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Abstract
INTRODUCTION:
The advent of next-generation sequencing technologies is trans-

forming biology by enabling individual researchers to sequence the
genomes of individual organisms or cells on a massive scale. In order
to realize the translational potential of this technology we will need
advanced information systems to integrate and interpret this deluge
of data. These systems must be capable of extracting the location and
function of genes and biological features from genomic data, requiring
the coordinated parallel execution of multiple bioinformatics analyses
and intelligent synthesis of the results. The resulting databases must
be structured to allow complex biological knowledge to be recorded
in a computable way, which requires the development of logic-based
knowledge structures called ontologies. To visualise and manipulate
the results, new graphical interfaces and knowledge acquisition tools
are required. Finally, to help understand complex disease processes,
these information systems must be equipped with the capability to
integrate and make inferences over multiple data sets derived from
numerous sources.

RESULTS:
Here I describe research, design and implementation of some of

the components of such a next-generation information system. I first
describe the automated pipeline system used for the annotation of
the Drosophila genome, and the application of this system in genomic
research. This was succeeded by the development of a flexible graph-
oriented database system called Chado, which relies on the use of
ontologies for structuring data and knowledge. I also describe re-
search to develop, restructure and enhance a number of biological
ontologies, adding a layer of logical semantics that increases the com-
putability of these key knowledge sources. The resulting database and
ontology collection can be accessed through a suite of tools. Finally
I describe how the combination of genome analysis, ontology-based
database representation and powerful tools can be combined in order
to make inferences about genotype-phenotype relationships within and
across species.

CONCLUSION:
The large volumes of complex data generated by high-throughput

genomic and systems biology technology threatens to overwhelm us,
unless we can devise better computing tools to assist us with its anal-
ysis. Ontologies are key technologies, but many existing ontologies are
not interoperable or lack features that make them computable. Here
I have shown how concerted ontology, tool and database development
can be applied to make inferences of value to translational research.
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1 Introduction

1.1 Introduction

The arrival of next-generation sequencing technology is transforming biology
by enabling individual researchers to sequence the genomes of individual or-
ganisms or cells on a massive scale[Mardis, 2008]. However, genome sequences
are not in themselves sufficient to uncover the complex relationship between
genotype, environment and phenotype. If genomics is to fulfill its transla-
tional potential and accelerate healthcare outcomes, then sequence data must
be processed, structured, viewed and interpreted in the context of a wide va-
riety of other kinds of information. One valuable experiment-rich source of
such information is research on model organisms, including mouse, zebrafish
and fruit fly Drosophila melanogaster. Even distantly related species can
shed light on complex human diseases – for example, expression of mutant
forms of the α-synuclein gene in a transgenic fruit fly recapitulates some of
the essential cellular phenotypes of Parkinson’s Disease[Feany and Bender,
2000]. If genome sequences and knowledge derived from humans and model
organisms can be systematically combined then we can use data mining to
search for patterns and generate new knowledge about the relationship be-
tween genes, phenotypes and disease.

However, the volume, fragmentation and sheer complexity of this data
presents significant informatics challenges[Tyers and Mann, 2003]. Tradi-
tional knowledge-sources such as scientific journals structure knowledge in a
human-centric way, as a combination of semi-structured narrative text and
images. This has to be re-structured and processed in order to use many
computational methods, but it can be difficult to do this systematically for
complex heterogeneous biological phenomena such as the manifestation of
mutant phenotypes and diseases. Tolstoy observed that “Happy families are
all alike; every unhappy family is unhappy in its own way”. Where model or-
ganisms are concerned, wild-type phenotypes are often alike, but each mutant
genotype manifests its own particular mutant phenotype. This open-ended
variation is a challenge for systematic structured database representations.

A single model organism such as Drosophila melanogaster has a dedi-
cated horizontally integrated database[FlyBase-Consortium, 2002][FlyBase-
Consortium, 2003], populated with a multitude of datatypes such as genotype-
phenotype associations, gene models, gene function and gene expression data.
These databases are complex and expensive to maintain, requiring dedicated
curators[Bourne and McEntyre, 2006], and represent only the tip of the data
iceberg. Each such database is complemented by a wide variety of vertical
domain-specific databases that cut across species boundaries, such as the ma-
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Figure 1: The key challenges of next-generation genomic infor-
mation systems: genome analysis, structuring knowledge, visualisa-
tion/querying/editing and delivery of translational results

jor sequence databases[Benson et al., 1999], expression databases[Parkinson
et al., 2007] and databases of protein-protein interactions[Breitkreutz et al.,
2008]. In addition, there are many specialized databases intended for epi-
demiological data, neural network maps, neurological diseases[Martone et al.,
2004]. The journal Nucleic Acids Research has published articles on a to-
tal of 1170 distinct databases[Galperin and Cochrane, 2008]. All of these
databases are developed by multiple distributed groups employing varying
technologies and data structures, resulting in fragmented data silos. This
is a fundamental obstacle to biology as an information science and the ap-
plication of data mining techniques. Currently, investigators must manually
integrate data themselves, for example by visiting multiple websites[Stein,
2003].

If we are to take full advantage of the wealth of next-generation sequence
data, we need Next-Generation information systems. These systems must be
flexible enough to analyze and combine heterogeneous data and knowledge
across the kingdoms of life from a variety of modalities and sources, from
model organisms through to human disease data. These systems should be
equipped with intelligent inferencing capabilities in order to answer complex
questions posed by researchers, or to discover implicit correlations distributed
across fragmented datasets. These systems must also be able to work together
as part of a larger knowledge cloud, speaking the same language in order to
allow synergistic aggregation of multiple data sources.

The key challenges in the development of next-generation genomic infor-
mation systems can be broken down into four main areas (see Figure 1):

• Genome analysis and annotation. Given a genome sequence, how can
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we harness computational resources and tools to uncover the location,
structure and function of the biological features encoded in that se-
quence?

• Formal structures for representing data and knowledge. How do we
structure data and knowledge from a variety of sources in a system-
atic form, that allows computers to answer complex queries and make
inferences?

• Visualization and knowledge acquisition. How can we present complex
data to investigators such that they can see important correlations in
the data, form their own hypotheses and contribute their additional
knowledge?

• Hypothesis generation and translational research. How can we mine
multiple data sources and algorithmically generate inferences and hy-
potheses of relevance to human health?

The program of research and development described in this thesis ad-
dresses these challenges.

1.2 Thesis Structure

This thesis is structured around the four key areas, summarised above. Af-
ter this introduction, the background section (section 2) covers the relevant
concepts and literature in each of the four areas. The next four sections
(3 - 6, pages 22 - 48) constitute the body of the thesis, and consist of the
main research results organized according to the challenges outlined above.
Section 3 describes an analysis pipeline devised for the analysis and an-
notation of the Drosophila melanogaster genome, and its application in a
number of Drosophila-centric analyses. Section 4 covers the development
of formal structures for representing complex biological information - an
ontology-centric relational database and the construction or enhancement
of a number of biological ontologies. Section 5 describes the development of
tools to allow researchers to interact with and contribute to these informa-
tion sources. Section 6 concludes the results by showing how the information
systems described in sections 3-5 can be used to explore biological questions
of relevance to human health.

Each of these four results sections are divided into subsections, with each
subsection centered around a publication or group of related publications. I
made contribution to all papers cited in these four sections – if a cited paper
is particularly notable, it is highlighted with an asterisk and accompanied by

3



a footnote explaining my contribution (see page ix for a page index of all key
paper citations).

The discussion section (section 7) reviews the results in the context of
current research, and summarizes the impact of some of the key findings, in
the context of ongoing research. Concluding statements are in section 8, and
acknowledgments are in section 9.

Section 10 (page 58) lists all publications cited in the thesis. These are
listed in order of citation, such that all my publications are be listed as
a single contiguous block, corresponding to the four results sections (3-6).
The references section is annotated with summary descriptions of each of my
publications.
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2 Background

2.1 Genome Analysis and Annotation

2.1.1 The need for accurate and comprehensive genome analysis

The sequence of Drosophila melanogaster was determined in 2000 in a col-
laboration between the public Drosophila Genome Projects and Celera ge-
nomics[Adams et al., 2000]. As the second metazoan to be sequenced, this
was an event of major significance. With the increasing cost-efficiency and
speed of today’s next-generation sequencing technology, the delivery of a
new genome sequence does not merit such fanfare. One challenge that has
remained constant in the intervening decade is in understanding how these
genomes instruct the cell to make the necessary components for the organism
to develop and function. The DNA sequence does not yield this information
readily - first it must be carefully annotated to locate and characterize the
regions containing structures of interest such as genes, regulatory elements
and transposable elements. Accurate annotation is particularly important
for key model organisms such as Drosophila melanogaster, for which there
exists a large body of knowledge derived from experimental research. This
knowledge is invaluable in interpreting the genome.

2.1.2 Pipelines and workflows

Annotating a genome involves combining sequence alignments from programs
such as BLAST[Altschul et al., 1997] and Sim4[Florea et al., 1998], as well as
gene prediction programs such as Genie[Reese et al., 2000] and tRNAscan-
SE[Lowe and Eddy, 1997].

For small DNA regions, researchers can run these programs themselves,
and manually integrate the results. However, this approach is not scalable
to large genomes whose assembled sequence is not yet stable. Automat-
ing the execution and synthesis of multiple sequence comparison and pre-
diction tools requires coordination by a genome analysis pipeline executing
some pre-determined workflow. The workflow specifies dependencies between
tasks, and the pipeline ensures the tasks are executed in the correct order.
Sometimes this involves dispatch of multiple tasks in parallel on multiple
independent processors (Beowulf clusters)[Sterling et al., 1995].

Despite the fact that many genome analysis algorithms fall into the so-
called embarrassingly parallel category, the construction of pipeline soft-
ware is difficult. This is due to a number of reasons - (1) complex inter-
dependencies between analyses (2) the need to be fault-tolerant in the face
of system problems (3) the need to synthesize the total set of analyses into
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a coherent whole and (4) dividing large datasets into manageable chunks.
Unfinished genomes pose additional difficulties, as the genome is still frag-
mented over multiple unstable assembled regions. Additionally, a pipeline
must take care of automatically triggering a new analysis on the change of
an assembled sequence, and of mapping forward existing annotations (some-
times called “lifting over”).

Historically, most bioinformatics workflows have been ad-hoc collections
of scripts written in the programming language Perl[Stein, 1996]. These
can be difficult to extend and maintain. In many cases it is desirable to
allow biologists lacking programming experience to manage, edit and mon-
itor workflows and their execution. One of the first tools to provide this
kind of capability was Clone Curator (Helt et al, unpublished), which was
used in the annotation of the adh region of the Drosophila melanogaster
genome[Ashburner et al., 1999].

2.1.3 Automated and manual annotation

Workflows may be entirely automated, or they may involve expert human
curation. Automated workflows are more scalable to the ever growing num-
ber of genomes (computers are less expensive than trained biologists), but
also more error-prone. The Ensembl analysis pipeline[Potter et al., 2004]
is an example of a scalable system that is used for automated annotation
of multiple genomes. This pipeline is complemented by the Otter manual
annotation system[Searle et al., 2004].

The existence of manually generated annotations based on experimen-
tal evidence is particularly important for model systems such as Drosophila
melanogaster which acts as a source for downstream automated annotations.

2.1.4 The challenges of heterochromatic regions

Like most eukaryotes, Drosophila includes substantial fraction of heterochro-
matic DNA at the telomeres and centromeres. These regions pose particular
problems for both contig assembly and annotation due to the presence of
transposable elements and long stretches of repetitive sequence. The as-
sembled genome sequence of heterochromatin is often in flux compared to
euchromatin, necessitating a dynamic approach to annotation, in which lo-
cated genome structures are frequently mapped forward to new assemblies.
Tools such as RepeatMasker[Smit et al., 1996] can be executed as part of the
pipeline, taking as input DNA sequences, and emitting sequences with repet-
itive regions masked out. This is a necessary preparatory step in the pipeline
for some gene finding and alignment tools. However, this step is usually
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not sufficient to accurately detect all genes and alignments in heterochro-
matin. One reason for this is because transposable elements have inserted
themselves into the introns of the gene, resulting in uncharacteristically long
introns which do not match the gene finders’ trained models.

2.1.5 Comparative analysis

Analysis pipelines also make use of comparative data. Comparisons can
be made between the genome, transcriptome and proteome of the reference
species and multiple additional species. Comparisons at the DNA sequence
typically only make sense for closely related species, but protein conservation
is frequently observed across distantly related species. These comparisons not
only inform the annotation of the genome of interest, but also shed light on
molecular evolutionary processes and history - for example, the gain and loss
of genome features such as introns over time [Stoltzfus, 2004]. We have still
much to learn about these processes, and the growing number of sequenced
genomes can help, provided that accurate experimentally-verified genome
annotations are available.

2.2 Formal Structures for Representing Biology

2.2.1 The need to structure knowledge

Biological knowledge and data is frequently captured using a combination of
natural language and ad-hoc semi-structured data files. This is convenient
for the researchers producing data, as it requires no expertise in data model-
ing or formal knowledge representation. However, this kind of unstructured
representation is far more difficult to compute over. Despite the advantages
made in natural language processing and search engine technology, it is still
difficult or impossible to pose queries to text-oriented search engines such as
“find Drosophila genes whose function contributes to eye development”, or
“what zebrafish mutants exhibit similar phenotypes to Holoprosencepahly in
humans?”. In order for computers to answer questions such as this, we need
to structure knowledge and data in a computable way.

There are a number of approaches one might take for this structuring,
both formal and informal. Here we focus on two complementary formal
paradigms for structuring data and knowledge: Relational Schemas and On-
tologies.
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2.2.2 Relational Databases and Relational Schemas

A relational database is a system for managing and querying data structured
according to the relational model, the fundamental concept of which is the n-
ary relation, a subset of the cartesian product of n domains[Ullman, 1988].
These can also be thought of as tables, with each n-tuple of the relation
constituting a row of the table. A database is a collection of relations, and
the structure of the database is described by a relational schema, a set of
constraints over the set of values for each relation. The Ensembl[Birney et al.,
2004] core schema represents genomic features such as genes and regulatory
regions and their component structures. For example, the exon transcript
ternary relation is constrained to take as arguments: an exon, a transcript,
and an integer denoting relative order of transcription of the exon within
that transcript. This is formally described as:

exon transcript ⊆ E × T × N

Where E and T represent the set of exons and transcripts respectively.
Because relational databases are based on mathematical principles it

is possible to automatically optimize queries. This means that relational
databases can efficiently store extremely large quantities of data, and can an-
swer complex queries within reasonable time constraints. This makes them
extremely useful in bioinformatics, especially where high data volume is con-
cerned.

Relational systems are not ideal for all situations however. One issue is
the cost of schema evolution. Another issue is the lack of expressivity of the
relational model and relational schemas. It is difficult or unwieldy to directly
model complex biological entities such as the full set of genomic feature types
or possible phenotypes of an organism. This is particularly true where type
hierarchies are concerned; for example, if we introduce sub-types of transcript
such as mRNA, tRNA etc.

2.2.3 Ontologies and Controlled Vocabularies

An ontology is a logic-based organizational structure for knowledge[Washington
and Lewis, 2008]. One type of ontology commonly encountered in biology
is the anatomical ontology, a representation of the types of entities mak-
ing up an organism, and constraints on the relationships that hold between
these parts. If ontologies are grounded in logic they can be used for inferen-
tial reasoning[Stevens et al., 2000]; queries for genes expressed in the brain
should return genes expressed in the cerebellum, based on is a and part of
relationships in the ontology (figure 2A).
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Figure 2: Example ontologies. (A) Subset of the Zebrafish Anatomical On-
tology. Arrows indicate relationships between classes, relationship type de-
noted by single-letter icon (B) Subset of the Gene Ontology. Queries for
genes with products that participate in the cell cycle would return cul-2,
elc-1 etc through logical inference. Taken from Washington and Lewis, 2008
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The term “ontology” is frequently used interchangeably with terminol-
ogy, controlled vocabulary or thesaurus. Whilst there is no widely agreed
upon definition that systematically distinguish between these, typically the
emphasis of an ontology is on a formal, logical structure, intended to be used
by machines for automated query answering and inference. In contrast, the
emphasis of a terminology or controlled vocabulary is on linguistic elements
and human navigation and usage. In practice it can be difficult and unnec-
essary to differentiate; many so-called biological ontologies are in fact hybrid
representational structures incorporating some mix of both terminological
and logic-oriented ontological aspects.

2.2.4 The Gene Ontology

A case in point here is the Gene Ontology (GO)[Ashburner et al., 2000][GO-
Consortium, 2006][Consortium, 2007], which is used to describe the function
and subcellular localization of gene products. The GO consists of some 27,000
interconnected terms divided into three aspects: molecular function, biologi-
cal process and cellular component (see figure 2B). The primary utility of the
GO is in the large corpus of functional annotations - curated associations be-
tween genes and GO terms spanning thousands of species, but most heavily
populated for the main model organisms and human (because of the volume
of experimental data). The GO is ubiquitous in genomic research, and the
large corpus of associations between genes and GO terms is frequently used
in the analysis of high-throughput experiments[Khatri and Draghici, 2005].

The original incarnation of the GO took a deliberately informal approach
as a design choice to avoid the “analysis paralysis”[Lewis, 2004] associated
with formal ontological approaches. This strategy was successful in allowing
the rapid development of a large number of terms and annotations, but the
lack of logical underpinnings limited the computability of the ontology[Smith
and Kumar, 2004].

For example, the GO term negative regulation of cysteine biosynthesis in-
dicates to a human reader that (a) the direction of regulation is downwards;
(b) the process regulated is one of cysteine biosynthesis, and (c) in the regu-
lated process, the output is one of cysteine. However, these facts are stated
in computationally opaque human-readable definitions rather than logical
axioms referencing other ontologies such as CHEBI[Degtyarenko et al., 2007].

2.2.5 Formalization of Ontologies

These observations also held true for a number of other controlled-vocabulary
style biological ontologies. Most of these ontologies lacked formal semantics
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and computable definitions of the terms used, which limited support for
automated reasoning[Soldatova and King, 2005].

One proposed approach was to recast the GO in the Web Ontology Lan-
guage (OWL), a Description Logic (DL) with formal semantics and built-in
logical constructs for composing descriptive class expressions[Wroe et al.,
2003]. This has the benefit of using mathematical set-oriented techniques
to describe biological phenomena in a way that allows for the algorithmic
detection of subsumption relationships and unsatisfiable classes.

For example, the cellular component mitochondrial membrane could be
represented as the set intersection between (a) the set of all membranes and
(b) the set of things that stand in a part of relation to some member of the
mitochondrion set. There are various DL notations, the most human read-
able being OWL Manchester Syntax[M.Horridge et al., 2006], in which the
above expression would be rendered as membrane and part of some mito-
chondrion.

We can formally define the GO class using an equivalence axiom, as in
the following example:
(Example 1) mitochondrial membrane EquivalentTo: membrane and part of
some mitochondrion

Another way to view this is as a genus-differentia definition; we are defin-
ing a class based on a genus or general class membrane and one or more
discriminating or differentiating characteristics (being part of a mitochon-
drion).

Using a formalisation such as this allows us to use computational tools
such as reasoners to infer for example that the set mitochondrial membrane
is subsumed by the set organelle membrane (figure 3).

2.2.6 Formalization of Relations in Ontologies

Another factor differentiating a terminology or thesaurus from an ontology
is that the former relates terms loosely in an informal fashion into a semantic
network, whereas the latter uses relations with formally defined semantics.
The original incarnation of the GO was more akin to a semantic network,
with loosely defined relations. This meant that some relations such as part of
were used inconsistently, yielding incorrect answers to queries. This was also
true of other emerging biological ontologies, such as anatomical ontologies.
In addition, the use of relations was inconsistent across as well as within
ontologies[Smith et al., 2004].
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part of organelle

membrane

part of nucleus

part of mt
organelle

mt

nucleus

Figure 3: Venn diagram illustrating set-theoretic view of GO. Circles denote
sets whose extensions are cellular component instances. Dotted arrows de-
note set restrictions over the part of relation; e.g. all members of the set
part of nucleus must be part of a member of the set nucleus. The diagram
shows that the set intersection membrane ∩ part of mt is necessarily a subset
of the set intersection membrane ∩ part of organelle (grey). These subset
relationships can be inferred automatically if the ontology defines classes in
terms of set intersections.
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Figure 4: Screenshot of ontology editor view of Cell Ontology (CL). Taken
from Bard et al, 2005.

2.2.7 Anatomical Ontologies

The complete set of tissues and components in an organism (its anatome)
has to be organized in a computer-comprehensible way to support systems
biology[Bard, 2005]). Anatomical ontologies are required for, amongst other
things, specifying the location in an organism in which genes are expressed.

Two of the key challenges in developing anatomical ontologies are granu-
larity and variation between species. At finer levels of granularity we see less
variation which means we typically have a single ontology serving multiple
species. The GO cell component ontology is applicable across all kingdoms,
as is the Cell Ontology(CL)[Bard et al., 2005]. However, ontologies of gross
anatomy such as the adult mouse anatomical ontology (MA)[Hayamizu et al.,
2005] typically serve a single species. This creates a problem for translational
research - data from one organism cannot be readily compared against data
from another organism without extensive ontology mappings . These map-
pings are error-prone and expensive to maintain, especially as the number
of species increases. This interoperability problem is compounded when we
have multiple anatomical ontologies serving one organism, each built accord-
ing to different principles, as in the case of the adult and embryonic mouse
ontologies[Baldock et al., 2003].
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2.2.8 Models and Ontologies for Phenotypes

The inherent variation in mutant phenotypes poses problems for ontologies
which attempt to capture all possible combinations in advance, such as the
Mammalian Phenotype (MP) ontology[Smith et al., 2005a]. The MP is an
example of a pre-composed ontology, like the GO. This means that every
phenotype is represented by a single atomic named class, composed in ad-
vance of annotation. This leads to a lot of repetition and redundancy, as can
be seen when we consider the cross-product of orthogonal sets of ontology
classes:
(Example 2)

{increased, decreased} × {lung, brain, ...} × {size, weight, ...}

In the MP we see classes like increased lung size, increased lung weight, ...
composed in advance. Anatomical terms such as lung are referenced implic-
itly - i.e. they are visible to a human but opaque to a computer (without
unreliable string-matching techniques).

The perceived problems of pre-composition led to an alternative model
in which classes from different ontologies are dynamically combined (post-
composition to compose descriptions, making use of a core Phenotypic And
Trait Ontology (PATO) of phenotypic attribute-value qualifiers[Gkoutos et al.,
2004]. This model was called the Entity-Attribute-Value (EAV) model[Gkoutos
et al., 2005a][Gkoutos et al., 2005b] (figure 5).

There were a number of problems with the original specification of the
EAV model. The model was specified informally, which could lead to different
incompatible implementations. There was no agreed-upon exchange format
or syntax. There was no mapping between EAV structures and MP pre-
composed structures. Finally, the EAV employed a mix of a data model or
schema and ontologies, but did not specify the interaction between the two.
This meant that two different implementations could give wildly different
answers to the same question.

2.2.9 Relationship between the relational model and ontology lan-
guages

Relational databases and ontologies are complementary paradigms for rep-
resenting biological information. A conventional account is that relational
schemas are for storing data and that ontologies are for representing knowl-
edge. This is a useful guideline but in practice it can be difficult to apply
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Figure 5: Proposed EAV schema from Gkoutos et al, 2005.

a hard and fast distinction between data and knowledge, and there is fre-
quently confusion about whether to model at the relational schema level or
the ontology level.

In fact relational databases and ontologies are both examples of formal
structures that can be represented in first-order predicate logic (FOL). FOL
can be used as a unifying framework One drawback is that FOL has certain
computational properties such as undecidability that make it less attrac-
tive to use in practical next-generation information systems. However, there
are subsets of FOL such as Horn logic (also known as logic programs) that
have better computational properties. It is possible to map a fragment of
description logics such as OWL to logic programs[Grosof et al., 2003], and
logic programs largely subsume relational databases[Draxler, 1991]. Logic
programs are therefore a reasonable candidate for providing a unified view
over relational databases and ontologies, and this approach has been used
successfully in the neurosciences[Gupta et al., 2003].

Logic Programs also subsume a class of formal grammars called Definite
Clause Grammars (DCGs)[Clocksin and Mellish, 1981]. Formal grammars
can be used to specify the generation and parsing of sequences of symbols
from a collection of production rules. They have been used in fields as di-
verse as natural language processing and RNA secondary structure predic-
tion[Holmes and Rubin, 2002]. In the context of the Chomsky hierarchy
of expressivity[Chomsky, 1959]), DCGs are at least as expressive as Con-
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text Free Grammars. Implementations include the XSB deductive database
system[Sagonas et al., 1994] and SWI-Prolog[Wielemaker, 2003].

2.3 Visualization, Presentation, Knowledge Acquisi-
tion and Querying

2.3.1 Motivation

Once data has been structured according to database schemas and ontologies
the next challenge is to present this data to researchers in meaningful ways,
ways that allow them to hone in on data of interest and to detect correlations
that would have been occluded had the data been in some other form. In
some circumstances it is also desirable to give researchers the ability to create
or modify annotations.

2.3.2 System architecture

In this day and age it is generally not acceptable for researchers to be forced
to manually download all data onto their local machine before they can query
it. Modern systems generally have some form of client-server architecture,
with the bulk of the data residing on the server, and the researcher viewing
a portion of this data on a client machine or application.

2.3.3 Traditional client-server

With a traditional setup, the user interacts with the data via a desktop
application which they install and download on their local machine. This
application takes care of communicating with a remote server using some
protocol to read or write data.

This type of client-server setup has a number of disadvantages. There
is an additional burden on the researcher, in that he or she must install
and keep up to date their copy of the application, which discourages casual
serendipitous browsing. There is also in general no way of going from a view
of an entity such as a gene in one application to the corresponding view of
the same gene in a different application.

An example of this setup in bioinformatics was the ACEDB system[Stein
and Thierry-Mieg, 1999].

2.3.4 Web interfaces

The advent of the web fundamentally changed how researchers accessed data.
Many biological databases could be accessed via a web-based interface that
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did not require the installation of any desktop software beyond a standard
web browser. With the standard web-based architecture, the servers would
do the majority of the work, and generate static representations of the page
that are sent to the web browser to be rendered. This resulted in a more
static experience, but this was sufficient for many database interfaces.

The UCSC genome browser [Kent et al., 2002] is an example of a sophis-
ticated visual web interface to complex data. The UCSC browser allows for
scrolling and zooming along a genome sequence, with features such as ex-
ons and introns indicated via glyphs. Each user action results in the server
rendering an image which is delivered to the web browser.

The development of Java applets allowed for a more interactive experi-
ence typically required for visually demanding applications such as genome
viewers. Two early java applets for genome browsing were BioViews[Helt
et al., 1998] and GeneScene[Lewis et al., 2000].

Applets were in some ways a reversion to pre-web style architectures, as
they abandoned the hyperlink as the primary means of navigation. This
and a number of other problems lead to them being used less commonly in
modern applications.

2.3.5 Next-generation interactive web interfaces with AJAX

Historically desktop applications have been viewed as offering a richer expe-
rience with greater interactivity, whereas page-oriented web interfaces offered
a more static experience. However, this view is now changing with the advent
of richer web application technologies and frameworks such as AJAX (Asyn-
chronous Javascript and XML), characterized by familiar web applications
such as Google Maps and GMail.

2.3.6 Distributed architectures

In general it is not convenient for researchers to download large datasets to
their local machine and browse the data there. There needs to be some kind
of distributed architecture, involving protocols for client software to commu-
nicate with data servers. An example of such a protocol in genomics is the
Distributed Annotation Server (DAS) protocol[Dowell et al., 2001], which is
tailored for the retrieval of genomic features of interest within a given range.
A more generic architecture is the Common Object Request Broker Architec-
ture (CORBA)[Vinoski et al., 1997], which allows the exchange of structured
data across a network.
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2.4 Hypothesis Generation and Translational Research

2.4.1 Motivation

Integrating genomic data with other kinds of related experimental data in
formal logical structures with advanced visualization and query interfaces
provides researchers the ability to browse the data to find information they
need.

We can go one step further and use data-mining techniques with next
generation information systems to generate and explore hypotheses.

2.4.2 Identification of sequence variants involved in disease

The dbSNP[Sherry et al., 2001] database has over 12 million unique hu-
man sequence variants. Assaying every possible variant for association with
diseases or adverse phenotypic affects is prohibitively expensive in terms of
time, labor and reagents. A common strategy is to assay a subset of sequence
variants which we have some evidence for disease association. For example,
genome variants that change conserved amino acids are more likely to be
disease-causing[Botstein and Risch, 2003].

The Online Mendelian Inheritance in Man (OMIM)[Hamosh et al., 2005]
resource is a collection of 19,000 semi-structured records describing genes and
inherited diseases. OMIM is a rich and well-curated resource, but unfortu-
nately much of the valuable information is textual rather than structured.
This applies to both the descriptions of the sequence variants and to the
phenotypes themselves.

Model organisms provide a valuable source of candidate genes. Costello
syndrome is a neuro-cardio-facio-cutaneous developmental syndrome result-
ing from mutations in the H-RAS gene. If mouse H-Ras is mutated in the
orthologous position the phenotype recapitulates the disease[Schuhmacher
et al., 2008]. Spontaneous models can be identified by comparing phe-
notypes in animals with human disease phenotypes - for example, the fat
aussie mouse has phenotypes similar to human Alstrom syndrome which is
caused by ALMS1 variants[Collin et al., 2002], and indeed further investiga-
tion showed that fat aussie was associated with mutations in Alms1[Arsov
et al., 2006].

These examples for identifying animal models of disease relied on knowl-
edge of the genetic basis of the human disease, but there are many human
diseases for which it is not yet known. If a researcher could compare human,
model organism and even ancestral phenotypes directly, they would have a
mechanism to more rapidly identify candidate genes and models of disease.
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2.4.3 Ontologies and data mining

Ontologies are key technologies for data mining. One technique is to use
a subset of an ontology (sometimes called a slim)[Lomax, 2005]) and map
all annotations to that subset. For example, on completion of functional
annotation of a genome, map all genes into a set of pre-defined high-level
categories.

Another technique is term enrichment[Boyle et al., 2004]. Here, a col-
lection of annotated entities (such as genes up-regulated under certain ex-
perimental conditions) is tested for statistical enrichment across the whole
ontology.

Ontologies can also be used to measure similarity between annotated
entities - for example, comparing two genes based on their GO annotation
profiles[Lord et al., 2003][Pesquita et al., 2007][Pesquita et al., 2009].

One limitation all these techniques have in common is that they have
all been evaluated on the GO, and are not extensible to post-composition
style annotation. This means that they can be used for comparing genotypes
based on annotations to a pre-composed ontology such as MP, but not to
annotations that use combinatorial models, such as the EAV model or OWL
class expressions.

2.5 Background Summary

There are numerous technical challenges in the design and implementation
of intelligent next-generation genomic information systems. These systems
must be able to coordinate and integrate interdependent data transformation
workflows across multiple connected processing units. The results must be
integrated into flexible and expressive databases and knowledge bases that
allow comparison across many different data types. Ontologies are key to
data integration, but many ontologies are insufficiently developed or lack key
features that allow them to be used for inference. Sophisticated data archi-
tectures will be required, as well as biologist-friendly knowledge acquisition
and dissemination applications.

Finally, in order for the needs of translation research to be served, it will
be necessary to develop and apply new analysis methods that use ontolo-
gies to perform data-mining across complex heterogeneous datasets spanning
multiple species.
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Figure 6: An example illustrating composition of nodes from graph cross-
product. DAG cross-product example. In this example, a DAG whose nodes
represent colors is crossed with a DAG whose nodes represent shapes. The
result is a DAG whose nodes are colored shapes. Every combination is rep-
resented, so there are eight nodes in the result. From Hill et al 2002.

2.6 Historical Context

Many of the results described in thesis related directly or indirectly to knowl-
edge representation and in particular, ontologies. Biologists and bioinfor-
maticians have been rapidly developing and using ontologies over the past
decade, this adoption has been ad-hoc, and has largely ignored developments
made my computer scientists working in isolation biologist users. Many of
these fledgling bio-ontologies made use of the same simple structure and file
formats as the GO (see section 2.2.4), rather than the more advanced descrip-
tion logic languages and accompanying tools. One reason for this situation
may be that the perceived difficulty in using these tools, whereas there was
already a community of biologists making use of the GO. Coupled with the
runaway success of the GO, and the perceived lack of demand for more ad-
vanced tooling, this perhaps led many biologists to ignore developments in
theoretic and computational aspects of ontology engineering.

In fact, the simple data structures used for these ontologies turned out to
be a technological “local minimum”. For example, early on in the develop-
ment of the GO, bioinformaticians realized that development of the ontology
was sustainable only if algorithmic techniques were adopted to help automate
construction of the ontology - the so-called “cross-product” approach[Hill
et al., 2002]. The abstract idea is captured in figure 6 which shows the com-
position of colored shapes from orthogonal color and shape graphs, and the
example below shows a subset of the cross-product obtained by combining
an elemental developmental graph with an elemental anatomical graph:
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(Example 3)

{development,morphogenesis, growth} × {lung, brain, heart, bone, limb...}

In fact the approach was in part an independent re-invention of Formal
Concept Analysis (FCA) and Description Logic class-intersection constructs.
For example, the grey triangle at the top right corner of 6 could be repre-
sented by a DL expression:

GreyTriangle ≡ Triangle uGrey

Furthermore, description logic reasoning procedures can be used to au-
tomatically generate the full graph subsumption hierarchy. Unfortunately,
the GO researchers were not immediately aware of this branch of computer
science, and the computer scientists were not immediately aware that the bi-
ologists had a problem they could help with (although this was later pointed
out, e.g. in [Wroe et al., 2003]).

Part of the challenge in engineering and using ontologies effectively is
understanding enough of the biological problem and the computer science
state-of-the art to bring the two together effectively. This is the background
for many of the results presented in the forthcoming sections.
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Figure 7: GadFly Analysis Pipeline for release 3 of Drosophila genome. Re-
produced from Mungall et al, 2002

3 Systems for the Analysis of Genomic Se-

quences

3.1 An integrated computational pipeline and database
to support whole-genome sequence annotation

We created the GadFly automated annotation system primarily for the analy-
sis and re-annotation of the Drosophila genome[Mungall et al., 2002]*1. The
input for the system is a collection of genome sequences (either whole chromo-
some arms or smaller assembled regions), external sequence data (genomic,
transcriptomic or proteomic, in the same species or other species, both closely
and distantly related) and a configuration file. The output is a collection of
genome annotations collated and synthesized from the runs of a number
of gene prediction and sequence similarity tools. Figure 7 shows the data
sources and analyses used in the annotation pipeline.

GadFly incorporated a number of innovative features:

1. One of the first general-purpose configurable bioinformatics pipelines
to exploit Beowulf clusters to run multiple jobs in parallel on multiple
processors

2. highly configurable and allows biologists to configure workflows through
a workflow specification language

1Peer reviewed publication in Genome Biology
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3. the results from multiple individual analyses could be combined using
an algorithm called to Autopromote which combines multiple analyses
using voting networks into a single coherent gene models with alter-
nately spliced transcripts.

The GadFly system and successor systems was used for a number of an-
notation projects, described in the rest of this section.

3.2 Annotation of the Drosophila melanogaster euchro-
matic genome: a systematic review

The GadFly system was used in the analysis and re-annotation of The Drosophila
melanogaster genome[Misra et al., 2002]*2. The re-annotation yielded large
benefits in improved gene models, finding additional exons, UTRs and splice-
forms in the majority of genes, splits and merges of genes models, as well as
entirely new protein coding genes.

My contributions included selection and configuration of analysis software
used, setting of curator rules, and investigation of complex gene models. The
latter includes nested, trans-spliced and dicistronic genes, as well as cases of
tandemly repeated overlapping genes.

3.3 Heterochromatic sequences in a Drosophila whole-
genome shotgun assembly

In attempting to apply the same methods to heterochromatin, we discovered
that gene finders and alignment programs failed to find the outermost exons
of many heterochromatin genes, even after masking out repetitive regions
because of the uncharacteristically long introns.

Our solution was to go beyond simple repeat-masking. We excised and
condensed the repetitive elements to fixed-length sequences, resulting in dra-
matically improved alignments and gene predictions, illustrated with genes
such as rolled gene[Hoskins et al., 2002].

Heterochromatin is difficult to assemble due to the high levels of repetitive
sequence. It took a number of years for us to finally finish the sequence and
publish the full analysis[Smith et al., 2007a]*3.

2Peer reviewed paper in Genome Biology. My contribution was in the automated
genome analysis and in-silico experimental design

3Peer reviewed paper in Science. I devised the system used for data analysis and data
management, and carried out the Gene Ontology analysis
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3.4 Assessing the impact of comparative genomic se-
quence data on the functional annotation of the
Drosophila genome

We performed a comparative analysis, looking in depth at 8 genomic regions
from 4 Drosophila species[Bergman et al., 2002]. This required an extension
of the GadFly system to perform a TBLASTN analysis of the other genomes
against the newly annotated Drosophila melanogaster peptide sequences.

The results revealed that the gene models were highly conserved, which
helped us improve the exon-intron annotations in Drosophila melanogaster.
The exon-intron structures themselves are highly conserved, with only one
case of intron gain.

3.5 Large-scale trends in the evolution of gene struc-
tures within 11 animal genomes

We had previously performed a protein-centric comparative analysis of 3
model organisms and human[Rubin et al., 2000]. Using some of the tools
developed for the analysis of Drosophila we analyzed 11 animal genes, this
time focusing on the change in exon-intron structure over evolutionary time,
and the correlation with protein sequence changes[Yandell et al., 2006]*4.
This work involved extracting genome annotation data from GenBank, much
of which was inconsistent or missing data. We developed a tool for inferring
implicit genome annotations from GenBank records, which we contributed
back to the open source BioPerl project[Stajich et al., 2002].

Our results indicated that change in exon-intron structure is gradual and
largely independent of protein sequence evolution. This indicates that gene
structures can be used as a way of exploring deep homology.

Figure 8 shows correlation in orthologous intron lengths between Drosophila
melanogaster and 5 other insect species. With 5 million years until the last
common ancestor, intron lengths are highly correlated. As we move back in
time until 63 million years ago (the most distantly related Drosophila species
in the set) we see intron lengths becoming less correlated. At 250 million
years ago the correlation is lost, as can be seen in the comparison with the
malaria mosquito, Anopheles gambiae.

My contribution to this work included the database analysis and develop-
ment of software libraries. This research also made use of software developed
in tandem with a new relational database system called Chado.

4Peer-reviewed paper in PLoS Computational Biology. I contributed to the experimen-
tal design, and I devised and implemented the software and analysis pipeline
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Figure 8: Intron lengths and evolution. Taken from Yandell, Mungall et al,
2006

4 Formal Structures for Representing Biol-

ogy

4.1 Chado: An ontology-based modular schema for
representing biological information

We developed a modular ontology-oriented relational database schema called
Chado[Mungall et al., 2007a]*5. This schema was designed as a standard
model to be used across multiple projects and application tools spanning
multiple species.

This schema was innovative in a number of respects:

1. Modular Design. Instead of being a monolithic system, Chado used
inter-related schema modules, with each modules representing a differ-
ent sub-domain of biology. The core module is the sequence module
for representing genes and genomic features.

2. Formal graph-theoretic structures for representing the relationships that
hold between genomic entities and their derivatives (see figs 9 and 10).

3. Hybrid relational-ontology design. Chado has an extensible, flexible
under-constrained relational structure and uses ontologies for the bulk
of the modeling, making Chado a hybrid relational-ontology system.

5Peer-reviewed paper in Bioinformatics
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Figure 9: Example Chado Location Graph. Left panel shows visual depiction
of gene location on contig. Right panel shows the LG diagrammatically.
Inferred edges are indicated with dashed lines. Reproduced from Mungall et
al, 2007
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Figure 10: Example Chado Feature Graph. (a) visual depiction of gene
model with alternately spliced gene. (b) Feature Graph. Reproduced from
Mungall et al, 2007
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Figure 11: A section of the Sequence Ontology showing how terms and re-
lationships are used together to describe knowledge about sequence. Repro-
duced from Mungall Journal of Biomedical Informatics [SO] 2010.

At the core of Chado is the sequence module, for representing genomic
sequence features, as well as functional annotations made using the Gene
Ontology (GO). Chado also includes modules for expression data, phenotypic
data, phylogenetic data as well as others contributed by members of the wider
community.

The Chado sequence model is deliberately minimal, and delegates the
representation of feature types and relationships to an ontology.

4.2 The Sequence Ontology

We developed the Sequence Ontology (SO), a standard collection of feature
types together with the relationships that can hold between them[Eilbeck
et al., 2005]*6.

The SO is a formal structure consisting of a class hierarchy of feature
types, together with the relationships that hold between instances of these
types (see figure 11). The SO is intended to be use as a type system in the
Chado database, as well as in exchange formats such as GFF3, thus avoiding
the rigidity associated with typing at the schema level. The SO also serves
as a source of terminological information, with definitions and synonyms for
each of the major feature types.

The original incarnation of SO combined both molecules and sequences,
sometimes confusing the two. The ontology was structured primarily along

6Peer-reviewed paper in Genome Biology . I contributed to the design of the ontology
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exon_transcript_order(X1,T,R), 
exon_transcript_order(X2,T,R+1),  
exon_dnaseq_pos(X1,Seq,_,X1End,Str), 
exon_dnaseq_pos(X2,Seq,X2Beg,_,Str)
->
intron(I),
intron_dnaseq_pos(I,Seq,X2Beg,X1End,Str) 

stemloop(SL1,S1,L1), 
stemloop(SL2,S2,L2),
overlaps(L1,S2),
overlaps(L2,S1)
->
pseudoknot(X),
X = SL1+SL2

A

B

Figure 12: (A) Rule for inference of existence of intron and its genomic
position based on consecutive order of exons (B) rule for the inference of
pseudoknots based on connectivity relationships as defined in RNAO. Taken
from Mungall 2009 (LNCS)

mereological ground, using the part of relation. In order to better charac-
terize genomic features we enhanced the ontology, adding new relations, in-
cluding genomic relations based on the Allen Interval Algebra[Mungall et al.,
2010a]*7. As part of this work we also clearly delineated one-dimensional se-
quences from their corresponding molecules and their properties, leading in
part to the formalization of an ontology of RNA molecules[Batchelor et al.,
2009]8.

Many of the axioms we would like to add go beyond what can be expressed
in ontology languages such as OBO or OWL. For example, given two exons
that are transcribed in succession (using a relation such as exon transcript, as
defined in the Ensembl datamodel), we should be able to infer the existence
of an intron in between these two exons (see figure 12A). Logic programs
are an alternative basis for expressing these kinds of rules[Mungall , 2009]9.
These rules can be extended from linear DNA sequences to RNA secondary
structures, as shown in figure 12B.

7Peer-reviewed paper in Journal of Biomedical Informatics, in press
8Published as conference proceedings, currently being expanded into a full journal

article
9Conference proceedings, published in Lecture Notes in Computer Science
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Relation Transitive Symmetric Reflexive Antisymmetric
is a + - + +
part of + - + +
located in + - + -
contained in - - - -
adjacent to - - - -
transformation of + - - -
derives from + - - -
preceded by + - - -
has participant - - - -
has agent - - - -

Table 1: Some properties of type-level relations in the OBO Relation Ontol-
ogy. Note that type-level adjacency is non-symmetric. Taken from Smith et
al, 2005.

4.3 Relations in Biomedical Ontologies

One problem with the many nascent biological ontologies was informal and
inconsistent use of relations such as is a and part of . We created a rela-
tion ontology (RO) to promote interoperability of ontologies and to support
automated reasoning[Smith et al., 2005b]*10.

Each relation can have formal properties such as transitivity and reflex-
ivity (see table 1).

The RO makes a formal distinction between type-level and instance-level
relations. Type-level relations are defined in terms of the instance-level ones,
and type-level relations may have different formal properties from their in-
stance level counterparts. For example, adjacency is symmetric on the in-
stance level, but not on the type-level (consider: every nucleus is adjacent to
some cytoplasm, but not every cytoplasm is adjacent to some nucleus).

One important feature of the RO is its treatment of time, an aspect
missing in many description logic treatments of biological ontologies.

4.4 Obol: Integrating Language and Meaning in Bio-
Ontologies

Just as a biological sequence contains latent meaning that can be elucidated
by pattern matching, terms from ontologies such as the GO contain patterns
that can be extracted computationally. The Obol grammar and inference

10Peer-reviewed publication in Genome Biology . I developed the initial version of the
ontology
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Adj Noun Prep Noun Tok Noun

NP2 NP2NP2

NP3

NP4

NP1

PP

NP5

SOBO  → NP
NP1    → NP NP
NP2    → Noun
NP3    → Adj NP
NP4    → NP Tok
PP      → Prep NP
NP5    → NP PP

negative regulation of interleukin-2 biosynthesis

SOBO
LEGEND: Example
parse of a GO term.
Stem phrases
indicated in bold.

Figure 13: Obol parse of the term negative regulation of interleukin-2 biosyn-
thesis using a context free grammar with 5 production rules. Taken from
Mungall, 2004

system was devised to extract latent meaning hidden in terminology-oriented
ontologies such as the GO[Mungall , 2004]*11.

Obol is implemented in Prolog and uses Definite Clause Grammars to
encode production rules for parsing opaque terms such as negative regulation
of interleukin-2 biosynthesis into description logic expressions that reveal
hidden semantics (see figure 13). Obol also includes rules for reasoning over
these structures, using properties of relations defined in the RO. For example,
automatic inference of the subsumption relationship between negative regu-
lation of interleukin-2 biosynthesis and regulation of cytokine biosynthesis.

Obol presented an advance on previous techniques which relied on regular
grammars to do similar tasks. Whist regular expressions have the advantage
of being easily implemented in programming languages such as Perl, they
lack the expressive power to fully capture the nested linguistic expressions
used in GO terms. Obol DCGs are more expressive, at least as expressive as
Context Free Grammars (CFGs).

Obol proved successful at determining the correct structure of many of
the terms in GO. Combined with its built-in reasoning system, Obol was
able to suggest thousands of new links that were subsequently added to the
GO, as well as detecting many errors in the ontology structure or ontology
definitions.

11Conference paper from Bio-Ontologies 2004 subsequently published in Comparative
and Functional Genomics. Whilst this paper was peer-reviewed, it is classified as a con-
ference paper and thus may not count as a full peer-reviewed journal article
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Figure 14: Use of Gene Ontology Cross-Product definitions for reasoning.
Bold line between regulation of peptide secretion and regulation of peptide
transport is inferred by a reasoner. Taken from Mungall Journal of Biomed-
ical Informatics [GO] 2010

More recently, Obol has been extended to work with OWL ontologies and
a wider range of logical class expressions[Vassiliadis et al., 2009]12.

4.5 Cross-product extensions of the Gene Ontology

We have used a combination of Obol and manual curation to generate logical
definitions for 41% of the terms in the GO[Mungall et al., 2010b]*13. These
logical definitions have been partitioned into mutually exclusive sets called
cross-products (XPs). Each XP is a subset of the cross-product between one
of the 3 GO ontologies and another ontology. For example, the term oocyte
differentiation is formally defined using the parent class cell differentiation
from the GO biological process ontology and discriminating characteristics
that reference oocyte in the Cell Ontology (table 2). This term therefore falls
into the BP × CL XP set.

The combination of these logical definitions and the relationships from
external ontologies allow us to use automated reasoners to find the answers
to biological questions and to automatically classify the GO. For example,
we can infer the oocyte differentiation should be an is a child of germ cell
differentiation. Using this strategy we identified and fixed over 2000 links in
the GO. An example of one such fix is shown in figure 14.

12Published as conference proceedings. I wrote the manuscript and supervised the work
13Peer-reviewed paper in Journal of Biomedical Informatics
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XP Set Size Example Def
BP× BP 606 S phase of mitotic cell cycle S phase AND part of mitosis
BP× BP (regu-
lates)

3529 Regulation of neuroblast pro-
liferation

biological regulation AND regulates
neuroblast proliferation

BP × BP

(multi-
organism)

374 modulation of intracellular
transport in other organism
during symbiotic interaction

interspecies interaction between or-
ganisms AND regulates intracellular
transport AND during symbiosis AND
regulates process in external organism

BP× MF (regu-
lates)

201 Regulation of protein kinase
activity

biological regulation AND regulates
protein kinase activity

BP× CC 476 Mitochondrial translation translation AND occurs in mitochon-
drion

CC× CC 682 Acrosomal membrane membrane AND surrounds acrosome
CC× MF 173 histone deacetylase complex protein complex AND has function hi-

stone deacetylase activity
MF× MF (regu-
lates)

104 Lipase activator activity molecular function AND regulates li-
pase activity

MF× CC 48 Microtubule motor activity motor activity AND re-
sults in movement along microtubule

BP× CL 544 Oocyte differentiation cell differentiation AND re-
sults in acquisition of features of
oocyte

BP× Uberon 583 Neural plate formation anatomical structure formation AND
results in formation of neural plate

BP× PATO 31 Regulation of cell volume biological regulation AND regulates
(volume AND quality of cell)

MF× Uberon 9 Structural constituent of bone structural molecule activity AND in-
heres in bone

CC× CL 28 Neuron projection cell projection AND part of neuron
BP× CHEBI 3077 L-cysteine catabolic process to

taurine
catabolic process AND has input L-
cysteine AND has output taurine

MF× CHEBI 315 nitrate reductase activity oxidoreductase activity AND reduces
nitrate

BP× PRO 37 Interleukin-1 biosynthesis biosynthetic process AND has output
interleukin-1

Table 2: Gene Ontology cross-products. The set of all equivalence axioms is
divided into individual XP sets denoted A× B. The number of equivalence
axioms in each set is show, together with an example equivalence between GO
term and intersection expression. Taken from Mungall Journal of Biomedical
Informatics [GO] 2010
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These logical definitions can also be used to automatically align with path-
way databases such as Reactome. For example, molecular function classes
can automatically be matched to the reactions they subsume based on the
reaction participants in CHEBI.

This work is part of a larger effort to apply engineering techniques on the
Gene Ontology[Alterovitz et al., 2010].

In many cases we found that the referenced ontology was incorrect and the
links in the GO were correct. We developed an abductive inference technique
for detecting these[Bada et al., 2008]14.

This work demonstrated the importance for GO in coordinating with a
set of orthogonal external ontologies.

4.6 The OBO Foundry: coordinated evolution of on-
tologies to support biomedical data integration

The GO was constructed to serve the needs of functional annotation – as-
signing a gene to categories based on what the gene function is and where it
is localized within the cell when it executes its function. However, the GO
was not intended for representing other biological phenomena, such as where
in the organism a gene is expressed, or what happens to an organism when
a gene is mutated. This requires other ontologies.

The development of these other ontologies had to be coordinated such
that they were mutually consistent. The Open Biological Ontologies (OBO)
library[Ashburner et al., 2003]15 and later on, the OBO Foundry, were created
in order to foster the development of these ontologies[Smith et al., 2007b]*16.

The activities of the OBO Foundry include the publication of a set of
best practices17, including standardized naming conventions[Schober et al.,
2009].

4.7 A Common Anatomy Reference Ontology

We developed a common anatomy reference ontology (CARO) to serve as a
standard framework for all anatomical ontologies[Haendel et al., 2007]18.

14Published as conference proceedings
15Conference paper
16Peer-reviewed publication Nature Biotechnology. I played a key role in the creation

of these libraries, developing the technology, infrastructure and contributing to the core
principles

17http://obofoundry.org
18Book chapter
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Figure 15: Subset of the Dendritic Cell Ontology. Taken from Masci et
al, 2009. DC, dendritic cell; PDC, plasmacytoid dendritic cell; and LC,
Langerhans Cell

CARO employs a jointly-exhaustive pairwise-disjoint hierarchy classified ac-
cording to structural criteria. CARO is a small ontology consisting of only 46
very general classes such as “epithelium” and “cavitated compound organ”,
but lacks classes for specific cells, organs or systems such as “immune cell”,
“heart”, “liver”, “immune system” “eye” and so on. Instead, these types of
entity are intended to be represented in more specific ontologies such as cell
type ontologies or species-specific gross anatomical ontologies.

4.8 Hematopoietic Cell Types: Prototype for a Re-
vised Cell Ontology

We developed an ontology of dendritic cells[Masci et al., 2009] (DC-CL)
classified according to surface protein expression. This required the creation
of new mereological relations defined using the Gene Ontology cell component
ontology in order to specify the properties of cells in a compact way.

Figure 15 shows a subset of the DC-CL ontology. Table 3 shows a subset
of logical definitions from the ontology.

The methods described here were broadened and applied to hematopoetic
cells as a whole, leading to an overall restructuring of the Cell Ontology[Diehl
et al., 2010].
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Class Genus Differentia
conventional dendritic
cell

leukocyteCL has high plasma membrane amount CD11cPRO

lacks plasma membrane part CD3PRO

lacks plasma membrane part CD19PRO

lacks plasma membrane part CD34PRO

lacks plasma membrane part CD56PRO

CD11clow plasmacy-
toid dendritic cell

leukocyteCL has low plasma membrane amount CD11cPRO

has plasma membrane part CD45RPRO

has plasma membrane part GR1PRO

lacks plasma membrane part CD11bPRO

lacks plasma membrane part CD3PRO

lacks plasma membrane part CD19PRO

lacks plasma membrane part CD34PRO

lacks plasma membrane part CD56PRO

CD11c-plasmacytoid
dendritic cell

leukocyteCL has plasma membrane part CD45RAPRO

has plasma membrane part CD123PRO

has plasma membrane part CD303PRO

has plasma membrane part ILT7PRO

lacks plasma membrane part CD11cPRO

lacks plasma membrane part CD3PRO

lacks plasma membrane part CD19PRO

lacks plasma membrane part CD34PRO

lacks plasma membrane part CD56PRO

Table 3: Logical definitions for the three most general types in DC-CL.
Adapted from Masci et al 2009

4.9 Representing Phenotypes in OWL

The original EAV database model for describing phenotypes lacked any for-
mal semantics. To remedy this we proposed a way of representing phenotypes
with PATO and OBO ontologies using a Description Logic language such as
OWL-DL[Mungall et al., 2007b]19. This retains the expressivity of the EAV
model, but within a single unified framework.

Each phenotype is represented as a class expression using set-theoretic
operators such as intersection and union. Most phenotype descriptions are
composed using an intersection between a named PATO class and a relational
expression formed using the formal inheres in relation (table 4).

19Conference proceedings, non peer-reviewed
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Phenotype DL representation
curved wing Curved that inheres in some Wing
photosensitivity Sensitive that towards some Ultra-

violetLight and inheres in some Skin
high permeability of mitochon-
drial cristae in axons of CA1
pyramidal cells

HighPermeability that inheresIn
some (MitochondrialCristae that
part of some (Axon that partOf
some PyramidalCell that part of
some CA1Field))

Table 4: Representing phenotypes as OWL-DL descriptions. OWL expres-
sions are written using Manchester Syntax. Adapted from Mungall et al
2007.

5 Tools for Visualisation and Knowledge Ac-

quisition

5.1 Web-based architectures for visualising genetic and
genomic data

Once information has been structured according to relational schemas and
ontologies it should be made accessible to researchers in a way that allows
complex queries and visualisation of complex data.

One common way to present information in a database to users is through
a web-based interface. The development of web interfaces can be simplified
and accelerated through the use of templating systems. One such system is
WebInTool[Hu et al., 1996], which is a component of the Anubis interface to
the ArkDB family of genetic mapping databases[Hu et al., 2001]. Anubis is
a web-based graphical interface for visualizing markers on linkage, radiation
hybrid and cytogenetic maps. This interface was innovative in being one of
the first interactive web-enabled graphic map browsers in biology, and also
in the use of distributed architecture and HTTP-based API, similar to the
DAS protocol which followed a few years later. This was later extended to use
CORBA[Hu et al., 1998] with a Java front-end. CORBA had the advantage
of being industry-standard, but proved far more difficult to implement.

The web-based visualization paradigm also proved useful for genomic se-
quence feature data, with development culminating in the Generic Genome
Browser (GBrowse)[Stein et al., 2002]. GBrowse works in conjunction with
Chado (or its predecessor GadFly) or other genome databases.

The GBrowse architecture is shown in figure 16. Figure 17 shows a screen-
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Figure 16: GBrowse Architecture, including GadFly database. Reproduced
from Stein et al, 2002

shot of a region of the C elegans genome in GBrowse.
One of the limitations imposed on GBrowse by the technology of the

time was the delivery of static images to the browser. We implemented a
successor to GBrowse called JBrowse using Asynchronous Java and XML
(AJAX) technology in order to deliver greater interactivity[Skinner et al.,
2009].

5.2 AmiGO: online access to ontology and annotation
data

We developed a web application called AmiGO that allows users to query,
browse, and visualize ontologies and related gene product annotation data[Carbon
et al., 2008]. As well as browsing and querying (see figure 19), AmiGO also
offers term enrichment and an annotation slimmer tool.

This application is constructed on top of the GO Database[Harris et al.,
2004] and forms a critical component of the Gene Ontology online resource[Ashburner
et al., 2001].

5.3 Knowledge Acquisition Tools

We have developed a suite of user interfaces intended for the acquisition of
complex knowledge from experts. These are all implemented as Java desktop
applications.

Apollo[Lewis et al., 2002] is a sequence annotation editor which was con-
structed initially for and used extensively in the annotation of the Drosophila
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Figure 17: GBrowse Screenshot, from Stein et al, 2002

Figure 18: JBrowse architecture, from Skinner et al, 2002. Feature data from
databases such as Chado are converted to JSON NCLists. These are delivered
to the browser, where they are rendered client-side using a JavaScript module
GenomeView.js
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Figure 19: AmiGO screenshot showing genes annotated to negative regulation
of cytolysis. From Carbon et al, 2008
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Figure 20: 3’ UTR of CG9455 overlaps downstream Spn1 gene. Both
genes have Gene Ontology annotations to serine protease activity. Figure
from Misra et al 2002, the screenshot taken from Apollo (Lewis et al 2002)
shows experimental evidence from cDNA alignments to the genome, stored
in GadFly.

melanogaster genome (figure 20).
OBO-Edit is a graph-oriented ontology editor[Day-Richter et al., 2007],

constructed initially for the Gene Ontology, but now used for the majority
of ontologies in the OBO library.
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6 Applications of Next-Generation Informa-

tion Systems in Translational Research

6.1 GO analysis of Plasmodium

We applied tools developed for the GO Database for functional annotation
analysis in the malaria parasite, Plasmodium falciparum[Gardner et al., 2002]20.
These tools used the graph structure of the ontology to “slim” annotations, in
order to provide a high-level whole-genome overview; annotations are prop-
agated up the graph to a predetermined level, and counted, where they can
easily be plotted in a bar chart (see Figure 21).

For example, annotations to the specific term protein import (GO:0017038)
and counted when providing a summary for the high level term transport.
When all the GO annotations in Plasmodium were summed in this way and
compared to Yeast, it showed an over-representation of genes in the cell adhe-
sion and cell invasion categories. This correlates with what is already known
about the Plasmodium lifecycle, and illustrates the utility of the GO and in
particular inferences over the GO graph.

The GO analysis here is limited in that the high-level categories of interest
had to be pre-determined, and there was no estimate of significance of the
enrichment in these categories.

6.2 Genome-wide analysis of human disease alleles re-
veals that their locations are correlated in paralo-
gous proteins

In mining the human genome for disease-causing sequence variants we are
faced with an abundance of potential candidates (dbSNP has over 12 mil-
lion unique sequence variants). We hypothesized that if a sequence variant
is disease-causing, then a variant at the corresponding position in the par-
alogous protein is also likely to be disease-causing. This could allow for
improved sequence variant candidate selection.

To explore this hypothesis we systematically examined the genome-wide
distribution of sequence variants along the lengths of paralogous proteins[Yandell
et al., 2008]*21. In order to do this, we created a database of human disease
genes together with known variants and disease annotations on those vari-
ants. This database employed inferencing techniques to derive amino acid
variation information and class (synonymous, non-synonymous, conservative,

20Peer reviewed paper in Nature. My contribution was the GO analysis.
21Peer-reviewed in PLoS Computational Biology

41



Figure 21: classification of P. falciparum genes using Gene Ontology. Repro-
duced from Gardner et al, 2002
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Figure 22: Using sequence similarity to identify variant pairs (taken from
Yandell et al, 2008)

Gene A Variant A Disease A Gene B Variant B Disease B
FGFR2 CX972741 Pfeiffer syndrome FGFR3 CM950470 Thanatophoric dysplasia
JAG1 CD993777 Alagille syndrime FBN1 CM972811 Marfan syndrome
ATP7A CM940140 Menkes syndrome ATP7B CM970138 Wilson disease
ABCA1 CM993803 Tangier disease ABCA4 CM990025 Stargardt disease
CFTR CM940275 Cystic fibrosis ABCC8 CM981883 Hyperinsulism

Table 5: Examples of paralogous pairings of alleles in known disease genes.
Cols 1 and 4 give the gene symbols for two paralogous disease-causing genes.
Cols 2 and 5 give the HGMD IDs of the two variants that comprise the Class
1 pair. Columns 3 and 6 list the diseases most commonly associated with
the two paralogous variants. Taken from Yandell et al, 2008

non-conservative). We also developed methods to match phenotypically char-
acterized genotypes in OMIM with dbSNP variants. We then used BLASTP
to derive candidate homologous pairs and to map variations from the known
disease gene to candidate gene (see figure 22). Our results showed that dis-
ease causing genes preferentially align with each other and that on average,
choosing uncharacterized variations aligned to known disease variants will
enrich 6.6-fold for clinically significant variations.

Table 5 shows some examples of paralogous pairings of known disease
genes. The diseases often exhibit similarity - for example, patients with
Menkes and Wilson disease, for example, both suffer from abnormalities in
copper metabolism and in some cases neurodegeneration.

One limitation of this study is the lack of any quantification of the degree
of similarity between the phenotype pairs of paralogous disease alleles.
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MP: Purkinje cell 
degeneration

MP: neuron 
degeneration

is_a 

CL:
Purkinje cell 

CL:
CNS neuron

CL:
neuron

is_a 

is_a 

PATO: degenerate 

E: neuron
Q: degenerate

E: Purkinje cell
Q: degenerate

Figure 23: Logical definitions for Mammalian Phenotype Ontology classes,
making use of PATO and Cell Ontology (CL). Leveraging external ontologies
means we can use automated reasoners to infer relationships, such as the on
between Purkinje cell degeneration and neuron degeneration. Image taken
from Mungall Genome Biology 2010.

6.3 Integrating Phenotype Ontologies across Multiple
Species

We took four incompatible pre-composed phenotype ontologies and gener-
ated equivalence axioms between the named classes in these ontologies and
simple “Entity-Quality” (EQ) descriptions[Mungall et al., 2010]*22. These
EQ descriptions are a syntactic variant of the OWL class expressions de-
scribed previous (Mungall 2007, see previous section). We created an Obol
grammar that mapped phenotype terms into class expressions and curated
the results. We focused specifically on the Mammalian Phenotype (MP) on-
tology and mapped 72% of the 6844 classes. Figure 23 shows an example
mapping for the class Purkinje cell degeneration.

We validated our results by attempting to recapitulate asserted relation-
ships in MP and the Human Phenotype (HP) ontology using our mappings
and automated reasoning (table 6). We discovered that in the MP over a
third of the manually stated relationships could be inferred automatically.
This demonstrates the benefits of using a formal approach combined with
automated reasoners to partially automated construction of ontologies.

We have worked with a number of groups to help them adopt the EQ
phenotype model described here, including groups involved in systematic

22Peer-reviewed publication in Genome Biology
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HP (human) MP (mouse)
Number of is a relation-
ships asserted in ontology

10,162 7,950

Number of is a relation-
ships that can be inferred
automatically

1,421 2,922

Number of novel is a rela-
tionships proposed (unvet-
ted)

407 478

Table 6: Results of using automated reasoning to recapitulate asserted re-
lationships in pre-coordinated phenotype ontologies. Taken from Mungall
2010

mouse phenotyping pipelines[Hancock et al., 2009]23, and clinicians building
ontologies of musculoskeletal system phenotypes[Gkoutos et al., 2009]24.

6.4 Linking Human Diseases to Animal Models using
Ontology-based Phenotype Annotation

We investigated the use of PhenoBlast to identify animal models of human
diseases[Washington et al., 2009]*25. As a first step we manually annotated
12 human disease genes using Phenote, extracting textual information from
OMIM and translating these into formal phenotype expressions using PATO.
This resulted in 1000+ genotype-phenotype associations.

We then compared these phenotypes against the full set of genotype-
phenotype associations from zebrafish and mouse. The mouse phenotype
annotations were from the MGI group and used the Mammalian Phenotype
ontology (MP). We used the equivalence mappings described previously (page
44, Mungall 2010, Integrating Phenotype Ontologies across Multiple Species)
to translate these into PATO-based formal phenotype expressions. The Ze-
brafish annotations from the ZFIN group were already in the correct form.
Finally, we used the Uberon ontology in order to compare across species.

These were all loaded into an instance of the Ontology-Based Database
(OBD) [Mungall, in prep] and the PhenoBlast algorithm [Mungall, in prep]
was used to find similar animal genes to the 12 human disease genes based
on their phenotypic profile (table 7). We also used the same algorithm to

23I contributed to the methods described in this paper
24Conference paper
25Peer-reviewed in PLoS Biology. I contributed to the analysis design, and devised and

implemented all software used
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Figure 24: A phenotype similarity search for mutant phenotypes similar to
zebrafish shha retrieves many known pathway members. Diagram taken from
Washington 2009.

identify potential pathway members of the zebrafish Sonic hedgehog pathway
(figure 24).

Since the genetic basis of human disease is often unknown, this method
provides a means to identify candidate genes, pathway members, and disease
models based on computationally identifying similar phenotypes within and
across species.
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Table 7: Comparison between human disease genes and closest matches in
model organisms. Highest scoring genes when comparing a human disease
gene versus either mouse or zebrafish, using four different phenotype simi-
larity metrics. Sequence orthologs that are the top hit are in bold. From
Washington et al, 2009

mouse zebrafish
Gene simIC simJ ICCS maxIC simIC simJ ICCS maxIC
ATP2A1 Jph1 Slc25a5 Aldh2

Cisd1
Jph1 ryr1b ryr1b ryr1b ryr1b

EPB41 Epb4.9 Mnek1a Epb4.1 Epb4.1
Epb4.2
Epb4.9
Trf

smad5 gata1 dtl dtl
kiaa1279
sass6
stil

EXT2 Hoxd8 Hoxd8 Hoxc4 Sp7 Cr-
tap

t30212 t30539 t30611
+ 6 un-
named

dla blo
exp stb
tz227c
tg310a

EYA1 Eya1 Eya1 Tbx1 Trps1
Gja1
Msx2

rerea fgf8a rerea axin1
chm
shy

FECH Abcg2 Abcg2 Abcg2 Anapc2
Usp8

tal1 abhd11 kita tal1

PAX2 Rpl24 Maf Mitf Mitf lamb1 sufu pax2a pax2a
flr
axin1

SHH Cdon Ctnnbip1 Alx1 Ift57 rerea fgf8a sox9a sox9a
tfap2a

SOX9 Fgfr2 Ror2 Prrx1 Ror2
Fgfr3

fgf8a cdc16 fgf8a int

SOX10 Ednrb Ednrb Ednrb Ret sox10 mib sox10 sox10
pbx4
ache
tfap2a
tcf7l2
psoria-
sis

TNNT2 Hdac9 Hdac9 Irx4 Hdac9
+20
tied

cx36.7 cx36.7 vmhc acvr1ttna

TTN Myl2 Scn5a Mybpc3 Myl2
Nkx2-5

cx36.7 cx36.7 ttna ttna
mef2ca
ache
hey2
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7 Discussion

7.1 Genome Analysis Pipelines

The need for genome analysis pipelines is greater than ever - as of July 2009,
the Genomes Online Database (GOLD) lists nearly one thousand completely
sequenced genomes and thousands more in progress[Bernal et al., 2001]. Since
the initial development of the GadFly pipeline there have been a number of
other systems developed. Taverna has a graphical interface that allows biol-
ogists to create complex interdependent workflows using web services[Oinn
et al., 2004]. Pegasys also includes a similar interface[Shah et al., 2004].
MAKER is less flexible but is tuned for the rapid annotation of emerging
model organism genomes[Cantarel et al., 2008]. Perhaps the most popular
such tool for next-generation sequence analysis is Galaxy[Giardine et al.,
2005].

The advantage of having a graphical interface to construct a workflow
is a major advantage for individual researchers lacking programming skills.
These researchers may have a particular analysis which they repeat regularly
- for this use case a tool such as Taverna is ideal. However, for more complex
pipelines a graphical language is usually not expressive enough, and a Turing-
complete programming language is required. But most existing programming
languages do not parallelize well. One promising approach is to use a rule-
based approach such as UNIX Makefile style production rules augmented
with functional and logic programming constructs[Mungall, Bioinformatics
Open Source Conference 2004 presentation26].

Most of the systems above implement parallelization through the use of
compute clusters. The growth of multi-core processors[Asanovic et al., 2006]
is an opportunity for extracting more computing power from commodity
hardware. However, many algorithms are designed for execution on single-
core machines. Many analysis programs will need rewritten such that they
can be executed in parallel, such as for example by using the MapReduce
algorithm[Dean and Ghemawat, 2004].

7.2 Impact of the Chado Relational Schema and the
Sequence Ontology

The Chado schema was originally devised for FlyBase and has since been
adopted as the core schema of the Generic Model Organism Database (GMOD)
project27, which has lead to it being adopted by many nascent Model Organ-

26http://open-bio.org/bosc2004/presentations/biomake.pdf
27http://www.gmod.org
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ism Database (MOD) projects (table 8). Chado is also making headway with
more established model organisms and influencing the redesign of aspects of
existing MOD schemas. Chado is also being used as the core database schema
in projects outside the scope of the MODs such as orthology databases and
the modENCODE project and Drosophila neurogenetics[Pfeiffer et al., 2008].

One of the reasons for the widespread adoption of Chado is the flexibility
of the schema in comparison with relatively rigid schemas such as the En-
sembl core schema. Chado has been criticised for “representing the biology
in the applications thereby allowing flexibility in what can be stored but at
the cost of not being able to force applications to be consistent.”[Stoeckert,
2005]. This criticism is valid; consistency in Chado and similar models
such as GFF3 has generally been encouraged through “best-practice” guide-
lines[Eilbeck and Lewis, 2004] and textual definitions in the SO. For example,
the SO states that the 3’ UTR is adjacent to the stop codon. However, this is
not enforced computationally, except in ad-hoc checks in individual program-
ming libraries. Ideally this relationship between the UTR and the stop codon
would be encoded as a logical axiom in the ontology, and this axiom could
be interpreted directly in computer programs both to validate databases in
which both UTRs and codons are explicitly asserted, and to infer the exis-
tence of either UTRs or codons in databases where only one is systematically
asserted.

These axioms could be encoded as a Genome Calculus, incorporating re-
lations based on the Allen Interval Algebra, extended to take into account
phenomena such as reverse transcription and circular genomes[Mungall et al.]
[in preparation]. Preliminary research shows that encoding such a calculus
goes beyond the expressivity of both the relational model and ontology lan-
guages such as OWL, bit within the expressivity of logic programming.

7.3 The growth of biological ontologies

Before the inception of the GO in 1998, very few biologists were familiar with
the term “ontology”. The success of the GO, the simplicity of graph-oriented
model and the biologist-friendliness of associated tools such as OBO-Edit
(formerly DAG-Edit) lead to the creation of a number of other biological
ontologies. Much of this development was actively encouraged by the GO,
because it was obvious that the success of the GO would depend on the
existence of ontologies such as the Cell ontology and the CHEBI ontology for
the generation of cross-products.

The proliferation of ontologies required some kind of mechanism for ensur-
ing consistency and avoidance of redundancy. The Open Biological Ontolo-
gies (OBO) library was created to provide the infrastructure and governance
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Project Organism(s)
FlyBase[FlyBase-Consortium, 2003] Drosophila
modENCODE[Celniker et al., 2009] Drosophila melanogaster, C

elegans
Rubin Lab, Janelia Farm Drosophila melanogaster

neurogenetics[Pfeiffer et al.,
2008]

XenBase[Bowes et al., 2008] Xenopus
dictyBase[Chisholm et al., 2006] Dictyostelium discoideum
VectorBase[Megy et al., 2008] Anopheles, Ixodes scapu-

laris and other vectors
Generation Challenge[Wanchana et al.,
2008]

Crops

parameciumDB[Arnaiz et al., 2007] Paramecium tetraurelia
SGD (phenotype data)[Costanzo et al.,
2009]

Saccharomyces cerevisiae

SGD lite[Dolinski and Botstein, 2005] Saccharomyces cerevisiae
Princeton Protein Orthology
Database[Heinicke et al., 2007]

Multi-species

Sanger Institute, Pathogen
sequencing[Hertz-Fowler et al., 2004]

Pathogens

wFleaBase[Colbourne et al., 2005] Daphnia
BeetleBase[Wang et al., 2006] Tribolium
AphidBase[Gauthier et al., 2007] Acyrthosiphon
ButterflyBase[Papanicolaou et al.,
2008]

Lepidoptera

Table 8: Projects and databases using the Chado Relational Schema. A high
proportion are new model organism databases, but some established model
organism databases are using subsets of the Chado schema for particular
datatypes
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for the development of multiple ontologies such that they form a logical and
coherent whole.

7.4 Formalization of ontologies

Many biological ontologies start out as informal controlled-vocabulary style
resources. The lack of formal axioms limits the ability to which we can
use automated means to build the ontology or to answer questions about
biology using the ontology. Obol was developed as a means of transitioning
controlled-vocabulary style ontologies into logical structures. Obol improves
on other techniques such as perl regular expressions because Obol DCGs
are at least as expressive as context free grammars (CFGs), which are more
expressive than regular grammars.

Obol has been used successfully within the GO to augment the ontology
with additional formal definitions connecting the GO with multiple other
OBO ontologies, and has also been used to augment pre-composed phenotype
ontologies in the same way. Obol is now being adopted by other communities
such as the Plant Ontology Consortium [Jaiswal et al., 2005]. Obol was also
featured prominently in an article in The Scientist [Adams, 2005].

7.5 Querying data: data warehouses, marts and medi-
ators

One solution to the problem of data integration is to build a data warehouse
- typically a denormalized relational database tuned towards answering ques-
tions rather than managing data. Two such systems are BioMART (formerly
EnsMart)[Kasprzyk et al., 2004] and InterMine (formerly FlyMine)[Lyne
et al., 2007]. The InterMine system can be used in conjunction with Chado.
These systems provide a powerful means for researchers to specify complex
queries and get back data in a custom report.

One problem with the warehouse approach is data latency - the warehouse
must be constructed from external sources, a task that is mostly automatable
but still time consuming. This means that querying a warehouse means the
data may not be up to date or in sync with other data in the system. Another
issue is that the databases that are combined are determined in advance,
limiting the types of questions that can be answered.

Ideally different datasources could be combined dynamically at query
time, avoiding data latency issues and allowing a wider range of datasets to be
combined. This is known as the mediator approach or federated database ap-
proach, and groups such as the Neurosciences Information Framework (NIF)
are applying this approach[Gupta et al., 2008].
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7.6 Phenotype ontology based data integration

The original motivation for our phenotype ontology work was biomedical
and translational applications, for example, semantically integrating model
organism and clinical datasets to be able to find animal models for hu-
man diseases[Rubin et al., 2006]. However, the systematic representation
of phenotypes is also vital for the study of evolution. We have been work-
ing with scientists from the National Evolutionary Synthesis Center (NES-
Cent)[Senkowsky, 2007] to encode phylogenetic character state matrices us-
ing ontologies in order to systematically compare across different evolutionary
datasets[Mabee, Ashburner, Cronk, Gkoutos, Haendel, Segerdell, Mungall ,
and Westerfield, 2007]28. One of the most exciting aspects of this preliminary
research is the promise of semantically integrating clinical, model organism
and evolutionary datasets, allowing us to search for potential new model or-
ganisms based on the similarity between evolutionary phenotypes and human
diseases.

7.7 Future Directions

The advancement of the life sciences could be accelerated by the creation
of advanced information systems that are capable of intelligently analysing
and synthesising data and knowledge from multiple sources to generate new
hypotheses. This is a grand challenge requiring coordinated progress in a
variety of areas. Some of the opportunities and potential future directions
for research continuing the work described in this thesis include:

1. Embracing multi-core computing. If we are to maximize use of
forthcoming multicore architecture computing, we need to develop more
intelligent, expressive and flexible analysis pipeline systems. These sys-
tems should also be better integrated into upstream databases, curation
and analyses workflows. Ultimately, these systems should be imbued
with greater autonomy and intelligent inferencing capabilities.

2. A unified formalism for data and knowledge. Databases and on-
tologies are currently poorly integrated. We need systems that subsume
both the relational model and description logic languages that combine
the best of both worlds. Preliminary work (Mungall LNCS 2009) shows
logic programming as one possible paradigm deserving further study.
This could be used as a basis for a Genome Calculus, a formaliza-
tion of the relations and dynamic transformations that hold between
genomic entities.

28I contributed to the writing of the manuscript for this position paper
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3. Applications of enhanced biological ontologies. Many applica-
tions such as term enrichment tools treat ontologies as simple directed
acyclic graphs, ignoring the semantics of edge labels. By equipping
these applications with greater inferencing capabilities, we create op-
portunities for more sensitive and specific analyses. We also need better
tools to allow domain-experts to contribute to and use ontologies con-
taining complex logical axioms.

4. Integration of probabilistic and logical inference. Explore the
gap between statistical data mining and probabilistic modeling and
logic-based ontology formalisms. Initial work on data mining using
ontologies described in this thesis is promising, but this needs to be
placed on a firmer probabilistic modeling basis.

5. Knowledge-driven phenotype studies. Genome Wide Association
Studies (GWAS) have yielded a plethora of new findings, and these
will soon be augmented by data coming from the 1000 genomes project
and other personal genomics and next-generation sequencing sources.
Yet these studies are often inconclusive or difficult to biologically in-
terpret due to the large hypothesis space. By combining these analyses
with systems biology data and detailed phenome resources we can em-
ploy a more knowledge-driven approach, yielding greater insight into
underlying biological mechanisms.

7.8 Historical Context, Revisited

The background material in this thesis outlined the need to bring computer
science research and biological problems together, particularly in the realm of
knowledge representation and ontologies. One of the hindrances has been the
perceived difficulty of adopting more complex representational structures and
tools. The work described in this thesis has attempted to bridge that gap. For
example, the Obol tool (section 4.4) has been used to assist in the migration
of simple terminology-style ontologies to include richer description-logic style
constructs. This was complemented by extensive manual work in translating
biological knowledge into computable form (see for example, subsections 6.3,
4.5 and 4.2).

There are still a number of challenges remaining. The application of de-
scription logic technology has been instrumental in the development, consis-
tency checking and integration of biological ontologies, but has not yet found
a great deal of success in applying these ontologies to answer key biologi-
cal questions. One reason is the lack of scalability over large bioinformatics
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datasets - in part alleviated by using alternative reasoning strategies (see for
example the methods section of the papers in subsections 6.3 and 6.4).

Another reason is the rigidity of purely deductive approaches to question
answering. These only return answers that are guaranteed to be true; to
formulate biological hypotheses we sometimes have to explore possibilities
that cannot be proved to be true. An alternative approach is inductive
reasoning[Muggleton, 1991], which has already been successfully applied in
biological applications[King et al., 2004]. Another approach is meld deductive
reasoning with semantic similarity measures - in subsection 6.4 in showed how
this can be applied to explore relationship between genotypes and phenotype
in a novel way. These hybrid approaches represent a rich mine of potential
future research.
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8 Conclusions

8.1 Summary

The key developments in this thesis are as follows:

1. The design and implementation of an automated genomic annotation
pipeline to execute multiple interdependent analysis programs in par-
allel across a compute farm, and to synthesize the results into gene pre-
dictions. We used this system in concert with the Apollo tool to com-
prehensively annotate the Drosophila melanogaster genome, and to ex-
plore questions about the evolutionary relationship between Drosophila
and other organisms on a molecular level. This research is described by
a series of papers in Genome Biology (see in particular Misra Genome
Biology 2002). My primary contribution was the development of work-
flows and databases [Mungall Genome Biology 2002].

2. The specification of a modular database schema for representing ge-
nomic features in the context of the biology of the organism[Mungall
Bioinformatics 2007]. This schema makes use of formal structures
called ontologies such as the Sequence Ontology [Eilbeck Genome Bi-
ology 2005, Mungall Journal of Biomedical Informatics (SO) 2010]
to represent complex biological phenomena in a flexible and expres-
sive fashion . The modularity and flexibility of this schema led to its
widespread adoption for a number of model organism projects, as well
as a number of genomic analyses [Yandell PLoS Computational Biology
2006]

3. The initiation and development of a number of biological ontologies
forming the framework of the OBO Foundry[Smith Nature Biotechnol-
ogy 2007], and the development of tools and methods for enhancing the
content and expressivity of these ontologies such that logic program-
ming and automated reasoning engines can be used [Mungall Compar-
ative and Functional Genomics 2004], [Mungall Genome Biology 2010,
Mungall Journal of Biomedical Informatics (GO) 2010].

4. The development of a number of tools that present complex genomic
data to researchers in a visually intuitive way, and allow knowledge to
be acquired from domain experts.

5. The exploration of the relationship between genotype and phenotype,
at the allele level[Yandell PLoS Computational Biology 2008], and at
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the phenome level[Washington PLoS Biology 2009] using multiple inte-
grated ontologies spanning multiple species[Mungall Genome Biology
2010].

8.2 Next Generation Information Systems and Trans-
lational Research

High-throughput biology and next-generation sequencing technology promises
to deliver unprecedented quantities of heterogeneous data. Translating this
into meaningful biomedical results will require sophisticated information sys-
tems for data analysis, integration and knowledge-based interpretation.

The components of these next-generation information systems include:
a flexible analysis pipeline and workflow system for analyzing genome-
scale data across multiple processors; a powerful database system and
multiple expressive ontologies for structuring data and knowledge; a suite
of knowledge acquisition and visualization tools embedded in a distributed
architecture.

These next generation systems will be invaluable tools for translational
research. This thesis describes work applying these systems to combine and
reason over data and knowledge from multiple genotype-phenotype sources,
demonstrating a method for identifying candidate genes, pathway members
and models for human diseases. By extending and refining these systems
it should be possible to explore further the pathological processes, genetic
mechanisms and shared evolutionary mechanisms underlying diseases, taking
advantage of the ever-increasing volume of functional genomics data.
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Mabee, José L.V. Jr. Mejino, Chris J. Mungall , and Barry Smith. CARO
- The Common Anatomy Reference Ontology. In Anatomy Ontologies for
Bioinformatics, Principles and Practice, volume Albert Burger, Duncan
Davidson and Richard Baldock (Eds.). Springer, 2007.

Book chapter describing an upper-ontology unifying multiple
species-specific anatomy ontologies. I contributed to the ontol-
ogy design and writing of the manuscript.

Anna Maria Masci, Cecilia Arighi, Alexander Diehl, Anne Lieber-
man, Chris Mungall , Richard Scheuermann, Barry Smith, and Lind-
say Cowell. An improved ontological representation of dendritic
cells as a paradigm for all cell types. BMC Bioinformatics, 10(1):

71



70, 2009. ISSN 1471-2105. doi: 10.1186/1471-2105-10-70. URL
http://www.biomedcentral.com/1471-2105/10/70.

Describes an ontology of dendritic cells. I contributed to ontology
design, relation axiomatization and writing the manuscript.

Alexander D. Diehl, Alison Deckhut Augustine, Judith A. Blake, Lindsay G.
Cowell, Elizabeth S. Gold, Timothy A. Gondr-Lewis, Anna Maria Masci,
Terrence F. Meehan, Penelope A. Morel, NIAID Cell Ontology Work-
ing Group, Anastasia Nijnik, Bjoern Peters, Bali Pulendran, Richard H.
Scheuerman, Q. Alison Yao, Martin S. Zand, and Christopher J. Mungall .
Hematopoietic Cell Types: Prototype for a Revised Cell Ontology. Jour-
nal of Biomedical Informatics, Epub ahead of print, 2010. ISSN 1532-0464.
doi: 10.1016/j.jbi.2010.01.006.

Describes methods for restructuring the Cell Ontology, and an
implementation for cells of the hematopoietic system. I assisted
with and coordinated ontology design, and supervised the de-
velopment of the ontology. This paper has been accepted for
publication and is in press.

Christopher J. Mungall , Georgios Gkoutos, Nicole Washington, and Suzanna
Lewis. Representing Phenotypes in OWL. In Christine Golbreich, Aditya
Kalyanpur, and Bijan Parsia, editors, Proceedings of the OWLED 2007
Workshop on OWL: Experience and Directions, Innsbruck, Austria, 2007b.
URL http://www.webont.org/owled/2007/PapersPDF/paper 40.pdf.

This conference paper (non peer-reviewed) describes a means
of modeling phenotypes using a formal ontology language. The
methods described here are used in some the following papers.

Jian Hu, D. Nicholson, C. Mungall , A.L. Hillyard, and A.L. Archibald.
WebinTool: a generic Web to database interface building tool. In
Database and Expert Systems Applications, 1996. Proceedings., Sev-
enth International Workshop on, pages 285–290, 9-10 Sept. 1996. doi:
10.1109/DEXA.1996.558323.

J. Hu, C. Mungall , A. Law, R. Papworth, J. P. Nelson, A. Brown, I. Simpson,
S. Leckie, D. W. Burt, A. L. Hillyard, and A. L. Archibald. The ARKdb:
genome databases for farmed and other animals. Nucleic Acids Res, 29(1):
106–110, Jan 2001.

72



I co-designed the database schema and wrote the web-based
graphical map viewing interface.

J. Hu, C. Mungall , D. Nicholson, and A. L. Archibald. Design and imple-
mentation of a CORBA-based genome mapping system prototype. Bioin-
formatics, 14(2):112–120, 1998.

I contributed to the object modeling and implementation.

L. D. Stein, C. Mungall , S. Shu, M. Caudy, M. Mangone, A. Day, E. Nick-
erson, J. E. Stajich, T. W. Harris, A. Arva, and S. Lewis. The generic
genome browser: a building block for a model organism system database.
Genome Res, 12(10):1599–610, 2002.

I implemented the architecture for the fruitfly database version
of GBrowse.

M.E. Skinner, A.V. Uzilov, L.D. Stein, C.J. Mungall , and I.H. Holmes.
JBrowse: A next-generation genome browser. Genome Research, 2009.
URL http://genome.cshlp.org/content/19/9/1630.long.

I contributed to the design and implementation of the first iter-
ation of JBrowse.

Seth Carbon, Amelia Ireland, Christopher J Mungall , Shengqiang
Shu, Brad Marshall, Suzanna Lewis, the AmiGO Hub, and the
Web Presence Working Group. AmiGO: online access to on-
tology and annotation data. Bioinformatics, Nov 2008. URL
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/25/2/288.

I implemented the architecture, and supervised the development
of the interface.

M. A. Harris, J. Clark, A. Ireland, J. Lomax, M. Ashburner, R. Foulger,
K. Eilbeck, S. Lewis, B. Marshall, C. Mungall , J. Richter, G. M. Ru-
bin, J. A. Blake, C. Bult, M. Dolan, H. Drabkin, J. T. Eppig, D. P. Hill,
L. Ni, M. Ringwald, R. Balakrishnan, J. M. Cherry, K. R. Christie, M. C.
Costanzo, S. S. Dwight, S. Engel, D. G. Fisk, J. E. Hirschman, E. L. Hong,
R. S. Nash, A. Sethuraman, C. L. Theesfeld, D. Botstein, K. Dolinski,
B. Feierbach, T. Berardini, S. Mundodi, S. Y. Rhee, R. Apweiler, D. Bar-
rell, E. Camon, E. Dimmer, V. Lee, R. Chisholm, P. Gaudet, W. Kibbe,

73



R. Kishore, E. M. Schwarz, P. Sternberg, M. Gwinn, L. Hannick, J. Wort-
man, M. Berriman, V. Wood, N. de la Cruz, P. Tonellato, P. Jaiswal,
T. Seigfried, and R. White. The Gene Ontology (GO) database and in-
formatics resource. Nucleic Acids Res, 32 Database issue:D258–61, 2004.
1362-4962 Journal Article.

I designed the database schema and contributed to ontology de-
velopment.

M. Ashburner, C. A. Ball, JA Blake, H Butler, JM Cherry, J Corradi,
K Dolinski, JT Eppig, M Harris, DP Hill, S Lewis, B Marshall, C Mungall ,
L Reiser, S Rhee, JE Richardson, J Richter, M Ringwald, GM Rubin,
G Sherlock, and J Yoon. Creating the gene ontology resource: design and
implementation. Genome Res, 11(8):1425–1433, Aug 2001.

I contributed to the design of the GO, and to the tools described
in this paper, including the GO database and browser.

S. E. Lewis, S. M. Searle, N. Harris, M. Gibson, V. Lyer, J. Richter,
C. Wiel, L. Bayraktaroglir, E. Birney, M. A. Crosby, J. S. Kaminker,
B. B. Matthews, S. E. Prochnik, C. D. Smithy, J. L. Tupy, G. M. Rubin,
S. Misra, C. J. Mungall , and M. E. Clamp. Apollo: a sequence annotation
editor. Genome Biol, 3(12):0082–1, 2002.

I contributed to the development of this genome structure editing
tool.

John Day-Richter, Midori A Harris, Melissa Haendel, Gene Ontol-
ogy OBO-Edit Working Group, and Suzanna Lewis. OBO-Edit–
an ontology editor for biologists. Bioinformatics, 23(16):2198–
2200, Aug 2007. doi: 10.1093/bioinformatics/btm112. URL
http://dx.doi.org/10.1093/bioinformatics/btm112.

My contribution to OBO-Edit was the design and delelopment
of the built-in logical reasoner and development of the OWL
Adapter (Note that my name is listed as an author on this paper
under “OBO-Edit working group”).

M. J. Gardner, N. Hall, E. Fung, O. White, M. Berriman, R. W. Hyman,
J. M. Carlton, A. Pain, K. E. Nelson, S. Bowman, I. T. Paulsen, K. James,
J. A. Eisen, K. Rutherford, S. L. Salzberg, A. Craig, S. Kyes, M. S.
Chan, V. Nene, S. J. Shallom, B. Suh, J. Peterson, S. Angiuoli, M. Pertea,

74



J. Allen, J. Selengut, D. Haft, M. W. Mather, A. B. Vaidya, D. M. Martin,
A. H. Fairlamb, M. J. Fraunholz, D. S. Roos, S. A. Ralph, G. I. McFad-
den, L. M. Cummings, G. M. Subramanian, C. Mungall , J. C. Venter,
D. J. Carucci, S. L. Hoffman, C. Newbold, R. W. Davis, C. M. Fraser, and
B. Barrell. Genome sequence of the human malaria parasite Plasmodium
falciparum. Nature, 419(6906):498–511, 2002.

My contribution was the Gene Ontology analysis.

Mark Yandell, Barry Moore, Fidel Salas, Chris Mungall , Andrew MacBride,
Charles White, and Martin G Reese. Genome-wide analysis of human
disease alleles reveals that their locations are correlated in paralogous pro-
teins. PLoS Computational Biology, 4:e1000218, November 2008. ISSN
1553-7358. URL http://www.ncbi.nlm.nih.gov/pubmed/18989397.
PMID: 18989397.

I developed the software and database in addition to devising
and performing some of the genomic analysis.

Christopher Mungall , Georgios Gkoutos, Cynthia Smith, Melissa Haen-
del, Suzanna Lewis, and Michael Ashburner. Integrating pheno-
type ontologies across multiple species. Genome Biology, 11(1):
R2, 2010. ISSN 1465-6906. doi: 10.1186/gb-2010-11-1-r2. URL
http://genomebiology.com/2010/11/1/R2.

This paper describes a method and results in unifying pheno-
type data from multiple databases, and was a key component in
the linking of animal models to human diseases (see Washington
2009).

John Hancock, Ann-Marie Mallon, Tim Beck, Georgios Gkoutos, Chris
Mungall , and Paul Schofield. Mouse, man, and meaning: bridg-
ing the semantics of mouse phenotype and human disease. Mam-
malian Genome, 2009. doi: 10.1007/s00335-009-9208-3. URL
http://dx.doi.org/10.1007/s00335-009-9208-3.

This paper described some of the applications of the methods de-
scribed in Mungall Genome Biology 2010 to integrating multiple
mouse and human phenomics resources.

GV Gkoutos, C Mungall , S Doelken, M Ashburner, S Lewis, J Han-
cock, P Schofield, S Khler, and PN Robinson. Entity/Quality-Based

75



Logical Definitions for the Human Skeletal Phenome using PATO. In
Proceedings of the 31st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC 2009), 2009. URL
https://embs.papercept.net/conferences/scripts/abstract.pl?ConfID=9&Number=997.

This conference paper describes preliminary work applying the
methods described in Mungall Genome Biology 2010 to muscu-
loskeletal diseases.

Nicole L Washington, Melissa A Haendel, Christopher J Mungall ,
Michael Ashburner, Monte Westerfield, and Suzanna E. Lewis.
Linking Human Diseases to Animal Models using Ontology-
based Phenotype Annotation. PLoS Biology, 7(11), 2009. URL
http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1000247.

This paper describes a novel method for querying model organ-
ism genomes based on phenotypic profiles of human diseases. My
contributions included devising and implementing the reasoning
and similarity algorithms.

A. Bernal, U. Ear, and N. Kyrpides. Genomes OnLine Database (GOLD):
a monitor of genome projects world-wide. Nucleic Acids Research, 29(1):
126, 2001.

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool
for the composition and enactment of bioinformatics workflows. Bioinfor-
matics, 20(17):3045–54, 2004. 1367-4803 Journal Article.

S. P. Shah, D. Y. He, J. N. Sawkins, J. C. Druce, G. Quon, D. Lett, G. X.
Zheng, T. Xu, and B. F. Ouellette. Pegasys: software for executing and
integrating analyses of biological sequences. BMC Bioinformatics, 5(1):40,
2004. 1471-2105 Journal Article.

B.L. Cantarel, I. Korf, S. Robb, G. Parra, E. Ross, B. Moore, C. Holt,
A. Sánchez Alvarado, and M. Yandell. MAKER: An easy-to-use anno-
tation pipeline designed for emerging model organism genomes. Genome
Research, 18(1):188, 2008.

B. Giardine, C. Riemer, R.C. Hardison, R. Burhans, L. Elnitski, P. Shah,
Y. Zhang, D. Blankenberg, I. Albert, J. Taylor, et al. Galaxy: a platform
for interactive large-scale genome analysis. Genome research, 15(10):1451,
2005.

76



K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer,
D.A. Patterson, W.L. Plishker, J. Shalf, S.W. Williams, et al. The land-
scape of parallel computing research: A view from berkeley. Electrical
Engineering and Computer Sciences, University of California at Berkeley,
Technical Report No. UCB/EECS-2006-183, December, 18(2006-183):19,
2006.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proceedings of the 6th Sym-
posium on Operating Systems Design and Implementation (OSDI
’04), pages 137–150, San Francisco, USA, December 2004. URL
http://labs.google.com/papers/mapreduce-osdi04.pdf.

Barret D Pfeiffer, Arnim Jenett, Ann S Hammonds, Teri-T B Ngo,
Sima Misra, Christine Murphy, Audra Scully, Joseph W Carlson, Ken-
neth H Wan, Todd R Laverty, Chris Mungall , Rob Svirskas, James T
Kadonaga, Chris Q Doe, Michael B Eisen, Susan E Celniker, and
Gerald M Rubin. Tools for neuroanatomy and neurogenetics in
Drosophila. Proceedings of the National Academy of Sciences of the
United States of America, 105:9715–20, July 2008. ISSN 1091-6490. URL
http://www.ncbi.nlm.nih.gov/pubmed/18621688. PMID: 18621688.

S.E. Celniker, L.A.L. Dillon, M.B. Gerstein, K.C. Gunsalus, S. Henikoff, G.H.
Karpen, M. Kellis, E.C. Lai, J.D. Lieb, D.M. MacAlpine, et al. Unlocking
the secrets of the genome. Nature, 459(7249):927–930, 2009.

J. B. Bowes, K. A. Snyder, E. Segerdell, R. Gibb, C. Jarabek, E. Noumen,
N. Pollet, and P. D. Vize. Xenbase: a Xenopus biology and genomics
resource. Nucleic Acids Research, 36:D761, 2008.

R.L. Chisholm, P. Gaudet, E.M. Just, K.E. Pilcher, P. Fey, S.N. Mer-
chant, and W.A. Kibbe. dictyBase, the model organism database for Dic-
tyostelium discoideum. Nucleic acids research, 34(Database Issue):D423,
2006.

K. Megy, M. Hammond, D. Lawson, R. V. Bruggner, E. Birney, and F. H.
Collins. Genomic resources for invertebrate vectors of human pathogens,
and the role of VectorBase. Infection, Genetics and Evolution, 2008.

Samart Wanchana, Supat Thongjuea, Victor Jun Ulat, Mylah Ana-
cleto, Ramil Mauleon, Matthieu Conte, Mathieu Rouard, Manuel
Ruiz, Nandini Krishnamurthy, Kimmen Sjolander, Theo van Hin-
tum, and Richard M. Bruskiewich. The Generation Challenge Pro-
gramme comparative plant stress-responsive gene catalogue. Nucl.

77



Acids Res., 36:D943–946, 2008. doi: 10.1093/nar/gkm798. URL
http://nar.oxfordjournals.org/cgi/content/abstract/36/suppl 1/D943.

O. Arnaiz, S. Cain, J. Cohen, and L. Sperling. ParameciumDB: a community
resource that integrates the Paramecium tetraurelia genome sequence with
genetic data. Nucleic Acids Research, 35(Database issue):D439, 2007.

M.C. Costanzo, M.S. Skrzypek, R. Nash, E. Wong, G. Binkley, S.R. Engel,
B. Hitz, E.L. Hong, and J.M. Cherry. New mutant phenotype data curation
system in the Saccharomyces Genome Database. Database, 2009(0), 2009.

K. Dolinski and D. Botstein. Changing perspectives in yeast research nearly
a decade after the genome sequence, 2005.

S. Heinicke, MS Livstone, C. Lu, R. Oughtred, F. Kang, et al. The Princeton
Protein Orthology Database (P-POD): A Comparative Genomics. PLoS
ONE, 2(8):766, 2007.

C. Hertz-Fowler, C.S. Peacock, V. Wood, M. Aslett, A. Kerhornou,
P. Mooney, A. Tivey, M. Berriman, N. Hall, K. Rutherford, et al. GeneDB:
a resource for prokaryotic and eukaryotic organisms. Nucleic acids research,
32(Database Issue):D339, 2004.

J.K. Colbourne, V.R. Singan, and D.G. Gilbert. wFleaBase: the Daphnia
genome database. BMC bioinformatics, 6(1):45, 2005.

L. Wang, S. Wang, Y. Li, M.S.R. Paradesi, and S.J. Brown. BeetleBase:
the model organism database for Tribolium castaneum. Nucleic Acids
Research, 2006.

J.P. Gauthier, F. Legeai, A. Zasadzinski, C. Rispe, and D. Tagu. AphidBase:
a database for aphid genomic resources. Bioinformatics, 23(6):783, 2007.

A. Papanicolaou, S. Gebauer-Jung, M. L. Blaxter, W. Owen McMillan, and
C. D. Jiggins. ButterflyBase: a platform for lepidopteran genomics. Nu-
cleic Acids Research, 36:D582, 2008.

C.J. Stoeckert. Functional genomics databases on the web. Cellular Micro-
biology, 7(8):1053–1059, 2005.

Karen Eilbeck and Suzanna E. Lewis. Sequence Ontology Annotation
Guide. Comparative and Functional Genomics, 5:642–647, 2004. URL
http://www.hindawi.com/GetArticle.aspx?doi=10.1002/cfg.446&e=cta.

78



Christopher J Mungall , Karen EIlbeck, and Suzanna Lewis. The Genome
Interval Calculus: Extensions to the Sequence Ontology. In preparation.

P. Jaiswal, S. Avraham, K. Ilic, E.A. Kellogg, S. McCouch, A. Pujar,
L. Reiser, S.Y. Rhee, M.M. Sachs, M. Schaeffer, et al. Plant Ontology
(PO): a controlled vocabulary of plant structures and growth stages. Com-
parative and functional genomics, 6(7):388–397, 2005.

Amy Adams. Your Database is Talking: is anyone lis-
tening? The Scientist, 19(17):26, Sept 2005. URL
http://www.the-scientist.com/article/display/15711/.

This article highlights the uses of the Obol grammars (Mungall
2004) in bio-ontologies.

A. Kasprzyk, D. Keefe, D. Smedley, D. London, W. Spooner, C. Melsopp,
M. Hammond, P. Rocca-Serra, T. Cox, and E. Birney. EnsMart: a generic
system for fast and flexible access to biological data. Genome Res, 14(1):
160–9, 2004. 1088-9051 Journal Article.

R. Lyne, R. Smith, K. Rutherford, M. Wakeling, A. Varley, F. Guillier,
H. Janssens, W. Ji, P. Mclaren, P. North, et al. FlyMine: an integrated
database for Drosophila and Anopheles genomics. Genome biology, 8(7):
R129, 2007.

A. Gupta, W. Bug, L. Marenco, X. Qian, C. Condit, A. Rangarajan, H.M.
Mueller, P.L. Miller, B. Sanders, J.S. Grethe, et al. Federated access
to heterogeneous information resources in the Neuroscience Information
Framework (NIF). Neuroinformatics, 6(3):205–217, 2008.

Daniel L Rubin, Suzanna E Lewis, Chris J Mungall , Sima Misra, Monte
Westerfield, Michael Ashburner, Ida Sim, Christopher G Chute, Harold
Solbrig, Margaret-Anne Storey, Barry Smith, John Day-Richter, Na-
talya F Noy, and Mark A Musen. National Center for Biomed-
ical Ontology: advancing biomedicine through structured organiza-
tion of scientific knowledge. OMICS: A Journal of Integrative Bi-
ology, 10(2):185–198, 2006. doi: 10.1089/omi.2006.10.185. URL
http://dx.doi.org/10.1089/omi.2006.10.185.

S. Senkowsky. The Ascent of NESCent. BioScience, 57(2):106–111, 2007.

79



Paula M Mabee, Michael Ashburner, Quentin Cronk, Georgios V Gkoutos,
Melissa Haendel, Erik Segerdell, Chris Mungall , and Monte Wester-
field. Phenotype ontologies: the bridge between genomics and evolu-
tion. Trends Ecol Evol, Apr 2007. doi: 10.1016/j.tree.2007.03.013. URL
http://dx.doi.org/10.1016/j.tree.2007.03.013.

This paper describes preliminary work unifying evolutionary bi-
ology resources and model organism databases.

S. Muggleton. Inductive logic programming. New generation computing, 8
(4):295–318, 1991.

R.D. King, K.E. Whelan, F.M. Jones, P.G.K. Reiser, C.H. Bryant, S.H.
Muggleton, D.B. Kell, and S.G. Oliver. Functional genomic hypothesis
generation and experimentation by a robot scientist. Nature, 427(6971):
247–252, 2004.

11 Index

80



Index

allele, 39
annotation

genome annotation, 5
Genotator, 5
pipeline, 5, 19

architecture
AJAX, 16, 33
client-server, 14
CORBA, 16, 32
DAS, 16
distributed, 16
wikis, 16

browser
AmiGO, 33
Anubis, 32
GBrowse, 33
JBrowse, 33
UCSD, 15

cell-component
mitochondrial membrane, 10
mitochondrion, 10

data-mining, 16, 17
database

ACEDB, 15
chado, 22, 23
dbSNP, 17, 39
Ensembl, 6, 7
FlyBase, 1
GadFly, i
integration, 2
OMIM, i, 17, 39, 43
SWISS-PROT, 6

disease
genes, 43
malaria, 17, 39
neurodegenerative, 41

Parkinsons, 1
vector, 22

exon, 7

format
GFF3, 23

gene
Adh, 5
ALMS1, 17
H-RAS, 17
rolled, 21
SNCA, i

genome
comparative, 21
euchromatic, 20
heterochromatic, 20

genomics
sequencing, 1

intron, 6, 21

language
description logic, 10, 38
DL, 31
FOL, 14
java, 15
LP, 25, 27
OWL, 10, 25

Manchester-syntax, 31
perl, 5
prolog, 14

ontology, 7
anatomy, 12
CARO, i, 30
CL, 12, 28
enrichment, 17
GO, 9, 28

81



cell-component, 12
HP, i
mappings, 12
MP, i
OBO, 30
PATO, i
phenotype

EAV, 13
MP, 12
PATO, 13

post-composition, 13
pre-composed, 12, 38
reasoning, 34
RNAO, 25
RO, 26
semantic-similarity, 18
slim, 17
SO, 23
time, 27

organism
Anopheles, i
Drosophila, i
Human, i
Mouse, i
Zebrafish, i

phenotype, 1, 17, 23, 34, 42
Almstrom, 17
animal models, 17
fat aussie, 17
mutant, 1

process
oocyte-differentiation, 28

relation
inheres in, i
instance of, i
is a, i
part of, i

relational
database, 7

expressivity, 7
relation, 7
schema, 7, 23

sequence alignment and gene predic-
tion

BLAST, 5
Sim4, 5

sequence alignmentand gene predic-
tion

Genie, 5

tool
Apollo, 34
bioperl, 21
OBO-Edit, 34
Obol, i
Phenote, 34
phenote, 43

transcript, 7

82



Appendices

83



A Certification Statement

This section is provides to satisfy the regulations of the University of Edin-
burgh PhD by Research Publications.

I hereby certify that all works cited in the results sections of this thesis
(pages 22 - 48) are either my own, or the products of collaborative projects
on which I made a significant contribution. I have written or contributed
to a total of 35 peer-reviewed publications cited in this thesis (3 of these
are currently in press, or accepted pending reviewer comments on revised
manuscripts). In this statement I specifically select 14 significant flagship
papers for consideration, and certify my precise contributions. For the spe-
cific nature of my contribution to the other 21 publications, please see either
the footnotes in the results sections, or the annotated bibliography.

A.1 First author publications

The following six peer-reviewed papers are ones in which either I am sole
author, or my contibution was the most significant or jointly most significant:

C. J. Mungall , S. Misra, B. P. Berman, J. Carlson, E. Frise, N. Harris,
B. Marshall, S. Shu, J. S. Kaminker, S. E. Prochnik, C. D. Smith,
E. Smith, J. L. Tupy, C. Wiel, G. M. Rubin, and S. E. Lewis. An inte-
grated computational pipeline and database to support whole-genome
sequence annotation. Genome Biol, 3(12):RESEARCH0081, 2002.

I designed the system from the ground-up. My colleagues
assisted with the testing and use of the system, system ad-
ministration, and with writing the manuscript.

Christopher J. Mungall . Obol: Integrating Language and Meaning in
Bio-Ontologies. Comparative and Functional Genomics, 5(7):509–520,
2004.

I certify the work described here is entirely my own.

Christopher Mungall , Georgios Gkoutos, Cynthia Smith, Melissa Haendel,
Suzanna Lewis, and Michael Ashburner. Integrating phenotype ontolo-
gies across multiple species. Genome Biology, 11(1):R2, 2010. ISSN
1465-6906.

The following is the author contributions section quoted ver-
batim from the manuscript: CJM conceived of and coordi-
nated the study, drafted the manuscript, created the initial

84



mappings and performed the reasoner analysis. GG main-
tains mappings and coordinates changes with PATO. CS
evaluated MP-XP for biological validity, evaluated reason-
ers results and coordinated changes with the MP. MAH and
CJM conceived of and created Uberon. SEL and MA super-
vised the work and assisted with the manuscript.

Christopher J. Mungall , David B. Emmert, and The FlyBase Consortium.
A Chado case study: an ontology-based modular schema for represent-
ing genome-associated biological information. Bioinformatics, 23(13):
i337–346, 2007a.

This work is formally considered a joint-first author pub-
lication. DE and I jointly designed the system and jointly
drafted the manuscript. DE supervised the implementation
of the system, I contributed the majority of the design. Our
colleagues within the FlyBase Consortium provided valuable
feedback.

Christopher Mungall , Colin Batchelor, and Karen Eilbeck. Evolution of
the Sequence Ontology terms and relationships. Journal of Biomedical
Informatics, (accepted), 2010a.

This work was supervised by KE, who is also the chief ed-
itor of the Sequence Ontology. KE and I jointly wrote the
manuscript, and the work described is the result of a collab-
orative effort between myself, KE and CB. Please note that
whilst the final version of this manuscript has been formally
accepted for publication, it is still in press

Christopher J. Mungall , Michael Bada, Tanya Z. Berardini, Jennifer Dee-
gan, Amelia Ireland, Midori A. Harris, David P. Hill, and Jane Lomax.
Cross-Product Extensions of the Gene Ontology. Journal of Biomedical
Informatics, In Press 2010b. ISSN 1532-0464

I devised, coordinated and implemented the work described
in this paper. My colleagues from the Gene Ontology consor-
tium (TB, JD, AI, MH, DH, JL) assisted with the biological
validation. MB assisted with the formalization.

Please note that whilst the final version of this manuscript
has been formally accepted for publication, it is still in press

85



A.2 Additional publications

The following peer-reviewed paper describe the work of research collabora-
tions, in which I played a significant role.

Sima Misra, Madeline A Crosby, Christopher J Mungall , Beverley B Matthews,
Kathryn S Campbell, Pavel Hradecky, Yanmei Huang, Joshua S Kaminker,
Gillian H Millburn, Simon E Prochnik, Christopher D Smith, Jonathan L
Tupy, Eleanor J Whitfied, Leyla Bayraktaroglu, Benjamin P Berman,
Brian R Bettencourt, Susan E Celniker, Aubrey D N J de Grey, Rachel A
Drysdale, Nomi L Harris, John Richter, Susan Russo, Andrew J Schroeder,
Sheng Qiang Shu, Mark Stapleton, Chihiro Yamada, Michael Ash-
burner, William M Gelbart, Gerald M Rubin, and Suzanna E Lewis.
Annotation of the Drosophila melanogaster euchromatic genome: a
systematic review. Genome Biol, 3(12):RESEARCH0083, 2002.

My contribution was in the automated genome analysis and
in-silico experimental design. I designed the workflow system
and database, devised the in-silico experimental parameters,
conducted trial experiments, wrote data mining software to
analyze complex genome events, assisted in the analysis and
annotation.

Christopher D Smith, Shengqiang Shu, Christopher J Mungall , and Gary H
Karpen. The Release 5.1 annotation of Drosophila melanogaster hete-
rochromatin. Science, 316:1586–1591, June 2007a.

I devised the system used for data analysis and data manage-
ment, and carried out the Gene Ontology analysis.

Mark Yandell, Chris J Mungall , Chris Smith, Simon Prochnik, Joshua
Kaminker, George Hartzell, Suzanna Lewis, and Gerald M Rubin.
Large-scale trends in the evolution of gene structures within 11 ani-
mal genomes. PLoS Computational Biology, 2(3):e15, Mar 2006.

An analysis of changes in gene structure compared to protein
sequence. I contributed to the experimental design, and I
devised and implemented the software and analysis pipeline.

K. Eilbeck, S. E. Lewis, C. J. Mungall , M. D. Yandell, L. D. Stein, R. Durbin,
and M. Ashburner. The Sequence Ontology: a tool for the unification
of genome annotations. Genome Biology, 6(5), 2005.

86



I contributed to the design of the ontology and specified its
implementation in Chado.

B. Smith, W. Ceusters, J. Kohler, A. Kumar, J. Lomax, C.J. Mungall ,
F. Neuhaus, A. Rector, and C. Rosse. Relations in Biomedical Ontolo-
gies. Genome Biology, 6(5), 2005b.

My contribution was the development of the ontology, and in
the development and documentation of the axioms described
in the paper, as well as the creation of the OBO Relations
web resource.

Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William
Bug, Werner Ceusters, Louis J Goldberg, Karen Eilbeck, Amelia Ire-
land, Christopher J Mungall , The OBI Consortium, Neocles Leon-
tis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone,
Richard H Scheuermann, Nigam Shah, Patricia L Whetzel, and Suzanna
Lewis. The OBO Foundry: coordinated evolution of ontologies to sup-
port biomedical data integration. Nat Biotechnol, 25(11):1251–1255,
Nov 2007b.

I am one of the founders of the OBO Foundry, and have made
multiple contributions to its principles and development, as
described in this paper.

Mark Yandell, Barry Moore, Fidel Salas, Chris Mungall , Andrew MacBride,
Charles White, and Martin G Reese. Genome-wide analysis of human
disease alleles reveals that their locations are correlated in paralogous
proteins. PLoS Computational Biology, 4:e1000218, November 2008.
ISSN 1553-7358.

I developed the software and database architecture. I also in-
tegrated data from multiple sources and carried out a portion
of the analysis.

Nicole L Washington, Melissa A Haendel, Christopher J Mungall , Michael
Ashburner, Monte Westerfield, and Suzanna E. Lewis. Linking Human
Diseases to Animal Models using Ontology-based Phenotype Annota-
tion. PLoS Biology, 7(11), 2009.

87



I designed and implemented the system used to perform the
analysis described in this paper. I designed and implemented
the reasoning algorithm and phenotype similarity engine, as
well as the database and user interface. I developed one of
the ontologies central to the inter-species analysis (Uberon),
and contributed to another (PATO). I also contributed to the
analysis itself.

88


