve patient

acceptance or to enable the acquisition of additional displacement data. Sample Interval Modulation

(SLIM)-MRE is a recently developed multidirectional motion encoding scheme, [2], that has been
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Figure 9.1: Comparison of results without (a) and with (b) nonlinear motion correction. Corrected
phase inconsistencies in the slice direction are clearly visible. Image adapted from Johnson et al.,
2017 [1], and used with permission.

implemented in a multishot, variable density spiral sequence for use within brain MRE [3]. SLIM-

MRE allows for the simultaneous acquisition of the full vector displacement field, by modifying the

sequence timings relative to the conventional encoding scheme. By switching the polarity of flow-

compensated MEGs, the TE is only marginally greater than the TE used within the conventional

sequence. SLIM-MRE and conventional MRE acquisitions were shown to produce nearly identical

deformation fields and similar quantitative property estimates. The SLIM acquisition is, however, 2.5

times faster, which may improve the clinical adoption of MRE or provide an opportunity to capture

additional displacement data.

9.2.2 Strategies for Improving Inversion Algorithms

Higher-resolution reconstruction

Throughout this thesis, I have used the same parameters in the nonlinear inversion (NLI) process

for both phantom and in vivo studies in the interests of maintaining a standardised protocol to allow for

results to be compared with those previously published. These parameters had been chosen previously

for stability and repeatability for estimations of larger brain regions with 2.0 mm isotropic data and

did not necessarily emphasise spatial resolution in recovered properties [4]. Recently, there has been

renewed interest into the achievable resolution of NLI mechanical property reconstruction, which is

determined by data resolution and quality, finite element mesh resolutions, regularisation parameters,

and optimisation approach. As a result, McGarry et al. 2017 have investigated the achievable resolution

of brain MRE NLI using high resolution motion data by tuning the existing regularisation weightings

and optimisation parameters [4]. The most influential inversion parameters are: (1) the number of

conjugate gradient (CG) iterations per subzone iteration; (2) spatial filter (SF) width; and (3) total
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variation minimisation (TV) weighting. By combining various forms of these parameters, resolution

was improved by increasing the number of CG iterations per subzone, decreasing the width of the SF

kernel, and decreasing TV weighting. Images were inspected visually, and resolution was assessed by

the presence of artefacts, instability, and correspondence to neuro-anatomy.

As a result of this recent work, the NLI parameters were retuned and applied to brain data

previously provided in Chapters 4 and 5. Comparison of the default inversion, with the new high-

resolution inversion, is provided in Figure 9.2. Visual inspection of high-resolution images in all three

orientations show excellent anatomical agreement. The sagittal view provides a clear delineation

between the gyri and sulci, however, it is acknowledged that softer sulci might be a sliding artefact.

This relates to the process of NLI in which all tissue inside the finite-element mesh (i.e. boundary mask)

is assumed to be an elastic continuum. As the sulci are actually discontinuous, higher apparent shear

strains might be reported due to sliding in the motion data. One possible way to fix this issue woud be to

obtain very high-resolution data and build a custom finite-element mesh that follows the boundaries of

the sulci so that discontinuties are built into the model. Nevertheless, regions of higher stiffness appear

to be maintained across the default inversion and the higher-resolution version. Future studies will

need to assess the reproducibility of this approach for generating mechanical property measurements of

small brain structures. Importantly, this thesis has provided the necessary framework for such future

validation assessments.

Integration of more advanced mechanical models

Identifying specific aspects of neurodegeneration, including neuronal cell death, demyelination,

and inflammation, may ultimately require the use of more advanced mechanical models. Despite the

brain being a biphasic, fluid-saturated tissue, the viscoelastic model used throughout this thesis is

unable to characterise the extracellular fluid exchange of tissue deformation created by actuation. As

a result, researchers have extended MRE inversions to include mechanical models of poroelasticity,

as an alternative to single-phase MRE methods, by the development of a poroelastic formulation of

the equations of motion [5, 6]. So-called magnetic resonance poroelastography (MRPE) can charac-

terise the material response of deformation by describing the brain as both a porous elastic solid and

penetrating fluid within two distinct phases. The benefits of such a model have been shown to be

more representative of tissue structure and physiology, enabling a more accurate description of tis-

sue deformation [6]. Furthermore, the ability to exploit variations in the fluid distribution, known

as hydraulic conductivity, could be used as an additional diagnostic measure. However, it has been

shown that only low frequency actuation (i.e. 1 Hz) allows for sufficient fluid exchange representative
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Figure 9.2: (a) T1-weighted structural image transformed into MRE space to show anatomical struc-
tures in all three orthogonal orientations; (b) the default inversion used throughout this thesis, and (c)
improved resolution with more conjugate gradient (CG) iterations per subzone iteration, lower total
variation minimisation (TV) weight, and smaller spatial filter (SF) width. Note: the softer sulci might
be the result of a sliding artefact. In future work, the NLI algorithm could build a custom finite-element
mesh to follow the boundaries of the sulci so that discontinuities are built into the model.

of a poroelastic material, whereas frequencies typically used within MRE (i.e. 50 Hz) are more accu-

rately described by viscoelasticity [7]. As a result, MRPE may only be suitable for studies that utilise

intrinsic actuation [8].

All work throughout this thesis has utilised an isotropic material model, whereas the brain

displays anisotropic properties, with highly organised myelinated white matter tracts showing di-

rectionally dependent characteristics. As mentioned in Chapter 3, a technique known as waveguide

elastography (WGE) has been proposed to model the corticospinal tracts (CTS) within the brain as a

transversely isotropic material [9]. WGE uses diffusion tensor maging (DTI) to locate the direction of

fibre pathways, before the application of spatial-spectral filtering to identify and analyse shear waves
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that are propagating parallel to the principal direction of the nerve fibres. The applicability of this

technique to other brain structures is questionable, however, as WGE analysis is reliant on knowledge

of the pathways along which the propagating waves will travel; most brain structures do not possess

anisotropic properties on the same scale as the CTS. Nevertheless, the development of an appropriate

anisotropic inversion could stabilise results and improve accuracy and will surely be the subject of

future work.

9.2.3 Improving the precision of MRE measurements

Throughout this thesis, emphasise has been placed on high-resolution MRE to enable the study of

specific brain structures of interest. Further improvements in the achievable spatial resolution, as

through the strategies mentioned within this section, will enable measurement of even smaller brain

regions. Recent years have seen increased interest in measuring the subfields of the human hippocampal

formation (HF). The HF is composed of several intricate and packed subregions that include the cornu

ammonis fields (CA1, CA2, CA3, and CA4), the dentate gyrus (DG) and the subiculum [10], which are

known to be involved selectively, non-uniformly and in the complex progression of different neurological

disorders [11–13]. Measuring the mechanical properties and changes of each hippocampal subfield,

therefore, will be highly desirable to further elucidate early microstructural changes in conditions such

as preclinical Alzheimer’s disease.

9.3 Conclusions

The work presented throughout this thesis has shown brain MRE to be a clinically acceptable, reliable,

and biologically sensitive neuroimaging modality. The success and continuing interest in brain MRE

has seen, and will see, further developments to push boundaries of achievable image resolution and the

integration of more physiologically accurate mechanical models, with an acquisition and analysis time

that will be clinically viable. These new methods, however, will need to follow a similar validation

process to the work presented here, for which this thesis provides an appropriate framework. The

possible applications of brain MRE to study health, normal ageing, disease, and cognition are wide-

ranging and far-reaching and will provide future researchers with endless fields of enquiry. In view

of the findings presented here, brain MRE can be expected to contribute to both basic research and

diagnostic neuroimaging in the future.
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Search Strategy

Medline
1. Brain (explode)
2. Brain disorder
3. Brain diseases (explode)
4. Cerebral
5. Cereb*
6. 1 or 2 or 3 or 4 or 5
7. Magnetic Resonance Elastography
8. *Elasticity Imaging Techniques /mt
9. (Viscosity/ OR elasticity/) AND (imaging OR MRI).
10. 7 or 8 or 9
11. 6 and 10
11. 11 not (animals/ not humans/)
Total = 399

Embase
1. Brain (explode)
2. Brain disorder
3. Brain diseases (explode)
4. Cerebral
5. Cereb*
6. 1 or 2 or 3 or 4 or 5
7. Magnetic Resonance Elastography
8. Elasticity Imaging Techniques
9. (Viscosity/ OR elasticity/) AND (imaging OR MRI).
10. 7 or 8 or 9
11. 6 and 10
11. 11 not (animals/ not humans/)
Total = 390

Web of science
Brain OR cereb*
Magnetic Resonance Elastography OR Elasticity Imaging Technique
Total= 312
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