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ABSTRACT 

The renormalisation group approach to problems - involving 

scale- invar iance is briefly reviewed. Then, using renormalisation 

group ideas ? Lnd techniques, various scaling phenomena are studied 

directly in terms of the scaling properties of the configurations or 

patterns that underlie them. 

(i) we study the universal scaling properties of configurations of 

block-spins near the critical point of an 0(n)-symmetric ferromagneto 

as characterised by the block-spin probability density function 

(p. d. f .). Critical scaling properties of this p. d. f. are obtained 

for n>2 and d=2+e within a perturbative calculation for small e. 

A non-perturbative approximation to the renormalisation group 

transformation is used to calculate the p. d. f. at the transition of 

the d=3 XY model (n=2). Then we carry out a Monte-Carlo simulation 

of this model on the ICL Distributed Array Processor (DAP), which 

supports the result of the calculation. our results suggest that 

universal scaling features of the underlying spin patterns should be 

revealed in some characteristic distribution of spin angles; we 

discuss the possible role played by topological excitations 

(vortices) at the d=3 XY transition. 

4 

we study the problem of, percolation in terms of scaling 

properties of the underlying clusters. Following a recent 

controversy regarding the scaling behaviour of the mean number of 

clusters, we present numezical evidence for the validity of the 

0 



ABSTRACT (continued) 

currently-accepted scaling picture. For our finite-size scaling 

analysis we use a purpose-written fast parallel -cluster-counting 

algorithmp implemented on the ICL DAP. A noise reduction scheme is 

adopted to suppress the considerable fluctuation in the numerical 

data. A clear discrepancy with the controversial scaling picture is 

thus established. 

(iii) we study scaling in a model of random epidemic growth. From 

numerical simulations, we find that the interface between healthy and 

infected sites exhibits both static and dynamic scaling properties. 

Results are in close agreement with the predictions of a 

recent ly-proposed Langevin equation for interface growth, from which 

universality classes have been extracted using the dynamical 

renormalisation group. We thus identify the essential 

large-distance, long-time physics of the epidemic model. 
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RENORMALISATION GROUP APPROACH TO SCALE-INVARIANCE 

1.1 Introduction to scale-invariance 

This thesis is about problems which involve scale-invariance 

through the formation of patterns which look the same on different 

length scales. Examples include (i) phase transitions and other 

critical phenomena in many-body systems and (ii) processes of growth 

and aggregation. 

At the critical point of water (T=6470K, p=217 atmospheres) for 

example, where the distinction between liquia and gas disappears, 

density fluctuations develop in the form of co-existing droplets of 

liquid and bubbles of gas on scales ranging from the size of one 

molecule to the size of the container. Statistically, the picture of 

such a system looks the same on all length scales. Contrast this 

with, say, the problem of the large-scale motion of ocean waves which 

is essentially uncorrelated with the small-scale molecular structure 

of the water. 

Problems in physics with many length scales are more difficult to 

solve than those like the ocean waves, which are confined to only a 

narrow range of length scales. The renormalisation group (RG) is a 

general method for dealing with such problems. It was first 

introduced as a technical device in quantum electrodynamics to get 
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rid of (renormalise) certain unphysical infinities in the theory.. It 

happened to lead to many physically-equivalent definitions of the 

physical electric charge (coupling constant) differing only by a 

choice of length scale. 

KG Wilson (1971a, 1971b) realised its potential for pr*oblems with 

many length scales. In his iterative version, at each step the 

degrees of freedom associated with the smallest length scales in the 

picture (Hamiltonian) are "eliminated" and their effect is 

incorporated into a new, but physically-equivalent, picture of the 

remaining degrees of freedom. The change in the smallest length 

scale is a scale transformation x-*x'=Xx and the change induced in 

the Hamiltonian is a renormalisation group transformation (RGT) 

H-H'(X). 

Scale- invar iance may then be described fruitfully in terms of 

f ixed points of the RGT. It means roughly that af ter the scale 

transformation x-o-xl the transformed Hamiltonian is the same as the 

original Hamiltonian. The scale-invariant system is therefore 

described by a fixed-point Hamiltonian H* with the property that 

under the scale transformation H*-'-H*. 

The aim of this introductory chapter is to review briefly the 

ideas of scaling and the RG that form a background to the work 

presented in chapters 2 4. The set up of this chapter is the 

following: in section 1.2 we describe scaling and universality as 

they appear at phase transitions. I have chosen the context of phase 

transitions- in ferromagnets to do this because their intrinsic 

symmetry makes them easier to think about. The liquid-gas transition 
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would serve the same purpose; moreover it is a remarkable fact that 

even quantitatively, many such superficially distinct systems share 

the same (universal) critical behaviour. 

In section 1.3 ' we shall outline the emergence of the scaling 

hypothesis by which scaling may be understood as the'consequence of a 

single characteristic length scale - the correlation length ý- 

diverging at the critical point. On the way we discuss the ideas of 

Widom scaling and Kadanoff blocking. In section 1.4 we introduce the 

ideas of Wilson's RGT as the physical and mathematical refinement of 

Kadanoff blocking. - It is seen as a natural formalism in which both 

scaling and universality arise explicitly, as well as a powerful tool 

for calculating critical propertiqs. 

Section 1.5 outlines some techniques of field theory# mostly for 

chapter 2. After a brief description of the 'field formalism that 

allows us ' to perform systematic calculations perturbatively, we 

indicate the way in which renormalised field theory techniques can be 

used to control calculations near the critical point. The connection 

of these techniques with Wilson's RGT is then exposed. Finally, in 

section 1.6 we set out the plan of the remaining chapters in the 

context of these introductory ideas. 

1.2 Phase transitions in Magnets, critical exponents, scalinq 

and universality 

Ferromaqnetism 

In zero magnetic field h and above temperature Tc=10440K, iron has 

no magnetisation M. When it is cooled below Tc it becomes 
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spontaneously magnetised. Nickel behaves similarly at Tc=6320K. 

Iron and nickel are examples of ferromagnets. we understand 

ferromagnetism as follo%Js. 

The source of magnetism is the magnetic moments of the electron 

spins; M is the average magnetic moment of the sample. Electron 

spins tend to align themselves due to their quantum-mechanical 

exchange interaction. This tendency to order competes with the 

tendency to disorder due to thermal fluctuations. At high 

temperatures the spins are randomly aligned -and so M=O. At zero 

temperature all the spins lie parallel to each other and so M=Mmax- 

The temperature Tc marks the onset of co-operative alignment of the 

spins throughout the material. 

Scaling near Tc 

Now M goes to zero smoothly as T approaches Tc from below. 

Experimentally this behaviour seems power-like: 

M� (1.2.1) 

where ^1 means "behaves like". 6, a critical exponent, is 0.34(2) 
. 

for Fe, 0.33(3) for Ni, i. e. the same to within experimental error 

(experimental values are taken from Ma (1976) p. 12). (1.2.1) exhibits 

scaling behaviour in the sense that the equation stays the same under 

the scale changes (T-Tc)-*, X(T-Tc), M-*X8M 

When iron is at T=Tc then M=O but if we switch on a small magnetic 

field h, the -spins align to the field direction and M scales with h 

like 
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frl '� kT (1.2.2) 

where the critical exponent 6 is 4.2(l) for Ni. (1.2.2) is invariant 

under the scale changes h-Xh, M-, -N'/6M 

As T-*Tc the isothermal susceptIbility X= (Mjah) I'T for h=O 

diverges as a power-law 

(T-7,, ) >T (1.2.3a) 
C, 

^OP 
(1.2.3b) ( 

C, 
T 

y=1.333(15) for Fe, 1.32(2) for Ni. Similarly the specific heat C 

at h=O diverges like 

- Cý 
T, 

) -rc, (1.2.4a) 

Tc, - -. r -T- (1.2.4b) 

Ct is -0.12(l) for Fe, -0.10(3) for Ni. 

In addition to the thermodynamic exponents above, we can define 

two other exponents describing the space correlations of the critical 

spin fluctuations. The correlation-function G(x) is defined by 

& (X) <ES (X) SS Co) (1.2.5) 

where s(x) is the local magnetic moment at x and Ss is its value 
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relative to the average. G(x) can be measured for example by 

inela; tic scattering of slow neutrons. One then finds that for large 

distances x, G(x) varies like 

- X/ý 

where E, ýhe correlation length, measures the range within which 

spins tend on average to be parallel to each other. The onset of 

long range order at Tc is marked by the divergence of & with a 

power-law singularity 

ev 
T Fc, (l. 2.7 a) 

I. L. (TC, -T) 
-r < Tc, (1.2.7b) 

with v=0.7 for both Fe and Ni. For 0(n)-symmetric systems below 

Tc, ý so-defined is infinite; instead it can be def ined as a 

crossover length for the behaviour between T=O and T=Tc (see e. g. 

Amit 1984). 

At T=Tc, G(x) falls off much more slowly than exponentially, like 

G 00 (1.2-8) 

where n isvery small, about 0.1 for Fe. 

Scaling laws 

The critical behaviour at Tc therefore is characterised by the 

nine exponents Apart from the relations 
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cz = 01 
1 

ýr 
Z 

ý-, 
(1.2.10) 

and 

I 
-: (1.2.11) 

experiments support other relations: 

+ .2 

(1.2.9)-(1.2.15) are called scaling laws. Evidently, only two 

exponents are independent. 

Universality 

Also striking is the observed universality of exponent values 

amongst diverse systems like magnets, alloys and fluids which have 

different bulk properties and even critical temperatures. re and Ni 

are isotropic ferromagnets with different critical temperatures that 

share the same critical exponents. However, YFe03 is a uni-axial 

magnet which has different exponents from Fe and Ni (it shares the 

same exponents as. those describing the liquid-gas transition), as 
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have magnets whose moment interactions are restricted to 

2-dimensional planes. Thus the internal spin symmetry and the space 

dimensionality of interactions are relevant to critical behaviour. 

In addition, a change from short to long-range (dipolar) interactions 

will alter the exponent values. The implication then is that, modulo 

these rather general featu*res, critical behaviour' is insensitive to 

the detailed nature of the inter-particle interactions. 

The observed scaling laws inspired the powerful scaling hypothesis 

(section 1.3) whose proper understanding, together with that of 

universality, became possible by the RG formulation (section 1.4). 

1.3 Widom scaling, Kadanoff blocking and the scalinq hypothesis 

Widom scalinq 

Widom (1965) found a way to reproduce the scaling laws involving 

the thermodynamic exponents Cc', Ct, B, y', y, S. He hypothesised 

that near the critical point the singular part of the free energy 

F(T, h), the part responsible for critical behaviour, is a generalised 

homogeneous function, i. e. 

0 

F (t L) F (t, k) (1.3.1) 

where t=(T-Tc)/Tc is the reduced temperature. Using standard 

thermodynamic relations it follows that all the above exponents can 

be written in terms of the two unknown parameters a and b. This 

induces relations between the exponents which are just the scaling 

laws. 
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Kadanoff blockinq 

Kadanoff (1966) extended the understanding of scaling laws by 

giving a physical explanation of (1.3.1) for the Ising model in terms 

of how a sysýem could behave under a blocking transformation. He was 

then also able to derive the remaining scaling laws involving the 

ýorrelat ion exponents * V, V TI. 

Starting with an Ising model in d-dimensions with 

nearest-neighbour coupling J and magnetic field h, he imagines 

dividing the lattice into blocks of side L sites. Near Tc the 

correlation length is very large, and so if L<<& it is assumed that 

all the spins in a block would be mostly up or down. He then argues 

that one could treat a block as a single effective spin, again either 

up or down, and that there exists effective parameters JL (or tL) and 

hL with which one could write an effective Hamiltonian for the block 

spins in Ising form. 

This means that the free energy per block f (tL, hL) has the same 

functional form as the original free energy per site f(t, h) so that 

L4 (tk) (1.3.2) 

To get Widom's scaling form from this physical picture, Kadanoff 

proposed 

= Li (].. 3.3) 

kLL Ir k 
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Then 

1. C-t) Q 

which is Widom's hypothesis with X=Ld, u=ad, v=bd. 

To re-express the magnetic energy (h I s) as (hL I SL) using 
sites ýUtkc 

(1.3.4)t the block-spin SL must be defined as 

ýr 

L= 
L_ 

2 Sz (1.3.6) 

Ce Week 

Within Kadanoff's block-spin picture It is then easy to derive the 

following result for the correlation function (1.2.5) 

-1 (A .2C4 -14-) 
6- (Lx)L 

-b) -=LC, 
(x) -q (1.3.7) 

valid if x Is large. Choosing L=x gives the. scaling foim 

a 0-4 
G(x 

) -& 
)x-S (-6 xu-) (1.3.8) 

and a comparison with the scaling forms (1.2.6)-(1.2.8) leads to the 

identifications 

14 (1.3.9) 

(. +c1.. 1) (1.3.10) 

Therefore, via u and v, v and Tj are related to the thermodynamic 

exponents and the remaining scaling laws (1.2.14), (1.2.15) follow. 

10 



(Kadanoff argued the result VI=V on slightly weaker grounds in terms 

of the regularity of tL(t) at t=O). So if we could wOA out u and v 

by explicitly constructing the transformations (1.3.3), (1.3.4) then 

we could calculate all the critical exponents. 

Kadanoff: blocking exposes- the connection between coarse-graining 

spins and scaling properties at the critical point. Howdver, it 

involves assumptions that are hard to justify physically. For 

instance, interactions less direct than between nearest neighbour 

block-spins would be generated by blocking. Furthermore, a 

block-spin would behave like an Ising spin only near T=O. Near Tcp 

spin fluctuations on all length scales up to the correlation length 

would wash out the discreteness of the block-spin even when L<<ý. 

Finally, Kadanoff had to assume the special transformations (1.3-3)f 

(1.3.4) in order to recover Widom scaling. On account of these 

fairly uncontrollable approximations, Kadanoff blocking is not a very 

useful tool for calculating exponents; as with most real-space 

techniques, it is difficult to compute systematic corrections. 

However it does form the basis for Wilson's momentum shell 

renormalisation group (section 1.4) and provides this with a 

physically intuitive interpretation in terms of real-space blocking. 

Scaling_hypothesis 

This hypothesis (Fisher 1967) is a more appealing statement of the 

ideas behind Kadanoff blocking. It states that all singular 

behaviour comes from the long-range correlation of spin fluctuations 

near Tc. Mathematically it can be expressed by saying that the 

divergence of the correlation length is responsible for the 

singular dependence on IT-Tcl of physical quantities and that ý is 
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the only relevant length near Tc; physical quantities depend on 

T-Tc only through their dependence on The temperature 

dependence of a physical quantity can then be understood from the way 

it behaves under a change of length scale, arT idea already explicit 

in Kadanoff blocking. 

Scaling laws then follow directly from dimensional 'analysis. 

Dimension here is defined in terms of scale transformations. For 

example, the free energy per site f(t, h) has dimensions of 

(length)-d; in other words, under the scale *transformation x-*x'=Xxt 

f-*f'=X-df. Dimension so-defined is often called anomalous dimension 

da- In general however, it is not the same as the dn of naive 

dimensional analysis; da is defined only "locally" i. e. with respect 

to a particular region of parameter space such as the locale of 

T=Tc, h=O. The exponents u and v defined by the transformations 

(1-3.3), (1.3.4) are examples of anomalous dimensions near the 

critical point. 

Now if we take h=O, the scaling hypothesis implies f(t)= function 

of ý, F(&), so that 

F (t/ý) =ýI 
Putting arbitrary X= ý gives 

Ad, 

and hence dv=2-CL, reproducing (1.2-15). 
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Another example is the magnetisation M below Tc. From the 

definition of the correlation function (1.2.5) and its behaviour at 

Tc (1.2.8), we see that at T=Tc and h=O M has anomalous dimension 

da=1/2(2-d-n). Thus, according to the scaling hypothesis and 

analogous to (1.3.12), at criticality the 'singular behaviour of M 

Arises from the divergence of ý like 

I) (4-z+ 

and hence B21/2v(d-2+11), consistent with (1.2.12), (1.2.14), (1.2.15). 

Other scaling laws follow similarly, and thus are simply conditions 

for the consistency of (anomalous) dimensions near the critical 

point. 

The scaling hypothesis already contains the recipe for 

understanding universality as well. Short..! range, system-specific 

correlations are irrelevant to critical behaviour. In addition, we 

see that scale- invar iance arises at Tc because & is infinite and 

there is no relevant length parameter. 

The most successful framework in which'-to discuss the scaling 

hypothesis is the RG (section 1.4), which focuses on the behaviour of 

the correlation length. 

1.4 Wilson's "renormalisation group" 

Wilson (1971a, 1971b) extracted the good physics from Kadanoff 

blocking. First, the discrete block-spins are replaced by continuous 

coarse-grained variables -sL(2E) restricted to have fluctuations only 

13 



on length scales >L (here, we take s to be a scalar). This may be 

done by defining 

SL S Q) 
1ý4 

V 'V 
L 

in which V is the lattice volume and the s(h) are Fourier components 

of the local spin variables s. Qi). Then sL(k), the Fourier transform 

Of sL(20, given by 

14-ýk. x 

zrv 

1,2 e, 
LW 

x 

is zero for k> 1/L (where k= Jt I). Qualitatively, SL(20 is the same 

as a block-spin of size L, centred at' the point x. Next, instead of 

two parameters tL and hL, an infinite number of L-dependent 

parameters is included in the effective Hamiltonian HL(sL(2E))- 

Finally, a recursion f6rmula (the RGT) is derived which determines 

HbL(s} from HL(s). The RGT is briefly outlined here. 

The renormalisation group transformation Rb 

Here we give a short description of what a renormalisation group 

transformation ýoes. We refer to the large literature on this topic 

(e. g. Wilson 1971a, 1971b, Wilson and Kogut 1974, Ma 1976, Wallace 

and Zia 1978, Amit 1984) for fuller discussion of the ideas and their 

implementation in practice. 

Consider a large number of probability distributions (P) for the 

SLW - Any distribution is specified by a set of parameters and we 

can associate each P with a point p in a parameter space. This 

parameter space can be defined by the set of all points 

14 



11ý (ul t U2 0-13 P .... ) where the ui are coupling constants specifying the 

effective Hamiltonian HL, and then 

f 

, e, - cxF (- ý, ) (1.4.3) 

A RGT is a transf ormat ion Rb f rom P. to P' (represented by jj and 

III respectively) so we write 

(1.4.4) 

Rb Is constructed as a (refined) Kadanoff blocking followed by a 

scale change by a factor b. The Kadanoff blocking Is implemented as 

an integration of the distribution P over Fourier components SLQ! ) 

with momenta in the shell I/bL <k< l/L This downgrades the 

spatial resolution of spin variations to bL. Then in the scale 

change, the surviving Fourier components sLW with k< 1/bL are 

relabelled sL'(kl) by shrinking the system size V by a factor bd 

(ýI=bk, VI=V/bd) and rescaling the spins by a factor ýb- Thus the 

block size remains the same, a fact which is essential to the 

recovery of scale-invariance. we may then define P' by 

I 

V.. /- 44 (0 Eyp(- 4) (1.4.5) ') -Z L 
p 

Cx? 
(-RL 

L 

i) =ýI bL4 

I 

SL( b5L(") 
and' then 41 is defined by writing HI in'the same form as H. Before 

rescaling, HI is just a refined version of Kadanoff's effective 

Hamiltonian for blocks of size bL. The set of Rb (1<b<00) is called 

(perversely) the renormalisation group and the group property RbRb'U 
-1 Rbb'Ji holds only if ý%b=by for some constant y. It would be more 

15 



appropriate to call Rb an "effective coupling transformation" 

(Ravndal 1976). 

Mathematics of Rb 

The connection of Rb to critical behaviour is made on studying 

fixed points 4* of Rb defined by 

o* (1.4.6) 

For 11 near 11* 'we write 11=11 * +611 where 611 is small. Then 

III- 
V4 

Rt 

if 0(611 2 terms are ignored RbZ is a linear operator and in 

principle we can determine its eigenvalues and eigenvectors. 

Denoting the eigenvalues of RbI by byj and the eigenvectors by ej, we 

have 

jj 

4J (1.4.8) 

Ii 

where the tj are the coefficients in the expansion of 611 in the 

eigenvectors. Now simplicity arises if for example we suppose Y11Y2 

>0 (all other yj's < 0) and b is large, then 

ON 

If tl: ýtVOp RbI611 -" 0 as b increases and so V -0- 11*. The subspace 

tl"ýtVO defines the critical surface of the set of all points 

pushed to the fixed point by Rb- This is just standard mathematics 
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of fixed-point analysis. 

Iýhvsics Of R9 

The physics in all this enters as follows. Consider a ferromagnet 

at temperature T in a magnetic field h. Its parameter space, denoted 

JI(T, h), contains couplings which are smooth functions of T and h 

since they describe local properties of blocks'. The crucial 

assumption linking critical phenomena to Rb is that U(T=Tc, h=O) is a 

point on the critical surface. Then for T close to Tc and h close to 

0, the smoothness assumption means that tlP the distance to the 

critical surface along the temperature eigenvector el, is 

proportional to (T-Tc), while t2o the distance to the critical 

surface along the field eigenvector e2p is proportional to h. Hence 

we have 

4% ý3 
ACT-T, ) b 

Critical exponents are related to the two independent exponents yt 

and Yh, properties of the RGT near the fixed point ji*, as follows. 

First, the scale change k'=bk, sLQi')=b-"YSkLQ0 identifies y as 

the (anomalous) length dimension of sLW- From (1.4.2) we find 

st L(2E')=b-y+d/2 sLQE) and so y-d/2 is the length dimension of sL(a)- 

In section 1.3 we saw that near criticality M has anomalous dimension 

1/2(2-d-TI) to get the c6rrect'length scaling (1.2.8) of G(x) at Tc. 

Thus we must choose the special value y=y * where 

c; 
j: 2Ii) (1.4.11) 
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to get the correct critical correlation function. Another way of 

stating this is to say that the fixed point equation (1.4.6) is an 

eigenvalue equation for eigenvector jj* and y* is the special value 

of y in Rb that admits a solution with eigenvalue 1. The critical 

exponent Tj is thus related to the fixed point 4* of Rb- 

In a similar way we see that when xl=x/b the magnetic field h near 

criticality must transform to h'=bl/2(2+d-ýn)h in order that the 

(invariant) magnetic energy hLd JSLM may be rewritten h'Ld I*sL' W 
x xf 

Comparing with the RGT equation (1.4.10) identifies 

CCZ+ (1.4.12) 

Finally, the correlation length 4 transforms to ; '=4/b when 

X'=x/b. Hence from (1.2.7) tI =bl/ý)t. Comparing with the RGT 

equation (1.4.10) identifies 

I 
(1.4.13) 

The last two equations are exact analogues - of the identifications 

(1.3.9), (1.3.10) of the exponents u, v describing the Kadanoff 

transformation via (1.3.3), (1.3.4). The exponents Y3, Y41 .... <0 

of Wilson's RG transformation then describe corrections to Widom 

scaling, Induced by the "iirelevant" eigenvectors e3, e4,.. -. (or 

lomarginal" if yi=O). 
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Scalinq and universality from Rb 

All the assertions of the scaling hypothesis concerning the 

dependence of variý)us - quantities on (T-Tc) and on h follow from 

(1.4.10)-(1.4.13). This can be seen as follows. 

The distribution PI is equivalent to the distribution P as far as 

random variables SLOO with k< l/bL are concerned. For these 

variables the RGT just represents a change of variables s-+s', 11-*111 

in our description (the parameter space) of the physical systemt 

analogous, say, to a transformation to a rotated co-ordinate system 

useful in other fields of physics. Such transformations are. most 

useful when the Hamiltonian is invariant or else contains a small 

symmetry-breaking term which transforms in a simple way. The simple 

form (1.4.10) for the RGT arises when we look at a ferromagnet near 

U(TC, O) on large length scales. The symmetry here is 

scale-invariance. It is attained at J1(TcfO). 

Now we can view (1.4.10) in an active way, as a law of 

corresponding states which sets up a correspondence between a 

ferromagnet, with couplings tL and the same ferromagnet with different 

couplings III as measured in the same parameter spacd co-ordiriate 

system. From such a correspondence we can construct the dependence 

of various quantities on the parameters 11. 

For example, the correspondence for magnetisation M(U(T, h)) takes 

the form 
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m= tz (Z 
l//t4ý 

Cr) k) ) 

ZA- 1 
A 

For T=Tc and h=O we set b=h-l/yk and as h tends to zero we obtain M 

-IV hl/S with 

ch-a--i 
S (1.4.15) 

For h=O and T=Tc we set b =t-v and for small T-Tc we obtain M Aw tS 

with 

I Oz 
(1.4.15), (1.4.16) are consistent with the scaling laws 

(1.2.12)-(1.2.15). 

Indeed, by writing (1.4.10) as 

I. Jý ýl 

ýu I=( b/ý ) Yý 
e, + ýv b ez 

we now see explicitly that the dependence of quantities on (T-Tc)# 

via the correspondence UI <---) UIis controlled by the simple 

behaviour of the correlation length ý'=&/b under a 6hange of length 

scale, as advocated by the scaling hypothesis. 

Finally, universality appears naturally within the RG framework. 

Many different systems at criticality are deemed to be represented by 
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points on the critical surface, all of which are therefore pushed to 

the same f ixed point ]I* by Rb- Since critical exponents are related 

to properties of Rb near U*, all of these materials share t4e same 

critical exponents. 

Beyond the universal fiature of exponents it becomes clear, 

however, that the amplitudes of the various asymptotic quantities 

governing behaviour at the critical point are not universal. 

Nevertheless, we find as many relations between the amplitudes as 

between the exponents so that in many cases there are only two of 

these non-universal amplitudes that are independent. We should 

stress "universality modulo two scale factors" or "two-scale-f actor 

universality" in qualifying the universality of our description of 

critical behaviour. Appearing first as a conjecture (Stauffer et al 

1972), this notion is now understood also within the RG approach 

which describes the critical behaviour in terms of (usually) two 

relevant quantities and allows explicit construction of the amplitude 

relations (see Amit (1984) for example). We will meet examples of 

non-universal amplitudes in later chapters. 

As well as providing an understanding of scaling and universality, 

Wilson's RG provides a tool for calculating exponent values. However 

it is very difficult in practice to implement exactly the definition 

(1.4.5) for Rb and various approximation sch. emes are usually 

introduced. one successful perturbative scheme is the E-expansion, 

outlined in section 1.5 and applied in section 2.3 to a model field 

theory of critical behaviour in d=2+c dimensions. 

non-perturbative approximation called Wilson's approximate recursion 

formula will be discussed in section 2.4 and applied in section 2.5 
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to the XY model in three. dimensions. 

1.5 Renormalised field theory and critical phenomena 

This final review section is a very short discussion of the field 

theoretic techniques adopted in chapter 2. A detailed discussion can 

be found in Amit (1984) for example. Without formal definitions 

etc., all we are going to do here is to introduce the Hamiltonian 

functional X[ý] 
and motivate its relevance to the description of 

critical behaviour on physical grounds. Following an outline of how 

the RG a la quantum field theory may be used to control perturbative I 

calculations near the critical point, we will expose the connection 

with Wilson's RG in critical phenomena. This will set the scene for 

the perturbative calculation described in section 2.3 which we 

control using the dimensional regularisation and minimal subtraction 

scheme of t'Hooft and Veltman (1972). 

Field representations of H 

To illustrate the ideas, our starting point is the classical 

Heisenberg model, with an 0(n)-symmetric interaction? described by 

the (zero-field) Hamiltonian 

Z 
1.13 

(1.5.1) 

in which the (ji) are unit n-component vectors sitting at the sites i 

of an infinite d-dimensional lattice; Vij is a short-range positive 

translationally invariant interaction. n=1 is the Ising model of 

uniaxial. magnets, liquid-gas systems or -of binary alloys; n=2 is the 

XY model of magnets with an easy plane or of superfluid 4He; n=3 
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describes isotropic ferromagnetism. This model has a phase 

transition above two dimensions (above one dimension if n=l). 

Motivated by the existence of powerful well-developed tools in 

field theory,, one may choose to work with a continuous spin density 

ý(x) rather than lattice spins Si (x is here abbreviated to x):. The 

lattice structure is ignored to a large extent; its only remnant lies 

in providing a natural momentum cut-off A for the Fourier 

decomposition of the field ý(x) 

0 
(x) =ý. 

A 
ct 

dke, Z k. x ý (k) (1.5.2) 

where A is of the order of (lattice spacing)-l and means 
Jjk 

so, 

O-C k<A (X) might be constructed from the Si by 

coarse-graining over a few lattice spacings. It is here allowed to 

range from -cc to +cO in magnitude. 

One possible continuous representation of the Hamiltonian (1.5-1) 

is given by the Landau expansion 

Kfl =9aAxj4+ 01 

j -P, Vý 

where (B, ýCt)2, ý2 =I (OCt)2,04=(02)2 and the dots 

include 6 2(VO)2, OLz 
(I VO)4 terms like 0j0 etc. which are to be 

neglected. (1.5.3) can be derived by an exact Gaussian transformation 

of (1.5.1) (Hubbard 1972). However, as far as critical behaviour is 

concerned, the form of (1.5.3) and the neglect of the dots can be 

motivated by physical considerations as follows. 
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The lattice Hamiltonian (1.5.1) is invariant under the action of 

the O(n) group so we construct the field Hamiltonian by including all 

terms consistent with this symmetry; we get the expansion (1.5.3) in. 

powers of the field and its derivatives. In the critical region 

ý(x) is small and slowly varying so we keep only the lowest 

non-t; ivial powers. The derivative term 1/2 (Vý)2 mimics the 

interaction Vij which acts to align the spins (- the factor 1/2 is 

arbitrary since we can rescale without changing the physics). The 

potential energy density V(ý) "/2r ý2 +1 /4 lgý4 mimics the local 

potential seen by a coarse-grained spin ý(x) and-acts to constrain 

its magnitude (- the temperature dependence enters through r(T) 

(T-Tc) whose sign controls the structure of the minima of V(ý)). 

a Ultimately, neglected terms (representing shorter-range 

fluctuations and 6-spin, 8-spin etc. interactions of the lattice 

spins) must be shown to be irrelevant in the RG sense - they 

represent interactions whose coupling constants tend to zero under 

the action of Rb- It is the irrelevance of short-range fluctuations 

to critical behaviour that also motivates the neglect of the lattice 

structure when the correlation length ý>>(lattice spacing). We will 

use the representation (1.5.3) to discuss renormalised field theory. 

(1-5.3) is an expansion of X 
about the disordered state for T> 

Tc. In section 2.3 another equivalent field representation of 

(1.5.1) called the non-linear a model will be introduced, which is 

an expansion of 
X 

about the completely ordered ground state at 

T=O. 
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Perturbative calculations 

Given a field Hamiltonian 
A[fl 

, quAntities of interest such, as 

the correlation functions can be calculated as functional integrals 

weighted by the Boltzmann probability exp(-k ): 

xt4 (1.5.4a) 

where Z is the partition function 

Z S. D e. (1.5.4b) 

Here fDI denotes the functional integral over all field 

configurations ý(x). Integrals such as (1.5.4) can be evaluated 

perturbatively by expanding exp(-g/41 ý4) in powers of g, using 
I 

standard Feynman gra0h techniques to keep track of the terms 

generated. The rules relating graphs to algebraic expressions are 

detailed in Amit (1984). Here we only illustrate by example. 

Taking n=l, the field propagator is 

G (xjý) = X. j 
4- ;zj 

= CT (X) j) -2Z 0 -; z) 6ý (z) 
j) -ý o (j7») 

-. 1 %l 
SýG. (x)z, ) Cr. (7 (1.5.5a) 

or, in momentum space, 
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=-+ 
k 

Cr 
C; L 

+I. 5.5b) 

a. 0F 
Here Go(x, y) is the free-field propagator (for the classical or . 

mean-field theory g=O) which is calculable exactly from (1.5.4) as a 

Gaussian integral. We find that 

fl 
,00 ký 4- -r 

Note that all momentum integrals are cut of f by A, which appears as 

the natural momentum scale for all dimensional parameters in X. 

Naive dimensional analysis shows that 

E) AA/A (1.5.7) 

We find that the expansion of physical quantities near the critical 

point in powers of g is accompanied by the dimensionless ratios 

(A/rl/2)4-d or (A/q)A-!! d. Clearly, d=4 plays a special role. If d< 

4 these ratios become large in the critical region; perturbation 

theory breaks down and the classical theory is invalid. If d>4 

the opposite is true. 

Perturbative approach to Rb 

Wilson and Kogut (1974) and Wallace and Zia (1978) discuss the 

implementation of the momentum-shell renormalisation procedure Rb, in 

f ield theory. Under Kadanoff blocking, the cut-off A in (1.5.2) 
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becomes A/b, restored to A after rescaling the momenta. The 

integration of exp(- ýP, ) over the field components ý(k) with A/b < 

k<A can be done perturbatively, in the spirit of (1.5.5). A new 

Hamiltonian of the form (1.5.3) is calculated and recursion formulae 

are derived for the parameters r and g. To first order O(g), no new 

couplings are generated. A non-trivial fixed point, (r*, g*) of O(C) 

can then be found, where E=4-d, and a fixed-point analysis as 

outlined in section 1.4 yields estimates of critical exponents to 

O(e). When C<0 the only physical fixed point (with g* >. ý 0) is the 

trivial one (r*, g * )=(O, O). The special role of d=4, which we noted 

above, now becomes apparent in the RG language of f ixed points. It 

is the dimension at (and above) which the exponents take on the 

classical (mean-field) values associated with the trivial fixed-point 

** 
(r �g )(O, O). 

Technically, generating an E-expansion in this way is not very 

efficient. For example, at O(C 2)a ý6 coupling is generated and the 

calculation, becomes correspondingly more involved. However, this 

approach has been used in many practical applicatigns (see e. g. 

Aharony 1976) and forms a bridge between the block-spin approach to 

renormalisation and the more powerful field theoretic approach, which 

we discuss now. 

Renormalised field theory method 

This method makes contact with the RG as f irst used in quantum 

field theory (QFT). The field formalism of statistical physics 

outlined by (1.5.2) et seq is very similar to QFT. The former enables 

a systematic treatment of thermal fluctuations, the latter of quantum 

fluctuations. In QFT, where one normally works ý in d=4, we have an 
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action instead of a Hamiltonian and Green's functions instead of 

correlation functions. When n=l, (1.5.3) is equivalent to a 

(Euclidean) gý4 model of interacting bosons with (bare) mass m 

1/2 r We can apply Feynman graph techniques to calculate physical 

quantities in both these contexts. 

However, one important difference is that no natural cut-off A 

exists in QFT. Consequently we should set A= co in QFT. But then 

the factors ln(A/m) or ln(A/q) that are found to accompany the 

expansion of Green's functions in powers of the coupling g are 

infinite. As we said in section 1.1, the renormalisation group was 

invented to cope with these ultra-violet (large-momentum) 

divergences. 

To do this, one makes the d=4 theory finite by (for example) 

putting in a fictitious cut-off A by hand. - This step is Called 

regularisation. The ultra-violet divergences as A-*oo are then 

absorbed into the definitions of (renormalised) physical parameters 

mR and cIR (as well as a new field ýR) such that quantities expressed 

in terms Of mR, 9R are finite, order by order in perturbation 

theory, as A-+co. This step Is the renormalisation. The limit A-0-w 

may now be taken safely. The physical coupling 9R can be defined as 

the effective coupling at some momentum scale ji. What is important 

here is that, in describing the physical theory, one is' free to 

choose the momentým scale p at which 9R is defined. 

What ' relevance has this procedure to critical phenomena? We 

recall that for d<4, perturbative calculations about the classical 

theory break down as one encounters the infra-red divergences due to 
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long-wavelength fluctuations at criticality. Technically, the 

problem arises because although A is the natural momentum scale in 

the theory, it 'is far removed from the momentum scales of interest. 

One encounters the (large) ratios (A/rl/2j4-d or (A/q)4-d as r -b- 0 

(T -I- Tc) and q -* 0 with Af ixed. In QFT where d=4 one encounters 

ln(A/m) or ln(A/q) as A-o-co with m and qf ixed. The analogy is 

appealing. In perturbation theory we can tame the infra-red 

divergences of critical phenomena by taming the A-), (* limit a la OFT 

i. e. we renormalise the theory so that it is finite for all d<4 as 

A-1-co, even though we are not really obliged to set A=(D. E=4-d 

emerges as a necessary expansion parameter to force the infra-red 

divergences to appear as expansions in powers of Cln(A/r 1/2) or 

eln(A/q) whence they can be dealt with order by order. Calculations 

then become meaningful via a double expansion in g and E. 

Having done this, we get a controllable perturbation expansion 

written in terms of the renormalised parameters rR and 9ROI) - By 

choosing 4 such that rR 1/2 
q<<ji<<A, we can eliminate the unphysical 

strong cut-off dependence (corrections are written in terms of U/A) 

and 4 becomes the natural momentum scale of the renormalised theory. 

The dimensionless coupling uRmU d-4 
9R is the effective coupling at 

the momentum scale 11. Choosing a different 'momentum scale VI at 

which to renormalise the theory corresponds to a RG transformation in 

the spirit of Wilson's. To effect this, we can palrameterise the 

momentum scale like 11=e-TUO; as T-1-co then 4 -1- 0 and we get the 

effective coupling on the large length scales in which we are 

interested. 
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The critical behaviour of the system is governed by the fixed 

points UR* Of this procedure 
'(Brezin 

etal 1976, Amit 1984), which are 

given by the solutions of 

/IIÄ 

(a 
LL F, 

) 

Z. 

analogous to the-recursion relations constructed from Rb- The fixed 

point of interest is the solution approached by UR(p) as 11 -1' 0 (the 

"infra-red stable" one). When (1.5.8) Is satisfied, the scaling 

behaviour of correlation functions, critical exponents etc. can be 

extracted from the renormalisation group equation (see Brezin et al 

1976, Amit 1984) describing the differential behaviour with respect 

to ti of the renormalised theory. This version of the RG is 

computationally more powerful than the perturbative approach to 

Wilson's Rb - e. g. the equation for 9R does not depend on the ý6 

coupling. Finally, in renormalised perturbation theory, universality 

manifests itself in the independence of the asymptotic behaviour near 

uR* on the initial value of the bare coupling g (within its domain of 

attraction), and on the particular scheme adopted for renormalising 

the bare theory. 

As an alternative to the cut-off regularisation scheme outlined 

above, we can use the powerful dimensional regularisation and minimal 

subtraction scheme of t'Hooft and Veltman (1972), in which integrals 

ate simpler to do because the cut-of fA is set to co at the 

beginning. We adopt this scheme in section 2.3; technical details 

are presented in the context of the calculation there. 
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1.6 Preview of Chapters 2-4 

The rest of this thesis is ab6ut various problems involving 

scale- invar iance, to which we can apply the foregoing ideas and 

techniques. The title is "Configurational studies of scaling 

phenomena" because the main approach has been to study scaling 

properties of the patterns that underlie - or show themselves 

explicitly in - these problems. 

In chapter 2 we s. tudy the universal scaling properties of 

configurations of O(n)-invariant block-spins at the critical point of 

a ferromagnet. These configurations reflect the universal patterns 

of short-range order (s. r. o. ) that underlie observed critical 

behaviour - "short" on a macroscopic scale, that is - and the aim of 

our study is to determine their nature. 

The behaviour of block-spin configurations is characterised by the 

probability density function (p. d. f. ) for a single block-spin. By 

exploiting the field theoretic techniques outlined in section 1.51 we 

obtain the critical scaling properties of this p. d. f. for n>2 and 

d=2+c within a perturbative calculation for small E. Then we focus 

attention on the d=3 XY model (n=2). Wilson (1971b) obtained a 

non-perturbative approximation to the renormalisation group 

transformation R2. Following the work of Bruce (1981) on Ising-like 

systems, we use this approximation to calculate the p. d. f. at the d=3 

XY transition. We then carry out a Monte-Carlo simulation of this 

model whidh supports the results of the calculation. We discuss the 

implications of these results for the nature of the patterns of 

s. r. o. 
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Chapter 3 is devoted to a study of scaling in the problem of 

percolation. Here scaling properties at the percolation threshold 

are discussed naturally in terms of the underlying cluster geometry. 

We address a recent controversy regarding the mean number of clusters 

in 
. 

d=2, whose currently-accepted scaling behaviour has been 

challenged by Jug (1984). 

Using a specially written fast parallel cluster-counting 

algorithm, we carry out a numerical study of the mean number of 

clusters in bond percolation on square lattices and in site 

percolation on triangular lattices of various sizes up to linear size 

L=32. Then a finite-size scaling analysis of the data yields 

evidence in support of the current ly-accepted scaling behaviour# as 

expressed by the critical exponents ap and Vp for percolation. 

Further evidence is obtained from our numerical results for critical 

amplitudes, which are in excellent agreement with a prediction of the 

current ly-accept ed theory, derived using arguments of finite-size 

scaling and two-scale-factor universality. 

Several phenomenar associated with processes of growth and 

aggregation, lead to the formation of patterns with interesting 

scaling properties. In chapter 4 we examine a simple model of random 

epidemic growth first studied by Richardson (1973) who called it 

G[p]. The parameter p measures the virulence of the epidemic. 

From numerical simulations of this model, we find that the growth 

is characterised by two independent scales, describing the dynamic 

and static scaling properties of the epidemic interface. The 

parameter p controls the size of the scaling region. Then we note 
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that our results are in close agreement with the predictions of a 

Langevin equation, proposed by Kardar et al (1986) as a 

phenomenological description of a growing interface, and which these 

authors note can be. solved exactly within a dynamical RG treatment 

for the case d=2 which we have simulated. We discuss the physical 

content of this equation and thus identify the essential 

large-distance, long-time physics of 'the model G[p]. Universal 

scaling properties of the surface are then understood in terms of the 

ideas we have set out in chapter 1. 

0 
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CHAPTER 2 

SCALING OF O(N)-INVARIANT BLOCK-SPIN DISTRIBUTIONS 

This chapter presents a study of the universal scaling properties 

of probability distributions for block-spins near a critical point. 

These distributions carry information about the universal patterns of 

short-range order (s. r. o. ) that underlie observable critical 

behaviour - "short" on a macroscopic scale, that Is - and the aim of 

our study is to determine their nature. Here we will be working with 

the 0(n)-symmetric model of ferromagnetism introduced in section 1.5. 

Section 2.1 explains the motivation for our study more fully and 

sets up the notation. In section 2.2, in a direct extension of the 

configurational description of scaling in Ising-like systems (Bruce 

1981), we formulate the scaling theory of O(n)-invariant block-spin 

distributions. A perturbative calculation in section 2.3 for n>2 

in d=2+e yields an explicit scaling form for the universal 

block-spin distribution at the critical point Tc of O(E). We 

interpret the result and extend the calculation of the first two 

non-trivial moments to O(e 2 The limitations of such a calculation 

are discussed. 

In section 2.4, following Bruce (1981), an approximate 

non-perturbative renormalisation group (RG) recursion formula is 

derived for the block-spin distribution, and is applied to the d=3 XY 

model (n=2) in section 2.5. Its fiýed-point solution is 
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non-Gaussian, indicating the presence of non-trivial patterns of 

s. r. o. at criticality, but it does not reveal their nature. A 

Monte-Carlo simulation of this model is reported' in section 2.6, 

which reproduces the result of the previous section remarkably well. 

We conclude that a future investigation should consider some angular 

description of the spin configurations. Section 2.7 summarises our 

study and discusses the possible role played by topological 

excitations at the d=3 XY transition. 

2.1 Introduction to block-spin distributions 

In chapter 1 we saw how scaling and universality play central 

roles in the successful description of critical phenomena. The RG 

provides the mathematical framework in which these ideas appear 

naturally, as properties of a RG transformation near its fixed point. 

A deeper physical understanding of scaling and universality begins 

with the realisation that the critical point is not characterised by 

the behaviour of local co-ordinates (spins) - seen at length scales 

comparable with the lattice spacing - but rather by the collective 

behaviour of large aggregates (block-spins) of local co-ordinates - 

seen at length scales L>>lattice spacing. one might then postulate 

that the universal aspects of critical point singularities are 

reflections of universal aspects of the underlying collective 

co-ordinate configurations, and that scale- invar iaece at criticality 

is a reflection of a (statistical) self-similarity within such 

coarse-4rained pictures. 
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To formulate this idea mathematically, we describe the local spins 

using the field representation ý(x) introduced in section 1.5 and 

then describe the collective critical behaviour by a coarse-grained 

field configuration IL(x),, where L is the spatial resolution to 

which we have coarse-grained. 

In chapter 1, in the context of *lattice spins, we mdt two 

qualitatively similar definitions of coarse-grained co-ordinates. 

Following Kadanoff, as in (1.3.6), we may define 

V(J-) 
(2.1.1) 

where V(L) is a hyperspherical block of radius L centred on the point 

x, and aL is a scale factor left arbitrary for the moment. If we 

choose aL4V(L)-l then ý-L(20 Is just the instantaneous value of the 

local spin field spatially averaged over the block V(L). 

Alternatively, following Wilson as in (1.4.1), we may choose to 

def ine 

CL 

where aA is another scale factor, the set (ýQj)t 1111<A, } are 

Fourier components of the local spin field 
_ý(x), 

afid the integral is 

over the hyperspherical Brillouin zone of radius A. As already 

noted in section 1.4, the two representations are physically similar 

if we identify A --, 1/L (Bruce 1981). Definition (2.1.1) is adopted 

in section (2.3) where calculations-are done in configuration space. 

Definition (2.1.2) is adopted for the derivation of the RG recursion 
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formula described in section 2.4. 

Now the statistical behaviour of (or' of 1L) may be 

characterised by the probability density function (p. d. f PA( P-) 

(or PL(§-)), by which we mean the joint p. d. f. PMýl ýn) Of 

components of a single block-spin Alternatively, exploiting the 

0(n) symmetry of the spin interactions, one can instead consider 

2n PA(ý ) where ý2 =I (ýa)2. In the symmetric phase T> Tc where the 
0421 

0(n) symmetry is manifest, P, &(ý) is a function of 1_11 alone and 

these two distributions are related via 

AZ Xo 
(A '" 

(2.1.3) 

where Sn=211 n/2 /r(n/2) is the surface area of the unit sphere in n 

dimensions. Even for. T<Tcp PA(ý 2) is useful because it can be 

meaningfully compared to the distributions PA (V)(ý2 ) in finite 

systems of volume V for which there is no spontaneous magnetisation M 

but where the symmetrised moment <1ýAj>-*M as V-*co. The universal 

features we wish to study are expected to emerge in these 

distributions when A-' and & are large. 

It is useful to introduce the dimensionless ratio of moments 

- )7*> 

Cr 
< (ýA 

(2.1.4) 
A&<2 +A 

GA ranges from 0 to 1 according to whether the symmetric 

distribution pA(ý2) lies in the "Gaussian" (disordered) regime 

(2.1.5a) 
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or the 116-function" (ordered) regime 

I 

ýV. ) =E (e- 1) (2 1. Sb) 

and thus effectively characterises the nature of the block-spin 

amplitude fluctuations. In (2.1.5) we have made dpecific (and 

different) choices for the scale factor aA. We will discuss choices 

for aA in the next section. 

Finally, we note some relations between moments of the block-spin 

p. d. f. 's and thermodynamic observables. It is clear from the 

block-spin definitions (2.1.1) and (2.1.2) that the moments <I, &> and 

<IL> are simply related to the magnetisation M by 

C(A 

and 

(ýL> O'L 

Then we note the following connection between the limiting behaviour 

of the moment <ýA2> as A -- 0 and the susceptibility of the system. 

The definition (2.1.2) implies 

w 

; CM 

where the correlation function GCL(1(2)(k) is defined by (1.5.4) in 

Fourier space, and we have used translational invariance to do one 

momentum integration.. Restricting our attention to T>Tc, the 
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zero-field isotropic susceptibility X is given by the fluctuation 

theorem 

C. t) 

CZ-- 1 

Consequently, in (2.1.8) we expand GCICI(2)(k) for -small k and, 

providing A is small, we may keep only the leading term k=O to get 

the relation 

&M, 
< 2. 

S4 /\ 
4 

X-1 

AA 

The analogous result for "ýýL 
2ý, is simply 

&V 
< ý2, ý = q' Sa 

L L --:; c6 
Lj 

We are going to use these results in the following section. 

2.2 Scalinq theory 

(2.1.10) 

(2.1.11) 

Here we discuss the scaling behaviour of the distributions and 

their moments near criticality. To express the idea, discussed in 

section 2.1, regarding the scaling and universal aspects of the 

coarse-grained configurations ý, &Qi) when A-' and ý are large, we 

write the following scaling form for PA(ý) as A-' and ý -l- w. 

Acý) ý ciý p( CA (2.2.1 a) 

A (2.2.1b) CA Cý" aA 
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in which scaling arises when we choose a power-law-form for aA. ao 

is a non-universal constant included to take account of the 

non-univqrsality of the scale of spin co-ordinates. 6 is related to 

the critical exponent n (see (2.2.4) below). p(I-*)(SA_l/ý) is a 

universal p. d. f. for z- the superscripts (±) refer to the cases 

T-*Tc± respectively. It is written as a function of 

to take account of the non-universality of the scale of space 

co-ordinates - we mean that, for assemblies within the same 

universality class, configurations are statistically similar only 

when their correlation lengths are equal as measured on the scale of 

their respective block sizes. We recall the idea of "universality 

modulo two scale factors" mentioned in section 1.4. 

We may take (2.2.1) as a scaling ansatz for coarse-grained 

configurations near criticality. It is equivalent to scaling 

assumptions for the multi-spin correlation functions 

Ga Ct 
(N) (xlt----,, xN) which enter the moments of PA(ý) as in 

1*11 N 

and therefore its universal structure can be justified from 

RG arguments (Bruce 1981). Using (2.2.1) it is easy to show that the 

following scaling forms hold for the moments <(ýAcl)m> and the ratio 

GA 

A- (2.2.2) 

, -ý (t) I G4 G( A- (2.2.3) 

where and 
'G"(-t) 

are universal functions. When' T>Tc, by 

matching the asymptotic form of (2.2.2) for m 2, A' -* 0 to th .e 

result (2.1.10), in which we put X ^ý &2-11 for large ý, we identify 
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the exponent 6 of (2.2.1b) as 

(2.2.4) 

When T<Tc and n> lo the zero-field susceptibility (longitudinal or 

transverse) is infinite (Brezin and Wallace 1973) so we cannot 

exploit the relation equivalent to (2.1.10) for the connected moment. 

Instead, we exploit (2.1.6) in which M, -., ý 1/2(2-d-TI) for large ý, to 

recover the same identification (2.2.4) for 6 when T<Tc. 

We now discuss choices for the scale factor a, &, until now left 

arbitrary. Near TcP for the purposes of deriving a RG recursion 

formula for PAW in section 2.4, it will be convenient to choose 

- 

6 

(2.2.5) 

since we will have cA=ao, independent of A, and then PAQJ) takes the 

simpler form 

F, (i) = ct 0? 
(0,0 ý) A71 (2.2.6) 

73 

in which the dependence on A enters only via the ratio A-'/&. The 

moments (2.2.2) then become functions of A-'/& alone, universal up 

to the arbitrary choice for. the constant ao - which may be taken In 

order that <ýA2>=n, for example). Hence as ý-*<; O, PA 'tends to a 

universal fixed-point distribution P* independent of A, which 

characterises the universal configurations of short-range order at 

the critical point. In this limit, GA-1-G *, a universal constant. 
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To illuminate this choice, note that the scaling form for PL(I) 

analogous to (2.2.1a) may be written with the replacements 

CA'*CL,, 2aoaL-lLe and A-'-+L. Via (2.1.7) and (2.1.11), this leads to 

the identification iý-1/2(2+d-ij). When expressed in terms of aLl 

the choice (2.2.5) therefore becomes 

-ý 
62 + 

(2.2.7) 

Then the definition (2.1.1) for IL is entirely consistent with the 

definition of the Kadanoff block-spin via (1.3.6), (1.3.10) and with 

the special choice (1.4.11) for y* required for convergence of the 

Hamiltonian to a fixed point under Wilson's transformation Rb- 

I 
In other contexts (when we do not know a, priori the value of TIt 

for example) we may choose aL'--V(L)-' , IV L-d which leads to the 

scaling form 

-A, ^- Ci) FAJ 

(2.2.8) 

This choice then allows the dete. rmination of the exponent ratio 

8/V"2l/2(d-2+n) 
via the large-L dependence of moments of PLW as L/ý 

-* 0 (Binder 1981). 

Finally, from (2.2.8) and the relation (2.1.3), the equivýlent 

scaling form for the symmetric distribution PL(ý 2) follows directly 

when T>Tc. A similar scaling form for T<Tc can also be argued from 

The result may then be written 

f( 4-2) = 

Q. aL 
L 

c. L 
coL (2.2.9) 
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We shall obtain such a scaling form explicitly as the result of the 

calcuiation described in the next section. I 

2.3 A perturbative calculation for n>2 and d=2. +C 

When n>2 and dimension d>2, the 0(n)-symmetric spin system 

with Hamiltonian (1.5.1) spontaneously magnetises in the temperature 

range O<T<Tc(d) where Tc(d) -1- 0 as d -* 2 (Mermin and Wagner 1966). 

Close to two dimensions - we write d=2+e - we can develop an 

e-expansion for critical properties as an expansion in powers of T 

that leads to a Tc=O(C) (Brezin and Zinn-Justin 1976). We are going 

to do this here to O(C) for the o(n)-symmetric block-SPin p. d-f - 

PL (ý 2) 
and to O(C 2) for the ratio of moments GL (cf. equation 

(2.1.4)), in an attempt to describe critical coarse-grained 

configurations in low dimensions. The reason foi choosing PL(ý 2) in 

preference to PL(P-) is a technical point which will become apparent 

when we discuss infra-red divergences in perturbation theory. 

Since our calculations will be done in configuration space, we 

start with the block-spin 
_IL 

defined by (2.1.1), and calculate the 

block-spin p. d. f. PL(ý 2) 
via 

I 

F. ( 419 S+U% A, Zký It ^. - ( k) (2.3.1) 
L., -64 ; hr P, Fl- 

in which the characteristic function (k) < has an L> 

expansion in cumulants of the block-spin p. d. f.: 

15b 
(Z #IV , k) :2 

kzi 
(2.3.2) 
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Ck denotes the , cumulant 'c(ýL 
2) ký,, 

c which is given in terms of the 

unconnected moments llko"', (ýL 2) k> by 

Ck 
k 

(- 1) 
%/1. 

/14kc 
-=2 -- 

2T (2.3.3) 

k! k T. I" : -* I k.! 
where indicates a sum restricted to terms with Iki'--k. From 

(2.1.1), Ilk is given in terms of the local field ý by 

(kýk -c2k (2.3.4) 

ZZI vcý) V( L) =1 
V(L) /Ak 

where we have chosen the scale factor aL to be V(L)-l; as discussed 

in section 2.2, this will lead to the explicit appearance of 
B/V in 

the scaling form for PL(ý 2 (cf. (2.2.9)). Then we proceed by 

calculating the local field average < ........ > as an expansion in 

powers of 

Non-linear a-model 

In order to carry out this expansion, we use a field 

representation of the lattice model (1.5.1) called the non-linear 

a-model (see Amit (1984) for a general discussion) whose partition 

function Z[ý] and Hamiltonian ýECJ] 
are given Oby 

ZcýI -� 
spý 

v(ýI-- 1) f-xf 
(--x) (2.3.5a) 

9E41 . ...... (2.3.5b) 

(2.3.5b) can be derived as the long-distance; low-temperature 

limit of (1.5.1) (Brezin and Zinn-Justin 1976). As in the ý4 

representation, the term 1/2( Vý)2 mimics the interaction Vij and the 
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dots refer to irrelevant (in the RG sense) higher-order derivatives; 

the local potential V(. ý) is replaced by the O(n)-invariant 

constraint ý2=1 to express the belief that at low temperatures, 

fluctuations in phase play a more important role than fluctuations in 

amplitude in the destruction of long-range' order. The temperature 

appears explicitly in (2.3.5b), allowing the expansion: in powers of T 

to proceed as a standard loop expansion (Amit 1984). 

Low-temperature expansion 

In the ordered phase the lattice spins Si fluctuate around the 

direction of spontaneous magnetisation and at low temperatures these 

fluctuations are small. It is then natural to write the vector ý as 

(I[, a) , where the (n-l)-component vector 1T represents the 

fluctuations transverse to the direction of spontaneous magnetisation 

<(Y>, and to expand in powers of it (Migdal 1975, Polyakov 1975t 

Brezin and Zinn-Justin 19761. 

First, the f ield a is integrated out of (2.3.5) using the 

constraint C-z - Next, we rescale 7r-*Tl/2, T, so that now 

ýZ( --T- ir 1- -I-w2. (2.3.6) 

2 Finally, we expand the partition function in powers of T7T To O(T) 

the result is 

NI ex p C- (2.3.7a) 

s 
4' )c V4 +. C. r7, ) 

CR 
(2.3.7b) 
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Note that we have discarded the factor (1-IT 
2 1/2 

which appears with 

fD1T to make the O(n)-invariant measur e 
fDý. This will be discussed 

shortly. Using (2.3.7) we calculate the local f ield average in 

(2.3.4) by a standard loop expansion in the interaction of O(T). 

UV diverqences, IR finiteness 

At and above two dimensions, we encounter ultra-violet (UV) 

divergences when we do this, unless we retain a cut-off A. But, as 

outlined in section 1.5, their elimination by renormalisation is a 

powerful way to analyse the critical behaviour near Tc, where 

effectively A=w at the momentum scales of interest. Brezin and I 

Zinn-Justin (1976) adopt the cut-off regularisation. 

It is computationally less cumbersome, however, if we adopt the 

dimensional regularisation and minimal subtraction scheme (t'Hooft 

and Veltman 1972). Since the renormalisation calculations for the 

non-linear a-model are presented and discussed in the papers by 

McKane and Stone (1980) and Amit and Kotliar (1980), we outline the 

scheme for the present calculation only very briefly. 

In dimensional regularisation, the cut-off A is set to co and a 

regularisation is provided by choosing a low enough dimension where. 

integrals are UV convergent (i. e. d< 2). Then one analytically 

continues to the values of d of interest (i. e. d> 2). The UV 

divergehces as e40 appear as C-poles. 

To see this in action in the present problem, we calculate Ilk Of 

(2.3.4) to lowest order in T. ýUsing (2.3.6), the local field average 
3 in (2.3.4) is expanded in powers of TIT2 to generate averages of 
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IT-f ields. With the free IT-propagator for (2.3.7b) 

L 

k2. 
(2.3.8) 

we find 

4y jýýk (2.3.9) 
Y(L) 

in which 

1 Xk x, j) k (n- )"r- [G 

In this simple calculation we have included no interactions. As 

emphasised by McKane and Stone (1980), the calculation of 

configuration-space correlation functions to O(T9-) is achieved by 

evaluating only (1-1)-loop graphs. 

The subtracted propagator Go(x-y)-GO(O) is UV divergent for d> 

2. In dimensions d<2 in which it is convergent it has value 

&( X- ), (ý ( 0) 

S4- 1 

(2.3.11) 

We, then take the RHS as the analytic continuation of the LHS to all 

C. The UV divergence as C -1- 0 appears as a simple C-pole. 

The minimal subtraction scheme eliminates this pole as follows. 

When the jx-yj-ýý in (2.3.11) is expanded in powers of Clnlx-yl and 

the renormalised quantities ýk R and (dimensionless) TR are defined 

at momentum scale 4 by 
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. i. 

-r" S. 
it - /14 

(2.3.12a) 

(2.3.12b) 

we choose Zl(TRPE) and Z2(TRPC) to eliminate all poles on the RHS of 

(2.3.12a) at each order in TR- 

The choices (McKane and Stone 1980) 

(2.3.13a) 

&A- 1)-Fg +o (2.3.13b) 

accomplish this to O(TR)P giving the finite expression 

R (T. - (X - ý)ý = k ('VN - I) -rý, Gy. /" IX -j I 

+. 0 
Cq--rp, 

, 
-1-, z' , 'ý) 

(2.3.14) 

as a double expansion in TR and 

At this point we remark 'that the factor (I-IT 2 )_ 1/2 that should 

appear in the measure of (2.3.7a) can be exponentiat. ed into a term in 

4[ý] (see Amit 1984) proportlonal to the quadrat ically-divergent 

integral 

CDQ 
41j ek (2.3-15) 

The second term on the RHS, when evaluated in d<0 and continued to 

d>0, 'cancels the first term, so the factor (1 'IT 2 )- 1/2 can be 

discarded in dimensional regularisation. 
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We also remark that since we are expanding about a state of broken 

O(n) symmetry, we expect (Goldstone 1961) additional IR divergences 

to arise from the massless 1T-propagator (2.3.8) - in statisýical 

physics language, IT represents spin-wave fluctuations at low 

temperatures and zero-mass corresponds to their infinite 

susceptibility below Tc. Note ho,; iever that the expression (2.3.10) 

for Xk(T; x-y) is actually IR finite. even for d<2 because it is the 

subtracted propagator Go(x-y)-GO(o) that appearý -in the perturbation 

series. This persists to higher orders, as we shall see, and Is a 

consequence of Elitzur's theorem (Elitzur 1979) which states that 

0(n)-invariant quantities are IR finite, order by order in 

perturbation theory. It is for this reason that we focus our efforts 

on the symmetric p. d. f. PL(ý 2 ); the calculation of PL(ý) encounters 

IR divergences unless an extra ad hoc IR regulator is retained 

throughout the calculation. (Brezin and Zinn-Justin 1976). 

One-10op expressions 

In order to locate the critical temperature Tc to O(C) we need to 

renormalise the theory to O(T2) (one loop). The extension of 

(2.3.10) to O(T2) is straightforward. The 4-point interaction of 

O(T) in (2.3.7b) is now to be included. Figure (2.1) shows the 

graphs which appear to this order with the corresponding algebraic 

expressions. We have neglected quadratically-divergent graphs in the 

manner of equation (2.3.15).. 

Evaluating the graphs, we find 

, 
Ak Z V(L., -ý(ýsJ, z 

s 4ýz )A, ür ý X, .... 9 2. 
) 

C--1 ICL. ) VC. ) 
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XI. .- ýr 

(n-l)Go(xl-yl) 

X 10 

(n-1)Go(0) 

QO 

xi ýI 
(n-1)2Go(0)2 

ox®r 

((n-1)2+2(n-1)]Gc)(0)2 

10 

. Xl -V 
1 

(-1/2T)2(n-I)Go(xl-YJ)Go(O) 

.x 1(: 
Do 

(-1/2T)2(n-1)Go(0)2 

I 

oil 

2(n-I)Go(xl-Yi) 2 

xf -31 
+2 perms. 

reiZ 

(n-1)2 Go(xi-Yl)roo(x2-Y2) 

+(n-l)Go(xL-x2)GO(Yl-Y2) 

+(n-l)Go(xl-Y2)Go(x2-Yl) 

xi 

2(n-l)Go(xl-x2)Go(x2-Yl) 

ic 
2. 

X, 31 
(n-1)2GO(xl-yl)GO(O) 

FIGURE (2.1). Graphs contributing to Ak(T; xlpx2tYltY2) 

at one loop (O(T2)] and corresponding algebraic expressions; 

a slashed line is a field derivative at the O(T) interaction 

vertex. 
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in which 

A, (-rj Ch- i) T Gý 

X2. ) + ýv (ýI-ý 1) -k Cxr 4 1) -cX, -ý il 
C7, 

o C-rz) (2.3.17) 

where Go(x-y) denotes the subtracted propagator Go(x-y)-GO(O). As 

advertised, this expression is manifestly IR finite. It is of course 

UV divergent for d>2. Renormalisation of Ak proceeds as for its 

lowest order version ýk. The extension of (2.3.13) to next order is 

(McKane and Stone 1980) 

#L 4 CT 2, ) (2.3.18a) 

-A - (2.3.18b) +C lit + OC 7z 0- it IL 0 

yielding the finite expression 

A (-r- X 

+k 
(-A- 

cz 

+ 

cl a. 
) ('k- 1) -Fjz; - 

[ ýU I X, -X,, 
l 4 ýtt I $-J,. I- ýýA I X, - ý, I-ý, ý, Ilcilz 11 

c) C-r 3) 
-r, a 

F- -r, f" s3) (2.3.19) 

51 



The critical temperature Tc in d=2+F- dimensions is identified 

with the fixed point coupling TR*- In analogy with (1.5.8), it is 

given by the solution of 

(2.3.20) 

The non-trivial solution is actually IR unstable - in contrast to the 

remarks in section 1.5 - but here the difference is because the 

coupling constant is the temperature, which is naturally a relevant 

variable (Amit 1984). From (2.3.12b) and (2.3.18a) one finds 

Tc., 

The results 

(2.3.21) 

It is now possible to derive an explicit form for PL*( 023 to 

O(C) . From (2.3.3), (2.3.9) and the O(TR) expression (2.3.14) we 

obtain the renormalised cumulants Ck to O(TR). Then, on substituting 

in the value of the critical temperature Tc from (2.3.21), we obtain 

the cumulants at criticality to O(C). The result is 

1-2 ), L VC L) Svc aX 

'C 

a 

0- 
A-a 

L) L) 

k> (2.3.22) 

Recall that V(L) is the volume of a d-dimensional spherical block of 

radius L. To the order we are working we may perform the integration 

over the block in d=2. Hence from (2.3.1) and (2.3.2) we find the 

fixed-point p. d. f. PL*(ý 2) to O(C). The result is 
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where 

(2.3.23) 

(2.3.24) 

For large block-size L, the logarithm divergps; following the 

remarks of section 1.5, we can resum into scaling form the 

perturbation series (2.3.24), or equivalently (2.3.14) for k=l and 

TR=Tc, by integrating the renormalisation group equation (RCE) for 

X, R(TR; px) at the fixed point of the coupling constant, here at Tc 

(Brezin et al 1976, Amit 1984). To see this happening, we construct 

the RGE by differentiating (2.3.12a) with respect to ji and using the 

independence of Xl(T; x) on U. We get 

where 

(2.3.25) 

C1L) 

and 

ýc C4iZ L- 
From (2.3.20) we have 

(2.3.13b), (2.3.21) we find 

B(TR*)20 by definition; 

(2.3.26) 

(2.3.27) 

rom 

oC (2.3 . 28) 
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With suitable normalisation, the solution of the RGE (2.3.25) at Tc 

can then be found: 

(2.3.29) 
lxl 

Since X, R(TR; x) is just the 0(n)-invariant local field propagator 

<ý(x). 
_J(O)>, 

we recall (1.2.8) to recognise 

(2.3.30) 

Proceeding as before, the above analysis amounts to the 

re-exponentiation 

A Co 
' L- L--> o4 

where co is a non-universal constant (which depends on the spherical 

geometry we chose for V(L)) and 

c2 F/; = (ý- 2. + 1) =I (2.3.32) +0 (S. ) 

In this way we are able to write the fixed point p. d. f. PL*(ý 2) to 

lowest order explicitly in a scaling form 

(2.3.33) fL ( P) = c,, LFC Co L ý' -I) 
that, from (2.2.9) with we expect it to display. 

The 6-function profile of (2.3.33) signifies that at O(C) the 

major agent restoring the symmetry at Tc is the fluctuating phase 
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rather than the amplitude (viz. (2.1.5b)). The scaling with L would 

indicate the presence of some self-stmilar structure within the block 

(cf. nesting of droplets in low-dimensional Ising systems (Bruce and 

'Wallace 1983)). However, the interpretation is not clear because 

PL(ý 2) 
contains no information on the nature of phase fluctuations. 

How does PL*(ý 2) 
evolve as C increases?. As C -* 2 we expect it to 

evolve into the "Gaussian" regime (viz. (2.1.5a)) characterising the 

s. r. o. at the Gaussian fixed point of the usual ý4 theory. In order 

to see the commencement of this evolution from the above analysis we 

have to go one order higher in c. 

In (2.3.22), the presence of cumulants Ck with k>I at this 

order prevents the consýruction of PL* (ý2) in closed form. However, 

one may calculate the moment ratio G* which characterises PL*(ý 2) in 

the manner we discussed in section 2.1. We require Tc to O(C 2); the 

result of a two-loop calculation (Amit and Kotliar 1980) gives 

TC, o ctý (2.3.34) 

Then at Tc and for k=1 and k=2, we write the result (2-3-19) to 

O(C2); from (2.3.16) we construct the moments Pl"ýL 2> and 11224ýL 4> 

and then we calculate G* to O(C 2) from the definition (2.1.4). 

After some algebra - mostly the integrations over the block V(L) - 

we obtain the result 
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+ 4it7 e, (vý 41 -) - -I)o 3) +0 CIE (2.3.35) 

42 (VA.; L) % 
As a check dn the calculation, it is possible to verify thate 

analogous to (2.3.31), Ul' exponentiates correctly to the scaling 

form Ul --- L-2B/V with 

I 

-? 

Similarly, we note that 

independent of L. 

(-A 
- 1) 

112 ^, l L-4B/V or 

CE 3) 
(2.3.36) 

equivalently G* is 

The result (2.3.35) describes the evolution of G* from 1 for small 

C. The prefactor containing 47r2 is specific to the choice of a 

hyperspherical block V(L). In general G* will depend to some degree 

on the geometry of the block, although it will be independent of the 

type of lattice underlying the continuous representation (2.3.5b). 

At this order, beyond the provision of results displaying an 

explicit dependence of PL*(ý 2) 
on dimension d, one must not ask too 

much of the non-linear Cr-model in regard to accurate numerical 

predictions for the Interesting case d=3. For thatt one would 

require at least one higher order and an interpolation with the 

results from an F-=4-d expansion. However, one may question whether 

perturbation theory really captures the nature of spin configurations 

at Tc, given that it allows the IT-f ield to take on all values in the 

range (-(*, +oo) - the functional integral in (2.3.7a) should really be 

restricted to the range IIIIE(0,1). Thus, perturbation theory knows 

nothing about the global topology of the system and we must look for 

2 some non-perturbative information to determine PL. (ý ) more fully. 
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4 

2.4 Non-perturbative recursion formula for block-spin distributions 

In order to escape the confines of perturbation theory in d=2+e 

dimensions, one can try to look for non-perturbative approaches to 

the study of PAM- 

In this section we are going to derive an approximate, 

non-perturbative RG recursion formula relating PA/2 to PA- This 

formula follows as a simple extension to O(n) systems of the formula# 

due to Bruce (1981), for ising systems (n=l); the level of 

approximation is that of Wilson's approximate recursion formula (ARF) 

for ýt 
A 

(Wilson 1971b), whose result we exploit on the way. We 

will derive Wilson's formula first. 

Wilson's ARF 

Consider the block-spin co-ordinate ý, &(x) defined in the Fourier 

representation (2.1.2), whose behaviour is described by an effective 

Hamiltonian RA* 
It will be convenient to choose the scale factor 

aA of (2.2.5). Wilson's ARF is a non-perturbative approximation to 

the transformation R2t defined in section 1.4, relating OXA, to 

yv 

A. 0-- 

To simplify notation we write 

-M 

-V and denote by 0%. the effective Hamiltonian for ý9. We start with a 

Hamiltonian of the form 
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Yo 
(2.4.2) 

O(n) symmetry 'implies that V9, is -a function only of ý9,2. V2, is 

equivalent to an infinite number of couplings (e. g. via the 

coefficients in iis Taylor series in ý92); this is the 

non-perturbative feature. SI 4nd c are constants which we will 

choose later on. 

In the spirit of the definition (1.4.5) of Rb (b=2), we split 

into two parts 

= ±<+> (2.4.3) . 

- where ý< and ý> contain the fluctuations with momenta k<A/2 and 

A/2<k<A respectively - and we integrate over the field > to obtain 

an eifective Hamiltonian for ý<i. e. 

->C+ 
el ID 

+ (2.4.4) 

Explicitly, we will then have 

-tc a 

(1ý4)L 
4 T: Cf4] 

(2.4.5) 

in which 

(2.4.6) 

where 
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+ (2.4.7) C. 4 

In (2.4.6) wer have normalised F(O) -to zero in order to discard the 

<_ independent terms in at 
. 

To get any further we have to make some approximations in (2.4.7). 

We will introduce Wilson's "phase cell" approximations, discussed in 

detail by Ma (1976). A la Kadanoff blocking, we Imagine dividing the 

system into blocks of side e- 2/A. Fluctuations within any block 

are due primarily to > (x), so the first approximation is that < M 

is constant over a block. 

Further, we suppose the high momentum part of ý(x) can be written 

+> (x) ýýw (2.4.8) 

where thL& z's locate the centres of the blocks. Wz(x) is non-zero 

only inside the block centred at z; it is the most localised 

wave-packet that can be constructed by superposing the Fourier 

component plane waves of Since there is no overlap of the 

Wz(x)ls between different z's, we write a statement of orthogonality 

si 
xw Ck) w, W= 

-sl 1 (2.4.9) 
z2 (ýZz 

in which the normali'sation 11 is to be chosen as the volume of a 

block - The functional integration in (2.4.7) then decouples into 

independent integrals 

S 
l> i' 

(. S ý2 

Z _CL (2.4.10) 
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From a similar orthogonality of ý> (X) with respect to 
< (X) 

(constant over the block z) we also find 

sd4x 
(2 . 4.11) 

The f inal app*roximat ion is to ignore the var iat ion of I Wz M 

over its corresponding block. Then (2.4.9), (2.4.11) imply that 

Wz(x)=+l over one half of the block and Wz(x)=-l over the other half. 

By choosing the constant c to be 

C=2 n[ S 4, ' 
( vw 

1 
(x» 

al 

one finds that the above approximations allow the integral 11 of 

(2.4.7) to be written 

-A 
EV (i <+i) 

4vt 
c 

(2.4.13) 

On substituting this into (2.4.6) and rewriting I as Q-1fddxp one 

< 
7. 

can incorporate F[ as an effective potential inside the 

space-integral in (2.4.5) I. e. 

E 4,4 j j4) 

where 

7-(o) 
and 

(2.4.14) 

(2 .4 . 15) 
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OL[ 

To complete the RG transformation, we rescale x and ý< according 

to the scale transformation (see section 1.4) 

(2.4.17a) 

ý- (. 2 - C(- 1) 0( (2.4.17b) 

With our choice of scale factor aA, ý' is just the block-spin 

co-ordinate ý9, +,. and we find - dropping the prime on x- the 

effective Hamiltonian 

I ý,, ] = XIS41)c ý J- C, (V4 (2.4.18) * 
+ Ve+, (fe4d 

where 

I 

(2.4.19) 

and 

(4) 
1 

(M 
(1 (CK. j) ' 

Vt+ 
1- cz -- 

:C( 0) 
(2.4.20) 

with i given by (2.4.16). 

In order to recast 
Rof into the same form as 

; te 
(equation 

(2.4.2)) - and thus to find a fixed point of R2 - it is clear from 

(2.4.19) that we must set 
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I=0 (2.4.21) 

an approximation which is not too severe, since in the dimension of 

interest, d=3, Tj is generally small (section 1.2). Then (2.4.20), 

Wilson's ARF, constitutes the result of one iteration of R2o within 

the approximations we have introduced. 

Recursion formula for p. d. f. 

Now let P9, (J) denote the joint 'p. d. f. for the components of a 

single block-spin We derive a recursion formula for P9,. 

Following Bruce (1981), we write the self-consistency equation 

(2.4.22) 

in which P"C is the p. d. f. for < and Pc is the conditional p. d. f. 

that given its first argument <, its second argument lies in the 

infinitesmal hypercube bounded by ý> and ý>+! it> thus satisfying 

the normalisation condition 

Sf PC, ') = : 1. (2.4.23) 

(fdý denotes the integration llfdýCt). Inserting (2.4.17b) into 
OL 

(2.4.22) and performing the integration over > yields the recursion 

formula 

(cq (2.4.24) 

Within the approximations of Wilson's ARF, one can work out the 

kernel PC in terms of the potentials VR " vz+,. It is easy to show 
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that, for a given field ý<r the Boltzmann probability exp(- xt ) 

factorises into a product over the blocks z, i. e. 

0C +V 

e. = co vý s+a^+ xT9,1 
at-f- -2 

(2.4.25) 

where the constant depends on O(n) symmetry and the 

approximation JWý(x)j=l imply 

FP rIW 
pr ( 041 (2.4.26) Cz2. '0 

for the single-block conditional p. d. f., so that 

- (jy -L Eve, (ý�+ ýI +v( iýI -ý> )] (2.4.27) 

From the normalisation. condition (2.4.23) and Wilson's ARF (2.4.20), 

the constant po is found to be 

te 

PO (2.4.28) 

For T=Tc, in the limit (large block-size) , Vg, tends to a 

fixed point V* which can be determined bý iterating (2-4.20). 

Correspondinglyr as asserted in section 2.2, P9, tends to P*1 

independent of the block-size. It is the fixed point solution of 

4.24) : 

F (4) =s4, F (, ) F, (2.4.29) 

in which PC* is the limiting form of (2.4.27)#(2.4.28) given by 
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2-4 v *Co(-, to - ec -, * 
cele) 

k(b) (2.4.30) 

The approximations inherent in (2.4.30) are essentially 

uncontrollable. However, we note the success with which Wilson's ARF 

accounts for critical point exponents in d=3 (Wilson and Kogut 1974), 

and remark on the very close agreement between estimates of P*(ý) 

for the d=3 Ising model from the recursion formula (Bruce 1981) and 

Monte Carlo studies (Binder 1981). It seems reasonable to expect 

fairly reliable results from (2.4.29), (2.4.30) in three dimensions. 

2.5 d=3 XY model: recursion formula study 

We proceed now to discuss the application of the recursion formula 

to a study of the classical d=3 XY model at criticality. The XY 

model is a model of magnets with an easy plane, and is also thought 

to describe superfluid helium. It is the first member (n=2) of the 

class of O(n) spin systems we have been considering. We are going to 

, 
(I) for calculate the fixed-point form P*(ý) of the joint p. d. f. pq 

a two-component block-spin defined by equations 

(2.1.2), (2.4.1). 

We saw how to do this in the previous section. We f ind the 

fixed-point potential V* by iterating equation (2.4.20), in which, 

under the approximation TI=O, we put CL=2-1/2 in three dimensions. 

Then we solve equation (2.4.29)* for P*(_I) with the kernel Pc* 

specified by (2.4.30). 

First we must specify a suitable starting potential Vo(ý)- To 

-1 study the critical behaviour we can, by equation (1.5.3), choose 
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V0C±) . t. .L / (2.5.1) 

where ro is an analytic function of T. The factor 1/2 is arbitrarily 

chosen; results should be independent of this choice. 

The fixed-point of the recursion formula 'for Vq, is obtained by 

locating the critical value roc of the parameter ro, such that, after 

a few iterations, the sequence of potentials VZ is sufficiently 

stable over, say, 9.1 iterations. If ro>roc, the sequence tends 

first to V* but eventually escapes into the Gaussian regime dominated 

by the term r02. If ro<roc, the sequence starts similarly but is 

then found to oscillate badly for large Z. The closer ro is to roc, 

the larger is 9.1 and the better is VZ an approximation to V* for 

large 9.. 

Numerical studies of the recursion formula for the d=3 XY model 

were first performed by Grover (1972). The calculations here a. re 

very similar. By O(n) symmetry, we need only keep track of Vg, as a 

function of z=-j $1. The recursion formula is rewritten 

2) iý v (Z) 
=- (2.5.2) 

where 

C 2-) JJA lzý + Ta za cc 5 

T ý-Z-t - ýý Q-0 xf 2.2 tL cc, 19 (2.5.3) 

The integrations were performed numerically in double precision by 

Simpson's rule, varying u from 0 to 4.0 in steps of 0.1, and 0 from 
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0 to IT in steps of 7r/32. Vg, (z) was calculated in double precision 

on a uniformly-spaced mesh of 41 points from z=O to z=4.0 with 

spacing 0.1; linear. interpolatiýn was used between mesh' points and a 

z6-extrapolation was assumed for z>4.0. This procedure was 

sufficient for three significant figure accuracy in V*. 

Using roc=-2.3290414.... rqsulted in a value of V9, (1.5) that was 

stable to within one part in 105 over the iterations from 9. =14 to 

Z=21. The iterate Z=17 was used as an estimate of V*(z), and is 

shown in figure (2.2). 

As a check, the thermal eigenvalue X=2yt was estimated from the 

deviations 6VZ(z)=Vg, (z)-V*(z) into the Gaussian phase, induced by 

temperature deviations 6r=ro-roc -v 10-12 above the critical surface 

ro=roc. For small deviations we expect the linearised recursion 

formula to yield the exponentially-growing solution (Wilson 1971b) 

9- 
iv 

t 
1: &t ýt (Z) (2.5.4) 

where the eigenfunction q(z) is independent of Z and ro. The 

expression 

E Vt+l 

1, vt 

then yielded the estimate 

ct3o 

stable in the last decimal place over the two it-erations 1=18 and 

t 

(2.5.5) 

(2.5.6) 
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FIGURE (2.2). Fixed-point potential 
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FIGURE (2.3). P*(OX) 
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FIGURE (2.4). P*( 02). 
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Z=19, and in close agreement with the value 2.931 obtained by Grover, 

(1972). 

By numerically integrating eqn. (2.4.29) we have obtained P 

as a function of z=jýj .. From P*(z) we have constructed the p-d-f- 

P* (ýx) by integrating over ýy, and the p. d. f. P* (ý 2) by uding* eqn. 

(2.1.3) with n=2. The resulting distributions are shown in figures 

(2.3) and (2.4), in which we have chosen to scale the spin 

co-ordinate such that <ý, 2ý,, =l and <ý 2 >=2, respectively. 

The quantity G*1 defined by eqn. (2.1.4), for the fixed point 

p. d. f. is a universal number and it has value 

^0 0. lý, 3 (2.5.7) 

Hence the distribution is non-Gaussian, signifying the presence of 

non-trivial, universal patterns of short-range order (s. r. o. ) at 

criticality, but it reveals no interesting structure. It suggests 

that the s. r. o. at the d=3 XY transition resides in some angular 

distribution of the spins, to which P*(z) is insensitive. 
4. - 

2.6 d=3 XY model: Monte Carlo study 

The Monte Carlo study discussed here was initiated as an 

independent check on the form of P*(ý2) derived in the previous 

section via the recursion formula (figure (2.4)). It serves as a 

direct' investigation of whatever short-range order there is at 

criticality. The principal aim was not to estimate 'critical 

exponents. 
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As with the work of the previous section, this work has two parts. 

First, we locate the critical temperature To. Then we sample. the 

distribution. PL(ý 2 
at Tc for various block-sizes L. Before 

describing these parts in detail, we outline briefly the Monte Carlo 

method which was implemented as an algorithm on the highly parallel 

ICL Dist;: ibuted Array Processor (DAP) at Edinburgh. See, for 

examplef Flanders et al (1977) for a general description of the DAP. 

The features important to this study will be mentioned in context. 

Monte Carlo (MC) method 

Reviews of MC techniques are found in Binder (1979) and Mouritsen 

(1984). The basic task is to estimate numerically the phase space 

integrals in the configurational average of some interesting 

observable 0(ý) of the system in equilibrium 

Oco e, - 
K 1ý1 

Ow 
ý. b ýc "Olt E01 (2.6.1) 

In the MC or importance sampling method, the solution is to set up an 

algorithm which randomly samples configurations ý in phase space 

- 
-al+j 

with probability CO 
.C reflecting the size of their 

contribution to the integrals in (2.6.1). Since these configurations 

are then correctly weighted, an estimate of (2.6.1) is given by the 

sample average 

M 
' oC) 

t, I 

over a large number M of sampled configurations. 

(2.6.2) 
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The correct weight PeqW is achieved as follows. From an 

initial configuration ý0, a Markov sequence ýn can be 

generated by specifying the Markov transition probability W(i-J) for 

the transition from ýi to ýj. If Pn(ý) is the probability of 

getting 0 after n steps, and if W(i-*j) satisfies detailed balancing 

i. e. 

Fet (4ý =W (ý ̀ý 0 PtL, C ý1) (2.6.3) 

then it can be shown that 

( ý) 
ots -& b6 (2.6.4) 

thus fulfilling our aim when n is large enough. 

Metropolis alqorithm 

The commonest realisation of such a w(i-bj), and the one we adopt 

here# occurs as the Metropolis algorithm (Metropolis et ai 1953). For 

the d=3 XY model it goes as follows. The Hamiltonian we use is 

Soo. 
(2.6.5) 

where (j} is a configuration of two-component unit vectors, K is the 

(reduced) coupling and the sum is over pairs of nearest-neighbour 

sites of a simple cubic lattice with cyclic boundary conditions 

imposed at all edges. Then we 

(1) generate an initial configuration of spins 

(2) generate a trial configuration (-S}i+l by, say, 
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randomly "hitting" 

(3) calculate the resu 

(4) take W(i-loi+l) 

one of the spins in 

ltant energy change 

if 

if >0 

and accept (2)i+*l accordingly. 

(5) go to (2) 

Step (2) is realised by choosing an angle 0 from the uniform 

distribution on (0,21T) and 

(cosO, sinO). This procedure er 

of unit length. Although the 

costly in computer space as the 

to be more than twice as costly 

then setting the trial spin to 

sures that the spins in (g)i+l remain 

spin representation (0) is half as 

spin representation (S), it turns out 

in computer time at step (3) where it 

is cheaper to calculate AýC directly in terms of the XY spin 

components. Savings in time prove to be the more valuable so we use 

(S} we note that a random number re[0,11 is required in step (4) 

when AX> 0; when r<C, the trial s pin is accepted. 

Time efficiency is increased on the DAP by updating several spins 

simultaneously, provided that none of them are coupled through the 

Hamiltonian (2.6.5). In addition, for lattices of linear size N< 

64, we enhance space and time efficiency by storing and updating 

(64/N)2 configurations simultaneously. 

The application of the cycle of steps (2)-(5) once for each and 

every lattice site constitutes one lattice sweep. For a 643 lattice 

of XY spins, the DAP algorithm executes 1.961 lattice sweeps per 

second i. e. 0.514 million spin update trials per second. This is to 
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be compared with 42 million spin update trials per second for the 

simulatiori of the Ising model on the same size lattice and on the 

same machine (Reddaway et al 1985); the la. tter simulation uses logical 

variables and operations only, so the comparisc. n -is not so 

unfavourable. 

Two problems are inherent to the MC method. They are those of 

reaching thermal equilibrium, particularly in the critical region due 

to "critical slowing down"# and sampling a sufficient number of 

(statistically independent) configurations so that averages have 

small statistical error. With the special features of the DAPI it is 

possible to overcome these problems simply by running for long times. 

A third problem is the finite size of the system whose bulk 

features are being simulated. In the task of locatihg Tc, this may 

be turned to advantage by the use of finite-size scaling (see e. g. 

Barber 1983). 

Locatinq Tc 

Initially, simulations at various couplings K were performed on 

lattices of linear size N=2,4,8,16,32 and 64 
.. 

The quantities 

monitored were the absolute magnetisation <111ý"N and the moments 

<ý2 ý'N and <ý4 : "N, where ý is the instantaneous magnetisation per 

spin. From an initially "cold" configuration, 10000 lattice sweeps 

were performed before taking data, sufficient to allow the system to 

equilibrate. Thereafter, data were taken every 50th lattice sweep to 

reduce the statistical correlation between sampled configurations. 
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Figure (2.5) shows the coupling dependence of the magnetis 
- 
ation 

MN(K)o4j§-Jý"N, and figure (2.6) shows that of the symmetrised 

susceptibility XNF'defined by 

I= N2 K(<f%-<IýI) (2.6.6). 71 
IvN 

obtained from relatively short runs. These curves are intended to 

provide only an indication of the location of the transition point. 

Figure (2.5) d-isplays the classic finite-size effect of rounding-off 

at a phase transition in the vicinity of K=0.45. An 

"eyeball" estimate from the position of the peaks in figure (2.6) 

yields KC=0.454 

With longer runs, a reasonably accurate estimate of Kc was 

"J 
obtained from a study of the cumulant ratio GN defined by 

4, V ýq>M &, j 
= 

r2 -ýý 5& 
ti 

(2.6.7) 

OV This GN pertains to lattices of linear size N, and is analogous to - 

though distinct from - ratio GA defined by (2.1.4) for sub-blocks of 

side ^0 l/A. Finite-size scaling arguments (Binder 1981) then show 

^01 ^1 

that as N -), 00, GN "* 1 for K>Kc, GN "* 0 for K<Kc and 
"G'-N 

-* 
'G" for 

OV * 
K=Kc, where G is a non-zero, universal constant independent of N 

(though dependent on the lattice boundary conditions) and distinct 

from the G* for sub-blocks in which we are ultimately interested. KC 

is then located at the non-trivial point of intersection of the 

P. -curves GN(K) for large N, which we have plotted in figute (2-7). An 

extrapolation of the intersections for consecutive pairs of curves 

yields the estimate KC=0.4535 ± 0.0005, at which*G* 0.76. This 
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FIGURE (2.5). Ma9neHsaHon vs. coupling 
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FIGURE (2.6). 
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FIGURE (2.7). Cumulaný r&io vs. coupling 
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estimate of Kc is consistent with the value Kc=0.454 0.001 

obtained from the analysis of high-temperature series (Ferer et al 

1973). 

Block-spin distributions 

Subsequent simulations were performed on a N=64 lattice at 

Kc=0.4535 and sub-block spins IL Of side L=4,8 and 16 were sampled 

from equilibrated configurations. Here, IL is constructed from 

cubic sub-blocks of volume V(L)=L3 i. e. 

ý= VCL)-' :2ý Cr) 
Vc 0- 

(2.6.8) 

Ideally, one seeks a value of L in the regimes I << L << ý and L << 

N. The first two inequaliti. es ensure that PL(ý) attains its 

universal form P*(ý) while the last inequality suppresses the 

finite-size effects of the host Iýttlce (in particular, its CYCIIC 

boundary conditions). 

PL(ýx) and PL(ý 2) 
were constructed from 5000 samples Of IL for 

each L. The results are shown in figures (2.8) and (2.9), where a 

direct comparison is made with the corresponding results - dotted 

curves - for P*(O, ) and P*(0 2) obtained from the recursion formula 

(i. e. figures (2.3) and (2.4)). The distributions for each L have 

been scaled so that <0.2 ý"Lml and <02 ý"L=2, consistent with figures 

(2.3) and (2.4). On doing thfs, we note first the collapse of 

distributions onto a single curve independent of L. This is a result 

of scaling; from the variation of the required scale factors with L, 

we can estimate the exponent ratio 2B/V=1+Tl In d=3, as we indicated 

in section (2.2) on scaling theory. A simple power-law fit to the 
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FIGURE (2.8). PL(ox) 
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FIGURE (2.9). PL (02) 
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TABLE (2.1). The sub-block cumulant ratio GL on 

a 643 lattice at KC=0.4535, for various values 

of L. For L large compared to unity but small 

compared to 64, we expect GL-oG * independent 

of L. 

CL 

4 0.48 t 0.01 

8 0.45 J: 0.01 

16 0.45±0.02 
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data for L=8 and L=16 yields the value 

Z 0.01 * 0.09 

which is just within error bars of the estimate Tj = 0.04 ± 0.01. from 

high-temperature series (Ferer et al 1973). 

Then we note the close agreement between the scaled curves and the 

recursion formula results. From the data of table (2-1), we obtain 

an estimate of the sub-block moment ratio at criticality: 

)f 
% 

which is in excellent agreement with the fixed-point value G*. 'W 0.434 

obtained from the recursion formula; given the recursion formula 

approximation that TI=O, together with the small value of TI in 

(2.6.9), we should not find this altogether surprising. 

Therefore we conclude that, in accordance with the expectations 

raised at the end of section 2.4, the result for P*(ý) obtained in 

section 2.5 from the approximate recursion formula (2.4.29) is a 

faithful reflection of the universal coarse-grained spin 

configurations at the d=3 XY transition. our suggestion at the 

conclusion of section 2.5, that the non-trivial aspects of the 

short-range order at criticality may reside in some angular 

distribution of the spins, then merits further investigation. We 

discuss the prospects for one such distribution in the concluding 

section that follows. 
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2.7 Conclusions and future prospects 

In this chapter we have studied the critical properties of the 

O(n)-symmetric Heisenberg model of ferromagnetism, in terms of spin 

configurations 
_IL 

that have been coarse-grained over length scale L. 

In a' direct extension of the configurational description of 

scaling in Ising-like systems (Bruce 1981)p we have described the 

universal, scaling aspects of our system near criticality in a 

scaling theory for the probability distribution PL(1) when L and the 

correlation length ý are large (see e. g. (2.2.8)). Thust the 

underlying patterns of short-range order (s. r. o. ) themselves have 

universal characteristics near criticality, and the aim of our study 

has been to identify their nature from PLM- 

In Section 2.3, we obtained an explicit form for the critical 

distribution P*L(ý 2 )P within the confines of a renormalised 

perturbation calculation for n>2 and d=2+ep to lowest order in E. 

The 6-functio. n profile (2.. 3.33) signifies that at O(e), fluctuations 

in phase are more important than fluctuations in amplitude in the 

restoration of symmetry at Tc. As C -* 0 then Tc -0 and the 

6-profile is easily interpreted as characteristic of a critical 

system at its lower critical dimension. Bruce (1981) obtained the 

equivalent result for the d=l Ising model: at Tc(=O) block-spins have 

only two possible states, either "up" or "down"# as characterised by 

a symmetric double 6-function profile for the Ising block-spin 

p. d. f. 
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The evolution of P*L(ý 2) 
as d increases was followed to one 

higher order in C, at which interactions are included, in a 

calculation of the fixed-point moment ratio G*. The result (2-3-35) 

characterises the smeaiing-out at O(e 2) 
of the 6-function profile at 

O(e). The spin-wave excitations with which the low-temperature 

expansion was developed cross over to critical modes at Tc. 'As to 

their nature, we noted that our calculation ignores the compactness 

of the O(n) symmetry (i. e. spins are really constrained to lie on an 

n-dimensional sphere); it is questionable, therefore, whether 

perturbation theory can. really capture the nature of spin 

configurations at Tc. 

In Section 2.5 we studied the d=3 XY model. We applied to it an 

approximate non-perturbative recursion formula, due to Bruce (1981), 

that relates PL(I) to P2L(I)- The fixed-point P*(ý) of this formula 

has a non-Gaussian profile - figures (2.3), (2.4) - signifying the 

presence of non-trivial patterns of s. r. o. at criticality, but it 
4 

does not reveal their nature. In Section 2.6 a Monte-Carlo 

simulation of the model reproduced this result surprisingly well - 

figures (2.8), (2.9). We concluded that a-future investigation should 

consider some angular description of the spin configurations. 

One intriguing description, has already been discussed by Savit 

(1978,1980). Again, we have to consider global topology. The d=3 XY 

model has topological excitations which are closed vortex strings, or 

vortex strings which terminate on the boundary of the system. Vortex 

. strings exist naturally on the dual lattice - their strength measures 

the number of revolutions the XY angles perform round a closed 

circuit on the original lattice. In its application to 4He, these 
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strings ýepresent vortices in bulk superfluid. Their appearance in 

the d=3 XY model can be made explicit via the Villain approximation 

(Villain 1975) followed by a duality transformation (Savit 

1978411980). The approximation is exact for the description of those 

strings which have strength less than or equal to one (Janke and 

Kleinert 1986).. We shall not present details of the vortex loop 

representation here, but we shall mention its. possible implications 

for the study we have undertaken. 

Savit (1980) has argued that the usual order-disorder transition 

of the d=3 XY model may be associated with a transition involving the 

vortex loops. The picture, drawn qualitatively using energy-entropy 

arguments, is that at low temperatures there is only a low density of 

loops with small perimeters, in addition to the usual spin wave 

excitations. As we raise the temperature the density and size of 

loops increases, and at T=Tc a phase transition occurs signalled by 

the appearance of configurations which are dense with vortex loops of 

all sizes. Above Tc we have a condensate of loops. 

The implication that the vortex loop representation plays an 

important role at TC has been substantiated in part by Janke and 

Kleinbrt (1986), who have shown from MC simulations of the Villain 

and XY models on 163 lattices that, in the case of the d=3 XY model, 

the Villain ipproximation is particularly accurate for temperatures 

at Tc and above (in contrast to the low temperatures for which it is 

usually derived). They conclude that in this temperature range the 

system is dominated by vortex loops of strengh 0, ± 1. 
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If this picture then is essentially correct, it provides an 

appealing description of scale-invariance at Tc in terms of a 

self-similar "alphabet soup" of-(predominantly strength-one) loops on 

all length scales. We could not hope to have revealed this soup in 

the distribution of a cubic block-spin §-L* In our mC simulation it 

would seem at first sight a considerable problem in pattern 

recognition to resolve a spin configuration into a configuration of 

vortex loops. Nevertheless, the above picture might tempt us to 
I 

formulate a description of the s. r. o. near Tc in terms of a scaling 

form for the vortex loop size distribution, ultimately to be 

justified (or not) by a RG analysis of the vortex loop Hamiltonian 

itself. 
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CHAPTER 

FINITE-SIZE SCALING STUDY OF 2D PERCOLATION 

3.1 Introduction 

So. far, we have talked about scaling in the physics of a 

ferromagnet near its critical point: a problem of thermodynamics. In 

chapter 1 we saw how scale- invar iance at criticality arose from the 

presence of a single diverging length-scale ý, and in chapter 2 we 

studied its interpretation in terms of the underlying configurations 

(patterns) of spins. 

This chapter discusses scaling in the physics of percolation: a 

problem of geometry (for reviews, see Essam 1980, Deutscher et al 

1983). Percolation theory studies patterns made from bonds (or 

sites) on a lattice which are randomly occupied independently with 

probability p- for simplicity, usually one only considers regular 

lattices. The discussion of scaling takes place naturally in terms 

of the underlying configurations of clusters made up of sites 

connected to each other via occupied bonds (or via the bonds between 

occupied sites) - specifically it is large clusters that play the 

dominant role. For small p, the average cluster consists of only a 

few sites. As p -+ a critical value pc, larger clusters appear 

until, at p=pc, a cluster will form (with probability 1) which spans 

the entire lattice, thus providing an open pathway for the 

percolation of, say, some fluid across the lattice. Many analogues 

of this phenomenon occur in nature: fluid flow through porous rock, 
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conductivity in random resistor networks, the spread of 

epidemics 

Percolation at pc is an example of a geometric phase transition, 

from a state of lochl connectivity to one of macroscopic 

connectivity. The language of percolation d'raws heavily on that of 

thermal phase transitions. There Is a characteristic length 

called the pair-connectedness length, defined in analogy with (1.2.6) 

by 

& C-r) 

where G(r) is the probability that two sites a distance r apart are 

connected on a finite cluster (we discount the spanning or "infinite" 

cluster) . 

As p-)-pc, all quantities scale with the length ý which divergesp 

in analogy with (1.2.7), like 

rr r 
- (3.1.2) 

where vp is a percolation critical exponent, with a similar 

expression when p-bpc . In terms of the underlying configurationst 

scale-invariance manifests itself in the self-similar, fractal or 

"Swiss cheese, '-like structure of large clusters near pc, over length 

scales up to &. Other analogies may be drawn straightforwardly 

using the relation between bond percolation and the potts model 

(Kasteleyn and Fortuin 1969). Scaling relations between exponents 

are then identical to the ones originally discovered in the context 
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of magnetism. 

In section 3.2 we discuss a recent controversy regarding the 

cluster "free energy" - the mean number of clusters - in two 

dimensions (2D), for which the current ly-accepted singular behaviour 

has been challenged by Jug (1984j. Following the description in 

section 3.3 of a fast, parallel algorithm for counting 2D clustersF 

we present results in section 3.4 of a numerical study of the free 

energy which we initiated on learning of the above challenge. 

finite-size scaling analysis of our data supports the conventional 

singular behaviour as expressed by critical exponents and critical 

amplitude ratios. Section 3.5 presents a summary and conclusions. 

3.2 A recent controversy regarding the cluster "free energy" in 2D 

We are going to focus on the critical behaviour in two dimensions 

(2D) of the mean number of clusters (divided by the number of lattice 

sites) K(p), which is like a free energy. Near pc it has an analytic 

part and a singular part 

CL 
( 

f) 
KS (f) 

where the analytic part may be expanded around pc 

K (p) ck. +bCp-F, 14C p- PC. ) (3.2.2) CL 
.)tc 

re-) + 

while the singular part has the form 

-, % F ks P-pc ,1 
(3.2.3) 
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It has been conjectured for 2D percolation that exponent values are 

known exactly as simple rational fractions, in particular that 

01 p =-2/3 and vp =4/3. (consistent with the hyperscaling relation 

(1.2.15)). This'conjecture is a consequence of the (exact) mapping 

of percolation onto the q -1- 1 limit of the q-state Potts model 

(Kasteleyn and Fortuin 1969), which in turn may be mapped onto the 2D 

Coulomb gas problem, whose critical behaviour may be found - under 

certain plausible assumptions - exactly (den Nijs 1979, Nienhuis etal 

1980). 

Alternatively, percolation may be identified with the T -+ 0 limit 

of the dilute Ising model on the lattice sustaining the percolation 

process (Elliot et al 1960), for which a crossover in critical 

properties is held to take place as T -* 0, p -* pc (Stephen and Grest 

1977, Lubensky 1977,1979). The values of the dilute Ising exponents 

CId P 'ýd ....... are therefore currently accepted to be distinct from 

their percolation counterparts. 

Recently, however, Jug (1985,1986) has presented evidence from 

numerical work and series expansion studies for his result (Jug 198; ) 

that 

co = 
1) (p-P, 

- 
)a (-e- I 6r- )p- PC, 11 (3.2.4) 

and hence effectively ap = 0, in contrast to (3.2.3). This result 

was derived for the bond percolation problem from a Grassmann Path 

Integral (GPI) treatment of the associated bond-diluted Ising model 

free energy f(Tip). The GPI representation (Samuel'1980) of the pure 

2D Ising model allows a perturbative treatment of the effects Of* 
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small dilution q=l-p. A RG analysis f inds q to be a marginal 

operator supplying only logarithmic corrections to the pure critical 

behaviour, ' so effectively cldýO and "Jd=1 (Dotsenko and Dotsenko" 

1982). The analysis of Jug (1984) appears to extend the calculation 

Of.. CId to qc=l-pc; moreover, the numerical evidence of Jug (1985) is 

also consistent* with the value Vp=l and hyperscaling, suggesting 

that no crossover takes place at the percolation threshold T=O, p=pc. 

In section 3.4 we will present results of a numerical study (Dewar 

and Harris 1986), similar to that of Jug (1985), which we initiated 

(Dewar and Harris 1985) on learning of the above work. our results 

are consistent with the "conventional" behaviour of equation (3.2-3). 

Recently, Adler (1986) has commented on the series expansion evidence 

of Jug (1985) by noting difficulties with the Pade analysis of Ks(p) 

in the presence of the analytic background term (3-2.2). Moreovere 

Kesten (1986) has since noted that the form (3.2-4) cannot be correct 

since he has shown rigorously (Kest'en 1983) that for bond or site 

percolation on the square lattice Ks(p) is twice-continuously 

differentiable for all p in (0,11, including at pc. Nevertheless, in 

the absence of a demonstration of how the GPI theory fails at pc and 

in view of the supporting numerical evidence, it is important to 

re-examine the question raised by the result (3.2.4). 

3.3 A parallel alqorithm for counting clusters in 2D 

As a preliminary to the next sectiOnt we introduce here the 

parallel cluster-counting algorithm which we used to study Ks(p). 

This algorithm, due to CK Harris, counts the total number of clusters 

of connected sites on various types of 2D lattice. It is very 
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simple, an example of a "burning" algorithm, and, we have implemented 

it on the ICL DAP machine in which processing elements operate 

simultaneously at each lattice site (see e. g. -, Flanders et al 1977 for 

a general description, of the DAP). It is very efficient in practice 

because of its parallelism and because in identifying the 

connectivity of clusters only Boolean variables and operations are 

used. 

To illustrate it, consider the typical configuration of figure 

(3.1a) containing three clustert on a4x4 square lattice with 

planar boundary conditions, which is stored as a Boolean array (TRUE 

= occupied, FALSE = unoccupied) . Iteration of the central steps of 

the algorithm systematically reduces all clusters to 1-site clusters, 

each of which augments the cluster total by one and is then removed. 

The reduction, using Boolean operations only, is performed in 

parallel across the entire lattice and is depicted in figures 

(3. lb-d) . 

The steps are 

(1) Identify all occupied sites having no occupied 

nearest-neighbours to the north and east. There 

will be four types, shown in figures (3.2a-d). 

This step identifies the north and east "coasts" 

of ý11 clusters. 

(2) Then for each (a)-type site, couný one cluster 

and remove the site. This step accumulates the 

cluster total. 
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(a) -p 

CLUSTERS =0 

(c) 

CLUSTERS = STOP 

FIGURE (3.1). Illustrating the "burning" algorithm for counting 

clusters. 

0--0 

00 
0 

0 

0ý1 

FIGURE (3.2). (a)-(d) Depicting sites with no connections to the 

to the north and east. (e) Indenting the north-east corners to 

create new dangling ends. 

(b) 

CLUSTERS 

(d)l II 
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-4 

FIGURE (3.3). Reduction of a cyclicly-spanning cluster to a 

minimal loop. 

-4 
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(3) Now remove all sites of types (b) and (c). This 

step "burns off" the north- and east-dangling 

ends. 

(4) Finally, replace the (d)-type sites with new 

occupie*d sites to the south-west (if not already 

occupied) as shown in figure (3.2e). This step 

indents the north-east corners to create new 

dangling ends. Also, since operations are done 

in parallel, no two clusters are inadvertantly 

joined by this step (e. g. see figure (3.2a-b)). 

Repeat steps (l)-(4) until no sites remain. 

We note that for cyclic boundary conditions, some 

(cyclicly-spanning) clusters only get reduced to minimal loops 

wrapped round the lattice, so that the algorithm will not terminate. 

Figure (3.3) depicts an example. These remaining clusters can be 

counted, one by one, by a parallelised "ants-in-the-labyrinth" 

algorithm (Dewar and Harris 1986) - i. e. put an ant on some remaining 

site; this ant places offspring on each of the nearest-neighbour 

occupied sites; the offspring multiply likewise until that entire 

cluster is populated; count one cluster, remove it from the 

configuration and repeat until no -sites remain. The algorithm is 

easily modified to count both site- and bond-occupied clusters on 

other regular lattices. 

The above ýnalysis Is limited to relatively small lattices because 

the entire configuration must be stored in the computer. For a 
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lattice of- linear size L, the time to analyse a configuration 

increases as L2.. In practice, on the DAP, we enhanced the efficiency 

for lattice sizes L< 64 by itoring and analysing' (64/L)2 

configurations simultaneously. 

For the bond percolation problem at pc=0.5 on a L=32 square 

lattice with cyclic boundary cond. itions, the algorithm implemented on 

the DAP analyses 1.6 million configurations per hour. This 

performance is to be compared with 70,000 configurations per hour for 

the same problem on a L=30 lattice using a serial algorithm on the 

CRAY1 machine (Jug 1985). 

3.4 Finite-size scaling study of the "free enerqy" 

Finite-size scalinq 

Due to the weakness of the singularity in (3.2.3) or (3.2.4)t the 

quantity to look at numerically is K'''(p)=d3K(p)/dp3. For a lattice 

of linear size L one then expects a divergence in KI''(pc, L) as L-1-co. 

Finite-size scaling (see e. g., review by Barber 1983) is a powerful 

tool for the extraction of useful information in this limit. In the 

present context it states that on a finite lattice, when L and ý(p) 

are large enough, the (singular) bulk quantity KSI''(p, cO) is 

modified to 

fit 

ksCP. 
) L-) = ks C P1 

in which ýco is the bulk pair-connectedness length of (3.1;. 2). The 

function f is universal in the sense that it does not depend on the 
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type of lattice, but it does depend on the shape of the lattice 

block, on boundary conditions (cyclic, free ...... and on the 

f unction Ks 'II (p, co) Statements such as (3.4.1) can be understood 

within the framework of the renormalisation group (Brezin 1982). 

From the fact that the LHS of (3.4.1) is finite as p-*pc with L 

fixed, one deduces immediately the asymptotic form of f(x) as X0 

required to cancel the divergence of KsI''(p,; O) on the RHS. For the 

divergence derived from (3.2.3) one deduces 

((+ . 4r )/ -ý r 

ý (ký. c Ct) 
k--) 0 

(3.4.2) 

where we remind ourselves that constant C[9, ] depends on the geometry 

of lattice block 9.. Hence the quantity KIII(pc, L) should behave 

like 

( t(r) / -DF 
(3.4.3) 

From (3.2.2) we see that constant A, the analytic part, has bulk 

value A=6d. Constant B is a critical amplitude which we will later 

relate to the critical amplitude D in (3.2.3), 

If the conjectured exponent values Ctp=-2/3 and Vp=4/3 are valid, 

we expect 

114 

6L (3.4.4) 

If, however, the GPI result (3.2.4) is valid, we expect 

4 
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1A kill pc L) LL 
--; ý t, 6 (3.4.5) 

in which B(L) contains logarithmic corrections; the GP. i method has, 

as yet, no prediction for Vp, although hyperscaling would imply the 

value V P=l. 

Numerical studv of the free enerqv 

We will use the notation 

Ga configuration of occupied bonds or sites 

on a lattice of linear size L. 

N total no. of bonds or sites on the lattice. 

NO(G) = no. of occupied bonds or sites in G. 

nc(G) = no. of clusters per site in G. 

I 

Now, the average of nc(G) over M configurations (Gi; i=l ... *M) , 

sampled during a computer run, is an estimate of K(p, L) and its 

explicit dependence on p may be exposed by writing 
M 
2 

PC &j) -Iýe C&,, ) 
- \flL1'1I( 

2 
eol 

F( GZ) 

where p(Gi)p the probability of sampling Gil is given by 

No (6t. ) 

(3.4.6) 

(3.4.7) 

Following Jug (1985), we differentiate (3.4.6) three times w. r. t. P. 

At p=p'c=0.5 (the case we consider here) this yields a fluctuation 

formula for the quantity of interest: 
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3<<N. ý + <N 
0 N02, L> 

< +<< Not (3.4.8) 

+<< -Ae 

where < ..... > stands for an average over the configurations (Gi). 

Using the "burning" algorithm of section 3.3, nc(G) was analysed 

for bond percolation on the square lattice (BSQ) and site percolation 

on the triangular lattice (ST), each of which has pc=0.5. Cyclic 

boundary conditions were chosen - free boundary conditions give a 

slower rate of convergence to the asymptotic scaling regime in which 

(3.4.4) and (3.4.5) are valid, due to the excess clusters 

artificially created by truncation at the lattice edges. 

Our results for BSQ and ST for lattice sizes L=8,12,16,24 and 32 

are shown in figure (3.4), wher, ý they are compared with those of Jug 

(1985) (BSQ for lattice sizes L=8,12,16,24,30). Our data yields 

straight line slopes in the log-log plot of 0.28 ± 0.03 (BSQ) and 

0.25 ± 0.02 (ST), consistent with the slope 1/4 expected from the 

"conventional" prediction (3.4.4) - it is understood that constant 

A=6d has been subtracted off; a duality argument (Sykes and Essam 

1964) tells us that for BSQ (ST), d=0 (1). 

Jug's data appears to lie on a straight line of slope 

consistent with the GPI prediction (3.4.5) together with the value 

vp=l expected from hyperscaling. 

In our analysis, we have adopted the following approach to reduce 

the considerable fluctuation in the value of KI '' (pc#L) as given by 

Consider the mean number of clusters per site TC(No) for 

configurations with a given number of occupied bonds (or sites) No. 
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32 

eis 
8 

0-1 16 32 

L 

FIGURE (3.4). Divergence of K'''(pc, L) with L. 

x= BSQ, += ST data of present work; o= BSO from Jug (i985). 
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It is easy to show that when p=pc, the Taylor expansion Of Wc(NO) 

about the mean NO=Npc is 

D-NFC) + C. (NCO- NFL) (3.4.9) ;; TC ( No) 
N 

where a, b, c are (up to corrections 0(1/L, 1/L2)) the (bulk) 

constants appearing in the expansiod (3.2.2). They are either known 

analytically (Sykes and Essam 1964) or estimated from series (Domb 

and Pearce 1976). They may also be estimated from the numerical 
J 

simulation itself - using the averages <nc>, <(NO-Npc)nc>, 

<(NO-Npc)2nc> - as a useful check on the correctness of the 

algorithm. The results from our BSQ data (a=0.099, b=-0.98, c=4-16) 

and ST data (a=0.0l8, b=-0.24, c=l. 33) are in excellent agreement with 

both these references. 

Now, when KIII(pc, L) of (3.4.8) is averaged over a large but 

finite number M of configurations, the b and c terms in (3.4.9) 

contribute negligibly to its mean but substantially to its 

fluctuation. Therefore in the -fluctuatiýn formula (3.4.8) we 

substitute for nc the decomposition 

'A C, C+ 
q0 - w? 

C. ) 4- 
WO- A PC (3.4.10) 

N 01 

then subtract off the contribution arising from the b and c terms. 

The effect of subtracting off this noise is illustrated in figure 

(3.5). 

In addition we recall from section 3.3 that the "burning" 

algorithm does not reduce completely certain spanning clusters on 
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FIGURE(3.5). Effect of noise reduction for K'''(pc, 16), BSO. 

1 box = average over 1638400 configurations, total histogram 2 62 

boxes. 
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lattices with cyclic boundary conditions. As we discussed, such 

remaining clusters can be counted by an "ants-in-the-labyrinth" 

algorithm, although in practice remaining sites were taken to 

constitute a single spanning cluster contributing one to the cluster 

total. We have verified (more details in section 3.5) that the 

effect of the relatively rare extra spanning i. -lusters on the value of 

Kl''(pc, L) is negligible on the scale of one standard deviation - 

there is only one spanning cluster in the bulk at pc - thus enabling 

a gain in speed of the algorithm to 2 million configurations per hour 

for the BSQ problem on a L=32 lattice. 

In this way, error bars have been reduced sufficiently to indicate 

a clear discrepancy between the two sets of BSO data in figure (3.4). 

Critical amolitudes 

Figure (3-6) shows the fit of our data to the form 

Ks'''(pc, L)=BLl/4 (ST data, fit to last four points). Further 

evidence in support of the conventional theory of 2D percolation is 

obtained from the resulting amplitude ratio r= BS/Bt (where the 

subscripts s and t refer to BSQ and ST respe, ctively): 

-fl 2-. oi-±0., 0 ;? ý (3.4.11) 

A theoretical estimate of r may be obtained as follows, based on the 

conventional picture and exploiting estimates by Domb and Pearce 

(1976) for the critical amplitude D in (3.2.3). 

Denote C= (p-pcx)/pcx where x refers to the lattice . type. From 

(3.2.3) and hyperscaling, the singular part of the bulk free energy 

104 



24 

18 

12 

1/4 
L 

FIGURE (3.6). Fit to K'''-(PC, L)=BL1/4. 

x= BSO, += ST data of present work. 
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per site has the form 

Pen 
r(ý )c ý)-4 

(3.4.12) 0 )c 

where &. _1 = KoxEVp is the inverse pair-connectedness length. If PX 

is the density of lattice sites we may also write 

.. 
K: 

s 
(p, 

obý 
F -1 -4 (3.4.13) ýx ýx 

where tw07scale-f actor universality (Stauffer et al 1972) tells us 

that F, the (singular) free energy of a volume &xd, is a universal 

constant independent of lattice type. (3.4.12) and (3.4.13) imply 

(3.4.14) 

We are interested in Ksl''(Pc, L)=BxL3/Vrd. From (3.4.12) we find 

Uo -a) D, (3.4.15) 
"( p"ll )ý(ý, ýF 

0 )C) 

By inserting (3.4.15) and the asymptotic expression (3.4.2) for f(x) 

into the finite-size scaling form (3.4.1), and then eliminating 

Kox/Koy using (3.4.14), we get 

c b(I ýx )-I ex Dx 
(3.4.16) 

C, Cýl 
qb I 

for the ratio of critical amplitudes In finite-size scaling. In the 

present caser d=2 and Vp=4/3 conventionally, lattice types. x=s and 

y=t, px=l and py=2/31/2, and (Domb and Pearce 1976) Dx=-8.48(3) and 

Dy=-4.370(15). If we had lattice blocks of the same shape, we would 
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600 

FIGURE (3.7). Block geometry that places bounds on the measured 
critical amplitude ratio r (Dewar and Harris 1986). 
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then predict 

-r = 2.. 02±0.0,;. (3.4.17) 

Such a good agreement with the measured value (3.4.11) may be 

fortuitous since our lattices had different shapes - they were 

squares, side L, for BSQ and 600 rhombuses, side L, for ST. By 

considering the inequalities between the free energies of lattice 

blocks with the geometries depicted in figure (3.7), one can show 

straightforwardly (Dewar and Harris 1986) that for our lattices, r is 

bounded above and below like 

1. l«7 i 0. OQ- < -r < c2. a6t 

Even if we are not to attach too much significance to (3.4.17), the 

fact that our measured value of r lies comfortably within these 

bounds strongly suggests we have reached the asymptotic scaling 

regime with the lattice sizes that we used, where a picture emerges 

consistent with the conventional theory of 2D percolation. 

3.5 Conclusions 

Following a recent controversy, we have presented numerical 

evidence for the validity of the conventional picture of the cluster 

"free energy" Kýp) at p=pc. 0 

Two important questions remain to be answered. First, what is the 

reason for the discrepancy between the two sets of BSQ data which are 

depicted in figure (3.4) and which attempt to estimate precisely -the 
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same quantity? Second, in view of the analytic statement by Kesten 

(1986), why does the GPI theory fail at p=pc? 

Following numerous program checks, we are unable to answer the 

f irst. For instance, Jug quite rightly points to our procedure of 

neglecting extra spanning - clusteis as a possible source for the 

discrepancy. However, we have demonstratea tnat znQ5e QlUbi-w"' 

neglected have a negligible effect on the measured value of 

KIII(pc, L), as follows. 

We have estimated the fraction of sampled configurations that 

contained more than one cyclicly-spanning cluster and for BSQ we find 

it is 0.00094,0.00071,0.00066 for L=8,16,32 respectively. This 

supports the expectation that this fraction tends to zero for large L 

- there is only one spanning cluster in the bulk at pc - and that 

consequently any effect on K'''(pc, L) should decrease with L. It is 

then difficult to see this as the source of the above discrepancy 

which increases with L. 

To establish this, we have re-analysed K ... (pc, 16), counting every 

cluster of each sampled configuration with the aid of the "ants" 

algorithm. From c'ne short run of 1638400 configurations, this gives 

a value KIII(pc, 16) = -12.5254 to be compared with -12.5167 from the 

neglect of extra spanning clusters. From 54 such runs combined we 

reproduce our original estimate K' II (pc, 16) = -17.9 ± 1.1. The 

effect of extra spanning clusters therefore is negligible in 

comparison to one standard deviation. The discrepancy remains. 
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We have not addressed ourselves to the second question. In the 

absence of published details, the analytic prediction of Jug (1984) 

is difficult 'to examine. At first glance however, it would appear 

doubtful that the crossover at the point T=O, p=pc (or lack of it) 

can be described within an expansion in dilution q=l-p. Even if a 

lack of crossover is clearly established by the GPI method, it is 

possible that the GPI representation of the dilute Ising model breaks 

down at some value q<qc of the coupling constant, in a classical 

analogy with the mapping between 2D bosonic and fermionic theories 

established by Coleman (1975). 
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CHAPTER 4 

SCALING IN A MODEL OF IRREVERSIBLE GROWTH 

4.1 Introduction to sca_liriq in qrowth model§ 

In chapters 2 and 3 we have seen how the scaling behaviour at. 

phase transitions may be studied in terms of underlying* patterns 

possessing some sort of scale-invariance. 

Recently it has become clear that scale-invariant "fractals" and 

other objects with interesting scaling properties are manifestly 

apparent in many other phenomena of physics, chemistry and biology 

(Mandelbrot 1982). Among them are several phenomena associated with 

processes of growth and aggregation. Several models, which lead to 

the formation of such objects, have been introduced to describe for 

instance the growth of solidification fronts, flame fronts, 

dielectric breakdown, chemical reagents, epidemics and tumors (for 

reviews, see Family and Landau 1984, Pietroner. o and Tosattl 1985). 

For the physicistt the point of these models Is to help him to 

understand how the properties of a macroscopic cluster or growth 

pattern depend on the microscopic ruies for its growth. 

A general feature is that the growth or aggregation process occurs 

mainly at an "active" zone on the cluster's sUrface, with interesting 

scaling properties (Plischke and Racz 1984t Family and Viscek 1985). 

For this reason one focuses attention on the surface structure. One 
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finds that surface scaling properties are, to some degreep 

independent of the microscopic rules for growth (see e. g. Jullien 

and Botet 1985, Family 1986). Then an obvious task is to identify 

universality classes of growth processes that share the same scaling 

properties (Kardar et al 1986) and to explain how this scaling and 

universality arise. 

In this chapter we examine the surface properties of a simple 

discrete-time lattice model of random epidemic growth, first studied 

by Richardson (1973), who called it G(p]. The parameter p controls 

the virulence of the epidemic. In section 4.2 we define the model 

G[p] and present numerical evidence of scaling properties in two 

dimensions obtained from simulations performed on the ICL DAP (see 

e. g. Flanders et al 1977 for a description of this machine). We find 

two independent characteristic scales in the model, describing the 

static and dynamic scaling properties of the surface. The two 

scaling properties are combined into a single dynamic scaling form 

for the surface width. We argue that this scaling form is universal 

(independent of p) but that p controls the size of the scaling 

region, and thus induces important corrections to scaling. ' 

In section 4.3 we compare our results with previous numerical 

results for other models of growth and aggregation, and note the 

emergence of universality classes. very recently, Kardar et al (1986) 

have studied a Langevin equation which gives a phenomenological 

description of the local growth of a surface in continuous space and 

time. This equation appears to account for the results of a variety 

of growth models - including the results of our simulation of G(p] - 
in which universality classes may be identified using the dynamical 
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RG (Hohenburg and Halperin 1977). In section 4.4 we discuss the 

physical content of this eqdation in its description of G(p], and. 

thereby identify the essential large-distance, long-time physics of 

this model. The universal scaling features of the surface of G[p] 

can then be understood in terms of the ideas of chapter 1. Section 

4.5 presents our conclusions. 

4.2 Growth model G(p]: numerical simulation 

We have studied the following version of a model of random 

epidemic growth first studied by Richardson (1973): growth takes 

place in discrete time steps on a square lattice inside a strip of 

width L with cyclic boundary conditions at the edges of the strip 

(figure (_4.1)). Lattice sites are either healthy or infect. ed. At 

time t=O, all sites are healthy except for sites in the bottom layer 

which act as seeds for the epidemic. Then at time t the rule is that 

a healthy site becomes infected with probability p if it has at least 

one infected nearest-neighbour, and with probability 0 otherwise. 

Once infected, a site never recovers. Clearly, the value of p 

measures the virulence of the epidemic. Richardson calls this growth 

model G(p]. 

Since at each time step the entire surface is allowed to grow at 

once, the parallel features of the ICL DAP are uniquely suited to the 

numerical simulation. 

Typical growth patterns for L=64 are displayed in figure (4.2). 

Only the surface layers are shown; the bulk of a growth pattern is 
11% 

compact. (Richardson 1973) because all holes eventually get filled up. 
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FIGURE (4.1). Strip geometry with cyclic boundary conditions 

at the edges.. 
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FIGURE (4.2). Typical growth patterns from epidemic 

model G(p). 
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Although the mass of the pattern is not fractal, the surface is 

rough. Figure (4.2) illustrates how the surface becomes less rough 

and has fewer holes as p increases. 

Now we define exactly-what we mean by the surface. It is the set 

of all growth sites on the pattern, where a growth-site is a healthy 

site with at least one infected near es t-ne ighbour. We characterise 

the surface roughness by the surface thickness a, defined from the 

variance 

m3 
1 ( 

13 
Z -- t 

where the sum is over the Ng growth sites, zi is the height of the 

ith growth site above the bottom layer and 

N3 

zz (4.2.2) 

is the mean height of the surface. When there are some holes, their 

surface is included for convenience in the calculation of the surface 

thickness. 

In this model, the surface thickness a depends on three 

parameters: the growth probability p, the time-step t and the strip 

width L. The simulation results, averaged over 1000 independent 

growth histories, are illustrated in figure (4.3), which shows the 

dependence of G(p, t, L) on t and L when p=0.5. Similar growth 

profiles are obtained for other values of p. 
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For values of t in the growth region I << t << L, 

a varies with t as 

F 0-, -b .)1«t« (4.2.3) 

which describes the dynamic scaling of the surface. From 109-109 

plots like figure (4.3), the exponent B was estimated from a 

straight-line fit to the data within the growth region. Estimates of 

for various values of L and p are shown in table (4.1). 

We remark on the slow convergence of estimates of as L-*co for 

the smaller values of p. The data for p=0.99 yields 0.30 ± 0.01 

with the lattice sizes we used. 

In the steady-state region t >> L, the surface thickness 

saturates to a constant value G(p, co, L) depending on p and L. The 

dependence on L for various p, values is shown in figure (4.4). The 

straight lines in the log-log plot indicate that 

at. 
(4.2.4) 

which describes the static scaling of the surface. The estimates of 

(I are tabulated in table (4.2). They appear to converge to the 

value Ct=0.5 for p -* 1. 

In describing the asymptotic behaviour of the surface, we are 

guided by our understanding of asymptotic critical behaviour. If we 

associate a universality with the large-distance, long-time behaviour 

of the surface, then we do not expect the values of Ot and to 
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TABLE (4.1). Estimates of exponent B, defined in 

equation (4.2.3), for various values of L and p. 

Errors are approximately ± 0.004 

8 

L P=0.50 P=0.90 P=0.99 

64 0.205 0.245 0.266 

128 0.236 0.266 0.286 

256 0.258 0.279 0.297 

512 0.275 0.283 0.302 

TABLE (4.2). Estimates of exponent a, defined in 

equation (4.2.4), lor various values of p. 

ct 

0.45 0.01 0.3 

0.46 0.01 0.5 

0.48 0.01 0.7 

0.48 0.01 0.9 
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depend on pc(0,1) because the growth probability is a local feature 

of the surface growth. We can interpret tables (4.1) and (4.2) to 

mean that for small values of p, important finite-size corrections 

occur; we may associate these corrections with the fact, evident from 

f igure (4.2) , that the surface contains a greater number of holes 

which artificially increase the surface thickness. 

To see this, we have plotted the surface growth in figure (4.5) 

for L=64 and various values of p. When p -* 0 we can identify four 

regimes. Initially the surface grows like at 1/2; here the 

growth is a Poisson process (Family and viscek 1985) in which the 

columns of the strip grow independently - this "dilute" behaviour is 

shared by the limit p -* 1 where there is an obvious duality with p 

0. Then there follows a large regime where CT en- tO-55 in which the 

surface grows more rapidly through the formation of holes - since p 

is small, holes have a large average lifetime. A third, asymptotic 

regime is reached where a ^, 0 
with B=0.27, which we have called 

the growth region. Finally the surface thickness saturates to a 

constant value. Note the non-zero saturation values for both p -0 0 

and 

As p -b- 1 there is a crossover to a growth prof ile dominated by 

the asymptotic growth region. It is clear that p controls the size 

of the asymptotic growth region in which (4.2.3) is valido and thus 

induces important corrections to scaling. 

The scaling behaviours (4.2.3) and (4.2.4) can be formulated into 

a single dynamic scaling form for G(t, L): 
11% 
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FIGURE (4.5). SurFace ýhickness a(p, ý, 64) 
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c4 t/ 
(4.2.5) 

L 

I 
where y=CL/B and the scaling function f (x) behaves like 

(4.2.6) 

Such a scaling form was first proposed by Family and Viscek (1985) 

for a model of ballistic aggregation, and has been applied by Jullien 

and Botet (1985) to the description of the surface of the Eden growth 

model (see section 4.3). 

Since y >ý 1 there are two independent characteristic scales in 

the model. Thus the surface is not a self-similar fractal because 

fractals are characterised by a single scale and a single exponent 

(fractal dimension). One might expect the surface to behave like a 

fractal coastline in the steady-state region where L is the only 

scale. However, this is not so. Figure (4.6) shows that the number 

of growth sites in the steady-state surface (the "measure" of the 

coastline) varies with the linear scale L like 

L 
in. the trivial manner of a Euclidean (non-fractal) measure. 

(4.2.7) 
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4.3 Other models: the universality class of G(p] 

Now we-mefition some other models of growth and aggregation which 

can be characterised by two independent scales, and note the 

emergence of universality classes. 

Jullien and Botet (1985) and Plischke and Racz (1986) have studied 

surface properties of an epidemic growth process called the Eden 

model (Eden 1961). In the simplest version of this model a healthy 

site adjacent to the surface is chosen at random and is infected with 

probability 1. To date, the most accurate estimates of exponents, by 

Plischke and Racz, are a=0.5 and S=0.32 ± 0.04. 

Family and Viscek (1985) have considered a model of ballistic 

aggregation. In this model particles are added one by one to the 

surface of a granular aggregate. The rule is as follows: a particle 

is dropped onto the randomly chosen column of a strip; the particle 

sticks when it arrives at the top of this column or at a site In this 

column adjacent to a particle in one of the neighbouring columns. It 

is found that Ot = 0.42 ± 0.03 and that in the growth region the 

surface thickness grows in time with exponent 0.30 0.02. (It 

is possible that Ct=0.5 with large finite-size corrections due to the 

presence of holes). 

From our simulations it appears that G[p] belongs to the same 

universality class as the Eden model and ballistic aggregation. It 

is a feature of all three models that the neighbouring columns of the 

strip are correlated. Family and Viscek (1985) note that in the 

absence of such correlations, the surface growth is a Poisson process 

125 



in which a e. tl/2, corresponding to simple random deposition (RD). 

Recently, Family (1986) has carried out simulations to explore the 

effects of surface diffusion on RD. In the simulation, like 

ballistic aggregation, a particle is dropped onto the randomly chosen 

column of a strip. However, the sticking rule is different; on 

reaching the surface, the particle is allowed to diffuse to 

neighbouring columns until it finds the column of lowest height. At 

this point it sticks and becomes a part of the surface. Thus, as in 

G(p], neighbouring columns are correlated. However, it is found that 

CL = 0.48 ± 0.02 and B=0.25 ± 0.01, so that the surface grows at a 

slower rate that in G[p]. This surface diffusion model thus belongs 

in a different universality class from G(p]. 

We note that the value a=0.5, describing the static scaling of 

the interface width, is common to several one-dimensional surfaces of 

irreversible growth, as it is for the description of surface 

roughening in equilibrium Ising systems (Jasnow 1980, Gallavotti 

i972) and percolation (Francke 1980). However, it is a general 

feature that dynamic universality classes are smaller than static 

universality classes. 

4.4 A anqevin equation or G(p] 

We now discuss a phenomenological description of G[p) by a 

Langevin equation. This equation was proposed by Kardar et al (1986) as 

a general model for the local growth of an interface in continuous 

space and time. Its predictions account for the universality classes 

which we discussed in the previous section. At this point we 
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generalise to a d-dimensional lattice with a (d-l)-dimensional 

interface. 

These authors write the following Langevin equation for the local 

growth of a surface, suitably coarse-grained in space and time. 

rý k k) a 

In the above expression, h(x, t) is a continuous, single-valued 

function giving the height of the surface above the (d-l)-dimensional 

point x at time t, measured relative to its mean value. The first 

term on the RHS enhances the average growth of regions where h has a 

local minimum, and describes the surface diffusion of particles in 

the deposition model considered by Family (1986) (see section 4.3). 

V then acts like a surface tension that wants the surface to be 

flat. 

The second term on the RHS describes the effect of growth locally 

normal to the surface - it is the inclusion of this term which 

accounts for the universality class of G(p]. TI(xit) is a zero-mean 

noise, taken to be Gaussian for convenience# 

0 (4.4.2) 

(4.4.3) 

and represents fluctuations in the surface profile about its mean 

height, due to ýhe randomness in the growth, making the surface 

rough. 
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Equation (4., ý; 1) with X=O has been considered by Edwards and 

Wilkinson (1982) in a 5tudy of rough surfaces in granular aggregates 

upon which deposited particles settle unýer gravity. In the abýence 

of the non-linear term, the equation is easy to solve by Fourier 

transforms. It may be shown directly by naive dimensional analysis 

that it leads to a scaling form for the surface thickness in which 

Ct=1/2 and S: '-1/4- This accounts for. the effect of surface diffusion 

on random deposition, as noted by Family (1986). In the absence of 

the first and second terms on the RHS, the equation describes the 

random deposition model in which a~ tl/2. 

When XOO, the solution of (4.4r. 1) can only ' be f ound 

perturbatively, because X couples together the different k-space 

modes of h(x, t). However, Kardar et al (1986) showed that in d=2 the 

exponents are given exactly. 

Their dynamical RG treatment of (4.4ý. 1) is an extension of the 

ideas of chapter 1 to the study of scaling in time-dependent 

fluctuations (Hohenburg and Halperin 1977). When rewritten in 

k-space, (4. je. 1) is solved perturbatively in X. Terms in the 

perturbation series diverge for d<3. The series is rearranged 

into a RG calculation by integrating out the modes with e-IA<k<A. 

Then the parameters are rescaled as k'=e1k, tI =e-ylt and the 

remaining modes as h (h' ,t1 )=e-(d+ct) 9-h(ISI t) r where a and y are the 

exponents appearing in the scaling form (4.2.5) for the suýface 

thickness. The rescaled modes obey (4.4-. 1) with renormalised 

coefficients. a and y are adjusted so that dD/dZ=dv/dZ=dX/dZ=O. 

The result in d=2 is a=1/2 and y=3/2 exactly, and hence Bý1/3, close 

to the result for G(p]. 
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In figure (4.7) we have plotted a/1,015 against t/L'*5 for various 

L when p=0.5. The collapse onto a single scaling function for the 

larger values of L is in agreement with the scaling form (4.2.5) and 

the values CL=1/2,, Sý1/3- 

To understand this we interpret the physical content of (4.4-. 1) in 

the context of G[p]. First, our interest in the*large-distance, 

long-time behaviour of the model motivates us to coarse-grain our 

description of the surface profile with the function hQE, t). This 

means we neglect the overhangs and holes seen in figure (4.2). Then, 

the surface tensiorf term of (4.4-. 1) captures the large-distance 

relaxation effect of the rule of nearest-neighbour infection. To see 

this, note that a steep local minimum of h will rapidly be pinched 

closed by the lateral growt -h of opposite sides of the minimum. Any 

interior hole so formed can be neglected by coarse-graining. 

Therefore, on average, the surface height grows more rapidly at a 

minimum of. h than at 4 maximum of h. The effective surface tension 

V increases as p -o, 1, as figure (4.2) illustrates. The effect is 

the same as the surface relaxation due to the local diffusion of 

grains settling under gravity. 

The second term, describing growth locally normal to the surface, 

plays an obvious and important role in G[p]. Finally, the noise term 

in (4.4ý. l) represents the stochastic element of the growth rule. X 

and D will also depend on p, although the asymptotic behaviour of the 

surface will not because that is controlled by the behaviour at the 

fixed point. 
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That no terms other than those appearing in (4. t-. 1) - higher 

perhaps - are required to describe the scaling properties 

of G[p] is evidenced by the close agreement with the simulation. 

Their irrelevance may be understood from RG arguments, by counting 

powers of momentum of additional couplings using the anomalous 

dimensions CL=1/2, y=3 /2 at the f ixed point. In a similar way, one 

might generalise the noise parameter isat ion (4.1-. 3) by letting D 

depend on the momentum k. An expansion of D(k) for small k reveals 

that near the fixed point, all but the term D(k=O) are irrelevant. 

We conclude that equation (4., ý. 1) captures the essential 

long-distance, long-time physics of G[p]. 

4.5 Conclusions 

In this chapter we studied the surface properties of G[pl, a 

simple model of random epidemic growth, first studied by Richardson 

(1973). From simulations in a strip geometry we found that, although 

the bulk and surface are not fractals, the surface has interesting 

scaling properties characterised by two independent scales which 

describe the static and dynamic scaling properties of the surface 

thickness. These properties were combined into a single dynamic 

scaling 
_description, 

whose validity, we argued, was conditioned by 

important corrections to scaling for small values of p. 

Further simulations on larger strips are required to establish 

this point conclusively. The version of the Eden model favoured by 

Jullien and Botet (1985) enhances the growth probability of sites 
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with a greater number of infected neighbours. This improves the 

asymptotic convergence of their simulation results. Such a version 

of G(p] is then also worth considering for future simulations. We 

add that the scaling corrections as p -1- 0 are of interest in 

themselves; they arise from the hole structure which presumably has 

interesting dynamic and static scaling properties (Botet 1986). 

Then we noted that the values of the exponents ct and 8 were in 

close agreement with the predictions of a Langevin equation, proposed 

by Kardar et al (1986) as a phenomenological description of a growing 

interface, and which these authors note can be solved exactly within 

a dynamical RG treatment in d=2. We concluded that this equation 

captures the essential large-distance, long-time physics of G(p], 

namely, the growth of sites locally normal to the surface and the 

competition between surface relaxation and surface roughening, 

arising from the stochastic rule for infection of healthy sites by 

nearest-neighbour infected sites. 

We were then able to understand the universal, scaling properties 

of the surface structure in terms of the ideas of chapter 1. 

a- 
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