

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429712866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ontology Evolution in Physics

Michael Chan

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2013

Abstract

With the advent of reasoning problems in dynamic environments, there is an increasing

need for automated reasoning systems to automatically adapt to unexpected changes

in representations. In particular, the automation of the evolution of their ontologies

needs to be enhanced without substantially sacrificing expressivity in the underlying

representation. Revision of beliefs is not enough, as adding to or removing from beliefs

does not change the underlying formal language. General reasoning systems employed

in such environments should also address situations in which the language for repre-

senting knowledge is not shared among the involved entities, e.g., the ontologies in

a multi-ontology environment or the agents in a multi-agent environment. Our tech-

niques involve diagnosis of faults in existing, possibly heterogeneous, ontologies and

then resolution of these faults by manipulating the signature and/or the axioms.

This thesis describes the design, development and evaluation of GALILEO (Guided

Analysis of Logical Inconsistencies Lead to Evolution of Ontologies), a system de-

signed to detect conflicts in highly expressive ontologies and resolve the detected con-

flicts by performing appropriate repair operations. The integrated mechanism that

handles ontology evolution is able to distinguish between various types of conflicts,

each corresponding to a unique kind of ontological fault. We apply and develop our

techniques in the domain of Physics. This an excellent domain because many of its

seminal advances can be seen as examples of ontology evolution, i.e. changing the

way that physicists perceive the world, and case studies are well documented – unlike

many other domains. Our research covers analysing a wide ranging development set

of case studies and evaluating the performance of the system on a test set. Because

the formal representations of most of the case studies are non-trivial and the underly-

ing logic has a high degree of expressivity, we face some tricky technical challenges,

including dealing with the potentially large number of choices in diagnosis and repair.

In order to enhance the practicality and the manageability of the ontology evolution

process, GALILEO incorporates the functionality of generating physically meaningful

diagnoses and repairs and, as a result, narrowing the search space to a manageable size.

iii

Acknowledgements

Choosing the University of Edinburgh for my Ph.D. program was one of the best deci-

sions I have ever made. For the last few years, I have enjoyed the exceptionally high

concentration of friendly, helpful and talented people.

Not surprisingly, this thesis could not have been produced without the support of many

people. This research was funded by EPSRC grant EP/G000700/1 and by an Overseas

Research Studentship (ORS) Award, and I thank my supervisors: Alan Bundy and Jos

Lehmann. I am extremely grateful and glad to have a supervisor who is as erudite,

imaginative, dedicated, energetic and astute as Alan. He should be acknowledged as

the best supervisor one can have. Without his critical and insightful comments and his

careful reading and rereading of drafts, the thesis could not be in the shape it is in. I am

also very grateful to Jos for his tireless attention to the details involved in the research.

I would also like to thank all the members of the DReaM group for providing much

support, help and encouragement.

My thanks extend to Alexander Krauss and Tobias Nipkow for sharing their knowledge

and their interests in my project. Thank you to Alan Smaill for proof reading parts of

this thesis and for his detailed and constructive feedback throughout the project.

Finally, my deepest gratitude goes to my family for their unflagging love and support

throughout my life. Their support has been unconditional and constant all these years.

iv

Declaration

I declare that this thesis was composed by myself, that a significant majority of the

work contained herein is my own except where explicitly stated otherwise in the text,

and that this work has not been submitted for any other degree or professional qual-

ification except as specified. Individual elements of the work that were substantially

contributed by myself include the implementation and the design of the system and the

concrete analysis and experiments that answer the research hypotheses.

(Michael Chan)

v

Table of Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Methodology . 4

1.3 Results . 5

1.4 Research Hypotheses . 5

1.5 Contributions . 7

1.6 Plan of Thesis . 7

2 Literature Survey 9

2.1 Introduction . 9

2.2 Ontologies and Multi-Agents . 9

2.2.1 Ontology Languages . 10

2.2.2 Ontologies in Multi-Agents 11

2.2.3 Automated Negotiation . 12

2.3 Non-monotonic Reasoning . 13

2.3.1 Closed-World Assumption, Default Logic, and Circumscription 14

2.3.2 Belief Revision . 15

2.4 Ontology Dynamics . 17

2.4.1 Problem Background . 17

2.4.2 Ontology Mapping . 18

2.4.3 Ontology Morphism . 19

2.4.4 Ontology Matching . 20

2.4.5 Ontology Debugging for Description Logics 20

2.4.6 Engineering OWL ontologies 22

vii

2.4.7 Interactive Ontology Evolution 23

2.4.8 Progress in Automated Ontology Evolution 23

2.5 Scientific Problem Solving . 24

2.5.1 Scientific & Mathematical Discovery 25

2.5.2 Qualitative Problem Solving 26

2.6 Summary . 27

3 Background 29

3.1 Introduction . 29

3.2 Representing Ontologies in HOL . 29

3.2.1 Overview of HOL . 30

3.2.2 Higher-Order Ontologies . 32

3.3 Higher-Order Unification and Matching 35

3.3.1 Huet’s Algorithm . 36

3.3.2 Higher-Order Matching . 37

3.4 Isabelle . 38

3.5 Summary . 39

4 Ontology Repair Plans 41

4.1 Introduction . 41

4.2 Representing Ontology Repair Plans 42

4.3 The Where’s My Stuff Ontology Repair Plan 43

4.3.1 Motivating Example: The Discovery of Latent Heat 44

4.3.2 Overview of Where’s My Stuff 48

4.3.3 Discussion . 50

4.4 The Reidealisation Ontology Repair Plan 51

4.4.1 Motivating Example: Bouncing-ball Paradox 51

4.4.2 Overview of Reidealisation 53

4.4.3 Discussion . 55

4.5 The Inconstancy Ontology Repair Plan 56

4.5.1 Motivating Example: Modified Newtonian Mechanics 56

4.5.2 Overview of Inconstancy . 58

viii

4.5.3 Discussion . 59

4.6 The Unite Ontology Repair Plan . 62

4.6.1 Motivating Example: The Morning and Evening Stars 63

4.6.2 Overview of Unite . 64

4.6.3 Discussion . 65

4.7 The Spectrum Ontology Repair Plan 66

4.7.1 Motivating Example . 67

4.7.2 Overview . 68

4.7.3 Discussion . 69

4.8 Summary . 69

5 Overview of the GALILEO System 73

5.1 Introduction . 73

5.2 Research Objectives . 73

5.3 Scope of Research . 75

5.4 Design and Architecture . 75

5.5 Modelling and Reasoning about Physics 77

5.5.1 Higher-Order Logic and Physics 78

5.5.2 Example: Representation of Orbits 78

5.5.3 Example: Representation of Latent Heat 79

5.5.4 Modular Representation . 81

5.6 Representation and Handling of Heterogeneity 85

5.6.1 Bridging Axioms . 87

5.6.2 Factorisation . 88

5.7 Summary . 90

6 Mechanising Conflict Diagnosis 93

6.1 Introduction . 93

6.2 Ontological Fault Diagnosis with Isabelle 93

6.2.1 Ontologies as Contexts . 95

6.2.2 Variable Sharing . 96

6.2.3 Meta-Level Reasoning . 104

ix

6.3 Search Space Control . 107

6.3.1 Physical Meaningfulness . 107

6.3.2 Meaningless Instantiation Heuristics 108

6.3.3 Effectiveness of Heuristics 109

6.4 Post-Identification Diagnosis . 111

6.5 Summary . 112

7 Mechanising Ontology Repair 113

7.1 Introduction . 113

7.2 Ontology Repair in GALILEO . 113

7.2.1 Comparison with Axiom-Pinpointing based Repairs 114

7.2.2 Object-Level Repair . 117

7.2.3 Repair Propagation . 118

7.3 Summary . 120

8 Results and Evaluation 121

8.1 Introduction . 121

8.2 Evaluation Results . 122

8.2.1 “Where’s My Stuff” . 122

8.2.2 Inconstancy . 140

8.2.3 Unite . 153

8.2.4 Reidealisation . 158

8.2.5 Spectrum . 164

8.3 Alternative Theories . 172

8.3.1 “Where’s My Stuff” . 172

8.3.2 Inconstancy . 176

8.3.3 Summary . 180

8.4 Summary . 180

9 Conclusions 183

9.1 Introduction . 183

9.2 Contributions . 183

x

9.3 Additional Contributions . 185

9.4 Further Work . 186

9.4.1 Further Understanding of Ontology Evolution in

Physics . 186

9.4.2 Applying GALILEO to Other Domains 187

9.4.3 Experimenting with Other Logics 188

9.4.4 New Ontology Repair Plans 189

9.5 Summary . 190

A Supplementary Diagnosis Results 191

B Bouncing-Ball Case Study in Isabelle 199

B.1 A Modular Formalisation . 199

B.2 A Flat Formalisation Using Factorisation Script 204

Bibliography 213

xi

List of Figures

3.1 Example locales specifying a definition of total energy, where ‘L’, ‘L1’

and ‘L3’ are the labels of three locales; ‘te’, ‘ke’ and ‘pe’ are the pa-

rameter variables of ‘L’; and, ‘ax’ is an axiom; both ‘L1’ and ‘L2’

depend on ‘L’, each with its own instantiation of ‘L’, and thus, the

axiom ‘ax’. 39

4.1 Axiomatisation of a representation of the discovery of latent heat. . . 46

4.2 The “Where’s My Stuff?” ontology repair plan 49

4.3 The Reidealisation ontology repair plan 54

4.4 Predicted vs Observed Stellar Orbital Velocities 56

4.5 The Inconstancy ontology repair plan 60

4.6 The Unite ontology repair plan . 64

4.7 The Spectrum ontology repair plan 68

5.1 High-level architecture and interactions between key components in

GALILEO. 76

5.2 A modular representation of the theory of real numbers, where nodes

represent ontologies and arcs represent dependencies between ontologies. 83

5.3 A simple modular representation of classical mechanics, where nodes

represent ontologies and arcs represent dependencies between ontolo-

gies; F , m, a, P, v, KE, PE, g, h denote force, mass, acceleration, mo-

mentum, velocity, kinetic energy, potential energy, acceleration due to

gravity, and height, respectively. 84

xiii

6.1 Example commands for verifying that the given ontologies contain a

WMS-type of fault, where ‘Os1’ and ‘Os2’ are two different locales

sharing most signature symbols. 99

6.2 Example commands for verifying that the given ontologies contain an

Inconstancy-type of faultwhere ‘Os1’, ‘Os2’ and ‘Os3’ are three dif-

ferent locales. 100

6.3 Example commands for verifying that the given ontologies contain a

Reidealisation-type of fault, where ‘Os1’ and ‘Os2’ are three different

locales and ‘DPlanet’ is a type. 101

6.4 Example commands for verifying that the given ontologies contain a

Unite-type of fault, where ‘Os1’ and ‘Os2’ are two different locales;

‘Os1Ext1’ and ‘Os1Ext1’ are two different extensions of ‘Os1’. . . . 103

6.5 Example commands for verifying that the given ontologies contain a

Spectrum-type of fault, where ‘Os1’ is a locale. 104

6.6 Example commands for diagnosing ontologies for a WMS-type of fault,

where ‘Os1 and ‘Os2 are two different locales sharing most signature

symbols, each with a lemma called ‘lem1’. 104

8.1 Axiomatisation of a heterogeneous representation of the bouncing-ball

paradox. 126

8.2 Summary of the repaired axiomatisation of the bouncing-ball paradox. 129

8.3 Predicted vs Observed Stellar Orbital Velocities 132

8.4 Axiomatisation of a heterogeneous representation of the discovery of

dark matter. 133

8.5 Summary of the repaired axiomatisation of the discovery of dark matter. 138

8.6 Summary of the axiomatisation of the travel time of light case study. . 141

8.7 Summary of the repaired axiomatisation of the travel time of light case

study . 144

8.8 A graph of pressure-volume based on Boyle’s original data, where the

x-axis is the volume of the mercury vapour used in an experiment and

the y-axis is the amount of pressure exerted. 145

8.9 Summary of the axiomatisation of the gas laws case study. 147

8.10 Summary of the repaired axiomatisation of the gas laws case study. . . 151

xiv

8.11 Summary of the axiomatisation of the quantisation of space-time case

study. 154

8.12 Summary of an axiomatisation of the revisit of bouncing-ball paradox. 157

8.13 Summary of the axiomatisation of the demotion of Pluto case study. . 159

8.14 Summary of the axiomatisation of the discovery of Denisovans case

study. 162

8.15 Axiomatisation of the nomenclature of phase transitions. 167

8.16 Axiomatisation of the construction of cosmic distance ladder. 171

A.1 Instantiations of ? f and ?stuff for the Travel Time of Light case study

(§8.2.2.1). 191

A.1 Instantiations of ? f and ?stuff for the Travel Time of Light case study

(§8.2.2.1) (contd.). 192

A.1 Instantiations of ? f and ?stuff for the Travel Time of Light case study

(§8.2.2.1) (contd.). 193

A.1 Instantiations of ? f and ?stuff for the Travel Time of Light case study

(§8.2.2.1) (contd.). 194

A.2 Instantiations of ? f and ?stuff for the Gas Laws case study (§8.2.2.2). 195

A.2 Instantiations of ? f and ?stuff for the Gas Laws case study (§8.2.2.2)

(contd.). 196

A.2 Instantiations of ? f and ?stuff for the Gas Laws case study (§8.2.2.2)

(contd.). 197

xv

List of Tables

4.1 Requirements of and kinds of repair performed by ontology repair plans. 71

6.1 Patterns for discovering instantiations of variables in trigger formulae,

where card(S) returns the cardinality of the set S; schematic variables

?Di are don’t-cares, i.e. their values are not important. Each pattern is

designed to be matched against one of (6.1), (6.2), (6.3), (6.4) and (6.5). 106

6.2 Three example typed patterns for discovering instantiations of vari-

ables for Reidealisation. 107

8.1 Types of phase transition. 165

xvii

Chapter 1

Introduction

AI and, more generally, computer science are presently faced with the challenge that

intelligent agents must be able to represent and manipulate their own knowledge. For

an agent to perform reasoning, the conceptualisation of the entities in a domain of dis-

course is usually represented in the agent’s knowledge-base. Unfortunately, as outlined

by Bundy and McNeill (2006), the world is inherently dynamic, so changes in our con-

ceptualisation of this infinitely-complex domain are necessary. Knowledge-base evo-

lution, the process of updating a knowledge-base when new information is acquired,

poses significant challenges to the representation of knowledge and the formalisation

of reasoning by, for example, introducing inconsistency, ambiguity, and incomplete-

ness into the knowledge-base. There are several specific types of knowledge-base

evolution, including database schema evolution and, the focus of this thesis, ontology

evolution. The term ontology originated in Philosophy, where it is the philosophical

study of being, which covers the nature of existence and the structure of reality. The

word “ontology” has been adopted and adapted within Computing as meaning a for-

mal representation of the concepts within a domain and the relationships between those

concepts.

Defined by Stojanovic et al. (2002), ontology evolution is “the timely adaptation of

an ontology to the arisen changes and the consistent propagation of these changes to

dependent artefacts”. Although Stojanovic et al.’s focus is on user-driven approaches,

we believe that the definition is also appropriate for automated ontology evolution.

Interactive manipulation has a number of limitations: for instance, the process of iden-

tifying parts of the ontology appropriate for manipulation can be difficult and arduous

even to expert users, and if a manipulation is required during agent communication, all

1

2 Chapter 1. Introduction

further actions must be blocked until manual intervention takes place. Since scaling

interactive manipulation can be tremendously challenging, mechanisms for automated

ontology evolution are highly desirable.

The need to reliably handle ontology evolution has been intensified by the increased

demands created by multi-agent systems, for example, the vision of a vast number

of agents interacting in the Semantic Web. Investigations in ontology evolution will

elucidate new mechanisms for more accurate agent communication and give a bet-

ter understanding of the general knowledge-base evolution process. If autonomous

systems are to deal with an ever-changing world, they must be able to autonomously

update their own ontologies. This requires them to be able to both detect faults in and

manipulate their theory of the world. The failure to update the theory accordingly will

usually lead to ineffective or inconsistent communication, caused by the discrepancy

between different views or conceptualisations of the world. Such updates must go be-

yond the ability to change beliefs and learn new concepts in terms of the old ones, and

in these cases the underlying syntax and semantics of the ontologies themselves may

also require alterations. For instance, if sales tax is to be introduced into an inventory

system, then the inventory agent may want to revise the original signature of the func-

tion returning the price of an item in order to account for sales tax. One appropriate

solution would be to increase the arity by providing an additional argument for indi-

cating the corresponding amount of sales tax. This new argument implies that the total

price of an item varies with sales tax, which meets the new requirement.

This project investigates the techniques that may be needed to be built into a system

that facilitates automated ontology evolution. We experiment with these techniques in

a system which we call GALILEO (Guided Analyses of Logical Inconsistencies Lead

to Evolution of Ontologies). To identify and develop such techniques, we depart away

from working in everyday, common domains and investigate records of ontology evo-

lution in the history of Physics (Bundy and Chan, 2008). Many of the most seminal

advances in the development of Physics required some form of ontology evolution.

1.1 Motivation

Epistemology, the study of knowledge, has a long history in philosophy. Initiated by

Descartes and Locke, the work during the early era was based on intuitive, rationalistic

and introspective modes of reasoning. To eliminate subjectivism, Leibniz proposed a

1.1. Motivation 3

need for a rigorous formalisation of reasoning that would allow errors to be as easily

detected as in arithmetic. Leibniz’s idea of enhancing the role of mathematics and

using a logical structure of reasoning evolved to become the concept of a universal

scientific language, known as Characteristica Universalis. Other concepts, such as

Kant’s system of categories, have also demonstrated the power of formal representation

and logical analysis of reasoning.

The perspective of a formal approach has been widely accepted and supported by the

contemporary scientific community at large. Such a rigorous approach can provide

analysis of reasoning with precision and reliability; consequently, it can benefit all

areas concerned with the role and state of knowledge. Motivated by various applica-

tions in the past couple of decades, significantly more attention has been drawn from

researchers in various fields ranging from philosophy, economics, and linguistics to

theoretical computer science and artificial intelligence. The research foci across these

fields are generally different, but it is typically conceded that appropriate representa-

tion of knowledge is crucial for effective reasoning, as argued by Pólya (1945).

A formal approach to handling ontology evolution automatically is now urgent, due

to the demand created by multi-agent systems. Ontological conflicts between agents

are central to breakdowns in agent communication, as even the mundane assumptions

each agent makes about one another, e.g., common symbols refer to the same concept,

may no longer hold when such conflicts arise. These conflicts are not only caused by a

disagreement about the interpretation of the world, which is the central focus of belief

revision, but by the disagreement on the representation of the knowledge. In complex

and dynamic agent environments, it is not reasonable to even assume that a shared con-

cept must have the same representation, because a discrepant representation may be the

result of making different modelling assumptions. This problem is beyond the scope

of techniques for ontology matching and mapping, because reusing existing concepts

in the ontology is often insufficient due to the inadequacy of the original represen-

tation. Thus, in order to facilitate more robust agent communication, the techniques

for ontology evolution adopted must be able to automatically repair the signature of

the ontologies, which includes changing the existing representation and inventing new

concepts to help give the repaired ontology more (accurate) meaning. This process

may be seen as being analogous to biological evolution, because the ontology auto-

matically adapts to its changing environment. The system developed, GALILEO, can

diagnose specific conflicts between ontologies and automatically repair the ontologies

so that the detected conflict is resolved.

4 Chapter 1. Introduction

1.2 Methodology

As described in §2.4, there are many types of ontology change: ontology evolution,

mapping, morphism, and matching. Ontology evolution is considered to be the most

radical form as it manipulates the profound structure of the ontology (Flouris et al.,

2008). As opposed to the other types, ontology evolution implements changes to both

the syntax and the semantics of the ontology. Automated ontology evolution explores

how the theory should evolve given some new conflicting information and how an

agent adapts to the changing world and goals. Typically, the original theory itself is

consistent (locally consistent), but the merge with the newly obtained information leads

to inconsistency (globally inconsistent) or a representational conflict. For instance, if

the observed value of a function unexpectedly varies when the theory predicts it to re-

main constant, then the theory should be mended to consider the parameter causing the

variation as an argument of the function. There are many other similar reasoning faults

that may occur in problem solving, and they are eventually resolved by the solver’s

intelligence and creativity.

In this project, we have explored a) patterns for detecting ontological faults arising

from taking into account some new information, and b) transformation rules for re-

solving the resulting conflicts between concepts – we call the composition of such

patterns and transformation rules ontology repair plans (ORPs). Ontology repair plans

are generic combinations of diagnosis and repair operations that guide the ontology

evolution process. To identify such patterns, we do not follow the relatively usual

research direction to study everyday, common domains, e.g., operating a shop, manag-

ing a library, and so forth, which we believe are excessively open and lack of structure.

Since our goal is to obtain an understanding of the fundamental requirements for the

realisation of automated ontology evolution, the domain of interest must be chosen

with care such that examples of ontology evolution are reasonably accessible and that

a kind of formalism already underlies the definitions of relevant concepts. Thus, we in-

vestigate records of ontology evolution in the history of Physics; we believe capturing

human reasoners’ imagination used in Physics problem solving can help develop and

advance mechanisms for ontology evolution. Physics concepts are usually mathemati-

cally defined and the evolutionary process in Physics is generally well documented, as

it attracts significant interest from both the scientific community, the press and histo-

rians. Detailed accounts are available of: the problems with the prior ontology, e.g., a

logical contradiction between the predictive theory and some empirical evidence; the

1.3. Results 5

new ontology with the fault resolved; and, an account of the reasoning which led to it.

To demonstrate and help evaluate the ability of ontology evolution, we implement

GALILEO within Isabelle (Paulson, 1994), a generic higher-order theorem prover, and

use the Isar language (Wenzel, 2007), a human-readable and machine-checkable lan-

guage for writing proofs. Isabelle provides substantial support for polymorphism and

higher-order reasoning, which are vital to our work. Essentially, GALILEO can be seen

as an extension to Isabelle, providing the additional functionality of evolving higher-

order ontologies.

1.3 Results

In this thesis, we present a collection of ontological conflicts that have occurred over

the development of Physics. We have formalised each of these case studies in higher-

order logic and implemented each as part of an Isabelle theory. The case studies were

split into development and test sets, so that the evaluation of the ontology repair plans

is independent from the development. We have implemented the ability to correctly

diagnose and repair all of these in GALILEO, such that either the historical solution or

solutions representing plausible alternative theories that can be of Physics interest can

be found in the search space. Because we work with higher-order, polymorphic terms,

the number of unifiers found by higher-order unification is huge. We have evaluated

the effectiveness of our technique for pruning the search space to a manageable size.

For each solution proposed by the system, we discuss whether it could potentially be

an interesting alternate theory, i.e. a repair that was not accepted by the physicists at

the time but could potentially give meaningful Physics. Note that the formalisation of

Physics is intended to be an idealisation or simplification, because we are not intending

to produce a complete formalisation of all of Physics, but only small fragments as

needed for the development and evaluation of GALILEO. Details of the results are

presented in §8.

1.4 Research Hypotheses

The aim of this project is to demonstrate that automated ontology evolution via ontol-

ogy repair plans is computationally feasible and can account for the kinds of ontology

evolution that are observed in human problem solving in Physics. The main hypothesis

6 Chapter 1. Introduction

that will be evaluated in the project is that:

A few generic, ontology repair plans can account for a large number of
historical instances of ontology evolution in the Physics domain.

The evaluation of the repair plans will assess to what extent they create a new ontol-

ogy that escapes the failures diagnosed in the prior ontology and to what extent this

emulates the historical process of ontology evolution.

The power of ontology repair plans largely depends on the logic underlying the formal-

isation and their implementation in GALILEO. The limited expressivity of first-order

logic, let alone fragments of it such as description logics (DL), constitutes a limit on

the modelling of both the examples of ontology evolution and of the ontology evolu-

tion process. Without the means to quantify over and to reason about the functions, it

is virtually impossible to formalise and automate sufficiently generic ontology evolu-

tion procedures. A key objective is, therefore, to study automated ontology evolution

in higher-order logic (HOL). HOL yields various benefits but also challenges that are

current topics of interest to the automated reasoning community.

Employing a logic as expressive as HOL for ontology evolution inevitably brings nu-

merous additional technical challenges. The choice required striking a compromise

between the expressiveness of the representation and the efficiency of the reasoning

process. In order not to burden ourselves with knowledge encoding problems, we have

favoured representational richness. The price we have paid is that inference must of-

ten be interactive. When ontology evolution is much better understood, it will be time

to increase the degree of automation by exploring the potential for representation of

Physics and ontology evolution in a more restricted logic.

In order to demonstrate that our techniques are feasible under practical settings, we

must show that GALILEO has incorporated mechanisms for addressing some key tech-

nical challenges of evolving ontologies in HOL. A subordinate hypothesis that will be

evaluated is that:

A few heuristics enable: (i) substantial control over the size of the search
in the space containing solution candidates, which is otherwise unman-
ageable, and (ii) preservation of only physically relevant solutions.

All of these hypotheses have been successfully evaluated, as discussed further in Chap-

ter 8.

1.5. Contributions 7

1.5 Contributions

In summary, the main contributions of this thesis are:

• The introduction and analysis of a novel approach to automating ontology evo-

lution and evolving higher-order logic ontologies.

• A collection of formal mechanisms, which we call ontology repair plans, where

each is designed to be triggered upon the detection of a certain type of ontologi-

cal fault and to resolve the detected fault.

• A system that mechanises ontology evolution and integrates theorem proving

into the ontology evolution process, ensuring the soundness of the repaired on-

tologies.

• A novel approach to the automatic diagnosis of ontological faults by returning

physically meaningful candidates of repairs to the ontologies.

• Formalisations of a wide range of case studies from the domain of Physics that

are examples of ontology evolution. We have used these case studies to evaluate

our system.

1.6 Plan of Thesis

Chapter 2 reviews the literature related to ontology evolution in Physics, covering var-

ious areas including general knowledge-base evolution and scientific discovery, and

relates our work to the field. Chapter 3 outlines the background of the project, includ-

ing the knowledge central to the design and implementation of GALILEO and clarifies

some of the key notions and terminologies used throughout the thesis with our intended

meanings. Chapter 4 begins the investigation with a description of our ontology repair

plans, each of which is described with a motivating example and a formalisation. Chap-

ter 5 sets out an overview of the GALILEO system and the modelling approach adopted

to formalise the case studies; we present the architecture of the system, introduce the

key components, and describe the flow of the system. Chapter 6 considers the imple-

mentation of conflict diagnosis and visits some of the research objectives specific to

the implementation of GALILEO and the way limitations can be minimised. Chapter 7

provides a description of the mechanisation of ontology repair. Chapter 8 provides an

8 Chapter 1. Introduction

evaluation of both the ontology repair plans and the GALILEO system, and examines

each of the research objectives. Chapter 9 discusses avenues for further research and

directions in which the scope of the research could be expanded, and draws together

the conclusions and summarises the thesis.

Chapter 2

Literature Survey

2.1 Introduction

Although relatively little previous research effort has been directed towards automated

ontology evolution, this section outlines a rich literature related to its aim and the

general methodology. §2.2 presents the background behind agent technology and au-

tomated negotiation in multi-agent systems, including an overview of several popu-

lar meta-representation languages and a discussion of their semantics. For a review

of prominent ideas dealing with the related semantics and reasoning, §2.3 focuses

on non-monotonic reasoning, including belief revision. §2.4 presents a survey of re-

search in ontology dynamics, covering a range of techniques used for seeking agree-

ment between semantically incompatible ontologies; these include research in ontol-

ogy mapping, morphism, matching, debugging and evolution. Finally, §2.5 provides an

overview of (semi-) automated scientific reasoning by summarising several successful

scientific and theorem discovery systems.

2.2 Ontologies and Multi-Agents

Potential problems that arise from communication among heterogeneous agents in an

open environment have stimulated studies of appropriate software paradigms. The

most widely recognised and accepted paradigm is the implementation of multi-agent

systems, or simply agents (Wooldridge, 2002). Interest in the field has been growing

rapidly over the last decade, due to the increased emergence of applications involving

vast distributed systems.

9

10 Chapter 2. Literature Survey

2.2.1 Ontology Languages

The most fundamental ontology research and development is on the language used

for authoring ontologies. The ontology language sets the degree of expressiveness

and tractability of the representation. Although the overall development is still at a

relatively early stage, ontology languages have significantly evolved to provide better

support for ontology integration and interoperability.

Languages based on a markup scheme, e.g., XML, have been recommended as standard

languages for the Semantic Web. Since the beginning, the standard language has been

constantly evolving – from RDF to OWL. The Resource Description Framework (RDF)

(Manola et al., 2004) is extended from XML, such that relationships between resources,

i.e. subjects, predicates and objects, are expressed as triples. Such representation al-

lows easier extraction of the subjects and objects in question, without the need to refer

to a schema. However, RDF does not offer mechanisms for describing the attributes

of, or the relationships between, resources. RDF Schema (RDFS) (Brickley and Guha,

2004), a semantic extension of RDF, is a language for describing RDF vocabulary and

structuring resources in an object-oriented manner. RDFS is still limited in various as-

pects, e.g., it cannot express useful constraints on predicates, such as those concerning

cardinality and existence. For instance, one cannot express that prime numbers are

natural numbers that have exactly two divisors. The Web Ontology Language (OWL)

(W3C, 2012) supports such constraints, uses RDF syntax, and offers three variants, two

of which are based upon description logics (Baader et al., 2003).

Description Logic (DL) is a knowledge representation paradigm for representing con-

cepts and their hierarchies. Collections of objects are called concepts in DL1, which

are interpreted as sets. Properties and relationships between concepts are represented

as binary predicates called roles, e.g. has child(x,y). DL knowledge-bases comprise

two components: TBox, which introduces terminology and defines the vocabulary, and

ABox, which contains ground sentences, assertions over the terms in the TBox. Thus,

structural relationships between concepts and roles are specified in the TBox, whilst re-

lationships between concepts and individuals w.r.t roles are specified in the ABox. DL

implements open-world semantics, under which, as long as a fact is not provable from

the knowledgebase, it is assumed to be unknown. Conventional relational databases

employ the closed-world semantics, which assumes the knowledge-base contains all

relevant facts and, if a fact cannot be derived, it is assumed to be false. In contrast,

1Collections of objects are called classes in OWL.

2.2. Ontologies and Multi-Agents 11

it makes more sense to use open-world semantics for representing ontologies in the

Semantic Web, due to the enormous and partially capturable World Wide Web. It is

therefore accepted by the community that a deductive reasoner for the Web should not

assume a statement to be true or false on the basis of a failure to disprove or prove it.

Open-world and closed-world semantics are discussed in more details in §2.3.

2.2.2 Ontologies in Multi-Agents

The realisation of the Semantic Web vision relies heavily on the success of agent tech-

nology (Hendler, 2001; Shadbolt et al., 2006). Depending on the type of problem being

confronted, an agent should satisfy a set of properties that define its basic character-

istics. For many researchers, autonomy is a definitional prerequisite and is useful in

distinguishing agents from other types of intelligent software. This provides agents

with the ability to “act without direct intervention from humans and have some control

over the agent’s own actions and internal states” (Castelfranchi, 1995). Agents should

also exhibit several other characteristics, including social ability, reactivity, and proac-

tivity. By these characteristics, an agent is expected to be able to interact with other

entities, perceive and analyse its environment, and exhibit goal-directed behaviour by

taking the initiative (Wooldridge and Jennings, 1995).

The introduction of agents has spurred research into ontologies: into their representa-

tion, engineering and use in reasoning. To interact with the environment, agents rely on

ontologies which allow them to function by using the available concepts and relation-

ships among them. Unfortunately, in a distributed environment, it is often impractical

for agents to access a shared ontology due to its potentially poor maintainability, ex-

tensibility and scalability. If a shared ontology is used, then the vocabulary of the

ontology needs to be hard-coded in each of the participating agent. This limits flexi-

bility because an update to the existing ontology requires an update to the vocabulary

in every agent as well. Moreover, it is extremely laborious to represent the knowledge

about a considerable part of the world, given the underlying inherent complexity, and

organise it into a few ontologies; one example is the building of the CYC knowledge

base (Lenat, 1995; Witbrock, 2011). So, instead, agents need access to multiple on-

tologies, including giving one or more internal ontologies to each agent, in order to

better capture various views of the world; as such, this imposes a risk of failure in

agent communication due to disagreement over the representation of concepts across

the different ontologies.

12 Chapter 2. Literature Survey

2.2.3 Automated Negotiation

Much research has been focused on automating multi-agent negotiation, which is

a form of interaction for agents to undertake a kind of collaborative problem solv-

ing. Typically, the kind of problem addressed deals with determining possible future

courses of actions or future states (Atkinson et al., 2005; Dunne and Bench-Capon,

2006). Studies in this area cover a wide range of interaction and decision mecha-

nisms; for instance, game-theoretic approaches (Rosenschein and Zlotkin, 1994; Bin-

more and Vulkan, 1999); heuristic-based approaches (Faratin et al., 2002; Rahwan

et al., 2007); and argumentation-based approaches (Kraus et al., 1998; Kakas and

Moraitis, 2006; Amgoud et al., 2007). Game-theoretic approaches are heavily based

on game theory (Osborne and Rubinstein, 1994), a branch of economics that studies

strategic interactions between individuals. However, a major limitation of classical

game-theoretic approaches is that the space of outcomes must be pre-determined (Par-

sons and Wooldridge, 2002). It is unrealistic to make such assumption in dynamic en-

vironments, as values in these environments are mostly variables so such assumption

conflicts with the very nature of these environments. Heuristic-based approaches rely

on a set of rules that are typically designed offline; these rules provide approximations

to the rational decisions offered by game-theoretic approaches. However, heuristic-

based approaches often choose outcomes that are sub-optimal, as they do not cover the

entire space of possible outcomes and the adopted notion of rationality is only approx-

imated (Jennings et al., 2001). Argumentation-based approaches are of most relevance

to our project, as they are typically highly adaptive which, therefore, renders them the

most suitable approaches for working in dynamic environments. More importantly,

argumentative reasoning is utilised to allow additional information to be exchanged,

which may include the explicit opinion of the agent. With this capability, an agent can

offer a critique of the proposal received and explain why it is unacceptable or how it

could be modified to become acceptable. For ontology evolution negotiation, an agent

must be able to expressively describe the current fault, if there is one, in the agent’s own

reasoning, and argumentation-based approaches provide the basis for implementing a

suitable framework.

Despite a vast amount of research in argumentation-based negotiation in multi-agent

systems, very few have addressed the problem of ontology mapping or matching by

negotiation. Bailin and Truszkowski (2002) have introduced a protocol for discovering

ontology conflicts and negotiating the mismatches between each agent’s ontology. The

2.3. Non-monotonic Reasoning 13

negotiation process is comprised of four major tasks: interpretation, clarification, rele-

vance evaluation and ontology evolution. Interpretation is for determining whether the

received message has been correctly understood; clarification is for requesting further

information in order to correctly understand the received message; relevance evalua-

tion is for measuring how well the result matches with the expectation; and, ontology

evolution is for modifying the ontology of the agent by introducing a new concept,

a new representation of an existing concept, or some new constraints. This protocol

can be powerful because it imitates negotiation between individuals in the real world.

However, a limitation of this approach is that the protocol must be hard-coded in each

of the participating agents. To relax the constraint of hard-coding a specific protocol

in participating agents, one proposed method is to utilise a shared ontology of negotia-

tion, which contains the vocabulary that agents use for the negotiation session (Tamma

et al., 2002). The negotiation protocol regulating interactions is advertised when an

agent participates in a pre-existing interaction. An advantage of this approach is that

the agents do not need to commit to a particular negotiation protocol, increasing agents’

ability to adapt to new environments. However, a shortcoming is that the agents must

be regulated by a shared ontology, reducing the autonomy of the agents. Also, it is

typically undesirable and infeasible to enforce the adoption of a shared ontology in an

open environment such as the Internet.

2.3 Non-monotonic Reasoning

Incomplete information prevails in our everyday reasoning as it is unrealistic to assume

that conclusions can be drawn based on all relevant information. Further, it is unrea-

sonable to assume that knowledge is static and that updates are not required. Classical

logic systems typically are monotonic, i.e. if a sentence p follows from a set of propo-

sitions A, then p also follows from a set B, where A⊂ B. Monotonicity does not allow

the system to make inferences which may later be retracted when further information

is added. Given two premises “birds fly” and “Tweety is a bird”, an agent can in-

fer that “Tweety flies”. In the light of additional information that “Tweety is a kiwi”,

monotonic systems cannot retract theorems even when they should.

14 Chapter 2. Literature Survey

2.3.1 Closed-World Assumption, Default Logic, and Circumscrip-

tion

The closed-world assumption (CWA), proposed by Reiter (Reiter, 1978), is the earliest

well known non-monotonic reasoning scheme. The idea is to assume false all facts

not provable to be true, so a system employing the CWA does not require explicit rep-

resentations of negative facts in order to derive negative inferences. Being the basis

of database theory, a flight database, for instance, only needs to contain details of all

known flights to answer queries concerning both existing and non-existing flights, be-

cause queries against unknown flights automatically give negative results. Clearly, the

expressivity of CWA is very limited, as the underlying assumption is very strict, in the

sense that failure in provability determines the truth of the proposition.

A more flexible formalism is Reiter’s Default Logic (Reiter, 1980), which allows vari-

ables to be assigned values under “normal circumstances”. Default statements, or de-

faults, are treated as inference rules, rather than formulae. Defaults are in the form
ϕ:Mψ

ψ
, which captures the intuition that if the prerequisite, ϕ, holds and the justifica-

tion, Mψ, can be consistently assumed, then the conclusion, ψ, can be inferred. In

the Tweety example, Mψ is inconsistent with what is known because kiwis cannot fly.

The set of defaults for the Tweety example may contain, e.g., the default bird(x):M f ly(x)
f ly(x) .

Defaults can be paired with a set of known facts containing, e.g., bird(tweety) for

expressing that Tweety is a bird, to become a default theory.

McCarthy’s circumscription approach is another way of formalising non-monotonic

reasoning; note that it is not a non-monotonic logic but non-monotonic reasoning

based upon first-order logic (McCarthy, 1980). The intuition is to pick out all min-

imal models of a theory, where a model M of a theory T is minimal if there is no other

model N of T such that M sets true all variables N sets to true. This is a general for-

malisation of the CWA, as what is not specified is assumed false. Circumscription and

Default Logic differ in several ways: for example, circumscription works with minimal

models while Default Logic works with arbitrary models. McCarthy also introduced

the concept of an abnormality predicate, denoted as ab(x) (McCarthy, 1986), which

can be used to represent that the proposition does not hold in normal circumstances.

For instance, for the Tweety example, one could express that birds normally fly with

∀x. bird(x)∧¬ab(x)→ f ly(x) (Robinson and Voronkov, 2001).

2.3. Non-monotonic Reasoning 15

2.3.2 Belief Revision

An example non-monotonic form of reasoning is the process of changing an agent’s

beliefs to accommodate new information, possibly inconsistent with existing beliefs.

The major focus of research here is to investigate possible models of belief change,

known as belief revision operators, and demonstrate that they exhibit properties that

resemble intuitive rationality. Rational belief revision operators must adopt reasonable,

coherent revision.

Although there are many variations to the definition of rationality, almost all of them

incorporate the principle of minimal change, which governs the need to preserve as

much of earlier beliefs as possible. Unfortunately both in philosophy and in artificial

intelligence, there is no single answer to achieving minimal change. The best known

attempt to characterise minimal change is the AGM model (Alchourrón et al., 1985),

which has considered three forms of belief change: expansion, for adding a new belief

to the belief set without regard to consistency; revision, for adding a new belief to

the belief set and removing other beliefs to maintain consistency; and contraction, for

removing a belief from the belief set. The postulates for a single-round of revision,

which is the most trivial belief revision strategy, are as follows:

(R1) K ∗α is a belief set. Revising K with α gives a belief set.

(R2) α ∈ K ∗α. Revising K with α gives a set containing α.

(R3) K ∗α⊆Closure(K∪{α}). The belief set revised with a new belief contains

only beliefs implied by the combinations of the old beliefs with the new belief.

(R4) If ¬α /∈ K, then Closure(K ∪{α}) ⊆ K ∗α. If the new belief is consistent

with K, then the beliefs implied by the combination of the old beliefs and the new

belief make up the revised belief set.

(R5) K ∗α =Closure(f alse) if and only if ` ¬α. The revised belief set is incon-

sistent if and only if the new belief is inconsistent.

(R6) If α↔ β, then K ∗α = K ∗ β The revised revision process abides by the

principle of Irrelevance of Syntax, i.e. not to be affected by the syntactical forms

of the new belief.

(R7) K ∗ (α∧ β) ⊆ Closure((K ∗α)∪ {β}). The belief set revised with α∧ β

contains only beliefs implied by the combination of the beliefs revised with α

16 Chapter 2. Literature Survey

and β.

(R8) If ¬β /∈ K ∗α then Closure((K ∗α)∪{β})⊆ K ∗ (α∧β). If β is consistent

with the belief set revised with α, then the beliefs implied by the combination of

the beliefs revised with α.

where K is a belief set and α and β are formulae; ∗ is a revision operator; and,

Closure(K) returns the deductive closure of K. In (Katsuno and Mendelzon, 1991),

Katsuno and Mendelzon revised the AGM postulates to restrict a state of belief to a

propositional formula. A revision operator ∗ on knowledge sets (theories) satisfies R1

to R6 iff a corresponding revision operator ◦ on beliefs satisfies KM1 to KM4:

(KM1) ψ◦µ implies µ [≡ R2]

(KM2) If ψ∧µ is satisfiable, then ψ◦µ≡ ψ∧µ [≡ R3 and R4]

(KM3) If µ is satisfiable, then ψ◦µ is also satisfiable [≡ R5]

(KM4) If ψ1 ≡ ψ2 and µ1 ≡ µ2, then ψ1 ◦µ1 ≡ ψ2 ◦µ2 [≡ R6],

where ψ is a propositional formula representing a knowledge-base and µ is a sentence

respectively.

The semantic model of the AGM postulates is a partial pre-order of interpretations for

expressing the plausibility, or the epistemic entrenchment, of interpretations (Gärdenfors

and Makinson, 1988). The interpretation with the highest degree of epistemic en-

trenchment is given the highest rank and is designed to be the most preferred. Ideally,

the most epistemically entrenched interpretation is the one that is the most appropriate

after revising the knowledge-base with the new information, while maintaining ratio-

nality in the process. However, there is no unique solution to the assignment of ranks.

Since the AGM theory is designed for mere one-step revision, each application of a

revision operator satisfying the postulates is independent of the others, i.e. the current

revision is not influenced by the results of previous revisions. Thus, the AGM postulates

are too weak for handling iterated revision, which is the process of revising beliefs with

new information iteratively. Iterative belief revision is closely connected to conditional

beliefs, i.e. beliefs depending on earlier beliefs. Darwiche and Pearl (Darwiche and

Pearl, 1997) have proposed additional postulates which are designed for preserving

the coherence of both conditional and unconditional beliefs, and for achieving abso-

lute minimal change in conditional beliefs. Similarly, Freund and Lehmann (2002)

2.4. Ontology Dynamics 17

have described an additional postulate ensuring that if the new information is incon-

sistent, none of the previous beliefs is to be retained. Many other postulates have been

proposed, but all behave well only in a specific problem setting.

None of the work in this area considers syntactical changes, so the signature of the

world is assumed to be static. This assumption contradicts that underpinning ontology

evolution, because the conceptualisation of the world is expected to change; therefore,

the signature of an ontology is also expected to be updated by an agent. Furthermore,

although the AGM postulates formalise the set-theoretic properties of the revision pro-

cess, belief revision techniques are typically studied by assuming the underlying lan-

guage is propositional logic. In contrast, the complex descriptions of Physics objects

and properties will require a much more expressive language, e.g., higher-order logic.

However, the philosophical issues that belief revision confronts are somewhat similar

to those faced by ontology evolution, e.g., rationality and minimal change.

2.4 Ontology Dynamics

As the world inevitably evolves over time, it is unrealistic to assume static knowledge

and information. When working with knowledge-bases that capture the existence of

entities in the world or the relationships among these entities, one has to deal with

disagreements over different conceptualisations. Conflicting conceptualisations are

simply results of incompatibilities between the underlying assumptions made about the

domain. When a domain changes, subsequent updates performed to the knowledge-

base essentially replace the original assumptions made about the domain with the new.

Even when the domain is fixed, there are situations in which the assumptions made

about the domain could still be incompatible; for instance, the selection of different

interpretations or perspectives of the domain is necessarily based on unequal sets of

underlying assumptions. Regulating the assumptions made about a domain is almost

impossible to achieve in an open, distributed environment.

2.4.1 Problem Background

Even in fields that inherently allow more control over the data, such as traditional

database systems, maintaining data integrity is a long standing challenge (Davenport,

1976; Baltopoulos et al., 2011). Data integrity can be compromised in a number of

ways, including a change in the schema of a table. Designing mechanisms for handling

18 Chapter 2. Literature Survey

schema evolution represents an unsolved problem for information systems that is fur-

ther exacerbated in distributed information systems, such as online scientific databases;

various attempts have been made in this direction (Ventrone, 1991; Roddick, 1992;

McBrien and Poulovassilis, 2002; Curino et al., 2008).

The problem of ontology change is even more complex than data integration. On-

tologies describe a domain of discourse, where concepts and relations have formally

defined semantics for machines to interpret. Moreover, ontologies themselves incor-

porate semantics, such that the definitions are essentially sets of logical axioms. Thus,

ontology data models are rich, as there are a large number of possible representation

primitives available, depending on the expressiveness of the ontology language. Even

with some common languages such as those based on description logics, the prim-

itives are not merely inserting/removing instances from a class or introducing new

superclasses, but defining classes as unions or intersections of other classes, redefin-

ing cardinality constraints, and so forth. When an expressive logic is adopted, such

as first-order or higher-order logic, the representation primitives become even more

complex, e.g., increasing the arity of a function, altering the type of a symbol, and

so forth. There are various approaches to resolving ontological heterogeneity and the

key approaches that are most relevant to our project can be summarised as: mapping,

morphism, and matching (Flouris et al., 2008).

2.4.2 Ontology Mapping

The goal of ontology mapping is to construct mappings between concepts across some

given ontologies. According to Kalfoglou and Schorlemmer (2003b), ontology map-

ping refers to

the task of relating the vocabulary of two ontologies that share the same
domain of discourse in such a way that the mathematical structure of on-
tological signatures and their intended interpretations, as specified by the
ontological axioms, are respected.

By this definition, mappings are created only between signature symbols and not be-

tween axioms. Even though ontology mapping only relates signature symbols, it is

already difficult, as the development of techniques is restricted by several inherent

methodological limitations; for instance (Kalfoglou and Schorlemmer, 2002):

• The assumptions underlying and the justifications supporting the creation of the

mappings are often not made clear or exposed to the community;

2.4. Ontology Dynamics 19

• Many implementations of ontology mapping are integrated in ontology edit-

ing environments or are attached to a specific formalism without including the

specifics of the approach to devising mappings;

• The semantics of concepts are often neglected when devising mappings, so many

proposed techniques are only syntactic;

• There is no single definition of the term ontology mapping, so it has different

meanings in different works, which creates unnecessary confusion among those

attempting to formalise the theory.

Most simpler approaches compute “similarity” coefficients based on syntactic features

such as concept labels, which usually yield limited accuracies because syntactic fea-

tures are descriptively inadequate for capturing the semantics of ontological concepts.

More accurate but complex approaches attempt to incorporate mechanisms for dealing

with semantics: for instance, by computing the semantic relations between concepts

(Giunchiglia et al., 2004; Guinchiglia and Yatskevich, 2004; Giunchiglia et al., 2007)

and by discovering missing background information from the web (Gligorov et al.,

2007) or ontologies on the Semantic Web (Sabou et al., 2008). S-Match (Giunchiglia

et al., 2004; Guinchiglia and Yatskevich, 2004; Giunchiglia et al., 2007) implements

the notion semantic matching, which computes the semantic relations between two

concepts. It views an ontology as a taxonomy represented in a graph, so it analyses the

structure and determines the semantic relations depending on the position of a concept

in the graph. Gligorov et al. (2007) have made use of an Internet search engine to help

create mappings between concepts even in inherently imprecise domains such as Mu-

sic genres. It relies on the notion of approximate ontology matching between concepts,

which utilises a weighting function for evaluating the appropriateness of the mappings.

2.4.3 Ontology Morphism

The process of ontology morphism, where the term morphism comes from Category

Theory, is the construction of functions that relate both the signature symbols and

the axioms of the ontologies (Kalfoglou and Schorlemmer, 2003b). Morphisms are

structure-preserving mappings between two mathematical structures, so they are more

ambitious than mappings. The concept of ontology morphism naturally comes about

when ontologies are formalised with an algebraic approach and draw parallels with

signature and theory morphisms (Bench-Capon and Malcolm, 1999). Kalfoglou and

20 Chapter 2. Literature Survey

Schorlemmer (2003a) formally relate ontology morphisms to the notions of logic info-

morphisms stemming from Information-Flow theory (Barwise and Seligman, 1997).

2.4.4 Ontology Matching

In both ontology mapping and ontology morphism, ontologies are related by construct-

ing functions. A relatively more popular approach for determining correspondences

between ontologies is ontology matching, which devises relationships between on-

tologies instead. It gives greater flexibility than ontology mapping and morphism,

because such relationships capture more complex semantics including subsumption,

equivalence, disjointness, and any user-specific notion of similarity (Kalfoglou and

Schorlemmer, 2004). Most matching techniques focus on the computation of some

kind of semantic distances between concepts in order to establish relationships be-

tween ontologies. A widely employed tool for ontology matching is WordNet (Miller,

1995), which is an electronic lexical database where the different senses of words are

grouped together into sets of synonyms; it is often used for finding synonyms and re-

lated terms. Most common measures of similarity are based on some kind of numerical

degree s ∈ [0,1] (Ichise, 2008; Formica, 2008), so machine learning and probabilistic

techniques are popular methods to improve the quality of ontology alignments. For

instance, (Doan et al., 2004) exploits information in the taxonomical structure of the

ontology and utilises a probabilistic model to combine the results of a set of learners to

find relationships. For more complex matching, Giunchiglia and Shvaiko (2004) have

described an approach that grounds the concepts in an ontology in WordNet terms and

formulates the task to become a constraint-satisfaction problem, whilst Niepert et al.

(2010) have presented a Markov logic based probabilistic-logical framework.

2.4.5 Ontology Debugging for Description Logics

When an internal error is realised in an ontology, techniques such as ontology mapping,

morphism, and matching are insufficient to resolve the problem. Those techniques ad-

dress the problem of finding semantic relationships between the concepts, relations

and axioms in multiple ontologies, and not to make persistent changes to the signa-

ture or the axioms. The general task performed by those techniques can be viewed as

adding new information to the meta-level, because the resulting mappings represent re-

lationships between ontologies, which does not resolve internal faults in each ontology

2.4. Ontology Dynamics 21

itself; object-level modifications are required in order to update the signature and/or

the axioms.

For DL ontologies, ontological faults come in two forms (Haase and Qi, 2007): An

ontology is

• inconsistent if and only if it has no model

• incoherent if and only if there are unsatisfiable concepts in its TBox which are

interpreted as empty sets.

Kalyanpur et al. (2006b) have described an approach for repairing incoherent OWL

ontologies by identifying erroneous axioms. This is done by computing Minimal Un-

satisfiability Preserving Sub-TBoxes (MUPS). A MUPS for a concept C is a minimal

fragment of the knowledge-base in which C is unsatisfiable. The technique involves

ranking the axioms in each of the MUPS generated according to a range of attributes,

including axiom frequency and the impact on the ontology if the axiom is removed;

the axiom with the lowest rank is removed from the ontology. This approach has been

extended to repair inconsistent ontologies as well (Kalyanpur et al., 2006a). The exten-

sion involves discovering the erroneous part of axioms by splitting the original axioms

into smaller parts and then apply almost the same method for repairing incoherent

ontologies. Ji et al. (2009) have proposed a method for debugging both incoherent

and inconsistent ontologies as well. For incoherent ontologies, MUPS are calculated

for debugging incoherence and minimal inconsistent subsets (MIS), which are minimal

subsets of the ontology that cause it to be inconsistent, are calculated for debugging

inconsistency. Typically, inconsistency is resolved by removing one or more axioms

from all generated MIS. Ribeiro and Wassermann (2009) addresses ontology debug-

ging with a belief revision approach (§2.3.2) and introduces new operators that can be

used in DL.

Haase et al. (2005) compares four main types of approaches for handling inconsisten-

cies in dynamic ontologies, which are ontologies that depend on changing parameters

such as time, space, environment, etc. These approaches – namely, consistent ontology

evolution, repairing inconsistencies, reasoning with inconsistent ontologies, and ontol-

ogy versioning – are conventionally recognised as different approaches to the same

problem. The comparison revealed that they, in fact, have very different requirements

and are applied in different settings; for example, inconsistency repair removes logical

inconsistency from the input ontology during development-time, whilst inconsistency

22 Chapter 2. Literature Survey

reasoning focuses on evaluating the meaningfulness in answers during runtime. More-

over, repairing ontological inconsistencies involves locating the inconsistencies and

then resolving them, whereas the operations adopted to keep resulting ontologies con-

sistent resemble those in belief revision and contraction (Gärdenfors and Rott, 1995).

2.4.6 Engineering OWL ontologies

Theoretical issues, such as deciding whether every concept satisfiable relative to one

TBox T1 is also a concept satisfiable relative to another TBox T2, i.e. whether T2 is

a conservative extension of T1
2, have been argued to have an impact on the quality of

modified ontologies. A detailed study of the desirability of the notion of conservative

extensions in DL is presented by Ghilardi et al. (2006), which describes algorithms

for deciding relativised and non-relativised conservative extensions of ontologies in

DLs. The notion of relativised conservative extensions is particularly useful to ontology

evolution because modified ontologies are often not conservative extensions of a TBox

w.r.t. the entire signature of the TBox, but only to a subset of it.

Another central issue is how to improve reusability of (parts of) ontologies by ex-

tracting meaningful fragments, or modularisation. A module of an ontology has been

defined as:

... a reusable component of a larger or more complex ontology, which is
self-contained but bears a definite relationship to other ontology modules
(Doran, 2006),

so the purpose of ontology modules is to allow them to be reused as they are or ex-

tended with new concepts and relationships. Enhancing the reusability of ontologies is

an important issue because practical ontologies are usually very large, e.g., the medical

ontology SNOMED-CT (Stearns et al., 2001) has over 360,000 unique concepts and 1.2

million relations. Importing the entire ontology is, therefore, infeasible and excessive

if one would like to reuse only a fragment of the original ontology for constructing

a new ontology. The notion of a module is in fact closely related to the notion of a

conservative extension, but different in an important way. With a conservative exten-

sion, the logical consequences are considered only w.r.t. to the ontologies of interest,

whereas a module considers all possible ontologies in which the module can be used

2This is a restricted definition of conservative extensions, commonly called non-relativised conser-
vative extensions. Generally, relativised conservative extensions are more commonly investigated in
research, i.e. Γ-conservative extensions where Γ⊆ Sig(T1).

2.4. Ontology Dynamics 23

(Grau et al., 2007). Grau et al. (2001) have also formally proved that the notions of

modules and conservative extensions are in fact closely related from both proof- and

model-theoretic views. As the problem of deciding whether an ontology is a conser-

vative extension of another is already undecidable for the OWL DL, the problem about

modules can only be more complex because the definition of a module is more restric-

tive than that of a conservative extension. Thus, the extraction of modules is typically

done by approximations.

2.4.7 Interactive Ontology Evolution

Most research activities in ontology evolution are led by interactive ontology evolution,

which requires users to explicitly guide the evolution process. Thus, most of the current

work on ontology evolution aims to help users edit ontologies manually by providing

informative feedback.

One of the pioneering works in interactive ontology evolution is by Stojanovic et al.

(2002), where a specialised cyclic process is introduced for ontology evolution. It

systematically verifies the consequences of the major operations, including change

implementation and change propagation. The change implementation phase involves

integrating the proposed changes to the given ontologies, whilst the change propaga-

tion phase allocates induced changes to all affected ontologies. Some recent works

have looked at the computation of explanations for unsatisfiable concepts and incon-

sistent ontologies, or justifications (Kalyanpur, 2006). These are minimal subsets of

an ontology that are sufficient for a given entailment to hold. Inspired by users’ in-

terests in the automatic explanation function provided by Swoop (Kalyanpur et al.,

2006c), Kalyanpur et al. have presented both reasoner-dependent (glass-box) and -

independent (black-box) algorithms for computing justifications of an entailment in

OWL DL (Kalyanpur et al., 2007).

2.4.8 Progress in Automated Ontology Evolution

Progress in automated ontology evolution has been slow due to the scale and complex-

ity of the problem. One example system in this area is the Ontology Repair System

(ORS) (McNeill and Bundy, 2007), which addresses the problem of ontology repair

in a multi-agent planning environment. It was designed to investigate an environment

in which agents with slightly different ontologies interact with each other in order

24 Chapter 2. Literature Survey

to offer or seek services to and from others. The main goal of ORS is to identify and

repair ontological mismatches arising from heterogeneity in the underlying logical rep-

resentation. The type of ontology repair implemented differs from the more common

ontology mapping or ontology matching in being aimed at identifying and correcting

errors in a single ontology rather than constructing a mapping or alignment between

two ontologies. Ontology repair is also done automatically, dynamically (at run-time)

and without full access to the ontologies of other agents, whereas typically ontology

matching has some manual element, is done statically (at compile-time) and with full

access to both ontologies.

The ORS ontology repair operations support various syntactic manipulations that are

beyond belief revision, including changing the arities or order of arguments of a func-

tion and splitting a function into parts. Such manipulations are similar to those de-

veloped in this project; however, we have also investigated more complex conceptual

faults commonly occurring in problem solving.

Evolva is another similar attempt at automating ontology evolution, but its apparent

focus is more toward the management of ontological knowledge rather than the res-

olution of conflicts between ontologies (Zablith, 2008). It exploits background infor-

mation for the integration of new external information to given ontologies, which aims

to reduce, or even eliminate, the need for user input. Sources of such background

knowledge include WordNet and web corpora. Only vague details on the handling of

ontological inconsistencies have been revealed, which is likely due to the preliminary

state of the current work.

2.5 Scientific Problem Solving

As widely agreed by AI researchers, intelligence involves creativity. Progress towards

more intelligent machines has motivated attempts at tackling problems known to be

seemingly solvable only by human creativity (Rowe and Partridge, 1993). A prime ex-

ample problem is scientific and mathematical discovery, which requires the researcher

to apply creative reasoning in order to invent new theories (Langley, 1998). Due to the

enormous search space, most work in this area focuses on formalising human reason-

ing abilities using heuristics.

2.5. Scientific Problem Solving 25

2.5.1 Scientific & Mathematical Discovery

One of the earliest heuristic-based machine discovery systems is Lenat’s Automated

Mathematician (AM) program. It discovers mathematical concepts by performing

concept formation and conjecture making in number theory (Lenat, 1977). It starts

with about 110 elementary concepts, where each concept is represented by a set of

slots. Each slot contains information regarding, e.g., definition, examples, generali-

sations/specialisations and worth. To fill these initially blank slots, AM looks through

a database containing about 250 heuristic rules. Four types of heuristics were used:

fill rules, for filling the slots; check rules, for validating the entries; suggest rules, for

generating new concepts and new tasks; and interest rules, for measuring the interest-

ingness of the concept. It is important to note that AM is designed to be interactive and

the user has a crucial role in shaping the search process. The user can, for example,

judge the interestingness of the theorems formulated so far. Some interesting results

include the discovery of addition, multiplication, primes, and Goldbach’s conjecture.

Another system guided by heuristics is found in the BACON series of programs (Lang-

ley, 1980). These programs are purely data-driven, i.e. they generate theories from em-

pirical data only. The heuristics help formulate regularities, such as constancies, trends,

common divisors, and constant differences, hidden in the input data. One heuristic is

that if the values of one variable increase as those of another variable increase, then

their ratio should be considered. This heuristic was used to deduce Kepler’s Third law:

the data about planetary coordinates and trajectories show that the distance D increased

with the orbital period P, but the two are not linearly related, so BACON first defines D
P

as the ratio of D and P. It then defines D2

P as the product of D
P and D because they are

inversely related. Ultimately, it defines D3

P2 as the product of D3

P2 as the ratio of D2

P and
D
P . These heuristics, therefore, can be seen as ad-hoc patterns for curve-fitting.

Pease et al. (2004) have used ideas from Lakatos to evolve mathematical theories.

For instance, they have automated the repair of faulty conjectures using computational

versions of Lakatos’s Proofs and Refutations methods (Lakatos, 1976). The proposed

methods for fixing faulty conjectures in the light of counterexamples include: monster-

barring, for modifying the definition to exclude unwanted counterexamples; piecemeal

exclusion, for restricting the conjecture to those examples that do not exhibit proper-

ties of the counterexample; and strategic withdrawal, for restricting the conjecture to

those examples for which it is known to hold. Their approach is contrasted with that

proposed here by focusing on adding and changing definitions and conjectures within

26 Chapter 2. Literature Survey

a signature that is changed only by definitional extensions. Our work also employs

definitional extension, but is principally focused on more radical signature changes.

The GALILEO system is also guided by heuristics, which formalise the methodology

a problem solver adopts to reduce the search space. Both GALILEO and BACON tar-

get at Physics domain, but the two systems are strategically different. For example,

BACON can be seen as a curve-fitting program, whereas GALILEO attempts to make

representational changes in order to repair faults in reasoning.

2.5.2 Qualitative Problem Solving

Motivated by the apparent tendency that humans describe and reason about physical

environments qualitatively, various attempts have been made to formalise the underly-

ing qualitative calculus. In the “naive Physics” of Hayes et al. (1978), the description

of a situation is more explicit than one in formal Physics by the inclusion of common-

sense knowledge that may be taken for granted. Hayes’ analysis described the concepts

and axioms involved in order to formally understand the behaviour of a liquid (Hayes,

1985).

De Kleer and Brown (1984) have also studied specific physical phenomena using a

qualitative modelling approach, including the mechanics and structure of a pressure-

regulator. The modelling strategy adheres to several principles that distinguish the

approach from other architectures for building theories for specific situations. One

principle is no-function-in-structure, which forbids the laws of parts of a device to

presume the functioning of the whole. Take as an example the model of a switch

stating that if the switch is on, current flows. The description is false as there are

contexts in which current does not flow even if the switch is on, e.g., the circuit is for

some reason open even when the switch is on. This principle aims to keep an account

of how the physical system achieves its behaviour, which is an attempt to reduce the

complexity caused by the underlying context of the situation.

Research in designing problem solvers for tackling problems in related areas have been

active for over 30 years. The MECHO project (Bundy, 1979) is designed to solve basic

high-school mechanics problems stated in English. NEWTON (De Kleer, 1977) is also a

solver for mechanics problem but uses qualitative Physics to solve problems, allowing

more difficult input problems to be answered. More recent research includes AURA

(Chaudhri et al., 2007), which is a knowledge capture system for domain experts to

build knowledge bases from university-level science textbook and for a different set

2.6. Summary 27

of users to ask questions in English against the knowledge base. In AURA, the knowl-

edgebase has been built on top of the Component Library (Barker et al., 2001), which

is a domain-independent knowledgebase and focuses on the reusability of individual

domain-independent knowledge units. Roles, e.g., EMPLOYEE, relate together entities,

e.g., PERSON, but do not relate together other roles, so the underlying logic is weaker

than first-order. From our research, no all encompassing formulation of Physics exists

that we could build on.

2.6 Summary

We have discussed techniques for handling ontology conflicts in multi-agent systems,

most of which can be viewed as methods of automated negotiation. We have also de-

scribed a range of approaches for resolving the general problem of ontology conflicts.

These approaches address situations in which a single ontology contains internal faults

or multiple ontologies have disagreements with each other. All of these techniques

achieve a diversity of specific tasks, but fall short of producing interesting, meaning-

ful matches or repairs. Non-monotonic logics provide formalisms for reasoning about

real world situations, where the complete representation of a situation and its underly-

ing contexts can be difficult. Non-monotonic reasoning allows the insertion of a new

sentence into the knowledgebase to affect the set of warranted conclusions, but most

techniques assume a static language for representing the situation. Scientific prob-

lem solving is also an active field of research and numerous systems have focused on

tackling various demanding tasks that are significant to the scientific community.

Chapter 3

Background

3.1 Introduction

As described in Chapter 2, the scope of this project is broad and little previous research

has been conducted in the area of automated ontology evolution in an expressive logic.

That said, the main pillars of the project are the notion of higher-order ontologies and

the technique for performing mechanical reasoning in HOL (Chan et al., 2010b). We

believe that an accurate description of our notion of ontologies helps specify the tech-

nical aspects that provide additional logical power to our representation and clarify any

conflicts in terminology used by some others in related fields. Higher-order unifica-

tion is widely used to mechanise higher-order reasoning, so it is relevant to provide an

overview of the key aspects of the process. In this chapter, we present a formalisation

of our notion of higher-order ontologies and a polymorphic higher-order logic used to

formalise the ORPs designed and case studies for both development and testing.

3.2 Representing Ontologies in HOL

Many ontologies are relatively simple descriptions of concept hierarchies and relations

between objects , e.g., taxonomies used for plant classification. A general method for

modelling ontologies is to encode a relationship between two objects as a RDF triple.

For more expressivity, an ontology can consist of sets of logical formulae. Popular log-

ics used for modelling ontologies include DLs (description logics) and FOL (first-order

logic). There are many varieties and sublanguages of DL, e.g., OWL; each involves a

compromise between the expressivity of the representation and the efficiency of the

29

30 Chapter 3. Background

reasoning process. We can, thus, see that there is a range of interpretations of “ontol-

ogy”:

• from a single description of the nature of reality to multiple, perhaps conflicting,

descriptions of many smaller domains;

• from a basic set of type declarations to a representation of world knowledge;

and,

• from a simple classification to a rich logic.

In GALILEO we have interpreted “ontology” in an inclusive way to encompass any

representation of knowledge, usually as a logical theory. Thus, meta-ontologies, which

are ontologies about other ontologies, are also ontologies. We have chosen a logic

which is rich enough to represent, in a natural way, both the object-level concepts and

relationships of Physics as well as the meta-level concepts and relationships of the

ontology evolution processes. As we will see, this argues for a polymorphic, typed,

higher-order logic for both purposes. Polymorphic means that a term may have more

than one type, which can be achieved by including variables ranging over types in their

type declarations. There are two classes of polymorphisms: parametric and ad-hoc

(Strachey, 2000)1. Parametric polymorphism occurs when a function is defined over

a range of types, acting in the same way for each type. Ad-hoc polymorphism occurs

when a function is defined over several types, with potentially different behaviours for

each type.

The rest of this section covers the formalisation of our logic and ontologies, most of

which are adapted from Lehmann et al. (2012)2.

3.2.1 Overview of HOL

The formal definitions of our polymorphic, typed, higher-order logic are given below.

Definition 1 (Types) The following BNF describes polymorphic types:

T ::= V | C | T ⇒ T

where V is the set of type variables, C the set of type constants and τ⇒ τ′ is the type

of functions from objects of type τ to objects of type τ′. We will use the Greek letter τ,

possibly subscripted or primed, to range over types.
1Alternatively, overloading.
2The relevant part was produced by Alan Bundy.

3.2. Representing Ontologies in HOL 31

Note that the set of type constants, C , depends on the signature (3.2.2) of the ontology.

The operator⇒ is right associative.

Particular type constants that we use below are, for instance, bool, for the booleans,

and R for the real numbers.

Definition 2 (Order of a Type) The following equations determine the order of a type:

ord(T) = 0 if T is atomic

ord(T ⇒U) = max(1+ord(T),ord(U))

where ord returns the order of a given type.

The order of a type is a relevant concept in this thesis, because we will later discuss

specific higher-order functions, e.g., those in §3.3, and it is used by heuristic to prune

the search space of repairs.

Definition 3 (Terms) The following BNF describes terms of the logic.

T ::= V |C | T (T) | λV.T

where V is the set of term variables, C the set of term constants. We will use the Roman

letter t, possibly subscripted or primed, to range over terms. We will write t:τ to declare

term t to have type τ.

We will assume that C contains: the truth values >:bool (true) and ⊥:bool (false); the

standard logic connectives, such as ∧:bool⇒ bool⇒ bool; and the quantifiers, such

as ∀:(τ⇒ bool)⇒ bool, whose meaning can be expressed as

∀(P)≡ (P = (λx.>)) (3.1)

where P is a predicate.

Formulae are λ-calculus terms of type bool. All HOL ontologies also have access to,

for each type τ, an equality relation = τ:τ⇒ τ⇒ bool, a partial order relation < τ:τ⇒
τ⇒ bool and additive and subtractive functions +τ,−τ:τ⇒ τ⇒ τ34. Note that several

of these term constants are polymorphic, i.e., their types contain type variables. This

allows us to overload these constants so that they apply to objects of many different

types. This is essential in allowing us to formalise generic ontology repair plans that

are applicable across a wide range of different areas of Physics.
3Although these constants are available at all types, Isabelle only has definitions at some types, e.g.,

naturals, integers and reals.
4Note that − can be defined in terms of +.

32 Chapter 3. Background

Definition 4 (Type Inheritance) Terms inherit their types according to the following

two rules:

t ′:τ⇒ τ′ t:τ
t ′(t):τ′

x:τ′ t:τ
λx.t:τ′⇒ τ

Definition 5 (Free Variables) The set of free variables, FV (t), of a term, t, are defined

recursively as follows:

∀x ∈V. FV (x) ::= {x}

∀t, t ′ ∈ T. FV (t ′(t)) ::= FV (t ′)∪FV (t)

∀c ∈C. FV (c) ::= {}

∀t ∈ T,x ∈V. FV (λx.t) ::= FV (t)\{x}.

The above definitions of types and terms are in, so called, curried form, where all

functions are regarded as unary. Curried types and terms can be inter-converted as

follows:

• The curried type (τ1⇒ . . .⇒ (τn⇒ τ) . . .) can be written in uncurried form as

τ1× . . .× τn⇒ τ and vice versa; and

• The curried term t(t1) . . .(tn) can be written in uncurried form as t(t1, . . . , tn) and

vice versa.

We use HOL to refer to an implementation of higher-order logic with a polymorphic

type theory hereafter.

3.2.2 Higher-Order Ontologies

We have favoured representational richness and chosen polymorphic, typed higher-

order logic for the representation of ontologies, which encompasses all logics com-

monly used for ontological representations, including DL and FOL.

Definition 6 (Higher-Order Ontologies) Let O be the meta-type of ontologies. A

higher-order ontology, O:O, is a pair 〈S,A〉, where S is the signature of O and A is

the set of axioms. We define Sig(O) ::= S and Ax(O) ::= A.

The signature, S, is a set of type declarations for a subset of the constants in C, i.e.,

the elements of S are of the form c:τ, where c ∈C and τ ∈ T . We will assume that a

3.2. Representing Ontologies in HOL 33

potentially infinite set of variables is provided for each type in T . With this assumption,

the signature defines a set of terms T . These terms are called the language of the

ontology, denoted Lang(O). The set of sentences of the ontology, Sent(O), are the

subset of terms that have type bool and no free variables, i.e., Sent(O) ::= {φ ∈ T | φ:

bool ∧FV (φ) = {}} To reduce clutter, we will sometimes omit outermost universal

quantifiers from sentences.

An axiom, a ∈ A, is a sentence that is assumed to be true. When the axioms are closed

under the rules of inference they define a set of theorems of the ontology, denoted

T h(O). If a sentence φ is a theorem of ontology O, we write O ` φ. If a setence φ is not

a theorem of ontology O, we write O 0 φ, but validity in HOL is undecidable.

An ontology O is said to be inconsistent if ⊥ is a theorem, i.e., O ` ⊥.

To reduce clutter we adopt the convention that Sig(Oi) is abbreviated to Si and Ax(Oi)

is abbreviated to Ai. Note that, depending on the context, Si and Ai may refer to the

local signatures and axioms, respectively.

O ` φ is an example of a meta-assertion, i.e., a sentence of a meta-ontology. A meta-

ontology is a higher-order ontology whose domain is other ontologies, i.e., in which the

constants are strings denoting object-level sentences, names of ontologies and models,

etc. Ontology evolution will consist of simultaneous inference in both object- and

meta-ontologies.

An example of a standard, polymorphic axiom inter-relating multiple polymorphic

constants is:

∀x,y,z :τ. x+τ y =τ z ⇐⇒ z−τ x =τ y

So, whatever the domain of application, we may insist on a fixed relationship between

=τ, +τ and −τ.

The rules of inference of this logic are the natural deduction rules provided by the

Isabelle theorem prover for HOL and are as documented in Nipkow et al. (2002)[ch5].

The semantics of the logic are described in Gordon and Pitts (1994). This semantics

defines the concept of interpretation of an ontology O as giving a meaning to each

c:τ ∈ Sig(O) and, hence, a truth value to each sentence φ ∈ Lang(O). We write M |= φ

if φ is assigned > by the interpretation M . If ∀φ ∈ Ax(O). M |= φ then M is said

to be a model of O. We can regard the real world as defining an interpretation that is

intended to be a model of all our ontologies. We will refer to this interpretation as the

standard model.

34 Chapter 3. Background

Definition 7 (Combining Ontologies) The combination, Ox⊕Oy , of two ontologies,

Ox and Oy is defined as:

Ox⊕Oy ::= 〈Sig(Ox)∪Sig(Oy),Ax(Ox)∪Ax(Oy)〉

provided no clash of constant types arises, i.e.,

∀c ∈C. c:τx ∈ Sig(Ox)∧ c:τy ∈ Sig(Oy) =⇒ τx = τy

⊕ : O×O⇒O is a meta-constant.

Note that the language of the combined ontologies contains the union of their lan-

guages and the theorems of the combined ontologies contains the union of their theo-

rems. If there is a clash of constants which have different meanings in the two ontolo-

gies combined, then the constants are renamed before combining in avoid the clash.

The associativity and commutativity of ⊕ follows trivially from the associativity and

commutativity of∪. We can, therefore, drop the parentheses from O1⊕(O2 . . .(On−1⊕
On) . . .) and write O1⊕ . . .⊕On unambiguously.

Definition 8 (Local vs Global (In)consistency) Consider the set of ontologies {Oi :

O|1≤ i≤ n}. The set is said to be locally (in)consistent if each Oi is (in)consistent. It

is said to be globally (in)consistent if O1⊕ . . .⊕On is (in)consistent.

Definition 9 (Ontology Fault) By an ontology fault we mean one of the following two

cases:

Over-specification: It is possible to prove a false theorem, i.e., O ` φ but M |= ¬φ,

where M is a standard model of ontology O and φ is a sentence in Lang(O).

A special case of over-specification is inconsistency, i.e., O ` ⊥, where ⊥
represents false, since > is true in all models. Note that inconsistency would

arise if we tried to combine two ontologies, say Ox and Oy, where there exists a

sentence φ such that Ox ` φ and Oy ` ¬φ, since ⊥ would then be a theorem of

the combined ontology Ox⊕Oy.

Under-specification: It is impossible to prove a true sentence, i.e., O 0 φ but M |= φ,

where M is a standard model of ontology O and φ is a sentence in Lang(O).

A special case of under-specification is redundancy, i.e., that O 0 t1 = t2 but

M |= t1 = t2, where M is a standard model of ontology O and t1 and t2 are terms

of the same type in Lang(O).

3.3. Higher-Order Unification and Matching 35

3.3 Higher-Order Unification and Matching

Higher-order unification is the problem of unifying simply-typed λ-terms (Church,

1940), that uσ and vσ are equivalent w.r.t. α-, β- and possibly η-equivalences. Two

expressions are α-equivalent if and only if the only difference between them is the

renaming of bound variables, which essentially captures the principle that only the

binding structure they induce matters; for instance, λx.λy.2× y and λy.λy.2× y are α-

equivalent. Two expressions are β-equivalent if and only if they reduce to the same

normal form, i.e. after substituting a function’s arguments for its parameters; for in-

stance, (λx.2× x)1 is β-equivalent to 2× 1. Lastly, two expressions are η-equivalent

if and only if they are equivalent after adding or dropping abstractions; for instance,

λx. f (x) is η-equivalent to f , if x does not appear free in f .

The method of solving equations by unification lays the foundations for numerous rea-

soning techniques and applications, including generalisations of resolution to second-

order logic (Pietrzykowski, 1973), HOL programming languages such as λ-Prolog

(Miller and Nadathur, 1986; Nadathur and Miller, 1998) and robust implementations

of inference rules in theorem provers (Paulson, 1986).

Suppose ? f a second-order function, e.g., ? f (λa.a), which takes a function as an argu-

ment. Unifying it with C may give infinitely many unifiers (Zaionc, 1985), including

{? f 7→ λa.a(C), ?x 7→ λa.a} (3.2)

{? f 7→ λa.a(a(C)), ?x 7→ λa.a} (3.3)

{? f 7→ λa.a(a(a(C))), ?x 7→ λa.a} (3.4)

. . .

Because of this potential issue, most higher-order reasoners and theorem provers fix

a unification search bound, which prevents unification from searching past a certain

depth.

For the unification of polymorphic simply-typed λ-terms, terms may contain type vari-

ables that need to be instantiated during the unification process. Suppose ? f , ?x and C

are of types α⇒ τ, α and τ, respectively, where α is a type variable and τ is some base

type. Any instantiation of α must be of the form

τ1⇒ . . .⇒ τ. (3.5)

which gives a potentially infinite set of solutions. Different instantiations of α may

give rise to different instantiations of ? f and x. For instance, if α is instantiated to

36 Chapter 3. Background

τ⇒ τ, then

? f 7→ λa.a(Y1(a),Y2(a)), ?x 7→ λa1,a2.C (3.6)

is a solution, where Y1 and Y2 are new function variables, but it is not a solution if α is

instead instantiated to τ⇒ τ⇒ τ.

3.3.1 Huet’s Algorithm

Whilst higher-order unification is undecidable in general, Huet gave a semi-decidable

algorithm for pre-unification that, in effect, restricts the search space and finds a solu-

tion if it exists, but postpones certain solvable equations instead of enumerating their

solutions (Huet, 1975, 2002). It is widely used and most implementations of higher-

order unification adopt Huet’s two procedures: SIMPL and MATCH, used for deal-

ing with so called rigid-rigid and flex-rigid pairs of expressions, respectively. An ex-

pression is called rigid if its head5 in β-normal form, which is if no β-reduction is

possible, is a constant, free variable, or a bound variable; for instance, the expression

λx1, . . . ,xn. F(s1, . . . ,sp) is rigid, provided that F is a constant, free variable or a bound

variable. Otherwise, it’s called flex, i.e. if F is a meta-variable (or logic-variable).

Recall that a unification problem formulated in the form u =? v, which is typically

expressed as a pair 〈u,v〉. A rigid-rigid pair is an equation where both u and v are rigid,

e.g.,

〈G(s1, . . . ,sp),H(t1, . . . , tp)〉 (3.7)

where neither G nor H is a meta-variable. To unify a rigid-rigid pair, SIMPL essen-

tially performs first-order unification. If the heads of the expressions are the same, i.e.

G = H, then the input pair is simplified to a set of pairs {〈s1, t1〉, . . . ,〈sp, tp〉}. If the ex-

pressions have different heads, i.e. G 6= H, then SIMPL returns a failure status because

the input pair is non-unifiable. The SIMPL step is repeated for all rigid-rigid pairs in

the current problem, leaving only flex-rigid and flex-flex pairs for further unification.

The MATCH step is applied to the current problem if it contains at least one flex-rigid

pair, e.g.,

〈? f (s1, . . . ,sp),F(t1, . . . , tq)〉 (3.8)

where ? f is a meta-variable, and generates substitutions based on the imitation and

projection rules. Imitation applies only if the head of the rigid term is a constant by

generating a substitution that replaces the head of the flex term by a term equivalent to

5Given λx1. . . .λxn.t M1 . . .Mm, t is the head of the expression.

3.3. Higher-Order Unification and Matching 37

the head of the rigid term. Suppose F is a constant in (3.8), the imitation step generates

a substitution of the following shape:

? f 7→ λx1, . . . ,xp. F(h1(x1, . . . ,xp), . . . ,hq(x1, . . . ,xp)) (3.9)

where hi for 1≤ i≤ k are fresh meta-variables. In effect, the head of the instantiation

imitates that of the rigid term. Projection applies if the head of the rigid term is ei-

ther a constant or a bound variable by generating a substitution that has a term of the

same target type as the flex term as its head that gives the flex term the correct type.

Considering (3.8), the substitution generated by projection is given by:

? f 7→ λx1, . . . ,xp. xi(h1(x1, . . . ,xp), . . . ,hk(x1, . . . ,xp)) (3.10)

where hi for 1 ≤ i ≤ k are fresh meta-variables. In this case, if the type of ? f is

α1⇒ ·· · ⇒ αp⇒ β, then the type of xi, αi, must be γ1⇒ ··· ⇒ γk⇒ β.

When only flex-flex pairs remain, Huet’s algorithm always reports a success status and

maintains these pairs as constraints for later resolution.

The synchronisation of calls to SIMPL and MATCH is handled by the main procedure

of the algorithm and a matching tree is constructed after repeated calls to these steps.

Upon each call to MATCH, two nodes are generated – one for each imitation and

projection. For each newly generated unification problem, the process is repeated.

3.3.2 Higher-Order Matching

Higher-order matching is a well-behaved fragment of higher-order unification. It is

the problem of, given an equation u =? v, pattern matching u to v, where v is closed,

i.e. v does not contain meta-variables. Note that this is more restrictive than unifying

terms in a flex-rigid pair, because only the head of the rigid expression cannot be a

meta-variable in a flex-rigid pair. However, the decidability of higher-order matching

is still an open problem. First-order matching is decidable and there is either one

or zero solution to each matching problem. Second-order matching is also decidable

(Huet and Lang, 1978) and the number of unifiers is finite6. At order three, it is, again,

decidable (Dowek, 1994), but there may be an infinite number of unifiers (3.2, 3.3,

3.4). Fourth-order matching has also been shown to be decidable (Padovani, 2000),

but there are no accurate results for greater orders.

6The number of unifiers is finite up to α-equivalence.

38 Chapter 3. Background

3.4 Isabelle

Isabelle is a generic interactive theorem prover (Nipkow et al., 2002) which encodes

a range of object-logics in its intuitionistic, higher-order meta-logic, Pure. Some of

the supported object-logics include Zermelo-Fraenkel set theory (ZF), first-order logic

(FOL) and higher-order logic (HOL). Isar, which is Isabelle’s declarative proof lan-

guage, is presented to end users as a language for writing human-readable proof scripts.

It is designed to fill the gap between the extremes of working with proof objects and

natural language.

Isabelle follows the LCF approach (Gordon et al., 1979), so it has a very small core

of code containing a small set of primitive inference rules, which guarantee correct-

ness. As such, new theorems can only be derived from previously proven statements

through the application of this set of simple inference rules. Isabelle also provides a

range of powerful mechanisms for automating proofs, including the auto-tactic, sim-

plification, and various kinds of resolution, including Sledgehammer, which interfaces

Isabelle/HOL with automatic first-order provers such as E (Schulz, 2002), SPASS (Wei-

denbach et al., 2009), and Vampire (Riazanov and Voronkov, 2002). Isabelle supports

polymorphic higher-order logic, augmented with axiomatic type classes. More pre-

cisely, though, Isabelle’s λ-calculus is actually simply-typed, because ⇒ is the only

type constructor and it builds types from base types. However, it also resembles to

some extent Hindley-Milner polymorphism (Hindley, 1969; Milner, 1978), the type

system underlying ML and Haskell, because it, e.g., supports type-variables, although

it has no let construct for defining polymorphic constants within terms.

A notion of modularity within Isabelle’s logics is provided by axiomatic type classes

(Wenzel, 1997), which allow types to be defined in terms of properties satisfying cer-

tain axioms. Terms and concepts can be introduced within an axiomatic type class,

whilst theorems can be derived to hold for any type in the class. Another infrastructure

for modular proof development is Isabelle’s locales, which are designed for contextual

reasoning. Locales are defined in terms of parameters that are fixed over a collection of

assumptions. Parameters correspond to abstract constants, whereas assumptions cor-

respond to axioms local to the locale.Thus, formal reasoning in a modular fashion can

be done in Isabelle using locales (Ballarin, 2006). Locales act as independent proof

contexts, yet they can be combined: the notion of extension can be realised by instan-

tiating a locale inside another locale and giving values to the parameter variables; and,

the notion of combination (Definition 7) by including multiple locales in a locale. Each

3.5. Summary 39

locale L =

fixes te :: Object => Mom => real

and ke :: Object => Mom => real

and pe :: Object => Mom => real

assumes ax: te(o, t) = ke(o, t) + pe(o, t)

locale L1 =

L te1 ke1 pe1

locale L2 =

L te2 ke2 pe2

Figure 3.1: Example locales specifying a definition of total energy, where ‘L’, ‘L1’ and

‘L3’ are the labels of three locales; ‘te’, ‘ke’ and ‘pe’ are the parameter variables of ‘L’;

and, ‘ax’ is an axiom; both ‘L1’ and ‘L2’ depend on ‘L’, each with its own instantiation of

‘L’, and thus, the axiom ‘ax’.

locale has its own fixed set of parameters and axioms; an example locale specifying

the equation of total energy is shown in Figure 3.1.

Multiple locales can be specified within a global context, so each locale can be viewed

as a local, non-overlapping context. Essentially, a locale is implemented as a predicate

and parameters as arguments of the predicate. The type of a locale with n parameters

is the same as that of a n-ary predicate. For instance, a locale with three parameters of

type α is α⇒ α⇒ α⇒ bool.

3.5 Summary

In this Chapter, we have presented some useful background knowledge for understand-

ing the work in this thesis, including several theoretical components that are fundamen-

tal to the research into the design and implementation of GALILEO and a description

of Isabelle. The formalisation of ontologies in HOL has provided both the syntax and

semantics of the language in consideration. It has, in effect, highlighted the formal

elements that potentially render our ontologies more flexible and expressive than those

based on DL. However, the logic of higher-order functions is undoubtedly difficult. Al-

though higher-order unification is undecidable, Huet’s algorithm generates a finite set

40 Chapter 3. Background

of terms in second-order matching and decidability has been proven up to fourth-order.

Nonetheless, the undecidability of higher-order unification is only a theoretical result

and is not detrimental in most practical cases faced by GALILEO, because our use of

Isabelle tends to present simplified problems to the unification algorithm.

Chapter 4

Ontology Repair Plans

4.1 Introduction

The process of revising an ontology in the face of new information is key to many

areas of Computer Science. The literature on the subject calls such processes ontol-

ogy evolution and we decided to investigate ontology evolution by formalising and

mechanising a method to repair ontologies containing faults. For instance, we aim

to repair locally consistent but globally inconsistent ontologies, i.e. ontologies that

are individually consistent but may give rise to an inconsistency when merged (Def-

inition 9, p.34). Working with locally consistent ontologies enables reasoning about

the shape of the cause of the global conflict, allowing for specific meaningful repairs.

The term higher-order logic is commonly used to refer to a logic in a type theory that

is not dependent or polymorphic. However, polymorphism is particularly important

to our work, so we base the underlying logic on an implementation of higher-order

logic that supports polymorphism (§3.2.2, p.32). Unlike the less expressive logics, in-

cluding DL, our approach naturally allows for the formalisation of ontology evolution

both as belief revision and as syntactic manipulation, e.g., splitting/combining a func-

tion, changing its arity, etc. HOL has proven advantageous in at least three other ways.

Firstly, Isabelle/HOL’s polymorphism of variables and overloading of symbols such as

≤, ≥, +, −, etc. permits the generality of the described repair plans for evolution

and their applicability over diverse cases. Secondly, HOL-based theorem provers, such

as Isabelle, enable HO-reasoning for ontology evolution and reasoning across multi-

ple ontologies, even over locally consistent but globally inconsistent ontologies that

share symbols. Finally, many complex concepts are better represented as HOL objects,

41

42 Chapter 4. Ontology Repair Plans

e.g., the orbit of a star – this is relevant because the examples used for developing and

testing GALILEO are based on the evolution of Physics, which involves concepts best

represented as functions. This, therefore, relates our work to scientific discovery (§2.5,

p.24), e.g., that reported by Langley (1981).

We have developed a series of ontology repair plans (ORP) which operate on a small set

of modular higher-order ontologies, e.g., one representing an initial theory of Physics

and another representing a particular experimental set-up. Each repair plan has a trig-

ger formula and some actions: when the trigger is matched, the actions are performed.

The mechanisms we have developed are called plans, because each ORP explicitly

specifies the pre-conditions for a repair and the post-condition for a repair is to have

the detected conflict eliminated, i.e. the corresponding trigger formula becomes no

longer provable. This is, therefore, similar to STRIPS-style plan operators (Fikes and

Nilsson, 1972). The actions modify both the signatures and the axioms of the old on-

tologies to produce new ones. A principle of the design and the formalisation of the

ORPs is to ensure sufficient generality, yet succinctness, in the descriptions. The rest

of this chapter describes each of these ORPs in depth by describing both the trigger

formulae and repair rules.

In the rest of this chapter, we will also present the examples used to motivate the

structure of each ORP – each of which has been treated as a development case study.

4.2 Representing Ontology Repair Plans

The general notion of ORP in terms of the logic we have adopted is the following.

Definition 10 (Ontology Repair Plans) An ontology repair plan is a pair

〈Trigger,Repair〉 (4.1)

where:

Trigger: is a set of meta assertions of the form O ` φ or O 0 φ which collectively

describe an ontology fault.

Repair: is a set of repair operations of the form ν(O) ::= π(O), where ν(O) denotes

a repaired ontology and π is an operation on the signature and/or axioms of the

4.3. The Where’s My Stuff Ontology Repair Plan 43

original ontology O. If each O is replaced by ν(O) in Trigger to form ν(Trigger)

then ν(Trigger) no longer describes a fault that the ontologies suffer from 1.

Unprovability is an undecidable problem, and our approach to showing O 0 φ is dis-

cussed in §4.6.

Note that the signature of the repaired logic, Sig(ν(O)), may contain type declarations

for constants that are not declared in the signature of the original ontology, Sig(O), and

vice versa. One consequence is that a model of O may not even be an interpretation

of ν(O) and vice versa. This makes it difficult to give a model-based semantics to the

operations of ontology repair plans. Note that this problem is caused by the inclusion

of signature change in ontology evolution and not by the use of higher-order logic. We

are exploring other possibilities, but assigning a semantics to our version of higher-

order ontology evolution remains further work.

In the following sections we present the formalisations of five different ORPs, each is

designed to repair a unique kind of ontological fault: Where’s My Stuff, Reidealisation,

Inconstancy, Unite and Spectrum.

4.3 The Where’s My Stuff Ontology Repair Plan

In the basic ontological setup, which consists of a single predictive theory and a sin-

gle set of empirical observations or evidence, a common type of conflict in Physics

is caused by a difference between the predicted value of some property and the value

according to some corresponding sensory information arising from an experiment. We

believe that this type of conflict indeed regularly occurs throughout the evolution of

Physics as we have identified the most number of historical records (15, so far) associ-

ated with it. This conflict is typically caused by the use of a theoretical definition that is

based on an incorrect definition of the property measured or on an incorrect definition

of a dependency of the property measured. The error is generally a consequence of a

misconceptualisation that neglects a component of the property from the definition; for

instance, when speaking about the total amount of heat in a body, the notion of latent

heat is missing from the theoretical definition of the total heat.

1Although, other ontology faults may still remain to be detected and repaired.

44 Chapter 4. Ontology Repair Plans

4.3.1 Motivating Example: The Discovery of Latent Heat

Until the second half of the 18th century, the chemical/physical notion of heat was

conflated with the notion of temperature and it was seen as a function of time. Such

a view of heat can be interpreted as understanding heat transfer as a flow. Flow was

defined as occurring when two physical bodies at different temperatures were in direct

contact with one another. Equation 4.2 is a rational reconstruction of this pre-modern

view:

∆Temp = ∆Q = k×m×∆t (4.2)

where:

• ∆Temp is the change in temperature

• ∆Q is the total amount of energy released or absorbed

• k is an adjustment factor depending on the material

• m is the mass of the object

• ∆t is the duration of the flow

• the polarity of Temp is positive if the object is being heated and negative if it is

being cooled.

In Equation 4.2, ∆Temp = ∆Q means that the notions of temperature and heat were

conflated. As to be discussed further in Chapter 5, a Physics equation is typically

expressed as a mathematical equation, which asserts an equality between two expres-

sions; these expressions may contain variables for values that could change in the given

problem. In a logical formulation, dependent variables should not be represented by

logical variables but should instead be represented as functions, as functions take some

arguments and return a result that depends on these arguments. A formulation of 4.2

in HOL2, with dependent variables replaced by functions and quantifying over the do-

main, is therefore:

TempDiff (o,e) ::= (4.3)

HeatDiff (o,e) = k×Mass(o)×Period(Start(e),End(e))

where:
2The representation can instead be formalised in a typed first-order logic in this example.

4.3. The Where’s My Stuff Ontology Repair Plan 45

• (TempDiff :: Ob j⇒ Event ⇒ R)(o,e) returns the amount of change in tempera-

ture in an object o as a result of undergoing event e;

• (HeatDiff :: Ob j⇒ Event⇒ R)(o,e) returns the amount of change in heat in an

object o during an event e;

• (Start :: Event⇒Mom)(e) returns the moment at the start of an event e;

• (End :: Event⇒Mom)(e) returns the moment at the end of an event e;

• (Mass :: Ob j⇒ R)(o) returns the mass of an object o, assuming the mass of o is

constant for the sake of simplicity;

• (Period :: Mom⇒Mom⇒ Duration)(m1,m2) returns the duration between mo-

ments m1 and m2;

• Event is the type of event;

• Mom is the type of time moment; and,

• k:R is a real constant used as an adjustment value.

In other words, the change in temperature (likewise, in heat) was regarded to be directly

proportional to the length of time the object was exposed to the event, which means the

longer an object is heated, the hotter it gets. The function TempDiff takes an event as

an argument because its value depends on the length of the event under consideration.

Similarly, for HeatDiff .

Joseph Black discovered the concept of latent heat around 1750. Wiser and Carey

(1983) discuss a period when heat and temperature were conflated, which presented a

conceptual barrier that Black had to overcome before he could formulate the concept

of latent heat. This conflation creates a paradox: as ice is melted it is predicted to

gain heat, but its heat, as measured by temperature, remains constant. Black had to

split the concept of heat into two separate concepts: latent heat, which is the heat

exchanged during phase change, and sensible heat, which is responsible for a change

in temperature.

Suppose there are two ontologies: Pred, the ontology containing the predictive theory,

and Obs, the ontology containing observations. The axiomatisation of the case study

can be formalised as Figure 4.1.

46 Chapter 4. Ontology Repair Plans

Ax(Pred)⊇ {

∀o:Obj,e:Event.HeatDiff (o,e) ::= (4.4)

k×Mass(o)×Period(Start(e),End(e)),

Mass(H2O)> 0, (4.5)

Period(Start(Melting),End(Melting)) = 10, (4.6)

Process(H2O) = Melting, . . . (4.7)

}

Ax(Obs)⊇ {

HeatDiff (H2O,Process(H2O)) = 0 (4.8)

}

where:

• Pred is the predictive ontology containing the theory

• Obs is the empirical ontology containing observations

• H2O is the water (ice) being melted

• Melting is the melting event

• Process(o) returns the process o undergoes

Figure 4.1: Axiomatisation of a representation of the discovery of latent heat.

In (4.7), Process(H2O) returns a melting event, because the water under consideration

undergoes melting. The term HeatDiff (H2O,Process(H2O)), therefore, returns the

amount of change in the heat in H2O during the melting event.

The paradox faced by Black can be inferred from the two ontologies as follows:

Pred ` HeatDiff (H2O,Process(H2O))> 0 (4.9)

Obs ` HeatDiff (H2O,Process(H2O)) = 0 (4.10)

Equation 4.9 is deduced from the predictive, physical theory that heat increases strictly

monotonically when objects are warmed, along with some basic arithmetic, and 4.10

comes from the observed constant temperature during the melting, which is specified

as an assertion in this particular example.

4.3. The Where’s My Stuff Ontology Repair Plan 47

To resolve the conflict, one fix is to introduce the concept of latent heat of fusion in

Pred and define it to be the difference between the total amount of heat and the amount

of sensible heat. The new definition could be:

∀o:Ob j,e:Event. LHFDiff (o,e) ::= (4.11)

HeatDiff (o,e)−SHDiff (o,e)

in anticipation of their intended meanings, where SHDiff and LHFDiff can be read as

the change in sensible heat and the change in the latent heat of fusion, respectively.

The new definition means that the amount of change in latent heat is defined as the

difference between the change in the total amount of heat in the object and the change

in the amount of heat for raising the temperature. Equation (4.11) gives the same shape

as the modern formulation of latent heat:

m×L = ∆Q− c×m×∆T (4.12)

where

• latent heat is defined as m×L

• sensible heat is defined as c×m×∆T

and

• m is the mass of the object3

• L is the specific latent heat for the substance of the object

• ∆Q is the total amount of energy released or absorbed

• c is the specific heat capacity for the substance of the object

• ∆T is the change in temperature of the object.

Beside the new definition, occurrences of HeatDiff in Obs should be renamed to

SHDiff to indicate that the kind of heat observed is only a part of the total amount

of heat.

The definition introduced by the repair (4.11) is not precisely what is required, but is

along the right lines. Some further indirect observations of LHFDiff are required to

witness its behaviour under different states of o so that it can be further repaired, e.g.,

the removal of its e argument. The SHDiff part of the new definition needs to be further

refined so that its contribution of heat depends both on temperature and mass instead.
3This is not the same as the m used in the logical formulation.

48 Chapter 4. Ontology Repair Plans

4.3.1.1 Discussion

From this case study, we can see that a number of features must be incorporated into

WMS ,and also into other ORPs, in order to increase their generalities. For instance, the

term that is deemed responsible for the fault, which we call stuff , should be variadic,

as we would want it to be instantiated to, e.g., Heat, which is a ternary function, or

Thermometer, which is a binary function. We also want stuff to be able to be instanti-

ated to some arguments of the dominant function, e.g., instantiate stuff to H2O when

given the term Heat(H2O,Process(H2O)), so the variable stuff should be positioned as

an argument of some function in the trigger formula rather than being a dominant func-

tion itself. Further, Heat and Process have different target types, e.g., one returns a real

while the other returns an event, so the equal operator (and other relevant operators)

should be polymorphic.

4.3.2 Overview of Where’s My Stuff

Useful features of the conflict and repair underlying the discovery of latent heat can

be captured and generalised to create a general ORP, which we call Where’s My Stuff.

The Where’s My Stuff ORP (WMS), formally represented in Figure 4.2, assumes that

we have two ontologies and is triggered when the return value of a function deduced

from one ontology conflicts with the return value of the same function deduced from

another ontology. Suppose we have two ontologies, O1 and O2, in conflict with each

other: O1 may contain the current state of a predictive theory and O2 may contain

some observation or empirical evidence or vice versa. Suppose a measurement func-

tion f measures some property of stuff and WMS is triggered if the return value of

f (stuff) deduced from O1 is different from that deduced from O2 (4.13, 4.14). The

two variables in f (stuff), stuff and f , which themselves are polymorphic, respectively

represent the part of the term that is responsible and not responsible for the conflict;

therefore, formulae containing occurrences of the stuff require amendment. WMS re-

solves the detected conflict by splitting stuff into three parts: visible stuff , invisible

stuff , and total stuff , and defining invisible stuff in terms of total and visible stuff s in

the repaired O1, ν(O1) (4.15, 4.18). The new O2, ν(O2), is the same as O2 except for

the renaming of stuff to stuff vis (4.19).

4.3. The Where’s My Stuff Ontology Repair Plan 49

Suppose two ontologies, O1:O and O2:O, are elements of a working set of ontologies, W ,

disagree over the return value of f (stuff) of type τ′:

Trigger: If f (stuff) has a larger value in O1 than in O2 then the following formula will be

triggered:

∃O1,O2 ∈W, τ,τ′:Types, f :τ⇒ τ
′, stuff :τ, v:τ′.

(O1 ` f (stuff)> v ∧ O2 ` f (stuff)≤ v) ∨ (4.13)

(O1 ` f (stuff)≥ v ∧ O2 ` f (stuff)< v) (4.14)

where O1 and O2 share a set of base types; O ` φ means that formula φ is a theorem of

ontology O; t:Types means t is a type; o:Onto means o is an ontology; > is a partial

order for τ′. In the case where each partial order in (4.13, 4.14) is reversed, the roles of

O1 and O2 below are reversed.

Repair: We introduce two new kinds of stuff, visible and invisible stuff, and create a definition

of invisible stuff.

stuff invis := stuff − stuff vis (4.15)

Let ν(O1) and ν(O2) be the repaired ontologies. The signatures of the new ontologies

are defined in terms of those of the old as follows:

Sig(ν(O1)) := { stuff vis:τ,stuff invis:τ }∪Sig(O1) (4.16)

Sig(ν(O2)) := { stuff vis:τ }∪Sig(O2) (4.17)

We revise the axioms for the new ontologies in terms of those of the old as follows:

Ax(ν(O1)) := { stuff invis = stuff − stuff vis } ∪ Ax(O1) (4.18)

Ax(ν(O2)) := { φ{stuff vis/stuff} | φ ∈ Ax(O2) } (4.19)

where Ax(O) is the set of axioms of ontology O. To effect the repair, the axioms of ν(O1)

are the same as those of O1 except for the addition of the new definition; the axioms of

ν(O2) are the same as those of O2 except for the renaming of the original stuff to the

visible stuff.

Figure 4.2: The “Where’s My Stuff?” ontology repair plan

50 Chapter 4. Ontology Repair Plans

4.3.3 Discussion

In order for WMS to have a sufficiently high generality, f and stuff are of polymorphic

types, so that stuff can be instantiated to individuals, functions, or predicates; for in-

stance, a particular star (individual), the orbit of a star (function), or a galaxy (predicate

or set). As such, the partial orders for the return values of f (stuff), e.g., <, ≤, >, and

≥, also need to be polymorphic. For example, if τ′ is instantiated to R, the type for real

numbers, then≤R is a partial order on reals, whereas if τ′ is instantiated to R⇒R, the

type for functions taking a real and returning a real, then ≤R⇒R is a partial order on

functions taking a real and returning a real.

There are two (subtly) different ways to identify a WMS-type of conflict: where f (stuff)

is strictly greater than some value in O1 but is equal or less than it in O2 (4.13), and

where f (stuff) is greater than or equal to some value in O1 but is strictly less than

a particular value in O2 (4.14). In our earlier reports (Bundy and Chan (2008)), we

adopted a trigger formula in the following style:

∃O1,O2:O, τ,τ′:Types, f :τ⇒ τ
′, stuff :τ, v1,v2:τ′. (4.20)

O1 ` f (stuff) = v1 ∧ O2 ` f (stuff) = v2 ∧O1 ` v1 > v2

along with the same repair rules as (4.16 - 4.19), and the roles of O1 and O2 are also

reversed for repair if O1 ` v1 < v2. It might appear that (4.20) already suffices to detect

a conflict between O1 and O2 as (4.20) can be matched if f (stuff) returns a value higher

in O1 than that in O2. However, the coverage of this trigger formula is not sufficiently

comprehensive, because the exact value of f (stuff) is not guaranteed to be deducible

from either ontology. For instance, if we are given the following axiomatisation:

Ax(M) := { f (stuff)> 0 } (4.21)

Ax(N) := { f (stuff)< 0 } (4.22)

then, clearly, this is a conflict that is compatible with that intended to be addressed

by WMS, as the return value of f (stuff) in M, which is strictly greater than 0, must

be greater than that of f (stuff), which is strictly less than 0, in N; however, the exact

value of f (stuff) on either side is not deducible.

4.4. The Reidealisation Ontology Repair Plan 51

4.4 The Reidealisation Ontology Repair Plan

Given two ontologies that disagree over the return values of some measurement func-

tion, which is the kind of conflict WMS detects and repairs, one could resolve a special

case of this kind of conflict without inventing some invisible component, stuff invis, and

taking the viewpoint that the original conceptualisation gives only a partial view of the

underlying property. Instead, the idealisation of the property could be changed such

that it is viewed as being a property of another type. With the new idealisation, the

measurement function, which originally returns different values in each of the two on-

tologies, is expected to no longer return conflicting values. We do not want to break

the contradiction by arbitrarily changing the idealisation, e.g., assigning the property

to a type that is not in the type hierarchy of the domain of the measurement function.

The new type should, therefore, be one that is in the type hierarchy of the domain of

the measurement function and does not result in contradicting measurement values.

To determine the new type assignment to the property, one could project a new type

assignment and verify that it would not result in a contradiction based on the exist-

ing Physics. For instance, if some measurement function gives contradicting values

for a bouncing ball when it is idealised as a particle without extent, then the idealisa-

tion could be changed and checked against the existing Physics to ensure consistent

measurement values are returned if it is regarded to be a spring.

4.4.1 Motivating Example: Bouncing-ball Paradox

The bouncing-ball paradox, which is described by diSessa (1983), considers the situ-

ation in which a ball is dropped from above ground and a student is asked to predict

the amount of its total energy when it makes impact with the ground. Suppose this ball

is a “perfect” ball, where there is no loss of energy in each bounce. The student takes

a (wrong) definition of total energy and defines it to be the sum of kinetic energy and

potential energy. The kinetic energy is initially zero, as it is held stationary, and the

potential energy is initially greater than zero, as the ball is held above ground. By the

law of conservation of energy, the total amount of an energy in an isolated system is

constant, so the final total energy of the system containing the ball can be calculated.

Since we assume the system to contain just the ball, the final total energy of the ball

can be inferred. The paradox is exactly the discrepancy between the initial and final

amounts of total energy of the ball, as the ball is elastic but the definition applied to

52 Chapter 4. Ontology Repair Plans

calculate the total energy is the one for particles without extent.

Suppose we have two ontologies Student, containing the student’s theory about the

Physics, and Obs, containing the experimental results about the ball Ball in a thought

experiment and the system containing it. Let TE, KE, PE and EE denote polymorphic

functions for calculating the total energy, kinetic energy, potential energy and elastic

energy4 of particles and springs (with extent), respectively. Suppose we can derive the

following in the two ontologies

Student ` TE(x,e) =

KE(x,e)+PE(x,e)+EE(x,e) if x:Spring

KE(x,e)+PE(x,e) if x:Particle
(4.23)

` TE(Ball:Particle,End(Drop))> 0 (4.24)

Obs ` TE(x,e) =

KE(x,e)+PE(x,e)+EE(x,e) if x:Spring

KE(x,e)+PE(x,e) if x:Particle
(4.25)

` TE(Ball:Particle,End(Drop)) = 0 (4.26)

ν(Student) ` TE(Ball:Spring,End(Drop))> 0 (4.27)

ν(Obs) ` TE(Ball:Spring,End(Drop))> 0 (4.28)

where Particle and Spring are, respectively, the type of particles and the type of springs;

(4.23) and (4.25) are the definition of the total energy of particles and springs which,

for springs, is defined as the summation of all kinetic, potential, and elastic energies,

whereas, for particles, is defined as the summation of only kinetic and potential ener-

gies; and, e and x are universally quantified variables. Note that there is significant du-

plication in the different ontologies but they can be concisely represented in Isabelle,

as discussed in §5.5. When the ball is idealised as a particle, Student and Obs give

conflicting values for the amount of total energy. However, if the ball is idealised as a

spring, the correct definition of total energy gives consistent values across Student and

Obs. Notice that 4.27 and 4.28 represent post-conditions of the repaired ontologies.

Since we know from (4.27) and (4.28) that a contradiction can be avoided if the Ball is

idealised as a spring, then it is sufficient to overwrite it with a new symbol representing

the ball but of type Spring rather than Particle. A bouncing-ball could be idealised as a

spring, as both are elastic objects, i.e. that they both can be deformed. This, therefore,

results in the following repair to the signatures:

Sig(ν(Student)) ::= { ν(Ball):Spring }∪Sig(Student)\{Ball} (4.29)

Sig(ν(Obs)) ::= { ν(Ball):Spring }∪Sig(Obs)\{Ball} (4.30)
4The amount of elastic energy in particles (without extent) is zero.

4.4. The Reidealisation Ontology Repair Plan 53

where ν(Student) and ν(Obs) are the repaired Student and Obs ontologies, respec-

tively; Sig(ν(Student)) and Sig(ν(Obs)) denote the sets of signature declarations in

ν(Student) and ν(Obs). As with the axioms, occurrences of Ball should be replaced

by ν(Ball).

4.4.2 Overview of Reidealisation

The idea of changing the idealisation of some property in order to avoid a contradic-

tion, which would otherwise arise, can be applied to the design of another ORP, which

we call Reidealisation. Reidealisation assumes that we have two ontologies and is

triggered if two conditions are satisfied: i) the return values of a function f measuring

some property stuff in each of these ontologies contradict each other, and ii) if the

property of stuff is projected to be of some other type, then the same measurement

function f does not return contradicting values. The trigger formulae are formalised

in Figure 4.3, where the approach to detecting contradicting return values of f (stuff)

is similar to WMS. There are, altogether, two ways to check that f (stuff) returns con-

tradicting values between O1 and O2, as formalised in (4.31) and (4.32). To this end,

we test the outcome of applying f to stuff when its type is assigned to τ2. Since we

define an ontology as a pair comprised of its set of signature elements and its set of

axioms (Definition 6, p.32), to check whether two ontologies are the same is a matter

of matching pairs of sets.

Suppose we have two ontologies O1 and O2, in which the values of f (stuff) disagree

if stuff is of type τ1. Further in these ontologies, f (ν(stuff)) return consistent values if

ν(stuff) is of type τ2. Since no contradiction arises if ν(stuff) is of type τ2, the repair

required is simply to overwrite stuff with a new term ν(stuff) and assign its type to

τ2 (4.34) in both O1 and O2. Occurrences of stuff are replaced by ν(stuff) in order

to reflect the repair. We assume that if stuff appears as an argument of some function

in an axiom, then the type of the corresponding argument position is a variable. So,

the function itself must be polymorphic. The reason for this assumption is that stuff

may already occur elsewhere within the axioms of an ontology, so replacing stuff with

another term of a different type may lead to type errors. For instance, suppose F:R⇒
bool and c:R, F(c) is a valid expression. However, if we let stuff be instantiated to c

and force its type to change to, e.g., N, then it would result in a type error unless the

type of F is also changed.

54 Chapter 4. Ontology Repair Plans

Suppose two ontologies, O1 and O2, disagree over the return value of f (stuff) of type τ′:

Trigger: If f (stuff), where f is overloaded, has two different values in O1 and O2 then the

following formula will be triggered:

∀τ:C. ∃O1,O2:O, τ1 ⊆ τ,τ2 ⊆ τ, τ
′:Types, stuff :τ1,

f :τ⇒ τ
′,v:τ′.

(O1 ` f (stuff) = v ∧ O2 ` f (stuff) 6= v ∨ (4.31)

O1 ` f (stuff) 6= v ∧ O2 ` f (stuff) = v) ∧ (4.32)

ν(O1) ` f (ν(stuff)) = v ∧ ν(O2) ` f (ν(stuff)) = v (4.33)

where C is a type class in which f is a method; Formulae (4.31) and (4.32) require that

when f is applied to stuff of type τ1, a conflict arises, but when the same f in the repaired

ontologies, ν(O1) and ν(O2), is applied to the repaired stuff , ν(stuff), which is of type

τ2, the conflict disappears (4.33). One key feature of the trigger pattern of Reidealisation

is that f must be overloaded, i.e. f must be defined over several different types, acting

in a different way for each type.

Repair: Let ν(O1) be the repaired O1. We replace occurrences of f (stuff) with f (ν(stuff)):

Sig(ν(O1)) := { ν(stuff):τ2 } ∪ Sig(O1)\{stuff} (4.34)

Sig(ν(O2)) := { ν(stuff):τ2 } ∪ Sig(O2)\{stuff} (4.35)

Ax(ν(O1)) := { φ{ν(stuff)/stuff } | φ ∈ Ax(O1) } (4.36)

Ax(ν(O2)) := { φ{ν(stuff)/stuff } | φ ∈ Ax(O2) } (4.37)

where Sig(ν(O)) is the set of signature declarations of the repaired O and Ax(ν(O)) is

the set of axioms of the repaired O.

Figure 4.3: The Reidealisation ontology repair plan

4.4. The Reidealisation Ontology Repair Plan 55

4.4.3 Discussion

As depicted in Figure 4.3, f must be defined over at least types τ1 and τ2. Indeed, f is

a polymorphic function, but there are two classes of polymorphisms: parametric and

ad-hoc (3.2). The function f must, therefore, be ad-hoc polymorphic. Fortunately, Is-

abelle/HOL supports both parametric polymorphism and ad-hoc polymorphism, which

is achieved through using type classes. Ad-hoc polymorphism is essentially achieved

by splitting the introduction of the polymorphic function from its overloaded defini-

tions, where each overloaded definition corresponds to the declaration of an instance

of the class.

The repair rules (4.34 - 4.37) involve overwriting stuff :τ1 with a new symbol ν(stuff):τ2

and replacing occurrences of stuff with ν(stuff). We assume that the functions with

stuff as an argument must be polymorphic. It may be a strong assumption in certain

application, but we argue that it is reasonable in Physics. Physics properties tend to

be generic concepts, applicable to a range of substances, materials, dimensions, and so

forth. Nonetheless, the assumption could be relaxed by incorporating more complex

transformations. Since the main objective of Reidealisation is to let f (stuff :τ1) be eval-

uated as f (stuff :τ2), we could alternatively introduce a new symbol ν(stuff):τ2 without

retracting stuff :τ1 from the signature and replacing occurrences of stuff with ν(stuff)

only within the axioms used in the inference. However, functions that take stuff as

arguments and occur within those axioms would still need to be polymorphic. With

stuff remaining in the signature, monomorphic functions that take stuff as arguments

and are not part of the inference would still be well-formed. However, this requires

some additional facilities in the reasoner in order to pinpoint those axioms.

Another approach is to generalise the type of all functions that take stuff as arguments

to obtain a polymorphic input type; for instance, if F:R⇒ bool and is applied to stuff ,

then the new type of F becomes α⇒ bool, where α is a type variable. However, this

approach requires type changes to be propagated to symbols beside stuff . Providing

sufficiently general, yet succinct, descriptions of the ORP is an important contribution

of our work, so we have designed Reidealisation in a way without the need to specify

the propagation of type changes. Nonetheless, the current formalisation of Reideali-

sation is adequate for emulating ontology evolution in Physics, but it can be naturally

adapted if a more rigorous approach is preferred in the domain of application.

56 Chapter 4. Ontology Repair Plans

4.5 The Inconstancy Ontology Repair Plan

As previously described, WMS detects and repairs a commonly occurring type of log-

ical conflicts that arises between a theory and some sensory information, which is

the consequence of some sentence φ being derivable from one ontology and ¬φ being

derivable from another. However, in order to better define a repair operation, extra sen-

sory information can provide more accurate meanings to the repaired terms (Chan and

Bundy, 2008). In practice, physicists often can obtain various experimental data gath-

ered under different environments, so it is highly plausible that multiple sets of data

can be used to challenge a Physics theory. We have identified from historical records

of Physics development that the inclusion of additional sensory information collected

under different conditions can indeed help identify new dependencies for a property.

4.5.1 Motivating Example: Modified Newtonian Mechanics

This diagram is taken from http://en.wikipedia.org/wiki/
Galaxy_rotation_problem. The x-axis is the radii of the stars and
the y-axis is their orbital velocities. The dotted line represents the pre-
dicted graph and the solid line is the actual graph that is observed.

Figure 4.4: Predicted vs Observed Stellar Orbital Velocities

Evidence for the existence of dark matter comes from various sources, for instance,

from an anomaly in the orbital velocities of stars in spiral galaxies identified by Ru-

bin et al. (1980). Given the observed distribution of mass in these galaxies, we can

4.5. The Inconstancy Ontology Repair Plan 57

use Newtonian Mechanics to predict that the orbital velocity of each star should be in-

versely proportional to the square root of its distance from the galactic centre (called its

radius). However, observations of these stars show their orbital velocities to be roughly

constant and independent of their radius. Figure 4.4 illustrates the predicted and actual

graphs. In order to account for this discrepancy, the MOdified Newtonian Dynamics

(MOND), developed by Milgrom (1983), hypotheses that the Gravitational constant G

is not a constant, but a function depending on the acceleration of the star. To identify a

variation in G, we need to collect evidence for a set of stars, {stari | 1≤ i≤ n} where

n is the number of stars in the data sample . Suppose NMT and Obs(Acc(stari) = ai)

are the ontologies containing the predictive theory, i.e. Newtonian Mechanics, and the

observations describing the situation of star stari, whose acceleration, Acc(stari), is ai,

respectively. Suppose we work with only two stars, star1 and star2, we can formalise

this example as:

NMT ` G = 6.673×10−11 (4.38)

Obs(Acc(star1) = a1) ` G = g1 (4.39)

Obs(Acc(star2) = a2) ` G = g2 (4.40)

NMT ` g1 6= g2 (4.41)

where Acc(stari) returns the acceleration of star stari; Obs(Acc(stari)= ai) is an ontol-

ogy containing sensory information collected under the condition that the accelerations

of stari is ai; and, g1 and g2 are constants of different values. Note that the values of G

in (4.39, 4.40) are assumed to be computable by some function. The fix proposed by

MOND is to turn G from a constant into a function and add to it the acceleration of the

star, Acc(stari), as an argument. The repaired ontologies would, therefore, be:

ν(NMT) ` G = λy. F(6.673×10−11,Acc(y)) (4.42)

ν(Obs(Acc(star1) = a1) ` G(Acc(star1)) = g1 (4.43)

ν(Obs(Acc(star2) = a2) ` G(Acc(star2)) = g2 (4.44)

ν(NMT) ` g1 6= g2 (4.45)

where F is a new function, whose value we can seek to determine by regressing against

the data from the sensory ontology.

58 Chapter 4. Ontology Repair Plans

4.5.2 Overview of Inconstancy

As described in §4.5.1, the detection of an unexpected variation and the proposed fix

to G require reasoning over sensory information collected under different conditions,

i.e. over the values of G when Acc(star1) = a1 and when Acc(star2) = a2. To this end,

it is essential to adopt a different modelling approach from that for WMS and Reideali-

sation, because the representation of the conditions underlying the data in the model is

more demanding. Because we argue that theories for Physics and Mathematics can be

more naturally engineered into a modular form, we now argue that data collected under

different conditions should also be modelled by a modular approach. For example, if

ψ holds under condition ~cond1 and ¬ψ holds under condition ~cond2, then we have two

ontologies, O(~cond1) and O(~cond2), which represent those containing the information

collected under conditions ~cond1 and ~cond2, respectively, and that O(~cond1) ` ψ and

O(~cond2) ` ¬ψ. We assume that the condition vectors ~cond1 and ~cond2 specify only

the conditions that have changed over the two snapshots.

The Inconstancy ORP, shown in Figure 4.5, assumes that there is one theoretical ontol-

ogy and at least two sensory ontologies and is triggered when a function is predicted

in the theory to be independent of some parameter, whereas a dependency on that pa-

rameter can be inferred from the two or more sensory ontologies. Suppose there is one

ontology Ox, which may contain the predictive Physics theory, and at least two ontolo-

gies under distinct conditions, Oy,i(bi(v) = vi)⊕Oz and Oy,i(b j(v) = v j)⊕Oz, which

may contain observations made under conditions bi(v) = vi and b j(v) = v j, where v

is a function that measures some property of bi and b j. The Oy,i(bi(v) = vi) compo-

nent of the combination represents the maximal part of the sensory ontology that is not

merged with other sensory ontologies, whereas Oz represents the remainder of the on-

tology, i.e. the part not involving in the identified difference. The distinction between

Oy,i and Oz is particularly important during repair, because we want to control the area

that a repair can effect.

Suppose a function f measures some property of stuff , then Inconstancy is triggered if

f (stuff) is predicted to be independent of b(v), but the return value of f (stuff) unex-

pectedly varies when b(v) returns different values (4.46, 4.47, 4.48). We call stuff the

inconstancy, as it is the part of the term that is unexpectedly inconstant, and call b(v)

the variad, as it is responsible for the unexpected variation in f (stuff); the inconstancy

might, for instance, be the gravitational constant G and the variad might be the acceler-

ation of an orbiting star due to the gravity, which is suggested by MOND (§4.5.1). The

4.5. The Inconstancy Ontology Repair Plan 59

resolution of the detected conflict is to retain all Ox-axioms in the repaired Ox, ν(Ox),

except for the replacement of the occurrences of old stuff with ν(stuff)(y), where y is

a new constant, and the replacement of the definition of stuff by a new definition of

ν(stuff) in ν(Ox) (4.50, 4.51) – the new definition establishes a relationship between

the variad b(v) and the inconstancy stuff (4.49). The variable y is needed because

the value to the argument of ν(stuff) in Ox is not known. The repair also retains all

Oy,i(bi(v) = vi)-axioms in the repaired Oy,i(bi(v) = vi), ν(Oy,i(bi(v) = vi)), but with all

occurrences of old stuff replaced by ν(stuff)(bi). Oz is repaired in a similar fashion

to Ox by replacing occurrences of old stuff with ν(stuff)(y), where y is a new con-

stant. Because axioms in Oz are shared with other sensory ontologies, by definition,

the argument of ν(stuff) in Oz is a new constant rather than a particular b.

4.5.3 Discussion

4.5.3.1 Identification of the Inconstancy

In (4.47), the return values of f (stuff) are derived under the different conditions spec-

ified by the corresponding sensory ontology O2. As already described, Inconstancy

detects an unexpected variation only if the return values of f (stuff) varies between at

least two ontologies. However, stuff , not f (stuff), is regarded to be the inconstancy,

even though the detected variation is found in the return values of f (stuff). It may

not be immediately clear that an unexpected variation in stuff is actually sufficient to

cause a variation in f (stuff). Since f takes stuff as an argument, treating stuff as the

inconstancy is the same as treating an argument of some function as the inconstancy if

its return values unexpectedly vary. To put this into perspective, suppose a unary func-

tion Mass(x) calculates the mass of an object x and Mass(Rocket) returns the mass of

a rocket, Rocket. Suppose a situation in which the amount of fuel in Rocket, and thus

its mass, depletes over two snapshots in time, then the values of Mass(Rocket) con-

sequently vary over those periods due to the depletion.. Given the situation, there are

various plausible ways to resolve the contradiction; for instance, repair Mass by giving

it time as a new argument or, instead, transform Rocket into a function that depends on

time.

60 Chapter 4. Ontology Repair Plans

Suppose that different sensory ontologies give distinct values for f (stuff) in different circum-

stances. Suppose b(v), where b contains variables distinguishing between these circumstances,

returns distinct values in each of these circumstances, but is not one of the parameters in

f (stuff), i.e., f (stuff) does not depend on b(v). We will call stuff the inconstancy and b(v)

the variad.

Trigger: If f (stuff) is measured to take different values in different circumstances, then the

following trigger formulae will be matched.

∃τ,τ′,τ′′,τ′′′ : Types, f :τ⇒ τ
′, stuff :τ, c,c1, . . . ,cn:τ′,v1, . . . ,vn:τ′′′,

b1, . . . ,bn:τ′′,v : τ
′′⇒ τ

′′′,n > 1,Ox,Oy,1 . . .Oy,n,Oz:O.

Ox ` stuff ::= c∧ (4.46)

Oy,1(b1(v) = v1)⊕Oz ` f (stuff) = c1 ∧ (4.47)
...

...
...

Oy,n(bn(v) = vn)⊕Oz ` f (stuff) = cn ∧

∃i 6= j ≤ n. Ox ` ci 6= c j ∨ c 6= ci (4.48)

where the merge Oy,i(bi(v) = vi)⊕Oz is the ontology containing observations made un-

der the condition that bi(v) = vi. The Oy,i(bi(v) = vi) component represents the maximal

part of the ontology that is not merged with other sensory ontologies, whereas Oz repre-

sents the remainder of the ontology.

Repair: The repair is to change the signature of all the ontologies to relate the inconstancy,

stuff , to the variad, bi(v):

ν(stuff) ::= λy. F(c,y(v)) (4.49)

where F is a new function, whose value we can seek to determine by regression against

the data from the sensory ontologies.

Let ν(Ox), ν(Oy,i) and ν(Oz) be the repaired ontologies. We calculate the axioms of the

new ontologies in terms of those of the old as follows:

Ax(ν(Ox)) ::= {φ{stuff/ν(stuff)(y)} | φ ∈ Ax(Oy,i)} \ (4.50)

{stuff ::= c} ∪ {ν(stuff) ::= λy. F(c,y(v))}

Ax(ν(Oy,i(bi(v) = vi))) ::= (4.51)

{φ{stuff/ν(stuff)(bi)} | φ ∈ Ax(Oy,i(bi(v) = vi))}

Ax(ν(Oz)) ::= {φ{stuff/ν(stuff)(y)} | φ ∈ Ax(Oz)} (4.52)

where y is a new constant.

Figure 4.5: The Inconstancy ontology repair plan

4.5. The Inconstancy Ontology Repair Plan 61

4.5.3.2 Condition Vectors

The condition vectors ~cond1 and ~cond2 specify only the conditions that have changed

over the two snapshots. Thus, we assume that the modeller determines the relevant

conditions that should be specified in the vectors5.

4.5.3.3 Relationship with Where’s My Stuff

Although Inconstancy is designed to detect and repair unexpected variations in some

measured property of stuff , it actually shares underpinnings with WMS. Suppose a

situation involving an unexpected variation such that the Inconstancy trigger formulae

(4.46, 4.47, 4.48) can be instantiated with the following substitution6

{ Ox/A, Oy/B, v/w, bi/ai, vi/wi, f/λx. x, stuff/n, c/p, ci/qi }

which gives rise to the following setup

A ` n ::= p∧ (4.53)

B(w(a1) = w1) ` n = q1∧ (4.54)
...

...
...

B(w(an) = wn) ` n = qn∧

∃i 6= j ≤ n. A ` qi 6= q j∨ p 6= qi (4.55)

thus, some constant n is predicted to have a value p, but is observed to have different

values qi under different conditions, which consequently gives rise to an unexpected

variation. Given this setup, the WMS trigger formulae could in fact be instantiated,

provided that an order rather than a mere inequality between p and qi can be derived

(4.55), e.g. p > qi or p < qi for some i ≤ n. Suppose p > q1. The WMS trigger can

then be instantiated with the substitution:

{Ox/A, Oy/B(w(a1) = w1), f/λx. x, stuff/n, v/q1} (4.56)

where only ontologies A and B(w(a1) = w1) are within the scope of repair, whereas

the remaining ontologies, i.e. ∀1 < i≤ n. B(w(ai) = wi), are ignored. Thus, following

5We have avoided the obstacles imposed by the frame problem, outlined by McCarthy and Hayes
(1969); the frame problem is a special case of the problem of complete description (Van Brakel (1992)).
The application or extension of a well-studied formalism, such as the formalisms by Reiter (1979)
and McCarthy (1980), is beyond the scope of the research, so the selection of relevant conditions is
determined by the user outside of the system.

6We exclude Oz to simplify the discussion.

62 Chapter 4. Ontology Repair Plans

the WMS repair rules, (4.18, 4.19), n is repaired by the introduction of invisible stuff in

A7, i.e.

ν(A) ` n ::= p (4.57)

` ninvis ::= n−nvis (4.58)

ν(B(w(a1) = w1)) ` nvis = q1 (4.59)

which resolves the detected contradiction. However, if qi 6= n for some i > 1, then a

contradiction still remains between B(w(ai) = wi) and A. So, a single application of

WMS is not sufficient if the sensory values of n are different. Inconstancy handles this

kind of fault appropriately, because it is designed to analyse multiple sensory ontolo-

gies, whilst WMS works with only one. That said, WMS can be applied again on ν(A)

and B(w(ai) = wi) if a contradiction remains. However, even the ultimate repair makes

no indication that n is supposed to depend on a new parameter, but instead it introduces

one or more additive terms representing various invisible stuffs, which act as offset val-

ues. In general, both Inconstancy and WMS8 are able to, at least eventually, resolve the

contradiction arising from unexpected variations. Overall, Inconstancy gives a more

appropriate repair to the problem if ∃i 6= j≤ n.qi 6= q j, since the repair involves explic-

itly increasing the arity of stuff by one and adding a new dependency to stuff rather

than introducing a term that does not necessarily vary with a hidden dependency. WMS

gives a more appropriate repair if ∀i 6= j ≤ n.qi = q j, because it is not clear that there

is an unexpected variation in the value of stuff according to the sensory data.

4.6 The Unite Ontology Repair Plan

Since a key objective of ORPs is to resolve all common kinds of faults in ontolo-

gies, ORPs are not designed only to resolve logical contradictions between ontologies,

but also to provide them with extra logical power, e.g., solving a problem of under-

specification (Definition 7, p. 34). The strategy to increasing the strength must not be

arbitrary, e.g., not adding arbitrary axioms that are consistent with the ontology, but

that the newly derivable sentences should be consequences of both the ontologies and

implications for the natural interpretation of Physics. An example conflict is that, given

two different terms referring to the supposedly the same concept or object, neither the

equality nor the inequality between the two terms is derivable from the theory. Note
7If A ` p < qi, then the introduction is made in B instead.
8Applicable only if a partial order between the return values of stuff can be derived.

4.6. The Unite Ontology Repair Plan 63

that the failure to derive the equality does not necessarily mean that the inequality is

necessarily derivable, because we adopt the open-world semantics, which assumes that

the derivability and the truth of a statement are independent of each other. A natural

way to resolving such conflict is to insert a new axiom that equates the two terms.

4.6.1 Motivating Example: The Morning and Evening Stars

Because Venus is the brightest celestial object in the sky after the Sun and the Moon,

it has been observed since ancient times. Venus, being nearer to the Sun than the Earth

is, can never be far from the Sun when viewed from Earth. Before the Sun rises, Venus

might be near the Sun in the east, as a morning star. After the Sun sets, it might also be

near the Sun but in the west, as an evening star. These appearances in the sky had led

Ancient Egyptians and Ancient Greeks to believe that they were of two distinct objects

in the sky. It was only by identifying that the ‘two’ ‘stars’ follow the same orbit,

and thus share the same value for the defining property, that they were understood to

be appearances of the same object. Suppose MSESTheory and Obs are, respectively,

ontologies containing the state of a theory about the distinction between the morning

star, MS, and the evening star, ES, and the sensory information required to compute

their orbits, Orbit. We can represent the original ontologies as follows:

MSESTheory 0 MS = ES (4.60)

Obs ` Orbit(MS) = Orbit(ES) (4.61)

where (4.60) mean that the morning and evening stars cannot be inferred to be the same

according to MSESTheory.

The required repair in order to resolve the fault is to equate MS with ES (Bundy, 2009).

ν(MSESTheory) ` MS = ES (4.62)

where ν(MSESTheory) denotes the repaired MSESTheory. This episode highlights

several key issues about detecting neither the equality nor the inequality between sup-

posedly the same thing and repairing it by equating them. For instance, the equal-

ity between MS and ES is deemed to be the appropriate repair because the fact that

they follow the same orbit. Moreover, the mere insertion of an axiom that asserts the

equality between MS and ES is sufficient because it enriches the theory. However,

ν(MSESTheory) may not be necessarily consistent, because MS 6= ES might be a the-

orem of MSESTheory9. So, the new axiom might create a new logical conflict. That
9Many Ancient Greeks believed that the morning and evening stars were actually two distinct stars.

64 Chapter 4. Ontology Repair Plans

Suppose that stuff 1 and stuff 2 are of the same type, τ, but have different names in one ontology,

O1. Suppose the function dp measures the defining property for all instances of the type τ and

returning a value of type τ′. From another ontology, O2, both stuff 1 and stuff 2 are deduced to

take similar values for the function dp.

Trigger: If neither the equality nor inequality between f (stuff 1) and f (stuff 2) is deducible

from O1 and both stuff 1 and stuff 2 share a defining property of their type, dp, then the

following formula will be triggered:

O1 0 f (stuff 1) = f (stuff 2) ∧ (4.63)

OM ` DefProp(dp,τ) ∧ (4.64)

O2 ` dp(stuff 1) = dp(stuff 2) (4.65)

where OM is a meta-level ontology; DefProp(dp,τ) means that function dp measures a

defining property of objects of type τ returns true if the values of the defining property

of two objects are the same.

Repair: The repair is to add an equality between f (stuff 1) and f (stuff 2) as a new axiom to

O1. O2 is unchanged. Let ν(O1) and ν(O2) be the repaired ontologies. We revise the

axioms for the new ontologies in terms of those of the old as follows:

Ax(ν(O1)) ::= { f (stuff 1) = f (stuff 2) } ∪ Ax(O1) (4.66)

where Ax(O) is the set of axioms of ontology O. The axioms of ν(O1) are the same as

those of O1, except for the addition of the new definition.

Figure 4.6: The Unite ontology repair plan

said, it is still beneficial to insert the new axiom, as it essentially transformed the fault

from under-specification to over-specification. If further repairs were required, other

repair techniques could be useful, e.g., belief revision.

4.6.2 Overview of Unite

The Unite ORP (Figure 4.6) is inspired by the morning and evening star example, de-

scribed in §4.6.1. It detects that the equality between two different terms referring to

supposedly the same concept or object is not derivable from the theory and repairs it

by strengthening it. Unite, therefore, is not driven by a contradiction, unlike the pre-

4.6. The Unite Ontology Repair Plan 65

vious three ORPs. For two terms to refer to the same thing, each of their features and

properties should take the same value, which is the principle behind Leibniz’s equality.

As long as one of the terms yields a different value for one of the properties, the two

terms should be considered to refer to different things. By this principle, we may need

to examine all possible properties in order to conclude that two terms refer to the same

thing. Unfortunately, explicitly indicating all possible properties and their values is an

impractical task, because it may be too immense for the available resources and, more

importantly, not every property about an entity is actually known in practice. More-

over, not all properties are sufficient, e.g., colour. This leads to the need for determining

a manageable set of properties that are themselves sufficient and necessary for decid-

ing equality between instances of a particular type, which we call defining properties.

The defining properties for a particular type are typically a small subset of possible

properties, but they, collectively or individually, alone are sufficient. For instance, a

defining property of celestial objects is their orbits defined in a 4-dimensional space,

based on the fact that no two solid objects can occupy the same space at the same time.

We will define that the function dp is a defining property for the type τ using the repre-

sentation DefProp(dp,τ) (4.64). Since dp is a function, it can be compounded in cases

that require multiple defining properties. For instance, quantum objects are defined by

quantum states. The energy level of a quantum object is only part of a quantum state,

so to define a quantum state completely, we need to include other properties, such as

the position and the spin.

Beside checking that the two terms yield the same value for the defining property

(4.65), the equality between them should not already be derivable (4.63). If the two

terms are already deemed to be equal, then there is no need for repair as there is no

fault to be repaired and nothing to gain from the information provided by the other

ontology.

The repair to such conflict is to simply insert the equality between the two terms as a

new axiom.

4.6.3 Discussion

Unite is triggered if equality or inequality between f (stuff 1) and f (stuff 2) cannot be

proven rather than between stuff 1 and stuff 2. Making stuff 1 and stuff 2 arguments of a

function f increases the generality of the ORP, as stuff 1 and stuff 2 can be instantiated

to a subterm. Because stuff 1 and stuff 2 are arguments of f , if they are regarded to be

66 Chapter 4. Ontology Repair Plans

equal, then f (stuff 1) and f (stuff 2) must also be equal due to f being deterministic, i.e.

stuff 1 = stuff 2 −→ f (stuff 1) = f (stuff 2).

Ensuring that (4.63) hold by explicitly showing the unprovability of an equality be-

tween f (stuff 1) and f (stuff 2) is undecidable, as validity in HOL is undecidable. To

match (4.63) in practice, the user could assert the unprovability and guarantee that

the sentence is indeed not provable in the ontology. Alternatively, it could be refor-

mulated so that the unprovability must be verified as part of a proof obligation. The

relevant proof obligation requires that the inequality between f (stuff 1) and f (stuff 2)

is provable in one consistent extension of O1 and that the equality between f (stuff 1)

and f (stuff 2) is provable in another consistent extension. More formally,

O1
′ ` f (stuff 1) 6= f (stuff 2) (4.67)

O1
′′ ` f (stuff 1) = f (stuff 2) (4.68)

where O′1 and O′′1 are different extensions of O1. Although this formulation implies

the unprovabilities at the meta-level, it requires a considerably stronger model of the

domain of discourse under consideration than (4.63) needs, because two additional

ontologies that are extensions of O1 are presumed to exist within the representation.

the

4.7 The Spectrum Ontology Repair Plan

Unary predicates are often used to express that a certain individual satisfies some par-

ticular property, e.g., Red(ball) and Yellow(car) typically mean that the object ball

has the colour red and the object car has the colour yellow, respectively. Unary pred-

icates can be thought of as set memberships in a way that the name of the predicate

corresponds to the name of a set and the predicate is true if and only if the argument

is a member of the set. This is often sufficient for simple and controlled problem

domains, but is a relatively unnatural representation for domains involving complex

relationships between concepts, such as Physics. The set representation is popularly

used in knowledge representation because of its close relationship with the semantics

of DLs. Since we are working in HOL, we can utilise its power to allow ontologies to

have a more natural and expressive representation.

4.7. The Spectrum Ontology Repair Plan 67

4.7.1 Motivating Example

It was with Maxwell’s equations that electricity, magnetism and light were related,

thereby unifying the previously separate fields of electromagnetism and optics and

predicting the nature of electromagnetic (EM) waves. EM waves are characterised by

the respective wavelength, which can be plotted on a graph to produce a spectrum.

Classes of EM radiation can be created by segmenting the spectrum into, e.g., radio,

microwave, visible, etc. Suppose ontology EMTest contains experimental data about

the colour of various light beams.

EMTest ` Red(beam1) (4.69)

EMTest ` Green(beam2) (4.70)

EMTest ` Blue(beam3) (4.71)

where Red, Green and Blue are unary predicates that are true if the beam is of the re-

spective colour; beam1 - beam3 denote various light beams10. From (4.69 - 4.71), the

unary predicates do not clearly express the relationships between the three beams or be-

tween the three predicates. Further, the unary predicate representation is not desirable,

particularly if, e.g., the concept of colour was more refined and captured the wave-

length dimension, then Red(beam1) would become 650nm(beam1) and Green(beam2)

would become 510nm(beam2), etc. In this case, since we know the colour spectrum

is continuous, many sets might be required in the representation where each set cor-

responds to a particular wave length. It would, therefore, be more preferable to use a

function that takes an object as an argument and returns a colour as value. Thus, an

alternative representation is to treat the predicate names as values:

EMTest ` Colour(beam1) = Red (4.72)

EMTest ` Colour(beam2) = Green (4.73)

EMTest ` Colour(beam3) = Blue (4.74)

where Colour is a function taking a light beam as argument and returning its colour.

Because Colour is a function, it guarantees that each beam can have at most one colour.

If we work with composite colour mixtures, then the output of the Colour function

could be a triple instead, representing RGB distributions; for instance, Colour(beam1)=

(255,0,0). Another motivating example is the unified theory of electro-magnetic radi-

ation, as studied by Bundy (2010).
10Note that the colours of the visible range can be represented as a combination of red, blue and green

is a feature of physiology of the human eye.

68 Chapter 4. Ontology Repair Plans

Suppose Q is the set of objects and P is the set of unary predicates in some ontology O.

Trigger: If there exists exactly one unary predicate p in the non-singleton set of all unary

predicates P that is true for all objects o in the non-singleton set of objects Q , then the

following formula will be triggered:

|Q |> 1 ∧ |P |> 1 ∧ ∀o ∈ Q . ∃!p ∈ P . p(o) (4.75)

where ∃!p is the uniqueness quantification over p, which means that there is one and

only one such p; the term |Q |> 1 ∧ |P |> 1 prevents the trivial case, in which there is

one or fewer object in Q and that there is one or fewer predicate in P .

Repair: Let ν(O) be the repaired ontologies. We define the signature and axioms of ν(O) as

follows:

Sig(ν(O)) ::= Sig(O)\{p : τo⇒ bool | p ∈ P} \ (4.76)

{ o:τo | o ∈ Q } ∪ { f : τ⇒ τ
′ } ∪

{ o:τ | o ∈ Q } ∪ { p:τ′|p ∈ P }

Ax(ν(O)) ::= Ax(O) ∪ { p(o)/ f (o) = p | p ∈ P ∧ o ∈ Q } (4.77)

where Sig(ν(O)) is the set of signature declarations of ν(O); Ax(ν(O)) is the set of

axioms of ν(O); τp is the input type of each unary predicate; and, τo is the type of each

object.

definition; the axioms of ν(O2) are the same as those of O2 except for the renaming of

the original stuff to the visible stuff.

Figure 4.7: The Spectrum ontology repair plan

4.7.2 Overview

The Spectrum ORP detects that there exists some unary predicates in the ontology and

is a step toward designing a repair plan that constructs spectrums. Like Unite, Spec-

trum is not driven by a contradiction, so triggering Spectrum on some ontology does

not mean that it is inconsistent, but instead the representation can be enriched. The on-

tology is repaired by changing the representation from multiple unary predicates into

a single unary function that takes the same input as the original unary predicates but

has the names of the predicates in its range. To avoid trivial matches, (4.75) restricts

on the properties of Q , the set of objects which are arguments of the unary predicates,

4.8. Summary 69

and P , the set of unary predicates in the ontology. The term |Q |> 1 in (4.75) requires

that there are at least two elements in the set of objects, which prevents the case where

f , which is the function created by the repair to resolve the fault, has a domain that is a

singleton. The term |P |> 1 in (4.75) requires that there are at least two elements in the

set of unary predicates, so that f is not a constant function and its output depends on

its argument. If there are more than one predicate that is true for some object, then the

new function would not be deterministic. Spectrum repairs the ontology by retracting

the declarations of the unary predicates and inserting a declaration of the new function,

f , that takes objects as arguments and recycles the names of the original predicates as

its return values (4.76). For each object o, the value of f (o) is asserted to be the name

of the original predicate that was true for o (4.77). So, all occurrences of p(o) in the

old axioms will be replaced by f (o) = p.

4.7.3 Discussion

Spectrum and Unite actually share a common principle, which is that seemingly the

same concepts should be related. For Spectrum, the names of the predicates that are

true together make up the range of a new function; for Unite, things that share the

same defining property are equated and merged into one. Unfortunately, Unite cannot

be adapted to create a spectrum in its repair. Unite requires that the manifestations

of stuff should originally be of the same type and that they already share the same

defining property, but it does not capture the values that could produce a spectrum.

Spectrum, on the other hand, does not verify the physical relationship between the

measured properties, but creates a spectrum corresponding to a range of valid values.

4.8 Summary

This chapter describes the key mechanism for realising and increasing the automation

of ontology evolution in Physics: ontology repair plans. ORPs are designed to resolve

ontological faults that arise from a merge of multiple globally inconsistent ontologies,

i.e. over-specified ontologies, or under-specified ontologies. A detected fault in an on-

tology or between ontologies, therefore, does not necessarily require a contradiction,

but might be that the representation can be enriched in order to enhance the inference

capability. Each ORP is presented by providing the corresponding trigger formulae,

which define the unique type of faults handled by the ORP, and repair rules, which

70 Chapter 4. Ontology Repair Plans

define the transformations required in order to resolve the conflict or enrich an on-

tology. The trigger formulae and repair rules of an ORP can be, respectively, viewed

as the precondition and effect of an ORP, because the trigger formulae must be satis-

fied in order for an ORP to produce the relevant repair. The existential quantification

over ontologies, e.g., O1 and O2, and functions, e.g., f and stuff , means that at least

second-order logic, is required for reasoning. Quantification over ontologies permits

a high generality in each ORP and is particularly useful in domains containing many

ontologies/theories, e.g., natural sciences and general real-world semantics.

Each ORP is designed to tackle a unique kind of fault and performs appropriate re-

pair operations11, as illustrated in Figure 4.1. All of the ORPs are listed, with their

requirements and types of repair operations. The requirements imposed by the ORPs

are:

• Minimum ontologies: The minimum number of ontologies in order to trigger the

ORP.

• Over-specification driven: Whether the ORP detects a logical contradiction, which

arises from the merge of multiple ontologies.

• Under-specification driven: Whether the ORP detects a weakness in the theo-

rems, which can be enriched.

The repair operations can be classified into five kinds:

• Axiom insertion: Adds a new axiom into an ontology.

• Axiom retraction: Deletes an axiom from an ontology.

• Signature creation: Declares a new signature element.

• Signature retraction: Deletes a signature element from the language.

• Abstract concept projection: Creates a new concept that does not correspond to

an existing concept in the input ontologies or is undefined.

11Although certain ontological setups can be repaired by more than one ORP, the corresponding
repaired ontologies yield substantially different theorems.

4.8. Summary 71

WMS Reidealisation Inconstancy Unite Spectrum

Minimum ontologies 2 2 3 1 1

Over-specification driven X X X 7 7

Under-specification driven 7 7 7 X X

Axiom insertion X X X X X

Axiom retraction X X X 7 X

Signature creation X X X 7 X

Signature retraction X X X 7 X

Abstract concept projection 7 7 X 7 7

Table 4.1: Requirements of and kinds of repair performed by ontology repair plans.

Because both Unite and Spectrum are designed to handle under-specified ontologies,

they are the only ORPs that can be triggered by only one ontology. The trigger formulae

of Unite consider two ontologies merely for the purpose of better fitting the ORP to the

Physics domain, with O1 being the predictive ontology and O2 being the sensory ontol-

ogy. The two ontologies can be combined and no contradiction will necessarily arise.

Spectrum is designed to enrich the representation of an ontology without acquiring

new information from external sources, so it inherently considers one ontology. Both

WMS and Reidealisation require two ontologies such that the merge of which gives rise

to a contradiction. Inconstancy, on the other hand, requires at least three ontologies, as

a variation in some values can be depicted only with at least two data points.

Abstract concept projection is a kind of operation that results in some new term being

conjectured by the repair operation without corresponding to an existing symbol or a

definition; that is, the ORP decides that it is essential to create a new concept in the

domain of discourse in order to resolve the detected fault. Inconstancy is the only ORP

that projects abstract concepts as it invents a new constant y as part of the repair (4.50).

The new constant is needed because of the fact that the arity of stuff is incremented,

but the value the new argument should take is not known in O1. Inconstancy also

invents F , but it is not an abstract concept as it can be determined by regression against

the sensory information. Both WMS and Spectrum also invent concepts, but they are

not abstract. For instance, WMS invents the symbol stuff invis and defines it to be the

difference between stuff and stuff vis. If the values of stuff and stuff vis are known, then

stuff invis can be computed. Spectrum invents a new unary function F and defines its

range to be the names of the old unary predicates.

72 Chapter 4. Ontology Repair Plans

Considering all five kinds of repair, the repair performed by Inconstancy is the most

diverse among all ORPs, as it covers all five kinds of repair. We consider Inconstancy to

be the most complex of all; for example, it measures an unexpected variation of some

value by inspecting for a change in a hidden variable and the repair behaviour depends

on whether the part of the ontology is shared by other sensory ontologies or not. The

least diverse ORPs, in contrast, is Unite, which performs only one kind of repair: an

insertion of an axiom stating that the two stuffs are equal.

As we have seen, the ORPs utilises a various combinations of repair kinds. This illus-

trates a key benefit of using HOL for ontology evolution, enabling the flexible com-

position of operations for signature and axiom manipulations. Moreover, HOL’s poly-

morphism of variables and other symbols permits the generality of the repair plans for

evolution and their applicability over diverse cases, which will be investigated in later

chapters. Indeed, the ontological faults we have addressed are not exhaustive and the

design of new ORPs is a promising avenue for further work.

Chapter 5

Overview of the GALILEO System

5.1 Introduction

In this chapter we give an overview of the GALILEO system (Chan et al., 2011; Lehmann

et al., 2011; Chan and Bundy, 2009; Lehmann et al., 2012), which contains an imple-

mentation of the ORPs described in Chapter 4. In §5.2, we review the research objec-

tives specific to the implementation of the GALILEO system and the way limitations

can be minimised. Next, in §5.3, we describe the scope of the research into build-

ing the system. In §5.4, we present the architecture of the system, introduce the key

components, and describe the flow of the system.

5.2 Research Objectives

The overall aim of this project is to demonstrate that ontology evolution in Physics

can be mechanised by implementing the ORPs designed within a system, in which if

the input Physics ontologies contain a recognisable fault at the logical level or at the

representational level, then the system is capable of performing diagnosis and repair.

A logical conflict is a type of conflict that results in an inconsistent merge of the given

ontologies and a representational conflict is one that is caused by incompatible, unde-

sirable or unoptimised ontological representations of concepts. Our main interest is,

therefore, in mechanising the repair of various kinds of over- and under-specifications

(§9, p.34). To constrict the space of possible repair methods, a method of diagnosis is

designed to establish the conflict that causes the fault. The result from diagnosis helps

the system select the appropriate repair strategy in order to remove the conflict from the

73

74 Chapter 5. Overview of the GALILEO System

ontologies. An appropriate repair strategy must carefully control the set of derivable

sentences in the repaired ontologies. We do not want to adopt naive repair operations,

such as a complete axiom retraction, which can theoretically always eliminate certain

faults, e.g., over-specifications, in ontologies.

At the crux of the GALILEO system is an implementation of the ORPs. As presented

in Chapter 4, each ORP contains a trigger pattern that represents that a certain kind of

fault exists in the given ontologies and a set of transformation rules that specify the

characteristics of new ontologies that do not contain the detected conflict. Our system

provides facilities for performing ontological conflict diagnosis and ontology repair

that imitate the theoretical behaviour of each ORP. For each ORP, we must consider the

ramifications of repairing the detected conflict w.r.t. the rest of the ontology, because

a repair should be prohibited from producing new faults that require other alterations.

It is, therefore, crucial to have an understanding of the repair semantics underlying the

ORPs and investigate their direct and implied effects on general ontological configu-

rations, e.g., ontologies that do not share a signature and ontologies that depend on

others.

Fault diagnosis requires deep reasoning about the ontologies, but since reasoning in

HOL is undecidable, the level of automation in ontology evolution is inherently limited.

A key objective of research is to build a system that mechanises the ontology repair

process of higher-order ontologies with as much automation in the ontology repair

process as possible. User interaction is used to guide the search when complexity is

beyond automation. Repair may take place only if the input ontologies satisfy the

diagnostic requirements described in the trigger formula of at least one ORP. The end

result is that meta-level analysis and reasoning is fully automated, whilst object-level

reasoning requires interaction. Some degree of interaction in object-level reasoning is

almost inevitable, because of the undecidability of HOL. Increasing the automation of

reasoning is beyond the scope of current research.

In the case of a successful repair, the output contains the repaired ontologies with their

new signatures and/or new axioms, depending on the ORP invoked. The modelling

approach adopted to represent the original ontologies determines the complexity of re-

pair. If the original ontologies are part of a network, in which some ontologies may

be merged with others, then the repair procedure must compute the new dependen-

cies and manage the propagation of repair. If this kind of setup is given as input, the

dependencies among the repaired ontologies should imitate those among the original

5.3. Scope of Research 75

ontologies.

5.3 Scope of Research

The scope of the project covers a wide area of research topics, each with its own dif-

ficult and unsolved problems. For example, improving the automation of higher-order

reasoning for general problems has been proven to be an immense challenge for the

automated reasoning community. Moreover, the philosophical foundation of the evolu-

tion of multiple ontologies as an epistemological approach to defeasible reasoning has

not yet been established. It, therefore, further complicates the problem of increasing

the generality of our approach and scaling the system to handle a diversity of onto-

logical configurations, e.g., from a ‘big’ ontology explicitly declaring all the signature

elements and containing all the axioms to ‘small’ ontologies that import signature el-

ements and axioms from others through combinations. Although we introduce highly

general techniques for evolving ontologies, we do not provide an account of the un-

derlying epistemological issues. Thus, the focus of attention needs to be on striking a

balance among understanding and addressing these issues, realising ontology evolution

in HOL and reducing the complexity of the evolution process.

Our primary interest specific to the development of the system is in studying the rea-

soning requirements of ontology evolution and providing the system with reasoning

capabilities. Our focus is on augmenting Isabelle with the functionality of diagnos-

ing and repairing ontologies. As Isabelle is a theorem prover and is not designed for

ontology evolution, enabling ontology evolution in Isabelle requires an unusual use

of it and a substantial extension. This thesis shows how some of the fundamental

limitations can be overcome and that GALILEO is a first attempt to develop a general

ontology evolution system.

5.4 Design and Architecture

The GALILEO system consists of two major components: the diagnosis engine and the

repair engine. At the centre of the interaction is the user, who provides the input on-

tologies and the needed interactive guidance in order to fully proceed with diagnosis

and invoke the automated repair. Isabelle is used for performing all reasoning tasks – its

higher-order matching algorithm is used for both the implementations of diagnosis and

76 Chapter 5. Overview of the GALILEO System

Figure 5.1: High-level architecture and interactions between key components in

GALILEO.

repair. Figure 5.1 depicts the high-level block diagram of the architecture of GALILEO

and the interactions between both the user and the system and among the components

within the system. Since GALILEO is implemented as an extension of Isabelle, it is

loaded along with the core of Isabelle. The user first supplies the input ontologies in

an Isabelle theory file and Isabelle processes the file in the standard manner. The user

then initiates the ontology evolution process by invoking a particular ORP and sup-

plying the relevant preparation information, which is further explained in Chapter 6.

One ORP is invoked at a time, because the proof for ensuring that the input ontologies

contains the corresponding fault typically requires some user interactions. Ideally, if

the proofs were completely automated, then all ORPs would be invoked simultaneously

rather than invoking one ORP at a time. Of course, theoretically, all ORPs could still be

invoked simultaneously even when user interactions are required to help find proofs,

5.5. Modelling and Reasoning about Physics 77

but we believe users may be overwhelmed by the execution of multiple ORPs. The

fault detector of the ORP will then attempt to instantiate the existential variables in the

trigger formula and generate a proof obligation. The proof obligation is typically in the

shape of the trigger formula of the invoked ORP and ensures that the fault which the

ORP is designed to resolve indeed exists in the input ontologies. In most cases, the fault

detector of the invoked ORP produces multiple plausible diagnoses. The ontology evo-

lution process is blocked until the proof obligation is discharged, i.e. a proof is found.

Once it is discharged, the diagnosis engine utilises Isabelle to produce a collection of

logically valid and physically meaningful diagnoses1. Because of the typically unman-

ageable number of diagnoses, several heuristics for filtering the physically meaningful

diagnoses are applied. If a diagnosis is deemed to be meaningful (Chapter 6), then it is

returned to the user. In most cases multiple diagnoses are returned, where each corre-

sponds to a physically plausible repair, so the user needs to select a diagnosis that fits

with the current problem context and application. The repair engine reads the selected

diagnosis and extracts from it information relevant to the execution of the transforma-

tion of the signature and/or axioms of the input ontologies. Not every axiom in the

input ontologies is subject to repair, so higher-order matching is applied to identify the

axioms that require transformation. Using the matching results, the input ontologies

are repaired according to the repair rules of the ORP invoked and the repaired ontolo-

gies are then internally represented. If the ontologies under consideration depend on

additional ontologies, then the effect of the repair may be propagated to these ontolo-

gies as well. In more complex situations, the evolution of ontologies is iterative, so the

repaired ontologies themselves may be subject to further evolution by invoking an ORP

on them as well.

5.5 Modelling and Reasoning about Physics

Unlike the controlled domains typically studied in ontology research, such as a shop

or a library, the Physics domain deals with highly general concepts that are intended

to be applicable across a diverse range of scientific settings. We discuss in this section

the importance of employing higher-order logic for both producing natural and general

models of Physics concepts and for reasoning about their properties.

1As to be discussed in Chapter 6, not all logically valid diagnoses are physically meaningful, and a
separate mechanism is needed to filter interesting ones.

78 Chapter 5. Overview of the GALILEO System

5.5.1 Higher-Order Logic and Physics

Concepts with dynamic properties play a major role in the Physics domain; for in-

stance, the notions of velocity and acceleration of bodies, which are the changes of

distance and of velocity over time, respectively, are fundamental to the foundation of

Physics. Such concepts are bound to vary over a period, so they are better represented

as mathematical functions returning values corresponding to the given input. In order

to work with changing physical processes, calculus is essential to the mathematical

foundation. Some key measures in calculus, including derivatives and integrals, are

naturally represented as higher-order functions, even though they can be embedded in

first-order set theory.

As with other more complex aspects of the logical formalisation of Physics, attempts

have been made to axiomatise specific Physics theories and their results have shown

that it would be desirable for such axiomatisations to be written in logics more ex-

pressive than FOL. For instance, although the axiomatisation of Special Theory of

Relativity might be within the bounds of FOL (Székely, 2010), more expressivity is

needed in the axiomatisation in order to have a general proof of the Twin Paradox and

to axiomatise the General Theory (Madarász et al., 2006). In the rest of this section,

we will illustrate our argument for the need for HOL with examples that require less

specialist Physics knowledge.

5.5.2 Example: Representation of Orbits

Arguably, concepts involving changing quantities could potentially be represented us-

ing a representation more basic than functions. Take the orbit of a star as an example.

There are appropriate equations for calculating its precise position in space for a given

time moment. That said, an orbit could also be perceived as a collection of four di-

mensional points: three dimensions of space and one of time. However, given the

uniqueness of each point, the collection can be accurately modelled only as an infi-

nite set2; although it could be approximated finitely, it would still yield an unnatural

and excessively complex representation. Further, its continuity and uniqueness of each

point given its time would be complicated to formalise. Although the need for function

objects in the representation can be met by adopting FOL in general, a natural repre-

sentation of Physics requires more expressive power in the logic. For instance, we

2The countability of the set depends on the assumed quantisation of space and time and, thus, the
relevance of Planck’s constants.

5.5. Modelling and Reasoning about Physics 79

can provide a concise and general definition to the meaning of an eventual collision

between two objects in terms of an intersection of their paths and assert that two stars

star1 and star2 eventually collide as:

WillCollide(pathA, pathB) ::= ∃t:Mom. pathA(t) = pathB(t) (5.1)

WillCollide(orbit(star1),orbit(star2)) (5.2)

where WillCollide is a boolean function taking two path functions as arguments, and

each of pathA and pathB takes a time moment of type Mom as an argument and returns

a 3D position in space (5.1). Suppose orbit(s) returns the orbit of an object s and we

know the orbits of star1 and star2, (5.2) means that star1 and star2 will eventually

collide. Since WillCollide is of type

(Mom⇒ Position)⇒ (Mom⇒ Position)⇒ bool (5.3)

and is, therefore, it is a second-order term and the logic underlying the representation

should be higher-order. The conciseness of representation in the example is a result of

adopting an expressive logic.

5.5.3 Example: Representation of Latent Heat

Physics concepts are often intended to be applicable across a diverse collection of

entities in which these entities could be of various basic properties, e.g., different sub-

stances or states. If the definition of a concept depends on some particular property, a

relevant set of equations or table of values is typically available for those satisfying that

property. For instance, latent heat, which is the kind of heat released or absorbed by a

substance during phase change, e.g., the melting of ice or boiling of water, is defined

as

Q = m×L (5.4)

where Q is the amount of energy released or absorbed, m is the mass of the sub-

stance, and L is the specific latent heat. The definition in (5.4) is applicable to both

fusion and vaporisation, but the value L takes depends on the substance and the type of

phase change undergone; for instance, with water, the specific latent heat of fusion is

334kJ/kg, whereas the specific latent heat of vaporisation is 2260kJ/kg. These values

are commonly tabulated in separate tables: one for fusion and one for vaporisation. A

formal representation of (5.4) in a multi-sorted FOL ontology O could be

∀o:Ob j, t:Period. Heat(o, p) := Mass(o, p)×L(o, p) ∈ Ax(O) (5.5)

80 Chapter 5. Overview of the GALILEO System

where Heat(o, p) returns the amount of heat an object o is released or absorbed over

a period p, mass(o, p) returns the average mass of object o over period p, and L(o, p)

returns the specific latent heat of o over p. The value L(o, p) depends on the type of

phase change o undergoes over p, so additional assertions about the phase change o

undergoes are also required:

{ ∀o, p. IsWater(SubstanceO f (o, p)) ∧ Fusion(o, p) −→ (5.6)

L(o, p) = 334,

∀o, p. IsWater(SubstanceO f (o, p)) ∧ Vaporisation(o, p) −→ (5.7)

L(o, p) = 2260

. . . } ⊂ Ax(O)

where SubstanceO f (o, p) returns the substance of o over period p; IsWater(s) is true

if and only if s is water; Fusion(o, p) is true if and only if the o undergoes fusion over

period p; and, Vaporisation(o, p) is true if and only if o undergoes vaporisation over

p. So, if a symbol puddle:Ob j represents some puddle of water undergoing fusion at

time T0, then we must have

O ` IsWater(SubstanceO f (puddle)) (5.8)

O ` Fusion(puddle,T0). (5.9)

In contrast, suppose we have a HOL ontology O′ and adopt the definition of Heat in

(5.5), but make L polymorphic and assign its type to α⇒ β⇒ R instead, where α

and β are type variables – the first argument is the object under consideration and the

second argument is the phase change event undergone by the object. To determine the

corresponding specific latent heat, the information about phase changes can now be

captured in the type without being axiomatised:

∀o,e. L(o,e) :=

334 if SubstanceO f (o):Water∧ c:FusionEvent

2260 if SubstanceO f (o):Water∧ c:VaporisationEvent

. . .

(5.10)

where Water is the type of water and FusionEvent and VaporisationEvent are, re-

spectively, the types of fusion and vaporisation events. Rather than having predicates

in the language for checking the kind of substance and the phase change, as in (5.6) and

(5.7), the specific latent heats in O′ depend on the type assigned. This is a more natural

adaptation of the underlying Physics, because the kinds of substances and the kinds of

5.5. Modelling and Reasoning about Physics 81

phase changes better correspond to sets containing individuals and, thus, logical types.

Thus, if the symbol H2O represents some water and f usion the fusion process H2O

undergoes at time T0, instead of (5.8) and (5.9), we can now have

{H2O:Water, f usion:FusionEvent} ⊂ Sig(O ′) (5.11)

which assigns the type of w to the one representing water undergoing fusion. With a

polymorphic representation, we can construct ontologies with fewer explicit axioms

and more concise representations. Note that f usion captures the duration of the event.

5.5.4 Modular Representation

5.5.4.1 Issues with Ontological Fault Diagnosis

Most work in the area of ontological fault diagnosis attempts to detect a fault from a

single ontology. Even though some work with networked ontologies (Ji et al., 2009),

the network is actually collapsible into a single, large ontology. Our method for deter-

mining whether the given ontologies require repair focuses on the identification of the

pattern describing an underlying fault across multiple ontologies, which is the purpose

of the trigger formulae in ORPs. An ontology satisfies some pattern defining a type of

fault when an instance of the pattern is derivable from it; in such case, an appropriate

repair is brought to bear. In order to meaningfully produce a derivation, the ontol-

ogy is assumed to be consistent. This is particularly important because all sentences

are derivable in inconsistent ontologies, so even irrelevant fault patterns would other-

wise be derivable. This would give rise to undesirable or adverse outcomes, as ORPs

would be wrongly triggered, resulting in false-positives. Since internal consistency in

each ontology in question is assumed, a logical fault, or over-specification, occurs only

when a combination is attempted with another ontology that is also internally consis-

tent, inducing global inconsistency (Definition 9, p.34). Thus, in order to identify the

specific type of logical fault from which the ontologies suffer, the working environ-

ment must contain at least two ontologies. Logical fault diagnosis is not designed to

occur after combining together the input ontologies, as the resulting ontology may be

inconsistent 3. Effectively, a single ontology setup will render our proposed method of

logical fault diagnosis useless. This shows that a modular representation of ontologies

is essential to precise diagnosis of ontological faults.

3Note that some ORPs are designed to repair representational rather than logical conflicts, i.e. under-
specified ontologies rather than over-specified ontologies.

82 Chapter 5. Overview of the GALILEO System

Figure 5.2: A modular representation of the theory of real numbers, where nodes rep-

resent ontologies and arcs represent dependencies between ontologies.

5.5.4.2 Issues with Conceptualisation

Knowledge from many domains can be naturally structured using a modular represen-

tation. The notion of extensions is commonly used for formalising modular structures.

If an ontology X is an extension of an ontology Y , then every theorem of Y is a theo-

rem of X and the language of Y is a subset of the language of X . In mathematics, for

instance, the theory of real numbers can be viewed as being constructed by extending

the theory of fields, which itself may be an extension of the theory of rings. Note that

our notion of combination via⊕ (Definition 7, p.34) is, therefore, closely similar to the

general notion of extension. Further, because the set of real numbers is ordered, the

theory of the reals may also extend the theory of orderings, specifying various abstract

orderings. Figure 5.2 illustrates the relationships between the mentioned theories as

modular theories, which forms an ontology network4.

We argue that Physics knowledge also intrinsically exhibits a modular structure, in

which Physics theories can be viewed as separate modular theories. One can partition

Physics knowledge into modules, which import signature elements and axioms from

others and have only an implicit signature declaration and axiomatisation. For instance,

classical mechanics contains numerous concepts, e.g., force, energy, and momentum.

4More formally, it is a development graph (Autexier et al., 2002), which is an acyclic, directed graph
where each node represents a theory and links between nodes represent some morphisms allowing one
theory to relate to another.

5.5. Modelling and Reasoning about Physics 83

Figure 5.3: A simple modular representation of classical mechanics, where nodes rep-

resent ontologies and arcs represent dependencies between ontologies; F , m, a, P,

v, KE, PE, g, h denote force, mass, acceleration, momentum, velocity, kinetic energy,

potential energy, acceleration due to gravity, and height, respectively.

We can construct a modular representation, in which each major concept belongs to a

module containing the relevant equations. The modules can be related to each other

by means of extensions, as all these concepts together make up classical mechanics.

The resulting structure is typically a directed, acyclic graph, as it is not meaningful to

have directed cycles in the structure. An example structure is illustrated in Figure 5.3,

in which both ontologies Energy and Momentum extend Force, so both of these share

the signature and axioms of Force but not vice versa, e.g., the signature declarations

of m for mass and a for acceleration. If an ontology is to have the same language and

logical power as classical mechanics, then it can simply be an extension of all of the

three ontologies.

5.5.4.3 Issues with Heterogeneous Ontologies

A goal in the implementation of GALILEO is to ease the restriction on the languages

used by modular ontologies, enabling a more flexible approach to modelling (Chan

et al., 2010a). It is fairly commonplace in dynamic, unregulated multi-agent environ-

ments to deal with ontologies that have different languages; for instance, agents fail to

communicate with each other due to a lack of shared understanding of the languages,

which is caused by a heterogeneity of languages. If we regard each agent as having

84 Chapter 5. Overview of the GALILEO System

its own ontology network, then such heterogeneity arises across multiple discrepant

networks. However, heterogeneous ontologies should also be supported within the en-

vironment, as supposedly related symbols across different ontologies are sometimes

not explicitly related in practice. For instance, in Figure 5.3, the symbol P is declared

in the signature of Momentum, but not in Energy; the symbol KE is in Energy but not

in Momentum. Thus, one may not be able to infer more powerful Physics equations,

e.g., P = d(KE)
d(v)

5 even if we have sufficient abilities to reason over derivatives, from

just one of the three ontologies individually, which is not well-formed as P and KE

are not both defined in any one of the ontologies. If one is to conjecture about the

relationship between P and KE, then there are at least two solutions which both make

object-level changes: a) alter the existing dependencies between the ontologies, e.g.,

make Momentum an extension of Energy then P = d(KE)
d(v) would be a theorem of Mo-

mentum; or b) create a new ontology that extends both Momentum and Energy, i.e.

Momentum⊕Energy, and assert the relationships between the symbols under consid-

eration.

We prefer b) over a) because modifying the existing dependencies between ontologies

results in a more significant violation of the commitment to the model than introduc-

ing new ontologies into the model does, which can be seen as merely incorporating

new knowledge. Adding a new ontology into a network preserves the theorems in the

ontologies of the original setup, but changing the dependencies between ontologies in

the described manner introduces new theorems in Momentum.

5.5.4.4 Issues with Ontology Repair

Another key benefit of adopting a modular representation of ontologies is a better man-

agement of evolved ontologies. Not every ontology in a network requires repair when

a fault is detected. Especially in the Physics domain, some ontologies may be pro-

tected from repair if they are valued at high confidence, e.g., the ontologies specifying

arithmetic and foundational mathematics, or the purpose of the ontologies is merely to

aid inference and they are not susceptible to repair, e.g., the ontologies specifying bio-

logical knowledge when the working domain is Physics – evolving Biology ontologies

would be beyond the scope of interest. It would be extremely troublesome to selec-

tively effect the repair if a flat representation is used, as all axioms of the ontology

5Note that this is not a general relationship between kinetic energy and momentum, but only for
Newtonian point particles.

5.6. Representation and Handling of Heterogeneity 85

are supposed to be equally susceptible to alteration. Meta-data may also be needed to

discriminate the susceptible axioms from others. Moreover, each repair attempt would

create new whole ontologies, so it would render the extraction of interesting informa-

tion, such as which ontologies are (not) affected by the repair, impossible.

5.6 Representation and Handling of Heterogeneity

The GALILEO system is designed to handle flexible ontological configurations, such

as modular ontologies (§5.5.4) and heterogeneous ontologies, which are ontologies

that have distinct languages. It is often impractical to construct ontologies that are re-

stricted to share a common language, especially when modelling complex real-world

knowledge. An ontology typically captures a particular view of the world, so the lan-

guage used to describe such a partial view is inevitably non-exhaustive and incomplete.

For instance, based on the representation depicted in Figure 5.3, suppose we have two

ontologies Momentum and Energy:

Sig(Momentum) := {P:Obj⇒Mom⇒ R, m:Obj⇒Mom⇒ R, (5.12)

v:Obj⇒Mom⇒ R} (5.13)

Ax(Momentum) := {P(o, t) ::= m(o, t)× v(o, t)} (5.14)

Sig(Energy) := {KE:Obj⇒Mom⇒ R, m:Obj⇒Mom⇒ R, (5.15)

v:Obj⇒Mom⇒ R, . . .} (5.16)

Ax(Energy) := {KE(o, t) =
1
2

m(o, t)× v(o, t)2, . . .} (5.17)

Representing P(o, t) = dKE
dv in either Momentum or Energy is not well-formed. So

we need to introduce an ontology that is expressive enough to represent relationships

between the symbols under consideration.

The ability to perform inference may be limited due to the problem of heterogeneity

as well. Disagreements between the languages of ontologies may only be syntactic, so

their relationships depend on the interpretation of the ontologies. For instance, suppose

we have two ontologies O and O′ and assume same symbols represent same things, i.e.

86 Chapter 5. Overview of the GALILEO System

alignments are not needed:

Sig(O) := {a:α, b:β, f :α⇒ β⇒ Nat, (5.18)

g:α⇒ β⇒ Nat, h:α⇒ β⇒ Nat}

Ax(O) := { f (x,y) := g(x,y)×h(x,y), h(a,b) := 1} (5.19)

Sig(O′) := {a:α, b:β, m:α⇒ β⇒ Nat} (5.20)

Ax(O′) := {m(a,b) := 2} (5.21)

where the languages of O and O′ syntactically share some common symbols, e.g., a and

b, but there are also differences between them as m is not in the signature of O, whereas

f , g, and h are not in the signature of O′. Even with O and O′ merged, the inference of

f (a,b) cannot proceed beyond f (a,b) = g(a,b). Since ontological representations are

merely syntactic structures, depending on the interpretation of O and O′, the seemingly

distinct symbols might be (physically) related and allow to further the inference of

f (a,b). For instance, f (x,y) in O might represent the distance an object x has travelled

over an event y, g(x,y) might represent the average velocity of x during the event y, and

h(x,y) might represent the duration of x being in event y. If m(x,y) in O′ represents

the empirical measurement of the distance of x over y using an odometer, then we can

directly relate m in O′ to g in O. Alternatively, m might instead be related to f and h

in O′, e.g., in the form of m(x,y) = f (x,y)
h(x,y) , which provides the same amount of logical

power as the direct relationship. With either of these relationships, f (a,b) = 2 can then

be inferred, with the interpretation that the distance object a has travelled over event b

being 2.

The need for handling heterogeneity in language is particularly appropriate to Physics,

as Physics theories are commonly contrasted with empirical evidences. Theories often

do not speak in the language of experiments, but in one about the relevant physical

concepts, e.g., force, mass, and energy. Experiments, on the other hand, are described

by the language of the apparatus or other empirical instruments, e.g., thermometer,

spectral graph, and odometer. Thus, in order to make sense of the consequences from

merging a theory with empirical data, we require a mechanism for addressing the het-

erogeneity between seemingly discrepant languages – which we call bridging axioms.

Note that these can also be used for alignment, e.g., f = g when f and g are two

different representations of the same concept.

5.6. Representation and Handling of Heterogeneity 87

5.6.1 Bridging Axioms

In the object-level of the representation, the languages of even originally unrelated

ontologies can be related by creating a new ontology that is the result of combin-

ing them. If an ontology Oe is the result of combining together multiple ontologies

Oa, Ob, . . . with signatures Sig(Oa), Sig(Ob), . . . , respectively, then Oe has the ca-

pacity to use the symbols imported from all Oa, Ob, . . . in its local axioms, since

Sig(Oa)∪Sig(Ob)∪ ·· · ⊆ Sig(Oe). As the relationships between symbols in Sig(Oa),

Sig(Ob), . . . are expressed in the local axioms of Oe, the additional logical strength can

only be leveraged if Oe, or other ontologies that combine with Oe, are used in the infer-

ence. Being the result of a combination also means that every theorem of the original

ontologies, Oa, Ob, . . . , is a theorem of it. Thus, if the reasoning task requires an agree-

ment between the originally symbols about which originally there was a disagreement,

then Oe can become the focus for reasoning.

The relationships between the symbols under consideration are specified in bridging

axioms, which are axioms that relate together the truths across ontologies. The encod-

ing of bridging axioms is based on McCarthy’s lifting axioms (McCarthy and Buvac,

1998), which is defined as

...axioms which relate the truth in one context to the truth in another con-
text.

Lifting axioms are generally in the following form:

ist(κ1,φ1)∧·· ·∧ ist(κn,φn)⊃ ist(κ,φ) (5.22)

where ist(κ,φ) means that the formula φ is true in a context κ6. The lifting axiom

above means that the formula φ is true in a context κ if φi for 1 ≤ i ≤ n is true in Ki

for 1 ≤ i ≤ n, respectively. Lifting axioms themselves are encoded in a context that

is expressive enough to represent all formulae in all contexts. For our application, we

encode bridging axioms in an ontology that extends the ontologies under considera-

tion by combining them all via the ⊕ operator. We call the meta-ontology containing

a bridging axiom a bridging ontology. A bridging ontology is not an object-level on-

tology but an ontology at the meta-level. Bridging axioms relate the provability of

sentences in one ontology to the provability of sentences in another. If we treat con-

texts as ontologies, we can formulate (5.22) as a bridging axiom:

κ1 ` φ1∧·· ·∧κn ` φn −→ κ ` φ (5.23)
6Note that ⊃ can be replaced by −→ without changing meanings.

88 Chapter 5. Overview of the GALILEO System

where κ ` φ means that φ is a theorem of κ.

For representing that P is the derivative of KE w.r.t v (5.12 - 5.17), bridging axioms

(premises) can be used to derive the following:

(∀a. (Momentum ` m = a ←→ Energy ` m = a) ∧

∀a. (Momentum ` v = a ←→ Energy ` v = a)) −→

Momentum⊕Energy ` P = d(KE)
d(v)

where Momentum ` P = m means that P = m is a sentence derivable in the ontology

Momentum. The new ontology, Momentum⊕Energy, imports the signatures and all

theorems from Momentum and Energy, so it is expressive enough to represent P =
d(KE)
d(v) within it, which is a theorem provided that we have support for reasoning about

derivatives.

For inferring f (a,b) = 2 (5.18 - 5.21), bridging axioms can be used to derive the

following:

(∀a. (O ` g(x,y) = a ←→ O′ ` m(x,y) = a)−→

O⊕O′ ` m = g

Bridging axioms resemble lifting axioms in various ways. For instance, contexts in

lifting axioms are essentially ontologies and the ist predicate can be associated with `,

as a formula provable in some ontology if and only if it is a consequence of premises

assumed to be true.

5.6.2 Factorisation

In order to design a highly general mechanism for detecting faults in multiple ontolo-

gies, we must enable at least some inference to be performed across even globally

inconsistent ontologies. For instance, given a predictive ontology containing defini-

tions and a sensory ontology containing pure empirical data, a conflict is deducible

only if the definitions are instantiated by the empirical data. Clearly, reasoning with

the combination of these globally inconsistent ontologies is virtually meaningless, but

the inconsistency itself may be circumvented by excluding certain axioms from the

combination. Our solution is to enable ORPs to be performed not on the original in-

put ontologies themselves, but on the ontologies in a factorised representation of the

original.

5.6. Representation and Handling of Heterogeneity 89

Definition 11 (Factorised Representation) The factorised representation F (O) of an

ontology O:O is defined as:

F (O) ::= {O′ | O′ � O}

where

〈S′,A′〉 � 〈S,A〉 ⇐⇒ S′ = S∧A′ ⊆ A∧A′ 6= /0.

A factorised representation of an ontology with n axioms is essentially a set of ontolo-

gies in which each ontology contains a unique k-combination of original axioms for

1≤ k≤ n, The idea of working with a factorised representation of ontologies is loosely

based on the concept of a factorised representation of a set of independent variables in

Bayesian Networks (Jensen, 1996). Consequently, each ontology in a factorised rep-

resentation is a sub-ontology of the ontology being factorised. The models satisfying

any subset of the original axioms must also satisfy an ontology in the factorised repre-

sentation and the models satisfying any ontology in the factorised representation must

also satisfy a subset of the original axioms. Subontologies have been proven useful

and adopted to solve specific reasoning tasks about ontologies (Haase et al., 2005; Du

et al., 2008). We will use the subscript f and multiples thereof to denote the ontologies

in a factorised representation, e.g., O f , i.e. is a sub-ontology of the original ontology,

O.

Proposition 1 Given an ontology O:O, the following holds:

∀A f ⊆ Ax(O). ∃O f ∈ F (O). Ax(O f) = A f .

Proposition 2 Given an ontology O:O, the following holds:

∀O f ∈ F (O). ∃A f ⊆ Ax(O). Ax(O f) = A f .

From Propositions 1 and 2, we claim that the standard interpretation of an ontology,

which itself should be a standard interpretation of at least one of the original axioms,

is a standard interpretation of at least one of the ontologies in the corresponding fac-

torised representation. This is because the factorised representation must contain all

possible sub-ontologies of the corresponding ontology. Working with a factorised rep-

resentation, therefore, essentially enables reasoning to be performed over any subset

of the axioms of the input ontologies. In the case where the environment contains mul-

tiple factorised representations, each corresponding to a different input ontology, an

90 Chapter 5. Overview of the GALILEO System

ontology in one factorised representation could be combined with one in another. In

effect, a subset of the axioms of an input ontology can now be combined with the whole

of another input ontology. This is a powerful approach and increases the generality of

the repair mechanism, because it enables some reasoning across globally inconsistent

ontologies – the reasoning can be focussed on only those ontologies in the factorised

representations that do not contain the axioms that would otherwise induce global in-

consistency. The combination operator ⊕ enables the reuse of ontologies for building

factorised representations as networks, so that the number of ontologies created can be

kept to a minimum.

We have provided a Python script for producing a factorised representation of an input

ontology (B.2)

5.7 Summary

This chapter introduces the GALILEO system, which is discussed in more detail in §6

and §7. The implementation of our ideas is tailored to an exact context for the theory

to be used: ontology repair in Physics. In addition, the production of such a system

has forced us to make many decisions as to how to contain the system sufficiently so

that a fully working version can be produced within the time scale. This has led to

the production of a system that is not as comprehensive as we would like, which is

inevitable when tackling such a vast problem from a novel direction.

The implementation of GALILEO contains about 7,000 lines of ML code, which inter-

faces with Isabelle, and 50 lines of Python code for producing factorised representa-

tions (§5.6.2). The system we have produced is capable of:

1. Starting with an Isabelle theory file containing the input ontologies.

2. Processing interactive input from the user to invoke and minimally guide an ORP.

3. Detecting ontological faults and producing logically valid diagnoses.

4. Filtering out physically meaningless diagnoses.

5. Performing repair to the input ontologies depending on the selected diagnosis.

6. Relating newly repaired ontologies to the original.

5.7. Summary 91

We claim that points 2, 3, 4, and 5 represent original research, whilst the rest of the

functionality of the system is necessary to provide a platform from which to implement

this original research. Points 3, 4, and 5 represent the central focus of the project.

Chapter 6

Mechanising Conflict Diagnosis

6.1 Introduction

The first part of executing an ORP is to verify that the trigger follows from the given

ontologies. GALILEO ensures that the fault which the ORP is designed to resolve in-

deed exists within the input ontologies, preventing giving false positive results. To this

end, we encode ontologies as locales. The system generates a proof obligation that is

formulated in a way such that reasoning across multiple ontologies can be achieved.

The proof obligation is required to be discharged by the user in order to proceed to

repair. For certain ORPs, the system discovers physically meaningful terms that are

potential candidates for being the culprit in causing the detected conflict. Note that, by

an ontology fault or conflict, we mean one of over-specification or under-specification

(§9). Because most of the ORPs involve dealing with the application of one polymor-

phic variable to another, higher-order unification expectedly returns an unmanageably

huge number of unifiers. We, therefore, incorporate heuristics for pruning the search

space and eliminating physically meaningless results.

6.2 Ontological Fault Diagnosis with Isabelle

Conflict diagnosis is the task of discovering the instantiations of stuff and other vari-

ables, so that ORPs can be properly triggered; GALILEO stores these instantiations as

they are needed to repair the detected conflict. In a typical environment for GALILEO

to perform ontology evolution, higher-order reasoning is involved at both the object-

and meta-levels in the ORPs. The object-level is used to represent the ontologies, which

93

94 Chapter 6. Mechanising Conflict Diagnosis

are essentially a collection of physics equations asserted as axioms; the meta-level to

represent the ORPs, e.g., for diagnosing a conflict in the ontologies and manipulat-

ing the ontologies by applying repair operations to them1. There are, therefore, two

separate domains of quantification: the object-level reasons about physical entities,

concepts, observations, and so forth; the meta-level about object-level ontologies, for-

mulae, types, and so forth, e.g., it reasons about whether some object-level ontology

has a theorem matching some syntactic pattern and then adds or retracts some axioms

or signature symbols. This means there could potentially be two logics to encode: one

for the object-level and one for the meta-level. In this approach, the object-logic can be

deeply embedded within the meta-logic by providing an explicit higher-order abstract

syntax for the ontologies. The meta-logic can then perform matching with a syntac-

tic pattern by recursing over the abstract syntactic structures of object-level formulae.

However, if we want to do higher-order inference at the object-level, then higher-order

unification needs to be implemented from scratch, which is not desirable2. Fortu-

nately, some systems, including Isabelle and Twelf (Pfenning and Schürmann, 1999),

are built on a logical framework and object logics are encoded via the meta-logic, so it

inherently distinguishes between object- and meta-logics and higher-order unification

is implemented as a meta-level procedure. It is, therefore, appropriate to employ a

reasoner that offers us to encode physical ontologies in the object-logic and specify the

ORPs in the meta-logic.

Since we work with HOL ontologies with polymorphic types, an appropriate reasoner

must provide an environment that supports reasoning in such a logic and type the-

ory. The validity problem in HOL is undecidable in general3, so higher-order theorem

provers such as Isabelle (Paulson, 1994), TPS (Andrews et al., 1984), Nuprl (Constable

et al., 1986), Coq (Bertot and Castéran, 2004) and others typically require user interac-

tion to produce significant proofs. Thus, these theorem provers are often perceived as

proof assistants rather than automated theorem provers, because a human user is typi-

cally expected to guide the search for proofs, whilst the system provides feedback for

each proof step. That said, many of these theorem provers support some form of proof

automation, e.g., applying tactics, generalised equational rewriting, and even translat-

ing a given problem into first-order logic and solving it with first-order provers. When

the automation fails, the system defaults to user interaction.

1The ORPs are phrased in Isabelle/ML.
2This would likely to be the case had we continued to adopt λ-Prolog for our implementation.
3The validity problem is undecidable even in pure first-order logic.

6.2. Ontological Fault Diagnosis with Isabelle 95

We have chosen Isabelle not only because it comes with an implementation of higher-

order unification, but that it also has a vast library of already formalised mathematical

theories, among which are integers and real numbers, as well as sets and vectors, which

are all particularly useful for reasoning about physics problems. Isabelle already has

several logics, e.g., Isabelle/HOL, formalised in its meta-logic, Isabelle/Pure, its meta-

logic, so we can naturally encode the ontologies in the object-logic and perform any

required inference. Isabelle, being an interactive theorem prover, provides a robust

interactive environment for collaborating with the user during the process of proof

search, which is useful for capturing a user’s input during the ontology evolution pro-

cess, when required. Overall, we consider Isabelle’s framework to be adequate for

providing reasoning support for the kind of high expressivity in our logic and a good

environment for evolving ontologies using Isabelle’s implementation of modular rea-

soning.

6.2.1 Ontologies as Contexts

As already discussed, an ontology is a specification of a conceptualisation, which in-

cludes the objects, concepts, and other possible entities in the domain of discourse.

Furthermore, we regard an ontology to be a logical theory with a signature and a

set of axioms. A specification of an ontology may represent a general conceptual-

isation about the world, which is an abstraction that encapsulates an aggregation of

multiple situations. For instance, the physics equation ∀o:Obj, t :Mom. TE(o, t) ::=

KE(o, t)+PE(o, t) quantifies over all objects and time moments in the domain. Multi-

ple instances of the same equation may coexist in different ontologies, so an appropri-

ate machinery for representation must allow instances of axioms to be created. Further,

our application requires reasoning across multiple ontologies; for instance, we need to

verify whether some function measuring a certain property returns the same value in

two different ontologies.

Modelling ontologies as contexts enables the encoding of a view of a domain to be

localised. As such, reasoning across multiple ontologies can, therefore, be realised.

Modularising the encodings of views into contexts helps us analyse the shape of on-

tological conflicts between them. If several contexts are in conflict with each other,

we can isolate each context individually and apply the repair that is relevant to the

corresponding encoding.

Typically, each signature symbol of an Isabelle locale corresponds to some entity in

96 Chapter 6. Mechanising Conflict Diagnosis

the domain of discourse, so all entities encompassed in the conceptualisation are de-

clared in the signature. The axioms must be specified in the corresponding language

in order to be well-formed. This effectively implements parametric theories where

the axioms are specified w.r.t. the values of the parameters. So, the use of Isabelle’s

locales lets us create instances of axioms by giving values to the parameters and, thus,

the axioms of a locale. Modelling ontologies as locales means that we specifically view

ontologies as parametric theories. This conveniently allows different instantiations of a

specification of an ontology to be produced by using different parameter values. Such

a configuration means that the concepts in each instantiation correspond to different

interpretations of the same concepts – similar to the different interpretations of a con-

cept, e.g., letter A, after teaching it to a class of students. Formalising ontologies as

contexts, and thus parametric theories, is clearly powerful for performing reasoning in

multiple ontology environments.

The problem GALILEO solves involves detecting faults across multiple ontologies, so

each ontology is formulated as a locale with a set of parameters and axioms, and pos-

sible dependencies on other locales within the global context.

6.2.2 Variable Sharing

All ORPs are designed to have the variables, e.g., stuff , instantiated during a process

of inference of inferring the corresponding trigger formula. When the variable stuff

appears in the syntactic patterns that are used to match against theorems provable in

different ontologies, it is required to be instantiated to a value shared by the ontologies

under consideration. Merely combining the conflicting ontologies together and infer-

ring the trigger formula in the resulting ontology would often induce inconsistency.

The trigger formula can then always be inferred, the inference itself is trivial, since all

formulae are theorems of inconsistent ontologies.

There are potentially two alternatives to handling variable sharing: a) reasoning about

the trigger formula within a locale that extends from the locales corresponding to the

ontologies under consideration, and b) directly formulating the reasoning problem in a

meta-level mechanism.

Alternative a) is plausible because each locale is mostly made up of a set of parame-

ters and a set of axioms, and each locale can be independently instantiated based on the

provided values to the parameters. Reasoning across these locales is a matter of formu-

lating the problem in terms of the values that instantiate the parameters. A shortcoming

6.2. Ontological Fault Diagnosis with Isabelle 97

of this approach is that, since the locales being extended are instantiated using different

values to avoid inconsistency, stuff will not be instantiated to a common value with-

out some meta-level method for helping the instantiation. The customised method of

instantiation will most likely involve binding together the related values used to instan-

tiate the various locales, which is a rather unnatural procedure. Another shortcoming

is that a new locale needs to be created in the environment each time we want to reason

across multiple ontologies. The ontology created does not naturally correspond to a

physical ontology and is merely used to facilitate the reasoning process. Furthermore,

it does not accurately emulate the formalisations of the ORPs, where a conflict is ex-

pressed as a combination of sentences that are theorems of the individual ontologies.

Some meta-level mechanism is still required to generate the proof goal corresponding

to the relevant ORP and ensure that stuff is instantiated to the correct parameter value.

A more desirable option is, therefore, to adopt b) and implement a meta-level mech-

anism that generates an object-level proof goal based on the given parameters of the

locales under consideration without creating helper locales. If the locales provided

are M te1 ball1 t1 and N te2 ball2 t2, where te1, ball1 and t1 are the val-

ues of the parameters of M and te2, ball2 and t2 are the parameters of N, then the

proof goal is formulated directly in terms of these values without creating new locales.

Suppose M and N share the same signature and we postulate that te1(ball1,t1) and

te2(ball1,t1) have different values and try to infer the WMS trigger formula in them,

then the proof goal for this task is:

∃v. (∀te1,ball1, t1. M(te1,ball1, t1) =⇒ te1(ball1, t1)≥ v) ∧

(∀te2,ball2, t2. N(te2,ball2, t2) =⇒ te2(ball2, t2)< v) ∧ . . .

where M and N are ternary predicates. If the goal can be discharged, then stuff here

is instantiated to a subexpression of te1(ball1, t1), because we already know M and

N have the same signature and both te1 and te2 must refer to the same symbol –

likewise for other values. The user can utilise all reasoning facilities that are provided

by Isabelle to search for a proof. We have adopted this approach in GALILEO and the

generated proof goal for each ORP is summarised below.

6.2.2.1 Proof Obligation for Triggering Where’s My Stuff

Suppose

• M:α1⇒ α2⇒ ·· · ⇒ αm⇒ bool is the locale representing the ontology whose

98 Chapter 6. Mechanising Conflict Diagnosis

value of f (stuff) is greater, i.e. the instantiation of O1 in Figure 4.2, p.49 and

N:β1⇒ β2⇒ ··· ⇒ βn⇒ bool is the locale whose value of f (stuff) is smaller,

i.e. the instantiation of O2;

• fst is instantiated to the term being postulated to create a conflict, which is pos-

tulated to return different values in different ontologies, i.e. the instantiation of

f (stuff);

• pi for 1≤ i≤ m are the parameters of M, where M has m parameters;

• qi for 1≤ i≤ n are the parameters of N, where N has n parameters.

When WMS is invoked, GALILEO automatically generates the following proof obliga-

tion:

∃v. (M(p1, p2, . . . , pm) =⇒ fst > v)∧ (N(q1,q2, . . . ,qn) =⇒ fst ≤ v)∨ (6.1)

(M(p1, p2, . . . , pm) =⇒ fst ≥ v)∧ (N(q1,q2, . . . ,qn) =⇒ fst < v)

where pi for 1 ≤ i ≤ m and qi for 1 ≤ i ≤ n are required to be labelled with the same

name if they refer to the same parameter and with the same name as used when the

locales for the ontologies are originally defined. For instance, suppose M and N share

a common signature containing a function symbol TE, then the antecedents in (6.1)

can be M(te) and N(te) or other variants with te replaced by other names. Internally,

GALILEO renames the values supplied in order to instantiate the locales without in-

ducing inconsistency4. The proof goal has the same shape as the WMS trigger formula

(4.13 - 4.14, 49), except only v is explicitly quantified, because the user instantiates the

conflicting ontologies and the conflicting term, f (stuff) – thus, implicitly their types

as well. Commands for invoking WMS in an example execution are depicted in Figure

6.1. The command wms invokes the WMS repair plan; try_o1 and try_o2 take the

locales representing the ontologies under consideration, i.e. O1 and O2, respectively;

try_fstuff takes the instantiation of f (stuff); and, verify requests the generation

of the proof goal in the shape of (6.1). Although the user guides the evolution process

by indicating the instantiation of f (stuff), the system still needs to identify the actual

instantiation of stuff in order to perform the repair.

6.2.2.2 Proof Obligation for Triggering Inconstancy

Suppose
4Typically, a number is appended to each value.

6.2. Ontological Fault Diagnosis with Isabelle 99

wms

try_o1 "Os1 endev drp vel te pe ke mass g ball sysball"

try_o2 "Os2 endev drp vel te pe ke mass g posn photoat ball sysball"

try_fstuff "te sysball (endev drp)"

verify

Figure 6.1: Example commands for verifying that the given ontologies contain a WMS-

type of fault, where ‘Os1’ and ‘Os2’ are two different locales sharing most signature

symbols.

• M:α1⇒ α2⇒ ·· · ⇒ αm⇒ bool is the locale representing the theoretical ontol-

ogy, which contains the original definition of stuff , i.e. the instantiation of Ox

(Figure 4.5, 60)

• N1:β1⇒ β2⇒ ·· · ⇒ βn1 ⇒ bool and N2:β1⇒ β2⇒ ·· · ⇒ βn2 ⇒ bool are the

locales representing the observational ontologies

• fst is the term being postulated to create a conflict, i.e. the instantiation of

f (stuff)

• pi for 1≤ i≤ m are the parameters of M

• q1
i for 1≤ i≤ n1 are the parameters of N1 and q2

i for 1≤ i≤ n2 are the parameters

of N2

• cond1 is the condition under which the observation in N1 is made

• cond2 is the condition under which the observation in N2 is made

When Inconstancy is invoked, GALILEO automatically generates two proof goals. To

check that the given locales contain a fault similar to that targeted by Inconstancy, the

first goal to be discharged is:

∃c1,c2,v1,v2. (M(p1, p2, . . . , pm) =⇒ c1 6= c2∧ v1 6= v2) ∧ (6.2)

(N1(q1
1,q

1
2, . . . ,q

1
n1) =⇒ fst = c1∧ cond1 = v1) ∧

(N2(q2
1,q

2
2, . . . ,q

2
n2) =⇒ fst = c2∧ cond2 = v2)

where all parameters are required to be labelled with the same name if they refer to

the same parameter. The proof goal has the same shape as the Inconstancy trigger

100 Chapter 6. Mechanising Conflict Diagnosis

inconstancy

try_o1 "Os1 g"

try_o2 "Os2 star1 g accl" "accl star1"

try_o3 "Os3 star2 g accl" "accl star2"

try_fstuff "g"

verify

Figure 6.2: Example commands for verifying that the given ontologies contain an

Inconstancy-type of faultwhere ‘Os1’, ‘Os2’ and ‘Os3’ are three different locales.

formula (4.46 - 4.48, p.60), except that the original definition of stuff is not proved to

be derivable from the theoretical ontology here, which is done in a separate step (§6.4).

The reason is that we do not know how stuff is instantiated at this point. So, this is

only part of the diagnosis process for Inconstancy; the diagnosis continues once the

instantiation of stuff is chosen. Only c1, c2, v1, and v2 are explicitly quantified here, as

the user supplies the ground instantiations of Ox, Oy,1(v(b1) =τ′′′ v1), Oy,2(v(b2) =τ′′′

v2), Oz, and f (stuff). Commands for invoking Inconstancy in an example execution

are depicted in Figure 6.2. The command inconstancy invokes the Inconstancy repair

plan; try_o1 takes the locale representing the theoretical ontology; try_o2 X Y and

try_o3 X Y capture the locales representing the ontologies (X) and their respective

condition vectors (Y); try_fstuff takes the instantiation of f (stuff); and, verify

requests the generation of the proof goal (6.2). Similar to WMS, although the user

guides the evolution process by indicating the instantiation of f (stuff), the system still

needs to identify the specific instantiation of stuff in order to perform the repair.

6.2.2.3 Proof Obligation for Triggering Reidealisation

Suppose

• M:α1 ⇒ α2 ⇒ ··· ⇒ αm ⇒ bool and N :β1 ⇒ β2 ⇒ ··· ⇒ βn ⇒ bool are the

instantiations of O1 and O2 in Figure 4.3, p.54, respectively

• fst is the term being postulated to create a conflict, i.e. the instantiation of

f (stuff)

• pi for 1≤ i≤ m are the parameters of M

• qi for 1≤ i≤ n are the parameters of N

6.2. Ontological Fault Diagnosis with Isabelle 101

reidealisation

try_o1 "Os1 pluto kuiperbelt"

try_o2 "Os2 pluto plutinoa kuiperbelt coorda"

try_fstuff "ClearNeighbour pluto" "True"

try_type "DPlanet"

verify

Figure 6.3: Example commands for verifying that the given ontologies contain a

Reidealisation-type of fault, where ‘Os1’ and ‘Os2’ are three different locales and

‘DPlanet’ is a type.

When Reidealisation is invoked, GALILEO automatically generates the following proof

obligation:

∃v. (M(p1, p2, . . . , pm) =⇒ fst 6= v)∧ (N(q1,q2, . . . ,qn) =⇒ fst = v) (6.3)

where, similar to the previous repair plans, pi for 1≤ i≤m and qi for 1≤ i≤ n are re-

quired to be labelled with the same name if they refer to the same parameter. The proof

goal has the same shape as the Reidealisation trigger formula (4.31 - 4.33, p.54), except

that only v is explicitly quantified, because the instantiations of the ontology variables

and f (stuff) are supplied. Further, the value of f (stuff) if stuff was to take the type τ2

is not yet checked – it is done after the instantiation of stuff is identified. Commands

for invoking Reidealisation in an example execution are depicted in Figure 6.3. The

command reidealisation invokes the Reidealisation repair plan; try_o1 and o_2

take the locales representing the theoretical and sensory ontologies; try_fstuff takes

the instantiation of f (stuff); try_type takes the instantiation of τ2 as an argument;

and, verify requests the generation of the proof goal in the shape of (6.3). Similar to

WMS and Inconstancy, although the user guides the evolution process by indicating the

instantiation of f (stuff), the system needs to discover the specific instantiation of stuff

in order to perform the repair.

6.2.2.4 Proof Obligation for Triggering Unite

Suppose

• M:α1⇒ α2⇒ ··· ⇒ αm⇒ bool is the instantiation of O (Figure 4.6, p.64) stuff

102 Chapter 6. Mechanising Conflict Diagnosis

• MExt1:α1⇒ α2⇒ ··· ⇒ αm⇒ bool is a consistent extension of M in which the

equality between stuff 1 and stuff 2 is provable

• MExt2:α1⇒ α2⇒ ··· ⇒ αm⇒ bool is a consistent extension of M in which the

inequality between stuff 1 and stuff 2 is provable

• fst1 and fst2 are the instantiations of f (stuff 1) and f (stuff 2), respectively

• p1
i for 1≤ i≤ m are the parameters of MExt1

• p2
i for 1≤ i≤ m are the parameters of MExt2

When Unite is invoked, GALILEO automatically generates the following proof obliga-

tion:

(MExt1(p1
1, p1

2, . . . , p1
m) =⇒ fst1 = fst2)∧ (6.4)

(MExt2(p2
1, p2

2, . . . , p2
m) =⇒ fst1 6= fst2)

where, similar to the previous repair plans, all parameters are recommended to be

normalised by the user so that parameters that bind to the same symbol are indicated by

the same label. The proof goal here only verifies the unprovability of fst1 = fst2 in O1

by checking whether fst1 = fst2 is provable in one consistent extension and fst1 6= fst2
is provable in another consistent extension. We do not know how stuff is instantiated

at this point, so we cannot proceed to check that the two stuffs have the same defining

property. So, this is only a part of the diagnosis process for Unite; once the instantiation

of stuff is chosen, the diagnosis continues (§6.4). Commands for invoking Unite in

an example execution are depicted in Figure 6.4. The command unite invokes the

Unite repair plan; try_o1 and o_2 take the locales representing the theoretical and

sensory ontologies as input; try_o1ext1 and try_o1ext2 each takes an extension of

the input locale to try_o1 as input; try_defprop takes the instantiations of dp and τ

in (4.64, p.64) as arguments; try_fstuff1 and try_fstuff2 take the instantiations

of f (stuff 1) and f (stuff 2), respectively; and, verify requests the generation of the

proof goal (6.4).

6.2.2.5 Proof Obligation for Triggering Spectrum

Suppose

6.2. Ontological Fault Diagnosis with Isabelle 103

unite

try_o1 "Os1 morningstar simsighting"

try_o2 "Os2 morningstar eveningstar orbit window position"

try_o1ext1 "Os1Ext1 morningstar eveningstar simsighting"

try_o1ext2 "Os1Ext2 morningstar eveningstar simsighting"

try_defprop "orbit" "CelestialObj"

try_fstuff1 "morningstar"

try_fstuff2 "eveningstar"

verify

Figure 6.4: Example commands for verifying that the given ontologies contain a Unite-

type of fault, where ‘Os1’ and ‘Os2’ are two different locales; ‘Os1Ext1’ and ‘Os1Ext1’

are two different extensions of ‘Os1’.

• M:α1⇒ α2⇒ ··· ⇒ αm⇒ bool is the locale in which neither the equality nor

the inequality between the two stuff s can be proved, i.e. the instantiation of O1

(Figure 4.7, p.68)

• Ob js is the instantiations of Q

• Preds is the instantiations of P

When Spectrum is invoked, GALILEO automatically generates the following proof obli-

gation:

M(p1, p2, . . . , pm) =⇒ card(Ob js)> 1∧ card(Preds)> 1∧ (6.5)

∀o ∈ Ob js.∃!p ∈ Preds.p(o)

where card(S) returns the cardinality of the set S and, similar to all previous repair

plans, are required to be labelled with the same name if they refer to the same pa-

rameter. The proof goal has the exact same shape as the Spectrum trigger formula

(4.75, p.68). Commands for invoking Spectrum in an example execution are depicted

in Figure 6.5. The command spectrum invokes the Spectrum repair plan; try_o takes

the locale representing the ontology under consideration as input; try_p takes the set

containing all unary predicates as input; and try_p takes the set containing all objects

as input; verify requests the generation of the proof goal (6.5).

104 Chapter 6. Mechanising Conflict Diagnosis

spectrum

try_o "Os1 isred isblue isgreen ball1 ball2 ball3 ball4 obs relatedpreds"

try_p "relatedpreds"

try_q "obs"

verify

Figure 6.5: Example commands for verifying that the given ontologies contain a

Spectrum-type of fault, where ‘Os1’ is a locale.

wms

try_o1 "Os1 endev drp vel te pe ke mass g ball sysball"

try_o2 "Os2 endev drp vel te pe ke mass g posn photoat ball sysball"

try_fstuff "te sysball (endev drp)"

verify

apply (intro exI [where x="0"])

using Os1.lem1 Os2.lem1

diagnose

Figure 6.6: Example commands for diagnosing ontologies for a WMS-type of fault,

where ‘Os1 and ‘Os2 are two different locales sharing most signature symbols, each

with a lemma called ‘lem1’.

6.2.3 Meta-Level Reasoning

The process of diagnosis involves both verifying that the relevant trigger formula is

a theorem of the ontologies under consideration and identifying the instantiations of

all variables in the trigger formula, e.g., f , stuff , and so forth. As already discussed,

the generation of the proof goal is done by the system and the user is asked to guide

the search of a proof. Once a proof is found, the system then identifies plausible

instantiations of the variables in the corresponding trigger formula upon the diagnose

command. An example execution of WMS up to diagnosis, based on Figure 6.1, is

depicted in Figure 6.6.

The WMS, Inconstancy and Reidealisation ontology repair plans detect and repair con-

flicts among two or more ontologies. They consider terms of the form f (stuff), where

both f and stuff are polymorphic, higher-order variables. A conflict arises when the

value of f (stuff) is unexpectedly different in the ontologies and each of the repair plans

6.2. Ontological Fault Diagnosis with Isabelle 105

proposes a unique repair to resolve the detected conflict. The value of stuff is central

to the repair process. The WMS repair plan splits stuff into visible, invisible and total

stuff, so that f (stuff) refers to the value of f on the visible stuff in one ontology and

total stuff in another. The Inconstancy repair plan identifies a new term on which stuff

depends by observing an unexpected variation in f (stuff). It adds the identified depen-

dency to stuff as a new argument, so that the value of stuff varies with the value of it.

The Reidealisation repair plan changes the type of stuff to one for which there already

is an existing law such that the detected contradiction on the value of f (stuff) can be

circumvented.

6.2.3.1 Identifying Variable Instantiations

Unlike Spectrum, the triggering of each WMS, Inconstancy, Reidealisation and Unite is

not straightforward: f (stuff) needs to be instantiated by higher-order matching, which,

although it is a decidable problem5 (Stirling, 2009), f and stuff are higher-order poly-

morphic variables, yielding potentially an unmanageable number of substitutions. We

first describe the approach to discovering instantiations of variables in trigger formulae

and discuss the mechanism designed to prune the search space to a manageable size in

§6.3.

In Isabelle, there are three types of variables: bound, free and schematic variables.

Bound variables, e.g., ∀x.x = x, and free variables, e.g., x = x, are fixed and cannot

be instantiated by substitutions. On the contrary, schematic variables, e.g., ?x =?x,

can be instantiated by the proof process. Since our task is to identify instantiations of

f , stuff and others, all these variables are expressed as schematic variables. For each

ORP, the generated proof goal is matched against a predefined pattern, as outlined in

Table 6.1. The schematic variables Di are not important because we are only interested

in the instantiations of variables that contribute to the repair of the ontologies, e.g., f ,

stuff , O1, O2, etc. Also, some variables are repeated in the proof goal, e.g., f (stuff) is

mentioned four times and both O1 and O2 twice in the proof goal for WMS (6.1).

In order for the approach described so far to behave as intended, all schematic vari-

ables in the patterns presented in Table 6.1 are assumed to be polymorphic. However,

matching ? f (?stuff) against a sub-expression involving a function hits the most dif-

ficult aspect of higher-order unification, because the unification process creates new

functions to solve the constraint. If both f and stuff are polymorphic, then higher-order

5At least up to 4th-order matching, which is more than we need in examples to date.

106 Chapter 6. Mechanising Conflict Diagnosis

ORP name Pattern for higher-order matching

WMS ∃v. (?O1 =⇒?D1(? f (?stuff),v) ∧ ?O2⇒?D2(?D3,v)) ∨
(?O1 =⇒?D5(D6,v)) ∧ (?O2⇒?D7(?D8,v))

Inconstancy ∃c1,c2,v1,v2. (?O1 =⇒ c1 6= c2∧ v1 6= v2) ∧
(?O2 =⇒? f (?stuff) = c1 ∧ ?v(?b1) = v1) ∧
(?O3 =⇒?D1 = c2 ∧ ?D2 = v2)

Reidealisation (?O1 =⇒? f (?stuff) 6=?v) ∧ (?O2 =⇒?D1)

Unite (?O1 =⇒?D1(?stuff 1) =?D2(?stuff 2))∧ (?O2 =⇒?D3 6=?D4) ∧
(?O3 =⇒?D5 =?D6)

Spectrum ?O1 =⇒ card(?Q)> 1∧ card(?P)> 1∧∀o ∈?D1.∃!p ∈?D2.p(o)

Table 6.1: Patterns for discovering instantiations of variables in trigger formulae, where

card(S) returns the cardinality of the set S; schematic variables ?Di are don’t-cares, i.e.

their values are not important. Each pattern is designed to be matched against one of

(6.1), (6.2), (6.3), (6.4) and (6.5).

unification can, potentially, instantiate the type variable to a function type, resulting in

a search space that is too large.

In practice, even both ? f and ?stuff have schematic types, e.g., ?α and ?β, respectively,

Isabelle does not instantiate schematic type variables to function types during type

unification. In other words, Isabelle prevents transforming a schematic type variable

into one of some function type, so the arities of schematic variables are fixed for the

purpose of higher-order unification. For instance, given the pattern (? f :?α⇒?β)?stuff ,

it will fail to match against the term (F :R ⇒ R ⇒ R)(c), because ?β will not be

transformed into a function type. With this restriction in the automation, the search

space can be better controlled and managed in most practical uses. However, with our

unusual use of Isabelle, we want stuff to be both variadic and higher-order. Without

modifying Isabelle’s unification algorithm, GALILEO dynamically generates a library

of type templates for each pattern in Table 6.1, depending on the values of relevant

parameters, and executes higher-order matching based on each generated template. If

we fix the return type of stuff to a constant, then giving stuff a maximum arity of 2 and a

maximum order of 3 (Definition 2, p.31) yields 183 templates, in which case GALILEO

runs matching on the relevant pattern over 183 iterations and stores all substitutions

returned. If we allow stuff to return first-order unary functions as well, then there are

6.3. Search Space Control 107

((?O1:bool) =⇒ (? f :?α⇒?β)(?stuff :?α) 6= (?v:?β)) ∧ ((?O2:bool) =⇒ (?D1:bool))

((?O1:bool) =⇒ (? f :(?α1⇒?α2)⇒?β)(?stuff :(?α1⇒ α2)) 6= (?v:?β)) ∧
((?O2:bool) =⇒ (?D1:bool))

((?O1:bool) =⇒ (? f :(?α1⇒?α2)⇒ (?β1⇒?β2))(?stuff :(?α1⇒ α2)) 6=
(?v:(?β1⇒?β2))) ∧ ((?O2:bool) =⇒ (?D1:bool))

Table 6.2: Three example typed patterns for discovering instantiations of variables for

Reidealisation.

366 templates, doubling the previous figure. Three of the 366 typed patterns used for

Reidealisation are shown in Table 6.2.

6.3 Search Space Control

As mentioned, because both f and stuff are higher-order and polymorphic, there are a

vast number of possible instantiations making the unconstrained procedure impractical.

Even if the depth of the unification is limited to a small value, e.g., three, a maximum

arity of stuff of two, and a maximum order of stuff of three, the matching procedure

still fails to terminate in many test case studies. In order to reduce the number of

possible instantiations to a manageable level, we have designed a set of heuristic filters.

These filters eliminate physically meaningless instantiations in reference to the Physics

context. The size of the filtered set of instantiations is always significantly reduced by

several orders of magnitude, while retaining the instantiation that corresponds to the

historically accurate and plausible repairs.

6.3.1 Physical Meaningfulness

A physically meaningful instantiation of stuff is one that is interpretable within the

Physics domain. We argue that not all logically valid or well-formed expressions are

interpretable, e.g., λx.x, as it is difficult to associate the identity function with a signif-

icant and established Physical concept. Perhaps, an abstract or philosophical notion of

self or reflection could be a candidate. Nonetheless, an expression such as λx.λy.λz.y(z)

is no doubt even more difficult to translate into the physical world.

Because stuff represents the concept that is responsible for producing the detected

108 Chapter 6. Mechanising Conflict Diagnosis

conflict, limiting the value that stuff can take is vital to reducing the huge number

of possible instantiations. Much of the focus on analysing meaningfulness is placed

on the instantiation of stuff , as we need to ensure that it makes sense to repair the

instantiation. For instance, if stuff was instantiated to the identity function, applying

the WMS repair to it, i.e. splitting the identity function into visible and invisible parts,

does not allow for a physical interpretation.

6.3.2 Meaningless Instantiation Heuristics

To design appropriate heuristics for filtering out meaningless instantiations, we identify

several classes of shapes that undesirable instantiations may exhibit.

Instantiations containing the identity function We argue that repairing an identity

function, i.e. λx. x, is a physically uninterpretable result, so we prohibit stuff from

being instantiated to it; this is based on the interpretation that an identity function is

seen as a form of reflection, which is why repairing the notion of reflection would be

uninterpretable. However, f can be instantiated to the identity function, as we accept

the case in which stuff is instantiated to the whole of the target term. We should also

consider the case in which the identity function appears as an argument of some func-

tion, e.g., λx.x(λx.x). None of the case studies are modelled with the identity function

being an argument to some function and we cannot imagine the need for that. So, if

f or stuff turns out to be instantiated to a term that takes the identity function as an

argument, then it must be generated by the unification algorithm. The task of the unifi-

cation algorithm is, of course, to return logically valid unifiers, without taking physical

meaning into consideration. Thus, under the assumption that the original encoding

does not apply a function to the identity function, neither f nor stuff should be instan-

tiated to a term in which the identity function appears as an argument of some function.

Hence, the identity function should, therefore, not appear anywhere in the instantiation

of stuff and only not as a proper sub-expression anywhere in the instantiation of f . We

incorporate into GALILEO a heuristic, H1, that rejects all instantiations of the form:

?stuff 7→ . . .(λx.x) . . . (6.6)

and

? f 7→ g(λx.x) (6.7)

6.3. Search Space Control 109

Instantiations containing schematic variables Neither the instantiations of f nor

stuff may contain schematic variables in themselves. Schematic variables represent

new functions generated by the unification algorithm, which essentially reduces the

commitment to the current model of the domain of discourse. Speculating that a new

concept exists should not be the effect of the inference, but the result of performing

ontology repair by adhering to the appropriate repair rules. So, we design a heuristic,

H2, to prune away all instantiations of the form:

?stuff 7→ . . .?g . . . (6.8)

and

? f 7→ . . .?g . . . (6.9)

Instantiations not containing free variables For an instantiation of ?stuff to be

regarded as being meaningful, it must contain at least one free variable, because a free

variable in Isabelle is non-unifiable and represents a concept in the model. It is also

important to ensure that the instantiation of ?stuff contains at least a term representing

a concept, or else repairing an expression without a concept is meaningless. So, we

design a heuristic, H3, to only accept all instantiations of the form:

?stuff 7→ . . .k . . . (6.10)

where k is a free variable.

Instantiations with an abstraction as head function symbol If stuff is instantiated

to a function, we prefer to reject instantiations where the head function symbol is

abstracted. Typically, the head function symbol is a constant defined in the ontology,

so itself represents a concept in the ontology. Thus, we design a heuristic, H4, to filter

out all instantiations of the form:

?stuff 7→ λx. . . .x(g) . . . (6.11)

6.3.3 Effectiveness of Heuristics

We briefly discuss the success of these heuristics here. Detailed results are presented

in Chapter 8.

The diagnosis process has the ability of producing a collection of plausible diagnoses

and higher-order matching ? f (?stuff) against an appropriate expression allows creative

110 Chapter 6. Mechanising Conflict Diagnosis

diagnoses to be produced. In Section §8.3, we explain alternate theories that are phys-

ically meaningful and creative. Suppose we match the matter ? f (?stuff) against the

term

TE(Ball,Start(Drop)). (6.12)

If the type of ?stuff is ?α, then the unification algorithm does not transform ?stuff

into a function and effectively applies first-order unification. The resulting unique

instantiations are:

? f 7→ λa.a, ?stuff 7→ TE(Ball,End(Drop)) (6.13)

? f 7→ TE(Ball), ?stuff 7→ End(Drop) (6.14)

? f 7→ λa.TE(Ball,End(a)), ?stuff 7→ Drop (6.15)

? f 7→ λa.TE(a,End(Drop)), ?stuff 7→ Ball (6.16)

The heuristics permit all matches to pass through and all can be given physically mean-

ingful interpretations.

Suppose we have ?stuff :?α⇒?β and use Isabelle’s default parameters for unification;

we get over 1,800 matches including:

? f 7→ λa.TE((a(aBall)),End(Drop)), ?stuff 7→ λa.a (6.17)

? f 7→ λa.TE((aBall),End(Drop)), ?stuff 7→ λa.a (6.18)

? f 7→ λa.TE((a(? f 2(a))),End(Drop)), ?stuff 7→ λa.Ball (6.19)

? f 7→ λa.a(End(Drop)), ?stuff 7→ TE(Ball) (6.20)

? f 7→ λa.a(Drop), ?stuff 7→ λa.TE(Ball,(End(a)) (6.21)

? f 7→ λa.a(Ball), ?stuff 7→ λa.TE(a,End(Drop)) (6.22)

? f 7→ λa.TE(Ball,a(Drop)), ?stuff 7→ λa.End (6.23)

H1 rejects both (6.17) and (6.18) because they instantiate ?stuff to the identity function;

H2 rejects (6.19) for having a schematic-variable, ? f 2, in the instantiation of f . The

heuristics filters remove most of the 1,800 matches, leaving only (6.20 - 6.23) and all

can be given physically meaningful interpretations.

Suppose we have ?stuff :?α⇒?β⇒?γ, making ?stuff a ternary function. We get over

3,700 matches, but the heuristics H1 - H4 successfully prune away all matches except

for (6.24), which emulates the historically accurate solution.

? f := λa.a(Ball,End(Drop)), ?stuff := TE (6.24)

The physical meanings of all unfiltered matches are discussed in Chapter 8.

6.4. Post-Identification Diagnosis 111

6.4 Post-Identification Diagnosis

As described in §6.2.2.2, §6.2.2.3 and §6.2.2.4, the diagnosis procedures continue after

the identification of the instantiation of stuff for Inconstancy, Reidealisation and Unite.

For Inconstancy, we need to derive the value of stuff from O1 (4.46, p.60), so it is

essential to first obtain the instantiation of stuff . The user selects a diagnosis using the

command try_diagnosis ID V, where ID is the diagnosis ID shown in the output

and V is the value stuff is conjectured to take. The subsequent proof obligation is

M(p1, p2, . . . , pm) =⇒ st =V (6.25)

where st is the instantiation of stuff according to the selected diagnosis and V is the

value of the V argument supplied by the user.

Reidealisation requires to check that f (stuff :τ2) gives consistent values in both O1

and O2 (4.33, p.54). This can only be achieved after having identified the instantia-

tion of stuff as well. Without knowing the instantiation of stuff , we cannot produce

quasi-copies of O1 and O2 up to stuff in O1 and stuff ′ in O2, i.e. O1
′ and O2

′ in

Reidealisation’s trigger formulae. The user selects a diagnosis using the command

try_diagnosis ID, where ID is the diagnosis ID shown in the output. The subse-

quent proof obligation, in the shape of (4.33), is

∃v. M′(p1
′, p2

′, . . . , pm
′) =⇒ st′ = v∧N′(q1

′,q2
′, . . . ,qm

′) =⇒ st′ = v (6.26)

where st′ is the instantiation of stuff ′ based on the diagnosis selected and M′ is the

quasi-copy of M up to st in M and st′ in M′. Similarly for N′.

Finally, we need the instantiation of stuff in order to verify that the defining prop-

erty of the two stuffs are indeed the same in order to completely trigger Unite (4.65,

p.64). Similar to Reidealisation, the user selects a diagnosis using the command

try_diagnosis ID, where ID is the diagnosis ID shown in the output. The subse-

quent proof obligation, in the shape of (4.65), is

∃v. M(p1, p2, . . . , pm) =⇒ d(st1) = d(st2) =⇒ st′ = v (6.27)

where M is the instantiation of O1; d is the instantiation of dp; and, st1 and st2 are the

instantiations of stuff 1 and stuff 2, respectively.

112 Chapter 6. Mechanising Conflict Diagnosis

6.5 Summary

We have realised a powerful form of ontological conflict diagnosis by formulating

ontologies as locales. Locales allow for a natural representation of ontologies as con-

texts, which enables reasoning across multiple instances. Furthermore, conflict di-

agnosis in GALILEO involves the discovery of the culprit of the detected conflict by

utilising higher-order matching, a special case of higher-order unification. Applying

a polymorphic variable ? f to another, ?stuff , hits the most difficult aspect of higher-

order unification, so we have designed heuristics for preserving only the physically

meaningful instantiations. These heuristics are successful in dramatically reducing the

options while keeping the desirable ones.

Chapter 7

Mechanising Ontology Repair

7.1 Introduction

Automating the repair of ontologies is a very challenging problem in general, as it

involves identifying the axioms and signature elements that require repair and applying

appropriate repair operations. The ontology repair technique described in this chapter

has been designed to fully automate the repair of axioms and signature that may give

rise to the detected ontological fault.

7.2 Ontology Repair in GALILEO

For each ORP, GALILEO performs repair on ontologies by executing the corresponding

repair rules. This involves identifying the appropriate elements that require repair and

performing the repair on the signature and/or axioms. It is clear from Chapter 4 that

the ORPs have vastly different repair behaviours, e.g., WMS introduces a new symbol

and a new definition in one ontology whilst renaming occurrences of a certain symbol

in another ontology, whereas Spectrum turns unary predicates in an ontology into the

return values of a new function. Thus, the main function for performing repair that

is implemented in GALILEO is overloaded to behave differently upon the execution of

different ORPs. In all cases, a different approach is required for repairing the signature

and/or axioms.

113

114 Chapter 7. Mechanising Ontology Repair

7.2.1 Comparison with Axiom-Pinpointing based Repairs

In the belief-revision (Gärdenfors and Rott, 1995) and the DL (Kalyanpur, 2006; Pe-

naloza and Sertkaya, 2009) literatures, simple repair operations are considered suf-

ficient to remove logical contradictions. A common operation is axiom retraction,

which is to explicitly delete an axiom from an ontology or knowledge base. Typically,

the sufficiency of such simple repairs, which is relatively limited, is achieved by the

reasonably complex diagnosis machinery used for the discovery of candidate axioms

for repair.

The search for axioms that, together, have the given consequence is commonly called

axiom pinpointing in the belief-revision and DL literatures, where the end result could

be Minimal Unsatisfiability Preserving Sub-TBoxes (MUPSs). Axiom pinpointing is

typically used for generating justifications that assist to explain the cause of a given

fault in ontologies, which helps the user repair the fault later by focusing the manip-

ulation on only those axioms. Typically, axiom pinpointing in DL-related works is

implemented by either the glass-box or black-box approaches, where the former ap-

proach involves extending the reasoning algorithm by tracing the axioms used in the

derivation of the given consequence whilst the latter queries a reasoner whether a cer-

tain subset of the axioms has the given consequence. Axiom pinpointing is inherently

difficult, as a given consequence may have exponentially many justifications w.r.t. the

size of the TBox (Baader et al., 2007; Penaloza and Sertkaya, 2009). Because axiom

pinpointing specifically discovers a subset of candidate axioms, the required repair op-

eration can be relatively simple, e.g., deleting an axiom from a MUPS is sufficient to

remove incoherency.

Unlike the typical diagnosis done via axiom-pinpointing as described in the belief re-

vision and DL literatures, GALILEO does not diagnose ontological faults by examining

axioms but instead by comparing theorems that together induce a fault (Chapter 6).

We still examine axioms, however, but this is performed during repair and not during

diagnosis. We do not find axioms that have the given consequence and then repair

them, which is what typical applications of axiom-pinpointing achieve, but instead we

transform relevant axioms according to repair operations that are designed to break

the derivation of the detected fault. Thanks to the way each ORP is designed to limit

the search space by outlining the specific characteristics of the proofs and theorems

that derive a certain fault in ontologies, our ontology evolution process bypasses the

need for tackling axiom pinpointing. Thus, our approach to ontology evolution is com-

7.2. Ontology Repair in GALILEO 115

pletely novel, as the entire process does not involve tracing axioms used in inference

and manipulating those axioms, but instead we look at patterns of proof of under- and

over-specification and transform axioms that need to be changed based on the sug-

gested problematic concept. Because we work in HOL and the ORPs target various

kinds of ontological faults, our repair operations are substantially more sophisticated

than those adopted in the related literature, e.g., splitting a concept into parts, adding a

new dependency to a concept, reassigning the type of a concept, and so forth.

Each ORP requires axioms containing certain terms to be identified, e.g., parts of the re-

pair rules of WMS (Figure 4.2, p.49) and Inconstancy (Figure 4.5, p.60) require axioms

containing occurrences of the instantiation of stuff to be identified and then replace

those occurrences by a new term. There are a number of techniques for finding such

axioms, e.g., syntactic analysis. In GALILEO, we utilise Isabelle’s implementation of

higher-order unification for this task. As we will illustrate, higher-order unification is

particularly natural for identifying axioms that satisfy relatively weak constraints and

constructing the repaired formulae. To employ higher-order unification here, we must

ensure that the deconstruction of syntax by pattern matching is not disrupted by object-

level variables. Suppose we were checking whether a constant ball occurs within an

axiom containing a variable X. Because X is a variable, higher-order unification could,

theoretically, instantiate it to ball, giving a false-positive result. Thus, we must ensure

that object-level variables are not instantiated to terms in a pattern. More specifically,

we encode patterns using meta-variables and constants, so that the variables used to

formulate a pattern are unifiable but those used to formulate object-level sentences are

not. That is, we employ higher-order matching rather than unification.

Our technique involves formulating the pattern used for matching against the signa-

ture and axioms in such a way that a meta-variable is applied to terms that are to be

identified from the axioms, if they exist. Suppose we check whether the instantiation

of stuff occurs within an axiom, which is required by both WMS and Inconstancy, as

already mentioned. Suppose stuff is instantiated to Ball of type Ob j. For instance, if

the axiom under consideration is

Mass(Ball) = 10 (7.1)

where Mass:Ob j 7→ R, then the pattern for checking whether Ball occurs within it is

simply

?t(Ball) (7.2)

116 Chapter 7. Mechanising Ontology Repair

where ?t is a meta variable of type Ob j 7→?α with ?α being a schematic type variable.

There are two resulting matches

?t 7→ λx:R.Mass(Ball) = 0 (7.3)

?t 7→ λx:R.Mass(x) = 0 (7.4)

In (7.3), the meta-variable ?t is instantiated to a constant function, which would be

returned even if Ball did not occur within (7.1), so (7.3) is not what we want. The

meta-variable ?t in (7.4) is instantiated to an unary function with the occurrence of

Ball λ-abstracted, which is the relevant substitution for our application.

The method described can be naturally generalised to handle more complex scenarios

involving more relaxed criteria. For instance, Spectrum requires identifying whether

p(q) where p∈P and q∈Q occurs within an axiom (4.77, p.68), where P is a set of all

unary predicates and Q is a set of objects (Figure 4.7, p.68). Note that the axioms that

need to be identified here are those containing occurrences of some p applied to some

q and not separate occurrences of p and q. Suppose P contains three unary predicates:

Red, Blue and Green, each of type Ob j 7→ bool, i.e. P := {Red,Blue,Green}, and

Q contains two objects: Ball and Car, each of type Ob j, i.e. Q := {Ball,Car}. For

instance, suppose the axiom under consideration is

Red(Car)−→ Expensive(Car) (7.5)

Because our interest is in checking whether any element of P is applied to any element

of Q , we match

?t(Red,Blue,Green,Ball,Car) (7.6)

against the axiom, where ?t is of type (Ob j 7→ bool) 7→ (Ob j 7→ bool) 7→ Ob j 7→
Ob j 7→ Ob j 7→?α, taking all elements of P and Q as arguments. There are 8 resulting

matches

?t 7→ λa,b,c,d,e. a(e)−→ Expensive(e) (7.7)

?t 7→ λa,b,c,d,e. a(Car)−→ Expensive(e) (7.8)

?t 7→ λa,b,c,d,e. Red(e)−→ Expensive(e) (7.9)

?t 7→ λa,b,c,d,e. Red(Car)−→ Expensive(e) (7.10)

?t 7→ λa,b,c,d,e. a(e)−→ Expensive(Car) (7.11)

?t 7→ λa,b,c,d,e. Red(e)−→ Expensive(Car) (7.12)

?t 7→ λa,b,c,d,e. Red(Car)−→ Expensive(Car) (7.13)

7.2. Ontology Repair in GALILEO 117

Although there are numerous matches, only (7.7) and (7.11) indicate that some ele-

ment of P is applied to some element of Q in (7.5). However, (7.11) is the preferred

match because (7.7) does not only have the two terms in the antecedent of the axiom

abstracted, but also the argument of Expensive abstracted as well.

To decide that the set of matches contains a relevant match, i.e. one that is returned

only if the axiom contains an occurrence of a certain term, we search through the term

instantiated to ?t in each match. To do this, we analyse the positions of the λ-abstracted

variables in the target term using an implementation of Huet’s notion of zippers (Huet,

1997) which represent trees from the perspective of a node. Huet’s zippers provide

a practical and efficient way to navigate around terms while preserving information

about the context. The ORPs require various ways of analysing the target term. For

instance, in WMS, we need to ensure that the λ-abstracted variable appears in the body

of the expression. To this end, the focus of the zipper is moved to every possible

location in search of the corresponding λ-abstracted variable. In comparison, Spectrum

requires us to ensure that p ∈ P occurs only if it is applied to q ∈ Q , so the focus of

a zipper is moved to each location where an element of P is abstracted out and check

whether the bottom right leaf is an abstraction of an element of Q . In addition, the

reverse is applied to ensure that q ∈ P only occurs as an argument of p ∈ P . Both

cases are required to be satisfied in order to conclude that an axiom is suitable for a

Spectrum-type repair.

7.2.2 Object-Level Repair

Repairing ontologies according to the various ORPs essentially requires locales to be

created internally. Even though the result could theoretically be achieved by changing

the attributes of an existing locale, it is not robust in practice, because, e.g., tinkering

with the current internal state of a theory may cause conflicts within the interactive

environment, Isar. So, throughout the implementation of GALILEO, we adhere by the

principle of maintaining monotonicity in the working theory, i.e. no existing elements

in the working theory are destroyed as a result of executing a GALILEO command, and

old, unwanted locales are unlinked from the repaired network.

The effects of ontology repair can be classified into two main classes: signature changes

and axiom manipulations.

118 Chapter 7. Mechanising Ontology Repair

7.2.2.1 Signature Changes

For the addition of new signature elements, the locale representing the new, repaired

ontology receives new locale parameters of the appropriate types; for instance, if a new

symbol labelled s of type R is introduced into the signature, then the set of parameters

of the locale representing the new ontology is extended with an element containing

the label s and type R. This corresponds to inserting values to the operational part

of the specification of a locale in Isar, which is mostly list of the locale parameters.

Similarly, if certain signature elements should be retracted from an ontology, then the

parameters corresponding to the symbols under consideration are removed from the

set of parameters for the construction of the new locale.

7.2.2.2 Axiom Manipulations

The logical part of the specification of a locale define the properties on its parameters.

As described in §7.2.1, our approach to axiom pinpointing is capable of selecting a

match containing the most relevant instantiation of ?t, i.e. one that accurately indicates

that an axiom indeed contains occurrences of a certain term. Even if the term does not

occur in an axiom, ?t can be instantiated to a constant function. Thus, the construction

of the axioms of a new locale simply involves β-applying the chosen instantiation to ?t

to appropriate arguments. For instance, in Spectrum, given (7.11), we can repair (7.5)

by applying the Spectrum repair by constructing the following term in the new locale

(λa,b,c,d,e. a(e)−→ Expensive(Car))

(λx.Fx = Red,Blue,Green,Ball,Car)

Here, we apply (λa,b,c,d,e. a(e)−→ Expensive(Car)) to a λ-expression and the last

four arguments of ?t in the pattern (7.6), which is β-reduced to (F(Car) = Red) −→
Expensive(Car), as required.

7.2.3 Repair Propagation

All of the case studies covered are modelled using a modular representation, in which

ontologies depend on other ontologies forming a network of ontologies. As discussed

in §6.2.1, locales may depend on other locales, which allows parameters and axioms to

be imported from other locales, so properties on parameters can, consequently, be im-

plicitly stated. For instance, suppose that a locale M has two parameters p1 and p2 and

7.2. Ontology Repair in GALILEO 119

an axiom p1 = p2 and that a locale L extends from M. Locale L may not necessarily

introduce new parameters, so it can simply instantiate M using two parameters, e.g.,

q1 and q2. Because M is instantiated inside L using q1 and q2, theorems about q1 and

q2 may be proved using the axiom in M. A ramification of having implicit properties

about parameters is that, if the inference for triggering an ORP does not involve ax-

ioms that are local in the target locale, repairing that locale does not necessarily make

sense, as there is no axiom within that locale available for repair. Thus, allowing such

a flexible configuration of ontologies to be given as input introduces the challenge of

managing the area of effect of each individual change performed to a locale.

In GALILEO, the effect of a repair is managed by the Repair Propagator (§5.4, p.75),

which is responsible for spreading repairs to relevant locales. Every repair operation

performed on axioms is propagated to locales from which the current locale extends,

so every axiom that is accessible within the current locale is repaired, including those

that are implicit w.r.t the target locale. Thus, in order to effect the propagation of repair

to axioms, the construction of the repaired network requires an understanding of the

dependencies among at least the original locales.

Because the structure of the repaired network of ontologies should imitate that of the

original network, the construction of the repaired network also involves an analysis of

the dependencies among both the old and new locales. Suppose a locale L depends on

a locale M in the original configuration. If M receives a kind of repair that involves

inserting a new symbol to the signature of the new M, ν(M), which is essentially equiv-

alent to adding a new parameter to the specification of ν(M), then the new dependency

between L and ν(M) must take this new parameter into account, as the new parameter

must also occur within the signature of the new L, ν(L). Without a new parameter

declared in ν(L), the instantiation of ν(M) within ν(L) would give rise to a type error,

as ν(M) is essentially a m+1 predicate1, where m is the arity of M; as such, ν(L) must

become a l+1 predicate, where l is the arity of L – this is the situation faced by various

ORPs, including WMS, Inconstancy and Spectrum.

A locale is created only if the given repair entails changes to the signature and/or the

axioms of an existing locale, as GALILEO adopts a minimal approach to the creation

of new locales by carrying forward into the repaired network as many of the original

ontologies as possible. So, for instance, if only L requires its signature or axioms to be

changed, then a new locale, ν(L), with a dependency on M, is created. This minimal

1Recall that locales are implemented as predicates in Isabelle (§6.2.1).

120 Chapter 7. Mechanising Ontology Repair

approach is particularly reasonable in the Physics domain, as scientific knowledge is

revised only if it is confronted by conflicting evidence.

7.3 Summary

In contrast to belief revision and ontology evolution in DL, GALILEO implements on-

tology repair without the need for addressing the problem of axiom-pinpointing. The

design of each ORP is intended to specify the signature and axioms that should be ma-

nipulated in order to resolve a certain kind of fault, whilst still retaining much of the

original formalisation. So, the repair operations applied are independent of the infer-

ence of the detected fault. The approach adopted involves matching a pattern that is

specific to an ORP against each axiom in a target ontology. Such an approach is particu-

larly useful for realising ontology repair, because the instantiation of the meta-variable

can be β-applied to some relevant terms, forming the final repaired formula. Because

GALILEO accepts dependent locales as input, we also need to manage the dependen-

cies among the old and new locales in order to cope with changes to signatures and

implicit axioms.

Chapter 8

Results and Evaluation

8.1 Introduction

The purpose of this chapter is to examine the success of the research and provide

evidence to support both the main hypothesis outlined in §1.4, p.5,

A few generic, ontology repair plans can account for a large number of
historical instances of ontology evolution in the Physics domain,

and the subordinate hypothesis,

A few heuristics enable: (i) substantial control over the size of the search
in the space containing solution candidates, which is otherwise unman-
ageable, and (ii) preservation of only physically relevant solutions.

We have applied the implementation of our repair plans to the emulation of a small

but diverse set of Physics case studies. Each ORP was developed based on some de-

velopment case studies, from which key design requirements were derived. As already

mentioned, the case studies presented in Chapter 4 were used for development and

those presented in this chapter were used for evaluation. It is important to base the

evaluation of the repair plans on only the case studies and examples that were not used

to develop the repair plans themselves in order to avoid ‘overfitting’. The evaluation

of the repair plans is therefore focused on applying them to an independent collection

of test case studies1. We assess to what extent they (a) create a new ontology that

escapes the failures diagnosed in the prior ontology and (b) to what extent this emu-

lates the historical process of ontology evolution or any physically plausible repairs.

1Each case study presented in this chapter has been used only for evaluation and not for development

121

122 Chapter 8. Results and Evaluation

In assessing (b), we take a normative stance, i.e., we are not interested in exactly mod-

elling the historical process, with all its idiosyncracies, false starts, coincidences, etc.

Rather, we are content with capturing a ‘rational reconstruction’ of that history. Since

the size of the test set for the repair plans is necessarily measured in tens rather than

hundreds or thousands, a quantitative or statistical analysis is inappropriate. Rather,

our evaluation methodology is based on discursive analysis of a series of case studies.

We look specifically for generality and explanatory power from our repair plans, so we

seek diversity in our test set and emergent abstraction from the uniform processing of

apparently diverse examples.

In the evaluation, we aim to establish answers to the following questions:

• How broad are the capabilities of each ORP and of the system in its entirety?

• What plausible and implausible repairs does the system hypothesise?

• What are the limitations of the system?

Each of the above is central to determining the success of the project. Firstly, a high

generality and potential of scalability of the system means that GALILEO could be

extended to solve problems and situations beyond our current scope. An ability to dis-

cover new interesting knowledge pushes the system beyond the area of mere resolving

ontological conflicts. Finally, limitations of the system should be learnt in order to

investigate its applicability and determine its success or to improve it.

8.2 Evaluation Results

In this section, we present the details of only two of the test case studies used to eval-

uate each repair plan and summaries of others in an attempt to reduce verbosity. For

each case study, we describe in depth the modelling approach, the formalisation, and

the results from applying the most relevant repair plan.

8.2.1 “Where’s My Stuff”

For the WMS repair plan to be triggered (§4.3, p.43), the return value of f (stuff) de-

duced from one ontology must be different from that deduced from another ontology.

Its diagnostic mechanism, therefore, must have assessed a contradiction between the

8.2. Evaluation Results 123

value of f (stuff) and individuated the term stuff in the two input conflicting ontologies.

The repair performed by WMS amends the signature and axioms of the two conflicting

ontologies by redefining the term that instantiates stuff in one ontology and renaming

occurrences of stuff in another.

8.2.1.1 Test Case Study I: The Bouncing-ball Paradox

As described in diSessa (1983), the bouncing-ball paradox involves dropping a ball

above ground and predicting the amount of total energy when it impacts with the

ground. Some Physics students took a (wrong) definition of total energy, which is

defined as the sum of kinetic energy, which is initially zero as it is held stationary, and

potential energy, which is initially greater than zero as the ball is held above ground.

By the law of conservation of energy, the final amount of the total energy can be com-

puted. The observed final amount of total energy is zero, because there is no kinetic

energy and no potential energy due to gravity. The paradox is exactly the contradiction

between the initial and final amounts of total energy of the ball. It is elastic but the

definition of total energy applied is the one for particles without extent.

When a ball is lifted off the ground, work is being done to the ball, increasing its

potential energy. There are various specific types of potential energies, each dependent

on the kind of force that performs the work. In the case of lifting a ball, the external

force works against the force of the earth’s gravity, with which the associated potential

energy is defined as:

Ep = m×g×h (8.1)

where

• Ep is the amount of potential energy of the object relative to its being on the

earth’s surface

• m is the mass of the object

• g is the acceleration due to gravity

• h is the altitude of the object.

To produce a logical formulation, we do replace variables in an equation by function

applications:

∀o, t. PE(o, t) = Mass(o, t)×G×Height(o, t) (8.2)

where

124 Chapter 8. Results and Evaluation

• (PE :: Obj⇒Mom⇒R)(o, t) returns the amount of potential energy of the object

o at a time t relative to its being on the earth’s surface

• (Mass :: Obj⇒Mom⇒ R)(o, t) returns the mass of the object o at a time t2

• (G:R) is the acceleration due to gravity

• (Height :: Obj⇒Mom⇒ R)(o, t) returns the altitude of the object o at a time t.

When the ball is dropped, the ball begins to move toward the ground due to Earth’s

gravitational pull. Assuming the ball is dropped vertically without rotation, its stored

potential energy begins to be converted to kinetic energy due to its motion, which is

given by the equation:

Ek =
1
2

m× v2 (8.3)

where

• Ek is the kinetic energy of the object in consideration due to the motion

• m is the mass of the object

• v is the velocity of the object.

Similar to earlier, we can replace all variables by functions to produce the following

logical formulation:

∀o, t. KE(o, t) =
1
2

Mass(o, t)×Velocity(o, t)2 (8.4)

where

• (KE :: Obj⇒Mom⇒ R)(o, t) returns the amount of kinetic energy of object o at

a time t due to motion

• (Mass :: Obj⇒Mom⇒ R)(o, t) returns the mass of object o at a time t

• (Velocity :: Obj⇒Mom⇒ R)(o, t) returns the velocity of object o at a time t.

2We try to reuse as many of the symbols as possible in our representation. A generic representation
of mass opens up the possibility of faulty or misleading physics, but itself is a strength rather than a
weakness given our application since we do want to experiment with various ontological faults and
repairs.

8.2. Evaluation Results 125

Throughout the fall of the ball, the total amount of energy in it is constant; this is

known as the law of conservation of energy. Energy is always conserved over time.

It may change forms, but the total amount of energy in a closed system is conserved.

Here, we consider the ball alone is a closed system. The law of conservation of energy

can be defined as:
n

∑
i

E0i =
m

∑
i

E fi (8.5)

where E0i is the amount of a particular type of energy out of n many types available at

the beginning of some interval and E fi is the amount of a particular type of energy out

of m many types available at the end of the interval. Since energy may change forms,

n and m are not necessarily the same.

Suppose the experiment was conducted by taking a series of photos of the ball sepa-

rated by a positive constant interval δ:R while it is dropped. The ontologies containing

the theory and instance data are shown in Figure 8.1. Note that Obs, the observation

ontology, uses a different language, as Pos and Photo are not part of the language of

Pred, the predictive theory – they share only Ball, Height and Drop. The function

(Pos:Obj⇒ Photo⇒ 〈R,R〉)(o, p) returns the position of object o according to the

photo object p. The position is represented as a pair of real numbers, where the first

corresponds to the number of units in the x-axis and the second corresponds to the

number of units in the y-axis.

Because we work with factorised representations when reasoning with heterogeneous

ontologies (§5.6, p.85), there must exist an ontology within the factorised representa-

tion of Pred, F (Pred), such that the merge between Obs, the bridging ontology, and

this ontology does not induce inconsistency. Suppose this ontology is Pred f :

Ax(Pred f) ::= {

∀o:Obj, t:Mom.KE(o, t) =
1
2

Mass(o, t)× (8.16)

Velocity(o, t)2,

∀o:Obj, t:Mom.PE(o, t) = Mass(o, t)×G× (8.17)

Height(o, t),

∀t:Mom. TE(Ball, t) = KE(Ball, t)+PE(Ball, t), (8.18)

Mass(Ball,Start(Drop))> 0, (8.19)

G > 0 (8.20)

}

126 Chapter 8. Results and Evaluation

Ax(Pred) ⊇ {

∀o:Obj, t:Mom.KE(o, t) =
1
2

Mass(o, t)× (8.6)

Velocity(o, t)2,

∀o:Obj, t:Mom.PE(o, t) = Mass(o, t)×G× (8.7)

Height(o, t),

∀t:Mom. TE(Ball, t) = KE(Ball, t)+PE(Ball, t), (8.8)

∀o:Obj, t1, t2:Mom. TE(o, t1) = TE(o, t2), (8.9)

Mass(Ball,Start(Drop))> 0, (8.10)

G > 0, (8.11)

Height(Ball,Start(Drop))> 0, (8.12)

Velocity(Ball,Start(Drop)) = 0 (8.13)

}

Ax(Obs) ⊇ {

Pos(Ball,Photo(End(Drop)−1)) = (0,0) (8.14)

Pos(Ball,Photo(End(Drop))) = (0,0) (8.15)

}

where Pred is the predictive ontology containing the theory and initial observations and Obs

contains measurements collected from a series of photographs.

Figure 8.1: Axiomatisation of a heterogeneous representation of the bouncing-ball para-

dox.

8.2. Evaluation Results 127

As the axioms (8.16 - 8.20) make a subset of those of Pred, Pred f is guaranteed to be

a node in F (Pred).

To link the seemingly disparate terms together, the bridging axiom that needs to be

encoded in the bridging ontology, Ob, is:

∀p : Particle, t : Mom,v : R. (8.21)

Obs ` snd(Pos(p,Photo(t−δ)))− snd(Pos(p,Photo(t)))
δ

= v←→

Pred f ` Velocity(p, t) = v

∀p : Particle, t : Mom,v : R. (8.22)

Obs ` snd(Pos(p,Photo(t))) = v←→ Pred f ` Height(p, t) = v

where (8.21) relates the notion of velocity in Pred to the symbols in Obs by stating

that the velocity of an object at some moment t is equal to the difference between the

vertical positions of the object captured in the photographs taken at t and t− 1 many

δ3; (8.22) relates the notion of height in Pred to the symbols in Obs by stating that the

height of an object at some moment t is equal to the vertical positions of the object

captured in the photographs taken at t; and, snd returns the second element in a tuple.

The ontology Pred f refers to an ontology in F (Pred) containing certain axioms (8.16

- 8.20). This assertion enables the inference of properties about concepts that are not

expressible in Obs, e.g., velocity, by using facts expressed in a different language, e.g.,

positions of an object in two photos, and vice versa.

Thus, from these ontologies, the paradox described by diSessa (1983) can be formu-

lated as follows:

Pred ` TE(Ball,End(Drop))> 0 (8.23)

Obs⊕Ob⊕Pred f ` TE(Ball,End(Drop)) = 0. (8.24)

Equation 8.23 is derivable because we can first apply transitivity to obtain two sub-

goals; one can be resolved with (8.9) in Figure 8.1, while the other,

TE(Ball,Start(Drop))> 0, (8.25)

remains open. We can rewrite the LHS of the equation first with (8.8), and then with

3If the full ontology contains an assertion that velocity is the derivative of height, we could work with
approximations instead rather than equality and have . . . snd(Pos(p,Photo(t−δ)))−snd(Pos(p,Photo(t)))

δ
≈ v . . . in

the bridging axiom.

128 Chapter 8. Results and Evaluation

(8.6) and (8.7) to give:

1
2

Mass(Ball,Start(Drop))×Velocity(Ball,Start(Drop))2 +

Mass(Ball,Start(Drop))×G×Height(Ball,Start(Drop))> 0. (8.26)

We can resolve (8.26) by rewriting with (8.10), (8.11), (8.12), and (8.13). The deriva-

tion of (8.24) is similar, as it can be rewritten first with (8.18), and then with (8.16) and

(8.17). We can then rewrite using the encoded bridging axioms (8.21, 8.22) and then

with (8.14, 8.15).

The paradox can trigger the WMS repair plan with the following substitution:

{Pred/O1,Obs⊕Ob⊕Pred f /O2, (8.27)

TE/stuff , λx. x(Ball,End(Drop))/ f ,0/v}

with the type variables instantiated by the following substitution:

{Obj⇒Mom⇒ R/τ, R/τ
′} (8.28)

where the function TE is regarded as stuff , which requires a new definition to be re-

sulted from the repair.

Similar to the previous case study, the substitution (8.27) and (8.28) is only one of

several that can trigger WMS, but it is the most interesting one as it allows the historical

solution to be produced. We will explore alternative repairs that are produced by the

remaining substitutions in §8.3.

To effect the repair we will write the visible stuff as TEpart and invisible stuff as EE, in

anticipation of their intended meanings, where TEpart and EE can be read as the total

energy for particles and the elastic energy for particles with extent, respectively. These

choices instantiate (4.15) to:

∀o:Obj, t:Mom. EE(o, t) = TE(o, t)−TEpart(o, t) (8.29)

which means that the amount of elastic energy is defined as the difference between

the amount of total energy in the object and the amount total energy for particles, i.e.

kinetic and potential energies. The result is to modify the set of axioms in Pred and

augment it with (8.29). All occurrences of TE in the axioms of the combined ontol-

ogy to which O2 is instantiated are renamed to TEpart . Because Pred f is reachable

from other ontologies in F (Pred), the renaming is propagated to every ontology in

8.2. Evaluation Results 129

F (Pred), as expected. The set of axioms resulted from the repair is shown in Fig-

ure 8.2. In the repaired ontologies, the detected contradiction is now resolved:

ν(Pred) ` TE(Ball,End(Drop))> 0

∀o:Obj, t:Mom. EE(o, t) = TE(o, t)−TEpart(o, t)

ν(Obs)⊕ν(Ob)⊕ν(Pred f) ` TEpart(Ball,End(Drop)) = 0.

We could interpret the repaired axioms to mean that the observation values were based

only on the consideration that the ball is a particle without extent, which resulted in

lower than expected values.

Ax(ν(Pred)) ⊇ {

∀t:Mom. EE(Ball, t) = TE(Ball, t)−TEpart(Ball, t),

∀o:Obj, t:Mom.KE(o, t) =
1
2

Mass(o, t)×

Velocity(o, t)2,

∀o:Obj, t:Mom.PE(o, t) = Mass(o, t)×G×

Height(o, t),

∀t:Mom. TE(Ball, t) = KE(Ball, t)+PE(Ball, t),
...

}

Ax(ν(Pred f)) ::= {

∀o:Obj, t:Mom.KE(o, t) =
1
2

Mass(o, t)×

Velocity(o, t)2,

∀o:Obj, t:Mom.PE(o, t) = Mass(o, t)×G×

Height(o, t),

∀t:Mom. TEpart(Ball, t) = KE(Ball, t)+PE(Ball, t),
...

}

Figure 8.2: Summary of the repaired axiomatisation of the bouncing-ball paradox.

Note that the new definition (8.29) quantifies over all entities in the domain, i.e. all pos-

sible objects, but elasticity may not be important to the calculation of energy of certain

130 Chapter 8. Results and Evaluation

kinds of objects. For instance, there are objects that exhibit other kinds of potential en-

ergies, e.g., electric potential energy and chemical potential energy. That said, we can

imagine WMS to perform repair again when a conflict arises from experimenting with

these kinds of objects in a similar fashion, i.e. creates a new definition representing

the corresponding new kind of energy. Nonetheless, WMS has successfully introduced

a new kind of energy, which is what is required in this case study.

The complete details of the Isabelle theory file for the bouncing-ball case study is

shown in B.1.

8.2.1.2 Test Case Study II: Dark Matter

The evidence for dark matter comes from various sources, for instance, from an anomaly

in the orbital velocity of stars in spiral galaxies identified by Rubin et al. (1980). Given

the observed distribution of mass in these galaxies, we can use Newtonian Mechanics

to predict that the orbital velocity of each star should be inversely proportional to the

square root of its distance from the galactic centre (called its radius), i.e.

vo =

√
GM

r
(8.30)

where

• vo is the orbital velocity of the object

• G is the gravitational constant

• M is the mass around which the object is orbiting

• r is the distance between the object and the centre of the mass around which the

object is orbiting.

Note that (8.30) is an approximation of the true orbital velocity where the mass of the

object under consideration is negligible when compared to M. To produce a logical

formulation of (8.30), we replace variables by function applications:

∀o1,o2, t. OrbVel(o1,o2, t) =

√
G×Mass(o2, t)
Radius(o1,o2, t)

(8.31)

where

• (OrbVel :: Obj⇒ Obj⇒ Mom)(o1,o2, t) returns the velocity of an object, o1,

orbiting around another object, o2, at a time t

8.2. Evaluation Results 131

• (G :: R) is the gravitational constant

• (Mass :: Obj⇒Mom)(o, t) returns the mass of the object o at a time t4

• (Radius :: Obj⇒Obj⇒Mom)(o1,o2, t) returns the distance (radius) between the

centre of object o1 and the centre of another object o2 around which o1 is orbiting

at a time t.

As most of the observed stars orbit around the centre of a galaxy, we need to compute

the mass of the galaxy as required by the RHS of (8.31). We assume that the mass of a

galaxy can be estimated by summing the mass of all matter that substantially contribute

to the mass of the galaxy, i.e.

Mass(g, t) ::= ∑
s∈g

Mass(s, t) (8.32)

where Glxy is the type of galaxies5

Note that the function Mass is overloaded and (8.32) is defined for computing the mass

of galaxies.

However, observations on the rotational velocity of several galaxies show the orbital

velocity of constituent stars to be roughly constant and independent of their radius6.

Figure 8.3 illustrates the predicted and actual rotation curves. In order to account for

this discrepancy, it is hypothesised that galaxies also contain a halo of, so called, dark

matter, which is invisible to our radiation detectors, such as telescopes, because it does

not radiate, so can only be measured indirectly. Since the predicted curve is a plot

of the orbital velocity of, e.g., stars and gas clouds, that constitute the galaxy, we can

define the graph object as:

GraphA(g, t) ::= λs ∈ g. 〈Radius(s,g, t),OrbVel(s,g, t)〉 (8.33)

where the graph is expressed as a function over all constituent objects. The graph

itself depends on the galaxy and the time moment considered, assuming its rotational

velocity could be time dependent.

Suppose the predicted rotation curve is based on Newtonian Mechanics and the ob-

served rotation curve was made by plotting the orbital velocity of various objects along
4The function is assumed to be compounded with the mathematics required to compute the mass of

all stars at the radius of o at t.
5The Glxy type is synonymous with a set of matter. The elements of the set are those masses that

substantially contribute to the mass of the underlying galaxy.
6The rotational velocity of a galaxy can be derived from the orbital velocity of its constituent stars,

and vice versa.

132 Chapter 8. Results and Evaluation

This diagram is taken from http://en.wikipedia.org/wiki/
Galaxy_rotation_problem. The x-axis is the radii of the stars and
the y-axis is their orbital velocities. The dotted line represents the pre-
dicted graph and the solid line is the actual graph that is observed.

Figure 8.3: Predicted vs Observed Stellar Orbital Velocities

the galactic plane against the distance from the galactic centre. Typically, the rotational

velocity of galaxies at different radii is derived by examining the resulting Doppler ef-

fect, which is the shift in frequency of a wave for an observer due to the relative motion

of the source of the wave. For instance, if a light source moves away from an observer,

the observed colour shifts to longer wavelengths, e.g., red, and if it moves closer to an

observer, the colour shifts to shorter wavelengths, e.g., blue.

In Figure 8.4

• glxy101:Glxy is the galaxy considered, which is made up of star001, star002,

etc.;

• (GraphA:Glxy⇒Mom⇒Matter⇒ (R,R))(g, t) is the rotation curve of galaxy

g at moment t plotted based on the predictive theory;

• (GraphB:Glxy⇒Mom⇒Matter⇒ (R,R))(g, t) is the rotation curve of galaxy

g at moment t plotted based on rotational velocities, calculated using empirical

measurements;

• (RotVel:Obj⇒ Glxy⇒Mom⇒ R)(o,g, t) returns the rotational velocity of ob-

ject o in galaxy g at a time t;

8.2. Evaluation Results 133

Ax(Pred)⊇ {

OrbVel(o1,o2, t) =

√
G×Mass(o2, t)
Radius(o1,o2, t)

, (8.34)

Mass(g:Glxy, t) = ∑
s∈g

Mass(s, t) (8.35)

GraphA(g, t) = λs ∈ g. 〈Radius(s,g, t),OrbVel(s,g, t)〉 (8.36)

G = 6.673×10−11 (8.37)

glxy101 = {star001,star002, . . .} (8.38)

Mass(star001, t) = 1×108, . . . (8.39)

Radius(star001,glxy101, t) = 1×1010, . . . (8.40)

}

Ax(Obs)⊇ {

RotVel(o,g, t) =
RadVel(o,g, t)−ObsVel(o,g, t)

sin(inclination(g, t))
, (8.41)

RadVel(o,g, t) = c×Redshift(o,g, t) (8.42)

Redshift(o,g, t) =
WavelengthObs(o,g, t)
WavelengthEmit(o,g, t)

−1 (8.43)

GraphB(g, t) = λs ∈ g. 〈Radius(s,g, t),RotVel(s,g, t)〉 (8.44)

inclination(glxy101, t) = 1, (8.45)

WavelengthObs(star001,glxy101, t) = 663, . . . (8.46)

WavelengthEmit(star001,glxy101, t) = 656, . . . (8.47)

. . .

}

where the ontology Pred formalises the predictive theory, whereas Obs contains the equations

needed for converting from measurements performed using a spectroscopic method to rota-

tional velocity.

Figure 8.4: Axiomatisation of a heterogeneous representation of the discovery of dark

matter.

134 Chapter 8. Results and Evaluation

• (RadVel:Obj⇒Glxy⇒Mom⇒R)(o,g, t) returns the radial velocity of object o

in galaxy g at a time t, which is the velocity of the object in the direction of the

line-of-sight;

• (ObsVel:Obj⇒ Glxy⇒Mom⇒ R)(o,g, t) returns the observed velocity of o in

galaxy g at a time t as observed by the observer

• (inclination:Glxy⇒Mom⇒ R)(g, t) returns the angular distance of the orbital

plane of g from the equator;

• c:R is the speed of light;

• (Redshift:Obj ⇒ Glxy ⇒ Mom ⇒ R)(o,g, t) is for calculating the amount of

wavelength shifted, depending on the values of the observed wave length;

• (WavelengthObs:Obj⇒Glxy⇒Mom⇒R)(o,g, t) returns the amount of wave-

length shifted; and,

• (WavelengthEmit:Obj⇒Glxy⇒Mom⇒R)(o,g, t) returns the wavelength emit-

ted.

RotVel is not part of the language of the predictive theory, but we know that rotational

velocity of a galaxy at a given distance can be approximated to be the orbital velocity of

the body at that distance. Similar to the previous case study, because we use factorised

representations when reasoning with heterogeneous ontologies, there must exist an

ontology within F (Pred) such that the merge between Obs, the bridging ontology and

this ontology does not induce inconsistency. Suppose this ontology is Pred f :

Ax(Pred f)⊇ {

GraphA(g, t) = (8.48)

λs ∈ g. 〈Radius(s,g, t),OrbVel(s,g, t)〉

glxy101 = {star001,star002, . . .} (8.49)

}

The axioms (8.48 - 8.49) make a subset of those of Pred, so Pred f is guaranteed to be

a node in F (Pred).

8.2. Evaluation Results 135

To formalise this association between unfamiliar symbols in Pred and Obs, the bridg-

ing axiom required to be encoded in the bridging ontology, Ob, is:

∀r,v:R,g:Glxy, t:Mom. (8.50)

Pred ` OrbVel(o,g, t) = v ←→

Obs ` RotVel(o,g, t) = v.

These ontologies alone are in fact insufficient to reason about the shapes of two ro-

tation curves. Even if the ontologies are large enough to contain the data about each

and every object in a galaxy, the resulting plots would not be continuous curves. We,

therefore, produced “helper” ontologies for reasoning about shapes of graphs. In par-

ticular, we provide a way to compare two curves by examining their gradients, cutoff

points, intersections, etc. For instance, the predicted and observed curves in Figure 8.3

overlap until a cutoff point. Up to this point, the two curves have the same gradient.

From here onward, the predicted curve monotonically declines whereas the observed

curve becomes almost flat. Thus, the gradient of the predicted curve monotonically de-

creases, whereas that of the observed curve becomes roughly constant. We can further

draw inference about other properties of a curve, given descriptions about the gradient

of various segments of it. For example, if two curves start at the same point but one

is parallel to the x-axis whereas the other one declines, then the former must return

a larger y-value than the latter for every x-value; one could, therefore, conclude the

former to be “larger” than the latter, i.e. for two graphs g1:R⇒ R and g2:R⇒ R and

a starting point p

∀x1,x2:R. x1 > p ∧ x2 > p ∧ x1 6= x2 ∧ g1(p) = g2(p) ∧

Gradient(x1,x2,g1)< Gradient(x1,x2,g2)−→ g1 < g2

where (Gradient:R⇒R⇒ (R⇒R)⇒R)(x1,x2,g)7 returns the rate of increase/decrease

between two points on g with values x1 and x2 on the x-axis. Note that the <τ operator

is polymorphic, which enables us to compare both numbers and graphs.

From the ontologies in Figure 8.4 along with knowledge for making graph compar-

isons, bridging axiom and F (Pred), the discrepancy between the curves in Figure 8.3

can be formulated as follows:

Pred ` GraphA(glxy101, t1)< UpFlat (8.51)

Pred f ⊕Obs⊕Ob ` GraphA(glxy101, t1) = UpFlat (8.52)
7Without being limited to handling only graphs that take reals, the gradient function implemented in

GALILEO is polymorphic. For the convenience of explanation, we assume it only handles reals here.

136 Chapter 8. Results and Evaluation

where t1 is a time moment during the relevant observation and UpFlat is a graph that

is defined to have the same shape as the observed curve in Figure 8.3, i.e. positive

gradient between the origin and a cutoff point (up) and a constant gradient thereafter

(flat). We can prove (8.51) by rewriting the LHS first with (8.36) and then with (8.34),

(8.35), (8.37), (8.38), (8.39) and (8.40). Since Pred contains the value of G, the values

of the mass of stars and the value of the radius between each star and its galactic centre,

we can plot the predicted rotation curve, GraphA(glxy101, t1). With the knowledge for

making graph comparisons, we infer that none of the points on GraphA(glxy101, t1)

is higher than those on UpFlat but some of the points are lower than those on UpFlat.

For the rotation curve based on the empirical observations, we can prove (8.52) by

rewriting the LHS first with (8.48), then with the encoded bridging axiom (8.50), and

then with (8.41 - 8.43), (8.46) and (8.47). The ontology Obs contains instance data,

so we can plot the value of each point on GraphA(glxy101, t1) by deriving values of

rotational velocity from observations. We can infer that GraphA and GraphB are the

same by (8.50), (8.36) and (8.44), the predicted and observed curves are expected to

have also the same shape, i.e. the shape of UpFlat.

We can instantiate the trigger formulae of WMS (4.13 - 4.14, p.49) with the following:

{Pred⊕Obs⊕Ob/O1, (8.53)

Pred/O2,glxy101/stuff , λx. GraphA(x, t1)/ f ,UpFlat/v}

with the type variables instantiated by the following:

{Glxy/τ, Matter⇒ (R,R)/τ
′}

where the galaxy glxy101 is regarded as stuff , which is to be redefined by the repair.

Unlike the previous case study, stuff is instantiated to an argument of the dominant

function rather than the dominant function itself. The substitution (8.53) and (8.54) is

only one of several that can trigger WMS, but it is the most interesting one as it allows

the historical solution to be produced. We will investigate other plausible repairs in

§8.3.

To effect the repair we will write the visible stuff as glxy101vis and the invisible

stuff as glxy101invis, in anticipation of their intended meanings, where glxy101vis and

glxy101invis can be read as the part of the galaxy that emits light or other radiation and

the part of galaxy that does not, respectively. These choices instantiate (4.15) to:

glxy101invis = glxy101−glxy101vis (8.54)

8.2. Evaluation Results 137

which means that the entirety of the galaxy under consideration is defined to be com-

posed of both visible and invisible parts. The new concept created by WMS, glxy101invis,

corresponds to the hypothetical matter, dark matter. Old axioms need to be adjusted in

order to be expanded with the new definition (8.54) and GALILEO selects the destina-

tion ontology for the new definition by executing the ontology selection algorithm on

the ontologies involved according to the instantiation of O1. The result is to modify

the set of axioms in Obs, of which the signature contains the declaration of glxy101,

and augment it with (8.54). All occurrences of glxy101 in the axioms of the combined

ontology to which O2 is instantiated are renamed to glxy101vis – unlike the previous

example, this includes only those within Pred. Because O1 receives only a new defini-

tion as repair, even though Pred f is reachable from other ontologies in F (Pred), only

Obs receives the change. Figure 8.5 shows the resulting set of axioms. In the repaired

ontologies, the detected contradiction is now resolved:

Pred ` GraphA(glxy101vis, t1)< UpFlat

Pred⊕Obs⊕Ob ` GraphA(glxy101, t1) = UpFlat

` glxy101invis = glxy101−glxy101vis.

In essence, the repaired axioms could be interpreted to mean that the predicted values

were in fact made only on the emitting regions of the galaxy and not on the galaxy as a

whole, as there were hidden regions that were not considered by the predictive theory.

This solution precisely emulates the discovery of dark matter.

8.2.1.3 Other Test Case Studies

In addition to the case studies presented in (§8.2.1.1) and (§8.2.1.2), we have also

evaluated WMS over a diverse range of other case studies. These include:

• Friction: Newton’s first law of motion works well for astronomical objects, but

in a terrestrial environment, objects travelling in constant velocity with no ap-

parent applied force eventually come to rest. This could be interpreted as a dis-

crepancy between the predicted and observed graphs of velocity plotted against

time. The WMS patch is to invent an invisible force: friction.

• Discovery of Neutrons: Rutherford had theorised that nuclei were composed of

protons and that the number of protons determined the atomic number. How-

ever, he later discovered a disparity between an element’s atomic number and

138 Chapter 8. Results and Evaluation

Ax(ν(Pred))⊇ {

G = 6.673×10−11

glxy101vis = {star001,star002, . . .}

Mass(star001, t) = 1×108, . . .

}

Ax(ν(Obs))⊇ {

glxy101invis = glxy101−glxy101vis

inclination(glxy101, t) = 1,

WavelengthObs(star001,glxy101, t) = 663, . . .

WavelengthEmit(star001,glxy101, t) = 656, . . .

}

Figure 8.5: Summary of the repaired axiomatisation of the discovery of dark matter.

its atomic mass. The repair devised was to introduce some “invisible stuff” and

postulate the existence of neutrons – a new kind of massive sub-atomic parti-

cle – to account for the missing weight, which Chadwick later experimentally

discovered.

• Discovery of Neutrinos: In 1930, Pauli addressed the failure of the law conserva-

tion of energy on the subatomic level by introducing a new sub-atomic particle.

Neutrons, which were discovered two years later, were too massive for balancing

the equations. The WMS type of repair undertook was to postulate “little neutral

ones”, or neutrinos.

8.2.1.3.1 Friction Suppose the experiment involves measuring the velocity of an

object over several episodes. In each episode, the same amount of force is applied to

it, but over different durations, e.g., 10N for one second, 10N for two seconds, and so

forth. Because of friction, the observed velocity is always lower than that predicted.

We can instantiate the WMS repair plan with the following substitution:

{Pred/O1,Obs/O2,Force/stuff ,λx,y.ForceToVel(y,x(y))/ f , (8.55)

λx,y.〈y,Vel(x)〉/v}

8.2. Evaluation Results 139

where Pred and Obs are the predictive and observation ontologies, respectively; Force(o)

returns the amount of force being applied to an object o; ForceToVel(o,a,d) returns a

graph plotting the velocity some object o travels if a force of the amount a is applied

for d seconds; and, Vel(o) is measure the velocity of an object o. ForceToVel essen-

tially integrates the acceleration once to find the velocity. The repair is to split Force

into parts, inventing a new component that relates to friction.

8.2.1.3.2 Discovery of Neutrons The predictive definition of atomic mass of some

atom is proportional to the atomic number, i.e. the number of protons in an atom of an

element. However, observations conflict with this prediction, because atomic mass is a

measurement of the number of particles in an atom’s nucleus. We can instantiate WMS

with the following:

{Pred/O1,Obs/O2,AtomicMass/stuff ,λx,y.x(y)/ f ,M/v} (8.56)

where AtomicMass is the function for calculating the mass of an atom and M is some

measured value. The repair is to split AtomicMass into parts, creating an invisible

notion of atomic mass which corresponds to the existence of neutrons.

8.2.1.3.3 Discovery of Neutrinos This example is similar to the discovery of neu-

trons, except it is at the subatomic level and the inference is more complex. The in-

ference of the trigger formula comes from a disparity with the predicted value of total

energy. However, the substitution is the same as (8.56).

8.2.1.4 Summary

We have successfully applied WMS to each of the two case studies, as described in

depth, and other additional test examples. In all of the examples, the historically cor-

rect repair was within the search space, i.e. the invisible stuff created corresponds

directly to the new concept that was conjectured in the historical episode. In the two

examples reported extensively, the concept of elasticity energy was created for the

bouncing-ball paradox and some hidden galaxy for the discovery of dark matter. This

demonstrates that our methods cover both everyday modelling, e.g., bouncing-ball, and

major conceptual advances, e.g., dark matter.

140 Chapter 8. Results and Evaluation

8.2.2 Inconstancy

The Inconstancy repair plan (§4.5, p.56) is triggered when there is a conflict between

the predicted independence and the observed dependence of a function on some pa-

rameter, i.e., the observed value of a function unexpectedly varies when it is predicted

to remain constant. This generally requires several observational theories, each with

different observed values of the function, as opposed to the one observational theory in

the WMS plan. To effect the repair, the parameter causing the unexpected variation is

first identified and a new definition for the conflicting function is created that includes

this new parameter.

8.2.2.1 Test Case Study I: The Travel Time of Light

One of the earliest recorded discussions of the speed of light, and thus the travel time

of light, was by Aristotle, who believed that light travelled instantaneously and re-

jected theories about finite speeds of light. In 1676, a Danish astronomer, Ole Roemer,

measured the speed by studying Io, one of Jupiter’s moons, which was known to be

eclipsed by Jupiter at regular intervals (Ellis and Uzan, 2005). Roemer discovered that

the eclipses increasingly lagged behind the predicted times, but then started to pick up

again. This discovery helped him develop the theory that when Jupiter and Earth were

further apart, there was more distance for light reflecting off Io to travel to Earth and

therefore it took longer to reach his telescope. Essentially Aristotle’s theory that light

appeared instantaneously can be repaired by Roemer’s observations of variations in

the occurrence times between eclipses of Io, as seen from Earth, to produce the correct

theory that light has a finite speed. The required Physics background is relatively ele-

mentary, so the specific equations on which this case study depends are not presented

here.

Suppose Aristotle’s claim that the travel time of light is instantaneous is an assertion

and the lag of eclipses Io measured by Roemer were recorded when the distances

between the earth and Io was d1 and d2. In Figure 8.6, the axiomatisation formalises

the representation of knowledge required to reason about the case study, where

• (Dst :: Point⇒ Point⇒ R)(p,q) returns the length of the straight-line path sepa-

rating points p and q in a 3-dimensional space;

• OrbPos(o, t) returns the orbital position of an object o at moment t;

8.2. Evaluation Results 141

Ax(Pred) ⊇ {TravelTime(LightFrom(Io), Io,Earth) = 0, (8.57)

ReactionTests(roemer) = {test1, test2}, (8.58)

ReactionTime(roemer, test1) = 0.1, (8.59)

ReactionTime(roemer, test2) = 0.2} (8.60)

Ax(Obs(Dst(Earth, (8.61)

OrbPos(Io,T1)) = d1)) ⊇ {NetTime(o,s,d, p) = (8.62)

Approx(TravelTime(o,s,d))+ReactionTime(p), (8.63)

NetTime(LightFrom(Io), Io,Earth,roemer) = 10}

Ax(Obs(Dst(Earth, (8.64)

OrbPos(Io,T2)) = d2)) ⊇ {NetTime(o,s,d, p) = (8.65)

Approx(TravelTime(o,s,d))+ReactionTime(p), (8.66)

NetTime(LightFrom(Io), Io,Earth,roemer) = 15}

where Pred contains assertions about Aristotle’s belief that light travels instan-

taneously and reaction times of Roemer observed over two test sessions; and,

Obs(Dst(Earth,OrbPos(Io,T1)) = d1) and Obs(Dst(Earth,OrbPos(Io,T2)) = d2) are observa-

tion ontologies containing data captured at moments T1 and T2, at which the distances between

earth and the orbital position of Io are d1 and d2, respectively.

Figure 8.6: Summary of the axiomatisation of the travel time of light case study.

• (TravelTime :: Obj⇒ Point ⇒ Point ⇒ R)(o,s,d) returns the time an object o

takes to travel from the point s to point d;

• (Approx :: R⇒ R)(v) returns an approximated form of the value v;

• (NetTime :: R⇒ R⇒ R)(t,r) returns the actual time recorded after taking into

consideration the observer’s response time and the object’s traveltime. The ar-

gument t is the number of seconds the object takes to reach the observer and r is

the reaction time of the observer in seconds;

• (ReactionTime :: Person⇒ R)(p) returns the least number of seconds a person p

reacts to a stimulus

• (ReactionTime :: Person⇒ Event ⇒ R)(p,s) returns the number of seconds a

person p responds to a stimulus as observed in a test session s;

142 Chapter 8. Results and Evaluation

• (LightFrom :: Obj⇒ Obj)(o) returns the light object emitted from an object o;

• roemer:Person represents the human observer who conducted the observation;

• ReactionTests(roemer):Eventset is the set containing all the test sessions con-

ducted to measure Roemer’s reaction times; and,

• test1:Event and test2:Event represent two sessions for testing Roemer’s reaction

time.

The ontology Pred does not entirely share its vocabulary with the sensory ontologies,

i.e. Obs(Dst(Earth,OrbPos(Io,T1)) = d1) and Obs(Dst(Earth,OrbPos(Io,T2)) = d2),

e.g., NetTime is not in the language of Pred. Also, ReactionTime is a binary function

in Pred but an unary function in the sensory ontologies. To reason with heterogeneous

ontologies, we can identity an ontology in F (Pred) such that the merge between a sen-

sory ontology, the bridging ontology, and this ontology does not induce inconsistency.

Suppose this ontology is Pred f :

Ax(Pred f) ::= {

ReactionTests(roemer) = {test1, test2}, (8.67)

ReactionTime(roemer, test1) = 0.1, (8.68)

ReactionTime(roemer, test2) = 0.2} (8.69)

}

As the axioms (8.67 - 8.69) make a subset of those of Pred, Pred f is guaranteed to be

a node in F (Pred).

To relate the ReactionTime symbol in the predictive ontology to that in the sensory

ontologies, we encode the following bridging axiom in Ob:

∀p : Person, v : R. (8.70)

Obs(Dst(Earth,

OrbPos(Io,T1)) = d1) ` ReactionTime(p) = v←→

Pred f ` min
t∈ReactionTests(p)

ReactionTime(p, t) = v

∀p : Person, v : R. (8.71)

Obs(Dst(Earth,

OrbPos(Io,T2)) = d2) ` ReactionTime(p) = v←→

Pred f ` min
t∈ReactionTests(p)

ReactionTime(p, t) = v

8.2. Evaluation Results 143

where (8.70) and (8.71) relate the notion of binary version of reaction time in Pred to

the unary version of reaction time in Obs by stating that the value of a person’s reaction

time in Obs is equal to the minimum value of that person’s reaction times measured

over a number of tests in Pred.

From these ontologies, we can formulate a contradiction as follows:

Pred ` TravelTime(LightFrom(Io), Io,Earth) := 0 (8.72)

Ob⊕Pred f⊕

Obs(Dst(Earth,

OrbPos(Io,T1)) = d1) ` Approx(TravelTime(LightFrom(Io), Io,Earth)) =

9.9

Ob⊕Pred f⊕

Obs(Dst(Earth,

OrbPos(Io,T2)) = d2) ` Approx(TravelTime(LightFrom(Io), Io,Earth)) =

14.9

Pred ` 9.9 6= 14.9 (8.73)

The detected conflict can trigger the Inconstancy repair plan with the following substi-

tution:

{Pred/Ox,Obs/Oy,Pred f ⊕Ob/Oz, (8.74)

Dst/v,λx.x(Earth,OrbPos(Io,T1))/b1,

λx.x(Earth,OrbPos(Io,T2))/b2,d1/v1,d2/v2,

TravelTime(LightFrom(Io), Io,Earth)/stuff ,

Approx/ f ,0/c,9.9/c1,14.9/c2}

Because we perform matching with f (stuff), stuff can be instantiated to

TravelTime(LightFrom(Io), Io,Earth) (8.75)

which is the argument of Approx.

To effect the repair, we first insert the variad, Dst(Earth,OrbPos(Io,Ti)), into the new

definition by following (4.49, p.60) to get:

ν(TravelTime(LightFrom(Io), Io,Earth) ::= λy. F(0,y(Dst)) (8.76)

144 Chapter 8. Results and Evaluation

which means that the travel time of the light emitted by Io to travel to Earth now

depends on the distance of some path, which is exactly what is required because light

has a finite speed. The value the argument of Dst takes depends on the ontology. The

repaired ontologies are shown in Figure 8.7.

Ax(ν(Pred)) ⊇ {ν(TravelTime(LightFrom(Io), Io,Earth) = (8.77)

λy. F(0,Dst(y))}

Ax(ν(Obs(Dst(Earth, (8.78)

OrbPos(Io,T1)) = d1))) ⊇ {Approx(ν(TravelTime(LightFrom(Io), Io,Earth))

(λx.x(Earth,OrbPos(Io,T1)))) = 10}

Ax(ν(Obs(Dst(Earth, (8.79)

OrbPos(Io,T2)) = d2))) ⊇ {Approx(ν(TravelTime(LightFrom(Io), Io,Earth))

(λx.x(Earth,OrbPos(Io,T2)))) = 15}

where ν(Pred) contains the new definition of the travel time of light emitted from Io, which

depends on the distance of some path and each of the new observation ontologies has the

relevant argument applied to stuff .

Figure 8.7: Summary of the repaired axiomatisation of the travel time of light case study

8.2.2.2 Test Case Study II: Gas Laws

An example from introductory Physics is Boyle’s Law, which formulates a relationship

between the amount of pressure and the volume of a gas. The law was discovered by

Robert Boyle in 1662 and it states that given a fixed amount of gas (molecules) n

at a fixed temperature T , the pressure P and the volume V of the gas are inversely

proportional to each other, i.e.

P×V = k (8.80)

where k is a constant. Figure 8.8 illustrates a graph of Boyle’s original data.

Boyle’s Law is most famous for being the basis of derivation for the ideal gas law,

which provides a complete formulation of the relationship between the pressure, the

volume, the temperature, and the amount of gas. In this example, we will describe how

the Inconstancy plan can be applied to modify Boyle’s Law to resemble the ideal gas

law.

8.2. Evaluation Results 145

This diagram is taken from http://en.wikipedia.org/wiki/
Boyle’s_law .

Figure 8.8: A graph of pressure-volume based on Boyle’s original data, where the x-axis

is the volume of the mercury vapour used in an experiment and the y-axis is the amount

of pressure exerted.

Similar to the example in §8.2.2.1, we want to identify inconsistencies between the

theoretical and observed variable dependences. It is important to note that Boyle’s Law

is regarded to be a correct account of the relationship between pressure and volume at

a fixed temperature and amount of gas in modern science, but the law itself is simply

incomplete. To fit our purposes, we alter the historic scenario slightly and introduce an

inconsistency. We can model the scenario by letting Pred be the ontology modelling

Boyle’s Law and that the value of the product of pressure and volume is the same

at any temperature. Suppose Boyle(g) returns the graph of the product of pressure

and volume of a gas g versus time, which is expected to be a constant graph. For

mercury, the y-value is expected to be always 1,400, based on readings in Figure 8.8.

Let Obs(Temp(g,Ti) = vi) be the sensory ontology describing the situation when the

amount of the gas g is fixed and the temperature at a time moment Ti is vi. We need

to collect evidence for different temperatures over a range of time moments: Ti for

146 Chapter 8. Results and Evaluation

1≤ i≤ n, where Temp(g,Ti) varies.

The axiomatisation of the gas laws case study is summarised in Figure 8.9, where:

• Gas is the type of gas

• (Boyle :: Gas⇒Mom⇒ 〈Mom,R〉)(g) returns a graph plotting time against the

product of the pressure and volume of the gas g;

• (Pres :: Gas⇒Mom⇒R)(g, t) returns the amount of pressure exerted on a gas g

at a time moment t;

• (Vol :: Gas⇒Mom⇒ R)(g, t) returns the volume of a gas g at a time moment t;

• (Hg :: Obj⇒ Mod⇒ Obj)(o,m) returns the mercury content with respect to an

object o, according to the modifier m; if m is of value In, then it returns the

mercury content inside o;

• (Flask :: Obj ⇒ Mod ⇒ Obj)(o,m) returns the flask with respect to object o,

according to the modifier m; if m is of value On, then it returns the flask placed

on o;

• Desk is a desk object in the laboratory;

• (T1Graph :: Gas⇒Mom⇒〈Mom,R〉)(g) returns a graph object plotting Boyle’s

values based on observations made at moment T1;

• (T2Graph :: Gas⇒Mom⇒〈Mom,R〉)(g) returns a graph object plotting Boyle’s

values based on observations made at moment T2;

• (Height :: Obj⇒ Mom⇒ R)(o, t) returns the vertical height of an object o at a

time moment t; and,

• (Surface :: Obj⇒Mom⇒ R)(o, t) returns the area of a surface on an object o at

a time moment t.

In the axiomatisation, the product of the pressure and volume of mercury vapour is

asserted to be 1,400 under all circumstances. The experiments conducted are presumed

to involve measuring both the surface area of the top of the flask used to contain the

vapour, which is placed on a desk, and the height of the flask relative to its bottom. In

each observation, the height of the flask and the surface area of its top were observed

to be the same. Unexpectedly, the pressure of the vapour content changed over the two

8.2. Evaluation Results 147

Ax(Pred) ⊇ {∀g:Gas. Boyle(g) = (8.81)

λt. 〈t,Pres(g, t)×Vol(g, t)〉,

∀t:Mom. Pres(Hg(Flask(Desk,On), In), t)×(8.82)

Vol(Hg(Flask(Desk,On), In), t) = 1400

}

Ax(Obs(Temp(Hg(Flask(Desk,

On), In),T1) = 20) ⊇ {∀g:Gas, t:Mom. T1Graph(g, t) = (8.83)

Pres(g, t)×Height(Flask(Desk,On), t)×

Surface(Flask(Desk,On), t),

Pres(Hg(Flask(Desk,On), In),T1) = 80, (8.84)

Surface(Flask(Desk,On),T1) = 2, (8.85)

Height(Flask(Desk,On),T1) = 10} (8.86)

Ax(Obs(Temp(Hg(Flask(Desk, (8.87)

On), In),T2) = 25) ⊇ {∀g:Gas, t:Mom. T2Graph(g, t) = (8.88)

Pres(g, t)×Height(Flask(Desk,On), t)×

Surface(Flask(Desk,On), t),

Pres(Hg(Flask(Desk,On), In),T2) = 100, (8.89)

Surface(Flask(Desk,On),T2) = 2 (8.90)

Height(Flask(Desk,On),T2) = 10} (8.91)

where Pred contains the predictive theory based on Boyle’s Law and Obs(Temp(Hg(. . .)) =

20) and Obs(Temp(Hg(. . .)) = 25) are observation ontologies containing data captured at two

different moments, at which the temperatures of the mercury vapour concerned were 20 degrees

and 25 degrees, respectively.

Figure 8.9: Summary of the axiomatisation of the gas laws case study.

148 Chapter 8. Results and Evaluation

observations: 80 when the temperature was 20 and 100 when the temperature was 25.

Thus, the products of the pressure and volume of the vapour were 1,600 and 2,000,

respectively.

The ontology Pred does not entirely share its vocabulary with the sensory ontologies,

e.g., Boyle is not in the language of the sensory ontologies. Similar to previous case

studies, we can identity an ontology in F (Pred) such that the merge between a sen-

sory ontology, the bridging ontology, and this ontology does not induce inconsistency.

Suppose this ontology is Pred f :

Ax(Pred f) ::= { ∀g:Gas. Boyle(g) = λt. 〈t,Pres(g, t)×Vol(g, t)〉 } (8.92)

As the axiom (8.92) is within of those of Pred, Pred f is guaranteed to be a node in

F (Pred).

To relate the symbol Boyle in the predictive ontology to symbols in the sensory ontolo-

gies, we encode the following bridging axioms in Ob:

∀g : Gas, v : Mom⇒ 〈Mom,R〉. (8.93)

Obs(Temp(Hg(Flask(Desk,

On), In),T1) = 20) ` λt.〈t,T1Graph(g, t)〉= v←→

Pred f ` Boyle(g) = v

∀g : Gas, v : Mom⇒ 〈Mom,R〉. (8.94)

Obs(Temp(Hg(Flask(Desk,

On), In),T2) = 25) ` λt.〈t,T2Graph(g, t)〉= v←→

Pred f ` Boyle(g) = v

where (8.93) and (8.94) relate the notion of Boyle’s graph in Pred to symbols in Obs.

8.2. Evaluation Results 149

From these ontologies, we can formulate a contradiction as follows:

Pred ` Boyle(Hg(Flask(Desk,On), In)) = (8.95)

λt. 〈t,1400〉 (8.96)

Ob⊕Pred f⊕

Obs(Temp(Hg(Flask(Desk,

On), In),T1) = 20) ` Boyle(Hg(Flask(Desk,On), In)) = (8.97)

λt. 〈t,T1Graph(Hg(Flask(Desk,On), In), t)〉

Ob⊕Pred f⊕

Obs(Temp(Hg(Flask(Desk,

On), In),T2) = 25) ` Boyle(Hg(Flask(Desk,On), In)) = (8.98)

λt. 〈t,T2Graph(Hg(Flask(Desk,On), In), t)〉

Pred ` λt. 〈t,1400〉 6= (8.99)

λt. T1Graph(Hg(Flask(Desk,On), In), t)

In each of the three ontologies, we can infer a graph object to represent values returned

by Boyle’s law for the mercury vapour over time. Here, we know at least two of

the graph objects are regarded to be different (8.99). Thanks to the polymorphic 6=
operator, we are allowed to directly compare two graph objects. We know the graph

λt. 〈t,1400〉 must have the following property

∀s. (λt. snd(〈t,1400〉)(s)) = 1400 (8.100)

where snd(p) returns the second value of the pair p. We can infer from (8.83), (8.84),

(8.85), and (8.86) that

snd(〈T1,T1Graph(Hg(Flask(Desk,On), In),T1)〉) = 1600 (8.101)

With (8.100) and (8.101), (8.99) can be resolved.

We can match the trigger formulae (4.46 - 4.48) of Inconstancy with the following

150 Chapter 8. Results and Evaluation

substitution:

{Pred/Ox,Obs/Oy,Ob⊕Pred f /Oz,Temp/v, (8.102)

λx.x(Hg(Flask(Desk,On), In),T1)/b1,

λx.x(Hg(Flask(Desk,On), In),T2)/b2,20/v1,25/v2,

Boyle/stuff , λx. x(Hg(Flask(Desk,On), In))/ f ,

λt. 〈t,1400〉/c,λt.T1Graph(Hg(Flask(Desk,On), In), t)/c1,

λt.T2Graph(Hg(Flask(Desk,On), In), t)/c2}

Unlike the previous case study, variables c, c1, and c2 are all instantiated to graph

objects here and stuff is instantiated to a dominant function.

To effect the repair, we create the following new definition:

ν(Boyle) ::= λy. F(λt. 〈t,1400〉,y(Temp)) (8.103)

which means that the value returned by the product of pressure and volume of a gas

now depends on the temperature. The repaired ontologies are shown in Figure 8.10.

As a result of the repair, the repaired Boyle’s Law is given the temperature of the gas

as an additional argument, which drives the variable dependence of the repaired law

closer to that required by the ideal gas law. Further, a very similar repair can be made

upon the confrontation of evidence for varying amounts of gas n. The resulting list of

dependent variables will subsequently include n, and so the further repaired Boyle’s

Law will depend on all four variables, as required by the ideal gas law.

8.2.2.3 Other Test Case Studies

In addition to the case studies covered in (§8.2.2.1) and (§8.2.2.2), we have also eval-

uated Inconstancy over a diverse range of other case studies. These include:

• Variations in the Fine-Structure Constant: The fine-structure constant is a num-

ber that determines the strength of interactions between light and matter. It is a

fundamental physical constant, but some physicists believe its value varies over

time.

• Quasar Alignment Patterns: The orientations of quasars in the outer universe

are expected to be random, yet many of these point in a similar direction. Some

physicists have discovered that the axis of rotation of the quasar depends on the

8.2. Evaluation Results 151

Ax(ν(Pred f)) ⊇ {ν(Boyle) = λy. F(λt. 〈t,1400〉,y(Temp)), (8.104)

ν(Boyle)(y)(g) = λt.〈t,Pres(g, t)×Vol(g, t)〉} (8.105)

∀g : Gas, v : Mom⇒ 〈Mom,R〉. (8.106)

Obs(Temp(Hg(Flask(Desk,

On), In),T1) = 20) ` λt.〈t,T1Graph(g, t)〉= v←→

ν(Pred f) ` ν(Boyle)(y)(g) = v

∀g : Gas, v : Mom⇒ 〈Mom,R〉. (8.107)

Obs(Temp(Hg(Flask(Desk,

On), In),T2) = 25) ` λt.〈t,T2Graph(g, t)〉= v←→

ν(Pred f) ` ν(Boyle)(y)(g) = v

where ν(Pred) contains the new definition of Boyle’s Law, which depends on the temperature

of the gas and each of the observation ontologies has the relevant argument applied to stuff ;

ν(Pred f) applies ν(Boyle) to a variable y, as Pred f is part of the instantiation of Oz; and,

the new bridging axioms speak about ν(Pred f) instead of Pred f with previous occurrences of

Boyle replaced by ν(Boyle)(y), as O′b is part of the instantiation of Oz as well.

Figure 8.10: Summary of the repaired axiomatisation of the gas laws case study.

magnetic fields caused by cosmic strings resulted within 10 seconds after the

big-bang.

• Rate of Evolvability: The rate at which species evolve was thought to be constant,

but some postulate that the rate may depend on mutational robustness, which is

the capacity to develop normally despite the presence of genetic mutations.

8.2.2.3.1 The Changing Fine-Structure Constant Suppose the experiment involves

making two or more observations of distant galaxies and the fine-structure constant is

derived from these observations. We can match the trigger formulae of Inconstancy

with the following substitution8:

{Pred/Ox,Obs/Oy,TimeOf/v,obs1/b1,obs2/b2, (8.108)

FSC/stuff , λx.x/ f ,K/c,K1/c1,K2/c2}
8We here simplify by excluding Oz from the discussion.

152 Chapter 8. Results and Evaluation

where TimeOf (obs) returns the time when the observation obs was conducted; obs1

and obs2 are two different observation events; FSC is the fine-structure constant; and,

K, K1, and K2 are distinct constants.

8.2.2.3.2 Quasar Alignment Patterns In the formalisation of this case study, the

axis of rotation of a particular quasar is expected to be constant, but observations show

that it actually varies with the density of cosmic strings. Suppose the axis of rotation

of a particular quasar can be measured seconds after the big bang9. We can instantiate

the trigger formulae of Inconstancy (4.46 - 4.48) as follows10:

{Pred/Ox,Obs/Oy,CosmicStrings/v,λx.x(Q,T1)/b1, (8.109)

λx.x(Q,T2)/b2,RotAxis/stuff , λx.x(Q)/ f ,A/c,A1/c1,A2/c2}

where Pred and Obs are the predictive and observation ontologies, respectively;

CosmicStrings(q) returns the density of cosmic strings near the region of the quasar

q; Q is the quasar under consideration; RotAxis(q) returns the axis of rotation of the

quasar q; and A, A1, and A2 are vectors representing three different axes of rotation.

8.2.2.3.3 Rate of Evolvability Our model of the case study is based an unexpected

variation in the rate of evolvability of a species as its mutation robustness changes.

Inconstancy can be triggered by the following substitution11:

{Pred/Ox,Obs/Oy,MutRob/v,species1/b1,species2/b2, (8.110)

RateEvolve/stuff , λx.x/ f ,K/c,K1/c1,K2/c2}

where Pred and Obs are the predictive and observation ontologies, respectively;

MutRob(s) is the function returning the capacity in terms of mutation robustness of a

species s; species1 and species2 are two different species exhibiting different amounts

of mutation robustness; RateEvolve is the rate of evolvability, which is expected to be

constant; K, K1, and K2 are distinct constants.

8.2.2.4 Summary

The Inconstancy repair plan has produced meaningful repairs to each of the two case

studies described that eliminated the detected contradiction. We have demonstrated
9This should be a plausible task, given that astronomers are observing the state of the distant universe

moments after the big bang.
10We here simplify by excluding Oz from the discussion.
11We here simplify by excluding Oz from the discussion.

8.2. Evaluation Results 153

how the repairs performed by this repair plan transform inconsistent ontologies into

new theories that closely match true physical formulations. The use of heterogeneous

ontologies has somewhat increased the complexity of the execution, e.g., the variable

Oz also needs to be instantiated. However, we have shown that diagnosing and repair-

ing faults with Inconstancy can intuitively lead to a resolution.

8.2.3 Unite

We explore the Unite ontology repair plan (§4.6, p.62), which can be seen as the con-

verse of WMS. If two terms yield the same value for their defining property, then they

should refer to the same thing. The idea of Unite is to take two different terms and

equate them, provided that their defining property yields the same value.

8.2.3.1 Test Case Study I: Quantisation of Space-Time

Planck units define the smallest discrete units of space, time, mass and energy. The

values of these units are all very small; for instance, the Planck length is approximately

a 10 billion billionth of the width of a proton. Since there is a minimum interval of

time (Planck time) as well, or a maximum frequency in nature, there is a corresponding

limit on the fidelity of space and time. An analogous situation is having noise in an

audio stream, which is a result of adopting a low resolution/pixelation in the recording

or transmission. To detect a similar kind of noise in nature, a team at Fermilab are

constructing an apparatus called a holometer, which will fire two laser beams from a

single source and they will measure the resulting jitter (holographic noise) as the two

beams are recombined (FermiLab, 2012). If there is pixelation in nature, then the two

beams will not be travelling in the same direction or at the same time, which means

they will not probe the same volume of space-time. In that case, the measurements

will have extra, uncorrelated jitter. Their conjecture is that the smallest units are in fact

larger than the Planck units, as suggested by some recent theoretical studies of black

holes. In this case study, we suppose the empirical experiment confirms the values

of Planck units and that the holometer is, at least, not sensitive to detect uncorrelated

jitters when the two beams are recombined.

We can use the Unite repair plan to emulate this episode as follows. Suppose the

predictive ontology, Pred, does not speak about the relationship between the volume of

space-time probed by the two beams, BeamA and BeamB, but only defines the meaning

154 Chapter 8. Results and Evaluation

Ax(Pred) ⊇ {∀k1,k2:JitterKind. Correlate(k1,k2)←→ (8.111)

|max
x

k1(x)−max
x

k2(x)| ≤ 2}

Ax(Obs) ⊇ {Jitter(BeamA) = KindA, (8.112)

Jitter(BeamB) = KindB, (8.113)

∀x:R. 0 < KindA(x)< 1, (8.114)

∀x:R. 1 < KindB(x)< 2} (8.115)

Ax(OM) ⊇ {DefProp(Beam,Jitter)} (8.116)

where Pred contains the predictive theory, in which the meaning of two kinds of jitter being

correlated is asserted; Obs is the observation ontology containing measurements of the jitter

resulting from recombining two light beams; and, Om is the meta-level ontology containing the

definition of the relevant defining property.

Figure 8.11: Summary of the axiomatisation of the quantisation of space-time case

study.

of two kinds of jitters being correlated and the observation ontology, Obs, specifies the

values of the points plotted in the jitter-graph.

An axiomatisation of the case study is summarised in Figure 8.11, where

• (Correlate :: JitterKind⇒ JitterKind⇒ bool)(k1,k2) returns true if and only if

two kinds of jitters k1 and k2 are deemed correlated, i.e. if the difference between

the maximum y-values of k1 and k2 is less than or equal to two12;

• (Jitter :: Beam⇒ JitterKind)(b) returns the kind of jitter corresponding to a light

beam b; and,

• (SpaceTimeVol :: Beam⇒ STVol)(b) returns the volume of space-time probed by

the light beam b.

We assume that the jitter corresponding to a light beam can be classified into a partic-

ular kind, which is essentially a graph object. To compute the correlation between two

kinds of jitters, we have adopted a simple notion: if two kinds of jitters are correlated,

then the difference between their maximum y-values must be less than or equal to two

(8.111). In the observation, the kinds of jitters corresponding to light beams BeamA

12We use the value two purely for explanatory purposes.

8.2. Evaluation Results 155

and BeamB are KindA and KindB, respectively (8.112, 8.113). By definition, all y-

values of KindA are within the interval (0,1) (8.114), whereas all y-values of KindB are

within (1,2) (8.115). The defining property of the type Beam is specified in the meta-

ontology OM (8.116). The Obs ontology is not an extension of Pred, so the symbol

Correlate is not in its language. Unlike previous case studies, Unite deals with under-

specified ontologies, so the merge of the input ontologies is still consistent. Thus, we

can resolve the heterogeneity in the languages of Pred and Obs by simply reasoning

with Pred⊕Obs. Nonetheless, a bridging axiom can still be helpful:

∀k1,k2:JitterKind. Pred ` Correlate(k1,k2) = True←→ Obs ` k1 = k2 (8.117)

To keep the formalisation simple, we have indirectly overloaded =JitterKind in Obs using

(8.117)13.

From our formalisation, we can show the following:

Pred 0 SpaceTimeVol(BeamA) = SpaceTimeVol(BeamB) (8.118)

Obs⊕Ob⊕

Pred ` Jitter(BeamA) = Jitter(BeamB) (8.119)

OM ` DefProp(Beam,Jitter). (8.120)

We can instantiate the trigger formulae of the Unite repair plan with the following

substitution:

{Pred/O1,Obs⊕Ob⊕Pred/O2,Beam/τ,BeamA/stuff 1,

BeamB/stuff 2,Jitter/dp,SpaceTimeVol/ f}

Following (4.66, p.64) of the repair plan, the corresponding repair is then:

Ax(ν(Pred)) ::= {SpaceTimeVol(BeamA) = SpaceTimeVol(BeamB)}∪Ax(Pred)

which means BeamA and BeamB are asserted to probe the same volume of space-time.

This is exactly the experimentalists’ expectation should there be a correlation between

the corresponding jitters. If such a result is confirmed by the experiment, then the

validity of Planck’s units hold.

13The overloading of =JitterKind could instead be specified in the axioms of Pred or Obs.

156 Chapter 8. Results and Evaluation

8.2.3.2 Test Case Study II: The Bouncing-ball Paradox Revisited

We can demonstrate the power of the Unite repair plan by applying it to the Bouncing-

ball Paradox (8.2.1.1) as well. Suppose the language of the formalisation is slightly

extended by the addition of four object-level symbols:

• ClassOfObj(o) is designed for evaluating the class of objects to which an object

o belongs. The values returned by ClassOfObj(o) could represent elastic solids,

particles without extent, liquids and gases. The specific values are not of particu-

lar importance in this example. Note that classes are encoded as types in 8.2.1.1

instead. With an object-level symbol, we can reason about object classes more

naturally.

• A predicate IsElastic(o) returns true if and only if o exhibits elasticity

• A predicate IsGaseous(o) returns true if and only if o is a gas

• A predicate IsLiquidy(o) returns true if and only if o is a liquid.

Same as in 8.2.1.1, the object concerned is an elastic, bouncing-ball, Ball.

Suppose the predictive theory here is an extension of that in 8.1 and the experiment was

conducted in the same manner, i.e. by taking a series of photos of the ball separated

by a positive constant interval δ:R while it is dropped.

Figure 8.12 shows an extended axiomatisation of the bouncing-ball paradox, where

(8.121) states that the sum of kinetic and potential energies is not conserved for elastic

objects; (8.122) asserts that Ball is neither a gas nor liquid; and, (8.123) asserts that a

spring Spring is neither a gas nor liquid but is elastic. In OM, the defining property for

the type Obj w.r.t. object classes is asserted to depend on the state of the object and its

elasticity. More specifically, if two objects are neither gases nor liquids but are elastic,

then they belong to the same object class.

Along with the bridging axiom in (8.21), we can show the following:

Pred 0 ClassOfObj(Ball) = ClassOfObj(Spring) (8.135)

Obs⊕Pred ` IsElastic(Ball)∧¬IsGaseous(Ball)∧ (8.136)

¬IsLiquidy(Ball) = IsElastic(Spring)∧ (8.137)

¬IsGaseous(Spring)∧¬IsLiquidy(Spring) (8.138)

OM ` DefProp(Obj,λx.IsElastic(x)∧¬IsGaseous(x)∧ (8.139)

¬IsLiquidy(x)) (8.140)

8.2. Evaluation Results 157

Ax(Pred) ⊇ {

∀o:Obj, t1, t2:Mom. KE(o, t1)+PE(o, t1) 6= (8.121)

KE(o, t2)+PE(o, t2)←→ IsElastic(o),

¬IsGaseous(Ball) ∧ ¬IsLiquidy(Ball), (8.122)

¬IsGaseous(Spring) ∧ ¬IsLiquidy(Spring) ∧ (8.123)

IsElastic(Spring),

∀o:Obj, t:Mom.KE(o, t) =
1
2

Mass(o, t)×Velocity(o, t)2, (8.124)

∀o:Obj, t:Mom.PE(o, t) = Mass(o, t)×G×Height(o, t), (8.125)

Mass(Ball,Start(Drop))> 0, (8.126)

G > 0, (8.127)

Height(Ball,Start(Drop))> 0, (8.128)

Velocity(Ball,Start(Drop)) = 0 (8.129)

}

Ax(Obs) ⊇ {

Height(Ball,End(Drop)) = 0, (8.130)

Pos(Ball,Photo(End(Drop)−1)) = (0,0), (8.131)

Pos(Ball,Photo(End(Drop))) = (0,0) (8.132)

}

Ax(OM) ⊇ {DefProp(Obj,λx.IsElastic(x)∧¬IsGaseous(x)∧¬IsLiquidy(x),(8.133)

∧,ClassOfObj)} (8.134)

where both Pred and Obs here are the same as those in (8.1) except for the addition of (8.121),

(8.122) and (8.123) in Pred. Note that axioms containing TE are omitted due to their irrele-

vance to this case study.

Figure 8.12: Summary of an axiomatisation of the revisit of bouncing-ball paradox.

158 Chapter 8. Results and Evaluation

Thus, the trigger formulae of the Unite repair plan can be instantiated as the following:

{Pred/O1,Obs⊕Pred/O2,Obj/τ,Ball/stuff 1,Spring/stuff 2,

λx.IsElastic(x)∧¬IsGaseous(x)∧¬IsLiquidy(x)/dp,ClassOfObj/u}

and effect the repair by inserting a new axiom:

Ax(ν(Pred)) ::= {ClassOfObj(Ball) = ClassOfObj(Spring)}∪Ax(Pred)

which means Ball and Spring now belong to the same object class as required. Both

Ball and Spring are in fact elastic materials, so it is expected that they are classified

under the same object class.

8.2.3.3 Summary

The notion of defining property is at the crux of the Unite repair plan. Defining prop-

erties of physical concepts can be naturally derived partly because of the formal ap-

proach to understanding Physics adopted by the community. Unite tackles the problem

of under-specification, so no contradiction arises even if the ontologies in question are

merged. Its repair operation is relatively straightforward, but effectively increases the

logical strength of the given ontologies.

8.2.4 Reidealisation

The Reidealisation repair plan (§4.4, p.51) repairs a kind of fault WMS detects and

repairs. It resolves a special case of this kind of conflict without inventing some in-

visible component and taking the viewpoint that the original conceptualisation gives

only a partial view of the underlying property. Instead, the idealisation of the property

could be changed such that it is viewed as being a property of another type. With the

new idealisation, the measurement function, which originally returns different values

in each of the two ontologies, will no longer return conflicting values.

8.2.4.1 Test Case Study I: Demotion of Pluto

Before the discovery of Pluto, the existence of a ninth planet in the Solar System was

long envisioned by astronomers, which they called Planet X. In 1930, Clyde Tombaugh

declared that he had discovered Planet X and his team named it Pluto, which is a mem-

ber of a region in the Solar System called the Kuiper Belt. Over the past few decades,

8.2. Evaluation Results 159

Sig(Pred) ⊇ {Pluto:Planet} (8.141)

Ax(Pred) ⊇ {ClearNeighbour(x) =

True if x:Planet

False if x:DPlanet
(8.142)

∀x.ClearNeighbour(x)←→ (8.143)

∀x 6= y, t1, t2.Orbit(x, t1) 6= Orbit(y, t2)

Sig(Obs) ⊇ {Pluto:Planet} (8.144)

Ax(Obs) ⊇ {KuiperBelt = {PlutinoA,PlutinoB, . . .}, (8.145)

FromChart(PlutinoA,T1) = CoordA, (8.146)

FromChart(PlutinoB,T1) = CoordB, (8.147)

FromChart(Pluto,T2) = CoordA, (8.148)

Pluto 6= PlutinoA 6= PlutinoB (8.149)

} (8.150)

where Pred contains the essential definitions for specifying the new classification and the no-

tion of a clear neighbourhood, and Obs is the observation ontology containing measurements

of the orbit of Pluto and the celestial objects positioned at various coordinates.

Figure 8.13: Summary of the axiomatisation of the demotion of Pluto case study.

the understanding of the outer Solar System has been dramatically changed by more

powerful observatory technologies and new theoretical evidence. Astronomers have

discovered increasingly larger objects in the Kuiper Belt, some of which are almost

of the size of Pluto. In 2005, an object believed to be larger than Pluto was discov-

ered, which prompted a review of the classification of Pluto and the general definition

of a planet. After rigorous debates, astronomers voted for the controversial decision

of demoting Pluto down from the classification of a Planet to a new classification of

dwarf planet. For an object to qualify for the Planet classification, it needs to meet

three requirements: a) it is in orbit around the Sun, b) it has sufficient mass for it to

have enough self-gravity to pull itself into a nearly round shape, and c) has cleared the

neighbourhood around its orbit. Pluto satisfies a) and b) but fails c). There are over

70,000 icy objects with the same composition of Pluto in the Kuiper Belt, so Pluto’s

orbit cannot be considered as being cleared We emulate the reasoning behind the de-

motion of Pluto by formalising the case study and applying the Reidealisation repair

plan.

160 Chapter 8. Results and Evaluation

An outline of the axiomatisation of the case study is presented in Figure 8.13, where:

• Planet, DPlanet and Unknown are types of planets, dwarf planets and unknown

objects;

• (ClearNeighbour ::α⇒Bool)(o) returns true if the object o has cleared the neigh-

bourhood around its orbit, i.e. satisfying c);

• (Orbit :: α⇒Mom⇒ {〈R,R,R〉})(o) returns the orbit of the object o which is

represented as a function taking a time moment and returning a three-dimensional

point in space

• (KuiperBelt:{Unknown} represents the Kuiper Belt as a set containing unknown

celestial objects;

• CoordA and CoordB are two example coordinates;

• PlutinoA and PlutinoB are two example bodies within the Kuiper Belt; and,

• (FromChart :: Obj⇒ Mom⇒ 〈Mom,R,R,R〉)(z, t) returns a four-dimensional

point occupied by z at t in space-time according to a sky chart.

In the theoretical ontology, we establish the type of Pluto as Planet (8.141). We have

simplified the modelling of the necessary requirements for classification by consider-

ing only c), i.e. that an object has a clear neighbourhood if it has type Planet and does

not have a clear neighbourhood if it has type DPlanet (8.142). A clear neighbourhood

for an object means that no other celestial objects share any part of its orbit at any

time (8.143). In the observation ontology, we assert that several plutinos are within

the Kuiper Belt (8.145) and plutinos PlutinoA and PlutinoB are located at CoordA and

CoordB at T1, respectively (8.150). We also assert that Pluto locates at CoordA at T2.

The function FromChart is not shared between Pred and Obs, so we are dealing with

heterogeneous ontologies in this case study. We can identity an ontology in F (Pred)

such that the merge between a sensory ontology, the bridging ontology, and this ontol-

ogy does not induce inconsistency. Suppose this ontology is Pred f :

Ax(Pred f) ::= {

∀x.ClearNeighbour(x)←→ (8.151)

∀x 6= y, t1, t2.Orbit(x, t1) 6= Orbit(y, t2)

}

8.2. Evaluation Results 161

To reason with Pred f , the following bridging axiom is required:

∀x, t,v.Pred f ` Orbit(x, t) = v←→ (8.152)

Obs ` 〈#2(FromChart(x, t)),#3(FromChart(x, t)), (8.153)

#4(FromChart(x, t))〉= v (8.154)

where #i returns the ith element of a tuple.

From the formalisation of the case study, we can show the following:

Pred ` ClearNeighbour(Pluto) = True (8.155)

Obs⊕Ob⊕Pred f ` ClearNeighbour(Pluto) = False (8.156)

ν(Pred) ` ClearNeighbour(ν(Pluto)) = False (8.157)

ν(Obs)⊕ν(Ob)⊕ν(Pred f) ` ClearNeighbour(ν(Pluto)) = False (8.158)

where ν(Pred) is the repaired Pred; Pluto is of type Planet and ν(Pluto) is of type

DPlanet; (8.155) is inferred from (8.142), given that Pluto:Planet; (8.156) can be

proved because Pluto’s neighbourhood is not cleared according to observations; and

(8.157) and (8.158) are provable using (8.142), given that ν(Pluto):DPlanet.

We can instantiate the trigger formulae of the Reidealisation repair plan with the fol-

lowing substitution:

{Pred/O1,Obs⊕Ob⊕Pred f /O2,Pluto/stuff ,ClearNeighbour/ f ,True/v1,

False/v2,Planet/τ1,DPlanet/τ2}

Following (4.34 - 4.37, p.4.34) of the repair plan, the corresponding repair is then:

Sig(ν(Pred)) ::= {ν(Pluto):DPlanet}∪Sig(Pred)\{Pluto}

Sig(ν(Obs)) ::= {ν(Pluto):DPlanet}∪Sig(Obs)\{Pluto}

Ax(ν(Pred)) ::= {φ{ν(Pluto)/Pluto} | φ ∈ Ax(Pred)}

Ax(ν(Obs)) ::= {φ{ν(Pluto)/Pluto} | φ ∈ Ax(Pred)}

which means Pluto is now reclassified to be a dwarf planet, as required.

8.2.4.2 Test Case Study II: The Discovery of Denisovans

Fossils, including a finger bone, belonging to an unknown type of archaic human were

found in the Denosiova cave in 2010. The mitochondrial DNA (mDNA) of the bone

162 Chapter 8. Results and Evaluation

Sig(Pred) ⊇ {fingerbone:Neanderthals} (8.159)

Ax(Pred) ⊇ {∀x. KnownSpecies(x) =

True if x:Neanderthals or

x:Homosapiens

False if x:Unknown

∀x,y. x 6= y−→ (mtDNA(x) 6= mtDNA(y)−→ (8.160)

¬KnownSpecies(x))

Ax(Obs) ⊇ {∀x. x 6= fingerbone−→ mtDNA(fingerbone) 6= mtDNA(x)} (8.161)

where Pred specifies the conditions in order for a specifies to be already known and Obs asserts

that the mtDNA of the finger bone is unique.

Figure 8.14: Summary of the axiomatisation of the discovery of Denisovans case study.

fragments was shown to be distinct from those of Neanderthals and modern humans.

The discovery team called this unknown type Denisovans, named after the cave in

which the bones were found. We can emulate this episode of ontology evolution in

biology by applying the Reidealisation repair plan to it.

A summary of the axiomatisation of the case study is shown in Figure 8.14, where:

• fingerbone represents the finger bone found in the Denisova Cave

• Neanderthals is the type of Neanderthals, Homosapiens is the type of Homosapi-

ens, and Unknown is the type of unknown species

• (KnownSpecies :: α⇒ Bool)(x) returns true if x comes from a Neanderthal and

false if the source of x is unknown

• (mtDNA :: α⇒ DNASeq)(x) returns the DNA sequence of some object x.

In the theoretical ontology, we define the type of fingerbone to be Neanderthals be-

cause Denisovans were initially believed to belong to Neanderthals or Homosapiens

(8.159). We consider that an object comes from a known species if the source is a

Neanderthal; if the source is unknown, then the object does not come from a known

species (8.160). We also assert that if the mtDNA of an object is unique, then it does

not come from a known species (8.160). In the observation ontology, we assert that the

mtDNA of the finger bone is unique (8.161).

8.2. Evaluation Results 163

The formalisation of this case study is homogeneous, so there is no need for bridging

axioms. We can show the following:

Pred ` KnownSpecies(mtDNA(fingerbone)) (8.162)

Obs⊕Pred f ` ¬KnownSpecies(mtDNA(fingerbone)) (8.163)

ν(Pred) ` ¬KnownSpecies(mtDNA(ν(fingerbone))) (8.164)

ν(Obs)⊕ν(Pred f) ` ¬KnownSpecies(mtDNA(ν(fingerbone))) (8.165)

where Pred f is an ontology in the factorised network constructed from Pred, which

contains only (8.160).

The trigger formulae of the Reidealisation repair plan can be instantiated as follows:

{Pred/O1,Obs⊕Pred f /O2,fingerbone/stuff ,λx.KnownSpecies(mtDNA(x))/ f ,

True/v1,False/v2,Neanderthals/τ1,Unknown/τ2}

Following the rule to effect the repair, the corresponding repair is therefore:

Sig(ν(Pred)) ::= {ν(fingerbone):Unknown}∪Sig(Pred)\{fingerbone}

Sig(ν(Obs)) ::= {ν(fingerbone):Unknown}∪Sig(Obs)\{fingerbone}

Ax(ν(Pred)) ::= Ax(Pred)

Ax(ν(Obs)) ⊇ {∀x. x 6= ν(fingerbone)−→ mtDNA(ν(fingerbone)) 6= mtDNA(x)}

which means the finger bone found is now reclassified to have come from an unknown

species rather than Neanderthals, as required.

8.2.4.3 Other Test Case Studies

In addition to the case studies presented in (§8.2.4.1) and (§8.2.4.2), we have also

evaluated Reidealisation over a range of other case studies. These include:

• Primordial Giant: In 2007, a supernova was observed to last for an unusually

long period – at least 555 days. With a supernova model, its mass was calculated

to be 300 solar masses, which was almost two times the absolute upper limit on

a modern star. However, in early cosmic times – immediately after the big bang

– stars then lived briefly and died violently. This resembles a Reidealisation

type of repair, because the idealisation of the supernova as a modern star caused

a contradiction about its mass, which disappears if the star is reidealised as a

primordial star.

164 Chapter 8. Results and Evaluation

• Two Faces of Water: Water behaves differently from most other substances in

various ways, including that it is less dense at its freezing point (0◦C) than it is

above. Some physicists postulate that the disparity comes from water taking two

forms, which behave differently and the observed behaviour is the interaction of

these two. One is a crystalline form, which ice takes, and the other disordered.

It turns out that water molecules are more densely packed when they are in a

disordered structure. In essence, the repair is to not idealise water as a substance

that can be packed in only one way but in two fundamentally different ways.

• Large-Scale Cosmic Magnetic Fields: The polarisation of light is known to be

twisted by large-scale magnetic fields, but the source of their seed field is unex-

plained by conventional mechanisms. With the theory of dark magnetism, which

postulates new and unobserved magnetic fields. So, the repair is to not idealise

such large-scale cosmic magnetic fields as products of conventional physics, but

of the theory of dark magnetism instead.

8.2.4.4 Summary

Reidealisation address a kind of fault similar to WMS, but it requires a stronger onto-

logical setup which requires the ontologies to consider more than one idealisation of

some property. A resulting benefit is that the repair entails reassigning the type of the

concept responsible for creating the fault, which provides more meaningful repair than

creating an invisible component.

8.2.5 Spectrum

Unary predicates can be thought of as set memberships in a way that the name of the

predicate corresponds to the name of a set and the predicate is true if and only if the

argument is a member of the set. This is often sufficient for working in simple and

controlled problem domains, but is a relatively unnatural representation for domains

involving complex relationships between concepts, such as Physics. The Spectrum on-

tology repair plan is designed to create a new structure that provides additional logical

power from unary predicates.

8.2. Evaluation Results 165

Solid Liquid Gas Plasma

Solid – Melting Sublimation –

Liquid Freezing – Evaporation –

Gas Deposition Condensation – Ionisation

Plasma – – Deionisation –

Table 8.1: Types of phase transition.

8.2.5.1 Test Case Study I: Nomenclature for Phase Transitions

A phase transition is a change of a substance from one state to another. In §4.3.1, we

have considered the heat required by a substance in order to undergo phase transition,

whereas this case study deals with the actual types of phase transition. More precisely,

latent heat case study describes the essential episode that causes phase transitions, the

discovery of which can be repaired by WMS, as demonstrated. We explain below that

the effect produced by the latent heat case study can be repaired by the Spectrum repair

plan.

Typically, a phase transition is used to describe transitions between solid, liquid, gaseous

and plasma states. A particular phase transition happens at a specific temperature.

However, a phase transition is a result of a change of some external condition and

what is modelled here is the effect of a change of temperature. The types of transition

between solid, liquid, gas and plasma are shown in Table 8.1. Suppose each state is

represented as an unary predicate, taking a triple consisting of the initial temperature,

the final temperature and the substance under consideration as argument:

(Melting :: 〈R,R,Obj〉 ⇒ Bool)(〈t1, t2,s〉) (8.166)

(Freezing :: 〈R,R,Obj〉 ⇒ Bool)(〈t1, t2,s〉) (8.167)

(Evaporation :: 〈R,R,Obj〉 ⇒ Bool)(〈t1, t2,s〉) (8.168)

(Condensation :: 〈R,R,Obj〉 ⇒ Bool)(〈t1, t2,s〉) (8.169)

(Sublimation :: 〈R,R,Obj〉 ⇒ Bool)(〈t1, t2,s〉) (8.170)

(Deposition :: 〈R,R,Obj〉 ⇒ Bool)(〈t1, t2,s〉) (8.171)

(Ionisation :: 〈R,R,Obj〉 ⇒ Bool)(〈t1, t2,s〉) (8.172)

(Deionisation :: 〈R,R,Obj〉 ⇒ Bool)(〈t1, t2,s〉) (8.173)

where (8.166) is true when substance s undergoes melting when its initial and final

temperatures are t1 and t2, respectively; (8.167) is true when substance s undergoes

166 Chapter 8. Results and Evaluation

freezing when its initial and final temperatures are t1 and t2, respectively; and the rest

are self-explanatory. Suppose an ontology Ont specifies the type of phase transition

for water and nitrogen14 over some temperature ranges15, the case study can be ax-

iomatised as Figure 8.15. The axiomatisation specifies the types of phase transition

for various observations, e.g., when the initial and final temperatures of some water

are -1C and 1C, respectively (8.175). Note that all predicates use mnemonic names,

so that the set of related predicates could be constructed by measuring the semantic

distances between each predicate in the language, which could, for instance, be com-

puted using WordNet (Miller, 1995). It is not unreasonable to assume that Melting,

Freezing, Evaporation, and so forth, could be regarded to be semantically related by

some algorithm. If the language contains a predicate named, say, Rough, then it is also

not unreasonable to assume that it would be regarded to be semantically unrelated, be-

cause rough is typically associated with the texture of material rather than the physical

transition in phase.

Even with the set RelatedPredicates constructed, we only know that its members are

semantically related to a certain extent, but their relationships have no logical mean-

ing. To increase the logical power, the Spectrum repair plan (Figure 4.7, p.68) can be

applied to produce a new representation. The Spectrum repair plan can be triggered by

the following substitution:

{Ont/O,Observations/Q,RelatedPredicates/P} (8.187)

as Observations and RelatedPredicates are already maximal subsets that do satisfy

the trigger formula.

To effect the repair in the signature of Ont, we declare the following new symbols:

PhaseTransition:R×R×Obj⇒ TransitionType (8.188)

Melting:TransitionType (8.189)

Freezing:TransitionType (8.190)

Evaporation:TransitionType (8.191)

Condensation:TransitionType (8.192)

. . .

Deionisation:TransitionType (8.193)

14The calculation of the temperatures under which ionisation or deionisation occurs is achieved by
using the equation for the thermal energy of the ideal gas and nitrogen’s first ionisation energy of
1402.3 kJ/mol.

15Standard atmospheric pressure is assumed in order to simplify the underlying Physics.

8.2. Evaluation Results 167

Sig(Ont) ::= {(8.166),(8.167),(8.168),(8.169),(8.170),(8.171) (8.174)

(8.172),(8.173),H2O:Obj,N:Obj}

Ax(Ont) ::= {Melting(〈−1,1,H2O〉), (8.175)

Freezing(〈1,−1,H2O〉), (8.176)

Evaporation(〈99,101,H2O〉), (8.177)

Condensation(〈101,99,H2O〉), (8.178)

Melting(〈−220,−200,N〉), (8.179)

Freezing(〈−200,−220,N〉), (8.180)

Evaporation(〈−200,−190,N〉), (8.181)

Condensation(〈−190,−200,N〉), (8.182)

Ionisation(〈90000,100000,N〉), (8.183)

Deionisation(〈100000,90000,N〉), (8.184)

Observations ::= {〈−1,1,H2O〉,〈1,−1,H2O〉,〈99,101,H2O〉, (8.185)

〈101,99,H2O〉 . . .}

RelatedPredicates ::= {Melting,Freezing,Evaporation, (8.186)

Condensation,Deposition, Ionisation, . . .}}

where the ontology Observations is a set containing all targets of observation expressed as

triples and RelatedPredicates is a set containing all predicates that are deemed related. All

predicates here use mnemonic names, so the set RelatedPredicates can be constructed by

computing the semantic distances between each predicate in the language using WordNet-

based or more advanced machine learning-based approaches.

Figure 8.15: Axiomatisation of the nomenclature of phase transitions.

168 Chapter 8. Results and Evaluation

and remove the corresponding old symbols. Thus, the new signature of Ont, Sig(ν(Ont)),

is:

Sig(ν(Ont)) ::= {Melting:TransitionType, (8.194)

Freezing:TransitionType,Evaporation:TransitionType, (8.195)

Condensation:TransitionType,Sublimation:TransitionType, (8.196)

Deposition:TransitionType, Ionisation:TransitionType, (8.197)

Deionisation:TransitionType,H2O:Obj,N:Obj, (8.198)

PhaseTransition:〈R⇒ R⇒ Obj〉 ⇒ TransitionType} (8.199)

The axioms are repaired as follows:

Ax(ν(Ont)) ::= {PhaseTransition(〈−1,1,H2O〉) = Melting, (8.200)

PhaseTransition(〈1,−1,H2O〉) = Freezing, (8.201)

PhaseTransition(〈99,101,H2O〉) = Evaporation, (8.202)

PhaseTransition(〈101,99,H2O〉) = Condensation, (8.203)

PhaseTransition(〈−220,−200,N〉) = Melting, (8.204)

PhaseTransition(〈−200,−220,N〉) = Freezing, (8.205)

PhaseTransition(〈−200,−190,N〉) = Evaporation, (8.206)

PhaseTransition(〈−190,−200,N〉) = Condensation, (8.207)

PhaseTransition(〈90000,100000,N〉) = Ionisation, (8.208)

PhaseTransition(〈100000,90000,N〉) = Deionisation (8.209)

. . .}

With these new axioms, there is only one type of phase transition associated with a

substance and a temperature range by the injection PhaseTransition, provided that we

exclude from our model situations where the substance under consideration undergoes

multiple phase changes. So a structure for types of phase transitions is constructed, as

required.

8.2.5.2 Test Case Study II: Construction of Cosmic Distance Ladder

Estimating distances between Earth and celestial objects is notoriously complex be-

cause of the vast scale of the universe. The closest star to Earth, Alpha Centauri A, is

4.3 light years away, whilst the most distant galaxies yet observed are more than 13

8.2. Evaluation Results 169

billion light years away. To measure these distances, astronomers adopt a variety of

techniques:

• Direct distance measurements are only possible for objects within a distance of

about 1,000 light-years even with precision, space-based telescopes. For these

relatively nearby objects, astronomers use a phenomenon called parallax, which

is when an object appears to move relative to a more distant background due to

the motion of the observer.

• To determine the distances to more distant objects, Cepheid variables are use-

ful for measuring objects out to a maximum distance of 60 million light-years.

Cepheid variables are a class of stars that pulse in and out, and the rate of their

pulses are governed by their brightnesses. The distance can be calculated by

using parallax to determine the distances to nearby Cepheids and comparing the

true brightness to the apparent brightness of the object.

• Stars of the class Type Ia supernovae can be used to measure objects out to a

few billion light-years away. These are exploding stars that brighten and fade

in a way that their absolute magnitudes are all the same, which reveals their

distances.

• For objects as far as 13 billion light-years away, redshift measures the speed

galaxies are moving away from Earth. Because the universe is constantly ex-

panding, distant galaxies move away faster creating the doppler effect. Note that

the case study in §8.2.1.2 is an example of determining distance using redshift.

These four methods form part of the cosmic distance ladder, as the entire structure

presenting the methods is analogous to a ladder, where each rung corresponds to a

range of distances.

Suppose each technique for measuring astronomical distances is represented as an

unary predicate, taking a pair consisting of the observation event of measurement and

the celestial object in consideration as argument:

(Parallax :: 〈Event,Obj〉 ⇒ Bool)(〈e,o〉) (8.210)

(Cepheids :: 〈Event,Obj〉 ⇒ Bool)(〈e,o〉) (8.211)

(Supernovae :: 〈Event,Obj〉 ⇒ Bool)(〈e,o〉) (8.212)

(Redshift :: 〈Event,Obj〉 ⇒ Bool)(〈e,o〉) (8.213)

170 Chapter 8. Results and Evaluation

where (8.210) is true when the distance to object o can be measured accurately by

the Parallax method at the observation event e; (8.211) is true when the distance to

object o can be measured accurately by the Cepheids method at the observation event

e; (8.212) is true when the distance to object o can be measured accurately by the Type

Ia Supernovae method at the observation event e; and, (8.213) is true when the distance

to object o can be measured accurately by the Redshift method at the observation event

e. Suppose an ontology Ont specifies the accurate measuring used for various celestial

objects, including:

• Sirius, which is 8.6 light-years away

• Andromeda Galaxy, which 2.5 million light-years away

• Supernova 1994D (SN1994D), which is 108 million light-years away

• IOK-1, which is 13 billion light-years away.

The case study can be axiomatised as Figure 8.16, which specifies the types of mea-

surement that is accurate for each object at the corresponding observation event, e.g.,

the distance to Sirius can be accurately measured by the Parallax method (8.215). Note

that all predicates use mnemonic names, so the set of related predicates RelatedPredicates

can be constructed by measuring the semantic distances between each predicate in the

language, similar to the previous case study.

Even with the set RelatedPredicates constructed, the relationships between each mem-

ber have no logical meaning. The Spectrum repair plan can be triggered by the follow-

ing substitution:

{Ont/O,Observations/Q,RelatedPredicates/P} (8.221)

as Observations and RelatedPredicates are already maximal subsets that do satisfy

the trigger formula.

To effect the repair in the signature of Ont, we declare the following new symbols:

DistanceMethod:〈Event⇒ Obj〉 ⇒Method (8.222)

Parallax:Method (8.223)

Cepheids:Method (8.224)

Supernovae:Method (8.225)

Redshift:Method (8.226)

8.2. Evaluation Results 171

Sig(Ont) ::= {(8.210),(8.211),(8.212),(8.213),Sirius:Obj, (8.214)

Andromeda:Obj,SN1994D:Obj, IOK−1:Obj,ObsA:Event,

ObsB:Event,ObsC:Event,ObsD:Event}

Ax(Ont) ::= {Parallax(〈ObsA,Sirius〉), (8.215)

Cepheids(〈ObsB,Andromeda〉), (8.216)

Supernovae(〈ObsC,SN1994D〉), (8.217)

Redshift(〈ObsD, IOK−1〉), (8.218)

Observations ::= {〈ObsA,Sirius〉,〈ObsB,Andromeda〉,〈ObsC,SN1994D〉, (8.219)

〈ObsD, IOK−1〉 . . .}

RelatedPredicates ::= {Parallax,Cepheids,Supernovae,Redshift}} (8.220)

where the ontology Observations is a set containing all targets of observation expressed as pairs

and RelatedPredicates is a set containing all predicates that are deemed related. All predicates

here use mnemonic names, so the set RelatedPredicates can be constructed by computing

the semantic distances between each predicate in the language using WordNet-based or more

advanced machine learning-based approaches.

Figure 8.16: Axiomatisation of the construction of cosmic distance ladder.

and remove the corresponding old symbols. Thus, the new signature of Ont, Sig(ν(Ont)),

is:

Sig(ν(Ont)) ::= {Parallax:TransitionType, (8.227)

Cepheids:Method,Supernovae:Method, (8.228)

Redshift:Method,Sirius:Obj,Andromeda:Obj,SN1994D:Obj (8.229)

IOK−1:Obj,DistanceMethod:〈Event⇒ Obj〉 ⇒Method} (8.230)

The axioms are repaired as follows:

Ax(ν(Ont)) ::= {DistanceMethod(〈ObsA,Sirius〉) = Parallax, (8.231)

DistanceMethod(〈ObsB,Andromeda〉) = Cepheids, (8.232)

DistanceMethod(〈ObsC,SN1994D〉) = Supernovae, (8.233)

DistanceMethod(〈ObsD, IOK−1〉) = Redshift, (8.234)

. . .}

172 Chapter 8. Results and Evaluation

This is precisely the invention of the cosmic distance ladder from the unary predicate

representation. However, the target type of DistanceMethod (8.222), i.e. τ′ in (Figure

4.7, p.68), is the unordered nominal type Method, so it does not yet reveal the desirable

ladder structure. A further step is needed to define a partial order based on the distances

at each rung.

8.2.5.3 Summary

Spectrum could be viewed as a variation of Unite, as Unite merges two different con-

cepts into one, whereas Spectrum identifies similar concepts and groups them together

to form a new structure. Instead of measuring the defining property of some concept,

Spectrum looks for functional properties in its original representation.

8.3 Alternative Theories

In this section, we look at some of the other instantiations retained by the heuristic

filters. In particular, we are interested in understanding the plausibility of repairing

using these instantiations. If some of the unfiltered instantiations are physically plausi-

ble, then GALILEO would demonstrate creative behaviour, as these instantiations were

unanticipated by its creators. To avoid excessive verbosity, we describe the alternative

theories only for the WMS and Inconstancy case studies that are reported earlier.

8.3.1 “Where’s My Stuff”

8.3.1.1 The Bouncing-Ball Paradox

Described in §8.2.1.1 is the bouncing-ball paradox, which is demonstrated to be re-

pairable by WMS. Recall that in this case study, the following constants occur:

• TE:Obj⇒Mom⇒ R is the total energy of an object.

• Ball:Obj is the bouncing ball.

• Drop:Event is the event of dropping the ball.

• End:Event⇒Mom is the final moment of an event.

8.3. Alternative Theories 173

Because we work with the contradiction outlined in (8.23, 8.24), f (stuff) is restricted

to TE(Ball,End(Drop)) in each instantiation, i.e. the total energy of the ball at the

moment that it hits the ground. The reason is that it is this exact formula that creates

a conflict, at least in the case study – the value of TE(Ball,End(Drop)) is different

in the conflicting ontologies. After applying the heuristic filters, 10 instantiations are

returned, as listed below:

? f ::= λa.TE(a,(End(Drop)) ?stuff ::= Ball (8.235)

? f ::= λa.TE(Ball,(End(a))) ?stuff ::= Drop (8.236)

? f ::= TE(Ball) ?stuff ::= End(Drop) (8.237)

? f ::= λa.TE(Ball,(aDrop)) ?stuff ::= End (8.238)

? f ::= λa.a ?stuff ::= TE(Ball,(End(Drop))) (8.239)

? f ::= λa.a(End(Drop)) ?stuff ::= TE(Ball) (8.240)

? f ::= λa.a(Ball) ?stuff ::= λa.TE(a,End(Drop)) (8.241)

? f ::= λa.a(Drop) ?stuff ::= λa.TE(Ball,End(a)) (8.242)

? f ::= λa.a(Ball,End(Drop)) ?stuff ::= TE (8.243)

? f ::= λa.a(Ball,Drop) ?stuff ::= λa,b.TE(a,End(b)) (8.244)

The preferred instantiation of stuff is TE, because the case study requires the con-

cept of total energy to be split into parts, in which case the instantiation of f is

λa. a(Ball,End(Drop)) (8.243). We argue that all of the other 9 instantiations are

physically meaningful, but with different degrees of plausibilities.

8.3.1.1.1 Phlogiston? The instantiation (8.235) suggests that the ball contains an

invisible part which temporarily stores the missing energy. The basics of this hypoth-

esis are similar to those of the phlogiston theory: an obsolete theory that postulated

that all combustible materials contain some substance that is released in burning. Our

phlogiston would act like a store for kinetic energy, which is given off to power the

rebound. Although modern science has refuted the phlogiston theory, the phlogiston

theory was a respectable theory, which just happened to be wrong. As we have men-

tioned throughout the thesis, it is not the job of our ORPs to restrict themselves to only

historically correct repairs, but to generate plausible ones.

174 Chapter 8. Results and Evaluation

8.3.1.1.2 Many-worlds interpretation? The variable stuff is instantiated to End in

(8.238), which is a function that returns the final moment of an event. An approach to

quantum mechanics is the many-worlds interpretation, which asserts that, in addition to

the world we are aware of directly, there are other similar worlds existing in parallel.

The many-worlds interpretation is used to explain the ’Schrodinger’s cat’ paradox,

which presents a scenario where a cat might be both alive and dead, and postulates

that every event is a branch point and the alive and dead cats are in different branches

of the universe. Our Schrodinger’s cat would be the ball and, by the many-worlds

interpretation, the total energy of the ball could be greater than zero in one world and

zero in another. Let us suppose that EndA returns the final moment of an event in

the branch A where the ball is stationary upon impact and that EndB returns the final

moment of an event another branch, B. The repair is to split End into EndA and EndB.

Now at the moment returned by EndA, the ball is indeed stationary, so no contradiction.

This story implies that if the total stuff represents the classical view of reality, then it

can be indirectly expressed as the summation of some representation of time in two

parallel worlds.

A similar story can also be devised for instantiations (8.236) and (8.237).

8.3.1.1.3 Exceptional object? The instantiation (8.240) has stuff instantiated to

TE(Ball), which means that TE and Ball do not warrant repair in general, but only

when TE is applied to Ball. This is somewhat similar to Lakatos’s exception-barring

methods, e.g., piecemeal exclusion (Lakatos, 1976), but we determine an extension of

the set of counter-examples without explicitly constructing a set containing counter-

examples. In our case, the original definition of TE is still applicable to every object

within the domain that is not Ball, and for Ball a new definition is used. One plausible

reason for this is that the structure of Ball is exceptional, e.g., the original definition

of TE is already a good approximation – similar to how classical mechanics are still

widely adopted today even when quantum mechanics have been accepted by modern

science.

A similar story can be concocted for (8.241), (8.242) and (8.244):

• In (8.241), instead of excluding Ball from the set of supporting examples, the

final moment of an event is excluded. A plausible reason is that all objects give

off “phlogiston” at the final moment of the dropping event.

• In (8.242), the particular Ball has an exceptional behaviour at the final moment

8.3. Alternative Theories 175

of all events. One explanation is that the “phlogiston” gives off only at the end

of an event.

• In (8.244), all objects give off phlogiston at the end of all events.

8.3.1.1.4 Experimental error? Instantiation (8.239) is relatively specific, as it sug-

gests that the conflict does not lie in the definition or conceptualisation of TE, Ball,

etc. individually, but in the application of TE on Ball and End(Drop). We can interpret

this to be an experimental error with this particular measurement rather than a more

general problem with the laws or conceptualisation.

8.3.1.2 Dark Matter

Described in §8.2.1.2 is the dark matter case study, which is also demonstrated to be

repairable by WMS. Recall that in this case study, the following constants occur:

• GraphA:Glxy⇒Mom⇒Matter⇒ 〈R,R〉 is the rotation curve of a galaxy.

• glxy101:Glxy is the galaxy under consideration.

• obs1:Event is the observation event.

Because we work with the paradox formulated in (8.51, 8.52), f (stuff) is restricted

to GraphA(glxy101,obs1) in each instantiation, i.e. the rotation curve of the galaxy

glxy101 based on the observation event obs1. The reason is that it is this exact formula

that creates a conflict, at least in the case study – the value of GraphA(glxy101,obs1)

is different in the conflicting ontologies. After applying the heuristic filters, 5 instanti-

ations are returned, as listed below:

? f ::= λa.GraphA(a,obs1) ?stuff ::= glxy101 (8.245)

? f ::= GraphA(glxy101) ?stuff ::= obs1 (8.246)

? f ::= λa.a ?stuff ::= GraphA(glxy101,obs1) (8.247)

? f ::= λa.a(glxy101) ?stuff ::= λa.GraphA(a,obs1) (8.248)

? f ::= λa.a(obs1) ?stuff ::= GraphA(glxy101) (8.249)

The preferred instantiation of stuff is glxy101, because the case study requires the

representation of a galaxy to be split into parts, in which case the instantiation of f

is λa. GraphA(a,obs1) (8.245). We argue that all of the other 4 instantiations are

physically meaningful, but with different degrees of plausibilities.

176 Chapter 8. Results and Evaluation

8.3.1.2.1 Many-worlds interpretation? The variable stuff is instantiated to obs1 in

(8.246), which is an observation event. Similar to the bouncing-ball, splitting obs1

into parts could be interpreted as adopting the many-worlds interpretation of quantum

mechanics. Let us suppose that obs1A returns the observation event occurred in the

branch A where the orbital speeds of distant stars are faster than those observed in

the classical interpretation of real world. Also, let us suppose that obs1B returns the

observation event in another branch, B. The repair is to split obs1 into obs1A and

obs1B. Now according to the observation event obs1A, the orbital speeds are indeed

greater, so there is no contradiction because obs1A deals with a different branch of the

universe.

8.3.1.2.2 Exceptional object? The instantiation (8.249) has stuff instantiated to

GraphA(glxy101), which means that GraphA and glxy101 do not warrant repair in

general, but only when GraphA is applied to glxy101l. Like in the bouncing-ball para-

dox, this is somewhat similar to Lakatos’s method of piecemeal exclusion as well. In

our case, the original definition of GraphA is still applicable to every object within

the domain that is not glxy101, and for glxy101 a new definition is used. One plau-

sible reason for this is that the structure of glxy101 is exceptional, e.g., only glxy101

experiences the effects of dark matter.

A similar story can be concocted for (8.248).

8.3.1.2.3 Experimental error? Instantiation (8.247) is relatively specific. It sug-

gests that the conflict does not lie in the definition or conceptualisation of GraphA,

glxy101, etc. individually, but in the application of GraphA on glxy101 and obs1. We

can interpret this to suggest an experimental error in this particular measurement rather

than a more general problem with the definitions or conceptualisations, due to the high

specificity.

8.3.2 Inconstancy

8.3.2.1 The Travel Time of Light

Described in §8.2.2.1 is the travel-time of light case study, which is demonstrated to be

repairable by the Inconstancy repair plan. In this case study, several constants occur,

including:

8.3. Alternative Theories 177

• Approx:R⇒ R returns the approximated form of a value;

• TravelTime:Obj⇒ Point⇒ Point⇒ R returns the time an object takes to travel

to some point in space;

• LightFrom:Obj⇒ Obj returns the light object emitted from an object;

• ReactionTime:Animal⇒ R returns the least number of seconds a typical animal

responds to an event; and,

• roemer:Person represents the observer conducting the observation.

Because we work with the paradox outlined in (8.72 - 8.73), applying the instantiation

of ? f to that of ?stuff is guaranteed to give

Approx(TravelTime(LightFrom(Io), Io,Earth)) (8.250)

in each match, i.e. the approximated form of the travel time of the light emitted by

Io travelling to Earth. The reason is that it is this exact formula that creates a con-

flict – the values unexpectedly vary in the conflicting ontologies. After applying the

heuristic filters, 43 matches containing unique instantiations of ? f and ?stuff remain.

This is considerably more than the previous case study, due to the fact that there are

substantially more terms occurring in (8.250) than in previous theorems.

We depict some matches below and all of the matches are shown in Figure A.1.

? f 7→ Approx , (8.251)

?stuff 7→ TravelTime (LightFrom Io) Io Earth

? f 7→ λa. Approx (a Io Earth) , (8.252)

?stuff 7→ λa, b. TravelTime (LightFrom a) a b

? f 7→ λ a. Approx (TravelTime (LightFrom a) Io Earth) , (8.253)

?stuff 7→ Io

? f 7→ λ a. Approx (TravelTime (LightFrom Io) a Earth) , (8.254)

?stuff 7→ Io

? f 7→ λ a. Approx (TravelTime (LightFrom Io) Io a) , (8.255)

?stuff 7→ Earth

? f 7→ λ a. Approx (TravelTime a Io Earth) , (8.256)

?stuff 7→ LightFrom Io

178 Chapter 8. Results and Evaluation

The preferred instantiation of stuff is TravelTime(LightFrom(Io), Io,Earth) (8.251),

because the case study requires the function returning the travel-time of the light emit-

ted from Io travelled to Earth to be given a new dependency (8.76). We argue that all

of the other 42 instantiations are physically meaningful, but with different degrees

of plausibilities. In fact, instantiating stuff to λa,b.TravelTime(LightFrom(a),a,b)

(8.252) will give a more general repair, because that will suggest the term to be given

the variad is the travel time of light, disregarding the source and destination.

8.3.2.1.1 Wormhole? The matches (8.253 - 8.255) have stuff instantiated to either

Io or Earth, respectively. This means Io or Earth will be given the variad as an ad-

ditional argument, turning the terms representing Io and Earth into functions from

constants. This is reminiscent of postulating about the existence of wormholes, which

is virtually a shortcut through spacetime. If there is a wormhole connecting Io and

Earth, then the light emitting off Io could travel through this tunnel. The property of

the wormhole might change, which explains a variation in the value of the light’s time

of travel. Notice that both (8.253) and (8.254) have ?stuff instantiated to Io, but the in-

stantiations of ? f are different. This is a particularly interesting result, because (8.253)

suggests that the thing that unexpected changed is the light source whereas (8.254)

suggests that it is the physical location of the source.

8.3.2.1.2 Changing properties of light? The match (8.256) instantiates stuff to the

LightFrom(Io), meaning that the light emitted from Io itself varies when the value of

the variad changes. Representing the light beam itself as a function that takes the variad

as the argument could mean that the physical state or property of the light changes,

which consequently affects the time measured. This is similar to the postulate that light

exhibits wave and particle properties. Certain behaviours of light are better explained

by wave properties, e.g., double-slit interferences, whilst others by particle properties,

e.g., refraction. This repair suggests that the unexpected variation in the measurements

is solely caused by the physical change of light emitted from Io itself.

Most of the remaining instantiations can be interpreted by the many-worlds interpre-

tation, conceptual problem, and experimental error explanations, similar to previous

case studies.

8.3. Alternative Theories 179

8.3.2.2 Gas Laws

Described in §8.2.2.2 is the gas laws case study, which is demonstrated to be repairable

by the Inconstancy repair plan. In this case study, several constants occur, including:

• Boyle(g) returns a graph plotting time against the product of the pressure and

volume of the gas g;

• Hg(o,m) returns the mercury content with respect to an object o, according to

the modifier m; if m is of value In, then it returns the mercury content inside o;

• Flask(o,m) returns the flask with respect to object o, according to the modifier

m; if m is of value On, then it returns the flask placed on o; and,

• Desk is a desk object in the laboratory.

We work with the paradox outlined in (8.95 - 8.99), applying the instantiation of ? f to

that of ?stuff is guaranteed to give

Boyle(Hg(Flask(Desk,On), In)) (8.257)

in each match, i.e. the graph plotting time against Boyle’s Law value of the gas that

is placed inside a flask, which itself is placed on a desk. After applying the heuristic

filters, 29 matches containing unique instantiations of ? f and ?stuff remain.

We highlight three of the matches below; all of the matches found are shown in Figure

A.2.

? f 7→ λ a. a (Hg (Flask Desk On) In), (8.258)

?stuff 7→ Boyle

? f 7→ λa. Boyle (Hg a In), (8.259)

?stuff 7→ Flask Desk On

? f 7→ λa. Boyle (Hg (a Desk) In), (8.260)

?stuff 7→ λa. Flask a On

The preferred instantiation of stuff is Boyle (8.258), because the case study requires

Boyle’s Law to be given a new dependency. We argue that all of the other instantiations

are physically meaningful, but with different degrees of plausibilities.

180 Chapter 8. Results and Evaluation

8.3.2.2.1 Irrelevant Measurements? The variable ?stuff is instantiated to

Flask(Desk,On) (8.261)

in (8.259), suggesting that the particular flask placed on top of the desk has varying

properties that affect the value of Boyle’s Law. This might mean that the volume

of space inside the flask changed during the experiment. One possibility is that the

thickness of the flask itself increased/decreased, so it would be insufficient to base

Boyle’s value on the exterior dimensions of the flask. Alternatively, this particular

flask cracked during the experiment when temperature was changed.

8.3.2.2.2 Unreliable Apparatus? The variable ?stuff is instantiated to

λa.Flask(a,On) (8.262)

in (8.260). It essentially represents a function that returns some flask that is placed on

top of some given object. If the argument is a desk, then it returns the flask on top of

the desk. Making this function depend on the temperature may mean that all flasks that

are placed on top of anything have certain properties changed with temperature. For

instance, the part of the flask making contact with another object when placed on top

cracks at higher temperatures.

Similar to the previous case study, most of the remaining instantiations can be inter-

preted by the many-worlds interpretation, conceptual problem, and experimental error

explanations.

8.3.3 Summary

We have outlined some interpretations of diagnoses other than the historically correct

one returned by GALILEO. With the four filtering heuristics, we have successfully

filtered out physically meaningless instantiations of ?stuff . Each of the remaining in-

stantiation corresponds to a plausible alternative theory.

8.4 Summary

GALILEO has been evaluated on a diverse collection of case studies from Physics,

ranging from school-level Physics to advanced Astronomy. We aimed to verify the

8.4. Summary 181

main hypothesis that the ORPs designed are indeed highly general and a few ORPs can

account for a large number of instances of ontology evolution in Physics. In each case

study, the detected ontological fault has successfully been resolved by the application

of an appropriate ORP. These results indicate that GALILEO is already capable of

performing well in the Physics domain, which is a considerably complex domain given

the underlying higher-order nature.

We have verified that historically accurate solutions are within the search space in all

case studies, which means that we have successfully emulated all episodes of ontology

evolution in Physics that we considered. We have also explored beyond these solu-

tions and investigated other plausible repairs. The four heuristics presented in §6.3 are

sufficient to substantially eliminate physically meaningless diagnoses, allowing the

selection of plausible repairs to become manageable. Each of the filtered diagnoses

gives hints to new, interesting Physics, which enables GALILEO to assist the user better

understand the underlying cause of the fault in question and even derive new Physics.

Chapter 9

Conclusions

9.1 Introduction

In this thesis, we have outlined the urgent need for improving the automation in on-

tology evolution in distributed environments. We have introduced and provided a de-

scription of GALILEO and presented a study of its techniques for ontology evolution.

Our evaluation approach focused on measuring the applicability of the system and its

techniques to a range of case studies from Physics. Further, throughout the thesis, we

have suggested various areas of further work. We now discuss in more depth the ones

of particular importance and significance. We outline possible directions for improv-

ing and extending the system and its techniques. Moreover, we summarise the work in

this thesis, highlighting the central contributions and providing concluding remarks.

9.2 Contributions

The main aim of this project is to mechanise ontology evolution in Physics by design-

ing novel techniques and integrating them into a system, GALILEO. In Chapter 1, the

key hypothesis of the thesis is stated as:

A few generic, ontology repair plans can account for a large number of
historical instances of ontology evolution in the Physics domain.

Additionally, the subordinate hypothesis of the thesis is stated as:

A few heuristics enable: (i) substantial control over the size of the search
in the space containing solution candidates, which is otherwise unman-
ageable, and (ii) preservation of only physically relevant solutions.

183

184 Chapter 9. Conclusions

We claim that both the key and subordinate hypotheses have been verified through the

fulfilment of the following five claims:

• To provide highly general formalisations of ontology repair plans which are de-

signed to resolve ontological faults in Physics ontologies. Chapter 4 presents

formalisations of five ORPs: WMS, Reidealisation, Inconstancy, Unite and Spec-

trum. The design and formalisations of each ORP are highly general and con-

cise, capable of handling both homogeneous and heterogeneous ontologies, i.e.

ontologies that share a common signature and those that use distinct signature

symbols.

• To mechanise ontology evolution by integrating ORPs within an environment that

provides capabilities to perform reasoning within individual ontologies and over

multiple ontologies. Chapters 5, 6 and 7 discuss our novel approach to realising

ontology evolution by integrating ORPs within Isabelle. Thus, GALILEO can be

seen as an extension to Isabelle, which essentially equips Isabelle with the func-

tionality of diagnosing ontological faults and repairing conflicting ontologies.

• To formalise a wide range of case studies from the domain of Physics that are

examples of ontology evolution. Chapters 4 and 8 provide models of a set of

case studies in Physics. From our knowledge and experiences, there is no on-

tology of Physics that is sufficiently rich or adequate for our application. Thus,

we have formalised each of the case studies in order to facilitate the evaluation

of GALILEO. We have devoted effort to faithfully capture in our models the es-

sential Physics knowledge underlying each case study. The key reason is that

we prefer to work with non-trivial theorems, which are inferred from relatively

fundamental principles and laws, rather than making trivial inferences, e.g., ones

that need only one inference step.

• To evaluate these techniques over a diverse range of historical records of ontol-

ogy evolution in Physics. Also in Chapter 8, we have applied a small but diverse

collection of case studies to the ORPs, ranging from school-level Physics, e.g.,

Boyle’s Law, to advanced Astronomy, e.g., Dark Matter. We have shown that

the historical solution from each case study can be successfully emulated by

GALILEO.

• To design heuristics that effectively prune the search space containing logically

valid diagnoses to become one of a manageable size containing only physically

9.3. Additional Contributions 185

meaningful solutions. Also in Chapters 7 and 8, we have presented details of the

four heuristics used for filtering out physically meaningless diagnoses. These

heuristics are particularly important, given the typically huge number of unifiers

returned by higher-order unification. We have shown that these heuristics can

substantially reduce the size of the search space and the remaining solutions

represent plausible alternative theories, including the historically correct one.

9.3 Additional Contributions

The focus of this project has been on the study and investigation of a practical approach

to the mechanisation of ontology evolution in Physics. Much attention has been placed

on the realisation of ontological conflict diagnosis and effecting ontology repair. How-

ever, we believe that there are additional contributions related to GALILEO which are

meaningful to the research in this field.

We have further contributed to this field in the following ways:

• Implementing ontologies as locales. We have viewed ontologies as contexts, so

locales are an appropriate machinery for encoding ontologies within Isabelle.

Locales let us configure ontologies in a modular way, essentially allowing lo-

cal scopes to be defined within a working environment. It, therefore, becomes

natural to reason across multiple locales.

• Extending a higher-order theorem prover with methods to perform ontology evo-

lution. Theorem provers are not designed for ontology evolution, so our work

has highlighted an unusual use of Isabelle. For instance, as discussed in Chapter

6, GALILEO’s diagnosis component requires a more sophisticated kind of poly-

morphism in schematic variables than that naturally supported in Isabelle. This

is not a shortcoming of the logic itself, but rather a decision the developers made

for practical reasons. Schematic type variables do not need to be transformed

into functions for most theorem proving applications, but ontology evolution has

turned out to be much more demanding in this respect.

• Utilising bridging axioms for evolving heterogeneous ontologies. A flexible,

generic approach to dealing with ontological faults should be able to handle

heterogeneity in languages. Our notion and use of bridging axioms, which are

186 Chapter 9. Conclusions

based on the notion of lifting axioms, assist reasoning across heterogeneous on-

tologies. Because ORPs are intended to be highly general, they are capable of

even repairing bridging axioms whenever appropriate.

9.4 Further Work

Throughout the thesis, we have suggested various areas of further work. We outline

possible directions for improving and extending the system and its techniques. These

range from increasing the degree of automation in the evolution process to applying

GALILEO in fresh domains.

9.4.1 Further Understanding of Ontology Evolution in

Physics

The focus of this project is to investigate novel techniques to automate ontology evolu-

tion in Physics. Complete automation has not been achieved due to intrinsic problems

of object-level reasoning in HOL, e.g., computational intractability. However, the tech-

niques developed and evaluated have been shown to be highly general and capable of

emulating various historical episodes of ontology evolution in Physics and producing

physically plausible theories that give hints of possibly new Physics.

With the foundational understanding of the requirements and the effects of each ORP

that we have developed in this project, however, we believe GALILEO and its repair

techniques can be improved in several dimensions.

9.4.1.1 Further Increase in Automation

The process of ontology evolution in GALILEO is not completely automated, but all

meta-level operations are. User interactions are required to guide the search for a

proof of theorems in the object-level ontologies. This is a limitation of reasoning in a

highly expressive logic such as HOL rather than weaker logics such as DL. However,

we believe the degree of automation in the whole process can be increased with a better

understanding of evolving Physics knowledge.

Generally, the proofs of most of the theorems used to trigger ORPs are relatively sim-

ple, e.g., rewriting using certain facts, invoking certain simplifiers, etc. We believe

9.4. Further Work 187

tactics, which are functions that combine lower inference rules, could be implemented

to reduce the amount of interaction required for reasoning with object-level ontologies.

9.4.1.2 Theoretical Issues

A formal theory specifying the desirable properties that are relevant to ontology repair

can help the development of repair mechanisms, e.g., improve robustness and sound-

ness. Like in belief revision, notions such as minimal repair and rationality may be

important to ensuring that an ORP exhibits acceptable behaviours. The formulation

could perhaps be expressed as postulates, similar to AGM postulates for belief revision.

However, our work is considerably more complex and sophisticated than belief revi-

sion, as we make changes to both signatures and axioms. We can foresee that enforcing

a notion based on conservative extensions could be much too strong for our applica-

tion; for instance, Unite has been shown to perform powerful repairs, but the repaired

ontologies are not conservative extensions of the old. This is entirely intended, because

the purpose of Unite is to enhance the ontology by inserting an axiom that equates the

two concepts in question. Similar remarks can be made for most other ORPS, including

WMS and Inconstancy.

9.4.2 Applying GALILEO to Other Domains

Each of the ORPs has been designed with a unique kind of fault in mind. Some of these

are relatively more relevant to scenarios encountered in scientific domains, whilst some

are reminiscent of generic episodes of ontology evolution. Note that other domains

may not involve higher-order concepts similar to those in Physics, so they may only

need a weaker object-logic.

9.4.2.1 Within Science

The most sophisticated ORP, we believe, is Inconstancy; it specifically looks for an

unexpected variation in the value of some property, given several sensory ontologies

that together imply such a variation. We argue that the requirement of supplying at

least two sensory ontologies is reasonable in the scientific domain. Scientific experi-

ments typically mine data from or analyse collections of observations, measurements

or collected data, e.g., surveys in Social Science, so two or more sensory ontologies

are generally available at hand. Moreover, hidden dependencies are also commonplace

188 Chapter 9. Conclusions

in scientific researches and studies outside Physics. For instance, in 2008, Canadian

health researchers suggested that spending money on others and charity promotes hap-

piness (Dunn et al., 2008), so they essentially introduced a new dependency to the

degree of happiness. In a Social Science research, income inequality has been re-

cently found to affect social ills and social mobility in societies of the developed world

(Wilkinson and Pickett, 2009). We believe there are also various kinds of faults which

occur within other areas of Science and are relevant to other ORPs.

9.4.2.2 Beyond Science

We can imagine many scenarios in which ORPs such as Reidealisation and Spectrum

are applicable outwith Science. For instance, assigning a concept to a wrong type

is a commonly occurring mistake by modellers. Also in programming, variables are

often declared using a wrong type in a statically typed language even by experienced

programmers. Reidealisation can potentially deal with exactly this kind of problems

and produce with a correct typing for the concept in question.

Structures used for the representation of knowledge can often be improved or opti-

mised for a variety of reasons; for instance, an inefficient structure could be an imped-

iment to the understanding of the knowledge being represented. Spectrums, charts and

other classifications help display knowledge in a visual way. The Spectrum ORP works

with only one ontology, so the input ontology requirement is relatively relax and does

not resolve a logical contradiction, but instead enhances the ontology with additional

logical power.

9.4.3 Experimenting with Other Logics

Higher-order logic is often regarded to be too expressive for many application domains,

especially where achieving a high degree of automation is an important goal. It would

therefore be interesting to apply our techniques for ontology evolution to weaker log-

ics, e.g., DL or FOL.

The encodings of all of the ORPs inherently require higher-order logic, as one of the

goals of this project is to obtain high generality in each ORP by incorporating higher-

order features, e.g., polymorphism and ranging over functions. So, we believe the

logic used for the reformulations of the ORPs themselves must be at least second-

order. However, the object-level ontologies can be encoded in DL or FOL, as the ORPs

9.4. Further Work 189

are sufficiently expressive to evolve ontologies when the object-level logic is or weaker

than HOL.

A weaker logic for the object-level ontologies can potentially increase the degree of

automation in the whole ontology evolution process. Most of the interactions required

in using GALILEO are used to guide the search for a proof of a theorem in the object-

level ontologies. Automated FOL theorem provers have increasingly shown successes

in solving hard problems, even in an undecidable logic (Riazanov and Voronkov, 2002;

Weidenbach et al., 2009). Indeed, automated reasoning over DL is widely achieved

with DL reasoners.

9.4.4 New Ontology Repair Plans

The ORPs presented in this thesis have been shown to emulate a wide ranging variety of

episodes of ontology evolution in Physics. That said, most of the case studies identified

are suitable specifically to WMS and we believe new ORPs may yield a diminishing

return. Nonetheless, the design and development of new ORPs could help us better

understand the general ontology evolution process.

During our testing and development, we have discovered examples of conflicts that are

not applicable to any of our existing ORPs. One such example is based on the bouncing-

ball paradox (§8.2.1.1, p.8.2.1.1). Beside the paradox formulated in §8.2.1.1, another

paradox could arise by applying (8.21, p.127) in the right-to-left direction to speak

about the values of Pos when given values of height, velocity, etc. So,

Pred⊕Ob ` Pos(Ball,Photo(End(Drop)))> 0 ∨ (9.1)

Pos(Ball,Photo(End(Drop)−δ))−

Pos(Ball,Photo(End(Drop)))> 0

Obs ` Pos(Ball,Photo(End(Drop))) = 0 ∧ (9.2)

Pos(Ball,Photo(End(Drop)−δ))−

Pos(Ball,Photo(End(Drop))) = 0

also hold. The sentences inferred here, (9.1) and (9.2), have a very different physical

meaning compared to (8.23 - 8.24, p.127), as O1 and O2 are now instantiated to Pred⊕
Ob and Obs, respectively. The contradiction inferred in (8.23) and (8.24) comes from a

disagreement on the amount of total energy in the ball at the end of the drop, whereas

the contradiction inferred in (9.1) and (9.2) comes from a disagreement between the

190 Chapter 9. Conclusions

predicted and observed positions of the ball in photos. The final amount of total energy

can be inferred to be greater than zero using the predictive theory, but neither the final

height nor the final velocity of the ball can be inferred in Pred – either or both of

these could be positive. Thus, one cannot reason specifically about the values that the

height or the velocity of the ball can take, but instead deduce a more complex formula

expressing that the position of the ball in the photo taken at the end of the drop is

greater than zero or the difference between the positions of the ball in two adjacent

photos is greater than zero. This, consequently, fails to trigger WMS because (9.1) and

(9.2) cannot be matched with the trigger formulae. The WMS repair plan is designed to

identify a particular type of discrepancy between the values returned by an application

of some function in two ontologies, where the equations derived must be specified

as intervals. If the two intervals are disjoint, then it is clear that one must be ordered

greater than the other. In (9.1) and (9.2), neither the position of the ball in the photo nor

the difference in the positions in the two adjacent photos can be inferred in Pred⊕Ob,

so the equations cannot be specified as intervals. Therefore, although (9.1) and (9.2)

give rise to a contradiction, the failure to trigger WMS is entirely expected. Thus, the

conflict described can be considered as a potential avenue for a new ORP.

9.5 Summary

Our experimental results support the hypotheses, showing that ORPs are capable of

resolving a variety of ontological faults – both over- and under-specified ontologies.

Certain ORPs are more sophisticated and particularly relevant to ontology evolution

in scientific domains, e.g., Inconstancy, whereas some others are more generic, e.g.,

Reidealisation. We believe further automation of ontology evolution will likely require

a better fundamental understanding of the ontology evolution process itself, including

theoretical and, even, epistemological issues. GALILEO currently demonstrates the

applicability of the theory to the Physics domain, but its applicability to other domains

is not yet fully explored. That said, given that the evolution techniques that have been

integrated in GALILEO are highly generic and expressed in HOL, the same principles

underlying the diagnosis and repair components can, in principle, be feasibly applied

to ontologies expressed in weaker, more tractable logics. The current implementation

of GALILEO could potentially be improved and be more widely applicable in several

ways.

Appendix A

Supplementary Diagnosis Results

? f 7→ Approx , (A.1)

?stuff 7→ TravelTime (LightFrom Io) Io Earth

? f 7→ λa. a Earth Io , (A.2)

?stuff 7→ λa, b. Approx (TravelTime (LightFrom b) b a)

? f 7→ λa. a Earth Io , (A.3)

?stuff 7→ λa, b. Approx (TravelTime (LightFrom b) Io a)

? f 7→ λa. a Earth Io , (A.4)

?stuff 7→ λa, b. Approx (TravelTime (LightFrom Io) b a)

? f 7→ λa. a Earth (LightFrom Io) , (A.5)

?stuff 7→ λa, b. Approx (TravelTime b Io a)

? f 7→ λa. a Earth , (A.6)

?stuff 7→ λa. Approx (TravelTime (LightFrom Io) Io a)

? f 7→ λa. a Io Earth , (A.7)

?stuff 7→ λa, b. Approx (TravelTime (LightFrom a) a b)

? f 7→ λa. a Io Earth , (A.8)

?stuff 7→ λa, b. Approx (TravelTime (LightFrom a) Io b)

Figure A.1: Instantiations of ? f and ?stuff for the Travel Time of Light case study

(§8.2.2.1).

191

192 Appendix A. Supplementary Diagnosis Results

? f 7→ λa. a Io Earth , (A.9)

?stuff 7→ λa, b. Approx (TravelTime (LightFrom Io) a b)

? f 7→ λa. a Io Io , (A.10)

?stuff 7→ λa, b. Approx (TravelTime (LightFrom a) b Earth)

? f 7→ λa. a Io Io , (A.11)

?stuff 7→ λa, b. Approx (TravelTime (LightFrom b) a Earth)

? f 7→ λa. a Io (LightFrom Io) , (A.12)

?stuff 7→ λa, b. Approx (TravelTime b a Earth)

? f 7→ λa. a Io , (A.13)

?stuff 7→ λa. Approx (TravelTime (LightFrom a) a Earth)

? f 7→ λa. a Io , (A.14)

?stuff 7→ λa. Approx (TravelTime (LightFrom a) Io Earth)

? f 7→ λa. a Io , (A.15)

?stuff 7→ λa. Approx (TravelTime (LightFrom Io) a Earth)

? f 7→ λa. a (LightFrom Io) Earth , (A.16)

?stuff 7→ λa, b. Approx (TravelTime a Io b)

? f 7→ λa. a (LightFrom Io) Io , (A.17)

?stuff 7→ λa, b. Approx (TravelTime a b Earth)

? f 7→ λa. a (LightFrom Io) , (A.18)

?stuff 7→ λa. Approx (TravelTime a io Earth)

? f 7→ λa. Approx (a Io Earth) , (A.19)

?stuff 7→ λa, b. TravelTime (LightFrom a) a b

? f 7→ λa. Approx (a Earth Io) , (A.20)

?stuff 7→ λa, b. TravelTime (LightFrom b) Io a

? f 7→ λa. Approx (a Earth Io) , (A.21)

?stuff 7→ λa, b. TravelTime (LightFrom Io) b a

? f 7→ λa. Approx (a Earth (LightFrom Io)) , (A.22)

?stuff 7→ λa, b. TravelTime b Io a

Figure A.1: Instantiations of ? f and ?stuff for the Travel Time of Light case study

(§8.2.2.1) (contd.).

193

? f 7→ λa. Approx (a Earth) , (A.23)

?stuff 7→ TravelTime (LightFrom Io) Io

? f 7→ λa. Approx (a Io Earth) , (A.24)

?stuff 7→ λa. TravelTime (LightFrom a) a

? f 7→ λa. Approx (a Io Earth) , (A.25)

?stuff 7→ λa. TravelTime (LightFrom a) Io

? f 7→ λa. Approx (a Io Earth) , (A.26)

?stuff 7→ TravelTime (LightFrom Io)

? f 7→ λa. Approx (a Io Io) , (A.27)

?stuff 7→ λa, b. TravelTime (LightFrom a) b Earth

? f 7→ λa. Approx (a Io Io) , (A.28)

?stuff 7→ λa, b. TravelTime (LightFrom b) a Earth

? f 7→ λa. Approx (a Io (LightFrom Io)) , (A.29)

?stuff 7→ λa, b. TravelTime b a Earth

? f 7→ λa. Approx (a Io) , (A.30)

?stuff 7→ λa. TravelTime (LightFrom a) a Earth

? f 7→ λa. Approx (a Io) , (A.31)

?stuff 7→ λa. TravelTime (LightFrom a) Io Earth

? f 7→ λa. Approx (a Io) , (A.32)

?stuff 7→ λa. TravelTime (LightFrom Io) a Earth

? f 7→ λa. Approx (a (LightFrom Io) Earth) , (A.33)

?stuff 7→ λa. TravelTime a Io

? f 7→ λa. Approx (a (LightFrom Io) Io) , (A.34)

?stuff 7→ λa, b. TravelTime a b Earth

? f 7→ λa. Approx (a (LightFrom Io)) , (A.35)

?stuff 7→ λa. TravelTime a Io Earth

? f 7→ λa. Approx (TravelTime a Io Earth) , (A.36)

?stuff 7→ LightFrom Io

Figure A.1: Instantiations of ? f and ?stuff for the Travel Time of Light case study

(§8.2.2.1) (contd.).

194 Appendix A. Supplementary Diagnosis Results

? f 7→ λa. Approx (TravelTime (a Io) Io Earth) , (A.37)

?stuff 7→ LightFrom

? f 7→ λa. Approx (TravelTime (LightFrom a) a Earth) , (A.38)

?stuff 7→ Io

? f 7→ λa. Approx (TravelTime (LightFrom a) Io Earth) , (A.39)

?stuff 7→ Io

? f 7→ λa. Approx (TravelTime (LightFrom Io) a Earth) , (A.40)

?stuff 7→ Io

? f 7→ λa. Approx (TravelTime (LightFrom Io) Io a) , (A.41)

?stuff 7→ Earth

? f 7→ λa. a , (A.42)

?stuff 7→ Approx (TravelTime (LightFrom Io) Io Earth)

? f 7→ λa. a (TravelTime (LightFrom Io) Io Earth) , (A.43)

?stuff 7→ Approx

Figure A.1: Instantiations of ? f and ?stuff for the Travel Time of Light case study

(§8.2.2.1) (contd.).

195

? f 7→ Boyle, (A.44)

?stuff 7→ Hg (Flask Desk On) In

? f 7→ λa. a Desk, (A.45)

?stuff 7→ λa. Boyle (Hg (Flask a On) In)

? f 7→ λa. a (Flask Desk On), (A.46)

?stuff 7→ λa. Boyle (Hg a In)

? f 7→ λa. a (Hg (Flask Desk On) In), (A.47)

?stuff 7→ Boyle

? f 7→ λa. a In, (A.48)

?stuff 7→ λa. Boyle (Hg (Flask Desk On) a)

? f 7→ λa. a On, (A.49)

?stuff 7→ λa. Boyle (Hg (Flask Desk a) In)

? f 7→ λa. a, (A.50)

?stuff 7→ Boyle (Hg (Flask Desk On) In)

? f 7→ λa b. a b Desk, (A.51)

?stuff 7→ λa b. Boyle (Hg (Flask b On) In) a

? f 7→ λa b. a b (Flask Desk On), (A.52)

?stuff 7→ λa b. Boyle (Hg b In) a

? f 7→ λa b. a b In, (A.53)

?stuff 7→ λa b. Boyle (Hg (Flask Desk On) b) a

? f 7→ λa b. a b On, (A.54)

?stuff 7→ λa b. Boyle (Hg (Flask Desk b) In) a

? f 7→ λa. Boyle (a Desk In), (A.55)

?stuff 7→ λa. Hg (Flask a On)

Figure A.2: Instantiations of ? f and ?stuff for the Gas Laws case study (§8.2.2.2).

196 Appendix A. Supplementary Diagnosis Results

? f 7→ λa. Boyle (a Desk On), (A.56)

?stuff 7→ λa b. Hg (Flask a b) In

? f 7→ λa. Boyle (a Desk), (A.57)

?stuff 7→ λa. Hg (Flask a On) In

? f 7→ λa. Boyle (a (Flask Desk On) In), (A.58)

?stuff 7→ Hg

? f 7→ λa. Boyle (a (Flask Desk On)), (A.59)

?stuff 7→ λa. Hg a In

? f 7→ λa. Boyle (a In Desk), (A.60)

?stuff 7→ λa b. Hg (Flask b On) a

? f 7→ λa. Boyle (a In On), (A.61)

?stuff 7→ λa b. Hg (Flask Desk b) a

? f 7→ λa. Boyle (a In), (A.62)

?stuff 7→ Hg (Flask Desk On)

? f 7→ λa. Boyle (a On Desk), (A.63)

?stuff 7→ λa b. Hg (Flask b a) In

? f 7→ λa. Boyle (a On In), (A.64)

?stuff 7→ λa. Hg (Flask Desk a)

? f 7→ λa. Boyle (a On), (A.65)

?stuff 7→ λa. Hg (Flask Desk a) In

? f 7→ λa. Boyle (Hg (a Desk) In), (A.66)

?stuff 7→ λa. Flask a On

? f 7→ λa. Boyle (Hg (a Desk On) In), (A.67)

?stuff 7→ Flask

Figure A.2: Instantiations of ? f and ?stuff for the Gas Laws case study (§8.2.2.2)

(contd.).

197

? f 7→ λa. Boyle (Hg a In), (A.68)

?stuff 7→ Flask Desk On

? f 7→ λa. Boyle (Hg (a On) In), (A.69)

?stuff 7→ Flask Desk

? f 7→ λa. Boyle (Hg (Flask a On) In), (A.70)

?stuff 7→ Desk

? f 7→ λa. Boyle (Hg (Flask Desk a) In), (A.71)

?stuff 7→ On

? f 7→ λa. Boyle (Hg (Flask Desk On) a), (A.72)

?stuff 7→ In

Figure A.2: Instantiations of ? f and ?stuff for the Gas Laws case study (§8.2.2.2)

(contd.).

Appendix B

Bouncing-Ball Case Study in Isabelle

Presented in this appendix is the full details of Isabelle for diagnosing and repairing

the bouncing-ball paradox (§8.2.1.1) with GALILEO.

B.1 A Modular Formalisation

theory Ball-Lift

imports Main

../Basic-Ext

RealVector

uses (../basics .ML)

(../matching .ML)

(../wms .ML)

(../repair .ML)

(../locale -analysis.ML)

(../inconstancy.ML)

(../reidealisation .ML)

(../spectrum .ML)

(../unite .ML)

(../evolution.ML)

begin

use ../basics.ML

use ../matching.ML

use ../repair.ML

199

200 Appendix B. Bouncing-Ball Case Study in Isabelle

use ../locale-analysis.ML

use ../wms.ML

use ../inconstancy.ML

use ../unite.ML

use ../reidealisation.ML

use ../spectrum.ML

use ../evolution.ML

typedecl Event

typedecl Obj

type-synonym Energy = real

type-synonym Time = real

type-synonym Photo = Obj

locale ROOT

locale Signature = ROOT +

fixes startev :: Event⇒ Time

and endev :: Event⇒ Time

and drp :: Event

and ∆ :: real

locale OtSig =

Signature startev endev drp δ

for startev endev drp δ +

fixes vel :: Obj⇒ Time⇒ real

and height :: Obj⇒ Time⇒ real

and te :: Obj⇒ Time⇒ Energy

and pe :: Obj⇒ Time⇒ Energy

and ke :: Obj⇒ Time⇒ Energy

and mass :: Obj⇒ real

and g :: real

and ball :: Obj

locale Ot =

OtSig startev endev drp ∆ vel height te pe ke mass g ball

for startev endev drp ∆ vel height te pe ke mass g ball +

B.1. A Modular Formalisation 201

assumes te-ax: te b t = pe b t + ke b t

and pe-ax: pe x t = mass x∗g∗height x t

and ke-ax: ke x t = 0.5∗mass x∗vel x t∗vel x t

and cons-ax: te S t1 = te S t2

and g-ax: g > 0

and chrono-ax: startev drp <= endev drp

Module or locale ”Os1” represents more signature elements and the facts for the pre-

diction based on Ot:

locale Os1 =

Ot startev endev drp ∆ vel height te pe ke mass g ball

for startev endev drp ∆ vel height te pe ke mass g ball +

assumes vinit-ax: vel ball (startev drp) = 0

and hinit-ax: height ball (startev drp) > 0

and mass-ax: mass ball > 0

and delta-ax: ∆ > 0

Module or locale ”Os2Sig” represents more signature elements:

locale Os2Sig =

Signature startev endev drp ∆

for startev endev drp ∆ +

fixes posn :: Obj⇒ Photo⇒ real

and photoat :: Time⇒ Photo

and ball :: Obj

Module or locale ”Os2” represents the observed facts:

locale Os2 =

Os2Sig startev endev drp ∆ posn photoat ball

for startev endev drp ∆ posn photoat ball +

assumes posn1-ax : posn ball (photoat ((endev drp) − ∆)) = 0

and posn2-ax : posn ball (photoat (endev drp)) = 0

and delta-ax: ∆ > 0

Module or locale ”Ob” maps the signatures of Ot and Os2 by means of bridging axioms

locale Ob1 =

Os2Sig startev endev drp ∆ posn photoat ball +

OtSig startev endev drp ∆ vel height te pe ke mass g ball

for startev endev drp ∆ vel height te pe ke mass g posn photoat ball +

202 Appendix B. Bouncing-Ball Case Study in Isabelle

assumes ax1-ax: height p t = posn p (photoat t)

and ax2-ax: vel p t = (posn p (photoat t) − posn p (photoat (t − ∆))) / ∆

locale Ob2 =

OtSig startev endev drp ∆ vel height te pe ke mass g ball +

Os2Sig startev endev drp ∆ posn photoat ball

for startev endev drp ∆ vel height te pe ke mass g posn photoat ball +

assumes ax1-ax: height p t = posn p (photoat t)

and ax2-ax: (posn p (photoat t) − posn p (photoat (t − ∆))) = vel p t ∗ ∆

lemma (in Os1) lem1: te ball (endev drp) > 0

proof −
have ke ball (startev drp) = 0.5 ∗ mass ball ∗ vel ball (startev drp) ∗ vel ball (startev drp)

using ke-ax

by blast

with vinit-ax pe-ax ke-ax

have ∗: te ball (startev drp) = pe ball (startev drp)

by (metis add-numeral-0 -right mult-zero-left number-of-Pls

real-mult-commute te-ax)

with hinit-ax pe-ax mass-ax g-ax

have ∗∗: pe ball (startev drp) > 0

by (simp add: mult-pos-pos)

from ∗ ∗∗ cons-ax

show ?thesis

by metis

qed

locale Os2Ob2Ot =

os2: Os2 startev endev drp ∆ posn photoat ball +

ob2: Ob2 startev endev drp ∆ vel height te pe ke mass g posn photoat ball +

ot: Ot startev endev drp ∆ vel height te pe ke mass g ball

for startev endev drp ∆ vel height te pe ke mass g posn photoat ball

lemma (in Os2Ob2Ot) singletonsys: ALL t. te ball t = pe ball t + ke ball t

using te-ax

by simp

B.1. A Modular Formalisation 203

lemma (in Os2Ob2Ot) lem1: te ball (endev drp) = 0

proof −
have ∗: height ball (endev drp) = 0

using ax1-ax posn2-ax

by auto

have (posn ball (photoat (endev drp))) − (posn ball (photoat (endev drp − ∆))) = 0

using posn1-ax posn2-ax

by auto

hence ∗∗: vel ball (endev drp) = 0

using ax2-ax delta-ax

by auto

then show ?thesis

using singletonsys ∗ ∗∗ pe-ax ke-ax

by auto

qed

Invoke the WMS ORP

wms

Initialise relevant parameters

try-o1 Os1 startev endev drp ∆ vel height te pe ke mass g ball

try-o2 Os2Ob2Ot startev endev drp ∆ vel height te pe ke mass g posn photoat ball

try-fstuff te ball (endev drp)

Generate proof obligation

verify

Discharge proof obligation

apply (intro exI [where x=0])

using Os1.lem1 Os2Ob2Ot.lem1

by (metis approxeq lessapprox)

Produce diagnosis

diagnose

Create repaired ontologies

repair-select 8

204 Appendix B. Bouncing-Ball Case Study in Isabelle

end

B.2 A Flat Formalisation Using Factorisation Script

theory Ball-Lift-Sub

imports Main

../Basic-Ext

RealVector

uses (../basics .ML)

(../matching .ML)

(../wms .ML)

(../repair .ML)

(../locale -analysis.ML)

(../inconstancy.ML)

(../reidealisation .ML)

(../unite .ML)

(../spectrum .ML)

(../evolution.ML)

begin

use ../basics.ML

use ../matching.ML

use ../repair.ML

use ../locale-analysis.ML

use ../wms.ML

use ../inconstancy.ML

use ../unite.ML

use ../reidealisation.ML

use ../spectrum.ML

use ../evolution.ML

typedecl Event

typedecl Obj

type-synonym Energy = real

type-synonym Time = real

type-synonym System = Obj set

type-synonym Photo = Obj

B.2. A Flat Formalisation Using Factorisation Script 205

locale ROOT

locale Signature = ROOT +

fixes startev :: Event⇒ Time

and endev :: Event⇒ Time

and drp :: Event

and ∆ :: real

locale OtSig =

Signature startev endev drp ∆

for startev endev drp ∆ +

fixes vel :: Obj⇒ Time⇒ real

and height :: Obj⇒ Time⇒ real

and te :: System⇒ Time⇒ Energy

and pe :: Obj⇒ Time⇒ Energy

and ke :: Obj⇒ Time⇒ Energy

and mass :: Obj⇒ real

and g :: real

and ball :: Obj

and sysball :: System

[command]

python MakeSubontologies.py

[input]

name: locale O1

decl: OtSig startev endev drp Delta vel height te pe ke mass g ball sysball

params: for startev endev drp b vel height te pe ke mass g ball sysball

ax1: “te S t = (Sum x:S. pe x t + ke x t)”

ax2: “pe x t = mass x*g*height x t”

ax3: “ke x t = 0.5*mass x*vel x t*vel x t”

ax4: “te S t1 = te S t2”

ax5: “g > 0”

ax6: “startev drp <= endev drp”

206 Appendix B. Bouncing-Ball Case Study in Isabelle

ax7: “vel ball (startev drp) = 0”

ax8: “height ball (startev drp) > 0”

ax9: “mass ball > 0”

ax10: “sysball = ball”

ax11: “Delta > 0”

Some example locales of the 2,046 locales generated by Factorisation script:

locale O1-203 8 =

OtSig startev endev drp ∆ vel height te pe ke mass g ball sysball

for startev endev drp ∆ vel height te pe ke mass g ball sysball +

assumes ax1: te S t = (∑ x∈S. pe x t + ke x t)

and ax2: pe x t = mass x∗g∗height x t

and ax3: ke x t = 0.5∗mass x∗vel x t∗vel x t

and ax4: te S t1 = te S t2

and ax5: g > 0

and ax6: startev drp <= endev drp

and ax7: vel ball (startev drp) = 0

and ax9: mass ball > 0

and ax10: sysball = {ball}
and ax11: ∆ > 0

locale O1-203 9 =

OtSig startev endev drp ∆ vel height te pe ke mass g ball sysball

for startev endev drp ∆ vel height te pe ke mass g ball sysball +

assumes ax1: te S t = (∑ x∈S. pe x t + ke x t)

and ax2: pe x t = mass x∗g∗height x t

and ax3: ke x t = 0.5∗mass x∗vel x t∗vel x t

and ax4: te S t1 = te S t2

and ax5: g > 0

and ax6: startev drp <= endev drp

and ax8: height ball (startev drp) > 0

and ax9: mass ball > 0

and ax10: sysball = {ball}
and ax11: ∆ > 0

B.2. A Flat Formalisation Using Factorisation Script 207

locale O1-204 0 =

OtSig startev endev drp ∆ vel height te pe ke mass g ball sysball

for startev endev drp ∆ vel height te pe ke mass g ball sysball +

assumes ax1: te S t = (∑ x∈S. pe x t + ke x t)

and ax2: pe x t = mass x∗g∗height x t

and ax3: ke x t = 0.5∗mass x∗vel x t∗vel x t

and ax4: te S t1 = te S t2

and ax5: g > 0

and ax7: vel ball (startev drp) = 0

and ax8: height ball (startev drp) > 0

and ax9: mass ball > 0

and ax10: sysball = {ball}
and ax11: ∆ > 0

locale O1-204 1 =

OtSig startev endev drp ∆ vel height te pe ke mass g ball sysball

for startev endev drp ∆ vel height te pe ke mass g ball sysball +

assumes ax1: te S t = (∑ x∈S. pe x t + ke x t)

and ax2: pe x t = mass x∗g∗height x t

and ax3: ke x t = 0.5∗mass x∗vel x t∗vel x t

and ax4: te S t1 = te S t2

and ax6: startev drp <= endev drp

and ax7: vel ball (startev drp) = 0

and ax8: height ball (startev drp) > 0

and ax9: mass ball > 0

and ax10: sysball = {ball}
and ax11: ∆ > 0

locale O1-204 2 =

OtSig startev endev drp ∆ vel height te pe ke mass g ball sysball

for startev endev drp ∆ vel height te pe ke mass g ball sysball +

assumes ax1: te S t = (∑ x∈S. pe x t + ke x t)

and ax2: pe x t = mass x∗g∗height x t

and ax3: ke x t = 0.5∗mass x∗vel x t∗vel x t

and ax5: g > 0

208 Appendix B. Bouncing-Ball Case Study in Isabelle

and ax6: startev drp <= endev drp

and ax7: vel ball (startev drp) = 0

and ax8: height ball (startev drp) > 0

and ax9: mass ball > 0

and ax10: sysball = {ball}
and ax11: ∆ > 0

locale O1-204 3 =

OtSig startev endev drp ∆ vel height te pe ke mass g ball sysball

for startev endev drp ∆ vel height te pe ke mass g ball sysball +

assumes ax1: te S t = (∑ x∈S. pe x t + ke x t)

and ax2: pe x t = mass x∗g∗height x t

and ax4: te S t1 = te S t2

and ax5: g > 0

and ax6: startev drp <= endev drp

and ax7: vel ball (startev drp) = 0

and ax8: height ball (startev drp) > 0

and ax9: mass ball > 0

and ax10: sysball = {ball}
and ax11: ∆ > 0

locale O1-204 4 =

OtSig startev endev drp ∆ vel height te pe ke mass g ball sysball

for startev endev drp ∆ vel height te pe ke mass g ball sysball +

assumes ax1: te S t = (∑ x∈S. pe x t + ke x t)

and ax3: ke x t = 0.5∗mass x∗vel x t∗vel x t

and ax4: te S t1 = te S t2

and ax5: g > 0

and ax6: startev drp <= endev drp

and ax7: vel ball (startev drp) = 0

and ax8: height ball (startev drp) > 0

and ax9: mass ball > 0

and ax10: sysball = {ball}
and ax11: ∆ > 0

B.2. A Flat Formalisation Using Factorisation Script 209

locale O1-204 5 =

OtSig startev endev drp ∆ vel height te pe ke mass g ball sysball

for startev endev drp ∆ vel height te pe ke mass g ball sysball +

assumes ax2: pe x t = mass x∗g∗height x t

and ax3: ke x t = 0.5∗mass x∗vel x t∗vel x t

and ax4: te S t1 = te S t2

and ax5: g > 0

and ax6: startev drp <= endev drp

and ax7: vel ball (startev drp) = 0

and ax8: height ball (startev drp) > 0

and ax9: mass ball > 0

and ax10: sysball = {ball}
and ax11: ∆ > 0

locale O1-204 6 =

OtSig startev endev drp ∆ vel height te pe ke mass g ball sysball

for startev endev drp ∆ vel height te pe ke mass g ball sysball +

assumes ax1: te S t = (∑ x∈S. pe x t + ke x t)

and ax2: pe x t = mass x∗g∗height x t

and ax3: ke x t = 0.5∗mass x∗vel x t∗vel x t

and ax4: te S t1 = te S t2

and ax5: g > 0

and ax6: startev drp <= endev drp

and ax7: vel ball (startev drp) = 0

and ax8: height ball (startev drp) > 0

and ax9: mass ball > 0

and ax10: sysball = {ball}
and ax11: ∆ > 0

locale Os2Sig =

Signature startev endev drp ∆

for startev endev drp ∆ +

fixes posn :: Obj⇒ Photo⇒ real

and photoat :: Time⇒ Photo

210 Appendix B. Bouncing-Ball Case Study in Isabelle

and ball :: Obj

and sysball :: System

locale O2 =

Os2Sig startev endev drp ∆ posn photoat ball sysball

for startev endev drp ∆ posn photoat ball sysball +

assumes ax1: posn ball (photoat ((endev drp) − ∆)) = 0

and ax2: posn ball (photoat ((endev drp) − ∆)) = 0

and ax3: posn ball (photoat (endev drp)) = 0

and ax4: sysball = {ball}
and ax5: ∆ > 0

locale Ob1 =

Os2Sig startev endev drp ∆ posn photoat ball sysball +

OtSig startev endev drp ∆ vel height te pe ke mass g ball sysball

for startev endev drp ∆ vel height te pe ke mass g posn photoat ball sysball +

assumes ax1-ax: height p t = posn p (photoat t)

and ax2-ax: vel p t = (posn p (photoat t) − posn p (photoat (t − ∆))) / ∆

locale O2ObO1 =

o2: O2 startev endev drp ∆ posn photoat ball sysball +

ob: Ob1 startev endev drp ∆ vel height te pe ke mass g posn photoat ball sysball +

o1: O1-204 2 startev endev drp ∆ vel height te pe ke mass g ball sysball

for startev endev drp ∆ vel height te pe ke mass g posn photoat ball sysball

lemma (in O1-204 6) lem1: te sysball (endev drp) > 0

proof −
have ke ball (startev drp) = 0.5 ∗ mass ball ∗ vel ball (startev drp) ∗ vel ball (startev drp)

using ax3

by blast

with ax7 ax3 ax2 ax1 ax10

have ∗: te sysball (startev drp) = pe ball (startev drp)

by (simp add: mult-right.zero)

B.2. A Flat Formalisation Using Factorisation Script 211

with ax8 ax2 ax9 ax5

have ∗∗: pe ball (startev drp) > 0

by (simp add: mult-pos-pos)

from ∗ ∗∗ ax4

show ?thesis

by (metis real-less-def)

qed

lemma (in O2ObO1) lem1: te sysball (endev drp) = 0

proof −
have ∗: height ball (endev drp) = 0

using ax1-ax o2.ax3

by auto

have (posn ball (photoat (endev drp))) − (posn ball (photoat (endev drp − ∆))) = 0

using o2.ax3 o2.ax2

by auto

hence ∗∗: vel ball (endev drp) = 0

using ax2-ax o2.ax5

by auto

then show ?thesis

using ax1 ax10 ∗ ∗∗ o1.ax2 o1.ax3

by auto

qed

Invoke the WMS ORP

wms

Initialise relevant parameters

try-o1 O1-2046 startev endev drp ∆ vel height te pe ke mass g ball

try-o2 O2ObO1 startev endev drp ∆ vel height te pe ke mass g posn photoat ball

try-fstuff te ball (endev drp)

Generate proof obligatoin

verify

Discharge proof obligation

212 Appendix B. Bouncing-Ball Case Study in Isabelle

apply (intro exI [where x=0])

using O1-2046.lem1 Os2Ob2Ot.lem1

by simp

Produce diagnosis

diagnose

Create repaired ontologies

repair-select 8

end

Bibliography

Alchourrón, C. E., Gärdenfors, P., and Makinson, D. (1985). On the logic of theory
change: Partial meet contraction and revision functions. Journal of Symbolic Logic,
50(2):510–530.

Amgoud, L., Dimopoulos, Y., and Moraitis, P. (2007). A unified and general frame-
work for argumentation-based negotiation. In Proceedings of the 6th international
joint conference on Autonomous agents and multiagent systems, page 158. ACM.

Andrews, P., Miller, D., Cohen, E., and Pfenning, F. (1984). Automating higher-order
logic. Automated theorem proving: After, 25:169–192.

Atkinson, K., Bench-Capon, T., and Mcburney, P. (2005). A dialogue game protocol
for multi-agent argument over proposals for action. Autonomous Agents and Multi-
Agent Systems, 11(2):153–171.

Autexier, S., Hutter, D., Mossakowski, T., and Schairer, A. (2002). The develop-
ment graph manager MAYA. In Proceedings of the 9th International Conference on
Algebraic Methodology and Software Technology, pages 495–501. Springer-Verlag
London, UK.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. F.
(2003). The description logic handbook: theory, implementation, and applications.

Baader, F., Peñaloza, R., and Suntisrivaraporn, B. (2007). Pinpointing in the descrip-
tion logic el+\ mathcal {EL}ˆ+. KI 2007: Advances in Artificial Intelligence, pages
52–67.

Bailin, S. and Truszkowski, W. (2002). Ontology negotiation between intelligent in-
formation agents. The Knowledge Engineering Review, 17(01):7–19.

Ballarin, C. (2006). Interpretation of locales in isabelle: Theories and proof con-
texts. In Mathematical Knowledge Management, volume LNCS 4108, pages 31–43.
Springer Berlin/Heidelberg.

Baltopoulos, I., Borgström, J., and Gordon, A. (2011). Maintaining database integrity
with refinement types. ECOOP 2011–Object-Oriented Programming, pages 484–
509.

Barker, K., Porter, B., and Clark, P. (2001). A library of generic concepts for com-
posing knowledge bases. In Proceedings of the 1st international conference on
Knowledge capture, pages 14–21. ACM.

213

214 Bibliography

Barwise, J. and Seligman, J. (1997). Information Flow : The Logic of Distributed Sys-
tems, volume 44 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press.

Bench-Capon, T. and Malcolm, G. (1999). Formalising ontologies and their relations.
In Database and Expert Systems Applications, pages 815–815. Springer.

Bertot, Y. and Castéran, P. (2004). Coq’art. by Springer-Verlag.

Binmore, K. and Vulkan, N. (1999). Applying game theory to automated negotiation.
Netnomics, 1(1):1–9.

Brickley, D. and Guha, R. (2004). RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation.

Bundy, A. (1979). MECHO: A program to solve mechanics problems. Edinburgh
University.

Bundy, A. (2009). Unite: A new plan for automated ontology evolution in physics.
ARCOE-09, page 34.

Bundy, A. (2010). The spectrum ontology repair plan. Blue Book Note 1712.

Bundy, A. and Chan, M. (2008). Towards ontology evolution in physics. In Hodges,
W. and de Queiroz, R., editors, Logic, Language, Information and Computation,
volume 5110 of Lecture Notes in Computer Science, pages 98–110. Springer Berlin
/ Heidelberg.

Bundy, A. and McNeill, F. (2006). Representation as a fluent: An AI challenge for the
next half century. IEEE Intelligent Systems, 21(3):85–87.

Castelfranchi, C. (1995). Guarantees for autonomy in cognitive agent architecture. In
Proceedings of the workshop on agent theories, architectures, and languages, pages
56–70, NY, USA. Springer-Verlag.

Chan, M. and Bundy, A. (2008). Inconstancy: An ontology repair plan for adding
hidden variables. In Bringsjord, S. and Shilliday, A., editors, Symposium on Au-
tomated Scientific Discovery, number FS-08-03 in Technical Report, pages 10–17.
AAAI Press. ISBN 978-1-57735-395-9.

Chan, M. and Bundy, A. (2009). An architecture of galileo: A system for automated
ontology evolution in physics. ARCOE-09, page 37.

Chan, M., Lehmann, J., and Bundy, A. (2010a). A contextual approach to detection
of conflicting ontologies. In Proceedings of ECAI’10 Workshop on Automated Rea-
soning about Context and Ontology Evolution, page 23.

Chan, M., Lehmann, J., and Bundy, A. (2010b). Higher-order representation and rea-
soning for automated ontology evolution. In Proceedings of the 2010 International
Conference on Knowledge Engineering and Ontology Development, pages 84–93.

Bibliography 215

Chan, M., Lehmann, J., and Bundy, A. (2011). Galileo: A system for automating
ontology evolution. ARCOE-11, page 46.

Chaudhri, V., John, B., Mishra, S., Pacheco, J., Porter, B., and Spaulding, A. (2007).
Enabling experts to build knowledge bases from science textbooks. In Proceedings
of the 4th international conference on Knowledge capture, pages 159–166. ACM.

Church, A. (1940). A formulation of the simple theory of types. Symbolic Logic,
5(1):56–68.

Constable, R. L., Allen, S. F., Bromley, H. M., et al. (1986). Implementing Mathemat-
ics with the Nuprl Proof Development System. Prentice Hall.

Curino, C., Moon, H., and Zaniolo, C. (2008). Graceful database schema evolution:
the prism workbench. Proceedings of the VLDB Endowment, 1(1):761–772.

Darwiche, A. and Pearl, J. (1997). On the logic of iterated belief revision. Artificial
Intelligence, 89(1-2):1–29.

Davenport, R. (1976). Database integrity. The Computer Journal, 19(2):110.

De Kleer, J. (1977). Multiples representations of knowledge in a mechanics problem-
solver. In Proceedings of the 5th international joint conference on Artificial
intelligence-Volume 1, pages 299–304. Morgan Kaufmann Publishers Inc.

De Kleer, J. and Brown, J. (1984). A qualitative physics based on confluences. Artifi-
cial intelligence, 24(1-3):7–83.

diSessa, A. (1983). Phenomenology and the evolution of intuition. In Stevens, A. and
Gentner, D., editors, Mental Models, pages 15–33. Erlbaum.

Doan, A., Madhavan, J., Domingos, P., and Halevy, A. (2004). Ontology matching: A
machine learning approach. Handbook on Ontologies in Information Systems, pages
397–416.

Doran, P. (2006). Ontology reuse via ontology modularisation. In KnowledgeWeb PhD
Symposium, volume 2006. Citeseer.

Dowek, G. (1994). Third order matching is decidable. Annals of Pure and Applied
Logic, 69(2):135–155.

Du, J., Qi, G., and Shen, Y. (2008). Lexicographical inference over inconsistent dl-
based ontologies. Web Reasoning and Rule Systems, pages 58–73.

Dunn, E., Aknin, L., and Norton, M. (2008). Spending money on others promotes
happiness. Science, 319(5870):1687–1688.

Dunne, P. and Bench-Capon, T. (2006). Multi-agent agreements about actions through
argumentation. Frontiers in Artificial Intelligence and Applications, page 323.

Ellis, G. and Uzan, J. (2005). c is the speed of light, isn’t it? American journal of
physics, 73:240.

216 Bibliography

Faratin, P., Sierra, C., and Jennings, N. (2002). Using similarity criteria to make issue
trade-offs in automated negotiations. artificial Intelligence, 142(2):205–237.

FermiLab, F. N. A. L. (2012). Fermilab: Holometer. http://holometer.fnal.gov/.
[Online; accessed 21-Feb-2012].

Fikes, R. and Nilsson, N. (1972). Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2(3):189–208.

Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., and Antoniou, G.
(2008). Ontology change: classification and survey. The Knowledge Engineering
Review, 23(02):117–152.

Formica, A. (2008). Concept similarity in formal concept analysis: An information
content approach. Knowledge-Based Systems, 21(1):80–87.

Freund, M. and Lehmann, D. (2002). Belief Revision and Rational Inference. Techni-
cal Report TR94-16, Hebrew University.

Gärdenfors, P. and Makinson, D. (1988). Revisions of knowledge systems using epis-
temic entrenchment. In Proceedings of the 2nd conference on Theoretical aspects
of reasoning about knowledge, pages 83–95. Morgan Kaufmann Publishers Inc. San
Francisco, CA, USA.

Gärdenfors, P. and Rott, H. (1995). Belief revision. In Gabbay, D., Hogger, C. J.,
and Robinson, J., editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 4, pages 35–132. Oxford Science Publications.

Ghilardi, S., Lutz, C., and Wolter, F. (2006). Did I damage my ontology? A case for
conservative extensions in description logic. Proceedings of the Tenth International
Conference on Principles of Knowledge Representation and Reasoning, pages 187–
197.

Giunchiglia, F. and Shvaiko, P. (2004). Semantic matching. The Knowledge Engineer-
ing Review, 18(03):265–280.

Giunchiglia, F., Shvaiko, P., and Yatskevich, M. (2004). S-match: an algorithm and
an implementation of semantic matching. The semantic web: research and applica-
tions, pages 61–75.

Giunchiglia, F., Yatskevich, M., and Shvaiko, P. (2007). Semantic matching: Algo-
rithms and implementation. In Journal on Data Semantics IX, pages 1–38. Springer-
Verlag.

Gligorov, R., ten Kate, W., Aleksovski, Z., and Van Harmelen, F. (2007). Using google
distance to weight approximate ontology matches. In Proceedings of the 16th inter-
national conference on World Wide Web, pages 767–776. ACM.

Gordon, M. J., Milner, A. J., and Wadsworth, C. P. (1979). Edinburgh LCF - A mech-
anised logic of computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag.

Bibliography 217

Gordon, M. J. and Pitts, A. M. (1994). The hol logic and system. In Bowen, J., editor,
Towards Verified Systems, chapter 3, pages 49–70. Elsevier Science B. V.

Grau, B., Horrocks, I., Kazakov, Y., and Sattler, U. (2007). Just the right amount:
Extracting modules from ontologies. In Proceedings of the 16th international con-
ference on World Wide Web, page 726. ACM.

Grau, B. C., Horrocks, I., Kazakov, Y., and Sattler, U. (2001). Extracting modules from
ontologies : Theory and practice (technical report). The University of Manchester
Oxford Road Manchester M13 9PL UK February 2007, pages 1–39.

Guinchiglia, F. and Yatskevich, M. (2004). Element level semantic matching. Meaning
Coordination and Negotiation (MCN-04), page 37.

Haase, P. and Qi, G. (2007). An analysis of approaches to resolving inconsistencies
in dl-based ontologies. In Proceedings of the International Workshop on Ontology
Dynamics (IWOD’07).

Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., and Sure, Y. (2005). A
Framework for Handling Inconsistency in Changing Ontologies. In The Semantic
Web-ISWC 2005: 4th International Semantic Web Conference, ISWC 2005, Galway,
Ireland, November 6-10, 2005: Proceedings. Springer Verlag.

Hayes, P. (1985). Naive physics I: Ontology for liquids. In Hobbs, J. and Moore, R.,
editors, Formal theories of the commonsense world, pages 71–108. Ablex.

Hayes, P. et al. (1978). The naive physics manifesto.

Hendler, J. (2001). Agents and the semantic web. Intelligent Systems, IEEE, 16(2):30–
37.

Hindley, R. (1969). The principal type-scheme of an object in combinatory logic.
Transactions of the american mathematical society, 146:29–60.

Huet, G. (1975). A unification algorithm for typed lambda calculus. Theoretical Com-
puter Science, 1:27–57.

Huet, G. (1997). The zipper. Journal of Functional Programming, 7(5):549–554.

Huet, G. (2002). Higher order unification 30 years later. Theorem Proving in Higher
Order Logics, pages 241–258.

Huet, G. and Lang, B. (1978). Proving and applying program transformation expressed
with second order patterns. Acta Informatica, 11:31–55.

Ichise, R. (2008). Machine learning approach for ontology mapping using multiple
concept similarity measures. In Computer and Information Science, 2008. ICIS 08.
Seventh IEEE/ACIS International Conference on, pages 340–346. IEEE.

Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Wooldridge, M., and Sierra, C.
(2001). Automated negotiation: prospects, methods and challenges. Group Decision
and Negotiation, 10(2):199–215.

218 Bibliography

Jensen, F. (1996). An introduction to Bayesian networks, volume 36. UCL Press
London.

Ji, Q., Haase, P., Qi, G., Hitzler, P., and Stadtmüller, S. (2009). RaDON—Repair and
Diagnosis in Ontology Networks. The Semantic Web: Research and Applications,
pages 863–867.

Kakas, A. and Moraitis, P. (2006). Adaptive agent negotiation via argumentation. In
Proceedings of the fifth international joint conference on Autonomous agents and
multiagent systems, pages 384–391. ACM.

Kalfoglou, Y. and Schorlemmer, M. (2002). Information flow based ontology mapping.
In Proceedings of the 1st International Conference on Ontologies, Databases and
Application of Semantics (ODBASE’02), Irvine, CA, USA, pages 1132–1151.

Kalfoglou, Y. and Schorlemmer, M. (2003a). If-map: An ontology-mapping method
based on information-flow theory. Journal on data semantics I, pages 98–127.

Kalfoglou, Y. and Schorlemmer, M. (2003b). Ontology mapping: the state of the art.
The Knowledge Engineering Review, 18(1):1–31.

Kalfoglou, Y. and Schorlemmer, M. (2004). Formal support for representing and au-
tomating semantic interoperability. The semantic web: Research and applications,
pages 45–60.

Kalyanpur, A. (2006). Debugging and repair of OWL ontologies.

Kalyanpur, A., Parsia, B., Cuenca-Grau, B., and Sirin, E. (2006a). Axiom pinpointing:
Finding (precise) justifications for arbitrary entailments in OWL-DL. Technical
report.

Kalyanpur, A., Parsia, B., Horridge, M., and Sirin, E. (2007). Finding all justifications
of OWL DL entailments. Lecture Notes in Computer Science, 4825:267.

Kalyanpur, A., Parsia, B., Sirin, E., and Grau, B. (2006b). Repairing unsatisfiable
concepts in OWL ontologies. In ESWC, pages 170–184. Springer.

Kalyanpur, A., Parsia, B., Sirin, E., Grau, B., and Hendler, J. (2006c). Swoop: A
web ontology editing browser. Web Semantics: Science, Services and Agents on the
World Wide Web, 4(2):144–153.

Katsuno, H. and Mendelzon, A. O. (1991). Propositional knowledge base revision and
minimal change. Artificial Intelligence, 52(3):263–294.

Kraus, S., Sycara, K., and Evenchik, A. (1998). Reaching agreements through argu-
mentation: a logical model and implementation. Artificial Intelligence, 104(1-2):1–
69.

Lakatos, I. (1976). Proofs and Refutations: The Logic of Mathematical Discovery.
Cambridge University Press.

Bibliography 219

Langley, P. (1980). Descriptive discovery processes: Experiments in baconian science.
Technical report, Carnegie-Mellon University.

Langley, P. (1981). Data-driven discovery of physical laws. Cognitive Science,
5(1):31–54.

Langley, P. (1998). The Computer-Aided Discovery of Scientific Knowledge. In Dis-
covery Science: First International Conference, DS’98, Fukuoka, Japan, December
14-16, 1998, Proceedings. Springer.

Lehmann, J., Bundy, A., and Chan, M. (2011). Evolution of inconsistent ontologies in
physics. In Proceedings of the Symposium on Inconsistency Robustness 2011.

Lehmann, J., Chan, M., and Bundy, A. (2012). A higher-order approach to ontology
evolution in physics. Journal on Data Semantics, pages 1–25.

Lenat, D. (1995). CYC: a large-scale investment in knowledge infrastructure. Com-
munications of the ACM, 38(11):33–38.

Lenat, D. B. (1977). Automated theory formation in mathematics. In Reddy, R.,
editor, Proceedings of IJCAI-77, pages 833–842. International Joint Conference on
Artificial Intelligence.

Madarász, J., Németi, I., and Székely, G. (2006). Twin paradox and the logical foun-
dation of relativity theory. Foundations of Physics, 36(5):681–714.

Manola, F., Miller, E., et al. (2004). RDF Primer. W3C Recommendation.

McBrien, P. and Poulovassilis, A. (2002). Schema Evolution in Heterogeneous
Database Architectures, A Schema Transformation Approach. Proceedings of
the 14th International Conference on Advanced Information Systems Engineering,
pages 484–499.

McCarthy, J. (1980). Circumscription — a form of non-monotonic reasoning. Artificial
Intelligence, 13:27–39. Also in Readings in Nonmonotonic Reasoning, Ginsberg,
M. L. (ed), Morgan Kauffman, 1987.

McCarthy, J. (1986). Applications of circumscription to formalizing common-sense
knowledge. Artificial Intelligence, 28:89–116. Also in Readings in Nonmonotonic
Reasoning, Ginsberg, M. L. (ed), Morgan Kauffman, 1987.

McCarthy, J. and Buvac, S. (1998). Formalizing context (expanded notes). Computing
natural language, 81:13–50.

McCarthy, J. and Hayes, P. (1969). Some philosophical problems from the standpoint
of artificial intelligence. Machine intelligence, 4(463-502):288.

McNeill, F. and Bundy, A. (2007). Dynamic, automatic, first-order ontology repair
by diagnosis of failed plan execution. International Journal On Semantic Web and
Information Systems, 3(3):1–35. Special issue on ontology matching.

220 Bibliography

Milgrom, M. (1983). A modification of the Newtonian dynamics as a possible alterna-
tive to the hidden mass hypothesis. The Astrophysical Journal, 270:365–370.

Miller, D. and Nadathur, G. (1986). Higher-order logic programming. In Third Inter-
national Conference on Logic Programming, pages 448–462. Springer.

Miller, G. (1995). Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41.

Milner, R. (1978). A theory of type polymorphism in programming. Journal of com-
puter and system sciences, 17(3):348–375.

Nadathur, G. and Miller, D. (1998). Higher-order logic programming. In Gabbay,
D. M., Hogger, C. J., and Robinson, J. A., editors, Handbook of Logics for Artificial
Intelligence and Logic Programming, volume 5, pages 499–590. Clarendon Press,
Oxford, England.

Niepert, M., Meilicke, C., and Stuckenschmidt, H. (2010). A probabilistic-logical
framework for ontology matching. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence.

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer.

Osborne, M. and Rubinstein, A. (1994). A course in game theory.

Padovani, V. (2000). Decidability of fourth-order matching. Mathematical Structures
in Computer Science, 10(3):361–372.

Parsons, S. and Wooldridge, M. (2002). Game theory and decision theory in multi-
agent systems. Autonomous Agents and Multi-Agent Systems, 5(3):243–254.

Paulson, L. (1986). Natural deduction as higher order resolution. Journal of Logic
Programming, 3:237–258.

Paulson, L. C. (1994). Isabelle: A generic theorem prover. Springer-Verlag.

Pease, A., Colton, S., Smaill, A., and Lee, J. (2004). A model of Lakatos’s philosophy
of mathematics. In Proceedings of the Second European Computing and Philosophy
Conference, E-CAP2004, University of Pavia.

Penaloza, R. and Sertkaya, B. (2009). Axiom pinpointing is hard. In Proceedings of
the 2009 International Workshop on Description Logics (DL2009), volume 477.

Pfenning, F. and Schürmann, C. (1999). System description: Twelf — a meta-logical
framework for deductive systems. In Ganzinger, H., editor, Proceedings of the
16th International Conference on Automated Deduction (CADE-16), number 1632
in LNAI, pages 202–206. Springer-Verlag.

Pietrzykowski, T. (1973). A complete mechanization of second-order type theory.
Journal of the ACM (JACM), 20(2):333–364.

Bibliography 221

Pólya, G. (1945). How to Solve It. Princeton University Press.

Rahwan, I., Sonenberg, L., Jennings, N., and McBurney, P. (2007). Stratum: A
methodology for designing heuristic agent negotiation strategies. Applied Artificial
Intelligence, 21(6):489–527.

Reiter, R. (1978). On closed world data bases. In Logic and Data Bases, pages 55–76.

Reiter, R. (1979). A logic for default reasoning. Technical Report 79-8, University of
British Columbia.

Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, pages 81–132.

Riazanov, A. and Voronkov, A. (2002). The design and implementation of vampire. AI
communications, 15(2):91–110.

Ribeiro, M. and Wassermann, R. (2009). Base revision for ontology debugging. Jour-
nal of Logic and Computation, 19(5):721–743.

Robinson, A. and Voronkov, A., editors (2001). Handbook of Automated Reasoning.
Elsevier. 2 volumes.

Roddick, J. (1992). Schema evolution in database systems: an annotated bibliography.
ACM SIGMOD Record, 21(4):35–40.

Rosenschein, J. and Zlotkin, G. (1994). Rules of encounter: designing conventions for
automated negotiation among computers. the MIT Press.

Rowe, J. and Partridge, D. (1993). Creativity: a survey of AI approaches. Artificial
Intelligence Review, 7(1):43–70.

Rubin, V. C., Thonnard, N., and Ford, W. K., J. (1980). Rotational properties of 21 SC
galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4kpc) to
UGC 2885 (R = 122 kpc). Astrophysical Journal, 238:471.

Sabou, M., d’Aquin, M., and Motta, E. (2008). Exploring the semantic web as back-
ground knowledge for ontology matching. Journal on Data Semantics XI, pages
156–190.

Schulz, S. (2002). E-a brainiac theorem prover. AI Communications, 15(2-3):111–126.

Shadbolt, N., Berners-Lee, T., and Hall, W. (2006). The semantic web revisited. IEEE
Intelligent Systems, 21(3):96–101.

Stearns, M., Price, C., Spackman, K., and Wang, A. (2001). Snomed clinical terms:
overview of the development process and project status. In Proceedings of the AMIA
Symposium, page 662. American Medical Informatics Association.

Stirling, C. (2009). Decidability of higher-order matching. Logical Methods in Com-
puter Science, 5(3):2.

222 Bibliography

Stojanovic, L., Maedche, A., Motik, B., and Stojanovic, N. (2002). User-Driven Ontol-
ogy Evolution Management. In Proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management. Ontologies and the Semantic
Web, pages 285–300. Springer-Verlag London, UK.

Strachey, C. (2000). Fundamental concepts in programming languages. Higher-order
and symbolic computation, 13(1):11–49.

Székely, G. (2010). First-order logic investigation of relativity theory with an emphasis
on accelerated observers. Arxiv preprint arXiv:1005.0973.

Tamma, V., Wooldridge, M., Blacoe, I., and Dickinson, I. (2002). An ontology based
approach to automated negotiation. Agent-Mediated Electronic Commerce IV. De-
signing Mechanisms and Systems, pages 317–334.

Van Brakel, J. (1992). The complete description of the frame problem. Psycoloquy,
3(60).

Ventrone, V. (1991). Semantic heterogeneity as a result of domain evolution. ACM
SIGMOD Record, 20(4):16–20.

W3C (2012). OWL 2 Web Ontology Language Document Overview.

Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., and Wischnewski, P.
(2009). Spass version 3.5. Automated Deduction–CADE-22, pages 140–145.

Wenzel, M. (1997). Type classes and overloading in higher-order logic. In Theorem
Proving in Higher Order Logics, pages 307–322. Springer.

Wenzel, M. (2007). Isabelle/Isar — a generic framework for human-readable proof
documents. In Matuszewski, R. and Zalewska, A., editors, From Insight to Proof
— Festschrift in Honour of Andrzej Trybulec, volume 10(23) of Studies in Logic,
Grammar, and Rhetoric. University of Bialystok.

Wilkinson, R. and Pickett, K. (2009). The spirit level. Bloomsbury Press New York.

Wiser, M. and Carey, S. (1983). When heat and temperature were one. In Stevens, A.
and Gentner, D., editors, Mental Models, pages 267–297. Erlbaum.

Witbrock, M. (2011). Knowledge for/from people for/from computers. In Proceedings
of the 1st international workshop on Search and mining entity-relationship data,
pages 1–2. ACM.

Wooldridge, M. (2002). An Introduction to MultiAgent Systems. John Wiley and Sons.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice.
The Knowledge Engineering Review, 10(2):115–152.

Zablith, F. (2008). Dynamic ontology evolution. ISWC Doctoral Consortium.

Zaionc, M. (1985). The set of unifiers in typed λ-calculus as regular expression. In
Rewriting Techniques and Applications, pages 430–440. Springer.

	PhD coversheet April 2012
	Ontology Evolution in Physics (2013)

