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ABSTRACT 

We discuss the implementation of an SU(3) gauge theory as 

a model of the hadronic interaction and illustrate the role 

played by non-perturbative fluctuations in the physical 

regime of strong coupling. The lattice formulation, an 

explicitly non-perturbative regularisation, is then 

introduced and numerical evidence for the veracity of SU(3) 
C 

is described in some detail. The quark model of Gell-Mann, 

N&eman and others is reconsidered in the light of the 

additional "colour" degree of freedom from the interacting 

field theory and multi-quark (e.g., q 2q 2) quark-gluon (qqg, 

"hybrid") bound states are anticipated. In the hitherto 

absence from experiment of 4-quark and qqg mesons, recent 

progress in calculating the masses of these states in the 

QCD spectrum by (semi-) analytic methods is reviewed. 

Numerical results from lattice QCD for the masses of 

4-quark and hybrid mesons are presented. Both the exotic 

and non-exotic scalar and vector channels are examined. 

The appearance of two pions in the channel on the 

8 3x16 lattice implies, as a corollary, the incorporation of 

non-zero lattice 3-momentum in all effective particle 

masses. It is then argued that the lattice IR cut-off will 

prove crucial in determining the possibility of the 

production of true 4-quark resonances opposed to pairs of 

qj mesons. In the hybrid sector, gluon fields are defined 

in terms of products of the gauge link variables. The 

importance of the statistical averaging over (sizable) 

numbers of gauge configurations is emphasised. 

Approximate masses for the 0
-I.  , 0+-  and 1 -+  hybrids are 

given. For both 4-quark and qqg states, comparisons with 

the (semi-) analytic results are made. 



Protarchus: What question? 

Socrates: Whether all this which they call the universe is 

left to the guidance of unreason and chance medley, or, on 

the contrary, as our fathers have declared, ordered and 

governed by a marvellous intelligence and wisdom. 

Protarchus: Wide assunder are the two assertions, 

illustrious Socrates, for that which you were just now 

saying to me appears to be blasphemy, but the other 

assertion, that mind orders all things, is worthy of the 

aspect of the world, and of the sun, and of the moon, and 

of the stars and of the whole circle of the heavens; and 

never will I say or think otherwise. 

Plato, "Philebus" 

Philosophy [nature] is written in that great book which 

ever lies before our eyes- I mean the universe- but we 

cannot understand it if we do not first learn the language 

and grasp the symbols in which it is written. The book is 

written in the mathematical language, and the symbols are 

triangles, circles and other geometrical figures, without 

whose help it is impossible to comprehend a single word of 

it; without which one wanders in vain through a dark 

labyrinth. 

I 

Galileo Galilei, "The Assayer", 1610 
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CHAPTER 1 

Gauge Symmetry and Quantum Field Theory 

1.1 Introduction 

One can trace throughout the history of Man the 

importance of the concept of symmetry in shaping 

intellectual thought. Indeed the investigation by, for 

instance, the ancient Greeks, of the symmetries of simple 

objects was of considerable relevance to the development 

of Geometry, as we understand it today [Bronowski 1972]. 

The level of abstraction reached in physical theories today 

continues to reflect this preoccupation. We see the 

interplay between simple, almost naive, "pictorial" 

representations of phenomena and a complex and powerful 

calculational machinery derived from these centuries of 

effort. This accumulation of investigation and theorising 

has provided us with the ability to describe and predict 

multifarious aspects of the physical world, to such a 

degree, in fact, that many now feel that the basic 

principles underpinning the physical universe, or at least 

our " interaction "  with it, are now becoming clearer. 

In this opening chapter we wish to explore these 

principles with a view to illustrating that the 

mathematical descriptions of the four forces of nature 

share common roots. We refer to this by the title of the 

"gauge principle": the implementation of a local symmetry 

invariance in Quantum Field Theory (first demonstrated in 

the context of the SU(2) group by Yang and Mills [1954]. 

Moreover, one often finds that global symmetry invariance 

provides additional constraints on any field theory. The 

relevence of this to our major concern, the hadronic 

interaction, is demonstrated through introducing the "naive" 

quark model. 



Having then discussed the explicit construction of a gauge 

invariant field theory, by example of Quantum 

Electrodynamics (QED) and Quantum Chromodynamics (QCD), we 

examine the range of applicability of the traditional 

method of calculation: a perturbation expansion (in powers 

of the coupling) around the non-interacting state. For the 

hadronic interaction (i.e., QCD) we find that many aspects 

of the theory are not exposed by this perturbation theory. 

We close the chapter by discussing the role of these 

non-perturbative phenomena; leading us naturally to the 

introduction, in chapter 2, of a non-perturbative scheme, 

the lattice regularised field theory. 

1.2 The Quark Model of the Hadronic Spectrum: an overview 

During the 1950's and 1960s, the number of sub-nuclear 

particles blossomed, somewhat to the consternation of 

Physicists believing that the universe should consist of a 

small number of "fundamental" particles. This view had 

been (and of course still is) widespread since the time of 

Mendeleev and the Periodic Table of the Elements. More 

importantly though, the results of scattering experiments 

revealed the probability of nucleon substructure with 

observations similar to those witnessed by Rutherford on 

particle scattering from atomic nuclei. 

Gell-Mann [1964a,b] and Zweig [1964a,b] (for more general 

reviews on the Quark Model see also, for example, Close 

[1980], Kokkedee [1969]) introduced a symmetry scheme 

based on three "flavours" or types of "quarks" to explain 

some aspects of these dilemmas (today we believe that 

there are at least six flavours). Mesons were identified 

as quark-anti-quark configurations (qq, the bar 

representing the conjugate representation of the symmetry 
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group) and baryons as three quark states (qqq). From the 

requirement that the quarks were complex variables, it 

was natural that the symmetry scheme be that of SU(3). 

The group theory of SU(3) tells us that if this scheme is 

correct then the following representations should be found 

[Hammermesh 1963] 

tci® 
j®(3 	tO 

In chapters 3, 4 and 5, we will consider hadronic states 

which are composed of both multi-quark and mixed 

quark-gluon constituents, possibilities not understood 

within this phenomenological quark model, but arising 

specifically from the full interacting theory. 

In table 1 we identify the low mass mesons and baryons 

by their flavour assignments. Table 2 shows the 

construction of wave-functions for these operators and 

lists their permutation properties. However, this on its 

own cannot be the complete story. If one expected, for 

example, that the quarks were scalar particles then a more 

natural heirarchy of masses would be that (in terms of the 

orbital angular momentum) m(S)m(P)m(D). This is not what 

is found. The meson spectrum reveals that often the 

vector states are less massive that scalars and that 

pseudoscalars lie lowest of all [Close 1980]. The solution 

treats the quarks as spin 1/2 fermions and increases the 

overall group structure to include intrinsic and orbital 

angular momentum. Thus we write StJ (6 ) FsxO( 3 ) for the 

combination of flavour and spin groups and 0(3) for the 

orbital angular momentum (in some potential, e.g. harmonic 

oscillator). This extra group structure demonstrates 

explicitly the complicated spectroscopy of spin-spin and 

spin-orbit splittings of hadronic masses. For instance, a 

3 
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Table 1.1 Identification of low-mass (q) mesons in terms 

of the StJ(3) quark triplet (u,d,$). From Close [1980]. 
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Table 	1.2 Meson wave-functions with the explicit 

identification of the transformation properties under the 

StJ(3) xStJ(2) 	subgroup of SU(6). Here, the subscripts "5" 
spin 

and "a" label incerck"%e 	 under the 

respective SU(3) ç  (StJ(2),) groups. fp Cx)  is an SU(3) (SU(2)) 

wave-function. The non-zero charge states may be labelled 

by a G-parity: G=Cir 2, with C= charge-conjugation. 	In 

particular, G=C(- 1) 	where 1= total isospin. 	See Close 

[1980]. 



baryon composed of quarks with L=1 and S=1/2 or 3/2 

yields 	
(7. 1 

 

- 	 -' 
	

0 -  Z 

1) 	 F, 	, 	t ) 
and we note that all of these have been observed [Close 

1980]. Of course, for mesons and baryons, the L=0 states 

lie lowest in mass (see table 1 again). 

Actually describing in detail all the aspects of the 

Quark Model would lead us somewhat beyond the direction 

of this chapter, but we may at least name the successes 

of the scheme before turning to its more obvious failings. 

Besides the qualitative explanation of the hadronic 

spectroscopy, the Quark Model is notable for its 

understanding and predictions on, e.g., electromagnetic 

interactions; quark excitations and radiative transitions; 

and calculations of magnetic moments [Bechi and Morpurgo 

1965a,b, Morpurgo 1965, Copley et al 1969a,b, and also 

Okubo 1962, 1963]. Mostly one calculates in a 

non-relativistic approximation by "sandwiching' appropriate 

operators between hadronic wave-functions. 

There are a number of theoretical and experimental 

results which were conclusive in finding the Quark Model, 

though a useful guide, to be inadequate. We can summarise 

(some) of the evidence as follows. 

(a)According to the Pauli Exclusion Principle, three quarks 

in S-wave, e.g., the (L=0,S=3/2), cannot occur. That is, 

the wave-function must be overall anti-symmetric but such 

a configuration is manifestly symmetric. Only if there is 

an additional degree of freedom in the wave-function can 

this result be avoided. The interaction theory which 

provides this additional degree of freedom will, as we 
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shall see, be that of SU(3),  the 'colour" theory. 

(b)The Adler -Bell -Jackiw theorem [Adler 1969, Bell and 

Jackiw 1969] tells us that the calculation of the process 

tr0 - 2-i' proceeds by coupling two vector ( -y) and one axial 

vector (Tr 0) current to a quark loop. By summing over all 

the quarks appearing in the loop, the i-th quark coupling 

with strength e 2  to the two vector fields and f 2  to the 

axial vector, then the resulting amplitude is proportional 

to [Close 1980] 

V 	V- 	' ( 	- 	
) 

where the factor of n=3 meets the experimental 

requirements. This triangle graph appears in discussions on 

chiral symmetry breaking in the theory of the strong 

interactions. The anomaly, as it is called, arises from the 

inability to preserve a 'i'5  symmetry in regularised and 

renormalised QFT (see later) unless there are sufficient 

quarks (and leptons) with appropriate charges, in the 

triangle, to sum to zero. 

(C) ee annihilation shows that [Close 1980] 

- 

-> 	 A1 

and again experiment requires that n =3. 
C 

(d) Other evidence involves e.g., semi-leptonic decays of 

charmed mesons [Brandelik et al 1977], or the Drell-Yan 

process (pp-'> fp) [Drell and Yan 1971, Drell et al 1970], 

which together with the result of deep inelastic 

scattering (scaling of the cross section in the regime of 

high energy and momentum transfer, i.e., p2-'  00) [Bjorken 

1967 1  1969] all imply the inclusion of another degree of 



freedom for the quark, q, a=1,2,3, the source of the 

'colour interaction". 

We will investigate below the construction of the 

interaction theory based on a quark flavour-independant 

gauge theory whose aim is to generalize this Quark Model 

to a fully relativistic QFT. Let us first consider, as a 

simpler model based on the group U(1) ( " phase "  symmetry), 

the case of QED. 

1.3 Abelian and Non-Abelian Gauge Theories: Construction 

In this section our starting point will be the equations 

of motion for a complex (i.e., two real components) scalar 

field (p. These are [Ramond 1981, Itzykson and Zuber 1980, 

Cheng and Li 1984] 

(1tJ_ 	 0 

Using the Lagrangian formalism of dynamics this is 

derivable from a Lagrange density 

- ((t) 

Suppose now that we are interested in building a theory 

to describe (electromagnetically) charged scalars. Firstly, 

it is reasonable to include a kinetic term for the photon 

(otherwise it is not a dynamical quantity) and this is 

F 

Regarding the total Lagrangian as composed of (1.6) and 

(1.7) it is evident that it will only be invariant under the 

following local transformations 
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if, and only if, we redefine the derivative 

CD 

	

- 	3 

with g the gauge coupling constant. From the behaviour 

under the U(1) transformation of the scalar p,  we see the 

origin of the 'phase symmetry. The generalised derivative 

operatorJD(x) is called the covariant derivative (c.f. that in 

General Relativity). Thus the introduction of local 

symmetry transformations for the scalar field imply the 

appearance of "compensating" gauge fields A. 

The extension of this U(1) model to a more general 

non-abelian problem is complicated by the algebra of the 

group generators. For a general non-abelian symmetry 

group the generators obey commutation relations [Cheng 

and Li 1984] 

	

t 	 t 	 (ttO 

with f 
ab 

C the (anti-symmetric) structure constants of that 

group. One associates with each of the generators a gauge 

field. So that, under local group transformations, 

parameterised by w- 

r 	.(j 

	

LJ') 	.xp 
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such that for matter (e.g., fermion) fields 

= 	( 

ob/.I 	•2L 

In particular, we note that 

L..J)() 

with a in the adjoint representation of the group (like 

the gauge fields themselves). 

The 	analogue 	of 	the 	Electromagnetic 	field strength 

tensor 	(the connection 2-form [Cheng 	and Li 	1984]) is 	the 

curvature 

L —'~ ,. 

S b 	c. 

This obeys the Bianchi identities [Ramorid 	1981] 

c5ti 0 ; 	F, 

with F 	the dual tensor. 
P  

The Yang-Mills [1954] equations of motion in the 

presence of a covariant source J are [Ramond 1 981] 

and the action functional reads [Ramond 1981, Cheng and Li 

1984, Itzykson and Zuber 1980] 

s'1 p1 	 - 

8 



Quantum Chromodynamics (QCD) has this structure, with 

the specified gauge group SU(3).  The quark fields carry 

the fundamental representation and the gauge fields, the 

gluons, are in the adjoint representation (as we have 

already seen). For completeness, the quarks therefore are 

written as 

LI 	(A. 	 . -. 7 	 L )  3 	(i. 12) 
) 

and the commutator in SU(3) is 

One can "unpack" the condensed information in (1.17) to 

find three and four "leg" self-interactions. Note that it is 

the non-zero "colour charge" of the gluons that makes 

Yang-Mills (YM) theory a more complex problem than QED, 

where only one fermion-photon vertex occurs. 

For the given set of f quarks, mass rn fl  colour label a, 

the Lagrangian reads 

-.-. .4 
taco 	 t o 7.,t 	- 	1 	- 	F'" (i.to) 

The presentation here is completely general; any other 

non-abelian theory has precisely the same form. For 

example, by introducing additional scalar fields (see later 

on the role of scalar, Higgs, fields in discussions of gauge 

symmetry breaking) carrying some representation of the 

group we can easily write down the Lagrangian for the 

prototype unified theory, viz, the Electroweak theory 

devised through the combined efforts of Glashow [1961], 

Salam [1968], and Weinberg [1967] (for an introductory 

review on this topic see, for example, Aitchison and Hey, 

[1983], Aitchison [ 1983]). In contrast to QCD, the 



Electroweak theory incorporates the spontaneous breakdown 

of an SU(2)xU(1) gauge group to the electromagnetic 

subgroup. The vacuum state does not share the symmetry 

of the Electroweak Lagrangian; the Higgs fields (introduced 

by Higgs [1964a,b, 1966], see also Englert and Brout [1964]) 

adopting a non-vanishing expectation value in the vacuum 

state. 

1.4 The Perturbative Approach to a Quantum Field Theory 

Our aim in this section is to outline the path-integral 

method of QFT and to emphasise the similarity (see also 

chapter 2) with the methods of statistical mechanics. 

What is relevant here is the connection between the green 

functions of the QFT and the correlation functions of the 

SM system. We will not consider the application of the 

resulting perturbation expansion in any depth, but only to 

such an extent that it illustrates those features that are 

vital in determining its validity as an approximation to 

the original path integral. 

From elementary quantum mechanics, in terms of 

iridependant position and momentum operators Q, P 

respectively, the Heisenberg and Schrodinger "pictures' of 

quantum mechanics are related by [Amit 1984, Cheng and Li 

1984, Ramond 1981, also see Dirac 1933, Feynman 1948, 

Schwinger 1951] 

' 	11.,t) 	tt&) 
(i j) 

Q () 	I 	-' 

The Hamiltonian, H, 	is 	the operator 	for translations 	in 

time. Thus 	the Schwinger function, 	which determines 	the 

time development of a state can be written [Amit 	1984] 

10 



F(t'; q)t)  

To evaluate this expression, we divide the finite time 

interval into infinitesimal elements, , where nc=t-t, such 

that [Cheng and Li 1984, Ramond 1981] 

F 	cLL 
I 	

1 
thl 

Then it can be shown by expanding (1.22) [Aniit 1984] 

F f i \ 	(p 	(p, 	d..t 	 (I2. 

; 	00 p:  

	

SI 	/ 
where the sum is over all p,q such that q(t)=q, q(t)=q. 

For H quadratic in the momenta, we find, using the 

Fresnel integral that [Amit 1984] 

F 	 (ncLt - '-ZP 

-p I 	't 

where V is some specified potential function and .Jf a 

constant. The fundamental quantities of interest, the 

green functions, are defined by [Amit 1984, Ramond 1981] 

t(ttt,'> 

ç
cp 	 - 	d.. 

	

i.e., as time ordered products of fields. 	They can be 

generated from the path integral by the inclusion of a 

source term in the Lagrangian. One replaces the boundary 

conditions l)=q, q(t)=q, by J(t)=O for t>T or t<-T. 

In terms of the Schwinger function, the generating 

functional is defined [Amit 1984] 

km 



	

<. 0 + 	
-

15 

for Schrodinger basis states. This follows from 

.1 	 £.-. 	
, I 't, t> 	 (I22) 

t —')dO 

and the application of the appropriate boundary condition. 

One notes that in these asymptotic limits, the assumption 

is that the system tends to free particle states, i.e., 

plane wave solutions with some well defined ground state 

energy E 0 . 

The field theoretic expression for the generating 

functional, in terms of the field p(x,t) is 

	

7t JT ~ =  -L ~ Doc- ' t) 	~ t' L ~ (4) + 'T0 ( X . t)] 0Lq () 

with N a normalisation constant in the absence of the 

source. The green functions are then the moments of 

fields defined by 

TCt,)....a r(t % ) 

Perturbation theory involves recasting the Lagrangian as 

[Amit 1984] 

(I . I) 

where 	is typically quadratic in the fields (i.e., a 

Gaussian integral). 	So, for a given theory, e.g., a 

self-interaction, one can write 

.1 i'JT
( 
 - -; 	_ 	\_ 
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where 

) 

- 

The last term being inserted to provide convergence 

(damping possible oscillations in Minkowski space) for large 

times. In terms of the Feynman propagator AF(xy) (the 

matrix inverse of the Klein-Gordon operator) 

U\ 
o 

) 

In extending these ideas to gauge theories, one 

encounters a critical problem. To quantise a gauge theory 

one introduces a complete set of initial value variables 

which obey the commutation relations (and for all time) 

[Lee 1975]. Because one can always make a gauge 

transformation vanishing at time zero, it is not possible 

to find that complete set unless we remove the gauge 

invariance by a constraint. We can illustrate how this is 

accomplished, in a heuristic fashion, as follows. The 

"gauge-fixing" finds a place in the path integral by the 

addition of a term (see later) [Cheng and Li 1984, Ramond 

1981] 

P 

with C some gauge non-invariant function of A. It then 

becomes necessary to redefine the measure into gauge 

non-equivalent A, such that the integration over gauge 

equivalent classes is factored out as a (harmless) 

multiplicative constant. Thus we seek 

,,, (x) -- Lf  t 

13 



To be correct as it stands, this expression must be made 

independant of the choice of C(x), i.e., under gauge 

transformations. Under the change of variables, the 

measure contains the usual determinant factor, which, for 

the purpose of maintaining a local action, is recast as an 

integral ovkr termionic scalar fields [Faddeev and Popov 

1967, Faddev and Slavnov 1980]. This Faddeev-Popov 'ghost" 

factor [Faddeev and Popov 1967, Faddeev and Slavnov 1980], 

is interpreted, in a perturbation expansion, as an 

additional interaction for matter fields (one adds source 

terms for these "ghosts", but none appear as external 

particles). 

The limitations of the perturbation theory are suggested 

by the fact that it is an expansion in powers of the 

coupling constant g. For QED at low energies, this is no 

problem as ci=e2 /4n1 / 137. For the strong interactions, 

where g2  1 at the hadronic scale, no finite set of terms 

in the expansion is likely to be useful. Only by exploiting 

the complete theory as represented by Z{J} can meaningful 

results be expected. As an asymptotic series, one really 

requires that the perturbation expansion be re-summable 

(by e.g., Borel summation techniques) and possess a small 

coupling constant. In QCD neither criterion is satisfied (we 

discuss this further in section 1.5). 

There is however one aspect of the complete theory 

that is revealed, at least in part, by the perturbation 

series, that known as the renormalisation group (RG) 

equations. The RG equations represent a set of 

transformations between different renormalisations of the 

bare theory [Amit 1984]. A brief word of explanation of 

these terms is relevant here. 

14 



In actually evaluating Feynman diagrams, large momentum, 

UV divergences are endemic in the integrations. To define 

the finite, physical, parts of the parameters one must 

first regularise the integrals by, e.g., an explicit integral 

cut-off, A, or perhaps continuing analytically in the number 

of dimensions until convergence is assured [t}looft and 

Veltman 1972] One then sets some renormalisation 

conditions [Amit 1984, Cheng and Li 1984] such as requiring 

that the two point vertex function (the matrix inverse of 

the two point connected green function, see below) equals 

the renormalised mass at zero momentum 
2. r' (p) 	p1' 	v.t 	-t- 	0 

Typically there are a number of conditions that must be 

set simultaneously for all the parameters appearing in the 

Lagrangian. Then one subtracts off the divergent pieces, 

order by order in the expansion, so that the divergences 

remain only to the next order in the expansion. To show 

that this is possible to all orders is a complicated problem 

and one should refer, for example, to tHooft and Veltman 

[1972] (also see tHooft [1971a, b],  Itzykson and Zuber 

[1980], Lee and Zinn-Justin [1972, 1973]) for more on this. 

The requirements for any theory to be renormalisable 

are succinctly summarised by: (i) there exists a finite 

number of primitively divergent pieces, i.e., divergent 

graphs which do not contain divergent sub-graphs; (ii) a 

finite number of counter-terms are found, of the same 

form as bare terms appearing in the Lagrangian. A further 

necessary condition is that only dimensionless (or positive 

mass dimension) coupling constants are allowed. 

Assuming that this process can be carried out, one will 

then have a definite relationship between the bare and 
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renormalised parameters. We can express this for the 

vertex functions (that sufficient subset of all green 

functions from which one can reconstruct all possible 

Feynman graphs) as [Amit 1984] 

(It 

(P 	 (p1  I R. 	
c 	(AA) 

here, A is the momentum scale 	at which the 

renormalisation takes place and A is the cut-off in the 

integration (A -) 00). The RG equations convey the fact that 

the bare theory is independant of [Amit 1984] A, i.e., 

(,\2 	 P(p; 	,1c,v ,\') 0 	 (i•3') 
\ 	A) 	 / 

This 00  function
I 
 tells us how the coupling g(A) varies with 

the momentum scale, i.e., differing renormalisations of the 

bare theory. In particular, one can develop flow diagrams 

in the coupling constant space (i.e., if there is more than 

one) to determine the domains of attraction. A fixed point 

	

* 	 * 
of the theory is a g such that I(g )=O. The fundamental 

result of such an analysis is that only non-abelian gauge 

theories are asymptotically free, i.e., g 
*
=0 is the stable 

fixed point in the limit that A-) oc [Gross and Wilcek 

1973a,b, Politzer 1973, Zee 1973, Coleman and Gross 1973]. 

One sees that in this region, perturbation theory is valid. 

One hopes to obtain information on the full theory, to a 

certain extent, by following the flows of the coupling 

constant. Of course, a RG equation constructed from the 

perturbation series only has validity to the order in the 

expansion that one works to, but we should bear in mind 

that, at least, it serves as an approximation to the full 

RG equation [Amit 1984]. To give some substance to these 

points, let us investigate the RG equation for SU(N) gauge 

theory. To the order of two loops in the expansion, the P 
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function is calculated to be (including n  quark fields in 

the fundamental representation) [Gross 1975] 

4 	'-•.) 	1 

A universal property of the theory is displayed by the 

fact that higher order terms in this expression are 

renormalisation- scheme dependant [Gross 1975]. By 

integrating (1.40), one deduces the feature of asymptotic 

freedom, where perturbation theory is valid, and the 

growing coupling in the infra-red regime, where it is not. 

It is, however, precisely in the IR region of the theory 

that the properties of the hadronic spectrum are revealed, 

particularly the necessary confinement of colour charges 

and the resulting colour singlet bound state spectrum. Of 

further relevance, both within any Quark Model 

classification scheme and the full interacting theory, are 

the dynamical implications of global chiral symmetry 

breaking. This is the symmetry SIJ (2) VxSU( 2 ) A  of vector and 

axial vector quark currents appearing in the quark 

Lagrangian with the pion as the (approximate) Goldstone 

boson (see below and also chapter 2). 

The 	physical 	applicability 	of 	any 	NAGT 	within 

perturbation theory will be in doubt in the IR regime due 

to soft (i.e., low energy, low momentum exchange) gluon 

production. Gluons are coloured and so can, in principle, 

construct infinite tree diagrams. There will be, inevitably, 

propagator singularities as p 2-  0 [Gross 1975, see also 

Bjorken and Drell 1964, 1965 for the resolution of this in 

QED]. 
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To be able to handle these problems, e.g., by showing that 

non-perturbative effects remove these doubts, is imperative 

in establishing unbroken non-abelian gauge symmetries as 

relevant in the physical world. One can see that the 

growth of the coupling constant in the IR region of the 

theory may provide the escape that we need. Confinement 

itself should be sufficient to avoid these problems. What 

is required is a formalism, with appropriate calculational 

techniques, that lead us beyond weak coupling perturbation 

theory. To emphasise this point, in the next section we 

discuss some physical phenomena that specifically result 

from the different phase structures of physical theories 

and are not at all revealed by the perturbation theory. 

1.5 The Phase Structure of Non-Abelian Gauge Theories 

The definition of what constitutes the vacuum state of 

a QFT, or lowest energy state of a many-bbdy system to 

use the SM analogy, is far from being a trivial point. 

From perturbation theory one might expect it to be the 

state with vanishing field excitation. It is worth 

emphasising, however, that there are instances where the 

possibility of different phases present in physical theories 

are describable within a perturbation theory. A simple 

example would be the ground state of a ferromagnetic 

system. 	This ordered state spontaneously breaks the 

rotational invariance of the Hamiltonian. 	Spontaneous 

symmetry breaking of such global symmetries was first 

investigated by Goldstone [1961] and Goldstone et al [1962] 

where it was demonstrated that the symmetry breaking is 

accompanied by the production of a massless spin zero 

boson. 
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When one considers the implications of spontaneous 

symmetry breaking in local field theories, the most 

relevant example is the Electroweak theory (which we 

touched on earlier). Note that for both global and local 

symmetries, the fact that the ground state of the system 

does not share the symmetry of the Lagrangian has to be 

supplied, as it were, by "hand", in that perturbation theory 

constructed around the "wrong" phase (i.e., the unstable 

symmetric state below the symmetry breaking scale) 

produces incorrect conclusions. 

In pure NAGT, in general, there are more subtle effects 

connected with global aspects of the theory which imply 

that the naive vacuum is not the true vacuum. There is a 

rich structure of field configurations with non-vanishing 

(anti-) self dual solutions, the instantons, as the lowest 

energy (lowest action) states [Ramond 1981]. These 

instantons can be considered as "interpolating" or 

"tunneling" between the lowest action solutions [Belavin et 

al 1975, Coleman 1977, tHooft 1976, Jackiw and Rebbi 

1976a, b].  We say that they are non-perturbative field 

configurations, in fact, they represent the effect of the 

inclusion of topological constraints on the local field 

theory. The key point is that results from a perturbative 

expansion are not reliable and do not capture all the 

"physics" that is there. 

As a simple quantum mechanical analogy, we might 

consider a periodic, e.g., cosine, potential of some operator 

X. Within perturbation theory the expectation value <x>*O. 

Classically the ground state of the "system" must involve x 

in only one of the minima. Since we know that (quantum 

mechanically) the field can tunnel between wells, <x> is 

not so easily detined. In fact <x>=O for the double well 
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potential (if the well is symmetric). 	In general we 

describe tunneling between n minima in the periodic 
Bn potential via Bloch waves e1. For an SU(N) gauge theory, 

where the tunneling between minima of the action is 

associated with instantons, we define a "winding number', 

n, analogously (the basic consideration is one of homotopy; 

see, for example, Cheng and Li [1984]).  It takes the form 

[Belavin et al 1975] 

fl 	
1T 	

Ft" 	 L4() 

One can show that [Cheng and Li 1984] 

c7? , K '  

	

: LA.Tr 	A c.. kri 

where S is the surface at infinity. If .  A is pure gauge, 

i.e., 

= LJ'(tY3i LJ(Z 

then, for a gauge transformation U=etW 

TLU 
 

The Euclidean Yang-Mills action (1.17) is minimised for 

(anti-) self dual F and it can be shown that S(A)=8ir 2n/g 2PV  
[Coleman 1977, Cheng and Li 1984, Ramond 1981], with n the 

winding number. These finite action solutions are the 

instantons. It is important to remember that each 

minimum in the action represents inequivalent sectors of 

the perturbation theory, the perturbation expansion around 

any one will therefore not "see" that around any other 

[Cheng and Li 1984]. Also one finds explicitly that because 

these solutions contribute substantially to the path 

integral, the perturbation expansion cannot contain all the 

important aspects of the YM theory. Turning now to the 
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interpretation as tunneling amplitudes between different 

vacuua, we can understand this in terms of vacuua n,m 

from [Cheng and Li 1984] 

-i+t 	,, 	5 9"C- 

As such it is clear that the 'true" 8 vacuum state (the 

analogue of the statement in the quantum mechanical 

example that <(p>O) will be some linear superposition of 

all these n vaccuua, i.e., 

In general NAGT the 9-term has the significance of 

labelling different Hubert spaces of these field 

configurations, whilst in the specific case of QCD, the 8 

vacuum was necessary to explain the mass of the ri meson 

[Glashow 1967, Kogut and Susskind 1975, Sutherland 1966]. 

Essentially, for a theory of two massless quarks, the 

(global) flavour symmetry possessed by the Lagrangian is 

SU(2)LxSU(2)RxU(l)vxU(l), and is spontaneously broken by the 

inclusion of non-zero quark masses to SU (2) xU (1 ). The 

realisation, in the Goldstone mode, of the chiral SU(2) 

breakdown is the pion isotriplet (see Gell-Mann and Levy 

[1962], Dashen [1969]).  The expectation would be that an 

isosinglet meson, approximately degenerate in mass with 

the pion, representing the U(l)A symmetry breakdown should 

be produced. The only possible meson suitable for 

identification with this Goldstone boson is the q. However, 

it is simply too massive, m4m [Particle Data Group 1982].
IT  

We can illustrate how the 8-vacuum resolves this problem 

as follows. For N  massless quarks, the divergence of the 

axial current is [Schierholz 1984 and references therein] 
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which leads to [Schierholz 1984] 

A( _• 
S 

Cm Cm ) are the flavour singlet (non-singlet) pseudoscalar 
S 	flS 

mesons; f is the decay constant) where 
na 

< 	'> 	
cL't,c  

Since q is a total divergence, 

- 	E 	TI...L4(Fd. - p1 	 p  

then Q=O, 	m=m=O unless 	there are 	topologically 

non-trivial gauge field configurations. This is, of course, 

true for SU(N), i.e., eqn (1.43) and thus one has m>m. 

Finally, the value of X is estimated by current algebra 

relations [Scheirholz 1984] 

'2 

- -z 	( LfO "CV ) , 
 

In general, instantons have been central in understanding 

quark and gluon condensates [Shifman et al 1979, Shuryak 

1982a, b].  One might have hoped that QCD perturbation 

theory had some relevance at scales well short of the 

confinement length (150) -1  MeV, but investigations have 

shown that the typical instanton "size' is more of the 

order of (600Y 1  MeV, and is instrumental, for example, in 

understanding how QCD Sum-Rule (chapter 3) calculations of 

hadronic properties are effective [Shitman et al 1979]. 

Notably though, the presence of light quarks tend to 
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suppress the instanton fluctuations of the pure gauge 

system, so the picture is not yet entirely clear [Shuryak 

1982a, b]. 

The appearance of complex phenomena in the QCD vacuum 

whether at large or small g 2  means that we really do 

require a true non-perturbative calculus. In chapter 2 we 

take up this point and present a lattice discretisation of 

the QCD vacuum, developing a Monte-Carlo calculation 

designed to simulate quark and gluon dynamics. With this 

formalism one can demonstrate that the non-perturbative 

properties of QCD are in the direction we expect and are 

thus vitally important in any discussions on the QCD mass 

spectrum that we present in chapters 4 and 5. 
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CHAPTER 2 

The Lattice Formulation of OCD 

2.1 Introduction 

In chapter 1, we developed the formalism of SU(3) 
C 

gauge 

theory in order to calculate processes in the theory of 

quark interactions, QCD. Investigating some aspects of the 

structure of QCD, amongst those of other non-abelian gauge 

theories, NAGT, we were led to question the applicability 

of "traditional", i.e., perturbative methods to what is 

essentially a strong coupling problem. In addition, one 

would like to understand such properties of the hadronic 

world as dynamical mass generation, confinement, chiràl 

symmetry breaking in the quark Lagrangian, and the role 

and extent of topology in influencing these. 

What we require is a method which supercedes as many 

of the problems associated with perturbation theory, as is 

possible, and, in view of the expected importance of 

non-perturbative phenomena in QCD [ Shuryak 1982; Callen, 

Dashen and Gross 1979; Shifman, Vainshtein and Zahkarov 

1979a,b; Berg and Luscher 1981; Luscher 1982], "samples" 

effectively all the important field configurations. As such 

a method, the lattice formulation of gauge theories, which 

we will consider now in some depth, provides an 

increasingly important method of analysis. 

We will introduce the hypercubic regularisation of a 

(general) gauge theory, with the identification of the 

continuum limit (lattice spacing, a-) 0) of the pure gauge 

system. Some of those main features of QCD, the mass gap, 

string tension, confinement and de-confinement transition 

will be discussed with a view to confirming, or otherwise, 

their place in SU(3) gauge theory as revealed by the 

lattice calculation. The analogy with the statistical 

24 



mechanical system will be emphasised when we describe the 

main method of investigation, that of a Monte-Carlo 

simulation in a computer memory. Once having reviewed 

the status of the pure gauge models, we will be in a 

better position to introduce lattice formulations of the 

Dirac action, and to describe some of the problems that 

one is unable to avoid in any such transcription. 

For the most part in this chapter, our emphasis will be 

on establishing the practicality and efficacy of the lattice 

Monte-Carlo method and the provision of computational 

tools that will be required for the investigation of 

"exotic" mesons in QCD (in chapters 4 and 5). 

2.2 Definition of a Lattice Regularised Gauge Theory 

As we recall from chapter 1, any quantum field theory 

requires a regularisation procedure (before renormalisation) 

in order that one may eventually extract the physically 

relevant components of the theory. The lattice 

formulation is no more than such a regularisation [Wilson 

1974; Kogut 1979, 1983; Kadanoff 1977 ]. It has become 

increasingly common to employ a hypercubic lattice, 

although some investigation of the properties of gauge 

theories on other, e.g., random and simplicial lattices has 

been attempted [Christ, Friedberg and Lee 1982]. The 

advantage of the hypercube is in its conceptual simplicity; 

one may readily investigate (as we shall have occasion to 

do in chapter 5) its symmetry properties [Mandula, Zweig 

and Govaerts 1983; Baake, Gemundes and Oedingen 1982, 

1983; Verstegen 1984], and the mounting of models in 

computer code, is probably more straightforward. One 

should be aware that in principle any lattice formulation, 

just as with different versions of the continuum gauge 

action, should lead to the same universal properties of QCD. 
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We have some expectation then that there is no lack of 

generality in specialising to the hypercube. 

The gauge field connection resides on the links of our 

hypercubic lattice, emanating from the site n, in the 

direction p (Figure 1). We require 

c.p 1 - 	 (.) t t 46 1 	
, 

L)7d(f.,u) 

(2') 

as our definition of the gauge link variable U (n), r are 
a 

the SU(3) group generators and Aa(fl) the gauge fields. The 

last statement of (2.1) follows on the grounds of 

consistency (Figure 1). At each of the lattice points we 

associate "matter" field variables such as scalars and 

fermions, with a colour frame of reference, i.e., co-ordinate 

axes in an internal symmetry space (Figure 1) [Kogut 1983]. 

Local gauge invariance, which is maintained unviolated on 

the lattice (in distinction to full Lorentz invariance, which 

is only a property of the continuum limit of the theory) 

asserts that the relative orientation of these colour 

frames of reference is irrelevant. The arbitrary gauge 

transformation matrices that impose this are given by 

txP .± 	 (2.2) L — . t  

in terms of the parameter ("angle") x(n). Thus relevant 

gauge actions will be gauge invariant if and only if under 

Ut ( 

they remain unchanged. 

Let us pause for a moment to see how the lattice 

represents an acceptable regularisation of a QFT. Firstly, 

the non-zero lattice spacing is the analogue of an 
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Figure 2.1 The definition of the gauge link variable U(n). 

The "co-ordinate axes" demonstrate, in a schematic fashion, 

the role of U(n) in "rotating" the colour frame of 

reference between lattice sites, i.e., imposing the local 

gauge invariance. 

T - °° 

R 	 4 

Figure 2.2 The world line of a (heavy) qq pair, seperated 

adiabatically at T=O to a distance R, held there for a time 

T- oo, and then allowed to annihilate. 



ultra-violet regulator (in any loop momentum integral) in 

the continuum 	theory. One 	must 	specify 	some procedure 

for 	letting a-) 0 that holds fixed any physical quantities, 

(as 	we shall 	show) 	[ Wilson 	1974]. 	In 	such 	a limit, 	we 

expect 	to 	recover 	all the 	symmetries 	of 	the continuum 

theory we are modelling [Lang and Rebbi 1982]. The second 

point is that no gauge fixing term is required in the gauge 

action. 	In 	any 	finite number of 	link variables stored in 

the 	computer 	memory, one 	cannot 	find 	that infinite 

multiplicative 	factor arising 	from 	the redundant 

integration over all gauge orbits, thus there is no explicit 

need to introduce a gauge choice 
[ Wilson 1974]. 

One can develop the strong interplay between the 

lattice gauge theory, LGT, and the statistical mechanics, 

SM, of, for example, a ferromagnetic system. When one 

works in Euclidean space, i.e., performing a "Wick rotation" 

t -i.t in the definition of the functional integral, the 

analogy is much stronger. 

Considered as a SM ensemble, one would map out the 

phases of the system, e.g., the presence of quark confining 

or Coulombic phases. In order to be able to do this we 

have to be able to express some function of the link 

variables that represent the gauge action embodied in the 

lattice. 

For a theory which maintains strict gauge invariance, it 

is clear from (2.3) that this must involve products of links 

around closed paths. The simplest such choice, using the 

smallest squares, or "plaquettes", is due to Wilson [1974], 

and is 

I T 
pi,p %I 

(1_ . Li •) 
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This must of course reduce in the continuum limit to the 

conventional Yang Mills action 

To show this one expands the fields B(n) in a long 

wavelength (slowly varying as a- 0) approximation [Kogut 

1983, Creutz 1980]. Thus 

U ('' 	Llr. ( i  L) Lt) U 	L.c. 
-I-,  

L.. C t 	t 	,1 

By means of the Baker-Hausdorff inequality one can show 

Using the properties under the trace of SU(3) matrices it 

is then found 

G t  ( 1 	cD (i:) 	 (i•fl 
2. 

[Yang and Mills 1954; Itzykson and Zuber 1980]. We shall 

see later how one might improve the agreement with the 

continuum limit of the theory to higher order in a. 

Our first use of this action will be to establish the 

strong and weak coupling phases of the theory, hoping to 

give early indication that the model does reproduce some 

of the expected features of QCD. 

To demonstrate strong coupling we imagine taking two 

colour sources q and q, in principle infinitely massive, and 

seperating them adiabatically to a distance R and 

restraining them there for a time T (T-> so), then we let 

them come together and annihilate [ Fischler 1977; Susskind 

1976; Kogut 1983]. The world lines described by such a 

pair is shown in figure 2. The process is described by the 
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amplitude between initial 

of the Euclidean Hamiltoni 
- 

j. 
(' * 

and final states in the presence 

an H. Thus, [Kogut 1983] 

t &_+ 

C 

One realises that with the identification of Ii> and If> and 

the independance of H from t o  

_v" 
<'> > v(')-4Y < -- P(A;LO)> 

(2 ) 

for path-ordered products P. Note that this expectation 

value is also that of the Wilson loop variable [Wilson 1974; 

Creutz 1980; Pietarinen 1981; Bhanot and Rebbi 1981; Stack 

1983], c.f., the plaquette operator, U , introduced earlier. 

'( 
 

It is possible to evaluate (2.10) when g 2  is large (strong 

coupling). One expands 

_(u\ 	 'I 

and by virtue of the properties of integration over the 

group space [Kogut 1983], the leading order term is given 

by "tiling" the contour C with plaquette variables. 

Moreover, every power of U's is accompanied by a power of 

g 2. Thus, to leading order, 

pJ .  
:: U1(#-)) 	

(b')
.f)RT) 

where N=RT, gives us an "area" law behaviour. Evidentally, 

given that V(R) is as above (2. It , then 
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The area law is indicative of confinement, with a potential 

form that goes roughly linearly with the separation. 

The exact form of V(R) depends on developing methods 

for handling the expansion of the action in inverse powers 

of g2  (g large) and lies outside of the main line of our 

discussion [Kogut 1983, Munster 1981a, b]. 

One notes that in the strong coupling phase of the 

theory the Lorentz-rotational symmetry, i.e., 0(4) is badly 

broken i.e., a is not in any sense, small. We claim that 

this symmetry is restored in the continuum limit, and we 

would like to be able to demonstrate that this "directional 

dependence" of, for example, physical masses, is not a 

surviving feature of the lattice theory. Lang and Rebbi 

[1982] have made some investigations of this problem and 

have shown that in the correct continuum limit of the 

model, one does indeed recover the full rotational 

symmetry. This will turn out to be an aspect of the weak 

coupling sector of the theory, which we now discuss. 

From our knowledge of continuum renormalisation of 

QFTs, we recall that the definitions of the renormalised 

masses and couplings of the theory retain no dependence on 

the UV regulator, and that one is then free to let the 

regulator go to infinity. On the lattice, we make a similar 

claim and demonstrate it as follows. On dimensional 

grounds, a generic mass, m, must be such that 

( 2... iLl 

a- 

where f(g) is some function of the bare coupling g 2. To 

define a renormalised mass means that, as a-* 0, f(g) 0 
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also, to hold m fixed. Therefore, as a- 0, g-> 
g*, 

 where 
f(g*)=o, i.e., a fixed point of the theory (chapter 1). What 

one notes is that such a continuous transition is a 

property of a second order phase transition with diverging 

correlation length E. That is, as a 0, the discrete nature 

of the lattice is lost and the space-time symmetries are 

restored, E.-) c, or equivalently, the mass gap M 6 '.-E 1  of the 

theory vanishes. The fundamental result of QCD is that 

(asymptotic freedom, chapter 1) 9*=0 is the critical point 

[Gross and Wilcek 1973; Politzer 1973] and that in the 

region of g --O, perturbation theory, perhaps renormalisation 

group improved, has some validity. We can use this fact, 

along with the unique requirement for renormalised 

quantities under a change in the length scale (cut-off) to 

determine the function f(g). We have 

CL, A ') r =0 

and thus, using (2.14), find 

- 

 ~ ( *1  V/S () ) 	
(Z. 14 ) 

with 

i%C 	(c4) 
dLa- 

the usual 3 function of chapter 1 [Itzykson and Zuber 1980; 

Ramond 1981] There we noted that the 0 function was 

scheme -independant in its first two terms, i.e., [Gross 

1975] 

( 	(z is)  
; 	,' 	

.L f 	' 3L 	i'j 
,/: 	Ltj 

From (2.1 1) and (2. I 8) there follows 
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t 
• —1411Z,,s0 	I 	 1+ 0 (t))  

with the constant of proportionality, A 
latt

, defining the 

intrinsic scale of the theory such that, for example, 

ç.A 	
/ 

M c.. C A Lt* 

A 
latt 

has been related to other renormalisation schemes 

[Hasenfratz and Hasenfratz 1980; Dashen and Gross 1981] 

and 

= 	 .  
I 	/A 

for SU(3). We will expect corrections to the right hand 

side of (2.I) if a is finite, estimated to be of order 

a2 (1n(a)), P some power [Hasenfratz 1983]. 

Having seen the construction of a LGT and some of its 

more general properties, we now turn to the methods by 

which one can investigate numerically the space of possible 

configurations and the measurement of important 

observables. After discussing MC methods, we will describe 

what features are found in candidate (pure) gauge theories. 

2.3 Monte Carlo Methods in Lattice Gauge Theories 

Fundamentally, we are interested in the expectation 

values of observables 0, defined in QFT (continued to 

Euclidean space) by [ Creutz, Jacobs and Rebbi 1983] 

- 
<0) 	 5 hu 0 e 

Our aim is to "samples' this functional integral for those 

configurations which contribute most to the sum. In a 

finite, but reasonable (say 8) sample of links, trying to 
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evaluate (2.7.2.) directly would be prohibitively expensive in 

computing time. One seeks to generate configurations of 

gauge fields U, such that the probability of encountering 

them in some stochastic sequence is proportional to their 

Boltzmann weight e [Kogut 1983; Binder 1979]. Then we 

estimate the expectation value by averaging the observable 

over these N configurations, i.e., 

(0) ' 0 (.u.) 	 (2 
IQ I 

Evidently, one must specify some prescription which decides 

the transformation from one configuration to another. Let 

us write the probability of encountering a configuration U 

as PN(U)  (i.e., after N steps of the sequence). Then, if W(U-) 

U ' ) is the transition probability for going from U to U, we 

see that [Kogut 1983; Binder 1979] 

J(U—'i)P(v') ( 
LI 

= P 	p p.., (u')V./J'—>u)- P'v)J(i_.J)\ 

U ,  

If the system has reached equilibrium 

	

i: 	(.L) ''J(u —L1 ) 	1D..J  (v')'1('-"L) 

LI' 

i.e., PN1(U)=PN(U).  One must have some measure by which it 

is meaningful to say that the system converges to 

	

equilibrium 	and 	that 	therefore, 	as 	required, 

PN ( 5tationary). On this first point, we see that if 

P. 	 J..1 

Pr., (v) 	w('J.  

then P (U )<P (U ) and P (U ))P (U ) and the system will 
N+1 a 	N a 	 Ni1 b 	N b 

tend to equilibrium [Kogut 1983]. 

There are two methods commonly employed to execute 
-s the second requirement, that of P(stationary)ae , the 
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Metropolis [Metropolis et al 1953] and the Heat Bath 

[Cabibbo and Marinari 1982; Creutz 1980 ] algorithms. 

Generally one will "step" (in some well defined way) 

through the lattice, vary one link at a time, and consider 

the change in the action resulting from this. On the basis 

of a choice in the way the link is chosen and then altered 

and what criteria the algorithm requires to be satisfied, 

the new link variable will either be accepted or rejected. 

In the Metropolis method [Metropolis et al 1953], one 

computes the change in the action for a new link variable 

selected in such a way that the group space can be 

reasonably well covered over the lattice sweep [Wilson 

1979] (often one approximates continuous groups by their 

finite element sub-groups [Bhanot, Lang and Rebbi 1982]; 

this may be important if the group space is "large"). The 

new configuration is accepted if S<0, but is also accepted 

with conditional probability exp(-S) if AS>O. This 

introduces quantum (thermal) fluctuations into the system 

on the basis of selecting a random number x, 0<x<1 and 

accepting the new configuration if exp(-S)>x. 

The Heat Bath [Cabibbo and Marinari 1982] algorithm 

involves choosing the new link variable, U '  with a 

probability 

P(u') .'.. & 
	

(V2.1 

with all the other U's kept fixed. The difference between 

this and Metropolis amounts to repeating the latter an 

infinite number of times on each link [Kogut 1983]. Often 

one uses a "modified" Metropolis algorithm by repeating the 

procedure n times (most workers report some "optimal" 

value of n) on each link, in a sense interpolating between 

the two algorithms as we have described them. 
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Armed 	with 	a 	procedure 	to 	generate 	gauge 

configurations, (the work presented in chapters 4 and 5 

will use the modified Metropolis method [Bowler et al 

1983]) one can initiate a simulation with appropriate 

starting conditions. In principle, any starting conditions 

for the simulation would suffice, e.g., ordered U matrices 

("cold" start), U matrices with random elements of the 

group space ("hot" start), or some combination of both 

[Creutz, Jacobs and Rebbi 1979a,b]. Unfortunately, the 

presence of metastable states in the space of 

configurations (see the discussion on phase structures 

below) can lead to inordinate time scales before 

equilibrium can be reached [Creutz et al 1979a,b]. Often 

some compromise is introduced, e.g., the "mixed" start, since 

the two other possibilities typically behave differently in 

the metastable region. 

Inevitably, due to the finite size of the system and the 

choice of appropriate boundary conditions (normally periodic 

to try and avoid directly influencing the "interior" of the 

lattice volume), one will witness systematic discrepencies 

beyond the usual statistical errors. The latter, just by 

way of completeness behave as for N configurations. 

That is as a Poisson distribution for N different estimates, 

becoming Gaussian in the limit. These "finite size effects" 

will be relevant in later chapters. 

2.4 Phase Structures of Abelian and Non-Abelian Gauge Theories 

Abelian groups, e.g., U(1) or Z models, display confinement 

at strong coupling and a Coulombic (spin-wave) phase at 

weak coupling [Creutz et al 1979a; Lautrup and Nauenberg 

1980; Creutz et al 1983; Guth 1980]. The detection of the 

phase transition separating these two regimes is obtained 
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by a simulation in which the coupling is varied over the 

configurations that are generated. One then observes 

hysteresis loops in the dependence of the Wilson loop 

expectation value on the coupling. This is characteristic 

of a system in which the diverging correlation length 

implies the impossibility of maintaining thermal equilibrium 

in any finite number of time steps over which one allows 

the system to propagate fluctuations. Of course, if there 

were a first order transition, then one would anticipate 

the appearance of metastability effects (i.e., two different 

stable states in the region of the transition [Creutz et al 

1979a,b]) in such an investigation. In fact, the results are 

indicative of a continuous second order transition. It has 

also been shown that monopoles, defined in terms of closed 

colour loops [De Grand and Toussaint 1980, 1981; Tomboulis 

1981; Halliday and Schwimmer 1981; Banks, Kogut and 

Susskind 1976], are not suppressed at small 13  (large g 2)  and 

induce confinement of colour charges. Only when these 

loops are small (small g 2  and a-) 0) is their "macroscopic" 

size irrelevant to large scale order and disordering does 

not occur (one says that they "condense" at the phase 

transition). This shows indeed the relevance of topological 

effects in providing confinement [De Grand and Toussaint 

1980, 1981; Kogut 1983; Mandelstam 1976; tHoo.ft 1976]. 

In 	 no phase transitions ' expected 

in 4 dimensions and, indeed, none has yet been found in any 

simulation [Tomboulis 1982]. A particularly good way of 

illustrating this occurs in simulations based on 

finite-element subgroups [Bhanot and Rebbi 1981, Lisboa and 

Michael 1982; Rebbi 1980]. Then one does find a phase 
2 transition for some finite value of g . As the order of the 

subgroup increases, i.e., covering more and more of the 

continuous group space, the phase transition point is 

increasingly moved towards g 2 
=O. In the limit, one finds no 
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transition. 	One can compare this with the Z finite 

sub-groups of U(1). There, two critical regions are found, 

one of which moves off to infinity as n4 as, i.e., the full 

U(1) is used [Creutz et al 1983]. 

These results are typically obtained by using the Wilson 

form of the action [Wilson 1974]. Earlier in this chapter, 

we had occasion to comment on the desirability of 

obtaining universal features of continuum QCD. On the 

lattice, we might well expect that there will be artificial 

features, even spurious phase transitions, introduced by 

using different transcriptions of the Yang Mills action. A 

systematic analysis of the properties of as many actions 

as possible will help to reveal those properties of the 

lattice results that are universal. Much work has been 

directed at establishing the features of other lattice 

actions, such as that due to Manton, [1980] or the "Heat 

Kernel action" [Drouffe 1978; Menotti and Onofri 1981]. 

There are also (see later) more ambitious schemes designed 

to improve the lattice as an approximation to the 

continuum, e.g., the Symanzik "perturbatively improved 

action" approach [Symanzik 19821, and Monte-Carlo 

renormalisation group studies of the space of all possible 

couplings [ Swendsen 1979, 1984]. As an example, we may 

note in passing that the groups SU(2) and SO(3) are locally 

isomorphic but differ in their global properties. Thus one 

might expect topological structures to play a role in the 

phase structures of the two models. 

2.5 Non-perturbative Features of the Gauge system 

We wish to investigate observables in the pure gauge 

models that directly arise from those aspects of QCD that 

are not quantifiable within the perturbation theory. In 

particular, we will look at the string tension, mass-gap, 

37 



and the deconfinement temperature. Having examined these 

in a quantitative fashion, we will extend the discussion to 

include those observables based on fermionic fields. This 

will then naturally lead us to a consideration of LGT 

calculations of the hadronic spectrum itself. 

(A) The String Tension: 

The potential of the heavy qq system was derived by 

measuring the expectation value of the Wilson loop and 

estimating the string tension, o, from the fact that 

V (i) = 	 - k < fI(r,n>  :3- 

We should not be too surprised that there are corrections 

to this expression. Besides an "area laW" dependence of 

the potential, the admission of quark self-energies and 

unphysical effects due to the plaquette corners, 

anticipates a more general parameterisation in terms of a 

"power series" in a. In considering this, Creutz [1980] 

constructed the operator 

and with the form 

V (r ) ,T 	i 	t L Cr 	c 

we readily see that a=x(I,J).  In fact, there are power-law 

corrections even to this [Hasenfratz 1983]. On dimensional 

grounds, a=CAL2 (eqn (2.20)) and so, through the 

renornialisation group equation for SU(3), one finds 

a=f(g) 2 /a 2, a renormalisation group invariant. Monte Carlo 

experimental results were broadly supportive of the scaling 

curve (eqn (2J1))  behaviour for this [Creutz 1980] (though 

the I-> co limit is not strictly possible: usually 1)5 or 6). 
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More recent, high statistics analysis [Barkai, Moriarty and 

Rebbi 1984, Otto and Stack 1984a, b] suggest, however, that 

this may be a premature conclusion for the range of 

currently accessible. The early results however showed 

that as a function of g 2, one deduces a scaling "window", 

where (2.19) is obeyed, for SU(2) it is around =2/g 2  2.3-2.5 

[Bhanot and Rebbi 1981]. At strong coupling the measured 

result is as predicted earlier, whilst large 0 (small  g 2 ) is 

compatible with the perturbation regime [Creutz et al 

19831, where the loop sizes are smaller than the 

confinement scale (of the form oa 2cx(constant)/). From this, 

it has been deduced [Hasenfratz 1983; Bhanot and Rebbi 

1981] that a=O.16 fermi (continuum a 1/2  2:400MeV), 

A 
latt =(5.2i1.0) MeV. If 5-6 lattice spacings constitutes a 

rough assessment of the typical correlation length, then 

0.6-0.8 fermi is consistent with observing the linear part 

in the potential (in scattering experiments) [Hasenfratz 

1983]. 

One can also measure the rotational dependence of the 

heavy quark potential [Lang and Rebbi 19821 as suggested 

earlier and find that =2.3-2.5 is here also the scaling 

region of SU(2). For completeness, the data for SU(3) itself 

finds [Creutz and Moriarty 1982; Hasenfratz 1983; see also 

Barkai, Moriarty and Rebbi 1984a, b] 

Cr 	(i2 t 0- 14 	LO' A2 ; A 	OOtLOA. 

A final point here to note is that the relationship 

between a, A 
latt 

, and A 
mom 

 allows us to "fix the scale" of 

lattice gauge theory calculations, e.g., relate lattice and 

continuum masses. One may also, as we shall have occasion 

to do later, utilise physical particle masses, e.g., the g for 

this. 
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(B) The Mass-Gap 

The mass-gap of the pure gauge theory (the scalar 

glueball; see chapters 3, 5) is a result of the lack of 

long-range forces within a confining theory [Kogut 1983; 

Creutz et al 1983]. Note that in the absence of quarks, 

the lowest-lying excitation must be stable. To determine 

the numerical value of the mass-gap, we consider operators 

with the correct quantum numbers and measure their 

time-dependant correlations. Suppose 0(t) is some suitable 

operator and 

() 	<OO ( 	Oo)IO) - 

the (connected) correlation function. To reveal the mass of 

this state, one inserts a complete set of energy 

eigenstates In>, so that 

(,ct; 	 L < 0 O 	)V 	I 0 c' 0 	
—•P - 

By summing over the spatial hyperplanes, i.e., projecting out 

the zero 3-momentum state, we define [Creutz et al 1983] 

(2. 	) 

1 

with the explicit requirement that 

Evidently the the scaling behaviour of m 
9 

(with a'A 	- 1 
latt 

follows m =CA 
g 	latt 

In actually constructing appropriate operators, one 

employs the hypercubic symmetry group to select 
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combinations of Wilson loop operators in order to maximise 

the propagator signal. This will be discussed further in 

chapter 5, when some understanding of the hypercubic 

group will prove useful. However, it is generally found 

that correlations of operators over more than 3-4 time 

steps from the origin vanish into the statistical noise 

[Ishikawa, Schierholz and Teper 1982; Berg and Billoire 

1982]. Moreover, at these short separations, power law 

corrections to (2.3) are important [Hasenfratz 1983], and 

so the exponential decay of the propagator may not be 

clear. In order to maximise the signal, one can apply a 

9variational method" to the set of eigeristates 

representing, for example, the 	operator [Berg and 

Billoire 1982]. That is, one seeks a OPPLr bound on M (t) 
9 

through minimising the time-dependent log-ratios of the 

correlation function based on 

o 	 o(. \A1' (act) 	
('.• 

( 

the W.(x,t) being different shapes of Wilson loops [Creutz 

et al 1983]. 

Results from this approach give reasonable 	(on 

statistical grounds) estimates even over 1-2 time steps 

[Berg and Billoire 1983; Ishikawa, Sato, Schierholz and Teper 

1983; Michael and Teasdale 1983; de Forcand, Schierholz, 

Schneider and Teper 1985]. For SU(3), 

('t80 I 

is a typical measurement [Berg and Billoire 1983]. Apart 

from the mass-gap itself, by combining operators in 

different representation of the hypercubic subgroup of 0(4), 
PC one can construct glueball operators of different J. 
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(C) The Deconfinement Temperature 

Although a theory of confined quarks and gluons, QCD 

admits the possibility that, at sufficiently high 

temperature, the gluons (in the adjoint representation) can 

screen the colour charge of the quarks (fundamental 

representation) so that a quark-gluon plasma with 

essentially free quarks (asymptotic freedom) arises [Cabibbo 

and Parisi 1975; Shuryak 1980; Gross 1984; Polyakov 1978; 

Susskind 1979]. Recall that the free energy of a SM 

ensemble is given by 

M 112) 

with [Creutz et al 1983] 

• 	CL < . 	, i  

One can write this as a path integral 

'IT 
o& 

- 

In a lattice formulation, we make the identification 

that finite T effects (what we evidently require) are 

achieved by considering an infinite lattice in the 

3-dimensional spatial directions but which is finite in the 

time (now temperature) direction [Gross 1984]. The 

temperature of the system (where Boltzmann's constant is 

set to unity), is given by [Gross 1984; Hasenfratz 1983] 

t=(n 
t 
a)-1 , with n 

t  the number of lattice sites in the 

t-direction. It is clear from our earlier discussions on the 

heavy qq potential that the free energy change in the 

presence of a colour source is given by (2.31) with the 

operator 
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( 'IT 

Tr P L 	40ct, 

inserted in the path integral [Creutz et al 1983]. 

We can now relate the deconfinement transition to a 

global symmetry violation in the QCD Lagrangian [Gross 

1984; Ha.senfratz 1983]. If one multiplies the U matrices, 

on any single hyperplane, which point in the t-direction 

only by an element of the centre of the group SU(3), 

C 
n 

m =exp(2.n/3), then, assuming that there are periodic 

boundary conditions in the t-direction, the action remains 

invariant. This is clearly true since any usual Wilson loops 

contain either zero or two oppositely aligned U matrices in 

the T-direction. However, the thermal Wilson loops, that 

is those operators that close upon themselves in the 

T-direction by virtue of the periodic boundary conditions 

are not invariant under the transformation. Thus W is an 

order parameter of the symmetry. If the symmetry is 

unbroken then 

<r./t) 	 JV) 	> <') = 0 

i.e., confinement. If 

	

< N) # 0 
	

(z 

then the charges must be screened. The deconfinement 

transition temperature has been estimated at [Kajantie et 

al 1981; Celik et al 1983; Hasenfratz 1983] 

Tit 
= t -4 ( Z I ) /\ Ltt 	 (2 

In the presence of light quarks, the global symmetry is 

expected to be explicitly broken [ Gross 1984]. The reason 

is connected with the 'correct" boundary conditions on the 

quark fields. By analogy to rotating a charged fermion in 
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a magnetic field, in which the wave function changes sign, 

it has been suggested that anti-periodic boundary 

conditions are more natural for fermionic systems. This, of 

course, destroys any possibility of a global symmetry 

associated with the transition [Gross 1984]. It has been 

shown that the presence of a small m acts rather like a 
q 

large external magnetic field in an Ising spin system, 

destroying the phase transition [Hasenfratz 1983; Gross 

1984]. In the absence of a good order parameter, the 

existence of T in hadronic matter is still somewhat 
C 

controversial [De Grand and De Tar 1983; Hasenfratz, Karsch 

and Stamatescu 1983]. 

2.6 Fermions in Lattice Gauge Theory 

Now we must turn to the treatment of quarks and their 

interactions within LGT. 	In doing so, we will avoid 

discussing "ordinary" scalar matter for brevity. 	Some 

simple ways of handling the Dirac equation on the lattice 

will be presented and how some unavoidable problems 

(connected with chiral symmetry breaking) are encountered 

and treated. We will consider those points in some depth 

which refer most closely to the work of later chapters, 

especially those elements in the construction of mesonic 

lattice operators, and explicit calculations on the hadronic 

spectrum. 

The fact that there are (at least) two ways of 

describing fermions on the lattice is most clearly 

illustrated by writing down a candidate action and 

considering the symmetries inherent in the prescription. 

We require a lattice (i.e., discrete) version of the Dirac 

action 
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(.z 	) 

where 

= 

in the usual way. The problem is the appearance of terms 

linear in the derivatives. To preserve the anti -hermiticity 

of the Dirac action, we choose the central difference 

transcription of the derivative operator [Kogut 19831 

The unit cell on the lattice is now effectively 2a and for 

reasons we shall describe increases the number of fermion 

species from one (which we want) to 20, where 

D=dimensionality of the space. 

Using this, let us consider the following representation 

of the fermion action [Kogut 1983; Karsten and Smit 1981] 

+ 

In this expression, we have maintained gauge invariance by 

inserting U matrices in a covariant fashion. Note that the 

maximal global symmetry of this action is given , for ri f  

massless quarks as [ Hasenfratz 1983; Kawamoto and Smit 

1981] 

U 	 u 	, 

This is where we encounter the doubling 	problem. 	Recall 
from chapter 	1 that no quantum theory can preserve 	the 
axial symmetries [Adler 	1969; 	Bell and Jackiw 1969; Karsten 
and Smit 	1981]. For 	fl f =l f 	the divergence of 	the 	axial 
current 	contains a 	piece 	proportional 	to the 	triangle 
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graph, discussed in chapter 1 [Adler 1969]. In order to 

remove this anomaly, one must "add in" 20_i other fermions 

in order that the total contribution to that graph is 

identically zero [Karsten and Smit 1981; Nielsen and 

Ninomiya 1981]. 

Conversely, by explicitly breaking the symmetries (chiral) 

of the axial currents, one can describe a single fermion 

species. There have been some attempts to circumvent 

this impasse by the use of non-local actions, but such 

approaches introduce problems of their own, e.g., 

relativistic 	non-covariance 	[Drell, 	Weinstein 	and 

Yankielowicz 1976a,b; Karsten and Smit 1978, 1979]. 

It is in this context that we see the appearance of 

different fermion lattice descriptions. Consider in 1+1 

dimensions the energy momentum dispersion relations for 

the free Klein-Gordon and Dirac theories on the lattice. 

From the equations of motions it is readily found that 

= - 	
( 	aLo.—') 	E 0  

respectively [Kogut 1983]. The continuum limits of these 

yields, when ka<<1 

E 
I 	

k 	O(L.)  - 

However, in the Dirac case, there is an additional fermion 

whose energy-momentum relation arises from ka=Tr-k 'a, 

k'a<<l. In other words, there are two two-component 

spinors, degenerate in mass. One at the origin, and one at 

the edge of the Brillouin zone [Kogut 1983; Hasenfratz 

1983]. 
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The two methods commonly employed to break this 

degeneracy are Wilson's method [Wilson 1979], which relies 

on raising the energy at the zone boundary, and the 

Kogut-Susskind approach, K-S, [ Kogut and Susskind 1975] 

which distributes the degrees of freedom of the 16 (in 

4-d) fermions around the plaquette. In the latter, there 

remain only 4 degrees of freedom at each lattice site 

[Kawamoto and Smit 1981]. 

In Wilson's prescription, one has to give up completely 

the chiral symmetry, even for m =0. The K-S method 
q 

retains, however, a remnant of the continuous chiral 

symmetry, as well as discrete 1'5  operations [ Kogut 1983; 

Kluberg-Stern et al 1982]. We will be mainly interested in 

the Wilson formulation, as it forms the basis of our later 

calculations, but in describing the current state of lattice 

QCD it is relevant to comment on the K-S "staggered 

fermion" technique. The way that the Wilson form of the 

action elevates the masses at the edge of the Brillouin 

zone is by the introduction of a momentum dependent mass 

term, i,e., 

4 */) 	(y4 ( - Z 

'I  

So that the full (free theory, for clarity) action then 

reads (on rescaling the fields) [Wilson 1977; Kogut 1983; 

Creutz et al 1983] 

c) 	- Y 
Vt -j 

+ 4• 	( r 
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One solves for the propagator in momentum space (fourier 

representation of the inverse of the quadratic piece in the 

nn) to find 

- K 	 (r_ 

I..' 

: 

By investigating the parameter space of (m,r) we can see 

that m=r=O implies 

YPf/Z 

i.e., 16 fermion flavours. For m=O, r*O, 

- 

[ ( 	 -z(Z 	)+] /d 

with no remaining 	symmetry (true for all r*O). r=1 yields 

the continuum relativistic propagator (m=O) when K- 1/8, 

i.e., G(p)vp 1 . K=1/8 is here the critical value of the 

hopping parameter, K, (from the fact that K enters in the 

term that propagates a quark from one site to the next). 

In contrast to the Wilson formulation, the K-S approach 

does still observe some chiral symmetry for m=O. By way 

of completeness, but briefly, we note that there is a 

global phase rotation, independently at the even and odd 

sites of the lattice, U(1) xU(1) (there are additional 
0 

discrete - operations) [Kluberg-Stern et al 1982; Kogut 

1983]. This symmetry, when broken, will lead to the 

appearance of the Goldstone pion [Creutz et al 1983; 

Karsten and Smit 1981] since the usual current algebra 

expectation is that 

z 
(si) 
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The canonical transformation used in this approach reduces 

the 	effective number of flavours at each site to four by 

" spin- diagonalising" 	the fermion fields. 	We write 

[Kawamoto and Smit 	1981; Karsten and Smit 	1981] 

T 
(ZS) 

= 

By rescaling, the free Dirac action becomes 

ThtJ  

where 	
p1 

60) 
4 

'I% 

The interplay between the two methods in describing 

the hadron spectrum is an important test of the 

understanding of lattice fermions. Although we do not 

show it [see, for example, Bowler et al 1984], the K-S 

method allows simulations with much lower values of the 

quark mass (larger K), which is essentially a property of 

the techniques used to calculate the two different quark 

propagators. This is important, as it allows us to 

investigate more closely the region in which the full chiral 

symmetry and its spontaneous breakdown are observed. The 

mass spectra that are found with the two methods are not 

always consistent, but one has to be aware of the 

possibility of different renormalisations (following from 

the different transcriptions of the Dirac equation) of the 

bare quark mass. We noted that K =1/8, for the free 
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Wilson case, but in the full interacting theory, K is 

necessarily renormalised. At strong coupling, K1/4, with 

intermediate couplings therefore somewhere between these 

limits [Hasenfratz 1983]. From its role in the action, an 

expansion of the quark propagator is essentially an 

expansion in powers of K. Finally, we recall that as K- K 
C 

the mass of the lowest pseudoscalar excitation, the pion, 

goes to zero. 

2.7 Calculational methods for the Quark Propagator 

From our knowledge that QCD defines hadronic states to 

be colour singlet composite objects, we must find some 

method to calculate and combine quark propagators to 

obtain the mesonic and baryonic operators of interest. The 

expectation value of an operator is defined to be 

noo 'r C9  

with [Creutz et al 1983] 

((J) + 

in an obvious notation. The fermionic variables 4 ,4' obey a 

Grassmann algebra and so, except in 2-d where the 

positivity of the measure is guaranteed [ Blanckenbeckler 

et al 1982], one cannot store the variables and phases in a 

computer memory. Fortunately, the fermionic action is 

quadratic, so we carry out the integration explicitly. Thus 

(+ 	
\c.('- 

and now < 8 > I  is the expectation value of B in the 

background gauge field. Evidently, 

4!] 



fl 09 u 

for the propagation of a quark in this gauge field. In this 

last expression, we can define 

Tr i &N ( 0 w) *.._'\ 

where we understand the second term on the right hand 

side as the effect of including virtual quark loops on the 

(valence) quark propagator (+m) -1  [Creutz et al 1983; 

Hamber and Parisi 1981; Weingarten 1982]. In principle 

then, the evaluation of any expectation value is to be 

sought by using S 
eff 6 (U), not S (U) alone, and we must look 

for efficient ways to to determine AS ff (U), induced by U-i 

U. Although S(U) is highly local, with only the nearest 

neighbour links affected by the change U(n) -> U(n), the 

expression Tr(ln($+m)) is highly non-local. For explanations 

of the various attempts to investigate this problem, one 

should refer to, for example, Fucito, Marinari, Parisi and 

Rebbi [1981]; Scalapino and Sugar [1981]. 

In all of the various approaches one must calculate the 

quark propagator G(n,O), derived from 

(U) + r% C C',o 	c5 	 (1. 

The most widely used method for this involves some 

"relaxation" routine such as Jacobi, Gauss-Seidel 

[Weingarten 1982; Hamber and Parisi 1981; Marinari, Parisi 

and Rebbi 1981a], or Conjugate Gradient [Kogut et al 1982; 

Bowler et al 1984]. To outline the idea, we examine the 

simplest of these, that of the Jacobi method [Kogut 1983]. 

One considers the problem as one of matrix inversion, i.e., 

the solution to Mx=a. Then , in (real) computer time, we 

seek to solve 
G:z. 

- — 
LMc— 61 0 

ji 
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by some iterative procedure. 	We can seperate the 

interaction part of M, by writing M=1-K, and then, if dt= 

is the computer "upgrading" time unit, then 

at the n-th time step. Thus [Kogut 1983] 

4. 	
( 

t 	. 

One introduces a "source" or "seed" term x 0  at the 

space-time origin, and generates succesive approximations 

to the green function G(n,O). It is possible to increase the 

rapidity of convergence by adopting a Gauss-Seidel 

algorithm (obviously only if the largest eigenvalue of 

1-€-cK is such that it is strictly less than 1). We label 

the matrix x , as x 
n 
(i), with i referring to a lattice site. 

Then we can evaluate x (ii-1) using x (i=1,..,n), instead of 
n 	 r 

x n-i  (i=1,..,n) in (2.66) [Kogut 1983]. 	By "tuning" €, one can 

optimise the whole process. 	The Conjugate Gradient 

method, a "steepest descent" approach, is faster still, 

particularly for K-S fermions [ Bowler et al 1984], but as 

it is not employed in our later work, we will not consider 

it in any more detail. 

With the unresolved problem of calculating the fermion 

determinant factor in the action, at the present time most 

groups have considered only the pure gauge action, i.e., 

ignoring internal fermion loops; the "quenched" or "valence" 

approximation [Weingarten 1982; Marinari, Parisi and Rebbi 

1981b; Hamber and Parisi 1981]. That this may be a 

reasonable approximation follows from a number of 

considerations. We note that (det(1+m)) appears with a 

power fl fl  for the number of quark flavours present. In a 

perturbative expansion, each quark loop appears with a 
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counting factor n 1, and we see that fl f _> 0 suppresses such 

contributions. Additionally, each loop contains a 11N (for 

SU(N)) factor, and large N expansions again suggest the 

suppression of these loops [Kawamoto and Srnit 1981], 

relative to diagrams with internal gluons. One may also 

appeal to the phenomenological evidence which shows that 

the (naive) Quark model is relatively succesful (i.e., 

including only "valence" quarks) in, at least, the low-mass 

hadrons. Other arguments might include the effect of 

ignoring fermion flavours in the two-loop 13 function ( '20% 

effect [Bowler et al 1984]) and the effectiveness of the 

OZI rule in suppressing quark annihilation diagrams [Close 

1980]. 

2.8 The Hadron Spectrum: Combining the Quark Propagators 

Bearing in mind that in the following chapters, we will 

concern ourselves with detailed calculations on some more 

"esoteric" states in the hadron spectrum, in this section 

we illustrate, in a general fashion, the methods of hadron 

mass measurement, Apart from defining the way in which 

the quark propagators are combined, we shall report on 

the findings in recent years of various groups on the 

spectrum of states itself. 

Within the quenched approximation, one envisages the 

propagation of a meson (say) as in figure 3a. Obviously, we 

must exclude diagrams such as those of figure 3b which 

specify the propagation of flavour singlet mesons, but 

about which we are unable to say much. The problem 

essentially reflects the inability to calculate G(n,n) (c.f., 

fermion self-energy propagators ,,  e.g., Amit [1 984]), and the 

importance of fermion loops in the gluon propagator 

connecting tne two quark propagators L  Karsten and Smit 

1981]. One has to accept, for the moment, the degeneracy 
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(a.) 

(b) 

Figure 2.3 (a) A contribution, in the quenched approximation, 

to the propagation of a flavour non-singlet qq meson. 

(b) A diagram contributing to a flavour singlet, e.g., q, 

meson. Ignoring (b) relative to (a) implies, for example, 

that the w and the rj are degenerate in mass. 



in mass resulting from this approximation. In addition to 

this, one typically works in the approximation of equal 

mass quarks. 

The correlation function for a meson operator (consisting 

of two valence quarks) will be 

t  
(.zq) 

The correct J 	 quantum numbers are specified by the 

inclusion of a suitable Dirac matrix r, so that 

r 

The expectation value then becomes 

44 ()fl dA 	

(-) 

This 	Will 	simplify 	considerably 	in 	the 	quenched 

approximation (equal masses) to 

r 

Now it can be shown that 

* 	
(42. 

and so 

u T, rA t 	( 0 r 
YLL) 

In terms of the colour and spinor labels, the trace reads 

explicitly 

Tr rtt(fl 	 (r 	(r'' 
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r  t 
 r4 	

A 
(1C 

lv-I 	 tt 
e J  

In general, the quark green function contains both real and 

imaginary parts. The resulting correlation function is 

necessarily real and this follows from writing G=R+iF, and 

showing that if 

r' 4  P4 	
*A 
	

( -Z -:~6 
A' 	 ',\ 

which must be true for all r 4, then the imaginary part 

vanishes identically. 

As we saw earlier, the mass of the lowest interpolating 

state )  in the channel specified by the r4, is given by 

summing the propagator over the spatial hyperplanes, i.e., 

Then, as t3 , 

z 	 - 

If the lattice is periodic in the t-direction, then the 

correct form of the large-t behaviour of the propagator is 

A 	C 
	

4. 
	- 
	

(- -f q  

rt: -r 	 : 

With the correct identification of the relevant 

operators, one now has a prescription for the measurement 

of hadron masses: (i) Generate pure gauge configurations 

according to some (e.g., Metropolis) algorithm; (ii) Calculate 

the quark green functions in this background gauge field by 
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some algorithm such as Gauss-Seidel; (iii) Evaluate the 

meson or baryon correlation functions on each of the 

configurations, in terms of matrix products of quark green 

functions; and (iv) average the propagator over all 

configurations and then sum over the spatial hyperplanes 

of the lattice. 

By dividing up the set of generated configurations in 

some fashion ("binning" them), one can estimate the extent 

of the statistical errors in the averaged mass from 

measuring the masses within each block of configurations 

(quantifying the spread in the data). Of course, the 

preceding comments so far only refer to an analysis at one 

value of the quark mass (hopping parameter). The whole 

process may be repeated at various m and an 

extrapolation made to the critical quark mass region, 

where chiral symmetry is restored and spontaneously 

broken [Creutz et al 1983 ]. To estimate the position of 

m 
C C  (K ), one must extrapolate linearly in the pion mass 

squared (recall the current algebra prediction) [Karsten and 

Smit 1981]. One then increases m =m-m (m=bare quark 
q 	 C 

mass, that which appears in the Lagrangian) until 

agreement is reached on the splitting rn/rn. In practice, 

however, one takes m iT  =0 since m 
IT  is so much smaller than 

the other hadronic masses that statistical noise masks the 

mass difference from zero. This allows one to fix the 

physical values of lattice masses by the input of the 

mass (or sometimes one uses the string tension [Hasenfratz 

1983]; they must be related through their mutual 

dependance on the hadronic scale factor A ). 
Iatt 

We describe in table 1, a distillation (by no means 

exhaustive) of results achieved in hadron mass calculations. 

One should particularly be aware of the results of Bowler 

et al [1984], on the grounds that the same gauge 
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configurations and quark green functions are employed in 

our later work. Comparison with Bowler et al [1984] and 

others is therefore crucial in establishing confidence in 

the results of chapters 4 and 5. In this table, we have 

included, as indicated, work done on different sized 

lattices and occasionally different methods of calculating 

the green functions, etc. 

In general, there are a number of considerations that 

may arise from these mass calculations. There are however 

essentially two points to be made here. One is 

understanding the limitations introduced through a finite 

lattice. Most workers are agreed that the pion is 

reasonably well exposed (at 5.7-6.0) on lattices 

(certainly) greater than 6. The glueball correlation length 

(string tension estimates in the scaling region) is typically 

1-4 lattice spacings. The pion correlation length on 8 is 

'7-10 lattice units, even for unphysical, i.e., overly large, 

quark masses [ Ishikawa, Teper and Schierholz 1982; Berg 

and Billoire 1982a,b; Bowler et al 1983]. The reduction in 

the quark mass matches an increasing lattice "path-length", 

in the sense of the hopping parameter expansion 

[Hasenfratz et al 1982], and one witnesses a slowing down 

in the convergence of algorithms for evaluating the quark 

propagator [ Kogut 1983]. We have already commented on 

this effect in the comparison of Wilson's and the K-S 

methods of resolving the species doubling, but one should 

also be aware of the necessity of greater quark 

propagation distances for (at least some of the) heavier 

states, e.g., the . There is a concommitant increase in 

(systematic) finite size effects from being unable to 

"probe" to these larger physical distances on fixed lattice 

volumes. At lower values of the hopping parameter the 

"graininess" of the lattic'e will also be more acute. One 

can think of this as sampling the meson wave function at 
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only a limited number of points in space-time. As the 

hopping parameter increases, the number of lattice sites, 

interior to the meson, also increases and gives one, in 

some sense, a better estimate of that wave function. 

Larger mesons, such as ç, ö, A, will require greater numbers 

of lattice sites to match the pion in terms of reliability. 

Evidently then, one would wish to investigate the spectrum 

on larger lattices. Computer memories capable of handling 

efficiently 16 ,  and larger, are currently coming into use. 

It may be possible though, that better understanding of 

the properties of lattice actions themselves may allow 

more information to be extracted on the smaller lattices. 

This is the second point we make. 

The Wilson form of the gauge action contains corrections 

of order a 2 to the Yang Mills continuum action [Kogut 

1983]. For as long as a is non-zero, but still small, then 

perhaps the addition of more terms to the action that one 

simulates with may improve the agreement to higher order 

in a. This is the basis of the (Symanzik [1982]) 

perturbatively improved action programme. The other way 

to tailor the action is by the use of renormalisation group 

arguments. Suppose we added other terms to the Wilson 

gauge action carrying different representations of the 

gauge group [Bhanot and Creutz 1981] (recall the difference 

between SO(3) and SU(2) [Halliday and Schwimmer 1982]). In 

principle there is no limit to the numbers we add as long 

as in the continuum limit only the fundamental gauge 

action survives i.e., conventional Yang Mills theory. The 

fixed point in SU(3) gauge theory is g 2 
=0 (of  =a&). In the 

multiparameter coupling constant space of a lattice action, 

there will be a renormalised trajectory (dependent on the 

particular blocking scheme), starting at (the 

continuum theory) and flowing out into this space (the 

lattice regularised theory) [Swendsen 1979, 1984]. 
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We may have hoped, though it is certainly not the case, 

that the usual Wilson action lay either on or close to this 

trajectory, and hence accurately reproduced continuum 

physics. An obvious improvement to the Wilson action 

would be made if we could find this trajectory, but 

unfortunately there is, as yet, no known calculation of 

this. Recently Swendsen [1934] has developed a method for 

using Monte Carlo techniques to improve our knowledge of 

this renormalised trajectory. The idea involves comparing 

"universal" quantities (e.g., ratios of hadron masses) on 

different size lattices. One attempts to adjust the 

definition of the lattice action on a smaller lattice and 

compare various expectation values with one that has 

resulted from a "blocking" of the dynamical variables on a 

larger lattice. By "blocking", we mean some combination 

(products) of the gauge fields on an n 0 
 (e.g., 16 4)  lattice 

that give rise to an action defined on an (n/2) 0  lattice. 

With some judicious choice of the blocking transformation, 

and a large enough coupling constant space, agreement 

between the two actions may perhaps be reached. Then 

more information can be extracted about the hadron 

spectrum on larger and larger lattices from simulations 

done on quite small lattices. 
However, improvement is not necessarily guaranteed given that 

this trajectory is non-universal. 	In a multi-dimensional 

coupling constant space there will be many such paths, on the 

critical hypersurface, determined by the particular blocking 

scheme. 
More pressing, in the light of recent evidence on the 

lack of scaling (i.e., (2.19)) observed for a number of 

measurables, e.g., the quark condensate [Barbour et al 

1985], in the 13  region hitherto simulated in, is a 

re-assessment of the status of lattice QCD. In a sense, all 

these results demonstrate the improvements that have 

been made in lattice "technology". What remains is a clear 

need for a more systematic investigation of a range of 
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lattice sizes, actions and 13  values. 

There is however some expectation that reliable 

quantitative analysis of the hadron spectrum through some 

optimisation of the Wilson r-parameter in conjunction with 

improvements in the lattice action may thus be possible, 

even without a full implementation of dynamical fermions, 

and with some remaining doubt over the 'correct" value of 

P. This, however, represents a hope for the future. In the 

next few chapters, we shall systematically explore the 

spectrum of states that are not predicted within the 

quark model, but which arise solely from the nature of QCD 

itself, i.e., the propagation in free space of all colour 

singlet states. The simulations which have been performed 

do not include any of the sophisticated new techniques 

that are emerging, but we shall argue that the results 

that are obtained are reliable, particularly in comparison 

with other theoretical investigations. 
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CHAPTER 3 

Multi-quark and Hybrid Mesons in OCD 

3.1 Introduction 

In previous chapters the relationship between the quark 

model and QCD field theory (both manifested through the 

hadronic interaction) was not clearly spelt out. Ultimately 

one believes that the quark model is, in some sense, an 

approximation to the interacting field theory, but the fact 

that that connection may not be so transparent is readily 

demonstrated by the following consideration. In the quark 

model, one understands, for example, hard scattering 

processes (Drell-Yan, large p1  hadrons) more completely by 

introducing "intrinsic" p 
T  [Shuryak 1982] for constituent 

quarks ("partons" or "valons") typically of the order of 1 

GeV, whereas, for example, the confinement scale is more of 

the order of 200 MeV. These constituent quarks are 

roughly additive in total scattering cross-section [Lipkin 

and Leck 1965; Levin and Frankfurt 1965; Nikolaev 1981], 

and are associated with some 350 MeV in energy. QCD, in 

contrast, deals with very light quarks (on that scale): mS 

MeV, rn0 8 MeV, ml5O  MeV, and which are treated as 

pointlike interacting objects. In other words, one has to 

be able to understand the way in which the features of 

the QCD field theory "conspire" to make the quark model a 

reasonable approximation in so many ways. 

In this comparison, a particularly important area of 

investigation covers the role of "constituent glue" in the 

spectrum of states. We recall that the non-abelian gauge 

theory (NAGT) of QCD introduces gauge quanta, the gluons, 

in the adjoint representation of the group, to mediate the 

interaction processes. Like the quarks, they must be 

confined, but unlike the quark model, they can give rise to 
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a whole new range of hadronic states [ Barnes, Close and 

de Viron 1983; Barnes, Close and Monaghan 1981,1982; Horn 

and Mandula 1978; Hasenfratz et al 1980; Balitsky, Dyakanov 

and Yung 1982; Jaffe 1977a,b; Jaffe and Johnson 1976; 

Donaghue and Johnson 1981; Barnes 1984; Chanowitz and 

Sharpe 1983]. The fundamental aspect of this spectrum is 

the appearance, at long distances (on the typical hadronic 

scale), of only colour singlet composite objects. With the 

colour degree of freedom at our disposal, there are many 

new combinations of quarks and glue, with no a priori 

mechanism for their suppression. Using the group theory of 

SU(3) let us construct some of these. Taking a quark, qa, 

in the fundamental representation, 3, of SU(3) (and q as a 

3), we find — 

to g 	 ('. 

("3 

Now we realise that, for colour octet quark combinations 

and single gluons, 8x8=1+..., so that states such as 

; 
geg 	 2 € 

L2 
all have colour singlet contributions. 

In this and the following two chapters, we shall explore 

extensively 	the spectrum of 	these 	states. Our 

considerations will involve a lattice QCD simulation of qqg 

and q2  q2 mesons to 	extract estimates for the 	masses of 

some 	low-spin states 	and a 	comparison 	with other 

calculations, more analytic" in nature. 

By way of nomenclature, qqg states are now commonly 

referred to as 'hybrid" [Tarimoto 1982] mesons, although 
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the terms "hermaphrodite" [Barnes and Close 19821 and 

"meikton" [Chanowitz and Sharpe 19831 have also been 

applied. States composed solely of quarks (and anti-quarks) 

are generally called multi-quark, (where we will 

investigate only 4-quark, q22, mesons), and those colour 

singlet objects containing pure glue are "glueballs' (see 

previous chapter on the mass-gap). We shall have little to 

say on the glueball sector. Much work has been directed 

at detailing the spectrum, and one is referred to, for 

example, Barnes [1984 and references therein] for a 

summary of their status in research and experiment. One 

must say at the outset that no conclusive proof of the 

existence of hybrid and multi-quark mesons has been given 

[Barnes 1984]. Partly, the problem is clouded by their 

mixing with "conventional" qq and q3
. it is, however, the 

possibility of the existence of (low-mass in particular) 

exotic states that make their identification unquestionable. 

Exotic, in this respect, means those mesons or baryons 

that have quantum numbers unobtainable within the naive 

quark model. We can demonstrate this for a qq system. 

Such a meson necessarily has a parity label P=( - 1) and a 
L+S 

charge conjugation C=(-1) , where L=total orbital angular 

momentum and S=total intrinsic spin [ Particle Data Group 

1982]. Given this, one can easily see that O, O, 	2, 

are not possible qi assignments. There are, as we have 

observed previously, such states in the spectrum of hybrid 

and 4-quark mesons. However, most of the possible states 

will be "crypto-exotic", that is non-qq mesons with 

"conventional" quantum numbers. 

What will be demonstrated is that some of the exotic 

mesons, especially the can be expected to have masses 

which are not exceptionally high (m(1)v'1-2 GeV), and hence 

should be experimentally detectable [Barnes et al 1983; 

Chanowitz and Sharpe 1983; Jaffe 1977a]. Their existence 
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will not establish outright the veracity of QCD as the 

theory of the strong interaction but will give valuable 

information on the essential differences between the quark 

model approximation and any (correct) QFT approach. 

By way of "setting the scale" for the spectrum, we can 

make a rough assessment on the basis of taking '350 MeV 

for constituent quarks and '500-700 MeV for constituent 

gluons [ de Viron and Weyers 1981; Bernard 1982; Cornwall 

and Soni 1982; Parisi and Petronzio 1980]. The former is an 

estimate based on a "typical" qq meson mass of 700 MeV, 

and the latter follows from an analysis of the energy 

required to "break" a colour string. Evidently, we expect 

that m(qg)v1200-1400 MeV and m(q 2q 2)14OO MeV (all for u, 

d quarks: for s-quarks, add ' 150 MeV per s-quark). 

In the absence of any firm experimental guidance on 

these states, we will review the major calculational 

schemes for resolving these additional spectra. This will 

give us scope to illustrate the extent to which 

predominantly analytic calculations can adequately cope 

with a strong coupling problem. Most of our discussion 

will focus on the MIT "Bag Model" and QCD "Sum Rules" 

methods. In both, one seeks a comprehensive 

parameterisation of the important non-perturbative 

features of QCD (see chapter 1). The two methods differ in 

the way that they approach this but share an attempt to 

perform a (first order) perturbative calculation in the 

strong coupling x to introduce spectroscopic "fine detail". 

A more recent avenue of investigation involves deriving 

inequalities relating different operators that excite 

appropriate mesons out of the vacuum. In some respects 

(which we shall explain) this provides a useful ordering of 

the hadronic spectrum but it does not, however, produce 
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quantified mass estimates. It is however, particularly well 

suited to comparison with a lattice Monte-Carlo analysis, 

being based (usually) on a hypercubic lattice regularisation 

of QCD. 

This computationally more simple method will be 

considered first, to provide some "benchmark" against which 

we can estimate the strengths of the other schemes. 

During the discussion on the QCD Sum-Rules and the MIT Bag 

Model, we will provide, where it might be instructive, 

some consideration of the general production and decay 

characteristics of the more interesting states. One should 

note that lattice studies of qqg and 4-quark mesons (any 

that is, already existing in the literature) has been 

deferred to later chapters, where, we feel, comparison 

with our work is more illuminating. 

3.2 Mass Inequalities in Lattice-Regularised Gauge Theories 

In discussing the formalism of operator inequalities, we 

will concentrate, for brevity, on those works which deal 

specifically with multi-quark and hybrid mesons [Goodyear 

1984; Espriu, Gross and Wheater 1984]. In fact, no lack of 

generality in the method follows from this. Indeed, in 

these particular cases, more complicated operator 

inequalities are often needed (in comparison with "ordinary" 

hadrons [ Weingarten 1983; Witten 1983; Nussinov 1984]) to 

extract relations between different meson propagators. 

The main requirement of this approach is establishing 

the equivalence of operator and expectation value 

inequalities [Espriu et al 1984] through the positivity of 

the measure. Only gauge theories with no inherent CP 

violation are involved (no 8-term in the gauge action; 

fermion- anti- fermion-gauge couplings strictly real). Witten 
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[1983] deduced relations between (ir ,  i) and also (A, ) by 

employing different mass heavy quarks. However, he also 

had to consider the limiting case of letting the number of 

colours become large. It is technically simpler, and allows 

N=3, to consider only equal mass quarks since quark 

propagators then share the same form (see below). The 

hypercubic latticed regularised (Wilson) theory of QCD is 

(see also chapter 4) [Wilson 1974, 1977; Goodyear 1984; 

Espriu et al 1984] 

	

L%  I R t  ~ T, U 	+ 	 C, ir S '.  

where g, m are the bare coupling and quark mass, and 

(. L1 - 	 cL, 

p is the unit vector in the p-th direction. In this, as one 

can see, we have set r=1, that is, the usual solution to 

the fermion doubling problem [Kogut 1983, Creutz, Jacobs 

and Rebbi 1983]. As it stands, equation (3.3) represents 

the action for one quark species, but one considers this 

for i quarks, and so there is an implicit summation over i. 

Of course, given that the fermion integral is quadratic in 

the fields, we can carry out the integration explicitly (as 

in chapter 2) to establish that det(M) is real i.e., the 

eigenvalues of M _ 1 are either real or pairs of complex 

conjugates. If 
n  the number of quark flavours, is even 

then the "measure' 

	

OE) (j 	_4 ) At  
is positive definite. 

We now have a definite prescription for the evaluation 

of the expectation values. One writes down the 

appropriate mesonic current and constructs the two-point 
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connected correlation function. As an example, we consider 

the O 4-quark meson in the approximation that no quark 

annihilation terms are involved. To include such 

contributions is certainly relevant in producing w-  rj 

splitting but is computationaly demanding in that it 

requires a knowledge of Mab1(XX) i.e., non-propagating 

valence quarks (c.f., fermion self-energy propagators). 

Therefore, we write 

TL 	Y- 

with the proviso that i,k*j,l. For the u, d system, such an 

operator does give an isospin 2 meson (i.e., where there 

are no quark annihilation graphs) but it is necessarily 

degenerate in mass with all other isospin states in this 

approximation. Thus [Espriu et al 1984; Goodyear 1984] 

0 Sc 	5t(0) ic'> 

?) M(x)ç 	 (ç Kr] 

Consider now another operator with rA 	say 

z 	 r4 	
B4 

o.t. 

Entirely similarly then, 

'Cx C(e) .O> 

 
A 	 bL 	 w (1)r 

t1 	
]Tr LrM 	Ic3\u1' r1(1.)J) 

\ 	 L 

It is the structure of these expressions, containing 

multiple sums and square moduli, that suggest the use of, 

for example, the Cauchy-Schwarz and other inequalities in 

order to exploit their basic similarities. We quote some 

of these useful inequalities [Espriu et al 1984; Goodyear 

6? 



1984] 

<tA1) 	IA 	;a1 	10-1
10 

_. 
<A ) 	A 	 : 	> 0  

?O 

In using these one will lose the strict equality of course )  

of (3.9) for example, but will gain a definite bounding of 

the resulting inequalities by operators with the simplest r 
matrix structures. In particular, generalised meson 

operators with ii qq operator constituents will bound all 

other mesons from above [Weingarten 1983; Espriu et al 

1984]. We can see this from (3.7) and (3.9) as the former 

gives the strict equality 

< L(T 	
( 6d., 	N—'( 1))r> 

a., 

and the latter, by means of the Cauchy-Schwarz relation, 

gives (with A a constant) 

*110 I 	 I 

(•I2) 

If the expectation values fall off at large times (chapter 

2) as 

40160.) 6 t(0) 10' -- 	<too'I) -'.'L 

then evidently mm 
0 a 

Rather than continue to derive various inequalities in a 

rigorous manner, we feel that it is sufficient to summarise 

the known relations (to date). Dealing solely with the qqg 

and 4-quark sectors, it has been found that 

(i) i 
P
=O 	 is the lightest 4-quark state [Espriu et al 1984; 

Goodyear 1984] 
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(1-2)mmm [ Espriu et al 1984] where o= O and n 
is the largest integer such that 2'fl f _2 

from (ii), letting i=k, j1. i.e., including "crossing 
diagrams" leads to the same bounds in (i), (ii), [Goodyear 
1984] 

mAA2mA  where "A" signifies a qi operator [Goodyear 
1984] 

mAB)(mAA-+-mBB)/2  same convention as (iv) [Goodyear 1984] 

mb)3m6/4,  B=any baryon [Goodyear 1984] 

m m /2, h=lightest flavour non-singlet hybrid [ Espriu 
et al 681] 

o\ço 	1'c1o> 1 I o , C.i0 )7l< 0 I 4r4Io)"j 

n.b., an, inequality between condensates, where G=gluon 
field, It is a quark flavour degenerate in mass with 
[Espriu et a]. 1984] 

As we pointed out earlier on, such an analysis is 

particularly relevant for a comparison with a Monte-Carlo 

simulation on a hypercubic lattice regularised gauge theory. 

What is not quantifiable, as will be immediately obvious 

from the above list of results, is a precise determination 

of the actual mass scales involved. In addition, one may 

also add the point that the expected exponential fall-off 

in time is only reliable if the states in each channel are 

well seperated in energy (compared to any resonance width) 

[Espriu et a]. 1984]. Although computationally neat, and 

mathematically rigorous, there is only a limited scope for 

this approach and we feel that, for our interests, more 

headway is possible with the other methods that we will 

now consider. 

3.3 QCD Sum Rules 

• The seminal article of Shifman, Vainshtein and Zahkarov 

(SVZ from now on) [1979a,b] on the QCD Sum Rule analysis 

introduces one to an extensive literature, complex in its 

treatment of the "long-distance", non-perturbative features 
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of QCD and hence the hadron spectrum. In this review of 

the methods that are employed, we will restrict ourselves, 

for the sake of clarity, to those points which are central 

to grasping the effectiveness of the formalism. In any 

investigation of the topological properties of QCD, one 

might well expect a considerable influence to be exerted 

from instanton-like phenomena, and indeed, if the Sum Rule 

results are a guide, this appears to be the case [Shifman 

et al 1979a,b; Belavin, Polyakov, Schwartz and Tyupkin 1975; 

Caliq.n, Dashen and Gross 1978; Baulieu, Ellis, Gaillard and 

Zakrzewski 1978]. However, a systematic investigation of 

all those interesting facets of QCD involving instanton 

calculus would lead us too far from our aim of illustrating 

the nature of "analytic" work on the QCD spectrum of 

states. The reader is directed to the article of SVZ 

[1979a,b], and also the papers of CallCn et al [1978]; Andrei 

and Gross [1978]; Baulieu et al [1978]; Polyakov [1979] for 

further details on many of these points. 

Essentially, the underlying idea in this scheme is to 

make some headway in evaluating the expectation values of 

hadronic operators by making use of Wilson's Operator 

Product Expansion [Wilson 1969; Symanzik 1971]. This 

states that 

(Tco)t0) 
144  

where the 0(n) are local (gauge and Lorentz scalar) 

operators ordered, in the expansion, by their dimension. 

The C are the Wilson coefficients and fall off in inverse 

powers of q2. The 0(n) are a parameterisation of the 

non-perturbative fluctuations, for example the quark and 

gluon condensates 

which vanish in perturbation theory, but which are known 

to be non-zero [ SVZ 1979a,b]. The Wilson co-efficients are 

evaluated in perturbation theory (q 2 - 00) where asymptotic 
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freedom ensures that such an expansion is meaningful 

[Gross and Wilcek 1973; Politzer 1973]. 

The justification of the OPE [Wilson 1969; Symanzik 1971] 

has been shown for QFT to be rigorous, but we may also 

appeal to the intuitive picture that a product of local 

operators at mass scales much higher than the 

characteristic scale of the problem (the hadronic scale), 

should appear as a single local operator [Gross 1975]. 

The advantage of the OPE, if it holds in the QCD vacuum, 

is in its explicit dependence on a number of condensates, 

and that it specifically relates the hadronic spectrum to 

the fundamental Lagrangian of QCD itself 
[ SVZ 1979a,b] (see 

also the lattice formulation). The lowest dimension 

operators that are relevant (apart from the unit operator) 

are 

44  
O r flA4fr 4 () 

CC%,r  

Notice that, in the limit q 2 ->o., one would expect these 

lowest dimension operators to be the most significant. In 

some sense then, the series should be bounded [SVZ 

1979a,b]. However, one must qualify this remark. In fact, 

it has been shown [CallcLn et al 1978; SVZ 1979a,b] that 

instanton effects break down the validity of the expansion 

beyond a mass dimension of about 11. The reason for this 

is connected with the non-negligible contribution of "small" 

instantons, i.e., even in the region where perturbation 

theory should be valid (see also chapter 1) [SVZ 1979a,b]. 

Quite what the OPE means beyond this point is unclear [SVZ 

1 979a,b], but results on "conventional" mesons and baryons 

based on the contributions of only a few terms give a 

good agreement with the experimental data (see [SVZ 

1979a,b; Reinders, Yazaki and Rubenstein 1982, 1983a,b; loffe 

1981; Shuryak 1983]). 
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Having given some background to the nature of this 

approach, let us turn to how one actually produces a "Sum 

Rule' from the OPE (3.14). It proves simpler to demonstrate 

this for the "conventional" qq mesons. In fact, no 

calculation is known to exist for 4-quark mesons, although 

there are a number of analyses of the hybrid sector. The 

reason for this, we believe, rests in the relatively large 

number of fermion contractions (i.e., quark propagators) 

implicit on the left hand side of (3.14) for any 4-quark 

operator. As we shall see, keeping track of the terms 

generated in the perturbation theory expansion of (3.14) is 

a tricky matter, and the 4-quark case is undoubtedly more 

complicated still. 

A systematic method for developing the perturbation 

theory has developed in recent years and involves 

"expanding" the quark and gluon fields as "quantum 

fluctuations" around some classical fields, obeying the 

equations of motion, that give rise to the 

non-perturbative contributions [SVZ 1979a,b; Govaerts, de 

Viron, Gusbin and Weyers 1983, 1984; Shuryak and Vainshtein 

1982; Shifman 1982]. So we shift 
46 

4 	 4.. 

where (p(x), £(x) are the fields in the functional integral. 

The variables tp, c give rises to propagators in the 

"background" fields which one inverts to obtain the green 

functions. In doing so, it is found to be easier to fix the 

gauge freedom of the "background" fields in order that the 

physical gluon "background" field (giving rise to, e.g., the 

gluon condensate) becomes explicit in the expression (3. 

That is, we set [Schwinger 1979; Dubikov and Smilga 1981; 

Shifman 1980] 

o 

so that 
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0 

The co-efficient of the unit operator on the right hand 

side of (3.14) is the trace in 

and that of the quark "mass" condensate (from (3.16) is 

S Y ,  IL 	C 	4 cc  

both taken at zeroth order in ci, and in the "background" 

gluon field [Govaerts et al 1984; Shuryak and Vainshtein 

1982]. 

One then extracts the leading singularities in these 

expressions by means of the result [Bogoliubov and Shirkov] 

14 
LTI 	

'1T 	 L a4rj 	
O%I1 ' J 

CL 4771 

Keeping track of all the terms generated in the 

expansion, and also those important contributions at first 

order in ci 
C PV

and the gluon field G is obviously a laborious 

proceedure. We will not pursue this, but merely quote the 

result for the p-meson correlation function [SVZ 1979a,b] 

fl 	 L 	z_ 
   4n 	rr 

— 

. l• 

To obtain "Sum Rules" from the OPE, one uses dispersion 

relations to relat them to physical states [SVZ 1979a,b; 
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Shuryak 1982]. As motivation for this we note that the 

imaginary part of 11(q 2 ) is related to physical processes [SVZ 

1979a,b; Applequist and Georgi 1973; Zee 1973] i.e., 

T(') 	
0 Ct 
	 .2-Li ) 

In general, the (1-dimensional) fourier transform of the 

spectral function obeys [Shuryak 1982; SVZ 1979a,b] 

.L 	41 S rl(S 1 	 (z 

Normally one is interested in the Borel transformation 

of the spectral function. This "transforms" the power 

series (in q2 ) into an exponential, with better convergence 

properties [SVZ 1979a,b]. To extract the lowest mass, it is 

standard to adopt the prescription that, in any given 

channel, there is only one resonance state and writes [SVZ 

1979a,b; Govaerts et al 1984] 

'I 	 4  PO n ( 	 tw 
c.4rPtC.tl •r 	,.•' . 	I 

( -S - Z6 ) 

to saturate iT(s). Here, g, m   are the renormalised coupling 

and mass and S 0  is some continuum momentum threshold. 

The power corrections are specified by the paticular 

channel that one investigates [SVZ 1979a,b]. In (3.16), g 2 , 

m 2  are treated as free parameters in a least-squares fit 

to 

There are many aspects of the OPE in the QCD vacuum 

and the derived "Sum Rules" that are deserving of comment. 

However, the above example goes some way to relating the 

kind of considerations that are relevent in the analysis. 

The reader is referred to [SVZ 1979a,b; Govaerts et al 1984; 

Shuryak 1982] for further information. 
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The application of these methods to the spectrum of 

hybrid mesons has been almost exclusively due to Govaerts 

et al [1983, 1984]; Lattore, Narrison, Pascuard and Tarrach 

[1984]; Balitsky DYakanov and Yung [1982a,b]. A typical qqg 

operator would have the form 

4 	r' 't4 ( 	(-. z) 

where, for example, r=-1  yields the 1 -+ exotic meson, and 

the O. Evidently, one can consider many possible 

qqg operators on the basis of this, and we shall have 

cause to examine them extensively in chapter 5. For the 

moment, we present in table 1, a "master" set of results, 

drawn from a sample of all recently (within the last few 

years) reported findings. References for this data are 

provided by the accompanying explanatory paragraph to the 

table. What we have shown is a comparison of the data 

on qqg and 4-quark mesons in various calculational schemes. 

Our aim here is to show the degree, or lack of it, not only 

between different methods applied to the qqg or 4-quark 

mesons, but also a "cross-comparison" of the different 

states themselves. This gives, at a glance, a better 

impression of the important energy scales involved. We 

consider only the lightest, i.e., u, d system states for 

direct comparison with the lattice results of chapters 4 

and 5. As an aside, a recent analysis of Govaerts, Reinders 

and Weyers [1985], looked at heavy quark (i.e., ccg, bbg) 

hybrids. The simplicity that arises from this approximation 

is the relative unimportance in the OPE of the quark 

condensate relative to the gluon condensate [Govaerts et 

al 1985], a result which does not hold for light-quark 

systems. Note that the results of table 1 for the "Sum 

Rules" are quoted as statistically significant to the level 

of about 10%. 
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The major conclusion has to be the lightness of vector 

hybrid mesons, in the 1-2 GêV region. In particular the 

exotic is not at some experimentally unobtainable mass, 

an idea that might have been invoked to explain its 

apparent absence from experiment. The scalar sector, on 

the other hand, does appear somewhat massive, to the 

extent that one might yet believe them to be difficult to 

detect (but this in itself cannot be a guarantee). What is 

important is the degree to which these general trends 

might be borne out by the lattice calculations (see chapter 

5). 

3.4 The MIT Bag Model 

A framework within which we are able to discuss both 

qg and 4-quark mesons is provided by the MIT Bag Model [ 

Chodos, Jaffe, Johnson, Thorn and Weisskopf 1974; de Grand, 

Jaffe, Johnson and Kiskis 1975]. This is, at heart, a 

relatively simple idea in that one envisages quarks and 

gluons propagating (on-shell) only within a spherical cavity 

4ITR2 /3. Confinement is built in, ab initio, by the inclusion, 

in the phenomenological Hamiltonian, of a "bag pressure" 

term. In contrast to the "Sum Rules" approach, this term 

results from a 'once and for all" fit to the masses of the 

low-mass hadrons [de Grand et al 1975]. In principle then, 

we might anticipate that the "Sum Rules", with a greater 

number of terms parameterising the long-distance 

properties of the theory, would provide a better estimate 

of the masses of "unusual" states. Both methods overlap 

to some extent on the predictions of the masses of the 

low-lying vector qqg but differ substantially on the masses 

of the scalars. This will open the way for the lattice 

calculations of the following chapters. 
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The zeroth order approximation to a hadronic mass is the 

sum of quark (and gluon mode) kinetic energies and the 

"bag pressure term" [Chodos et al 1974; Barnes 1984]. That 

is, we solve 

('•Zfl 

inside the surface S (figure 1) Confinement is provided 

explicitly by the term 

Tr it : 	 ( 

which is estimated from a fit to well-established hadrons 

[de Grand et al 1975]. This we will discuss further below. 

One then minimises the energy 

-. Ilk 	 'S ('o) 

'= 	 t' 

(a factor of n for n quarks in the kinetic energy part) in 

order that a stable bag radius be determined. Thus 

EI 	 '14 
iRj =0 	> 	 (S•'ji •') 

W itk t-c. po.r&.*iltCfS) 

E0 	'z2 ( L 	) = I O S C, V 

• 1. 02 

At this order, the bag contributes 1/4 of the mass of 

the hadron and that all. the mesons, or all the baryons, are 

degenerate in mass. We have a certain "freedom" to alter 

the value of B 0  (and this can be important for discussions 

of the spectroscopy, see later), but the experimentally 

observed splittings can never arise [Barnes et al 1983; 

Barnes 1984]. It is, of course, higher order exchanges in, 

for example, transverse gluons that give rise to these 

77 



Ura(.( $, 

(i pre %,AUK 	rrQ. 0  

(3 e 	(144 riCV) 4  

Figure 3.1 A schematic interpretation of the MIT Bag-Model. 

The QCD vacuum is internal to the surface 0 and is 

maintained (confinement) by the term 4u 
3R B 0 /3. 

1 

< L 

Figure 3.2 One transverse gluon exchange process yielding 

the first order estimate to the qi meson mass. 



splittings. Bag model calculations are restricted to one 

gluon exchange processes such as figure 2. We note, from 

our familiarity with the predictions of the quark model, 

that such an approximation is not a priori unreasonable. 

The addition of just one gluon exchange improves 

impressively the spectrum of states and many of its 

properties [see, e.g., de Grand et al 1975; Barnes 1984; de 

Viron and Weyers 1981; Close and Horgan 1980]. 

In the interaction Hamiltonian we will encounter a term 

9 

2: 	
:tJ•' 

At' 	; 	:'j,' '-' T ç. 	L+ 
A. . 

for which it is evidently necessary to introduce gluon 

"propagators" in the same way as we did for the quark 

fields. In the spherical cavity the gluon modes are the 

solutions of 

t o 	.., 

and, similarly to the result of electromagnetism, exist in 

transversely polarised states: transverse magnetic, TM, or 

transverse electric, TE, components. In table 2, we list 

the lowest energy eigenmodes [ de Viron and Weyers 1981]. 

One gluon exchange in the ir -g case gives rise to a 

spin-spin contribution 

tL21. 	6, 	I I--. . 	j\.st 

where b 1  is an integral over the bag wave functions and is 

known [ Barnes et al 1983]. x 
9 

is the lowest gluon 

eigenmode (the fact that there is a significant difference 

in the N=1 TE and TM modes has important consequences 

for spectroscopy [Barnes et al 1983]) and 'i is the strong 
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Table 3.2 N gluon eigenmodes (TE or TM) in a spherical 

cavity, where x 9=cR; c= energy eigenvalue, R= bag radius. 

From Barnes [1984]. 



coupling. The correct value of ôE=E Q E thus fixes the 

parameter a (R is known). 

It is worthwhile to set in perspective this method by 

pointing out some of the approximations that are almost 

universally adopted. Firstly, self-energy corrections to the 

quarks and gluons are not calculated. In order that they 

may be included in the analysis, the phenomenological 

masses for the quarks are employed [de Grand et al 1975; 

Jaffe 1977a,b]. The trouble here is that the self energy of 

the "valence" gluon is difficult to quantify [de Viron and 

Weyers 1981] although one may appeal to estimates based 

on the string tension. Secondly, in the "zeroth order" 

Hamiltonian, it is more common to introduce a mass 

dependance on the i-th quark through 

E. KE 
 

and, from consideration of the quantum mechanical aspects 

of 	cavity perturbation 	theory, a 	term 	estimating 	the 

effect of confining quarks and gluons to a sphere of radius 

R, 	(the 	zero-point 	energy) 	is added [de Grand 	et 	al 	1975; 

Jaffe and Johnson 1976; Jaffe 1977a,b] 

-= 	
— !.' - 

vt 

Although some attempts have been made to analyse decay 

processes in the Bag Model, problems are encountered due 

to the non-spherical geometry involved [Chanowitz and 

Sharpe 1983b; Maciel and Paton 1982]. 

Combining all these additional components, in the u, d, 

system [Barnes 1984] E 0  is given by 

Oz) 	1F 
— 
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All the O(cx 
S 
) contributions to a qqg meson are summarised 

by the diagrams of figure 3, in units of cuR [Barnes and 

Close 19821. Notably, in this case, the existence of 

"valence" gluons in the Bag, gives rise to scattering 

processes involving these eigenmodes 
[ Barnes and Close 

1982; Barnes et al 1983]. The total energy shift is 

negative and is, in the particularly interesting case of the 

[Barnes and Close 1982] 

LE 	= - o.o 
R. 

Thus we see that the cost in energy of adding an 8 gluon 

is reduced by the large colour attraction that arises from 

the two 8 substates [Barnes et al 1983]. This will also be 

an important characteristic of 4-quark mesons (below) 

[Jaffe 1977a,b]. In particular, such "unusual" states are 

not pushed up to very high masses, thus making them 

conveniently unobservable. Another noteworthy comment is 

the absence of any large contribution from graph 

topologies that relate the qqg and 4-quark sectors (figure 

3), i.e., qq annihilation into a transverse gluon [Barnes and 

Close 1982; Barnes et al 1983; Jaffe 1977a]. 

In table 1 again, we have collected together the Bag 

Model results on the spectrum of qqg states. The list, as 

before for the Sum Rule calculation, is not exhaustive, but 

gives a reasonable cross-section of available results. 

There is a certain amount of consistency within the Bag 

Model results themselves, but it is clear that a large 

discrepency exists between Bag and Sum Rules in the case 

of the scalar mesons. It becomes apparent that the 
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inevitable approximations introduced into these two 

important methods must be investigated more extensively. 

We shall however take an alternative approach in the 

following chapter, calculating the spectrum via lattice 

Monte Carlo. The fact that, in the Bag Model, the overall 

scale of the spectrum depends crucially on the "pressure 

term", and will inevitably be affected by spin- independant 

effects (generally not well understood [ Barnes et al 1983; 

Barnes 1984; Chanowitz and Sharpe 1983a]) gives rise to 

uncertainties in E 01  estimable as being some 30% at the 

very least [Barnes 1984]. Of course, the unambiguous signal 

of an exotic, e.g., the 1, would tie down much more 

precisely the efficacy of the "Bag" in predicting masses of 

these kind of states. With such an uncertainty over 

there is a certain leeway in interpreting (if any doubt 

should exist) "conventional" qq mesons as possible 

crypto-exotic states. One should refer to, e.g., [ Barnes 

1984] for more on this. As an example consider the i(1400). 

With a Bag Model prediction for the qqg at around 1400 

MeV, there are features of the decay channels (but recall 

the earlier remarks on bag fission) that have been claimed 

to be more explainable in terms of the qqg, rather than 

the accepted view of the .(1400) as a radially-excited q 

[Barnes 1984]. It is fair to say that this possibility is 

not highly regarded [Particle Data Group 1982]. Of course, 

the Bag Model result for this meson , like that of any 

other, is sensistive to the value of E 0. One may also note 

that if this term were some 200 MeV lower, then the irA 

decay channel would be closed to the 1 -+  exotic. Then 

there would be only inp, 4ir channels available but, overall, 

the situation is definitely not clear. 

As a remark applicable to both qqg and 4-quark mesons, 

one should be aware of the importance of the role of 

intermediate gluon states in production experiments 
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[Barnes et al 1983; Barnes and Close 1982]. Channels with 

"hard" glue (large q 
2 
) are expected to be productive. Thus 

4 -, Y_)( ; 4 	/ 1D;y;_—. 0.L1 

io 
are interesting experimentally. 

3.5 Bag Model 

The major work on Bag Model 4-quark mesons is that 

due to Jaffe [1977a,b]. It is fair to say that the status 

of 4-quark mesons seems to be where he left it and so we 

feel that it is appropriate here to outline, in a general 

fashion, his method. The basic addition to the zeroth 

order Hamiltonian of the Bag (3.38) is the interaction term 

[Jaffe 1977a,b] 

	

Z 	IL  

which can be shown [Gell-Mann 1964] to be 

= - 	 -I - 

	
M 	• 	(. 42) 

. 	. 	
. A . 

0 

in which M(mR;mR) is the integral over cavity wave 

functions (for non-zero quark mass) that arose before. 

Having evaluated the integral numerically , and removed it 

from the summation, we are left solely with calculating 

the colour and spin sum. 

The basic symmetries of the Lagrangian are classifiable 

as SU(6)xSU(3) , where the first term is the combination 

of the colour and spin groups and the latter is the flavour 

symmetry (for three quarks). In the original quark model, 

one would have dealt with an SU (6) FsxO( 3 ) AM 
 of flavour-spin 

and orbital angular momentum. The lowest mass states 

there would then have been singlets under the 0(3) [Close 
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1980]. In the 4-quark case, the colour-spin group is the 

result of an interacting (QCD) theory, and gives rise to 

SU(6) multiplets mixed by the gluon interactions (acting in 

a flavour independent way). If we ascribe to a quark, q, 

the 6 dimensional representation of SU(6) (and , the 6 

conjugate representation), then 

®L 

with the lower dimensionality representations being 

antisymmetric. Overall antisymmetric wave-functions, 

including the flavour group, are readily constructed 

( 	 ( Li 

( its 	( ) 	( Lti1 

( 
	 L ,  s' 	 ' ( Lf1 ) 

( 
(L_ 

A 	major 	point in 	Jaff&s [1977a,b] 	analysis 	is 	the 

approximation 	of the 	integral 	over 	wave-functions in 

states 	with 	definite strange quark 	content, 	i.e., E 0 	is 

diagonal in ss 	pairs. This is a generalisation of the "magic 

mixing" observed in the LJ-p, 	f-f 	sectors. 	There, 	the SU(3) F 

representations mix so that 

- 

1_o  

where the subscripts indicate the dimensionality and where 

the physical p=q 
3 

contains an ss pair (and q 
0 
, the w

. 
does 

not). One has to extract from (3.44'  mesons with definite 

transformation properties under the SU(2) 
S 

subgroup 

(prescribed JP) 
and which are SU(3) 

C 
singlets. We evaluate 

(3.42.) in terms of the Casimir operators of SU(6), SU(2), 

SU(3) as 
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Since the C 	operator will dominate, we can see that the 

magnetic gluon interaction 	is 	most 	attrative 	when (i) 

C(tot) 	is as 	small 	as possible, 	and 	(ii) 	q,q 	are 	(seperately) 

in 	the largest representations 	of 	SU (6 ). 	With the 

addition to 	the zeroth 	order 	estimate, 	the 	results are 

those of Table 	1 (quoted to *50 MeV). 

From this data it is clear that evidence of multi-quark 

states should be found in experiment. Jaffe [1977a] takes 

the view that the relative lightness of the non-exotic 0 

flavour nonet suggests a re-interpretation of the existing 

qq L=1 nonet as, in fact, a crypto-exotic multiplet. He 

makes the following identifications of the members of that 

multiplet - 

YZ 
(+c1c) 

Cs 	
j 	a1ic4 

This would immediately resolve why the S
* 
 is degenerate 

with the 6(976) (S
* 
 decays predominantly to KR, but 5 

couples fairly evenly to KR and qir). The £ naturally falls 

apart to 2ir (it is very broad in that channel, with no KR 

decay). In the quark model, qq, L=1 nonet, one would have 
* 

expected, from the S -ó degeneracy, that "magic mixing" is 

in evidence [Jaffe 1977a,b; Particle Data Group 1982 ]. 

However, then c should couple to KR (i.e., the c is 

understood there as predominantly ss in nature) and S
* 
 to 

* 
TflT (S has no ss component). In fact, [Particle Data Group 

1982], the current status of these resonances is that the 

£(700) has been removed from the reckoning altogether on 
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the basis of a lack of corroborating evidence, and has been 

replaced by the t(1300). The most recent version of the 

Particle Data Table summarising all experiments to date 

with bearing on the S
* 
 -6, claimed that there were grounds 

for expecting virtual 4-quark components in O nonet 

wave-functions but that the quark model description was 

still adequate. There are, moreover, additional 

complications suggested from within Jaffes calculation 

itself. Although the one gluon exchange calculation is 

expected by many to be a reasonable approximation, there 

is some uncertainty that corrections arising from the non 

spin-spin forces, in particular the colour Coulomb term may 

be relevant. In the calculation of Barnes et al [1983] on 

the qqg spectrum, this colour Coulomb term was a 

non-negligable contribution to the overall energy shift. 

It is clear that the status of both qqg and 4-quark 

mesons in experiment is far from clear. However, as we 

have repeatedly stressed, it is most important to clarify 

the position of these states that arise from the nature of 

QCD itself, in order that one might more fully understand 

the properties of that theory. In the following chapter 

we examine 4-quark mesons in lattice QCD and find that 

there also does one expect low-mass exotics. If not 

realised in nature, then some method of suppressing them 

must be found. Arising even from this brief discription of 

the various models, one might well wish to question the 

meaning of "valence" gluons in the qqg spectrum. There is 

more difficulty though in similarly disposing of the 4-quark 

spectrum, (but recall the Particle Data Groups comments on 

"virtual" 4-quark components in QQ meson nonets). This is 

backed-up by the lattice calculation. The lattice hybrid 

calculation, we shall find, is beset with a number of 

problems of its own, so only some guidance on these 

questions can be offered. 
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CHAPTER 4 

Lattice Analysis of 4-quark Mesons 

4.1 Introduction: Q 2Q2  in Lattice and Continuum QCD 

We have seen that, as a non-perturbative technique, 

lattice gauge theory stands, perhaps, as the best method 

yet to exploit fully the STJ(3) group of quark interactions. 

Our aim in this chapter is to use the lattice formulation 

of QCD to clarify the behaviour of multi-quark mesons and 

predict masses for some low-spin states. 

One would expect that such an approach would at least 

provide a comparison with, and should hopefully avoid the 

(computationally necessary) simplifications introduced in, 

other work which has been done in investigating these 

states. 

In chapter 3, we reviewed the status of 4-quark mesons 

in the Bag Model and Operator Inequality formalisms, 

commenting on the lack of any investigation by means of 

the (possibly more consistent approach of) QCD Sum Rules. 

Before proceeding to a presentation of our results in a 

lattice Monte Carlo calculation, we take up a comment of 

chapter 3 and evaluate the work of Fucito, Patel and Gupta 

[1983], who performed a more restricted analysis than 

ourselves using Wilson fermions on the lattice. Their 

results and conclusions are to be questioned, and, in 

particular, at =6.0, the proximity to the deconfinement 

transition on a 6 3x10 lattice is of major importance. 

Fucito et al [1983] 	followed 	the 	proposal 	of 	Jaffe 

[1977a,b] (see also chapter 3) and defined the quark flavour 

content of 	0, L=1 quark model nonet mesons as 
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r u r4rt1),  

The calculation involved a comparison of the results 

using r 1 = r2 =i, and r 1 =r2 =- 5. These designations correspond 

to choices made later in our simulations which are labelled 

+1 	 ++ 
0 (óö) and 0(T111). 

In extracting mass estimates from the above lattice 

operators, two important points of theirs should be noted. 

One was the neglect (see also below) of QQ annihilation 

terms (chapter 2), equivalent to working with four 

different quark flavours. The other was the inclusion of a 

different (bare) quark mass for the strange quark in (4.1). 

As to their findings, the major conclusion is the appearance 

of a bound state in the 0 channel, i.e., below the two pion 

mass threshold. But this only occurs at the largest value 

of the hopping parameter (k=l/m q) At lower k, no such 

feature is found, thus there is some unexplained 

"crossover" phenomenon. The masses of operators with r=i 

are always lower than those with and the mass of 

the O QQ meson appears higher than that of the 0. From 

this they claim that the meson (the r=i combination) is 

a genuine resonance and not some u-it "artifact" (i.e., the 

choice), and expect it to mix with the O QQ meson. 

The inverse lattice spacing, u- and s- quark hopping 

parameters, and the masses of the 4-quark states are 

found to be 

LOL Ht- V 

'u 	[4C 
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To deduce these masses, n quark propagators with hopping 

parameter k (the u, d quarks say) and 4-n s-quark 
U 

propagators with hopping parameters, k, were combined 

(ostensibly) in the same way as our calculation below (for 

equal mass quarks), and so we make no further comment 

here. The three hopping parameter values used were 

U I 	') 

	 c o., 

Then the masses were extracted at each k from the linear 

combination 

F 	
, 	

- 

with A, B fitting parameters. The quoted errors are given 

from dividing the configuration sample of 33 into 3 blocks 

of 11 configurations. 
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the gauge 

field configurations were calculated on a lattice whose 

parameters were chosen precisely to investigate the 

effects of the deconfinernent transition on hadron masses 

[Fucito et al 1983 and references therein]. One should also 

be aware that Bowler et al [1984] report the existence of 

finite size effects in QQ meson masses (e.g., Tr - Q degeneracy) 

at 13=6.0. These 33 configurations, each separated by 300 

sweeps, were constructed by a Metropolis algorithm (10 

hits per link) using the Wilson action at 13=6.0. The quark 

propagators were calculated in the quenched approximation 

with r=1. They noted in that work that t10 did not 

prove sufficient to reveal the "asymptotic" behaviour of 

the hadron masses. Apart, then, from explicitly 

demonstrating the effects of the metastable region on all 

masses, they attempted to control these effects by looking 

at the impact of those quark paths that "wind" around the 

lattice. We recall from chapter 2 that below the 

transition temperature, thermal Wilson loops are 

suppressed, but have a non-zero expectation value above T. 

This was shown to correspond to the breaking of the 

global Z(3) symmetry of the action. In the same way, above 

the transition, there is no suppression of quark paths, 

included in a hadron mass fit, that wrap around the 

lattice. Their main effort was to try and remove a 

significant fraction of these paths by averaging all the 

quark and hadron propagators over periodic and 

anti-periodic boundary conditions. This would account for 

those paths with an odd winding number. However, hadron 

masses calculated in this way were still a long way from 

the physical values. The it and the C, are almost 

degenerate, as are the nucleon, N, and the A. In addition 

they report a 1 8OO MeV, in poor agreement with the 

string tension esimates. 
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To summarise our observations on the work of Fucito et 

al [1983], we may say that it provides interesting evidence 

on the effects of the deconfinement transition on hadron 

masses, but that no worth can really be attached to their 

mass-estimates (and unusual behaviour) of the 4-quark 

mesons. A comprehensive examination of the 4-quark sector 

is still found wanting. This is what we now turn to. 

In section 4.2, we begin by defining 0 ++ ' 1 
+_ 1 

 2 
1-1•

4-quark 

operators from matrix products of QQ operators with Tr,Q 

quantum numbers. Our aim here will be to establish the 

systematics of the simulation and the significance of the 

method. Section 4.3 contains the details of this numerical 

calculation and a discussion on the implications of the 

results. We close in section 4.4 by then extending the 

analysis to a more general set of 4-quark operators and 

reporting on the results obtained. 

4.2 Definition of Q 
26 meson operators. 

A general 4-quark operator will have the form 

A 

(,, , 

	 r 	
/ 	 çL•5) 

Y' 

where we project out the propagating colour singlet by 

means of the tensors ö 
ab cd ad bc 
ô or ô 6 . Let all the primed 

labels and superscript "F" refer to the operator at the 

site n, and all unprimed labels and "I" refer to the 

space-time origin, 0. Then the 4-quark correlation function 

is 

<L 	' rr2. 
	

ili/ç. 	'a.' 	 r -C. 

	

& 1 		 frr 
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The 	expectation 	value 	is 	with 	respect 	to the 	functional 

integral 	over gauge 	and 	fermionic 	fields. 	Now 	by 	using 

(2.13), 	redefining r=r- 5 , 	and 	then 	dropping 	the 	tilde 	for 

clarity, 
I, 

— — 	v -. 
is '  

< -r,.. 	r. r 	c' 	r 
Fl 

p11 	

'' 	
' 	1 C çiç  

r F2 p 	r 
12 	 c 	b'.S 

CI 
— 	•" ' 

' r 
lsI 	øtI 	1 

r 	r C2  

	

 
y 	 d '  ç 

Fl £1 '4 	.'tb 1 	r' 	r JIL 
C, 

 o146 

E fl. C 1  . 

to an overall phase. In this, the 	trace 	is 	in colour space, 

defined 	by 	means of 	the 	above 	projection 	operators, 	and 

the 	subscript "Q" denotes 	the 	quenched 	average 	in 	the 

expectation value. 

Under the constraint of being an overall colour singlet 

at each lattice point, there are four ways that the colour 

contractions for each 4-quark state can be performed. By 

referring to figure I, we see that this corresponds to 

each "end" of the diagram being composed of either two 

colour singlets or two colour octets. The " two "  here 

refe-rs to a description in terms of Q2 "basis" states. The 

sense in which we mean "basis" will be defined below. 

Fig.t(a)-(d) are the contributions to the 4-quark 2-point 

connected operator in the case where we have only two 

quark flavours (each quark line is traced in flavour space) 

e.g., up and down, 1=2, (i.e., no quark annhilation graphs, so 

that there is no mixing with standard QQ mesons). We also 

calculate all operators in the approximation Fig.I (a) alone, 

that is, four different quark flavours. The equality of the 

quark mass parameters for each of the flavours appearing 

in these operators also imply the degeneracy in mass of all 

isospin states. This will be demonstrated in the actual 
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Figure 4.1 Diagrams contributing to the 1=2, two quark 

flavour case. 



simulation. 

From the structure of terms T 2 , T3  it is clear that if 

one were to Fierz transform the matrix indices on the rs 

there is an interpretation of these contributions also as 

products of terms like those in square brackets in 

The motivation for such a Fierz transformation is based on 

the particular index structure of the stored quark green 

functions [Bowler et al 1984]. By such a transformation 

we are then able to carry out, in one program, the full 

average (i.e., the four contributions T,aT 4, each of which 

consists of four colour combinations). This saves on CPU 

time. 

A subtlety that arises from the Fierz re-shuffle of 

Dirac indices is in the corresponding alteration of colour 

labels. From fig. I (b),(c), one sees that the 'crossed" lines 

carry spinor and colour labels. On r matrices, the Fierz 

transformation follows from the completeness of the 16 

matrices rt, i=1,..,16. These obey 

11 	p% 	
:. 

(4 

Thus we find 	 . 

r r' 	r 	Z ç. )  L1 r 	 c4 	"t.t 

Ii) 

The completeness of the set of 3x3 colour matrices 

requires the inclusion of the unit matrix, i.e., 

0A 	 - 

 

	

T( 	'2 

Thus, under the combined Fierz transformation of (4.2)  and 

(4.10) )  colour octet contributions to the expectation value 



carry an additional relative factor of 3/2. 

Having expressed all the contributions T 1-5r 4  as matrix 

products in the way of T 1  we may introduce the QQ "basis" 

functions. For example, from (4.7a) each of the square 

bracket terms carries a J given by the r matrix, which is 

identical at site n and 0. In the numerical simulation, we 

construct such objects, and and perform, using the colour 

singlet projection operators, the matrix multiplication with 

another such object. 

As stated earlier, this preliminary (and section 3) 

investigation of multi-quark mesons will employ only it-

and Q-meson operators as our QQ basis operators. Loosely, 

we must be guided by the lattice behaviour of it and g QQ 

meson operators. These give the "best" mass estimates 

from a statistical point of view and are found to have the 

largest propagator signals (see Bowler et al [1983, 1984 ]). 

This will be of relevance when one recognises that even 

some QQ mesons and QQQ baryons operators are found to 

have small signals. We want to maximise the 

possibility of achieving good mass estimates for all the 

4Tquark states considered but will have cause later to 

note that problems with some of the propagator signals do 

still arise. 

So we choose to use initially as Q 2Q 2  operators, the 

following: 

O(iTlT 	44-rç 4 
(p = 	'1 4• 
(T) 	 ," 	4 

One cannot construct a 1 ++ from 2 similar lattice operators 
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(carrying the same representation of the rotation group; 

symmetric under particle interchange), the only other 

possible combination using TI and @ operators is the 

which we have investigated. Parenthetically, we may note 

that, as discussed by Jaffe [1977a,b], the spin 2 4-quark 

meson will either fall apart into two rhos or into two 

pions in a relative D-wave. Although we construct the 

spin 2 via - operators, one might then expect to see two 

TTS in the final analysis, if that combination with the 

inclusion of the D-wave kinetic energy is lighter than 2m. 

4.3 Numerical Results 

We use the standard Wilson action [Wilson 1974, 1977, 

Bhanot and Creutz 1981, Bhanot 1982] for gauge and 

fermionic sectors, generating the gauge configurations via 

the Metropolis algorithm [Bowler et al 1983, 1984], and the 

quark green functions (for Wilson fermions) by a relaxation 

routine. 

One combines the quark green functions (propagating a 

quark from the origin to any site n) to form the QQ "basis" 

functions, as described in section (4.2). The trace over 

colour and spin labels is then performed for the 4-quark 

operator suitably defined as a matrix product of these QQ 

operators and the result is averaged over all 

configurations at each of the three quark mass parameter 

values. The mass of the lowest-lying state in the 

spectrum of each 4-quark operator is estimated from the 

smaller argument of a two-exponential fit to the the 

resultant propagator. Finally, the 4-quark meson mass is 

deduced from a linear extrapolation (in m ) to where the 
q 

pion (mass) 2  vanishes (the critical value of the hopping 

parameter, k, where chiral symmetry is restored and 
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spontaneously broken). Physical masses (in MeV) are found 

by setting the scale with the g mass. 

The 	simulation 	was 	performed 	at 	3 	hopping 	parameter 

values 	(k=1 /2m ): 	 k=0.1625; 	0.1575; 	0.1520 	with 16 q 
configurations 	per m . 	 Runs were 	performed 	at 13=5.7 (i.e., q  
solely 	in 	the 	fundamental 	representation 	of 	the gauge 

action) 	on 	a 	8 3x16 	lattice, 	periodic 	in 	space, . with fixed 

time 	boundaries. 	Statistical 	errors 	were 	calculated from 

the 	spread in mass 	estimates on 	4 successive blocks of 	4 

configurations. 	As noted previously, for the Q 2Q 2  mesons an 

additional 	improvement 	in 	statistics 	was 	available from 

averaging 	the 	4 	possible 	colour 	combinations. The 

calculations 	were 	performed 	on 	an 	I.C.L Distributed Array 

Processor (DAP) at Edinburgh. 

Details on the configuration and quark green function 

calculations are reported in Bowler et al [1984], but we 

would like to note, for completeness, a few of the more 

important points. Firstly, in generating the gauge field 

configurations, 1O 4  lattice sweeps were allowed for 

equilibration and each of the 16 resulting configurations 

were separated by 2400 lattice sweeps. All matrix 

multiplies on the gauge fields and in the quark propagators 

were done in 24 bit arithmetic, sufficiently accurate for 

the problem at hand. The 8 3x16 lattice itself was 

constructed from two identical copies of an 8 lattice, the 

extension being in the time direction (see appendix for a 

discussion on the DAP). In terms of the DAP software 

features, the 8 4 
structure is mapped on to the 64 2 array 

of processors by means of four logical masks (appendix). 

The extension of the lattice to 16 time steps is suggested 

from the fact that the optimised Gauss-Seidel algorithm 

for the quark propagator connects even to odd sites (and 

vice versa). That is, the routine [Hamber and Parisi 1981, 
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Weingarten 1982] with covariant derivative 	and 

relaxation parameter £ 

.L-  

( 	 C('1°' - E...ç c (i,o ) 4 ell 

reduces to, at the 1, 1+1 step, 
(C 

(I - L , ) C. 	- 	 4 
o44. 

OAA 	
(t—tG044 

V4 ' 

where 	one evaluates 	(4.13a) first, 	and then 	(413b) 	(with 

the origin an even site). 	The boundary conditions 	used in 

our work were 	periodic 	in space, 	and fixed 	in 	time. 	An 

investigation by 	Bowler 	et al 	[1984] into 	varying 	these 

conditions led to only a 	1-2% effect in the propagators. 

A fairly heavy usage of host CPU time resulted from the 

program details, given that each time-slice green function 

has to be transferred from disc to DAP store, repeated for 

each choice of r. This led to some restraint on the 

number of 4-quark mesons that were investigated. It also 

precluded adding, in general, Fierz re-arranged terms for 

the vector and tensor states; this would have required 

order(16 2) additional calculations for each operator. For 

the particular case of the 0 ++, we report below on a test 

of the expected degeneracy in mass between 2-qf and 4 - cif 

simulation. 

In 	order 	to 	check 	the 	program, 	we calculated 	QQ 	meson 

masses 	at 	each 	of the 	three quark 	mass 	values, 	and 

compared with Bowler et 	al 	[1984]. At the lowest quark 

mass, the quark green functions were precisely 	those used 

in 	the 	simulation 	of Bowler et al. At the 	intermediate 

value, corresponding 	to a value used by Bowler et al, and 

at 	the highest 	value, which did not correspond to 	one of 
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their parameters, the masses obtained from recalculated 

quark propagators, agreed with that analysis. In all these 

calculations, we used the same criterion of convergence in 

the Gauss-Seidel algorithm. 

We find for the critical value of the hopping parameter 

k, lattice and inverse lattice spacing, and m in lattice 

units 

(O-I2 t O.oeoC - 

t O•oOS \ 02 ( 01'3I  

O._ 	( t3O ± 	CO)  I4V60 

Mp O..* 	(o•o t o.0s2) 

These results are in good agreement with those of Bowler 

et al [1984] who find 

(OL6OOO 

'4°t 40MeV 

t 

by using five values of the hopping parameter, as opposed 

to the three values that we consider. We thus conclude 

that there is a roughly equivalent measure of significance 

in our results. 

Let us now turn to the 4-quark states of (4.1 I). We 

demonstrate in figures 2 and I the behaviour of the 

log-ratios for two of these mesons. Figure 2. is the 

constructed from two rho QQ operators (y-components) and 

is in the assumption of two quark flavours. Figure 3 

represents the same calculation in the 4 quark flavour 

assumption. We shall deal with the comparison of these 

graphs immediately below. Figures L  and c are included, at 
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this stage, 	merely for 	comparison sake, 	and represent 	the 

same 	plot 	in the 	cases 	of 	the 0 	and 1 	mesons. 	The 

detail 	on 	these 	graphs 	is 	discussed 	in section 	4.4. 	An 

overall impression that one gets 	from all these figures is 

the 	extent 	to 	which 	the 	propagators are 	generally 

"well-behaved" only up 	to time slices 9-10. The suggestion 

is that here the amplitudes on decaying exponentials 	are 

not 	large 	enough 	to 	allow 	the 	greater extrapolation 	in 

time, without higher statistics. 	This will be an important 

point 	when 	considering 	the 	success 	of 	this approach 	to 

4-quark meson masses. 

In table I, we give the results of the calculation, for 

the operators of (4.11), at the 3 quark mass values quoted. 

Comparing the 2 quark-flavours (2-qf), and the 4-quark 

flavours (4-qf) approximations, for the state, one sees 

immediately that the errors in the latter are significantly 

smaller than in the former although the results agree 

within those errors. It was found, moreover, that some 

colour combinations of components in the gg (Lorentz) inner 

product contributing to the 2-qf scalar propagator were 

comparable with the noise level: no masses could be 

extracted. All 4-qf operators, however, showed good, i.e., 

roughly constant, asymptotic behaviour. The fact that one 

cannot say a priori which operators coupling to a 

particular channel will perform "best" has also been found 

in e.g. nucleon mass measurements [Bowler et al 1984], 

where the unanticipated small residues measured for one 

particular operator denied a reliable mass estimate. Later, 

we will observe that this also affects mass measurements 

on the non-exotic 0 4-quark meson (in the 4-qf 

approximation). In any event, the larger errors in the 2-qf 

results arose specifically from the the greater spread in 

the mass estimates from the four colour sums over the 

no 
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statistically significant range of time steps. 

From now on, all results quoted will specifically ignore 

contributions from quark annihilation graphs which would 

lift the mass degeneracy in the 4-quark sector. 

In interpreting the data in the O 	channel, two 

possibilities arise. Firstly, one might discover a 4-quark 

bound state, below the mass of two pions. Secondly, the 

data might demonstrate a two pion cut in the spectrum of 

that operator. If it were assumed that two 

non-interacting pions would appear, then a fit of the data 

to the 2 boson propagator 

(P42 A 1 A4 -\1 	
% I,)  

instead of 

Y 4 \: a C 

would be appropriate [Goodyear 19841. In figure 6, we 

illustrate the extent to which the "modified" propagator 

form (4.1) would shift the mass estimates for the scalars. 

That is, the logarithms of (4.16) and (4J) are plotted, 

versus time slice, for a mass m 1 (n 4)=m 2(n 4)=2mL The actual 

O log propagator data clearly follows (4 11 ). However, in 

attempting a free fit to the logarithm of (4.16), it was 

found that the masses were decreased typically 12%-18% 

(essentially because of the t 2  factor) and hence 

m(0)/m<2. with the premise. The implication is, that on 

the lattice, the pions are interacting and we discuss below 

other evidence for this. Indeed, since the radii of QQ 

mesons are likely to be comparable with their separation 

on this size of lattice, (volume of space-time), one would 

expect some interaction, i.e., the simple exponential should 

be used. Finite size effects will be important here of 

qq 
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course, but the evidence is for a bound state at threshold. 

One can estimate the value of n where (4.16) and (4 L.) 

will agree within the typical quoted error, E l  i.e., 

m 1 (n4 )=m2 (n4 )+c. We find that, at the very least, an order 

of magnitude greater value of n 4  is required. 

The relative smallness of the volume of space-time 

investigated on the lattice thus allows us to probe 

effectively the internal structure of these 4-quark states. 

The "crossover" from bound state to 2ir cut, as observed by 

Fucito et al, does not occur. On larger lattices giving an 

equality between mass estimates from the two different 

propagators, one could not tell a "resonance" state from 

the 2-boson cut. For example, in the O channel, the two 

pions would presumably separate to the distances indicated 

(i.e., minimising the effective mass, see below) and perhaps 

all interaction or structure would be lost. The lattice 

size (i.e., infra-red cut-off) thus works in our favour and, 

as we shall see later, helps to establish resonances in 

most of the cases (as opposed to two particle "systems"). 

However, we should bear in mind that this is an artifact 

of the lattice itself. 

More evidence suggesting the interpretation of the 0++ 

as a two pion system is given in figure 1. The crucial 

observation here is that while the vanishing of m 2  as m 
IT 	 q 

m is found, the ratio of 0/ii masses is roughly constant 

for all m regardless of the initial QQ operators used to 
q 

construct the O. This point is to be contrasted strongly 

with the results of Fucito et al [1983]. Also included in 

this diagram, for comparisons sake, is the corresponding 

behaviour of the 1 , but not that of the 2
++ 
 state. In the 

latter case, we were unable to deduce a reliable mass 

estimate from the erratic time-dependent masses produced. 

The general tensor (i.e., not the traceless form of (4.11d) is 



3.0 	 31 	 32 	 3.3 
Mq 

Figure 4.- Mass ratios of O 4-quark operators and the 1 

(as an example of an operator that should not depend on 

m ) to the pion mass at all m 
IT 	 q 



dominated by the scalar signal; there is no significant spin 

two component. We are thus unable to say whether a 

bound state or two pions or two rhos appear in the 

"asymptotic' region. Bag model calculations [Jaffe 1977a,b] 

however do not suggest spin 2 Q 2Q 2  lying much below 2 GeV, 

whereas most of the "interesting physics" is in spin zero 

and one mesons around 1-2 GeV. It would be, of course, 

possible to consider more general operator constructions 

coupling to 

Fig.g portrays the (mass) 2  of the calculated O(Trw), O() 

and 1(TrQ) operators, and all but the 1' (included here 

again simply to highlight this observation) show a good 

linear fit. Table 2 correspondingly gives values for the 

(mass) 2  at m from a least-squares analysis. 

Of the emerging dynamical picture of two pions on the 

lattice, The major conclusion has to be that even if a 

O had been successfully constructed (at the space-time 

origin), 2ir appears in the "asymptotic" region, indicating 

that the 	simply falls apart. 	However, when the 

evaluation of the "effective" mass of the rest-frame 

propagator is made, we deal in this case with the 

rest-frame of the system, not that of a single particle (or 

4-quark resonance), as in QQ calculations. In other words, 

one should expect a 3-momentum contribution to the 

effective mass. Thus we measure for each pion 

k(" 1 '1 

( 	j 

where k(n 4 ) is the pion 3-momentum. Indeed, the O/ri 

mass ratio shows a statistically significant increase over 

the (particle) rest-frame value of 1 . Table 3 details the 

contribution to the total energy (assumed to be due to a 
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Figure 4.8 Plot of (mass) 2  of the O 	(and the 1 	again) to 

indicate the pion-like" behaviour of those scalar states. 



operator (mass) 2  

04+(rr) - O'O3 0-1 515  

0. 141 - 

o 0- 111 .. 	 0•101 

- 

i+"(p,rr) - 

0- 133'  . O.O1 
- 

Table 4.2. Values of (mass) 2 at the critical quark mass 

(vanishing m) for the relevant scalar operators (estimated 

by least squares). To illustrate the significance of the 

error bounds, both 1 and g are also included. 

m q  O(Tr) O(p) A k 

i I i 	14 2. 2 14 	23 tic 1 	69 

3 . I7Lj6 2.367 Sc i:U 1166 

,'gç 1.t1 ii 16L 	18 

Table 43 Estimation of the effects of non-zero momentum 

in the effective mass estimates for O(Trrr) and O(pp) (by 

taking hoAS the difference of the 4-quark masses from 2rn). 

For comparisons sake, these are translated into MeV at 

each 



non-zero momentum vector). The lattice itself necessarily 

provides an infra-red cut-off and the results for each of 

the 0++ (nn) and 0(QQ) operators should be compared with 

the smallest value of lattice k that is possible. For 

periodic spatial boundary conditions, the mass centres 

(assuming that we can adopt this point of view) of the 

two particles can at most be separated by four lattice 

spacings (total lattice spatial extent is eight lattice 

spacings), equivalent to an addition to the effective mass 

of each pion of approximately 380 MeV (compare again with 

table 3). 

In the C=-1 pseudo-vector channel, extrapolating linearly 

to the critical quark mass, we find 

0 O yv' 	 . 

= 	 t1Lo\ 
) 

r1.1 r,o 

This is compatible with the above comments because any 

possible interpretation of the 1 	as simply Tr+p using the 

respective particle masses plus any 3-momentum 

contribution does not adequately account for the quoted 

mass ratios. 

Two points are raised by the results of table 

(1) In the 0 channel, as m 
q  decreases, the fraction of the 

total energy due to the momentum contribution declines; a 

fact, we believe to be caused by the increased "overlap" of 

the two pion "bags" as k-) k, from below. Heuristically, 

we consider that particle radii, depending on quark 

propagation, will be roughly proportional to k t , where k is 

the hopping parameter arid 1, some power related to the 

"average" path-length. That is, smaller k implies a smaller 

hadron. Unsurprisingly, the best agreement with the 
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expected result obtains for O(ir'rr) at the highest quark 

mass value (the lowest k, where the pions are, in some 

sense, more localised). Qualitatively, we understand that 

attractive magnetic gluon interactions will tend to reduce 

the interaction energy, the scale of which will depend on 

the degree of "overlap". Note that in this lattice scheme, 

in contrast to the conventional MIT bag-model, there will 

be no rigid constraint that the gluon flux or quark fields 

vanish at some nominal bag boundary, leading to the 

possibility of interactions between "leaky" bags. 

We stress however, that this result is an artifact of 

working with an infra-red cut-off; on larger lattices this 

effect would presumably be absent. 

(2) The consistent, difference of k(t)/m(t) between 0(irir) 

and 0(Qg) for all m is due, we believe, to finite-size 

effects derived from the two rho operators in the 0() 

definition. Because of this, there is no real expectation 

that the value of k 
iT 
(t) should be of the order of 380 MeV. 

Note, however, that the reasonably consistent difference in 

the estimates of the lattice k(t) between the 0 4'(TrTr) and 

O() operators is suggestive of finite size effect, which, 

importantly, act in a direction opposite to the supposed 

residual gluon interactions. 

The addition of some 760MeV (the relative 3-momentum 

contribution) to the mass of the two pions, means that 

the next pole in the spectrum of the operator, possibly 

a 4-quark resonance, must be heavier by at least this 

amount (n.b., lattice 3-momentum is not a continuous 

variable). From the expected degeneracy of I=0,..,I=2 

4-quark mesons, one should contrast these 0 1-4-  
results with 

Jaffess corresponding result [1977a,b] of (1150*50) MeV (the 

36-dimensional flavour representation). This is comfortably 
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greater than the '760 MeV addition to 2 m u. This value 

also suggests why the 1 meson does not fall apart into 

ir+ ('900 MeV). 

The results of this work indicate no real agreement 

with that of Fucito et al [1983]. In the O 4-quark 

sector, all masses lie above that of 2m 
TI 

We have shown 

that the choice of the r matrix structure, i.e., the QQ 

operator basis, is irrelevant in that the extrapolated 

(mass) 2  of the resulting 4-quark operator vanishes as k-> k, 

and we would expect that therefore the comparison of 

r=r2=i, their e operator, and the mr operator would lead 

to an identical result. Both operators must couple to the 

lowest pole in the spectrum of the O operator, as we 

have found. Their results may be an effect of the 6 3 x10 

lattice they have been using and, we stress that at =6.0, 

one must be wary of the proximity to the deconfinement 

transition. 

There is no reason, of course, to expect accurate 

estimates of the attractive gluon interaction derived from 

the data because of the finite size effects if difficulty is 

found in putting one meson into the given lattice volume, 

then problems are virtually guaranteed for two species. 

Moreover, "mirror reflections" (wrap-around effects due to 

the periodic boundary conditions) will affect (probably 

greatly) any attempted estimate of the gluon "potential" in 

comparison with that in the continuum. 

4.4 Masses of other low-spin states 

The results of sections 2 and 3 suggest that significant 

measurements on the 4-quark spectrum are feasible on this 



size of lattice, and that we must take the lattice IR 

cut-off into account when considering any other states. 

The construction of, and mass calculation from, other 

lattice mesons can readily be accomplished using the J 
PC of 

more general QQ "basis" operators (quark bilinears) listed in 

table 4. 

Numerical simulations with these were entirely similar 

to that described in previous sections, involving the same 

gauge configurations and hopping parameter values. 

From all possible combinations of QQ operators in table 

we selected the following as 4-quark operators (where 

the QQ basis functions are enclosed in brackets and ? 

represents the (unobserved quark model exotic) O QQ 

operator) 

O 	(tT ' ; O(c \ ; 0t( 6,2 ') , 0-- (tt1 '; I" (A; V 4 (A 1 1T 

We comment on a number of points arising from this 

selection. Firstly, wishing to minimise the number of 

calculations performed we chose, where possible, only it, ó 

QQ "basis" operators. One would expect however that all 

operators with the same quantum numbers should couple to 

the same state (the lowest mass pole in the spectrum). 

The particular set of operators chosen represents an 

attempt to minimise CPU time, and, for example, no attempt 

was made to investigate the non-exotic 1 4-quark meson. 

The second point, which in this case should be emphasised, 

is that 0, 0, 1' are all exotic mesons, and so are 

particularly interesting. 

It is, perhaps, noteworthy that in comparison to the 

sole use of it, p operators, most of these more general 
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I ± -1-  A 

Table 44 The 
PC 

 J and qq meson identification of the 16 qq 

"basis" operators. 



propagator signals vanished into noise some 2-3 time steps 

earlier. The use of the 0 QQ basis operator may have 

lead one to anticipate statistical problems in the analysis 

given that it has no corresponding quark model QQ meson 

state. However, we obtained results which were 

statistically as significant as those of any other operator. 

Even though it was unavoidable in the one case of the 0 

4-quark meson, its use is doubly significant in that it 

closes any possible "fall-apart" channel to two mesons 

involving that 0' QQ lattice operator. 

Let us now review the results obtained in the 

simulation with firstly the data for the 0 (to complete 

that discussion), and then the other 4-quark states. 

(A) O(öö): We emphasised the necessity of exposing the 

21T "cut" in any calculation of 0, arising simply from the 

lightness of the pion (the approximate Goldstone boson of 

chiral symmetry breaking). The lowest 0 4-quark 

resonance calculated by Jaffe [1977a,b] was some 400 MeV 

heavier than m(2ii), though more typical masses (which we 

must compare with in our approximation) were 700 MeV 

higher than m(2ii). From this simulation, and including a 

non-zero lattice 3-momentum addition to the 'effective 

mass", we were able to suggest that any resonance in the 

channel had to be more massive than '(m(2u)+ 760) MeV 

(from assuming the dominance of a single exponential in the 

correlation function at "large" time). 

In table 6 we show the results of the mass calculations 

for 	both the 	0(66) and all the 	other states of 	(4.20), all 

m. 	We 	have 	not included, 	for 	the 	sake of 	clarity, 
q 

corresponding 	ratios of 	the 	0(8)to 	the 	pion mass (in 

figure 	) and the 0 (mass) 2  extrapolation (in figure 8), but 

simply 	present the 	data in table 	c instead. Typically the 
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error bounds are some 3/2-2 times greater on each of 

these individual measurements (e.g., each of the x,y,z 

components or each of the four possible colour 

contractions) than the results reported above in section 3. 

It may be significant that fitting, for example, the O(Q) 
- over the same range in time that the 0 "(66) is above 

noise, results in a mass for the former which is 

approximately 15% larger than the result we quoted 

earlier. If, and only if, one could ascribe roughly similar 

finite size effects to the 6 as to the @ then this might 

suggest that all the masses we report on in this section 

are (at most) too high by roughly this amount. This may 

be useful to bear in mind, but given the magnitude of the 

errors we quote, it is not too crucial that this effect may 

possibly be relevant. 

We may conclude from table 5 that all the O operators 

considered do indeed expose the same lowest " pole "  (i.e., 

0 as k-) k) and hence do not support Fucito et 

al [1983] in any respect. 

(B) Other exotic and crypto-exotic 4-quark masses: Some 

general comments about the relative magnitudes of the 

propagator signals and derived errors have already been 

mentioned, but there are two additional points that we 

feel that it is important to make. It will be remembered 

that masses for the vector 4-quark meson masses should, 

in general, be more reliable (due to averaging over the 

three possible spin states available). This is underscored 

by the results of 1. However, and more importantly, 

returning to a point in section 4.2, individual colour 

combinations of components contributing to both scalar and 

vector mesons may occasionally fail to give any mass 

estimate from the two-exponential fit. Essentially, one 

finds that the residues in the leading exponential are 
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orders 	of 	magnitude 	smaller 	than 	corresponding 

'well-behaved" operators. Since, in the 4-quark calculation, 

there is an average over the four possible colour 

contractions, usually at least one of the four operators 

gives a reliable fit. Only in the case of O at the lowest 

quark mass did all fail to provide a mass estimate. As a 

comparison, once again, one should contrast figures 4 and 

with figures 1  and 3 which contain only w, C, basis 

functions. Thus we are unable to ascribe any real 

significance to the O mass extrapolation to k based on 

only two values of the hopping parameter. 

Using once again the physical mass of the g we find for 

the measured operators, the masses 

(A 1440 	; 
(L4L 

• (tLLOtr-v; 	 ( 

All are above the two QQ meson (plus 3-momentum addition) 

thresholds. One may note that the O mass of (24OO±&) 

MeV with its large uncertainty, is, at best, no more than 

an order of magnitude estimate. 

Previously, we had occasion to compare the results in 

the O channel with the I=O,...,2 (degenerate) multiplet of 

Jaffe [1977a]. Here, a similar comparison of the the J=1 

multiplet finds (1450±50) MeV, whilst the lattice simulation 
320 	 250 records m(1)=(1640±) MeV and m(1)=(1500±0) MeV. One 

notes, incidently, that the lowest masses in the Bag Model 

[Jaffe 1977a] for vector 4-quark mesons are some 200 MeV 

below this (the 9-dimensional flavour multiplet). 

The appearance of 	low-mass vector 	exotic and 

crypto-exotic states suggests the probability of mixing 

1 n  



with QQ and QQG (hybrid) mesons. As noted by Barnes, Close 

and de Viron, [1983), one might have expected the mass of 

the 	hybrid to be substantially lower than that of the 

corresponding 4-quark exotic. 	Our calculation does not 

show this. 	Either a re-scaling of the MIT bag-model 

spectrum is required or mixing between the 4-quark and 

QQG wave functions is indicated. 

The masses of the scalars come out heavy, 2 GeV. It is 

unfortunate that the O meson gave such an unreliable 

mass. Some indication as to whether it lay in the region 

of the controversial i(1400), (probably a radially excited q) 

may have aided understanding of the features of that 

state. The in contrast to the O '", is within an energy 

region where its experimental discovery might be expected. 

As a comparison though, we rhight note that the spectrum 

of scalar hybrid exotics as derived from e.g., QCD sum rules 

[Govaerts, de Viron, Gusbin and Weyers 1984, Govaerts, 

Reinders and Weyers 1985] is over 3 GeV. 

The general feature of these calculations appear to be 

the expectation that non-exotic (e.g., 0 ++, 1 ++, ..) 4-quark 

mesons are not overly massive, as suggested by Jaffe 

[1977a], whilst the scalar exotics are () 2 GeV), and the 

vector mesons, in general (i.e., exotic or non-exotic), should 

be experimentally accessible. 
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CHAPTER 5 

Hybrid Mesons in Lattice OCD 

5.1 Introduction 

A lattice investigation of hybrid, i.e., qg configurations, 

must necessarily contend with non-locality in any gluon 

field operator definition. The fundamental variables in 

lattice gauge theory are the gauge link fields. In chapter 

2, we demonstrated that, in the continuum limit of the 

lattice field theory (in the notation of that chapter), one 

recovered from the logarithm of the plaquette operator, 

the field strength tensor i.e., 

U0 	 I 4 0 (a)) 	() 

where 

The physical gluon fields, i.e., the transverse magnetic or 

electric (TM or TE) modes are elements of this F 
PVI 

in a 

similar manner to the definition of physical photons in the 

Electromagnetic field strength. Thus we define 

(T 	.j 	- F 

	

L 	- 

(Tn) 	 e.L,. 

The lack of locality represented by (5.1) presents us 

with a number of problems. Firstly, of central importance 

to the lattice formulation of gauge theories, we must 

impose strict gauge transformation properties on any 

candidate gluon field at any arbitrary lattice site n. 

Secondly, the lattice F(n) must be uniquely associated 

with that site n, where the colour contraction with the 
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qq colour octet operator is to be performed. However, we 

recall that each link variable is associated with two 

lattice sites, and each plaquette with four. So, from the 

definition (5.1), we choose a combination of plaquette 

variables that enforce the above requirements. We 

consider the following path-ordered operator, traceless in 

colour and spin [Mandula, Zweig and Govaerts 1983] 

U13 - UQt ) - 

g tttL 

see figure 1. One can readily check that, as a- 0, in a 

similar manner to that undertaken in chapter 2, (5.4) 

reduces to the continuum field strength. 

For 	any non-local 	lattice 	operator, one 	should 

investigate the extent to which the lattice field carries 

over a unique J from the continuum.That this is relevant 

follows from considering the decomposition of 0(4) 

irreducible representations under the restriction to finite 

subgroups. In general, any irreducible representation of 

0(4) will decompose into several irreducible representations 

of the hypercubic lattice group (i.e., the symmetry group of 

the 4-dimensional cubic crystal lattice). In turn, these 

will decompose, again generally non-uniquely, into 

(3-dimensional) cubic lattice representations [Baake, 

Gemundes and Oedingen 1982, 1983; Birman and Chen 1971; 

Verstegen 1984]. In determining which lattice operators 

contribute to which 
JP  (continuum) states, one will then 

inevitably encounter mixing between, say, exotic and 

non-exotic quantum numbers. There is enough remaining 

symmetry in the hypercubic group, however, to be able to 

explicitly identify those lattice operators whose additional 

spin contributions are much higher (and presumably then 

also more massive). With these operators, one might hope 

that lattice Monte-Carlo studies would find them well 
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Figure 5.1 The definition of the lattice gluon field, i.e., eqn 

(5.4). 

F (n)=(1/81a  2)[gU1U2U3U4 - h.c.] 1  

Figure 5.2 The heavy qq potential with J PC  classified under 

the lattice rotation/ reflection group is extracted from the 

eigenvalues of this operator, traced in colour space. All 

"excursions" from the straight string are in space-like 

directions. 



exposed. 	One can also anticipate that by employing 

different irreducible lattice fields which contribute to the 

same the extent to which they overlap will measure 

the degree to which the lattice is close to the continuum. 

Thus, having defined our lattice gluon field, we now 

wish to explore the symmetries of the hypercubic lattice, 

We will then be able to define covariant lattice hybrid 

fields and measure their correlation functions. A 

discussion on the lattice symmetry will moreover provide 

us with a natural introduction to, and a better 

understanding of, the calculation of Griffiths, Michael and 

Rakow [1983]; Campbell, Griffiths, Michael and Rakow [1984] 

on the hybrid spectrum (for heavy quarks) which utilises 

various closed gauge link paths. This study and its 

particular problems, will be valuable as a comparison with 

the difficulties that are encountered in our later approach. 

5.2 The Hypercubic Lattice Group 

The symmetry group of the 4-dimensional hypercubic 

lattice is generated by w/2 rotations in each of the six 

lattice planes [Mandula et al 1983; Verstegen 1984]. There 

are 192 elements, grouped into 13 conjugacy classes. Thus 

there are 13 irreducible representations. In order to 

demonstrate clearly the spin content of each of these 

irreducible representations, we will use the isomorphism 

o 	( so (-t ® r,  u (-Z ) ) / Z' 	(S-S) 

Thus a rotation of 1T/2 in the 1-2 plane is such that 

[Mandula et al 1983; Verstegen 1984] 
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Any rotations that involve the 4-direction, by contrast, 

affect the SU(2)xSU(2) / Z 2  decomposition oppositely [Verstegen 

1984]. Thus 

Q  tr (  L1 	•.J 

These results follow most staightforwardly from the 

SU(2)xSU(2) algebra of N, Nt,  where N=J+K, Nt=  J-K and 

J=1 /2tR, K.=R0 . For completeness, note that [Verstegen 

1984] 
(Zir) 	I. 

I 	 T) 	k2i1) 

An alternative description of rotations in each of the 

lattice planes is in terms of a combination of permutation 

and reflection operations. A moments thought reveals that, 

for example, R 12(ir/2) has the same effect as a reflection, 

P2 , along the 2-axis followed by swapping axes 1 and 2, 

i.e., [Mandula et al 1983] 

. ' 	02.) P1 	 (51) 
I% % 	- 

We 	can 	use 	the permutation 	group S 	 to provide 	a 

labelling of some of the representations of the hypercubic 

group. 	There are 	5 such representations and we describe 

them by their Young Tableaux as 

FR 

with dimensions 1,1,2,3,3, respectively. Importantly, there 

are 4 irreducible representations of 0(4) which, under the 

restriction to the discrete subgroup, are also irreducible 

representations of the 4-dimensional lattice. Three of 

these are (1,0), (0,1), (1/2,1/2) (dimensions 3,3,4), in the 

SU(2)xSTJ(2) notation. From these we can construct three 



more irreducible representations 

(o' ,  ( 0,1) ,  ('Ii, 	 (oi) 	 ( . Il) 

The remaining representations are 6 and 8 dimensional 

[Mandula et al 1983; Verstegen 1984] of which the 8 is the 

remaining irreducible representation of 0(4). One may 

deduce the character table for the hypercubic group from 

the characters of S 4, SU(2) and also using the orthogonality 

relations 

n 
	 (s -  rt' 

c 
C- 

for the number of times a character appears in the r-th 

representation, and where N= the number of elements of 

the hypercubic group, n= the number of elements in the 

class C, X(C)=character of the class C. Also 

= 	? 	' 	•:i 	
( C 

may be useful, for spins j 1 , j2 . 

In order to extract fields with a prescribed J r', it is 

further necessary tar consider the decomposition of these 

representations under the cubic subgroup of the hypercubic 

group (which is a subgroup of 0(3)). This group has 24 

elements in 5 conjugacy classes. Again, one can label some 

of these irreducible representations by means of S which 

contains 

Li t I 	 Lj 
with dimension 1,1,2 respectively. There is an additional 

representation (d-m 3) called 1, and the final 

representation is obtained from 1 by means of 
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(S.i) 

and is called 1 [Mandula et al 1983; Johnson 19821. 

In tables 1 and 2, we list the decomposition of the 

irreducible representations of the hypercubic group under 

the restriction to the cubic subgroup and also the 0(3) 

spins which contribute to each conjugacy class [ Mandula 

et al 1983; Johnson 1982; Verstegen 1984]. Finally, there is 

a traditional labelling of these cubic group representations 

by means of the Octohedral symmetry group irreducible 

representations as 

I 	A1 	 -4) A 1 	 -c 	E 

(i6') 

t 
	

71 	 1 

If we think in terms of lattice 'string" variables, we 

may note the following. The notation of (5.16) is such 

that A,E,T correspond to spin 0,1 l about the lattice axis 

and that the subscript 1(2) denotes the symmetry 

(anti-symmetry) under the interchange of the ends of the 

"string" by a rotation of iT about a lattice axis. In each 

of these cases, one can also provide a further label g(u) 

depending on the symmetry (anti-symmetry) under the 

interchange of ends under inversion in the midpoint 

[Griffiths et al 1983]. It can be shown that 1(2) is related 

to the operation of charge conjugation and g(u) to the 

combined operation of CP on the lattice "string" [Griffiths 

et al 1983]. 
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Conjugacy Classes of the Hypercubic Lattice Rotation Group 

Typical Element 

Class Order Number SU(2) ® SU(2) /Z 2  
of Elts. Notation*  

1 1 1 I®! 

11 2 6 R 3(rr) ® R 3(7r) 

111 2 1 R3 (21r)81 

IV 4 12 

V 2 24 Ri(ir)R3(—-)®R 1 (yr)R,(—!5 

VI 4 12 

VII 3 32 

VIII 8 32 7r 	—3ir 

IX 8 24 R2(—-) ®R 5(—tr)R 2(-) 

X 8 24 R0(ir)R 5(-) ®R2(—-) 

XI 2 12 R 1 (i'r)®R2(Tr) 

XII 4 8 R(—ir)®J 

XIII 4 6 10R 3 (-7r) 

elements of SU(2) ® SU(2) of the form 
R(2rr) ® Rj (2ir) (any i.j) are equivalent 
to the identity in 0(4). 

Table 5.1 Symmetry properties of the hypercubic lattice 
group. 	t1 , L,l4 et J. [v 



Spin Content of Hypercubic Group Representations 

Hypercubic Group Cubic Group 	Contributant 
Representation 	Content 	Spin Representations 

1 1 0.4,8,... 

3.6.... 

EE 83 2,4.5,6,... 

1 (DO3 0.2.4.5,6,... 

2.3.4.5,6,... 

(1.0) 1 1.3,4,5,6,... 

(0,1) 1 1.3,4,5.6,... 

(1,0) 1 2.3,4,5,6,... 

(0,1) 1 2.3,4,5,6,... 

I (91 0.1,3.4.5,6,... 

2 24  2.3,4.5.6,... 

6 	 lel 	1,2,3,4,5,6,... 

B 	 eiei 	1.2,3,4,5,6,... 

Table 	5.2 0(3) 	spins contributing under 	the 	restriction 	to 
the cubic subgroup. 'Set 	Hs.ricLlii.. te aL [flJ 



5.3 Lattice Studies of Hybrid Mesons: The Heavy QQ Potential 

Griffiths et al [1983) and Campbell et al [1984] 

generalise the method of extracting the heavy quark 

potential from the expectation value of the Wilson loop 

operator, <TTU(n)>. In the above notation, this would 

correspond to the straight string (in the spacelike 

direction) with symmetry A 1  (see also Stack [1983]),  the 

"ground state". Qualitatively, one envisages fluctuations in 

this gluonic string and selects from all possible excursions 

fron the straight string (of a given length R), those that 

belong to given irreducible representations of the cubic 

group (given J). So, see figure 2, one traces in group 

space (SU(3)), the paths P at time zero (only spatially 

directed links) with paths P at time T [Griffiths et al 

1983; Campbell et al 1984]. These correlation functions 

C .  (R,T) will correspond to some eigenvalues, A 
a , 

of the 

appropriate transfer matrix [Kogut 1983], and one deduces, 

in the manner of chapter 2, the gluonic potential, for the 

symmetry cx, from 

_'/4 (R.,T) 

From one's intuitive expectation of the statistics of a 

computer simulation in LGT, only those paths which deviate 

least from the A 1  path are likely to be significant. In 

fact Griffiths et al [1983] do claim this and find it 

necessary to perform a matrix variational evaluation of 

the eigenvalues of the C(R,T). The data of Stack [1983] 

for the heavy quark potential is well reproduced but 

unfortunately that of the "excited" string states is 

strongly affected by the statistical fluctuations. Before 

displaying this, let us note a few of the important lattice 

parameters. In the SU(3) calculation (for SIJ(2) see Griffiths 

et al [1983]), an 8 
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lattice is adopted for <5.8 and a 12' lattice for P= 5.8 

and 6.0. It is not clear how many configurations were 

employed in this analysis, a fact that, if glueball 

simulations are a guide, is of considerable importance. In 

any event, paths up to 3 spatial lattice links were 

considered and the resulting energy eigenvalue estimated 

from that combination of gluonic strings which attenuates 

least up to 3 temporal spacings. Of importance here is 

their investigation of the expectation values at several 

values of p. One then necessarily has to rescale (i.e., 

normalise) in some manner the resulting data, this being 

achieved by use of the scaling form (chapter 2), which 

should be applicable over some range in ft but almost 

cetainly not valid for <6.0 [Barbour et al 1985]. 

As such, 	we feel that 	it is 	more 	instructive to 	place 

the 	emphasis less on 	the 	numerical 	values obtained 

(although 	these are only 	fairly rough 	estimates anyway), 

and 	more 	on the specific 	features 	and 	the general 

characteristics of their calculation. 

The lowest excited energy eigenvalue obtained in the 

analysis of Griffiths et al corresponded to the E symmetry 

representation (an admixture of exotic and non-exotic 

quantum numbers). For heavy quarks, the Born-Oppenheimer 

approximation should be relevant and so the Schrodinger 

equation is solved in this potential field. The validity of 

this approach depends on the relative insignificance of the 

rotational and vibrational modes of the quarks in the 

potential as compared to the gluonic contribution [Griffiths 

et al 1983]. Figure 3, from figure 2 of Campbell et al 

[1984], displays the extent of the evidence they quote for 
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is the lowest gluonic excitation and the shaded 

region is the inference drawn by Campbell et al [1984] 
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the E potential. 	 the 

source of the linearly-rising part of the potential at 

larger deriveS from an 

earlier graph (figure 1 of Campbell et al [1984]) which is 

very flat at all hadronic lengths. H,*jtIe, one might 

expect the excited potential to always be bounded from 

below by the A ig 
 (ground) state. 

The limitations of their approach, however, are well 

exposed in this diagram. Evidently, one is unable to 

extend these results very far to the physically more 

interesting light-quark regime (see chapter 3). For 

completeness however, we note that the E potential is 

some 1 GeV above the ground state. In the more extensive 

study of the potential in the SU(2) gauge theory, Griffiths 

et al [1983] quote E U 
 800 MeV (above A ), and also Big "1 

19  

GeV, A vE B '1.25 GeV above. 
2u g 	2u 

Much of what we learn about the problems of this 

approach is related to those difficulties of the hybrid 

calculation we report below, and stem, perhaps 

unsurprisingly, from the employment of non-local operators 

on a finite lattice. However, this is an imaginative 

method which only fails to be significant from being 

restricted to heavy quarks. 

5.4 Hybrid Mesons on the 8 DAP lattice 

In our approach, we aim to simulate hybrid dynamics 

with light quarks (i.e., up and down) within the lattice 

volume. Essentially, we construct a qq operator in the 

adjoint representation of SU(3), entirely in the same way 

as for the fields of chapter 4. One then takes the trace 

of this operator with the "cloverleaf" gluon field we 

defined earlier to obtain the qqg colour singlet meson at 
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the lattice site n. 	In the continuum, Wilson (four 

component) fermions transform as (1/2,0)0(0,1/2) (in the 

SU(2) notation) under 0(4). This representation is 

irreducible under the hypercubic lattice group also (see 

above). We also know that the (1 1 0) and (0,1) 

representations (containing F(x)) of 0(4) are irreducible 

with respect to the lattice group. Thus we can write 

down continuum hybrid fields as in table 3 from which we 

extract the covariant lattice combinations. Note that the 
jPC of all the possible fermion bilinears was detailed in 

chapter 4, and that, in addition, 

.::.PC. 	( E) 
(ç. 

r 

In 	table 	3, 	we 	have 	also explicitly 	identified 	those 

operators 	which 	couple 	to 	exotic 	channels. 	The 	lattice 

covariant fields for the 0 	and the 1 	exotic mesons have 

been 	constructed 	by 	Mandula 	[1983]. 	The 	results 	are, 	in 

the notation of table 3 for the A , V , T 	(and where F 
W 	p 	pv 	 pv 

is the field strength tensor) 

= 	A" 	
; 

C  ''cr 	 (t) 

2 	t 

	

V. € - ?x F1..s VA - 	F 	V0.. 

Fq V0. 

3.. 	FTA+FA..,T 	(C) 

('.°)(°') 	I 	a.*e 	
; 

- 	PATA,,., 	(4) 

(s. q 

The next exotic spins contributing to these are J=4, and 

J=3 for the scalar and vector respectively. One can 

always, of course, alter the PC identification of these to 

obtain other, non-exotic, fields by means of the swaps A tj 

t-  V 1  T0 . (-) T. 1 . 
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Table 5.3 Identification of lattice hybrid operators in 

terms of the and F "subsystems". All entries in the 

table are implicitly expectation values with respect to the 

gauge action and the trace over colour and spin is 

understood. 



From table 3, we can, using (5..1), see the mixing of the 

continuum representations that occurs when covariant 

lattice operators are defined. 

In the spirit of chapter 4, let us note the implied 

colour and spin matrix ordering required to successfully 

combine the qq and gluon operators. The general form for 

a qj octet field with generic gamma matrix, rA,  is 

(-1: 1'' 	 (° 

The colour singlet hybrid operator is contained in 

i P . 	F 4 (r) 

where the dot product is in colour space. Lorentz indices 

have been suppressed for clarity (with all operators 

carrying such indices denoted by the superscript "A"). The 

two point correlation function that follows from this is 

(figure 4) 
I P 	b' 	 4 rz 

< ( 	 P1 4 F  T ( [ 	: (
v;)t1(o 

	

at 	4,j1' 	b '  

6e, b ) 

< 	'' r' 	c ' 	( no) F 	F 

(.t) 

in which the expectation value is with respect to the 

background gauge field, i.e., the "quenched" approximation. 

For a given hybrid, the correct J is obtained from the 

0(4) properties of the and the component of F, from 

table 3. One may discern from (5.22), the definition of the 

qq "basis" operator (i.e., of a given JPC) extensively 

employed in the study of 4-quark mesons. If now we look 

solely at the colour index structure of the product 

operator then by rewriting the quark propagators and gluon 
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Figure 5.4 A pictorial representation (in the notation) of 

equation (5.21, representing a generic hybrid propagator. 



fields in terms of real and imaginary parts, i.e., 

616 	 0 

oI 	
F F 	(i.\* 	 . 

	

) 	

) 

then the trace reads (in a condensed notation for clarity) 

'6-  106  

	

<
r, 616 o.

V 	+ 'JN 	 ) 	
(S•ZL) 

In this, there is an implicit sum to project out the 

zero-momentum state. Here, 

616 	A. 	 b 
D C) 

bb 
NJ U 

(Q'O 1  bb 

— 

#.* 

V 

- 

dI. 

— 

•. 

The advantage of this careful identification is that it 

allows one to understand the kinds of tests that can be 

imposed on the calculation. This is most important 

because, in the light of the results to be presented below, 

we must be able to correctly interpret the strengths of 

the method. As some obvious examples, we tried, and found 

satisfactory (with the unit matrices in colour space) 

' -i(o ') 	ii / 	• 	, 	-zi 

<. () 14 	r> Z <. 	 CO) 	
/ 0

)  — 	M (' t1*(0 )') 

where M(n) is the qq colour singlet meson with quantum 
A numbers dictated by r . 	By suitably reorganising the 

storage of the quark green functions and the gluon field 

components, one can check explicitly that the imaginary 

parts of the propagators vanish. One also sees that by 

letting, say, F(0)=1 (in colour and spin space), the overlap 

between hybrid and qq meson fields of, for example, the 

pion, can be estimated (recall chapter 3), from 

< o 	 O (t( > 
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We shall deal with this below. 

The organisation of the calculation was such that the 

gluon fields were constructed in a separate program from 

the main hybrid propagator program, through the 

requirements of memory storage in the DAP (see chapter 6 

and the appendix). The six planes of the field strength 

were computed from the gauge configurations by a well 

understood series of logical shifts and matrix multiplies 

which it is unnecessary to detail here. These 

"cloverleaves" were written to disc store where they were 

accessed by the main program. The determination of the 

qq "basis" operator was as discussed before (previous 

chapter) and, with due care exercised on the index 

sequence, the gluon " propagator "  was duly assembled. In 

order to ameliorate the storage limitations (even in three 

byte arithmetic), we constructed the program to calculate, 

at each time step, the product of the qq operator with 

(the maximum possible) four different planes of F. Thus 

we could also compute all the possible "cross-correlations" 

(as above, but for different JPC) <[qg](n)[q]( 0)> that arise 

from these. it is inevitable, given that one must set each 

rA separately in the "host" computer, that any actual data 

accumulation will be a laborious process unless one 

restricts the number of operators that are investigated. 

An 	additional 	check 	suggested 	by the 	necessity of 

reading 	large data files to and from DAP 	store, was the 

"alignment" of quark green functions and F(n). 	By this we 

mean 	that the 	original 	Gauss-Seidel algorithm is 

reconstructed using 	the 	"cloverleaves" and green functions 

to check the equality of the left- and right-hand sides of 

= 

4... 
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(r - rfl U 
O.-4. 

+ (l_+rA) 	Lf 

to the level of accuracy claimed in Bowler et al [1983, 

1984]. This was indeed found. 

All of the above detail is necessary to demonstrate that 

the results we now present are not the result of some 

programming error. This may have been a significant 

criticism in the light of those results. However, there is 

enough information to be extracted from the numerical 

simulations to suggest that program error is not the 

problem. We will demonstrate that substantial 

improvements in statistics are, in fact, the key to a 

reasonable comparison with the other methods (as outlined 

in chapter 3). 

The simulation was performed entirely analogously to 

that in chapter 4, so we may summarise, briefly, the values 

of the various parameters involved. We evaluated the 

expectation values of O, 1 -+  (dimension=8) and 

"cross-correlation" function as detailed above. Three 

values of the hopping parameter, k, were employed with 16 

gauge configurations for each of these ( as in chapter 4). 

The important quantities are those at the critical value of 

k, k, and may be found in equation (4.14 

In figures 5.5, 5.6 and 5.7 we demonstrate the behaviour 

of the various log-ratios 

123 



as a function of the Euclidean time, n 4, at k=0.1625 (the 

highest). Immediately we note the scale of the statistical 

errors. Shown here are the standard errors in the mean 

over the 16 configurations. Moreover, the fluctuations 

appear to be such that no "large n 4 " limiting value of m(n 4) 

is approached. The data is barely compatible with a 

decaying exponential correction (at small n 
4 
) to the mass 

from a two-exponential fitting function. That is 

	

'4I'4I 	 - 	(,) 
- 

implies 
(M..*V%,) 1 v 

Ali ) C_ 	L0 II-   
( 

o 

+ 
( .I ) 

The fluctuations greatly affect the deduced m(n 4), not 

least in that it requires (experimentally) greater than of 

the order of eight configurations to trace the hybrid 

propagator signal out to the furthest time-steps. Thus 

the method of dividing the 16 configurations into four 

blocks of four and estimating the statistical error in the 

average mass from the spread in the masses calculated on 

each of the blocks separately was not sufficiently reliable. 

The method we adopted was to similarly calculate masses 

on two blocks of eight configurations and to corroborate 

this by a direct comparison with the statistical errors 

arising from the log-ratio plots themselves (at each k, see, 

for example figure 5.5 et seq). In a high statistics 

investigation one would not regard this method of 

evaluating the errors as particularly satisfactory. 

However in this analysis we have been keen to establish 

that the overall method of extracting hybrid masses is 

valuable and so, for the moment, do not regard this as a 

critical point. Overall consistency, we feel, is important. 
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Figure 	5.5 Log-ratios, 	i.e., 	m(t)= 	ln(G(t)/G(t- 1)) versus 

time-slice in 	the 	(flavour 	non-singlet) 	case of the 	O 

hybrid 	exotic 	and 	01 	non-exotic 	at 	mq=3.0769. The errors 

quoted are the 	standard 	errors on the data. The absence 

of 	error bars 	indicates 	errors 	off 	the 	scale of 	the 

diagram, 	i.e., 	results 	commensurate 	with 	the 	noise in 	the 

propagator signal. 
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Moreover, given that the errors on individual data points 

range from 20%-50%, any resulting mass-estimates will be, 

in any event, very rough, order of magnitude claims. 

Figures 5.8 and 5.9 demonstrate the extent to which 

varying both the operator definitions and the sample of 

configurations affects (greatly) the resulting masses and 

propagators. The first of these is a comparison with the 

8 dimensional 1 field. Here we plot the log-ratios for 

only the space-like components of (5.1 1 b) (but which itself 

is covariant in the continuum). The errors are 

significantly larger. One may also think of this as merely 

failing to diagonalise the corresponding matrix of 

propagators which would here include the other, time-like, 

components. It serves to show the worth of considering 

as many operators as possible that couple to a given 

channel. That this should be useful also follows from 

considering the improvement in the mass of the qq Q-meson 

when averaged over the three vector components instead 

of just p or g  or Q, say. Figure 5.9 clearly shows the 

deterioration in the (log-ratio) signal that results from 

restricting the number of configurations; here only four 

configurations are used. 

We can summarize our interpretation of the error 

bounds by pointing out the necessity for high statistics in 

the form of much more extensive sets of gauge 

configurations and we may also add the probable worth of 

including more data points (i.e., k-values). 

In table 5.4 we have compiled the estimates for the 

various particle masses along with the extrapolated 

results (by least squares) to m=2.944±O.0l4 (see chapter 4). 
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Note the absence of any conclusions on the O 

"cross-correlation" function. By referring to fig. 5.7 it is 

clear that no significant signal is detectable beyond one 

time-step from the space-time origin. It would appear 

probable that only by averaging this "crossed" propagator 

over all possible starting positions for the quark 

propagator, i.e., incorporating the fluctuations in the gluon 

field as defined at each "new" origin, can any improvement 

be anticipated. To a lesser extent some improvement in 

hybrid statistics themselves could be forthcoming from this 

method. 

The main conclusions that we may draw from figure 5.10 

and table 5.4 are the following. Such are the scales of 

the errors we report that we may only (just) be able to 

make a rough assessment of 2 GeV as the characteristic 

scale of this part of the Hybrid spectrum. In fact, the 

extrapolated O is far too small (i.e., from the report in 

chapter 3), whilst the is more massive than expected 

and the 0' perhaps somewhat light. Since the typical 

error here is itself greater than about 2 GeV, there is 

obviously little that can be stated uncontroversially. 

Certainly one expects the fluctuation in the gluon field to 

be more important than that in the quark propagator, if 

the studies in glueballs are any guide, but we may also 

note a slight increase in the statistical errors in the 

hybrid masses as one moves away from the physical region, 

i.e., when k<<k . This could be indicative of the need to 
C 

remain close to the "physical" quark mass. If we add in 

the previous observation that no "large-n 4" constancy of 

log-ratios is found (mass-fits to, say, two-exponential 

propagators are decidedly more reliable in such a regime, 

i.e., equation (5.31) where m 1 (n4 ) is the dominant mass at 

large n), we can see the need to consider bigger lattices 

126 



(e.g., 16 ') with gauge configurations closer to the 

renormalised trajectory, 6e-i 	 A. &L 	%.b%4t )- faq. 

It 	may be 	encouraging 	that 	a 	scale 	of 	2 	GeV 	is 	not 

greatly at variance with other calculations (chapter 3), but 

we should not over-emphasise 	this point. 	It is clear that 

substantial 	improvements 	in 	the 	mechanics 	of 	the 

calculation are 	required 	and 	that these 	should really 	be 

based 	on larger 	lattices, 	where, 	if only 	to 	minimise 	the 

effect of the inherent non-locality of the gluon 	operator, 

we 	should attempt 	to 	improve 	the 	agreement 	of 	the 

lattice action as an approximation to the continuum. 	Then 

it 	will 	be important to include the various improvements 

suggested above, Viz: more configurations; different lattice 

operators; more 	values 	of 	k; 	and 	varying 	the 	space-time 

origin. 	However, it 	is 	vital, 	in 	the 	light 	of 	the 	lack 	of 

asymptotic scaling 	found 	by 	Barbour 	et 	al 	[1985], 	to 

explore these results as a function of P. 

It appears, however, that some positive result can be 

taken from these calculations. The improvements that we 

can suggest should not obscure the fact that, from the 

dynamical point of view, lattice hybrid mesons with a 

relatively low mass-scale are, even within this study, to 

be expected. It remains to incorporate some or all of 

these suggestions to improve on the estimates found 

within Bag-Model or Sum-Rule calculations. 

127 



CHAPTER 6 

Summary and Conclusions 

QCD has two qualities that are particularly relevant to 

the work presented in this thesis. Firstly, the 

non-perturbative features of the theory are, as we 

discussed in chapters 1 and 2, crucial in providing both 

"long-range" confinement and dynamical mass generation for 

hadrons. The physically interesting regime, the confinement 

scale, denies the value of a perturbation expansion which 

necessaril' cannot include the important (non-perturbative) 

field fluctuations. However, an effective and 

computationally efficient method is afforded by the lattice 

regularisation, a point detailed at length in the second 

chapter. We saw how lattice QCD possesses a range of 

pertinent features, from a relatively straightforward 

strong coupling expansion to an (increasingly) acceptable 

hadronic spectrum. 

The second quality QCD possesses which is relevant here 

is the additional, colour, degree of freedom. The 

non-relativistic Quark Model, under the overall constraint 

that physical states are colour singlets, is readily 

generalised to include multi-quark and quark-gluon 

composite hadrons. Importantly though, up to the present 

time no such hadrons have been experimentally detected. 

Thus one must attempt to understand the dynamical 

mechanisms controlling or even inhibiting their production. 

In chapter 3 we took up this point and discussed the 

extent to which it has hitherto been possible to calculate 

the spectrum of such states. We concentrated on the 

mesonic sector and detailed three methods; operator 

inequalities, QCD Sum Rules and the MIT Bag Model. More 

emphasis was placed on the latter two given that they 
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were able to yield explicit mass estimates rather than 

just overall bounds on the spectrum. In both Sum Rule and 

Bag Model approaches one typically performs an O() 

perturbative calculation (at high momentum exchange) but 

attempts to include the "long-distance" (low momentum) 

non-perturbative aspects in radically different ways. 

Whilst the Bag Model imposes overall confinement by a 

single term, the "bag pressure", Sum Rules (i.e., the 

operator product expansion) give, in principle, much greater 

control over the spectrum through including explicitly the 

fermionic, gluonic and mixed condensates which are 

non-vanishing in the non-perturbative vacuum. In addition, 

this method also shares with the lattice transcription the 

feature of directly relating the hadron spectrum to the 

fundamental QCD Lagrangian. 

In the absence of a definitive q 2q 2  or qqg candidate 

meson there is no guide to the extent to which the degree 

of corroboration that is found in the "conventional" 

spectrum is carried over to these new states. Indeed, the 

inherent complexity of even O(ci) calculations has 

restricted somewhat the range of states whose masses 

have been calculated. In particular, the 4-quark spectrum 

has, to our knowledge, only been attempted in the Bag 

Model. This disappointing lack of certainty in both 

4-quark and hybrid sectors is, of itself, suggestive of the 

value of a lattice simulation. This has been the major 

investigation of this thesis. 

Our calculation proceeded by evaluating the expectation 

values of appropriate lattice operators, as described in 

chapters 4 and 5. We comment firstly on the multi-quark 

simulation. The distinctive non-locality of gluon field (and 

resulting hybrid) operators will more naturally lead us on 

to discuss all our results within the context of the 
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present status of lattice QCD. Three major conclusions are 

to be drawn from our 4-quark investigations. Firstly we 

obtained mass estimates for all the scalar and vector 

exotic and crypto-exotic states with the exception, for 

reasons of the available computer time, of the 1 --

non-exotic meson. The results reveal the existence of 

low-mass (1-2 GeV) vector exotics but scalars more massive 

than about 2 GeV. Notably, and as we shall discuss 

immediately below, the bound we find on the mass of any 

true 4-quark meson in the 0 channel supports the current 

belief that the S
* 
 and 6 are not 4-quark mesons. 

A further two conclusions follow from the presence, in 

the 0+4  channel, of two pions (shown by the vanishing of 

the O "particle" mass as the quark mass was decreased to 

the critical value). That the two bosons were not freely 

propagating on the lattice arose from the inconsistency in 

the 2-pion "mass" that was obtained from a fit to the 

(free) two-boson propagator. It was demonstrated that 

the data was explainable by adding to 2m a 3-momentum 

contribution, k. On an 8 lattice with periodic boundary 

conditions, the lowest possible k (i.e., that found in the 

"large" n4  region) implied an addition to 2m of some 760
if 

MeV. Thus we deduced that, necessarily, any true 4-quark 

bound state must be at least of the order of 1040 MeV in 

mass. This feature of the finite lattice, the existence of 

an IR cut-off, will determine (depending, of course, on the 

value of the inverse lattice spacing) whether or not 

genuine 4-quark mesons are to be found or simply pairs of 

qq mesons. We note, for example, that on this lattice, in 

the channel, m 
IT Q 
+m was not deduced but rather a state 

more massive by some 730 MeV, only just within the limits 

imposed by the implied IR cut-off. 
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The final point is also a result of the finite lattice 

size. We noted that,, as the quark mass is reduced towards 

the critical region, the estimate of the 3-momentum 

contribution was pushed down relative to its expected 

value (on the basis of the above). This effect, we also 

noted, was in the opposite direction to the finite size 

effects deducible from using, e.g., g, 5, rather than ii, 

operators. We thus argued that this decrease was not 

only an artifact of the finite lattice but could be 

interpreted as the result of residual attractive gluon 

interactions (between lattice pions as they more closely 

approach, from below, their continuum "volumes"). 

In the Hybrid sector we have presented (at best) order 

of magnitude mass estimates for O, O and 1 mesons of 

around 2 GeV. As with the 4-quark states, this was 

achieved by using the appropriate lattice operators. The 

singlemost relevant consideration throughout this 

particular calculation is the statistical significance that 

can be attached to the results (in the light of the evident 

non-locality of the gluon field operator). Indeed, this was 

necessarily a concern at the outset. On an 8 lattice, the 

gluon operator (whose definition is here fixed by the 

requirement that it reduces, in the limit, to the continuum 

field strength) is a sizeable fraction of the lattice volume. 

With errors up to 50 on individual mass measurements (at 

each m ), this has been borne out. At the very least, 8 
q 

configurations prove to be necessary to extend the 

propagator signals out to the furthest time steps, with 16 

configurations representing a moderate improvement. 

Evidently, the mass estimates are rough, but at least 

result in a mass scale not wholly at odds with that 

obtained by other methods. However it must be said that 

at least part of the rationale for attempting this 
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calculation was to improve on those other approaches. We 

must therefore concentrate more on those avenues of 

improvement in which much greater accuracy might be 

achieved. 

Two areas for investigation are suggested. 	Firstly, 

there is the rather obvious remark that simulations over 

greater numbers of configurations (which was not possible 

during this work) with more values of the quark mass 

should be a basic requirement of further work. This would 

be particularly justified at the present time if no 

quantitative improvement in lattice "technology" were 

forthcoming. However, and this is the second point, larger 

lattices themselves, to minimise the non-locality of the 

gluon field, and gauge configurations which are closer to 

the renormalised trajectory, are likely to lead to 

increasing reliability. In common with glueball studies on 

the lattice, the hybrid calculation is undeniably more 

sensitive to the fluctuations present in the ensemble of 

gauge configurations. One should really regard this present 

calculation as a "first approximation" to the actual mass 

spectrum but which, encouragingly, demonstrates the value 

of the method. In addition, recent numerical evidence 

tends to suggest that the Wilson one-parameter action at 

=5.7 may not be close enough to A- renormalised 

trajectory (see Bowler et al [1985]) to make these 

investigations final. However, at least the existing 

software is readily adaptable. 

Finally though, the comprehensive study of lattice 

4-quark mesons does not, we feel, warrant further 

calculations in this area until 4-quark states are 

discovered, which disagree significantly with our estimates. 

Alternatively, more sophisticated lattice gauge and 

fermionic actions that reproduce more closely the observed 
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hadronic spectrum may also suggest a reappraisal. 

Certainly, much is likely to be forthcoming in the next few 

years. 

The lattice simulations we have presented demonstrate, 

(we stress) within the overall constraints of the method 

itself, the belief that QCD does support the existence of 

multi-quark and hybrid mesons. What is now required is 

the experimental detection of at least some of these 

states. 
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E,JPi 

The numerical simulations involving lattice QCD performed 

in this thesis were carried out on an ICL Distributed Array 

Processor (DAP). There are particular characteristics of 

the DAP architecture that make it well suited to these 

kinds of Monte Carlo calculations and in this section we 

would like to discuss some of the ways that one can 

readily "map a Lattice Gauge Theory model in a 

straightforward manner into DAP software. The key 

feature here is the machines' ability to process in a 

parallel fashion (i.e., perform simultaneous identical 

operations on) independant data sets assigned to individual 

processing elements within the computer memory. The 

efficacy of the actual structuring of the processing 

elements should become clearer below when we consider 

some specific examples taken from both the Metropolis and 

Gauss-Seidel algorithms for constructing gauge ensembles 

and quark green functions. 

The reader is directed to the review of Bowler [1983 and 

references 	therein] 	and also to the work of Hockney and 

Jessop 	[1983] 	where some consideration 	of 	the DAP's 

performance 	in 	comparison with 	other 	parallel and 

"pipelined" 	(e.g., 	CRAY-1, CYBER, etc) processors is made. 

The DAP is an array of 64x64 processing elements (PE's) 

each of 4kbits memory capacity with each PE stored on a 

single chip. The DAP uses only small-scale integration for 

these elements and this accounts in part for the modest 

cost of the computer. The total 2Mbytes memory space is 

also available as store to the ICL 2900 series mainframe 

system to which it is connected. In one additional 

respect, the DAP serves as an additional memory module for 

the "host" computer when not carrying DAP jobs. Access is 
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gained to the PE's through a Master Control Unit (MCU) 

which also performs simple (i.e., scalar-type FORTRAN, 

DO-loop control) operations in parallel-processing mode. In 

figure 1, we illustrate, in schematic form, the relation of 

the DAP to the "host" system. 

Each PE has, in addition to the input/output multiplexors, 

three 1-bit registers, an accumulator (Q), a carry store (C) 

and an "A"-register which allows increased programming 

control to select individual PE's for operation. This 

A-register "enables" the processor when the bit stored 

within it is "TRUE". The 4096 PE's are linked by row and 

column (figure 2) to their nearest neighbours. The 

geometry of the resulting assembly is labelled N, E, S, W, 

(compass points) with a prescription (set by the user) on 

whether planar or cyclic boundary conditions are enforced. 

The former defines a zero input at the edge of the array 

and the latter imposes periodicity in the four directions. 

Software features 

Communication between DAP and Host is facilitated by 

shared common blocks with the DAP called as a subroutine 

in the Host program (i.e., the object file run on the 2900 

machine). Once control is transferred to the DAP, processes 

are executed by means of a modified FORTRAN language, 

DAPFORTRAN. This implements efficiently the 

parallel-processing aspects of the system. Word lengths in 

DAPFORTRAN are 3-8 bytes for REAL-valued variables, 1-8 

byte INTEGER variables and LOGICAL variables, as in standard 

FORTRAN. In addition to FORTRAN scalars, the DAP can 

process as complete "entities" vector and matrix arrays of 

64 and 64x64 entries respectively. Although it is also 

possible to treat these objects as strings of scalar 

variables (in the sense of FORTRAN), the power of parallel 
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Figure A.1 A schematic illustration of the relation Of the 

DAP to the "host" ICL 2900 machine. 
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Figure A.2 The organisation of the processing elements 

(PE's) within the DAP. 



processing is demonstrated clearly even by the following 

simple example, which adds two 642  matrices at each PE 

simultaneously 

DIMENSION A( , ), B( , ), C( 	) 	 ( A - 0 
AB+C 

The DAP layout introduces two novel features into the 

associated software. The first is the capability to shift 

information stored in one (or more) PE to any other PE in 

the array. Consider the following 

DIMENSION A( , ), B( , ), C(  

A=B+SHNC(C, 4) 

which, see figure 3, defines A at each PE to be the sum of 

B at the same PE and the value of C at the PE four sites 

away to the "south". In general, one also has 

SHNC,SHEC,SHWC, for cyclic geometry and SHNP,SHEP,SHSP,SHWP 

for planar boundary conditions. One can also treat the 

matrices in "long-vector" mode, i.e., of length 4096 

elements, and shift entries left and right a specified 

number of sites by the commands SHLC,SHLP,SHRC,SHRP. 

The second major new feature of DAPFORTRAN is the use of 

A-register (see earlier) in each of the 4096 PE's to impose 

logical "masks" on the operation of the assembly of PE's. 

In particular, the combination of both shift function and 

built-in logical operations allow the construction of the 

complicated masks required to mount 4-dimensional lattice 

QCD in the DAP memory. Thus, 

LOGICAL LMASK(  

LMASK=ALTR(N) 
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Figure A.3 The effect of A= B+SHNC(C,4). To an arbitrary PE, 

indicated by the solid square, one adds the contents of B 

and the contents of C stored 4 PE "away to the south" 

(cross-hatched). 

Mlsffillm- 

WINE 

Figure A.4 A DAP logical mask: LMASK ALTR(1).LEQ.ALTC(1) 



is a system function which sets alternate N rows .FALSE. 

and N rows .TRUE. Using the analogous function for colomns 

of PE's, we can set up the "checkerboard" mask 

LMASK=ALTR( 1 ).LEQ.ALTC( 1) 	 ( 

which we illustrate in figure 4. Note that the action of 

this mask is to allow arithmetic functions to be carried 

out only at those PE's where LMASK=.TRUE. 

Finally, the MERGE command makes shift operations 

conditional upon the truth of some specified mask. So, for 

instance, 

)=MERGE(SHWC(X( , ),1),SHNC(Z( , ),6),LMASK) 	(4-fl 

assigns to Y at each PE either X( , ) shifted by one site 

to the "west" or Z( , ) shifted by six sites to the "north" 

depending on the truth of LMASK at that PE. 

DAP Algorithms for Lattice QCD 

Earlier in this thesis (chapter 4), we had occasion to 

discuss specific algorithms for the generation of ensembles 

of gauge configurations and the quark propagator. We now 

look at the explicit "mapping" of the 4-dimensional "volume" 

of space-time that represents the QCD vacuum onto the 

2-dimensional DAP array. From the 64x64 assembly of PE's 

we can identify an 8 four dimensional lattice by means of 

dividing up the 4096 sites into 64 blocks of 8x8 lattice 

sites. In figure 5 we indicate, for an arbitrary site n, the 

nearest neighbours that will be involved in calculations 

involving local field theories. Note that we will typically 

impose periodic boundary conditions in the 4 co-ordinate 

directions and so must incorporate the cyclical geometry 
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Figure A.5 For an arbitrary site (solid shading) the nearest 

neighbour PE in the four co-ordinate directions are as 

indicated (hatched shading). 

C' 7 

Figure A.6 A two dimensional subspace of the four 

dimensional lattice space-time. The bold-face arrows 

indicate those link variables that may be updated 

simultaneously whilst maintaining detailed balance. 



for the two directions that repeat within the 642  plane by 

means of appropriate logical masks. 

A subtlety that arises in generating the gauge 

configurations by means of some (e.g. Metropolis) algorithm 

is the necessity of maintaining detailed balance throughout. 

This reduces to some extent the efficiency of any parallel 

up-dating scheme in computing the change in the gauge 

action that arises from the selection of a "new" link 

variable. Recall that the gauge action depends on the 

elementary squares of the lattice and that the gauge 

fields are stored at the site from which they emanate in 

the four co-ordinate directions. It is only possible to 

test one link at a time whilst executing the algorithm if 

detailed balance is to be satisfied at all times. To 

maximise the efficiency of the program then, we label the 

sites of the lattice even and odd, e.g., U(n,) and U(n±p,p) 

repectively. One updates the even sub-lattice and then 

the odd sub-lattice. By referring to figure 6, we can see 

(for a two-dimensional slice of the 4-d space-time) that 

indeed only one link per plaquette is updated at any one 

time. For two sub-lattices, each with four link variables, 

we achieve a one in eight update efficiency. The mask 

that facilitates this process is given by 

LMASK=(ALTR(1 ).LEQ.ALTC( 1 )).LEQ.(ALTR(8).LEQ.ALTC(8)) (A-6) 

This actually provides us with the means to extend the 

lattice from 8 to 8 3x16, twice the length in the time 

direction. We noted in chapter 4 that the relaxation 

routine for the quark propagator connects even and odd 

sites of the lattice. One determines the "improved" 

approximation to G(n,p) on the even sub-lattice and then on 

the odd sub-lattice. Thus only half the PE's are needed at 

any stage of the iteration. The redundant PE's, whether 
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even or odd, are used to extend the lattice by copying the 

existing 8 configuration to those unused sites and update 

G 	or G 	respectively as if the lattice were larger by 
odd 	even 

that extent (because there are no dynamical fermion loops 

involved this does not feed back to the gauge 

configurations themselves). 

The simulations on the 4-quark and hybrid mesons used 

much of the software features that have been outlined 

above. In particular, the construction of the non-local 

gluon field operator utilised a complicated series of shift 

operations to "bring" the required link variable to the site 

where F(n) was to be defined (recall that the SU(3) 

interactions were localised there) and perform the matrix 

multiplies. However, there is no great gain to be made in 

understanding from discussing this in any further detail. 

For completeness though, we may note that the time-slice 

quark green functions G 66  (n,O) were stored in DAP memory 

over 48 3-byte planes. Each plane contained the green 

function information at the 8 lattice sites for all values 

of the colour label "a", by real and imaginary parts. 48 

planes were therefore necessary to store the 3 components 

of "b" and the 4x4 components of a and P. The use of 

shift and merge operations, in tandem with various logical 

masks, proved invaluable in performing the colour and spin 

summations (as detailed elsewhere). 
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