
The Chemical Synthesis of Proteins and Peptide 

C-Terminal Derivatives 

by 

Jennifer Ann Patterson 

A thesis submitted for the 

degree of Doctor of Philosophy 

University of Edinburgh 

1999 



This thesis is submitted in part fulfilment of the requirements for the degree of 

Doctor of Philosophy at the University of Edinburgh. Unless otherwise stated, the 

work is original and has not been previously submitted in whole or in part, for any 

degree at this, or any other university. 



To my parents and my brother, Richard 



Acknowledgements 

I would like to thank Professor Robert Ramage for the opportunity to continue my 

studies at Edinburgh University, and for his supervision, constant support and 

encouragement throughout the course of my PhD. 

I am extremely grateful to Mr Kevin Shaw for assistance with the chemical synthesis 

of the peptides and proteins; Mr Brian Whigham for MALDI-TOF MS and amino 

acid analyses; Dr Andrew Cronshaw (Welmet Protein Characterisation Facility) for 

rapid and efficient N-terminal sequencing and Dr Emma Beatty (Edinburgh Centre 

For Protein Technology) for 600 MHz NMR. 

Special thanks must go to Drs Dominic Campopiano, Gail Morton and Nicola 

Robertson and Miss Lisa McIver for teaching me the techniques necessary for my 

interferon-gamma work, and for the general advice offered. I am also indebted to Dr 

Martin Andrews and Craig Jamieson for proof reading this thesis. 

Finally, I would like to thank the Ramage group past and present, and my friends and 

colleagues in Edinburgh for making my time here so memorable. I must especially 

thank Martin, Craig, Lorraine Bland, Carolyn Gordon and Dr Alastair Hay for 

providing unforgettable entertainment and support during the past three years. 

1 



Abstract 

Methodology for the synthesis of peptide C-terminal aldehydes has been investigated. 

Modification of a linker system, based on a terabenzosuberyl construct, has been 

demonstrated to be suitable for the synthesis of peptide C-terminal semicarbazones. 

The route has been fully optimised to yield a series of peptide C-terminal 

semicarbazones and the corresponding peptide aldehydes. 

The chemical synthesis of deglycosylated human interferon-gamma (143 residues) 

has been carried out. The purification of this protein has been investigated and a 

short purification protocol developed which is sufficiently general to allow 

application to other similar protein systems. Purification and characterisation of the 

synthetic interferon-gamma molecule has been completed and folding of the 

molecule attempted. 
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A angstroms 
AAA amino acid analysis 
ABI Applied Biosystems 
Abs absorbance 
Ac acetyl 
Ac20 acetic anhydride 
AcOH acetic acid 
APS ammonium persulphate 
BBB blood brain barrier 
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OC degrees centigrade 
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CD circular dichroism 
cDNA circular deoxyribonucleic acid 
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CNS central nervous system 
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CsOH caesium hydroxide 
d doublet 
D dextro rotatory 
Da 	daltons 
DCC N, N-dicyclohexylcarbodiimide 
DCM dichioromethane 
DDT dithiotheitol 
dlilFN-y deglycosylated human interferon-gamma 
diam diameter 
DIBAL diisobutylaluminium hydride 
DIC N, N-diisopropylcarbodiimide 
DIEA N, N-diisopropylethylamine 
dm decimetres 
DMAP N, N-dimethylaminopyridine 
DMF N, N-dimethylformamide 
DMSO dimethylsuiphoxide 
DNA deoxyribonucleic Acid 
ECE endothelin converting enzyme 
E. Coli Eschericia Coli 
EDT ethanedithiol 
EDTA ethylenediamine tetraacetic acid 
El electron impact 
eq equivalents 
ESI electrospray ionisation 
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EtOH ethanol 
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FF fast flow 
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g gram 
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HF hydrogen fluoride 
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HOCt ethyl-i -hydroxy- 1 H- 1,2,3 -triazole-4-carboxylate 
HPLC high pressure liquid chromatography 
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IEF isoelectric focusing 
IFN interferon 
IFN-yR interferon-gamma receptor extracellular domain 
IFN-yR 1  interferon-gamma receptor binding accessory factor 
IPA propan-2-ol 
J coupling constant 
K potassium 
kAy elution volume parameters 
KBr potassium bromide 
kDa kilodalton 
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L litre 
LiBH4 lithium borohydride 
M multiplet 
M molar 
MALDI matrix assisted laser desorption ionisation 
Man mannose 
MBHA 4-methylbenzhydrylamine 
MeCN acetonitrile 
MeOH methanol 
mg milligram 
MHz mega hertz 
MgSO4 magnesium sulphate 
min minute 
ml millilitre 
mm millimetre 
mM millimolar 
mmol millimole 
mol mole 
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MWt molecular weight 
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Na 	sodium 
NaC1 salt 
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NMR nuclear magnetic resonance 
P protecting group 
PA peptide aldehyde 
PAGE polyacrylamide gel electrophoresis 
PAM 4-hydroxymethylphenylacetamidomethyl 
Pbf 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulphonyl 
PEG polyethylene glycol 
PEGA polyethylene glycol-dimethylacrylamide copolymer 
PGC porous graphitised carbon 
PhS03H phenylsulphonic acid 
PI isoelectric point 
Pmc 2,2,5 ,7,8-pentamethylchroman-6-sulphonyl 
pmol picomole 
ppm parts per million 
PVDF polyvinyldifluoride 
py pyridine 
rhIFN-7 recombinant human interferon-gamma 
rhIFN-y lb recombinant human interferon-gamma lb 
Rf retention factor 
RP reversed phase 
rpm revolutions per minute 
RT room temperature 
s singlet 
sc semicarbazone 
SDS sodium dodecylsuiphate 
SP sulphonylpropyl 
SPPS solid phase peptide synthesis 
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TBAF tetrabutylammonium fluoride 
Thfmoc 1 7-tetrabenzo[a, c, g, i]fluorenylmethoxycarbonyl 
'Bu tertiary-butyl 
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uS 	triisopropylsilane 
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TMS 	trimethylsilane 
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Tris 	tris(hydroxymethyl)aminomethane 
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v 	 volume 
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Chapter 1 

Chapter 1 

Solid Phase Peptide Synthesis 

1.1 Introduction 

Peptides and proteins fulfil crucial functions in all biological processes, for example 

as hormones, enzymes, in cell-cell recognition and in the immune response. They are 

produced in nature by the cell's biosynthetic machinery at the site where the 

biological actions of the protein are required. Only small quantities of proteins are 

produced naturally due to the site directed synthesis and the potency of these 

molecules. As a result, there are only limited quantities of proteins available from 

natural sources, restricting the studies that can be carried out. Hence, there has been 

a powerful drive to perform the total chemical synthesis of peptides and proteins, 

rendering the production of sufficient material for study routine. Recent interest has 

been prompted by the use of peptides as antigens and synthetic vaccines, and the use 

of synthetic proteins to study folding phenomena. 

1.1.1 Peptide Synthesis 

Traditional solution phase synthesis of peptides is performed using a combination of 

classical coupling reagents, protecting group strategies and recrystallisation after each 

step to purify intermediates. This makes the synthesis of a relatively short peptide a 

laborious process, and often severe problems of insolubility may be encountered. 

By consideration of the coupling of two amino acids, the fundamental issues of 

protein synthesis can be illustrated. A mixture of four different dimers may be 

obtained, figure 1.1. It is also impossible to prevent further chain elongation from 

the N- or C- termini of any of these dimers, as well as any reactive side chain 

functionality present. All these add to the accumulated by-products. 

1 
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R 1 	 R2  

H2Nj(OH + H2N (0H 

0 	
0 

R 1  H 0 
	

R2  H 0 

H2N 	
N 	 H2N 	

N 

R2  H 0 

H2N 
Jy N

-1-110H H2N1((OH 

+ TRIMERS, TETRAMERS ETC. 

Figure 1.1: Coupling of Two Amino Acids 

In order to achieve a unique dimeric product with the desired order of cc-amino acid 

units, the non-participating amino and carboxylic acid functions, as well as any 

reactive side-chain functionality have to be masked. Hence, for a synthesis to be 

successful, a protecting group strategy must be invoked. The building blocks used 

now require three different levels of protection, P' (N"-protection), P 2  ( side chain 

functionality protection) and P 3  (carboxyl protection), figure 1.2. 

R 1  p2 
	

R 2  P  2 

p1 HN (0H 
	

OP 3 

 

P', P2 , P3  = protecting groups 

Figure 1.2: Suitably Protected Amino Acids 
For Stereoselective Coupling 

Development of protecting group strategies allowed the desired regiocontrol to be 

achieved, but did not remove the time consuming purification steps which are 

difficult to complete successfully. However, solution phase synthesis methodology 

successfully achieved the historically important and Nobel prize winning synthesis of 

oxytocin." 2  

In the 1950s, as the number of newly discovered peptides and proteins grew, so did 

the demand for synthetic peptides and peptide analogues. This in turn prompted a 
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ground breaking shift in peptide synthesis. In 1963, Bruce Merrifield described his 

simple, yet effective, new synthetic methodology, now termed Solid Phase Peptide 

Synthesis (SPPS). 3  

1.1.2 Solid Phase Peptide Synthesis 

In SPPS, the first amino acid of the peptide backbone is attached via the carboxyl 

group to a solid support, thus providing P 3  of figure 1.2. This linkage must be stable 

to the conditions required for the removal of P'. The side chain protection, P 2, should 

also be stable to the conditions employed for the removal of P'. The resin bound 

amino acid is then condensed with a second amino acid, followed by a third, 

achieving stepwise elongation of the chain, figure 1.3. Today, SPPS is the method 

of choice for peptide synthesis, as it is a rapid, effective method of synthesis. 

There are several advantages of SPPS which have resulted in the widespread use of 

this method. The first of these are that the main impurities, the unreacted amino acid 

and coupling reagents, can be simply removed by filtration and washing, avoiding 

purification procedures and giving easy isolation of intermediates. One consequence 

of this is that greater yields of product can be obtained by using vast excesses of the 

reagents during each cycle of the synthesis in order to drive each step to completion. 

This is not possible in solution phase synthesis, as it greatly complicates workup and 

purification procedures. Also, the solubility problems encountered in solution phase, 

particularly after the peptide chain has reached a certain length, are reduced. This is 

due to the lightly cross-linked polymer chains becoming intimately mixed with the 

peptide chains, exerting mutual solvating effects on each other. Due to the repetitive 

nature of the procedure, the method has been successfully developed into an 

automated process, and optimisation has allowed the routine synthesis of large 

polypeptides and proteins, inaccessible by the classical methods. 

3 
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1HNI(  LINKER IF__c 
DEPROTECT AMINO-TERMINUS 

	

2 2 	 2 2 

	

R P 	ACTIVATE 	R P 

P1HNL..l(OH Do 
p11j(OX 	

COUPLE 

P1HN(Jy  LINKER JO 

• 	
REPEAT 

0 R 1 P2 	R2 P2  H 0 

Figure 1.3: Schematic Representation of SPPS 

1.2 Protecting Group Strategies 

There are stringent requirements a protecting group must meet in order to be used 

successfully. It must suppress the reactivity of the functional group, without 

introducing any new and undesirable reactivity. It must be completely stable to the 

conditions used in each cycle of the peptide synthesis. It must also deprotect 

quantitatively and the deprotection must require conditions which do not damage the 

peptide chain 

1.2.1 Na_Protecting  Group Strategies 

The first group used for N'-protection in SPPS was the benzyloxycarbonyl (Cbz or 

Z) group,4  figure 1.4. This protecting group is removed using strong acid conditions 

(HBr in acetic acid), and was used in conjunction with acid labile side-chain 

4 
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protection and anchor to the solid support. This group has gone out of favour since 

the repetitive acid cleavage steps required to release the N-terminus result in partial, 

slow deprotection of the side-chains and the loss of peptide from the solid support. 

This produces lower yields of the desired product, and again complicates purification 

due to the incidence of unwanted reactions at the side-chain functionalities. 

Q—o, o 
Figure 1.4: Z-Protecting Group 

In subsequent syntheses, Merrifield replaced the Cbz group with the tert-

butoxycarbonyl (Boc) group,5' 6  figure 1.5, for his synthesis of Bradykinin.7' 8  This 

group is cleaved using milder acid conditions (4 M HC1/dioxane or 50 % TFAIDCM) 

preventing cleavage of side-chain protecting groups and the link to the solid support, 

which are based on HF labile benzyloxycarbonyl ethers and esters. This strategy has 

been used extensively for SPPS; however, it is possible repetitive exposure to TFA 

solution can damage the peptide sequence by alteration of sensitive peptide bonds 

and initiation of acid catalysed side reactions. 

__\__ 0)~O 

Figure 1.5: Boc-Protecting Group 

The protection strategy currently favoured involves the use of 9-

fluorenylmethoxycarbonyl (Fmoc) for N-terminal protection, figure 1.6. This group 

was originally developed by Carpino and Han, 9  and was first applied to SPPS by 

Meienhofer 1°  and Sheppard." It has the advantage that it offers a truly orthogonal 

protection strategy. The Naprotecting  group is cleaved under mildly basic 

conditions (20 % piperidine or morpholine in DMF), by a n-elimination mechanism. 

The side-chain protection and the linkage to the solid support thus may be labile to 

mild acid conditions (TFA/water) exposing the peptide to acid on only one occasion. 
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'a 
0 '-/ 	'kIO 

 

Figure 1.6: Fmoc-Protecting Group 

Another advantage of this method is that the fulvene formed on cleavage of Fmoc 

and the adduct of the dibenzofulvene group and the excess piperidine is UV active, 

figure 1.7, with an isobestic point at 302nm. By UV examination of the deprotection 

solution in each cycle, an indication of the efficiency of the previous cycle can be 

obtained. 12 

'a 
1T 

No 

Figure 1.7: Fulvene-Piperidine Adduct 

1.2.2 Fmoc-Compatible Side Chain Protection 

As mentioned above, the side chain protecting groups may now be cleaved using 

mild acid, particularly TFA. The majority of amino acids are currently protected 

using 'Bu ether or ester based groups. A variety of groups have been developed for 

amino acids such as arginine and cysteine which contain more problematic side-chain 

functionalities. Table 1.1 shows the most commonly used Fmoc-compatible side-

chain protecting groups. 
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Amino Acid Protecting Group Reference 

Gly, Ala, Leu, Ile,Val, Phe, not necessary 

Met, Pro 

Asp, Glu 'Bu ester 13 

Ser, Thr, Tyr 'Bu ether 13 

Lys, Trp Boc 13, 14 

Arg PmcorPbf 15,16,17 

Asn, Gin, His, Cys Trt 18, 19,20 

Table 1.1: Fmoc-compatible side-chain protection 

1.3 The Nature of the Solid Support 

SPPS consists of a heterogeneous reaction mixture composed of an insoluble resin-

bound peptide chain and a soluble activated amino acid derivative and solvent. 

However, it is important to remember that the reactions do not take place in, or on 

the surface of, the solid phase but in the swollen gel system produced by solvent 

penetration into the polymeric matrix. This produces a highly solution-like 

environment in which the synthesis occurs. As a result, the nature of the support 

chosen is crucial to the success of any synthesis. Many supports have been 

investigated, but only a few have met the stringent requirements and found 

widespread use. 

To be suitable, the swollen polymer must be stable and inert in the reaction 

conditions employed at each stage of every cycle of the peptide synthesis. It must be 

sufficiently active to allow functionalisation with a linker moiety to which the 

peptide can be attached, grown upon and released from in good yield. The physical 

characteristics of the polymer are also important. The porosity and swelling 

properties must allow good penetration of the reagents and solvents to the internal 

active sites, allowing good contact between the growing peptide chains and reagents. 

In order to prevent peptide aggregation, the swollen polymer should also exert a 

strong solvating effect on the attached peptide chains, and have hydrophobicity 

properties which may minimise interactions between growing peptide chains. 

7 
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1.3.1 Polystyrene Based Supports 

In his ground breaking synthesis, Merrifield introduced a beaded form of a copolymer 

of polystyrene-divinylbenzene which contained reactive chioromethyl sites, 3  figure 

1.8. This polystyrene resin was found to swell in a wide range of solvents including 

DMF, DCM and toluene, and as a result has found widespread use. The resin has the 

advantage that the reactive sites are uniformly distributed throughout the resin 

matrix, and not just on the surface of the beads, allowing high loadings of reaction 

sites to be obtained. 

Figure 1.8: Divinylbenzene-Crosslinked Polystyrene Resin 

1.3.2 Polyacrylamide Based Supports 

Polyacrylamide resins, figure 1.9, were developed to be less hydrophobic than 

polystyrene, and to be more compatible with the polarity of the growing peptide 

chains. 21, 22 This was intended to ensure better solvation of larger peptide chains. 

Polyacrylamide resins were found to possess swelling characteristics complementary 

to those of the Merrifield polystyrene resin, with optimal swelling observed in DMF, 

and they have found widespread use in both Boc-SPPS and batch and continuous 

flow Fmoc-SPPS. 

8 
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CONH2  CONH2  

H 

CONH2  CONH2  

Figure 1.9: Polyacrylamide Resin 

1.3.3 Supports Containing Polyethyleneglycol Grafts 

These supports are prepared by grafting of sections of polyethyleneglycol molecules 

onto traditionally used resins, for instance polystyrene or polyacrylamide. These 

supports increase the solution-like nature of the environment the peptide chain is 

grown in, hence improving the solubility of the peptide chain. Examples of such 

supports are Tentagel 023  and PEGA,24  figure 1.10. 

NH2  

NH 

Tentagel® 
	

PEGA 

Figure 1.10: Polyethyleneglycol Resins 

1.3.4 Linker Groups 

Linker molecules are designed to be incorporated between the solid support and the 

growing peptide chain. The impetus behind such research is that the peptide-support 

link can be fine tuned to make the anchor more sensitive to certain cleavage 

conditions. Linker molecules have been successfully designed to be cleaved by 

strong, medium or weak acids, bases or other nucleophiles, and by photolysis, 

hydrogenation or the use of other catalytic reagents They have also been used to 
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incorporate C-terminal carboxylic acids, esters, amides or hydrazides on liberation 

from the solid support. Much of the recent research has centred on linkers which can 

be cleaved under very mild conditions, thus yielding peptides retaining side-chain 

protection for use in convergent protein synthesis. There is a wide range of linkers 

available for Fmoc-SPPS, summarised in table 1.2. 

1.4 Activation and Coupling 

In order to ensure to only the desired reaction occurs, the coupling step must be rapid 

and quantitative, even with hindered amino acid components. It must also proceed 

under mild conditions, avoiding side reactions and in particular changes in 

stereochemical integrity. In general, the incoming amino acid must be activated prior 

to coupling with the resin bound amino acid or peptide, in order to render it more 

susceptible to nucleophilic attack. Activating groups are electron withdrawing, in 

order to increase the electrophilicity of the carboxyl group and hence its reactivity. 

The incoming amino acid can be preactivated in a stable, crystalline form, or can be 

activated in situ using the appropriate reagents. 

During activation and coupling, care must be taken to avoid deprotonation of the 

activated amino acid, figure 1.11. This could result in cyclisation to an oxazolone 

intermediate, 1. Although the oxazolone system can be opened by the incoming 

amine to give the correctly formed product, 2, it is possible that prior to ring opening 

an achiral oxazolone, 3, can be produced. This would result in the incorporation of 

both the L- and the D-amino acid into the peptide, 2 and 5. 

10 
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Linker 

HO 

HO 

MeO 	0 

11011~~ 

Cleavage 
Conditions 
50% TFA 

0.1-0.5% 
TFA in DCM 

C-Terminal Derivative 	Reference 
Produced 

carboxylic acid 
	

25 

acid with intact side-chain 
	

26 
protection 

10 ,  % AcOH acid with intact side-chain 
protection 

27 

NH2  

MeO Oi 

COD— cr_ ~ 

OMe NH2  

OMe NH 2  

MeO ) Oi 

NH2  

MeO f .OMe 

O(CH2 )4CO- 

HO 

90% TFA 

50 % TFA in 
DCM 

dilute TFA 

2% TFA in 
DCM 

TFAIDCM 
(7:3) 

TBAF 

hv (3SOnm) 

amide 

amide 

amide with intact side-chain 
protection 

amide with intact side-chain 
protection 

amide with intact side-chain 
protection 

acid with intact side-chain 
protection 

acid with intact side-chain 
protection 

28 

29 

30 

kE 

32 

33 

34 

Table 1.2: Linkers Commonly Used for Fmoc-SPPS 
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The susceptibility to this type of racemisation is dependent on the type of N"-

protection employed. Amino acids containing an Naamide  group, for instance in the 

synthesis of peptides in the opposite direction, from the N-terminus to the C-

terminus, are extremely likely to racemise in this manner. However, urethane 

protected monomers, for example Fmoc-amino acids are not susceptible to 

racemisation via the oxazolone mechanism. 

BASE 	N- 

R 

o OH 

Z
R N1  

4 
00 

R 
NH2 

H 2 

R 
O 	H 

NH2  

H 5 0 

Figure 1.11: Racemisation via Oxazolone Mechanism 

1.4.1 Carbodiimides 

In the initial report of SPPS, Merrifield described the use of N, N-

dicyclohexylcarbodiimide (DCC) as an activating agent, 3  figure 1.12. This agent was 

originally reported by Sheehan and Hess, 35  and has been found to be one of the most 

effective coupling reagents, especially in large scale synthesis. However, this reagent 

can cause racemisation of labile amino acids such as Phe. Insoluble urea by-products 

are also formed during the reaction, which can be problematic during SPPS. The use 

of N, N-diisopropylcarbodiimide (DIC), 36  which forms a soluble urea by-product, has 

overcome this problem. 
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( 
	>—N=C=N--< 

DCC 	 DIC 

Figure 1.12: Carbodiimide Coupling Reagents 

The carbodiimide reacts with the amino acid to form an O-acylisourea, 6, from which 

there are three possible outcomes: reaction with the incoming amine to give the 

coupled product, 7; reaction with another mole of the amino acid to give a 

symmetrical anhydride, 8; and finally, reaction with a hydroxyl bearing molecule to 

yield an ester molecule, 9, figure 1.13. The active ester, 9, and the symmetrical 

anhydride, 8, can also react with an incoming amino component to generate the 

coupled product, 7. 

FmocHN, (°H 	II  N 

FmocHN(0yN 

OH 
	 — FmcNH-CH(R)-0O2H 

FmocKN) (OR" 	
FmocHN(°y3 NHFmoc 

NH2 R 

/<H2R 

FmocHN 1 1(R' 

Figure 1.13: Activation and Coupling Methods Using DIC 
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1.4.2 Symmetrical Anhydrides 

The coupling of symmetrical anhydrides, figure 1.13, is rapid and unambiguous. 

Symmetrical anhydrides themselves are easy to prepare, however, this method has 

the disadvantage that it is uneconomical, since one mole of amino acid is wasted per 

mole of symmetrical anhydride used. 

1.4.3 Active Esters 

Active esters were originally designed as coupling reagents in order to reduce the 

racemisation experienced using carbodiimide reagents alone. Reagents synthesised 

from N-hydroxytriazole molecules have found widespread use, due to their ease of 

preparation, efficiency in coupling and low occurrence of side reactions. Examples 

of commonly used reagents are 1 -hydroxybenzotriazole (HOBt), 37  1 -hydroxy-7-

azabenzotriazole (HOAt) 38  and ethyl- 1 -hydroxy- 1 H- 1,2,3 -triazole-4-carboxylate 

(HOCt), 39  figure 1.14. 

0 

	

01:  N 
	L JL 'N 	EtO1NsN 

	

' 	 N 	J' 	 N' 

	

OH 	 OH 	 OH 

	

HOBt 	 HOAt 	HOCt 

Figure 1.14: Triazole Based Coupling Reagents 

The activation method of choice in Edinburgh is the in situ formation of the active 

HOCt esters using DIC. These activated amino acid derivatives have been found to 

be highly efficient, with minimal racemisation4°  observed. These have been used to 

prepare synthetic proteins of previously unattainable length, for example stromelysin 

catalytic domain 41  (173 amino acid residues), and deglycosylated human 

erythropoietin42  (166 amino acid residues). 
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1.4.4 Capping Cycles 

Although modern reagents regularly obtain near quantitative coupling yields, it is rare 

for every step to be 100%. To prevent the accumulation of incomplete peptide 

sequences, capping cycles are used. This method blocks any unreacted amino 

functionality by acylation using acetic anhydride after each coupling step, preventing 

any further reaction. 

1.5 Problems Encountered During Synthesis 

Occasionally, the synthesis of a larger polypeptide or protein sequence simply will 

not proceed. Generally, these difficult sequences show incomplete coupling 

reactions over several amino acids in a row, 5-15 residues from the resin and 13-
branched amino acids, such as lie, Thr or Val, can exaggerate the poor couplings. In 

some cases, this cannot be explained, and may be a consequence of the sequence in 

question. However, in other cases, known factors play a role. For instance, there 

may be incompatibility between the chains of the solid support and the peptide chain, 

due to differences in hydrophobicity; 21  the peptide chains may aggregate with each 

other or with the chains of the polymer matrix 43  and finally, intermolecular 13-sheet 

formation via hydrogen bonding can occur. 44  The above problems result in lower 

coupling efficiencies being obtained, due to the reduced nucleophilicity of the free 

amino functionalities, and becomes more pronounced as the peptide chain increases 

in length. UV monitoring can only show that the synthesis has already dropped in 

efficiency however, FT-IR monitoring of key frequencies may detect the formation of 

secondary structure elements, such as 13-sheets, several steps before the yield drops. 45 

Sometimes, difficulties can be overcome by using different solvents, coupling 

conditions or solid supports, for example by changing to a polyarnide based resin. 21 

Lower loadings of the initial amino acid,46  and using ultrasound to increase the yield 

of each coupling step 47  have alsd been found to improve the synthesis of difficult 

sequences. Addition of a chaotropic salt, such as LiBr, has been shown to improve 

the synthesis of certain difficult sequences. 48  
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Finally, the incorporation of bulky groups to the growing peptide chain can prevent 

secondary structure formation. One method of achieving this is the incorporation of 

Hmb-amino acids,49' 50  figure 1.15. These amino acids can be coupled with high 

efficiency and the Hmb group readily removed on completion of the synthesis via 

acidolysis. 

Fmoc 0  
N 

Figure 1.15: Fmoc-Amino Acid With Attached Hmb-Group 

1.6 Cleavage Conditions 

The exact conditions chosen for cleavage of the peptide from the solid support are 

dependant on the number and type of amino acids present, the sequence, the side-

chain protection employed and the linker attachment. Optimum cleavage conditions 

can be determined using a small scale trial system of about 20-50 mg of resin bound 

peptide. 

The linkers commonly used for Fmoc-SPPS are generally cleaved using TFA.' ° ' 1' 51 

During the concomitant deprotection of side chain functionalities, 'Bu cations are 

produced from the 'Bu and Boc protecting groups. These can alkylate Trp, Tyr and 

Met residues present in the peptide chain. 52, 53, 54 As a result, a cocktail of 

scavengers must be added to the TFA. The most widely used cleavage mixture 

(TFAlwater/thioanisole/phenol/EDT) is known as Reagent K. 55  Ethane-1,2-dithiol 

(EDT) is added to the cleavage mixture to scavenge 'Bu cations and to protect Trp 

from acid catalysed oxidation. Thioanisole is added to prevent Met oxidation, and 

phenol is added to the cleavage of peptides containing multiple Trp or Tyr sequences 

or Arg(Pmc). Triisopropylsilane (TIS) is an odourless substitute for EDT, 56  and has 

also been shown to drive the reversible deprotection of trityl protected cysteine 57  to 

completion. 
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1.7 Purification and Folding 

On completion of the synthesis, the correct primary sequence of amino acids must be 

purified from the mixture of chemically similar entities. With the well established 

methodology for SPPS this can often provide the first serious difficulties for the 

peptide chemist to overcome. Smaller peptides can be purified effectively in high 

yield using reversed phase high performance liquid chromatography (RP HPLC). 

However, larger peptides and proteins require the use of more specialised protein 

purification techniques including ion exchange, size exclusion and affinity 

chromatography methods, techniques which will be discussed in section 3.2. 

Once the correct primary sequence has been purified, the amino acid backbone must 

be folded to attain its defined secondary and tertiary structure, section 3.2.7. This is 

the thermodynamically favoured three dimensional conformation of the protein, held 

together by relatively weak interactions including hydrogen bonds, hydrophobic 

interactions, salt bridges and disulfide bonds. The conformation adopted is 

determined by the amino acid sequence of the protein. 58  Although general and 

protein specific methods are available, the folding of synthetic proteins is often 

problematic and low yielding due to the formation of aggregate or misfolded 

molecules. 

In general, synthetic proteins are more difficult to purify and fold than the naturally 

occurring or recombinant proteins simply because they are less soluble in the 

aqueous buffer systems preferred. This is a consequence of the protein being 

synthesised linearly in an organic environment with no secondary structure in place. 

On cleavage from the resin, a certain amount of misfolding may occur, resulting in 

hydrophobic surfaces of the protein being exposed and lowering the solubility if the 

molecule. 

1.8 Fragment Coupling Strategies 

Alternative routes to larger peptides and proteins are available which may avoid 

some of the problems encountered during stepwise construction. These involve 

building up the desired amino acid sequence by coupling peptide segments together. 
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The advantages of such a strategy are the fragments are more manageable, and may 

be purified and characterised prior to coupling to confirm their sequences. A greater 

theoretical yield of final product is possible and separation of the final product from 

the peptide fragments used to construct it should be relatively straightforward. Such 

a strategy however, may require more complicated protecting group strategies and 

due to sequence constraints fragments are most conveniently linked at certain sites. 

Kent et al. have designed a number of chemoselective strategies for convergent 

synthesis of proteins. One highly powerful approach, referred to as native chemical 

ligation, 59  results in the straightforward generation of proteins with native backbone 

structures from fully unprotected peptide fragments. The initial step involves 

chemoselective reaction at an unprotected C-terminal thioester peptide with another 

unprotected fragment containing a N-terminal cysteine residue, figure 1.16. The 

initial product of this attack is a thioester which undergoes spontaneous 

intramolecular rearrangement to form the native amide bond with the regenerated 

cysteine side chain next to the site of ligation. 

0 

G 	-PEPTIDE 
— 	

1 -co 
H 	

6 

0 	-s 
H3N-PEPTIDE 2 

s—b 
6M Gdm.HCI, pH 7.5 	-' 

0 NH 2  
H3N-PEPTIDE 	

i-co6 

0 
H3N-PEPTIDE 2—' 	JLPEPTIDE i-coc 

HN—( 

SS 

Figure 1.16: Native Chemical Ligation 
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Fragment condensation is also possible using traditional coupling methods and fully 

protected peptide fragments. 

1.9 Summary and Outlook 

As the previous sections have shown, the continuous development of new SPPS 

methodology has culminated in making the total chemical synthesis of large proteins 

viable. During the three and a half decades since the initial publication concerning 

SPPS, molecular biology has also made remarkable progress. It is now possible to 

clone and sequence DNA, producing a wealth of new protein information. Proteins 

can also be synthesised using recombinant technology. 

A comparison of SPPS and recombinant technology shows that both methods play 

crucial, but complementary, roles in the elucidation of protein structure, function and 

biology. Compared to the traditional methods of isolation of the protein from natural 

sources, both methods can offer much larger yields of purified protein. 

The strengths of SPPS lie in the complete control over amino acid sequence 

produced, which can sometimes prove ambiguous via genetic engineering. SPPS 

also allows incorporation of unnatural amino acids and NMR probe nuclei which are 

not routinely available via recombinant techniques. Finally, SPPS also permits de 

novo design of peptides with specific secondary structural units, predetermined 

conformation or tailor-made chemical or biological function. 
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Chapter 2 

The Solid Phase Synthesis of Peptide C-Terminal 

Semicarbazones and Aldehydes 

2.1 Introduction 

2.1.1 Biological Role of Peptide Derivatives 

Many biological receptors are activated by peptides but, in general, they do not make 

attractive drug candidates. The major obstacles in the application of peptides as 

clinically useful drugs is their poor biomembrane penetration, rapid enzymatic 

degradation and short biological half lives. A possible approach to solve these 

delivery problems is derivatisation of the peptides to produce transport forms which 

are more lipophilic, less polar and more soluble in organic media than the parent 

peptides and are capable of protecting the peptide against degradation be enzymes 

present in the mucosal barrier or in the blood. It is, therefore, desirable to incorporate 

structural features into a peptide molecule which enhance lipid solubility and lower 

the polarity. It is postulated that incorporation of a C-terminal semicarbazone moiety 

could achieve this and consequently aid transport through lipid membranes, across 

the blood brain barrier (BBB) and into the central nervous system (CNS). 

Other C-terminal modifications can prevent enzymatic degradation. For example, 

peptide C-terminal aldehydes (PAs) are an important class of transition state 

analogues, which have been extensively studied since they were first discovered as 

natural products.' PAs of various different structures have been found to be potent 

inhibitors of many enzymes implicated in a wide range of disease states. Proteolytic 

enzymes have been found to be the most susceptible to inhibition. 

A widely studied PA is 	' (N-acetyl-L-leucylLleucyl-DL-argjna1), figure 

2.1.1 which was the first PA to be isolated. 
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Figure 2.1.1: Leupeptin 

Leupeptin has been shown to alter or suppress the symptoms of disease conditions 

such as rheumatoid arthritis, 2  muscular dystrophy, 3  allergic encephalomyelitis  and 

malaria. 5  It produces these effects via potent inhibition if a number of proteolytic 

enzymes. However, it is not selective among enzymes of similar substrate 

specificities, thus limiting its usefulness in the investigations of disease processes and 

as a therapeutic agent. These observations prompted the study of analogues of 

leupeptin and other peptide aldehydes as potential selective protease inhibitors. 

Although the precise mode of action of PAs is unknown, a hydrolysis mechanism has 

been proposed, 6 ' 7  figure 2.1.3. 

Due to the structural similarities between PAs and the natural substrate, the former 

can also participate in the hydrolysis mechanism of figure 2.1.3. However, an 

analogue of the usual tetrahedral intermediate will be formed,8' 9  figure 2.1.2, which 

cannot participate any further in the hydrolysis mechanism. 

—s 
RHN-...) 

I OH 
R 

Figure 2.1.2: Tetrahedral Intermediate Generated From PA 
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Figure 2.1.3: Proposed mechanism of protease hydrolysis 6,7 

PAs have also been used in chemoselective peptide ligation, 10,11as  affinity ligands 

for the purification of enzymes such as proteinases12' 13  and for the synthesis of 

reduced peptide bond 14,15 
 

2.1.2 Solid Phase Synthesis of PAs 

Until recently, only a few examples of the solid phase synthesis of PAs had been 

reported. However, in the last three years many new examples have been described. 

The first example, by Webb, 16  relies on the protection of the aldehyde functional 

group as a stable semicarbazone. This strategy involves the synthesis of a linker 
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molecule, which is reacted with the aldehyde of the C-terminal residue, and is finally 

coupled onto the solid support, figure 2.1.4. 

H 	1 I; 

COOH 

H H 

c 
COOH 

H H 

r'' 	N..N  

J

0 	L.NHBOc 

R 

H 

6 
a) Boc-amino aldehydefNaoAcfEtOH, b) MBHA resin 

Figure 2.1.4: Webb Linker For PA Synthesis 

Following Boc-SPPS, the free PAs are produced using catalytic hydrogenation. If 

protected PAs are required, cleavage using dilute aqueous acid/formaldehyde can be 

used. 

Fehrentz and Martinez have developed several routes' 7, 18, 19 to PAs on solid support. 

The first utilises a methyl hydroxylamine linker, which forms a Weinreb amide 20 

moiety on loading of the C-terminal residue. The linker was prepared and attached to 

MBHA resin, figure 2.1.5, and chain elongation can be achieved using either Boc or 

Fmoc SPPS strategies, after deprotection of the initial Boc group. 

OMe 	 OMe 	0 

Boc O2H 	
a) 	

Boc N 

a) MBHA resin, activation 

Figure 2.1.5: Fehrentz Linker For PA Synthesis I 

Reaction with lithium aluminium hydride after synthesis of the peptide yields the 

desired PAs. This linker also has the advantage that treatment with Grignard 

reagents produces peptide ketones. 17  The amount of lithium aluminium hydride used 

in cleavage must be increased with increasing chain length, and as a result the PAs 

produced may be contaminated with residual lithium salts, which may be toxic to 

sensitive biological assays. However, the method does have other advantages, in that 
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it can be used to generate large PAs with intact side-chain protection, which may be 

used for the chemical ligation of peptide fragments. 

In 1997, Fehrentz and Martinez 18  published a second route to PAs using a phenyl 

ester linkage, figure 2.1.6. 

R  

X - NyO 

H0-0—0O2H 0 

R 0 
)-41 

XHN 	0 

Figure 2.1.6: Fehrentz Linker For PA Synthesis II 

Again, the linker is prepared and attached to MBHA resin. After SPPS, the PA can 

be released from the solid support using LiA1(OtBu)3H; however, over reduction to 

the alcohol has been observed. 

A linker suitable for cleavage using ozonolysis has also been reported, 19  figure 2.1.7. 

RH 

BocHNft 	
a) 

CO2 H 

BocHN ) ]ç 

a) Merrified Resin, Cs 2CO3  

Figure 2.1.7: Fehrentz Linker For PA Synthesis III 

The PAs isolated were found to be pure, and did not appear to have epimerised. This 

method has also been found to be suitable for sequences containing Asp or Glu 

residues. The synthesis of this linker was later modified 21  to eliminate the need to 

synthesise a different linker for each C-terminal amino acid. 

Galeotti et a122  have used thiazolidine analogues of amino acids as the building 

blocks for the preparation of peptidyl aldehydes on solid phase, figure 2.1.8. For this 

method, cleavage is performed using a mixture of CuCO 3  and CuC12 in 

MeCN/water/DMF. 
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Figure 2.1.8: Galeotti Linker For PA Synthesis 

Ede and Bray23  attached threonine to a solid support, which when treated with a 

dilute solution of the N-protected amino aldehyde, gives an imine intermediate. This 

can spontaneously cyclise to the stable oxazolidine moiety, which can then be 

elongated by SPPS, figure 2.1.9. Cleavage is achieved using TFA and AcOH. 

Omission of the TFA step yields protected PA fragments. 

	

HO R 	 HO R 
a)

)~ 

H2 N 

	

0 	 XHNRHC 	0 

i 	- 
 OR 

XHNRHCXNIlyh 	b) XHNR.HCXNL( 

a) XNHR'CHCHO b) Ac 20 

Figure 2.1.9: Ede Linker For PA Synthesis 

Hall and Sutherland  24  have developed an olefinic linker using Wittig chemistry. This 

can be cleaved using ozonolysis and a reductive work up, figure 2.1.10. 

Ph 

_a) 	 b) 
PPh3Br

a) NaHMDS/THF b) Boc-amino aldehyde/THF 

Figure 2.1.10: Hall Linker For PA Synthesis 
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This linker has been used for the combinatorial synthesis of an array of 27 tripeptide 

aldehydes. 

Finally, Lelièvre and coworkers 25  have reported a method of generating PAs using 

FmoctBu chemistry and the acid and base stable PAM linker, figure 2.1.11. 

H-PeptideAIaPAMQ 

4 a)  
H-Peptide-AIa-NH-CH 2-CH(QCH3 )2  

4 
H-Peptide-Ala-GIy-F-1 

a) aminoacetaldehyde-dimethylacetal b)TFA 

Figure 2.1.11: Lelièvre Synthesis of PAs 

The advantages of this method are that no special linker is required, and the PA 

products are obtained in good yield (almost 100%). A masked aldehyde is generated 

which avoids the difficult purification of PAs, and the starting materials used are all 

cheap and commercially available. Finally this method generates PAs which can be 

used in fragment condensation. As this method was designed with the synthesis of 

fragments in mind, only C-terminal glycine aldehydes have been synthesised to date. 

2.1.3 Research Overview 

Previously, McInnes 26  synthesised the suberone molecule, figure 2.1.12 which serves 

as the core for a number of different linker systems. 

0 

G 	OH 

Figure 2.1.12: Suberone Linker 

This precursor can be coupled to Merrifield resin, and the functionality manipulated 

in a few straightforward steps (figure 2.1.13) to give a series of linkers suitable for 

the SPPS of peptide derivatives. 
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4 b)  
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 11 	 10 

	
12 

9 
C 	 NHCONHNI-Wmoc 11 

COD'O/*~--O 	cc ~ 0/--0 

13 	 14 
a) CsOH/Merrjfield resin!DMF b) LiBH 4/THF 

b) Fm0cNH2IPhSO3 H]DMF d) 1) 20% piperidinefDMF 
ii) DIEA, Triphosgene, DCM e) Fmoc-NHNH 2, DCM 

f) BocNHNH2, DIEA, DCM. 

Figure 2.1.13: Synthesis of Linkers For Peptide Derivative Synthesis 

The linkers shown in figure 2.1.13 have been successfully used to prepare C-terminal 

peptide amides, 11, hydrazides,27  12, and aza-glycine peptides, 14.28 When linker 10, 
figure 2.2.13, is used to synthesise a peptide chain with a C-terminal acid, the 

peptide-linker bond is very acid labile and can be cleaved in coupling steps by the 

weakly acidic HOBt. 28  This results in loss of peptide from the support, lowering the 

yield of peptide obtained. 

Recently, Briggs 29 extended the usefulness of the semicarbazide linker, 14, figure 

2.1.13, further by demonstrating that an aldehyde, in this case dichlorobenzaldehyde, 

can be loaded successfully onto the linker by imine formation. Cleavage of the resin 

using TFA:water, purification and ozonolysis recovered the starting 

dichlorobenzaldehyde. 

In this study, the suitability of the linker, 14, figure 2.1.13, for the synthesis of PAs 
was assessed. 	The route adopted proceeds via the peptide C-terminal 
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semicarbazones, which may have interesting biological properties due to increased 

lipophilicity. 

2.2 Results and Discussion 

2.2.1 Synthesis of Fmoc-Hydrazine 

The synthesis of the semicarbazone linker, 14, requires Fmoc-hydrazine to be 

prepared in advance, due to the inherent instability of the isocyanate intermediate, 13, 

figure 2.2.13, necessitating immediate trapping. Previously, Irving 28 used a route 

starting from the Fmoc-N-hydroxysuccinimide, figure 2.2.1. However, difficulties 

were encountered using this route, due to the instability of the product during column 

chromatography. 

0-l-- NHNH2 NH2 NH2 H2O 

I 4-Dioxarie oó overnight 
23% 

15 

Figure 2.2.1: Synthesis of Fmoc-hydrazine I 

Zhang and co-workers have synthesised Fmoc-hydrazine, 15, for use as a fluorescent 

label30  using Fmoc-chloroformate, figure 2.2.2. This method was found to be more 

effective, and was subsequently adopted. 

0 
NH2NH2.H20 	

NHN H2  

3 	
Acetonitrile 
30 minutes 

- 	 76%  0~ 
15 

Figure 2.2.2: Synthesis of Fmoc-hydrazine II 
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2.2.2 Synthesis of the Linker 

The linker, 14, was synthesised as depicted in figure 2.1.13; from commercially 

available amide linker, 10, however, the level of Fmoc-loading obtained was 

variable. Variation in temperature was found to have the greatest effect on the 

success of the linker synthesis. It was found that maintaining the reaction at constant 

temperature was essential. The parameters in each step, isocyanate generation and 

trapping the isocyanate with Fmoc-hydrazine, 15, were then optimised. The results 

are depicted in tables 2.2.1 and 2.2.2. 

Solvent Base Time Conc(ml/g 

resin) 

Eq of 

Triphosgene 

Eq of Base 

Toluene DIEA 30 mins 10 ml 1 eq 1 eq 

47% 50% 50% 48.5% 40% 50% 

DCM N,N-Dimethylaniline 1 hour 20 ml 2 eq 2 eq 

50% 45% 56% 50% 48% 46% 

2,4,6-Collidine 2 hours 30 ml 3 eq 

40% 40% 40% 50% 

4 eq 

50% 

Table 2.2.1: Parameters Affecting Isocyanate Generations 

The conditions adopted for this step were sonication of the resin in DCM (20m1/g of 

resin), containing 1 equivalent of DIEA and 3 equivalents of triphosgene for one 

hour. Isocyanate formation could be monitored using FT-JR. 

Loading levels in mmol/g are expressed as a percentage of the original resin loading level in mmollg. 
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Solvent Base Time Conc (mUg resin) Eq of Fmoc-NHNH2  

Toluene With 30 mins 10 ml 1 eq 

37% 30% 41% 52% 

DCM Without 1 hour 20 ml 2 eq 

50% 50% 49% 50% 42% 

2hours 30m1 3 	e 
50% 55% 50% 

4hours 4 e 
50% 48% 

Table 2.2.2: Parameters Affecting Isocyanate T rappingt 

The optimum conditions found for trapping of the isocyanate species were sonication 

with 3 equivalents of Fmoc-hydrazine in DCM, in the absence of base, for 2 hours. 

Complete consumption of the isocyanate intermediate was checked using FT-IR, and 

the level of Fmoc-loading obtained measured via UV determination. Combination of 

these two optimised steps routinely produced resin loadings in the order of 0.2 - 0.3 

mmol/g. 

2.2.3 Synthesis of Fmoc-Amino Aldehydes 

Having established the linker synthesis, it was necessary to synthesise the Fmoc-

amino aldehydes which provide the C-terminal residue in any peptides synthesised. 

a-Amino aldehydes are generally colourless crystals or oils, which are unstable 

chemically and configurationally, particularly in solution. As a result, they are 

generally used immediately after isolation. Ideally, purification should be avoided as 

this may induce racemisation. Exposure to silica is only possible if the aldehyde is 

first converted into the more stable semicarbazone derivative, 31  or if 0.1% pyridine is 

added to the eluent 32  to prevent racemisation. 

Many synthetic routes to amino aldehydes have been devised, however, not all of 

these are suitable for the synthesis of derivatives of the naturally occurring amino 

acids. The methods that are suitable generally use the required amino acids as 

Loading level in mmollg is expressed as a percentage of the original resin loading level in mmol/g. 
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starting materials, in order to incorporate the desired stereochemistry - into the 

resulting amino aldehydes. 

Methyl and ethyl esters may be reduced with DIBAL, 3 ' figure 2.2.3, and active 

amides, including imidazolidines and 3,5-dimethyl pyrazolidines, can be reduced to 

the aldehyde using lithium aluminium hydride. 33,34 

XH N ). (NHRR 

0 	\duction 

R 	 R 

XHNj(OH 	 XHNL,1(H 

	

O\ 	 0 

R 

XHN )yOMe 	

duction 

 

0 

Figure 2.2.3: Synthesis of Amino Aldehydes via Reductive Methods 

Oxidation/reduction procedures can also be employed, figure 2.5.2. a-Amino 

alcohols can be produced by borane-tetrahydrofliran reduction of the Y'-protected 

amino acids, 35 
 or by sodium borohydride reduction of the methyl ester. 36 Selective 

oxidation of the alcohol moiety to produce the a-amino aldehyde has then been 

achieved using Collins reagent (Cr0 3/py),37  DMSO activated with various reagents 

(S03.py,38  oxalyl chloride,39  TFAA41  or DCC41 ), pyridinium chlorochromate42  or 

pyridinium dichromate. 35 

R 

	

Reduction 	R 	Oxidation 	R 

XHN(0N 	XHN0H 	XHN(H 

0 	 0 

Figure 2.2.4: Synthesis of Amino Aldehydes via Reduction/Oxidation 

The approach adopted was to form the Weinreb amide, 20  and subsequently reduce 

this species to the desired amino aldehyde, figure 2.2.5. This method was chosen 

because it is compatible with Fmoc-protecting group stategies, and does not cause 
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racemisation of the amino aldehyde. 43, 44  There is no evidence of this method 

causing over-reduction to the corresponding alcohol. 

R 	 a) ______ 	 R 	Me 	b) 	
R 

FmocHN0H 	FmocHN( N OMe 	FmocHN( H 

0 	 016 	 170 

a) N, 
b) LiAIH4ITHF 

Figure 2.2.5: Synthesis of Amino Aldehydes via Weinreb Amide 

The Weinreb amides, 16, were prepared from the corresponding Fmoc-protected 

amino acids in good yield. The purity of the compounds was checked by t.l.c. and 

analytical RP-HPLC, and each was estimated to be greater than 95 % pure, making 

chromatographic purification unnecessary. 

The reduction to the aldehyde, 17, was carried out using 1.3 equivalents of lithium 

aluminium hydride, except in the case of Fmoc-Asp(O tBu)-H,45  which was prepared 

using only 1 equivalent of reducing agent. 

Originally, an attempt was made to synthesise this amino acid derivative using the 

benzylthioester method of Ho and Ngu, 32  figure 2.2.6 as this method has been 

reported to be sufficiently mild not to reduce the ester functionality of the side chain. 

However, the reduction was never observed to go to completion. 

R 	 R a) 	 ______ 

FmocHN(0H 	FrnocHN(S 	 b) mOCHNH 

0 	 0 	 0 

a) a-thiotoluenefDMAp/DCC/Tj-w b) Triethylsilane/Pd-C/TJ-IF 

Figure 2.2.6: Synthesis of Amino Aldehydes via Benzylthioesters 

In general, it was observed that the melting points measured for the Fmoc-amino 

aldehydes were not in agreement with the literature values recorded.32' 44, 46 

However, all other analytical data indicated that the correct molecules had been 

prepared. 
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2.2.4 Single Residue Studies 

2.2.4.1 Fmoc-Phenylalaninal Semicarbazone 

The most significant problem of PA synthesis, is avoiding epimerisation of the C-

terminal (aldehydic) residue. In order to establish if racemisation occurred using the 

semicarbazide approach, a number of single residue studies were carried out. In 

these studies, Fmoc-Phe-H was used, as it is known to be highly susceptible to 

racemisation. 31  The amino aldehyde was loaded onto the linker, 14a, in the presence 

of DIEA using sonication, followed by cleavage from the solid support and analysis, 

figure 2.2.7. 

HNANHNH 	 a) 

cto— 'Row 

14a 

OH 

rN 	 C) 

NHFmoc 

H 

18a 

4 b)  
NHFmoc 

0 
Ph 

H2 N N 
H 

192 

[c] 
a) Fmoc-Phe-H, DIEA; DCM, b) TFAIH 20; c) H20 

Figure 2.2.7: Loading and Cleavage of The Linker 

The material obtained, 19a, was compared directly with that obtained by the 

synthesis of Fmoc-phenylalaninal semicarbazone, 19b. The analytical data obtained 

was identical in all respects, with the exception of melting point and optical rotation 

measurements. These differences were attributed to the different work up procedures 

used. While the solution phase sample, 19b, was precipitated, washed with ethyl 
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acetate and dried under vacuum, the solid phase sample, 19a, was dissolved in 

aqueous acetonitrile and lyophilised. The freeze drying could have resulted in the 

incorporation of associated water molecules and TFA salts into this sample, hence, 

affecting the melting point and optical rotation measurements. 

An alternative approach was adopted, with Fmoc-phenylalaninal semicarbazone, 

19b, prepared in solution, exposed to the conditions employed for cleavage of the 

samples from the resin (TFAlwater for approximately 1.5 hours). Following 

precipitation from hexane, the sample, 19c, was compared to that of the starting 

material, 19b, and found to be identical, indicating that the cleavage conditions do 

not induce racemisation, table 2.2.3. 

Compound 	 I [as] (c g/100m1, J Mpt (°C) 

DMF) 

Fmoc-Phenylalaninal Seniicarbazone (Solution Phase) - - 19b 	-24.7 ° (0.288) 	144-145 

Fmoc-Phenylalaninal Semicarbazone (Solid Phase) 	19a 	-10.0 (1.04) 	136-137 

Fmoc-Phenylalaninal Semicarbazone (TFA treated) 	19c 	-24.0 ° (0.325) 	143-145 

Table 2.2.3: Comparison of Fmoc-Phenylalaninal Semicarbazone Samples 

2.2.4.2 Pyruvic Acid Exchange 

Following cleavage of peptide semicarbazones from the linker and subsequent 

purification, it is necessary to unmask the C-terminal aldehyde. There are many 

methods of converting semicarbazone molecules into aldehydes. Fehrentz and 

Martinez 19  have reported the use of ozone to cleave a PA linked to the solid support 

via a carbon-carbon double bond. However, although these conditions may be used 

to generate the PA from the semicarbazone, they are considered to be too harsh to 

expose peptide samples to. A number of milder reagents have been used to hydrolyse 

carbon-nitrogen double bonds, for example, phthalic anhydride 
, 47  levulinic 

acidIHCI,48  HC1/formaldehyde 49  and aqueous acetic acid. 50 . 

The method used in this project was pyruvic acid exchange, 5 ' which has the 

advantage that it works efficiently due to a combination of effects. Both acid 

catalysed hydrolysis and carbonyl exchange trapping are possible. The reaction can 
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also be carried out in the presence of organic solvents, or simply by using excess 

pyruvic acid or water as solvent. 

To test the suitability of this method, Fmoc-phenylalaninal semicarbazone produced 

in solution, 19b, was hydrolysed back to the starting aldehyde, 20, and compared to 

the compound produced by reduction of the Weinreb amide, 17a, table 2.2.4. 

Compound 	 I [aD] (c g/IOOml, I Mpt (°C) 

DMF) 

Fmoc-Phenylalaninal (Reduction ofWernrebAmide) 	17a 	-43.4' (1. 146) 
	

100-102 
Fmoc-Phenylalaninal (Pyruvic Acid Exchange) 	20 	-41.80  (0.467) 

	
102-103 

Table 2.2.4: Comparison of Fmoc-Phenylalaninal Samples 

The results clearly indicate that pyruvic exchange does not appear to induce 

racemisation, and therefore was suitable for applying to peptide samples produced. 

2.2.5 Synthesis of Test Peptides 

2.2.5.1 Loading The Fmoc-Amino Aldehydes Onto The Linker 

Fmoc-amino aldehydes prepared for the synthesis of test peptides were found to load 

onto the linker, in the presence of DIEA, in good yields based on starting and ending 

Fmoc-loading levels, table 2.2.5. 

Loaded Compound 	 Loading Level (%) 

Fmoc-(L)Ala-H 18b 

Fmoc-(D)Ala-H 18c 

Fmoc-Phe-H 18a 

Fmoc-Trp-H 18d 

Fmoc-Asp(O tBu)-H 18e 

100 

70 

90 

100 

90 

Loading Time (Hours) 

5 

5 

5 

4 

5 

Table 2.2.5: Loading of Amino Aldehydes 

The obtained loading level in mmollg is expressed as a percentage of the previous Fmoc-loading 
level in mmol/g. 
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2.5.5.2 Synthesis of Fmoc-Phe-Val-(L)AJaH and Fmoc-Phe-Val-(D)AIaH 

The first sequence to be synthesised was that of Phe-Val-Ala, as the Boc-protected 

PA of this sequence was reported to be very stable and therefore easy to handle and 

purify. 18  Both the L- and D- analogues of the C-terminal residue were incorporated 

into the sequence to further investigate possible epimerisation. Fehrentz 52  has 

reported that examination of the aldehydic signal of a PA molecule containing three 

or more residues could be used to determine the extent of racemisation. If a single 

signal was observed in the aldehydic region, no racemisation had occurred. The 

syntheses of both tripeptides proceeded well, providing sufficient quantities of crude 

Fmoc-protected peptide semicarbazones for purification (RP HPLC), analysis and 

conversion to the PAs. 

'4' 

Figure 2.2.7: HPLC Analysis of a) Fmoc-Phe-Val-(L)Alanjnal semicarbazone, 21, 
b) Fmoc-Phe-Val-(D)Alanjnal semicarbazone, 23, 

c) Fmoc-Phe-Val-(L)Ala-H 22, d) Fmoc-Phe-Val-(D)Ala-H, 24. 
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The Fmoc-protected peptide derivatives were obtained in reasonable levels of purity, 

as indicated by analytical RP HPLC, figure 2.2.7. 

The peptide derivatives were analysed by MALDI-TOF mass spectrometry and 

amino acid analysis, table 2.2.6. 

Sequence 	J Yield (%) I 	Mass (Found) 

Fmoc-FV(L)A-sc 21 	25 

Fmoc-FV(D)A-sc 23 	24 

Fmoc-FV(L)A-H 22 	50 

Fmoc-FV(D)A-H 24 	56 

599.21 (MW) 

599.37 (MH 4 ) 

542.61 (MH) 

654.29 (MCF3CO2 ) 

Mass 

(Requires) 

599.71 

599.71 

542.65 

654.66 

AAA (24 Hours) 

Phe 1 l.00, Vai l  1.00 

Phe 1 0.91, Vai l  1.09 

Phe 1 l.16, Va1 1 0.86 

Phe,1.13, Val 1 0.87 

Table 2.2.6: Analytical Data For Test Peptide Derivatives 

(The suffix -sc has been adopted to depict a peptide C-terminal semicarbazone.) 

The PA sequences were examined by 600 MHz NMR, and in each case, only one 

aldehydic signal was observed. The signals for each analogue, L- and D- were 

observed to exist at distinct chemical shifts, figure 2.2.8. 

a) b) 

 
&'hj 	•I 	i' 

1,  r 

9,4 	 9.2 

Figure 2.2.8: NMR Signals Of Aldehydic Signals For Test Peptides 
a) Fmoc-Phe-Val-(L)-Ala-H, 22, b) Fmoc-Phe-Val-(D)-Ala-H, 24. 

The studies carried out on the above test peptides effectively demonstrated that 

epimerisation of the C-terminal residue does not occur using this new method of PA 
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synthesis. It has also demonstrated that should epimerisation occur, the NMR 

method described by Fehrentz 52  would indicate this effectively. 

2.2.5.3 Cleavage Studies 

On cleavage of Fmoc-Phe-Val-(L)Alaninal semicarbazone from the linker, three 

components were observed by HPLC, figure 2.2.9. The components were identified 

as acylated C-terminal residue (peak 1), Fmoc-Phe-Val-(L)Ala-sc, 21 (peak 2) and 

Fmoc-Phe-Val-(L)Alaninal, 22 (peak 3). 

321 

Figure 2,2.9: HPLC Profile of Crude Fmoc-Phe-Val-Alaninal Semicarbazone 

Due to the apparent conversion of the semicarbazone to the PA during cleavage from 

the resin, a cleavage study was initiated. This was to ensure that complete 

conversion of the semicarbazone to the aldehyde did not occur during longer 

cleavage procedures (Ca. 4-6 hours), which would be required if a sequence 

contained multiple arginine residues protected with the Pmc or Pbf groups (section 

1.2.2). A sample of resin-bound Fmoc-Phe-Val-(L)Alaninal semicarbazone was 

stirred overnight in TFA/water (9:1). At timed intervals the mixture was examined 

by HPLC. The observations are given in table 2.2.7. 
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Time 	 I 	 Observation 

u mm 

1 hour 

2 hours 

3 hours 

4 hours 

24 hours 

peaks not resolved 

peaks not resolved 

semicarbazone predominant peak 

semicarbazone predominant peak 

equal amounts of semicarbazone and aldehyde 

equal amounts of semicarbazone and aldehyde 

Table 2.2.7: Cleavage Study 

From the table it would appear that, even after a 24 hour cleavage, it is still possible 

to isolate a reasonable quantity of peptide semicarbazone. This is advantageous, as 

these compounds are generally easier to purify and store than the corresponding PAs, 

and may be biologically interesting in their own right. 

2.5.5.4 Synthesis of Further Sequences 

Three further peptide sequences were studied by this method to demonstrate the 

versatility of the route. The first sequence synthesised was Fmoc-Gly-Ala-Lys-Gly-

Phenylalaninal. This sequence was used to ensure that free amino groups, such as 

those in the side chain of the lysine residue, would not condense with the C-terminal 

aldehyde moiety. No problems were encountered with this peptide when maintained 

at acidic pH. The next sequence synthesised was Fmoc-His-Leu-Asp-Ile-Ile-

Tryptophanal. This sequence is a fragment of the sequence of Endothelin, 53  and may 

prove to be an inhibitor of the Endothelin Converting Enzyme (ECE). 54  Finally, a 

known inhibitor 55, 56 of Caspase C was synthesised to test whether C-terminal 

aspartic acid aldehyde could be incorporated and also to see if the methodology could 

be extended to include longer sequences. These peptide derivatives were purified 

and analysed as previously, and the data obtained is summarised in table 2.2.8 and 

appendix A. 

Each of the PAs synthesised were examined by 600 MHz NMR, and were observed 

to have only one aldehydic proton signal at the chemical shifts given in table 2.2.8. 
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Compound Yield 

(%) 

Mass 

(Found) 

Mass 

(Required) 

AAA (24 Hours) NMR 

(Cl-b) 
FmOC-GAKGF-sC 25 40 763.46 763.83 G1y2 1.86, A1a 1 1.09, - 

(M-H)Na Lys10.98 
FmOC-GAKGF-H26 62 761.74 761.98 G1y2 1.86, A1a 1 1.10, 9.34 

(M-H)K2 Lys 1 0.97 ppm 
Fmoc-HLDIIW-sc 27 27 1082.04 1082.23 Asp 1 l.03, 11e20.96, - 

(MNa4) Leu 1 l.09, His 1 0.88 
Fmoc-HLDJIW-H 28 38 779.66 779.94 Asp 1  1.04, 11e20.96, 9.29 

(MH-Fmoc) Leu 1  1.09, His 1 0.88 ppm 
Ac-AAVALLPAVL 29 2079.52 2079.41 Asp 1 l.14, G1u 1 1.02, - 

LALLAPDEVD-sc 29 (MNa) Pr02 1.92, A1a65.68, 

Va1 3 2.80, Leu65.99 
Ac-AAVALLPAVL 50 1998.16 1998.35 Asp 1 l.07, G1u 1 1.05, 9.36 

LALLAPDEVD-H 30 (M-H) Pr02  1.90, A1a65.61, ppm 

Va13 3.10, Leu65.80 

Table 2.2.8: Analytical Data For Peptide Derivatives 

2.2.6 Summary and Outlook 

The linker has been shown to be extremely effective for the synthesis of peptide C-

terminal semicarbazones and aldehydes. The route proceeds in reasonable yield, and 

studies have shown there to be no loss of stereochemical integrity. 

The methodology could be extended to include the synthesis of non-PAs. Peptide C-

terminal ketones could be synthesised by loading amino ketones onto the linker in 

place of the amino aldehydes. 
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Chapter 3 

The Stepwise Chemical Synthesis of Deglycosylated Human IFN—'y 

and its Purification 

3.1 Introduction 

In the late 1950s, both Isaacs and Lindenmann' and Nagano and Kojima 2  were 

studying the phenomenon of viral interference. Both groups demonstrated that cells 

exposed to various viruses or other substances (termed inducers) respond by 

production of a substance which can confer resistance to other cells subsequently 

exposed to the same or a related virus. This substance was designated as interferon. 

Isaacs and Lindenmann' characterised interferon as a protein with species specificity 

but which confers protection against a broad range of viruses. 

Since then, alpha, beta, gamma, delta, tau and omega interferons have been 

identified. Some types, in particular interferons-a and -, have been extensively 

studied and are well characterised. 3  Interferons delta, 4  tau5  and omega6  have been 

discovered more recently. All types of interferons have in common antiproliferative 

and immunomodulatory properties, as well as the antiviral activity which led to their 

initial discovery. 7  

3.1.1 Interferon-Gamma 

Interferon-gamma (IFN-y) was first isolated in 1965, when Wheelock demonstrated 

interferon-like activity in the supernatants of mononuclear cells after exposure to 

mitogen. 8  

The protein was originally called immune interferon, due to both its activity and its 

production by competent cell types possessing immune regulatory properties.' The 

protein was also called type II interferon, as it has different physicochemical8' . 10 

properties, molecular mechanism" 12, 13 and antjgenicity'°' 14, 15 from IFN-cx, -, -ö, - 

t and -o, the type I interferons. Finally, in 1980 the protein was renamed JFN-y. 7  
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3.1.2 Biological Properties of IFN—y 

IFN-y is a glycoprotein produced during immune response by activated 1-

lymphocytes ' 6  and natural killer (NK) cells. 17  Studies have shown that IFN-y is 

primarily an immunomodulating agent 18, 19 and an effective antitumour agent and 

inhibitor of cell growth, 11, 20, 21 with antiproliferative effects on cells 10-100 times 

greater than those of IFN-a or p10 13, 20, 21 However, IFN-'y has been observed to 

induce the antiviral state in the host much more slowly than IFN-a or .4322  IFN-y has 

been shown to potentiate the actions of IFN-cx and -3 when tested with these related 

proteins." 23 

3.1.3 Clinical Applications of IFN-y 

Human clinical trials in various infectious disease indications have resulted in the 

licensing of Actimmune®, a C-terminally modified recombinant IFN—'y molecule 

(rhTFN-'y 1 b) for reduction of the life threatening infections associated with chronic 

granulomatous disease (CGD). 24  

Chronic granulomatous disease is a rare, inherited, pediatric immunodeficiency state. 

The white blood cells of the patient are unable to function normally to kill invading 

bacterial or ftmgal infections. 

Until the early 1990s, therapy for the disease involved frequent doses of parenteral 

antibiotic to prevent and fight acquired infections. Aggressive surgical intervention 

was necessary in life threatening situations. 

rkIFN—'y lb has been found to reduce the frequency and severity of infection by 

greater than 70 % in CGD patients. 25  The mechanism of action of rhIFN-'ylb in the 

disease is undetermined. On termination of rhIFN-ylb therapy following 1-3 years 

treatment, no increase in the frequency or severity of infection was observed. As a 

result most physicians now use rhIFN-'ylb in combination with antimicrobial agents 

in the management of this disease. This treatment of this condition is the most 

successful use of this protein clinically to date. 
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3.1.4 Characterisation of IFN-7 

Until the advent of recombinant protein technology, the most reliable method of 

production of IFN-y was the stimulation of peripheral blood lymphocytes (PBL) by 

antigen or mitogen. However, only a small amount of material could be produced 

using this method, limiting the subsequent studies that could be carried out. 

The cDNA of IFN-y was first isolated in 1982 by Gray. 26  The gene was expressed in 

Esherichia Coil and monkey cells, 26  and although it coded for 166 amino acids, 20 

amino acids were assumed to make up a signal sequence, leaving the mature protein 

at 146 residues long, commencing with the trio of residues, Cys.Tyr.Cys. 27  The 

molecular weight of the sequence was calculated to be 17110 Da. 

The protein sequence was confirmed by a parallel cDNA study carried out by 

Devos28  and by the production of a synthetic cDNA fragment using convergent 

synthesis 29  which was shown to express the correct protein in E. Coli. The IFN-y 

gene has been found to be located on human chromosome 12 . 30  

The sequence was determined from the natural protein by peptide mapping, 34  using a 

combination of tryptic digest, amino acid analysis, mass spectrometry and N-terminal 

sequencing. The sequence was almost identical to that determined by Gray, 26  except 

the N-terminus was found to be blocked, i.e. a pyroglutamate residue, not cysteine. 

Thus, the mature protein is 143 amino acids in length, figure 3.1.1. It is not clear if 

the Cys.Tyr.Cys residues are removed as part of the signal sequence or as a separate 

event. 
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Gin Asp Pro Tyr Val Lys Glu Ala Giu Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser 

Asp Val Ala Asp Asn Giy Thr Leu Phe Leu Giy lie Leu Lys Asn Trp Lys Giu Glu Ser 

Asp Arg Lys lie Met Gin Ser Gin lie Val Ser Phe Tyr Phe Lys Leu Phe Lys Asn Phe 

Lys Asp Asp Gin Ser lie Gin Lys Ser Val Giu Thr lie Lys Glu Asp Met Asn Val Lys 

Phe Phe Asn Ser Asn Lys Lys Lys Arg Asp Asp Phe Glu Lys Leu Thr Aan Tyr Ser Val 

Thr Asp Leu Asn Val Gin Arg Lys Ala lie His Glu Leu lie Gin Val Mat Ala Glu Leu 

Ser Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gin Met Leu Phe Arg Gly Arg Arg 

Ala Ser Gin 

Figure 3.1.1: The Amino Acid Sequence of human IFN—y, 
the sites of glycosylation are indicated in bold 

The amino acid sequence of the protein was found to be consistent with the observed 

hydrophobicity of natural IFN-y.' °  There are 27 basic residues and 19 acidic 

residues, implying the protein will have a high isoelectric point (p1). The measured 

p1 of the natural protein was found to be 8 .68 . 7 . 36  

The use of recombinant DNA technology to produce IFN-y allowed large quantities 

of the protein to be isolated, and in turn structural and biological characterisation of 

this protein. 

Natural IFN-'y has been found to be heterogeneous with respect to molecular weight 31 ' 

32,33,34,35 and p1. 36  Species of 15.5, 20 and 25 kDa have been observed to be equally 

active. 31'32'33' 
34,  The heterogeneity is due to differences in core glycosylation, 35  C-

terminal processing 35  and multimer formation. 31 

3.1.5 The C-Terminus of IFN-y 

Natural IFN-y has a heterogeneous C-terminus, due to digestion by proteolytic 

enzymes. 37  Six different C-terminal species have been detected for the natural 

protein, 34  and up to 13 C-terminal amino acids have been found to have been 

removed. 34  The recombinant protein has also been found to be susceptible to 

proteolysis. 38' 
40  Proteins with truncated C-termini have been produced for studies 

by limited proteolysis41 ' 42  and genetic engineering. 43  
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There are conflicting opinions as to the importance of the C-terminus for the 

biological activity of the protein. However, the studies are in general agreement that 

the structure of the molecule is not affected by the removal of up to 20 amino acids, 

even though the activity varies. 39, 40, 41, 42 There is a small effect on the activity on 

removal of the first 5 residues, removal of 5-9 residues increases the activity and, on 

removal of subsequent residues, activity dimishes slowly. 44,45 

3.1.6 Glycosylation of IFN-'y 

On cloning the cDNA of the protein, Gray observed two potential sites for N-linked 

glycosylation, at positions 25 and 97 (indicated in bold in figure 3.1.1).26 

Glycosylation has been shown to be unimportant for biological activity 34, 46, 47, 48 or 

protein conformation, 46  since rhJFN-'y produced in E. Coli also forms biologically 

active dimers49' 50, SI and the di-, mono- and deglycosylated proteins all have similar 

circular dicbroism (CD) spectra. 46 

The glycosylated protein is, however, relatively protease resistant when compared to 

the deglycosylated protein, which is rapidly inactivated. The glycoside chains cover 

relatively large areas of the surface of the dimers, sterically hindering protease 

action49' 52  and increasing the circulatory lifetime of the protein. 5 ' 

Two different studies 48, 53 have derived variations of the following structure, figure 

3.1.2, for the glycoside chains of IFN-y. 

[NeuAca(2.3)] 01 -Gal0(1 -4)GIcNAc3( I -2)Manc(1 	 Fuca I 

Man0( 1-4)GIcNAc0(I -4)GIcNAc ---' -- 
[NeuAca(2-3)]o.1-Ga113( I4)GIcAc3(l  -2)Mancz( I -6)"  

[Fuca l]01  

Figure 3.1.2: Proposed Glycan Structure For dhIFN-'y 
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3.1.7 Structure of IFN-? 

A high a-helical content was predicted for this protein using UVCD. 54' 	This was 

confirmed when WN—y was crystallised 
16 and its structure solved using x-ray 

diffraction, figure The protein was found to be a dimer, consisting of two 

identical subunits related by a 2-fold, non-crystallographic axis. Each subunit contains 

six cc-helices, A-F (subunit 1) and A'-F' (subunit 2), which comprise 62 % of the 

amino acid backbone. These helices range in length from 9-21 residues. The subunits 

are intimately related, and held in an antiparallel fashion by a unique intertwining of 

the helical domains. There is no 3-sheet within the subunits, or across the dimer 

interface. 

Figure 3.1.3: Ribbon Diagram of dhIF-y Dimeric Structure 

The NMR structure of the molecule has also been determined, and is similar in all 

aspects, differing in the exact positions of the end points of the helices. 58  

3.1.8 IFN-y Receptor and Receptor Binding 

The IFN—y receptor is distinct from the receptor for the type I interferons, and has 

been found to be species specific. The gene for the receptor is located on human 

chromosome 
60  and the cDNA for the receptor has been cloned. 6 ' The 

extracellular domain of the receptor is 230 residues, is sufficient to bind IFN-y. This 
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domain has been cloned, purified and named IFNyR.6L 62. 63 Ligand-receptor 

interactions were studied using IFN-y bound to the extracellular domain, figure 3.1.4. 

Figure 3.1.4: IFN-y Bound to the Extracellular Domain of its Receptor 

IFN—y can cause dimerisation of the receptor, due to the inherent symmetry of the 

protein ,64  and a crystal structure of the 2:1 receptor:IFN-y complex has been solved .65 

It is observed that the two IFN-yR chains are separate, and do not interact in the 

complex. 65  

The ligand binding surface has clusters of both acidic and basic amino acids against 

exposed aromatic residues. The binding interface encompases the amino terminus, 

helix A, the AB loop, helix B, helix F and the ('-terminus (residues 128-132). It has 

been found that the residue "His is critical for maintaining the correct conformation 

of the protein for receptor binding. 66  

It has been observed that binding of IFN-y to the receptor is not in itself sufficient to 

produce biological aCtivity.67'68' 69.  An additional species specific protein, accessory 

factor I (WN-'yR i ) is also required. The gene for this protein is located on human 

chromosome 21, and it has been cloned, purified and characterised .71- 1  72 IFN-y 

induced aggregation of IFN-yR and 1FN-yR, is sufficient to induce certain biological 

activities, 73  but, a third protein, as yet uncharacterised, is required to produce antiviral 
7174 activity. 
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3.1.9 Research Overview 

SPPS could play an important role in the story of this remarkable cytokine, 

supplementing the wealth of information already available. Production of IFN-y 

using recombinant methods can yield post translational modifications which include 

heterogeneity in the C-terminus and sugar chains of the molecule. Such processing 

can not only complicate purification and analysis, but results in different research 

groups studying different forms of the protein, which can cause discrepencies on 

collation of information. 

The chemical synthesis of IFN-y using SPPS would ensure that sequences of definite 

length and amino acid composition could be produced for use in future studies. 

Currently, a programme is underway to develop methods to chemically glycosylate 

proteins such as IFN—y and erythropoietin and, if successful, species with definite 

glycosylation patterns could be obtained . 7 ' These syntheses would allow the 

optimum form of IFN—'y to be determined and would test the limit of the currently 

available synthetic methodology. 

As it is possible that the full sequence of IFN-y is not necessary for biological 

activity, backbone epitopes could be synthesised using SPPS to probe this. Amino 

acid substitutions, and incorporation of unnatural amino acids such as isotopically 

labelled residues (for example, 15N to allow further NMR studies), could also be 

achieved easily using SPPS. 

With this in mind, a research programme was initiated to attempt to synthesise the 

complete amino acid backbone of IFN—y. This initial study was intended to establish 

a purification protocol suitable for use in the purification of IFN-y, and any analogues 

synthesised. Incorporated into this research programme was the aim to develop a 

generic purification protocol for synthetic proteins, one avoiding the use of 

monoclonal antibody affinity purification and relying solely on straightforward 

chromatographic procedures. Such a protocol could then be used in the purification 

of a wide range proteins of similar size and basicity. 
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The protein produced by SPPS can be directly compared to the protein produced 

recombinantly in E. Coli, since neither are glycosylated. This protein has been 

successfully purified; however, some protocols have relied on monoclonal antibody 

purification as the key step. 37, 38, 39, 76 There is literature precedent for stepwise 

chromatographic purification of dhIFN-y. 45 '
77  Other protocols involving a single 

chromatographic technique such as gel filtration' 78  or ion exchange 

chromatography 79  have also been reported. 

The synthesis of dhIFN-y was previously undertaken by Draffan. 8°  The synthesis was 

observed to proceed well, but subsequent purification of the protein using Tbfmoc-

affinity chromatography and gel filtration chromatography yielded a three component 

mixture, which could not be further resolved. It was anticipated that that the 

purification of IFN-'y could be completed using similar approaches to those detailed 

in the literature. 

3.2 Results and Discussion 

3.2.1 Stepwise Assembly of the dhIFN-'y Molecule 

Prior to the synthesis of the protein, the deprotection profile, obtained previously, 80 

was examined and double coupling cycles used to avoid the low yielding steps in the 

synthesis. The only significant drop in the assembly occurred after 22  Val had been 

coupled, 21 residues from completion of the synthesis. Therefore, with this 

information in hand, it was decided to proceed with the synthesis, commencing 

double coupling just before this residue, to overcome the drop in efficiency. 

On completion of the synthesis, a deprotection profile was constructed, figure 3.2.1, 

and the synthesis was observed to have proceeded well, with no large drops in 

efficiency of coupling. 
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Figure 3.2.1: Deprotection Profile For Synthesis of dhIFN-y 

3.2.2 Tbfmoc-Charcoal Purification 

The affinity purification of peptides using the tetrabenzo[a, c, g, i]fluorenyl-17-

methoxycarbonyl (Tbfmoc) group 8 ' has been developed and applied to the 

purification of a number of synthetic proteins, for example deglycosylated human 

erytbropoietin, 82  and ubiquitin. 83  This large, essentially planar group, figure 3.2.2, 

can be introduced at the N-terminus of a resin bound peptide or protein via the 

chioroformate, prior to cleavage from the solid support. Once in solution, the affinity 

of the Tbfmoc-group for carbon-based supports can be exploited to facilitate a 

primary purification of the peptide or protein. Another advantage of this system is 

the Tbfmoc-group has an isobestic point at 364 nm and increases the hydrophobicity 

of the sequence. This shifts the Tbfmoc-containing component away from the 

impurity molecules by HPLC as well as simplifying identification of the Tbfmoc-

bearing component of the mixture. 

Figure 3.2.2: Thfmoc-chloroformate 
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The carbon support initially investigated was porous graphitised carbon (PGC). 8 ' 

Although this support effectively separated Thfmoc-labelled peptides from N-

terminally capped deletion sequences, it had the disadvantage that the large quantities 

of PGC required to carry out each purification made the method very expensive. 

Activated animal charcoal was investigated as an alternative support and found to be 

less expensive and equally effective. 

Tbfmoc-charcoal affinity purification was chosen as the primary purification step for 

dhTFN-y, since Draffan 8°  had found this step to be successful in removing most 

truncated sequences from the desired protein sequence. Hence, the resin bound 

Fmoc-dhIFN-y sequence was capped, swelling the resin in DCM to ensure that all 

reactive functionalities which were not exposed when the resin was swollen in DMF, 

were blocked. The amino terminus was then deprotected, and the Tbfmoc group 

introduced as its chloroformate. The level of Tbfmoc-loading was checked using a 

method analogous to that used to check Fmoc-loading, but with UV analysis at 364 

nm. 

3.2.2.1 Cleavage Of Tbfmoc-dhIFN-7 From The Solid Support 

At this point, a trial cleavage was carried out to investigate the optimum time 

required for complete removal of the protein from the solid support and the 

deprotection of the side chain functional groups. The cleavage was carried out on 50 

mg of resin using the normal cleavage cocktail. At 30 minute intervals, a sample of 

the cleavage solution was removed, and the protein isolated by precipitation. HPLC 

analysis of the protein pellets obtained showed there to be no change in the profile 

after 4.5 hours. This is in good agreement with the results foundby Draffan. 80  

The cleavage was then scaled up, the protein precipitated from cold diethyl ether, 

isolated by centrifugation and lyophilised to yield material for use in the Tbfmoc-

affinity purification step. At this stage the crude 'Tbfhioc-dhIFN-y was observed to 

contain many components by RP HPLC, figure 3.2.3. 
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3 

Figure 3.2.3: HPLC Profile of Crude Tbfmoc-dhIFN-y 

3.2.2.2 Tbfmoc-Charcoal Affinity Purification 

Previously the charcoal system had been observed to be unstable to the basic 

cleavage conditions employed to release the purified peptide. This resulted in the 

production of fines, and contamination of the protein with a brown coloured species 

which could not be separated using centrifugation. As a result, it was necessary to 

thoroughly wash the charcoal, with all solutions employed in the purification prior to 

use, in an attempt to avoid contamination. The Tbfmoc-charcoal purification was 

carried out as depicted in figure 3.2.4, with monitoring by RP HPLC at 214 and 364 

nm. 

Tbfmoc-NH-Protein-OH 
Truncated Proteins 

Charcoal 

Charcoal I Tbfmoc-NH-Protein-OH 
+ 

Truncated Proteins 

Wash 

Charcoal I Tbfmoc-NH-Protein-OH 

Piperidine 

NH2-Protein-OH 

Figure 3.2.4: Tbfmoc-Charcoal Affinity Purification 

Due to the hydrophobic nature of the IFN—'y sequence in general, and the extra 

hydrophobicity introduced to the system by the Tbfmoc-moiety, the purification in 
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the past had required the use of a 1:1 mixture of 6M guanidine hydrochloride and 

isopropyl alcohol to aid the solubility of the crude Tbfmoc-dhIFN-7. 8°  Problems 

have been experienced during removal of guanidine hydrochloride from protein 

samples due to interaction of the charged components with charged functionalities 

present in the side chains of the protein. To avoid this problem, urea solutions were 

used in place of the guanidine hydrochloride. It is usual to require an 8M solution of 

urea to solubilise proteins; however it was found that 6M urea completely dissolved 

the crude Thfmoc-dhIFN-'y samples. On completion of the purification protocol, the 

protein solution was neutralised to pH 7 using acetic acid and examined by HPLC, 

figure 3.2.5. 

Figure 3.2.5: HPLC Profile after Thfmoc-Charcoal Purification 

The next step in the purification was FPLC size exclusion chromatography, which 

requires a highly concentrated protein solution to achieve the good resolution of 

protein components. Thus, several methods were investigated to determine the 

optimum method to yield a concentrated protein solution or solid protein. Firstly, 

ultrafiltration was tried, however, it was observed that in this case the protein was not 

retained by the membrane, hence no concentration was achieved. 

The next method investigated involved the slow dialysis of the solution against an 

acetic acid solution. This effectively removed the urea and piperidine acetate from 

the protein solution, replacing them with acetic acid solution, which allowed the 

sample to be lyophilised to a solid. This meant that solutions of the required 
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concentration for FPLC size exclusion chromatography could be prepared by 

redissolving the sample accordingly. 

The final method investigated involved elution of the protein sample from a 

Sephadex G-50 column with acetic acid solution. Again, this effectively removed the 

urea and piperidine acetate salts rendering lyophilisation possible. When compared 

to dialysis of the sample, it was found that the desalting column allowed recovery of 

twice as much protein. This was attributed to the protein adhering to the dialysis 

membrane. The desalting column was also much faster than the dialysis; the process 

could be run overnight compared to one week, therefore this was adopted as the 

method of choice for future work. 

3.2.2.3 Desalting Using a Sephadex G-50 Size Exclusion Column 

The solution from Tbfmoc-charcoal affinity chromatography was loaded onto a 

Sephadex G-50 column equilibriated with 25 % acetic acid solution. Fractions eluted 

from the column were examined by UV for protein content. An aliquot of each UV 

active fraction was freeze dried before being examined by SDS-PAGE for protein 

content. No resolution of the protein bands was observed using this column. This 

was probably due to the large volume of solution loaded. 

The protein material at this stage was observed to contain three components by SDS-

PAGE, figure 3.2.6. When compared to the results obtained previously for this 

protein, 80  it can be seen that an improvement has occurred, since four components 

were obtained at this stage in the previous purification protocol. 

l 	3 

1•ø 

Lane 1: Crude Tbthioc-dhIFN-y 
Lane 2: Molecular Weight Markers (43, 25 & 13.7 

kDa) 
Lane 3: dhIFN-? after Tbfinoc-Charcoal 

Purification/Desalting 

Figure 3.2.6: SDS-PAGE Profile Following Tbfmoc-Charcoal Purification 
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It was surprising that the impurity components persisted after the Tbflnoc-affinity 

purification protocol, since this method was designed specifically to remove them. 

There are several possibilities for their persistence. 

Firstly, the acetylated truncates may not have been successfully washed away during 

the protocol, due to their binding to the carbon support via aromatic side chain 

functionalities of which there are 25 in the whole sequence. Indeed, the region 50Val 

to 60Phe contains 5 aromatic residues which on adopting an appropriate conformation 

would produce a hydrophobic surface. 

Secondly, deletion molecules may have been produced during the synthesis whereby 

the N-terminus of the growing peptide chain has become buried due to changes in the 

resin swelling, and not participated in subsequent cycles of the synthesis. A further 

change in resin swelling would expose the free N-terminus, allowing it to continue in 

the synthesis, but effectively creating a molecule missing several residues from the 

middle of the sequence would be produced. This would result in several protein 

components all becoming tagged with the Tbfmoc-label on completion of the 

synthesis. 

Finally, the protein may have sheared during acidiolytic cleavage. If this occurred at 

positions close to the C-terminus, large fragments would be produced which 

contained the Tbfmoc-label  at the N-terminus. It has also been postulated that 

cleavage via attack of the softly nucleophilic thiols used as scavengers in the 

cleavage cocktail may be observed for susceptible sequences. 84  This possibility was 

ruled out by repeating the cleavage of the protein, omitting the thiol scavengers from 

the cocktail. However, an identical profile by SDS-PAGE was observed following 

Tbfmoc-affinity chromatography and desalting. 

The centre band of approximate molecular weight 14 kDa on the SDS-PAGE, was 

electroblotted onto polyvinyldifluoride (PVDF) membrane and subjected to N-

terminal sequencing. This showed the N-terminus of this component to be blocked, 

and also not be released following incubation with pyroglutamate aminopeptidase. 

59 



Chapter 3 

Hence indicating that the impurities are most likely to be capped truncates that have 

bound to the carbon support via aromatic side chain functionalities. 

3.2.2.4 Tbfmoc -Polystyrene Purification 

It was recently shown by Jamieson that chromatographic grade polystyrene could be 

used in place of the activated charcoal for Thfmoc-affinity purification. 85  The 

advantage of this solid support is that extensive prewashing is no longer necessary. 

This has greatly reduced the time taken to complete an affinity purification from two 

days to half a day. The protein obtained on work up after desalting is also of higher 

quality, since it is no longer contaminated with charcoal fines produced during 

piperidine treatment. The polystyrene method should also be amenable to recycling, 

keeping the cost of the procedure in line with that using charcoal. Finally, it is 

anticipated that less polystyrene will be required, since the system should be more 

efficient due to the Tbfmoc-moiety interacting with the polystyrene in an end-on 

fashion as well there being the face-on, it-stacking interactions predicted for Tbfmoc 

and charcoal. 

This new support was investigated for the purification of dhIFN-y. The protocol 

followed is analogous to that followed for charcoal, figure 3.2.4, with the exception 

that acetic acid solution is used to load the protein and wash the polystyrene, and the 

purified protein is cleaved from the Tbfmoc-molecule using piperidine/acetonitrile 

solution. The HPLC profile following polystyrene purification, figure 3.2.7, is 

similar to that obtained following charcoal purification, figure 3.2.5. 

Figure 3.2.7: HPLC Profile After Tbfmoc-Polystyrene Purification 
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The protein solution was desalted using a Sephadex G-50 column, and on 

comparison of the solid material obtained using both methods by SDS-PAGE, no 

difference was seen, figure 3.2.8. Both methods produced protein material 

containing three components. 

1 	) 

pro— 

Lane I: Crude Tbfrnoc-dhlFN-y 
Lane 2: Molecular Weight Markers (43, 25 & 13.7 kDa) 
Lane 3: Protein material following charcoal 

purification/desalting 
Lane 4: Protein material following polystyrene 

purification/desalting 
Lane 5: Molecular Weight Standards (17 & 13 kDa) 

Figure 3.2.8: SDS-PAGE Profile Comparing Charcoal and Polystyrene 

The one advantage polystyrene shown over charcoal in this purification is that a 

higher yield of the 3 component mixture was obtained, table 3.2.1. 

Support Amount of Crude Amount of Support Amount of 3 
Protein Purified Used per mg of Crude Component Mixture 

Protein Recovered 

Charcoal 100 mg 25 mg 25 mg 

Polystyrene 100 mg 20 mg 40 mg 

Table 3.2.1: Comparison of Charcoal and Polystyrene Supports 

The effect of recycling the polystyrene support was also investigated. The 

polystyrene was used for a purification procedure and on completion, it was 

regenerated by agitation in warm (40 0C) toluene to desorb any Tbfmoc by-product 

still adsorbed to the support. The polystyrene was then thoroughly washed with 

methanol and allowed to dry en vacuo. The results for two cycles of this regeneration 

are shown in table 3.2.2. 
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Polystyrene 	 Amount Required per mg of 
Crude Protein 

New 	 I 	20 mg 

After Regeneration 	I 	20 mg 

After 2nd  Regeneration 	 20 mg 

Table 3.2.2: Affect of Regeneration on Polystyrene Performance 

From the results given in table 3.2.2, it is clear that regeneration of the polystyrene 

support is not detrimental to the success of subsequent purification procedures. In 

summary, these findings, combined with those of Jamieson, 85  have shown 

polystyrene to be a very suitable alternative to charcoal for Tbfmoc-affinity 

purification. 

3.2.3 FPLC Size Exclusion 

This technique, which separates on the basis of size, was used by Draffan in the 

original protocol, and was found to improve the purity of the protein sample from a 

four component mixture to a three component mixture. It has also been used for the 

purification of the recombinant protein. 77  As the current sample was already a three 

component mixture, it was hoped that this technique would be able to purify the 

dhTFN—y further than had been previously possible. 

The protein was dissolved in urea solution containing NaCl, buffered to pH 7.5. The 

salt was included to prevent any ionic interactions between the protein and the 

SuperdexTM  75 matrix and the solution was buffered to a slightly basic pH as this 

protein has been found to be unstable in acidic media containing NaC1. 54  Fractions 

eluted from the column were examined by UV, at 280 rim, and aliquots of UV active 

fractions were desalted by dialysis against acetic acid solution, lyophilised and 

examined by SDS-PAGE for protein content. The profile of the protein elution is 

depicted in figure 3.2.9. 
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Figure 3.2.9: Elution Profile For FPLC Size Exclusion 

Fractions 18-23 were found to consist of only two components by SDS-PAGE, 

figure 3.2.10. These fractions were combined, desalted by dialysis and lyophilised to 

yield solid material for analysis. 

123 

Lane I: dhIFN-y after TbfiTloc-affinity purification 
Lane 2: dhlFN-y after FPLC Size Exclusion 

0 ' 	Lane 3: Molecular Weight Standards (43, 25 & 13.7 kDa) 

Figure 3.2.10: SDS-PAGE Profile After FPLC Size Exclusion 

Following FPLC size exclusion, the protein profile by HPLC is now a single peak, 

with a more symmetrical shape, consistent with the progress made in the purification 

of the protein, figure 3.2.11. 
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Figure 3.2.11: HPLC Profile of dIiTFN-y After FPLC Size Exclusion 

Attempts to purify the protein material further using FPLC size exclusion, were not 

successful. 

3.2.4 Further Purification of dhIFN-y 

In the previous study, 80  an attempt was made to purify dhIFN-y using hydrophobic 

interaction and cation exchange chromatographies, and isoelectric focussing. The 

only successful method employed was the excising of the band containing the correct 

protein from a preparative SDS-PAGE gel. This method was however, very low 

yielding and hence, not a suitable preparative method. 

Methods have been described in the literature for the use of nickel chelate and cation 

exchange chromatographies in the purification of recombinant IFN-y. 77  Nickel 

chelate chromatography requires the molecule to be correctly folded in order to align 

the two histidine residues adjacent to one another, and so allow binding to the nickel 

column to take place. As the synthetic protein at this stage contains only irregular 

structure this technique was not attempted. Instead, an investigation of cation 

exchange chromatography was undertaken. 

M. 
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3.2.4.1 Cation Exchange Chromatography 

An attempt was made to achieve separation based on the different charges held by the 

components in the protein mixture instead of using the difference in molecular 

weight. 

Initial studies were performed using the weak cation exchanger, CM Sepharose CL-

50 and crude dhIFN-y containing 4 components obtained from fractions eluting later 

from the Sephadex G-50 desalting column. The correct pH for the chromatography 

was determined by equilibriating portions of the matrix to different pH's using 

various buffers. The protein was then introduced to the matrix as a urea solution, 

buffered appropriately for each portion. After vortexing for 2 minutes, the 

supernatants were examined by HPLC to establish whether protein binding had 

occurred or not. The results of this experiment are shown in table 3.2.3. 

Tube Buffer pH Binding 

1 Acetate 5.5 Yes 

2 Phosphate 6 Yes 

3 Phosphate 6.5 Yes 

4 Phosphate 7 Yes 

5 Phosphate 7.5 Yes 

6 Phosphate 8 No 

7 Tris 8.5 No 

8 Tris 9 No 

9 Tris 9.5 No 

10 Tris 10 No 

Table 3.2.3: Determination of the correct pH for Cation Exchange 

The results show that below pH 7.5 there are sufficient positive charges on the 

dhIFN-y molecule to allow binding to the CM Sepharose CL-50. 
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Initially, it was hoped to incorporate a folding step with this purification method, by 

loading the solution onto the column in buffered urea, followed by slow removal of 

the urea in a preliminary gradient. This should result in refolding of the protein, 

assisted by the cation exchange medium. Finally, elution of the folded, purified 

protein from the cation exchange matrix can be achieved using a salt gradient. 

Attempts to achieve concomitant purification and refolding were unsuccessful, due to 

precipitation of the protein on the column on removal of the urea solution. 

In subsequent studies, chromatography was carried out with urea present at all times 

to aid the solubility of the protein. As urea is an uncharged species it should not 

interfere with the progress of the purification. No separation was obtained when a 

salt gradient of 0-1 M NaCl over 5 column volumes was used. However, when this 

gradient was shallowed to 0-0.6 M urea over 8 column volumes, it was possible to 

separate the lowest band (approximately 8 kDa) from the remaining three. 

Encouraged by this result, attention was switched to the SP Sepharose FF matrix 

used by Zhang and co-workers 77  in their purification of the recombinant protein. 

This medium is a stronger cation exchange matrix than CM Sepharose CL-50, thus it 

was hoped that this would impart a better separation of the components on 

introduction of the salt gradient. Unfortunately this was not the case, and again, it 

was only possible to separate the smallest molecular weight component from the 

other three present. 

The investigation of cation exchange chromatography has shown that it is possible to 

develop conditions for proteins with low solubility in aqueous buffers, avoiding 

protein precipitation. However, for this protein, the method proved to have no 

advantage over size exclusion chromatography. Attention was thus returned to this 

method of purification once more. 

3.2.5 Sephadex G-75 Size Exclusion 

In order to optimise separation in a size exclusion procedure there are several factors 

to be incorporated. 86  First, the sample must be loaded onto the column in a volume 

which does not exceed 1 % of the total column volume. Secondly, for optimal 
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separation, the ratio of the length to the diameter of the column should be in 

approximately 25:1. Finally, the flow rate of the column should be adjusted to be as 

low as possible. 

Whilst Superdex TM  75 offers the possibility for high loadings and fast 

chromatography, it was not useful in separating dhJFN-y from its impurities. As a 

final attempt a Sephadex G-75 superfine size exclusion medium was examined. This 

gel offers the same separation range to Superdex Tm  75, but very much lower flow 

rates. There is literature precedent for using this medium in the purification of the 

recombinant IFN-y. 78  

The protein was loaded onto the column at high concentrations. Buffered urea was 

used as solvent as, from experience, this was found to be the optimal solvent for 

dhIFN-y. The protein was eluted using acetic acid solution, in order to permit 

lyophilisation of protein containing fractions following examination by UV. UV 

active fractions were examined by SDS-PAGE. 

Significant separation was achieved using this column, and the protein material was 

found to contain only two components. Purification of the two component mixture 

was achieved by via reapplication of the 2 band material to the column. The elution 

profile is depicted in figure 3.2.12, and generally fractions 9 and 10 were found to 

contain purified protein, figure 3.2.13. 

0.12 	-r ............... ........................................................ 

Figure 3.2.12: Elution Profile For Sephadex G-75 Size Exclusion 
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Lane 1: Molecular Weight Markers 
(43, 25, 17 & 13.4 kDa) 

Lane 2: Fraction 10 
Lane 3: Fraction 11 
Lane 4: Fraction 12 
Lane 5: Fraction 13 
Lane 6: Fraction 14 

Figure 3.2.13: SDS-PAGE Profile of Sephadex G-75 Size Exclusion 

Using this method, 67 mg of three component dhJFN-y has been purified, in portions, 

to yield 8 mg of pure protein for analysis and folding studies. 

3.2.6 Characterisation of the Purified dhIFN-y 

3.2.6.1 HPLC 

The HPLC trace obtained for the purified dhIFN-y material consists of a relatively 

sharp, symmetrical peak, figure 3.2.14. This is generally indicative of a reasonable 

degree of purity. 

Figure 3.2.14: HPLC Profile of Pure dhIFN-y 
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3.2.6.2 Amino Acid Analysis 

Throughout the course of the purification the protein material has been examined by 

amino acid analysis, after hydrolysis of the material at 110 °C in HC1. The results are 

depicted in table 3.2.4 and in general were found to be satisfactory. 

Resin- 
bound 

Tbfmocd 
hIFN-y- 
Resin 

Thfmoc- 
dhIFN-y 

After 
Charcoal! 

G50 

After 
Polystyrene! 

G50 

After 
FPLC 

Pure 
dhIFN- 

y 

Asx20  19.0 19.9 19.1 19.8 21.1 21.7 19.7 

Thr5  5.3 5.5 4.4 4.6 4.9 4.2 5.1 

Seri   9.7 9.4 9.8 9.4 9.9 10.4 9.7 

G1x 18  19.6 19.9 18.2 17.8 18.7 18.7 19.3 

Pr02  1.4 1.4 1.0 1.3 1.1 1.1 1.8 

GlV5  5.0 5.3 4.9 5.0 4.1 4.9 5.0 

Ala8  8.3 8.4 8.2 8.1 7.5 6.6 7.3 

Va!8  8.2 8.0 8.4 8.9 10.3 8.5 8.6 

Met4  4.5 3.8 3.0 3.6 3.1 2.7 3.3 

lIe7  7.0 7.3 6.8 7.4 7.6 8.2 7.6 

Leu 10  9.6 9.5 10.0 10.0 10.0 10.3 10.2 

Tyr4  3.3 3.3 2.9 3.3 1.5 2.6 3.0 

Phe 10  10.3 10.7 10.6 10.8 11.6 13.2 12.2 

His2  2.1 1.6 2.4 2.6 2.0 1.7 2.0 

Lys20  20.0 19.9 19.1 19.8 22.2 22.3 20.7 

Ar98  9.8 9.6 9.9 8.5 8.1 7.0 7.8 

Table 3.2.4: Amino Acid Analyses 

Samples were analysed for their tryptophan content using the method described by 

Edelhoch. 87  By measuring the absorbance at 280 and 288 nm, of a solution of known 

protein concentration, it was possible to calculate the extinction coefficient for the 

solution at the two different wavelengths using equation 3.1. 
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E=AJC 	c = molar extinction coefficient 
A = UV absorbance 
C = protein concentration 

Equation 3.1: Calculation of Extinction Coefficient 

This value could be converted into the corresponding number of moles of tryptophan 

per mole of protein using equation 3.2. 

628O-  5690 NTrp+  1280 MTy1 

E288-  4815 NTrp  + 385 Mtyr  

Equation 3.2: Calculation of Tryptophan Content 

Where N and M = no of moles of Trp and Tyr per mole of protein respectively. 

The average value for the tryptophan content was determined, using this method, to 

be 0.99 moles of tryptophan per mole of protein. 

3.2.6.3 N-Terminal Sequencing 

N-terminal sequencing was carried out 88  to ensure that the purified material was 

indeed the correct sequence, and not a large truncate molecule. This was performed 

by Edman degradation, labelling the N-terminus with phenylisothiocyanate. 89  Five 

cycles of Edman degradation showed the N-terminus to be intact, table 3.2.5. 

Cycle 1 	 2 3 	 4 	 5 

Expected Gin 	Asp Pro 	Tyr 	Val 

Found Gin 	Asp Pro 	Tyr 	Val 

Quantity 75.56pmoi 	79.23pmoi 62.96pmol 	52.37pmol 	53.I9pmol 

Table 3.2.5: N-Terminal Sequencing Analysis 

3.2.6.4 MALDI-TOF Mass Spectrometry 

MALDI-TOF mass spectrometry was not possible until the dhIFN-y was purified. 

Even the pure protein gave a poorly resolved peak, possibly due to the protein 

containing only irregular structure. The value obtained for the molecular weight of 

the protein was 16826 Da, figure 3.2.15, which is within 49 Da, or 0.3 %, of the 

theoretical value of 16777 Da. 
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13 

Figure 3.2.15: MALDI-TOF Mass Spectrum of dhJFN-? 

3.2.6.5 Molecular Weight Determination By FPLC 

To check the size of the purified protein further, the molecular weight was 

determined using FPLC size exclusion on a column calibrated with molecular weight 

standards. 

For each standard, the elution volume parameter, kAy,  was calculated using equation 

3.3, and the void volume was measured using blue dextrin. 

Ve = elution volume 

	

KAy = Ve - Vo 	
Vo = column void volume 

	

Vt - Vo 	Vt = total column volume 

Equation 3.3: Determination of Elution Volume Parameters 

The elution volume parameter for dlilFN-'y was determined, and a graph of kAy 

versus the logarithm of the molecular weight of the standard was used to find the 

determine the molecular weight of dhIFN-y , figure 3.2.16. This technique gave a 

determined molecular weight value of 16.7 kDa for dhIFN-y. 
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Figure 3.2.16: FPLC Determination of Molecular Weight 

3.2.6.6 Tryptic Digest 

This technique, hydrolysis of the protein into smaller fragments which can then be 

examined by MALDI-TOF mass spectrometry, was used to establish that the entire 

dhJFN-y sequence had been correctly prepared. The enzyme used in the digest, 

Trypsin, cleaves only two sites; at the C-terminus of lysine and arginine. This, in 

theory, should produce a reasonable number of peptide fragments for mass 

spectrometric analysis. On completion of the digest, the peptide fragments were 

separated from the enzyme by RP HPLC. The first half of the digest mixture was 

collected en masse and lyophilised. An attempt was made however to collect 

individual HPLC peaks from the second half of the digest. 

Mass spectrometric analysis, table 3.2.6, showed that not all possible cuts had 

occurred. However, a sufficient number of peptides were identified which accounted 

for the majority (approximately 70 %) of the protein sequence, thus establishing that 

the sequence had indeed been correctly synthesised. 
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Fragment 
	

Found 
	

Requires 

)YASflbILYS (Na+ salt) 430.419 430.459 

39Glu-42Arg (Na+ salt) 657.389 657.591 

139Arg- 143G1n (H+) 674.639 674.738 

74Lys-69Ser (K+ salt) 714.122 714.878 

81 Phe-87Lys (Na+ salt) 907.532 906.992 

132 Ser- 139Arg 994.658 994.180 

69Ser-80Lys (K+ salt) 1432.390 143 1:685 

56Leu-68Lys 1610.830 1610.680 

13Lys-42Arg(Na+ salt) 3447.620 3448.752 

' 4Tyr-43Lys (Na+ salt) 3447.620 3448.752 

95Leu-' 25Lys(H+) 3455.010 3457.58 

Table 3.2.6: Mass Spectrometry of Digest Fragments 

No fragment corresponding to the N-terminus of the protein could be found. 

However, N-terminal sequencing has already confirmed the presence of these 

residues. 

3.2.6.7 p1 Determination by Isoelectric Focusing 

Isoelectric focussing was carried out using a Rotofor®  cell and ampholytes in the 

range pH 9-11. The focusing experiment was carried out using urea solution. This 

was to aid the solubility of the dhIFN-y and because it is an uncharged species it does 

not interfere with the pH gradient. In this experiment, the p1 was estimated to be 

10.5. This compares favourably with the calculated value of 1 O.6. °  

3.2.7 Folding of IFN—y 

The remarkable array of functions that proteins fulfil in the body require the protein 

to have adopted its native, fully folded structure. In this conformation, amino acids 

important for biological activity are held together, in perfect alignment, in order to 

interact with the complementary surface on the receptor molecule or enzyme. 

IFN—'y has been observed to lose biological activity on exposure to acidic pH8' 10  or 

high temperatures. 9 ' Initially, it was assumed that once denatured by exposure to 

WAI 
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acid, the biological activity of IFN—y could not be regained. However, Arakawa and 

coworkers 54  have shown that in the absence of NaCl, IFN-'y can be refolded to its 

native state. However, during refolding aggregated or misfolded species may be 

formed containing the elements of the correct secondary structure, but the incorrect 

tertiary structure. 78  These studies show that although the synthetic dhJFN-y sample 

has been exposed to acid on several occasions, it should be possible to fold the 

molecule into the biologically active form. 

IFN—y has been refolded by slow removal of denaturants via dialysis, 78  and by rapid 

dilution of a denatured solution into a large volume of stabilising buffer. 55, ' 

However, both of these methods result in a low yield recovery of biologically active 

protein, due to the accumulation of inactive aggregate molecules. 

Antibody assisted refolding 92  has been applied to IFN-7, and significant refolding 

was observed. 93  Similarly, the protein has been refolded using the GroEL 94  and 

DnaK93  molecular chaperone systems and excellent yields of biologically active 

protein and minimal aggregation have been reported. 

The most useful method to date, in terms of cost implications and ease of use, is the 

polyethyleneglycol (PEG) assisted refolding reported by Cleland and Wang. 95  Again, 

this technique was found to minimise aggregate formation and enhance the recovery 

of active protein when applied to 96  As a result, this method was adopted for 

the folding of the synthetic dhIFN-7 sample. 

3.2.7.1 Folding of Purified dhIFN-y 

The method of Cleland 96  involved the denaturation of the protein in guanidine 

hydrochloride followed by rapid dilution using a buffered solution containing PEG. 

Extensive study of the parameters involved showed that optimal refolding was 

achieved when dilution occurred to yield a final guanidine concentration of IM, 

protein concentration of lmg/ml and a protein to PEG ratio of 1:2.96  These 

conditions were applied to the purified dhTFN-y sample with the substitution of urea 

in place of guanidine. 
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HPLC has been used in the past to monitor protein refolding, with diminishing area 

of the protein peak being observed during folding. 82  Monitoring the refolding of 

dhIFN-y was more difficult, since HPLC could not be used due to the acidic and 

hence denaturing effect of the solvents involved. Acetonitrile has also been reported 

to interfere with the refolding of IFN—y. 55  Instead, it was decided to attempt to 

isolate the refolded protein by removal of the PEG and residual urea on a Sephadex 

G-50 size exclusion column, which would allow the sample to be submitted for UV-

CD analysis and the extent of folding determined. However, this procedure resulted 

in precipitation on the column, and no protein was recovered. 

The method was repeated again, to produce a final protein concentration of 0.1 

mg/ml, as the precipitation may have been caused by the high concentration of the 

protein. However, again no protein was recovered from the desalting column. 

Finally, an attempt was made to remove the urea and PEG by dialysis, however over 

the time required (2 days) to complete this procedure the protein was observed to 

precipitate in the dialysis bag. 

To investigate the extent of folding that had taken place, a sample of the folding 

buffer was removed after 24 hours and examined by non-reducing SDS-PAGE, 

figure 3.2.17. This indicated that only a small amount of dimer had formed from the 

purified dhIFN-y. 

12  
Lane I: Folded dhIFN-y 

- 	 Lane 2: Molecular Weight Markers 

(43, 25, 17& 13 kDa) 

Figure 3.2.17: SDS-PAGE Profile of dlilFN-y Folding 
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3.2.8 Summary and Outlook 

The chemical synthesis of deglycosylated IFN—y has been succesfully completed, 

demonstrating that the methodology can be used to routinely produce large proteins. 

The purification protocol developed has also been applied to the purification of 

deglycosylated human erytbropoietin, 97  establishing its general applicability of to 

basic proteins of a similar size to IFN-y. In the future, this purification protocol 

could be applied to analogues of IFN—y to obtain pure material for further study. 

Unfortunately, at this time, it has not been possible to isolate folded dhIFN-y and 

obtain structural and biological characterisation. Molecular chaperone assisted 

refolding could be used to obtain sufficient folded protein for further study. The 

GroEL/ES chaperone system has been produced at Edinburgh, 98  and examined for 

folding of a synthetic protein. 85 

3.3 References 

1 A. Isaacs & J. Lindenmann, Proc. Royal Soc. London B Biol. Sc., 1957,147,258-267.,  

2 Y. Nagano & Y. Kojima, Cr. Soc. Biol., 1958, 152, 1627-1629. 

3 S. Pestka, J. A. Langer, K. C. Zoon & C. E. Samuel, Ann. Rev. Biochem., 1987, 56, 727-777. 

4 A. E. Whaley, C. S. R. Meka, L. A. Harbison, J. S. Hunt & K. Imakawa, J. Biol. Chem., 1994, 

269, 10864-10868. 

5 R. M. Roberts, Nature, 1993, 362, 583. 

6 G. R. Adolf, B. FrUehbeis, R. Hauptmann, I. Kalsner, I. Maurer-Fogy, E. Ostermann, E. Patzelt, 

R. Schwendenwein, W. Sommergruber & A. Zoephel, Biochim. Biophys. Acta, 1991, 1089,167- 

174. 

7 W. E. Stewart, J. E. Blalock, D. C. Burke, C. Chang, J. K. Dunnik, E. Falcoff, R. M. Friedman, 

G. J. Galasso, W. K. Joklik, J. Vilcek, J. S. Youngner & K. C. Zoon, Nature, 1980, 286, 110. 

8 E. F. Wheelock, Science, 1965, 149, 310-311. 

9 R. Falcoff,J. Gen. Virol., 1972, 16,251-253. 

10 M. P. Langford, J. A. Georgiades, G. J. Stanton, F. Dianzani & H. M. Johnson, Infect. Immunol., 

1979, 26,36-41. 

11 A. Zerial, A. G. Hovanessian, S. Stefanos, K. Huygen, G. H. Werner & E. Falcoff, Antiviral Res., 

1982, 2, 227-239. 

12 C. E. Samuel & G. S. Knutson, Virology, 1983, 130, 474484. 

13 B. Y. Rubin & S. L. Gupta, Proc. Nail. Acad. Sc., USA, 1980, 77, 5928-5932. 

vL1 



Chapter 3 

14 M. Dc Ley, J. van Damme, H. Claeys, H. Weening, J. W. Heine, A. Billiau, C. Vermylen & P. de 

Somer, Eur. f. Immunol., 1980, 10, 877-883. 

15 M. Wiranowski-Stewart, L. S. Lin, I. A. Braude & W. E. Stewart, Mo!. Immunol., 1980, 12, 625-

633. 

16 I. L. Nathan, J. E. Groopman, S. G. Quan, N. Bersch & D. W. Golde, Nature, 1981, 292, 842-

844. 

17 G. Trinchieri, M. Matsumoto-Kobayashi, S. C. Clark, J. Seehra, L. London & B. Perussia, .1. 

Exp. Med., 1984, 160, 1147-1169. 

18 M. Nakamura, T. Manser, G. D. N. Pearson, M. J. Daley & M. L. Gefter, Nature, 1984, 307, 

381-382. 

19 D. Wallach, M. Fellous & M. Revel, Nature, 1982, 299, 833-836. 

20 S. B. Salvin, J. S. Youngner, J. Nishio & R. Neta, I Nat!. Cancer Inst., 1975, 55, 1233-1236. 

21 J. L. Crane, L. A. Glasgow, E. R. Kern & J. S. Youngner, I. Nat!. Cancer Inst., 1978, 61, 

871-874. 

22 F. Dianzani, M. Zucca, A. Scupham & J. A. Georgiades, Nature, 1980, 283, 400-402. 

23 W. R. Fleischmann, J. A. Georgiades, L. C. Osborne & H. M. Johnson, Infect. Immunol., 1979, 

26, 248-253. 

24 J. I. Gallin & H. L. Malech, I. Am. Med. Assoc., 1990, 263, 1533-1537. 

25 R. A. B. Ezekowitz, N. Engl. I. Med., 1991, 324, 509-516. 

26 P. W. Gray, D. W. Leung, D. Pennica, E. Yelverton, R. Najarian, C. C. Simonsen, R. Derynck, P. 

J. Sherwood, D. M. Wallace, S. L. Berger, A. D. Levinson & D. V. Goeddel, Nature, 1982, 298, 

503-508. 

27 P. W. Gray & D. V. Goeddel, Nature, 1982, 298, 859-863. 

28 R. Devos, H. Cheroutre, Y Taya, W. Degrave, H. Van Heuverswyn & W. Fiers, Nucleic Acids 

Res., 1982, 10, 2487-2501. 

29 S. Tanaka, T. Oshima, K. Ohsuye, T. Ono, A. Mizono, A. ueno, H. Nakazato, M. Tsujimoto, N. 

Higashi & T. Noguchi, Nucleic Acids Res., 1983, 11, 1707-1723. 

30 S. L. Naylor, A. Y. Sakaguchi, T. B. Shows, M. L. Law, D. V. Goeddel, P. W. Gray, .1. Exp. 

Med., 1983, 57,1020-1027. 

31 Y. K. Yip, B. S. Barrowclough, C. Urban & J. Vilcek, Science, 1982, 215, 411-413. 

32 Y. K. Yip, B. S. Barrowclough, C. Urban & J. Vilcek, Proc. Nat!. Acad. Sc., USA, 1982, 79, 

1820-1824. 

33 J. Friedlander, D. G. Fischer & M. Rubenstein, Anal. Biochem., 1984, 137,115-119. 

34 E. Rinderknecht, B. H. O'Connor & H. Rodriguez, J. Biol. Chem., 1984, 298, 859-863. 

35 H. C. Kelker, J. Le, B. Y. Rubin, Y. K. Yip, C. Nagler & J. Vilcek, .1. Biol. Chem., 1984, 259, 

4301-4304. 

77 



Chapter 3 

36 Y. K. Yip, R. H. L. Pang, C. Urban & J. Vilcek, Proc. Nan. Acad Sci., USA, 1982, 79, 1820-

1824. 

37 Y.-C. E. Pan, A. S. Stern, P. C. Familletti, F. R. Khan & R. Chizzonite, Eur. J. Biochem, 1987, 

166, 145-149. 

38 H.-F. Kung, Y.-C. E. Pan, J. Moschera, K. Tsai, E. Bekesi, M. Chang, H. Sugino & S. Honda, 

Methods Enzymol., 1986, 119, 204-2 10. 

39 S. Honda, T. Asano, T. Kajio, S. Nakagawa, S. Ikeyarna, Y. Ichimori, H. Sugino, K. Nara, A. 

Kakinuma & H.-F. Kung, I. Interferon Res., 1987, 7, 145-154. 

40 K. Kitano, S. Fujimoto, M. Nakao, T. Watanabe & Y. Nakao, J. Biotech., 1987, 5, 77-86. 

41 T. Arakawa, Y.-R. Hsu, C. G. Parker & P.-H. Lai, .1. Biol. Chem., 1986, 261, 8534-8539. 

42 P. Leinikki, J. Calderon, M. H. Luquette & R. D. Schreiber, J. Immunol., 1987, 139, 3360-3366. 

43 G. Garotta, L. Ozmen, H. Dobeli, R. Gentz, S. Legrice, V. Bannwarth, E. Hochuli & K. 

Talmadge, J. Interferon Res., 1987, 7, 685 (abstr). 

44 D. Lundell, C. Lunn, D. Dalgarno, J. Fossetta, R. Greenberg, R. Reim, M. Grace & S. Narula, 

Prot. Eng., 1991, 4,335-341. 

45 H. Döbeli, R. Gentz, W. Jucker, G. Garotta, D. W. Hartman & E. Hochuli, .1. Biotechnol., 1988, 

7, 199-216. 

46 T. Arakawa, Y.-R. Hsu, D. Chang, N. Stebbing & B. Altrock, I Interferon Res., 1986, 6, 687-

695. 

47 K. Miyata, Y. Yamamoto, M. Ueda, Y. Kawade, K. Matsumoto, I. Kubota, J. Biochem., 1986, 99, 

1681-1688. 

48 J. H. G. M. Mutsaers, J. P. Kamerling, R. Devos, Y. Guisez, W. Piers & J. F. G. Vliegenthart, 

Eur. J. Biochem., 1986, 156, 651-654. 

49 K. Cantell, S. Hirvonen, T. Sareneva, J. Pirhonen & I. Julkunen, I Interferon Res., 1992, 12, 

177-183. 

50 T. Sareneva, K. Cantell, L. Pyhala, J. Pirhonen & I. Julkunen, J. Interferon Res., 1993, 13, 267-

269. 

51 V. Bocci, A. Pacini, G. P. Pessina, L. Paulescu, M. Muscettola & G. Lunghetti, I Gen. Virol., 

1985, 66, 887-891. 

52 T. Sareneva, J. Pirhonen, K. Cantell & I Julkunen, Biochem. J., 1995, 308, 9-14. 

53 S. Yamamoto, S. Hase, H. Yamauchi, T. Tanirnoto & T. Ikenaka, J. Biochem., 1989, 105, 1034-

1039. 

54 T. Arakawa, Y.-R. Hsu & D. A. Yphantis, Biochemistry, 1987, 26, 5428-5432. 

55 H. H. Hogrefe, P. McPhie, J. B. Bekisz, J. C. Enterline, D. Dyer, D. S. A. Webb, T. L. Gerald & 

K. C. Zoon,J. Biol. Chem., 1989, 264, 12179-12186. 

56 S. Vijay-Kumar, S. E. Senadhi, S. E. Ealick, T. L. Nagabhushan, P. P. Trotta, R. Kosecki, P. 

Reichert & C. E. Bugg, J. Biol. Chem., 1987, 262, 48044805. 

78 



Chapter 3 

57 S. Ealick, W. J. Cook, S. Vijay-Kumar, M. Carson, T. L. Nagabhushan, P. P. Trotta & C. E. 

Bugg, Science, 1991, 252, 698-702. 

58 S. Grzesiek, H. Döbeli, R. Gentz, G. Garotta, A. M. Labhardt & A. Bax, Biochemistry, 1992, 31, 

8180-8190. 

59 A. Rashidbaigi, J. A. Langer, V. Jung, C. Jones, H. G. Morse, J. A. Tischfield, J. J. Trill, H.-F. 

Kung & S. Pestka, Proc. Natl. Acad. Sci., USA, 1986, 83, 384-388. 

60 K. Pfizenmaier, K. Wiegmann, P. Scheurich, M. KrOnke, G. Merlin, M. Aguet, B. B. Knowles & 

U. Ucer,J. Immunol, 1988, 141, 856-860. 

61 M. Aguet, Z. Dembic & G. Merlin, Cell, 1988, 55, 273-280. 

62 D. Novick, P. Orchansky, M. Revel & M. Rubenstein, I. Biol. Chem., 1987, 262, 8483-8487. 

63 J. Calderon, K. C. F. Sheehan, C. Chance, M. L. Thomas & R. D. Schreiber, Proc. Nat!. Acad. 

Sci., USA, 1988, 85,4837-4841. 

64 A. C. Greenlund, R. D. Schreiber, D. V. Goeddel & D. Pennica, I. Biol. Chem., 1993, 268, 

18103-18110. 

65 M. R. Walter, W. T. Windsor, T. L. Nagabhushan, D. J. Lundell, C. A. Lunn, P. J. Zauodny 	& 

S. K. Narula, Nature, 1995, 376, 230-235. 

66 C. A. Lunn, J. Fossetta, D. Dalgarno, N. Murgolo, W. Windsor, P. J. Zavodny, S. K. Narula & D. 

Lundell, Prot. Eng., 1992, 5, 253-257. 

67 V. Jung, C. Jones, C. S. Kumar, S. Stefanos, S. O'Connell & S. Pestka, I Biol. Chem., 1990, 

265, 1827-1830. 

68 M. A. Farrar, J. Fernandez-Luna & R. D. Schreiber, J. Biol. Chem., 1991, 266, 19625-19635. 

69 T. Fischer, A. Rehm, M. Aguet & K. Pfizenmaier, Cytokine, 1990, 2, 157-161. 

70 J. Soh, R. J. Donnelly, S. Kotenko, T. M. Mariano, J. R. Cook, N. Wang, S. Emanuel, B. 

Schwartz, T. Miki & S. Pestka, Cell, 1994, 76, 793-802. 

71 J. Soh, R. J. Donnelly, T. M. Mariano, J. R. Cook, B. Schwartz & S. Pestka, Proc. Nail. Acad. 

Sci., USA, 1993, 90, 8737-8741 

72 S. Hemmi, R. Bohni, G. Stark, F. Dmiarco & M. Aguet, Cell, 1994, 76, 803-9 10. 

73 M. MUller, J. Briscoe, C. Laxton, D. Guschin, A. Ziemiecki, 0. Silvennoinen, A. G. Harpur, G. 

Barbieri, B. A. Witthuhn, C. Schindler, S. Pellegrini, A. F. Wilks, J. N. Ihle, G. R. Stark & I. M. 

Kerr, Nature, 1993, 366, 129-135. 

74 V. Jung, A. Rashidbiagi, C. Jones, J. A. Tischfield, T. B. Shows & S. Pestka, Proc. Nat!. Acad. 

Sci., USA, 1987,84,4151-4155. 

75 F. Paoilini & E. Suarez, Unpublished Results. 

76 S. K.-S. Luk, E. Jay & F. T. Jay, J. Biol. Chem., 1990, 265, 13314-13319. 

77 Z. Zhang, K.-T. Tong, M. Belew, T. Pettersson & J. C. Janson, J. Chromatography, 1992, 604, 

143-155. 

79 



Chapter 3 

78 T. Arakawa, N. Kirby-Alton & Y.-R. Hsu, .1. Biol. Chem., 1985, 260, 14435-14439. 

79 J. Haelewyn & M. De Ley, Biochem. Mo!. Biol. mt., 1995, 37, 1163-1171. 

80 L. C. Draffan, Ph. D. Thesis, The University of Edinburgh, 1996. 

81 R. Ramage & G. Raphy, Tetrahedron Left., 1992, 33, 385-388. 

82 N. Robertson & R. Ramage, J. Chem. Soc. Perkin Trans. 1, 1999, 1015-102 1. 

83 J. Wilken, Ph. D. Thesis, The University of Edinburgh, 1995. 

84 R. B. Merrifield, Personal Communication 

85 C. Jamieson, Unpublished Results. 

86 D. M. Bollag, M. D. Rozycki & S. J. Edelstein in "Protein Methods", 2"' Ed., Wiley-Liss Inc., 

1996,p274. 

87 H. Edeihoch, Biochemistry, 1967, 6, 1948-1955. 

88 A. D. Cronshaw, Welmet Sequencing, University of Edinburgh. 

89 J. D. Hayes, L. A. Kerr & A. D. Cronshaw, Biochem. .1, 1989, 264, 437-445. 

90 Calculated using the computer programme PEPTIDE, Lighthouse Data. 

91 M. G. Mulkerrin & R. Wetzel, Biochemistry, 1989, 28, 6556-656 1. 

92 J. D. Carlson & M. L. Yarmush, BiolTechnology, 1992, 10, 86-91. 

93 K. Vandenbroeck & A. Billiau, Biochimie, 1998, 80, 729-737. 

94 K. Vandenbroeck, E. Martens & A. Billiau, Eur. .1. Biochem., 1998, 251, 181-188. 

95 J. L. Cleland & D. I. C. Wang, BiolTechnology, 1990, 8,1274-1278. 

96 J. L. Cleland, S. E. Builder, J. R. Swartz, M. Winkler, J. Y. Chang & D. I. C. Wang, 

Bio/Technology, 1992, 10,1013-1019. 

97 L. Bland, Unpublished Results. 

98 C. Jamieson & D. Campopiano, Unpublished Results. 

80 



Chapter 4 

Chapter 4 

Experimental 

4.1 General 

Chemicals were purchased from the Aldrich Chemical Company, Fisher (Acros) 

Scientific UK or Fisons. Inorganic reagents were purchased from BDH, and solvents 

from Prolabo or Rathbum Chemicals and were of analytical or HPLC grade where 

required. The purity was checked by means of melting point and/or proton NMR. 

Liquids were distilled before use and the boiling point checked. DCM was distilled 

from Cal-12 and THF distilled from sodiumlbenzophenone. 

Melting points were recorded in open capillaries using a Buchi 510 oil immersion 

melting point apparatus and are not corrected. Optical Rotations were measured 

using a A 1000 polarimeter (Optical Activity Ltd) using a 10.0 cm cell in the solvents 

indicated in the text. Analytical thin layer chromatography (t.l.c.) was performed 

using plastic sheets precoated with silica gel 60F2 54  (Merck) in the solvent systems 

described in the text. Compounds were visualised using absorption at 254 run. 

Infrared spectra were recorded on a Bio Rad SPC3200 or a Perkin Elmer Paragon 

1000 FT-JR Spectrometer, as the KBr disc of the solid. UV spectra were recorded on 

a Perkin Elmer single beam spectrophotometer in the solvents described in the text. 

Sonication was carried out in a Decon F5300b sonic bath. Proton NMR spectra were 

recorded on a Brucker WP-200 (200 MHz) or a Varian Gemini 200 instrument in the 

solvents indicated in the text referenced to TMS. Carbon-13 NMR spectra were 

recorded on a AC250 (60 MHz) instrument in the solvents described in the text. 

Elemental analyses were performed on a Perkin Elmer 2400 CHN elemental analyser. 

High and low resolution fast atom bombardment mass spectra (FAB MS) were 

measured on a Kratos MS50TC instrument using thioglycerol, 3-nitrobenzyl alcohol 

or glycerol as matrix. Matrix assisted laser desorption ionisation (MALDI) time of 

flight mass spectra (TOF MS) were recorded on a Perseptive Biosystems Voyager Tm  

Biospectrometiy workstation using either a-cyano-4-hydroxycinnamic acid or 3,5- 
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dimethoxy-4-hydroxycinnamic acid as matrix. Electrospray mass spectrometry was 

performed using Micromass Platform II Mass Spectrometry. Calculated masses were 

based on average isotope composition and were derived using the program 

ADDMASS (Lighthouse Data). 

Fmoc-protected amino acids were purchased from Nova Biochem, p-

alkoxybenzylalcohol resin (Wang) and the amide resin [(2-copolystyrene-1%-

divinylbenzene)methyl-aminocarbomethoxy-5-(9'-fluorenylmethoxycarbonyl)amino-

dibenzocycloheptadiene resin] were purchased from Bachem. Piperidine (Rathburn 

Chemicals), acetic anhydride (Fluka), NN-Diisopropylethylamine (DIEA) and 1,1,1 -  

trifluoroacetic acid (TFA) (Applied Biosystems) used for the synthesis and cleavage 

of peptides were all peptide synthesis grade. The 1 -hydroxy-4-ethoxycarbonyl-

1,2,3-triazole (HOCt)' used in coupling procedures and the 

tetrabenzo[a, c, g, i] fluorenyl- 1 7-methoxycarbonyl chloroformate (TbfmocCl) 2  was 

synthesised in these laboratories at Edinburgh University. 

Amino acid analyses (AAA) were performed using a Pharmacia Biotech Biochrom 

20 amino acid analyser or a LKB 4150 alpha amino acid analyser on the hydrolysate 

obtained after heating the sample in 6 M HC1 at 110 °C in sealed Carius tubes for the 

times indicated in the text. After hydrolysis, HCI was removed on a Savant Speed 

Vac Plus SC 11 OA for 2 hours. The residue was dissolved in 0.2 M citrate buffer pH 

2.2 prior to analysis. High performance liquid chromatography (HPLC) was carried 

out using an ABI system comprising 2 x 1406A solvent delivery systems, a 1480 

injector/mixer and a 1783 detector/controller or a Gilson system comprising 2006 

solvent delivery systems, an 811 c dynamic mixer, an 805 manomeric module, a 119 

UV/vis detector and a Gilson 715 gradient controller. Components were eluted from 

various columns, as described in the text by a linear gradient of acetonitrile (far UV 

grade, Rathburn Chemicals) in Milli-Q grade water where both solvents contained 

0.1 % v/v of HPLC grade TFA (Fisons). Protein N-terminal sequencing was 

performed on an ABI 477A sequencer at the Welmet Protein Characterisation 

Facility (University of Edinburgh). This was performed by Edman degradation, 

labelling the N-terminus with phenyl isothiocyanate. 3  Fast protein liquid 
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chromatography (FPLC) was carried out on a Pharmacia FPLC system with Liquid 

Chromatography Controller LCC-501 Plus using a Superdex TM  75 HR 10/30 or 26/60 

column. Gel filtration (Sephadex G-50 and Sephadex G-75) and cation exchange 

(CM-Sephadex CL-50 and SP-Sepharose FF) media were purchased from Pharmacia. 

Column chromatography of proteins was carried out using Pharmacia LKB apparatus 

comprising 2xLKB 2138 UVCords, a Pharrnacia 2132 Microperpex peristaltic pump, 

a LKB 2112 redirac fraction collector and a Pharmacia GM-1 gradient mixer where 

appropriate. Isoelectric focusing (IEF) was carried out using the Bio-Rad Rotofor 

system with ampholytes purchased from Bio-Rad or Fluka. Dialysis tubing, 

purchased from Spectrum, were Spectra/Por CE (cellulose ester) membranes with 

molecular weight cut-offs (MwtCO) of 10 000 Da. Samples were centrifuged using 

MSE Mistral 2000R (Sanyo). Sample concentration employed Amicon 

Ultrafiltration cell 8050 using Spectrum Molecular/Por membranes, MwtCO 5 000 

Da. SDS-PAGE was carried out using the discontinuous buffer system of Laemmli 4  

and a Bio-Rad Mini Protean II Cell. Each gel measured 7 cm (L) by 8 cm (W) by 75 

mm (T) and had 10 wells. The stacking gel contained 4 % w/v acrylamide, 0.125 M 

Iris pH 6.8, 0.01 % w/v SDS and the separating gel 15 % w/v aciylamide, 0.375 M 

Tris pH 8.8, 0.01 % w/v SDS. The aciylamide was polymerised using TEMED and 

APS. Prior to electrophoresis the protein samples were denatured by heating in 

sample buffer (0.0625 M Tris pH 6.8, 2 % w/v SDS, 0.05 % w/v bromophenol blue 

in water/2-mercaptoethanol/glycerol (17:1:2)) for 10 minutes at 110 °C. Separation 

was achieved at 200 mV for 38 minutes using the normal running buffer (7.2 % w/v 

glycine, 0.5 % w/v SDS, 0.125 M Tris Base). Protein bands were visualised using 

0.5 % w/v coomassie blue in acetic acid/methanol/water (1:4:5) and destained using 

acetic acid/methanol/water (1:4:5). Non-reducing PAGE was carried out using the 

following sample buffer; 0.031 M Iris, pH 6.8, 0.05 % bromophenol blue in 

water/glycerol (1:1). Samples were not heated prior to electrophoresis. 
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4.2 Solid Phase Peptide Synthesis 

Peptides were synthesised on an ABI 430A automated peptide synthesiser with on 

line UV monitoring using an ABI 758A detector. All peptides were synthesised 

using the Fmoc strategy and acid labile peptide-resin linkers. The protected amino 

acids employed are depicted in table 4.1. 

Amino Acid 
	

Protecting Group 

GIy/AIafLeu!IIeNaI/PhefMet/Pro Not Necessary 

Asp/GIu But  Ester 

Ser/Thr/Tyr But  Ether 

Lys/Trp Boc 

Arg PmcfPbf 

AsnIGIn Trt 

His 111 

• Cys Trt 

Table 4.1: Fmoc-Compatible Side Chain Protection 

4.2.1 Determination of the Resin Loading 

The loading efficiency was determined by sonicating a sample of the Fmoc-protected 

resin, accurately measured, (4-6 mg) in 20 % v/v piperidine/DMF (10 ml) for 10-15 

minutes. The UV of the supernatant was then measured between 280 and 320 nm 

and the loading calculated using the Beer-Lambert law (E302 = 15400 for fulvene 

piperidine adduct), equation 4.1. 

Functionality (mmol/g) = 10 x Abs at 3 02n 
9 x mass of resin in mg 

Equation 4.1: Determination of Fmoc-Loading Level 

The values for resin functionality (mmol/g) and percentage coupling obtained are 

listed in the text. 
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4.2.2 Automated SPPS 

Synthetic procedures were programmed into the ABI 430A synthesiser prior to the 

commencement of each synthesis. The first (C-terminal) residue (the amino 

aldehyde in certain cases) was attached to the resin manually and then the resin 

transferred to the reaction vessel for automated peptide synthesisers. A synthetic 

cycle, resulting in the coupling of a single amino acid, involved recurring capping, 

deprotection and coupling steps with thorough washing of the resin after each step. 

The cycle was then repeated in order to build up the desired sequence of amino acids 

in a stepwise manner, from the C- to the N-terminus. The programmed synthetic 

cycles are summarised below: 

Capping 

Resin was treated with acetic anhydride (0.5 M), DIEA (0.125 M) and HOBt (0.2 % 

w/v) in DMF/ 1 ,4-dioxane (1:1, 10 ml) with vortexing for 10 minutes. The reaction 

vessel was drained and the resin washed with six portions of DMF/1 ,4-dioxane (1:1). 

Deprotection 

The NaFmoc  protecting group was cleaved using 20 % v/v piperidine in DMF/l ,4-

dioxane (1:1, 10 ml) for 4 minutes. Then an aliquot of the deprotection filtrate was 

passed through the UV detector to allow the percentage coupling of each amino acid 

to be estimated. The deprotection step was then repeated a further time with 

vortexing for 2.5 minutes to ensure complete removal of the Fmoc group. Finally the 

resin was washed with six portions of DMF/ 1 ,4-dioxane (1:1). 

Coupling 

Amino acid residues were coupled using the HOCt method. The HOCt active ester is 

preformed from the Fmoc-amino acid (1 mmol), HOCt (0.5 mmol) and DIC (0.5 

mmol) and is coupled in a single cycle to the resin by vortexing for a 30 minute 

period. The reaction vessel is drained and the resin washed with four portions of 
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DMF/1,4-dioxane(1 :1). The only exception is histidine which is coupled with HOBt 

(2 mmol) placed in the cartridge with histidine (1 mmol) prior to synthesis. 

Note 

On completion of the synthesis, the final Fmoc-amino acid loading was calculated 

using the Fmoc-loading test. The overall resin functionality was determined and 

compared with the theoretical final loading asuming 100% yield in every cycle of the 

synthesis (obtained using ABI synthesiser software). This gave an estimation of the 

overall success of the synthesis. 



Chapter 4 

4.3 Experimental Details 

4.3.1 The Solid Phase Synthesis of Peptide C-Terminal Semicarbazones and 

Aldehydes 

9-Fluorenylmethoxycarbonyl hydrazine' (15) 

9-Fluorenylmethoxycarbonyl chioroformate (1 g, 3.87 mmol) was dissolved in 

acetonitrile (150 ml) and added dropwise with stirring to hydrazine monohydrate (6 

ml, 123 mmol). The reaction was darkened and stirred for 30 minutes before 

concentration by rotary evaporation. The white solid obtained was washed with cold 

ethanol and dried in a darkened vacuum desiccator to give the title compound. 

Yield 0.75 g, 76 %; m.p. 174-176 °C (lit. 173-175); t.l.c. (MeOH/CC13H/AcOH, 

10:90:0.05) Rf 0.44; CHN Found C, 70.79%; H, 5.75 %; N, 11.11 %; C15H14N 202  

requires C, 70.87 %; H, 5.51 %; N, 11.02 %; m/z (HR FAB) Found 255.1131 

(MH); C15H 15N202  requires 255.1134; Vmax (KBr)/(cm') 3317 (NH), 3027, 3018 & 

2951 (CH), 1694 (CO); 6H (200 MHz, d6-DMSO) 4.17-4.36 (3H, m, CH & CH2, 

Fmoc), 7.26-7.88 (101-1, m, NI-12 & ArH), 8.35 (1H, s, NH); öC (63 MHz, d6-DMSO) 

46.0, 65.9, 119.8, 119.9, 120.0, 121.4, 126.8, 127.0, 127.1, 127.3, 137.5, 139.4, 

140.4, 142.6, 146.5; ? max/nm (MeOH, /dm3mol 1cm) 265 (11300), 289 (3200) 

300 (3400). 

Synthesis of (2-copolystyrene-1 %-divinylbenzene)methyl-aminocarbomethoxy-

5-(9'-fluorenylmethoxycarbonyl)hydrazine-dibenzocycloheptadiene resin (14) 

1. Modification of the Resin 

Tricyclic amide resin (11) was sonicated in 20 % v/v piperidine/DMF (10 ml) for 30 

minutes. The resin was filtered, washed exhaustively with DMF, 1 ,4-dioxane, DCM 

and dried. 
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Generation of the Isocyanate Intermediate (13) 

The resin was swollen in the minimum amount of DCM (taken from 20 ml/g of 

resin) and DIEA (1 equivalent) added. The mixture was sonicated for 10 minutes. A 

solution of triphosgene (3 equivalents) in the remaining DCM was added, and the 

mixture sonicated at 10 °C for a further hour. The resin was filtered, washed 

exhaustively with DCM and dried. 

Vmax (KBr)/(cm') 2250-2260 (N=C=O). 

Trapping the Isocyanate Intermediate with 9-Fluorenylmethoxycarbonyl Hydrazine 

(14) 

The isocyanate resin was swollen in the minimum amount of DCM (taken from 20 

ml/g of resin). A solution of 9-fluorenylmethoxycarbonyl hydrazine (3 equivalents) 

in the remaining DCM was added and the mixture sonicated at 10 °C for 2 hours. 

The resin was filtered, washed exhaustively with DMF, 1 ,4-dioxane, DCM and dried. 

A KBr disc of the resin was made to ensure complete consumption of the isocyanate 

species. Resin functionality by UV typically 50-75 % coupling (0.20-0.30 mmol/g) 

Capping the Free Amino Groups 

The resin (14) was swollen in capping reagent (0.25 M acetic anhydride, 0.125 M 

DIEA, 0.2 % w/v HOBt in DMF/1,4-dioxane (1:1), 10 ml) and sonicated for 30 

minutes. The resin was filtered and washed exhaustively with DMF, 1 ,4-dioxane, 

DCM and dried. 

9-Fluorenylmethoxycarbonyl amino acid-NO-dimethylhydroxylamides (16) 

9-Fluorenylmethoxycarbonyl amino acid' (12 mmol) was suspended in DCM (50 ml) 

and stirred at 0 °C under thy nitrogen. N-methylpiperidine (1.35 ml, 11 mmol) was 

added, followed by ethyl chloroformate (1.00 ml, 10 mmol) and stirring continued for 

3 minutes. A preformed solution of N, O-Dimethylhydroxylamine hydrochloride (11 

mmol) and N-methylpiperidine (1.35 ml, 11 mmol) in DCM (30 ml) at 0 °C was 

added in a single portion whilst stirring at 0 °C. The mixture was stirred at 0 °C, 
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under dry nitrogen, for one hour before being allowed to rise to room temperature 

slowly overnight. The solvent was removed in vacuo and the residue dissolved in 

ethyl acetate. The insoluble precipitate was removed by filtration, and the filtrate 

washed with 20 % v/v citric acid (2 x 50 ml), saturated sodium bicarbonate solution 

(2 x 50 ml) and brine (50 ml). The organic layer was dried (MgSO4) and the solvent 

evaporated to yield the title compound. 

9- 	Fluorenylmethoxycarbonyl-L-Phenylalanine-N,O-dimethylhydroxylamide 

(16a) 6  

Yield 81 %; mpt 49-50 °C (no lit, value) 6 ; t.l.c. (EtOAc/hexane, 2:1) Rf 0.48; m/z 

(HR FAB) Found 431.1958 (MH); C26H2 7N204  requires 431.1971; Vmax (KBr)/(cm 

')3300 (NH), 2940 (CH), 1719 (CO); 8H (200 MHz, d6-DMSO) 2.78-2.97 (21-1, m, 

13CH2, Phe), 3.11 (1H, s, NCH3), 3.71 (1H, s, OCH3), 4.10-4.24 (4H, m, Cl-I & CH 2 , 

Fmoc & aCH, Phe), 4.65-4.67 (1H, br, s, NH, Phe), 7.15-7.91 (13H, m, ArH); öC 

(63 MHz, d6-DMSO) 14.1, 36.6, 46.6, 54.9, 61.2, 65.7, 120.1, 121.1, 121.4, 125.3, 

126.4, 127.1, 127.4, 127.6, 128.0, 128.3, 128.9, 129.1, 129.3, 137.5, 138.0, 139.5, 

140.7, 142.6, 143.8, 156.0; [aDJ 22  -7.40 ° (c 1.370, DMF); ).maxInm (MCOH, 

c/dm3moi'cm") 263 (21400), 289 (5700), 299 (6400). 

9-Fluorenylmethoxycarbonyl-L-Alanine-N,O-dimethylhydroxylamide (16b) 

Yield 78 %; mpt 130 °C; t.l.c. (EtOAc/hexane, 2:1) Rf 0.36; mlz (HR FAB) Found 

355.1660 (MH); C20H23N204 Requires 355.1658; Vmax (KBr)I(cm) 3341 (NH), 

3040, 2987, 2960, 2899 (CH), 1720 (CO 3  urethane), 1667 (C=O, amide); oH (200 

MHz, d6-DMSO) 1.21 (3H, d, CH3, J7.1 Hz), 3.11 (31-1, s, NCH3), 3.72 (31-1, s, 

OCH3), 4.19-4.34 (3H, m, CH2, Fmoc, & (xCH, Ala), 4.50 (1H, t, CH, Fmoc, J=7.4 

Hz), 7.29-7.90 (81-1, m, ArH); OC (63 MHz, d6-DMSO) 16.9, 17.3, 32.1, 46.7, 61.1, 

65.7, 120.1, 121.4, 125.3, 127.1, 127.3, 127.7, 128.9, 137.5, 139.5, 142.7, 143.9, 

143.9, 155.8, 173.1; [aD] 22  +6.650  (c 1.010, DMF); ?.maxInm (MeOH, */dm3mol' 

'cm') 265 (25100), 289 (8400), 300 (8100). 
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9-Fluorenylmethoxycarbonyl-D-Alanine-N,O-dimethylhydroxylamide (16c) 

Yield 72 %; mpt 119-120 °C; t.l.c. (EtOAc/hexane, 2:1) Rf 0.37; m/z (HR FAB) 

Found 355.1665 (MH); C20H23N20 4  Requires 355.1658; Vmax (KBr)/(cm') 3343 

(NH), 3040, 2986, 2961, 2899 (CH), 1721 (CO 3  urethane), 1668 (C=O, amide); 6H 

(200 MHz, d6-DMSO) 1.21 (311, d, CH3, J7.1 Hz), 3.10 (3H, s, NCH 3), 3.72 (31-1, s, 

OCH3), 4.17-4.46 (31-1, m, CH2, Fmoc & aCFI, Ala), 4.49 (1H, t, CH, Fmoc, J=7.1 

Hz), 7.29-7.89 (8H, m, ArH); 8C (63 MHz, d6-DMSO) 16.9, 17.3, 32.0, 46.7, 61.2, 

65.7, 120.2 (2C), 125.4 (2C), 127.2 (2C), 127.8 (2C), 140.8(2C), 143.9 (2C), 155.9, 

173.2; [aD] 22  -5.58 ° (c 1.112, DMF); A. max/nm (MeOH, c/dm 3mol'cm) 265 

(20400), 289 (5300), 300 (6200). 

9-Fluorenylmethoxycarbonyl-L-Tryptophan-N,O-dimethylhydroxylamide (16d) 

Yield 92 %; m.p. 74-75 °C; t.l.c. (EtOAc/Hexane, 2:1) Rf 0.28; m/z (HR FAB) 

Found 470.2085 (MH) ; C28H28N304  requires 470.2080; Vmax (KBr)/(cm') 3410, 

3322 (NH), 3056, 2973, 2936 (CH), 1714 (CO 3  urethane), 1654 (C=O, amide); 8H 

(200 MHz, d6-DMSO) 3.05 (21-1, d, 3CH2, Trp, J=8.4 Hz), 3.10 (3H, s, NCH 3), 3.69 

(3H, s, OCH3), 4.05-4.13 (411, m, CH & CH2, Fmoc & aCH, Trp), 4.71 (1H, br, s, 

NH, Trp), 6.93-7.86 (13H, m, ArH), 10.85 (1H, br, s, NH, indole); 6C (63 MHz, d6-

DMSO) 31.9, 46.7, 52.1, 59.9, 61.2, 65.7, 111.6, 118.0, 118.6, 120.2, 121.0, 121.5, 

124.0, 124.2, 125.4, 127.1, 127.4, 127.7, 129.0, 110.2, 136.2, 140.8 (2C), 143.9 (2C), 

156.1, 170.4, 172.7; [aD] 22  -20.700  (DMF, c 1.024); ? max/nm (MeOH, c/dm3moi 

'cm') 265 (14600), 290 (5700), 300 (3800). 

9-Fluorenylmethoxycarbonyl-L-Aspartic Acid (Butyl Ester) -N,O-dimethyl-

hydroxylamide (16e) 

Yield 83 %; m.p. 59-60 °C; t.1.c. (EtOAc/Hexane, 2:1) Rf 0.50; m/z (HR FAB) 

Found 455.2203 (MW); C251131N20 6  requires 455.2182; Vmax (KBr)I(cm') 3399, 

3336 (NH), 3055, 2978, 2920 (CH), 1725 (CO, urethane), 1657 (C=O, amide); oH 

(200 MHz, d6-DMSO) 1.36 (9H, s, 3 x CH3, 'Bu), 2.73 (2H, d, f3CH 2, Asp, J=6.1 

Hz), 3.09 (311, s, NCH3), 3.66 (3H, s, OCH3), 4.23-4.39 (4H, m, CH & CH2, Fmoc & 

uCH, Asp), 4.82 (1H, d, NH, J8Hz), 7.26-7.89 (8H, m, ArH); SC (63 MHz, d6- 
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DMSO) 27.8 (3C), 32.2, 38.6, 46.7, 50.7, 61.2, 65.8, 80.4, 120.3 (2C), 125.3 (2C), 

127.2 (2C), 127.8(2C), 140.9 (2C), 143.9 (2C), 156.0, 169.4, 176.6; [aD] 22  -9.08 ° 

(DMF, c 1.090); ? max/nm (MCOH, /dm3mor'cm') 265 (17100), 289 (5100), 300 

(5100). 

9-Fluorenylmethoxycarbonyl Amino Acid Aldehydes (17) 

9-Fluorenylmethoxycarbonyl amino acid Weinreb amide (2.4 mmol) was dissolved 

in dry, freshly distilled TI-IF (20 ml) and cooled in a dry ice/acetone bath (-20 °C) 

under dry nitrogen. Lithium aluminium hydride (2.5-3.2 mmol) was added in small 

portions under dry nitrogen. The mixture was stirred for 10 minutes at -20 °C, and 

then allowed to warm to room temperature. The mixture was stirred for a further 30 

minutes. The reaction was quenched by the addition of 0.6 M KI-1SO 4  (20 ml) and 

the pH of the solution adjusted to 3.0 by the addition of 1 M HCI (2 ml). The 

solution was diluted with ethyl acetate (25 ml) and the layers separated. The aqueous 

layer was extracted twice with ethyl acetate (25 ml) and the combined organic layers 

washed with 20 % citric acid (2 x 25 ml), saturated sodium bicarbonate solution (2 x 

25 ml) and brine (2 x 25 ml). The solution was dried (MgSO 4) before the solvent 

was removed in vacuo to give the desired compound 

9-Fluorenylmethoxycarbonyl-L-Phenylalaninal (17a) 6 ' 7  

Yield 	72 %; m.p. 100-102 °C (lit. 106-108 °C6  & 129-130 °C7); t.l.c. 

(EtOAc/hexane, 2:1) Rf 0.54; (DCM/MeOH/AcOH, 9:0.5:0.5) Rf 0.75; m/z (HR 

FAB) Found 372.1617; C24H22NO3  requires 372.1600; v (KBr)/(cm') 3333 (NH), 

3061 (CH, Aromatic), 2961 & 2844 (CH), 1730 (CO 3  urethane) 1690 (C=O, 

aldehyde); 611 (200 MHz, d6-DMSO) 2.91 (2H, d, PCH2,  Phe, J7.4 Hz), 4.11- 4.34 

(4H, m, CH & CH2, Fmoc & aCH, Phe), 7.16-7.89 (13H, m, ArH), 9.55 (1H, s, 

CHO); 8C (63 MHz, d6-DMSO) 33.3, 46.7, 61.1, 65.5, 120.0, 120.2, 124.2, 125.2, 

126.3, 126.8, 127.0, 127.1, 127.5, 127.7, 128.1, 128.3, 129.2, 137.8, 139.9, 140.8, 

143.8, 148.7, 156.1, 200.6; [aD] 22  -43.300  (DMF, c 1.146); A. maxlnm (MeOH, 

c/dm3mor'crn) 265 (18000), 289 (5500), 300 (6500). 
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9-Fluorenylmethoxycarbonyl-L-Alaninal (17b) 7 ' 

Yield 73 %; m.p. 140-142 °C (lit. 136-137 °C7& 145 °C8) ; t.l.c. (EtOAc/hexane, 

2:1) Rf 0.71; mlz (HR FAB) Found 296.1299; C18H18NO3 requires 296.1287; v 

(KBr)/(cm') 3345 (NH), 3063, 2963, 2898, 2822 (CH), 1738 (CO 3  urethane), 1684 

(CO3  aldehyde); 8H (200 MHz, d6-DMSO) 1.42 (3H, d, CH3 Ala, J=7.4 Hz), 4.19-

4.37 (4H, m, CH & CH2 Fmoc, aCH Ala), 7.15-7.92 (8H, m, ArH), 9.43 (1H, s, 

CHO); 8C (63 MHz, d6-DMSO) 13.9, 46.8, 55.2, 65.7, 120.1, 120.3, 124.3, 125.3, 

126.8, 127.1, 127.2, 127.8, 140.0, 140.9, 143.9, 148.7, 156.2, 202.0; EcZD1 22  -11.570  

(DMF, cl.054); A. max/nm (MeOH, */dm 3mol'cm) 263 (16700), 265 (16800), 289 

(5800), 300 (6000). 

9-Fluorenylmethoxycarbonyl-D-Alaninal (17c) 8  

Yield 47%; m.p. 136-138 °C (lit. 145 °C8); t.1.c. (EtOAc/hexane, 2:1) Rf 0.68; mlz 

(HR FAB) Found 296.1284; C 1 8H 1 8NO3 requires 296.1287; v (KBr)/(cm') 3342 

(NH), 2965 (CH), 1737 (CO 3  urethane), 1684 (CO 3  aldehyde); oH (200 MHz, d6-

DMSO) 1.15 (3H, d, CH3 Ala, J7.4 Hz), 4.24-4.38 (4H, m, CH & CH2 Fmoc, aCH 

Ala), 7.34-7.91 (8H, m, ArH), 9.44 (1H, s, CHO); OC (63 MHz, d6-DMSO) 13.8, 

46.8, 55.2, 65.6, 120.2 (2C), 125.2 (2C), 127.2 (2C), 127.7 (2C), 140.9 (2C), 143.9 

(2C), 156.2 , 201.9; laDi +8.890  (DMF, c 0.990); max/flm (MeOH, E/dm 3m0l'cm 

')265 (17700), 289 (5800), 300 (5600). 

9-Fluorenylmethoxycarbonyl-L-Tryptophanal (17d) 

Yield (0.92 g, 91 %); m.p. 79-82 °C; t.l.c. (EtOAc/hexane, 2:1) Rf 0.45; m/z (HR 

FAB) Found 411.1718; C26H23N203 requires 411.1709; v (KBr)I(cm') 3404, 3344 

(NH), 3056, 2952, - 2923 (CH), 1699 (CO 3  urethane), 1617 (CO 3  aldehyde); OH 

(200 MHz, d6-DMSO) 3.08 (2H, d, PCH2, Trp, J7Hz), 4.12-4.34 (4H, m, CH & 

CH2, Fmoc & ctCH, Trp), 6.96-7.89 (13H, m, ArH), 9.59 (1H, s, CO), 10.87 (1H, s, 

NH, indole); OC (63 MHz, d6-DMSO) 46.7, 59.8, 60.4, 65.7, 111.5, 118.2, 118.4, 

120.0, 120.1, 120.8, 121.0, 123.7, 124.2, 125.2, 125.4, 127.1, 127.6, 109.7, 136.3, 

140.0, 140.8, 143.8, 148.8, 156.2, 170.4, 201.3; [aD] 22  -25.35 ° (DMF, c 0.994); 

A. maxlnm (MeOH, E/dm3mof'cm) 265 (20500), 289 (9100), 300 (7300) 
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9-Fluorenylmethoxycarbonyl-L-Aspartic Acid (Butyl Ester) Aldehyde (17e) 7  

Yield 74 %; m.p. 37-38 °C (lit. 61-62 °C); t.I.c. (EtOAc/hexane, 2:1) Rf 0.62; mlz 

(HR FAB) Found 396.1800; C23H26N0 5  requires 396.1811; v (KBr)/(cm') 3398, 

3326 (NH), 3065, 2979, 2930 (CH), 1728 (CO 3  urethane), 1699 (C=O, aldehyde); 

H (200 MHz, d6-DMSO) 1.36 (911, s, 3 x CH3 tBu), 2.76 (2H, d, 3CH2, Asp, J=8 

Hz) 4.23-4.37 (4H, m, CH & Cl-I2, Fmoc, aCH, Asp), 7.27-7.93 (8H, m, ArH), 9.44 

(1H, s, CHO); 8C (63 MHz, d6-DMSO) 18.2 (3C), 33.3, 46.8, 61.2, 65.7, 80.6, 120.3 

(2C), 125.3 (2C), 127.2 (2C), 127.8 (2C), 140.9 (2C), 143.9 (2C), 156.3, 169.6, 

200.3; [ar,] 22  -9.08 ° (DMF, c 1.090); ?.. max/nm (MeOH, c/dm3mol'cm) 265 

(18700) 289 (7900), 300 (5400). 

Loading 9-Fiuorenylmethoxycarbonyl Amino Acid Aldehydes onto the Linker 

Modification of the .Resin (14a) 

The resin (14) was prepared for use by sonication in 20 % v/v piperidine/DMF for 30 

minutes. The resin was filtered, washed exhaustively with DMF, 1 ,4-dioxane, DCM 

and diethyl ether and dried. 

Loading of 9-Fluorenylmethoxycarbony Amino Acid Aldehydes (18) 

The resin was swollen in the minimum amount of DCM (taken from 20 mug of 

resin) and DIEA (1 equivalent) added. The mixture was sonicated for 10 minutes, 

then a solution of 9-fluorenylmethoxycarbonyl amino aldehyde (3 equivalents) in the 

remaining DCM was added, and sonication continued for a further 5 hours at RT. 

The resin was filtered, washed exhaustively with DMF, 1,4-dioxane, DCM and 

diethyl ether and dried. 

Capping the Resin 

The resin (18) was swollen in capping reagent (0.25 M acetic anhydride, 0.125 M 

DIEA, 0.2 % w/v HOBt in DMF/l ,4-dioxane 1:1) and sonicated for 30 minutes. The 

resin was filtered, washed exhaustively with DMF, 1 ,4-dioxane, DCM and diethyl 

ether and dried. 
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Levels of Loading obtained by UV at 302nm 9-Fluorenylmethoxycarbonyl-L-

Phenylalaninal 90 % (18a); 9-Fluorenylmethoxycarbonyl-L-Alaninal 100 % (18b); 9-

Fluorenylmethoxycarbonyl-D-Alaninal 70 % (18c); 9-Fluorenylmethoxycarbonyl-L-

Tryptophanal 100 % (18d); 9-Fluorenylmethoxycarbonyl-L-Aspartic Acid (Butyl 

Ester) Aldehyde 90 % (18e). 

Cleavage of 9-Fluorenylmethoxycarbonyl-L-Phenylalaninal Semicarbazone 

From the Linker (19a) 

Resin 18a (0.393 mmol) was stirred under dry nitrogen in TFAlwater (95:5, 10 ml) 

for 1 hour. The resin was filtered and the filtrate concentrated to a volume of 1 ml in 

vacuo. The residue was dissolved in water/acetonitrile/acetic acid (10:0.5:0.5, 20 ml) 

and lyophilised to yield a pale yellow solid. 

Yield (106 mg, 63 %); m.p. 136-137 °C; t.l.c. (DCM/MeOH/AcOH, 9:0.5:0.5) Rf 

0.63; mlz (ES) 429.2 (MH), 451.2 (MNaT), 474.2 (MNa22 ); vmax/cm' (KBr) 

3476, 3319 (NH), 3063, 2944 (CH), 1689 (CO); 8H (200 MHz, d6-DMSO) 2.85 

(2H, d, 13CH2, Phe, J=8Hz), 4.14-4.24 (411, CH & CH 2, Fmoc & ctCH, Phe), 7.14-

7.92 (14H, ArH & HC=N), 9.93 (11-1, NH, semicarbazone); [aD] 22  -10.0 ° (c 1.04, 

DMF). 

9-Fluorenylmethoxycarbonyl-L-Phenylalaninal Semicarbazone (19b) 

9-Fluorenylmethoxycarbonyl-L-phenylalaninal 17a (0.50 g, 1.4 mmol) was 

suspended in 50 % aqueous ethanol (25 ml). Semicarbazone hydrochloride (0.48 g, 

4.3 mmol) and sodium acetate (0.49 g, 6.0 mmol) were added. The mixture was 

warmed under reflux and ethanol (15-20 ml) added to solubilise the aldehyde. The 

mixture was heated at reflux for 1 hour before the solvent was concentrated under 

reduced pressure to a volume of -10 ml. 5 % sodium bicarbonate solution (10 ml) 

was added and a brown precipitate formed which was removed by filtration. The 

brown colour was removed by washing with ethyl acetate to yield a white solid 

Yield (0.1472 g, 26 %); m.p. 143-145 °C; t.l.c. (DCM/MeOH/AcOH, 9:0.5:0.5) Rf 

0.64; mlz (HR FAB) Found 429.1927; C25H25N403 requires 429.1927; v (KBr)I(cm 
1)  3476, 3319 (NH), 3062, 2947 (CH), 1689 (CO); IH (200MHz, d6-DMSO) 2.87 
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(2H, d, pCH2, Phe, J81-lz), 4.15-4.18 (4H, m, CH & CH2, Fmoc & aCH, Phe), 6.26 

(2H, s, NH2, semicarbazone), 7.20-7.99 (14H, m, ArH & HC=N), 9.93 (11-1, s, NH, 

semicarbazone); 8C (63 MHz, d6-DMSO) 38.2, 46.8, 53.5, 65.6, 120.3, 125.3 (2C), 

126.3 (2C), 127.8 (2C), 128.3 (2C), 129.3 (2C), 129.5 (2C), 138.2, 141.9 (2C), 143.9 

(2C), 140.9, 156.9, 158.8; [LDI 22  -24.7 ° (c 0.288, DMF); A.max/nm (MeOH, 

*/dm3mor'cm') 265 (17700), 289 (3600), 300 (4700). 

Stability of 9-Fluorenylmethoxycarbonyl-L-Phenylalaninal Semicarbazone (19c) 

9-Fluorenylmethoxycarbonyl-L-phenylalaninal semicarbazone 19b (100 mg) was 

stirred in TFAlwater (9:1, 1 ml) at RT for 1.5 hours. The TFA was removed in vacuo 

and the product isolated by precipitation from hexane. 

Yield (0.095 g, 95 %); m.p. 143-145 °C; tic. (DCM/MeOH/AcOH, 9:0.5:0.5) Rf 

0.64; mlz (HR FAB) Found 429.1946; C251-125N403 requires 429.1927; v (KBr)/(cm 
1)  3321 (NH), 3063, 2948 (CH), 1689 (C0); 8H (200MHz, d6-DMSO) 2.90 (21-1, d, 

CH2, Phe, J=81-lz), 4.18-4.37 (41-1, m, CH & CH2, Fmoc & aCH, Phe), 6.26 (21-1, s, 

NH2, semicarbazone), 7.07-7.89 (14H, m, ArH & HC=N), 9.98 (11-1, s, NH, 

semicarbazone); 8C (63 MHz, d6-DMSO) 38.2, 46.8, 53.4, 65.6, 120.2, 125.3 (2C), 

126.3 (2C), 127.2 (2C), 127.7 (2C), 128.2 (2C), 129.3 (2C), 138.2, 141.9 (2C), 143.9 

(2C), 140.8, 155.7, 156.9; laD] 22  -24.0 ° (c 0.325, DMF); A.max/nm (MCOH, 

ddm3moF 1cm) 265 (13500), 289 (4600), 300 (4800). 

Hydrolysis of 9-Fluorenylmethoxycarbonyl-L-Phenylalaninal Semicarbazone 

(20) 

9-Fluorenylmethoxycarbonyl-L-phenylalaninal semicarbazone 19b (100 mg, 0.23 

mmol) was dissolved in chloroform (8 ml). Pyruvic acid (2 ml) and water (0.3 ml) 

were added and the mixture stirred at room temperature for 24 hours. The mixture 

was diluted with chloroform (10 ml) and washed with water (3 x 2 ml), 5 % sodium 

bicarbonate solution (3 x 2 ml) and dried (MgSO4). The solvent was evaporated to 

leave a white solid. 

Yield (81 mg, 95 %); m.p. 102-103 °C; t.l.c. (DCM/MeOH/AcOH, 9:0.5:0.5) Rf 

0.76; m/z (1-IRFAB) 372.1 593(MH); C24H22NO3 requires 372.1600; vmax/cm' 
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(KBr) 3331, 3321 (NH), 3061, 3020, 2958, 2843 (CH), 1726, 1690, 1638 (C0); 8H 

(200MHz, d6-DMSO) 2.91 (2H, d, CH2, Phe, J=8Hz), 4.06-4.36 (4H, m, CH & CH2, 

Fmoc & aCH, Phe), 7.19-7.88 (13H, m, ArH), 9.51 (1H, s, CHO); 8C (63 MHz, d6-

DMSO) 33.3, 46.8, 61.2, 65.6, 120.0, 120.2, 124.2, 125.2, 125.9, 126.4, 127.0, 

127.1, 127.2, 127.7, 128.1, 128.3, 129.2, 137.9, 140.8, 143.7, 143.8, 143.9, 156.2, 

200.9; Iar,1 22  -41.8 ° (c 0.467, DMF); Xmax/nm (MeOH, c/dm 3mol'cm) 265 

(18400), 296 (3600), 300 (6100). 

Synthesis of Fmoc-Phe-Val-(L)-Alaninal Semicarbazone (21) 

The synthesis was carried out using resin 18b (0.8530 g, 0.13 mmol/g, 0.11 mmol). 

On completion of the synthesis, the peptide was cleaved from the resin by sonication 

in TFAlwater (95:5, 10 ml) for 1.5 hours. The resin was filtered and washed with 

TFA. The TFA was reduced in vacuo to 2 ml and cold ether (80 ml) was added 

dropwise to the yellow oil to yield a fluffy white precipitate which was collected by 

centrifugation. The precipitate was dissolved in acetonitrile/water (1:1, 30 ml) and 

lyophilised. The crude material was purified using preparative HPLC. 

Final Fmoc-loading 0.079 mmol/g (62 %); Crude Yield 34 mg (102 %); Purified 

Yield 5 mg (25 %); HPLC (Vydac C18,250  x 4.6 mm, 5.im, A=H20, B=CH3 CN, 0.1 

% TFA; 1 ml/min, 10-90 % over 30 minutes, ?214 nm) Rt  22.4 mm, 73.5 % B; m/z 

(MALDI) 599.206 (MH+), C33H 39N605  requires 599.298; AAA Phe 1  1.0, Va1 1  1.0. 

Synthesis of Fmoc-Phe-Val-(L)-Alaninal (22) 

Fmoc-Phe-Val-Alaninal semicarbazone 21 (1.4 mg) was dissolved in pyruvic 

acid/water (5:1, 300 tl) and sonicated for 1.5 hours. The product was isolated by 

HPLC. 

Yield 0.65 mg (50 %); HPLC (Vydac C18,250  x 4.6 mm, 5p.m, A=H20, BCH3CN, 

0.1 % TFA; 1 ml/min, 10-90 % over 30 minutes, X214 nm) Rt  23.0 mm, 76 % B; 

mlz (MALDI) 542.606 (MH+), C32H36N30 5  requires 542.655; AAA Phe 1  1.16, Va1 1  

0.86. 
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Synthesis of Fmoc-Phe-Val-(D)Alaninal Semicarbazone (23) 

The synthesis was carried out using resin 18c (0.900g. 0.10 mmollg, 0.09 mmol). 

The peptide was cleaved from the resin by sonication in TFA/water (95:5, 10 ml) for 

1.5 hours. The resin was filtered and washed with TFA. The TFA was reduced in 

vacuo to 2 ml and cold ether (80 ml) was added dropwise to the yellow oil to yield a 

fluffy white precipitate which was collected by centrifugation. The precipitate was 

dissolved in acetonitrile/water (1:1, 30 ml) and lyophilised. The crude material was 

purified using preparative HPLC. 

Final Fmoc-Loading 0.053 mmol/g (55 %); Crude Yield 23.2 mg (84 %); Purified 

Yield 4 mg, 24 %; HPLC (Vydac C18,250 x 4.6 mm, 5pm, A=H 20, B=CH3CN, 0.1 

% TFA; 1 ml/min, 10-90 % over 30 minutes, X=214 nm) R t  22.4 mm, 73.5 % B; m/z 

(MALDI) 599.37 (MH+), C33H39N605 requires 599.30; AAA Phe1 0.91, Va11 1.09. 

Synthesis of Fmoc-Phe-Val-(D)Alaninal (24) 

Fmoc-Phe-Val-Alaninal semicarbazone 23 (1 mg) was dissolved in pyruvic 

acid/water (5:1, 300 tl) and sonicated for 1.5 hours. The product was isolated by 

HPLC. 

Yield 0.5 mg (56 %); HPLC (Vydac C18,250  x 4.6 mm, 5pm, A=H20, B=CH3CN, 

0.1 % TFA; 1 ml/min, 10-90 % over 30 minutes, A=214 nm) R t  23.0 mm, 76 % B; 

m/z (MALDI) 654.29 (CF3COOM) C34H35N30 7F3 requires 654.66; AAA Phe 1  1. 13, 

Val 1  0.87. 

Synthesis of Fmoc-Gly-Ala-Lys-Gly-Phenylalaninal Semicarbazone (25) 

The synthesis was carried out using resin 18a (1 g, 0.092 mmol/g, 0.092 mmol). On 

completion of the synthesis, the resin was stirred in a scavenger cocktail of EDT 

(0.20 ml), thioanisole (0.25 ml) TIS (0.25 ml) and phenol (0.75 g) for ten minutes, 

before the peptide was cleaved from the resin and deprotected by the addition of 

TFAlwater (10:1, 11 ml). The mixture was stirred in the dark under dry nitrogen for 

1.5 hours. The resin was filtered and washed with TFA. The TFA was reduced in 

vacuo to 2 ml and cold ether (80 ml) was added dropwise to the yellow oil to yield a 

97 



Chapter 4 

fluffy white precipitate which was collected by centrifugation. The precipitate was 

dissolved in acetonitrile/water (1:1, 30 ml) and lyophilised. The crude material (15 

mg) was purified using preparative HPLC. 

Final Fmoc-Loading 0.44 mmol/g (51 %); Crude Yield 49 mg (114 %); Purified 

Yield 6 mg (40 %); HPLC (ABI Aquapore C18, 220 x 4.6 mm, 5.tm, A=H20, 

B=CH3CN, 0.1 % TFA; 1 ml/min, 10-90 % over 30 minutes, A.=214 run) R t  20.8 mm, 

65.5 % B; m/z (MALDI) 763.46 ((M-HNa), C38H46N9O7Na requires 763.82; AAA 

Gly2 1.86, Ala1 1.09, Lysi 0.86. 

Synthesis of Fmoc-Gly-Ala-Lys-Gly-Phenylalaninal (26) 

Fmoc-Phe-Val-Alaninal semicarbazone 25 (5 mg) was dissolved in pyruvic 

acid/water (5:1, 1 ml) and stirred for 1.5 hours. The product was isolated by HPLC. 

Yield 2.7 mg (62 %); HPLC (ABI Aquapore C4, 100 x 4.6 mm, 5gm, A=H20, 

B=CH3CN, 0.1 % TFA; I ml/min, 10-90 % over 30 minutes, X214 rim) R t  17.2 mm, 

56.5 % B; m/z (MALDI) 761.74 ((M-H)K2), C3 7H43N607K2  requires 761.98; AAA 

G1y2 1.86,A1a 1  1. 10, Lys1 0.97. 

Synthesis of Fmoc-His-Leu-Asp-Ile-Ile-Tryptophanal Semicarbazone (27) 

The synthesis was carried out using resin 18d (0.60 g, 0.215 mmoi/g, 0.129 mmol). 

On completion of the synthesis the resin was stirred in a scavenger cocktail of EDT 

(0.20 ml), thioanisole (0.25 ml) TIS (0.25 ml) and phenol (0.75 g) for ten minutes 

before the peptide was cleaved from the resin and deprotected by the addition of 

TFA/water (10:1, 11 ml). The mixture was stirred in the dark under dry nitrogen for 

1.5 hours. The resin was filtered and washed with TFA. The TFA was reduced in 

vacuo to 2 ml and cold ether (80 ml) was added dropwise to the yellow oil to yield a 

fluffy white precipitate which was collected by centrifugation. The precipitate was 

dissolved in acetonitrile/water (1:1, 30 ml) and lyophilised. The crude material (15 

mg) was purified using preparative HPLC. 

Final Fmoc-Loading 0.134 mmol/g (74 %); Crude Yield 97 mg (114 %); Purified 

Yield 4 mg (27 %); HPLC (ABI Aquapore C4, 100 x 4.6 mm, 5pm, A=H20, 

BCH3CN, 0.1 % TFA; 1 ml/min, 0-100 % over 30 minutes, A=214 nm) Rt  21.1 mm, 
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61 %B; m/z (MALDI) 1082.04 (MNa+), C 55H71 N 120 1 0Na requires 1082.23; AAA 

Asp 1  1.03, lie2 0.96, Leu 1  1.09, His 1  0.88. 

Synthesis of Fmoc-His-Leu-Asp-Ile-Ile-Tryptophanal (28) 

Fmoc-His-Leu-Asp-Ile-Ile-Tryptophanal semicarbazone 27 (1 mg) was dissolved in 

pyruvic acid/water (5:1, 1 ml) and stirred for 1.5 hours. The product was isolated by 

HPLC. 

Yield 1.4 mg (38 %); HPLC (ABI Aquapore C4, 100 x 4.6 mm, 5pm, A=H20, 

BCH3CN, 0.1 % TFA; 1 ml/min, 0-100 % over 30 minutes, X=214 nm) R t  18.9 mm, 

55% B; m/z (MALDI) 779.66 (M-Fmoc), C39H55N903Na requires 779.94; AAA 

Aspi 1.04, lie2 0.96, Leu1 1.09, His1 0.88. 

Synthesis of the Semicarbazone of a Cathepsin-3 Inhibitor (29) 

The synthesis was carried out using resin 18e (0.893 g, 0.168 mmol/g, 0.15 mmol). 

The resin was stirred in a scavenger cocktail of EDT (0.20 ml), thioanisole (0.25 ml) 

TIS (0.25 ml) and phenol (0.75 g) for ten minutes before the peptide was cleaved 

from the resin and deprotected by the addition of TFA/water (10:1, 11 ml). The 

mixture was stirred in the dark under nitrogen for 1.5 hours then the resin was 

filtered and washed with TFA. The TFA was reduced in vacuo to 2 ml and cold ether 

(80 ml) was added dropwise to the yellow oil to yield a fluffy white precipitate which 

was collected by centrifugation. The precipitate was dissolved in acetonitrile/water 

(1:1, 30 ml) and lyophilised. The crude material (25 mg) was purified using 

preparative HPLC. 

Final Fmoc-Loading 0.08 mmol/g (63 %); Crude Yield 93 mg (48 %); Purified 

Yield 7.25 mg (29 %); HPLC (Vydac C18,250  x 4.6 mm, 5p.m, AH20, B=CH3CN, 

0.1 % TFA; 1 ml/min, 40-100% over 30 minutes, ?214 nm) R t  22.4 mm, 85 %B; 

m/z (MALDI) 2079.52 ((M-H)'Na), C95H160N23027Na requires 2079.44; AAA 

Aspi 1.14, Glui 1.02, Pr02 1.92, Ala6 5.68, Va13 2.80, Leu6 5.99. 
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Synthesis of a Cathepsin-3 Inhibitor (30) 

The Cathepsin-3 Inhibitor semicarbazone 29 (1 mg) was dissolved in pyruvic 

acidlwater/acetonitrile (5:2:5, 1 ml) and sonicated for 2 hours. The product was 

isolated by HPLC. 

Purified Yield 0.5 mg (50 %); HPLC (Vydac C18, 250 x 4.6 mm, 511m, A=H20, 

BCH3CN, 0.1 % TFA; 1 ml/min, 40-100 % over 30 minutes, X=214 nm) R t  30.5 

mm, 86 %B; m/z (MALDI) 1998.16 ((M-H)), C94H157N2002 7  requires 1998.40; 

AAA Asp i  1. 14, G1u1 1.02, Pr02 1.92, Alas 5.68, Va13 2.80, Leu6 5.99. 
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4.3.2 The Stepwise Chemical Synthesis of Deglycosylated Human Interferon-

Gamma and its Purification 

HPLC of dhIFN-y Samples 

Analysis of all protein samples employed a C4 column and the following conditions: 

Aquapore C4, 100 x 4.6 mm, 7 m. 

A = water, B = acetonitrile, 0.1 % TFA 

2 ml loop, 1 ml/min  

0-2 min 10 % B, 2-32 min 10-90 % B, 32-34 min 90-10 % B 

?=214rim 

Loading of Fmoc-Gln(Trt)-OH onto Wang Resin 

Fmoc-Gln(Trt)-OH (1.g, 1.64 mmol, 2 equivalents) and DIC (0.13 ml, 0.82 mmol, 1 

equivalent) were dissolved in DMF (7 ml) and sonicated for 10 minutes. Wang 

Resin (1.08 g, 0.65 mmol/g) was swollen in the minimum amount of DMF, and a 

catalytic amount of DMAP (approx. 10 mg) added. The mixed anhydride was added 

to the resin, and the mixture allowed to stand for 20 mins. The resin was filtered, 

washed exhaustively with DMF, 1 ,4-dioxane, DCM and ether and allowed to dry in 

vacuo. The resin loading was checked by quantitative UV. 

Resin Functionality 0.16 mmol/g 

Chemical Synthesis of Fmoc-dhIFN-y-Resin 

The synthesis was carried out on a 0.112 mmoi scale using Fmoc-Gln(Trt) 

functionalised Wang resin (700 mg, 0.116 mmol/g). Coupling was performed using 

the corresponding HOCt activated esters. The first amino acids were attached to the 

solid support via single coupling cycles with double coupling cycles being employed 

for the last 20 residues (with the exception of Gly). Approximately one third of the 

resin was removed after 71 cycles and a further one third was removed after 113 

cycles. These portions were stored in 1 ,4-dioxane until the synthesis was 

recommenced using the resin, to yield a greater quantity of material. On completion 
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of the synthesis, the resin was washed exhaustively with DMF, 1 ,4-dioxane, DCM 

and ether and dried under vacuum. The resin from the synthesiser (1.667 g, 0.020 

minol/g, 0.033 mmol) was sonicated in capping reagent (0.5 M acetic anhydride, 

0.125M DIEA, 0.2 % w/v HOBt in dry, freshly distilled DCM, 10 ml) for 30 

minutes. The resin was filtered, washed with DCM and ether and dried in vacuo. 

The resin was stored at 4 °C in 1 ,4-dioxane until required. 

Amount of Resin 1.667 g; Final Functionality 0.020 mmol/g; AAA (48 hours) 

Asx20 19.0, Thr5 5.3, Ser1i 9.7, Glx18 19.6, Pr02 1.4, Glys 5.0, Ala8 8.3, Vaig 8.2, 

Met4 4.5, 11e7 7.0, Leu10 9.6, Tyr4 3.3, Phe10 10.3, His2 2.1, Lys20 20.0, Ar98 9.8. 

Loading Tbfmoc to the dhIFN-y-Resin 

The N-terminal Fmoc group was removed from the resin (500 mg) by sonication in 

20 % v/v piperidine in DMF (10 ml) for 30 minutes. The resin was filtered, washed 

exhaustively with DMF, 1 ,4-dioxane, DCM and ether and dried in vacuo. The 

Tbfmoc group was loaded onto the N-terminus by sonicating the resin, DIEA (5 .il, 

0.03 mmol, 1 equivalent) and Tbfmoc chioroformate (41 mg, 0.09 mmol) in dry, 

distilled DCM (10 ml) for 3 hours in the dark. The Tbfmoc-loading was checked by 

UV. The resin was filtered, washed exhaustively with DCM and ether and dried in 

vacuo. 

Amount of Resin 500 mg; AAA (48 hours) Asx20 19.9, Thr 5  5.5, Ser1i 9.4, G1x 1 8 

19.9, Pr02 1.4, Glys 5.3, Ala8 8.4, Va18 8.0, Met4 3.8, 11e7 7.3, Leu 1 0 9.5, Tyr4 3.3, 

Phe10 10.7, His2 1.6, Lys20 19.9, Arg8 9.6. 

The Tbfnioc-Loading Test 

The loading of the Thfmoc functionalised resin was determined by treating an 

accurately weighed quantity of resin (8.0 mg) with 20 % v/v piperidine/1 ,4-dioxane 

(10 ml). After sonication for 10 minutes, the UV absorbance of the supernatant was 

recorded between 320 and 400 nm. The Tbfmoc-peptide-resin functionality was 

calculated from equation 4.2: 
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Resin functionality (mmol/g)= 0.613 x Abs36 
weight of resin (mg) 

Equation 4.2: Determination of Tbfmoc-Loading Level 

Tbfmoc-Loading Level by UV 0.0246 mmol/g (123 %). 

Cleavage of the Tbfmoc-dhIFN-y From The Resin 

The resin (500 mg) was stirred in a cocktail of scavengers comprising 0.25 ml EDT, 

0.5 ml thioanisole, 0.5 ml TIS and 0.75 g phenol in the dark, under dry nitrogen for 

10 minutes. TFAlwater (10:1, 11 ml) was added, and stirring in the dark under 

nitrogen was continued for a further 4.5 hours. The resin was filtered and washed 

with TFA (- 2 ml). The filtrate was collected in ice cold ether (150 ml) which was 

allowed to stand in ice for 10 minutes to ensure complete precipitation of the protein. 

The white fluffy solid was collected by centrifugation (3000 rpm, 2 minutes). The 

pellet was washed with fresh portions of cold ether (3 x 40 ml) to remove residual 

scavengers, before being dissolved in acetonitrile/water (2:3, 50 ml) and lyophilised 

to a white solid. 

Yield of protein 237 mg (141 %); HPLC 21.0 mm, 66% B; AAA (24 hours) Asx20 

19.1, Thr5 4.4, Sen1 9.8, Glx18 18.2, Pr02 1.0, G1y5 4.9, Ala8 8.2, Va18 8.4, Met4 3.0, 

Ile 7  6.8, Leu 1 0 10.0, Tyr4  2.9, Pheio 10.6, His2 2.4, Lys20 19.1, Ar98 9.9; SDS-PAGE 

4 components of approx. Mwt:17 kDa, 14 kDa, 11 kDa & 8 kDa 

Tbfmoc-Charcoal Purification 

Animal charcoal was prewashed using piperidine/6 M urea/IPA (2:9:9, 6 x 50 ml), 

and 6 M urea/IPA (1:1,6 x 50 ml). Thfmoc-dhIFN-y (100 mg) was dissolved in 6M 

urea (20 ml), and a reference HPLC trace of the sample at 364 nm was obtained. The 

concentration of the solution was also checked by UV. Prewashed charcoal was 

added in small portions with vortexing (10 mins) and centrifugation (3500 rpm, 10 

mins), until examination of the supernatant by HPLC at 364 nm indicated complete 

adsorption of the Thfhoc-dhIFN-y onto the charcoal had taken place. It was found 

that 25 mg of charcoal per mg of protein was sufficient for complete adsorption. The 

supernatant was removed and the pellet washed by vontexing with fresh solvent (6 M 
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urea/IPA, 3 x 25 ml) to ensure complete removal of deletions, truncates and any 

material still in solution. The Tbfmoc-protein bond was cleaved by vortexing the 

charcoal in 10 % piperidine in 6 M urea/IPA (1:1, 25 ml) for 10 mins. The 

supernatant was examined by HPLC at 214 nm to ensure the free dhIFN-7 was 

released into the solution. The IPA was removed in vacuo before the solution was 

neutralised to pH 6.0 using acetic acid (- 3 ml). 

HPLC 19.7 mm, 58 % B. 

Tbfmoc-Polystyrene Purification 

Thfmoc-dhIFN-y (100 mg) was dissolved in 25 % acetic acid solution (25 ml), and a 

reference HPLC trace at 364 nm obtained. Chromatography grade polystyrene (30-

75 jtm mesh, 300 A pore diameter) was added in small portions with vortexing (10 

mins) and centrifugation (3500 rpm, 10 mins) until the supernatant, when examined 

by HPLC at 364 nm, indicated complete adsorption of the Tbfmoc-protein. It was 

found that 20 mg of polystyrene was required per mg of crude Tbfmoc-protein. The 

supernatant was decanted, and the polystyrene washed with acetic acid (2 x 25 ml) 

and water (25 ml) in order to remove all deletions, truncates and any material still in 

solution. The Tbfmoc-protein bond was cleaved by sonication of the polystyrene in 

10 % piperidine in acetonitrile/water (2:3) (25 ml). This solution was examined by 

HPLC at 214 nm to ensure the dhIFN-y had been released into the solution. The 

piperidine was neutralised to pH 6.0 by the addition of acetic acid (- 3 ml). 25 % 

w/w acetic acid solution (15 ml) was added solubilise the protein. 

HPLC 19.7 mm, 58 % B. 

Sep hadex G-50 Gel Filtration of dhIFN-y 

Gel filtration was carried out using a Sephadex G-50 column (60 cm x 3 cm diam.), 

equilibrated with 25 % acetic acid solution. The dhJFN-y solution from charcoal or 

polystyrene purification was loaded and the protein eluted using 25 % acetic acid 

solution. Fractions (20 ml) were collected and the purification monitored by UV 

(280 nm). The protein was found to elute in fractions 9 to 20. An aliquot of UV 
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active fractions was lyophilised and examined by SDS-PAGE for protein 

composition. The fractions with the highest purity protein profile were combined 

and lyophilised. 

After CharcoaLlSephadex G-50 

Yield of protein 25 mg; HPLC 19.5 mm, 57% B; AAA (24 hours) Asx20  19.8, Thr5  

4.6, Ser1i 9.4, G1x 18  17.8, Pr02 1.3, Gly5  5.0, Ala8  8.1, Valg  8.9, Met4  3.6, lie7  7.4, 

Leu 10  10.0, Tyr4  3.3, Phe 10  10.8, His2 2.6, Lys20  19.8, Ar98  8.5; SDS-PAGE 3 

components of approx. Mwt: 17 kDa, 14 kDa & 11 kDa. 

After Polystyrene 

Yield of protein 40 mg; HPLC 19.7 mm, 58 % B; AAA (24 hours) Asx 20  21.1, Thr5  

4.9, Ser 1j  9.9, G1x 1 8 18.7, Pr02 1.1, G1y 5  4.1, Ala8  7.5, Va18  10.3, Met4  3.1, lIe7  7.6, 

Leu 10  10.0, Tyr4  1.5, Phe 10  11.6, His2 2.0, Lys20  22.2, Arg8 8.1; SDS-PAGE 3 

components of approx. Mwt: 17 kDa, 14 kDa & 11 kDa. 

Electroblotting of dhIFN-y onto PVDF Membrane  

dhIFN-y was separated using SDS-PAGE and the separated bands transferred to 

PVDF membrane to allow analysis. Protein (0.5 mg) was dissolved in sample buffer 

(150 j.d) and applied to 9 wells of the SDS-polyacrylamide gel. On completion of the 

run, the gel was stored in running buffer. The gel was soaked in (100 mM CAP S/ 

methanol/water 1:1:8) for 5 minutes. The blotting apparatus was assembled 

according to the manufacturers instructions and the cell run at 50 V for 2 hours at 

room temperature. The membrane was rinsed with water and stained with 0.5 % w/v 

coomassie blue in acetic acid/methanol/water (1:4:5) for 15 minutes. Destaining in 

acetic acid/methanol/water (1:4:5) was carried out at 37 °C overnight. The desired 

bands were cut from the PVDF membrane prior to analysis. 

Digestion With Pyroglutamate Aminopeptidase 

Protein (1 mg) was dissolved in 0.2 M ammonium bicarbonate, 10 mM EDTA, 5 

mM DTT, 5 % v/v glycerol at pH 8 (240 .il) with vortexing. Pyroglutamate amino 

peptidase (1.5 mg) was added as a solution in the above buffer (250 il). The digest 
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was incubated overnight at 37 °C, with gentle agitation. The protein material was 

isolated using RP HPLC and lyophilised. 

Yield 0.6mg 

FPLC Size Exclusion Purification of dhIFN-y 

Gel filtration was carried out using Superdex TM  75 HR 26/60 column equilibrated 

with 6 M urea, 0.2 M NaCl, 0.1 M phosphate, pH 7.5 using a flow rate of 3 ml/min. 

The dhIFN-y (5 mg) was dissolved in 6 M urea, 0.2 M NaCl, 0.1 M phosphate, pH 

7.5 (2 ml) and loaded onto the column and a flow rate of 3m1/min applied. After 

1 OOml of eluent had been passed through, fractions (6 ml) were collected. Progress 

was monitored using UV, and fractions absorbing at 280 nm were desalted by 

dialysis against acetic acid (25 % v/v), lyophilised and examined by SDS-PAGE. 

Fractions 18 to 23 were found to give the cleanest SDS-PAGE profile, these were 

combined, dialysed against 25 % acetic acid solution and lyophilised. 

Yield 2 mg; HPLC 16.9 mm, 55 % B; AAA (24 hours) Asx20  21.7, Thr5  4.2, Ser i   

10.4, G1x 1 8 18.7, Pr02 1.1, G1y5  4.9, Ala8  6.6, Va18 8.5, Met4  2.7, 11e7  8.2, Leu 10  10.3, 

Tyr4  2.6, Phe 10  13.2, His2 1.7, Lys20 22.3, Argg 7.0; SDS-PAGE 2 components of 

approx Mwt: 17 kDa & 14 kDa. 

Cation Exchange Chromatography Using CM Sephadex CL-50 (I) 

CM Sephadex CL-SO (10 ml) was preswollen in 8M Urea, 80 mM Tris, pH 7.2. 

dhIFN-y (5 mg, 3 component) was dissolved in 8 M urea, 80 mM Iris, pH 7.2 (5 ml), 

and was adsorbed to the gel by vortexing the solution with a small amount of the gel 

and the supernatant examined by HPLC for adsorption. It was found that 8 ml of ion 

exchange resin was required for complete adsorption. The gel was poured into a 

column (0.7 cm diam. x 21 cm high), and the urea removed over a 40 ml gradient. A 

sodium chloride gradient (100 ml, 0-1 M) in 80 mM Tris, pH 7.2 was introduced to 

elute the protein from the resin. The collected fractions (5 ml) were examined by 

HPLC for protein content but no protein was observed. The column was washed 

with 3M NaCl, 80 mM Tris, pH 7.2 (10 ml) to establish if the protein had bound 
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strongly to the support but again, no protein was observed. The column was then 

washed with 8 M urea, 80 mM Tris, pH 7.2 (15 ml). This eluted the protein from the 

column. The protein, on examination by SDS-PAGE following dialysis against 25 % 

acetic acid, was found to contain three bands of molecular mass 11, 14 & 17 kDa. 

Cation Exchange Chromatography Using CM Sephadex CL-SO (II) 

CM Sephadex CL-SO (10 ml) was preswollen in 7M Urea, 80 mM Tris, pH 7.2. 

dhIFN-y (5 mg, 4 component) was dissolved in 7 M urea, 80 mM Tris, pH 7.2 (5 ml) 

and was adsorbed to the gel by vortexing the solution with a small amount of the gel 

and the supernatant examined by HPLC for adsorption. It was found that 5 ml of ion 

exchange resin was required for complete adsorption. The gel was poured into a 

column (0.7 cm diam x 14 cm high) and washed with 7 M urea, 80 mM Tris, pH 7.2 

(5 ml). A sodium chloride gradient (25 ml, 0-1 M) in 7 M urea, 80 mM Tris, pH 7.2 

was introduced to elute the protein from the resin. The collected fractions (1 ml) 

were examined by UV (280 nm) and HPLC for protein content. Protein containing 

fractions were dialysed individually against 25 % acetic acid solution and lyophilised. 

They were examined by SDS-PAGE for purity. Fractions 7-10 were found to contain 

protein bands of approx. mass 8, 11, 14 & 17 kDa. 

Cation Exchange Chromatography Using CM Sephadex CL-50 (III) 

CM Sephadex CL-50 (25 ml) was preswollen in 6M Urea, 50 mM Tris, pH 7.5. 

dhTFN-y (10.6 mg, 4 components) was dissolved in 6 M urea, 50 mM Tris, pH 7.5 

(20 ml) and was adsorbed to the gel by vortexing. The gel was poured into a column 

(2 cm diam x 13 cm high) and washed with 6M urea, 50 mM Tris, pH 7.5 (lOOmi). 

A sodium chloride gradient (320 ml, 0-0.6 M) was introduced to elute the protein 

from the resin. The collected fractions (5 ml) were examined by UV (280 run) for 

protein content. Protein containing fractions were dialysed against 25 % acetic acid 

solution and lyophilised. On examination by SDS-PAGE, fractions 11-19 were 

found to contain protein bands of approx. mass 8, 11 & 14 kDa and fractions 21-28 

were found to contain protein bands of approx. mass 11, 14 & 17 kDa. 
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Cation Exchange Chromatography Using SP Sepharose FF 

SP Sepharose FF (25 ml) was equilibrated with 6M Urea, 20 mM Phosphate, pH 7.0. 

dhIFN-y (10 mg, 4 components) was dissolved in 6 M urea, 50 mM Tris, pH 7.5 (20 

ml) and was adsorbed to the gel by vortexing. The gel was poured into a column (2 

cm diam x 13 cm high) and washed with 6M urea, 20 mM Phosphate, pH 7.0 (25 

ml). A sodium chloride gradient (400 ml, 0-1 M) was introduced to elute the protein 

from the resin. The collected fractions (20 ml) were examined by UV (280 nm) for 

protein content. Protein containing fractions were dialysed against 25 % acetic acid 

solution and lyophilised. On examination by SDS-PAGE, fractions 7-14 were found 

to contain protein bands of approx. mass 11, 14 & 17 kDa. 

Sephadex G-75 Gel Filtration 

Gel filtration was carried out using a Sephadex G-50 column (90 cm x 3 cm diam.) 

equilibrated with 20 % acetic acid solution. The dhIFN-'y solution from charcoal or 

polystyrene purification was loaded in portions (7 mg) as a solution in 6 M urea, 0.2 

M NaCl, 0.1 M sodium phosphate, pH 7.5 (400tl). The protein was eluted using 20 

% acetic acid solution. Fractions were collected (60 minutes, approx 1 Oml) and 

examined by UV (280 nm). The protein was found to elute in fractions 7 to 18. 

These fractions were examined by SDS-PAGE, and the fractions which gave the 

cleanest protein profile. of 2 bands (1 7kDa and 14 kDa) were combined and 

lyophilised and reapplied to the column as before. On examination of the second 

batch of fractions by SDS-PAGE, it was found that fractions 9 and 10 were generally 

pure protein. 

Yield 0.75- 1.5 mg; HPLC 19.5 mm, 62% B; AAA (24 hours) Asx20 19.7, Thr5 5.1, 

Ser 1 1 9.7, G1x18 19.3, Pr02 1.8, G1y5 5.0, Ala8 7.3, Va18 8.6, Met4 3.3, Ile7  7.6, Leu10 

10.2, Tyr4  3.0, Phe10 12.2, His2 2.0, Lys20 20.7, Ar98 7.8; MALDI-TOF MS 16826 

Da, requires 16777 Da; SDS-PAGE one component of approx. MWt 17 kDa. N-

Terminal Sequencing Gin (75.56 pmol), Asp (79.23 pmol), Pro (62.96 pmol), Tyr 

(52.37 pmol), Val (53.19 pmol) 
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Determination of Tryptophan' °  

Prior to the absorbance measurement, a blank sample (containing buffer solution) 

was run. From amino acid analysis, the tyrosine content of the protein is 

approximately 4, as expected. The protein solution had a concentration of 5.96 x 10.6  

mmol/ml (in 6M urea solution). The average value for the tryptophan content was 

determined to be 0.99 moles of tiyptophan per mole of protein, using the values 

depicted in table 4.2 and equations 3.1 and 3.2. 

Wavelength/nm Abs 6 (calculated) NT 	(calculated) 

280 

288 

0.63 

0.47 

10570 

7886 

0.73 

1.24 

Table 4.2: Data For Tryptophan Determination 

FPLC Determination of Molecular Weight 

Analysis was carried out using a Superdex TM  75 HR 10/30 column which had been 

equilibrated with 6M urea using a flow rate of 0.5 ml/min. Blue Dextrin (Mwt 2 000 

000) was loaded to measure the column void volume (V 0  8.05). 0.5 mg of protein 

was dissolved in 6M urea (200 il), loaded onto the column and the elution volumes 

(Ve) recorded by monitoring at 280 run. The molecular weight standards used were 

ovalbumin (Mwt 43 000, Ve  8.22), chymotrypsin (Mwt 25 000, Ve  8.57), 

ribonuclease A (Mwt 13 100, Ve  9.04) and ubiquitin (Mwt 8 600, Ve  9.27). For each 

standard, the elution parameter kAy was calculated using equation 3.3. A graph, 

figure 3.2.16, of kAy versus the logarithm of the molecular weight for each standard, 

was used to determine the molecular weight of dhJFN-y. The elution volume for 

dhIFN-y was determined to be 8.89 ml, giving a molecular weight of approximately 

iF.WIIII111 

Tryptic Digest of dhIFN-'y 

dhIFN-y (0.5 mg) was dissolved in 6 M urea, 0.2 M phosphate pH 8.0 (200 iil) and 

trypsin (5 % w/w) added. The mixture was incubated at 37 °C, and after 2 hours and 

6 hours, aliquots were removed and the digest stopped by the addition of 6 M HC1 (5 
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p1). The samples were desalted on a RP HPLC Vydac C18 analytical column and the 

collected peaks examined by MALDI-TOF MS. 

Found 	430.419 59Asn-61Lys(Na salt) Requires 	430.459 

657.389 39Glu-42Arg(Na salt) 657.591 

674.639 139Arg- 143G1n(H) 674.738 

714.122 74Lys-69Ser(K salt) 714.878 

907.532 87Lys-81 Phe(Na salt) 906.992 

994.658 132Ser- 139Arg 994.180 

1432.390 69Ser-80Lys(K' salt) 1431.685 

1610.830 56Leu-58Lys 1610.680 

3447.620 13 Lys-42Arg(Na salt) 3448.752 

or 14Tyr-43Lys(Na salt) 3448.752 

3455.010 95Leu- 125Lys(H) 3457.580 

Isoelectric Point Determination Using IEF 

dliIFN-y (10 mg) was dissolved in 4M urea (50 ml) and ampholytes (Fluka, pH range 

9-11, 40 % w/v, 1 ml) were added. The solution was loaded into the focusing 

chamber of the Rotofor cell after mixing. The cell was rotated without applied power 

to allow the system to reach thermal equilibrium (-.5 °C). After 10 minutes, the 

focusing was carried out at a constant power of 15 W. A large increase in voltage 

was initially observed which gradually stabilised over 3.5 hours. Once the voltage 

became constant, the 20 fractions were harvested and their individual pH recorded to 

ensure that a pH gradient had been established. All fractions were examined by 

HPLC to assess the protein content, table 4.3. The majority of protein was found in 

fractions 15 and 16, indicating a p1 of approximately 9.5 (theoretical = 9.6011). 
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Fraction pH Fraction pH 

1 6.5 11 9.5 

2 7.0 12 9.5 

3 7.5 13 10.0 

4 8.0 14 10.0 

5 8.5 15 10.5 

6 8.5 16 10.5 

7 9.0 17 10.5 

8 9.0 18 10.5 

9 9.5 19 11.0 

10 9.5 20 11.0 

Table 4.3: pH Gradient Established by Isoelectric Focusing 

Folding of dhIFN-y' 2  

dhIFN-y (1 mg) was dissolved in 6M urea (167 j.tl) and stirred at 0 °C overnight. The 

solution was diluted to give a final concentration of 1mg protein per ml with 10mM 

ammonium acetate, pH 6.8, 0.38gfL PEG and stirring at 0 °C continued for a further 

48 hours. Dimer formation was observed by non-reducing PAGE. 

Non-Reducing PAGE: two components of approx. MWt 34 & 17 kDa. 
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Appendix 

Figure Al: HPLC Profile For Fmoc-Gly-Ala-Lys-Gly-Phe-sc 

Figure A2: HPLC Profile For Fmoc-Gly-Ala-Lys-Gly-Phe-H 

vJ y  

0.5 	 0.0 

Figure A3: Aldehydic Proton NMR Signal For Fmoc-Gly-Ala-Lys-Gly-Phe-H 
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Figure A4: I-IPLC Profile For Fmoc-.His-Leu-Asp-Ile-Ile-Trp-se 

Figure AS: HPLC Profile For Fmoc-His-Leu-Asp-Ile-Ile-Trp-H 

9.4 

Figure A6: Aldehydic Proton NMR Signal For Fmoc-His-Leu-Asp-Ile-Ile-Trp-H 
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Figure A7: HPLC Profile For Caspase 3 Inhibitor Semicarbazone 

ruflfls 

Figure A8: HPLC Profile For Caspase 3 Inhibitor 

11 

: 

Figure A9: Aldehydic Proton NMR Signal For Caspase 3 Inhibitor 
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Abstract: A new linker based on the dibenzosuberyl system was developed in order to synthesise peptide C-
terminal semicaibazones which can be readily converted into peptide C-terminal aldehydes. The method uses 
Fmoc-methodology and proceeds with no loss of stereochemical integrity. © 1999 Elsevier Science Ltd. All rights 
reserved. 
Keywords: solid phase synthesis, peptide analogues/mimetics, enzyme inhibitors 

Several examples of peptide aldehydes have been found to be potent inhibitors of enzymes including 
serine, 2  cysteine3°  and aspartyl 5°  proteases and prohormone convertases. 7  Thus it is highly desirable 
to develop reliable routes to peptide C-terminal aldehydes which can also be used further in a wide 
range of chemistry including chemical ligation' and generation of reduced bond peptide isosteres. °  

Although there are several methods for the synthesis of peptide aldehydes using SPPS, 10 ' 8  we sought to 
extend the versatility of the dibenzocyclohept-1,4-diene (dibenzosuberyl) linker previously reported, 19  by 
introducing a semicarbazide moiety which would allow the synthesis and isolation of peptide C-terminal 
semicarbazones. Such derivatives are inherently more stable and easier to purify than the corresponding 
peptide aldehydes and, indeed, could have interesting biological properties. These peptide 
semicarbazones may be stored at 4 0C until conversion into the peptide aldehyde is required. 

The requisite semicarba.zide linker can be synthesised from the corresponding amide linker in two simple 
steps (Figure 1) the course of which can be followed using IR and, in this way, routinely functionalities 
of 0.2-0.25 mmollg (by UV determination of Fmoc) can be obtained. 

a 	 b 

WNyNHNHFmOC 

0 

a) DIEA (leq), triphosgene (3eq), DCM, somcate Ihour; 
b) FmocNHNFI2t  (2.5eq), DCM, sonicate 2 hours 

Figure 1 

'Corresponding Author: Tel +0044 131 650 4720, Fax +00 44 131 667 7942, email R.Ramageed.ac.uk  
Fmoc-hydrazine is prepared according to the method outlined in Zhang, Z. E.; Cao, Y. L.; Hearn, M. W. 

Anal. Biochem. 1991, 195, 160-170. 

0040-4039/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. 
P1!: S0040-4039(99)01219-8 



The C-terminal residues, Fmoc-protected amino aldehydes, were derived from Fmoc-amino acids as 
previously reported .20,2' These were loaded onto the linker, in the presence of DIEA, in good yields 
based on start and end functionalities (Table 1). 

Compound 	Loading Level (%) 	Loading Time (Hours) 
Fmoc-(L)Ala-H 100 5 
Fmoc-(D)Ala-H 70 5 
Fmoc-Phe-H 90 5 
Fmoc-Trp-H 100 4 
Fmoc-Asp(OtBu)-H 90 5 

Table 1 

To determine the extent, if any, of racemisation taking place under cleavage conditions (Figure 2), the 
stability of Fmoc-phenylalaninal semicarbazone to TFA treatment was checked (Table 2). It was 
proposed to use pyruvic acid exchange to convert the semicarbazones into aldehydes. This step was 
also examined for racemisation (Table 2). For each set of compounds identical tic, MS, IR, 'H and ' 3C 
NMR were also obtained. 

Compound (c gJlOOnal DMF) Mpt (°C) 
Fmoc-Phenylalaninal Semicarba.zone (Initially) -24.70  (0.288) 144-145 
Fmoc-Phenylalaninal Semicarbazone (TFA Treated) -24.00  (0.325) 143-145 
Fmoc-Phenylalaninal (Reduction of Weinreb Amide) -43.30  (1.146) 100-102 
Fmoc-Phenylalaninal (Pyruvic Acid Exchange) -41.80  (0.467) 102-103 

Table 2 

a 	

+

NH2 NH N=NHFmoc 

YWNYNH -N< 	 OH 
%—r'H5 '—NH Fmoc H+ 0 

C6  H5  
a)TFA/H20 (9:1), 1.5 hours 

Figure 2 

As a final check, the test peptide sequences Fmoc-Phe-Val-(L)Ala-H and Fmoc-Phe-Val-(D)Ala-H were 
synthesised. It has previously been reported 22 that racemisation in a peptide aldehyde, containing three 
residues, or more, will be indicated by more than one signal for the aldehydic protons in the NMR 
spectrum. For each of these peptides only one signal (at 9.50 ppm for the L-isomer and at 9.34 ppm for 
the D-isomer) was observed. 
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A series of test peptide semicarbazones have been prepared to assess the success of this method (Table 
3) and these were subsequently converted to the corresponding peptide aldehydes (Table 4). Among the 
sequences prepared was an inhibitor of caspase 324  (final entry, Table 4). 

Secluencet Yield1  Mass' (Found) Mass (Caic) 	AAA (24 Hrs) 
Fmoc-FV(L)A-sc 25 599.21 (MW) 599.71 	Phe 1 l.00, Vai l  1.00 
Fmoc-FV(D)A-sc 24 599.37 (MW) 599.71 	Phe 1 0.91, Vai l  1.09 
Fmoc-GAKGF-sc 40 763.46 (M-H)Na 763.83 	G1y2 1.86, A1a1 1.09, 

Lys0.98 
Fmoc-HLDIIW-sc 27 1082.04 (MNa) 1082.23 	Asp il.03, 11e20.96, 

Leu )  1.09, His0.88 
Ac-AAVALLPAVL 	29 2079.52 (MNa) 2079.41 	Asp 1 l.14, Glu1.02, 
LALLAPDEVD-sc Pro2  1.92, A1a65.68, 

Va132.80, Leu65.99 

Table 3 

Sequence Yield Mass1  Mass 	AAA (24Hrs) 	NMRt 
(Found) 

Fmoc-FV(L)A-H 50 542.61 542.65 	Phe 1 l.16, Va1 1 0.86 	9.50 ppm 
(MW) 

Frnoc-FV(D)A-H 56 654.29 654.66 	Phe 1 l.13, Va1 1 0.87 	9.34 ppm 
(M*CF3CO2 ) 

Fmoc-GAKGF-H 62 761.74 761.98 	G1y21.86,A1a 1 1.lO, 	9.34 ppm 
(M-H)K2  Lys 1 0.97 

Fmoc-HLDHW-H 38 779.66 779.94 	Aspil.04, 11e20.96, 	9.29 ppm 
(MW-Fmoc) Leu1.09, His 1 0.88 

Ac-AAVALLPAVL 50 1998.16 1998.35 	Asp, l.07,G1u 1 1.05, 	9.36ppm 
LALLAPDEVD-H (M-H) Pro2  1.90, A1a65.6 1, 

Va133.10, Leu65.80 

Table 4 

In conclusion, this methodology is indeed very effective in producing peptide C-terminal semicarbazones 
and aldehydes with no epimensation occurring at the C-terminal chiral centre. 

The suffix -sc has been adopted to indicate that the sequence is the semicarbazone of the C-terminal aldehyde. 
* Yield quoted is based on theoretical maximum based on Fmoc-loading on completion of the sequence and is 
calculated for isolated product after purification by preparative HPLC. 

All masses were determined using a Perseptive Biosystems Voyager MALDI-TOF mass spectrometer. 
'Yield quoted is for isolated product after purification by preparative HPLC. 

The signal quoted is that for the aldehydic proton and was the only signal observed in that region. 
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