
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429712971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Neural Document Modeling and

Summarization

Yang Liu

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2020





Abstract

Document summarization is the task of automatically generating a shorter version

of a document or multiple documents while retaining the most important information.

The task has received much attention in the natural language processing community

due to its potential for various information access applications. Examples include tools

that digest textual content (e.g., news, social media, reviews), answer questions, or pro-

vide recommendations. Summarization approaches are dedicated to processing single

or multiple documents as well as creating extractive or abstractive summaries. In ex-

tractive summarization, summaries are formed by copying and concatenating the most

important spans (usually sentences) from the input text, while abstractive approaches

are able to generate summaries using words or phrases that are not in the original text.

A core module within summarization is how to represent documents and distill

information for downstream tasks (e.g., abstraction or extraction). Thanks to the pop-

ularity of neural network models and their ability to learn continuous representations,

many new systems have been proposed for document modeling and summarization in

recent years. This thesis investigates different approaches with neural network mod-

els to address the document summarization problem. We develop several novel neural

models considering extractive and abstractive approaches for both single-document

and multi-document scenarios.

We first investigate how to represent a single document with a randomly initial-

ized neural network. Contrary to previous approaches that ignore document structure

when encoding the input, we propose a structured attention mechanism, which can

impose a structural bias of document-level dependency trees when modeling a docu-

ment, generating more powerful document representations. We first apply this model

to the task of document classification, and subsequently to extractive single-document

summarization using an iterative refinement process to learn more complex tree struc-

tures. Experimental results on both tasks show that the structured attention mechanism

achieves competitive performance.

Very recently, pretrained language models have achieved great success on several

natural language understanding tasks by training large neural models on an enormous

corpus with a language modeling objective. These models learn rich contextual in-

formation and to some extent are able to learn the structure of the input text. While

summarization systems could in theory also benefit from pretrained language models,

there are some potential obstacles to applying these pretrained models to document
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summarization tasks. The second part of this thesis focuses on how to represent a sin-

gle document with pretrained language models. Beyond previous approaches that learn

solely from the summarization dataset, this thesis proposes a framework for using pre-

trained language models as encoders for both extractive and abstractive summarization.

The framework achieves state-of-the-art results on three datasets.

Finally, in the third part of this thesis, we move beyond single documents and ex-

plore approaches for using neural networks for summarizing multiple documents. We

analyze why the application of existing neural summarization models to this task is

challenging and develop a novel modeling framework. More concretely, we propose

a ranking-based pipeline and a hierarchical neural encoder for processing multiple in-

put documents. Experiments on a large-scale multi-document summarization dataset,

show that our system can achieve promising performance.
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Chapter 1

Introduction

The increasing availability of content on the Internet has changed the way people ac-

cessing information. The number of online documents is huge. In 2016, it is estimated

that Google search engine has indexed over 45 billion webpages (van den Bosch et al.,

2016). The sizable amount of information has led to the information overload prob-

lem (Feldman and Sanger, 2007). To fulfil the requirements of efficiently browsing

these documents and finding useful information, many challenges are proposed. How

to extract important information from one long document? How to identify related in-

formation from multiple documents? How to generate a human-readable summary that

contains important information? Document Summarization, the task of using comput-

ers to automatically generate a shortened but informative version of one or multiple

documents, is one core method to tackle these problems.

Radev et al. (2002b) formally defines a summary as:

A text that is produced from one or more texts, that conveys important
information in the original text(s), and that is no longer than half of the
original text(s) and usually, significantly less than that.

From this definition, we can deduce two main properties for a summary:

1. Being Informative: A summary should contain the most important information

of the original text(s).

2. Being Compressive: A summary should not contain redundant information, and

should be significantly shorter than the original text(s).

Using computers and programs to automatically generate summaries has been for-

mulated as the task of Document Summarization. Research on this topic has a long

history, starting from early frequency-based methods (Luhn, 1958; Baxendale, 1958)
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2 Chapter 1. Introduction

and feature-based machine learning methods (Aone et al., 1997; Lin, 1999; Jones et al.,

1999; Kupiec et al., 1999). Recently, neural network-based models have achieved

promising results on many Natural Language Processing (NLP) tasks (Collobert et al.,

2011; Devlin et al., 2019). In these neural network models, words are first mapped to

continuous vectors called word embeddings, and then processed by non-linear transfor-

mations. One advantage of neural networks is the flexibility of these models. Different

neural architectures can be designed for different tasks, and multiple neural network

layers can be stacked or combined, to form a large network with powerful expressiv-

ity. Gradient-descent based optimization methods are usually used to tune the network

parameters. Additionally, thanks to the encoder-decoder architecture (Bahdanau et al.,

2015), neural network models have shown impressive performance on language gen-

eration tasks like Machine Translation (Bahdanau et al., 2015), Image Captioning (Xu

et al., 2015) and Sentence Simplification (Zhang and Lapata, 2017). Their potential

to generate fluent and abstractive text has led to many advances in natural language

generation tasks and summarization is no exception. Because of these advantages, in

this thesis we will explore how to use neural networks to build and improve document

summarization systems.

1.1 History of Document Summarization

Document summarization can be classified into different subtasks by different fac-

tors (Jones et al., 1999). Following are two main factors:

• Single-document vs. Multi-document: This factor simply means the number of

input documents to the summarization system. Single-document summarization

is the task of generating a summary based on one input document, while in multi-

document summarization the input consists of multiple documents.

• Extractive vs. Abstractive: This factor concerns the form of the generated

summaries. Extractive summarization is the task of generating summaries by

selecting text spans (words, phrases or sentences) from the input document(s).

Abstractive summarization requires the summarizer to be capable of generating

novel text spans that did not appear in the input document(s).

In Figure1.1, we present examples of different types of the summarization task.

Starting from IBM’s first attempt to build a document summarization system in

1958 (Luhn, 1958), research on automatic document summarization has a long his-



1.1. History of Document Summarization 3

Input 

Single-document Multi-document 

Two police officers have sustained injuries after 
attempting to close down an enormous 1000-
person rave in Sydney's East. At about 10.30 pm 
on Saturday night, police received a number of 
complaints about a dangerously large party at an 
abandoned industrial area on McPherson Street in 
Botany. Police were forced to use capsicum spray 
on a number of the attendees and one officer had 
to have a piece of glass removed from his head 
after having a bottle thrown at him. The male 
officer was treated at the scene and later had a 
piece of glass removed from is head at the Prince 
of Wales Hospital. Most of the partygoers were 
moved from the scene relatively easily, but a 
number began to throw glass bottles, forcing 
police to resort to capsicum spray. A 26-year-old 
woman was arrested after she allegedly assaulted 
an officer. She is being interviewed by police at 
Botany Bay Police Station. A number of the 
partygoers were treated by ambulance 
paramedics for minor capsicum spray 
contamination. Police are currently investigating 
whether the party was advertised on social 
media.  

 

Article 1: The daughter of the founder of Chinese 
telecoms giant Huawei has been arrested in 
Canada and faces extradition to the United States. 
Meng Wanzhou, Huawei's chief financial officer and 
deputy chair, was arrested in Vancouver on 1 
December. Details of the arrest have not been 
released but the US has been investigating Huawei 
over possible violation of sanctions against Iran… 
Article 2: Beijing is calling for both Ottawa and 
Washington to clarify their reasons for the 
detention of Meng Wanzhou, the Chinese 
company’s global chief financial officer, who was 
arrested in Vancouver on Saturday and faces 
extradition to the US. Canada confirmed her 
detention on Wednesday night. A Chinese foreign 
ministry spokesman said on Thursday that Beijing 
had separately called on the US and Canada to 
“clarify the reasons for the detention” immediately 
and “immediately release the detained person”… 
Article 3: Canadian officials have arrested Meng 
Wanzhou, the chief financial officer and deputy 
chair of the board for the Chinese tech giant 
Huawei, CBC News has confirmed. According to a 
statement from the Department of Justice, Meng 
was arrested in Vancouver on Saturday and is 
being sought for extradition by the United States… 

Output 

Extractive Approach: Police were forced to use 
capsicum spray on a number of the attendees and 
one officer had to have a piece of glass removed 
from his head after having a bottle thrown at him. 
Police officers have shut down an enormous 1000 
rave on McPherson Street in Botany, Sydney.  
 
 
 
 
 
 
Abstractive Approach: Police were called to an 
abandoned industrial area in Sydney's east. They 
were forced to use capsicum spray on a number of 
the partygoers. One officer had to have a piece of 
glass removed from his head after having a bottle 
thrown at him. Police are investigating whether 
the party was advertised on social media. 

Extractive Approach: Meng Wanzhou, Huawei's 
chief financial officer and deputy chair, was 
arrested in Vancouver on 1 December.  A Chinese 
foreign ministry spokesman said on Thursday that 
Beijing had separately called on the US and 
Canada to “clarify the reasons for the detention” 
immediately and “immediately release the 
detained person”. According to a statement from 
the Department of Justice, Meng was arrested in 
Vancouver on Saturday and is being sought for 
extradition by the United States. 
 
Abstractive Approach: Police were called to an 
abandoned industrial area in Sydney's east. They 
were forced to use capsicum spray on a number of 
the partygoers. One officer had to have a piece of 
glass removed from his head after having a bottle 
thrown at him. Police are investigating whether 
the 

 

Figure 1.1: Examples of different types of summaries. The left input is for single-

document summarization, while the right is for multi-document summarization with

three different articles as input. The output shows both extractive and abstractive sum-

maries. The extractive summary selects important text spans from the original article

(marked in red), while the abstractive summary is more coherent with novel words and

phrases.
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tory. Early work on summarization involved frequency-based and rule-based methods.

In the 1990s, with the advent of machine learning techniques in NLP, a series of papers

were proposed to use statistical-based methods to produce document summaries and

many feature-based machine learning systems were developed (Aone et al., 1997; Lin,

1999; Jones et al., 1999; Kupiec et al., 1999). Graph-based methods have attracted

much attention in the beginning of the twenty-first century (Mihalcea and Tarau, 2004;

Erkan and Radev, 2004; Wan and Yang, 2008; Wan, 2008). Recently, with the success

of neural network-based models in multiple NLP tasks, neural network-based sum-

marizers have become the center of attention in the research community (Rush et al.,

2015; Cheng and Lapata, 2016; Nallapati et al., 2017; See et al., 2017; Paulus et al.,

2018; Gehrmann et al., 2018; Narayan et al., 2018a).

Early Work In 1958, in an attempt to reduce the overload of information in text data,

Hans Peter Luhn developed a program (Luhn, 1958) for scoring the importance of

sentences in scientific and technical documents. Luhn proposed the idea that the oc-

currence of some specific words in a sentence can indicate that this sentence is more

significant than others that do not contain these words. Luhn implemented several

rules to remove stop-words and non-content words from the documents, and measure

the importance of each sentence by counting the number of occurrences of the remain-

ing content words. All sentences were processed by his program and ranked by their

importance factors. The top-ranked sentences were then selected and concatenated to

form the summary of the input article.

Related work (Baxendale, 1958) found that the position of the sentence within

the document could be another inspiring feature for selecting important content. By

analyzing 200 paragraphs in the corpus, Baxendale found that most summary sentences

occur as the first or the last sentence of the paragraph. Based on this assumption, a

widely-used baseline method for modern summarization systems was developed: the

LEAD baseline that extracts the first several sentences of a document as the summary.

In 1969, Edmundson (1969) proposed the idea that instead of using one single

feature, several factors could jointly indicate the importance of a sentence within a

document. Four major features were identified :

1. The frequency of a word that appears in the article.

2. The position of a sentence in the article and in the section.

3. The number of words that also appear in the article title or the section heading.
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4. The frequency of some specific cue-words.

Edmundson applied a linear summation of these features to calculate the importance

score of each sentence. These four features have also been used by most machine-

learning based summarizers, and also in modern extractive summarization systems.

Another important contribution of Edmundson (1969) was the creation of a summa-

rization corpus consists of 400 document-summary pairs of scientific and technical

articles. 200 pairs were used to decide the weight of the linear summation, and the

other 200 pairs were used to evaluate system performance. The same schema sets the

direction for later development of machine learning based summarization systems and

has been employed by subsequent empirically-based research on document summa-

rization.

Feature-based Machine Learning Methods Kupiec et al. (1999) proposed a learning-

based method for extracting sentences from input documents as summaries. A naive-

Bayes classifier was implemented to identify whether a sentence should be included in

the summary or not. The feature set was an extended version of Edmundson (1969),

with two more features added: whether the length of a sentence is longer than a pre-

defined threshold and the presence of uppercase words. Experiments were done on

a corpus of scientific and technical documents, and the summarization results were

evaluated as a classification task, where each sentence in the reference summary was

matched to a sentence in the source document. Aone et al. (1997) developed the Dim-

Sum system with richer features for the summarization task. These novel features

included term frequency and inverse document frequency of words, the occurrence of

named-entities and phrases composed of two nouns. In Lin and Hovy (1997), the sen-

tence position feature was thoroughly analysed and proved to be very important for the

summarization task. In later work, Lin (1999) pointed out that the features should not

be learned individually for text summarization. Instead, he started to use a decision

tree classifier with an even richer feature set to extract summary sentences. Osborne

(2002) also proposed to model features jointly by using a maximum entropy classifier

and showed empirically that the system produced better summaries than a naive-Bayes

classifier.

From 2001 to 2002, the Document Understanding Conference (DUC), held by Na-

tional Institute of Standards and Technology, designed the task of single-document

news summarization. The task required a participating system to automatically gener-

ate a 100-word summary of a single news article. In this task, the LEAD baseline that
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extracts the first k sentences from a news article to form the summary was found to

be a surprisingly effective method despite its simplicity (Nenkova, 2005). Svore et al.

(2007) implemented a summarization system which learned features from an external

summarization corpus, in combination with a ranking based algorithm, successfully

outperforming the LEAD baseline with statistical significance on the DUC datasets.

From the years of 2007 to 2013, more machine learning methods for selecting words

or sentences were proposed, and more features were found useful for the summariza-

tion task. For selecting words, new features include proper nouns (Fattah and Ren,

2009), phrase structures and dependency structures (Woodsend and Lapata, 2010),

subjective words and phrases (Carenini et al., 2008), word co-occurrence (Liu et al.,

2009) and lexical similarity (Barrera and Verma, 2012). For selecting sentences, new

features include cue-phrases (Ferreira et al., 2013) and sentence centrality (Abuobieda

et al., 2012).

Graph-based Methods An impactful thread in the history of document summariza-

tion is the application of unsupervised graph-based methods. These methods are in-

fluenced by the PageRank algorithm. They theoretically assume that a document (or

multiple documents) can be represented as a graph, where each node is a text span

(usually is a sentence or a paragraph) and graph edges indicate the similarity between

the connected node pairs. Figure 1.2 presents an example graph representation of a

document. After normalizing the edge weights of the graph to a Markov chain (where

edge weights correspond to the probability of transitioning from one state to another),

PageRank-like algorithms can be applied on this graph to generate the probabilities

of staying at each node, which will converge to a stationary distribution after a few

iterations. These probabilities can be considered as the degree of centrality of each

node within this graph, indicating the importance of the corresponding text spans. An

example of document graph is shown in Figure 1.2. LexRank (Erkan and Radev, 2004)

and TextRank (Mihalcea and Tarau, 2004) were two early graph-based summarization

systems proposed with different ways of building the graph, where the former focuses

on multi-document summarization and the latter focuses on single-document summa-

rization. Many methods attempted to design different graph representations for the

summarization task. Wan and Xiao (2008) proposed to incorporate external cross-

document relationships of sentence pairs to build the graph for a single document.

Guinaudeau and Strube (2013) introduced a bipartite graph based on discourse enti-

ties. Parveen et al. (2015) designed a method for building a topical graph with Latent



1.1. History of Document Summarization 7

sentence 1

sentence 6
sentence 2

sentence 5 sentence 3

sentence 4

Figure 1.2: Example of a graph representation of a document consisting of six sen-

tences. The nodes are sentences, and the weights on the edges are similarity scores.

The thickness of lines indicates high or low similarity values. A threshold is applied to

remove edges with low scores.

Drichlet Allocation (Blei et al., 2003).

Neural-based Methods The success of neural network models in several Natural

Language Processing tasks including sentiment classification (Socher et al., 2013),

machine translation (Bahdanau et al., 2015) and syntactic parsing (Bowman et al.,

2016) has also led to the development of neural network-based summarization systems.

There are two major advantages of using neural network-based models for summariza-

tion. Firstly, the neural models eschew the need for expensive feature engineering, all

parameters can be trained by gradient descent algorithms and more flexible architec-

tures can be designed for representing the documents. Secondly, the neural models can

generate texts in a more fluent and abstractive way by framing the abstractive summa-

rization problem as a conditional language generation task.

Neural models usually consider extractive summarization as a sentence classifica-

tion problem: a neural encoder creates sentence representations and a classifier predicts

which sentences should be selected as summaries. SUMMARUNNER (Nallapati et al.,

2017) is one of the earliest neural approaches adopting an encoder based on Recur-

rent Neural Networks. REFRESH (Narayan et al., 2018b) is a reinforcement learning-

based system trained by globally optimizing the ROUGE (Lin, 2004) metric. More
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recent work achieved higher performance with more sophisticated neural structures.

LATENT (Zhang et al., 2018c) frames extractive summarization as a latent variable in-

ference problem; instead of maximizing the likelihood of “gold” standard labels, their

latent model directly maximizes the likelihood of human summaries given selected

sentences. BANDITSUM (Dong et al., 2018) presents a contextual bandit learning

method trained by reinforcement learning algorithms. NEUSUM (Zhou et al., 2018)

scores and selects sentences jointly. DEEPCHANNEL (Shi et al., 2019) applies a neural

network-based channel model, combined with an iterative process for extracting sum-

maries. Xu and Durrett (2019) designed a syntax-based compression model which can

decide whether to remove certain phrases or words in the predicted extracts.

Neural approaches to abstractive summarization conceptualize the task as a sequence-

to-sequence problem, Rush et al. (2015) and Nallapati et al. (2016) were among the

first to apply the neural encoder-decoder architecture to text summarization. See et al.

(2017) enhanced this model with a pointer-generator network which allows it to copy

words from the source text, and a coverage mechanism which keeps track of words that

have been summarized. More recently, Celikyilmaz et al. (2018) proposed an abstrac-

tive system where multiple agents (encoders) represent the document together with a

hierarchical attention mechanism (over the agents) for decoding. Their Deep Commu-

nicating Agents model is trained end-to-end with reinforcement learning. Paulus et al.

(2018) also presented a deep reinforced model for abstractive summarization which

handles the coverage problem with an intra-attention mechanism where the decoder

attends over previously generated words. Gehrmann et al. (2018) followed a bottom-

up approach; a content selector first determines which phrases in a source document

should be part of the summary, and a copy mechanism is applied only to preselected

phrases during decoding. Narayan et al. (2018a) proposed an abstractive model which

is particularly suited to extreme summarization (i.e., single sentence summaries), based

on convolutional neural networks and additionally conditioned on topic distributions.

You et al. (2019) proposed a saliency-selection network in the decoder for better mod-

eling the salient words in the input text. Lebanoff et al. (2019) analyzed the importance

of scoring sentence singletons and pairs, which are summary-worthy sentences, before

generating the abstractive summaries.

Multi-document Summarization In multi-document summarization, where the source

texts are from multiple different articles, the redundancy of information plays an im-

portant role. Information occurring in multiple input articles tends to be more impor-
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tant and should be more likely to be included in the summary. Based on this assump-

tion, centroid-based clustering methods (Radev et al., 2002a, 2004; Wan and Yang,

2008; Wang et al., 2009) are popular for the task of multi-document summarization.

These approaches collect sentences into multiple clusters, where sentences in the same

cluster should be similar to each other. These clusters represent different topics of

the input articles and the clusters formed with more sentences are assumed to be more

important. Then, one or multiple representative sentence are selected from the top clus-

ters to form the summary. The Maximum Marginal Relevance (MMR; Carbonell and

Goldstein 1998 is also widely used in multi-document summarization. This method

greedily selects summary sentences based on their importance scores, but also penalize

sentences that lead to redundancy. SumBasic (Nenkova and Vanderwende, 2005) is a

method developed to reduce the redundancy in the generated summaries by taking into

account the context of previous selected summary sentences. Graph-based methods

are also popular models when summarizing multiple documents. They can leverage

the similarity of sentence pairs, while not constraining each sentence to belong to only

one cluster. For example, in LexRank (Erkan and Radev, 2004), the similarity of sen-

tence pairs are indicated by the weights of the edges connecting two sentences, and the

importance score of each sentence is calculated by using a PageRank algorithm.

1.2 Challenges

Summarizing documents is a challenging task both on account of the document under-

standing and the language generation. In what follows we discuss challenges in more

details, focusing on neural document summarization.

Document Structure Most neural-based approaches to (single-document) extrac-

tive summarization frame the task as a sequence labeling problem. The idea is to

predict a label for each sentence specifying whether it should be included in the sum-

mary (Cheng and Lapata, 2016; Nallapati et al., 2017). In these systems, inter-sentential

relations are usually captured in a sequential manner, without taking the structure of

the document into account, although the latter has been shown to correlate with what

readers perceive as important in a text (Marcu, 1999). Another problem in neural-

based extractive models is the lack of interpretability. While capable of identifying

summary sentences, these models are not able to rationalize their predictions (e.g., a

sentence is in the summary because it describes important content upon which other
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related sentences elaborate).

The summarization literature offers examples of models which exploit the structure

of the underlying document, inspired by existing theories of discourse such as Rhetor-

ical Structure Theory (RST; Mann and Thompson 1988). Most approaches produce

summaries based on tree-like document representations obtained by a parser trained

on discourse annotated corpora (Carlson et al., 2001; Prasad et al., 2008). For in-

stance, Marcu (1999) argues that a good summary can be generated by traversing the

RST discourse tree structure top-down, following nucleus nodes (discourse units in

RST are characterized regarding their text importance; nuclei denote central units,

whereas satellites denote peripheral ones). Other work (Hirao et al., 2013a; Yoshida

et al., 2014) extends this idea by transforming RST trees into dependency trees and

generating summaries by tree trimming. Gerani et al. (2014) summarize product re-

views; their system aggregates RST trees representing individual reviews into a graph,

from which an abstractive summary is generated. Zhang et al. (2002) shows that using

structures as posited in Cross-document Structure Theory is helpful to multi-document

summarization. However, incorporating structural information into neural summariza-

tion systems is still challenging, not only because of the reliance on a parser which is

expensive to obtain (since it must be trained on labeled data), using document structure

within a pipeline-style architecture will unavoidably lead to error prone, presenting a

major obstacle to its widespread use. To better take advantages of document struc-

tures, a potential solution is to model them as latent variables, and learn them with the

task objective. In this manner, document structures could be learned in an end-to-end

fashion and without recourse to external parsers.

Deep Understanding of Documents Although extractive summarization has been

so far modeled without relying on deep semantic analysis of the input documents,

recent studies (Nenkova and McKeown, 2012) find that models which produce sum-

maries based on surface features like word frequencies and sentence positions still

show a large gap in both automatic and human evaluations compared to human-authored

summaries. Neural network-based models also fall behind reference summaries by

a large margin in human evaluation (Narayan et al., 2018b). Deeper understanding

of the input document may be needed for further boosting extractive summarization

performance. It is usually assumed that abstractive summarization requires deep un-

derstanding and reasoning in both the encoding and the decoding phases (Nenkova

and McKeown, 2012). When encoding the input documents, abstractive summariz-
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ers should be able to determine explicit or implicit meaning for words, sentences and

documents, making global inferences, deciding which information should be used to

generate the summary. In the decoding process, the abstractive summarizer should be

able to generate fluent text containing the most important information, while avoiding

redundancy and learning to abstract over concepts and expressions in the source doc-

uments. Many neural models have designed different neural architectures to achieve

better summarization performance (Nallapati et al., 2017; Narayan et al., 2018a), and

recent advances on pretrained language models (Peters et al., 2018; Devlin et al., 2019)

may offer an effective alternative for the goal of better encoding the documents.

Modelling Multiple Documents A major obstacle to the application of end-to-end

models to multi-document summarization is the sheer size and number of source doc-

uments which can be very large. As a result, it is practically infeasible (given memory

limitations of current hardware) to train a model which encodes all of them into vec-

tors and subsequently generates a summary from them. Another challenge for multi-

document summarization is the hierarchical structure of the input. Different from a

single document input, the input to multi-document summarization is formed first

from sentences to documents, and then from multiple documents to one meta-input.

Meanwhile, the relations that might exist among multiple documents should also be

captured by the summarization system to better model the salient information in the

input. For example, different web pages might repeat the same content, include addi-

tional content, present contradictory information, or discuss the same fact in a different

light (Radev, 2000). The realization that cross-document links are important in isolat-

ing salient information, eliminating redundancy, and creating overall coherent sum-

maries, has led to the widespread adoption of graph-based models for multi-document

summarization (Erkan and Radev, 2004; Christensen et al., 2013; Wan, 2008; Parveen

and Strube, 2014). Graphs conveniently capture the relationships between textual units

within a document collection and can be easily constructed under the assumption that

text spans represent graph nodes and edges are semantic links between them. To ef-

fectively leverage the power of neural methods for abstractive multi-document sum-

marization, a new model which is capable of effectively processing multiple input

documents and capturing the relation between these documents is needed.
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1.3 Thesis Overview

In this thesis, we aim at investigating existing problems in neural document summa-

rization and developing effective neural summarization models while addressing the

challenges outlined in the previous section.

We first investigate one core module of the document summarization task, docu-

ment modelling. Our goal is to incorporate document structural information into doc-

ument modelling, generating better document representations. Recent work provides

strong evidence that better document representations can be obtained by incorporat-

ing structural knowledge (Ji and Smith, 2017; Bhatia et al., 2015; Yang et al., 2016).

Inspired by existing theories of discourse, representations of document structure have

assumed several guises in the literature, such as trees in the style of Rhetorical Struc-

ture Theory (RST; Mann and Thompson, 1988), graphs (Lin et al., 2011; Wolf and

Gibson, 2006), entity transitions (Barzilay and Lapata, 2008), or combinations thereof

(Lin et al., 2011; Mesgar and Strube, 2015). The availability of discourse annotated

corpora (Carlson et al., 2001; Prasad et al., 2008) has led to the development of off-

the-shelf discourse parsers (e.g., Feng and Hirst, 2012a; Liu and Lapata, 2017), and

the common use of trees as representations of document structure. For example, Bha-

tia et al. (2015) improve document-level sentiment analysis by reweighing discourse

units based on the depth of RST trees, whereas Ji and Smith (2017) show that a recur-

sive neural network built on the output of an RST parser benefits text categorization in

learning representations that focus on salient content. Unfortunately, the reliance on

labeled data, which is both difficult and highly expensive to produce, presents a major

obstacle to the widespread use of discourse structure for document modeling. More-

over, despite recent advances in discourse processing, the use of an external parser

often leads to pipeline-style architectures where errors propagate to later processing

stages, affecting model performance.

Our first work focuses on learning deeper structure-aware document representa-

tions, drawing inspiration from efforts to empower neural networks with a structural

bias (Cheng et al., 2016). Kim et al. (2017) introduce structured attention networks

which are generalizations of the basic attention procedure, allowing to learn senten-

tial representations while attending to partial segmentations or subtrees. We extend

this idea by referring to the matrix-tree theorem (Kirchhoff, 1847; Tutte, 1984), and

constrain the self-attention weights of neural models as non-projective dependency

structures. In this way, without recourse to an external parser, our model is able to
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learn task-specific dependency structures, obtaining better document representations.

We then apply this structured attention model to the extractive summarization task

by re-framing the task into a tree induction problem, instead of a sequence labeling

problem. Drawing inspiration from existing discourse-informed summarization mod-

els (Marcu, 1999; Hirao et al., 2013a), our model represents documents as multi-root

dependency trees where each root node is a summary sentence, and the subtrees at-

tached are sentences whose content is related to and covered by the summary sentence.

We proposed that structured attention can be used as both the objective and attention

weights for extractive summarization, and document-level dependency trees can be

induced while predicting the output summary. This leads to better summarization per-

formance and brings more interpretability in the summarization process by helping

explain how document content contributes to the model’s decisions.

Modeling the tree structure provides deeper understanding of input document on

the discourse aspect. Meanwhile, we find there are other aspects that could also be

improved to further boost the summarization performance. Unlike previous studies that

train document summarization models solely on annotated corpora with human-written

summaries, we first pretrain the encoder on a large-scale unannotated corpus, to learn

the rich linguistic features and complex contextual information. Pretrained language

models have recently emerged as a key technology for achieving impressive gains in

a wide variety of natural language tasks, ranging from sentiment analysis (Xu et al.,

2019a), to question answering (Yang et al., 2019) and named entity recognition (Devlin

et al., 2019). State-of-the-art pretrained models include ELMo (Peters et al., 2018),

GPT (Radford et al., 2018), and more recently Bidirectional Encoder Representations

from Transformers (BERT; Devlin et al. 2019) BERT combines both word and sentence

representations in a single very large Transformer (Vaswani et al., 2017). With its deep

neural architecture and pretraining on vast amounts of text, BERT is found to be able

to obtain richer representations of sentences or documents and capture more long-tail

features (Tenney et al., 2019).

In most cases, pretrained language models have been employed as encoders for

sentence- and paragraph-level natural language understanding problems (Devlin et al.,

2019) involving various classification tasks. In this thesis, we examine the influence of

language model pretraining on text summarization. We explore the potential of BERT

for text summarization under a general framework encompassing both extractive and

abstractive modeling paradigms. We propose a novel document-level encoder based on

BERT which is able to encode a document and obtain representations for its sentences.
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Our extractive model is built on top of this encoder by stacking several inter-sentence

Transformer layers to capture document-level features for extracting sentences. Our

abstractive model adopts an encoder-decoder architecture, combining the same pre-

trained BERT encoder with a randomly-initialized Transformer decoder (Vaswani et al.,

2017). We design a new training schedule which separates the optimizers of the en-

coder and the decoder in order to accommodate the fact that the former is pretrained

while the latter must be trained from scratch. Finally, motivated by previous work

showing that the combination of extractive and abstractive objectives can help gener-

ate better summaries (Gehrmann et al., 2018), we present a two-stage approach where

the encoder is fine-tuned twice, first with an extractive objective and subsequently on

abstractive summarization.

Most existing work on neural document summarization focused on single doc-

ument summarization. Multi-document summarization, another important form of

summarization task, although has a wide range of applications including summariz-

ing related webpages, news articles of the same topic and product reviews, has been

largely neglected. In this thesis, we expand the application of neural summarizers to

the multi-document setting. We observe different challenges for multi-document sum-

marization compared to single-document summarization. Firstly, the input to multi-

document summarization is long and redundant; secondly, the input to multi-document

summarization has a hierarchical structure where multiple interrelated documents are

each composed by interrelated sentences which are composed by tokens; thirdly, the

inter-document relations are important for summarizing multiple documents. We pro-

pose several solutions to these challenges and design a neural summarization model

which can effectively process multiple input documents and distill abstractive sum-

maries. Our model augments the previously proposed Transformer architecture with

the ability to encode multiple documents in a hierarchical manner. We represent cross-

document relationships via an attention mechanism which allows to share information

across multiple documents as opposed to simply concatenating text spans and feed-

ing them as a flat sequence to the model. In this way, the model automatically learns

richer structural dependencies among textual units, thus incorporating well-established

insights from earlier work of graph-based document representations.

The main contributions of this thesis are:

1. A new structured attention mechanism that can normalize the self-attention weights

as the probabilities of non-projective dependency trees, incorporating more struc-

tural constraints into neural models.
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2. A proposal of re-framing the single-document summarization task as a tree in-

duction problem, generating more precise summary sentences.

3. A general framework and a training schedule for using pretrained language mod-

els as encoders for neural network based summarization models, under both ex-

tractive and abstractive settings.

4. A multi-document summarization framework for generating abstractive sum-

maries of multiple input documents with hierarchical Transformer models.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents background knowledge with regard to neural network mod-

els. We introduce the general framework of using neural networks for Natural

Language Processing tasks. Then two widely used neural networks: Long short-

term memory network (Hochreiter and Schmidhuber, 1997) and the Transformer

network (Vaswani et al., 2017) are described. We also discuss the related work of

neural summarization models, including both extractive models and abstractive

models.

• Chapter 3 presents the structured attention mechanism for modelling documents.

We first introduce as background the self-attention mechanism (Parikh et al.,

2016; Kim et al., 2017). We then describe our proposed model which is based

on the tree-matrix theorem (Kirchhoff, 1847; Tutte, 1984). The model is tested

on multiple document classification tasks and experimental results show the su-

periority of the structured attention mechanism.

• Chapter 4 presents our structured summarization model for single-document ex-

tractive summarization. We first propose the idea of re-framing the task as a

tree induction problem, which could introduce more interpretability and struc-

tural constraints into the generated summaries. We then show that with an it-

erative process, we can use the structured attention mechanism for this task

and gradually learn increasingly complex document structures. Experiments

are performed on two large-scale summarization datasets: the CNN/DailyMail

dataset (Hermann et al., 2015) and the New York Times (Sandhaus, 2008). Ex-

perimental results show that the proposed model can achieve competitive results.
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• Chapter 5 introduces our general framework for using pretrained language mod-

els for text summarization tasks. Firstly, background on pretrained language

models like ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019) are

presented. Secondly, we analyze both the advantages and challenges of using

pretrained language models for text summarization. Then, we show that BERT

can be modified and used as an encoder for modelling a document and generat-

ing sentence-level representations. Also, we propose a novel training schedule

that can help narrow the gap between a pretrained encoder and a randomly-

initialized decoder for abstractive summarization. The framework is named

BERTSUM and we present implementation details of the model. Experiments

are performed on three large-scale summarization datasets: the CNN/DailyMail

dataset (Hermann et al., 2015), the New York Times (Sandhaus, 2008), and the

XSum dataset (Narayan et al., 2018a). We show that BERTSUM outperforms

previous models by a large margin across datasets under both extractive and ab-

stractive settings.

• Chapter 6 focuses on the task of multi-document summarization. A new dataset

called WIKISUM (Liu et al., 2018) is introduced as the first large-scale dataset

for multi-document summarization. We outline three challenges in summarizing

multiple documents and propose corresponding solutions. For the first challenge

of long and redundant input, a paragraph ranker is designed to score each para-

graph based on its usefulness for summarization. For the second challenge of

processing multi-document input, a new Transformer model with a hierarchical

architecture is designed. For the third challenge of incorporating information in

external document graphs, we introduce a graph-informed attention mechanism

into the Transformer model. Evaluation on the WIKISUM dataset shows that the

proposed model can achieve better summarization results compared with previ-

ous systems.

• Chapter 7 concludes the thesis, and discusses directions for future work.
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Background

As introduced in Chapter 1, a typical neural document summarization model includes a

document encoder to transform discrete words within source documents into continu-

ous vector representations. For abstractive summarization, a decoder module addition-

ally generate a human-readable abstractive summary based on source documents. Both

the encoder and the decoder are based on neural networks (Bahdanau et al., 2015). In

this chapter, we first provide background for two commonly used neural networks,

namely Recurrent Neural Networks (RNNs) and Transformer models (Vaswani et al.,

2017), for building the encoder and the decoder. RNN models process words in a

time-dependent manner. Long Short-Term Memory network (LSTM; Hochreiter and

Schmidhuber 1997) is an advanced variant of RNN with gating mechanisms. The

Transformer model aims at reducing the fundamental constraint of sequential compu-

tation in RNNs in favor of applying a self-attention mechanism which directly models

relationships between all words in a sentence. We will also discuss related work and

the general framework of neural extractive and neural abstractive summarization sys-

tems, where the former is usually considered a sentence labelling task, while the latter

typically incorporates a more sophisticated neural encoder-decoder architecture.

2.1 Neural Networks

2.1.1 Recurrent Neural Networks

Given a sequence of input vectors X = [x1,x2, · · · ,xn], where xt ∈Rd , Recurrent Neural

Networks model this sequence in a temporal manner. More specifically, an RNN holds

a hidden state vector h that is updated at each time step. Formally speaking, at time step

17
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t, an RNN takes the t-th input vector xt as network input and computes a hidden state

vector ht ∈ Rd by non-linearly transforming the combination of xt and the previous

hidden state ht−1:

ht = f (ht−1,xt) (2.1)

A more commonly used version is the Elman network (Elman, 1990) or simple recur-

rent network:

ht = σ(W1ht−1 +W2xt +b) (2.2)

where σ(·) is the non-linear activation function, W1 ∈Rd×d and W2 ∈Rd×d are trans-

formation weighs, b ∈ Rd is the bias. The output of simple recurrent networks will be

[h1,h2, · · · ,hn], where ht is the updated vector of xt with contextual information.

Long Short-Term Memory Networks (LSTMs; Hochreiter and Schmidhuber 1997)

are a special kind of RNNs, designed for solving the vanishing gradient problem in

simple RNNs. When propagating the gradients through time in training simple RNNs

with back-propagation, gradients can become extremely small. LSTMs try to solve this

problem by introducing gating mechanisms and a memory cell. At each time step t, an

input gate it ∈Rd is introduced to control how much information from the input will be

fed to the memory cell, a forget gate ft ∈Rd is used to decide how much information in

the memory cell c∈Rd will be reserved from last time step, and an output gate ot ∈Rd

is used to decide how much information should flow into the output hidden state. The

calculation at time step t will be:
it
ft

ot

c̃t

=


sigm

sigm

sigm

tanh

(W

[
ht−1

xt

]
+b) (2.3)

ct = ft� ct−1 + it� c̃t (2.4)

ht = ot� tanh(ct) (2.5)

where tanh and sigm are element-wise hyperbolic tangent operator and sigmoid opera-

tor, and � is element-wise multiplication. Matrix W ∈ R4d×2d represents the transfor-

mation weights and b ∈R4d is the bias. A detailed illustration of an LSTM cell at time

step t is shown in Figure 2.1. The outputs of LSTMs are the same as those of simple

RNNs.
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Figure 2.1: Illustration of the Long Short-Term Memory (LSTM) cell. At time step t, xt

and ht−1 are input, it , ft and ot are input gates, forget gates and output gates, and ct is

memory cell. � indicates element-wise multiplication operation.

2.1.2 Transformer Models

One drawback of RNNs is that the input sequence must be modelled in a temporal

order, which makes parallelization of the model hard. Aiming at reducing the funda-

mental constraint of sequential computation which underlies most architectures based

on RNNs, Vaswani et al. (2017) proposed a novel architecture called Transformer for

modeling texts. Instead of relying on the recurrent structure, Transformer applies a

self-attention mechanism, where each word can collect information from all other con-

textual words simultaneously.

More formally, given a sequence of input vectors X = [x1,x2, · · · ,xn], where xt ∈
Rd , the Transformer is composed of a stack of N identical layers, each of which has

two sub-layers:

H̃ l = LayerNorm(H l−1 +MHAtt(H l−1)) (2.6)

H l = LayerNorm(H̃ l +FFN(H̃ l)) (2.7)

where H l = [hl
1, · · · ,hl

n], and the superscript l indicates layer depth. H0 is the sequence

of input vectors. Next, we will explain FFN, LayerNorm and MHAtt sequentially.

Positional Embeddings As in the Transformer model, there is no recurrent mecha-

nism, the position of each input element needs to be explicitly distinguished by posi-
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tional embeddings:

h0
t = xt +PEt (2.8)

where PEt ∈ Rd is the positional embedding for the t-th element in the input, formed

by sine and cosine functions of different frequencies to indicate the position of each

element in the sequence:

PEt [i] = sin(t/100002i/d) (2.9)

PEt [2i+1] = cos(t/100002i/d) (2.10)

where PEt [i] indicates the i-th dimension of the vector. Because each dimension of

the positional encoding corresponds to a sinusoid, for any fixed offset o, PEp+o can be

represented as a linear transformation of PEp, which enables the model to distinguish

the positions of input elements.

Layer Normalization and Feed-forward Networks LayerNorm is the layer normal-

ization operation proposed in Ba et al. (2016). Given a vector h ∈ Rd , the LayerNorm

operation is calculated as:

a =
1
d

d

∑
i=1

h[i]; b =
1
d

d

∑
i=1

(h[i]−a)2 (2.11)

LayerNorm(h) =
h−a√
b+ ε

(2.12)

where a is the mean value of all dimensions of the input vector, and b is the variance

of all dimensions of the input vector. ε is a small value to prevent division by zero.

FFN is a two-layer feed-forward network with ReLU as hidden activation function.

Given a vector h ∈ Rd , the FFN operation is calculated as:

FFN(h) = W2max(0,W1h+b1)+b2 (2.13)

where W1 ∈Rd f f×d and W2 ∈Rd×d f f are transformation weights; b1 ∈Rd f f and b2 ∈
Rd are biases. max(·) is the element-wise maximum operation.

Multi-head Attention MHAtt represents the multi-head attention mechanism which

allows the model to jointly attend to information from different representation sub-

spaces (at different positions). For the t-th vector ht ∈ Rd in a sequence [h1, · · · ,hn],

the single-head operation is firstly calculated as:
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qt

kt

vt

=


Wq

Wk

Wv

ht (2.14)

headt = softmax(
qtkT

t√
dk

)v (2.15)

(2.16)

where Wq ∈ Rdk×d , Wk ∈ Rdk×d and Wv ∈ Rdk×d are transformation weights for ob-

taining the query vector qt , key vector kt and value vector vt . Then a scaled dot oper-

ation is applied between qk and all n key vectors of the input sequence, normalized by

the softmax function. The obtained normalized distribution is used as the weights to

sum the all value vectors, generating the final head vector headt ∈ Rdk .

MHAtt is the operation that simultaneously applies K single-head operations with

different parameters, which will output K head vectors. These head vectors are then

concatenated and linearly transformed:

MHAtt(ht) = WoConcat(head1
t , · · · ,headK

t ) (2.17)

The illustration of one layer of the Transformer model is shown in Figure 2.2. The

output of Transformer models will be [hN
1 , · · · ,hN

n ] from the top layer, where N is the

number of stacked layers.

2.2 Neural Document Summarization

Starting from Kågebäck et al. (2014)’s work that showed sentences can be represented

by continuous vectors and used for document summarization, neural network-based

models have become popular architectures for the document summarization task. In

the last five years, many novel neural network-based models have been proposed for

document summarization as well as datasets for training these models. This section

briefly reviews this recent work and distills common characteristics underlying these

models. Although there is some common ground between the techniques used in ex-

tractive summarization and abstractive summarization, they still follow different re-

search threads, and we will describe models for these two settings separately.
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Figure 2.2: The illustration of a Transformer model with one layer. With three tokens

as input, positional embeddings are first added to the input vectors x1,x2,x3. Then,

as described in Section 2.1.2, the vectors go through a pipeline of operations including

multi-head self-attention, layer normalization and feed-forward network.

2.2.1 Neural Extractive Summarization

Problem Formulation Let D denote a document containing sentences [s1, · · · ,sn],

where si is the i-th sentence in the document. Extractive summarization can be defined

as the task of selecting a subset of sentences [u1,u2 · · · ,um], where um ∈ D and m <

n, as the summary sentences. It is assumed that summary sentences represent the

most important content of the document. Extractive summarizers usually have two

basic modules: a module to build sentence representations and a module to select

summary sentences based on their representations, taking into account the coverage

and redundancy.

Sentence Representation Many previous studies focus on proposing new neural

architectures for improving sentence representations. In early early work (Kågebäck

et al., 2014), the sentences are simply represented by the summation of all word em-

beddings. Yin and Pei (2015) use convolutional neural networks (CNNs) over word

embeddings to obtain sentence representations. In Cheng and Lapata (2016), sentence

representations are obtained by using a CNN followed by an RNN. The CNN is ap-
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plied as a sentence-level encoder to obtain sentence vectors, and then an LSTM is ap-

plied over these sentence vectors as a document-level encoder to model document-level

contextual information, generating final sentence vectors. SummaRuNNer (Nallapati

et al., 2017) employs a similar neural network with an RNN-based sentence-level en-

coder. Xiao and Carenini (2019) focus on long document summarization and propose

to combine sentence representations with document representations, along with the

LSTM-minus feature to represent local context.

Sentence Selection For selecting sentences, extractive summarizers usually follow

two paradigms, sequence labelling and auto-regressive selection. Sequence labeling

models (Cheng and Lapata, 2016; Nallapati et al., 2017) are equipped with a non-

autoregressive classifier, assigning label yi ∈ {0,1} to each sentence si, indicating

whether the sentence should be included in the summary. Auto-regressive selection

models (Zhou et al., 2018; Narayan et al., 2018b) select the sentences in an autore-

gressive manner. When selecting a new summary sentence u j, the model also takes

selected summary sentences [u1, · · · ,u j−1] as part of the input.

2.2.2 Neural Abstractive Summarization

Problem Formulation As many other generation problems in NLP (e.g., machine

translation, text rewriting, dialogue generation), abstractive summarization can be framed

as a sequence-to-sequence task, where the input is a sequence of words and the output

is another sequence of words conditioned on the input. The neural encoder-decode

model has proved extremely powerful when tackling these tasks: An encoder encodes

the input text into a sequence of source vector representations, while a decoder gener-

ates the output text conditioned on these source vectors.

More formally, suppose we have a source-target pair (X ,Y ) (the source X is one

or multiple documents, and the target Y is a summary in summarization tasks), where

both the source and the target are represented as sequences of words X = [x1, · · · ,xn]

and Y = [y1, · · · ,ym]. Our goal in abstractive summarization task is to generate Y

given X . Usually, the encoder will encode X to a sequence of continuous represen-

tations H = [h1, · · · ,hm], and the decoder will generate the target summary token-

by-token, in an auto-regressive manner, hence modeling the conditional probability:

p(y1, · · · ,ym|x1, · · · ,xn).
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LSTM cell LSTM cell LSTM cell LSTM cell

At tent ion Scores

Figure 2.3: Illustration of the encoder-decoder attention module in an LSTM-based

encoder-decoder model. The gray triangles are encoder LSTM cell and the white trian-

gle is the decoder LSTM cell. The module computes a attention score for each source

token based on its encoder hidden vector. The attention scores are then normalized

and used as the weights of the weighted summation operation over all encoder hid-

den vectors, generating the context vector ut . And a new decoder hidden vector ĥt is

computed based on ut and ht to calculate the probability of next decoded token yt .

Transformer Encoder-Decoder Model The original encoder-decoder model was ini-

tially based on RNNs and applied in the machine translation task (Cho et al., 2014).

After integrating the decoder-encoder attention mechanism (Bahdanau et al., 2015), it

shows superiority over traditional translation models. For each decoding time step t,

the decoder-encoder attention generates a context vector by applying a weighted sum-

mation over vectors of source tokens. As shown in Figure 2.3, with an LSTM-based

encoder-decoder model, given a source input with T tokens, at decoding step t, the

model computes the attention score at,k of each source token xk:

at,k = so f tmax(he
k ·h

d
t ) (2.18)

where he
k ∈ Rd is the output hidden vector of the encoder and hd

t ∈ Rd is the output

hidden vector of the decoder at last time step t−1, at,k is the attention score indicating

the importance of xe at this decoding step. Then, the context vector ut is calculated by

a weighted summation over the encoder hidden vectors:

ut =
T

∑
k=1

at,khe
k (2.19)
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The probability of generating next token yt from vocabulary V is computed as:

ĥd
t = tanh(W1hd

t +W2ut) (2.20)

p(yt |y<t−1) = so f tmax(Woĥd
t ) (2.21)

where matrix Wo ∈ R|V |×d and W1,W2 ∈ Rd×d are transformation weights.

Transformer encoder-decoder model (Vaswani et al., 2017), whose both encoder

and decoder modules are based on Transformer models as described in previous sec-

tions, has been proved to be a even more powerful framework for generation tasks.

In addition to the components in the vanilla Transformer layers, the Transformer de-

coder has an additional sub-layer which applied multi-head encoder-decoder attention

over the top output vectors of the encoder. Also, since the target text is generated

in an auto-aggressive fashion, the self-attention at time step t in the decoder only at-

tend to words that have already been generated (before t), which is called masked

self-attention, A detailed illustration of the Transformer encoder-decoder structure is

shown in Figure 2.4.

2.3 Summary

In this chapter, we introduced the basis of neural network models for Natural Lan-

guage Processing, and related models in neural document summarization. Two popular

neural networks, namely the recurrent neural networks and Transformer models were

introduced. We also formulated the extractive summarization task and the abstractive

summarization task respectively, and introduced background knowledge of previous

neural network-based summarizers. In the next chapter, we will explore how to learn

structure-aware representations to better model a document.
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Figure 2.4: Illustration of the Transformer encoder-decoder model. The encoder con-

tains N Transformer layers and the decoder contains M Transformer layers. Input to the

decoder are three tokens x1,x2,x3. The decoder is running at time step t = 3, the input

to the decoder are three already generated tokens y1,y2,y3, and it is predicting the 4-th

token y4. Each head of the encoder-decoder attention generate a context vector of the

source input.
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Document Modeling with Structured

Attention

For summarizing one or multiple documents, one necessary process is to model the

documents, generating representations that can be used for sentence extraction or text

generation systems. Document modeling is also a fundamental task in Natural Lan-

guage Processing, useful to various downstream applications including topic classi-

fication (Xie and Xing, 2013), summarization (Wolf and Gibson, 2006; Chen et al.,

2016), sentiment analysis (Bhatia et al., 2015; He et al., 2018), question answering

(Verberne et al., 2007), and machine translation (Meyer and Webber, 2013; Maruf and

Haffari, 2018). In this chapter, we propose to model documents with structured atten-

tion mechanism, and generate better document representations. To show the model’s

effectiveness on document modeling, we experiment on the task of document classifi-

cation with four datasets. And in the next chapter, we will show how this structured

attention mechanism can be adapted to the summarization tasks.

Recent work provides strong evidence that better document representations can be

obtained by incorporating structural knowledge (Bhatia et al., 2015; Yang et al., 2016;

Ji and Smith, 2017; Mim et al., 2019). These structured representations are inspired

by existing theories of discourse which have assumed several guises in the literature,

such as trees in the style of Rhetorical Structure Theory (RST; Mann and Thompson,

1988), graphs (Lin et al., 2011; Wolf and Gibson, 2006), entity transitions (Barzilay

and Lapata, 2008), or combinations thereof (Lin et al., 2011; Mesgar and Strube, 2015).

The availability of discourse annotated corpora (Carlson et al., 2001; Prasad et al.,

2008) has further led to the development of off-the-shelf discourse parsers (e.g., Feng

and Hirst, 2012a; Liu and Lapata, 2017; Yu et al., 2018; Lin et al., 2019), and the

27
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common use of trees as representations of document structure. For example, Bhatia

et al. (2015) improve document-level sentiment analysis by reweighing discourse units

based on the depth of RST trees, whereas Ji and Smith (2017) show that a recursive

neural network built on the output of an RST parser benefits text categorization in

learning representations that focus on salient content.

Linguistically motivated representations of document structure rely on the avail-

ability of annotated corpora as well as a wider range of standard NLP tools (e.g., to-

kenizers, pos-taggers, syntactic parsers). Unfortunately, the reliance on labeled data,

which is both difficult and highly expensive to produce, presents a major obstacle to

the widespread use of discourse structure for document modeling. Moreover, despite

recent advances in discourse processing, the use of an external parser often leads to

pipeline-style architectures where errors propagate to later processing stages, affecting

model performance.

It is therefore not surprising that there have been attempts to induce document rep-

resentations directly from data without recourse to a discourse parser or additional

annotations. The main idea is to obtain hierarchical representations by first building

representations of sentences, and then aggregating those into a document representa-

tion (Tang et al., 2015a,b; Jiang et al., 2019). Yang et al. (2016) further demonstrate

how to implicitly inject structural knowledge onto the representation using an attention

mechanism (Bahdanau et al., 2015) which acknowledges that sentences are differen-

tially important in different contexts. Their model learns to pay more or less attention

to individual sentences when constructing the representation of the document.

Our work focus on learning deeper structure-aware document representations, draw-

ing inspiration from recent efforts to empower neural networks with a structural bias

(Cheng et al., 2016). Kim et al. (2017) introduce structured attention networks which

are generalizations of the basic intra-sentential procedure, allowing to learn senten-

tial representations while attending to partial segmentations or subtrees. Specifically,

they take into account the dependency structure of a sentence by viewing the attention

mechanism as a graphical model over latent variables. They first calculate unnormal-

ized pairwise attention scores for all tokens in a sentence and then use the inside-

outside algorithm (Baker, 1979) to normalize the scores with the marginal probabili-

ties of a dependency tree. Without recourse to an external parser, their model learns

meaningful task-specific dependency structures, achieving competitive results in sev-

eral sentence-level tasks. More details about the intra-sentential attention mechanism

and Kim et al. (2017)’s structured attention network will be presented in Section 3.1.
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1  The next time you hear a Member of Congress moan about the deficit, 
consider what Congress did Friday.
2  The Senate, 84-6, voted to increase to $124,000 the ceiling on insured 
mortgages from the FHA, which lost $4.2 billion in loan defaults last year.
3  Then, by voice vote, the Senate voted a porkbarrel bill, approved Thursday 
by the House, for domestic military construction.
4  Compare the Bush request to what the Senators gave themselves:

1 2 3 41 2 3 4

N N

N N S

SN

Figure 3.1: An example document with splitted sentences. Below the text, the left sub-

figure is the tree structure of the document analyzed in the style of Rhetorical Structure

Theory (Mann and Thompson, 1988), and the right part represents a converted depen-

dency tree following the conversion algorithm of Hayashi et al. (2016).

However, for document modeling, this approach has two drawbacks. Firstly, it

does not consider non-projective dependency structures, which are relatively common

in document-level discourse analysis (Lee et al., 2006; Hayashi et al., 2016). As illus-

trated in Figure 3.1, when converted from a RST tree structure, the dependency tree

structure of a document can be flexible and the dependency edges may cross. Sec-

ondly, the inside-outside algorithm involves a dynamic programming process which is

difficult to parallelize, making it impractical for modeling long documents.

In this chapter, we propose a new model for representing documents while au-

tomatically learning richer structural dependencies. Using a variant of Kirchhoff’s

Matrix-Tree Theorem (Tutte, 1984), our model implicitly considers non-projective de-

pendency tree structures. We keep each step of the learning process differentiable, so

the model can be trained in an end-to-end fashion and induce discourse information

that is helpful to specific tasks without an external parser. The inside-outside model of

Kim et al. (2017) and our model both have a O(n3) worst case complexity. However,

major operations in our approach can be parallelized efficiently on GPU computing

hardware. Although our primary focus is on document modeling, there is nothing

inherent in our model that prevents its application to individual sentences. Advanta-

geously, it can induce non-projective structures which are required for representing
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languages with free or flexible word order (McDonald and Satta, 2007).

Our contributions in this chapter are threefold: 1) a model for learning document

representations whilst taking structural information into account; 2) an efficient train-

ing procedure which allows to compute document level representations of arbitrary

length; 3) and a large scale evaluation study showing that the proposed model performs

competitively against strong baselines while having the potential to induce meaningful

intermediate structures.

3.1 Related Work

In this section, we describe how previous work uses the intra-sentential attention mech-

anism for representing individual sentences. The key idea is to capture the interaction

between tokens within a sentence, generating a context representation for each word

with weak structural information. This type of intra-sentential attention encodes rela-

tionships between words within each sentence and differs from inter-sentence attention

which has been widely applied to sequence transduction tasks like machine translation

(Bahdanau et al., 2015) and learns the latent alignment between source and target se-

quences. Different from the multi-head self-attention mechanism in Transformer, this

intra-sentential attention is simpler, with only one head, and without the linear trans-

formation to query, key and value (see Section 2.1.2 for more details.).

Figure 3.2 provides a schematic view of the simple intra-sentential attention. Given

a sentence represented as a sequence of n word vectors [x1,x2, · · · ,xn], for each word

pair 〈xi,x j〉, the attention score ai j is estimated as:

fi j = F(xi,x j) (3.1)

ai j =
exp(fi j)

∑
n
k=1 exp(fik)

(3.2)

where F(·) is a function for computing the unnormalized score fi j which is then nor-

malized by calculating a probability distribution ai j. Individual words collect informa-

tion from their context based on ai j and obtain a context representation:

ui =
n

∑
j=1

ai jx j (3.3)

where attention score ai j indicates the (dependency) relation between the i-th and the

j-th words and how information from x j should be fed into xi. ui denotes the updated

vector for the i-th token with context information.
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Figure 3.2: Intra-sentential attention mechanism; ai j denotes the normalized attention

score between token vectors xi and x j. ui denotes the updated vector for the i-th token

with context information.

Despite successful application of the above intra-sentential attention in sentiment

analysis (Cheng et al., 2016) and entailment recognition (Parikh et al., 2016), the struc-

tural information under consideration is shallow, limited to word-word dependencies.

Since attention is computed as a simple probability distribution, it cannot capture more

elaborated structural dependencies such as trees (or graphs). Kim et al. (2017) induce

richer internal structure by imposing structural constraints on the probability distribu-

tion computed by the intra-sentential attention mechanism. Specifically, they normal-

ize fi j into the marginal probabilities of projective dependency trees using the inside-

outside algorithm (Baker, 1979), which considers the parsing process as a graph-based

Conditional Random Field, implemented in a dynamic programming process:

fi j = F(xi,x j) (3.4)

a = inside-outside(f) (3.5)

ui =
n

∑
j=1

ai jx j (3.6)

where a is a matrix that is of the same shape with f, and its entry ai j indicates the

marginal probability of forming a dependency edge from i-th token to the j-th token in

a projective dependency tree.

This process is differentiable, so the model can be trained end-to-end and learn

structural information without relying on a parser. However, efficiency is a major issue,

since the inside-outside algorithm has time complexity O(n3) (where n represents the

number of tokens) and does not lend itself to easy parallelization.
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3.2 Modeling Documents with Structural Bias

In this section we present our document representation model. We follow previous

work (Tang et al., 2015a; Yang et al., 2016; Jiang et al., 2019) in modeling docu-

ments hierarchically by first obtaining representations for sentences and then compos-

ing those into a document representation. Structural information is taken into account

while learning representations for both sentences and documents and an structured at-

tention mechanism is applied on both words within a sentence and sentences within a

document. The general idea is to force pair-wise attention between text units to form a

non-projective dependency tree, and automatically induce this tree for different natural

language processing tasks in a differentiable way. Instead of relying on the softmax

function to obtain the attention weights as in intra-sentential attention, we refer to the

Matrix-Tree Theorem (Kirchhoff, 1847; Tutte, 1984) to calculate the marginal proba-

bilities of dependency trees as the attention weights, and with the normalized attention

weights, we apply the same weighted summation operation as in the intra-sentential at-

tention to obtain context represenations. With the new structured attention mechanism,

we are able to incorporate structural bias into neural document modeling systems. In

the following, we first describe how the structured attention mechanism is applied to

sentences, and then move on to present our document-level model.

3.2.1 Sentence Model

Let T = [x1,x2, · · · ,xn] denote a sentence containing a sequence of words, each rep-

resented by a vector x, which can be pre-trained on a large corpus. As described

in section 2.1.1, Long Short-Term Memory Neural Networks (LSTMs; Hochreiter

and Schmidhuber, 1997) have been successfully applied to various sequence model-

ing tasks ranging from machine translation (Bahdanau et al., 2015; Wu et al., 2016),

to speech recognition (Graves et al., 2013), and image caption generation (Xu et al.,

2015). In this chapter we use bidirectional LSTMs as a way of representing elements

in a sequence (i.e., words or sentences) together with their contexts, capturing the el-

ement and an “infinite” window around it. Specifically, we run a bidirectional LSTM

over sentence T , and take the output vectors [h1,h2, · · · ,hn] as the representations of

words in T , where hi ∈ Rd is the output vector for word xi based on its context.

We then exploit the structure of T which we induce based on a structured attention

mechanism detailed below to obtain more precise representations. Inspired by recent

work (Daniluk et al., 2017; Miller et al., 2016), which shows that the conventional
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Figure 3.3: Sentence representation model: xi is the input vector for the i-th word, ei

and zi are semantic and structure vectors, respectively. e are used to calculate unnor-

malized attention scores, which are latter normalized by structured attention mecha-

nism. z are used as semantic vectors, which are updated by the structured attention

mechanism, generating the updated vectors u with context information.

way of using LSTM output vectors for calculating both attention and encoding word

semantics is overloaded and likely to cause performance deficiencies, we decompose

the LSTM output vector in two parts, where we take the first half of the dimensions as

vector ei, and take the remaining half of the dimensions as vector zi:

[ei,zi] = hi (3.7)

where dh =
d
2 ; ei ∈ Rdh is the semantic vector, encoding semantic information for spe-

cific tasks, and zi ∈ Rdh , the structure vector, is used to calculate structured attention.

We use a series of operations based on the Matrix-Tree Theorem (Kirchhoff, 1847;

Tutte, 1984) to incorporate the structural bias of non-projective dependency trees into

the attention weights. We constrain the probability distributions ai j (see Equation (3.2))

to be the posterior marginals of a dependency tree structure. We then use the normal-

ized structured attention, to build a context vector for updating the semantic vector of

each word, obtaining new representations [u1,u2, · · · ,un]. An overview of the model

is presented in Figure 3.3. We describe the structured attention mechanism in detail in

the following section.

3.2.2 Structured Attention Mechanism

Dependency representations of natural language are a simple yet flexible mechanism

for encoding words and their syntactic relations through directed graphs. Much work
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in descriptive linguistics (Tesniére, 1959; Melc̆uk, 1988) has advocated their suitability

for representing syntactic structure across languages. A primary advantage of depen-

dency representations is that they have a natural mechanism for representing discontin-

uous constructions arising from long distance dependencies or free word order through

non-projective dependency edges.

More formally, building a dependency tree amounts to finding latent variables zi j

for all i 6= j, where word i is the parent node of word j, under some global constraints,

amongst which the single-head constraint is the most important, since it forces the

structure to be a rooted tree. We use a variant of Kirchhoff’s Matrix-Tree Theo-

rem (Kirchhoff, 1847; Tutte, 1984; Koo et al., 2007) to calculate the marginal prob-

ability of each dependency edge p(zi j = 1) of a non-projective dependency tree, and

this probability is used as the attention weight that decides how much information is

collected from child unit j to the parent unit i.

We first calculate unnormalized attention scores fi j with structure vector z (see

Equation (3.7)) via a bilinear function:

tp = tanh(Wpzi) (3.8)

tc = tanh(Wcz j) (3.9)

fi j = tT
p Watc (3.10)

where Wp ∈ Rdh×dh and Wc ∈ Rdh×dh are the weights for building the representation

of parent and child nodes. Wa ∈ Rdh×dh is the weight for the bilinear transformation.

f ∈ Rn×n can be viewed as a weighted adjacency matrix for a graph G with n nodes

where each node corresponds to a word in a sentence. We also calculate the root score

fr
i , indicating the unnormalized possibility of a node being the root:

fr
i = Wrzi (3.11)

where Wr ∈ R1×dh . We calculate p(zi j = 1), the marginal probability of the depen-
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dency edge, following Koo et al. (2007):

Ai j =

0 if i = j

exp(fi j) otherwise
(3.12)

Li j =

∑
n
i′=1 Ai′ j if i = j

−Ai j otherwise
(3.13)

Li j =

exp(fr
i ) i = 1

Li j i > 1
(3.14)

p(zi j = 1) = (1−δ1, j)Ai j[L−1] j j

− (1−δi,1)Ai j[L−1] ji (3.15)

p(root(i)) = exp( f i
r)[L

−1]i1

where 1 ≤ i ≤ n,1 ≤ j ≤ n. L ∈ Rn×n is the Laplacian matrix for graph G and L ∈
Rn×n is a variant of L that takes the root node into consideration, and δ is the Kronecker

delta. The key for the calculation to hold is for Lii, the minor of the Laplacian matrix L
with respect to row i and column i, to be equal to the sum of the weights of all directed

spanning trees of G which are rooted at i. p(zi j = 1) is the marginal probability of

the dependency edge between the i-th and j-th words. p(root(i) = 1) is the marginal

probability of the i-th word headed by the root of the tree. Details of the proof can be

found in Koo et al. (2007).

We denote the marginal probabilities p(zi j = 1) as ai j and p(root(i)) as ar
i . This

can be interpreted as attention scores which are constrained to converge to a structured

object, a non-projective dependency tree, in our case. We update the semantic vector

ei of each word with structured attention:

pi =
n

∑
k=1

akiek +ar
i eroot (3.16)

ci =
n

∑
k=1

aikei (3.17)

ui = tanh(Wr[ei,pi,ci]) (3.18)

where pi ∈ Rdh is the context vector gathered from possible parents of ui and ci ∈ Rdh

the context vector gathered from possible children, and eroot is a special embedding

for the root node. The context vectors are concatenated with ei and transformed with

weights Wr ∈ Rdh×3dh to obtain the updated semantic vector ui ∈ Rdh with rich struc-

tural information (see Figure 3.3).
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3.2.3 Document Model

We build document representations hierarchically: sentences are composed of words

and documents are composed of sentences. Composition on the document level also

makes use of structured attention in the form of a dependency graph. Dependency-

based representations have been previously used for developing discourse parsers (Li

et al., 2014b; Hayashi et al., 2016) and in applications such as summarization (Hirao

et al., 2013b).

As illustrated in Figure 3.4, given a document with n sentences [s1,s2, · · · ,sn],

for each sentence si, the input is a sequence of word embeddings [xi1,xi2, · · · ,xim],

where m is the number of tokens in si. By feeding the embeddings into a sentence-

level bi-LSTM and applying the proposed structured attention mechanism, we obtain

the updated semantic vector [ui1,ui2, · · · ,uim]. Then an average pooling operation pro-

duces a fixed-length vector si for each sentence. Analogously, we view the docu-

ment as a sequence of sentence vectors [s1,s2, · · · ,sn] whose embeddings are fed to a

document-level bi-LSTM. Application of the structured attention mechanism creates

new semantic vectors [v1,v2, · · · ,vn] and another pooling operation yields the final

document representation y.

3.2.4 End-to-End Training

Our model can be trained in an end-to-end fashion since all operations required for

computing structured attention and using it to update the semantic vectors are differ-

entiable. In contrast to in Kim et al. (2017), training can be done efficiently. The major

complexity of our model lies in the computation of the gradients of the inverse matrix.

Let A denote a matrix depending on a real parameter x; assuming all component func-

tions in A are differentiable, and A is invertible for all possible values, the gradient

of A with respect respect to x is:

dA−1

dx
=−A−1 dA

dx
A−1 (3.19)

Multiplication of the three matrices and matrix inversion can be computed efficiently

on modern parallel hardware architectures such as GPUs. In our experiments, compu-

tation of structured attention takes only 1/10 of training time (on a Nvidia GTX 1080

machine).
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Structured At tent ion     

Pooling

Pooling

Structured At tent ion     

Figure 3.4: Document representation model with structured attention. The document

is encoded first from tokens to sentences and then from sentences to the complete

document. xi j and ui j are input vector and hidden vector for the j-th token in the i-th

sentence. si and vi are input vector and hidden vector for the i-th sentence.

3.3 Experiments and Analysis

In this section we present our experiments for evaluating the performance of our model.

Since sentence representations constitute the basic building blocks of our document

model, we first evaluate the performance of structured attention on a sentence-level

task, namely natural language inference. We then assess the document-level repre-

sentations obtained by our model on a variety of classification tasks representing doc-

uments of different length, subject matter, and language. Our code is available at

https://github.com/nlpyang/structured.

In this section, we evaluate our document-level model on a variety of classification

tasks. We selected four datasets which we describe below. Table 3.1 summarizes some

statistics for each dataset. Examples of input texts and labels are shown in Table 3.2.

Yelp reviews were obtained from the 2013 Yelp Dataset Challenge. This dataset

contains restaurant reviews, each associated with human ratings on a scale from 1

(negative) to 5 (positive) which we used as gold labels for sentiment classification; we
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Dataset #class #docs #s/d #w/d

Yelp 5 335K 8.9 151.6

IMDB 10 348K 14.0 325.6

CZ Movies 3 92K 3.5 51.2

Debates 2 1.6K 22.7 519.2

Table 3.1: Dataset statistics; #class is the number of classes per dataset, #docs denotes

the number of documents; #s/d and #w/d represent the average number of sentences

and words per document.

followed the preprocessing introduced in Tang et al. (2015a) and report experiments

on their training, development, and testing partitions (80/10/10).

IMDB reviews were obtained from Diao et al. (2014), who randomly crawled reviews

for 50K movies. Each review is associated with user ratings ranging from 1 to 10.

Czech reviews were obtained from Brychcın and Habernal (2013). The dataset con-

tains reviews from the Czech Movie Database1 each labeled as positive, neutral, or

negative. We include Czech in our experiments since it has more flexible word or-

der compared to English, with non-projective dependency structures being more fre-

quent. Experiments on this dataset perform 10-fold cross-validation following previous

work (Brychcın and Habernal, 2013).

Congressional floor debates were obtained from a corpus originally created by Thomas

et al. (2006) which contains transcripts of U.S. floor debates in the House of Repre-

sentatives for the year 2005. Each debate consists of a series of speech segments, each

labeled by the vote (“yea” or “nay”) cast for the proposed bill by the speaker of each

segment. We used the pre-processed corpus from Yogatama and Smith (2014).2

Following previous work (Yang et al., 2016), we only retained words appearing

more than five times in building the vocabulary and replaced words with lesser fre-

quencies with a special UNK token. Word embeddings were initialized by training

word2vec (Mikolov et al., 2013) on the training and validation splits of each dataset.

In our experiments, we set the word embedding dimension to be 200 and the hidden

size for the sentence-level and document-level LSTMs to 100 (the dimensions of the

1http://www.csfd.cz/
2http://www.cs.cornell.edu/˜ainur/data.html
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Dataset Text Label

Yelp Too bad, but you knew it would happen the douche bags would find

this place out and now, the hoards and the masses of db’s are roaming

about this groovy, mid-century modern that tosses a pretty good pie but

sadly the ol’ db factor has ruined the place, for this guy it’s no fault of

the owners they did their very best but now the dicks and boners have

descended from the east and the west side, in their true religions to prey

on the cougars, et al who also have seeked out the parlor the kitty’s have

started to crawl around, looking for action made up, for making out and

you know the rules of attraction will keep the c’s and db’s, turning out .

I’ll miss you, parlor pizza enjoyed our little affair, but i’m off, seeking

douche-free pastures man !! ... i used to love it there ...

3

IMDB This is a very good movie. Not the best of TNG’s movies, but certainly

still better then Kirk’s movies, this one starts with a new race coming

into the Federation ending up with a race that has people over 300 years

old.Not much is there that I can tell you without giving away the story,

but there is a lot of tension because the Federation wants to transport an

entire race of people to another planet to get the particles that grant the

long life that are around that planet. It turns out that Picard and his crew

have to go against the very Federation they have pledged their life to,

to save a planet full of people.With the opportunity to see Riker with a

shaved face for possibly the last time, seeing Worf sing ”A British Tar”

for the one and only time, this is truly a classic ST movie. rent it today

if you can.

8

CZ Movies Skrz naskrz uniktn pohled na to, jak me se lovkem zacloumat prakticky

ze dne na den nabyt slva. A na Thoma Yorka se vichno ostatn z Radio-

head vyrovnali s tm, e je lid miluj a jsou schopni pro jejich hudbu udlat

takka cokoliv (j jsem jeden z nich). Nezvykl vizuln ztvrnn dokonale sed

k celmu vtvarnmu kultu kolem Radiohead. Navc jsou zde i nkter ukzky

z naten klip (pedevm m srdcovky No Surprises, co je podle m snad i

nejlep videoklip vech dob) a nahrvn ve studiu. Zkrtka jak to asi vypad s

kadou kapelou, kter dl to co dl s lskou. Zde konkrtn bhem tour po vydn

desky OK Computer v roce 1997.

Negative

Table 3.2: Examples of input texts and labels for four experimented document classifi-

cation datasets.
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Debates mr. speaker, i believe that section 122 of this bill is an important pub-

lic policy statement that says corporate executives who are not properly

funding the pension plans of their employees should not be feathering

their own nests with overly generous retirement packages. currently,

the bill penalizes employers who fund executive compensation if the

sponsor’s employee defined plans are less than 60 percent funded. my

concern is that by setting this threshold too low, we are not discourag-

ing them enough from being irresponsible with the retirement security

of their employees while they take care of their own retirement pack-

ages. i ask the chairman to work with me in conference to increase

the threshold to at least 80 percent so that we encourage executives to

take their pension funding obligations more seriously, not leave their

defined benefit plan beneficiaries and, indeed, the pbgc and taxpayers

on the hook. mr. speaker, i thank the gentleman for his response.

Nay

Table 3.2 Continued

semantic and structure vectors were set to 75 and 25, respectively). We used a mini-

batch size of 32 during training and documents of similar length were grouped in one

batch. Parameters were optimized with Adagrad (Duchi et al., 2011), the learning rate

was set to 0.05. We used L2 regularization for all parameters except word embeddings

with regularization constant set to 1e−4. Dropout was applied on the input and output

layers with dropout rate 0.3.

Our results are summarized in Table 3.3. We compared our model against sev-

eral related models covering a wide spectrum of representations including word-based

ones (e.g., paragraph vector and CNN models) as well as hierarchically composed ones

(e.g., a CNN or LSTM provides a sentence vector and then a recurrent neural network

combines the sentence vectors to form a document level representation for classifica-

tion). Previous state-of-the-art results on the three review datasets were achieved by

the hierarchical attention network of Yang et al. (2016), which models the document

hierarchically with two GRUs and uses an attention mechanism to weigh the impor-

tance of each word and sentence. On the debates corpus, Ji and Smith (2017) obtained

best results with a recursive neural network model operating on the output of an RST

parser. Table 3.3 presents three variants3 of our model, one with structured attention

3We do not report comparisons with the inside-outside approach on document classification tasks
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Models Yelp IMDB CZ Movies Debates θ

Feature-based classifiers 59.8 40.9 78.5 74.0 —

Paragraph vector (Tang et al., 2015a) 57.7 34.1 — —- —

CNN (Tang et al., 2015a) 59.7 — — — —

Convolutional gated RNN (Tang et al., 2015a) 63.7 42.5 — — —

LSTM gated RNN (Tang et al., 2015a) 65.1 45.3 — — —

RST-based NN (Ji and Smith, 2017) — — — 75.7 —

75D HAN (Yang et al., 2016) 68.2 49.4 80.8 74.0 273K

75D No Attention 66.7 47.5 80.5 73.7 330K

100D Simple Attention 67.7 48.2 81.4 75.3 860K

100D Structured Attention (sentence-level) 68.0 48.8 81.5 74.6 842K

100D Structured Attention (document-level) 67.8 48.6 81.1 75.2 842K

100D Structured Attention (both levels) 68.6 49.2 82.1 76.5 860K

Table 3.3: Test accuracy on four datasets and number of parameters θ (excluding em-

beddings). Regarding feature-based classification methods, results on Yelp and IMDB

are taken from Tang et al. (2015a), on CZ movies from Brychcın and Habernal (2013),

and Debates from Yogatama and Smith (2014). Wherever available we also provide the

size of the recurrent unit (LSTM or GRU).

on the sentence level, another one with structured attention on the document level and

a third model which employs attention on both levels. As can be seen, the combi-

nation is beneficial achieving best results on three out of four datasets. Furthermore,

structured attention is superior to the simpler word-to-word attention mechanism, and

both types of attention bring improvements over no attention. The structured attention

approach is also very efficient, taking only 20 minutes for one training epoch on the

largest dataset.

3.3.1 Analysis of Induced Structures

To gain further insight on structured attention, we inspected the dependency trees it

produces. Specifically, we used the Chu-Liu-Edmonds algorithm (Chu and Liu, 1965;

Edmonds, 1967) to extract the maximum spanning tree from the attention scores. We

report various statistics on the characteristics of the induced trees across different tasks

due to its prohibitive computation cost leading to 5 hours of training for one epoch.
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Yelp IMDB CZ Movie Debates

Projective 79.6% 74.9% 82.8% 62.4%

Height 2.81 3.34 1.50 3.58

Nodes

depth 2 15.1% 13.6% 25.7% 12.8%

depth 3 55.6% 46.8% 57.1% 30.2%

depth 4 22.3% 32.5% 11.3% 40.8%

depth 5 3.2% 4.1% 5.8% 14.8%

Table 3.4: Descriptive statistics for induced document-level dependency trees across

four testsets.

and datasets.

Table 3.4 summarizes various characteristics of these trees. For most datasets,

document-level trees are not very deep, they mostly contain up to nodes of depth 3.

This is not surprising as the documents are relatively short (see Table 3.1) with the

exception of debates which are longer and the induced trees more complex. The fact

that most documents exhibit simple discourse structures is further corroborated by the

large number (over 70%) of projective trees induced on Yelp, IMDB, and CZ Movies

datasets.

Figure 3.5 shows examples of document-level trees taken from Yelp dataset. In the

tree of Figure 3.5a, most edges are examples of the “elaboration” discourse relation,

i.e., the child presents additional information about the parent. The tree of Figure 3.5b

is non-projective, the edges connecting sentences 1 and 4 and 3 and 5 cross. We also

show an example that is not with well-formed tree structures in Figure 3.5c, where

sentence 2 is the root and all other sentences are direct children of the root. This is

especially common when the document length is long, since the model is learning the

distribution of trees but not concrete tree structures and long inputs will smoothen the

marginal probability distribution.

3.4 Summary

In this chapter, we proposed a new model for representing documents while auto-

matically learning rich structural dependencies. Our model normalizes intra-attention

scores with the marginal probabilities of a non-projective dependency tree based on

a matrix inversion process. Each operation in this process is differentiable and the
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1  first of all, i did not expect to come into a cafeteria style eatery. 
2  they serve the basics of bbq, nothing too fancy. 
3  a few appetizers and side options, like cheesy potatoes, baked             
    mac 'n' 4 cheese, fresh corn bread, etc.. 
4  all were very tasty. 
5  for entree, they have a wide variety of meats and combos and 
    samplers. 
6  overall, this is a great place,... meat was well prepared, a 
    little pricey for what i was expecting. 

1 2 3 4 5 6

(a)

1 2 3 4 5

1  great instruction by ryan
2  clean workout facility and friendly people
3  they have a new student membership for 60 per month and   
    classes are mon , weds and fri 6pm 7pm
4  it 's definitely worth money if you want to learn brazilian jiu jitsu
5  i usually go to classes on mondays and fridays , and it 's the 
    best workout i 've had in years

(b)

1 2 21 22 23

1  I used to love this yogurtology (see : glowing review below.)
2  But now?
3  I'll never be back.
4  Over the past month and a half, I've gone to yogurtology 3 times     
    (I'd be there more, but i live a solid 20 min.

21  Given all the other frozen yogurt shops closer to where I live, 
      this is an incredibly stupid move for yogurtology.
22  Hire some real workers and fire this clown who obviously doesn't 
      care enough to do his job right.
23  I will never, ever be back.

......

......3 4

(c)

Figure 3.5: Example tree outputs generated by the Chu-Liu-Edmonds algorithm from

Yelp testset.
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model can be trained efficiently end-to-end, while inducing structural information. We

applied this approach to model documents hierarchically, incorporating both sentence

and document-level structure. Experiments on sentence and document modeling tasks

show that the representations learned by our model achieve competitive performance

against strong comparison systems. Analysis of the induced tree structures revealed

that they are meaningful, albeit different from linguistics ones, without ever exposing

the model to linguistic annotations or an external parser.

Document modeling, as a fundamental component of document-level NLP tasks,

can be usefully employed in document summarization models. In this next chapter, we

will describe how to adapt structured attention for extractive document summarization.



Chapter 4

Single-Document Summarization as

Tree Induction

As introduced in the previous chapter, the structured attention mechanism could be an

effective tool for modelling documents with structural constraints by neural models

without recourse to an external parser. For text summarization, document structure

analysis has also been proven useful. Previous studies (Marcu, 1999) have shown

that, document structure plays an important role in conveying important content as a

writer and perceiving important content as a reader. And the structural information

of the input document could help a neural summarizer to generate more precise sum-

maries (Hirao et al., 2013a; Yoshida et al., 2014; Gerani et al., 2014). However, as we

discussed in Chapter 1, the reliance on a parser has presented obstacles and challenges

to the wide application of document structure analysis in summarization tasks.

In this chapter, we attempt to introduce structure analysis into neural network mod-

els for extractive summarization. And the structured attention mechanism could be a

useful framework to achieve this. To this end, we explore and adapt structured atten-

tion to the task of single document extractive summarization. Unlike previous models

which usually consider the task as a sequential labelling problem, we propose to view

it as a multi-root dependency tree induction problem. The proposed model, SUMO

(Structured Summarization Model), uses the structured attention mechanism as both

the objective and attention weights. For summarization, deeper and more complex tree

structures need to considered. Therefore, we design a new iterative structure refine-

ment algorithm that can repeatedly refine the trees predicted by previous iterations.

Experiments on two datasets demonstrate that our model outperforms competitive

summarization systems, including a Transformer baseline and a reinforcement learn-

45
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ing based system. We found that the structured attention mechanism is also helpful

to extractive summarization, and the refinement process can further boost its perfor-

mance.

4.1 Introduction

As described in Chapter 1, single-document summarization is the task of automati-

cally generating a shorter version of a document while retaining its most important

information. Extractive summarization approaches form summaries by copying and

concatenating the most important spans (usually sentences) in a document. Recent ap-

proaches to (single-document) extractive summarization frame the task as a sequence

labeling problem taking advantage of the success of neural network architectures (Bah-

danau et al., 2015). The idea is to predict a label for each sentence specifying whether

it should be included in the summary. Existing systems mostly rely on recurrent neu-

ral networks (Hochreiter and Schmidhuber, 1997) to model the document and obtain

a vector representation for each sentence (Nallapati et al., 2017; Cheng and Lapata,

2016). Inter-sentential relations are captured in a sequential manner, without taking the

structure of the document into account, although the latter has been shown to correlate

with what readers perceive as important in a text (Marcu, 1999). Another problem in

neural-based extractive models is the lack of interpretability. While capable of iden-

tifying summary sentences, these models are not able to rationalize their predictions

(e.g., a sentence is in the summary because it describes important content upon which

other related sentences elaborate).

The summarization literature offers examples of models which exploit the structure

of the underlying document, inspired by existing theories of discourse such as Rhetor-

ical Structure Theory (RST; Mann and Thompson 1988). Most approaches produce

summaries based on tree-like document representations obtained by a parser trained on

discourse annotated corpora (Carlson et al., 2001; Prasad et al., 2008). For instance,

Marcu (1999) argues that a good summary can be generated by traversing the RST

discourse tree structure top-down, following nucleus nodes (discourse units in RST

are characterized regarding their text importance; nuclei denote central units, whereas

satellites denote peripheral ones). Other work (Hirao et al., 2013a; Yoshida et al.,

2014) extends this idea by transforming RST trees into dependency trees and generat-

ing summaries by tree trimming. Gerani et al. (2014) summarize product reviews; their

system aggregates RST trees representing individual reviews into a graph, from which
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1. One wily coyote traveled a bit too far from home, and its resulting 
adventure through Harlem had alarmed residents doing a double 
take and scampering to get out of its way Wednesday morning.

2. Police say frightened New Yorkers reported the coyote sighting 
around 9:30 a.m., and an emergency service unit was dispatched 
to find the animal. 

3. The little troublemaker was caught and tranquilized in Trinity 
Cemetery on 155th street and Broadway, and then taken to the 
Wildlife Conservation Society at the Bronx Zoo, authorities said.

4. "The coyote is under evaluation and observation," said Mary Dixon, 
spokesperson for the Wildlife Conservation Society.

5. She said the Department of Environmental Conservation will either 
send the animal to a rescue center or put it back in the wild.

6. According to Adrian Benepe, New York City Parks Commissioner, 
coyotes in Manhattan are rare, but not unheard of.

7. "This is actually the third coyote that has been seen in the last 10 
years," Benepe said.

8. Benepe said there is a theory the coyotes make their way to the 
city from suburban Westchester.

9. He said they probably walk down the Amtrak rail corridor along the 
Hudson River or swim down the Hudson River until they get to the 
city.

1 2 3 4 5 6 7 8 9

Figure 4.1: Dependency discourse tree for a document from the CNN/DailyMail dataset

(Hermann et al., 2015). Blue nodes indicate the roots of the tree (i.e., summary sen-

tences) and parent-child links indicate dependency relations.

an abstractive summary is generated. Xu et al. (2019b) propose a summarization sys-

tem by applying Graph Convolutional Networks over the RST graph and co-reference

graph of input documents.

Despite the intuitive appeal of discourse structure for the summarization task, the

reliance on a parser which is both expensive to obtain (since it must be trained on

labeled data) and error prone1, presents a major obstacle to its widespread use.

In the previous chapter, we introduced the structured attention mechanism which

can be used to learn structure-aware representations for documents. Drawing inspi-

ration from structured attention and existing discourse-informed summarization mod-

els (Marcu, 1999; Hirao et al., 2013a), in this chapter, we propose to frame extractive

summarization as a tree induction problem. Our model represents documents as multi-

root dependency trees where each root node is a summary sentence, and the subtrees

1The macro-F1 score (on span structures) of the best RST discourse parsers is around 85% (Feng
and Hirst, 2012b; Ji and Eisenstein, 2014; Li et al., 2014a; Morey et al., 2017; Yu et al., 2018), and the
performance beyond sentence boundaries is considered to be much worse than that (Joty et al., 2015).
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attached to it are sentences whose content is related to and covered by the summary

sentence. An example of a document and its corresponding tree is shown in Figure 4.1;

tree nodes correspond to document sentences; blue nodes represent sentences which

should be in the summary, dependent nodes relate to or are subsumed by the parent

summary sentence.

The proposed model uses a multi-root variant of the structured attention as both

the objective and attention weights for extractive summarization. The model is trained

end-to-end, it induces document-level dependency trees while predicting the output

summary, and brings more interpretability in the summarization process by helping

explain how document content contributes to the model’s decisions. As illustrated in

Figure 3.5 in previous chapter, the induced structures of the vanilla structured atten-

tion mechanism is meaningful but relatively shallow. For the summarization task, the

document tree structure is usually considered to be deeper and more complex (Marcu,

1999; Yoshida et al., 2014). Therefore, we design a new iterative structure refine-

ment algorithm, which learns to induce document-level structures through repeatedly

refining the trees predicted by previous iterations and allows the model to infer com-

plex trees which go beyond simple parent-child relations (Liu and Lapata, 2018; Kim

et al., 2017). The idea of structure refinement is conceptually related to recently pro-

posed models for solving iterative inference problems (Marino et al., 2018; Putzky

and Welling, 2017; Lee et al., 2018). It is also related to structured prediction en-

ergy networks (Belanger et al., 2017) which approach structured prediction as iterative

minimization of an energy function.

Our contributions in this chapter are three-fold: a novel conceptualization of extrac-

tive summarization as a tree induction problem; a model which capitalizes on the no-

tion of structured attention to learn document representations based on iterative struc-

ture refinement; and large-scale evaluation studies (both automatic and human-based)

which demonstrate that our approach performs competitively against state-of-the-art

methods while being able to rationalize model predictions.

4.2 Model Description

Given a document containing several sentences [s1,s2, · · · ,sn], where si is the i-th sen-

tence in the document, extractive summarization can be defined as the task of assigning

a label yi ∈ {0,1} to each si, indicating whether the sentence should be included in the

summary. It is assumed that summary sentences represent the most important content
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of the document.

4.2.1 Baseline Model

Most extractive models frame summarization as a classification problem. Recent ap-

proaches (Cheng and Lapata, 2016; Nallapati et al., 2017; Zhang et al., 2018c; Dong

et al., 2018) incorporate a neural network-based encoder to build representations for

sentences and apply a binary classifier over these representations to predict whether

the sentences should be included in the summary. Given predicted scores r and gold

labels y, the loss function can be defined as:

L =−
n

∑
i=1

(yi ln(ri)+(1−yi) ln(1− ri)) (4.1)

For our extractive summarization task, we design a baseline system which is com-

posed of a sentence-level Transformer (TS) and a document-level Transformer (TD),

which have the same structure (for more details about the Transformer models, please

see Section 2.1.2). For each sentence si = [xi1,xi2, · · · ,xim] in the input document, TS

is applied to obtain a contextual representation for each word:

[ui1,ui2, · · · ,uim] = TS([xi1,xi2, · · · ,xim]) (4.2)

And the representation of a sentence is acquired by applying weighted-pooling:

ai j = W0uT
i j (4.3)

si =
1
m

m

∑
j=1

ai jui j (4.4)

Document-level transformer TD takes si as input and yields a contextual representation

for each sentence:

[v1,v2, · · · ,vn] = TD([s1,s2, · · · ,sn]) (4.5)

Following previous work (Nallapati et al., 2017), we use a sigmoid function after

a linear transformation to calculate the probability ri of selecting si as a summary

sentence:

ri = σ(W1vT
i ) (4.6)
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4.2.2 Structured Summarization Model

In the Transformer model sketched above, inter-sentence relations are modeled by

multi-head attention based on softmax functions, which only capture shallow struc-

tural information. Our summarizer, which we call SUMO as a shorthand for Structured

Summarization Model classifies sentences as summary-worthy or not, and simultane-

ously induces the structure of the source document as a multi-root tree. An overview

of SUMO is illustrated in Figure 4.2. The model has the same sentence-level encoder

TS as the baseline Transformer model, but the document-level encoder differs from the

baseline system in two important ways: (a) it uses structured attention to model the

roots (i.e., summary sentences) of the underlying tree; and (b) through iterative refine-

ment it is able to progressively infer more complex structures from past guesses (see

the second and third block in Figure 4.2).

Structured Attention Assuming document sentences have been already encoded,

SUMO first calculates the unnormalized root score r̃i for si to indicate the extent to

which it might be selected as root in the document tree (red squares in Figure 4.2). It

also calculates the unnormalized edge score ẽi j for sentence pair 〈si,s j〉 indicating the

extent to which si might be the head of s j in that tree (green squares in Figure 4.2). To

inject structural bias, SUMO normalizes these scores as the marginal probabilities of

forming edges in the document dependency tree. The leaves of this dependency tree

are document sentences, while the edges connecting them indicate the dependency re-

lationships between them and determine how information flows in the attention mech-

anism.

We use the Tree-Matrix-Theorem (TMT; Kirchhoff 1847; Koo et al. 2007; Tutte

1984) to calculate root marginal probability ri and edge marginal probability ei j. Dif-

ferent from the method described in Chapter 3, here we use a multi-root variant of the

Tree-Matrix-Theorem, where the induced structure is a multi-root dependency tree,

since in our task the summary typically contains multiple sentences. As illustrated

in Algorithm 1, we first build the Laplacian matrix L based on unnormalized scores

and calculate marginal probabilities by matrix inverse-based operations (L−1). Given

sentence vector si as input, SUMO computes:

r̃i = Wrsi (4.7)

ẽi j = siWesT
j (4.8)

ri,ei j = TMT(r̃i, ẽi j) (4.9)
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Edges 
Dist ribut ion

Roots 
Dist ribut ion

1-Hop 
Propogat ion

Sructured At tent ion 
Iterat ion 1

2-Hop 
Propogat ion

Sructured At tent ion 
Iterat ion 2

3-Hop 
Propogat ion

Sructured At tent ion 
Iterat ion 2

Figure 4.2: Overview of SUMO. A Transformer-based sentence-level encoder builds a

vector si for each sentence si. The dotted lines indicate iterative application of structured

attention, where at each iteration the model outputs a roots distribution and an edges

distribution. Roots distribution is used to is calculate the extractive loss based on gold

summary sentences. Edges distribution is used as the attention weights to build new

sentence embeddings for next iteration. vk
i indicates the sentence embedding for si

after iteration k.
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Algorithm 1: Calculate Tree Marginal Probabilities based on Tree-Matrix-

Theorem
Input: unnormalized root score r̃i, unnormalized edge score ẽi j

Function TMT(r̃i, ẽi j):

Ai j =

0 if i = j

exp(r̃i j) otherwise

Li j =

∑
n
i′=1 Ai′ j if i = j

−Ai j otherwise

Li j =

Li j + exp(r̃i) i = j

Li j otherwise

ei j = Ai j[L−1] j j−Ai j[L−1] ji

ri = exp(r̃i)[L−1]ii

return ri,ei j

Iterative Structure Refinement SUMO essentially reduces summarization to a rooted-

tree parsing problem. However, accurately predicting a tree in one shot is problematic.

Firstly, when predicting the dependency tree, the model has solely access to labels for

the roots (aka summary sentences), while tree edges are latent and learned without an

explicit training signal. And shown in section 3.3.1, a single application of TMT leads

to shallow tree structures. Secondly, the calculation of r̃i and ẽi j would be based on

first-order features alone, however, higher-order information pertaining to siblings and

grandchildren has proved useful in discourse parsing (Carreras, 2007).

We address these issues with an inference algorithm which iteratively infers latent

trees. In contrast to multi-layer neural network architectures like the Transformer or

Recursive Neural Networks (Tai et al., 2015) where word representations are updated

at every layer based on the output of previous layers, we refine only the tree structure

during each iteration, word representations are not passed across multiple layers. Em-

pirically, at early iterations, the model learns shallow and simple trees, and information

propagates mostly between neighboring nodes; as the structure gets more refined, in-

formation propagates more globally allowing the model to learn higher-order features.

Algorithm 2 provides the details of our refinement procedure. SUMO takes K itera-

tions to learn the structure of a document. For each sentence, we initialize a structural

vector v0
i with sentence vector si. At iteration k, we use sentence embeddings from
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Algorithm 2: Structured Summarization Model
Input: Document d

Output: Root probabilities rK after K iterations

1 Calculate sentence vectors s using sentence-level Transformer TS

2 v0← s
3 for k← 1 to K−1 do
4 Calculate unnormalized root scores: r̃k

i = Wk
rvk−1

i

5 Calculate unnormalized edge scores: ẽk
i j = vk−1

i Wk
evk−1

j
T

6 Calculate marginal root and edge probabilities: rk,ek = TMT(r̃k, ẽk)

7 Update sentence representations: vk = k-Hop-Propogation(ek,s,k)

8 end
9 Calculate final unnormalized root and edge scores: r̃K

i = WK
r vK−1

i ,

ẽK
i j = vK−1

i WK
e vK−1

j
T

10 Calculate final root and edge probabilities: rK,eK = TMT(r̃K, ẽK)

11

12 Function k-Hop-Propogation(e, s, k):
13 z0← s
14 for l← 1 to k do
15 pl

i =
1
n ∑

n
j=1 e jizl−1

i

16 cl
i =

1
n ∑

n
j=1 ei jzl−1

i

17 zl
i = tanh(Wk

v[p
l−1
i ,cl−1

i ,zl−1
i ])

18 end
19 return vk

the previous iteration vk−1 to calculate unnormalized root r̃k
i and edge ẽk

i j scores us-

ing a linear transformation with weight Wk
r and a bilinear transformation with weight

Wk
e, respectively. Marginal root and edge probabilities are subsequently normalized

with the TMT to obtain rk
i and ek

i j (see lines 4–6 in Algorithm 2). Then, sentence

embeddings are updated with k-Hop Propagation. The latter takes as input the initial

sentence representations s rather than sentence embeddings vk−1 from the previous

layer. In other words, new embeddings vk are computed from scratch relying on the

structure from the previous layer. Within the k-Hop-Propagation function (lines 12–

19), edge probabilities ek
i j are used as attention weights to propagate information from

a sentence to all other sentences in k hops. pl
i and cl

i represent parent and child vectors,

respectively, while vector zl
i is updated with contextual information at hop l. At the
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final iteration (lines 9 and 10), the top sentence embeddings vK−1 are used to calculate

the final root probabilities rK .

We define the model’s loss function as the summation of the losses of all iterations:

L =
K

∑
k=1

[y log(rk)+(1− y) log(1− rk)] (4.10)

SUMO uses the root probabilities of the top layer as the scores for summary sentences.

The k-Hop-Propagation function resembles the Graph Convolution Networks (Kipf

and Welling, 2017a; Marcheggiani and Titov, 2017), which encode a graph represen-

tation with convolutional operations. GCNs have been been recently applied to latent

trees (Corro and Titov, 2019), however not in combination with iterative refinement.

4.3 Experiments

In this section we present our experimental setup, describe the summarization datasets

we used, discuss implementation details, our evaluation protocol, and analyze our re-

sults.

4.3.1 Summarization Datasets

We evaluated SUMO on two benchmark datasets, namely the CNN/DailyMail news

highlights dataset (Hermann et al., 2015) and the New York Times Annotated Cor-

pus (NYT; Sandhaus 2008). The CNN/DailyMail dataset contains news articles and

associated highlights, i.e., a few bullet points giving a brief overview of the article.

We used the standard splits of Hermann et al. (2015) for training, validation, and test-

ing (90,266/1,220/1,093 CNN documents and 196,961/12,148/10,397 DailyMail doc-

uments). We did not anonymize entities.

The NYT dataset contains 110,540 articles with abstractive summaries. Follow-

ing Durrett et al. (2016), we split these into 100,834 training and 9,706 test examples,

based on date of publication (test is all articles published on January 1, 2007 or later).

We also followed their filtering procedure, documents with summaries that are shorter

than 50 words were removed from the raw dataset. The filtered test set includes 3,452

test examples out of the original 9,706. Compared to CNN/DailyMail, the NYT dataset

contains longer and more elaborate summary sentences.

Both datasets contain abstractive gold summaries, which are not readily suited to

training extractive summarization models. A greedy algorithm similar to Nallapati
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et al. (2017) was used to generate an oracle summary for each document. Starting

from an empty summary set, we select one sentence from the source document into the

summary set incrementally at a time. At each selection, we maximize the ROUGE-1

and ROUGE-2 score of the current set with respect to the reference summary. The

process is stopped when none of the remaining source sentences improves the score.

The selected summary sentences are called oracle summary. We assigned label 1 to

sentences in the oracle summary and 0 otherwise and trained SUMO on this data.

4.3.2 Implementation Details

We followed the same training procedure for SUMO and various Transformer-based

baselines. The vocabulary size was set to 30K. We used 300D word embeddings which

were initialized randomly from N (0,0.01). The sentence-level Transformer has 6

layers and the hidden size of the feed-forward network was set to 512. The number

of heads in multi-head attention was set to 4. Adam was used for training (β1 = 0.9,

β2 = 0.999). We adopted the learning rate schedule from Vaswani et al. (2017) with

warming-up on the first 8,000 steps. SUMO and related Transformer models produced

3-sentence summaries for each document at test time (for both CNN/DailyMail and

NYT datasets).

4.3.3 Automatic Evaluation

We evaluated summarization quality using ROUGE F1 (Lin, 2004). We report uni-

gram and bigram overlap (ROUGE-1 and ROUGE-2) as a means of assessing infor-

mativeness and the longest common subsequence (ROUGE-L) as a means of assessing

fluency.

Table 4.1 summarizes our results. We evaluated two variants of SUMO, with one

and three structured-attention layers. We compared against a baseline which simply

selects the first three sentences in each document (LEAD-3) and several incarnations of

the basic Transformer model introduced in Section 4.2.1. These include a Transformer

without document-level self-attention and two variants with document-level self atten-

tion instantiated with one and three layers. Several state-of-the-art models are also

included in Table 4.1, both extractive and abstractive.

REFRESH (Narayan et al., 2018b) is an extractive summarization system trained

by globally optimizing the ROUGE metric with reinforcement learning. The system

of Marcu (1999) is another extractive summarizer based on RST parsing. It uses
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discourse structures and RST’s notion of nuclearity to score document sentences in

terms of their importance and selects the most important ones as the summary. Our

re-implementation of Marcu (1999) used the parser of Zhao and Huang (2017) to ob-

tain RST trees. Durrett et al. (2016) develop a summarization system which integrates

a compression model that enforces grammaticality and coherence. See et al. (2017)

present an abstractive summarization system based on an encoder-decoder architec-

ture. Celikyilmaz et al.’s (Celikyilmaz et al., 2018) system is an abstractive summa-

rization system using multiple agents to represent the document as well a hierarchical

attention mechanism over the agents for decoding.

As far as SUMO is concerned, we observe that it outperforms a simple Transformer

model without any document attention as well as variants with document attention.

SUMO with three layers of structured attention overall performs best, confirming our

hypothesis that document-level structure is beneficial for summarization. The results

in Table 4.1 also reveal that SUMO and all Transformer-based models with document

attention (doc-att) outperform LEAD-3 across metrics. SUMO (3-layer) is competitive

or better than state-of-the-art approaches. Examples of system output are shown in

Table 4.4. Finally, we should point out that SUMO is superior to Marcu (1999) even

though the latter employs linguistically informed document representations.

4.3.4 Human Evaluation

In addition to automatic evaluation, we also assessed system performance by eliciting

human judgments. Our first evaluation quantified the degree to which summariza-

tion models retain key information from the document following a question-answering

(QA) paradigm (Clarke and Lapata, 2010; Narayan et al., 2018b). We created a set

of questions based on the gold summary under the assumption that it highlights the

most important document content. We then examined whether participants were able

to answer these questions by reading system summaries alone without access to the

article. The more questions a system can answer, the better it is at summarizing the

document as a whole.

We randomly selected 20 documents from the CNN/DailyMail and NYT datasets,

respectively and wrote multiple question-answer pairs for each gold summary. We

created 71 questions in total varying from two to six questions per gold summary. We

asked participants to read the summary and answer all associated questions as best

they could without access to the original document or the gold summary. Examples of
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CNN DM CNN+DM NYT

Model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LEAD-3 29.2 11.2 26.0 40.7 18.3 37.2 39.6 17.7 36.2 35.5 17.3 32.0

Narayan et al. (2018b) 30.4 11.7 26.9 41.0 18.8 37.7 40.0 18.2 36.6 41.3 22.0 37.8

Marcu (1999) 25.6 6.10 19.5 31.9 12.4 23.5 26.5 9.80 20.4 29.6 11.2 23.0

Durrett et al. (2016) — — — — — — — — — 40.8 22.3 36.7

See et al. (2017) — — — — — — 39.5 17.3 36.4 42.7 22.1 38.0

Celikyilmaz et al. (2018) — — — — — — 41.7 19.5 37.9 — — —

Transformer (no doc-att) 29.2 11.1 25.6 40.5 18.1 36.8 39.7 17.0 35.9 41.1 21.5 37.0

Transformer (1-layer ) 29.5 11.4 26.0 41.5 18.7 38.0 40.6 18.1 36.7 41.8 22.1 37.8

Transformer (3-layer ) 29.6 11.8 26.3 41.7 18.8 38.0 40.6 18.1 36.9 42.0 22.3 38.2

SUMO (1-layer) 29.5 11.6 26.2 41.6 18.8 37.6 40.5 18.0 36.8 42.2 22.1 38.1

SUMO (3-layer) 29.7 12.0 26.5 42.0 19.1 38.0 41.0 18.4 37.2 42.3 22.7 38.6

Table 4.1: Test set results on the CNN/DailyMail and NYT datasets using ROUGE

F1 (R-1 and R-2 are shorthands for unigram and bigram overlap, R-L is the longest

common subsequence).

questions and their answers are given in Table 4.4. We adopted the same scoring mech-

anism used in Clarke and Lapata (2010), i.e., a correct answer was marked with a score

of one, partially correct answers with a score of 0.5, and zero otherwise. Answers were

elicited using Amazon’s Mechanical Turk platform. Participants evaluated summaries

produced by the LEAD-3 baseline, our 3-layered SUMO model and multiple state-of-

the-art systems. We elicited 5 responses per summary. Detailed instructions of human

evaluation can be found in Appendix A.

Table 4.2 (QA column) presents the results of the QA-based evaluation. Based

on the summaries generated by SUMO, participants can answer 65.3% of questions

correctly on CNN/DailyMail and 57.2% on NYT. Summaries produced by LEAD-3

and comparison systems fare worse, with REFRESH (Narayan et al., 2018b) coming

close to SUMO on CNN/DailyMail but not on NYT. Overall, we observe there is room

for improvement since no system comes close to the extractive oracle, indicating that

improved sentence selection would bring further performance gains to extractive ap-

proaches. Between-systems differences are all statistically significant (using a one-way

ANOVA with posthoc Tukey HSD tests; p < 0.01) with the exception of LEAD-3 and

See et al. (2017) in both CNN+DM and NTY, Narayan et al. (2018b) and SUMO in
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CNN+DM NYT

Model Rank QA Rank QA

LEAD 0.07 40.1 -0.18 36.3

Narayan et al. (2018b) 0.21 62.4 0.12 46.1

Durrett et al. (2016) — — -0.11 40.1

See et al. (2017) -0.23 36.6 -0.44 35.3

Celikyilmaz et al. (2018) -0.64 37.5 — —

SUMO (3-layer) 0.15 65.3 0.33 57.2
GOLD 0.11 — -0.16 —

ORACLE 0.37 74.6 0.41 67.1

Table 4.2: System ranking according to human judgments on summary quality and

QA-based evaluation.

both CNN+DM and NTY, and LEAD-3 and Durrett et al. (2016) in NYT.

Our second evaluation study assessed the overall quality of the summaries by ask-

ing participants to rank them taking into account the following criteria: Informative-

ness , Fluency, and Succinctness. The study was conducted on the Amazon Mechanical

Turk platform using Best-Worst Scaling (Louviere et al., 2015), a less labor-intensive

alternative to paired comparisons that has been shown to produce more reliable results

than rating scales (Kiritchenko and Mohammad, 2017). Participants were presented

with a document and summaries generated from 3 out of 7 systems and were asked to

decide which summary was better and which one was worse, taking into account the

criteria mentioned above. We used the same 20 documents from each dataset as in our

QA evaluation and elicited 5 responses per comparison.

The rating of each system was computed as the percentage of times it was chosen

as best minus the times it was selected as worst. Ratings range from -1 (worst) to

1 (best). As shown in Table 4.2 (Rank column), participants overwhelming prefer the

extractive oracle summaries followed by SUMO and REFRESH (Narayan et al., 2018b).

Abstractive systems (Celikyilmaz et al., 2018; See et al., 2017; Durrett et al., 2016)

perform relatively poorly in this evaluation; we suspect that humans are less forgiving

to fluency errors and slightly incoherent summaries. Interestingly, gold summaries fare

worse than the oracle and extractive systems. Albeit fluent, gold summaries naturally

contain less detail compared to oracle-based ones; on virtue of being abstracts, they

are written in a telegraphic style, often in conversational language while participants
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prefer the more lucid style of the extracts. All pairwise comparisons among systems

are statistically significant (using a one-way ANOVA with post-hoc Tukey HSD tests;

p < 0.01) except LEAD-3 and See et al. (2017) in both CNN+DM and NTY, Narayan

et al. (2018b) and SUMO in both CNN+DM and NTY, and LEAD and Durrett et al.

(2016) in NYT.

4.3.5 Evaluation of the Induced Structures

To gain further insight into the structures learned by SUMO, we inspected the trees it

produces. As in the previous chapter, we used the Chu-Liu-Edmonds algorithm (Chu

and Liu, 1965; Edmonds, 1967) to extract the maximum spanning tree from the at-

tention scores. We report various statistics on the characteristics of the induced trees

across datasets in Table 4.3. We also examine the trees learned from different SUMO

variants (with different numbers of iterations) in order to establish whether the iterative

process yields better structures.

Specifically, we compared the dependency trees obtained from our model to those

produced by a discourse parser (Zhao and Huang, 2017) trained on a corpus which

combines annotations from the RST treebank (Carlson et al., 2001) and the Penn Tree-

bank (Marcus et al., 1993). Unlike traditional RST discourse parsers (Feng and Hirst,

2014), which first segment a document into Elementary Discourse Units (EDUs) and

then build a discourse tree with the EDUs2 as leaves, Zhao and Huang (2017) parse

a document into an RST tree along with its syntax subtrees without segmenting it

into EDUs. The outputs of their parser are ideally suited for comparison with our

model, since we only care about document-level structures, and ignore the subtrees

within sentence boundaries. We converted the constituency RST trees obtained from

the discourse parser into dependency trees using Hayashi et al. (2016)’s algorithm by

assigning each sentence a unique head in a bottom-up manner.

As can be seen in Table 4.3, the dependency structures induced by SUMO are sim-

pler compared to those obtained from the discourse parser. Our trees are generally

shallower, almost half of them are projective. This is because there are two main pat-

terns in the induced trees, where the first pattern is a chain structure composed by

consecutive nodes, and the second pattern is a tree node with a large number of chil-

dren. These two patterns lead more induced trees to be projective.

We also calculated the percentage of head-dependency edges that are identical be-

2EDUs roughly correspond to clauses.
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CNN+DM NYT

P(%) H EA(%) P(%) H EA(%)

Parser 24.8 8.9 — 18.7 10.6 —

SUMO (1-layer) 69.0 2.9 23.1 54.7 3.6 20.6

SUMO (3-layer) 52.7 3.7 25.3 45.1 6.2 21.6

Left Branching — — 21.4 — — 21.3

Right Branching — — — — 6.7

Table 4.3: Descriptive statistics Projectivity(P), Height(H) and EdgeAgreement(EA) for

dependency trees produced by our model and the RST discourse parser of Zhao and

Huang (2017). Results are shown on the CNN/DailyMail and NYT test sets.

tween learned trees and parser generated ones. Although SUMO is not exposed to

any annotated trees during training, a number of edges agree with the outputs of the

discourse parser. Moreover, we observe that the iterative process involving multiple

structured attention layers helps generate better discourse trees, since the agreement

with parser generated trees is higher. We also compare SUMO trees against a left-

and right-branching baseline, where the document is trivially parsed into a left- and

right-branching tree forming a chain-like structure. As shown in Table 4.3, SUMO

outperforms these baselines (with the exception of the one-layered model on NYT).

4.4 Examples of System Output and Summary Evalua-

tion Questions

Table 4.4 shows examples of system output. Specifically, we show summaries pro-

duced from our model, SUMO, REFRESH (Narayan et al., 2018b), a pointer-generator

model (See et al., 2017), a baseline which simply selects the first three sentences in

each document (LEAD-3), and gold standard summaries. The table also contains ex-

amples of questions (and their answers) used in our QA-based evaluation study. We

can see compared with baseline systems, SUMO produces summaries that are more

informative and can answer more questions in the question answering evaluation. For

example, in the CNN/DM example in Table 4.4, SUMO is the only system that men-

tioned the main event in the news and name of the operating company, while other

systems only summarized the background information.
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4.5 Summary

In this chapter we provide a new perspective on extractive summarization, conceptu-

alizing it as a tree induction problem. We present SUMO, a Structured Summariza-

tion Model, which induces a multi-root dependency tree of a document, where roots

are summary-worthy sentences, and subtrees attached to them are sentences which

elaborate or explain the summary content. SUMO generates complex trees following

an iterative refinement process which builds latent structures while using information

learned in previous iterations. Experiments on two datasets, show that SUMO performs

competitively against state-of-the-art methods and induces meaningful tree structures.

Incorporating document structures into neural summarization systems can provide

deeper understanding of the documents. In the next chapter, we will show an alterna-

tive encoder that does not emphasize structural information but is augmented by model

pretraining can also boost the performance of a summarization system.
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CNN/DM NYT
G

O
L

D

A company called CyArk specializes in digital

preservation of threatened ancient and histori-

cal architecture.

Founded by an Iraqi-born engineer, it plans to

preserve 500 World Heritage sites within five

years.

Louisiana officials set July 31 deadline for ap-

plicants for the Road Home, grant program

for homeowners who lost their houses to hur-

ricanes Katrina and Rita.

Program is expected to cost far more than $7.5

billion provided by Federal Government, in

part because many more families have applied

than officials anticipated.

With cutoff date, State hopes to figure out

how much more money it needs to pay for

program.

Shortfall is projected to be $2.9 billion.

Q
ue

st
io

n-
A
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w

er
Pa

ir
s

Which company specializes in digital preser-

vation of threatened ancient and historical ar-

chitecture? [CyArk]

How many World Heritage sites does the

company plan to preserve? [500]

What is Road Home? [the Louisiana

grant program for homeowners who lost their

houses to hurricanes Katrina and Rita]

When is the applicants’ deadline for the Road

Home? [July 31]

Why is the program expected to cost far more

than $7.5 billion? [many more families have

applied than officials anticipated]

What is the shortfall projected to be? [$2.9

billion]

L
E

A
D

-3

In 2001, the Taliban wiped out 1700 years of

history in a matter of seconds, by blowing up

ancient Buddha statues in central Afghanistan

with dynamite.

They proceeded to do so after an attempt

at bringing down the 175-foot tall sculptures

with anti-aircraft artillery had failed.

Sadly, the event was just the first in a series of

atrocities that have robbed the world of some

of its most prized cultural heritage.

The Road Home, the Louisiana grant program

for homeowners who lost their houses to hur-

ricanes Katrina and Rita, is expected to cost

far more than the $7.5 billion provided by the

Federal Government, in part because many

more families have applied than officials had

anticipated.

As a result, Louisiana officials on Tuesday

night set a July 31 deadline for applicants,

who can receive up to $150,000 to repair or

rebuild their houses.

With the cutoff date, the State hopes to be able

to figure out how much more money it needs

to pay for the program.

Table 4.4: Examples of GOLD human authored summaries, questions based on them

(answers shown in square brackets) and automatic summaries produced by the LEAD-3

baseline, the abstractive system of See et al. (2017), REFRESH (Narayan et al., 2018b),

and SUMO for a CNN and NYT (test) article.
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CNN/DM NYT

Se
e

et
al

.(
20

17
) The Taliban wiped out 1700 years of history

in a matter of seconds.

The thought of losing a piece of our collective

history is a bleak one.

But if loss can’t be avoided, technology can

lend a hand.

Louisiana grant program for homeowners

who lost their houses to hurricanes Katrina

and Rita is expected to cost far more than $7.5

billion provided by federal government.

Louisiana officials set July 31 deadline for ap-

plicants, who can receive up to $150,000 to

repair or rebuild their houses.

N
ar

ay
an

et
al

.(
20

18
b)

Sadly, the event was just the first in a series of

atrocities that have robbed the world of some

of its most prized cultural heritage.

But historical architecture is also under threat

from calamities which might well escape

our control, such as earthquakes and climate

change.

The thought of losing a piece of our collective

history is a bleak one.

The Road Home, the Louisiana grant program

for homeowners who lost their houses to hur-

ricanes Katrina and Rita, is expected to cost

far more than the $7.5 billion provided by

the federal government, in part because many

more families have applied than officials had

anticipated.

With the cutoff date, the State hopes to be able

to figure out how much more money it needs

to pay for the program.

The shortfall is projected to be $2.9 billion.

S
U

M
O

In 2001, the Taliban wiped out 1700 years of

history in a matter of seconds, by blowing up

ancient Buddha statues in central Afghanistan

with dynamite.

Sadly, the event was just the first in a series of

atrocities that have robbed the world of some

of its most prized cultural heritage.

Now Cyark, a non-profit company founded by

an Iraqi-born engineer, is using groundbreak-

ing laser scanning to ensure that – at the very

least – incredibly accurate digital versions of

the world’s treasures will stay with us forever.

The Road Home, the Louisiana grant program

for homeowners who lost their houses to hur-

ricanes Katrina and Rita, is expected to cost

far more than the $7.5 billion provided by

the federal government, in part because many

more families have applied than officials had

anticipated.

As a result, Louisiana officials on Tuesday

night set a July 31 deadline for applicants,

who can receive up to $150,000 to repair or

rebuild their houses.

The shortfall is projected to be $2.9 billion.

Table 4.4 Continued





Chapter 5

Document Summarization with

Pretrained Encoders

We have shown in previous chapters that imposing a structural bias is beneficial to

summarization systems. Beyond structural information at the discourse-level, there

are other factors that could potentially help build a better summarizer. In this chapter,

we show that to achieve a better encoding of the documents, it is possible to distill

general knowledge contained in a large corpus via model pretraining. Incorporating

this encoder into a summarization system could bring substantial improvement to the

summarization performance.

Recently, language model pretraining has advanced the state of the art in many NLP

tasks. These models usually incorporate flexible but large neural architectures such as

LSTMs or Transformers for encoding input texts, and are trained on vast amounts of

text. Through experiments on various natural language understanding tasks (Devlin

et al., 2019), pretrained language models are found to be able to obtain richer rep-

resentations of sentences or documents and capture more long-tail features (Tenney

et al., 2019).

However, directly applying pretrained language models to document summariza-

tion tasks faces several challenges. In this chapter, we will discuss these challenges

and present how to use pretrained language models as encoders for both extractive and

abstractive summarization. Our experiments show that our proposed model achieves

new state-of-the-art results on multiple datasets.

65
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5.1 Introduction

Language model pretraining has advanced the state of the art in many NLP tasks rang-

ing from sentiment analysis, to question answering, natural language inference, named

entity recognition, and textual similarity (Peters et al., 2018; Devlin et al., 2019). State-

of-the-art pretrained models include ELMo (Peters et al., 2018), GPT (Radford et al.,

2018), and more recently Bidirectional Encoder Representations from Transformers

(BERT; Devlin et al. 2019). BERT combines both word and sentence representations

in a single very large Transformer (Vaswani et al., 2017); it is pretrained on vast

amounts of text, with an unsupervised objective of masked language modeling and

next-sentence prediction and can be fine-tuned with various task-specific objectives.

In most cases, pretrained language models have been employed as encoders for

sentence- and paragraph-level natural language understanding problems (Devlin et al.,

2019) involving various classification tasks (e.g., predicting whether any two sentences

are in an entailment relationship; or determining the completion of a sentence among

four alternative sentences). In this chapter, we examine the influence of language

model pretraining on text summarization. Different from previous tasks, summariza-

tion requires wide-coverage natural language understanding going beyond the meaning

of individual words and sentences. Furthermore, under abstractive modeling formula-

tions, the task requires language generation capabilities in order to create summaries

containing novel words and phrases not featured in the source text.

We explore the potential of BERT for text summarization under a general frame-

work encompassing both extractive and abstractive modeling paradigms. We propose a

novel document-level encoder based on BERT which is able to encode a document and

obtain representations for its sentences. Our extractive model is built on top of this en-

coder by stacking several inter-sentence Transformer layers to capture document-level

features for extracting sentences. Our abstractive model adopts an encoder-decoder

architecture (see Section 2.2.2 for details), combining the same pretrained BERT en-

coder with a randomly-initialized Transformer decoder (Vaswani et al., 2017). We

design a new training schedule which separates the optimizers of the encoder and the

decoder in order to accommodate the fact that the former is pretrained while the lat-

ter must be trained from scratch. Finally, motivated by previous work showing that

the combination of extractive and abstractive objectives can help generate better sum-

maries (Gehrmann et al., 2018), we present a two-stage approach where the encoder is

fine-tuned twice, first with an extractive objective and subsequently on the abstractive
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summarization task.

We evaluate the proposed approach on three single-document news summarization

datasets representative of different writing conventions (e.g., important information is

concentrated at the beginning of the document or distributed more evenly throughout)

and summary styles (e.g., verbose vs. more telegraphic; extractive vs. abstractive).

Across datasets, we experimentally show that the proposed models achieve state-of-

the-art results under both extractive and abstractive settings. Our contributions in this

chapter are three-fold: a) we highlight the importance of document encoding for the

summarization task; a variety of recently proposed techniques aim to enhance sum-

marization performance via copying mechanisms (Gu et al., 2016; See et al., 2017;

Nallapati et al., 2017), reinforcement learning (Narayan et al., 2018b; Paulus et al.,

2018; Dong et al., 2018), and multiple communicating encoders (Celikyilmaz et al.,

2018). We achieve better results with a minimum-requirements model without us-

ing any of these mechanisms; b) we showcase ways to effectively employ pretrained

language models in summarization under both extractive and abstractive settings; we

would expect any improvements in model pretraining to translate in better summariza-

tion in the future; and c) the proposed models can be used as a stepping stone to further

improve summarization performance as well as baselines against which new proposals

are tested.

5.2 Pretrained Language Models

Pretrained language models (Peters et al., 2018; Radford et al., 2018; Devlin et al.,

2019; Zhang et al., 2019a; Dong et al., 2019; Zhang et al., 2019b) have recently

emerged as a key technology for achieving impressive gains in a wide variety of nat-

ural language tasks. Pretrained language models are typically used to enhance per-

formance in language understanding tasks. Very recently, there have been attempts to

apply pretrained models to various generation problems (Edunov et al., 2019; Rothe

et al., 2019). These models extend the idea of word embeddings by learning contextual

representations from large-scale corpora using a language modeling objective. Bidi-

rectional Encoder Representations from Transformers (BERT; Devlin et al. 2019) is a

new language representation model which is trained with a masked language modeling

and a “next sentence prediction” task on a corpus of 3,300M words.

The general architecture of BERT is shown in the upper part of Figure 5.1. Input

text is first preprocessed by inserting two special tokens. [CLS] is appended to the
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Figure 5.1: Architecture of the original BERT model (above) and BERTSUM (below).

The sequence on top is the input document, followed by the summation of three kinds

of embeddings for each token. The summed vectors are used as input embeddings to

several bidirectional Transformer layers, generating contextual vectors for each token.

BERTSUM extends BERT by inserting multiple [CLS] symbols to learn sentence repre-

sentations and using interval segmentation embeddings (illustrated in red and green

color) to distinguish multiple sentences.
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beginning of the text; the output representation of this token is used to aggregate in-

formation from the whole sequence (e.g., for classification tasks). And token [SEP] is

inserted after each sentence as an indicator of sentence boundaries. The modified text is

then represented as a sequence of tokens X = [x1,x2, · · · ,xn]. Each token xi is assigned

three kinds of embeddings: token embeddings indicate the meaning of each token, seg-

mentation embeddings are used to discriminate between two sentences (e.g., during a

sentence-pair classification task) and position embeddings indicate the position of each

token within the text sequence. These three embeddings are summed to a single input

vector xi and fed to a bidirectional Transformer with multiple layers:

h̃l = LN(hl−1 +MHAtt(hl−1)) (5.1)

hl = LN(h̃l +FFN(h̃l)) (5.2)

where h0 = x are the input vectors; LN is the layer normalization operation (Ba et al.,

2016); MHAtt is the multi-head attention operation (Vaswani et al., 2017); superscript l

indicates the depth of the stacked layer. On the top layer, BERT will generate an output

vector ti for each token with rich contextual information. The detailed description of

the Transformer model is presented in Section 2.1.2.

5.3 Fine-tuning BERT for Summarization

5.3.1 Summarization Encoder

Although BERT has been used to fine-tune various NLP tasks, its application to sum-

marization is not as straightforward. Since BERT is trained as a masked-language

model, the output vectors are grounded to tokens instead of sentences, while in ex-

tractive summarization, as we introduced in Section 2.2, most models manipulate

sentence-level representations. Although segmentation embeddings represent differ-

ent sentences in BERT, they only apply to sentence-pair inputs, while in summariza-

tion we must encode and manipulate multi-sentential inputs. Figure 5.1 illustrates our

proposed BERT architecture for SUMmarization (which we call BERTSUM).

In order to represent individual sentences, we insert external [CLS] tokens at the

start of each sentence, and each [CLS] symbol collects features for the sentence pre-

ceding it. We also use interval segment embeddings to distinguish multiple sentences

within a document. For the i-th sentence si we assign segment embedding EA or EB

depending on whether i is odd or even. For example, for document [s1,s2,s3,s4,s5],
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where si is the i we would assign embeddings [EA,EB,EA,EB,EA]. This way, docu-

ment representations are learned hierarchically where lower Transformer layers repre-

sent adjacent sentences, while higher layers, in combination with self-attention, repre-

sent multi-sentence discourse.

Position embeddings in the original BERT model have a maximum length of 512;

we overcome this limitation by adding more position embeddings that are initialized

randomly and fine-tuned with other parameters in the encoder.

5.3.2 Extractive Summarization

Let d denote a document containing sentences [s1,s2, · · · ,sm], where si is the i-th sen-

tence in the document. As mentioned in Chapter 2.2.1, extractive summarization can

be defined as the task of assigning a label yi ∈ {0,1} to each si, indicating whether the

sentence should be included in the summary. It is assumed that summary sentences

represent the most important content of the document.

With BERTSUM, the vector of the i-th [CLS] symbol from the top layers can be used

as the representation for si. Several inter-sentence Transformer layers are then stacked

on top of BERT outputs, to capture document-level features for extracting summaries:

h̃l = LN(hl−1 +MHAtt(hl−1)) (5.3)

hl = LN(h̃l +FFN(h̃l)) (5.4)

where h0 = PosEmb(T); T denotes the sentence vectors output by BERTSUM, and

function PosEmb adds sinusoid positional embeddings (see section 2.1.2 for details)

to T, indicating the position of each sentence.

The final output layer is a sigmoid classifier:

ŷi = σ(WohL
i +bo) (5.5)

where hL
i is the vector for si from the top layer (the L-th layer ) of the Transformer.

In experiments, we implemented Transformers with L = 1,2,3 and found that a Trans-

former with L = 2 performed best. We name this model BERTSUMEXT.

The loss of the model is the binary classification entropy of prediction ŷi against

gold label yi. Inter-sentence Transformer layers are jointly fine-tuned with BERTSUM.

We use the Adam optimizer with β1 = 0.9, and β2 = 0.999. Our learning rate schedule

follows (Vaswani et al., 2017) with warming-up (warmup = 10,000):

lr = 2e−3 ·min(step−0.5,step ·warmup−1.5)
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Datasets # docs (train/val/test)
avg. doc length avg. summary length % novel bi-grams

words sentences words sentences in gold summary

CNN 90,266/1,220/1,093 760.50 33.98 45.70 3.59 52.90

DailyMail 196,961/12,148/10,397 653.33 29.33 54.65 3.86 52.16

NYT 96,834/4,000/3,452 800.04 35.55 45.54 2.44 54.70

XSum 204,045/11,332/11,334 431.07 19.77 23.26 1.00 83.31

Table 5.1: Comparison of summarization datasets: size of training, validation, and test

sets and average document and summary length (in terms of words and sentences).

The proportion of novel bi-grams that do not appear in source documents but do appear

in the gold summaries quantifies corpus bias towards extractive methods.

5.3.3 Abstractive Summarization

We use a standard encoder-decoder framework, as described in Chapter 2, for abstrac-

tive summarization. The encoder is the pretrained BERTSUM and the decoder is a

6-layered Transformer initialized randomly. It is conceivable that there is a mismatch

between the encoder and the decoder, since the former is pretrained while the latter

must be trained from scratch. This can make fine-tuning unstable; for example, the

encoder might overfit the data while the decoder underfits, or vice versa. To circum-

vent this, we design a new fine-tuning schedule which separates the optimizers of the

encoder and the decoder.

We use two Adam optimizers with β1 = 0.9 and β2 = 0.999 for the encoder and

the decoder, respectively, each with different warmup-steps and learning rates:

lrE = l̃rE ·min(step−0.5,step ·warmup−1.5
E ) (5.6)

lrD = l̃rD ·min(step−0.5,step ·warmup−1.5
D ) (5.7)

where l̃rE = 2e−3,warmupE = 20,000 for the encoder, and l̃rD = 0.1,warmupD =

10,000 for the decoder. This is based on the assumption that the pretrained encoder

should be fine-tuned with a smaller learning rate and smoother decay (so that the en-

coder can be trained with more accurate gradients when the decoder becomes stable).

In addition, we propose a two-stage fine-tuning approach, where we first fine-tune

the encoder on the extractive summarization task (Section 5.3.2) and then fine-tune

it on the abstractive summarization task (Section 5.3.3). Previous work (Gehrmann

et al., 2018; Li et al., 2018) suggests that using extractive objectives can boost the

performance of abstractive summarization. Also notice that this two-stage approach
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is conceptually very simple, the model can take advantage of information shared be-

tween these two tasks, without fundamentally changing its architecture. We name the

default abstractive model BERTSUMABS and the two-stage fine-tuned model BERT-

SUMEXTABS.

5.4 Experimental Setup

In this section, we describe the summarization datasets used in our experiments and

discuss various implementation details.

5.4.1 Summarization Datasets

We evaluated our model on three benchmark datasets. Beyond the CNN/DailyMail

news highlights dataset and the New York Times Annotated Corpus used in the previ-

ous chapter, we report experiments on one additional dataset: XSum (Narayan et al.,

2018a). These datasets represent different summary styles ranging from highlights to

very brief one sentence summaries. The summaries also vary with respect to the type

of rewriting operations they exemplify (e.g., some showcase more cut and paste op-

erations while others are genuinely abstractive). Table 5.1 presents statistics on these

datasets (test set).

CNN/DailyMail contains news articles and associated highlights, i.e., a few bullet

points giving a brief overview of the article. We used the standard splits of Hermann

et al. (2015) for training, validation, and testing (90,266/1,220/1,093 CNN documents

and 196,961/12,148/10,397 DailyMail documents). We did not anonymize entities.

We first split sentences with the Stanford CoreNLP toolkit (Manning et al., 2014) and

pre-processed the dataset following See et al. (2017). Input documents were truncated

to 512 tokens.

NYT contains 110,540 articles with abstractive summaries. Following Durrett et al.

(2016), we split these into 100,834/9,706 training/test examples, based on the date of

publication (the test set contains all articles published from January 1, 2007 onward).

We used 4,000 examples from the training as validation set. We also followed their

filtering procedure, documents with summaries less than 50 words were removed from

the dataset. The filtered test set (NYT50) includes 3,452 examples. Sentences were
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split with the Stanford CoreNLP toolkit (Manning et al., 2014) and pre-processed fol-

lowing Durrett et al. (2016). Input documents were truncated to 800 tokens.

XSum contains 226,711 news articles accompanied with a one-sentence summary,

answering the question “What is this article about?”. We used the splits of Narayan

et al. (2018a) for training, validation, and testing (204,045/11,332/11,334) and fol-

lowed the pre-processing introduced in their work. Input documents were truncated

to 512 tokens.

Aside from various statistics on the datasets, Table 5.1 also reports the proportion

of novel bi-grams in gold summaries as a measure of their abstractiveness. We would

expect models with extractive biases to perform better on datasets with (mostly) extrac-

tive summaries, and abstractive models to perform more rewrite operations on datasets

with abstractive summaries. CNN/DailyMail and NYT are somewhat extractive, while

XSum is highly abstractive.

5.4.2 Implementation Details and Comparison Systems

For both extractive and abstractive settings, we used PyTorch, OpenNMT (Klein et al.,

2017) and the ‘bert-base-uncased’1 version of BERT to implement BERTSUM. Both

source and target texts were tokenized with BERT’s subwords tokenizer.

Extractive Summarization All extractive models were trained for 50,000 steps on 3

GPUs (GTX 1080 Ti) with gradient accumulation every two steps. Model checkpoints

were saved and evaluated on the validation set every 1,000 steps. We selected the top-3

checkpoints based on the evaluation loss on the validation set, and report the averaged

results on the test set. We used a greedy algorithm similar to Nallapati et al. (2017) to

obtain an oracle summary for each document to train extractive models. The algorithm

generates an oracle consisting of multiple sentences which maximize the ROUGE-2

score against the gold summary.

When predicting summaries for a new document, we first use the model to obtain

the score for each sentence. We then rank these sentences by their scores from highest

to lowest, and select the top-3 sentences as the summary.

During sentence selection we use Trigram Blocking to reduce redundancy (Paulus

et al., 2018). Given summary S and candidate sentence c, we skip c if there exists a

1https://git.io/fhbJQ
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trigram overlapping between c and S. The intuition is similar to Maximal Marginal

Relevance (MMR; Carbonell and Goldstein 1998); we wish to minimize the similarity

between the sentence being considered and sentences which have been already selected

as part of the summary.

We compared our model with several previously proposed systems. SUMMARUN-

NER (Nallapati et al., 2017) is one of the earliest neural approaches adopting an en-

coder based on Recurrent Neural Networks. REFRESH (Narayan et al., 2018b) is a

reinforcement learning-based system trained by globally optimizing the ROUGE met-

ric. LATENT (Zhang et al., 2018c) frames extractive summarization as a latent variable

inference problem; instead of maximizing the likelihood of “gold” standard labels,

their latent model directly maximizes the likelihood of human summaries given se-

lected sentences. NEUSUM (Zhou et al., 2018) scores and selects sentences jointly and

represents the state-of-the-art in extractive summarization. We also show results of the

SUMO system described in the previous chapter.

Abstractive Summarization In all abstractive models, we applied dropout (with

probability 0.1) before all linear layers; label smoothing (Szegedy et al., 2016) with

smoothing factor 0.1 was also used. Our Transformer decoder has 768 hidden units

and the hidden size for all feed-forward layers is 2,048. All models were trained for

200,000 steps on 4 GPUs (GTX 1080 Ti) with gradient accumulation every five steps.

Model checkpoints were saved and evaluated on the validation set every 2,500 steps.

We selected the top-3 checkpoints based on their evaluation loss on the validation set,

and report the averaged results on the test set.

During decoding we use beam search with beam size 5 and length penalty (Wu

et al., 2016). The length penalty adds a penalty term l p(Y ) to the score of each candi-

date summary Y :

l p(Y ) =
(5+ |Y |)α

(5+1)α
(5.8)

where |Y | is the current length of the generated text, and α is the length normaliza-

tion coefficient. We tuned α between 0.6 and 1 on the validation set; we decode until

an end-of-sequence token is emitted and repeated trigrams are blocked (Paulus et al.,

2018). It is worth noting that our decoder applies neither a copy nor a coverage mech-

anism (See et al., 2017), despite their popularity in abstractive summarization. This

is mainly because we focus on building a minimum-requirements model and these

mechanisms may introduce additional hyper-parameters to tune. Thanks to the sub-
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words tokenizer, we also rarely observe issues with out-of-vocabulary words in the

output; moreover, trigram-blocking produces diverse summaries managing to reduce

repetitions.

We compared our model with several previously proposed systems. PTGEN (See

et al., 2017) is a summarizer based on pointer-generator network which allows it to

copy words from the source text, and it can be enhanced by a coverage mechanism

(COV) which keeps track of words that have been summarized. Deep Communicating

Agents (DCA) model (Celikyilmaz et al., 2018) uses multiple agents (encoders) to

represent the document together, and is trained end-to-end with reinforcement learn-

ing. DRM (Paulus et al., 2018) is a deep reinforced mode which handles the coverage

problem with an intra-attention mechanism where the decoder attends over previously

generated words. BOTTOMUP (Gehrmann et al., 2018) follows a bottom-up approach;

a content selector first determines which phrases in the source document should be part

of the summary, and a copy mechanism is applied only to preselected phrases during

decoding. TCONVS2S (Narayan et al., 2018a) is an abstractive model which is par-

ticularly suited to extreme summarization (i.e., single sentence summaries), based on

convolutional neural networks and additionally conditioned on topic distributions.

5.5 Results

5.5.1 Automatic Evaluation

We evaluated summarization quality automatically using ROUGE (Lin, 2004). We

report unigram and bigram overlap (ROUGE-1 and ROUGE-2) as a means of assess-

ing informativeness and the longest common subsequence (ROUGE-L) as a means of

assessing fluency.

Table 5.2 summarizes our results on the CNN/DailyMail dataset. The first block

in the table includes the results of an extractive ORACLE system, which generates

summaries by maximizing the ROUGE-2 score, as an upper bound. We also present

the LEAD-3 baseline (which simply selects the first three sentences in a document).

The second block in the table includes various extractive models trained on the

CNN/DailyMail dataset, including the SUMO model as described in the previous chap-

ter. For comparison to our own model, we also implemented a non-pretrained Trans-

former baseline (TransformerEXT) which uses the same architecture as BERTSUMEXT,

but with fewer parameters. It is randomly initialized and only trained on the summa-
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Model ROUGE-1 ROUGE-2 ROUGE-L

ORACLE 52.59 31.24 48.87

LEAD-3 40.42 17.62 36.67

Extractive

SUMMARUNNER (Nallapati et al., 2017) 39.60 16.20 35.30

REFRESH (Narayan et al., 2018b) 40.00 18.20 36.60

LATENT (Zhang et al., 2018c) 41.05 18.77 37.54

NEUSUM (Zhou et al., 2018) 41.59 19.01 37.98

SUMO (Liu et al., 2019) 41.00 18.40 37.20

TransformerEXT 40.90 18.02 37.17

Abstractive

PTGEN (See et al., 2017) 36.44 15.66 33.42

PTGEN+COV (See et al., 2017) 39.53 17.28 36.38

DRM (Paulus et al., 2018) 39.87 15.82 36.90

BOTTOMUP (Gehrmann et al., 2018) 41.22 18.68 38.34

DCA (Celikyilmaz et al., 2018) 41.69 19.47 37.92

TransformerABS 40.21 17.76 37.09

BERT-based

BERTSUMEXT 43.25 20.24 39.63

BERTSUMEXT w/o interval embeddings 43.20 20.22 39.59

BERTSUMEXT (large) 43.85 20.34 39.90

BERTSUMABS 41.72 19.39 38.76

BERTSUMEXTABS 42.13 19.60 39.18

Table 5.2: ROUGE F1 results on CNN/DailyMail test set (ROUGE-1 and ROUGE-2 are

unigram and bigram overlaps; ROUGE-L is the longest common subsequence). Results

for comparison systems are taken from the authors’ respective papers or obtained on

our data by running publicly released software.
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Model ROUGE-1 ROUGE-2 ROUGE-L

ORACLE 49.18 33.24 46.02

LEAD-3 39.58 20.11 35.78

Extractive

COMPRESS (Durrett et al., 2016) 42.20 24.90 —

SUMO (Liu et al., 2019) 42.30 22.70 38.60

TransformerEXT 41.95 22.68 38.51

Abstractive

PTGEN (See et al., 2017) 42.47 25.61 —

PTGEN + COV (See et al., 2017) 43.71 26.40 —

DRM (Paulus et al., 2018) 42.94 26.02 —

TransformerABS 35.75 17.23 31.41

BERT-based

BERTSUMEXT 46.66 26.35 42.62

BERTSUMABS 48.92 30.84 45.41

BERTSUMEXTABS 49.02 31.02 45.55

Table 5.3: ROUGE Recall results on NYT test set. Results for comparison systems are

taken from the authors’ respective papers or obtained on our data by running publicly

released software. Table cells are filled with — whenever results are not available.

rization task. TransformerEXT has 6 layers, the hidden size is 512, and the feed-

forward filter size is 2,048. The model was trained with same settings as in Vaswani

et al. (2017).

The third block in Table 5.2 highlights the performance of several abstractive mod-

els on the CNN/DailyMail dataset. We also include an abstractive Transformer base-

line (TransformerABS) which has the same decoder as our abstractive BERTSUM mod-

els; the encoder is a 6-layer Transformer with 768 hidden size and 2,048 feed-forward

filter size.

The fourth block reports results with fine-tuned BERT models: BERTSUMEXT and

its two variants (one without interval embeddings, and one with the large version of

BERT), BERTSUMABS, and BERTSUMEXTABS. BERT-based models outperform the

LEAD-3 baseline which is not a strawman; on the CNN/DailyMail corpus it is indeed

superior to several extractive (Nallapati et al., 2017; Narayan et al., 2018b; Zhou et al.,

2018) and abstractive models (See et al., 2017). BERT models collectively outperform
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Model ROUGE-1 ROUGE-2 ROUGE-L

ORACLE 29.79 8.81 22.66

LEAD 16.30 1.60 11.95

Abstractive

PTGEN (See et al., 2017) 29.70 9.21 23.24

PTGEN+COV (See et al., 2017) 28.10 8.02 21.72

TCONVS2S (Narayan et al., 2018a) 31.89 11.54 25.75

TransformerABS 29.41 9.77 23.01

BERT-based

BERTSUMABS 38.76 16.33 31.15

BERTSUMEXTABS 38.81 16.50 31.27

Table 5.4: ROUGE F1 results on the XSum test set. Results for comparison sys-

tems are taken from the authors’ respective papers or obtained on our data by running

publicly released software.

all previously proposed extractive and abstractive systems, only falling behind the OR-

ACLE upper bound. Among BERT variants, BERTSUMEXT performs best which is

not entirely surprising; CNN/DailyMail summaries are somewhat extractive and even

abstractive models are prone to copying sentences from the source document when

trained on this dataset (See et al., 2017). Perhaps unsurprisingly we observe that larger

versions of BERT lead to performance improvements and that interval embeddings

bring only slight gains.

Table 5.3 presents results on the NYT dataset. Following the evaluation protocol

in Durrett et al. (2016), we use limited-length ROUGE Recall, where predicted sum-

maries are truncated to the length of the gold summaries. Again, we report the per-

formance of the ORACLE upper bound and LEAD-3 baseline. The second block in the

table contains previously proposed extractive models as well as our own Transformer

baseline. COMPRESS (Durrett et al., 2016) is an ILP-based model which combines

compression and anaphoricity constraints. The third block includes abstractive mod-

els from the literature, and our Transformer baseline. BERT-based models are shown

in the fourth block. Again, we observe that they outperform previously proposed ap-

proaches. On this dataset, abstractive BERT models generally perform better compared

to BERTSUMEXT, almost approaching ORACLE performance.

Table 5.4 summarizes our results on the XSum dataset. Recall that summaries



5.5. Results 79

l̃rE

l̃rD 1 0.1 0.01 0.001

2e−2 50.69 9.33 10.13 19.26

2e−3 37.21 8.73 9.52 16.88

Table 5.5: Model perplexity (CNN/DailyMail; validation set) under different combina-

tions of encoder and decoder learning rates.

in this dataset are highly abstractive (see Table 5.1) consisting of a single sentence

conveying the gist of the document. Extractive models here perform poorly as corrob-

orated by the low performance of the LEAD baseline (which simply selects the leading

sentence from the document), and the ORACLE (which selects a single-best sentence in

each document) in Table 5.4. As a result, we do not report results for extractive models

on this dataset. The second block in Table 5.4 presents the results of various abstrac-

tive models taken from Narayan et al. (2018a) and also includes our own abstractive

Transformer baseline. In the third block we show the results of our BERT summarizers

which again are superior to all previously reported models (by a wide margin).

5.5.2 Model Analysis

Learning Rates Recall that our abstractive model uses separate optimizers for the

encoder and decoder. In Table 5.5 we examine whether the combination of differ-

ent learning rates (l̃rE and l̃rD) is indeed beneficial. Specifically, we report model

perplexity on the CNN/DailyMail validation set for varying encoder/decoder learning

rates. We can see that the model performs best with l̃rE = 2e−3 and l̃rD = 0.1.

Ablation Studies We conducted various ablation studies to examine the contribution

of different components of BERTSUM. The results are shown in Table 5.6. In the

extractive setting, interval segments and inter-sentence Transformer layers increase the

performance of the base model. In the abstractive setting, interval segments also seem

to enhance the quality of the output summaries. When BERTSUM does not employ

separate optimizers, i.e., the encoder and decoder are optimized with the same learning

rate and warmup-steps, ROUGE scores drop dramatically.

Position of Extracted Sentences In addition to the evaluation based on ROUGE,

we also analyzed in more detail the summaries produced by our model. For the ex-
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Model ROUGE-1 ROUGE-2 ROUGE-L

BERTSUMEXT 43.25 20.24 39.63

−interval segments 43.14 20.01 39.22

−inter-sent Transformer 43.23 20.22 39.60

BERTSUMABS 41.72 19.39 38.76

−interval segments 41.54 19.31 38.76

−seperate optimizers 39.77 16.89 36.53

Table 5.6: Results for ablation studies of BERTSUMEXT and BERTSUMABS on the

CNN/DailyMail test set using ROUGE F1.

tractive setting, we looked at the position (in the source document) of the sentences

which were selected to appear in the summary. Figure 5.2 shows the proportion of

selected summary sentences which appear in the source document at positions 1, 2,

and so on. The analysis was conducted on the CNN/DailyMail dataset for Oracle

summaries, and those produced by BERTSUMEXT and the TransformerEXT. We can

see that Oracle summary sentences are fairly smoothly distributed across documents,

while summaries created by TransformerEXT mostly concentrate on the first document

sentences. BERTSUMEXT outputs are more similar to Oracle summaries, indicating

that with the pretrained encoder, the model relies less on shallow position features, and

learns deeper document representations.

Novel N-grams We also analyzed the output of abstractive systems by calculating the

proportion of novel n-grams that appear in the summaries but not in the source texts.

The results are shown in Figure 5.3. In the CNN/DailyMail dataset, the proportion

of novel n-grams in automatically generated summaries is much lower compared to

reference summaries, but in XSum, this gap is much smaller. We also observe that on

CNN/DailyMail, BERTEXTABS produces less novel n-grams than BERTABS, which

is not surprising. BERTEXTABS is more biased towards selecting sentences from the

source document since it is initially trained as an extractive model.

5.5.3 Human Evaluation

In addition to automatic evaluation, we also evaluated system output by eliciting hu-

man judgments. We report experiments following a question-answering (QA) paradigm

(Clarke and Lapata, 2010; Narayan et al., 2018b) which quantifies the degree to which
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Figure 5.2: Proportion of extracted sentences according to their position in the original

document.

summarization models retain key information from the document. Under this paradigm,

a set of questions is created based on the gold summary under the assumption that it

highlights the most important document content. Participants are then asked to answer

these questions by reading system summaries alone without access to the article. The

more questions a system can answer, the better it is at summarizing the document as a

whole.

Moreover, we also assessed the overall quality of the summaries produced by ab-

stractive systems which due to their ability to rewrite content may produce disfluent or

ungrammatical output. Specifically, we followed the Best-Worst Scaling (Kiritchenko

and Mohammad, 2017) method where participants were presented with the output of

two systems (and the original document) and asked to decide which one was better

according to the criteria of Informativeness, Fluency, and Succinctness.

Both types of evaluation were conducted on the Amazon Mechanical Turk plat-

form. Detailed instructions of human evaluation can be found in Appendix A. For

the CNN/DailyMail and NYT datasets we used the same documents (20 in total) and

questions from previous work (Narayan et al., 2018b; Liu et al., 2019). For XSum,

we randomly selected 20 documents (and their questions) from the release of Narayan

et al. (2018a). We elicited 3 responses per HIT. With regard to QA evaluation, we
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Figure 5.3: Proportion of novel n-grams in model generated summaries.

Extractive CNN/DM NYT

LEAD 42.5† 36.2†

NEUSUM 42.2† —

SUMO 41.7† 38.1†

Transformer 37.8† 32.5†

BERTSUM 58.9 41.9

Table 5.7: QA-based evaluation. Models with † are significantly different from BERTSUM

(using a paired student t-test; p < 0.05). Table cells are filled with — whenever system

output is not available.
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adopted the scoring mechanism from Clarke and Lapata (2010); correct answers were

marked with a score of one, partially correct answers with 0.5, and zero otherwise. For

quality-based evaluation, the rating of each system was computed as the percentage of

times it was chosen as better minus the times it was selected as worse. Ratings thus

range from -1 (worst) to 1 (best).

CNN/DM NYT XSum

Abstractive QA Rank QA Rank QA Rank

LEAD 42.5† — 36.2† — 9.20† —

PTGEN 33.3† -0.24† 30.5† -0.27† 23.7† -0.36†

BOTTOMUP 40.6† -0.16† — — — —

TCONVS2S — — — — 52.1 -0.20†

GOLD — 0.22† — 0.33† — 0.38†

BERTSUM 56.1 0.17 41.8 -0.07 57.5 0.19

Table 5.8: QA-based and ranking-based evaluation. Models with † are significantly

different from BERTSUM (using a paired student t-test; p < 0.05). Table cells are filled

with — whenever system output is not available. GOLD is not used in the QA setting,

and LEAD is not used in the Rank evaluation.

Results for extractive and abstractive systems are shown in Tables 5.7 and 5.8, re-

spectively. We compared the best performing BERTSUM model in each setting (extrac-

tive or abstractive) against various state-of-the-art systems (whose output is publicly

available), the LEAD baseline, and the GOLD standard as an upper bound. As shown in

both tables participants overwhelmingly prefer the output of our model against com-

parison systems across datasets and evaluation paradigms. All differences between

BERTSUM and comparison models are statistically significant (p < 0.05), with the ex-

ception of TCONVS2S (see Table 5.8; XSum) in the QA evaluation setting.

5.5.4 Examples of System Output and Evaluation Questions

Table 5.9 shows examples of system output on the CNN/DailyMail dataset. Specifi-

cally, we show summaries produced from our BERT-based models, NEUSUM (Zhou

et al., 2018), the pointer-generator network (PTGEN; See et al. 2017) and the bottom-

up (BOTTOMUP) summarization model of Gehrmann et al. (2018). Table 5.10 shows

examples of system output on the NYT datasets. Specifically, we show summaries pro-

duced from our BERT-based models, SUMO and the pointer-generator network (See
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et al., 2017). Table 5.11 shows examples of system output on the XSum dataset.

Specifically, we show summaries produced from our BERT-based models, the pointer-

generator network (See et al., 2017) and the topic-conditioned convolutional model

(TCONVS2S) of Narayan et al. (2018a). For extractive setting, we can see BERT-

SUMEXT produced summaries with more coverage of the source input. For example,

in Table 5.9, BERTSUMEXT selected content not only about the women but also about

the police’s operations. For abstractive setting, BERTSUMABS produced more fluent

and informative summaries than baseline systems and can better answer the questions

in the question answering evaluation. For example, in Table 5.10, BERTSUMABS

provided more background information of the grant program and the complete event

chain, while PGNET only covers the grant program itself. And BERTSUMEXTABS

tended to generate longer sentences with more copies from the source input compared

with BERTSUMABS.

5.6 Summary

In this chapter, we showcased how pretrained BERT can be usefully applied in text

summarization. We introduced a novel document-level encoder and proposed a general

framework for both abstractive and extractive summarization. Experimental results

across three datasets show that our model achieves state-of-the-art results across the

board under automatic and human-based evaluation protocols.



5.6. Summary 85

CNN/DailyMail

GOLD

Emergency services were called to the Kosciuszko bridge at about 11.50

am Monday, where a woman had climbed over the bridge’s railing

and was standing on a section of metal piping. Officers tried to calm

her down as NYPD patrol boats cruised under the bridge on Newtown

Creek, which connects Greenpoint in Brooklyn and Maspeth in Gueens.

A witness said the woman was a 44-year-old Polish mother-of-one who

was going through a tough divorce. She agreed to be rescued after po-

lice talked to her about her daughter and was taken to Elmhurst hospital.

QA

When were emergency services called to the Kosciuszko bridge? [11.50

am]

What did the witness say about the woman? [44-year-old polish

mother-of-one who was going through a tough divorce]

Did the woman agreed to be rescued? [yes]

LEAD

A woman who threatened to jump to her death off a New York City

bridge was saved by a group of hero cops who spent more than two

hours talking the woman out of jumping.

The unidentified woman from Greenpoint, Brooklyn, was apparently

distraught over her troubled marriage.

She walked to the Kosciuszko bridge from the Brooklyn side shortly

before noon on Monday, climbed over a railing and stood on a section

of metal piping barely wide enough to fit her feet.

Extractive Models

NEUSUM

A woman walked on to New York city’s Kosciuszko bridge from the

Brooklyn side on Monday just before noon, climbed over the railing

and stood on a section of metal piping 125 feet above Newtown Creek.

A witness said the woman is a 44-year-old Polish mother-of-one who

was going through a tough divorce with her husband.

The unidentified woman from Greenpoint, Brooklyn, was apparently

distraught over her troubled marriage.

Table 5.9: GOLD human authored summaries, questions based on them (answers

shown in square brackets), and automatic summaries produced by our BERT-based

models NEUSUM (Zhou et al., 2018), a pointer-generator network (See et al., 2017) and

a bottom-up summarizer (Gehrmann et al., 2018) for a CNN/DailyMail article.
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BERTSUMEXT

The unidentified woman from Greenpoint, Brooklyn, was apparently

distraught over her troubled marriage.

A woman walked on to New York City’s Kosciuszko bridge from the

Brooklyn side on Monday just before noon, climbed over the railing

and stood on a section of metal piping 125 feet above Newtown Creek.

Police arrived on scene at about 11.50 am and spent more than two

hours talking to the woman and trying to calm her down.

Abstractive Models

PTGEN

A woman who threatened to jump to her death off a New York bridge

was apparently distraught over her troubled marriage. She walked to the

Kosciuszko bridge from the Brooklyn side shortly before noon on Mon-

day, climbed over the railing. Police arrived on scene at about 11.50am

and spent more than two hours talking to the woman and trying to calm

her down.

BOTTOMUP

The woman from Greenpoint, Brooklyn, was apparently distraught over

her troubled marriage. She walked to the Kosciuszko bridge from the

Brooklyn side shortly before noon on Monday, climbed over a railing

and stood on a section of metal piping barely wide enough to fit her feet.

After she was pulled to safety by police officers, the woman was taken

by ambulance to Elmhurst hospital for observation.

BERTSUMABS

The unidentified woman from Greenpoint, Brooklyn , was apparently

distraught over her troubled marriage. She walked to the Kosciuszko

bridge from the Brooklyn side shortly before noon on Monday, climbed

over a railing and stood on a section of metal piping 125 feet above

Newtown Creek. At about 2pm the woman agreed to be rescued and

NYPD officers were able to pull her to safety over the railing.

BERTSUMEXTABS

The unidentified woman from Greenpoint, Brooklyn, was apparently

distraught over her troubled marriage. She walked to the Kosciuszko

bridge from the brooklyn side shortly before noon on Monday, climbed

over a railing and stood on a section of metal piping 125 feet above

Newtown Creek. She agreed to be rescued after police officers spoke

to her about her daughter, and was lifted off the bridge ‘so she could be

with her’. a witness said the woman is a 44-year-old polish mother-of-

one who was going through a tough divorce with her husband.

Table 5.9 Continued
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NYT

GOLD

Louisiana officials set July 31 deadline for applicants for the Road

Home, grant program for homeowners who lost their houses to hurri-

canes Katrina and Rita. Program is expected to cost far more than $7.5

billion provided by Federal Government, in part because many more

families have applied than officials anticipated. With cutoff date, State

hopes to figure out how much more money it needs to pay for program.

Shortfall is projected to be $2.9 billion.

QA

What is Road Home? [The Louisiana grant program for homeowners

who lost their houses to hurricanes Katrina and Rita]

When is the applicants’ deadline for the Road Home? [july 31]

What is the shortfall projected to be? [$2.9 billion]

LEAD

The Road Home, the Louisiana grant program for homeowners who

lost their houses to hurricanes Katrina and Rita, is expected to cost far

more than the $7.5 billion provided by the Federal Government, in part

because many more families have applied than officials had anticipated.

As a result, Louisiana officials on Tuesday night set a july 31 deadline

for applicants, who can receive up to $150,000 to repair or rebuild their

houses.

With the cutoff date, the State hopes to be able to figure out how much

more money it needs to pay for the program.

Extractive Models

SUMO

The Road Home, the Louisiana grant program for homeowners who

lost their houses to hurricanes Katrina and Rita, is expected to cost far

more than the $7.5 billion provided by the Federal Government, in part

because many more families have applied than officials had anticipated.

As a result, Louisiana officials on Tuesday night set a july 31 deadline

for applicants, who can receive up to $150,000 to repair or rebuild their

houses.

The shortfall is projected to be $2.9 billion.

Table 5.10: GOLD human authored summaries, questions based on them (answers

shown in square brackets) and automatic summaries produced by our BERT-based

models, SUMO and the pointer-generator network (See et al., 2017) for a NYT article.
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BERTSUMEXT

The Road Home, the Louisiana grant program for homeowners who

lost their houses to hurricanes Katrina and Rita, is expected to cost far

more than the $7.5 billion provided by the Federal Government, in part

because many more families have applied than officials had anticipated.

The shortfall is projected to be $2.9 billion.

Only 22,000 families statewide, out of 140,000 applicants, have re-

ceived grants so far, for a total of $1.3 billion.

Abstractive Models

PGNET

Louisiana grant program for homeowners who lost their houses to hur-

ricanes Katrina and Rita is expected to cost far more than $7.5 billion

provided by Federal Government. Louisiana officials set July 31 dead-

line for applicants, who can receive up to $150,000 to repair or rebuild

their houses.

BERTSUMABS

Road Home, Louisiana grant program for homeowners who lost their

houses to hurricanes Katrina and Rita, is expected to cost far more than

$ 7.5 billion provided by Federal Government, in part because many

more families have applied than officials had anticipated. State hopes to

be able to figure out how much more money it needs to pay for program.

BERTSUMEXTABS

Road Home, Louisiana grant program for homeowners who lost their

houses to hurricanes Katrina and Rita, is expected to cost far more than

$7.5 billion provided by Federal Government, in part because many

more families have applied than officials had anticipated. State hopes to

be able to figure out how much more money it needs to pay for program.

Financial woes of Road Home have set off frenzy of fingerpointing be-

tween Federal and State officials.

Table 5.10 Continued
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XSum
GOLD A council plans to employ its own staff to help young people with men-

tal health problems.

QA
Why are young people getting help? [mental health problems]

Who is employing staff for this purpose? [the council]

LEAD
West Berkshire Council is setting up an emotional health academy to

train psychology graduates and health professionals.

Abstractive Models

PGNET A mental health academy in Berkshire has been put up for sale in a bid

to reduce the number of mental health patients.

TCONVS2S A new academy for children with mental health problems is being

launched in West Berkshire.

BERTSUMABS
A new mental health academy is to be launched in West Berkshire in a

bid to raise awareness of mental health problems.

BERTSUMEXTABS
An academy to train mental health patients with mental health problems

is being launched by West Berkshire Council.

Table 5.11: GOLD human authored summaries, questions based on them (answers

shown in square brackets) and automatic summaries produced by BERT-based models,

a pointer-generator Network (See et al., 2017) and TConvS2S (Narayan et al., 2018a)

for a XSum article.





Chapter 6

Hierarchical Models for

Multi-Document Summarization

In the previous chapters, we focused on the task of single-document summarization.

As we discussed, with the popularity of neural network models and the availability

of large-scale datasets, in recent years, single-document summarization has enjoyed

extensive interest. On the other hand, another important summarization task, multi-

document summarization — the task of producing summaries from clusters of themat-

ically related documents — has received significantly less attention, partly due to the

paucity of suitable data for the application of learning methods. Very recently, Liu

et al. (2018) tap into the potential of Wikipedia and propose a methodology for creat-

ing a large-scale dataset (WikiSum) for multi-document summarization with hundreds

of thousands of instances. However, introducing neural models for multi-document

summarization still faces several challenges, including the large size of input texts,

modeling relations across documents and their hierarchical structures. In this chap-

ter, we first give more details on these challenges, then propose several solutions and

extend more modeling efforts to neural multi-document summarization.

6.1 Introduction

Different from single-document summarization, multi-document summarization aims

to produce a summary containing the most important information from multiple input

documents. Therefore, multi-document summarization has different applications com-

pared to the single-document setting. It can be applied to summarize multiple related

news articles and product reviews. One advantage of multi-document summarization

91
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is that it can be integrated with a information retrieval system, like a search engine.

In such situations, there will be a large set of related documents given a query, and

the ability of processing and summarizing multiple documents becomes important.

Although there are some techniques that could be shared by single-document summa-

rization and multi-document summarization, there are several major differences:

1. The redundancy within the set of documents is higher than the redundancy in

one single document, since each document could describe similar background

information of the topic. Therefore, how to model and reduce redundancy is

more crucial for multi-document summarization.

2. The compression ratio (i.e. the size of the summary against the size of the input

texts) of multi-document summarization will be smaller than single-document

summarization. (Goldstein et al., 2000)

3. Unlike single-document summarization, for multi-document summarization, the

relations among documents is an important signal. For example, co-references (Az-

zam et al., 1999), entity relations (Christensen et al., 2013) and event rela-

tions (White et al., 2001) are found that can provide useful information for gen-

erating multi-document summaries.

While many new models have been proposed for single-document summarization

in the deep learning era, multi-document summarization has been relatively neglected,

partially due to the paucity of large-scale datasets which are essential for training a neu-

ral network model. High-quality multi-document summarization datasets (i.e., docu-

ment clusters paired with multiple reference summaries written by humans) have been

produced for the Document Understanding and Text Analysis Conferences (DUC1

and TAC2), but are relatively small (in the range of a few hundred examples) for

training neural models. In an attempt to drive research further, Liu et al. (2018) tap

into the potential of Wikipedia and propose a methodology for creating a large-scale

dataset (WikiSum) for multi-document summarization with hundreds of thousands of

instances. Wikipedia articles, specifically lead sections, are viewed as summaries of

various topics indicated by their title, e.g.,“Florence” or “Natural Language Process-

ing”. Documents cited in the Wikipedia articles or web pages returned by Google

(using the section titles as queries) are seen as the source cluster which the lead section

purports to summarize.
1http://duc.nist.gov/
2https://tac.nist.gov/
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Aside from the difficulties in obtaining training data, a major obstacle to the ap-

plication of end-to-end models to multi-document summarization is the sheer size and

number of source documents which can be very large. As a result, it is practically

infeasible (given memory limitations of current hardware) to directly train a encoder-

decoder model as used in previous sections to encode all input texts into vectors and

subsequently generates a summary from them. Liu et al. (2018) propose a two-stage

architecture, where an extractive model first selects a subset of salient passages, and

subsequently an abstractive model generates the summary while conditioning on the

extracted subset. The selected passages are concatenated into a flat sequence and the

Transformer (Vaswani et al., 2017) is used to decode the summary.

Although the model of Liu et al. (2018) takes an important first step towards ab-

stractive multi-document summarization, it still considers multiple input documents as

a concatenated flat sequence. However, in multi-document summarization, each source

input is first composed from tokens to a document and then from multiple documents

to a complete input. This hierarchical structure of the input has been agnostic by Liu

et al. (2018). Also, the relations that might exist among document are not modeled.

For example, different web pages might repeat the same content, include additional

content, present contradictory information, or discuss the same fact in a different light

(Radev, 2000). The realization that cross-document links (Zhang et al., 2002) are

important in isolating salient information, eliminating redundancy, and creating over-

all coherent summaries, has led to the widespread adoption of graph-based models

for multi-document summarization (Erkan and Radev, 2004; Christensen et al., 2013;

Wan, 2008; Parveen and Strube, 2014). Graphs conveniently capture the relationships

between textual units within a document collection and can be easily constructed un-

der the assumption that text spans represent graph nodes and edges are semantic links

between them.

In this chapter, we develop a neural summarization model which can effectively

process multiple input documents and distill abstractive summaries. Our model aug-

ments the vanilla Transformer architecture with the ability to encode multiple doc-

uments in a hierarchical manner. We represent cross-document relationships via an

attention mechanism which allows to share information across multiple documents

as opposed to simply concatenating text spans and feeding them as a flat sequence

to the model. In this way, the model automatically learns richer structural depen-

dencies among textual units, thus incorporating well-established insights from earlier

work (Erkan and Radev, 2004; Guinaudeau and Strube, 2013). Advantageously, the
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proposed architecture can easily benefit from information external to the model, i.e., by

replacing inter-document attention with a graph-matrix computed based on the basis

of lexical similarity (Erkan and Radev, 2004) or discourse relations (Christensen et al.,

2013).

We evaluate our model on the WikiSum dataset and show experimentally that the

proposed architecture brings substantial improvements over several strong baselines.

We also find that the addition of a simple ranking module which scores documents

based on their usefulness for the target summary can greatly boost the performance of

a multi-document summarization system.

6.2 Related Work

Most previous multi-document summarization methods are extractive operating over

graph-based representations of sentences or passages. Approaches vary depending on

how edge weights are computed (e.g., based on cosine similarity with tf-idf weights for

words (Erkan and Radev, 2004) or on discourse relations (Christensen et al., 2013)),

and the specific algorithm adopted for ranking text units for inclusion in the final sum-

mary. Several variants of the PageRank algorithm have been adopted in the literature

(Erkan and Radev, 2004) in order to compute the importance or salience of a pas-

sage recursively based on the entire graph. More recently, Yasunaga et al. (2017)

propose a neural version of this framework, where salience is estimated using fea-

tures extracted from sentence embeddings and graph convolutional networks (Kipf and

Welling, 2017b) applied over the relation graph representing cross-document links.

Abstractive approaches have met with limited success. A few systems generate

summaries based on sentence fusion, a technique which identifies fragments conveying

common information across documents and combines these into sentences (Barzilay

and McKeown, 2005; Filippova and Strube, 2008; Bing et al., 2015). Although neural

abstractive models have achieved promising results on single-document summarization

(See et al., 2017; Paulus et al., 2018; Gehrmann et al., 2018; Celikyilmaz et al., 2018),

the extension of sequence-to-sequence architectures to multi-document summarization

is less straightforward. Apart from the lack of sufficient training data, neural models

also face the computational challenge of processing multiple source documents. Pre-

vious solutions include model transfer (Zhang et al., 2018b; Lebanoff and Liu, 2018),

where a sequence-to-sequence model is pretrained on single-document summarization

data and fine-tuned on DUC (multi-document) benchmarks. Lebanoff et al. (2018)
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combines a neural encoder-decoder model for single-document summarization, and an

extractive system for identifying important sentences from multiple input documents.

The extractive system modifies the attention distribution of the encoder-decoder model

for the final generation of the summary. Unsupervised models were also developed.

Ma et al. (2016) propose to train a document representation model by reconstructing

the source document from summary sentences. They apply this document represen-

tation model to multiple documents and obtain a set of candidate summary sentences

and filter a subset by beam search. Chu and Liu (2019) propose MeanSum, an unsu-

pervised abstractive summarization model composed of an auto-encoder module and

a language modeling module. It is applied to generate summaries of multiple reviews.

Fabbri et al. (2019) propose a new dataset for multi-document summarization of news

articles. They also develop a new pointer-generator network by introducing an addi-

tional sentence-level attention mechanism combined with the Maximal Marginal Rel-

evance (Carbonell and Goldstein, 1998) method to determine salient sentences of the

source documents.

Liu et al. (2018) propose a methodology for constructing large-scale summariza-

tion datasets and a two-stage model which first extracts salient information from source

documents and then uses a decoder-only architecture (that can attend to very long se-

quences) to generate the summary. We follow their setup in viewing multi-document

summarization as a supervised machine learning problem and for this purpose assume

access to large, labeled datasets (i.e., source documents-summary pairs). In contrast

to their approach, we use a learning-based ranker and our abstractive model can hier-

archically encode the input documents, with the ability to learn latent relations across

documents and additionally incorporate information encoded in well-known graph rep-

resentations.

6.3 Model Description

We follow Liu et al. (2018) in treating the generation of lead Wikipedia sections as

a multi-document summarization task. The input to a hypothetical system is the title

of a Wikipedia article and a collection of source documents, while the output is the

Wikipedia article’s first section. Source documents are webpages cited in the Refer-

ences section of the Wikipedia article and the top 10 search results returned by Google

(with the title of the article as the query). Since source documents could be relatively

long, they are split into multiple paragraphs by line-breaks. More formally, given ti-
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Figure 6.1: Pipeline of our multi-document summarization system. L source paragraphs

are first ranked and the L′-best ones serve as input to an encoder-decoder model which

generates the target summary.

tle T , and L input paragraphs {P1, · · · ,PL} (retrieved from Wikipedia citations and a

search engine), the task is to generate the lead section D of the Wikipedia article.

Our summarization system is illustrated in Figure 6.1. Since the input paragraphs

are numerous and possibly lengthy, instead of directly applying an abstractive sys-

tem, we first rank them and summarize the L′-best ones. Our summarizer follows the

encoder-decoder architecture as described in Section 2.2.2. In this chapter, we focus

exclusively on the encoder part of the model, our decoder follows the Transformer ar-

chitecture introduced in Section 2.2.2; it generates a summary token by token while

attending to the source input.

6.3.1 Paragraph Ranking

Unlike Liu et al. (2018) who rank paragraphs based on their similarity with the title

(using tf-idf-based cosine similarity), we adopt a learning-based approach. A logistic

regression model is applied to each paragraph to calculate a score indicating whether

it should be selected for summarization. We use two recurrent neural networks with

Long-Short Term Memory units (LSTM; Hochreiter and Schmidhuber 1997) to repre-

sent title T and source paragraph P:

{ut1, · · · ,utm}= lstmt({wt1, · · · ,wtm}) (6.1)

{up1, · · · ,upn}= lstmp({wp1, · · · ,wpn}) (6.2)

where wti,wp j are word embeddings for tokens in T and P, and uti,up j are the updated

vectors for each token after applying the LSTMs.

A max-pooling operation is then used over title vectors to obtain a fixed-length
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vector ût to represent features of the title:

ût = maxpool({ut1, · · · ,utm}) (6.3)

We concatenate ût with vector upi of each token in the paragraph and apply a non-

linear transformation to extract features for matching the title and the paragraph. A

second max-pooling operation yields the final paragraph vector p̂:

pi = tanh(W1([upi; ût ])) (6.4)

p̂ = maxpool({p1, · · · ,pn}) (6.5)

where pi is the matched vector with information from both the title and the i-th token

in the paragraph; tanh is the hyperbolic tangent activation function.

Finally, to estimate whether a paragraph should be selected, we use a linear trans-

formation and a sigmoid function over paragraph vector p̂:

s = σ(W2(p̂)) (6.6)

where s is the score indicating whether paragraph P should be used for summarization.

All input paragraphs {P1, · · · ,PL} receive scores {s1, · · · ,sL}. The model is trained

by minimizing the cross entropy loss between si and ground-truth scores yi denoting

the relatedness of a paragraph to the gold standard summary. We adopt ROUGE-2

recall (of paragraph Pi against gold target text D) as yi. In testing, input paragraphs are

ranked based on the model predicted scores and an ordering {R1, · · · ,RL} is generated.

The first L′ paragraphs {R1, · · · ,RL′} are selected as input to the second abstractive

stage.

6.3.2 Paragraph Encoding

Instead of treating the selected paragraphs as a very long sequence, we develop a hier-

archical model based on the Transformer architecture (Vaswani et al., 2017) to capture

inter-paragraph relations. The model is composed of several local and global Trans-

former layers which can be stacked freely. Let xi j denote the j-th token in the i-th

ranked paragraph Ri; the model takes vectors xi j (for all tokens) as input. For the l-th

Transformer layer, the input will be hl−1
i j , and the output is written as hl

i j. More details

on the vanilla Transformer model can be found in Section 2.1.2.
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6.3.2.1 Embeddings

Input tokens are first represented by word embeddings. Let wi j ∈ Rd denote the word

embeddings assigned to xi j. Since the Transformer is a non-recurrent model, we also

assign a special positional embedding pei j to xi j, to indicate the position of the token

within the input.

To calculate positional embeddings, we follow Vaswani et al. (2017) and use sine

and cosine functions of different frequencies. The embedding ep for the p-th element

in a sequence is:

ep[i] = sin(p/100002i/d) (6.7)

ep[2i+1] = cos(p/100002i/d) (6.8)

where ep[i] indicates the i-th dimension of the embedding vector.

In multi-document summarization, token xi j has two positions that need to be con-

sidered, namely i (the rank of the paragraph) and j (the position of the token within the

paragraph). Positional embedding pei j ∈ Rd represents both positions (via concatena-

tion) and is added to word embedding wi j to obtain the final input vector x0
i j of the

Transformer model:

pei j = [ei;e j] (6.9)

xi j = wi j +pei j (6.10)

6.3.2.2 Local Transformer Layer

A local Transformer layer is used to encode contextual information for tokens within

each paragraph. The local Transformer layer is the same as the vanilla Transformer

layer (Vaswani et al., 2017), and composed of two sub-layers (as described in Sec-

tion 2.1.2.). For the i-th ranked paragraph:

H̃ l
i = LayerNorm(H l−1

i +MHAtt(H l−1
i )) (6.11)

H l
i = LayerNorm(H̃ l

i +FFN(H̃ l
i )) (6.12)

where H l
i = [hhhl

i1, · · · ,hhhl
in]; LayerNorm is layer normalization; MHAtt is the multi-head

attention mechanism; and FFN is a two-layer feed-forward network with ReLU as

hidden activation function.
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6.3.2.3 Global Transformer Layer

A global Transformer layer is used to exchange information across multiple para-

graphs. As shown in Figure 6.2, we first apply a multi-head pooling operation to each

paragraph. Different heads will encode paragraphs with different attention weights.

Then, for each head, an inter-paragraph attention mechanism is applied, where each

paragraph can collect information from other paragraphs by self-attention, generating

a context vector to capture contextual information from the whole input. Finally, con-

text vectors are concatenated, linearly transformed, added to the vector of each token,

and fed to a feed-forward layer, updating the representation of each token with global

information.

Multi-head Pooling To obtain fixed-length paragraph representations, we apply a

weighted-pooling operation; instead of using only one representation for each para-

graph, we introduce a multi-head pooling mechanism, where for each paragraph, weight

distributions over tokens are calculated, allowing the model to flexibly encode para-

graphs in different representation subspaces by attending to different words.

Let hl−1
i j ∈ Rd denote the output vector of the last Transformer layer for token xi j,

which is used as input for the current layer. For each paragraph Ri, for z∈{1, · · · ,nhead},
we first transform the input vectors into attention scores az

i j and value vectors bz
i j. Then,

for each head, we calculate a probability distribution âz
i j over tokens within the para-

graph based on attention scores:

az
i j = Wz

ahl−1
i j (6.13)

bz
i j = Wz

bhl−1
i j (6.14)

âz
i j = exp(az

i j)/
n

∑
j=1

exp(az
i j) (6.15)

where Wz
a ∈ R1∗d and Wz

b ∈ Rdhead∗d are weights. dhead = d/nhead is the dimension of

each head. n is the number of tokens in Ri.

We next apply a weighted summation with another linear transformation and layer

normalization to obtain vector headz
i for the paragraph:

headz
i = LayerNorm(Wz

c

n

∑
j=1

az
i jb

z
i j) (6.16)

where Wz
c ∈ Rdhead∗dhead is the weight.
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The model can flexibly incorporate multiple heads, with each paragraph having

multiple attention distributions, thereby focusing on different views of the input. This

operation is shown in the bottom part of Figure 6.2.

Inter-paragraph Attention We model the dependencies across multiple paragraphs

with an inter-paragraph attention mechanism. Similar to self-attention, inter-paragraph

attention allows for each paragraph to attend to other paragraphs by calculating an

attention distribution:

qz
i = Wz

qheadz
i (6.17)

kz
i = Wz

kheadz
i (6.18)

vz
i = Wz

vheadz
i (6.19)

contextz
i =

m

∑
i′=1

exp(qz
i k

z
i′

T )

∑
m
o=1 exp(qz

i k
z
o

T )
vz

i′ (6.20)

where qz
i ,k

z
i ,v

z
i ∈ Rdhead∗dhead are query, key, and value vectors that are linearly trans-

formed from headz
i as described in Section 2.1.2; contextz

i ∈Rdhead represents the con-

text vector generated by a self-attention operation over all paragraphs. m is the number

of input paragraphs.

Feed-forward Networks We next update token representations with contextual in-

formation. As show in the top part of Figure 6.2, we first fuse information from all

heads by concatenating all context vectors and applying a linear transformation with

weight Wc ∈ Rd∗d:

ci = Wc[context1
i ; · · · ;contextnhead

i ] (6.21)

We then add hi to each input token vector hl−1
i j , and feed it to a two-layer feed-

forward network with ReLU as the activation function and a highway layer normaliza-

tion on top:

gi j = Wo2ReLU(Wo1(hl−1
i j + ci)) (6.22)

hl
i j = LayerNorm(gi j +hl−1

i j ) (6.23)

where Wo1 ∈ Rd f f ∗d and Wo2 ∈ Rd∗d f f are the weights; d f f is the hidden size of the

feed-forward. This way, each token within paragraph Ri can collect information from

other paragraphs in a hierarchical and efficient manner.
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Figure 6.2: A global Transformer layer. Different colors indicate different heads in multi-

head pooling and inter-paragraph attention. The grey circles at the bottom indicate the

input vectors of this Transformer layer. Then a multi-head pooling operation is applied

over these vectors to generate representations of the paragraph. Inter-paragraph atten-

tion is used to exchange information across different paragraphs, generating a context

vector for each paragraph. At the top part of the model, these context vectors are dupli-

cated and concatenated to input vectors of each token. They are fed into a feed-forward

layer to generate the output vectors of this global Transformer layer.
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6.3.2.4 Graph-informed Attention

The inter-paragraph attention mechanism can be viewed as learning a latent graph rep-

resentation (self-attention weights) of the input paragraphs. Although previous work

has shown that similar latent representations are beneficial for down-stream NLP tasks

(Liu and Lapata, 2018; Kim et al., 2017; Williams et al., 2018; Niculae et al., 2018; Fer-

nandes et al., 2019), much work in multi-document summarization has taken advantage

of explicit graph representations, each focusing on different facets of the summariza-

tion task (e.g., capturing redundant information or representing passages referring to

the same event or entity). One advantage of the hierarchical Transformer is that we can

easily incorporate graphs external to the model, to generate better summaries.

We experimented with two well-established graph representations which we dis-

cuss briefly below. However, there is nothing inherent in our model that restricts us

to these, any graph modeling relationships across paragraphs could have been used

instead.

Our first graph aims to capture lexical relations; graph nodes correspond to para-

graphs and edge weights are cosine similarities based on tf-idf representations of the

paragraphs. Formally, we first represent each paragraph Pi as a bag of words. Then,

we calculate the tf-idf value vik for each token xik in a paragraph:

vik = Nw(xik)log(
Nd

Ndw(xik)
) (6.24)

where Nw(t) is the count of word t in the paragraph, Nd is the total number of para-

graphs, Ndw(t) is the total number of paragraphs containing the word.

As a result, we obtain a tf-idf vector for each paragraph. Then, for all paragraph

pairs < Pi,Pi′ >, we calculate the cosine similarity of their tf-idf vectors and use this as

the weight for the edge connecting the pair in the graph. We filter edges with weights

lower than 0.2.

Our second graph aims to capture discourse relations (Christensen et al., 2013); it

builds an Approximate Discourse Graph3 (ADG; Yasunaga et al. 2017) over para-

graphs; edges between paragraphs are drawn by counting (a) co-occurring entities

and (b) discourse markers (e.g., however, nevertheless) connecting two adjacent para-

graphs.

3An Approximate Discourse Graph is a graph structure on documents proposed by Christensen et al.
(2013) for generating coherent multi-document summaries. Unlike dicourse theories, ADG does not
align edges to exact discourse relations, but it seeks to represent the pairs of sentences that have a
relationship in an approximated manner by textual features from the discourse literature and other co-
occurrent features.
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For each paragraph Pi, we extract a set of entities in the paragraph using the Spacy4

NER recognizer. We only use entities with type {PERSON, NORP, FAC, ORG, GPE,

LOC, EVENT, WORK OF ART, LAW}. For each paragraph pair < Pi,Pi′ >, we count eii′ ,

the number of entities with exact match.

Meanwhile, we also use the following 36 explicit discourse markers (Christensen

et al., 2013) to identify edges between two adjacent paragraphs in a source webpage:

again, also, another, comparatively, furthermore, at the same time, how-
ever, immediately, indeed, instead, to be sure, likewise, meanwhile, more-
over, nevertheless, nonetheless, notably, otherwise, regardless, similarly,
unlike, in addition, even, in turn, in exchange, in this case, in any event,
finally, later, as well, especially, as a result, example, in fact, then, the day
before

That is, if two paragraphs < Pi,Pi′ > are adjacent in one source webpage and they are

connected by one of the 36 discourse markers, mii′ will be 1, otherwise it will be 0.

The final edge weight Dii′ is the weighted sum of eii′ and mii′

Dii′ = 0.2∗ eii′+mii′ (6.25)

We represent both similarity and discourse graphs them with a matrix G, where Gii′

is the weight of edge connecting paragraphs i and i′. We can then inject this graph into

our hierarchical Transformer by simply substituting one of its (learned) heads z′ with G.

Equation 6.20 for calculating the context vector for this head is modified as:

contextz′
i =

m

∑
i′=1

Gii′

∑
m
o=1 Gio

vz′
i′ (6.26)

where the difference against Equation 6.20 is that the attention matrix is replaced with

the normalized graph matrix.

6.4 Experimental Setup

6.4.1 WikiSum Dataset

We used the scripts and urls provided in Liu et al. (2018) to crawl Wikipedia arti-

cles and source reference documents. We successfully crawled 78.9% of the original

documents (some urls have become invalid and corresponding documents could not

be retrieved). We further removed clone paragraphs (which are exact copies of some

4https://spacy.io/api/entityrecognizer
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Methods
ROUGE-L Recall

L′ = 5 L′ = 10 L′ = 20 L′ = 40

Similarity 24.86 32.43 40.87 49.49

Ranking 39.38 46.74 53.84 60.42

Table 6.1: ROUGE-L recall against target summary for L′-best paragraphs obtained

with tf-idf cosine similarity and our ranking model.

parts of the Wikipedia articles); these were paragraphs in the source documents whose

bigram recall against the target summary was higher than 0.8. On average, each in-

put has 525 paragraphs, and each paragraph has 70.1 tokens. The average length of

the target summary is 139.4 tokens. We split the dataset with 1,579,360 instances for

training, 38,144 for validation and 38,205 for test.

For both ranking and summarization stages, we encode source paragraphs and tar-

get summaries using subword tokenization with SentencePiece (Kudo and Richardson,

2018). Our vocabulary consists of 32,000 subwords and is shared for both source and

target.

6.4.2 Paragraph Ranking

To train the regression model, we calculated ROUGE-2 recall (Lin, 2004) for each

paragraph against the target summary and used this as the ground-truth score. The

hidden size of the two LSTMs was set to 256, and dropout (with dropout probability

of 0.2) was used before all linear layers. Adagrad (Duchi et al., 2011) with learn-

ing rate 0.15 is used for optimization. We compared our ranking model against the

method proposed in Liu et al. (2018) who use the tf-idf cosine similarity between each

paragraph and the article title to rank the input paragraphs. We take the first L′ para-

graphs from the ordered paragraph set produced by our ranker and the similarity-based

method, respectively. We concatenate these paragraphs and calculate their ROUGE-L

recall against the gold target text. The results are shown in Table 6.1. We can see that

our ranker effectively extracts related paragraphs and produces more informative input

for the downstream summarization task.
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6.4.3 Training Configuration

In all abstractive models, we apply dropout (with probability of 0.1) before all linear

layers; label smoothing (Szegedy et al., 2016) with smoothing factor 0.1 is also used.

The training method is in traditional sequence-to-sequence manner with maximum

likelihood estimation. The optimizer was Adam (Kingma and Ba, 2014) with learning

rate of 2, β1 = 0.9, and β2 = 0.998; we also applied learning rate warmup over the first

8,000 steps, and decay as in Vaswani et al. (2017). All Transformer-based models had

256 hidden units; the feed-forward hidden size was 1,024 for all layers. All models

were trained on 4 GPUs (NVIDIA TITAN Xp) for 500,000 steps. We used gradient ac-

cumulation to keep training time for all models approximately consistent, and training

the Hierarchical Transformer takes 5 days. We selected the 5 best checkpoints based

on performance on the validation set and report averaged results on the test set. During

decoding we used beam search (size 5), and applied length penalty (Wu et al., 2016)

with α = 0.4 (see section 5.4.2 for details on length penalty).

6.4.4 Comparison Systems

We compared the proposed hierarchical Transformer against several strong baselines:

LEAD is a simple baseline that concatenates the title and ranked paragraphs, and ex-

tracts the first k tokens; we set k to the length of the ground-truth target.

LexRank (Erkan and Radev, 2004) is a widely-used graph-based extractive summa-

rizer; we build a graph with paragraphs as nodes and edges weighted by tf-idf

cosine similarity; we run a PageRank-like algorithm on this graph to rank and

select paragraphs until the length of the ground-truth summary is reached.

Flat Transformer (FT) is a baseline that applies a Transformer-based encoder-decoder

model to a flat token sequence. The input paragraphs are ordered by their ranking

scores and then concatenated with a special separate token. We used a 6-layer

Transformer. The title and ranked paragraphs were concatenated and truncated

to 600,800, and 1,200 tokens.

T-DMCA is the best performing model of Liu et al. (2018) and a shorthand for Trans-

former Decoder with Memory Compressed Attention; they only used a Trans-

former decoder and compressed the key and value in self-attention with a con-

volutional layer. The model has 5 layers as in Liu et al. (2018). Its hidden size is
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512 and its feed-forward hidden size is 2,048. The title and ranked paragraphs

were concatenated and truncated to 3,000 tokens.

Hierarchical Transformer (HT) is the model proposed in this paper. The model ar-

chitecture is a 7-layer network (with 5 local-attention layers at the bottom and 2

global attention layers at the top). The model takes the title and L′ = 24 para-

graphs as input to produce a target summary, which leads to approximately 1,600

input tokens per instance.

6.5 Results

6.5.1 Automatic Evaluation

We evaluated summarization quality using ROUGE F1 (Lin, 2004). We report uni-

gram and bigram overlap (ROUGE-1 and ROUGE-2) as a means of assessing infor-

mativeness and the longest common subsequence (ROUGE-L) as a means of assessing

fluency.

Table 6.2 summarizes our results. The first block in the table includes extrac-

tive systems (LEAD, LexRank), the second block includes several variants of Flat

Transformer-based models (FT, T-DMCA), while the rest of the table presents the re-

sults of our Hierarchical Transformer (HT). As can be seen, abstractive models gener-

ally outperform extractive ones. The Flat Transformer, achieves best results when the

input length is set to 800 tokens, while longer input (i.e., 1,200 tokens) actually hurts

performance. The Hierarchical Transformer with 1,600 input tokens, outperforms FT,

and even T-DMCA when the latter is presented with 3,000 tokens. Adding an external

graph also seems to help the summarization process. The similarity graph does not

have an obvious influence on the results, while the discourse graph boosts ROUGE-

L by 0.16. This could be explained by the fact that the inter-paragraph attention can

already capture the similarity to some degree by multi-head self-attention.

We also found that the performance of the Hierarchical Transformer further im-

proves when the model is presented with longer input at test time.5 As shown in the

last row of Table 6.2, when testing on 3,000 input tokens, summarization quality im-

proves across the board. This suggests that the model can potentially generate better

summaries without increasing training time.

5This was not the case with the other Transformer models.
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Model ROUGE-1 ROUGE-2 ROUGE-L

LEAD 38.22 16.85 26.89

LexRank 36.12 11.67 22.52

FT (600 tokens, no ranking) 35.46 20.26 30.65

FT (600 tokens) 40.46 25.26 34.65

FT (800 tokens) 40.56 25.35 34.73

FT (1,200 tokens) 39.55 24.63 33.99

T-DMCA (3000 tokens) 40.77 25.60 34.90

HT (1,600 tokens) 40.82 25.99 35.08

HT (1,600 tokens) + Similarity Graph 40.80 25.95 35.08

HT (1,600 tokens) + Discourse Graph 40.81 25.95 35.24

HT (train on 1,600 tokens/test on 3000 tokens) 41.53 26.52 35.76

Table 6.2: Test set results on the WikiSum dataset using ROUGE F1. The bold cells

indicate best results.

Model R1 R2 RL

HT 40.82 25.99 35.08

HT w/o PP 40.21 24.54 34.71

HT w/o MP 39.90 24.34 34.61

HT w/o GT 39.01 22.97 33.76

Table 6.3: Hierarchical Transformer and versions thereof without (w/o) paragraph posi-

tion (PP), multi-head pooling (MP), and global Transformer layer (GT).

Table 6.3 summarizes ablation studies aiming to assess the contribution of individ-

ual components. Our experiments confirm that encoding paragraph position in addi-

tion to token position within each paragraph is beneficial (see row w/o PP), as well as

multi-head pooling (w/o MP is a model where the number of heads is set to 1), and the

global Transformer layer (w/o GT is a model with only 5 local Transformer layers in

the encoder).

6.5.2 Human Evaluation

In addition to automatic evaluation, we also assessed system performance by eliciting

human judgments on 20 randomly selected test instances. Our first evaluation study
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Model QA Rating

LEAD 31.59 -0.383

FT 35.69 0.000

T-DMCA 43.14 0.147

HT 54.11 0.237

Table 6.4: System scores based on questions answered by AMT participants and

summary quality rating.

quantified the degree to which summarization models retain key information from the

documents following a question-answering (QA) paradigm (Clarke and Lapata, 2010;

Narayan et al., 2018b). As described in Section 5, we created a set of questions based

on the gold summary under the assumption that it contains the most important infor-

mation from the input paragraphs. We then examined whether participants were able to

answer these questions by reading system summaries alone without access to the gold

summary. The more questions a system can answer, the better it is at summarization.

We created 57 questions in total varying from two to four questions per gold summary.

Examples of questions and their answers are given in Table 6.5. We adopted the same

scoring mechanism used in Clarke and Lapata (2010), i.e., correct answers are marked

with 1, partially correct ones with 0.5, and 0 otherwise. A system’s score is the average

of all question scores.

Our second evaluation study assessed the overall quality of the summaries by ask-

ing participants to rank them taking into account the following criteria: Informative-

ness (does the summary convey important facts about the topic in question?), Fluency

(is the summary fluent and grammatical?), and Succinctness (does the summary avoid

repetition?). We used Best-Worst Scaling (Louviere et al., 2015), a less labor-intensive

alternative to paired comparisons that has been shown to produce more reliable results

than rating scales (Kiritchenko and Mohammad, 2017). Participants were presented

with the gold summary and summaries generated from 3 out of 4 systems and were

asked to decide which summary was the best and which one was the worst in relation

to the gold standard, taking into account the criteria mentioned above. The rating of

each system was computed as the percentage of times it was chosen as best minus the

times it was selected as worst. Ratings range from −1 (worst) to 1 (best).

Both evaluations were conducted on the Amazon Mechanical Turk platform with

5 responses per hit. Detailed instructions of human evaluation can be found in Ap-
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pendix A. Participants evaluated summaries produced by the LEAD baseline, the Flat

Transformer, T-DMCA, and our Hierarchical Transformer. All evaluated systems were

variants that achieved the best performance in automatic evaluations. As shown in

Table 6.4, on both evaluations, participants overwhelmingly prefer our model (HT).

All pairwise comparisons among systems are statistically significant (using a one-way

ANOVA with post-hoc Tukey HSD tests; p < 0.01).

6.5.3 Examples of System Output and Evaluation Questions

Table 6.5 shows examples of system output on the WikiSum dataset. Specifically,

we show summaries produced from the LEAD baseline, the Flat Transformer (FT),

T-DMCA (Liu et al., 2018), and our Hierarchical Transformer (HT). The table also

contains examples of questions (and their answers) used in our QA-based evaluation

study. We can observe that, unlike single-document summarization, here in the multi-

document setting, the LEAD baseline performs badly, with much redundant informa-

tion. The Flat Transformer produces less precise summaries with some incorrect facts.

For example, in Table 6.5, Flat Transformer produces ‘It was listed on the national

register of historic places in 1983’, which actually should be in 1993. The outputs of

T-DMCA and Hierarchical Transformer are similar, but our model produces more in-

formative summaries. As shown in Table 6.5, the summary of our model covers more

about ‘Pentagoet Archeological District’ on the colonial period.

6.6 Summary

In this chapter we extended our study to the field of multi-document summarization by

conceptualizing it as a machine learning problem. We proposed a new model which

is able to encode multiple input documents hierarchically, learn latent relations across

them, and additionally incorporate structural information from well-known graph rep-

resentations. We have also demonstrated the importance of a learning-based approach

for selecting which documents to summarize. Experimental results show that our

model produces summaries which are both fluent and informative outperforming com-

petitive systems by a wide margin.
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Pentagoet Archeological District
G

O
L

D
The Pentagoet Archeological District is a National Historic Landmark District located at the

southern edge of the Bagaduce Peninsula in Castine, Maine. It is the site of Fort Pentagoet,

a 17th-century fortified trading post established by fur traders of French Acadia. From

1635 to 1654 this site was a center of trade with the local Abenaki, and marked the effective

western border of Acadia with New England. From 1654 to 1670 the site was under English

control, after which it was returned to France by the Treaty of Breda. The fort was destroyed

in 1674 by Dutch raiders. The site was designated a National Historic Landmark in 1993.

It is now a public park.

Q
A

What is the Pentagoet Archeological District? [a National Historic Landmark District]

Where is it located? [Castine, Maine]

What did the Abenaki Indians use the site for? [trading center]

L
E

A
D

The Pentagoet Archeological District is a National Historic Landmark District located in

Castine, Maine. This district forms part of the traditional homeland of the Abenaki Indians,

in particular the Penobscot tribe. In the colonial period, Abenakis frequented the fortified

trading post at this site, bartering moosehides, sealskins, beaver and other furs in exchange

for European commodities. “Pentagoet Archeological district” is a National Historic Land-

mark District located at the southern edge of the Bagaduce Peninsula in Treaty Of Breda.

F
T

the Pentagoet Archeological district is a National Historic Landmark

District located at the southern edge of the Bagaduce Peninsula in Treaty

Of Breda. It was listed on the national register of historic places in 1983.

T-
D

M
C

A

The Pentagoet Archeological District is a national historic landmark district located in Cas-

tine, Maine. This district forms part of the traditional homeland of the Abenaki Indians,

in particular the Penobscot tribe. The district was listed on the national register of historic

places in 1982.

H
T

The Pentagoet Archeological district is a National Historic Landmark District located in

Castine, Maine. This district forms part of the traditional homeland of the Abenaki Indians,

in particular the Penobscot tribe. In the colonial period, Abenaki frequented the fortified

trading post at this site, bartering moosehides, sealskins, beaver and other furs in exchange

for European commodities.

Table 6.5: GOLD human authored summaries, questions based on them (answers

shown in square brackets) and automatic summaries produced by the LEAD baseline,

the Flat Transformer (FT), T-DMCA (Liu et al., 2018) and our Hierachical Transformer

(HT).
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Melanesian Whistler

G
O

L
D

The Melanesian whistler or Vanuatu whistler (Pachycephala chlorura) is a species of passer-

ine bird in the whistler family Pachycephalidae. It is found on the Loyalty Islands, Vanuatu,

and Vanikoro in the far south-eastern Solomons.

Q
A

What is the Melanesian Whistler? [a species of passerine bird in the whistler family

Pachycephalidae]

Where is it found? [Loyalty Islands, Vanuatu, and Vanikoro in the far south-eastern

Solomons]

L
E

A
D

The Australian golden whistler (Pachycephala pectoralis) is a species of bird found in forest,

woodland, mallee, mangrove and scrub in Australia (except the interior and most of the

north) Most populations are resident, but some in south-eastern Australia migrate north

during the winter.

F
T The Melanesian whistler (P. Caledonica) is a species of bird in the family Muscicapidae. It

is endemic to Melanesia.

T-
D

M
C

A The Australian golden whistler (Pachycephala chlorura) is a species of bird in the family

Pachycephalidae, which is endemic to Fiji.

H
T The Melanesian whistler (Pachycephala chlorura) is a species of bird in the family Pachy-

cephalidae, which is endemic to Fiji.

Table 6.5 Continued





Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we focused on neural summarization and examined how to improve

the current state of the art by focusing on three hypothesis: a) explicit modeling of

document structure is beneficial for capturing important document content; b) beyond

structural knowledge at the discourse-level, it is possible to incorporate general knowl-

edge contained in a large corpus via model pretraining into summarization systems; c)

despite being computationally challenging, neural models can be developed for multi-

document summarization by introducing a trained document pre-ranking module and

a hierarchical Transformer encoder.

For the first hypothesis, we proposed to incorporate document structure into neural

networks for modeling documents in an end-to-end manner. Document modelling is

a foundational module for various NLP tasks and document structure has been proven

helpful to generating better document representations (Ji and Smith, 2017). Starting

from this problem, in Chapter 3, we developed a structure-aware document encoder.

Given an input document, the encoder encodes it with a self-attention based LSTM

model. And to incorporate structural information, we constrain self-attention weights

to non-projective dependency structures making use of the matrix-tree theorem (Kirch-

hoff, 1847). The proposed structured attention framework is flexible and powerful,

and does not rely on an external parser. We performed experiments on four document

classification datasets, and showed that the structured attention model achieves better

results compared to previous models. In Chapter 4, we extended this framework to the

task of extractive single-document summarization. We reframed summarization as a

tree induction problem and used structured attention as both the attention weights and

113
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the summarization objective which serves as a regularizer when learning a summariza-

tion model. Experimental results showed that compared to previous systems our model

achieves competitive performance across different news summarization datasets, con-

firming that the proposed structure-aware representations of documents can improve

the performance of a summarization system.

Apart from structural information, knowledge in large-scale unannotated natural

language corpora can also be useful for a summarization system. With the increasing

usage of pretrained language models in NLP tasks, the expectation of building a pre-

trained summarization system is put forward. In Chapter 5, we proposed a framework

for using pretrained language models as encoders for both extractive and abstractive

summarization. For extractive summarization, we modified the input to the pretrained

encoder to obtain sentence representations. For abstractive summarization, we sepa-

rated the optimizer for the encoder and the decoder to achieve more stable training.

The proposed model can be considered as a minimum-requirement system for the

summarization task, and can be easily combined with other modules. Experimental

results showed that our system can achieve new state-of-the-art results across multiple

datasets under both extractive and abstractive settings. We found that the knowledge in

pretrained language models can bring improvement for summarization systems. Also

we showed it is important to choose appropriate optimization methods when using a

neural model composed of both pretrained and non-pretrained modules.

Although the study of using neural networks for text summarization has made

progress in recent years, most work has focused on single-document summarization.

Multi-document summarization, another interesting and important subtask, has at-

tracted much less attention. In Chapter 6, we extended our work to the field of multi-

document summarization. We analyzed the challenges of directly applying existing

models into this task. And we proposed several solutions against these challenges. We

developed a new method for ranking paragraphs before applying a neural abstractive

model. We augmented the vanilla Transformer model with the ability to process mul-

tiple input documents. In the experiments, our Hierarchical Transformer model, has

shown superiority over previous systems on a large-scale multi-document summariza-

tion dataset. We found the ranking of input documents is important for multi-document

summarization. Meanwhile, adding hierarchical neural network layers into the Trans-

former model can produce better representations of multiple input documents, and

improve the performance of a multi-document summarization system.
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7.2 Future Work

There are several remaining challenges in the field of text summarization. Avenues for

future research are many and varied. We discuss some promising directions as follows.

Noisy Data The collection of document-summary pairs to form large-scale summa-

rization datasets has been a key factor that contributed to the recent wave of neural

summarization systems. However, some of these datasets have been found to contain

a certain degree of noise due to the underlying collection process (Kryscinski et al.,

2019). More specifically, for some instances, the reference summary cannot be aligned

to the source document, since producing the summaries requires world knowledge or

external information that cannot be found in the source document. For example, in the

XSum dataset we experimented with in previous chapters, the reference summary is

collected by extracting the first sentence of the source article. And for some reference

summaries in the dataset, the entities is the summaries are never mentioned in the rest

part of the article. Meanwhile, the problem of noisy data is particularly more seri-

ous in those datasets that are collected in a loosely-aligned manner. In the WikiSum

dataset where the reference summaries are the lead sections of Wikipedia articles, a

large part of the reference summaries cannot be found from the input documents. How

to learn from noisy data could be a future direction. Potential future work include

Neural Bootstrapping (Bengio and LeCun, 2015) and Knowledge Distillation (Hinton

et al., 2015). Neural Bootstrapping (Bengio and LeCun, 2015) attempts to use a con-

vex combination of training labels and the predictions of current model to generate the

training targets, which could avoid directly modeling the noise distribution. Knowl-

edge Distillation (Hinton et al., 2015; Kim and Rush, 2016; Li et al., 2017) applies

a teacher-student training process, where the teacher model is trained directly on the

noisy labels and the student model is trained on the combination of the teacher predic-

tions and the noisy labels. Since the teacher predictions could implicitly denoise the

training data, the student model can achieve better generalization.

Fact-Faithful Language Generation Fact-faithfulness should be an important re-

quirement for automatic summarization systems. It means that the produced sum-

maries should respect the facts in the source documents and not generate untrue infor-

mation or hallucinations. However, with the neural encoder-decoder architecture, it is

difficult to control the faithfulness (Kryscinski et al., 2019), and this has become a ma-
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jor obstacle that prevents from deploying neural abstractive summarization systems in

practice. For future research, one direction should be to evaluate the fact-faithfulness

of generated summaries, instead of completely relying on ngram-based metrics like

ROUGE. For example, by using external NLP tools like Information Retrieval and

Semantic Parsing, the generated summaries and the reference summaries could be

matched and compared on semantic-level. Another direction is to reduce hallucina-

tions in summarization systems. Very recently, Tian et al. (2019) present a confidence

oriented decoder which predicts an auxiliary confidence score at each decoding step.

This confidence score can be used as a calibration of the final decoding probability for

a more faithful generation. While this work is experimented on data-to-text genera-

tion task, summarization can also take advantages of modeling decoding confidence.

Zhu et al. (2020) build a knowledge graph of the input document and integrate this

graph during summary generation via an attention mechanism over the knowledge

graph nodes. Their model is able to preserve more facts during summarization as it

incorporates factual information via the knowledge graph.

Long Document Summarization Due to the limitation of available training cor-

pora, most work on text summarization has focused on news summarization, where

the length of the input documents is usually less than 1,000 tokens. However, sum-

marization could also be useful for long input texts, like Wikipedia articles, patent

files (Sharma et al., 2019) or book chapters. How to adapt existing neural summariza-

tion models to process long input documents is a promising future research direction.

Existing models face several challenges when processing long documents, including

computational limitation and the dependency of tokens. These dependencies can be

very distant in long documents, and it is difficult for current systems to capture these

dependencies (Dai et al., 2019). Very recently, there has been work focusing on aug-

menting recurrent neural networks or Transformer models with the ability to model

long documents. Zhang et al. (2018a) employ an average attention mechanism to re-

place self-attention in the Transformer model. With a cumulative average operation

over history representations, the model accelerates the speed of Transformer models

when modeling long documents. Dai et al. (2019) augment the Transformer model

with a segment-level recurrence mechanism and a novel positional encoding scheme,

achieving faster and better performance on long text language modeling. Sukhbaatar

et al. (2019) present a novel self-attention mechanism with an adaptive span, where

at each time step, the model can dynamically decide the attention span. The model
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is found to have the capability to catch longer dependencies than vanilla Transformer

models. These models can be adopted as encoders for the summarization task for a

better encoding of long input documents.





Appendix A

Instruction for Human Evaluation

A.1 Question Answering Human Evaluation

Question answering human evaluation is used in Chapter 4, Chapter 5 and Chapter 6

to evaluate a summarization system. Figure A.1 shows the instructions we give to the

evaluation participants on the Amazon Mechanical Turk platform. Each participant

is asked to first read a system generated summary of a article carefully and the an-

swer several questions based this summary. The questions are complied based on the

reference summaries of this article.

Figure A.1: Instructions for question answering human evaluation of summarization

systems on the webpage of Amazon Mechanical Turk platform.
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A.2 Quality Ranking Human Evaluation

Quality ranking human evaluation is used in Chapter 4, Chapter 5 and Chapter 6 to

evaluate a summarization system. Figure A.2 shows the instructions we give to the

evaluation participants on the Amazon Mechanical Turk platform. Each participant

is asked to first read a article carefully and then read several summaries generated by

different models. The participant is asked to select the best and the worst summary. To

help participants judge the quality, we provide three criteria:

1. Succinctness: does the summary contain the most important information without

being redundant?

2. Informativeness: does the summary tell you “what is the documents about”?

3. Fluency: is the summary written in well-formed English?

Figure A.2: Instructions for quality ranking human evaluation of summarization systems

on the webpage of Amazon Mechanical Turk platform.
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Radev, D. R., Jing, H., Styś, M., and Tam, D. (2004). Centroid-based summarization

of multiple documents. Information Processing & Management, 40(6):919–938.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving lan-

guage understanding by generative pre-training. In CoRR, abs/1704.01444, 2017.

Rothe, S., Narayan, S., and Severyn, A. (2019). Leveraging pre-trained checkpoints

for sequence generation tasks. arXiv preprint arXiv:1907.12461.

Rush, A. M., Chopra, S., and Weston, J. (2015). A neural attention model for abstrac-

tive sentence summarization. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pages 379–389, Lisbon, Portugal.

Sandhaus, E. (2008). The New York Times Annotated Corpus. Linguistic Data Con-

sortium, Philadelphia, 6(12).

See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point: Summarization

with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 1073–

1083, Vancouver, Canada.

Sharma, E., Li, C., and Wang, L. (2019). BIGPATENT: A large-scale dataset for

abstractive and coherent summarization. In Proceedings of the 57th Annual Meeting

of the Association for Computational Linguistics, pages 2204–2213, Florence, Italy.

Shi, J., Liang, C., Hou, L., Li, J., Liu, Z., and Zhang, H. (2019). Deepchannel: Salience

estimation by contrastive learning for extractive document summarization. In Pro-

ceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, volume 33,

pages 6999–7006, Honolulu, Hawaii, USA.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts,

C. (2013). Recursive deep models for semantic compositionality over a sentiment

treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing, pages 1631–1642, Seattle, Washington, USA.

Sukhbaatar, S., Grave, E., Bojanowski, P., and Joulin, A. (2019). Adaptive attention

span in transformers. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 331–335, Florence, Italy.



Bibliography 137

Svore, K., Vanderwende, L., and Burges, C. (2007). Enhancing single-document

summarization by combining RankNet and third-party sources. In Proceedings of

the 2007 Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning (EMNLP-CoNLL), pages 448–457,

Prague, Czech Republic.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the

inception architecture for computer vision. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic representa-

tions from tree-structured long short-term memory networks. In Proceedings of

the 2015 Annual Meeting of the Association for Computational Linguistics, pages

1556–1566, Beijing, China.

Tang, D., Qin, B., and Liu, T. (2015a). Document modeling with gated recurrent

neural network for sentiment classification. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, pages 1422–1432, Lisbon,

Portugal.

Tang, D., Qin, B., and Liu, T. (2015b). Learning semantic representations of users

and products for document level sentiment classification. In Proceedings of the

53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), pages 1014–1023, Beijing, China.

Tenney, I., Das, D., and Pavlick, E. (2019). BERT rediscovers the classical NLP

pipeline. In Proceedings of the 57th Annual Meeting of the Association for Compu-

tational Linguistics, pages 4593–4601, Florence, Italy.
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