THE UNIVERSITY
of EDINBURGH

This thesis has been submitted in fulfiiment of the requirements for a postgraduate degree
(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
terms and conditions of use:

* This work is protected by copyright and other intellectual property rights, which are
retained by the thesis author, unless otherwise stated.

* A copy can be downloaded for personal non-commercial research or study, without
prior permission or charge.

* This thesis cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author.

* The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author.

* When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given.

Graph Pattern Matching on Social Network

Analysis

Xin Wang

Doctor of Philosophy
Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh
2013

Abstract

Graph pattern matching is fundamental to social networklyaiga Its effectiveness
for identifying social communities and social positiongkimg recommendations and
so on has been repeatedly demonstrated. However, the setiark analysis raises
new challenges to graph pattern matching. As real-lifeaagiaphs are typically
large, it is often prohibitively expensive to conduct gragitern matching over such
large graphse.g.,NP-complete for subgraph isomorphism, cubic time for bounded
simulation, and quadratic time for simulation. These hirtle applicability of graph
pattern matching on social network analysis. In responteetge challenges, the thesis
presents a series of effective techniques for querying|atgnamic, and distributively
stored social networks.

First of all, we propose a notion gfuery preserving graph compressjdo com-
press large social graphs relative to a clasef queries. We then develop both batch
and incremental compression strategies for two commorgy psittern queries. Via
both theoretical analysis and experimental studies, we shat (1) using compressed
graphsG; benefits graph pattern matching dramatically; and (2) timepzdation ofG,
as well as its maintenance can be processed efficiently.

Secondly, we investigate the distributed graph patterrciniag problem, and ex-
plore parallel computation for graph pattern matching. Wewsthat our techniques
possess following performance guarantees: (1) each sitgtisdonly once (2) the to-
tal network traffic isndependent dhe size ofG; and (3) the response time is decided
by the size of largest fragment &f rather thanthe size of entir€s. Furthermore, we
show how these distributed algorithms can be implementéueiitMapReduce frame-
work.

Thirdly, we study the problem of answering graph patternamag using views
since view based techniques have proven an effective tgabiior speeding up query
evaluation. We propose a notion péttern containmento characterise graph pat-
tern matching using views, and introduce efficient algongtto answer graph pattern
matching using views. Moreover, we identify three probleelated to graph pattern
containment, and provide efficient algorithms for conta@mtnchecking (approxima-
tion when the problem is intractable).

Fourthly, we revise graph pattern matching by supportingsaghated output node,
which we treat as “query focus”. We then introduce algorghar computing the tof-
relevant matchew.r.t. the output node for both acyclic and cyclic pattern grapés, r
spectively, withearly termination propertyFurthermore, we investigate tdaversified

top-k matchingoroblem, and develop an approximation algorithm wagrformance
guaranteeand a heuristic algorithm witbarly termination property

Finally, we introduce an expert search system, cadiiggFinder, for large anddy-
namicsocial networksExpFinder identifies topk experts in social networks by graph
pattern matching, and copes with the sheer size of reattifgal networks by inte-
grating incremental graph pattern matching, query présgrompression and tolp-
matching computation. In particular, we also introducerizted (resp. unbounded)
incremental algorithms to maintain the weighted landmaters which are used for
incremental maintenance for cached results.

Acknowledgements

First and foremost, | would like to thank my supervisor, Besior Wenfei Fan, for all
his invaluable guidance, support and inspiration. He ledntethe area of databases
and taught me on every perspective of the principles of reeeaoreover, this dis-
sertation is profoundly marked by his scholarship and agjwigthout his kind encour-
agement and unfailing support, this dissertation wouldhawe been possible.

Many thanks to Professor Don Sannella, who made it possilent to enrol
in the PhD program at University of Edinburgh. My specialrks go to Professor
Peter Buneman and Professor Marcelo Arenas who have semvag oommittee and
provided insightful comments and advice.

In addition, | would like to thank my colleague Dr. Yinghui \Wwith whom | co-
operated happily during the past years. | really benefit filmerthoughtful discussions
with him. Thanks must go to all folks in the database groupriglGeerts, Xibei Jia,
Shuai Ma, Nan Tang, Wenyuan Yu, Tony Tan, and Yang Cao. llyreajoy the happy
time with you, and especially thank you for the supportivgcdssions and construc-
tive suggestions during my research. Thanks must also genedct Kavanagh who
shared his valuable comments on my dissertation, and myeSéioolleagues: Jing-
cai Huang, Jizhou Luo, Zijing Tan, Yunpeng Wu, and Lixiao @ggyou generously
shared your valuable experiences and encouraged me withoyoupassion, which
benefited me immensely for conducting efficient research.

Many thanks to my friends in Edinburgh: Xi Bai, Lorenzo Clerteg Liwei Deng,
Yansong Feng, Jiansen He, Zhiyu Huang, Zhe Liu, Zhiguo Kdongn Rutter and
Hongxia Xu, | quite enjoy the time with you guys in Edinburdlam also grateful to
my colleagues and friends in China, who encouraged and ntexteyssupport for me
to pursue my PhD.

Finally, | would like to thank my family: my parents for thesupport and encour-
agement over the years; my wife for her love, devotion supplithout you, | might
give up during the hard time.

Declaration

| declare that this thesis was composed by myself, that th& wantained herein is
my own except where explicitly stated otherwise in the tert that this work has not
been submitted for any other degree or professional quetidic except as specified.

(Xin Wang

1

Introduction 2
1.1 Graph Pattern Matching: AReview 2
1.2 Graph Pattern Matching: the State of the Art 6
1.2.1 Approaches to Subgraph Isomorphism. 6
1.2.2 Approaches to Graph (Bounded) Simulation. 8
1.2.3 Approaches to Variants of Graph Pattern Matching 9
1.3 Challenges for Social Network Analysis 10
1.4 Contributions 12
1.5 Outline of Dissertation, 14
1.6 Publications e 15
Query Preserving Graph Compression 17
2.1 Introduction 17
2.2 Query Preserving Graph Compression 20
2.3 Reachability Preserving Compression 22
2.3.1 Reachability Equivalence Relations 22
2.3.2 Compression Method for Reachability Queries .24
2.4 Graph Pattern Preserving Compression 26
2.4.1 Compressing Graphs via Bisimilarity 7 2
2.4.2 Compression Algorithm for Graph Pattens 29
2.5 Incremental Compressiono 30
2.5.1 Incremental Maintenance for Reachability 31
2.5.2 Incremental Maintenance for Graph Patterns 35
2.6 Experimental Evaluation 38
27 Relatedwork 45

Table of Contents

3 Distributed Graph Pattern Matching 49

3.1 Introduction 49
3.1.1 DistributedGraphs 52
3.1.2 Partialevaluation, 53

3.2 Distributed Graph Pattern Matching 54
3.2.1 Distributed Reachability Queries 54
3.2.2 Distributed Bounded Reachability Queries 59
3.2.3 Distributed Regular Reachability Queries 62

3.3 Distributed Graph Pattern Matching with MapReduce 68

3.4 Experimental Evaluation 71

3.5 RelatedWork 79

4 Graph Pattern Matching Using Views 81

4.1 Introduction 81

4.2 Preliminary 83
4.2.1 Graph Pattern Matching Revisited 83
4.2.2 Graph Pattern Matching Using Views 85

4.3 Pattern Containment: A Characterization. 86

4.4 Pattern Containment Problems 39

4.5 Determining Pattern Containment 99
4.5.1 Pattern Containment 99
4.5.2 Minimal Containment Problem 102
4.5.3 Minimum Containment Problem 104

4.6 Bounded Pattern Matching Using Views 106
4.6.1 Answering Bounded Pattern Queries 710
4.6.2 Bounded Pattern Containment 109

4.7 Experimental Evaluation 511

48 RelatedWork. 122

5 Diversified Topk Graph Pattern Matching 124

5.1 Introduction 125

5.2 Graph Pattern Matching Revisited 127
5.2.1 Graph Pattern MatchingRevised 127

5.3 Ranking PatternMatches 128
531 RelevantMatches. 128
5.3.2 MatchDiversity. 130

Vi

5.3.3 Match Diversification. 131
5.3.4 Generalized TopMatching, 132
5.4 Algorithms for Top-k Matching 33
5.4.1 Algorithm for Acyclic Patterns 33
5.4.2 Algorithm for Cyclic Patterns 140
5.5 Algorithms for Diversifying Matches 147
5.5.1 Approximating Diversification a4
5.5.2 Early TerminationHeuristics 215
5.6 Topk matching with multiple outputnodes 154
5.7 Experimental Evaluation 815
58 Relatedwork 166
6 ExpFinder: Finding Experts by Graph Pattern Matching 169
6.1 Introduction 169
6.2 Incremental maintenance oflandmarks171
6.2.1 LandmarkVectors, 171
6.2.2 Incremental maintenance of landmarks 72 1
6.2.3 Performance Evaluation 176
6.3 The ExpFinder System 179
6.4 SystemOverview 182
7 Conclusion and Future Work 187
7.1 SUMMANY . . . e e e e e e e e 187
7.2 FutureWork 190
Bibliography 192

Vii

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
211
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

List of Figures

Data Graph and Pattern Graphs 5
Compressing a real-life P2P network 18
Recommendation Network 19
Query preserving compressiono 0 2
Reachability equivalence 32
Algorithmcompressg for reachability 24
Examples of bisimulationrelations 27
Algorithmcompressg for patternqueries 29
AlgorithmincRCM 33
Incremental compression: reachability 35
AlgorithmincPCM oL 36
Incremental compression: graph pattern 38
Effectiveness: query processing 42
Efficiency of incremental compression 44
Effectiveness of incremental compression 45
Querying a distributed social network 50
Fragment graph and partial evaluation 53
AlgorithmdisReach o 55
ProcedurevalDG 58
Dependency graphs 59
ProceduréocalEvaly andevalDGy 60
Query automatoGq(R)o 63
ProcedurécalEval, and cmpRvec 65
Assembling with dependency graph 7 6
AlgorithmMRdRPQ 69
Processing path of algoritheduceRPQ 70

viii

3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Efficiency and Scalability afisReach 74

Efficiency ofdisDist 75
Efficiency and scalability @fisRPQ 77
Efficiency oMRdARPQ o 78
Data graph, views and patternqueries 82
AlgorithmMatchJoin L o 86
Answering pattern queries usingviews 90
Algorithmcontain 101
Containment for pattern queries 102
Algorithmminimal 103
Algorithmminimum L 104
Containment for bounded pattern queries. 111
Youtube views e 115
Query answeringusingVviews 171
Optimizationtechniques 181
Determining query containment 119
Efficiency and scalability ddMatchJoin 120
Querying collaborationnetwork 126
AlgorithmTopKDAG 137
AlgorithmTopK 141
Procedur8ccProcesso 142
AlgorithmTopKDiv 150
Casestudy 160
Effectiveness of tog-matching. 161
Efficiency and scalability of togmatching 162
Algorithms for diversified togematching 164
Pattern quer@y, and collaboration networés 170
ProceduréelLM 174
Performance evaluation : efficiency 178
Architecture oExpFinder L L. 180
Visual interfaceExpFinder Manager 183
Visual interface: Pattern Builder 184
Match Results relevant to output node@f Q> andQs 185

2.1
2.2

3.1
3.2
3.3
3.4

4.1

7.1
7.2
7.3
7.4
7.5

List of Tables

Reachability preserving: compression ratio
Pattern preserving: compression ratio

Notations: graphsand queries
Size of graphs : (bounded) reachability queries

Size of graphs : regular reachability queries
Efficiency and data shipment: real lifedata.

Notations: graphs, pattern queriesandviews

Summary: computational complexities

Summary: performances

Summary: complexity analysis oL
Summary: property and complexity analysis of the proisle.
Summary: complexity analysis oL

40
40

72
72
74

Chapter 1
Introduction

Graph pattern matching has been extensively studied foe than 30 years, and spans
a diverse range of application domaiesy.,knowledge discovery, computer vision, bi-
ology, cheminformatics, dynamic network traffic and ingghce analysis. With the
rapid increase in social network services popularity,éheas been renewed interest
in graph pattern matching for social network analysis. is thapter, we first briefly
review the existing techniques of graph pattern matchifangwith the basic nota-
tions and terminologies we will use in the thesis. We therohice the characteristics
of social networks and discuss the challenges of using goaftern matching in so-
cial network analysis. Finally, we outline the structuretloé thesis and present its
contributions.

1.1 Graph Pattern Matching : A Review

Graphs are among the most ubiquitous models of both natoudahaman-made struc-
tures. They can be used to model many types of relations aywkgs dynamics in
many arease.g.,a social network can be modelled as a graph, where each nede de
notes a person, and edges indicate the relationships arnoseg people.

Due to the wide application of graph models, a series of aglieproblems were
studiede.g.,graph pattern matching, which spans a diverse range ofrdseammu-
nities.

Generally speaking, the problem of graph pattern matctsrdgfined as follows:
given a data grapls, and a pattern grap®, find all the matches i for Q. Due to
varying semantics, the graph pattern matching problemeaifigm thenP-complete
problemsubgraph isomorphisto the polynomial time problems, includifgpunded

Chapter 1. Introduction 3

simulation(cubic time), andimulation(quadratic time). Moreover, to overcome high
computational complexities and capture more meaningfuthes, a variety of ex-
tensions have been exploreslg., inexact matching, etc, which makes the problem
domain more diverse.

Below we first present data graphs and pattern graphs, andé#ime graph pattern
matching problem. The notations introduced will be usedufjhout the thesis.

Data graphs A data graphis defined a$s = (V,E, L), where

o V is a set of nodes;

o ECV xV is a set of edges, in whicfv,V) denotes an edge from nogéo V/;
and

o Lis afunction defined oW such that for eackin V, L(v) is the label ofv.

In practice, the labelL(v) may indicate a variety of real-life semantiesg., label,
keywords, blogs and rating.

We shall use the following notations.

(1) A pathp from nodev to V in G is a sequence of nod@s=vg,vy, -,V =V
such that(vi_1,v;) € E for everyi € [1,n]. Thelengthof pathp, denoted byen(p),
is n, i.e., the number of edges ip. The pathp is said to benonemptyif len(p) > 1.
Abusing notations for trees, we referwoas achild of v;_1 (or vi_1 as a parent of;),
andv; as adescendanf vi_1 for i, j € [1,n] andi < j.

(2) Thedistancebetween node andV is the length of the shortest paths frarto
Vv, denoted byis(v, V).

(3) A graphG’ = (V' E’) is a subgraph o& if and only if V' CV andE’ C E.

(4) A node induced subgrapBs of G is a graph(Vs, Es,Ls), where (a)Vs C V,
(b) there is an edgéu,v) € Es iff u,v € Vs and(u,v) € E, and (c) for eactv € V,
Ls(v) = L(v).

(5) Thestrongly connected compone(#€C) of a directed grapfs are its maximal
strongly connected subgraphs. Téteongly connected component graphcg is a
DAG obtained by shrinking each strongly connected compa®€@tof G into a single
node.

Pattern graphs[FLM *10]. A pattern graphis defined a®) = (Vp, E, fy, fe), where
o Vpis a set of nodes arffl, is a set of directed edges, as defined for data graphs;
o fy() is a function defined oW, such that for each nodg f,(u) is a label inX.

fy() can be readily extended to specify search conditions ingeriBoolean
predicates [FLM 10]; and

Chapter 1. Introduction 4

o fe() is a function defined ok, such that for each edde,u’) in Ep, fe(u,u’) is
either a positive integdsor a symbolk.

Intuitively, the predicatefy(u) of a nodeu specifies a search condition. An edge
(u,u') in Qis to be mapped to a pafhfrom vto V' in a data grapl@. As will be seen
shortly, fo(u,u’) imposes a bound on the lengthmf

We refer toQ as anormal patterrif for each edgdu,u’) € Ep, fe(u,u’) = 1. Intu-
itively, a normal pattern enforces edge to edge mappingsuaml in graph simulation
and subgraph isomorphism.

Graph Pattern Matching Problem. Given a pattern grap@Q and a data grap®, find
all matches inG for Q, denoted byM(Q,G). Here matching is typically defined in
terms of the following notions:

o Subgraph isomorphism [GalOG}l(Q, G) consists of subgrapl@ of G to which
Q is isomorphic,.e., there exists a bijective functiamfrom the nodes of) to
the nodes o5’ such thatu,u’) is an edge irQ if and only if (h(u),h(u)) is an
edge inG’; or

o Bounded simulation [FLM10]: M(Q,G) is a binary relatiorS C V, x VV, where
Vp andV are the set of nodes @ andG, respectively, such that

— for each node in Vy, there exists a nodein V such thafu,v) € S, and
— for each(u,v) € Sand each edgg@u,U') in Q, there exists aonempty path
p fromvtoV in G such tha{u',v) € S andlen(p) <kif fo(u,u’) =k

o Simulation [HHK95]: Graph simulation is a special case afibded simulation
whenQ is a normal patterri,e., whenfe(u,u’) = 1 for all (u,u’) € E,. That is,
it only allows edges in the pattern to be mapped to edges idategraph.

To ease the presentation, in the remaining part of the thesishall use, to
denote bounded simulation queries, adas simulation queries, unless otherwise
stated.

Remark. Note that different semantics for graph pattern matchireddydifferent
computational cost and capability in identifying meanurighatching. In particu-
lar, subgraph isomorphism isne-complete problem (cf [GJ79]), and there are pos-
sible exponentially many matches. Although graph simoiaan be computed in
guadratic time, this notion and subgraph isomorphism aendbo restrictive to find
matches (only edge to edge mapping); bounded simulatiowskédges to be mapped
to (bounded) paths instead of edge-to-edge mappings, Hersemore meaningful
matches but requires more computational cost, cubic time, compared with graph

Chapter 1. Introduction 5

(a) Graph G (b) Pattern Graph Q; (c) Pattern Graph Q,

Figure 1.1: Data Graph and Pattern Graphs

simulation.

Example 1.1: Figure 1.1 depicts grapB, a fraction of social network. Each node in
G denotes a person, with job titeeg.,project managerqM), artificial intelligence re-
searcherAl), software engineeSE), database administratddB) and bioinformatics
researcherRio); and each edge indicates collaboratiem.,(PM1, SE;) indicates that
SE; worked well withPM1 on a project led by?M1. Also shown in Fig. 1.1 are pattern
graphsQ; andQg:

(1) If patternQ1 is to find all subgraphs d& that are isomorphic tQ1. Then, the
setM(Q1,G) is empty, as there does not exist a subgrap diiat is isomorphic to
Q1.

(2) WhenQs is to find matches based on graph simulation [HHK95], therretu
result is a binary relatioM(Q1,G) = {(PM,PM3), (Al,Aly), (Al,Al), (DB,DB1),
(DB,DB3), (Bio, Bio), (Bio, Biog), (SE,SE1), (SE,SE>2) }.

(3) PatternQ is to find matches based on the semantics of bounded simula-
tion [FLM*10]. It requires that th®Ms connect toDBs, Bio researchers anSEs,
respectively, all in 2 hops; and tfss connect tdDBs in 1 hop. One may verify that
the query resulM(Qz, G) equals{(PM,PM3), (DB,DB1), (DB, DB3), (Bio, Bioz),

(Bio, Biog), (SE,SE1), (SE,SE2)}. O

To allow the extension for edge to path mapping, one centaddlpm is to answer
the reachability queries, which is introduced as following

Reachability queries Reachability queries are one of the most important graph
gueries. Informally, a reachability query asks whetherdlexists a path from a node

s to another nodé¢ in graphG. Starting from the general reachability queries, two
important variants, bounded reachability queries andlaegaachability queries, are
proposed and investigated éng.,[FWW12, JHW"10]. We now formally introduce
them below.

(1) A reachability query denoted agj,(s,t), determines whether nodecan reach

Chapter 1. Introduction 6

another nodeéin G.

(2) A bounded reachability querylenoted asy, (s,t,1), decides whethatis(s,t) <|
for a given integer (bound)

(3) A regular reachability (path) querydenoted asy(s,t,R), determines whether
there exists a patp from stot such thap satisfieR. HereR s a regular expression:

R :=¢|a|RR|RUR|R",

wheree is the empty stringa is a label inZ, RR RUR andR* denote concatenation,
alternation and the Kleene closure, respectively. We saiyaipathp satisfies Rf the
label ofp is a string in the regular language defined”yHere we do not requirp to
be a simple path,e.,we allow multiple occurrences of the same nodeon

Indeed, reachability queries are a special case of pattemmeasg, and can be readily
represented as pattern graphs. One may verify that :

(1) A reachability queryq,(s,t) can be represented as a pattern graph with only one
edgee = (s,t) such thatfe(s,t) = .

(2) A bounded reachability query, (s,t,l) can be represented as a pattern graph with
the same structure gg(s,t), but differs in thatfe(s,t) = 1.

(3) A regular reachability (path) query,,(s,t,R) can be represented as the same pat-
tern graph as,(s,t), with the exception that there must exist a patinom stot such
that the labels of the nodes along the patatisfies the regular expressiBn

It is worth noting that when a simple boolean pattern is usedgfaph pattern
matching, the return result is not necessarily the entireimsetM (Q, G), in contrast,
a Boolean value indicating whether the boolean patterneMsiesired.

1.2 Graph Pattern Matching: the State of the Art

In this section, we introduce the background and stat&w@farrt approaches to the
graph pattern matching problem.

1.2.1 Approaches to Subgraph Isomorphism

Traditionally, graph pattern matching is defined in termswbgraph isomorphism.
With this notion, graph pattern matching corresponds tariiga structure-preserving
bijection, which makes graph pattern matchingi@complete problem. To efficiently

Chapter 1. Introduction 7

find matches, various techniques have been explored, whithe grouped into three
categories: Exact Matching, Inexact Matching, and the sitss.

Exact matching. The first subgraph isomorphism algorithm was introducgdii76],
which is applicable for untyped graphs with directed or vected edges, and with ex-
ponential worst case time complexity. To overcome the hghjputational complex-
ity, an algorithm with quadratic worst-case time complgxvas proposed in [MB95].
This algorithm can also be operated on untyped graphs witittgid or undirected
edges, however, it requires to preprocess the graph to gfenalt possible permuta-
tions of the graph adjacency matrices and organize themairttecision tree, which
may grow exponentially with respect to the size of the datphr Following the
same strategy as Ullmann’s, another backtracking algor8D [SD76] was devel-
oped for directed graphs. Although SD uses distance mairpeduce the search
space, it still has exponential worst case time compleXite more recent algorithms
Nauty [McK81], VF [CFSV99] and VF2 [CFSVO04] are all develap®r exact matches
and also have exponential worst-case time complexity. Topave the performances
of the above algorithms, [FSV01] conducted a set of comprgike tests over small
synthetic graphs with thousands of nodes and edges, anenpeesdetailed results,
from which one may conclude that due to the high computatioo@mplexities, these
algorithms are not applicable on large graphs with millioh®iodes and billions of
edgese.g.,social networks.

There are also works to find exact matches by leveragingesdidZLYQ09] con-
structs an index by (a) sampling best discriminative sulotiires in the data graph;
and (b) computing NDS distance for a pair of nodes satisfglisgance constraint.
Then the matching process proceeds by progressively findatghes of one pair of
vertices in the pattern graph. GraphGrep [GS02] buildsceslito represent graphs
as sets of paths. Given a pattern graph, GraphGrep decompas® a set of paths
and conducts path verification via the index for each patetéermines whether the
pattern graph matches the data graph by verifying wheth#reapattern paths can be
concatenated.

Inexact matching. To fight the high computational complexity for exact mabnghand
the incomplete or errors in the data graph, a variety of tieglas for inexact matching
were developed. For example, [Z2YJ10] studies how to &ilhdhe matches witledge
edit distancdess than or equal to a specified threshold. It introducedopnoach to
find inexact matches by incorporating an index structurmethas SAPPER. [TP08]

Chapter 1. Introduction 8

studies the problem of finding matches on graphs with noiddremomplete informa-
tion. As opposed to [Z2YJ10], it defines different measuretmém evaluate the match
quality, and builds up a hybrid index to speed up query evana

Extensions The problems of graph pattern matching when allowing edgpath
mapping are further studied in [CY®8, ZCO09]. In [CYD'08], the query model
is to find all matches in a data graph that match all the realityatonditions con-
junctively specified in a pattern graph. While, [ZCOO09] alfoedges in pattern graph
to be mapped to a path with length boundeddiy the data graph. The key differ-
ences between the two works are that the distance bound filgmte path mapping
in [CYD™08] is unlimited, rather thad in [ZCO09].

1.2.2 Approaches to Graph (Bounded) Simulation

We start from graph simulation, and then introduce variodsresions to the problem
as well as their corresponding approaches.

In contrast to subgraph isomorphism, graph simulationséekind a maximum
simulation relation rather than a set of isomorphic subligsapa a bijective function.
This improves the computational complexity of graph patt@atching substantially,
e.g.,graph simulation is computed in quadratic time [HHK95]. Mover, the size of
the return result is bounded I&(|V,||V|), whereV, andV are node sets in the pattern
graph and the data graph, respectively, rather than thebbhpexponentially many
matches when using subgraph isomorphism.

Incorporating edge to path mapping Edge to edge mappings are often too restric-
tive for graph pattern matching. With this comes the needtorporate graph pat-
tern matching with edge to path mapping. The central probdenmust address is
how to answer reachability queries, which has been studiezhsively. In particu-
lar, various kinds of indices are developed to speed up gexauation.e.g.,transi-
tive closure [Sim88], 2-hop labelling [CHKZ03a], 3-hop #&lng [JXRF09], Dual-
labeling [WHY'06] and so on. Moreover, taken into consideration that litsabocial
networks often take semantics over edges, [JH] introduced approaches to label-
constraint reachability queries, which asks whether rodeached via a path with
edge labels constrained by a set of labels.

To further extend graph pattern matching by incorporatithgeeto path mapping,
[FLM *10] proposed bounded simulation which maps edges in therpagraph to

Chapter 1. Introduction 9

paths in the data graph with distance less than a given bodwhlike [ZCOOQ9],
[FLM *10] allows bounds associated with the pattern edges tonraher than a single
bound for all the pattern edges. With regards to the comjomi@tcost, bounded sim-
ulation does not make our lives much harder, as it takes d¢ubeto find a maximum
bounded simulation relation. Regular pattern matchingckvis a more sophisticated
extension, is studied in [FLNM11], where each edgein a pattern graph is mapped
to a pathp in a data graph such that the concatenation of edge labelg #e path
p is a string in the language of the regular expresdigr). It is also shown that the
computational complexity of regular pattern matching isuibic time.

Pattern graph processing Another optimization topic in graph pattern matching is to
minimize pattern graphs. Via minimization, redundant reded edges can be maxi-
mally eliminated, while the query result remains the samee @ial of this direction

is the work from [BGO0O]. Given a pattern gra@) it introduces algorithms to find a
smallest structure that is simulation equivalen®o[FLM ™ 11] studied minimization
problem for regular pattern graphs, and introduced a cirnie &lgorithm to minimize
pattern graphs.

Incremental computation. It is often too expensive to compute graph pattern match-
ing from scratch, especially when queries are issued fratjuen large social net-
works. Moreover, itis not feasible to analyse incremergd@thms by using the tradi-
tional complexity analysis for batch algorithms. In ligtitbese, [FLM"10, FLL" 11]
studied incremental problem for both graph simulation aadnded simulation and
introduced bounded or unbounded incremental algorithms.

1.2.3 Approaches to Variants of Graph Pattern Matching

There has been much work [JWYZ07, HS06, ZYYO07, YYHO04] on fimgdoccurrences
of a pattern graph in a graph database which includes a lag@tity of medium sized
data graphs. Most of the work follows a filter-and-verifioatframework. That'’s, they
(1) identify a set of feature substructures; (2) constrmetited indices; and (3) filter
and find data graphs in which the pattern graph is contained.

There are also works on semantic matching rather than stecctmatching, which
attempt to find matches relevant to the semantics by takittgdansideration types
and attributes of nodes and edges as well as graph stru&iie\VS+05, CGMO04,
WBH*03].

Chapter 1. Introduction 10

Similarity between pattern and data graphs are often medduy edit distance,
however this yields the drawback, since it requires spetitia of costs for edit oper-
ations. In light of this, [BS98] and [BJKOO] propose alteima methods to measure
the distance based on the ideansdximal common subgragnd minimum common
serigraph Indeed, these methods measure the amount of structundhp\umetween
graphs.

It is worth noting that most of these algorithms are not aygtile for graph pattern
matching on social networks, the reasons are (1) the graphdatabase are generally
of medium size, hence these techniques are not scalablegmndeaphse.g.,social
networks; and (2) the approaches are to find occurrencesttefiparaph in a set of
data graphs, in contrast, our goal is to find all the matcheslyone large data graph.
Nevertheless, some of these techniques apply to the prsldardied in the thesis.

1.3 Challenges for Social Network Analysis

A social network can be modelled as a graph, where each viartie& graph represents
an actor in the social network, and each (directed) edgeanel the relationship be-
tween two actors within the social network. As a result, grppttern matching is one
of the most fundamental techniques for social network amslyFor example, graph
pattern matching can be applied for social relationshipcseEIHW'10], social role
analysis [BHK"10, WF94], expert search [LLT11, TM05] and so on.

However, it is nontrivial to perform graph pattern matchimyg social networks.
The challenges come from the inherent characteristicsmaboetwork and the hard-
ness of graph pattern matching problem itself. The most apbchallenges are the
following:

(1) Social networks are typicalllarge. Real-life social networks are often con-
sisted of millions of nodes and billions of edges. For ins&rracebook currently has
more than 850 million users with 110 billion linksThe sheer size of social network
raises two main issues: (i) the computational costs of gpaptern matching are often
too high,e.g.,it is in exponential time to check whether there exists matcéocial
network via subgraph isomorphism, not to mention findingredimatches; and (ii) the
result set may be extremely largeg.,there may exist exponentially many matches
in social networkG which are isomorphic to the pattern gra@hhence it would be a
daunting task for the users to inspect and find what they aeisieg for.

1http://WWW. facebook.com/press/info.php?statistics

Chapter 1. Introduction 11

(2) Social networks are ofteneterogeneousliyped. Real-life social networks
often consist of nodes and edges with multiple types. Fomgk@, nodes in Twitter
represent users or blogs, and edges indicate differenionrethips e.g.,edge from user
up to useru, indicates thati; follows uy, while edge from useu; to blog B denotes
thatu; tweets blog B. Moreover, in contrast to XML, social netwodasnot have any
predefined schema, these together make graph pattern ngagetd the corresponding
optimizations even more difficult.

(3) Social networks evolve constantly. It is observed tekat-tife social networks
are evolving constantlye.g.,in Facebook, new users are registered constantly; and
the relationship among the users also change frequengyadding (resp. deleting)
friends continuously. In addition, the attributes asstedavith the nodes and edges are
changing over timeg.g.,changes are made to age, employer, job title etc of the nodes,
and relationship of the edges. However, the changes aatiypsmall [NCOO04a]. Itis
often prohibitively expensive to recompute the matchesistafrom scratch when so-
cial networks are updated with minor changes. Worse stilemgraph pattern match-
ing queries are issued frequently, it would be infeasibleejpeatedly compute the
matches from scratch due to high computational costs.

(4) Social networks are distributively stored. A sociavmatk may be distributed
across different servers and data centres for performanaaagement or data pri-
vacy reasons [GHMPO08, MD08, PER09, Row@9j., Twitter and Facebook are geo-
distributed over different data centres [GHMP08, PERO9]ordbver, various data
associated with people.g.,friends, products, companies) are typically found in dif-
ferent social networks [Row09], and have to be taken togethen one needs to find
the complete information about a person. Hence, graphrpattatching will be even
harder in the distributed environment, when the difficglioé graph pattern matching
in the centralized environment are considered.

(5) Social networks carry characteristics of complex nekso

o Power-law node degrees. [MM®7] shows that all the social network sites,
e.g.,Flickr, LiveJournal, Orkut and Youtube show behaviour ¢stent with a
power-law network.

o Short diameters. The length of longest shortest path isedeas diameter of a
social network. As verified by [MMGO07], the diameters of social networks are
relatively short.

o Densely connected core. The definitionaafre is omitted here, as it is out of
scope of the thesis. Briefly, the social networks have a dgresanected core

Chapter 1. Introduction 12

comprising of the highest degree nodes, such that remokisgore completely
disconnects the social networks.

o Tightly clustered fringe. Social networks often exhibighiclustering coeffi-
cients [MMG"07], which in turn is consistent with the observation thade
tend to be introduced to other people via mutual friends;eiasing the proba-
bility that two friends of a single user are also friends.

o Groups. Itis also observed that real-life social networkscamprised of a large
number of small, tightly clustered local user communitielsltogether by nodes
of high degree [MMG 07].

These characteristics which reveal the inherent struafisscial networks have
direct or indirect impact on the computation and optimawf graph pattern match-
ing.

From the above analysis, one may find that the inherent clesistecs of social
networks bring challenges to graph pattern matching andehiits application. To
conquer the challenges, we need (1) effective techniqueshwvelase the graph pattern
matching on large social graphs; (2) efficient approachesope with dynamic na-
ture of social networks; (3) distributed techniques whilkbvagraph pattern matching
computation to proceed in parallel, and also to possessmpesihce guarantees; and
(4) revised semantics of graph pattern matching, to recieeamputational cost and
make result inspection easier.

1.4 Contributions

The following contributions are made in the thesis.

o A novel query preserving graph compression is introducéthapter 2, to cope
with sheer size of social networks and assist graph pattetolnmg evaluation.

— Query preserving graph compression only preserves infismaeeded
for answering queries in a particular clags and hence, achieves a better
compression ratio. Better still, the compressed graphdeatirectly used
by algorithms for evaluating queries qQf, without decompression.

— Query preserving compression for reachabiligy,, simple boolean pattern,
and pattern queries is studied. Efficient techniques whachpress large
social graphs relative to these two classes of queries aeelgovided.

— To maintain compressed graphs, incremental algorithmstwiiepend on
AG andG;, independent o6 are provided, for two classes of queries.

Chapter 1. Introduction 13

— Effectiveness and efficiency of the (incremental) compoestechniques
are experimentally verified by using synthetic and rea-tiata.

o To speed up graph pattern matching evaluation, distribalgakithms for three
types of reachability queries (graph pattern matching gk boolean pat-
terns) are presented in Chapter 3. The algorithms explaralelismvia partial
evaluation, and possess sevgratformance guarantees

— These algorithms (a) visit each site only once, (b) havé tatavork traffic
determined by the size @ and the fragmentation d&, independent of
the size ofG, and (c) retain computational complexity determined by the
largest fragment o6 rather than the entiré.

— These algorithms can be readily implemented on the MapRettame-
work, and one such algorithm for regular reachability geeis provided.

— Efficiency and scalability of these algorithms are verifiesing both real-
life and synthetic data.

o The techniques for answering graph pattern matching usevgsvs provided in
Chapter 4. The need for this study is evident: social netwark typical large
and distributively stored, and view-based techniques fiteqeery evaluation.

— Starting from graph simulation, a notion of pattern conta@mt is pro-
posed, based on which an evaluation algorithm for answepiagh pattern
gueries using views is developed.

— Three fundamental problems related to pattern containarenidentified,
where the problems range from quadratic-timentecomplete. Further-
more, efficient algorithms (approximation when the probismtractable)
are provided for containment checking.

— The results of graph simulation carry over to bounded sitrarlaand the
complexities of the algorithms remain the same or are coaiypar

— Effectiveness and efficiency of the view-based graph pattextching tech-
niques are verified by using real-life and synthetic data.

o Approaches to finding diversified tdpmatches are introduced in Chapter 5.
These algorithms only find matches of specified query nodakenpattern
graph, and hence facilitate the computation and resulectsgn of graph pattern
matching.

— The notion of graph pattern matching is firstly revised byigiegting an
output nodeu,, along with generalised relevance and distance functions
devised for ranking matches of.

Chapter 1. Introduction 14

— Algorithms with the early termination property are prowid®e find topk
relevant matches, for both cyclic and acyclic patterns.

— In light of the intractability of diversified tof-matching problem, one ap-
proximation algorithm with approximation ratio 2 and oneutistic one
with the early termination property are developed, respeigt

— Extensions to the techniques are introduced to supposmagraphs with
multiple output nodes which are not necessarily “root” rmde

— Efficiency and effectiveness of the approaches are veriigdg both real-
life and synthetic data.

o Based on (bounded) simulation as well as techniques intexdlin the thesis, a
novel systentxpFinder, for expert recommendation on social networks is de-
veloped.

— By integrating incremental graph pattern matching, queegerving graph
compression and tok-matching computationgxpFinder can efficiently
identify topk experts on social networks via (bounded) simulation.

— To efficiently maintain landmark vectors which are used fpdating
cached views, incremental maintenance techniques as svedirformance
evaluations for landmark vectors are provided.

1.5 Outline of Dissertation

The remainder of this thesis is organised as follows.

Chapter 2 studies query preserving graph compression. offoses query pre-
serving compression for two commonly used pattern quedieglops both batch and
incremental compression algorithms, and experimentaitifies the efficiency and ef-
fectiveness of the algorithms.

Chapter 3 introduces distributed algorithms with perfanoceaguarantees for three
types of simple boolean patterns. It also shows how the idfgifor regular reacha-
bility queries is implemented on the MapReduce frameworiny both synthetic and
real-life data, it verifies the efficiency of the algorithms.

Chapter 4 investigates the problem of answering graph rpattextching using
views. It first characterises pattern containment and dggeilgorithm for answer-
ing graph pattern matching using views. It then studiestpreblems related to graph
containment, and develops efficient algorithms for comteint checking. It further
shows that the results from graph simulation carry over t;bled simulation. Finally,

Chapter 1. Introduction 15

it experimentally verifies the effectiveness and scalhili the algorithms. This work
is taken from the paper submitted to 2014 ICDE.

Chapter 5 revises graph pattern matching by supportingydatgd output nodes.
With this change, it develops algorithms to find topelevant matches. It also stud-
ies the diversified tofi-matching problem, and develops approximation and hearisti
algorithms, that have approximation ratio 2 and the eariyitgation property, respec-
tively. Extensions to the techniques are also studied fttepagraphs with multiple
output nodes that are not necessarily “root” nodes. Exparisare conducted to ver-
ify the scalability and effectiveness of the algorithms.

Chapter 6 introduces a novel systéixpFinder for expert recommendation ap-
plied on social networks. It shows the system architectfifexpFinder and presents
the main functions ofExpFinder; in addition, it introduces techniques applied by
ExpFinder for incremental maintenance of landmark vectors, and exyertally veri-
fies the performance of the algorithms.

Chapter 7 concludes the thesis.

1.6 Publications

During the course of the PhD study at the University of Edimghu | have published
the following articles as a co-author.

[FLLT11] Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing TaXijn Wang, and
YinghuiWu. Incremental graph pattern matching. In SIGMQ@D11.

[FLWW12] Wenfei Fan, Jianzhong LXin Wang, and Yinghui Wu. Query preserving
graph compression. In SIGMOD, 2012.

[FWW12] Wenfei FanXin Wang, and Yinghui Wu. Performance guarantees for dis-
tributed reachability queries. In PVLDB, 2012.

[FWW13b] Wenfei FanXin Wang, and Yinghui Wu. Expfinder: Finding experts by
graph pattern matching. In ICDE demo, 2013.

[FWW] Wenfei Fan,Xin Wang, and Yinghui Wu. Incremental graph pattern match-
ing. In ACM Transactions on Database Systems (TODS), 2013.

[FWW13a] Wenfei FanXin Wang, and Yinghui Wu. Diversified tof-graph pattern
matching. In VLDB, 2013.

Remark. The (partial) results of this dissertation appear in thevalpublications:

o the notion of query preserving graph compression, batchisecrémental al-

Chapter 1. Introduction 16

gorithms for both reachability and pattern queries, ancegrgental studies in
Chapter 2 appear in [FLWW12];

o distributed algorithms for three types of simple booleatigpas, the MapRe-
duce algorithm for regular reachability queries, and tHeiehcy test of the
algorithms in Chapter 3 are all from [FWW12];

o (resp. approximation and heuristic) algorithms for (resgiversified) topk
matching in Chapter 5 appear in [FWW13a];

o techniques as well as performance evaluation for increahen&intenance of
landmark vectors in Chapter 6 are from [FWW]; while the systachitecture
and the presentation of system functions appear in [FWW213b]

Chapter 2
Query Preserving Graph Compression

It is common to find large graphs with millions of nodes andidmis of edges ire.g.,
social networks [KNTO06a]. Queries on such graphs are oftehipitively expensive,
e.g.,exponential time for subgraph isomorphism, cubit time foufded simulation,
quadratic for simulation, and it ignlikely that we can lower its computational com-
plexity. These suggest us to reduce the size of the inputagtgpattern matching
algorithms, to achieve better query performance.

In this chapter we proposguery preserving graph compressjawhich is to com-
press graphs relative to a clagsf queries. For a clasg of queries, we find a smaller
graphG; for a given graplG via an efficient compression function, such that d&ir
queriesQ € Q, M(Q,G) can be found by computiniyl(Q’,G,). Moreover, taking
evolving property of social network into consideration, algo develop approaches to
incrementally maintain compressed graphs for two claskgsaph pattern matching.
As will be seen, (1) the compressed graphs are much smadarith original coun-
terparts, (2) they can also dramatically reduce the costaglgpattern matching, and
(3) the maintenance algorithms are effective to cope wighdynamic nature of social
networks.

2.1 Introduction

Real life social networks are typically very large. For exden Facebook currently
has more than 800 million users lifkst is costly to query such large graphs. Indeed,
graph pattern matching takes quadratic time (by simuldttitK95]) or cubic time
(via bounded simulation [FLM10]) to determine whether there exists a match in a

1http://WWW. facebook.com/press/info.php?statistigsited Jan. 2012

17

Chapter 2. Query Preserving Graph Compression 18

P2P network compressed graph compressed graph
original graph for reachability queries for graph pattern queries

Figure 2.1: Compressing a real-life P2P network

data graph for a graph pattern. Worse still, ikisscomplete when matching is defined
in terms of subgraph isomorphism. Even for reachabilityrgsethat are to decide
whether there exists a path connecting a pair of nodes ingh@a= (V,E), it takes
O(|V|+ |E]) time via DFS/BFS search. Although one may use indexes talgge¢e
evaluation, indexes incur extra costg.,a reachability matrix take®(|V|(|V|+ |E|))
time to build andO(|V|?) space to maintain (see [YC10] for a survey). Hence it is
oftenprohibitively expensivéo evaluate queries on graphs with millions of nodes and
billions of edges, and it ianlikelythat we can lower its computational complexity.

Not all is lost. Observe that users typically adopt a classf queries when query-
ing data graph&. We proposeyraph compression preserving queries@f givenG,
we find a smaller grapf®, via an efficient compression functid®) such that forall
queriesQ € @, Q(G) = Q(Gy), whereQ' is a query in the same clags, computed
from Q via an efficient query rewriting function. In other words, ilehwe may not
change the complexity functions of graph queries, we rethesize of their parame-
ters,i.e.,the data graphs.

In contrast to previous lossless compressi@ng.([BV04, CKL*T09, HWYY05]),
qguery preserving compressionredative toa classQ of queries of users’ choiceg.,
it generates small graphs that preserve the informairdy relevantto queries inQ
rather than the entire original graphs, and hence, achetester compression ratio.

We find that this approach is effective when querying larggbs. For instance, a
real-life P2P network can be reduced 94% and 51% for realityadond graph pattern
queries, respectively, as depicted in Fig. 2.1. These eeduery evaluation time by
93% and 77%, respectively.

To illustrate the idea, let us consider an example.

Example 2.1: GraphG in Fig. 2.2 is a fraction of a multi-agent recommendation

Chapter 2. Query Preserving Graph Compression 19

&FAz FA; ><FA4 o o [Far
RN
e

G Gr

Figure 2.2: Recommendation Network

network. Each node denotes a customer (C), a book server @g21), a music shop
agent (A1sA), or a facilitator agentra) assisting customers to firgsAs and MSAs.
Each edge indicates a recommendation.

To locate potential buyers, a bookstore owner issues a glegigted as a pattern
graphQp shown in Fig. 2.2. Itis to find a set @&SAs such that they can reach a set
of customerg who interact with a set afAs, and moreover, the customers should be
within 2 hops from thessAs. One may verify that the match &, in G is a relation
S={(X,X)} for X € {BSAFA,C} andi € [1,2]. It is expensive to comput8 when
G is large. Among other things, one has to check the conngctdatween all theék
customers and all thesas in G.

We can do better. Observe tiesA; andBSA; are of the same type of nodessp),
and both make recommendationsMeA andFA. Since they “simulate” the behavior
of each other in the recommendation netw@kthey could be considereztjuivalent
when evaluatindQ,. Similarly, the pairsKA;, FA;), (C1, C2), and any pairg;, C;) of
nodes fori, j € [3,k] can also be considered equivalent, among others.

This suggests that we build a compressed gi@pbf G, also shown in Fig. 2.2.
GraphG; consists of hypernodes for X € {MSA,BSAFA,FA',C,C’}, each denoting a
class of equivalent nodes. Observe that@lhas fewer nodes and edges tlan(2)
Qp can be directly evaluated d@; its resultS = {(X,X)} can be converted to the
original resultS by simply replacingX; with the set of nodes represented Xy and
(3) the evaluation oQ} in G; is more efficient than ii&G since, among other things, it
only needs to chedk, andC; in G, to identify matches for the query no@e

One can verify thaG; preserves the result fadl pattern queries defined in terms
of (bounded) simulation, not limited 1Q,. That is, for any such pattern quegy, on

G
Q

Q(G)

Chapter 2. Query Preserving Graph Compression 20

R R

Gr G Gr G Gr
IQ' ar qr' Qb Qb'
p - P -
Q'(Gr) A(G) ar'(Gr) Qb(G) Qb'(Gr)
(b) Reachability (c) Graph pattern
(a) General framework preserving compression preserving compression
Figure 2.3: Query preserving compression
G, we can directly evaluat@,, on the much smalleg, instead. O

2.2 Query Preserving Graph Compression

Below we first introduce the notions used in the entire chapte

To distinguish two kinds of pattern queries, we will ugév,w) to indicate reacha-
bility queries, andQy, to represent pattern graphs, which is to find matches viadain
simulation.

For a classqQ of queries, aquery preserving graph compressios a triple
<R F,P>, whereR is acompression functigr : Q — Q is aquery rewriting func-
tion, andP is a post-processing functionFor any graphG, G, = R(G) is a graph
computed fronG by R, referred to as theompressed grapbf G, such thatG; | < |G|,
andfor any query Qe @, Q(G) =P(Q/(Gy)). HereQ' = F(Q), Q(G) is the answer to
Qin G, Q(Gy) isthe answer t' in G;, andP(Q'(Gy)) is the result of post-processing
the answer t@' in the compresse@;.

As shown in Fig. 2.3(a), (1) for any que@ € Q, the answelQ(G) to Q in G
can be computed by evaluatiigy in the (smaller) compressed gra@h of G; and
moreover, since bot® andQ’ are in the same clasg of queries, it can be verified
that algorithms that are used for evaluat@p@n G can also be used for evaluati@gin
G directly,i.e.,without any adaption, these algorithms take bQ#ndG (resp.Q’ and
Gy) as input, and retur®(G) (resp.Q'(Gy)) as the query answer; (2) the compression
is generic any data structures and indexing techniques for the aigjraph can be
directly applied taG; (e.g.,the 2-hop techniques of [CHKZ03a], see Section 2.6); (3)
the post-processing function finds the answer in the origghy only accessing the
query answe€ (G;) and an index on the inverse of node mappingR;d#) in contrast
to generic lossless compression schereas. (FM95]), we do not need to restore the
original graphG from G;, and moreover, the compressed gr&phs not necessarily a
subgraph ofG.

Chapter 2. Query Preserving Graph Compression 21

For instance, a query preserving compression for grapbnoaqueries is described
in Example 2.1, where the compression funcfiogroups nodes into hypernodes based
on graph bisimulation; the query rewriting functiénis the identity mapping: for any
pattern quenQ, F(Q) = Q; and the post-processing functi®simply replaces each
hypernode with the set of equivalent nodes it represents.

In this chapter, we consider two classes of queries, reachability queries and
pattern queries, which are commonly used in practice. We shew that there ex-
ist query preserving compressions with effici@&E andP functions in Sections 2.3
and 2.4, for two classes of queries, respectively.

(1) For reachability querie® reduces grapls by 95% in average, i©(|V||E|) time;
andF is in O(1) time Moreover, as shown in Fig. 2.3(b), post-processhig not
needed at all.

(2) For pattern queries® reduces the size @& by 57% in average, i®Q(|E|log|V|)
time; F is theidentitymapping, andP is in linear timein the size of the query answer,
a costnecessaryor any evaluation algorithm (see Fig. 2.3(c)). Bettel gt Boolean
pattern queries? is no longer needed.

Remarks. Observe the following. (1) The compressed gr&his computedonce
for all queriesin @, and isincrementally maintained response to updates ®
(Section 2.5). (2) The compressed grdphis not necessarily a subgraph @f On
the contrary, in graph minimizatiore(g.,[AGU72]) a minimized graph must be a
subgraph of the original graph. (3) In contrast to the genkssless compression
(e.g.,[FM95]), we do not need to restore the original gragHrom G,, as long as
Gy can be queried directly to produce the same result as ovesrtgmal graphG
after necessary processing. (4) In case of simple boold#grpa (such as reachability
gueries) no post-processing functiBms required (as shown in Fig. 2.3(b)). (5) We do
not assume labels over the edges in the graph. However, tiygression techniques in
this paper can be adapted to the edge labeled graphs with simdifications. (6) the
compression is complementary to the chosen data strua@ancesdexing techniques
over the original graph,e., the techniquese(g.,[Jac89, CHKZ03a, JRDY12]) can be
applied directly on the compressed graphs, for examplectngressed graphs for
reachability queries can further be indexed véth.,2-hop [CHKZ03a], as verified in
Section 2.6.

Applications. Different from traditional graph compression, queryeoted graph

Chapter 2. Query Preserving Graph Compression 22

compression focuses on graph compression preserving loaiptormation for spec-
ified queries. We expect the query-oriented graph compmesaill find applications
in the following, among other things. (1) Efficiently quargilarge graphs with reach-
ability and distance queries with compressed instead obtlggnal graphs. For the
frequent reachability and distance queries, we can peréocompression and directly
conduct queries over the compressed graphs; (2) the pefmenof existing graph
compression and indexing [Jac89, CHKZ03a, QLO03, JRDY 82| further be im-
proved, treating our techniques as a preprocess. Indeezh gilarge social network
G, one may first compress to G, by using reachability preserving compression, and
then compute index 0@y, e.g.,finding a backbone structure & following the strat-
egy in [JRDY12], which further reducés,. As will be seen in Section 2.6, the com-
pressed graphs can further be indexed veitty., 2-hop [CHKZ03a], which benefits
guery evaluation.

2.3 Reachability Preserving Compression

In this section we study query preserving compression fehability queries, referred
to asreachability preserving compressionhe main result of the section is as follows.

Theorem 2.3.1 There exists a reachability preserving compressid® F >, where R
is in quadratic time, and F is in constant time, while no ppgieessing P is required.

2.3.1 Reachability Equivalence Relations
Our compression is based on the following notion.

Reachability equivalence relations We first define aeachability relationon a graph

G = (V,E,L) to be a binary relatioR. CV xV such that for eacfu,v) € R. and any
nodex € V, (1) x can reachu iff x can reaclv; and (2)u can reachxiff v can reaclhx.
Intuitively, (u,v) € Rq if and only if they have the same set of ancestors and the same
set of descendants. One can readily verify the following.

Lemma 2.3.2: For any graph G, (1) there is a unique maximum reachabilitgtien
Re on G, and (2) Ris an equivalence relation,e., it is reflexive, symmetric and
transitive. O

Thereachability equivalence relation of (S the maximum reachability relation of
G, denoted byRe(G) or simplyRe. We denote byv|r, the equivalence class containing

Chapter 2. Query Preserving Graph Compression 23

MsySAlBS*{SAQ | >N NS

1
B
FA1 FA3 FA4 C 1 C1 C2 Cl C2 C1 C2
C
1

A
@ ------ C r ------ D-—E D E1 Ez E1 E2 E1E2
Gr G, Gn G2 Gr G,

Figure 2.4: Reachability equivalence

nodev.

Example 2.2: Consider graplG given in Fig. 2.2. One can verify thaB$A;,BSA,)

€ Re(G). Indeed BsA; andBSA; share the same ancestors and descendants. Similarly,
(MSA1,MSA;) € Re(G). In contrast, KAs, FA4) ¢ Re(G) sinceFA; can reaclcs, while

FA4 cannot. O

Reachability preserving compression Based on reachability equivalence relations
we define<R, F> as follows.

(1) Compression function.RsivenG = (V,E, L), we defineR(G) = G, = (\;, E;, Ly),
where (aVy = {[V|r, | V€ V}; (b) E consists of all edge§V|r., [W|r,) if there exist
nodes/ € [V|g, andw € [w|g, such tha{V,w') € E, and (c) for eaclu € V;, L;(u) = g,
whereo is a fixed label irX. HereRe is the reachability equivalence relation®f

Intuitively, (a) for each node € V, there exists a node|r, in V;; abusingR, we
useR(v) to denotelv|r,; (b) for each edgév,w) € E, (R(v),R(w)) is an edge irk;;
and (c) all the node labels i@, are fixed to be a symbai in X since node labels are
irrelevant to reachability queries.

(2) Query rewriting function F We defineF such that for any reachability query
ar(v,w) on G, F(q,(v,w)) = Q, whereQ = q,(R(v),R(w)) is a reachability query on
Gr. It simply asks whether there is a path frgwii, to [w|r, in G,. Using index struc-
tures for the equivalence classesRaf Q' can be computed from, (v, w) in constant
time.

Correctness One can easily verify thatR, F> is a reachability preserving compres-
sion. Indeed|G,| < |G| since|V;| < |V| and|E;| < |E|. Moreover, for any reachability
queryq,(v,w) posed or, one can show by contradiction that there exists a path from
vtowin G if and only if R(v) can reactR(w) in G,. Hence, givery,(v,w) on G, one

can find its answer i by evaluatingy,(R(v), R(w)) in the smaller compressed graph
Gy of G, as shown in Fig. 2.3(b).

Chapter 2. Query Preserving Graph Compression 24

Input: A graphG = (V,E,L).
Output: A compressed grapB, = R(G) = (\,E,, L).

. setv, =0, E =0
. computeSCC graphGscc = (Vscc, Escc) of G;
. compute reachability preserving relatiBnof Gscc;

1
2
3
4. compute the partitioRar :=V /Re of Gscc;
5. for each Se Par do
6 create a nodes; L (vs) :=o; V; :=V, U{vs};
7. for eachvs,vg €V, do
8 if there exisu € S, v € S such that

(u,V) € Escc butvs does not reachy
9. thenE =E U{(vs,Vs)};

10return G; = (4, E,Ly);

Figure 2.5: Algorithm compressg for reachability

Example 2.3: Recall graphs of Fig. 2.2. Using the reachability preserving compres-
sion <R, F> given above, one can g& = R(G) shown in Fig. 2.4, in whiche.g.,
R(C1) = R(C2) = R(FA;) = CFA,. Given a reachability query,(BSA;,C;) onG, F(q,) =
qr(MBy,CFA;) on the smalleG,. As another examplé&s,, andG;, in Fig. 2.4 are the
compressed graphs generatedRdpr G; andG; of Fig. 2.4, respectively. O

As remarked earlier, there has been work on index graphsdbaseisimula-
tion [MS99, KSBGO02, QLOO03]. However, such indexes do nospree reachability.
To see this, consider the index graﬁh2 of Gz shown in Fig. 2.4, wherdC;,Cy}
and{Ej, E»} are bisimilar and thus merged [MS99]. Howevef, cannot be directly

queried to answee.g., q,(C1,Ez) posed onGy, i.e., one cannot find its equivalent

/

reachability query oﬁ;;z. IndeedC, can reactes in G, butCy does not, while irGrz,

C, andC; are merged into a single node.

2.3.2 Compression Method for Reachability Queries

We next present an algorithm that, given a gr&hb- (V,E,L), computes its com-
pressed grapls, = R(G) based on the compression functiBngiven earlier. The
algorithm, denoted aompressg, is shown in Fig. 2.5.

Given a graphG, the algorithmcompressg first shrinks each strongly connected

Chapter 2. Query Preserving Graph Compression 25

componenSCC and obtains th&CC graphGscc = (Vscc, Escc) of G (line 2). In-
deed, for allv € [v], where|v] € Vscc, they have the same ancestor and descendant
nodes, hence are in the same equivalence class; in addiiermapping between

v and itsSCC node|v] is also maintained for further usage. It then computes the
reachability equivalence relatid® and the induced partitioRar by Re over theSCC
graphGscc (lines 3-4). HereRe is found as follows: for each node| in Vscc, algo-
rithm compressg computegv|’s descendants and ancestors, via forward and backward
BFS traversals, respectively; it then identifies those nodéls thie same ancestors and
descendants. After this, for each equivalence cks$ar, it creates a nodes repre-
sentingS, assigns a fixed label to vs, and addvs to V; (lines 5-6). It constructs the
edge seE; by connecting node@ss, vg) in V; if (1) there exists an edge, w) € Escc

of Gscc, wherev andw are in the equivalence classes represente® agd S, re-
spectively, and (2ys does not reachig via E; (lines 7-9). Condition (2) assures that
compressg inserts no redundant edgesg.,if (vs,vg) and(vg, vy) are already irk;,
then(vs, vg) is notadded tds,; one may also verify that the checking of Condition (2)
takesO(|V;|(|Vr| +|Er|)) time by using the reachability information when computing
Re (line 3). While it is a departure from the reachability equance relatiorRe, it is

an optimization without losing reachability informatias noted for transitivity equiv-
alent graphs [AGU72] (lines 7-9). The compressed gr@pls then constructed and
returned (line 9).

Correctness & Complexity. One can verify that the algorithm correctly compu@s
by the definition ofR given above. In additiorcompressg is in O(|V |2+ |V||E|) time.
Indeed,Gscc is computed irO(|V| + |E|) time (line 2),Re andPar can be computed
in O(|V|(|V| + |E]|)) time (lines 3-4). The construction & is in O(|V;|(|V¢| + |E(]))
time (lines 5-9). This completes the proof of Theorem 2.3.1.

Remarks. (1) G, is not only smaller and sparser th@nbut also structurally different
with G, unlessG can not be compressed. As remarked earlier, the compresseia g
Gy is not necessarily a subgraph@f Indeed, during the compression, a data graph
Gis () firstly compressed Bscc by shrinking nodes in the same strongly connected
component of5; and (b) further reduced by collapsing node&itc which are in the
same equivalence classes. Hergeis structurally different withG after compression
(unlessG can not be compressed and hence keeps the same structye ass is
verified by experimental study, the compressed gr&plrese much smaller and sparser
than their original counterparts due to the shrink of thesegnconnected cores.

Chapter 2. Query Preserving Graph Compression 26

(2) GivenG and its compressed grafh, algorithms for evaluating reachabil-
ity queriesq,(-,-) on G can bedirectly applied for evaluating,’(-,-) on G,. To see
this, observe thad,(-,-) andq,’(-,-) are in the same class of queries,, reachability
queries, hence algorithms applicable with ingut,-) andG are also applicable for
other inputq,/(-,-) and Gy; and still retain the same computational complexity with
different inputs. Consider th&; is typically much smaller and sparser thanhence,
taking smaller inpute.g., G andq,’(-,-) benefits the computation of algorithms for
reachability queries. For example, when two commonly usgati@hmsBFS (breadth
first search) andFS (depth first search) are employed for reachability queoes,
may verify that no change is needed when algoriB#8 (resp.DFS) evaluates, (-, -)
onGorq,/(,-) onGy; moreover, it is better to caBFS (resp.DFS) on the compressed
graphsG, since|Vy| + |E;| is much less thafV |+ |E|, and it takesBFS (resp. DFS)
O(|Vr| + |Er]) (resp.O(|V| + |E])) time to traversé&s, (resp.G). Even wherG, andG
are equivalent, that'® can not be compressed, the computational complexitgHsy
(resp.DFS) on G; andG are the sama.e., O(|V|+ |E|) time.

(3) As will be seen in Section 2.6 (see Table 2.1), the redtitygbreserving com-
pression gains better compression ratios over social mesamtban web graphs and
citation networks. This is because social networks havie baginectivity and densely
connected cores. Via closer examination, we find that so@dlorks often have a
very large densely connected core, which is also a stromglgected component. This
densely connected core occupies about 30% to 60% of the Kike social network,
and hence yields a good the compression ratio when it is khr@m the contrary,
due to much smaller densely connected core in web graphstatidrc networkse.g.,
citation networks are typicallpAG, the performance of reachability preserving com-
pression is not as good as the performance on social networks

2.4 Graph Pattern Preserving Compression

We next study query preserving compression for graph patfeeries, referred to as
graph pattern preserving compressioithe main result of the section is as follows.

Theorem 2.4.1 There exists a graph pattern preserving compressidd F, P> in
which for any graph G fV,E,L), Risin |E|log|V|) time, F is the identity mapping,
and P is in linear time in the size of the query answer.

Chapter 2. Query Preserving Graph Compression 27

A; 4 As As A1A; As

AN /3\ A |
B1 B> Bs B4 BeB7 B1B2,B3B4Bs
AT T / A

C D G D, G D3 C4 C4C5 C,C.GCs DiDDs
&1 G2 Gor Gar

Figure 2.6: Examples of bisimulation relations

To show the result above, we first define the compressi®&F, P> in Sec-
tion 2.4. We then provide an algorithm to implement the caspion functiorR in
Section 2.4.2.

2.4.1 Compressing Graphs via Bisimilarity

We construct a graph pattern preserving compression irstefbisimulationrelations,
which are defined as follows.

Bisimulation relations [DPPO01]. Abisimulation relationon a graptG = (V,E,L) is a
binary relationB C V x V, such that for eacku,v) € B, (1) L(u) = L(v); (2) for each
edge(u,Uu’) € E, there exists an edds,V) € E, such tha{u’,V) € B; and (3) for each
edge(v,V) € E, there exists an edde, U’) € E such tha{u',V) € B.

Intuitively, (u,v) € B if and only if for each childu’ of u, there exists an chile
of v such thatu’,v) € B, and vice versa. Similar to Lemma 2.3.2, one can verify the
following.

Lemma 2.4.2:For any graph G, (1) there is a unique maximum bisimulatidatren
R, on G, and (2) R is an equivalence relation,e., it is reflexive, symmetric and
transitive. O

We define théisimulation equivalence relatioof G to be the maximum bisimula-
tion relation ofG, denoted byR,(G) or simplyR,. We denote byv|r, the equivalence
class containing node. WWe say that nodes andv arebisimilar if (u,v) € R,. Since
for any nodew andv' in [v|g,, L(v) = L(V), we simply callL(v) thelabelof [v]r,

Example 2.4:Recall the grapi& given in Fig. 2.2. One can verify thea; andrFa, are
bisimilar. In contrastFA, andFAz are not bisimilar; indeedA, has a childc,, which
is not bisimilar to anyC child of FAs.

Consider graphs given in Fig. 2.6. Note tatandA; in G; are not bisimilar, as
there is no child oA; bisimilar to childBy or B3 of Ao. Similarly, A; andAg in G; are
not bisimilar. In contrastis andAg in G, are bisimilar.

Chapter 2. Query Preserving Graph Compression 28

Note thatA4 andAs in G are not bisimilar, but they are in the same reachability
equivalence class; whilds andAg are bisimilar, they are not reachability equivalent.
This illustrates theifferencebetween the reachability equivalence relation and the
bisimulation equivalence relation. O

Graph pattern preserving compression Based on bisimulation equivalence rela-
tions, we define<R, F, P>.

(1) Compression function.RsivenG = (V,E, L), we defineR(G) = G, = (\,, Er, L),
where (a)Vy = {[V|g, | V€ V}; (b) an edg€g(|V|r,, [W|r,) is in E; as long as there
exist nodes/ € [V|r, andw € [w]|gr, such thatV,w') € E, and (c) for eaclv|g, € \,
L:([Vlr,) is its labelL(v). Intuitively, (a) for each node € V, there exists a nodg|r,
inV;; (b) for each edgév,w) € E, ([V|r,, [W|r,) is an edge irk;; and (c) eacliv]r, has
the same label ds(v).

(2) Query rewriting function Hs simply the identity mappingd.e., F(Qp) = Qp.

(3) Post processing function. PRecall thatQ,(G) is the maximum match & for
patternQp. We defineP such thaP(Q,(Gr)) = Qb (G) as follows. For eaclwvp, [V|r,) €
Qb(Gr) and each/ € [V]r,, (Vp,V) € Qp(G). Intuitively, if [v|r, simulatesvp in Gy,
then so does eadh € [V|r, in G. Hence P expand®,(Gy) by replacingv|r, with all
the nodes’ in the clasgvlg,, in O(|Q,(G)|) time via an index structure for the inverse
node mapping oR. WhenQ)y, is a Boolean pattern querly,is not needed.

Example 2.5: Recall the graplG of Fig. 2.2. Using the graph pattern preserving
compressionr<R, F, P>, one can get the compressed gr&plof G shown in Fig. 2.2,

in whiche.g., RFA;) = R(FA2) = FA, whereFA, is the equivalence class containirg
andFA,. For the grapl; of Fig. 2.6, its compressed grapliG,) is Gy,, as shown in
Fig. 2.6. O

Correctness We show thak R, F, P> given above is indeed a graph pattern preserving
compression. (1)G;| < |G|, as|Vy| < |V| and|E;| < |E|. (2) For any pattern queQy,
Qb(G) =P(Qp(Gy)). To see this, it suffices to verify that, v) € Qp(G) if and only if
(U,[Vr,) € Qb(Gr). If (u,[V|r,) € Qb(Gr), then for any child/ of u, there is a child
VR, Of [V]r, such thatu, [V]r,) € Qb(Gr). By the definition ofR, we can show that

for each nodev € [v]r,, there is a childv € [V]r, of w, such tha{u,w) € Q,(G) and
(U, W) € Qp(G). Conversely, if(u,v) € Qu(G), then one can show that for any node
w bisimilar tovin G, (u,w) € Q,(G), and moreover, for each query edgeu’), [V|r,
has a childV]g, in Gy with (U,V) € Q,(G). Hence(u,|V|r,) € Qp(Gr). From these

Chapter 2. Query Preserving Graph Compression 29

Input: A graphG = (V,E,L).
Output: A compressed grap8, = R(G) = (\,,E,Ly).

1. V, =0 E =0;

2. compute the maximum bisimulation relatiBp of G;
3. compute the partitioRar :=V /Ry;

4. for eachSe Par do

5. create a nodes and sel(vs) := L(v) whereve S
6 Vi =Vr U{vs};

7. foreachvs,vg €V, do

8 if there exisu € Sandv € S such thatu,v) € E

9 thenE; := E, U{(vs,vg)};

10. return Gy = (4, Ep, Ly);

Figure 2.7: Algorithm compressg for pattern queries

it also follows thatP(Qy(Gy)) is indeed the uniqgue maximum match@for Q. In
light of this, as shown in Fig. 2.3(c), we can find the matciQgfin G by computing
P(Qp(Gy)) via anyalgorithm for answerin®y,.

As remarked earlie’\(k)-index andD(k)-index [KSBG02, QLO03] mayot pre-
serve the answers to graph pattern queries. To see thisdeogsaphG; of Fig. 2.6
and its index grapﬁB’2r of A(k)-index wherk = 1, also shown in Fig. 2.6. Although,
A, andAj are not bisimilar, they all have and only haBechildren; as such, they are
1-bisimilar [QLOO03], and are merged into a single nod@&g. However,G’2r cannot
be directly queried be.g.,a Q, consisting of two query edge€sB,C), (B,D)}, both
with bound 1. Indeed, foQy, fzr returns all theB nodes inG as matches for query
nodeB in Qp,, while only B; andBs are the true matches {B;.

2.4.2 Compression Algorithm for Graph Pattens

We next present an algorithm that computes the compressgxth G¢ = R(G) for a
given graphG = (V,E,L), whereRis the compression function given earlier.

The algorithm, denoted asmpressg, is shown in Fig. 2.7. Given a gragh =
(V,E,L), compressg first computes the maximum bisimulation relatiBg of G, and
finds the induced partitioRar by R, over the node set (lines 2-3). To do this, it
follows [DPPOL1]: it first partitions/ into {Sy,..., S}, where each se§ consists of
nodes with the same label; the algorithm then iterativelynes Par by splitting § if

Chapter 2. Query Preserving Graph Compression 30

it does not represents an equivalence clasRypfuntil a fixpoint is reached (details
omitted). For each clasSc Par, compressg then creates a nodg, assigns the label
of a nodev € Sto vs, and addvs to V; (lines 4-6). For each edde, V) € E, it adds an
edge(vs,Vg), whereu andv are in the equivalence classes representedstandvg,
respectively (lines 7-9). Finall, = (\;,E;,L;) is returned (line 10).

Correctness & Complexity. Algorithm compressg indeed computes the compressed
graphG, by the definition oR (Section 2.4). In additiortompressg is in O(|E|log|V|)
time: R, and Par can be computed i®(|E|log|V|) time [DPPO01] (lines 2-3), and
G, can be constructed iO(|V;| + |E|) time (lines 4-9). This completes the proof of
Theorem 2.4.1.

Remarks. (1) As is verified by experimental studies, the compressaphys, is often
smaller tharG after pattern preserving compression, since nod&siich are bisim-
ilar to each other are collapsed. (2) GiverandG;, algorithms for evaluatinQs(G)
(resp.Qp(G)) can bedirectly applied for evaluatin@s(Gy) (resp.Qp(Gr)) (only post-
processing is needed to restore the original result). Ta&igorithmMatch [HHK95]
(simulation) andBMatch [FLM 710] (bounded simulation) as examples, one may ver-
ify that (a2) no change is needed when algoritMatch (resp. BMatch) evaluates
Qs(G) or Qs(Gy) (resp. Qu(G) or Qp(Gy)); (b) no matter what input is taken, the
computational complexity of algorithidlatch (resp.BMatch) remains the sameg.,
O((IVpl + V) ([Epl + [E)) (resp. O(V|[E| + [Epl[V[2+ [Vp|IV]) time, but with the
different parameters; and (c) due to the smaller size of tmepressed grapls;, it
takesMatch (resp. BMatch) less time to comput&(Gy) (resp. Qp(Gy)), compared
with the cost 0iQs(G) (resp.Qp(G)).

2.5 Incremental Compression

To cope with the dynamic nature of social networks and Weplgaincremental tech-
niques have to be developed to maintain compressed graphsn & query preserv-
ing compressior<R F,P> for a classq of queries, a grapks, a compressed graph
Gr = R(G) of G, andbatch updateAG (a list of edge deletions and insertions3pthe
incremental query preserving compressmoblem is to compute changA&, to G,
such thaiG, ® AG, = R(G® AG), i.e.,the updated compressed graphd AG; is the
compressed graph of the updated gr&shAG. It is known that while real-life graphs
are constantly updated, the changes are typically minoiQ84b]. As remarked ear-

Chapter 2. Query Preserving Graph Compression 31

lier, whenAG is small,AG, is often small as well. It is thus often more efficient to
computeAG, than compressing @ AG starting from scratch, by minimizing unnec-
essary recomputation.

As observed in [RR96], it is no longer adequate to measuredhwglexity of in-
cremental algorithms by using the traditional complexitglgsis for batch algorithms.
Following [RR96], we characterize the complexity of an gmental compression al-
gorithm in terms of the size of theffected areaAFF), which indicates the changes in
the inputAG and the outpulG;, i.e., |AFF| = |AG| + |AG;|. An incremental algorithm
is said to beboundedf its time complexity can be expressed as a functidfAFF|),

i.e., it depends only onAG| + |AG;| rather than the entire inp@. An incremen-
tal problem isboundedf there exists a bounded incremental algorithm for it, and i
unboundedtherwise.

2.5.1 Incremental Maintenance for Reachability

We first study the incremental graph compression problenrdachability queries,
referred to asncremental reachability compressi@md denoted aBCM. One may
want to develop a bounded algorithm for incremental reaitibhabompression. The
problem is, however, nontrivial.

Theorem 2.5.1 RCM is unbounded even for unit updates., a single edge insertion
or deletion.

Proof sketch: We verify this by reduction from theingle source reachability prob-

lem (SSR). Given a graphGs, a fixed source node and updatef\Gs, SSR is to

decide whether for alli € Gg, sreacheas in Gs® AGs. It is known thatSSR is un-

bounded [RR96]. We show th&6R is bounded iffRCM with unit update is bounded.
O

Incremental algorithm. Despite the unbounded result, we present an incremental
algorithm forRCM that is inO(|AFF||G;|) time,i.e.,it only depends ohAFF| and|G;|
instead oflG|, and solveRCM without decompressing,G

To present the algorithm, we need the following notatiorig: As introduced in
Section 1.1, we us€g. = (Vscc, Escc) t0 represent the strongly connected component
graph ofG, v to denote arsCC node containing, andE.. to represent the edges
betweenSCC nodes. (2) Theopological rank (s) of a node s in Gs defined as
follows: (&) r(s) = 0, if s, is a leaf iNnGy, wheres is in the SCC s,; and (b)

Chapter 2. Query Preserving Graph Compression 32

r(s) = {(1+r(8))|(Sscc,See) € Esee} Otherwise. We also definge) = r(s) for an
edge update = (s,v). One can verify the lemma below, which reveals the connectio
between topological ranks and the reachability equivaea@ationR in a graph.

Lemma 2.5.2:1n any graph G, fu) =r (v) if (u,v) € Re. O

Leveraging Lemma 2.5.2, we present the algorithm, denaedRCM and shown
in Fig. 2.8. It has three steps.

(1) PreprocessingThe algorithm first preprocesses updai€and compressed graph
Gr (lines 1-2). (@) It first removes redundant updateA@that have no impact on
reachability (line 1). More specifically, it removes (i) edisertions(u,u’) where
[UR, # [U]r., and[u]r, can reachu]gr, in G; and (ii) edge deletiongu,u’) if either
[U]r, reachequ’|r, via a path of length no less than 2 @, or if [u]g, = [U]Rr,, and
there is a child)” of u such that(u,u”) ¢ AG and[u]r, = [U]r,. (b) It then identifies
a set of nodes with r(u) changed irGy, for each edge update, u’) € AG; it updates
the rank ofu in G; accordingly.

(2) Updating The algorithm then updat&s, based orr (line 3). It first splits those
nodes|u|r, of G; in which there exist nodes with different ranks. By Lemma2.5
these nodes are not in the same equivalence class]ulpysnust be split. Then it
finds all the newly forme&CCs in G, and introduces a new node for each of them in
Gr. These two steps identify an initial area affected by upia@

(3) Propagation The algorithm then locatésG, by propagating changes from the ini-
tial affected area identified in step (2). It processes wgsiat (u,U’) in the ascending
topological rank (line 4). It first find|g, and[U]r., the (revised) equivalence classes
of uandu’ in the current compressed gra@h. It then invokes proceduri@cRCM™
(resp.incRCM™) to updateG, whene is to be inserted (resp. deleted) (lines 5-8).
UpdatingG, may make some updatesAtG redundant, which are removed frohG
(line 9). After all updates ii\G are processed, the updated compressed géaps
returned (line 10).

Given an edge = (u,U’) to be inserted int@ and their corresponding nodpsg,
and [U]g, in Gy, procedureéincRCM™ updatesG; as follows. First, note that since
(u,u) is not redundant (by lines 1 and 9i@tRCM), u cannot reachr’ in G, but after
the insertion ok, U’ becomes a child ai. Moreover, no nodes ifu]r, \ {u} can reach
U in G. Henceu and nodes ifju]r, \ {u} can no longer be in the same equivalence
class after the insertion & ThusincRCM™ splits [u]r, into two nodes representing
{u} and[u]r, \ {u}, respectively; similarly fofu'|r, (line 1). This is done by invoking

Chapter 2. Query Preserving Graph Compression 33

Input: A graphG, its compressed grapB;, batch updateAG.
Output: New compressed grafB & AG;.

reduceAG;
update the topological ramkof the nodes irG; w.r.t. AG;
updateG; w.r.t. the updated;

P w DN P

for each updatee = (u,u') € AG

following the ascending topological raiwlo
5 if eis an edge insertion

6 then incRCM™ (e, [U],, [U]r., Gr);

7. else ifeis an edge deletion

8 then incRCM~ (e, [U],, [U]r., Gr);

9 reduceAG;

10.return Gy;

ProcedureincRCM™*

Input: Compressed grapB; = (\,,E;), edge insertiorju, u'),
and noddu|r,, [U]gr, in Gy.
Output: An updatedG.

Split (u, U, [ulr., [U]R,)
() > (] then
for eachv € B([u]g,) do Merge ({u},V);
for eachV € B([U]r,) do Merge ({U'},V);
else ifr([ulr,) = r([U]gr,) then
for eachv e P([U]gr,) do Merge ({u},V);
for eachV € C([u]r,) do Merge ({u'},V);
return G;

© N o o bk wDbd P

Figure 2.8: Algorithm incRCM

procedurésplit (omitted).

In addition, nodes may also have to be merged (lines 2-8). &tietd the set of
children (resp. parents) of a nodasC(u) (resp.P(u)), and useéB(u) to denote the set
of nodes having the same parentsiaBy Lemma 2.5.2, conside(u) andr(U') in the
updatedS. Observe that(u) > r(u’) sinceu is a child ofu after the insertion oé. (1)
If r(u) >r(u),i.e., uandu’ are not in the sam8CC, then{u} may only be merged
with those node¥’ € B([u]r,) such thatC({u}) = C(V); similarly for U (lines 2—-4).

Chapter 2. Query Preserving Graph Compression 34

Hence we invoke proceduiderge (omitted) that works o1&, : given nodesv andw/,
it checks whetheP(w) = P(w') andC(w) = C(w); if so, it mergesyv andw’ into one
that shares the same parents and childrem asdw'. (2) Whenr(u) =r(U), aseis
non-redundant) andu’ may not be in the sanm&CC. Thus{u} (resp.{u’'}) may only
be merged with a parent @f|r, (resp. a child ofu]r,; lines 5-7).

Similarly, proceduréencRCM ™ update<s; by usingSplit andMerge in response to
the deletion of an edge (omitted). Here when a node is sigliparents may need to be
split as well,i.e.,the changes are propagated upward.

Example 2.6: Recall graphG of Fig 2.2. A subgraplGs (excludinge; andey) of
G and its compressed grag@ are shown in Fig 2.9. (1) Suppose that edgeand
e are inserted int@s. Algorithm incRCM first identifiese; as a redundant insertion,
sinceFA; can reactvin G, (line 1). It then updates the ramlof FA; to be O due to the
insertion ofey (line 2), by traversings, to identify a newly forme&CC. It next invokes
proceduréncRCM™ (line 6), which mergesa; to the noder in G, and constructs;
as the compressed graph, shown in Fig 2.9. The affected\&feancludes nodes, v,
and edg€ vy, V). (2) Now suppose that edges andey are removed. The algorithm
first identifieses as a redundant update, sirreg has a childc; in the noded/. It then
processes upda# by updating the rank ofA,, and splits the node in G/ into FA;
andv; viaincRCM~ (line 8). This yieldsG/ by updatingG| (see Fig 2.9). Thé\FF
includes nodes;, v/, C; and their edges. O

Correctness & Complexity. Algorithm incRCM correctly maintains the compressed
graphG;. Indeed, one can verify that the loop (lines 3-7) guarantegtsfor any nodes
uandu’ of G, u can reach/ if and only if [u]g, reachesu’|g, in G; whenG; is updated
in response t&G. In particular, procedur®lerge is justified by the following: nodes
can be merged iff they share same parents and children afteradundant updates.
This can be verified by contradiction.

For the complexity, one can show that the first two steps odlferithm (lines 1-3)
are inO(|AFF||Gy|) time. Indeed, (1) it take®(|AFF||G;|) time to identify redundant
updates by testing the reachability of the node&jnwhich accesseR but doesnot
searchG; and (2) it takeO(|AFF||Gy|) time to identify the nodes and their changed
rank for each update iAG, and update§, accordingly. ProcedureacRCM™ and
incRCM™ are inO(|AFF||Gy|) time. ThusincRCM is in O(|AFF||Gy|) time. As will be
verified by our experimental studi,| and|AFF| are typically small in practice.

Chapter 2. Query Preserving Graph Compression 35

Figure 2.9: Incremental compression: reachability

2.5.2 Incremental Maintenance for Graph Patterns

We next study the incremental graph compression problergrigsh pattern queries,
referred to agncremental graph pattern preserving compressama denoted aBCM.
Like RCM, PCM is also unbounded and hard.

Theorem 2.5.3PCM is unbounded even for unit update.

Proof sketch: We show thatSSR is bounded iffPCM with unit update is bounded,
also by reduction fronsSR. O

Incremental algorithm. Despite this, we develop an incremental algorithmAGM
that is inO(|AFF|? + |G;|) time. Like incRCM, the complexity of the algorithm is
independent ofG|. It solvesPCM without decompressing.G

We first define some notations. (1) A strongly connected caorapbgraphGscc
is as defined in Section 2.5.1. (2) Following [DPPO01], we detfirewell foundedset
WEF to be the set of nodes that cannot reach any cyc, iand thenon-well-founded
setNWF to beV\ WF. (3) Based on (1) and (2), we define tfank r,(v) of nodesv
in G: (a) rp(v) = 0 if v has no child; (byp(v) = —oo if Vg has no child inGg.. butv
has children inG; and (c)rp(v) = max({rp(V') + 1} U{rp(v'}), where {scc,V...) and
(Vsce,Veee) are inEse, for all vV € WF and allv’ € NWF. We also definey([ulr,) =
rp(u) for a nodefulgr, in Gy, andry(€) = rp(v) for an updates = (u,v).

Analogous to Lemma 2.5.2, we show the lemma below.

Lemma 2.5.4: For any graph G and its compressed graph, @) rp(u) = rp(v) if
(u,v) € Ry, and (2) each node u inGan only be affected by updates e witle) <
rp(u). O

For PCM, the affected aredFF includes (1) the nodes i® with their ranks
changed afte® is modified, as well as the edges attached to them, and (2htdrges
to Gy, including the updated nodes and the edges attached to them.

Chapter 2. Query Preserving Graph Compression 36

Input: A graphG, a compressed grafb, batch updateAG;
Output: An updatedG .

© ©o N o O

A oD PRF

AFF:=0;
incR(G, G;,AG); /* update rank ands, */
for eachi € {—} U[0,max(rp(v))] do
AFF := AFF.add {AFF;}, whereAFF; is
the set of new nodeswith rp(v) =1i;

for each AFF; of ascending rank ordeto

PT(AFF;); *update compressed graph at rank i*/

minDelta(AFF;, G;,AG); updateAFF;

for each [U]r, € AFF; ande= (u,u’) € AGdo

SplitMerge([U]R,,Gr, e AFF);

10.return G;

Procedure SplitMerge

Input: Compressed grapB; = (\;,E;, L), an updatdu,u’),

node(U]g,, AFF;

Output: An updatedG;.

1. Boolean flag :=true; AFF := 0,
2. AFFp:= AFF,U{[ur,} UP([U]R,);
3. for eachnode|vp|r, € AFFp with r([vplr,) > r([U]g,) do

10.

I* split [Vp|r, W.I.t. [U]R, iNto [Vp, |r, and[vp,|r, */
flag := bSplit ([Vp]r,, [U]R,);
if flag then
AFF o (volr,) = AFFry (v, U{[vpl] V)R)
for eachV with rp(V) = rb([vpl]) do
if mergeCon (V, [Vp,|r,) then bMerge (V, [Vp,]Rr,);
for each v’ with rp (V") = rp([Vp,]R,) do
if mergeCon (V/, [Vp,]Rr,) then bMerge (V', [Vp,|R,);

11. updateAFF; return G;

Figure 2.10: Algorithm incPCM

Our incremental algorithm is based on Lemma 2.5.4, denasedc®CM and

shown in Fig. 2.10. It has two steps.

(1) PreprocessingThe algorithm first finds an initial affected ar@&F (lines 1-4). It

uses proceduracR (omitted) to do the following (line 2) : (a) update the ranktioé

Chapter 2. Query Preserving Graph Compression 37

nodes in the updated; and (b) split those nodgs|r, of G, in which there exist nodes
with different ranks. By Lemma 2.5.4, these nodes are nanider. It then initializes
AFF, consisting ofAFF; for each rank of G, whereAFF; is the set of newly formed
nodes inG; with ranki (lines 3—4).

(2) Propagatingt then identifiesAG; by processing eachFF; in the ascending rank
order (lines 5-9). At each iteration of the loop (lines 549jirst computes the bisim-
ulation equivalence relatioRy, of the subgraph induced by the new nodesAkF;
(line 6), via procedur®T (omitted). Revising the Paige-Tarjan algorithm [PT&7T,
performs a fixpoint computation until each node of ramk G, finds its bisimulation
equivalence class. The algorithm then reduces those githattdbecome redundant via
procedureninDelta (see optimization below), and redud®sF accordingly (line 7). It
then propagates changes fréyfF; towards the nodes with higher ranks, by invoking
procedurésplitMerge.

Given an affected node/|r, and an update= (u,u’), proceduréplitMerge iden-
tifies other nodes that are affected. It starts Viiflg, and its parent®([U]r,) (line 2).
For eachlvp|r, of these nodes with a rank higher tharir,, SplitMerge splits it into
[Vp,Jr, @nd [vp,]R,, denoting node sets:|r, \ [U]r, and [vi]r, N [V2]r,, respectively
(line 4). Indeed, no nodes, € [vp,|r, andvp, € [Vp,|r, are bisimilar. Here we call
[U]R, asplitter of [vp]r,, and conduct the splitting via procedu®plit (omitted). The

changes are propagatedA6F) (line 6). SplitMerge then mergesvp, |r, With

"b([Vp]Ry]
nodes having the same rank; similarly fog,|r, (lines 7-10). The merging takes place

under conditiomrmergeCon, specified and justified by the lemma below.

Lemma 2.5.5: Nodes y and » can be merged in Gif and only if (1) they have the
same label, and (2) there exists no nodehat is a splitter of y but is not a splitter of
Vo. O

Optimization. ProcedureninDelta reduces redundant updates based on rules. Con-
sider a nodéu’|r, in G; updated byncPCM (line 6). For a nodgu]r, with rp([u]r,) >
ro([U]R,), We give some example rules usedminDelta (the full set of rules is omit-
ted). (1)Insertion The insertion oflu, w) is redundant ifw € [U]g, and([u]Rr,, [U']Rr,)

€ E;. (2) Deletion The deletion ofu,w) is redundant iftv € [U]r,, ([u]Rr,, [U]R,) € Er,

u has a childw’ in [U]r, andw # w'. (3) Cancellation An insertion(u,u;) and a
deletion(u, u) are both redundant if there is a naglesuch that{uy, up, uz} C [U]R,,
(u,uz) € E and([u]g,, [U]R,) € Er.

Chapter 2. Query Preserving Graph Compression 38

MSA1 MSA2 TISA1MSAS T BSA 1 BSAS -,

S S

BSA1 BSA2

P F Co <Far Fho FAIF
i, Tom (R0 S

AN T N .
FAT FA FAS FAy \ i

L ™

C1 C2

G Gq

Figure 2.11: Incremental compression: graph pattern

Example 2.7:RecallG and its compressed grafh from Fig 2.2. Consider removing
e; andes from G, followed by the insertion o&, as indicated in Fig 2.11. When
is removed, the algorithrimcPCM first updates the rank af; (line 2), and adds; to
AFF (line 4). Sincec; has a different rank frora,, it is split from (C,,C,) at the same
time (line 4). The algorithm then invokésI' to mergec; and(Cs....,Cy) (line 6), and
usesSplitMerge to (a) removerA; from (FA1,FA,), and (b) mergesA; with (FA3,FA,)
(line 9). Observe that the deletion & becomes redundant, as identifiedrbinDelta
(line 7). The updated compressed graghis shown in Fig 2.11, in whictAFF is
marked. O

Correctness & Complexity. One can verify thaincPCM correctly maintains com-
pressed graphs, by induction on the rank of nod€% iprocessed by the algorithm. For
its complexity, note that proceduii&R is in O(|AFF|log|AFF|) time. Moreover, pro-
ceduresminDelta, PT andSplitMerge take O(|AFF|) time, O(|AFF|log|AFF|+ |G]),
andO(|AFF|?) time in total. HencéncPCM is in O(|AFF|?+|G;|) time. The algorithm
accesseR andGy, withoutsearchings.

2.6 Experimental Evaluation

We next present an experimental study using both real-hfi synthetic data. For
reachability and graph pattern queries, we conducted fetsraf experiments to eval-
uate: (1) the effectiveness of the query preserving corspes proposed, measured
by compression ratia,e., the ratio of the compressed graph size to the original graph
size, (2) query evaluation time over original and compreésgaphs, (3) the efficiency

of the incremental compression algorithms, and (4) thecgWeness of incremental
compression.

Experimental setting. We used the following datasets.

Chapter 2. Query Preserving Graph Compression 39

(1) Real-life data For graph pattern queries, we used the following graphk afit
tributes and labels on the nodes: Wutube? where nodes are videos labeled with
their category; (bXalifornia®, a Web graph in which each node is a host labeled with
its domain; (c)Citation [TZY 708], a citation network in which nodes represent papers,
labeled with their publishing information; and (thternet* where a node represents
an autonomous system labeled with its location.

For reachability queries, we used (a) six social networkswVikipedia voting
network wikiVote®, a Wikipedia communication networkikiTalk®>, an online so-
cial network a product co-purchasing netwarkazon®, socEpinions®, a fragment of
facebook [VMCGO09], and Youtube?;(b) three Web graphs: a peer-to-peer network
P2P°, a Web grapiNotreDame®, andinternet®; and (c) a citation networkitHepTh®.

The sizes of these graphs (the nump&rof nodes and the numb¢E| of edges)
are shown in Tables 2.1 and 2.2.

(2) Synthetic dataWe designed a graph generator to produce synthetic gr&gshph
generation was controlled by three parameters: the nunfbesdes|V|, the number

of edgesE|, and the sizéL| of the node label sdit.

(3) Pattern generatarWe implemented a generator for graph pattern queriesaltedr
by four parameters: the number of query nodgsthe number of edges,, label set
Lp along the same lines as their counterpafor data graphs, and an upper bound
for edge constraints.

(4) Implementation We implemented the following algorithms, in Java. (1) our
compression algorithmsompressg (Section 2.3) andompressg (Section 2.4); (2)
AHO [AGUT72] which, as a comparison tampressg, computes transitive reduced
graphs; (3) our incremental compression algoritim&CM andincPCM for batch
updates (Section 2.5); we also implemeniedBsim, an algorithm that invokes the al-
gorithm of [Sah07] (for a single update) multiple times wipeocessing batch updates;
(4) query evaluation algorithms: for reachability querige breadth-first (resp. bidi-
rectional) search algorithmdFS (resp.BIBFS); for pattern queries, algorithilatch
and its incremental versiomcBMatch [FLM *10]; and (5) algorithms for building
2-hop indexes [CHKZ03a].

All experiments were run on a machine powered by an Intel @dig2 Duo

2http://netsg.cs.sfu.calyoutubedata/
3http://www.cs.cornell.edu/courses/cs685/2002fa/
4http://www.caida.org/data/overview/
Shttp://snap.stanford.edu/data/index. html

Chapter 2. Query Preserving Graph Compression 40

dataset IG|(IV],|E]) RCaho | RCecc RC,
facebook 1.6M (64K, 1.5M) || 1319% | 5.89% | 0.028%
amazon 1.5M (26X, 1.2M) || 35.09% | 18.94% | 0.18%
Youtube 931K (155K, 796&K) || 41.60% | 17.02% | 1.77%
wikiVote 111K (7K, 10K) 65.56% | 8.33% | 1.91%
wikiTalk 7.4M (2.4M, 5.0M) | 4821% | 16.82% | 3.27%
socEpinions | 58K (76K, 50K) || 29.53% | 19.59% | 2.88%
NotreDame | 1.8M (326K, 1.5M) || 43.27% | 10.75% | 2.61%
P2P 27K (6K, 21K) 7324% | 17.02% | 5.97%
Internet 155 (52K, 10X) || 88.32% | 28.89% | 16.08%

citHepTh 381K (28K, 35X) | 7132% | 37.15% | 1470%

Table 2.1: Reachability preserving: compression ratio

dataset IGI(IV], [E|,|L|) PC,
California 26K (10K, 16K, 95) 45.9%
Internet | 155K (52K, 10X, 247) | 29.8%
Youtube | 951K (155K, 796K, 16) | 41.3%
Citation | 1.2M (630K, 63, 67) | 48.2%
P2P 27K (6K, 21K, 1) | 49.3%

Table 2.2: Pattern preserving: compression ratio

3.00GHz CPU with 4GB of memory, using scientific linux. Eaoctperiment was
run 5 times and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness: Compression ratio We first evaluate the compression ratios
of our methods using real-life data. We define tioenpression rati@f compressg to
beRC, = |G|/|G
compressg. Similarly, we definePC, of compressg, andRC,;,, of AHO [AGU72] in

, WhereG is the original graph an; is its compressed graph by

whichG; denotes the transitive reduced graph. We also conS{degraphsGs.. (Sec-
tion 2.3), and defin®C. as|Gy|/|Gscc| to evaluate the effectivenessaimpressg on
SCC graphs.

Observe the following. (1) Themallerthe compression ratio is, tieore effective
the compressing scheme used is. (2) We treat the compressioas a measurement
for representation compression, which differs from thérateasuring the memory

Chapter 2. Query Preserving Graph Compression 41

cost reduction (to be discussed shortly).

The compression ratios of reachability preserving conglo@sompressg are re-
ported in Table 2.1. We find the following. (1) Real-life ghspcan be highly com-
pressed for reachability queries. IndeBd, is in average 5% over these datasets. In
other words, it reduces real-life graphs by 95%. (2) Aldoritcompressg performs
significantly better tha\HO. It also reduceSCC graphs by 81% in average. (3) The
compression algorithms perform best on social netwergsyikiVote, socEpinions,
facebook andYoutube. The averag®C, is 2%, 8% and 14% for (six) social net-
works, (three) Web graphs and the citation network, respadygt This is because
social networks have higher connectivity.

The effectiveness aompressg is reported in Table 2.2. We find that (1) graphs can
also be effectively compressed by pattern preserving cesspn, withPC, of 43%
in averagej.e., it reduces graphs by 57%; (®ternet can be better compressed for
graph pattern queries than social netwoMsufube) and citation networks{jtation),
since the latter two have more diverse topological strestauhan the former, as ob-
served in [NRSO08]; and (3ompressg performs better thanompressg over all the
datasets. This is because it is more difficult to merge nodegalthe requirements on
topological structures and label equivalence imposed gipaqueries, compared to
reachability queries.

Exp-2: Effectiveness: query processing In this set of experiments, we evaluated
the performance of the algorithms for reachability andgrattjueries on original and
compressed graphs, respectively. We used extietlgamealgorithms in both settings,
without decompressingraphs.

For a pair of randomly selected nodes, we queried their edality and evaluated
the running time oBFS andBIBFS on the original grapl& and its compressed graph
Gr. As shown in Fig. 2.12(a), the evaluation time on the congeé&, is much less
than that orG, when eitheBFS or BIBFS is used. Indeed, fafocEpinions the running
time of BFS on G; is only 2% of the cost oG in average.

For graph pattern queries, Figure 2.12(b) shows the runtimg of Match on
Youtube andCitation, and on their compressed counterpaktsié the same ak; see
Table 2.2). In addition, we conducted the same experimensy/othetic graphs with
V| = 50K, |E| = 43K while |L|=10 or |L|=20, and on compressed graphs. Fixing
Lp = 10, we variedVp, Ep, k) of these queries fron(3,3,3) to (8,8,3), as reported
in Fig. 2.12(c). These results tell us the following: (a) thaning time ofMatch on

Chapter 2. Query Preserving Graph Compression 42

140

BFS on G mummm 12 T T T T
120t BIBFSonGr—— | Match on Youtube—+— R
BIBES on G o 10 |-Match on Youtubg - <~ R
g 1) Match on Citation-- - - -
by § 8 [~ Match on Citatiop -3 % N
g 3 *
5 ;8, 6 |- * X .
° SR
[
o E 4 + -
2
g
o . 0
P2P USe HepTh Epmons Dame (333 @43 (53 (663 (173 (83
Graph Pattern size
(a) reachability queries: real-life (b) pattern queries: real-life
25 | | | | 10000 —— ‘ ‘ ‘ z ‘
Match on Gﬁ|_L|=10)+ G —
20 | Match on G(|L|=10) --><-- L 1000 ¢ 2-hop on G
= Match on GQL|=20)———%—— 2 G m—
< Match on (|L|=20) &
<) | _ o
o 15 g
] =3
2]
210 = 2]
] K
B
ST J,,ij,f/é?/"%/ DTSR |
[]i ,,,,,,,,,,,, [DO [B
0 | | | |
P2P wiki cit soc face Notre
@338 443 (553 (663 (773 (883 Vote HepThEpinions book Dame
Pattern size Graph
(c) pattern queries: synthetic (d) memory cost comparison

Figure 2.12: Effectiveness: query processing

compressed graphs is only 30% of that on their original gsaphd (b) whenL| is
changed from 10 to 20 on synthetic datégtch runs faster as the compressed graphs
contain more node labels.

As remarked earlier, the compression ratio of Table 2.1 amasures graph rep-
resentation. In Fig. 2.12(d) we compare the memory cost efatiiginal graphG,
the compressed gragBy by reachability preserving compression, and their 2-hep in
dexes [CHKZ03a], for real-life datasets. The result tetighe following: (a) at least
92% of the memory cost db is reduced byG,; (b) the 2-hop indexes have higher
space cost tha@ andG;y; e.g.,2-hop onwikiVote took 234MB memory, while its orig-
inal graph took ®MB and the compressed graph toaRNIB; and (c) 2-hop indexes
can be built over small compressed graphs, but may not bibfeaser large original
graphsg.g.,facebook, due to its high cost.

The results of the same experiments on other real-life grapl consistent and
hence, are not reported here.

Exp-3: Efficiency of incremental compression We next evaluate the efficiency of
incRCM andincPCM. Fixing the number of nodes in the social netweskEpinions,
we varied the number of edges from 509K to 617K (resp. fromks@374K) by

Chapter 2. Query Preserving Graph Compression 43

inserting (resp. deleting) edges in 12K increments (reS5K decrements). The re-
sults in Figures 2.13(a) and 2.13(b) tell us tmaRCM outperformscompressg when
insertions are up to 20% and deletions are up to 22% of theatigraph.

Figure 2.13(c) shows the performance ioéPCM on Youtube compared with
compressg andIncBsim in response to mixed updates, where we fixed the node size,
and varied the size of the updat@| in 0.8K increments. The result shows that
incPCM is more efficient tharmompressg when the total updates are up to 5K, and
consistentlyputperformdncBsim, due to the removal of redundant updatesiayy CM.

Figure 2.13(d) compares the performance of the following &pproaches, both
for incrementally evaluating pattern queries oGéation: (1) we usedncBMatch to
incrementally update the query result, and alternatiy@ywe first usedncPCM to
update the compressed graph, and therMatth over the updated compressed graph
to get the result. The total running times, reported in Fig3@d), tell us that once
the updates are more than 8K, it is more efficient to updategaedy the compressed
graphs than to incrementally update the query results.

We also conducted the same experiments on other real-liésels. The results are
consistent and hence not reported.

Exp-4: Effectiveness of incremental compressian/MVe evaluated the effectiveness of
incRCM andincPCM, in terms of compression ratid®C, andPC,, respectively. (1)
Fixing |L| = 10 and starting witl\p| = 1M, we varied the size of synthetic grapBdy
simulating the densification law [LKFO7]: for a syntheti@ghG; with |V;| nodes and
|Ei| = |Vi|® edges at iteration we increased its nodes 41| = B|Vi|, and edges to
|Ei+1] = |Vi+1|® in the nextiteration. (2) We varied the size of real-lifegia following
power-law [MMG'07], where the edge growth rate was fixed to be 5%, and an edge
was attached to the high degree nodes with 80% probability.

Figure 5.6(a) shows that for reachability queriBS, varies from 22% to 02%
with a =1.05, and decreases from4%o to Q05% witha = 1.1, whenf is fixed to be
1.2. This shows that the more edges are inserted into denske, ghabetter the graph
can be compressed for reachability queries. Indeed, whgeseale increased, more
nodes may become reachability equivalent, as expectetddB8&c3). The results over
real-life graphs in Fig. 5.6(b) also verify this observatio

The results in Fig. 2.14(c) tell us that for graph patternrgpsePC, is not sensi-
tive to the changes of the size of graphs. On the other hagdré-R2.14(d) shows the
following. (1) When more edges are inserted into the rdaldraphsPC, increases;

Chapter 2. Query Preserving Graph Compression 44
800 800
Iincl'«;CM+J I I I I I incll?CMJ I I I I
700 - compresg --<-- 700 - compresg --<-- N
L SISV S L A
g B0 oo g 600 NN
S 500 S 500 [e
2 Q
2 400 £ 400 - 7
(0] Q
£ 300 £ 300 - .
[[
200 |- 200 - .
100 - 100 - .
0 | | | | | | | 0 | | | | | | | |
Ok 12k 24K 36K 48K 60K 72K 84K 96K 108K Ok 15k 30K 45K 60K 75K 90K 105K 120K 135K
A|E| on socEpinions A|E| on socEpinions
(a) incRCM for edge insertions (b) incRCM for edge deletions
1200
2500 F T T T T T T T T T T T T
mgggm =X ~ 1000 - IncBMatch on G—+—]
2000 compresg ---x-- . X IncPCM+Match on G ———x——//x |
g o 2 800 ol s
g 1500 X @ -
) K K 2 600 - ~ .
€ 000l % £ v
F e = 400 |- 4
e T
500 200 + .- i
y X
01 L L L L L o1 L L L L L
0 0.8K 1.6K 24K 3.2K 4.0K 4.8K 5.6K Ok 2k 4K 6K 8K 10K 12K 14K
A|E| on Youtube A|E| on Citation
(c) incPCM for batch updates (d) Incremental querying time

Figure 2.13: Efficiency of incremental compression

this is because when new edges are added, the bisimilar neadebave diverse topo-
logical structures and hence are no longer bisimilar; andP(2 is more sensitive to
the changes of the size of Web grapbsy(,California, Internet) than social networks
(e.g.,Youtube), because the high connectivity of social networks makestrmabthe
insertions redundanite., having less impact oRC,.

Summary. From the experimental results we find the following. (1) Réalsocial
graphs can be effectively and efficiently compressed byhadaitity and graph pattern
preserving compressions. (2) Evaluating queries on casspregraphs is far more
efficient than on the original graphs, and is less sensib\tké query sizes. Moreover,
existing index techniques can be directly applied to cosged graphse.g., 2-hop
index. (3) Compressed graphs by query preserving compressian be efficiently
maintained in response to batch updates. Better still, ihase efficient to evalu-
ate queries on incrementally updated compressed graphsriti@mentally evaluate
queries on updated original graphs.

Chapter 2. Query Preserving Graph Compression 45

w
N

a=1.05 —+— r i
0=1.10 % 12 1 PP —— |
wikiVote -—-><--
. . _ 10} citHepTh ---%--
S S
g - g 8r 7
@ ¢ 6 .
4| % _
- 2 L X N |
X RO
0 [T e S bt S FN R 4 0 O it St TSRO
0 1 2 3 4 5 6 7 8 9 0 5 10 15 20 25 30 35 40 45
Evolution times A|E|(%)

(a) RC, for synthetic graphs (b) RC, for real-life graphs

50 T T T T T T T T 90 CI i T T T T T T T

=1.05 allfornia —+—

48 =110 % 80 - Internet <~ 1

Youtube ---%--

0] 70]
a4t 1 ;\350 - et |
S g -

g g 50 3¢ - ¥ _><

407 3 20k kKKK _

B (I
38 - 7
30 |~ 1
36 |- 1
| | | | | | | | 20 | | | | | | | |
o 1 2 3 4 5 6 7 8 9 0 5 10 15 20 25 30 35 40 45
Evolution times(|L|=10) A|E|(%)
(c) PC, over synthetic graphs (d) PC, over real-life graphs

Figure 2.14: Effectiveness of incremental compression

2.7 Related work

We categorize related work as follows.

General graph compressioraph compression has been studiedfgr,Web graphs
and social networks [CKL09, RGM03, BRSV11]. The idea is to encode a graph
or its transitive closure into compact data structures widenordering determined by,
e.g., lexicographic URL and hosts [RGMO03], linkage similarity\[B4], and docu-
ment similarity [CKLT09]. These general methods preserve the information of the
entire graph, and highly depend on extrinsic informati@ding mechanisms and ap-
plication domains [BRSV11]. To overcome the limitationBRSV11] proposes a
compression-friendly node ordering but stops short ofrgj\a compression strategy.
Our work differs from these in the following: (a) our compses techniques rely only
on intrinsic graph information that is relevant to a speatlass of queries; (b) our
compressed graphsan be directly queried without decompression; in contiastn

to answer simple queries, previous work requires the aalgraph to be restored from
compact structurefCKL *09], as observed in [BRSV11]; and (c) we provide efficient

Chapter 2. Query Preserving Graph Compression 46

incremental maintenance algorithms.

Query-friendly compressiorCloser to our work are compression methods developed
for specific classes of queries.

(1) Neighborhood queries [MP10, RGM03, NRS08], to find ncztemected to a des-
ignated node in a graph. The idea of query-able compresgiggrying without de-
compression) for such queries is advocated in [MP10], whabbpts compressed data
structures by exploiting Eulerian paths and multi-positiaearization. A S-node rep-
resentation is introduced in [RGMO03] for answering neigiiood queries on Web
graphs. Graph summarization [NRS08] aims to sketch graptissmall subgraphs
and construct hypergraph abstraction. These methodsraonsbmpact data struc-
tures that have to be (partially) decompressed to answeyubees [BRSV11]. More-
over, the query evaluation algorithms on original graphsetia be modified to answer
queries in their compact structures.

(2) Reachability queries [MT69, FM95, AGU72, vSdM11]. Tosarer such queries,
[MT69] computes the minimum subgraphs with the same traestlosure as the
original graphs, and [AGU72] reduces graphs by substiguairsimple cycle for each
strongly connected component. These methods allow redithaleries to be evalu-
ated on compressed graphs without decompression. We sheection 2.3 (and ver-
ify in Section 2.6) that our method achieves a better congprasatio, because (1) our
compressed graphs do not have to be subgraphs of the oggapdds, and (2) by merg-
ing nodes into hypernodes, we can further reduce edgesttBgraompression [FM95]
reduces graphs by introducing dummy nodes and compressiiges. However, (1)
its compression is a bijection between graphs and their cesspd graphs, such that
they can be converted to each other. In contrast, we do natresthat the original
graphs can be restored; and (2) algorithms for reachabligyries have to be modified
before they can be applied to their compressed graphs [FM95dM11] computes a
compressed bit vector to encode the transitive closure cdghg In contrast, we com-
pute compressed graphs on which reachability algorithrdgtemcompression scheme
in [vSdM11] can be directly applied. The incremental mamatece of the bit vectors
is not addressed in [vSdM11].

(3) Path queries [BGKO03]. There has also been work on coraprgXML trees
via bisimulation, to evaluate XPath queries. It is showrrg¢hihat this may lead
to exponential reduction, an observation that carries tv@&ur setting. In contrast

Chapter 2. Query Preserving Graph Compression 47

to [BGKO3], we consider compressing general graphs, to angwaph-structured
queries rather than XPath. Moreover, we develop increrh&tthniques to maintain
compressed graphs, which are not studied in [BGKO03].

We are not aware of any previous work on compressing graplagwering graph
pattern queries.

Graph indexing There has been a host of work on building indexes on graphs to
improve the query time [CHKZ03a, JXRF09, YCZ10, JXRW08, @W3DHWYYO05,
MS99, KSBGO02]. (1) 2-hop [CHKZ03a], PathTree [JXRWO08], @h[JXRF09],
GRAIL [YCZ10] and HLSS [HWYYO05] are developed for answeringachability
gueries. However, (a) these indexes come with high costs.ekample, the con-
struction time is biquadratic for 2-hop and 3-hop, cubicHSS, and quadratic for
GRAIL and PathTree; the space costs of these indexes aregeall)(quadratic [YC10,
YCZ10, HWYYO05, YCZ10, vSdM11]; and maintenance for 2-hopler easily de-
grades into recomputation [YC10]. (b) The algorithms f@aateability queries on orig-
inal graphs often do not run on these indexes. For examplegutires extra search or
auxiliary data structures to answer the queries involviodas that are not covered by
PathTree [JXRWO08, vSdM11]. In contrast, all these algamngltan be directly applied
to our compressed graphs. (2) 1-index [MS9[k)-index [KSBGO02] and their gen-
eralizationD(k)-index [QLOO03] yield index graphs as structure summarizetibased
on (parameterized) graph bisimulation. However, (a) oobted graphs are considered
for those indexes; and (b) those indexes are for regularquathies, instead of graph
patterns and reachability queries. Indeed, none of thelex@s preserves query results
for reachability queries (shown in Section 2.3), and neifk{&)-index norD(k)-index
preserves query results for graph pattern queries (shoedtion 2.4); (c) those in-
dexes are only accurate for those queries satisfying oegtaery load constrainte(g.,
query templates [MS99], path lengths [KSBG02, QLOO03]); amizast, we compute
compressed graphs that preserve resultaffajueriesin a given query class; and (d)
Incremental maintenance is not studied for 1-indexAfid-index [KSBG02, MS99].
The issue is addressed in [QLOO03], but the technique theyerdis on the query load
constraints.

Incremental bisimulationWe use graph bisimulation to compress graphs for pattern
gueries. A bisimulation computation algorithm is givenHPO01]. Incremental com-
putation of bisimulation for single edge insertions is &ddin [Sah07, DCXB11].
Our work differs from these in (1) that we give complexity bbols (boundedness and

Chapter 2. Query Preserving Graph Compression 48

unboundedness results) of incremental pattern preseocangression, of which in-
cremental bisimulation is a subproblem, and (2) that we @semlgorithms for batch
updates instead of single updates.

Chapter 3

Distributed Graph Pattern Matching

Large real-life social networks are often fragmented andest distributively in dif-
ferent sites [Row09]. For instance, a graph representirggi@lsnetwork may be dis-
tributed across different servers and data centers foopeence, management or data
privacy reasons [MD08, Row09, GHMPO08, PER0&]y.,social graphs of Twitter and
Facebook are geo-distributed to different data centersM868, PER09]). More-
over, various data of people.@.,friends, products, companies) are typically found in
different social networks [Row09], and have to be taken tloglewhen one needs to
find the complete information about a person. With this cotheseed for effective
techniques to conduct graph pattern matching over digatbgraphs. In this chapter,
we introduce the distributed algorithms for graph patteatahing, based on partial
evaluation.

3.1 Introduction

A number of algorithms and distributed graph database syssteave been pro-
posed for evaluating queries on distributed graphg.([BCFK06, CFK07, FFPOS8,
ST09, Suc02]). Several distributed graph database sydtenes also been devel-
oped [neo, hyp, MAB 10, tri]. However, few of these algorithms and systems tevi
performance guarantee®n the number of visits to each site, network traffic (data
shipment) or computational cost (response time). The needdveloping efficient
distributed evaluation algorithms with performance gaggas is particularly evident
for graph pattern matching (simple boolean patterns), whare most commonly used
in practice.

In the thesis, we propose to evaluate graph pattern matcmrmlystributed graphs

49

Chapter 3. Distributed Graph Pattern Matching 50

1

Ann, "CTO" , DG Fred, "HR"
\ Walt, "HR"
1
' Ann, "CTO"
1

(DB* U HR¥)'! szzzzzzloosfes
| Dan, "DB"
:
1
Bill, "DB"
. :: —-—TZ-ZZ-ZZ-ZZzZZ:Z-z:Z
Mark, "FA" :

Figure 3.1: Querying a distributed social network

based ormpartial evaluation Partial evaluationa.k.a.program specialization) has been
proved useful in a variety of areas including compiler gatien, code optimization
and dataflow evaluation (see [Jon96] for a survey). Intelyivgiven a functionf (s, d)
and part of its inpus, partial evaluation is to specializi(s,d) with respect to the
known inputs. That is, it conducts the part dfs computation that depends only on
s, and generatea partial answer i.e., a residual functionf’ that depends on the as
yet unavailable inpudl. This idea can be naturally applied to distributed queryteva
ation. Indeed, consider a query posed on a gi@phat is partitioned into fragments
(F1,...,F), whereF is stored in site5. To computeQ(G), each site5 can find the
partial answer t® in fragmentF in parallel, by takingF as the known inpus while
treating the fragments in the other sites as yet unavaiiaplgt d. These partial an-
swers are collected and combined by a coordinator site,rieedhe answer to query
Qin the entireG.

Example 3.1: Figure 3.1 depicts a fractio® of a recommendation network, where
each node denotes a person with name and job tiéles, (latabase researchams),
human resourcedR)), and each directed edge indicates a recommendation.répé g
G is geo-distributedo three data centei3C;, DC, andDC3, each storing ragment
of G.

Consider aquer@ givenin Fig. 3.1, posed &C;. Itis to find whether there exists
a chain of recommendations fronca@o Ann to her finance analyst4) Mark, through
either a list ofbB people or a list oHR people. Observe that such a path exiséan(
CTO) — (Walt, HR) — (Mat, HR) — (Fred, HR) — (Emmy, HR) — (Ross, HR) — (Mark,
FA). However, it is nontrivial to verify this in the distribudesetting. A naive method is
to first ship data fronbC;, DC, andDC3 to a single site, and then evaluate the query
using an algorithm developed for centralized da,(raphs stored in a single site).
This is infeasible because its data shipment may be prolebitexpensive and worse

Chapter 3. Distributed Graph Pattern Matching 51

still, may not even be allowed for data privacy. Another wayd use a distributed
graph traversal algorithm, by sending messages betwefenattif sites. This, however,
requires messages to be sent al@g — DC, — DC; — DC, — DC3 — DCy,
incurring unbounded number of visits to each site, excessiwnmunication cost, and
unnecessary delay in response.

We can do better by using partial evaluation. We send theyqQeo DC;, DC»
andDCs, as is. We compute the partial answers to (sub-querie® aff) each site, in
parallel, by taking the fragment residing in the site as kmamput and introducing
Boolean variables to indicate unknown inpue(, fragments in the other sites). The
partial answers are vectors of Boolean formulas, one as®sacivith each node that
has an edge from a fragment stored at another site. Thesed@ofdrmulas indicate
(1) atDC, from Ann there exist amR path towalt and abB path toBill, and fromFred
there is arHR path toEmmy; (2) atDC,, there exist amiR path fromeEmmy to Ross, an
HR path fromMat to Fred; and (3) atDCs, there exists arR path fromRoss to Mark.
These partial answers are collected by a coordinator[3ite)(which solves a system
of equations formed by these Boolean formulas thatecersively definedo find the
truth values of those Boolean variables. It yields ansmerto Q, i.e., there exists an
HR path fromAnn to Mark.

We will show that this method guarantees the following: (aytesite is visited
only once (2) besides the quel, only 2 messages are sent, all to the coordinator, and
each messageigdependent ahe size ofG, and (3) partial evaluation is conductied
parallel at each sitewithout waiting forthe outcome or messages from any other site.

O

While there has been work on query answering via partialuatedn [AKO7,
BCFKO06, CFKO07, FFPO08], the previous work has focused onreeitrees [AKO7,
BCFKO06, CFKO7] or non-recursive queries expressed indirder logic £O) [FFPO8].
We are not aware of any previous algorithms based on pavadliation for answering
reachability queries, which ateeyond~O, onpossibly cyclic graphthat arearbitrar-
ily fragmented and distributed.

We start with distributed graphs (Section 3.1.1), and dgdavaluation framework
(Section 3.1.2).

Chapter 3. Distributed Graph Pattern Matching 52

symbols notations
F = (F,G¢) | graph fragmentation in whic8+ is the fragment graplh
F.l the set of in-nodes in a fragmet
F.O the set of virtual nodes in a fragmet
ar(s,t) reachability query
dbr(S,t,1) bounded reachability query
ar(st,R) regular reachability query

Table 3.1: Notations: graphs and queries
3.1.1 Distributed Graphs

Distributed Graphs. In practice a social network, modelled as gr&pts often parti-
tioned into a collection of subgraphs and stored in diffesttes [Row09, HDKTOQ9].
We define aragmentationf of a graphG = (V,E,L) as a pair(F, G¢), whereF is
a collection of subgraphs @, andG; is called thefragment graphof 7, specifying
edges across distinct sites. More specificdlgndG; are defined as follows.

(1) F = (F4,...,K), where eacliragment Fis specified byV; UF.O, EjUcE, L;)
such that (a)Vi,...,V) is a partition ofV, (b) each(V,,E;,L;) is a subgraph o6
induced byV,, (c) for each nodel € V,, if there exists an edggy,v) € E, wherev is
in another fragment, then there is/@mtual node vin F.O, and (d)cE; consists of all
and only those edgési,v) such thau € V; andv is a virtual node, referred to &s0ss
edges We also usé;.l to denote the set af-nodesf F, i.e.,those nodes € V; such
that there exists a cross edgeu) incomingfrom a nodev in another fragmenf; to
u, i.e., vis a virtual node irFj.

Intuitively, Vi UF.O of F consists of (a) those nodes\and (b) for each node in
V; that has an edge to another fragment, a virtual node indg#tie connection. The
edge seE; UcE consists of (a) the edgesli and (b)cross edges cE, i.e.,edges to
other fragments. In a distributed social graph, for instamcoss edges are indicated
by eitherIRIs (universal uniqueDs) or semantic labels of the virtual nodes [Row09,
MAB 710]. We also identifyF.l, a subset of nodes M to which there are incoming
edges from another fragment.

We assumaev.l.0.g.that eaclF is stored at sit&.

Notations in this section are summarized in Table 3.1.

(2) The fragment grapt+ is defined agVi,Er), whereVy = Jic(119(F-OUF.I) and

Chapter 3. Distributed Graph Pattern Matching 53

F d, "HR" e Mat, HR e :
re ® = 7 O Ma i i Fr—F Q

Walt, "HR" @ 7 o »Q Emmy, "HR" \ / QS === Qs Q(G)

*. Bil,"DB" @ O Jack, "MK”
L T Gr assembling

et ! i ey 4 N

N @
. Pat,"SE" Ross, "HR" Tom, "Al"

- En
partial evaluation

.....

Figure 3.2: Fragment graph and partial evaluation

Ef = Uie[l,k} cE. HereF.OUF.I includes all the nodes iR; that have cross edges
to or from fragment. These nodes can be grouped together, denoted by a single
“hyper-node”, indicating. The seE; collects all the cross edges from all fragments.

Example 3.2: Figure 3.1 depicts a fragmentatign of graphG, consisting of three
fragmentd1, F, F3 stored in site©C;, DC, andDCs, respectively. For fragmerf,
F1.0 consists of virtual nodeBat, Mat andEmmy, F1.l includes in-nodesred, and its
CE set consists of cross edg&se(l, Emmy), (Bill, Pat) and (valt, Mat), i.e., all the edges
from F1 outgoing to another fragment; similarly fbs andFs. In particular, edgevat,
Fred) and @ill, Pat) are cross edges from fragmefsto F; andF; to F3, respectively.
The fragment grapiGs of 7 is shown in Fig. 3.2, which collects all in-nodes,
virtual nodes and cross edges, but does not contain any aodesdges internal to a
fragment. O

We remark thaho constraintsare imposed on fragmentatioie., the graphs can
bearbitrarily fragmented. Observe that multiple fragments may residesingle site,
and our algorithms can be easily adapted to accommodate this

3.1.2 Partial evaluation

Partial evaluationg.k.a. program specialization) has been proved useful in a variety
of areas including compiler generation, code optimizadiod dataflow evaluation (see
[Jon96] for a survey). Intuitively, given a functidi{s, d) and part of its inpus, partial
evaluation is to specializ&(s,d) with respect to the known inpst That is, it conducts
the part off’s computation that depends only gsnand generatea partial answer
i.e.,aresidual functiorf’ that depends on the as yet unavailable imputhis idea can

be naturally applied to distributed graph pattern matchiimgleed, consider a query

Chapter 3. Distributed Graph Pattern Matching 54

posed on a grapB that is partitioned into fragment$y, ..., F,), whereF is stored in
siteS. To computeM(Q, G), each site5 can find the partial answer @in fragment
in parallel, by takingF as the known inpus while treating the fragments in the other
sites as yet unavailable inpdt These partial answers are collected and combined by
a coordinator site, to derive the answer to qu@ny the entireG.

Given a queryQ and a fragmentatiom of a graphG, we comput&€)(G), a Boolean
value indicating the reachability @ in G. Assume tha@ is posed on a sit&, referred
to as acoordinator sitein which a mappindy from the fragments irr to different sites
is stored. As shown in Fig. 3.2, we use partial evaluatiorotaputeQ(G).

(1) Distributing at site & Upon receivingQ, the coordinating sit& postsQ to each
fragment, as is, by using

(2) Local evaluation at each sitg.Jach site§ evaluates (sub-queries) Qfin paral-
lel, by treating the fragmenm stored inS as the known input tQ; the other fragments
Fj are taken as the yet unavailable input, denoted by Boole@abkes associated with
virtual nodes inF.O. The partial answers are represented as vectors of Boabean f
mulas associated with nodesHnl, and are sent back ®.

(3) Assembling atS Site S assembles these partial answers to get the final answer
Q(G), by usingGs.

Following this, the next three sections develop evaluatigorithms for (bounded,
regular) reachability queries.

3.2 Distributed Graph Pattern Matching

We next introduce distributed evaluation strategies forpte boolean patterns. We
start with reachability queries, bounded reachabilityrggseand regular reachability
queries.

3.2.1 Distributed Reachability Queries

Given a simple boolean pattegn(s,t) and a fragmentatiom = (F, G¢) of a graphG,
we decide whethesreached in G. The main result of this section is as follows.

Theorem 3.2.1 Over a fragmentatiorr = (F,Gy) of a graph G, reachability queries
can be evaluated (a) in @Vs||Fm|) time, (b) by visiting each site only once, and (c)

Chapter 3. Distributed Graph Pattern Matching 55

Algorithm disReach /* executed at the coordinator site */

Input: Fragmentatior{F, G¢), reachability query;,(st).
Output: The Boolean answens to q,(s,t)in G.

1. post query,(s,t) to all the fragments if;
2. RVset:=0;

3. for eachfragmentF in F do

4. RVset := RVset U localEval(F,q,(s,t));
5. ans:=evalDG(RVset);

6

return ans;

ProcedurelocalEval /* executed locally at each site in parallel */

Input: A fragmenthF;, a reachability query, (s,t).
Output: a setrvset of Boolean equations.

F.rvset:= 0; iset:= F.l; oset:= F.O;
if se F theniset:=iset U {s};

if t € F then oset:= oset U {t};

for each nodev € oset do

elsev.rf ;= Xy;
for each nodev € iset do
for each nodeV € oset do
if V' € des(v,F) then v.rf := vrf V V' .rf;
10. F.rvset := F.rvset U {X, = v.rf};

1
2
3
4
5. if v=tthenvrf ;= true;
6
7
8
9

11. send.rvset to the coordinator sit&;

Figure 3.3: Algorithm disReach

with the total network traffic bounded by([9;|?), where G = (V¢,E¢) and Ry, is the
largest fragment in F.

As a proof of the theorem, we provide an algorithm to evalusgehability queries
qr(s,t) over a fragmentatiorr of a graphG. The algorithm, denoted akisReach, is
given in Fig. 3.3. As shown in Fig. 3.2, the algorithm evahisat (s,t) based on partial
evaluation, in three steps as follows.

(1) The coordinator sit&; posts the same quedy(s,t) to each fragment if (line 1).

Chapter 3. Distributed Graph Pattern Matching 56

(2) Upon receivingy,(s,t), each site invokes procedurealEval to partially evaluate
qr(s,t),in parallel (lines 3-4). This yields partial answeir.rvset from each fragment,
which is a set of Boolean equations (as will be discussedlghand is sent back to
the coordinator sit&..

(3) The coordinator sit&; collectsF.rvset from each site and assembles them into a
systemRVset of Boolean equations (lines 3-4). It then invokes proceadusDG to
solve these equations and finds the final answer(®t) in G (line 5). In contrast to
partial query evaluation on trees [AKO7, BCFK06, CFKO7E Boolean equations of
RVset are possiblyecursively definedince graplG may have a cyclic structure,

We next present procedurésalEval andevalDG, for producing and assembling
partial answers, respectively.

Partial evaluation. ProcedurdocalEval evaluates,(s,t) on each fragmerf in paral-
lel. For eachin-node vin F, it decides whether reaches. Later on procedurevalDG
will assemble such answers and find the final answef(®t).

Let us consider how to computg(v,t). If t € K andv can reaclt, theng,(v,t)
can belocally evaluatedo betrue. Otherwiseg,(v,t) is true iff there existsa virtual
nodeV of K such thabothq,(v,V) andq,(V,t) are true. Indeed, in the latter casean
reacht if thereexistsa virtual node/ such that/ can reach. Observe thag,(v,V) can
belocally evaluatedn F;, but notq,(V,t) sincev andt are in other fragments. Instead
of waiting for the answer o§,(V,t), we introduceBoolean variablesone for each
virtual nodev' in F.0O, to denote the yet unknown answert@Vv',t) in G. The answer
to q,(v,t) is then aBoolean formula vf associated witl, which is thedisjunctionof
onlythe variables of those virtual nodeso whichv can reach ir.

More specifically, procedur®calEval works as follows. It first initializes a set
F.rvset of Boolean equations, and puts the in-noBelsand virtual node§;.O of F; in
setsiset andoset, respectively (line 1). I§(respt) isinF, localEval includess (respit)
in iset (resp.oset) as well (lines 2-3). A Boolean variablg, is associated with each
nodev € oset Uiset. For each virtual node € oset, if vist or v can reach via a path
in K, thenX, is assignedrue (lines 4-5). For each in-nodec iset, localEval locally
checks whether can reach a virtual nodé € oset (lines 7-9). If soJocalEval updates
v.rf, the Boolean formula of, to bev.rf v V.rf (line 9). Observe that ifis in des(v, F),
thenv.rf is evaluated to berue. HereV € des(v,F) denotes that' is a descendant of
v in F; this can be checked using any availabémtralized algorithnior reachability
queries [YC10]Jocally in F. After the formula of in-node is constructedk.rvset is

Chapter 3. Distributed Graph Pattern Matching 57

extended by including Boolean equation ¥= v.rf (line 10). The sekF.rvset is then
sent to the coordinator si® (line 11).
Example 3.3: Consider a simple boolean pattegf(Ann,Mark) over G in Fig 3.1.

Algorithm disReach at the coordinator siteC; first sends the query to each site, where
a set of Boolean equations are computed, as shown below.

F F.l rf rvset
Ann Xpat V XMat
I:1 {XAnn = Xpat V XMat, XFred = XEmmy}
Mat Xrred
F> | Jack XFred {XMat = Xrreds Xjack = Xrred: XEmmy = XFred V XRoss}

Emmy | Xpred V XRoss

Ross true

R {XRoss = true, Xpar = XJack}
Pa.t XJack

Observe that for eadhe [1,3], each equation ify.rvset is of the formX, = \/ Xy,
wherev is an in-node, and’ is a virtual node thav can reach ir. In particular,
Ross.rf = true since the nod®oss can reactMark in Fs. O

Assembling After the local evaluation, the equations collecte®Wfset at the coordi-
nator siteS; form aBoolean equation systefBES) [GKO5]. It consists of equations of
the formX, = v.rf, wherev is an in-node in some fragmeht, and Boolean variables
in v.rf are associated with virtual nodes (out-nodes), which in are connected to
in-nodes of some other fragments. In particuRW¥set contains a Boolean equation
Xs = s.rf, where the truth value ofs is the final answer tq,(s,t). GivenRVset, pro-
cedureevalDG is to compute the truth value of. Observe that equations RiVset
may be definedecursively For examplexgeq in Example 3.3 is defined indirectly in
terms of itself.

Observe thaRVset hasO(|V¢|) Boolean equations. It is known thBES RVset
can be solved irO(|V¢|?) time [GKO5]. We next present such an algorithm, based
on a notion of dependency graphs. Tdependency grapbf RVset is defined a5y
= (Vy4,Eq,Lq), Wherevy € Vy is a Boolean variablé, in RVset; Lq(vq) = V Xy, if
Xy =V Xy is in RVset; and there is an edgey, V) € Eq if and only if X is in \/ X,
of Lg(vg). Note that the sizéGg| of Gq is in O(|V;|?), whereG; = (Vi,Es) is the
fragment graph ofr .

Based on this notion, we present procedeu&DG in Fig 3.4. It first constructs
the dependency grapgby of RVset (line 1). It groups into a single nodg,,. all those

Chapter 3. Distributed Graph Pattern Matching 58

ProcedureevalDG /* executed at the coordinator site */

Input: A systemRVset of Boolean equations.
Output: The Boolean answeins to q,(s,t).

1. construct dependency gra@ = (Vy,Eq,Lq) from RVset;
2. if there is noyy € Vg such thatl (vq) = {Xy = true}
then return false;
elsemerge all such nodes into a nodg,.;
if Virye € des(vs,Gg) then return true;

else return false;

Figure 3.4: Procedure evalDG

nodes (variables) that are known to tsee (line 3). It returnsfalse if no such node
exists, since no in-nodes can redcim any of the fragment (line 2). Otherwise, it
returnstrue if vg (indicatingXs in Xs = s.rf) can reachv,, (lines 4-5).

Example 3.4: Consider the Boolean equations of Example 3.3. Given thest)G
first builds its dependency graph, shown in Fig 3.5(a). Ihtbleecks whether there is
a path fromXann t0 Xirue (Xmark)- It returnstrue as such a path exists. O

Correctness One can easily verify the followings can reach in G iff there exist a
positive integet and a path{s,x, ..., X,t) such that.rf's are built in some fragment
by localEval, and moreover, are evaluatedttoe by procedurevalDG. This can be
shown by induction oh.

Complexity. Algorithm disReach guarantees the following.

The number of visitsObviously each site is visited only once, when the cootdina
site posts the input query.

Total network traffic For each fragmerfs, F.rvset has|F.l| equations, each gF.O|
bits indicating the presence or absence of variables in doéedn formula. Hence the
setRVset consists of at mosYVs | equations, each of at mg$k | bits. The total network
traffic is thus bounded b@(|Vs|?), independentf |G|, since|q,(s,t)| is negligible.

Computational cost Observe the following. (1) ProcedulecalEval is performed
on each fragmerf in parallel, and it takeO(|F||V;|) time to computes.rvset for
each fragment (see the discussion below). Hence it take®stt@®q|Vs ||Fy|) time to
getF.rvset from all sites, wherd=, is the largest fragment of . (2) It takes proce-

Chapter 3. Distributed Graph Pattern Matching 59

XFred Xered

XAnn
Xwalt

XPat
XMark="true"

(a) Dependency graph (b) Weighted dependency graph | || (c) Weighted dependency graph Il

Figure 3.5: Dependency graphs

dureevalDG O(|Gy|) time to construct the dependency gragf and to find whether
Vs reaches/y e in Gy. Since|Gqy| is in O(\Vf|2), and|Vs| is typically much smaller
than|Fy| in practice, the computational cost is boundedd{yFny|[Vs|). That is, the
response time is alsadependentf the entire grapi®.

To check whether a pair of nodes connect in a fragment Qyinwe useDFS/BFS
search, and thus get ti@ |V;||Fm|) (resp.O(|V¢|?)) complexity. In factanyindexing
technigues€.g.,reachability matrix [YC10], 2-hop index [CHKZ03b]), palell and
graph partition strategie®.g., Pregel [MAB"10]) developed forcentralized graph
guery evaluatiorcan be applied here, which will lead to lower computatiormeitc

The analysis above completes the proof of Theorem 3.2.1.

Remarks. In theory, one can compute the transitive closmi@) (of a graph to decide
whether a node can reach another. However,imgracticalto compute th&C over
large graphs due to its time and space costs. Worse stillnwhe graphs are dis-
tributed, computing C may incurexcessive unnecessary data shipmelmdeed, we
are not aware of any distributed algorithms that compevith performance guaran-
tees on network traffic, even when indexing structures angl@yad (see [YC10] for
a survey on such indexes). In contrast, we show that in thaldiged setting, partial
evaluation promises performance guarantees. Also ob#eaven practice, the size of
V; is usually small [Row09].

3.2.2 Distributed Bounded Reachability Queries

We next develop a distributed evaluation algorithm for eachreachability queries
aur(S,t,1), to decide whethedis(s,t) <. In contrast to reachability queries, to eval-
uateqy,(S,t,1) we need to keep track of the distances for all pairs of nodeshiad.
Nevertheless, we show that the algorithm has the same peafae guarantees as al-
gorithmdisReach.

Chapter 3. Distributed Graph Pattern Matching 60

ProcedurelocalEvalgy /* executed locally at each site, in parallel */

Input: A fragmentF;, and a bounded reachability quemy (s,t,1).
Output: Partial answer ta@y,, in F (a setrvset of equations).

1. Initialize F.rvset, iset andoset;
2. for eachnodev € oset do
3. if v=tthenv.rf:=0;
elsev.rf 1= Xy;
for eachnodev € iset do
st :=0;

if dis(v,V') < | then
st :=stU{(V.rf+dis(v,V))};
10. F.rvset := F.rvset U {X, = min(st)};
11. send.rvset to the coordinator Sit&;;

4
5
6
7. for each nodeV € oset do
8
9

ProcedureevalDGyq /* executed at the coordinator site */

Input: A systemRVset of equations.
Output: The Boolean answaeins to gy, (S,t,1).

1. construct dependency gra@ := (Vy,Eq,Lq) from RVset;
2. Integerd := Dijkstra(Xs, %, Gq);

3. if d <I then return true;
4

else return false;

Figure 3.6: Procedure localEvalg and eval DGy

Theorem 3.2.2 Over a fragmentatiorr = (F,G¢) of a graph G, bounded reachability
queries can be evaluated with the same performance guasarae for reachability
queries.

As a proof of Theorem 3.2.2, we present an algorithm, denbiedisDist, for
evaluatinggy, (S,t,1) over a fragmentatiorr of a graphG. It is similar to algorithm
disReach for reachability queries (Fig. 3.3), but it needs differstrategies for partial
evaluation at individual sites and for assembling parti@\veers at the coordinator site.
These are carried out by procedul@salEvaly andevalDGyq, given in Fig. 3.6.

ProcedurelocalEvaly. To evaluate bounded reachability queries, for each fragife
and each in-nodein F, we need to findlis(v,t), thedistancefrom vtot. To do this,

Chapter 3. Distributed Graph Pattern Matching 61

we find theminimumvalue ofdis(v, V') +dis(V,t) whenV ranges over all virtual nodes
in F to whichv can reach. We express the partial answewfas a formulav.rf.

ProcedurdocalEvaly partially evaluates, (s,t,!) in each fragmeni, in parallel.
It first initializesF.rvset, iset andoset as indisReach (line 1). For each nodein F.1 U
F.O, it associates a variabl to denotelis(v,t). For each virtual node(includingt if
tehR),if v=t, thenitassigns O tarf (line 3), and otherwiserf is Xy (line 4). For each
in-nodev € iset and each virtual node € oset, localEvaly locally finds the distance
fromvto V (lines 5-9). It uses a sat (line 6) to collect formulas/.rf +dis(v,V) if
dis(v,V) <1 (line 9). The sef.rvset collectsequations X = min(v.st) (line 10), and
is sent to the coordinator sif (line 11).

Example 3.5: Given queryqy, (Ann, Mark, 6) posed on the grap@ of Fig 3.1, proce-
duredisDist computes a set of equations of arithmetic formulas, ratien Boolean

equations.
F F.1 st rvset
= Ann {(XPat + 3)> (XMat + 2)} {XAnn — mm{ (XPat + 3)7 (XMat + 2)};
1 .
Fred {(Xemmy +1)} Xered = MIN{ (Xemmy + 1)} }
Mat {(XFred + 1)} {XMat — mm{ (XFred + 1)};
F Jack {(XFred + 3)} Xjack = min{(XFred + 3)}1
Emmy {(XFred + 3)7 (XRoss + 1)} XEmmy = min{ (XFred + 3)7 (XRoss + 1)}}
Ross {(Xack +2),1} _ _
F oss = MIN{ (Xjack +2), 1}, Xpar = MIiN{ (Xjack + 2
o T ooz = Min e+ 2) L)t = min e 2)}}

After rvset is received by coordinatoDC;, procedureevalDGqy first builds a
weighted dependency grajiy, shown in Fig 3.5(b). It then computes the shortest
path fromXann t0 Xuark DY applyingDijkstra to Gg. It returnstrue since the length of
the path is 6, satisfying the distance bound. O

ProcedureevalDGq. GivenF.rvset from all the sites, procedurevalDG4 assembles
these partial answers to find the answertg(s,t,1) in G. As opposed tevalDG
(Fig. 3.4), it builds aredge weighted graphd>= (Vy, Eg, L4, W), where(Vy, Eq,Lq) is

a labeled dependency graph as defined before; andefuht W (e) of eis dis(vg, V).
Note thatV| < |Vi| and|Eqg| < |Vi|?, whereGs = (V;,Es) is the fragment graph of .
The procedure then uses algorittidijkstra [Zwi01] to compute the distanog from
Xsto X, in time O(|Eq4| + |V4|log|Vy|), whereXs € Vg denotes the nodein q, (s, t,1).

It returnstrue iff d <1. One can verify thadlis(s,t) in G is equal to the distance from
Xsto X; in Gy.

Chapter 3. Distributed Graph Pattern Matching 62

Example 3.6: Given the equations of Example 3.5, proceden@&DGy first builds a
weighted dependency grafa shown in Fig 3.5(b). It then computes the shortest path
from Xann t0 Xyark by applyingDijkstra to Gq. It returnstrue since the length of the
path is 6, satisfying the distance bound.

Consider another query,,(Walt, Tom,3). Its weighted dependency graj@} is
shown in Fig 3.5(c). AlthougPwaic can reactXym in G, the shortest path has length
4 > 3. Hence the procedure returfagse as the answer. O

One can verify that algorithrfisDist (1) visits each site only once, (2) its total net-
work traffic is bounded byD(|V¢|?), and (3) it takes at mo®d(|Fm||Vs|) time, where
Fm is the largest fragment im . Moreover, indexing techniques [YC10] can be incor-
porated intdocalEvaly andevalDGgy, to reduce the cost of local evaluation and hence,
the response timee(g.,with constant time via a distance matrix).

3.2.3 Distributed Regular Reachability Queries

We now develop techniques to distributively evaluate raguéachability queries.
Given such a query,,(s,t,R) and a fragmentatiom of graphG, it is to find whether
there exists a path from stot in G such thap satisfiesR. In contrast to (bounded)
reachability queries, to evaluadg(s,t, R) we need to collect and transmit information
about not only whether there are paths from a node to andibeglso whether the
paths satisfy the complex constraint imposed®yrhe main result of this section is
as follows.

Theorem 3.2.30n a fragmentationr = (F,G¢) of graph G, regular reachability
queriesqy (s,t,R) can be evaluated (a) in (Fn||R?+ |[R[?|V¢|?) time, (b) by vis-
iting each site once, and (c) with the total network traffic@|R|?|V|?), where
Gt = (V1,Ef) and Ry is the largest fragment in F.

To prove Theorem 3.2.3, we first introduce a notion of quetpm@aton, and then
present an evaluation algorithm based on query automaton.

Query Automaton

To effectively check whether a path satisfies a regular esgiweR, we represent
R as a variation of nondeterministic finite state automaitéd(, referred to as query
automaton.

A query automaton gR) of q..(s,t,R) accepts pathg that satisfyR. It is defined
as <Vg,Eq, Lq,Us, >, where (1)Vq is a set of states, (Zq C Vg x Vq is a set of

Chapter 3. Distributed Graph Pattern Matching 63

Gq(R),R=(DB* U HR*) Gg'(R'),R'=(CTO DB*) U HR*

Figure 3.7: Query automaton Gq(R)

transitions between the states, (3)is a function that assigns each state a label in
R, and (4)us andw in Vq are the start state and final state correspondirgeiodt,
respectively. In contrast to traditiondFA, at stateu,, for each edgév,v) on a path, a
transitionuy — uj, can be made vi@uy, u,) € Eq if L(v) = Lg(u) andL(V) = Lq(W).
The automaton can be constructe®ifiR| (log(|R|))?) time, using a conversion similar
to that of [HSWOL1]. Itis of linear size ifR).

We say that a stateis a child ofu’ (resp.u’ is a parent ofl) if (U',u) € Eq, i.e., U
can transit tau.

Example 3.7: Recallq,(Ann,Mark, R), the regular reachability query given in Exam-
ple 3.1, whereR = (DB* U HR¥). Its query automatoriq(R) is depicted in Fig 3.7.
The sed/y has four statesnn, DB, HR, Mark, where the start and final states ar@ and
Mark, respectively. The s& of transitions is{(Ann,DB), (DB,DB), (DB,Mark), (Ann,HR),
(HR,HR), (HR,Mark)}. In contrast toNFA, it is to accept paths irg.g., Gof Fig. 3.1,
and its transitions are made by matching the labels of itestaith thejob labels on
the paths (except the start and final states, which are lð name).

As another example, consider query(Walt, Mark, R'), whereR'=((CTO DB*) U
HR*). Figure 3.7 shows its query automaton, which has 5 statd&dransitions, with
walt andMark as its start state and final state, respectively. O

We say that a nodein G is amatchof a stateuy in Gg(R) iff (1) L(v) = Lg(uy),
and (2) there exist a paghfrom vtot and a pattp’ from u, to u;, such thap andp’
have the same label. The lemma below shows the connectioreéet,, (s,t, R) and
Gq(R), which is easy to verify.

Lemma 3.2.4:Given a graph Ggq,(s,t,R) over G is true if and only if s is a match of
Us in Gy(R). O

Distributed Query Evaluation Algorithm We next present an algorithm to evaluate
regular reachability queries over a fragmentatipnof a graphG. The algorithm,

Chapter 3. Distributed Graph Pattern Matching 64

denoted aslisRPQ (not shown), evaluates,,(s,t,R) based on partial evaluation in
three steps, as follows.

(1) It first constructs the query automat@a(R) of q.(s,t,R) at siteS;, and posts
Gq(R) to each fragment irr .

(2) Upon receivingsg(R), each site invokes procedurealEval, to compute gartial
answerto q,(s,t,R) by usingGq(R), in parallel. The partial answer at each fragment
F, denoted as;.rvset, is a set ofvectors Each entry in a vector is a Boolean formula
(as will be discussed shortly).

(3) The partial answer is sent back to the coordinator Site The siteS: collects
F.rvset from each site and assembles them into aR3é&tet of vectors of Boolean
formulas. It then invokes proceduseal DG, to solve these equations and find the final
answer tay., (s,t,R) in G.

We now present proceduresalEval, andevalDG,.

Local evaluation. We first formulate the partial answeirvec at each node in a
fragmentF. It indicates whethev is a match of some statein the query automa-
ton G4(R), i.e., vreached and moreoversatisfies the constraints imposed Gy(R)
(Lemma 3.2.4). Hence we definevec to be avectorof O(|Vy|) entries, wheré/,
is the set of states iBq(R). For each state in Vg, the entryv.rvec[u] is a Boolean
formulaindicating whether node matchestateu. In contrast to its counterparts for
(bounded) reachability queries, hetevec is avectorof Boolean formulas, instead of
a single formula.

Observe that matches a stata, if and only if (1) L(v) = L(uy), and (2) eithew is
t, or there exists a child/ of v and a childuy, of uy such thatw matcheau,. To cope
with virtual nodes, for eactv € F.O and each state, € Vg, we introduce a Boolean
variablex(wuw), denoting whethew matchesy,. The vector of each in-nodein F.I
consists of formulas defined in terms of these Boolean vimsab

Based on these, we give procedisealEval, in Fig. 3.8. It first initializes a set
F.rvset of vectors, and puts the in-nodBsl and virtual node$5.0 of F in setsiset
andoset, respectively (line 1). Ik (resp.t) is in F, localEval includess (resp.t) in
iset (resp.oset) as well (lines 2-3). For each noden F, it associates #ag vvisit to
indicate whethew.rvec is already computed, and initializes it to fadse if v is not in
oset (line 4).

Chapter 3. Distributed Graph Pattern Matching

ProcedurelocalEval,/* executed locally at each site, in paralfei

Input: A fragmentF;, a query automato@q(Vgy, Eq, Lg, Us, U).
Output: Partial answer t@,, in F (a setrvset of vectors).

F.rvset := 0; iset:= F.l; oset:= F.0;

if s€ K theniset:=iset U {S}; /* sdenoted byus */
if t € F then oset:= oset U {t}; /* t denoted by */
for each nodev € V, \ oset do v.visit := false;

1

2

3

4

5. for eachnodev € oset do
6 V.rvset ;= 0;

7 for eachnodeu €V, do

8 if v=tand u= y then v.rvec[u] := true;
9 else ifL(v) = Lq(u) then v.rvec[u] := Xyy);
10. elsev.rvec[u] := false;

11. wvvisit = true;

12. for each nodev € iset do

13. v.rvec := cmpRvec(V,F,qrr, G4(R));

14. F.rvset ;= K.rvset U V.rvec;

15. send .rvset to the coordinator Sit&;;

Procedure cmpRvec

Input: A nodev, a fragment;, and
a query automato@q(Vq, Eq, Lq, Us, Ut).
Output: The vecton.rvec of v, consisting of Boolean formulas.

if vvisit = true then return v.rvec;
for each nodevy € Vy do rvec|vy| := false;
for eachnodew € C(v,F) do
if W.visit = false then
w.rvec := cmpRvec(W, K, q,r,G4(R));
for eachnodevy € Vg do
if L(v) = Lg(vq) then

rvec|Vg] := rvec|Vg| V cmposeVec(vq, W, W.rvec, G4(R));

© © N o O~ DN

V.visit = true;

10. return rvec;

Figure 3.8: Procedure localEval, and cmpRvec

65

Chapter 3. Distributed Graph Pattern Matching 66

It then initializes the vectov.rvec for each virtual noder of F (lines 5-11), as
follows. If v=t, thenv.rvec[w] is assignedrue (line 8). Otherwise for each state
in Gq(R), if uandv have the same label, themvec[u] is aBoolean variable ¥,
indicating whether matches (line 9); if not, v.rvec|[u] is false (line 10). Sincev.rvec
is initialized (lines 6-10)|ocalEval setsv.visit to betrue (line 11).

Then for each in-node, localEval, invokes procedurempRvec to partially com-
pute the vector of, and extends&;.rvset with v.rvec (lines 12-14). After all in-nodes
are processedr,.rvset is sent to site&s; (line 15).

ProcedurempRvec computes the vectarrvec for a nodev, as follows. Ifv.visit is
true, it returnsv.rvec (line 1). Otherwise, it initializes a vectevec (line 2).

The procedure then computessec following Lemma 3.2.4. For each childof v,

If wis not visited, themv.rvec is computed via a recursive call ofpRvec (lines 3-5;
hereC(v,F) denotes the set of children wfin F). After w.rvec is known, for each
statevq in Gy, cmpRvec checks ifv andvg have the same label (lines 6-7); if so, it
usesw.rvec[Vg] to computervec|vg] via proceduremposeVec (line 8). Afterv.rvec|vq]

is computedy.visit is settrue (line 9) andv.rvec|vg] is returned (line 10).

ProcedurecmposeVec (not shown) takes a statg and a nodew as input, and
constructs a formuld using formulas inw.rvec. Initially f is false. For each child
statev; of vq, it checks whethew andv;, have the same label. If sé,is extended by

takingw.rvec|V;

o as a disjunct. The formul& s returned after all child states @f is

processed.

Example 3.8: Given q,(Ann,Mark, R), the query of Example 3.1 posed on the dis-
tributed graphG of Fig. 3.1, proceduréocalEval, evaluates the query di, as fol-
lows. For each virtual node d¥, it initializes its vectore.g.,the vector ofRoss is
(false, false, X(ross Hr); false), corresponding to the statésnn, DB, HR, Mark) in query
automatorGq(R) (see Fig. 3.7). It then invokes procedurepRvec to compute the
vector of each in-node iRy. For instance, consider in-nodenmy. Since (1)Emmy is
anHR that matches stater in Gq(R), and (2)Emmy has a childross that may match
stateHRr, the formulaEmmy.[HR] is extended toX(gess Hr) DY proceduremposeVec.
The final vectors foF, are:

fragment| in-node rvec(Ann, DB, HR, Mark)

Mat false | false | Xgreqnr) | false

) Jack false | false false false

Emmy | false | false | X(ross,r) | false

Chapter 3. Distributed Graph Pattern Matching 67

, Vd(Ann.Ann) ,X(Mat,HR)
Ann.“" : Vd(Mat, HR) ,X(Fred,HR) -

5 Vd (Fred, HR) ,X(Emmy,HR)

mEnm HR L H
5 Vd(Emmy, HR) , X(Ross,HR)
O Vd(Ross, HR) ,true
Mark ‘..,
Gq(R),R=(DB* UHR* +**(FVd(Mark Mark),true Gd :

Figure 3.9: Assembling with dependency graph

Assembling ProcedurevalDG, (not shown) collects the partial answers from all the
sites into a seRVset, and assembles them to compute the answey,{s,t,R) at the
coordinator sites.. It is similar to procedurevalDG given in Fig. 3.4, except that it
uses a different notion of dependency graphs. Herddipendency graphd3f RVset
is defined agVy, Eq,Lq), Where (a) for each in-nodeand each entry of its vector
V.rvec in RVset, there is a nodeq,y € Va, (b) La(Vaw)) = V.rvec[u], a formula of
the form\/ X); and (c) there is an edd®q,u), Vav,v)) € Eq if and only if Xy)
appears itg(Vgn,y))- In other words, the node sé§ of Gy is defined in terms of both
in-nodes in the fragments of and the states in the query automa@ytR).

ProcedureevalDG, constructs the dependency gra@g of RVset, and checks
whethervy(s, us) can reachvy) for some nodes, whereLq(vy) is true. One can
verify thats matchesys iff there exists a nodey v € Vg With Lg(vy,y) = true, and
Vd (S, Us) reachesyyy,y)-

Example 3.9: Consider again query, (Ann,Mark, R) posed on the grapB of Fig. 3.1.
The vector set$;.rvset are computed in parallel in all fragmerfts as described in
Example 3.8. Upon receiving.rvset from all the sites, procedural DG, first builds
a dependency grapgBy based on the vector sets, as shown in Fig 3.9. Each eaogle,
Vd(Ann, Ann) is shown together with its labeg.g., Xyarnr)- It then checks whether
nodevy(Ann,Ann) reaches a node with labele, which is nodevq(Ross, HR) here. It
returnstrue as the query answer, as there is a patim(Mat, Fred, Emmy, Ross, Mark)
satisfying the regular expressién O

Correctness and complexity One can readily verify the following. (1) The algo-
rithm disRPQ always terminates. (2) Given a query(s,t,R) and a fragmentatiom
of graphG, algorithmdisRPQ returnstrue iff there exists a patip from stot in G

Chapter 3. Distributed Graph Pattern Matching 68

such thap satisfiesR. To complete the proof of Theorem 3.2.3, observe the folhgwi
about its complexity.

The number of visits Each site is visited only once, when the query automaton is
posted by the coordinator site.

Total network traffic The communication cost includes the following: (1)
O(|Gglcard(F)) for sending query automatd®y(R) to each site, whereard(F) is the
number of fragments, ari@q| is in O(|R|); and (2)O(|R[?|F.1||F.O|) for sending par-
tial answers from each fragmeRtto the coordinator site. Putting these together, the
total network traffic is inO(|R|?|V;|?), whereV; is the total number of virtual nodes,
since the numberard(F) of fragments and query sizB| are much smaller thajV |

in practice. Note that the communication coshidependent afhe entire grapl®.

Total computation It takesO(|Fn||R|?) time to compute the vector set in each frag-
ment,in parallel, where|Fy| is the size of the largest fragme, in 7. To see this,
observe that at each nougi takes at mos®(|C(v, Fm)||R|?) time to construct its vec-
tor, for each child ot/ in C(v,Fy,,). Moreover, each node is visited once and its vector
is computed once. Thus, in total it takes at mO§tFy||R/?) time to compute all the
vectors. The assembling phase takes u@tdR|?|Vs|?) time. Taking these together,
the total computation time is i@(|Fm||R|% + |R|?|Vt|?).

3.3 Distributed Graph Pattern Matching with MapRe-

duce

We next present a simpl®apReduce algorithm to evaluate regular reachability
queries. This algorithm just aims to demonstrate how easyipgort our techniques
in the MapReduce framework. More advancellapReduce algorithms can be readily
developed based on partial evaluation.

MapReduce [DGO08] is a software framework to support distributed cotimpyion
large datasets with a large number of computers (nodes) h@ data are partitioned
into a collection of key/value pairs. Each pair is assigrea mode nappe}) identified
by its key. (2) Each mapper processes its key/value paisganerates a set of in-
termediate key/value pairs, by usindg/ap function These pairs are hash-partitioned
based on the key. Each partition is sent to a nodéduce) identified by the key. (3)
Each reducer produces key/value pairs viBeduce function and writes them to a
distributed file system as the result [DGO08].

Chapter 3. Distributed Graph Pattern Matching 69

Procedure preMRPQ

Input: GraphG, regular reachability quenry,,(s,t,R), integerK.
Output: Lists of key/value pairs to be sent to mappers.

construct query automatd®y(R); /*executed at coordinator*/
glist := parG(G,K, ['—E']); [* graph partition */

pairL := <i, (F,Gq4(R))>;

1
2
3. for eachfragmentr € glist (i € [1,K]) do
4
5 send. andGq4(R) to mappeti;

ProceduremapRPQ /* executed at each mapper */

Input: A key/value pairl. = <i, (F,Gq(R))>.
Output: A key/value pairdpair.

1. rvset; :=localEval,(F,Gq4(R));
2. sendocalEval,(F,Gq(R)) to a reducer;

ProcedurereduceRPQ /* executed at a single reducer */

Input: A list of key/value pairs.
Output: The Boolean valuans to q,, in G.

setRVset = 0;

for each pair <1, rvset;> in rdlist do
RVset:= RVset U rvset;;

ans:= evalDG,(RVset);

return <0, ans >;

o M N e

Figure 3.10: Algorithm MRdARPQ

Our MapReduce algorithm, MRdRPQ), is illustrated in Fig. 3.11 and given in
Fig. 3.10. It evaluates,,(s,t,R) on graphG using procedurepreMRPQ, mapRPQ
andreduceRPQ. We next present the three procedures in details.

ProcedurepreMRPQ. A coordinator first generates the query automaBy(R) of
arr(S,t,R) (line 1; see Section 3.2.3). The gra@hs then partitioned int& fragments
(line 2) using some strategyrG, whereK is the number of mappers. Each fragment
F is represented as a key/value pair, where the keifl, K], and its value is a pair
<F,Gq(R)> (lines 3-4). Itis sent to mappd#; along withGy(R) (line 5).

Chapter 3. Distributed Graph Pattern Matching 70

........................ coordinator
coordinator-" BN

map

reducer... > reducer

process path P ahs

Figure 3.11: Processing path of algorithm reduceRPQ

Graph partitioning is conducted implicitly byMapReduce implementation
(e.g.,Hadoop), provided the numbef of mappers and the average s[i@} of frag-
ments (line 2). To explore the maximum parallelism we waret fitagments to be
of equal size; hencé%}. One may also want to minimizgg ¢ |F.1||F.O|, where
F.l (resp.F.O) is the set of in-nodes (resp. virtual nodes) of fragnfgntHowever,
this partition problem is intractable [Fja98]. In our inephentation we usedadoop’s
default partitioning strategy.

ProceduremapRPQ at each mapper Upon receiving a paiki, (F,Gq(R))>, pro-
ceduremapRPQ is triggered at mappeM;, in parallel. It simply uses proce-
dure localEval, of Fig. 3.8 as itsMap function, and computes a key/value pair
<1, rvseti> (line 1), wherervset; is the vector set as described in Section 3.2.3. It
sends the pair to a reducBg. Note that pairs from all the mappers are sent to the
same reducer. partition problem is infPeocedurereduceRPQ at the reduceiR,. Af-

ter collecting the key/value pairs from all the mappers,rédaicer puts these pairs in
a setRVset (lines 1-3). It then invokes the assembling proceduteDG, (see Sec-
tion 3.2.3) as th&educe functionto compute the answens to q,, in G (line 4), and
writes a pair<0,ans> to the distributed file system (line 5).

Correctness and complexity

The correctness of algorithMRdRPQ immediately follows from the correctness
of algorithmdisRPQ (see Section 3.2.3). Following [AU10], we analyze the perfo
mance ofMIRdRPQ using theelapsed communication coBCC (data volume cost),
which measures the total time cost of (parallel) data shipm®/e define grocess
path Pof MRdARPQ to be a path from the coordinator to the reducer, passinggesin
mapper (see Fig. 3.11). The cost of a process pahthe sum of thesize of input

Chapter 3. Distributed Graph Pattern Matching 71

datashipped to the nodes an following an edge ofi. TheECC of MRdRPQ is the
maximum cost over all process paths.

The ECC analysis unifies the time and network traffic costs dflapReduce al-
gorithm. It does not count the in-memory computation costhefMap and Reduce
functions. Nevertheless, (1) any indexes and compressidmiques developed for
centralized graph query evaluation can be adopted by mapasmremarked earlier,
(2) further MapReduce steps can be used to implement bdhp and Reduce func-
tions, and (3) network traffic dominates the total compuotatime for real-life large
graphs [AU10].

For algorithmMRdRPQ, one can verify the following. (1) The input size of each
mapper is bounded b@(|Fy|), whereFy, is the largest fragment returned byrG.
(2) The input size of the reducer is bounded®R|?|V¢|?), whereVs is the set of
nodes in the fragment graghs. Putting these together, tHeCC of mapRPQ is
O(|Fnl + [RIZV4 2.

3.4 Experimental Evaluation

We next present an experimental study of our distributedrélgns. Using real-life

and synthetic data, we conducted four sets of experimeetslaate the efficiency and
communication costs of algorithmissReach (Section 3.2.1)disDist (Section 3.2.2),

disRPQ (Section 3.2.3) and thdapReduce algorithmMRdRPQ (Section 3.3) on Ama-

zon EC2.

Experimental setting. We used the following data.

(1) Real-life graphs For (bounded) reachability queries, we used the followir{g)
a social networK.iveJournal, (b) a communication networlikiTalk, (c) two Web
graphsBerkStan andNotreDame, and (d) a product co-purchasing netwdvkazon.
The sizes of these graphs are shown in Table 3.2.

For regular reachability queries, we used the followingphsawith attributes on
the nodes: (afitation?, in which nodes represent papers with id and venue, and edges
denote citations, (HYIEME®, a blog network in which nodes are Web pages and edges
are links, (c)Youtube?, a social network in which each node is a video with attribute

Lhttp://snap.stanford.edu/data/index.html
2 http://www.arnetminer.org/citation/
3http://netsg.cs.sfu.calyoutubedata/

Chapter 3. Distributed Graph Pattern Matching 72

dataset V| |E|
LiveJournal | 2,541,032 20,000,001
WikiTalk | 2,394,385| 5,021,410
BerkStan 685,230 | 7,600,595
NotreDame | 325,729 | 1,497,134
Amazon 262,111 | 1,234,877

Table 3.2: Size of graphs : (bounded) reachability queries

(e.g.,category), and each edge indicates a recommendation, ahdehet 4, where
each node is a system labeled with its id and location, anuedge represents internet
connection. The datasets are summarized below, whei®the size of node label set,
andcard(F) is the number of the fragments generated for regular redtgajueries
(see below).

dataset V| |E| IL| | card(F)
Citation | 1,572,278 2,084,019 6300 10
MEME | 700,000 | 800,000 | 61065 11
Youtube | 234,452 | 454,942 12 12
Internet | 57,971 | 103,485 | 256 10

Table 3.3: Size of graphs : regular reachability queries

(2) Synthetic dataWe designed a generator to produce large graphs, comnttnfliéne
number|V| of nodes, the numbeE| of edges, and the sizk| of node labels.

(3) Graph fragmentation We randomly partitioned real-life and synthetic graghs
into a set~ of fragments, controlled byard(F) and the average size of the fragments
in F (the sum of the numbers of nodes and edges), denoteddi¥). Unless stated
otherwisesize(F) = |G| /card(F).

(4) Query generatar We randomly generated (a) reachability queries, (b) bednd
reachability queries with bounld and (c) regular reachability queries from a keif
labels.

(5) Algorithms We implemented the following algorithms in Java: (&i}Reach,
disReach, anddisReach,, for reachability queries, where (djsReach, ships all the

4http://www.caida.org/data/

Chapter 3. Distributed Graph Pattern Matching 73

fragments to a coordinator in parallel, which calls a cdizied BFS algorithm to
evaluate the query [YC10]; and (ld)sReach,,, a message-passing based distributed
BFS algorithm following [MAB™10] (see details below); (BJisDist anddisDist,, for
bounded reachability queries, whet&Dist, is similar todisReach,; (C) disRPQ,
disRPQ, anddisRPQq for regular reachability queries, whed&RPQ, is similar to
disReach,, anddisRPQq is a variant of the algorithm of [Suc02] (see Section 3.1y an
(D) the MapReduce algorithmMRdRPQ.

Following [MAB*10], algorithmdisReach,, assigns a workeg for each fragment
F, and a masteg; that maintains the fragment graph. (i) Each nadethe fragments
has a status(v) € {inactive,active}, initially inactive. (ii) A messageT” can be sent
only from activenodesv; (i.e., I(v1) = active) to theirinactive children y (i.e., I(v2)
= inactive), which then becomactive (iii) no activenode can becomeactiveagain.
(iv) § can sendT”, “idle”, or avirtual nodeof F; as a message &.

Upon receiving a reachability quety(s,t), & postsq, to all the workersS. For
the fragment; that contains the nodespecified ing,(s,t), its workerS changed(s)
to active, and sends a message to its immediate inactive children, which in turn
propagateT” following a BFS traversal to inactive nodes. During the propagation, (i)
if “T” reaches an inactive virtual nogie§ sends a messagdo S, which redirects the
message to workelS; where the fragments; has inactive in-nodg; S; then makes
Vv active, and propagates” along the same lines ifj; (ii) if “T” reaches the nodein
ar(s,t), S sends message” to &, and algorithmdisReach,, returnstrue, indicating
thatq,(s,t) = true; and (iii) when no message is propagatingSnit sends message
“idle” to &. AlgorithmdisReach,, returnsfalse if all the workers senddle” to it.

Machines We deployed these algorithms on Amazon EC2 High-MemorytDeEx-
tra Large instancés

Each site stored a fragment. Each experiment was run 5 tintetha average is
reported here.

Experimental results. We next present our findings.

Exp-1: Efficiency and scalability of disReach.

Efficiency. We first evaluated the efficiency disReach, disReach,, anddisReachy,.

Fixing card(F) = 4, we randomly generated 100 reachability queries (wheyeral
30% return “true”), and report the average evaluation time e network traffic in
Table 3.4. The results show thdisReach is far more efficient thamlisReach, and

Shttp://aws.amazon.com/ec2/

Chapter 3. Distributed Graph Pattern Matching 74

Time(second) Traffic(MB)
Datasets
disReach | disReach, | disReach,, || disReach | disReach, | disReach
LiveJournal 12.03 27.52 186.55 174 1800 27
WikiTalk 3.32 9.95 41.42 80 726 19
BerkStan 3.25 8.51 40.31 29 555 11
NotreDame 0.83 3.77 13.32 14 147
Amazon 0.55 2.55 7.86 10 120 5
Table 3.4: Efficiency and data shipment: real life data
500 T, T T T T T T T 30 i T T T T T
disReach, —— - disReach, —— L
_.400 - disReach < - _. 25 disReach < -
2 disReach--- £ - 2 59l disReach K- 1
S 300 - 3
3 & 15]
£ 200, 1 £ 1 |
NS, S S SR Sy S e S g < 0§¥§é¥>‘<>‘<*>ﬁ><
2 4 6 8 1012 14 16 18 20 35K 75K 115K 155K 195K 235K 275K 315K
(a) varying fragment number (b) varying fragment size
1000 T T T T
disReach, —— B
—~ 800} disReach---><--- -
2
[e) _|
E, 600 [.
2 400 .
=
200 + B

) e S
10 12 14 16 18 20
(c) varying fragment number

Figure 3.12: Efficiency and Scalability of disReach

disReach,,. For example, orAmazon, disReach takes only 20% of the running time
of disReach,, and 6% of that oflisReach,,. On the real datasets it takes 4 seconds in
average.

For the network traffic otlisReach,,, we counted the total number of messages
sent between the workers and the master. Table 3.4 shows thagrage, the network
traffic of disReach is only 9% of that otlisReach, (i.e.,the size of the original graphs),
but is not as good as that dfsReach,,. Indeed, the data shipment di&Reach,, is
linear in the number of the total virtual nodes. Howevers ti@duction comes at the

Chapter 3. Distributed Graph Pattern Matching 75

14 - disDist, — -+
12 disDist —-—>¢--- 1
2
S 10}
>
g 8F.

(O] 6 Y

£ S

= ap TN i
2 | KoK
0 | | | | | | | |

2 4 6 8 10 12 14 16 18 20
(a) varying fragment number

Figure 3.13: Efficiency of disDist

cost of serializing operations that can be conducted inledras indicated by its extra
running time (Table 3.4). Moreover, it has no bound on the Ioemof visits to each
site; for instance, whetard(F) = 4 onAmazon, the four sites were visited about 2500
times in total.

Scalability. To evaluate the scalability wittard(F), we used.iveJournal as the dataset
and variectard(F) from 2 to 20. We used the same set of queries as above. Figa}.12
shows that the largetard(F) is, the less timelisReach and disReach, take. For
disReach, this is becaus@artial evaluationof localEval takes less time on smaller
fragments. FodisReach,, while the evaluation time on the restored graph remains sta
ble (about 10 seconds), it takes less time to ship each fragiméhe coordinator when
card(F) increases. In contrast, the largeird(F) is, the more costlydisReachy, is.
Indeed, smaller fragments require more frequent visitsthng, more communication
cost.

To evaluate the scalability with the average(F) of fragments, we generated syn-
thetic graphs following thdensification lawWLKFO07], by fixing card(F) = 8 and vary-
ing the size of the graphs from 280K td2M. As shown in Fig. 3.12(b), whesize(F)
is increased, so is the running time of all these algoritraesxpected. Nonetheless,
disReach scales well wittsize(F), and is less sensitive tize(F) than the others.

We also testedisReach anddisReach,,, over a larger synthetic graph, which has
36M nodes and 360M edges. We variedd(F) from 10 to 20 in 2 increments.
The results, shown in Fig 3.12(c), tell us the following. ¢isReach scales well with
card(F), and takes less time over largerrd(F), and (2)disReach,, takes more time
whencard(F) gets larger. The results are consistent with the observafibig 3.12(a).

Exp-2: Efficiency of disDist. This set of experiments evaluated the performance of
disDist anddisDist,. UsingWikiTalk, we variedcard(F) from 2 to 20, and randomly

Chapter 3. Distributed Graph Pattern Matching 76

generated 100 bounded reachability queries Wwith0. Fig. 3.13(a) shows that (1)
disDist outperformsdisDist, by 62.5% in average, and (d)sDist anddisDist, take
less time over largetard(F), for the same reason as given above.

The performance afisDist anddisDist,, (not shown) are consistent with their coun-
terparts disReach anddisReach,).

Exp-3: Efficiency and scalability of disRPQ.

Efficiency. The third set of experiments focused on the performance gariéhms
disRPQ), disRPQ, anddisRPQq [Suc02], for regular reachability queries. We specify
the complexity of such a query in terms @¥q|, |Eql,|Lq|), WhereVgy, Eq andLq are
the sets of states, transitions and node labels in its qugoyreaton, respectively (see
Section 3.2.3).

We first evaluated the response time and network traffic aetregorithms on
the four real-life datasets described earlier, wWith |E|, |L| andcard(F) given there.
We generated 30 regular reachability queries With| = 8,|Eq| = 16,|Lq4| = 8), and
report their average time (resp. network traffic) in Fig.43a) (resp. Fig 3.14(b)). We
find the following: (1)disRPQ is more efficient tharisRPQ,, anddisRPQgq; indeed,
the running time ofdisRPQ is 61.8%, 88%, 64.8% and 56.6% of that d$RPQq
on Youtube, MEME, Citation and Internet, respectively; and (2JisRPQ incurs less
network traffic than the other algorithms: at most 25% of dditgpped bydisRPQq
and 3% of that oflisRPQ, in average.

To evaluate the impact of query complexity, we usdtube and generated 40
regular reachability queries by varyird,| from 4 to 18 andEy| from 8 to 36, while
fixing |Lq| = 8. Fig. 3.14(c) shows that (1) all the algorithms take lortgeanswer
larger queries, and (2)isRPQ anddisRPQq are less sensitive to the size of queries
thandisRPQ,,.

Scalability. We generated synthetic graphs by fixiceyd (F) = 10 while varying the
size of the graphs from 350K taITBM. We tested 30 queries withi| = 8, |Eq| = 16
and |Lq| = 8, and report the average running time in Fig. 3.14(d). Tiselteshows
thatdisRPQ scales well wittsize(F), and performs better thatisRPQq anddisRPQ,,.
Moreover, itis efficientdisRPQ takes 16 seconds on graphs witBM (million) nodes
and 21M edges. In addition, the largsiee(F) is, the longer the three algorithms take,
as expected.

To evaluate the scalabilityard(F), we generated graphs with2M nodes and
4.8M edges, and variechrd(F) from 6 to 20. As shown in Fig. 3.14(e), the larger

Chapter 3. Distributed Graph Pattern Matching

140

disl'?P x'zzz ' '
120 - disrP 7
100 - disRPQ mumm— -

80 -

60 -
40 -
20 -
Eﬁhx &
0

YoutubeMEME CitationInternet
(a) regular reachability

Time(Second)

35

disRPQ — -
- disRPQ) --->¢--- .

S

I S ity s il

(4,8) (6,12) (8,16)(10,20)12,24(14,28)16,32)18,36)

Time(second)
N N W
(6] P o o

el

=
o

(c) varying query complexity

140 Mi

disRPQ, —+— |
disSRPQ ¢~ |
disRPQ K- |

200 - >< --SCisg s o
6 8 10 12 14 16 18 20
(e) varying fragment number

d

=
D ® O N
o O O o
T T
[

Time(second)

N
o
//
X
!
!
1
U

Network traffic(MB)

77

104 T | — T T
disRPQ, kExx=
108 F disRP _
disRPQ
10° - .
10' - .
10 - : s ‘ E% T
S S o
10 - -
YoutubeMEME Citation Internet
(b) network traffic
T T T T T T
100 | 4iSRPQ ——
. disRPQ --->¢---
2 g0 | disRPQ - P
3 X
3 v
@ 60F X y
o} .
E 40) KT
20 S KT .
/%* 1 1 1 1
35K 75K 115K 155K 195K 235K 275K 315K
(d) varying fragment size
35 T T T T
301 disRPQ —— |
. disRPQ ---><---
L 25+
2
3 20
g1
i~ 10
5 -
O 1 1 1 1

(f) varying fragment number

Figure 3.14: Efficiency and scalability of disRPQ

card(F) is, the less timelisRPQ takes, since it conducts partial evaluation on smaller

fragments by exploring parallel computation. This confimos complexity analysis
for disRPQ (Section 3.2.3). Indeed, the time taken &iyRPQ whencard(F) = 6 is
reduced by 75% wheeard(F) = 20. Similarly,disRPQq anddisRPQ, take less time

whencard(F) is increased.

In addition, we evaluated the scalability @6RPQ anddisRPQq over large syn-
thetic graphs. FixingV| = 36M, |E| = 360M and|L| = 50, we variedcard(F) from
10 to 20 in 2 increments. As shown in Fig 3.14(f), (1) both alfpons scale well
with card(F), and take less time whefard(F) increases; and (2)isRPQ consistently

Chapter 3. Distributed Graph Pattern Matching 78

120 70

110 [MRIRPQ+HQ] —+—] " MRARPQHQ] —+—
_ MRARPQ+[Q] - 60 MRARPQ+[Q] -
S 100 MRARPQ+[Q] - ¥ - 7 iz . MRARPQ+[Q] ---3%¢---
§ 90 IMRARPQ+[Q] - o § 50 . MRARPQ+[Q] I 1
@ 80 - BE :< @ 40 %B _
o /0 e = KT 9] R
£ eolk KooK o E 307 AR
— s N K=~ —

SO % 20

40F

30’ 10 | | | |

35K 75K 115K 155K 195K 235K 275K 315K 5 10 15 20 25 30
(a) varying fragment size (b) varying mapper number

Figure 3.15: Efficiency of MRARPQ

outperformslisRPQyq.

Exp-4: Efficiency of MRdRPQ. Finally, we evaluated the efficiency and scalability of
MRdRPQ), implemented usingiadoop (http://hadoop.apache.ojgand deployed on
Amazon EC2, where each instance serves as a mapper. Weuwtsée and four sets
of qrr Q1, Q2, Q3,Q4 of different complexities4,6,8), (6,8,8), (10,12,8), (12,14,8),
respectively.

To evaluate the scalability ®1RdRPQ, we fixed the number of mappers as 10, and
varied the graph size from 350K tol®M. As shown in Fig. 3.15(aMRdRPQ scales
well with size(F). Moreover, the largesize(F) is or the more complex a query is, the
longer timeMRdRPQ takes, as expected. To evaluate its scalability with theb®rm
IM| of mappers, we varietM| from 5 to 30. As shown in Fig. 3.15(b), it takes less
time of MRdRPQ to evaluate queries with more mappers. Indeed, the timanthke
MRdRPQ using 5 mappers is reduced by 50% when 30 mappers are us@gl. for

We also find thatlisRPQ takes 17.4% of the running time MRdRPQ and 3.7%
of its network traffic onYoutube. The extra cost oMRdRPQ is incurred in the Map
phase of théMapReduce framework, for distributing data to mappers.

Summary. From the experimental results we find the following. (1) Alllaur algo-
rithms scale well with the size of graphs, the number of fragts, and the complexity
of queries (fordisRPQ andMRdRPQ). (2) Our algorithms are efficient even oan-
domlypartitioned graphs. For instance, (BgReach takes 20% and 6% of the running
time ofdisReach,, anddisReach,, overAmazon, and takes in average 4 seconds over all
real life datasets; and (H)sRPQ takes 67.8% and 46% of the timed$RPQq [Suc02],
and ships 47.9% and 45.9% of the data sentlisRPQq, on real-life and synthetic
graphs in average, respectively. Overall our algorithnig sb more than 11% of the

Chapter 3. Distributed Graph Pattern Matching 79

entire graphs in average. (3) Partial evaluation works methe MapReduce model,
as verified by the performance BIRdRPQ.

3.5 Related Work

We categorize related work as follows.

Distributed databasedA variety of distributed database systems have been daeselo
(1) Distributed relational databases (see [OV99]) carestppaphs in distributed rela-
tional tables, but do not support efficient graph query eatidn [F.C08, DHJ07]. (2)
Non-relational distributed data storage manage diseibdata via various data struc-
tures,e.g.,sorted map [Cha08], key/value pairs [DH7]. These systems are built
forprimary-key only operations [F.C08, DHQ7], or simple graph querieg.Q.,de-
gree, neighborhood) but do not efficiently support distributed reachabilityeges.
(3) Distributed graph databases. Neébds a graph database optimized for graph
traversal. Trinity and HyperGraphDBare distributed systems based on hypergraphs.
Unfortunately, they do not support efficient distributeeular) reachability queries.
Closer to our work is Pregel [MAB10], a distributed graph querying system based
on message passing It partitions a graph into clusters,&ladts a master machine to
assign each part to a slave machine. A graph algorithm al{ejvéhe nodes in each
slave machine to send messages to each other, and (b) thexr mashine to commu-
nicate with slave machines. Several algorithms (distaette) supported by Pregel
are addressed in [MABL0]. Similar message-sending approaches are also dedelope
in [GLO5]. These algorithms differ from ours as follows. (a)contrast to our al-
gorithms, the message passing model in Pregel may ser@eeations that can be
conducted in parallel, and have no bound on the number @a$v¥seach site, as shown
by our experimental study (Section 3.4). (b) How to suppegtiar reachability query
is not studied in [MAB 10]. On the other hand, the techniques of Pregel can be com-
bined with partial evaluation to support local processihgeachability queries at each
site (see Section 3.2.1).

Distributed graph query evaluatioseveral algorithms have been developed for evalu-
ating queries on distributed graphs (see [Kos00] for a syn{&) Querying distributed
trees [BCFKO06, CFKO7, AKO7]. Partial evaluation is used valeate XPath queries

Shttp://neodj.org/
" http://research.microsoft.com/en-us/projects/tyihit
8http://www.kobrix.com/hgdb.jsp

Chapter 3. Distributed Graph Pattern Matching 80

on distributedXML data modeled as trees [BCFK06, CFKO07], as well as for evialgiat
regular path queries [AKO7]. It is nontrivial, however, tetend these algorithms to
deal with (possiblycyclic) graphs. Indeed, the network traffic of [BCFK06, CFK07] is
bounded byhe number of fragmengnd the size of the query, in contrasthe number
of nodeswith edges to different fragments in our setting. Moreowes,study (regu-
lar) reachability queries, which are quite different frorRath. Finally, our algorithms
only visit each site once, while in [AKO7] each site may bated multiple times. (2)
Querying distributed semi-structured data [Suc02, ST@9, 6L05]. Techniques for
evaluating regular path queries on distributed, edgeld¢abeooted graphs are studied
in [Suc02] and extended in [ST09], based on message passimguaranteed that the
total network traffic is bounded hy?, wheren is the number of edges across different
sites. A distributedBFS algorithm is given in [Sev], which takes nearly cubic time in
graph size, and a table of exponential size to achieve arltimaa complexity, and is
impractical for large graphs. These differ from our algamst as follows. (a) Our al-
gorithms guarantee that each site is visiv@tly once as opposed ttwice[Suc02]. (b)
As remarked earlier, message passing may unnecessaidyizeepperations, while
our algorithms explore parallelism via partial evaluatigvhile an analysis of compu-
tational costis not given in [Suc02, ST09], We show expenitally that our algorithms
outperform theirs (Section 3.4).

There has also been recent work on evaluadRgRQLqueries on distributeBDF
graphs [FFP08], which is not applicaple to our setting du@jamo performance guar-
antees or complexity bounds are provided in [FFP08], andhg)jueries considered
in [FFPO8] are expressible FO, while we study (regular) reachability queries beyond
FO.

Chapter 4
Graph Pattern Matching Using Views

Answering queries using views has proven an effective tgctenfor querying rela-
tional data, XML and semistructured data. In this chapterjmwestigate this issue for
graph pattern matching based on (bounded) simulation,hiaee been increasingly
used in social network analysis. We propose a notiopadfern containmenb char-
acterize graph pattern matching using graph pattern viévesshow that graph pattern
matching can be answered using a set of views if and only ip&teern is contained in
the views. Based on this characterization we develop effi@korithms to compute
graph pattern matching. In addition, we identify three peats associated with graph
pattern containment. We show that these problems rangedt@dratic-time to NP-
complete, and provide efficient algorithms for containmaregcking (approximation
when the problem is intractable). Using real-life data aymtlsetic data, we experi-
mentally verify that these methods are able to efficientlsvear graph pattern queries
on large social graphs, by using views.

4.1 Introduction

Answering queries using views has been extensively studad relational
queries [Hal01, Len02, Hal00], XML [LWZ06, WLY11, WTWO09] drsemistructured
data [CGLV00, PV99, ZGM98]. Given a que@yand a set/ = {V1,...,Vn} of views,

it is to find another quenA such thatA is equivalent taQ, andA only refers to views
in ¢ [Hal00]. This yields an effective technique for evaluati@g if such a query
A exists, then given a databaBe one can compute the answ@(D) to Q in D by
usingA, which uses only the data in the materialized viéD), without accessing
D. This is particular effective wheb is large and/or distributed. It is also useful

81

Chapter 4. Graph Pattern Matching Using Views 82

Bob Walt ! DBA |Se:| Bob->Mat | |
& a i et Walt->Mat| 1
PM PM A ce.| Bob->Dan| | PM
/ \ N ®™*PRG Walt->Bill | !
Dan Mat Bill | Vi Vi(G) H
£ £ 5 | i | DBA1<—PRG:
PRG Jean DBA PRG i Fred->Pat | 1
__& ! Ses| Mat->Pat | !
BA i DBA Mary->Bill i
Emmy Mary i al Te" Dan->Fred| ! PRG1—>DBA:2
d Ffd Pat E PRG Pat->Mary E
ST - — oA | Sei| pat.>Mat | | (€)Pattern Qs
DBA PRG i Bill->Mat | 1
(a) Recommendation network G E \% V2(G) E

(b) Views V and V(G)
Figure 4.1: Data graph, views and pattern queries
in data integration [Len02], data warehousing, semantiticg [CR94], and access
control [FCGO04].

Example 4.1: A fraction of a recommendation network is depicted as a g@aph
Fig. 4.1 (a), where each node denotes a person with name hril¢o(e.g., project
managergM), database administrat@gA), programmergRG), business analyssA)
and software testest)); and each edge indicates collaboratiemy.,(Bob, Dan) indi-
cates thaban worked well withBob on a project led byob.

To build a team, a human resource manager issues a pattey{guell, TMO05].
The query, expressed &s in Fig. 4.1 (c), is to find a group afM, DBA and PRG.

It requires that (1)pBA; andPRG, worked well under the project managem; (2)
eachPRG (resp.DBA) had been supervised byoBA (resp.PRG), represented as a
collaboration cycle [LLT11] inQs. With pattern matching based on graph simula-
tion [FLM ™10, HHK95], the answeRs(G) to Qs in G can be denoted as a set of
pairs(e,S) such that for each pattern edgén Qg, S is a set of edges (a match set)
for ein G. For example, pattern edgem, PRG) has a match s& = {(Bob, Dan),
(walt, Bill) }, in which each edge matches the node labels and satisfiesrthedtivity
constraints of the pattern ed¢gem, PRG»).

It is known that it take®©(|Qs|?+ |Qs||G| + |G|?) time to computs(G) [HHK95,
FLM*10], where |G| (resp.|Qs|) is the size ofG (resp.Qs). This is a daunting
cost whenG is large. For example, to identify the match set of each pattelge
(DBA;,PRG;) (fori € [1,2]), each pair of @BA, PRG) in G has to be checked, and more-
over, a number gjbin operations have to be performed to eliminate invalid matche

We can do better by leveraging a setwéws Suppose that a set of views
v = {V1,Vz} is defined, materialized and cached (G) = {V1(G),V2(G)}), as
shown in Fig. 4.1 (b). Then as will be shown later, to compQ{éG), (1) we only

Chapter 4. Graph Pattern Matching Using Views 83

need to visit views in (G), without accessing the original large gra) and (2)
Qs(G) can be efficiently computed by “merging” views #(G). Indeed,? (G) al-
ready contains partial answers@q in G: for each query edge in Qs, the matches
of e (e.g.,(DBA1,PRG1)) are contained either i¥i1(G) or V2(G) (e.g.,the matches of
es in Vy). These partial answers can be used to cons@u@®). As a result, the cost
of computingQs(G) is quadratic in|Qs| and|v (G)

, where? (G) is typically much
smaller than G O

This example suggests that we conduct graph pattern matblyicapitalizing on
available views. To do this, several questions have to ktedet(1) How to decide
whether a pattern quelQs can be answered by a set of views? (2) If so, how to
efficiently computeQs(G) from 7 (G)? (3) Which views in” should we choose to
answerQg?

4.2 Preliminary

We first review graph pattern matching defined in terms of fatan. We then state
the problem of pattern matching using views.

4.2.1 Graph Pattern Matching Revisited

In this chapter we will use a different definition for data ga, which is extended
from the previous definition.

Data graphs A data graphis a directed grapt = (V,E,L), whereV, E are defined as
before , whileL is a function such that for each node V, L(v) is a set of labels from
an alphabek. Intuitively, L specifies the attributes of a nodeg.,name, keywords,
social roles [AYBBO7].

Pattern graphs. Thepattern graphs defined the same as in Chapter 1. While we shall
useQs to denote normal patterng., pattern graph withfg(e) = 1 for eachein Qs, to
distinguish a regular patter@,, with edge bound specified bfg(e). More notions
used in the chapter are summarized in Table 4.1.

We next define graph pattern matching via simulation asviotg.

Graph pattern matching via simulatiokVe say that a data grajgh= (V, E, L) matches
a queryQs = (Vp, Ep, fy) via simulation denoted byQs <sim G, if there exists a binary
relationS C Vp x V such that (1) for each nodec Vy, there exists a nodec V such

Chapter 4. Graph Pattern Matching Using Views 84

symbols notations
V (resp.Vp) node set in graph (resp. pattern query)
V (resp.V(G)) a view definition (resp. extension)
v =(V1,...,Vpn) a set of view definitions
v (G) = (V1(G),...,Vn(G)) a set of view extensions
|Qs| (resp.|Qp)) size of quenQs (resp.Qp)
Qs(G)| (resp.|Qy(G)]) | size of query resul,(G) (respQy(G))
|7 | size of a set of view definitions
card(7) cardinality of 7/
Qs<LsimG (resp.QbﬁsBimG) graph simulation (resp. bounded simulatjon)
Qs C v (resp.Q, C %) Qs (resp.Qp) is contained inv
MSS (resp.MSb) view match from a view/ to Qs (resp.Qp)

Table 4.1: Notations: graphs, pattern queries and views
that(u,v) € S, referred to as enatchof u; and (2) for each paifu,v) € S, f,(u) € L(v),
and for each pattern edge= (u,U’) in Ep, there exists an edde,V') in E, referred to
as amatchof ein S, such tha{u’,V) € S. We refer toSas amatchin G for Q.

When Q:<im G, there exists ainigue maximunmatchS, in G for Qs [HHK95].
We derive{(e,S) | ec Ep} from &, whereS is the set of all matches efin &, called
the match seof e. Note thatS, is nonemptyfor all e € Ej,.

We define theesultof Qs in G, denoted af)(G), to be the unique maximum set
{(6S) | e€ Ep} if Qs<IsimG, and letQs(G) = 0 otherwise. We define the size of
queryQs, denoted byQs|, to be the total number of nodes and edgeQdnand the
size|Qs(G)| of resultQs(G) to be the total number of edges in s&dor all edgese
in Qs (see Table 4.1).

Example 4.2: Consider the pattern que@s shown in Fig. 4.1 (c), where each pattern
node carries a search condition (job title), and each pettgge indicates collaboration
relationship between two people. Wh@gnis posed on the netwoi® of Fig. 4.1 (a),
the resuliQs(G) is shown in the table below:

Indeed, (1) botiBob andwalt are matches of pattern no@e! as they satisfy the
search condition afm; similarly, Fred, Mat, Mary are matches dfBA, andDan, Pat, Bill
are matches afRG; (2) query edgéPM, DBA;) has two matches i®; and (3) query
edges(DBA;, PRG1) and (DBAz, PRG2) (resp.(PRG1,DBA2) and (PRG2,DBA1)) have
the same matches, as they are “structural equivalent”.

Chapter 4. Graph Pattern Matching Using Views 85

Edge Matches
(PM, DBA7) {(Bob, Mat), (Walt, Mat) }
(PM, PRG2) {(Bob, Dan), (Walt, Bill) }

DBA1, PRGq1
{(Fred, Pat), (Mat,Pat), (Mary, Bill) }

()
(DBA2, PRG2)
(PRG1, DBA) {(Dan, Fred), (Pat, Mary),
()

PRG2,DBA; (Pat, Mat), (Bill, Mat) }

4.2.2 Graph Pattern Matching Using Views

We next formulate the problem of graph pattern matchinggsgiews. We studyiews
V defined as a graph pattern query, and refer to the query N@altin a data graph
G as theview extensioim G or simply as aview[Hal00].

Given a pattern quer@s and aset? = {V1,...,Vn} of view definitions,graph
pattern matching using views to find another quenA such that (1)A is equivalent
to Qs, i.e., AG) = Qs(G) for all data graphss; and (2)A only refers to views/; € v
and their extensiong (G) = {V1(G),...,Vn(G)} in G, without accessin. If such a
gueryA exists, we say thas can be answered usirg.

Observe that in contrast to query rewriting using views [M&but along the same
lines as query answering using views [Len02], h&rs not required to be a pattern

query.

Example 4.3:Figure 4.1 (b) depicts a set of view definitioms= {V1,V>} and exten-
sions? (G) = {V1(G),V2(G)}. To answer the quer§s of Fig. 4.1 (c) using/, we
want to find a query of Qg that computef,(G) by using only? and? (G). HereA
Is not necessarily a graph pattern. O

For a setr of view definitions, we define the size’| of 7 to be the total size of
Vi'sin ¢, and the cardinalitgard(7) of 9 to be the number of view definitions ir.

Remark. (1) We assumev.l.0.g.that pattern graphs are connected, since isolated pat-
tern nodes are be easily handled using the same matchingsen(a) Our techniques
can be readily extended to graphs and queries with edgesldbdeed, an edge labeled
graphG = (V,E, L, fe), wheref. is a function that labels edgeskncan be transformed

to beG' = (V/,E’,L’) such thalv CV’, E C E’ and for each edge= (u,u) € E, a

new nodeve with L'(ve) = fe(e) is included inV’, along with edges$u, ve) and(ve, U')

Chapter 4. Graph Pattern Matching Using Views 86

Input: A pattern quenQs, a set of view definitions’
and their extensiong’ (G), a mappingh.
Output: The query resulM asQs(G).

1. for each edgein Qs do S :=0;

2. M ={(eX) | ecQs};

3. foreachee Qg do

4 foreache e A(e) d0 S =S USs;

5. while there is change i, for an edgesp = (u,u”) in Qs do
6 foreache= (U,u) in Qs and€ = (V,v) € S do

7 if there ise; = (U, up) but no€} = (V,v1) in §, then

8

9

S =S\ {e}
if there ise; = (u,uz) but no€, = (v,v2) in &, then
10. S =S\ {¢};

11. if S =0then return 0,
12.return M = {(e %) | e€ Qs}, which isQs(G);

Figure 4.2: Algorithm MatchJoin
in E’.

4.3 Pattern Containment; A Characterization

In this section we propose a characterization of graph patt@tching using views,
i.e., a sufficient and necessappndition for deciding whether a pattern query can be
answered by using a set of views. We also provide a quadratec-algorithm for
answering pattern queries using views.

Pattern containment We introduce a notion of pattern containment, by extending
the traditional notion of query containment to a set of vie@ensider a pattern query
Qs = (Vp, Ep, fv) and aset’ = {Vq,...,Vn} of view definitions, wher&/; = (Vj, E, fj).

We say thatQs is containedin 7/, denoted byQs C 4/, if there exists a mapping

A from E, to powersetP(Uie[l’n] Ei), such that for all data grapl, the match set

S C Ueene) S for all edgese € E,.

Example 4.4: Recall graphG, views v = {V1,V2} and queryQs from Example 1.
ThenQs C 7. Indeed, there exists a mappikdrom the edges i, to sets of edges
in 7, which maps edge®Mm, DBA;), (PM, PRG>) of Qs to their counterparts ik1; and

Chapter 4. Graph Pattern Matching Using Views 87

both (DBA1,PRG1) and(DBAy, PRG2) of Qs to edgees in V5, while (PRG1,DBA2) and
(PRG2,DBA1) to &4 (see Fig. 4.1(b)). One may verify that for all grapsand any
query edgee of Qs, its matches irG are contained in the union of the match sets of
the edges in\(e). For example, the match set of pattern edgBA;, PRG1) in G of
Fig. 4.1(a) is{ (Fred, Pat), (Mat, Pat), (Mary, Bill) }, which is contained in the match set of
the view edg€DBA, PRG) of V2 in G. O

Note that the traditional notion of query containment [AHB]%s a special case
of pattern containment, whewr consists of a single view;, as will be elaborated in
Section 4.4.

Pattern containment and query answering The main result of this section is as
follows: (1) pattern containment indeed characterizegepaimatching using views;
and (2) whemQs C /, for all graphsG, Qs(G) can be efficiently computed by using
views 7 (G) only, independent ofG|. In Sections 4.4 and 4.5 we will show how to
decide whethe®, C 7 by inspectingQs and+’ only, alsoindependent ofG|.

Theorem 4.3.1 (1) A pattern query® can be answered using viewsif and only if
Qs C #. (2) For any graph GQs(G) can be computed in @Qs|| 7V (G)| + |7 (G)|?)
timeifQs C 7.

Proof of Theorem 4.3.1(1) We provide a detailed proof.

(I) We first prove theOnly If direction. Observe that the condition already holds for
any data grapl@ that does not matcRs. Indeed, ifG does not matcls, then (1)
Qs C 7, we can define a mappirigthat maps each edgein Qg to an arbitrary edge
€inv,andS=0C Ueene S, and (2)Qs can be answered using by simply
removing all the matches fromi (G), yieldingQs(G) = 0.

We now prove thénly If condition for all data graph& that matchQg, by con-
tradiction. Assume tha®s can be answered using, while Qs [Z 7. By definition,
Qs Z 7 indicates that for some data gra@tthat matchef), there exists no mapping
A such thats € Ugep) S for all edgeein Qs, where€' is an edge in somé; € 7/,
Thus, there must exist at least an eggén G such thagk, is in S; for some edge in
Qs, but itis not inSy for any € € A(e). That is,e, cannot be included i&y for any
€ € A(e). Hencee, is not contained iV;(G) for anyV; € /. This contradicts the
assumption tha® can be answered using oniy, since at least the edgg is missing
from v (G).

Chapter 4. Graph Pattern Matching Using Views 88

Thus,Qs can be answered usirg only if Qs C 4.

(I The If condition states that iQs C 7/, Qs can be answered using. Algo-
rithm MatchJoin has been provided as an constructive proof. We showMhbath Join
is correct.

Denote the match set i@ as § for each edges in Q. It suffices to show the
correctness oMatchJoin by proving the following two invariants it preserves: (1) at
any time, for each edgeof Qs, § C &; and (2)S = § whenMatchJoin terminates.
For if these hold, theMatchJoin never misses any match or introduces any invalid
match when it terminates. We next prove the two invariants.

Proof of Invariant(1) . By Qs C 7/, there exists a mappingsuch that C Uge(e) -
Algorithm MatchJoin takes as inpuk, Qs and ¥ (Fig. 4.2). (1) For each edgein
Qs, it initializes S by mergingSy for all € € A(e). HenceS; C S due toQs C 7.
(2) During thewhile loop (lines 5-10, Fig. 4.2)MatchJoin repeatedly refine&: by
removing invalid matches that are no longer valid accordintpe definition of graph
simulation. More specifically, for an edgg = (u,u”) in Qs with S, changed, the
matche® = (V,v) € S for all e= (U, u) in Qs become invalid if (a) there is an edge
er = (U,u1) in Qs but there exists no matav,v1) € S, (lines 7-8); or (b) there is
an edge=, = (u,uy) in Qs but there exists no matofv,v,) € S, (lines 9-10). Note
that (i) both cases indicate that at least a match becomakdnand (ii) there exist no
other cases that makes a match invalid, by the definitionagflysimulation. In other
words,MatchJoin neverremoves a true match, ameévermisses an invalid match by
checking the two conditions. ThuS; C S during the loop (lines 5-10).

Proof of Invariant(2). When MatchJoin terminates, either (1% becomes empty
(line 11), or (2) no invalid match can be found. SirgeC S during the loop (Invari-

ant (1)), if itis case (1), then for some edges; is empty. That isG does not match
Qs, andMatchJoin returns0 correctly. Otherwisei,.e., in case(2), all invalid matches
are removed (lines 7-10), ai®i = S: whenMatchJoin terminates, for alein Qs.

From the analysis above, the correctnesdMatchJoin follows. That is, thelf
condition is verified.
Putting these together, we have shown Theorem 4.3.1(1).

Proof of Theorem 4.3.1(2) As we have seen above, AlgorithdatchJoin correctly
compute€Qs(G) whenQs C . To complete the proof of Theorem 4.3.1(2), we pro-

Chapter 4. Graph Pattern Matching Using Views 89

vide the time complexity analysis for AlgorithiiatchJoin as follows.

(1) It takesMatchJoin O(|Qs|) time to initialize an empty result sé (lines 1-2).
MatchJoin next merges matches #(G) according to the mapping(lines 3-4). Note

that the size of\(e) is at mostz,,,, |V|, which is bounded byD(|7|). Hence the

merge process is i0(|Qs||7|) time.

(2) MatchJoin next iteratively removes invalid matches by conductirftxpointcom-
putation (lines 5-11). Given a matdl,v) in 7 (G), MatchJoin verifies its valid-
ity, i.e., whether it carries over tQs(G), in O(|% (G)|) time; this is because at most
Ze=(u,up)eEp ey + Zey—(uup)cE, S, Matches have to be inspected, which is bounded by
O(|% (G)|). To speed up the validity checkinlylatchJoin employs an index structure
1 as a hash-table, which keeps track of a set of key-value Raith key is a pair of
nodes(u, V), whereu is in Qs andv can matchu. Each value corresponding to the key
(u,v) is a set of pattern edges and their match set ga&irs (u,u;),S). The index
structure dynamically maintains the key-value pair: (I)dach node, if there exists
an edgee emitting fromu with S = 0, thenr1 (u,v) is set a®, and (2) given a match
(v,V) of e, if 1(u,v) is already empty, no further checking is needed, and) can
be removed front.. Following this, it takesMlatchJoin constant time to check the
validity of a match(V/,v).

Observe that when a match is removed fret(G), it will never be put backi.e.,
7 (G) is monotonically decreasingThus each match i’ (G) is processed at most
once. In addition, the index can be initialized inO(|Qs||7 (G)|) time. As a result,
thewhile loop (line 5) andor loop (line 6) together are bounded B[(G)|?) time.
Putting these togethevjatchJoin is in O(|Qs||7 (G)| + |7 (G)|?) time.

These complete the proof of Theorem 4.3.1.

Algorithm . The algorithm, denoted ddatchJoin, is shown in Fig. 4.2. It takes as
input (1) a pattern quer®s and a set of view definitions’ = {V1,...,Vp}, (2) a
mappingA for Qs C ¢ (we defer the computation @f to Section 4.5); and (3) view
extensiong’ (G) = {V;(G) |i € [1,n]}. In a nutshell, it computeQs(G) by “merging”
(joining) viewsV;(G) as guided by\. The merge process removes those edges that
are not matches ds. When such edges are removed, more matches are found
invalid for Qs, and are propagated to further eliminate invalid matchdss process
proceeds untia fixpointis reached an@;(G) is correctly computed.

More specifically, algorithnmiviatchJoin works as follows. It first initializes, for

Chapter 4. Graph Pattern Matching Using Views 90

. DB;->Al
Se;|Al,->Bio; Se; DBi->AI§
Al;->SE;
Se,|PM;->Al, Sey Al->SE,
Se SE,->DB,
(b) View definitions and extensions >|SE,->DB,

Figure 4.3: Answering pattern queries using views

each pattern edgeof Qs, an empty match s& (line 1), and addée, &) toM (line 2).
Recall thaiA (e) is a set of edges from such thatS, C Ugcp) S¢- MatchJoin lets &

= Ueene) S WhereSy is extracted fromy (G) (lines 3-4). It then performs a fixpoint
computation to remove all invalid matches fr@n(lines 5-10). More specifically, for
a pattern edge, = (u,u”) in Qs with changed match s&,, it checks for each edge
e= (U,u) in Qs, whethere' = (V,v) is a match of, i.e., whether for each edge =
(U,u1) (resp.e2 = (u,u2)) in Qs, there exists a mataiv,vi) € &, (resp.(v,v2) € &)
(line 7) (resp. line 9). If¢ violates the conditions, it is no longer a match, and is
removed fromS; (lines 8,10). In the process, & becomes empty for some edge
MatchJoin returns0 sinceQs has no match is. Otherwise, the process (lines 5-11)
proceeds untiM=Q(G) is computed and returned (line 12).

Example 4.5:Recall graplG, queryQs, view definitions?”’ and their extensions (G)
shown in Fig. 4.1. ThemMatchJoin can evaluat€)s by using? and ¢ (G). The
algorithm takes as an input the mappmgiven in Example 4.4. One may verify that
in this case, for each edgeof Qs, its match se& in G is exactlylUgcp e Se- From
this Qs(G) is obtained, which is the same as the result shown in Example 4

Edge Matches Edge Matches

(PM,Al) | (PM1,Al2) | (Al,Bio) | (Al2,Bios)

(DB,Al) | (DB1,Al2) || (AI,SE) | (Al2,SE2)

(SE,DB) | (SE2,DB1)

Consider another example shown in Fig. 4.3. One can v&dfiy ¥ here, with a
mapping\ that mapgAl, Bio) and(PM, Al) toe; andey in V1, respectively; an@Ds, Al),
(Al, SE) and(SE, DB) to e3, &1 andes in Vo, respectively. The algorithm initializés by
mergingV1(G) andV2(G). It finds that(Al1, SE1) is not a valid match of pattern edge

Chapter 4. Graph Pattern Matching Using Views 91

(Al,SE), since there exists no valid mat¢hi1,v1) in &,. Hence(Alq, SE1) is removed
from &,, which also leads to the removal (8E1,DB3) from S, and (DB, Alp) from
S, This yieldsQs(G) shown in the table above as the final result. O

Correctness & Complexity. To see thatMatchJoin correctly computes query result
Qs(G) by only using viewsy (G), we denote the match set efin G asS; for each
edgee in Qs, and show thaMatchJoin preserves the following two invariants: (1)
at any time, for each edgeof Qs, S C &, and (2)S = S whenMatchJoin termi-
nates. IndeedS: is initialized with Ue,e)\(e) S, and sinces C 7/, S € S. During
thewhile loop (lines 5-10)MatchJoin only identifies and removes those edges from
S that are not valid matches ef EachS; is refined until all invalid matches are re-
moved (lines 8,10), and hen& = S when the algorithm terminates. From these the
correctness oiatchJoin follows.

For the complexity, it take®(|Qs|) time to initializeM (lines 1-2) andD(|Qs||7|)
time to merge matches accordingXkdlines 3-4). To efficiently process tHepoint
computationMatchJoin constructs an index structure which maps a paifu, v) (u €
Vp, v can matchu) to a set of pair§e = (u,u;),S) for each edggu,ur) € Qs, such
that(v,v1) € S.. For a nodey, if there is an edge emitting fromu with S = 0, then
1(u,v) = 0. One may verify that can be constructed @(|Qs||% (G)|) time. By using
1, MatchJoin identifies invalid matches by checking wheth€u, v) is 0. If 7(u,v) is
already empty, no further process (lines 7-10) is neelfadchJoin verifies the validity
of (V,v) in ¥ (G), in O(|~ (G)|) time, since at MOSEe, — (v u;)cE, Sy + Zep—(u,up) cEp S
matches have to be inspected, which are bounde@(y (G)|). Hence, thewhile
loop (line 5) is bounded b@(|7 (G)|?) time. Putting these togetheviatchJoin is in
O(|Qs]|7 (G)| + 7 (G)[?) time.

The analysis above completes the proof of Theorem 4.3.1.

Remark. It is known that computings(G) directly in G takesO(|Qs|* + | Qs||G| +
|G|?) time [FLM*+10]. In contrastMatchJoin is in O(|Qs||7 (G)| + |7 (G)|?) time,
withoutaccessings. As will be seen in Section 4.7/ (G) is much smaller tha,
andMatchJoin is more efficient than the algorithm of [FLM.O]. Indeed, forYoutube
dataset in our experiments, only 3 to 6 views are used to anQwend the overall
size of ¥ (G) is no more than 4% of the size of tiveutubegraph.

Optimization. To remove invalid matches, the fixpoint computationMdtchJoin
may visit eacts: multiple times. To reduce unnecessary visits, below wediuce an

Chapter 4. Graph Pattern Matching Using Views 92

optimization strategy foMatchJoin.

The strategy evaluaté€y by using aopological rankin Qs as follows. Given a pat-
ternQs, the strongly connected component gr&gjac of Qs is obtained by shrinking
each strongly connected compon8aKC of Qs into a single node(u). Thetopologi-
cal rank r(u) of each nodei in Qg is computed as follows: (a)u) = 0 if s(u) is a leaf
in Gscc, whereu is in theSCC s(u); and (b)r(u) = max{(1+r(u)) | (s(u),s(U)) €
Escc} otherwise. Herdscc is the edge set of th6scc of Qs. The topological rank
r(e) of an edgee = (U, u) in Qs is set to be (u).

Bottom-up strategyWe reviseMatchJoin by processing edgesin Q following an as-
cending order of their topological ranks (lines 5-11). Oray/verify that this “bottom-
up” strategy guarantees the following for the number oftvisi

Lemma 4.3.2:For all edges e SU/,u), where dand u do not reach any non-singleton
SCCin Qs, MatchJoin visits its match sets&t most once, using the bottom-up strategy.
O

Proof of Lemma 4.3.2 We show Lemma 4.3.2 by contradiction. Assume that algo-
rithm MatchJoin visits an edge = (U, u) at least twice. We show that eithiiatchJoin
does not follow a bottom-up strategy in the rank order, oeastu or U’ reaches a non-
singletonSCC in Qs. To show this, we definetaaceas a sequendey, . .., e,) formed

by the edges if)s that MatchJoin visited in the process,e., it visits edgeey, ..., e,

one by one in this order (line 5). Assume that edge Qs is visited twice. Then there
must exisk<I| andk,| € [1,n] such thak = g = g. Nonetheless, this can only happen
in one of the following two cases.

(1) The ranks of the nodes in the trace are unordered. If edralce can be arbitrarily
large and any edgemay appear in the trace for multiple times. This contradicés
MatchJoin follows a bottom-up strategy and th@tis finite.

(2) The ranks of the nodes in the trace are ordedredfor anyi, j € [1,n], if i < j then
r(e) <r(ej). Thus, for anyi, j € [k,1],r(&) =r(ej), asr(e) =r(e) =r(e). Observe
thateis visited only wher; is changed (line 5), and only those edges “adjacen#’ to
(i.e., sharing an endpoint) are visited. Hence there must exisiast & sub-sequence
from some edge® (i > K) in the trace that corresponds to a cycleQg and all the
nodes in the cycle have the same rank. More specificallyere(d if k =i, edgeg

is in the cycle, and nodasandu’ are in a nontrivialSCC, or (b) if k > i, then the
nodeu’ must have at least a descendant in a nontr&al. Both cases lead to the

Chapter 4. Graph Pattern Matching Using Views 93

contradiction thati andu’ do not reach any non-singlet8&C in Qs.

HenceMatchJoin visits the edges iR that cannot reach any non-singleto@C
at most once, following the bottom-up strategy. Lemma 4tl3u® follows.

In particular, wherQs is aDAG pattern queryi(e., acyclic), MatchJoin visits each
match set at most once, and the total visits are bounded byutinéer of the edges in
Qs. As will be verified in Section 4.7, the optimization strateémproves the perfor-
mance by at least 46% ovBAG patterns, and is even more effective over denser data
graphs.

Example 4.6: Consider the patter@s and the viewsy = {V1,V>} shown in Fig. 4.3.
The topological ranks of the nodes @ arer(Bio) =0, r(bB) =r(Al) =r(SE) =1
andr(PM) = 2. Thus we visit(Al, Bio), (Al, SE), (SE,DB), (DB,Al) and(PM,Al) in this
order. O

4.4 Pattern Containment Problems

We have seen that given a pattern qu@cyand a set” of views, we can efficiently
answerQs by using the views whefQ; C 7/, provided a mapping from Qs to 7. In
the next two sections, we study how to determine whefhér 7 and how to compute
A. Our main conclusion is that there are efficient algorithorgliese, with their costs
as a function ofQs| and| v’ |, which are typically small in practice, and anelependent
of data graphs and materialized views.

More specifically, in this section we study three problemsannection with pat-
tern containment, and establish their complexity. In the section, we will develop
effective algorithms for checkin@s C 7 and computing\.

Pattern containment problem. The pattern containment problens to determine,
given a pattern quers and a set’ of view definitions, whethe®; C 7. The need
for studying this problem is evident. Theorem 4.3.1 tellghat Qs can be answered
by using views ofy ifand only if Qs C 4.

The result below tells us th&l; C 7 can be efficiently decided, in quadratic-time
in |Qs| and| 7’ |. We will prove the resultin Section 4.5, by providing suctaggorithm.

Theorem 4.4.1 Given a pattern querfQs and a set” of view definitions, it is in
O(card(7)|Qs|? + |7 |?+ |Qs| |7]) time to decide whethe®s T % and if so, to com-
pute a mapping from Qs to 7/, where| /| is the size of view definitions.

Chapter 4. Graph Pattern Matching Using Views 94

Proof of Theorem 4.4.1 As a constructive proof of Theorem 4.4.1, algoritbentain
has been presented (Section 4.5.1). It suffices to verifgdineectness and complexity
of algorithmcontain.

Correctness It suffices to show thatontain correctly checks the sufficient and nec-
essary condition given in Proposition 4.5i%k., whether the union of all the view
matches fromy’ “covers”Ep. Indeed, (1)xontain correctly computes the view match
for each view definition i, by using an algorithm to compute graph simulation re-
lation [FLM™10]; and (2) whereontain halts, it correctly determines wheth@¢ C v

by checking if the union of the view matches covegs following Proposition 4.5.1.
Guaranteed by (1) and (2kontain correctly checks the sufficient and necessary con-
dition in Proposition 4.5.1. The correctness:ofitain then follows from the proof for
Proposition 4.5.1 (as will be shown later in the appendix).

Complexity Algorithm contain iteratively computeview match I\& for each view
definition Vi = (V;,E, fi). It takesO((|Vp| + |Vi|)(|Ep| + |Ei|)) time for a single it-
eration. Thefor loop repeatsard(7) times; hence it takesontain Zy, ., ((|Vp| +
IMil)(IEp| + |Ei[)) time in total, which equalgard(?)|Vp||Ep| + Zy,cq ([Vpl|Eil +
|EplMI) + Zy,cp (MIl|Ei]) time. As |Vp| (resp. |Ep|) is bounded by|Qs|, it
can be verified that (l)ard(7)|Vp||Ep| is bounded byO(card(7)|Qs|?); (2)
Zview (IVpl[Eil + [Ep|[Mi]) is bounded byO(|Qs|[7']) sinceZy,c, (|E|+ M) = [7];
and (3) 2y, (|Vil|Ei]) is bounded byZViEq/(|Vi|2), which is further bounded by
O(|#|?). Thus, algorithntontain is in O(card (7)|Qs|> 4|7 |? + |Qs||V]) time.

A special case of pattern containment is the classical qoenyainment prob-
lem [AHV95]. Given two pattern querieQs; andQso, the latter is to decide whether
Qs1 C Qs2, i.e.,whether for all graph&, Qs1(G) is contained i, (G). Indeed, when
2 contains only a single view definitidds,, pattern containment becomes query con-
tainment. From this and Theorem 4.4.1 the result below imately follows.

Corollary 4.4.2: The query containment problem for graph pattern queriesnis i
guadratic time. O

Proof of Corollary 4.4.2. Observe thathe query containment probleis a special
case of pattern containment problem, which allowdo contain only a single view
definition. By the restriction, the Corollary 4.4.2 follodvem the complexity analysis
of Algorithm contain given in the proof of Theorem 4.4.1. More specifically, given
two pattern querieQs1 = (Vp,, Ep,, fvy) andQsz = (Vp,, Ep,, fv,), it takesO((|Vp, | +

Chapter 4. Graph Pattern Matching Using Views 95

V|) (|Ep;| + |Ep,|)) time to verify whetherQs; T Qs2, Which is thus in quadratic
time of |Qs1| and |Qs2|, as opposed tce.g.,NP-complete for relational conjunctive
queries [AHV95].

Along the same lines as its counterpart for relational qsefseee.g.,[AHV95]),
the query containment analysis is important in minimizimgl aptimizing pattern
gueries. Corollary 4.4.2 shows that the analysis can baesfflg conducted for graph
patterns, as opposed to the intractability of its counterfoa relational conjunctive
qgueries [AHV95].

Minimal containment problem. As shown in Section 4.3, the complexity of pattern
matching using views is dominated py (G)|. This suggests that we reduce the num-
ber of views used for answeriri@}. Indeed, the less views are used, the sméalldG)|
is. This gives rise tothe minimal containment problersivenQs and¥/, itis to find a
minimal subset’’ of 7 that contain®s. That is, (1)Qs = %/, and (2) for any proper
subsety” of v/, Qs Z V.

The good news is that the minimal containment problem doésnaée our lives
harder. We will prove the next result in Section 4.5 by depilg a quadratic-time
algorithm.

Theorem 4.4.3GivenQ, and 7/, it is in O(card(7)|Qs|? + |7 |? 4 |Qs||7]) time to
find a minimal subser’ of V7 containingQs and a mapping fromQsto 7/ if Qs C 7.

Proof of Theorem 4.4.3 Algorithm minimal has been presented in Section 4.5 for
the minimal containment problem (Fig. 4.5). To completegreof of Theorem 4.4.3,
we provide a detailed correctness and complexity analyfsilgorithm minimal as
follows.

Correctness Given a patterQs and a set of view definitiong’, Algorithm minimal
either returns an empty set indicatiQg Z v, or a subset’’ of V. We show the cor-
rectness ofinimal by proving that (1)minimal always terminates, (2) it only removes
“redundant” view definition®’ from %/, while keepingQs C % \ {V'}, and (3) when

it terminates, no redundant view definition isat.

(1) Algorithmminimal repeats théor loop (lines 2-7, Fig. 4.5) at mosérd(%) times,
and in each iteration it computes the view match and addsva déinitionV; to a
result set’’. Algorithm minimal then performs the redundant checking (lines 9-11) to
remove all redundant view definitions, if there exists ang.1X is a finite set, and its
size is monotonically decreasing, the algorithm alwaysteates.

Chapter 4. Graph Pattern Matching Using Views 96

(2) We show thaiminimal only removes “redundant” view definitions. (a) It either
generates a set of view definitions’ in the for loop that contain®s (line 7), or
determinesQs Z 7 (line 8). Indeed, each time it computes the view match for a
view definitionV; (line 3), and it add¥/; to %’ only if the corresponding match set
of V; can cover edges i that have not been covered yet. Hence whenftine
loop terminates, one may verify that either the union of tlwmatches fronm’’
coversk,, (line 7), which indicates that’’ containsQs, or otherwiseQs Z ¢ (line 8),
following Proposition 4.5.1. (b) A view definitiodj is removed fromy’’ only when
there already exist other view definitionsii “covering” every pattern edgec M\C}js
(lines 10-11). Thusminimal only removes redundant view definitions frowt.

(3) When Algorithmminimal terminates, for any view definitiov in 7/, there exists
at least an edgethat can only be introduced By to coverEp. By Proposition 4.5.1,
this indicates thaQs IZ 7 \ {V} for anyV € #. Thus, minimal returns a minimal set
that contain®s.

Putting these together, the correctnessaiimal follows.

Complexity. Similar to the complexity analysis afontain given above, Algo-
rithm minimal takes in totalO(card(7) |Qs|? + |7]? + |Qs||%/]) time to compute
all the view matches (line 3, Fig. 4.5). For each view matble, construction time
for the map structurd (line 6) takes in totaO(card(7)|Qs|) time (the outer loop

is conducted at mostard(4’) times). The process for eliminating redundant view
definitions (lines 9-11) takeminimal O(card(%)|Qs|) time. Hence, it is in total
O(card(7)|Qs|? + |7 |2+ |Qs||¥|) time to find a minimal subse’ of ¥ that con-
tainsQs.

The analysis above completes the proof of Theorem 4.4.3.

Minimum containment problem. One might also want to find minimumsubsety’
of 7 that contain®s. Theminimum containmemroblem, denoted by CP, is to find
a subset’’ of ¢ such that (1Qs C %/, and (2) for any subsat” of v/, if Qs C 7",
thencard(7’) < card(7").

MCP is, however, nontrivial: its decision problemng-complete and it if\PX-
hard. HereAPX is the class of problems that allowriME algorithms with approxi-
mation ratio bounded by a constant (see [A@3] for APX). Nonetheless, we show
that MCP is approximable withirO(log|Ep|) in low polynomial time, whergEy| is
the number of edges @)s. That is, there exists an efficient algorithm that identifies

Chapter 4. Graph Pattern Matching Using Views 97

a subset’’ of 7 with performance guaranteegheneveiQs C ¢ such thaiQ; C 7’
andcard(7’) <log(|Ep|) - card(VopT), Wwherevopt is @ minimum subset of’ that
containsQs.

Theorem 4.4.4The minimum containment problem is (kp-complete (its de-
cision problem) andAPX-hard, but is (2) approximable within @g|Ep|) in
O(card(¥)|Qs|2+ |V |2+ |Qs|| V| + (|Qs| - card(+))¥/?) time.

Proof of Theorem 4.4.4 We show Theorem 4.4.4(1)e., the hardness results be-
low. For Theorem 4.4.4(2), we have presented Algorithimmum and its complexity
analysis as a constructive proof.

(1) We first show thatMICP is NP-complete. The decision problem HCP is to decide,
given an integer bounkl whether there exists a subget of 7 such thaQs C 7/ and
card(') < k. Itis in NP since there exists amp algorithm, which first guesses’,

and then checks wheth& C %" andcard(%’) < kin PTIME (Theorem 4.4.1).

We next show that this problems>-hard by reduction from theet cover problem
(SCP), which isnp-complete (cf. [Pap94]). Given a 9¥t a collectionu of its subsets
and an integeB, SCP is to decide whether there existBeelement subseti’ of u
that coversX, i.e.,Uycqy = X.

Given such an instance 6CP, we construct an instance MCP as follows: (a)
for eachx; € X, we create a unique edgg with two distinct nodesly, andvy;; (b) we
define a pattern quer@, as a graph consisting of all edges constructed in (a); (c)
for each subsefl; € u andx; € Uj, we define a corresponding view definitigh that
consists of all edges, from Uj; and (d) we sek = B.

It is easy to verify that the construction above iINME. We next verify that this
is indeed a reduction from the instanceSdiP, i.e., there exists a set cover’ with
size no more thaB if and only if there exists a subset’ of size no more thak that
containsQs.

(1) First assume that there exists a subgétof ¢ that coversX with less thanB
elements. Then we construct a 3¢t of view definitionsV; corresponding to each
Uj € «’. One can verify tha®s C 7/, since the union of all the edges from theM;@jS
(as the union of the elements from) is E,, (the element seX). Moreover,card(7’)
=|u'| <B=k

Chapter 4. Graph Pattern Matching Using Views 98

(2) Conversely, if there existg’ C 9 that containsQs with no more thark view
definitions, it is easy to see that the correspondingses a set cover with at mo&

elements.

Therefore, the construction above is a reduction. S&® is known to benNP-
complete MCP is NP-complete.

(I) Recall that the clas&\PX is the set of allNp optimization problems that allow
PTIME approximation algorithms with an approximation ratio bded by a constant.
A problem isAPX-hard if everyAPX optimization problem can be reduced to it via
PTIME approximation preserving reductionSHP-reductions [Vaz03]). Note that an
APX-complete problem can be approximated witeomeconstant ratio, but unless

= NP, APX-hard problems cannot be approximated witeugeryconstant factor. The
APX-hardness oMCP is verified byAFP-reduction from the minimum set cover prob-
lem (also denoted aSCP), the optimization version a$CP, which is known to be
APX-hard (cf. [Vaz03]).

Approximation preserving reductiorLet I, andlT> be two minimization problems.
An AFP-reduction from 4 to N5 is a pair ofPTIME functions (, g) such that

o for any instancé; of N4, 12 = f(l1) is an instance ofl, such thaibpt,(l2) <
opty(l1), whereopt; (resp. opt,) is the quality of an optimal solution th
(resp.l2);

o for any solutions; of I, s = g(l1,S) is a solution ofl; such thabbj;(11,s1) <
obj,(l2,52), whereobj; () (resp.obj,()) is a function measuring the quality of a
solution toly (resp.l2).

In other words AFP-reductions preserve approximation bounds. If a problém

is APX-hard, then the problerii, is APX-hard if there is arAFP-reduction from M4
too.

We next construct aAFP-reduction from SCP to MCP, which indicates thatICP
is at least as hard &CP in terms of approximation. Th&FP-reduction is as follows.

(1) We first define functiorf. Given an instancé of the SCP as its input,f outputs

an instancé, of the MCP following the same transformation as the one given in (l).
Hereopt,(l2) < opt4(l1), whereopt; () (resp.opt,()) measures the size of the optimal
solution forly (resp. 1), i.e., the size of the minimum set cover (resp. the minimum
view definition set) that coverX (resp. Q). It is easy to see that functiohis in
PTIME.

Chapter 4. Graph Pattern Matching Using Views 99

(2) We then construct functiog. Given a feasible solutiow’ for the instancd;, g
outputs a corresponding’ following the construction given in (1) above. Herigj; ()
(resp.obj,()) measures the size of the solutiarito I; (resp.%’ to I5). Note thatg is
trivially in PTIME.

We now show that f,g) is an AFP-reduction from the SCP to MCP. It suffices
to show that (appt,(l2) < opty(l1), and that (b)obj;(l1,51) < obj,(l2,s2). Indeed,
the construction guarantees an one-to-one mapping frorelémeents in a set cover
for 11 to the view definitions in a view definition set for. Thus,opt,(l2) = opty(I1),
andobj;(l1,s1) = obj,(l2,5). Hence,(f,q) is indeed amAFP-reduction. As SCP is
APX-hard,MCP is APX-hard.

4.5 Determining Pattern Containment

In this section we prove Theorems 4.4.1, 4.4.3 and 4.4.4{2)rbviding effective
(approximation) algorithms for checking pattern conta@mty minimal containment
and minimum containment, in Sections 4.5.1, 4.5.2 and 4r&spectively.

45.1 Pattern Containment

To prove Theorem 4.4.1, we first propossudficient and necessacpndition to char-
acterize pattern containment. We then develop a quadratealgorithm for checking
pattern containment, based on the characterization.

Sufficient and necessary condition To characterize pattern containment, we intro-
duce a notion ofiew matches

Consider a pattern quefys and a set’ of view definitions. For eack € v/, let
V(Qs) ={(ev,S,) | v € V}, by treatingQs as a data graph. Obviously,\fi<;m,Qs,
thenS,, is the nonempty match set ef for each edgey of V (see Section 4.2.1). We
define theview matchfrom V to Qs, denoted bWISS, to be the union o%,, for all ey
inV.

Intuitively, if Qs C %/, then each edgeof Qs is “covered” by some view i . If
we treatQs a data graph and inspect matchegbfn Qg, then there must exist some
V € ¥ such thatv <., Qs ande € &, for some view edgey in V, sinceV imposes
a weaker constraint as a query ti@n Moreover,Qs is contained iny if and only if
the union of the view matches from to Qs exactly “covers” the edges &;. This is

Chapter 4. Graph Pattern Matching Using Views 100

stated formally as follows, which shows that view matchetdya characterization of
pattern containment.

Proposition 4.5.1:For view definitionsy’ and patternQs with edge set f, Qs = ¥ if
and only if B = Uyey MSS. O

Proof of Proposition 4.5.1 We show thdf condition and thenly If condition of
Proposition 4.5.1, one by one as follows.

(I) We first prove thelf condition. Assume thaEp = Uycq M\C}S, I.e., the union of
all the view matches fronm “covers” E,. We show thaQs C 9 by constructing a
mappingA from Ej to the edges in/, such that for all data grapls and all edges
in Qs, S € Ugere) -

We construct a mappiny as a “reversed” view matching relation: for each edge
ep of Qs, A(ep) is a set of edged from the view definitions in’, such that for each
edge€ of a view definitionV € v, if € € A(ep), thenep is a match of in the view
matchMSS of Vin Qs.

We next show thak ensureQ; C 7. Foranydata graplG, (i) if Qs(G) =0, then
Qs T 7 by definition; (ii) otherwise, for each pattern edggof Qs, there exists at
least one edge as a match o0&, in G via simulation. Moreover, for any edg (of
view V) in A(ep), €p is in turn a match of via simulation. One can verify that any
matche of ep in G is also a match of € A(ep) in V. To see this, note that (&@)is a
match ofep; as a result, for any edg;% adjacent taeyp, there exists an edgé# adjacent
to e such thae” is a match o, by the semantics of simulation (Secti®®); and (b)
ep is a match of; hence similar to the argument for (a), for any edgadjacent te
in a view definitionV, one can see that there exists an egjgadjacent te, such that
€, is a match of, by the semantics of graph pattern matching via graph stioala
From (a) and (b) it follows that for eaa# € A(ep) and its adjacent edg® in a view
definition, there exist an edgeof G and an adjacent edg® in a simulation relation.
Thus, e is a match of' in the view extension. Hence, givemy matche of e, from
Qs in G, there exists an edggin A(ep) from a view definitionV, such thaeis also a
match ofé in view extensiorV(G). That it,A guarantees th&s C 7, by definition.

(I1) We next show theOnly If condition, by contradiction. Assume by contradiction
thatQs C 7 butEp # Uycq MSS. To simplify the discussion, assumd.o.g.that each
node inQs has a distinct label. Then by C 7, when we tak&d, as a data grap6,

Chapter 4. Graph Pattern Matching Using Views 101

Input: A pattern quenQs = (Vp, Ep, fy), a set of view definitions’.
Output: A boolean valuans that istrue if and only if Qs C %

1. E:=0;

2. for eachview definitionV € 7 do
3. computeMy; E := E UMY;
4. if E = Ep then ans:=true;
5. elseans:=false;

6

. return ans;

Figure 4.4: Algorithm contain

it can be verified that (i) the result @ onGiis {(ep, S, = {€p}) | €p € Ep}; and (ii)
there exists a mapping from each edge, of Q, to an edges in some view of?/,
such that{ep} C S;. Indeed, this is required by the definition of pattern camtaént
Qs C 7. On the other hand, (Mycy MSS C Ep, since all the edges in view matches
are fromEp; and (ii) Ep # Uycy MSS (by assumption). Hencép # Uycy M\C/", ie.,
there exist®, € Ep such thag, ¢ MS for all V € v. Thus,Qs Z v since{e} € Sy
for all g of V € . Hence the contradiction.

This completes the proof of Proposition 4.5.1.

Algorithm . Following Proposition 4.5.1, we now present an algoritii®noted as
contain and shown in Fig. 4.4, to check wheth@s C . Given a pattern querQs
and a set’ of view definitions, it returns a boolean valaes that istrue if and only

if Qs C %/. The algorithm first initializes an empty edge &efline 1) to record view
matches from’ to Q.. It then checks the condition of Proposition 4.5.1 as folow
(1) Compute view mathSS for eachV in %, by invoking the simulation evaluation
algorithm in [FLM*10], (2) AugmentE with MSS by union, sincd\/ISS is asubsef
Ep (lines 2-3). After all view matches are mergedntain then checks whethet =
Ep. It returnstrue if so, andfalse otherwise (lines 4-6).

Example 4.7: Recall the pattern quer@, and views? = {V1,V2} given in Fig. 4.1.
As remarked earlieQs C 7. Indeed, one can verify th@lic, o M\% = Ep.

Consider another pattern quey and a set of view definitions’ = {V1,...,V7}
given in Fig. 4.5. The view matcheMSiS of V; for i € [1,7] are shown in the table
below.

Chapter 4. Graph Pattern Matching Using Views 102

Q.@ [] Jt&t
00 0 ©6 ©® & © bO © ©®—0
: Va \E Ve V7

Qs i Vi V2 V3

Figure 4.5: Containment for pattern queries

Vi My Vi My

Vi {(C,D)} \&: {(B,E)}

Vs| {(AB).(AC)} Va| {(B,D),(C,D)}

Vs| {(BD),BE)} |Ve|{(AB),(AC)(CD)}
V7 | {(AB).(AC),(B,D)}

Given Qs and v/, contain returnstrue sincelJy, <, M\% is the set of edges @s.
One can verify thaQs C 7. 0

Correctness & Complexity. The correctness of algorithrontain follows from
Proposition 4.5.1. For eadhe v, it takesO(|Qs| V| + |Qs|? + |V|?) time to compute
MSS [FLM*10], andO(1) time for set union. Thédor loop (lines 2-3) hasard(7)
iterations, and it take®(card()|Qs|2 + |7 |2+ |Qs||7|) time in total, since both
card(7)|V| and|V| are bounded by |.

From these and Proposition 4.5.1, Theorem 4.4.1 follows.

Remarks. (1) Algorithmcontain can be easily adapted to return a mappinigat spec-
ifies pattern containment (Section 4.3), to serve as ing@lfmrithmMatchJoin. This
can be done by following the construction given in the prddPmposition 4.5.1. (2)
In contrast to regular path queries and relational quepigsern containment checking
iS in PTIME.

4.5.2 Minimal Containment Problem

We now prove Theorem 4.4.3 by presenting an algorithm thegndls and 4/, finds
a minimal subset’’ of ¥ containingQs in O(card(7)|Qs|2+ |7|2+|Qs||7|) time
if Qs C 7. The algorithm capitalizes on the characterization ofgratcontainment
given in Proposition 4.5.1, and removes redundant views daha unnecessary for

answering a given pattern query.

Algorithm . The algorithm, denoted asinimal, is shown in Fig. 4.6. Given a query
Qs and a set’ of view definitions, it returns either a nonempty subsétof ¢ that

Chapter 4. Graph Pattern Matching Using Views 103

Input: A pattern quenyQs, and a set of view definitions’.
Output: A subsety’’ of ¢ that minimally contain®.

1. setv’:=0;S:=0; E:=0; mapM :=0;

2. for eachview definitionV; € ¢ do

3. computd\/l\%;

4. if M\ E# Othen

5. V' = fV’U{Vi};S::SU{MSf};E::EUMS;;
6 for eache € M doM(e) := M(e) U {Vi};

7 if E= Epthen break ;

8. if E# Epthenreturn 0;

9. foreachMy* € S do

10. if thereisncee MSJ_S such thaM(e) \ {Vj} = 0 then
11. v':=v"\{V;}; updateM;

12.return v’;

Figure 4.6: Algorithm minimal

minimally containgQs, or 0 to indicate thas IZ /. The algorithm first initializes (1)
an empty set’’ for selected views, (2) an empty $efor view matches of’’/, and (3)
an empty sek for edges in view matches. It also maintains an inbfiethat maps each
edgeein Qs to a set of views (line 1).

Similar tocontain, minimal first computesMSiS forall V; € v (lines 2-7). However,
instead of simply merging the view matches asdntain, it extendsS with a new view
matchM\% only if M\% contains a new edge not k) and updateb! accordingly (lines
4-7). Thefor loop stops as soon &= E, (line 7), asQs is already contained by'.
If E # E,, after the loopminimal returnsd (line 8), sinceQs can not be contained by
(Proposition 4.5.1). The algorithm then eliminates redumadiewsV; € ¢’ (lines 9-
11). It checks whether the removal\éf causesvi(e) = 0 for somee € MSJ? (line 10).
If no suche exists,minimal removesV; from 7/, and updatebi(e) (line 11). After all
view matches are processednimal returns’’ as the final result (line 12).

Example 4.8: ConsiderQs and 7 given in Fig. 4.5. AfterMSf (i € [1,4]) are
computed, algorithmminimal finds thatE already equal€p, and breaks the loop,
whereM is initialized to be{((A,B) : {V3}),((A,C) : {V3}),((B,D) : {V4}), ((C,D) :
{V1,V4}),((B,E) : {V2})}. As the removal oV; does not make aniyl(e) empty,
minimal removesV; and returns’’ = {V2,V3,V4} as a minimal subset af . O

Correctness & Complexity. To see the correctnessmfnimal, observe the following:

Chapter 4. Graph Pattern Matching Using Views 104

Input: A pattern queryQs and a set of view definitions’.
Output: A minimum subset’’ of 4/ that containgQs.

1. setv':=0,5:=0;E. :=0;

2. for eachview definitionV; € ¢ do

3. computeM$; S:=SU{MJ} if My is nonempty;
4. while S # 0do

5. findV; with the largestx(V;); S := S\ {M3*};

6. if M\ Ec # Othen

7 Ec = EcUMP; v/ 1= v U{V};

8 if Ec = Ep then return 2/,

9

. return 0;

Figure 4.7: Algorithm minimum

(1) Qs E ¢ if v’ # 0; indeed,”’ is returnedonly if the union of the view matches in
S equalsEy, i.e., Qs C ¢’ by Proposition 4.5.1; and (Q)s Z ¢” for any v" C v'.
To see this, note that by the strategynohimal for reducing redundant views in’
(lines 9-11), forany ¥ C ¥/, Uyeyr MSS is not equal toEp, the edge set ofs.
Hence again by Proposition 4.5Q; Z v,

It takes minimal O(card(7)|Qs|? + |7 |2 + |Qs||7|) time to find all the view
matches ofv (line 3). Its nested loop foM (line 6) takesO(card(7) - |Qs|) time.
The redundant elimination is processedd(card(%) - |Qs|) time (lines 9-11). Thus
minimal is in O(card(7)|Qs|? + |7 |? +|Qs||7]) time.

From the algorithm and its analyses Theorem 4.4.3 followgaiA algorithm
minimal can be readily extended to return a mapphtiat specifies containment of
Qs in V',

45.3 Minimum Containment Problem

We next prove Theorem 4.4.4 (2)e., MCP is approximable withinO(log|Ep|)
in O(card(7)|Qs|? + |7 %+ |Qs|| V| + (|Qs| - card(7))%/?) time. We give such an
algorithm for MCP, following the greedy strategy of the approximation of [08f
for the set cover problem. The algorithm of [Vaz03] achiezrsapproximation ratio
O(logn), for ann-element set.

Algorithm . The algorithm is denoted asinimum and shown in Fig. 4.7. Given a
patternQs and a set’ of view definitions,minimum identifies a subser’’ of ¢ such

Chapter 4. Graph Pattern Matching Using Views 105

that (1)Qs C ¢/ if Qs C % and (2)card(¥') < log(|Ep|) - card(VopT), wherevopt
is a minimum subset of’ that contaings. In other wordsminimum approximates
MCP with approximation rati@(log|Ep|). Note thatEp| is typically small.

Algorithm minimum iteratively finds the “top” view whose view match can cover
most edges ifQs that are not covered. To do this, we define a met(i¢) for a view

V, where
MY\ E|

|Epl
HereE_, is the set of edges i that have been covered by selected view matches, and

a(V) =

a(V) indicates the amount efncoverecedges thaM\C}S covers. We seledf with the
largesta in each iteration, and maintaenaccordingly.

Similar tominimal, algorithmminimum initializes setsy’’, S andE. (line 1), com-
putes the view math\% for eachV; € 7, and collects them in sé& (lines 2-3). It
then does the following. (1) It selects view with the largestr, and removesMSiS
from S (line 5). (2) It merge<. with M\% if M\% contains some edges that are not in
E., and extends’’ with V; (lines 6-7). During the loop (lines 4-8), H. equalsEy,
the setv’ is returned (line 8). Otherwise&inimum returns0, indicating thaiQs £ %
(line 9).

As opposed taminimal that stops as soon as it findés= Ep, minimum has to
compute view matches for all the views.

Example 4.9: GivenQs and? = {V1,...,V7} of Fig. 4.5,minimum selects views by
their a values. More specifically, in the loop it first choosés since its view match
MS; ={(A,B),(A,C),(C,D)} makesu(Vs) = 0.6, the largest one. Thafy is followed
by Vs, asa(Vs) = 0.4 is the largest one in that iteration. Afiés andVg are selected,
minimum finds thatE. = Ep, and thusy’ = {Vs, Vs} is returned as a minimum subset
that contain®s. O

Correctness & Complexity. We now show thatinimum is correct. (1) It always
terminates since the sgtis reduced monotonically. (2) It finds a nonempty such
thatQs C %' if and only if Qs C . Indeed, such/’ is returned whet ¢,/ MSS =

Ep, and thusQs C 7/ by Proposition 4.5.1. (3) There is an approximation-pnéser
reduction fromMCP to theset cover problenPap94], by treating eadbll\c,)is inS asa
subset oftp. The solution to set cover is exactly a minimum set of the stsbsfE,
(view matches) that “cover€Z,. It is known that set cover problem is approximable
within log(n) for ann-element set, by the algorithm of [Vaz03]. Algorithfiinimum

extends the algorithm of [Vaz03] to query containment, aasl &pproximation ratio

Chapter 4. Graph Pattern Matching Using Views 106

log|Ep|. Hereminimum can also be easily extended to return mapping

Algorithm minimum computes view matches for alf € v in O(card(7)|Qs|? +
|7)? 4+ |Qs||7]) time (lines 1-3). The while loop is executed at most
min{|Ep|,card(7)} < (|Qs| - card(#))*? times. Each iteration take3(|Ep|card(7))
time to find a view with the largest value, which is at mogD(|Qs| - card(%’)). Thus,
minimum is in O(card(7)|Qs|2+ |7 [24|Qs|| ¥ | + (|Qs| - card(7))%/2) time. Note that
|Qs| andcard () are usually small compared o’ |.

This completes the proof of Theorem 4.4.4 (2).

4.6 Bounded Pattern Matching Using Views

In this section, we show that the results of the previous@estcarry over tdoounded
patternqueries, which extend patterns with connectivity constsabn pattern edges.

Bounded pattern queries[FLM 710]. A bounded pattern query, denoted@s is
defined in the same way as in Section 1.1.

A data graphG = (V,E,L) matchesQy via bounded simulationdenoted by
nglfimG (Table 4.1), if there exists a binary relati®C V, x V such that (1) for
each nodeu € Vy, there exists anatch ve V such that(u,v) € S, and (2) for each
pair (u,v) € S, fy(u) € L(v), and for each pattern edge= (u,u’) in E,, there exists a
nonemptypathfrom v to V' in G, with its length bounded bk if fe(u,u’) = k. When
fe(u,U’) = %, there is no constraint on the path length.

Intuitively, Qp extends pattern queries by mapping an edger) in E, to a
nonempty path fronv to V, such thatv can reach/ within fs(u,u’) hops. Bounded
simulation has been verified effective in social networkigsia [FLM*10].

It is known that whemQ, <€ G, there exists ainique maximunmatch$;, in G
for Q, [FLM 710]. Along the same lines as Section 4.2.1, we define the qesjt
Qb(G) to be themaximunset{(e,S) | e € Ep} derived fromS,, whereS: is a set of
node pairs foe = (u,u’) such that (1y (resp.V) is a match ol (resp.u’), and (2) the

distance dfrom v to V' satisfies the bound specifiedfg(e), i.e., d< k= fe(e).

Example 4.10: Consider a bounded pattern quey = (Vp,Ep, fy, fe) as follows:
(1) Vp, Ep and f, are the same as Qs of Fig 4.3; and (2)fe(PM,Al) = fe(Al,SE) =
fe(SE,DB) = fe(DB,Al) =1, fe(Al,Bio) = 2. The resulQ,(G) in the graphG of Fig. 4.3
(a) is shown in the table below.

Chapter 4. Graph Pattern Matching Using Views 107

Edge Matches

PM,Al) | (PM1,Al1),(PMy,Alp)

Al, Bio (Al1,Bio1), (Alp,Biog)

(PM,AI)

()

(DB,Al) | (DB1,Al),(DB2,Al>
(AILSE) | (

) (
) ()
Al1,SE1), (Alp, SE2)
(SE,DB) | (SE1,DBy), (SE2,DB1)

Note thatQp, extends pattern queries by allowing an edge to be mappedatha p
For example, the pattern edf, Bio) is mapped tdAl1, Bios), which actually denotes
path ((Al1, SE1), (SE1,Bio1)) of length 2. O

Pattern queries are a special case of bounded patternsfafeer- 1 for all edges
e. While bounded patterns are more expressive than norntarpstthey do not incur
extra complexity when it comes to query answering using sieWe study query
answering using views for bounded patterns in Section 4d&hd their containment
analysis in Section 4.6.2.

4.6.1 Answering Bounded Pattern Queries

Given a bounded pattern quey, and a set’” of view definitions (expressed as
bounded pattern queries), the problem of answering quesegy views is to com-
puteQy,(G) by only referring to and their extension® (G).

Pattern containment fdQy, is defined in the same way as for pattern queries. That
is, Qp is contained i/, denoted af), C 7, if there exists a mappiny that maps
eache € E, to a set\(e) of edges in’, such that for any data grai the match set
S C Ugenre S for all edgese of Q,. Along the same lines as Theorem 4.3.1, one
can readily verify that pattern containment also charazterwhether bounded pattern
queries can be answered using views.

Theorem 4.6.1 A bounded pattern querQ, can be answered using views if and
only if Qp is contained inv .

Proof of Theorem 4.6.1 Theorem 4.6.1 can be shown along the same line as the proof
for Theorem 4.3.1. The only difference is that each matclafoattern edge = (u,u’)

in a bounded pattern quefy, is a node paifv,V'), connected by a path such that its
length satisfies the distance constraint imposedicbs).

Chapter 4. Graph Pattern Matching Using Views 108

Only If . Observe that the condition already holds for all data gsaplthat do not
matchQy, which can be verified along the same line as the proof of Téract.3.1.
We next prove th@©nly If condition for all data graph& that matchQ,. Assume by
contradiction thaQs can be answered using, while Qs Z 7. By definition,Qs £ v
indicates that for some data gra@that matchefs, there exists no mappingsuch
thatSe C Uegea(e) Se for all edgesein Qs. Thus,G contains a node paiw, V') in S for
some edge in Qg, but it is not inSy for any€ € A(e). As a result, at least for edge
e, no match can be identified using aviye 4. Hence, this contradicts the assumption
thatQp can be answered by only using viewsof

If. Algorithm BMatchJoin given in Section 4.6 provides a constructive proof for
this direction. Hence it suffices to give a detailed corresgnanalysis for Algo-
rithm BMatchJoin.

Along the same line as in Theorem 4.3BMatchJoin has the following properties:
(a) it always terminates, and (b) it only removes the nodesg&V') from the view
extensions that can no longer match a pattern edgg keeping track of the distances
between them. Indee@MatchJoin iteratively reduces match se$s of each pattern
edgee = (U, u), when match sef,, of gy = (u,u”) is found to be changed. It inspects
whether matche§/,v) in & are still valid by checking whether (1) the distance from
V tov exceeds the distance bound specifieddfg,); or (2) there does not exist match
€l =(V,v1) € &, (resp.€, = (V,\») € S,). If any of the two cases happemsbecomes
an invalid match and is removed frofa. The changes to the match set propagate and
BMatchJoin processes the updates until all the match sets of patteresecin no
longer be further reduced. Wh&MatchJoin terminates, all the valid matches fQg,
are identified, as guaranteed by property (b).

From these Theorem 4.6.1 follows.
Better still, answering bounded pattern queries using simsano harder than its
counterpart for pattern queries.

Theorem 4.6.2 Answering bounded pattern queRy, on graph G using views’ is in
O(|Qul|¥ (G)| + |7 (G)[?) time.

To prove Theorem 4.6.2, we outline an algorithm for computy (G) by using
v and¥ (G) whenQp, C 9. To cope with edge-to-path mappings, it uses an auxiliary
index! (%) such that for each match, V') in 7 (G) of some edge i/, | () includes
a pair((v,V),d), whered is the distance fromto V' in G. Note that the size df(1)
is bounded by (G)|.

Chapter 4. Graph Pattern Matching Using Views 109

Algorithm. The algorithm, denoted bMatchJoin (not shown), takes as inp@,,
v, v(G), I(v) and a mapping from the edges o, to edge sets in’. Similar
to algorithmMatchJoin (Fig. 4.2), it evaluatef), by (1) “merging” views inv (G)
to M according toA, and (2) removing invalid matches. It differs froWatchJoin
in the following: for an edge, = (u,u”) of Q with changed §,, it reduces match
setS of e= (U, u) in Qp by gettingthe distance dby queryingl (7) in O(1) time)
from V' to v; (resp.v to v), checking whethefV,v1) € &, (resp.(v,v2) € S,) for
pattern edges = (U, uy) (resp.e; = (u,u2)) such that distancd is no greater than
fo(U,u1) (resp. fe(u,up)), and removing(V,v) from S if no (V,v1) (resp.(v,v2))
exists. The removal ofV,v) may introduce more invalid matches M, which are
removed repeatedly bgMatchJoin until a fixpoint is reached. TheM is returned as
the answer.

The correctness oBMatchJoin follows from Theorem 4.6.1. One can verify
that BMatchJoin takesO(|Qp|| (G)| + |7 (G)|?) time, the same as the complexity
of MatchJoin.

Remarks. (1) Evaluating bounded pattern querigsdirectly in a graphG takes cubic-
time O(|Qp||G|?) [FLM *10]. In contrast, it take®(|Qp||V (G)| + |7 (G)|?) time us-
ing views, and”’ (G) is much smaller that in practice. (2) The bottom-up optimiza-
tion strategy given in Section 4.3 can be naturally incoapent intoBMatchJoin, by
using ranks defined oQy,.

4.6.2 Bounded Pattern Containment

We next show that the containment analysis of bounded patfa@eries is in cubic-
time, up from quadratic-time.

Theorem 4.6.3 Given a bounded pattern quefy, and a set”’ of view definitions,
(1) itis in O(|Qp|?|#|) time to decide whethe®y, is contained in; (2) the minimal
containment problem is also in((®},|?|7’|) time; and (3) the minimum containment
problem (denoted @8MMCP) is (i) NP-complete and\PX-hard, but (ii) approximable
within O(log|Ep|) in O(|Qp|?|¥ | + (|Qp| - card(+))%/?) time.

To prove Theorem 4.6.3, we extend the notion of view matcBest{on 4.4) to
bounded pattern queries. Given a bounded patfgrF (Vp, Ep, fy, fe) and a view
definitionV = (VV,EV, 1)/, fY), we define the view match fron to Q, as follows.
(1) We treaiQy, as aweighted data grap which each edge has a weighfe(e). The

Chapter 4. Graph Pattern Matching Using Views 110

distance from node u td in Q,, is given by the minimum sum of the edge weights
on shortest paths from to U'. (2) We defineV(Qp) = {(ev,S,) | ev € V} as its
counterpart folQs, except that for each edgg = (v,V) in V, the distance fronu to

U in all pairs(u,u) € S, is bounded by if fY¥(ey) =k. (3) One may verify that
there exists a unique, nonempty maximum 6eQy,) if VgSBime. The view match

MS" fromV to Qy, is the union ofS,, for all ey in V.

Proof of Theorem 4.6.3 We provide a detailed proof.

Proof of Theorem 4.6.3(1Algorithm Bcontain has been given in Section 4.6) as part
of the proof of Theorem 4.6.3(1), which checks whether a dedrpattern quer@y,
can be contained by a set of view definitiows To complete the proof of Theo-
rem 4.6.3(1), we give a complexity analysis for AlgoritiBrontain, as follows. Ob-
serve that given a bounded pattern qu&gy= (Vp, Ep, fv, fe) and a view definition
Vi = (4, Ei, fui, fei), it takesO(|Vp|[Ep| + |Eil[Vp|? + [M||Vp|) time to compute view
matches o¥/; in Qy, via bounded simulation [FLM10]. As a result, the total time used
for containment checking By, ¢, ([Vp|[Ep| + |Ei[[Vp|? + [Vi[|Vp|). As |Vi| (resp.|Eil)

is bounded byVi|, and|V;| (resp.|Ep|) is bounded byQy|, it takesBcontain in total
O(|Qp|?|7|) time to decide whethe®y, is contained i’ .

Proof of Theorem 4.6.3(2) As part of the proof of Theorem 4.6.3(2), Algorithm
Bminimal has been outlined in Section 4.6. It take§Qy,|2|7|) time to find a min-
imal subsetr’ of 4 that containgQ,,. Algorithm Bminimal works in the same way
as Algorithmminimal, with the only exception tha&minimal computes view matches
in O(|Vp||Ep| + |Ei|[Vp|2 + [Mi||Vp|) time. Following the proofs of Theorem 4.4.3 and
Theorem 4.6.3 (1), one can readily verify Theorem 4.6.3(2).

Proof of Theorem 4.6.3(3)We verify the complexity and approximation results of
Theorem 4.6.3(3) as follows.

(I) We first show Theorem 4.6.3(3)(i). The decision problenB®MMCP is to decide
whether there exists a subget of 4/ such thaQy, C %" andcard(¥’) <k, wherek is
an integer bound. We show that itN®-complete.

(1) The problem is ilNP, since there exists anp algorithm that first guesses’
and then checks wheth€;, C 9/ andcard(%') < k in PTIME, by usingBcontain
(Theorem 4.6.3(1)).

(2) The lower bound is verified by reduction from tRe-complete set cover prob-

Chapter 4. Graph Pattern Matching Using Views 111

O ® ® @ 6 6506 O
3 3 3 Y \2 3/ \4 1 3 |* 2
L0 @ @O ® OO0 ®® © ®-0O:
: Vs Ve V7

Vi V2 V3 Va4

Figure 4.8: Containment for bounded pattern queries

lem (SCP). We construct a reduction that is similar to the one givethaproof for
Theorem 4.4.4. The only difference is that the transforomeéissigns for each pattern
edge ofQs given there an additional length bound 1, transforming &epatueryQs

to a bounded pattern que®,, while keeping other construction unchanged. Indeed,
Qs Is a special case @, in which each edge carries a bound 1. The transformation
remains to be irPTIME, and can be verified to be a reduction, via a argument similar
to the one given for Theorem 4.4.4. This verifies krehardness. Thu8MMCP is
NP-complete.

The APX-hardness oBMMCP is verified by constructing aAFP-reduction from
the minimum set cover problem, along the same line as in thef for Theorem 4.4.4.

(I) We next show Theorem 4.6.3(3)(ii). As part of the proAfgorithm Bminimum
has been outlined in Section 4.6. To complete the proof, wé previde a detailed
complexity analysis foBminimum. Algorithm Bminimum is similar to Algorithm
minimum given earlier, except that it computes view matches diffdye as shown
in the proofs of Theorem 4.6.3(1) and (2). Its approximatiatio follows from
the algorithm in [Vaz03]. To see its computational comphexobserve that it takes
O(|Qp|?|7|) time to find all view matches of’. After the view matches are found,
Bminimum iteratively selects view definitions with the larges{V), where the cost
of the selection process is @(|Qyp| - card(%)) time. In addition, the selection pro-
cess is executed at mastn{|Qp|, [card(7/)|} < (|Qp| - [card(7)|)Y/? times. Hence it
takesBminimum O(|Qp| - card(#)%/2) time to find a minimum subset’ of +/. Putting
these togetheBminimum takes at mosD(|Qp|?| ¥ | + (|Qp| - card(+))%/?) time to find

a subset’’ of ¢, which is no larger than lop||card(VopT)|, WhereVopt is amin-
imumsubset ofi’ that containgy,.

From (1) and (ll) given above, Theorem 4.6.3(3) follows.
The analyses above complete the proof of Theorem 4.6.3.

Example 4.11:ConsiderQ, and? = {V1,...,V7} shown in Fig. 4.8. One may verify
that M\?;’ = {(A,B),(B,E)}, where the corresponding node pairsQp satisfies the

Chapter 4. Graph Pattern Matching Using Views 112

length constraints imposed Bg. As another example, it can be found that the view
matchM\C};’ from V7 to Qp, is 0, since the distance fro@ to D in Qy, is greater than 2.
O

Similar to Proposition 4.5.1, the result below givesudficient and necessacpn-
dition for Q, containment checking.

Proposition 4.6.4: For view definitionsy and bounded pattern que@,, Q, C 7/ if
and only if B = Uyey Msb. O

Proof of Proposition 4.6.4 Proposition 4.6.4 is verified along the same lines as for
Proposition 4.5.1. The only difference is that view matcheee are defined by ap-
plying a view definition to a bounded pattern queédy, whereQy, is treated as a
“weighted” data graph, in which each edgés assigned a weights(e). We next
verify its If condition andOnly If condition.

() We first prove thdf condition. Assume thd, = Uycq Msb, i.e.,the union of all
the view matches fromy “covers” E,. Similar to the proof of Proposition 4.5.1, we
construct a mapping as a “reversed” view matching relation frofy, to the edges
in 7; as will be seen shortly, this mapping guarant@gs— 7. More specifically,
for each edgee, of Qp, with weight fe(ep), A(ep) is a set of edgeg from the view
definitions inv, such that for each edgg of a view definitionV € 7/, if ey € A(ep),
thenep is a match ofey in the view matcH\/ISb of V in Qp. Note that this requires
fd (ev) > fe(ep), wherefy is the length bound posed on pattern edgeof V (see
Section 4.6).

We next show thak ensuref), C /. Foranydata graplG, (i) if Qp(G) =0, then
Qp C v by definition; (ii) otherwise, for each pattern edggof Qy,, there exists at least
a node pairV,v) as a match o, in G by the semantics of bounded simulation. In
other words(V,v) is connected via a path with length boundedfbfe,). Moreover,
for any edgesy (of view V) in A(ep), €y is in turn a match oéy by the definition of
view matches with bounded simulation. This indicates tingtmatch(V,v) of e, in
Gis also a match o, € A(ep) from V. To see this, observe the following.

(a) The pair(V,v) is a match ofp. As a result, for any edge‘p adjacent toep, there
exists a node paifv,Vvz), such that(vq,v2) is a match fore’p, by the definition of
bounded simulation (Section 4.6). To simplify the discassiwve abuse the terminol-
ogy “adjacent”, and call such node pairg,v2) an “adjacent” node pair t6/,v), as

Chapter 4. Graph Pattern Matching Using Views 113

one may easily verify that; or v; is the same node as eithéror v by the semantics
of pattern matching with bounded simulation.

(b) Pattern edge,, is a match ofy. Hence similarly to (a), for any edg® adjacent
to ey in a view definitionV, there exists an edg&% adjacent tog, such thate/p is a
match ofg,, by the definition of view match. This indicates ttfate,) < f (e/) and
fe(€) < f¥(e,), for any adjacent edge, of ep in Q, and adjacent edgg, of ey in V.

From (a) and (b) it follows that for eadly € A(ep) and its adjacent edgg, in a
view definition, there exist a node pdir,v) of G and an “adjacent” node pajivi, v»)
in a bounded simulation relation. Indeed, one may verify tha distance fronv; to
V2 is bounded byfe(€},), which is further bounded by (ev). Thus,(V,v) is a match
of ey in the view extension. Hence, givamy match(V,v) of e, from Qy, in G, there
exists an edgey in A(ep) from a view definitionV, such tha(V,v) is also a match of
ev in view extensiorV(G), connected by a path with length boundedflye,). That
it, A guarantees th&, C v/, by definition.

(I1) We next show thénly If condition by contradiction. Assume th@t C 7/, while

Ep # Uvewr M\C}b. To simplify the discussion, assumad.o.g.that each node iQ, has

a distinct label. We show that Ep # Uycy M\C}b, one can always construct a data
graphG, such thaQ, IZ v for G.

Assumew.l.0.g.that edgeey, = (U,u) € Ep is not “covered” by the view match.
This can only happen in the following two cases. (a) Thereoisarresponding edge
ey from 2 with proper node predicates or edge bounds required in viatemng; for
example,fe(eq,) > ¢ (ey) for all ey from 4. (b) For an adjacent edgs of ey, there
is no corresponding adjacent edgg for ey that satisfy the search condition (node
label or predicate) or the distance constraint imposedg)yln both cases, one can
construct a data grapB = (V,E,L) as follows: (i) for each noda in Qp, G consists
of a nodev satisfying the predicatef of u; and (ii) for each edge, = (U, u) in Qp,

G contains a path connecting two nodéesandv corresponding te/ anduin (i), such
that its length is equals tfx(ep). The path containg, vand a set of distinct “dummy”
nodes, where each dummy node does not match any node pedtaat,. One may
verify that for G, there exists a matctV, v) for the edgeep, in (a), such thafV,v) is
not in any view match for al € . HenceQy, [Z 7, a contradiction.

Bounded pattern containment To prove Theorem 4.6.3 (1), we give an algo-
rithm for checking bounded pattern containment followimggdsition 4.6.4, denoted

Chapter 4. Graph Pattern Matching Using Views 114

by Bcontain (not shown). Bcontain is the same asontain (Fig. 4.4) except that it
computes view matches differently. More specifically, itezds the algorithm for
evaluating bounded pattern queries [FEMD] to weighted graphs. It can be eas-
ily verified that it is still in O(|Qp|?|#’|) time to find all view matches fow’. Thus
Bcontain decides whethe®y, is contained inw’ in O(|Qp,|?|%|) time, from which The-
orem 4.6.3 (1) follows.

Minimal bounded containment. To show Theorem 4.6.3 (2), we give algorithm for
minimal containment checking, denoted Bwinimal (not shown). Similar teninimal
(Fig. 4.6), Bminimal first computes view matches for eavhc v/, in O(|Qy|?|¥|)
time, and unions view matches uriiequals the edge sk}, of Q,, as described above.
Bminimal then follows the same strategiesramimal to eliminate redundant viewg
whose removel will not cause amy(e) = 0 for eache € M\C,)ib. ThusBminimal is in
O(|Qs 2|7) time.

Minimum bounded containment. To verify Theorem 4.6.3 (3) (i), observe thdCP
is a special case @MMCP when fe(e) = 1 for all edges inQp. Thus from Theo-
rem 4.4.4(1) it follows that the decision problemB¥MCP is NP-hard andBMMCP
is APX-hard. Moreover, it is ilNP since there exists anp algorithm to check the
containment of a bounded pattern in a subset of views with@ngtardinality.

As a proof of Theorem 4.6.3 (3) (ii), we give an algorithm foinimum contain-
ment checking, denoted Bminimum (not shown). Itis similar teninimum (Fig. 4.7),
except that it computes view matches differently. It tak&8Qyp|?|7/|) time to find
all view matches ofv’. Thus, Bminimum still takes at mosO(|Qp|?|7V |+ (|Qs| -
card(7))%2) time, and it returns a subset of no larger than logEy|) - card(Vopr),
where?opT IS aminimumsubset ofi that containgy,.

Example 4.12:Recall the bounded patte€h, and viewsy of Fig. 4.8. One can verify
thatQy, is contained in since there exists a mappiighat maps each edgan Qy
toA(e) in v, e.g.,(A,B) € Qp is mapped to its corresponding edgesvig) V4 and
Vs. When computing a minimal subset of that containgQ,, Bminimal first finds a
subset’’ = {Vi|i € [1,5]} sincelUy, < M\?ib equalsEp. Itthen removey¥» and returns
V' ={V1,V3,Va4,Vs5}. While, Bminimum successively seleci (a(Vg)=0.6) andVs
(a(Vs)=0.4), and return$Vs, Ve } as a minimum subset af that contain®)y,. O

Chapter 4. Graph Pattern Matching Using Views 115

V>="10K" R>="5" Co'Music" A<="100" C="Sports" R>="d" L<="200" R>="5" V>='10K"
C="Music" C="Sports" V>="10K" R>="4" R>="5" C="Sports" C="Ent."
P1 P2 P3 P4 Ps Pe
C="Music" A>="100" C="News" A>="100" V>="10K" C="Ent." A>="200" R>="5" R>="5"V>="10K' C="Ent."V>="10K"

C="Comedy" V>="10K" R>="4" V>="10K" L>="200"R>="4" L>="200"C="Comedy" C="Sports" C="Sports" R>="4" C="Music"
P7 Ps P9 P10 P11 P12

Figure 4.9: Youtube views

4.7 Experimental Evaluation

In this section we present an experimental study. Usinglifieadnd synthetic data,
we conducted four sets of experiments to evaluate (1) thaezfty and scalability of
algorithmMatchJoin for graph pattern matching using views; (2) the effectissnef
optimization techniques fdvliatchJoin; (3) the efficiency and effectiveness of (mini-
mal, minimum) containment checking algorithms; and (4)¢banterparts of the al-
gorithms in (1) and (3) for bounded pattern queries.

Experimental setting. We used the following data.

(1) Real-life graphs We used three real-life graphs: (Amazon(http://snap.
stanford. edu/ dat a/ i ndex. ht m), a product co-purchasing network with 5582
nodes and 1788 725 edges. Each node has attributes such as title, groupadesd s
rank, and an edge from productto y indicates that people who buyalso buyy.
(b) Citation (ht t p: / / www. ar net mi ner. org/ ci tation/) with 1,397 240 nodes and
3,021,489 edges, in which nodes represent papers with attributésas title, authors,
year and venue, and edges denote citationstdaYubght t p: / / net sg. c¢s. sf u. ca/
yout ubedat a/), a recommendation network with @09 969 nodes and,$09 826
edges. Each node is a video with attributes such as categgeyand rate, and each
edge fromx to y indicates thay is in the related list ok.

(2) Synthetic data We designed a generator to produce random graphs, ceatroll
by the numbeiV| of nodes and the numbé¢E| of edges, with node labels from an
alphabet.

(3) Pattern and view generatorWe implemented a generator for bounded pattern
queries controlled by four parameters: the numbgy of pattern nodes, the number
|Ep| of pattern edgeg=,

, labelf, from X, and an upper bouridfor fe(e) (Section 4.6),
which draws an edge bound randomly froink]. Whenk = 1 for all edges, bounded
patterns are pattern queries. We (84|, |[Ep|) (resp.(|Vp|, |Epl,K)) to present the size

Chapter 4. Graph Pattern Matching Using Views 116

of a (resp. bounded) pattern query.

We generated a sat of 12 view definitions for each real-life dataset. (a) For
Amazon we generated 12 frequent patterns following [LSKO06], veheach of the
view extensions contains in average Bodes and edges. The views take4?4 of the
physical memory of the entire Amazon dataset. (b)Eitation, we designed 12 views
to search for papers and authors in computer science. Tiveexiensions account for
12% of the Citation graph. (c) F&foutubewe generated 12 views shown in Fig. 4.9,
where each node specifies videos with Boolean search comslgpecified bg.g.,age
(A), length (), category C), rate R) and visits). Each view extension has about
700 nodes and edges, and put together they take up to 4% oftmem for Youtube.

For synthetic graphs, we randomly constructed a’set 22 views with node labels
drawn from a sek of 10 labels. We cached their view extensions (query reswitsch
take in total 26% of the memory for the data graphs.

(4) ImplementationWe implemented the following algorithms, all in Java: ¢djtain,
minimum and minimal for checking pattern containment; (Brontain, Bminimum
and Bminimal for bounded pattern containment; (8Jatch, MatchJoin,;, and
MatchJoin,;, whereMatch is the matching algorithm without using views [HHK95,
FLM™10]; andMatchJoin,;, (resp.MatchJoin,n) revisesMatchJoin by using a min-
imum (resp. minimal) set of views; (Match, BMatchJoin,,;, andBMatchJoinyp),
where BMatch evaluates bounded pattern queries without using views [FLO],
and BMatchJoin,;, and BMatchJoin,,, are the counterparts d¥latchJoiny,;, and
MatchJoin,,, for bounded pattern queries, respectively; and (5) we aiptemented a
version ofMatchJoin (resp.BMatchJoin) without using the edge ranking optimization
(Section 4.3), denoted bMlatchJoinnept (resp.BMatchJoinpept).

All the experiments were run on a machine powered by an Inbe¢M)2 Duo
3.00GHz CPU with 4GB of memory, using scientific Linux. Eagp&iment was run
5 times and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Query answering using views.We first evaluated the performance of graph
pattern matching using viewse., algorithmsMatchJoin,;, andMatchJoing,,, com-
pared toMatch [HHK95, FLM*10]. Using real-life data, we studied the efficiency of
MatchJoinyin, MatchJoing,, andMatchJoin, by varying the size of the queries. We
also evaluated the scalability of these three algorithntis large synthetic datasets.

Efficiency Figures 4.10(a), 4.10(b) and 4.10(c) show the resultdmazon Citation

Chapter 4. Graph Pattern Matching Using Views 117
25 T T T T T T T T T T
Match —+— 50 Match == -
MatchJoiry, | -->-- MatchJoin,
20 - MatchJoing, ---%-- MatchJoin,
5 01 = y
S 15 i g
o @30 |- .
" "
210 -3 2
g e g g20 7
LT kKT
BE IR R 7] 10 |- -
0 | | | | | | | [\ 2 N M N
(4,4) (4,6) (4.8) (6,6) (6,9) (6,12) (8,8) (8,12) (8,16) (4,8) (5,10) (6,12) (7,14) (8,16)
(a) Varying|Qs| (Amazon) (b) Varying|Qs| (Citation)
T T T T T T T T T T
60 | Match =1 4 20 - Match —+—
MatchJoin,, = MatchJoin, | -->--
50 L MatchJoiny, i MatchJoiny;, ---%--
=) 515 4
540 - 5
@ g -
&30 F] 10 - -
E £
= =
20 |+ B . o e _,<
L x--- K
10 - - kKT
¥
0 N X | 1 A 0 | | | | | |
4,8 (5,10) (6,12) (7,14) (8,16) 03 04 05 06 07 08 09 10
(c) Varying|Qs| (Youtube) (d) Varying|G| (synthetic)
20 T L T T T
MatchJoin.i, [Q] —+—
181 MatchJoim [Q5] .
MatchJoin,, [Qil e G- -
%\16 o MatchJoin,i, [Q4 - - ”;<
g 14 ' -
)
T 12 .
F 1045
83
[
| | | | | |
03 04 05 06 07 08 09 10

(e) Varying|G| && |Qs| (synthetic)

Figure 4.10: Query answering using views

and YouTube respectively. In the-axis, a pair(ng,nz) representg|Vpl, |Ep|). The
results tell us the following. (MatchJoin,i, andMatchJoin,,, substantially outper-
form Match; indeed,MatchJoin;, (resp.MatchJoing,,) only takes 45% (57%) of the
running time ofMatch in average, over all real-life datasets. (2) The more coripie
patterns are, the more costly these methods are, as expé€R}etll three algorithms
spend more time on larger patterns. NonethelglaschJoin,;, andMatchJoin,,, are
less sensitive thallatch, since they reuse previous computation cached in the views.

Chapter 4. Graph Pattern Matching Using Views 118

50

}\/Iatch\]'oirp|O tIIX:Zz_lI I I
MatchJoin,i,

Time(second)
w IN
o o
T T
| |

N
o
T

=
o
T

o

Cemh
1

105 11 115 12 125

(a) Varyinga (synthetic)

Figure 4.11: Optimization techniques

Scalability Using large synthetic graphs, we evaluated the scakabiliflatchJoingy;,,
MatchJoing,, @andMatch. Fixing pattern size withVp| = 4, |Ep| = 6, we varied the
node numbefV| of data graphs from.GM to 1M, in 0.1M increments, and sé| =
2|V|. As shown in Fig. 4.10(d), (IatchJoiny,;, scales best withG|, consistent with
the complexity analysis dlatchJoin; and (2)MatchJoin,;, accounts for about 49%
of the time ofMatchJoin,. This verifies that evaluating pattern queries by using less
view extensions significantly reduces computational tiwigdch is consistent with the
observation of Figures 4.10(a), 4.10(b) and 4.10(c).

To further evaluate the impact of pattern sizes on the pedoce oMatchJoingiy,,
,|Epl) ranging from (4,8) to (7,14)
in 1 increments oYy, kept|Ep| = 2|Vp|, and variedG| as in Fig. 4.10(d). The results
are reported in Fig. 4.10(e), which tells us the followind). MatchJoin,i, scales well
with |Qs
IS, the more costlylatchJoin,,, iS. This is because for larger patterns, (a) more views

we generated four sets of patte@swith sizes (V,

, Which is consistent with the observation of Fig. 4.10(@®) The largerQs

may be needed to cov&X; and (b)MatchJoin,;, takes longer time to evaluatg by
using the views chosen in step (a).

Exp-2: Optimization techniques. We evaluated the effectiveness of the optimiza-
tion strategy given in Section 4.3 fédatchJoin. We compared the performance of
MatchJoinmi, andMatchJoinnept USiNg a pattern of sizé4, 6), whereMatchJoinpopt
used the same set of views BlatchJoin,,i,, but did not follow the bottom-up eval-
uation order based on edge ranks. The tests were conductegntmetic graphs,
which followed the densification law [LKFO7]E| = [V|®. Fixing [V| = 200K, we
varieda from 1 to 125 in 005 increments. As shown in Fig. 4.11(&)atchJoinmin

is more efficient tharMatchJoin,op: Over all the datasets. Indeed, the running time
of MatchJoiny,, is in average 54% of that d¥latchJoinnepe. The improvement be-

Chapter 4. Graph Pattern Matching Using Views 119

=
o
o

Ry [Qcyciic] —+—
> Qcyoid —--

Percentage(%)
(o]
o

(o)}
o
T
1

w W
o o
T T
9}
<
2
0
V)
L1
0
AN
I A AV AR Ry
| | |
=
[
o
T T
X {
I

2

Time(millisecond)
N
o
T
Ll A

X~ _ -—-X
40 - X *

[/ 7L 2 7 7]

KX XX

L2 Ll 2

N
N
\
b S
N J
N
N
N 1
S PN 20]]]]]]]]

(6,6§6,12)7,7)7,14)8,8)8,16)9,9)9,18§10,10§10,20) (6,6) (6,12)(7,7) (7.14)(8,8) (8,16) (9,9) (9,18§10,1@L0,20)

(a) Varying|Qs| (synthetic) (b) Varying|Qs| (synthetic)

Figure 4.12: Determining query containment

comes more evident whenincreasesi.e., when the graphs have more edges. This is
because when graphs become dense, more redundant edgesearoted by follow-
ing the bottom-up strategy usedhfatchJoin,,;,. The results foBMatchJoing,;, and
BMatchJoin,op: are consistent with Fig. 4.11(a) and are hence not shown.

Exp-3: Determining query containment. In this set of experiment, we evaluated the
performance of pattern containment checkimgt. query complexity.

Efficiency ofcontain. We generated two sets &AG andcyclic patterns, denoted by
Qpac andQ.,jic, respectively. Fixing a set of synthetic views we varied the pattern
size from(6, 6) to (10, 20), where each size corresponds to a set of patterns with-differ
ent structures and/or node labels. Figure 4.12(a) showe#udts ofcontain on DAG
andcyclic patterns. The results tell us that (@ntain is efficient,e.g.,it takes only

39 ms to decide whethergyclic patternQ.,ciic with [Vp|=10 and/Ep|=20 is contained

in 9; (2) the larger the pattern is, the more cosidyitain is for bothDAG andcyclic
patterns, as expected; and (3) when pattern size is foyetic patterns cost more than
DAG patterns forcontain. This is because when a patternciglic, Match needs to
compute a fixpoint for its matches.

Efficiency and Effectivenessrofnimum andminimal. We next evaluated the efficiency
and effectiveness afiinimum andminimal, by using the same view definitions and
cyclic pattern<Q.iic as above. To compare the performances of these two algarithm
we defineRy = |Tmin|/| Tmni| @s the ratio of the time used byinimum to that of
minimal; andR = |Minimum|/|Minimal| for the ratio of the size of subsets of views
found by minimum to that of minimal. We varied the size of pattens from (6,6) to
(10, 20). As shown in Fig. 4.12(b), ()inimum is efficient on all patterns used.g.,

it takes about @s to find a subset of’ that contains patterns with 10 nodes and 20

Chapter 4. Graph Pattern Matching Using Views 120

500 T T T T T T 104 T T T T
BMatch —— BMatch ===
BMatchJoir,, - BMatchJoin,
400 | BMatchJoiny, - - BMatchJoin, _
g g1] -
g 300 g S
[0} Q
@)
£ 200 £
[= =17 .
100 | . -
s LI BT S ; B _\l_‘ \\‘\f
0 g’_:ifj*iﬁ?*m”%” glg % 1 1 101 e NN . . i
(44.2) (4,6,2) (4,8,2) (6,6:2) (69,2)(6,12,2)8,8,2)(8,12,218,16,2) (4,8,3) (5,10,3)(6,12,3)(7,14,3)(8,16,3)
(a) Varying|Qs| (Amazon) (b) Varying|Qy| (Citation)
10* T T T T T T T T T
BMatch E=x=1 1400 - BMatch —+— -
BMatchJoin, BMatchJoin,, --><--
BMatchJoin,i, 1200 BMatchJoir,, ---%--
TPk _ — = . T 1000
3 3
8 g 800
£ £ 600
10| . =]
400 | .
NN , R S
S AR ¥R R ¥ F
10t 0% £ Koo f
2 3 4 5 6 03 04 05 06 07 08 09 1.0
(c) Varying fe(e) (Youtube) (d) Varying|G| (synthetic)

Figure 4.13: Efficiency and scalability of BMatchJoin

edges; (2)minimum is effective: whileminimum takes up to 120% of the time of
minimal (Ry), it finds substantially smaller sets of views, only abou#455% of the
size of those found byinimal, as indicated byR,; and (3) bottminimal andminimum
take more time when pattern size increases, as expected.

Exp-4: Efficiency and scalability of BMatchJoin. In this set of experiment we eval-
uated (1) the efficiency dBMatchJoin,;, vs. BMatchJoin,, andBMatch, by using
the real-life datasets and varying the size of pattern gaeand (2) the scalability
of BMatchJoin,;, with the size of data graphs and the complexity of patterys, b
using large synthetic graphs. HeBMatchJoiny,, (resp.BMatchJoin,,) denotes
BMatchJoin with minimum (resp.minimal) subset ofv’, while BMatch [FLM *10]
usesBFS to find ancestors or descendants of a node within a distangedspecified
by fe(e).

Efficiency. We used the same patterns as kbatchJoin in Exp-1, except that the
edge bounds of the patterns are set tofidte) = 2 (resp.fe(e) = 3) for queries over
Amazon(resp.Citation). Figure 4.13(a) shows the results Amazonin which the
x-axis (|Vpl, |Ep|, fe(€)) indicates the size of pattern®@ = (Vp,Ep, fe). From the

Chapter 4. Graph Pattern Matching Using Views 121

results we find thaBMatchJoin,,i, and BMatchJoin,,, perform much better than
BMatch: (1) BMatchJoinp,, (resp.BMatchJoin,,) needs only 10% (resp. 14%) of the
time of BMatch; (2) when pattern size increases, the running timeMbtchJoiny;,
(resp.BMatchJoin,,) grows slower than that dMatch; and (3)BMatchJoin,;, al-
ways outperform®&MatchJoin,,. These are consistent with the result €@itation,
shown in Fig. 4.13(b), in whicl-axis is on dogarithmic scale

Fixing pattern size withVy| = 4 and |Ep| = 8, we variedfe from 2 to 6. Fig-
ure 4.13(c) shows the results douTube where they-axis is also on a logarithmic
scale. The results tell us the following: (BMatchJoin,i, substantially outperforms
BMatch; when fe(e) = 3, for example BMatchJoinp,;, accounts for only 3% of the
computational time oBMatch; (2) the largerfq(e) is, the more costlBMatch is, as it
takes longer foBFS to identify ancestors or descendants of a node within thamie
boundfe(e); and (3)BMatchJoinp,, is more efficient thalBMatchJoing,,, as it uses
less views.

Scalability. Fixing patterns withVy| = 4,

Epl = 6 and fe(e) = 3, we evaluated the
scalability of BMatchJoinp,i,, BMatchJoiny,, and BMatch with the size|G| of syn-
thetic graphs. We varied|V| from 0.3M to 1M in 0.1M increments, while letting
|E| = 2|V|. As shown in Fig 4.13(d), (1BMatchJoin,i, scales best withG|; this is
consistent with its complexity analysis; and @YlatchJoin,;, takes only 6% of the
computation time oBMatch, and the saving is more evident wh@rgets larger. This
verifies the effectiveness of answering bounded patterriegiesing views.

Summary. From the experimental results we find the following. Answg(bounded)
pattern queries using views is effective in querying largeia graphs. For example,
by using views, matching via bounded simulation takes oftyd the time needed
for computing matches directly in synthetic graphs, and 3¥a@uTube For simula-
tion, the improvement is over 51% at least. (2) Our view-bdasatching algorithms
scale well with the query size and the data size. Moreoveundyg views, the match-
ing algorithms are much less sensitive to the size of datahgra(3) It is efficient to
determine whether a (bounded) pattern query can be answsiegl views, by using
the algorithms for checking (minimal, minimum) pattern tinment. In particular,
despite the intractability d/ACP, our approximation algorithm for minimum contain-
ment is efficient and effectively reduces redundant viewsclvin turn improves the
performance of matching by 55% (resp. 94%) for (resp. bodhpattern queries. (4)
Better still, our optimization strategy based on edge rdnkber improves the perfor-

Chapter 4. Graph Pattern Matching Using Views 122

mance of pattern matching using views, by 46% for pattermigse

4.8 Related Work.

We categorize related work as follows. There are two viegedapproaches for query
processing: query rewriting and query answering [Hal0InQ&. Given a quen@
and a set’ of views, (1) query rewriting is to reformula@into a queryQ of a fixed
language such th&@ refers only tov, andQ and Q' are equivalenti.e., for all D,
Q(D) = Q(D); and (2) query answering is to compu@D) by evaluating a query
A such thatA refers only to and its extensions’ (D), andQ andA are equivalent.
While the former requires th&' is in a fixed language, the latter imposes no constraint
onA. We study answering graph pattern queries using pattewsvie

A related issue isjuery containment given two querieQ1 and Qq, it is to
determine whether for any databaBe the query resultQ;(D) is contained in
Q2(D) [AHV95]. As will be seen in Section 4.3, query containmenaispecial case
of pattern containment, when consists of a single view.

We next review previous work on these issues for relatioatdlohses, XML data
and general graphs.

Relational data Query answering using views has been extensively studierkfa-
tional data (see [AHV95, Hal01, Len02] for surveys). It isokm that for conjunctive
gueries, the problem is already intractable [HalO1]. Whe&omes to query rewriting,
the problem is also intractable [LMSS95]. For the containtrgroblem, the homo-
morphism theorem shows that one conjunctive query is coathin another if and
only if there exists a homomorphism between the tableauresgmting the queries,
and it isNP-complete to determine the existence of such a homomorpAisha95].
Moreover, the containment problem is undecidable for iahal algebra [AHV95].

XML queries There has been a host of work on processing XML queries wsavgs,
over XML trees [MS02, DHTO04, PT05, NS03]. In [MS02], the caimiment of simple
XPath queries is shown s@-complete. When disjunction, DTDs, and variables are
taken into account, the problem ranges fronne@omplete toEXPTIME-complete

to undecidable for various XPath fragments [NS03]. It iakown [DHTO04] that
the containment problem is alreaﬂg-complete for conjunctive XQuery with a fixed
nesting depth. In [ABMPOQ7], pattern containment and quexyriting of XML are
studied under constraints expressed as a structural symm@amnswer tree pattern

Chapter 4. Graph Pattern Matching Using Views 123

queries (a fragment of XPath), [LWZ06, WLY11, WTWO09] havedied maximally
contained rewriting rather than equivalent rewriting.

Semistructured data and RDFhere has also been work on view-based query process-
ing for semistructured data aRDF, which are also modeled as graphs.

(1) Semistructure dataviews defined in Lorel are studied im,g.,[ZGM98], which
are quite different from graph patterns considered herew\jased query rewriting
for regular path queriefRPQ9 is shownpspPACEcomplete in [CGLV0O0], and aBXx-
PTIME rewriting algorithm is given in [PV99]. The containment ptem for various
RPQsis studied in [BHLW10, CGLV01, GTO03]: it iEXPSPACEcomplete for con-
junctive two-wayRPQs[CGLV01], and is undecidable farRPQsin the presence of
path constraints [GTO03] or for extended conjuncikrQs[BHLW10].

(2) RDF. An EXPTIME query rewriting algorithm is given in [LDK11] for SPARQL

It is shown in [CEGL11] that query containment isexPTIME for PSPARQL, which

supports regular expressions. There has also been worlabraéingSPARQLqueries
on RDF based on cached query results [CR94].

Our work differs from the prior work in the following. (1) Wewgly query answer-
ing using views for graph pattern queries via (bounded) &tian, which are quite
different from previous settings, from complexity boundsprocessing techniques.
(2) We show that the containment problem for the patternigaés inPTIME, in con-
trast to its intractable counterparts fig.,XPath, regular path queries aB®ARQL
(3) We study a more general form of query containment betvaegueryQs and a set
of queries, to identify an equivalent query fQ¢ that is not necessarily a pattern query.
(4) The high complexity of previous methods for query answgeusing views hin-
ders their applications in the real world. In contrast, dgpathms have performance
guarantees and yield a practical method for graph pattetommg in real-life social
networks.

Chapter 5

Diversified Top- k Graph Pattern
Matching

Graph pattern matching has been widely used in social nktarmalysis. A number of
matching algorithms have been developed that, given arpagtaphQs and a graph
G, compute the sé¥1(Qs, G) of matches of)s in G. However, these algorithms often
return an excessive number of matches, and are prohilyitxglensive on large real-
life social graphs. Moreover, in practice one often wanfai matches of a particular
pattern node, rather than the enfil¢Qs, G).

In this chapter, we study the problem of tlgraph pattern matching. (1) We revise
graph pattern matching defined in terms of simulation, bypsung a designated
output nodeu,. Given G andQs, it is to find those nodes iM(Qs, G) that match
Uo, instead ofM(Qs,G). (2) We propose two functions for ranking the matches: a
relevance functio, () based on social impact, and a distance funcdigi) to cover
diverse elements. (3) We develop two algorithms for conmgutopk matches ot
based ord; (), with the early termination property.e., they find topk matches without
computing the entiré1(Qs,G). (4) We also studyliversified top-k matchinga bi-
criteria optimization problem based on bdit{) anddq(). We show that its decision
problem isNP-complete. Nonetheless, we provide an approximation ghgorwith
performance guaranteemnd a heuristic one witthe early termination property(5)
Using real-life and synthetic data, we experimentallyfyahat our (diversified) tope
matching algorithms are effective, and outperform tradidl matching algorithms in
efficiency.

124

Chapter 5. Diversified Top-k Graph Pattern Matching 125

5.1 Introduction

Graph pattern matching is being widely used in social nétvamalysis [BHK 10,
TMO5], among other things. A number of algorithms have besretbped for graph
pattern matching that, given a graph patt@rand a graplt, computeM(Qs, G), the
set of matches o®; in G (e.g.,[HHK95, FLM*10]).

Social data analysis, however, introduces new challergggsaiph pattern match-
ing. Social graphs are typically large, with millions of resdand billions of edges.
This gives rise to the following problems with the matchingoaithms.

(1) The matching algorithms often return an excessive nuwiesults. Indeed, when
matching is defined by subgraph isomorphism [GCO8]Qs, G) may contain expo-
nentially many subgraphs &; when graph simulation is adopteédQ,G) is a rela-
tion of sizeO(|G||Qs|) [HHK95], which may be larger than gragh. It is a daunting
task for the users to inspect such a lakes, G) and find what they are searching for.

(2) The sheer size of social graphs makes matching costtym&iching defined by
simulation, it take€(|G||Qs| + |G|?) time to computeM(Qs, G) [FLM *10]; for sub-
graph isomorphism, it isP-complete to decide whether a match exists (cf. [Pap94]).

(3) Social queries often need to find matches of a specifieatguery) nodei,

as “query focus” [BMC10],.e., we just want those nodes in a social grdphhat
are matches afi, in M(Qs, G), rather than the entire sbt(Qs, G) of matches ofQs.
Indeed, this is how “graph search’of Facebook is conducted on a big social graph
with more than 1 billion users and 140 billion linksThe need for this is also evident
in, e.g.,egocentric search [CKKV11] and expert recommendation [MJ,FCK"08].

In fact, a recent survey shows that 15% of social queriesodied matches of specific
pattern nodes [MTP10].

These highlight the need fdop-k graph pattern matchinggiven Qs, G and a
designated pattern nods, it is to find topk matches oti, in M(Qs, G), ranked by a
quality function. The users only need to chdcknatches ofJ, instead ofM(Qs, G).
Better still, if we have an algorithm witthe early termination property.e., it finds
top-k matches ofi, withoutcomputing the entiré1(Qs, G), we do not have to pay the
price of full-fledged graph pattern matching.

http://www.facebook.com/about/graphsearch
2http://newsroom.fb.com/

Chapter 5. Diversified Top-k Graph Pattern Matching 126

2. 3 “ “

/\ //\ /\g\/\

d—><—

—>\ / A D'Bi PRGa DB2 pRG3
N e
_ l% s% ST2 STs b’go;_l%;_»Sn
(a) Pattern Q : (b) Graph G

Figure 5.1: Querying collaboration network
Example 5.1: A fraction of a collaboration network is given as gra@hn Fig. 5.1.
Each node irG denotes a person, with attributes suchjastitle, e.g.,project man-
ager M), database developepH), programmer KRG), business analysBA), user
interface developerup) and software testest). Each edge indicates a supervision
relationshipe.g.,edge PRG1, ST1) indicates thaPRG; supervisedT;.

A company issues a graph search query “fimgs who supervised bothss and
PRGS”, and moreover, (1) theB worked under theeRG directly or indirectly, and
vice versa,; (2) both theB and thePRG supervised asT [LLT11]. The requirements
for thePMs are expressed as a graph patt@grshown in Fig. 5.1 (a). Herewm is the
“focus” of the query,i.e., only the matches obPm are asked for [BMC10]. This is
indicated by labelingem with *x” as the “output node” of)s.

When graph pattern matching is defined in terms of subgramgmos
phism [Pap94], no match ds can be identified irG. Indeed, it is too restrictive
to define matches as isomorphic subgraphs [Fl1B]. Bisimulation [DPP01] ex-
tends subgraph isomorphism with matching relations asvatgrce relations, which
is still unable to identify some sensible matchegy.,PM;. Instead, we adopt sim-
ulation [HHK95] with designated nodeextending graph search by supporting both
matching relation and specified “query focus”. With graphuiation,M(Qs,G) is a
binary relation on the pattern nodesQg and their matches i, including ™, PM™;),
(DB, DBj), (PRG, PRG;j), (ST, sT;) fori € [1,4] andj € [1,3].

Observe thaM(Qs, G) contains most of the nodes & as matches, which are
excessive sinces.g.,the matchesT; (i € [1,4]) for ST are not required. Even for the
output noderPm, too manypPw; are returnedi(c [1,4]). However, what the user wants
are thePM matches. It is hence unnecessary and too costly to compaiemntire large
setM(Qs, G).

We can do better with tog-matching. Wherk = 2, we find two top-rankeém;’s
that matchPm and return them in response to the request, insteddl G, G). Better

Chapter 5. Diversified Top-k Graph Pattern Matching 127

still, it is less costly. Indeed, while a naive algorithm top-k matching is to first
computeM(Qs,G) and then pick top-2Mm;’s, an algorithm with the early termination
property identifies them;’s without computing the entir(Qs, G).

To rank the matcheBwm;’s of PM, one may consider the following criteria. (1)
Social impact [LLT11]. Observe tham, can reach more people than any other
PM, i.e., PM; has collaborated with more people. Theig, has stronger social im-
pact. (2) Social diversity [VRB11, AGHP12]. Consider match sefsmi, PM,} and
{PM2,PM3}. While Pm2 andPM3 worked with the same peoplem; andPM; are quite
“dissimilar” since they covered different groups of peoplButting these together,
{PM1,PM2} makes a good candidate for top-2 matches in terms of botlhldogpact
and diversity. O

This example shows that tdpgraph pattern matching may rectify the limitations
of existing matching algorithms. To make practical use phdwever, several ques-
tions have to be answered. How can specific output nodes bepmrated into graph
pattern matching? What quality and diversity functionsudtidoe used to rank the
matches? What is the complexity of computing tomatches based on one or both of
the functions? How can we guarantee early termination byatgarithms for comput-
ing topk matches?

5.2 Graph Pattern Matching Revisited

In this section, we revise the traditional notion of grapttgra matching [HHK95] by
designating an output node. We then introduce the revisgahgpattern matching.

5.2.1 Graph Pattern Matching Revised

Given G and a normal patterQs, the traditional notion of graph pattern match-
ing by simulation is to comput®(Qs,G). It is known thatM(Qs,G) can be com-
puted inO((|Vp| + [V|)(|Ep| + |E|)) time [FLM*10], where|M(Qs, G)| is bounded by
O(V||Vp|) [HHK95].

Example 5.2: Example data grap® and patterrQs are given in Fig. 5.1. One may
verify thatG matcheXQs, with the unique, maximum matd¥(Qs, G) given in Exam-
ple 5.1. The label,(u) of a query nodei specifies a search condition: a nod G
can matchu only if L(v) = fy(u). O

Chapter 5. Diversified Top-k Graph Pattern Matching 128

We extend gattern graphto beQs = (Vp, Ep, fv,Uo), Whereu, is a query node in
Vp labeled with ', referred to as theutput nodeof Qs, andVy, Ep and fy are the same
as defined in Section 1.1.

Given a patternQs and a graphG, we define thematchesof Qs in G to be
Mu(Qs, G,Uo) = {V | (Uo,V) € M(Qs,G)}, i.e., the matches of the output nods in
the unique maximunM(Qs, G). HereM(Qs, G, Up) = 0 if G does not matckys.

Note thatMy(Qs, G, Uo) is smaller tharM (Qs, G): it is bounded byV| as opposed
to |V||Vp|. Graph pattern matching can be readily extended to suppprpdtterns
(resp. graphs) with multiple predicates (resp. attribubesits nodesi.e., search con-
ditions defined with multiple predicates; and (2) patterith wultiple output nodes.

We denotgV,| + |Ep| as|Qs|, and|V |+ |E| as|G|.

Example 5.3: Recall graphG and patternQs from Example 5.1. The nodeMm is
marked as the output node Q. Then the seM(Qs,G,PM) = {PM; | i € [1,4]},
which consists of 4 nodes as opposed tma8e pairsn M(Qs, G). O

5.3 Ranking Pattern Matches

The result seMy(Qs, G, Up) could still be excessively large whea is large, while
users are often only interested in the Hestatches of the output node Qf [IBS08].
This suggests that we define certain functions to rank thehlmat and compute tdp-
matches fougy based on the functions.

In this section we first propose two functions to rank matcheslevance function
based on social impact (Section 5.3.1), ardistance functiorito measure match di-
versity (Section 5.3.2). We then definéigersification functionwhich is a bi-criteria
objective function combining both relevance and diverg8gction 5.3.3). Based on
these, we introduce two tdpgraph pattern matching problems.

5.3.1 Relevant Matches

We first introduce a function to measure te&evanceof the matches af,, in terms of
the number of matches connected with the matcheg, @i a graphG. To define the
function, we first present a notion adlevant sets

Relevant set Given a matclv of a query nodes in Qs, the relevant set of w.r.t. uis
the setR) such that for each descendanof uin Qs, R, includes all matcheg

Chapter 5. Diversified Top-k Graph Pattern Matching 129

of U’ that satisfy the following condition: ifi reachea/ via a path(u,u, ..., un,U’),
thenv reaches/ via (v, vy, ...,vn,V), such thatui,vi) € M(Qs,G) for alli € [1,n].

That is,R) includes all matcheg' to whichv can reach via a path of matches.
Following [FLM*10], one can verify the following, which shows that the relet/set
is well-defined.

Lemma 5.3.1: Given a pattern grapl; and a data graph G, if G matché&s;, then
for any match v of a query node u, there exists a unique, mawirelevant set g).
O

Proof of Lemma 5.3.1 To show Lemma 5.3.1, we first prove the following claim.

Claim 1: If G matchesQs, then for any two relevant sei (u,v) andRz(u,v) of a
matchv w.r.t. a query nodel, R3 = R URy is also a relevant set efw.r.t. u

We showClaim 1 by contradiction. AssumBs; = Ry URy is not a relevant set. By
definition, either (a) there is a nodein R; that is not a match for any descendant of
u, or (b)V is a match of some descendantupfvhile v cannot reacl’ via a path that
consists of matches. Assumé.o.g. thatV € R;. Then both (a) and (b) lead to the
contradiction thaR; is a relevant set. Hence the claim follows.

We show that there existsraaximunrelevant seR(u,v) of any matchv w.rt. u
For any two relevant sef?; andRy of v w.r.t. 4 R3 = R{UR> is also a relevant set of
v w.r.t. u(Claim 1). Thus, it follows that there always exists a maximum rehé\st,
which is the union of all descendants\wothat are matches of descendantsi.of

We next show that the maximum relevantRéa, v) of v w.r.t. uis unique Assume
by contradiction that there exist two distinct maximum vala setfk; andR, of v w.r.t.

u. LetR3 = R URy. ThenR3 is also a relevant set, whil; € Rz andRy, C Rs. This
suggests thdRy| > |Rz| = |Ra|, which contradicts tha®; andR; are both maximum.

Relevance function On a matctv of u, we define the relevance functidp) in terms

of the relevant seR):
6F(U7V) = ‘R(u,v)‘-

That is, the relevance function favors those matches timatazech more other matches:
for a matchv, of the output nodel,, the more matcheg, can reach, the bigger “im-
pact” it may have, as observed in social network studies(BoKKTO03]. Thus, the
matches with highd, () values are preferred for relevance.

Top-k matching problem. We now state theop-k matching problemdenoted by
topKP. Given a graplG, a patterrmQs with output nodeau,, and a positive intege, it

Chapter 5. Diversified Top-k Graph Pattern Matching 130

is to find a subseb C My(Qs, G, Up), such thatS = k and
o (S = argmax Or (Uo, V).
SCMy(Qs,G,Wo),|S|=kv;e8

Here abusingy (), we used; (S) to denotey . s (Uo, Vi), referred to ashe relevance
of S to y.

That is, topKP is to identify a set ok matches ofu, that maximizes the total
relevance taJ,. In other words, for any8 C My(Qs, G, W), if [S| =k thend(S) >
& (S).

Example 5.4: RecallG and Qs from Fig. 5.1. The relevant sets of the matches in
Mu(Qs, G,PM) are shown below.

match relevant set
PM1 { DB1, PRGy, STy, ST2}
PM> { DB, DB3, PRG2, PRG3, PRGy, ST2, ST3, ST4}
PM; (i € [3,4]) || {DB2, DB3, PRG2, PRG3, ST3, ST4}

One may verify thaB= {PMy, PM3} or S= {PMg2, PM4} is a top-2 relevant match
set,i.e., Sreaches more matches@than other 2-match set fem. The total relevance
O (S) = & (PM, PM2) + & (PM, PM3) =8 + 6 = 14. O

The need for studyingopKP is evident: instead of inspecting possibly large set
Mu(Qs, G, Uo), we want to find togk elements that are most relevant to our search.

5.3.2 Match Diversity

We next introduce our metric for result diversity [QYC12]s Abserved in [VRB 11,
AGHP12], it is important to diversify (social) search rasulo avoid repeated rec-
ommendations for similar elements (see Example 5.1), adealements in different
groups and to cover elements with new information.

Diversity function. To characterize the diversity of a match set, we define amist
function to measure the “dissimilarity” of two matches. &mwo matches; andv,
of a query nodel, we define theidistancedq(vi, v2) to be:

‘R(u,vl) A R(u,vz)‘

6d V1,V2) = 1-— .
() |R(u7v1) U R(u,vz)|

The distance functiody () computes the number of distinct matches that two matches
of up may impact. The largeyy(v1, v2) is, the more dissimilar; andv; are. Itindicates

Chapter 5. Diversified Top-k Graph Pattern Matching 131

the social diversity between the matches. Observe thamtietibn constitutes metric
For any matches;, vz andvs of Ug, (1) q(v1,V2) = 8q(V2,V1), and (2) it satisfies the
triangle inequalityj.e., &q(Vv1,v2) < 8q(V1,V3) + &g(V3,V2).

Example 5.5: GivenG andQs in Fig. 5.1, we have the following: (¥4(PM3,PMy4) =

0; this suggests thatms and PM4 have impact on exactly the same group of peo-
ple in G, i.e., they cannot be distinguished in terms of “social impact’d g&)
8d(PM1,PM2) = 19, 84(PM2,PM3) = &, 83(PMy, PM3) = 1. ThusPM; andPMg are most
dissimilar to each other, as they are related to two comlgldiferent groups of peo-

ple. O

5.3.3 Match Diversification

It is recognized that search results should be relevant,aartde same time, be as
diverse as possible [VRBL1, GS09]. Based ob,() anddq() we next introduce a
diversification function.

Diversification function. On a match se$ of the output nodel,, the diversification
functionF () is defined as

FS=(1-N) Y <ov)+ oy

V€S VieSVjeSi<]

6d(vi7vj)7

wherel € [0, 1] is a parameter set by useds(uo, vi) is a normalized relevance function
defined ag*%J#‘“), andC,, is the total number of the candidates of all those query nodes
U’ to whichu, can reach ifQs. Here a node/ in G is called acandidateof a query
nodeu’ if L(V') = fy(U), i.e.,they share the same label. The diversity metric is scaled
down with kZTAl since there aré'(kz;l) numbers for the difference sum, while oy
numbers for the relevance sum.

The functionF() is a minor revision of max-sum diversification introduced
by [GS09]. It is a bi-criteria objective function to captureth relevance and diver-
sity. It strikes a balance between the two with a paramietbat is controlled by users,
as a trade-off between the two [VRR1].

Diversified top-k matching problem. Based on the functioR (), we next state the
diversified topk matching problem, denoted hygpKDP. Given G, Qs with output

nodeu,, a positive integek, and a parametex € [0,1], itis to find a set ok matches
SC My(Qs, G, Up) such that

Chapter 5. Diversified Top-k Graph Pattern Matching 132

F(S = argmax F(S),
SCMy(Qs,G,Uo)

i.e.,for all k-element set§ € My(Qs, G, Up), F(S) > F(S). In contrast taopKP that
is to maximize relevance onlyppKDP is to find a set ok matches fronM(Qs, G, Uo)
such that the bi-criteria diversification function is maxied.

Example 5.6: Recall graphG and patterrQ from Fig. 5.1. One can verify that when
A = 0,i.e.,when users only considers relevance, a top-2 sgNg, PM3}; and when
A =1,i.e.,when the users only care about diversity, a top-2 sépiig, PM3}. Indeed
when 3% < A < 0.5, {PM1,PM2} makes a top-2 diversified match set, wher 3#43,
{PM32, PM3} is the best choice; and whén> 0.5, {PM1, PM3} turns out to be the best
diversified match set. O

5.3.4 Generalized Top- k Matching

We next generalizé, () anddy() to define generic relevance and distance functions,
based on which we characterigeneralized (diversified) top-k matchipgpblems.

Generalized ranking functions For a matchr of a pattern node, we use a gener-
alized relevant seéR*(u, V) to represent the set of descendants of G that are “rel-
evant” tou or its descendants (denotedR@)) in Qs. We denote by (Qs, G, R(u))
the matches of the nodes{u).

(1) We consider a class of generic relevance functions, hvhie arbitrary mono-
tonically increasing polynomial-time computabkr(ME) functions defined in terms
of R(u) andR*(u,v). We refer to such functions agneralized relevance functions
&/ (u,v). Accordingly, the relevance function of a match Setdenoted byy; (S), is a
monotonically increasingTIME function ofd; (u,Vv), for eachv € S.

(2) A generalized distance functidyj(vi,v2) of two matchess; andv, can be any
PTIME computable functiometricdefined withR* (u,v;1) andR*(u,v2). Given a match
setS, the generalized diversification functiéii(-) is defined as

2-A\

F*(9) = (1-N& (S +—

84 (Vi, Vi),
vieSvjeSi<]j

whereA € [0,1] is a parameter set by users.

One may verify thad; (), 84() andF () given earlier are special casesdpf), o;()
andF*(), respectively. Moreoved; () anddj() are able to express a variety of ranking

Chapter 5. Diversified Top-k Graph Pattern Matching 133

functions commonly used ie.g.,social/information networks [LHNO6, LNKO7] and
Web search [New01b], including the following:

Ranking functions Types Formulations
Preference attach-
relevance IR(U)|* |R*(u,v)|
ment [LNKOQ7]
ommon IM(Qs,G.RW) MR (V)
relevance ,G,R(u)) NR*(u,v
neighbors [LHNO6] °
Jaccard Coeffi-
IM(Qs,G,R(u))NR*(u,v)|
Nelgﬁborhood distance 1- R OR ()
diversity [LY11] Vi
Distance-based 1— 1 (d(v1,w) is the distance between
o distance vy (A ! 2)
diversity [VFD"07] vi andvy), or 1 if d(vy, vp)=c0,

Generalized topk matching. GivenQs with output nodeau,, graphG and an integer
k, thegeneralizedtopKP (resp.topKDP) problemis to find a subse C M (Qs, G, Uo)
of k matches, which maximizes (S) (resp.F*(S)).

Remarks. A function f(S) over a seBis calledsubmodulaif for any subse$; C S C
Sandxe S\, f(SU{x}) - f(S) > F(SU{X}) - f(S). Note that our diversification
functions arenot necessarily submodular. For examphg,) (Section 5.3.3) is not
submodular. Indeed, one may verify thatS; U {v}) - F(S1) < F(SU{V}) - F(S),
althoughF (-) contains a submodular componént:).

To simplify the discussion, we present algorithms topKP (Section 5.3.1)
andtopKDP (Section 5.3.3). Nonetheless, we show that the algoritrange readily
extended to support generalized topratching stated above.

5.4 Algorithms for Top-k Matching

We next develop three algorithms for solving the topratching problemtopKP).
Given a patterQs with an output nodel,, a graphG = (V,E, L), and a positive inte-
gerk, these algorithms computekaelement se§ C My(Qs, G, Up) such thab, (S) is
maximum, in quadratic time.

The first one, referred to aslatch, follows a naive strategy: (1) it first finds
M(Qs, G) with the algorithm ine.g., [HHK95, FLM*10]; (2) it then computes the
relevanced, (U, V) for each matclv of u, in M(Qs, G, Up), and (3) sorts the matches in
M(Qs, G, Up), and selects the firét matches. One may verify that the algorithm cor-

Chapter 5. Diversified Top-k Graph Pattern Matching 134

rectly finds the togk matches with the highest relevanceQ((|Qs| + [V|)(|V|+ |E|))
time.

This algorithm, however, always computes the entif€Qs, G) and is costly for
big G. We can rectify this by using “early termination” algoritemn contrast tonat,
these algorithms stop as soon as komatches are identified, without computing the
entireM(Qs, G).

Proposition 5.4.1: For givenQs, G and an integer ktopKP can be solved by early-
termination algorithms. O

These algorithms leverage a sufficient condition for eatynination. For a query
nodeu, we denote asan(u) the set of all the candidate®f u, i.e., vhas the same label
asu. We usd (u,v) andh(u,v) to denote dower boundandupper boundf & (u,v),
respectivelyi.e., I(u,v) < & (u,v) < h(u,v). Then one can easily verify the following.

Proposition 5.4.2: A k-element set S can(uo) is a set of top-k matches of if (1)
each vin S is a match opuand (2)minyes(l (Uo, V) > MaXsccan(uo)\s(h(Uo,V)). O

Proof of Proposition 5.4.2We prove Proposition 5.4.2 by contradiction. Assume, for
any data graph& that matche®Qs, that (1) each node in Sis a match ofu,, (2)
Minves(l (Uo,V)) > MaXsccan(uo)\s(h(Uo,V')), while Sis not a set of togk matches of
Uo. By assumption, there exists either (a) a nodgftinat is not a match, or (b) a match
v; of Up that is not inSand it has a higher relevance than at least a mpdeS.,

For case (a), it already contradicts the assumption thdit eadev € Sis a match of

Uo.

For case (b), one may verify that(S) < & ((SU{vi}) \ {vj}), which indicates that
O (Uo, Vj) < & (Uo,Vi). This suggests th&fuo, Vvj) < & (Uo,Vj) < & (Uo, Vi) < h(Uo,V;).
Thus, it contradicts the assumption in (2).

Thus, both cases lead to contradiction. Proposition 5.drizé follows from the
analysis above.

That is, the smallest lower bound of the matches§iis no less than the largest
upper bound of those itan(uy) \ S. We use this condition to decide whetttis a
topk match set.

We also use the notion of ranks. For a gr&phthestrongly connected component
graphGgscc is aDAG obtained by shrinking each strongly connected compof€ft
of G into a single node. We usgcc to denote th&CC node containiny andEgcc

Chapter 5. Diversified Top-k Graph Pattern Matching 135

as the set of edges betwe®GC nodes. Theopological rank v) of a nodevin Gis
defined as (a)(v) = 0 if vscc is a leaf inGscc (i.e., with indegree 0), and otherwise,

(0) r(v) =max{(1+r(V)) | (vscc:Vscc) € Esccl-

Example 5.7:Recall patterQs given in Fig. 5.1. One may verify that the topological
ranks of the nodes iQs arer(sT) =0, r(DB) = r(PRG) = 1 andr (PM) = 2. O

Based on these notations and Proposition 5.4.2, we prowdeatgorithms for
topKP as a constructive proof of Prop. 5.4.1, whgnis aDAGpattern (Section 5.4.1)
and a cyclic pattern (Section 5.4.2), respectively.

5.4.1 Algorithm for Acyclic Patterns

We start with an algorithm falopKP whenQs is aDAG pattern, denoted a&pKDAG.
To simplify the discussion, we assume that the output ngds a “root” of Qs, i.e., it
has no parent, and it can reach all the query nod€g.iAs will be seen at the end of
Section 5.4.1, the algorithm can be easily extended to the wheryu, is not a root in
Qs.

We use the condition given in Proposition 5.4.2 to achievl/éarmination. The
idea is to dynamically maintain, for each candidatef a query nodeu in Qs, (1)
a Boolean formula to indicate whethers a match, (2) a subset of its relevant set
and (3) two integers to estimate the lower bound and uppendotd(u,v). Instead
of computingM(Qs, G), the algorithm first computes a set of matches for some query
nodes, and iteratively updates the formulas of the othetidates by “propagating” the
partially evaluated results. In the propagation, it (1)adsewhether some candidates
become matches af,, and (2) updates the lower and upper bounds of the candjdates
until either the termination condition is satisfied, or &k imatches are identified.

We now present auxiliary structures usedTopKDAG.

Data structures. For each query nodein Qs, TopKDAG maintains a candidate set
can(u). For each candidatein can(u), TopKDAG assigns a vectof = (bf,R,I,h),
where (1)bf is a Boolean equation of the forx, = f, and f is a Boolean formula
that indicates whether is a match ofu; (2) R denotes a set of matches reachable
fromyv, i.e.,a subset of the relevant g, ,); (3) | andh are two integers denoting the
lower and upper bounds éf (u,Vv), respectively. We useT, v.bf, V.R, v.l andv.h to
denote these components, respectivelgpKDAG also uses a min-hedpof sizek to
maintain the matches of, ranked byv.l.

Chapter 5. Diversified Top-k Graph Pattern Matching 136

Auxiliary structure . We use an index to efficiently estimate the relevance upper
bound of matches. Given a data graphr maps each nodein G to a list 7 (v) of
triples(d, Ib, ny, for eachd € [1,diameter] andlb € X, wherediameter is the diameter
(i.e.,longest shortest path) &, andX is the label set o6. Intuitively, each triple(d,

Ib, n) in the list1 (v) indicates that there arenodes labeled bib within d hops from

V.

We show how to derive an upper bound of the relevance for theidates, by
using only. Given a pattern nodeand its candidate, we check each tripléd, Ib,

n) in 1(v), and see whether there exists a pattern nddeth labellb, and isd hop
away fromu (i.e., reachable fronu via a shortest path of length). If such a node/
exists, therv.his increased by.

To see that.h is indeed an upper bound, note that V&) represents the size of a
node seC that consists of all candidates of any descendant of patieaeu, and (b)
the relevant set of is always a subset &. Thus,v.h is a valid upper bound. Note
that the upper bound holds when a nod&irs a candidate for more than one pattern
nodes.

We provide a time complexity analysis as follows. (1) Thestanction of7 is in
O(|V|(|V|+ |E|)) time, and the space cost ofis in O(|diameter||Z||V]|). Typically,
both|diameter| and|Z| are much smaller thalV|. (2) Given any patterQs, the cost
for checking upper boundh for a match candidate is in O(|diameter||Qs|) time,
which is typically small. (3) The index(G) can be constructed once via off-line
computation.

Algorithm. Algorithm TopKDAG is shown in Fig. 5.2. It has two stagesitialization
andpropagation given as follows.

(1) Initialization (lines 1-4). TopKDAG first initializes (a) the min-heaP, and (b) a
Boolean variableermination for the termination condition (line 1). It then initializes
structures for each query nodglines 2-4). It computes the topological ranfu) in
Qs and its candidate setn(u) (line 3).

The vectorv.T is initialized as follows (line 4). For each candidatef a query
nodeu, (1) if r(u) = 0, one may verify that is already a match, thuBopKDAG sets
v.bf asX, = true, .R = 0, andv.l =v.h = 0. (2) Otherwisey.T is initialized as follows:
(@) V.R=10; (b) v.l =0; (c) v.bf is set asky = A yu)eg, (Vviecan(u) X), for each child
v; of vin G; intuitively, X, is true if and only if for each childy; of u, v has a child
v; that is a match ofy;; and (d)v.h = Cy(v), whereCy(v) is the total number of the

Chapter 5. Diversified Top-k Graph Pattern Matching 137

Input: An acyclic patterrQs = (Vp, Ep, fv, Uo),
a graphG = (V,E,L), and a positive integek.
Output: A top-k match set ofl,.
min-heab := 0; termination := false;
foreachu eV, do
compute topological ranku); initialize can(u);

1
2
3
4, for eachv € can(u) doinitialize v.T;
5. while (termination = false) do

6

select a set of unvisited candida®&sC_ can(u)
of query nodesl in Qs, wherer (u) = 0;

7. if & # 0then
8. (G,S) := AcyclicProp(Qs, &, G, S);
9. check the termination condition and updetamination;

10. elsetermination:= true;
11. return S;

Procedure AcyclicProp

Input: Qs, G, S, and a set of candidat&s.
Output: Updated(G,S).

1. initialize queué/a with &;

2. while Vo # 0 do

3. nodev :=Va.pop();

4. foreach(Uu,u) e Epand(V,v) € E
whereV € can(U'), v € can(u) do

5. update/.T according tov.T;

6. if U = u, then updatesS;

7. if V.T is changedhen Va.push(V);

8. return (G,S);

Figure 5.2: Algorithm TopKDAG

candidates of all those query nodes to whiatan reach (section 5.3).

(2) Propagation(lines 5-10). In the propagationfopKDAG (1) checks whether some
candidates become matchesugf and (2) updates the lower and upper bounds of the
candidates, until either the termination condition isfad, or all the matches are
identified. It iteratively propagates the known matches tied relevance to evaluate

Chapter 5. Diversified Top-k Graph Pattern Matching 138

Boolean equations of candidates, and adjusts their lowgrugper bounds. Using
a greedy heuristic, it selects a sgtof candidates of query nodes ranked O (line 6),
which is aminimal sethat includes all the children of those candidates of quedes
with rank 1. Note tha&: is already a match set since each nodg&:iis a leaf. IfS; is
not empty,i.e., there exist unvisited matches (line MpKDAG then propagategT

to all the ancestorg of v and update¥.T andS, by invoking procedurécyclicProp
(line 8). If the condition specified in Prop. 5.4.2 holds, 0§} is empty,termination

Is settrue (line 9-10). It returns as the result (line 11).

Procedure AcyclicProp. Given a sets. of matchesAcyclicProp updatesG andS as
follows. It first initializes a queu¥ with the nodes ir&; (line 1). Then for each node
Vv € can(u) in Va, whereX, is true, and each pattern edde’,u), it identifies all the
parents/ of v that are candidates af (lines 3-4), and update&.T as follows (line 5):

o V.bf is re-evaluated witbX, = true;

o if Xy becomesgrue, then for each child/’ of V' of which X is true, V.R :=
V.RUV'.RU{V'};

o if Xy is true, the lower bound is adjusted by letting/.l := |V.R| afterV.R is
updated; intuitively, only when is determined to be a match, the lower bound
can be “safely” estimated b¥;

o V.his setto bdV.R| as soon as for all childred’ of V', none ofv’.h is changed
further; and

o if V.bf no longer has Boolean variables that are not instantiated, v.h, i.e.,
Ry is determined now.

These guarantee the following invariant for any candidadé a query nodey, at
each iteration of thevhile loop (lines 5-10 of ofTopKDAG): (1) Xy is evaluated to be
true if and only if vis a match oi; (2) v.I < d(u,v) <v.h.

During the process, ifl is the output node,, AcyclicProp inserts the new matches
V' of up into the min-heags (line 6) if either (1)|S| <k, i.e.,S has less thak nodes and
hence can take more nodes; or {2) is larger than/’.h for somev’ € S; in this case,
V replaces the’’ with the smallest, (up,u”) in S. If V.T is updatedy is added to
Vx for further propagation (line 7). The process repeats matihode inva has newly
updated information (line 8).

Example 5.8: Consider grapliG given in Fig. 5.1 and ®AG patternQs;, with edge
set{(PM,DB), (PM,PRG), (PRG,DB)}, whereu, = PM. WhenQs; is issued onG,
TopKDAG identifies the top-1 match far, as follows.

Chapter 5. Diversified Top-k Graph Pattern Matching 139

(1) For initialization (lines 1-4)TopKDAG sets the vectorg T = (v.bf,v.R, v.l, v.h) for
(parts of) candidates as follows.

v v. T = (v.bf,v.R,vI,v.h)
PM2 (Xpm, = (Xpras V Xpra,) A\ XpB,, 0,0, 3)
PM3 (Xpmz = Xpros A XpB,, 0,0,2)
PRGj (] € [3,4]) (Xpra; = XbB,,0,0,1)
DBy (k€ [1,3]) (Xpg, = true,0,0,0)

(2) In the propagation stagAcyclicProp selects; ase.g.,a candidatgDB,} for the
qguery nodedB ranked 0 inQs;. It then starts the propagation (lines 4-7). After one
iteration of thewhile loop (lines 2-7), the updated vectors are:

v v. T = (v.bf,v.R,vI,v.h)
PM> (Xpm, = true,{PRG3,PRG4,DB3}, 3, 3)
PM3 (Xpmz; = true, {PRG3,DB32},2,2)
PRGj (] € [3,4]) (Xprg; = true, {DB2},1,1)

One can verify thabMm; is determined to be a match pf1 after a single iteration.
Better still, the early termination condition is satisfigelo.l is 3, which is already
the largest relevance value. Hence, algoritispKDAG returnsPMo directly, without
computingM(Qs1,G). O

Correctness Algorithm TopKDAG correctly compute$ as a topk match set fowu,
based ord; (). (1) It always terminates. In eaathile iteration (lines 5-10), a set of
unvisited candidateS; is checked. TopKDAG terminates either when the termination
condition is true, or whef is empty,i.e.,all matches have been found. pKDAG
returnsS that consists of either tokimatches by Proposition 5.4.2, or all matches of
Uo Whenu, has less thak matches.

Complexity. The initialization (lines 1-4) take®(|Qs||G|) time, by using an index
to estimate the upper bounds. It takes in t@&@V|(|V|+ |E|)) time to propagate
changes and update vectors (lines 5-10). The maintenanice ofin-hea is in total
O(|V|logk) time (line 8). Checking early termination can be done in tamistime
(line 9), by using a max-heap to record the upper bounds cfetltandidates af,.
Thus TopKDAG takesO(|Qs||G| + [V|(|V| + |E|) + [V |logk) time in the worst casge
i.e., O|Qs||G| + [V[(|V| 4+ |E])) since lok is typically much smaller thajQs|.

Chapter 5. Diversified Top-k Graph Pattern Matching 140

Early termination. Algorithm TopKDAG has the early termination property. More
specifically, it combines the evaluation and ranking in orexess, and terminates as
soon as topgk matches are identified based on Proposition 5.4.2. Thatésmputes
topk matches fou, withoutcomputing and sorting the entiM,(Qs, G, uy). As will

be verified in Section 5.7, whil@opKDAG has the same worst-case complexity as
Match, it substantially outperformilatch.

Remark. Algorithm TopKDAG can be easily extended to handle the case whes

not a root node. In addition to the termination conditionegivn Proposition 5.4.2,
TopKDAG simply checks whether for each query nadiat is not a descendant af,
there exists a match far. One can verify that the correctness and complexity results
hold for the extendedopKDAG, as well as the early termination property.

5.4.2 Algorithm for Cyclic Patterns

WhenQq is cyclic, it is more intriguing to compute tapmatches with early termina-
tion, as illustrated below.

Example 5.9: Observe thabB andPRG in patternQg of Fig. 5.1 form a cycle. To
check.e.g.,whethemB; andPRG; matchDB andPRG, respectively, the corresponding
Boolean equations adyg, = Xpre; A Xst,, aNdXprg, = Xpe, A Xst, (S€€TopKDAG).
These araecursivelydefined and cannot be solved by a bottom-up propagation pro-
cess. O

To cope with cyclic patternQs, we next provide an algorithm fabpKP, denoted
as TopK, by extendingTopKDAG. GivenQs, topKP first computes the strongly con-
nected component grafgscc of Qs (Section 5.4.1). TreatinQsscc as abAG pat-
tern, it then conducts initialization and bottom-up progi@@n along the same lines as
TopKDAG. It terminates as soon as the condition of Proposition 54satisfied.

In contrast toTopKDAG, however,TopK has to deal wittmontrivial nodesn SCC,
I.e.,those nodes iQsscc that contain more than one query nod€xf TopK employs
a fixpoint propagation strategio process such nodes. When a nod# Qg in uscc
finds a match, its vector are propagated to the candidaté®sé tquery nodes uscc
only, to adjust their vectors. The propagation proceeds untik@oint is reached,
i.e.,when no vector can be updated in the propagation for all ciatels of the query
nodes in thisuscc.

Algorithm . Algorithm TopK works along the same lines as algoritiispKDAG (see

Chapter 5. Diversified Top-k Graph Pattern Matching 141

Input: A cyclic patternQs = (Vp, Ep, fv, Uo),
a graphG = (V,E,L), and a positive intege<.
Output: A top-k match set ofl,.
min-hears = 0; queueVy = 0; termination := false;
for eachu eV, do
compute topological ranku); initialize can(u);

1.
2
3
4. for eachv € can(u) doinitialize v.T;
5. while (termination = false) do

6

select a set of unvisited candida®&sC_ can(u)
of query nodesi in Qs, wherer (u) = 0;

7. if & # 0then
. initialize Va with &;;

9. while VA # 0 do
10. nodev := Va.pop();

[* verifies whethelv is a match ol */
11. if v can(u) and|uscc| > 1then
12. updatedG,S) := SccProcess(G, Qs, V, Uscc, S);

[* propagates relevance values */
13. if vmatchesauthen /* v.bf := true */
14, if [uscc| > 1then /* propagates within a singl8CC */
15. propagate relevance changes witljac;
16. updates if ug € Uscc;
17. Va.push(vy) if vy is a match olu; € uscc, and

(V,v1) € E,(U,u1) € Ep,V € can(U),U & Uscc;
18. else/* propagates among differeSICCs */
19. for each (U,u) € Epand(V,v) € E
whereV € can(U'), v € can(u) andu’ & usccdo

20. update/.T according to.T;
21. if U = u, then updatesS;
22. if V.T is changedhen Va.push(V);
23. check the termination condition and updagenination;

24, elsetermination:= true;
25. return S;

Figure 5.3: Algorithm TopK
Figure 5.3). It utilizes the same indeXG) to estimate the upper bound of relevance
for candidates; maintains the same data structergsa candidate setn(u) for each

Chapter 5. Diversified Top-k Graph Pattern Matching 142

Procedure SccProcess

Input: patternQs = (Vp, Ep, fv,Uo), graphG = (V, E,L), nodey,
a nontrivial nodauscc € Qsscc, and a min-heag.
Output: Updated(G,S).

. stackVa = 0; termination := false;
pushv; oNtoVa;

1
2
3. while Va # 0 andtermination = false do
4 nodev :=Va.pop(); X, := true;

5

for each (V,v) € E and(U,u) € E, do
*v € can(u) for u € uscc, andv' € can(U') */

6. update/.T;

7. if Xy is evaluated tarue then

8. if V' # v then Va.push(V);

9. else ifv = v, then

10. updatey;,.T for eachv; € Vi,

11. if U = U, then updatesS;

12. check the termination condition; updatemination;
13. if termination = true then break ;

14.if v.bf # true then restoreV.bf for each visited nod#;
15.return (G,S);

Figure 5.4: Procedure SccProcess

query node, a vectdr = (bf,R,I, h) for each candidate, and a min-heégpand lever-

ages the same sufficient condition for early terminatibspK differs from TopKDAG

in that (a) it uses a procedusecProcess to check the validity of candidates for those

nontrivial query nodes, i.e., |[uscc| > 1, rather than simply evaluatingbf (lines

11-12); and (b) it employs a strategy similar§ocProcess to propagate changes of

relevance among nodes that are matches of query nodes iglaStit (lines 14-17).
We next take a closer look at proced$keProcess.

ProcedureSccProcess. The procedure is given in Fig. 5.4. It takes as input a naatri
SCC nodeuscc, a min-heapS to maintain the toge matches, grapl®, patternQs
and a candidatg. as an “entry” node. It uses a stawk to perform propagation,
and a Boolean variablermination to indicate termination (line 1-2). Utilizingp, it
performs a reversed depth-first traversalGo$tarting fromv at the top oV, (lines 3-
13). For each/ € can(u’) encountered (line 5), wheré is a query nodeSccProcess

Chapter 5. Diversified Top-k Graph Pattern Matching 143

updates/.T in the same way as iopKDAG (line 6). If V..bf can be evaluated to be
true (line 7), (1) if V' is notv, V' is pushed onto the stack to continue the reversed depth-
first traversal (line 8). (2) otherwise (line 9), one can fyahat all the nodes in stadky
are valid matches, since they correspond to query nodesin Hence for eachy; €
Vj, it updatesy;. T by lettingvi.R := vi.RUVa andv;.l := |v;.R| (line 10). Furthermore,
if U’ is the output node, it updat&swvith new matches (line 11), checks the termination
condition (Proposition 5.4.2), and terminates if the ctindiholds (lines 12-13).

If v.bf is still false after thewhile loop, v is not a match. Thus for each nodevis-
ited in the loopy/ .bf is restored to its original form saved earlier (line 18jcProcess
returns the updated vectors ahiéor further propagation (line 15).

Example 5.10:Recall graplG and patterQs from Fig. 5.1. TopK finds top-2 matches
for Pm as follows. It first computeQ.scc of Qs, which has a nontrivial nodeBscc
containingbB andPRG. It starts withe.g.,a set of candidateg={ST3,ST4}. When the
propagation reaches candidate®B§c, (parts of) their vectors are shown as below.

v v.T = (v.bf,v.R,v.l,v.h)
DB> (XpB, = XpRra, A true, 0, 0,6)
PRG2» (XprG, = Xpes A true, 0, 0,6)
DB3 (XpBs = Xpra; A true, 0, 0,6)
PRG3 (XprGs = XpB, A true, 0, 0,6)
PRG4 || (Xprge, = XoB, A (trueV Xsr,), 0, 0,7)

TopK then invokesSccProcess to propagate the updates within those candidates
for the query nod®Bscc. Consider nodeBB2, PRG2, DB3 andPRG3. SccProcess first
pushesB3 onto stackVa (line 3). It then propagateXpg, = true upwards, updates
PRG2.bf t0 Xprg, = true and pushe®RG, ontoVa. Similarly, DB,.bf and PRG3.bf
are updated t&Xpg, = true andXprg; = true successively. WhenBs is encountered,
SccProcess updateDB3.T to (Xgp, = true, {ST3,ST4,DB2,DB3, PRG2, PRG3},6,6). It
then updates vector for each nodevini(line 11). After this, the vectors of the candi-
dates forPMs are as followsi(e [3,4]):

v v. T = (v.bf,v.R,v.I,v.h)

PM2 || (Xpm, = true, {ST3,ST4,DB2, DB3,PRG2, PRG3},6,7)

PM; (| (Xpm; = true,{STs,ST4,DB2, DB3,PRG2,PRG3},6,6)

Observe that after a single propagation, the terminatiamdition in Proposi-
tion 5.4.2 is satisfiedPMs.l = PMm3.l = 6, which are no less thapms.h, i.e., 4 and
PMga.h. ThusTopK returnsPM,; andPmM3 as top-2 matches. O

Chapter 5. Diversified Top-k Graph Pattern Matching 144

Correctness & Complexity. It suffices to show that given a candidatef a query
nodeu with |uscc| > 1, vis a valid match ofy, If there exists aloopy = (V,Vvy...,Vn,V)
in G, such that (a) all the query nodesugcc form a looppy = (u,u; ..., Uy, u) and
eachy; € py (resp. v) has the same node label asc p, (resp. u), wherei € [1,n],
and (b) for each child{ of u; € py (resp.u’ of u), there must exist a chilq of v; € py
(resp.V of v) such thaw/ (resp.V) has the same label as(resp.u’), wherei € [1,n].

We now prove théf condition by contradiction. Assume that such a Ipgmloes
not exist buv matchesi. By the assumption, there exist three casesv Bnnot reach
itself following reverse depth first search, or (2) theresexat least one nodg on py
that does not have the same node labekas py, or (3) at least a pair of nodeés, v¢)
exists such that; does not have a child, with the same node label as one childof
Uc.

For case (1), by the definition of graph simulation, for eduildal’ of u, there must
exist a childv that matches’; however, since cannot reach itself, then the last node
Vh, appearing on the paih, cannot match the paren of u (u, appears on the cycle
pu and as a parent af), this is becausg, does not have a child as a valid match of
the childu of u,. To see this, note that ¥, has a childvs (notv) that matchesi, then
by vs.bf := true, and sincevs can be reached by all the nodes on paghv should
be a match already. However, this cannot happen sirisea candidate ofl. Thus
v cannot matchu, hence this contradicts the assumption. For case (2), wbsleat
V¢ has different label fronu;, and hence cannot match already; thus by induction,
v cannot matchu, for a reason similar to case (1). For case (3), one may vy
case (3) indeed imposes the constraint of the definition ablyisimulation; hence a
violation of case (3) indicates th&f is not a match ofi;; also by inductiony can not
matchu for the same reason as in case (1). Hence, the assumptionvalidband the
correctness dbccProcess follows.

To see the computational complexity @fcProcess, observe that it take®(|V| +
|E|) time to evaluate the validity of a candidatef u, and uses logtime to maintain
S. Hence itis inO(|V| + |E|) time, askis typically very small, and log can be treated
as a constant.

From the analysis dccProcess, the complexity ofTopK is analysed as following.

Complexity. TopK takesO(|Qs||G|) time to initialize data structures, similarly to
how TopKDAG does. The propagation dopK is in O(|V|(|V|+ |E|)) time. This is
because a single verification for a candidate i®{ifV | + |E|) time (viaSccProcess),

Chapter 5. Diversified Top-k Graph Pattern Matching 145

and the propagation among the matches of query nodes in le Si6G node follows
the same way aSccProcess, which is also inO(|V| + |E|) time. ThusTopK is in
O(|Qs[IG[+ V[(IV]+[E])) time.

We next analyze algorithnfopK, especially the relevance propagation among
matches of query nodes BICC, by using Example 5.10. We discuss two specific

cases, as follows.

Case I: As shown in Example 5.10, when propagation reaches camrdiddtnodes
in DBscc, TopK first verifies the validity ofDB3. This is processed by proce-
dure SccProcess, via a reversed depth first search. The traversal followsptité
DB3 — PRG2 — DBy — PRG3 — DB3, which has the worst time complexi®(|V | +
|E|). Itis worth mentioning that when a candidate is determidattan invalid match
after the traversal, the restoring process for all the eftsitodes is ifO(|V|) time, in
the worst case (line 14 in Fig. 5.4). After a single processiB3, all the visited
candidates turn to be matches and have their corresponduigreg updated. At this
moment, the relevant séB3.R (given in Example 5.10) is the same as relevant sets
of all other newly verified matches, which indicates that elevance change can be
propagated, and the fixpoint is reached.

Case Il: Assume thabB> has one chilé T3 in G. ThenTopK does not terminate after
propagation irCase | and a second round of propagation starts f&m. When the
propagation reachd3B,, sinceDB> is known as a valid matcH,opK directly propa-
gates relevance changes,, {STs} of DBy, following reverse depth first search, and
updates relevant sets for all the visited matches (line F5grb.3). This propagation
proceeds until no further change can be made.

One may verify that, in either case, the relevance propagatiprocessed follow-
ing a depth first search, which is@(|V |+ |E|) time, and always terminates.

From the analysis above Proposition 5.4.1 follows.

Generalized topk matching. The result below shows that our techniques can be
readily applied to generalized relevance functions giveBection 5.3.

Proposition 5.4.3: TopKDAG and TopK can be extended for generalizeghKP, with
the early termination property. O

Proof of Proposition 5.4.3 As a proof of proposition 5.4.3, we extend the algo-
rithm TopKDAG andTopK for the generalizedopKP problem as below.

Chapter 5. Diversified Top-k Graph Pattern Matching 146

(1) We extendlopK for the generalizetbpKP problem, using the same data structures
(e.g.,vectors attached to each candidate), and initializes th#orseusing the corre-
sponding relevance function. The only part that needs tchbeged forTopK is the
evaluation of the lower and upper bounds. To this end, onplgicomputes the lower
and upper bounds with the corresponding relevance funaiging the generalized rel-
evance seR*(u, V). More specifically, along the same line as algorithopKDAG, for
each matclv or u whose attached Boolean varialdgis true, it only needs to update
the vectow/.T iteratively until a fixpoint is reached:

o V.bf is evaluated with¥, = true;

o if Xy becomestrue, then for each child/’ of V' of which X, is true, V.R is
updated with/.R, following a corresponding generalized relevance set;

o if Xy istrue, the lower bound is adjusted by updating.l asd; (u,v) (as a func-
tion of the generalized relevance &{u,v)), aftervV.R is updated; otherwise, it
remains unchanged;

o V.his set to bed (u,v) usingV.R, as soon as for all childred’ of v/, none of
V'.his changed further; and

o if V.bf no longer has Boolean variables that are not instantiatied,v.h is set.

One may verify that in the process above, the following irares are warranted
for any candidat® of a query nodes at each iteration: (IX, is evaluated to berue if
and only ifvis a match ofu; and (Il) v.I < d(u,v) < v.h, since the relevance function
is monotonically increasing.

The correctness of the extend@sbKDAG is ensured by the following: (a) Propo-
sition 5.4.2 always holds for tok-graph pattern matching as long as the relevance
function is monotonically increasing, and (b) invariartysand (1) hold for general-
ized relevance functions. In addition, the extende@dKDAG terminates either when
the termination condition is true, or when all the matchesidentified. Thus, it pre-
serves the early termination property.

(2) Similarly, algorithmTopK can be extended by simply replacing the relevance func-
tion & () with any function of the fornd; (), with corresponding upper and lower bound
estimation. Following the analysis in (1), the extende@K also preserves the early
termination property.

This completes the proof of Proposition 5.4.3.

The techniques can be easily extended to patterns withpteuttitput nodes that
are not necessarily “roots” (will be discussed soon).

Chapter 5. Diversified Top-k Graph Pattern Matching 147

5.5 Algorithms for Diversifying Matches

In this section, we investigate the diversified topratching problemtopKDP). Given
a graphG, a patternQs with output nodeu,, a positive integek, and a parameter
A €[0,1], it is to find ak-element seB C My(Qs, G, Uy) such that the diversification
valueF (S) is maximized.

In contrast tacopKP that is based 0B () alone,topKDP is intractable. The main
result of this section is as follows.

Theorem 5.5.1 The topKDP problem is (1)NP-complete (decision problem); (2)
2-approximable in Q|Q||G| + [V|(|V] + |E|)) time, and (3) has a heuristic in
O(|Qs||G| + [V|(IV|+|E])) time, but with the early termination property.

Proof of Theorem 5.5.1(1) The decision problem afopKDP is to decide whether
there exists &-element subs&C My (Qs, G, Up), such thafF (S) > B for a given bound
B. Itis in NP since there exists awp algorithm, which first guesse&s and then checks
whetherF (S) > Band|S =Kin PTIME.

We show that theopKDP problem isNP-hard, by reduction from the maximum
independent setr(axIS) problem, which is knowmnp-complete [HRT97]. An instance
¢ of maxIS consists of an undirected gra@y = (Vo, Eo) and an integeKop. It is to
determine whether there exists an independentsetVp, such that (a) no two nodes
in Vs are adjacent,e.,they are not connected by any edge, and\{)= Ko.

Given any instance of maxIS, we construct an instangg of topKDP as follows.

(1) We construct a patter® as an edgéu,, u) with u, as the output node, whetg
andu have two distinct labelgu,) andl (u), respectively.

(2) We construct a data graghas follows. (a) For each nodg in Go, we construct a
distinct nodevg, with labell(uo) (i € [1,[Vo[]) in G. (b) For each edgévg;, Vo;) in Go,
we construct a distinct nodg with labell (u), and add it td5; moreover, we add two
edges(Vg,Vij) and(vo;,Vij) in G. One may verify thaG has|Vo| + |Eo| nodes, and
2|Ep| edges.

(3) We setA =1inF(), B=Kp, andk = Ko.

One may verify the following: (1) the transformation abosen PTIME, (2) every
nodevy, in G is a match ofu, in Qs; and every nodejj in G is a match ofu in Qs
(i,] € [1,|Vo|] andi # }), and (3) the relevant s&(uo, V) is exactly the children set
of vo, In G.

Chapter 5. Diversified Top-k Graph Pattern Matching 148

We first prove the following claim.

Claim 1: for any matchvg, andvo,;, R(Uo, Vo) NR(Uo, Vo;) = @ if and only if the corre-
sponding nodeg, andvp, are not adjacent iGo.

Below we prove thdf andOnly If conditions ofClaim 1, by contradiction. (1)
We first show theDnly If condition. Assume that for two adjacent nodgsandvy,,
R(Uo, Vo,) MR(Uo, Vo;) = 0. Since(vg;, Vo,) is an edge i, then there must exist a node
Vij in G, such thawij € R(Uo, Vo) andvij € R(Uo, Vo,); thus,R(Uo, Vo) NTR(Ug, Vo,) # 0,
which contradicts the assumption. (2) Conversely, assnaeR{uo, Vo) N R(Uo, Vo,)

0, while vg, andvp, are not adjacent. AR(Uo, Vg,) is the children set o, in G, there
exists a node;j as a child of both/, andvy, in G. This means{voi,voj) is an edge
in Go, andvg andvp,; are adjacent ifp, which contradicts the assumption. Hence,
Claim 1 follows from (1) and (2).

Based orClaim 1, we next prove that the transformation is indeed a redugtien
there exists an independent $>of sizeKg in G if and only if there exists a tof
match seS whereF (S) > B.

(1) Assume that there exists a t&pmatch setS, whereF(S) > B. We denote as
Vs the corresponding node set $fin Gg, and show thaVs is an independent set of
size Kg. Note thatF(S) = é ZvoieSvojeSKj5d(V0nV0j) > Ko, which means that

Sviesviesi<jOd(Vo, Vo > w Note thalq(Vo,, Vo,) € [0, 1], and there are in total

W numbers for the difference sum. Hence, for every pair of heste, andvy,,
d(Vo;, Vo;) = 1, 1.€., RUg, Vo) NR(Uo, Vo;) = 0. Following Claim 1, this indicates that
for any corresponding node paig andvo, in Vs, Vo, andvp; are not adjacent io.

Thus,Vs is an independent set of sikg.

(2) Conversely, assume thétis an independent set of sikg for Gg. We construcs
as the corresponding node se@nwhich is a topk match set wittF (S) > B. Indeed,
one may verify that for each pair of matches andvOj in'S, R(Uo, Vg) N R(uo,voj) =
0, following Claim 1. Thus,F(S) = é*w =Ko =B.

Putting (1) and (2) together, the transformation is indeeedaction. AsmaxlS is
known to beNP-hard,topKDP is NP-hard. HencetopKDP is NP-complete.

We defer the proofs of Theorem 5.5.1(2) and (3) to Sectiori@bd 5.5.2, respec-
tively, where an approximation algorithm and a heuristie @ane provided, respec-
tively.

Recent results for thmax-sum diversificatiofBLY12] suggests thatopKDP is,

Chapter 5. Diversified Top-k Graph Pattern Matching 149

in general, nontrivial to approximate. Given a Betvith a distance functio®, over
the elements ibJ, the problem is to find &-element subse&d, which maximizes=(S)

= (S + ¢ Jyves(do(u,V)), where f(S) is a submodular function (see Section 5.3).
Our diversification functiorf (-) is in the form ofFy(S), if normalized by(1—A). It

is shown in [BLY12] that no polynomial time algorithm can appimateF;(-) within
557, assuming® # np. In addition, it is shown that the diversification problenr fo
submodular functions is approximable withih— le) [HTMS12]. However,F(-) is
notsubmodular, as remarked earlier in Section 5.3.

Despite the hardness, we provide two algorithmaépKP. (1) One is an approx-
imation algorithm to compute diversified matches with appration ratio 2, hence
proving Theorem 5.5.1(2) (Section 5.5.1). (2) The appration algorithm may be
costly on large graphs, however. Thus we give a heuristiorahlgn for topKDP with

the early termination property (Section 5.5.2), verifyifigeorem 5.5.1(3).

5.5.1 Approximating Diversification

We show Theorem 5.5.1 (2) by presenting an approximatioorihgn, denoted
by TopKDiv. In a nutshell;TopKDiv iteratively chooses a pair of matches that “maxi-
mally” introduces diversity and relevance to the selectedcimes, following a greedy
strategy. This is done by (1) “rounding down” the diversifiea functionF(-) with a
revisedF'(-), and (2) finding a solution that maximizE§(-), which in turn guarantees
an approximation ratio foF (-). This technique is commonly used for optimization
problems [Vaz03, GS09].

Algorithm . Algorithm TopKDiv is shown in Fig. 5.5. GiveRs, G and an integek,
TopKDiv identifies a se8 of k matches ofly, such thaf(S) > @ whereS* is an
optimal set ok matches that maximizés(-). That is, TopKDiv approximatesopKDP

with approximation ratio 2.

TopKDiv first initializes a min-heaps for top-k matches, and an integer counier
(line 1). Itthen computell (Qs, G), the relevancé; (uo, v) and diversitydq(v, V') for all
matches,V € My(Qs, G, Uo) (line 2). Next, it iteratively selects two matchég, vo}
that maximizeF’(-), adds (resp. removes) them $o(resp. fromMy(Qs, G, Up))
(lines 4-6). This process (lines 3-9) repeétﬁmes (lines 3-6). Ifk is odd, |S| is
k—1; TopKDiv then greedily selects a matetto maximizeF (SuU {v}) (lines 8-9).
Finally, it returnsS (line 10).

Chapter 5. Diversified Top-k Graph Pattern Matching 150

Input: PatternQs = (Vp, Ep, fv,Uo), graphG = (V,E, L), integerk.
Output: A k-element set of matches of.

1. min-heafs = 0; integer variable ;= 1;
2. computeM(Qs,G), relevance and diversity of matches figg
3. whilei < ¥ and My(Qs, G, o) # 0 do
4 find (v1,v2) € My(Qs, G, Up) that maximizes
F/(V1,V2) = £2 (8} (Uo, V1) + &} (Uo, V2)) + 1284 (V1, Va);
5 S:=SuU{vi,va};
6. Mu(Qs, G, Uo) = My(Qs, G, Up) \ {V1,V2}; i :=i+1;
7. if |S| < kand My(Qs, G, Up) # 0 then
8 selectv € My(Qs, G, Up) that maximizes= (SU{v});
9 S :=Su{v},
10. return S;

Figure 5.5: Algorithm TopKDiv

Example 5.11: Given graphG and patternQs of Fig. 6.1, and assuming = 0.5,
TopKDiv finds top-2 diversified matches fem as follows. (1) It first computes
Mu(Qs, G,uo) = {PVM; | i € [1,4]}, and the relevance and diversity of thase nodes
(lines 1-2). (2) It then greedily selects a pdir,v2) of matches that maximizes
F/(v1,Vv2) = 0.5(8 (Uo, V1) + & (Uo, V2)) +84(V1, V2) (lines 3-9). TherPMy, PM3} is se-
lected, sincé='(PM1,PM3) = 1.45 is maximum. Thu3opKDiv returns this pair. When
A = 0.5, this pair is a top-2 match based®f) (see Example 5.6). 0

Proof of Theorem 5.5.1(2) Below, we give a detailed proof to show the approxima-
tion ratio and computational complexity aipKDP problem, respectively.

(I) To see the approximation ratio @pKDP problem, it suffices to show that there
exists an approximation preserving reductidfrP-reduction [Vaz03] fromtopKDP to
MAXDISP, from which the conclusion follows sinddAXDISP possesses approxima-
tion ratio 2.

We first reviewAFP-reduction reduction. LetlM; and M, be two minimization
problems. AnAFP-reduction from My to My is a pair ofPTIME functions (, g) such
that

o for any instancé; of N4, I = f(l1) is an instance ofl, such thaibpt,(l2) <

opty(l1), whereopt; (resp. opt,) is the quality of an optimal solution tb
(resp.l2);

Chapter 5. Diversified Top-k Graph Pattern Matching 151

o for any solutions; of |2, 51 = g(l1,S) is a solution ofl; such thabbj(11,51) <
objs(l2,s2), whereobj; () (resp.obj,()) is a function measuring the quality of a
solution toly (resp.ly).

In other words,AFP-reductions preserve approximation bounds. If there exists

a PTIME algorithm forl1, with performance guarantee then there exists aTIME
algorithm forl4 with the same performance guarantep/az03].

We next construct aAFP-reduction (f,g) from topKDP to MAXDISP.

(1) We first define functiorf (). Given an instancg of the topKDP as its input,f ()
outputs an instanck of the MAXDISP. The instance of; consists of a data graph
G, a patternQs with output nodeu,, a positive integek and a parametex € [0, 1].
Algorithm f() first produces a weighted complete grapfy with each noder, as a
mapping of a matcks of up; it then assigné}ﬁ(ér(uo,vi) + O (Uo, Vj)) + %%(vi,vj)

to each edgévo,, Vo) as edge weight. Herept; (resp.opt,) computes(S*) (resp.
Fo(Gg)) of the optimal solutior§* (resp.Gp) for 11 (resp.12). Itis easy to verify that
function f() is in PTIME.

(2) We then construct functiay(). Given a feasible solutio@ for the instancéy, g()
outputs a corresponding solutigrfollowing the construction given in (1) above. Here
obj1 () (resp.obj,()) measure§ (S) (resp.Fo(Gp)) of the solutionSto |1 (resp.G;, to
I2). Note thatg() is trivially in PTIME.

We now show thatf,g) is anAFP-reduction from topKDP to MAXDISP. It suf-
fices to show that (ajpt, (I2) < opty(l1), and that (bpbj;(11,51) < obj,(l2,s2). Indeed,
the construction guarantees an one-to-one mapping fromabehes fot; to the nodes
in a complete graph fol,. Thus,opt,(l2) = opty(l1), andobjy(l1,51) = objs(l2,).
Hence,(f,g) is indeed amAFP-reduction. As MAXDISP is 2-approximabletopKDP
is also 2-approximable.

(I) We next show that algorithnTopKDiv for topKDP is in O(|Qs||G| + [V|(|V] +
[E|)), and outputs &-element setS with F(S) > 3F(S"), where St is the opti-
mal solution of the input. Indeed,opKDiv simulates the 2-approximable algorithm
for MAXDISP, following the proof in (I). HenceTopKDiv is 2-approximable. To
see its computational complexity, observe that it takE$|Qs| + [V|)(|V| + |E]))
time to computeMy(Qs, G, Up), and the relevance and distance values (line 1). It
takes in totaIO('§‘|V|2) time to updateS with the greedy strategy (lines 3-9). The
worst case happens when every nodesims a match ofu,. Thus, TopKDiv takes

Chapter 5. Diversified Top-k Graph Pattern Matching 152

O(|Qs||G| + [V|(|V| + |E]|)) time in total in the worst case, singé| < |E| in real-life
social graphs, anklis typically treated a small constant.
Putting (1) and (Il) together, Theorem 5.5.1(2) follows.

5.5.2 Early Termination Heuristics

Algorithm TopKDiv requires all the matches M(Qs, G) to be computed, which may
not be efficient for large graphs. To rectify this we presehgaristic algorithm for
topKDP, denoted a3opKDH, with the early termination property

Algorithm . TopKDH (not shown) works in a way similar tdopK (Section 5.4): (1)
it uses a min-heap to maintain topk matches; and (2) it initializes the same vector
for each candidate, and updates the vectors via propadaticimeck the termination
condition given in Proposition 5.4.2.

In contrast toTopK, TopKDH utilizes a greedy strategy to choose matchesugor
In each propagation, it collects a s&tof matches ofu, with updated vectors. It
then chooses matches foras follows: (a) if|S|+|S| <k, S =SUS; (b) otherwise,
TopKDH iteratively performs the following to update (i) it replacesv € S with vV
to maximizeF”(S\ {v} U{V}) - F”(S); hereF"() revisesF(-) by replacingd (uo, V)
with v.I /Cy,, anddg (vi,v;) with 1- mim
TopKDH selects a set of matches that “maximally” diversifteén terms of F”().

and (i) it removes/ from S. Intuitively,

These steps repeat urfllis 0 or |S| =k.

Example 5.12:Consider grapl and patterrQs from Fig. 6.1. LetA = 0.1, TopKDH
finds top-2 diversified matches fem as follows. It first select§& = {ST3,ST4}, and
adjusts the vectors of the candidates. After the propagaiticelects{PM,, PM3} as
top-2 matches, which maximizés'() as Q9x %—f + 0.2*% =1.1. Now the condition
of Proposition 5.4.2 is satisfied. HendepKDH returns{Pmz, PM3}, which is indeed
a top-2 pair whe = 0.1 (see Example 5.6). O

Correctness & Complexity. Algorithm TopKDH differs from TopK only in that
it does extra computation to select the matches. One mayy\i&si correctness
along the same lines as the argument TopK given earlier. For the complex-
ity, the extra computation take®(k|V|?) time in total. ThusTopKDH is still in
O(|Qs/|G| + V[(IV| +|E])) time.

TopKDH terminates earlyit processes as many matchedagK does in propaga-
tion, and itstops as soon ake termination condition of Proposition 5.4.2 is satisfied

Chapter 5. Diversified Top-k Graph Pattern Matching 153

The analysis completes the proof of Theorem 5.5.1(3).

Generalized diversified topk matching.

Our diversified matching algorithms can be easily extendedé&neralized diver-
sified functionF*(-) (Section 5.3.4), preserving the nice properteeg,,early termi-
nation and approximation ratio.

Proposition 5.5.2: Algorithm TopKDH (resp. TopKDiv) can be extended for gener-
alizedtopKDP, with the early termination property (resp. preserving eppmation
ratio 2). O

Proof of Proposition 5.5.2 We provide a constructive proof for Proposition 5.5.2, by
extending algorithm3opKDH and TopKDiv for the generalizedopKDP problem.

(1) We first extend algorithrmiopKDH for the generalizedopKDP problem. The ex-
tendedTopKDH uses the same auxiliary data structures, and it adopts dygse@ategy
to iteratively choose a match for the output nage The difference is as below. (a)
In each propagation, it collects a s®tof matches ofi, with updated vectors, com-
puted from the generalized relevance and diversified fansti.e., 7 () anddj(). (b)
It then chooses matches by iteratively updating: (i) it replacesv € S with V' to
maximizeF*(S\ {v} U{V}) - F*(S); and (ii) it removes/ from S. That is, it selects
a set of matches that “maximally” diversifyin terms of the generalized diversified
functionF*(). These steps repeat until eitt&iis 0 or |S| =k.

One may verify that the early termination property is presdrby the ex-
tendedTopKDH, i.e., the algorithm stops onck matches that maximally diversify
the match set are identified.

(2) We next extend algorithmopKDiv for the generalizedopKDP problem, where
the generalized diversified function is defined as:
2:A

F*(8) = (1-N)3(9) + ¢

— g (Vi, Vi),
VieSVjeSi<]

whereA € [0,1] is a parameter set by users.

To extend algorithnTopKDiv, it suffices to replace the functidf() with the gen-
eralized diversified functiofr*(), while all other the steps remain unchanged. That
is, the extendediopKDiv simply selects a pair of matchés;,v») that maximize
F'(v1,V2) asH (& (Uo, V1) + & (Uo,V2)) + %)i Oy(v1,v2). It iteratively updates a
setSwith newly selected match pairs untimatches are identified.

Chapter 5. Diversified Top-k Graph Pattern Matching 154

We next prove that the extension above preserves the appeitigin ratio. Observe
that we can construct a reduction from an instance of thergénedtopKDP problem
to an instance of the maximum dispersion problem, wig(¢is a metric. Moreover,
topKDP simulates a greedy algorithm over the maximum dispersioblpm, which
guarantees approximation ration 2. Hence, the approxamatio 2 is preserved for
generalizedopKDP problem, following the proof of Theorem 5.5.1(2).

Proposition 5.5.2 follows from the analysis above.

5.6 Top-k matching with multiple output nodes

We next discuss how to extend our techniques for pattertsmititiple output nodes,
which are not necessarily “root” nodes. To extend thekopatching, we first charac-
terize the match set for a set of multiple output nodes.Ugt (Ug,, ..., Uo,) as a list
of n designated output nodes@ We shall use the following notations.

(1) We define anatchfor Uy as a “tuple™ts = (Vo , - .-, Vo,), Wherevg, is a match for a
pattern nodel,, for i € [1,n]. Note thatv,, andvy, may refer to the same node @

(2) A k-match sef, for Uy is a set ok tuples,i.e., = {t1,...,t}, where eacly € &
is an-ary tuple asin (1).

One may verify thas, degrades to &-match set for a single output node (Sec-
tion 5.2), whem = 1.

The ranking functions for multiple nodes are not unique. stoplicity, we extend
the relevance and diversified function defined in Sectiorids.Bultiple output nodes.

Measuring relevanceWe measure theslevanceof a matcht of U, in terms of total
social impact of the matches for theoutput nodes. (1) We define a “relevance set” of
t for Uy (denote byRy, 1)) asUy cu,viet Ruv), WhereRy, v is the same as defined
in Section 5.3. In other words, it is the union of the relevasets ofv; € t for a
correspondingl; € Uo. (2) The relevance functiod, (Uo,t) is defined agRy, 1)|-
Intuitively, the relevance of for U, is measured by the total number of matches in
M(Q,G) that are related td, and are reachable from the matches.in

Along the same lines a®pKP, given a data grapks, a patternQ with a set of
designated output nodék,, and a positive integek, the topk matching problem for
multiple output nodes (denoted bypKPM) is to find ak-match setS, for U, such
that

Chapter 5. Diversified Top-k Graph Pattern Matching 155

o (S) =arg maxz O (Uo, ti).
[S|=k tieS
That is,topKPM is to identify a set ok matches (tuples) df, that maximizes the

total relevance. In other words, for 8IC My(Q, G,U,), if |S| =kthend, (S) > & (S).

Measuring diversity To capture the diversity of a match sebf Uy, we first charac-
terize the “dissimilarity” of two matcheg andt; of U, as a functiordy(ty, t2):

IRUot1) M RUo)]
|R(U07tl) U R(U07t2) |

Od (tl,tz) =1-

In other words, the difference of two matchesndt, is the Jaccard distance of their
relevance set fdd,.
Based on the distance functidq() and relevance functiod (), we define the
diversification function as:
FO=1-N §Uot)+ 2y
tie teStieSi<]j

whereA € [0,1] is a user specified parametéf(Uo,t;) = %‘:ti) is the normalized

6d(ti7tj)7

relevance function, whei@, is the total number of the candidates of all query nodes
U’ to whichu; € Uy can reach irQ.

Along the same lines aspKDP, the diversified toge matching problem for mul-
tiple output nodes, denoted ypKDPM, is to find a set ok matchess, for U, such

that

F(S) = argmak (S,).
/=K

Generalized ranking functionsWe remark that the ranking functions above can be
further extended using the generalized relevance andsifieation functions. The
corresponding tofx graph pattern matching problems can also be defined sigilarl
For example, (1) an extension for the relevance funchiaiy,t) can be defined as
any monotonically increasing function &y,), and (2)dq(t1,t2) can be defined in
terms of anypPTIME metric that measures the difference of two tuplesndt,.

Algorithms fortopKPM. A naive “find-all-match” algorithm fotopKPM simply iden-
tifies all the matches for the output nodes, and enumerdtbe glossible combinations

of the matches to find top matches as a tuple set. We next show that our techniques
can be readily extended to support multiple output nodeth) thie early termination

property.

Chapter 5. Diversified Top-k Graph Pattern Matching 156

We first propose algorithms foaspKPM by extending algorithmiopK. To this end,
it suffices to (1) slightly revise the sufficient conditiorr f{dentifying topk matches as
a set of tuples, instead of nodes, and (2) revise the estmafithe upper and lower
bound inTopK in terms of matches as tuples, and (3) modify the terminatoodition
of TopK accordingly to achieve early termination.

We first present a sufficient condition for identifying tofuples as matches. Given
Uo and a match, we usel (Uo,t) andh(Uo,t) to denote a lower bound and an upper
bound ofd, (Uo,t), respectively.

Proposition 5.6.1: A k-element set,3s a top-k match set of {if (a) everytc S isa
match for U, and (b)minkes, (1(Uo,t)) > maxn g(h(Uo,t’)), where tis a n-ary tuple
(V4,...,V,), such that for each patterr{ & U, V is a candidate of u O

The extended algorithms work along the same lineéka& or TopKDAG. They it-
eratively verify matches and propagate the estimatedagtsvlower bounds and upper
bounds. The difference lies in that (&), t) is estimated as the size of the relevance
set oft for Uy (as the union of the relevance sets collected from the msticig, (b)
h(Uo,t) is estimated as the sum wah, for eachv € t, and (c) the data structures and
propagation process are modified accordingly to maintamtixiliary information for
matches as a tuple set, instead of a single list of nodes.

As soon as the early termination condition suggested byd3iopn 5.6.1 is satis-
fied, the algorithms return either tdpmatches fotJ,, or a set ofm (m < k) matches
if at mostm matches exist fod,. Guaranteed by Proposition 5.6.1, this process does
not need to enumerate every possible combination, in cstrtwahe “find-all-match”
strategy given earlier.

The analysis above also verifies that for a single output nigdeat is not a “root”,
the early termination condition still holds. Indeed, altfun TopK only needs to check
whether each node i has at least a match, in order to identify topaatches for
Uo, rather than to find all the matches for every nod®ias in the “find-all-match”
strategy.

Moreover, the algorithms above can be further extended ppat generalized
ranking functions over multiple output nodes, by simply nfigidg the estimation of
the lower and upper bounds with corresponding relevancgifurs.

Algorithms fortopKDPM. We next extend approximation algorithiepKDiv and
heuristic algorithmTopKDH to cope withtopKDPM. We present the main results
below.

Chapter 5. Diversified Top-k Graph Pattern Matching 157

Theorem 5.6.2 ThetopKDPM problem is (1)NP-complete (decision problem); (2)
approximable in @Q|Q||G| + [V|2"+ |V|([V| + |E|)) time, for n output nodes, and (3)
has a heuristic with the early termination property.

The intractability and approximation hardness for togkKDPM problem are not
hard to verify, as the results already hold for its specigkecahenn = 1. We next
provide extensions of our algorithms faspKDPM, as proofs for Theorem 5.6.2(2)
and (3).

(I) We show that there exists a 2-approximation fosKDPM, with time complex-
ity O(|Q||G|+ [V|*" + |V|(JV| + |E|)). The algorithm works along the same lines
as TopKDiv, with the following differences. (a) It first identifies alhé matches
for the output nodes itJy. For each output node,, it maintains a list of all the
matches fo,. (b) It then enumerates all the possible combinations femtlatches,
each corresponds to a tugles a match folJ,. There exists in totaV|" such tu-
ples. (c) It then greedily selects two tuplasandt, that maximizes the function
F/(t1,t2) = 128} (Uo,t1) + & (Uo,t2)) + 218a(t1,t2). In a nutshell, it simulates a
2-approximation over an instance of the maximum disperproblem, over a graph
with [V|" nodes, where each node corresponds to a tuple.

The algorithm either (1) returr®; indicating that there exist no match, or (2) cor-
rectly finds a set ok matchesS, whereF () > 3F (S;), whereS; is the optimal set
of k matches fotJ,. For the complexity, observe that there exists at nf\égt tuples
as matches, and the total selectiorkofiatches take®(|V|?") time.

The result below readily follows from the analysis above.

Corollary 5.6.3: The problemopKDPM is 2-approximable irrTIME for fixed number
of output nodes. O

(I) We next extend algorithmTopKDH for the problemtopKDPM. The extended
algorithm works along the same lines as the extenidgd for multiple output nodes.
It differs from TopKDH in the following: (a) it adds new tuples as matchesigr
instead of a single node for some output node, and (b) it gyerderts tuples that
maximize the diversity function. It maintains a tuple Sgt Each time a new set of
matches folJ, is identified, it either adds the matchesSyg if |S| <k, or replaces
a matcht’ € S with a newly identified match for U,, such that the functiofr (S, \
{t}U{t'}) - F(So) is maximized.

Chapter 5. Diversified Top-k Graph Pattern Matching 158

One may verify that the early termination property also botd find topk matches,
the extendedlopKDH (a) does not need to identify all the matches for each output
node, even when there are multiple output nodes, and (bjnitinates as soon ds
matches (as a tuple set) 0g are identified, following the analysis for the (extended)
algorithmTopK.

Putting these together, Theorem 5.6.2 follows.

Remarks. Algorithms for topKPM and topKDPM find a set of matches$ =
(v1,---,Vn), Where each attribute dfis a match of the corresponding output node
in Up. The match sef, as a whole, however, does not necessarily preserve the topo-
logical structure of pattern graphs in their original grapideed, when both multiple
output nodes and the connectivity of the matches are camsidemultaneously, the
(diversified) topk graph pattern matching problem becomes nontrivial, andrges a

full treatment.

5.7 Experimental Evaluation

We next experimentally verify the effectiveness and efficieof our topk graph pat-
tern matching algorithms, using real-life and synthetitada

Experimental setting. We used the following datasets.

(1) Real-life graphsWe used three real-life graphs.

(@) Amazon(http://snap. stanford. edu/ data/index. htm) is a product co-
purchasing network with 54852 nodes and,¥88 725 edges. Each node has at-
tributes such as title, group and sales rank. An edge fromuymtx to y indicates that
people who buy also buyy.

(b) Citation (ht t p: // www. ar net mi ner. or g/ ci tati on/) contains 1397,240 nodes
and 3021, 489 edges, in which nodes represent papers with attribatgstitle, au-
thors, year and publication venue), and edges denoteoritati

(c) YouTube (http://netsg.cs.sfu.calyoutubedata/) is a network with
1,609,969 nodes and,$09 826 edges. Each node is a video with attributeg.(
(A)ge, (C)ategory, (V)iews, (R)ate). An eddr,y) indicates that the publisher of
videox recommends a related vidgo

(2) Synthetic dataWe designed a generator to produce synthetic gr&shsV, E, L),

Chapter 5. Diversified Top-k Graph Pattern Matching 159

controlled by the number of node¥| and edgesE|, whereL are assigned from
a set of 15 labels. We generated synthetic graphs followheglihkage generation
models [GGCMO09]: an edge was attached to the high degreesnaidh higher

probability. We usé|V|, |E|) to denote the size d@.

(3) Pattern generatar We also implemented a generator for graph patténs
(Vp, Ep, fv,Uo), controlled by four parametersVy|, |Epl, label fy from the samex,
and the output node,. We denote ag|Vy|,|Ep|) the size|Q| of Q. For synthetic
graphs, we manually constructed a set of 9 patterns inadudinAGpatterns and 5
cyclic patterns.

For the real-life datasets we used the following patterasForAmazonwe iden-
tified 10 cyclic patterns to search products with conditigpecified on attributeg(Q.,
title, category) and their connections with other produéby Citationis a DAG, and
we designed 1dhAcGpatterns to find papers and authors in computer science.ofc) F
Youtube we found 10 cyclic patterns, where each node carried seanotiitions for
finding videosg.g.,category is “music”.

Two such patterns ovioutubeare shown in Figures 5.6(a) and 5.6(b). (a) The cyclic
patternQ1 in Fig. 5.6(a) is to find top-2 videos in category “music” (rked with “«”
as the output node) with ratirlg > 2 (out of 5), which are related to “entertainment”
videos withR > 2 and have been watched more than 5000 tinves- (5000). (b)
The DAGpatternQ2 in Fig. 5.6(b) is to identify top-2 “comedy” videos with rag
R > 3, which recommend (a) “entertainment” videos older thad 88ys A > 500),

(b) popular videogV > 7000), and (c) videos posted 800 days agoX 800).

(4) ImplementationWe implemented the following algorithms, all in Java: (y top-
k algorithmsTopKDAG for DAGpatterns andopK for cyclic patterns; (2) algorithm
TopKnopt (resp.TopKDAGhept), @ Naive version offopK (resp. TopKDAG) that ran-
domly selectss; to start propagation, rather than choosing a minimags#tat covers
those candidates of query nodes of rank 1 (see Section 8)&lgorithmmat for top-
k matching, to compare witliopKDAG and TopK; (4) the approximation algorithm
TopKDiv and heuristic algorithmTopKDH (resp. TopKDAGHeu) to find diversified
topk matches for general (respAG) patterns.

All the experiments were run on a 64bit Linux Amazon EC2 Medianstance with
3.75 GB of memory and 2 EC2 Compute Unit. Each experiment ejsated 5 times
and the average is reported here.

Experimental results. We next present our findings.

Chapter 5. Diversified Top-k Graph Pattern Matching 160

C="entertainment"; /\

R>2 T
C="music"; @x
R>2 ¢¢ <>
O
VvV>5000
(a) Pattern Q, <> (b) Top-2 relevant matches (c) Top-2 diversified matches

(a) Pattern (I) and top-2 results doutube

C="entertainment";A

A>500 T
C="comedy";
R>3 /.<
<> ﬂ D D
V>7000 A>800 . -
(a) Pattern Q, (b) Top-2 relevant matches (c) Top-2 diversified matches

(b) Pattern (Il) and top-2 results ofoutube

Figure 5.6: Case study

Exp-1: Effectiveness of topk matching. We first evaluated the effectiveness of
our topk matching algorithmsj.e.,TopKDAG (resp. TopK) and its naive version
TopKDAGopt (resp.TopK,opt), cOmpared tanat. We measured their effectiveness

by (1) counting the number of the match®g,(Q, G, uo)| of u, inspected by them, and

= |ML(Q7GUO)|
[Mu(Q.G,uo)|*

We comparedMR of these algorithms over the three real life datasets: (1)
TopK, TopKnept @nd mat on Youtubeby varying |Q| (Fig. 5.7(a)), (2)TopKDAG,
TopKDAGhop: @and mat on Citation by varying |Q| (Fig. 5.7(b)), and (3)TopK,
TopKnopt @andmat on Amazonby varyingk (Fig. 5.7(c)). The algorithms performed

(2) computing anatch ratioMR

consistently on different datasets, and hence we do not gtlothe results here.
Moreover, (a)nat always finds all the matchese.,its MR = 1, and is thus not shown;
and (b) Citation is a DAG, and thus onlyTopKDAG, TopKDAG,.,: and mat were
tested orCitationfor DAGpatterns.

Performance for cyclic patterngFixing k = 10, we varied Q| from (4,8) to (8,16)
for Youtube The results are reported in Fig. 5.7(a). Observe the faigw(1) TopK
and TopKnopt effectively reduce excessive matches. For instance, WQe#: (4,8),
while mat had to compute all the matches (80), TopK only inspected 88,e., MR
= 47%. On averagdVIR for TopK is 45%, and is 54% follopKnept. INdeed,TopK
terminates early: it finds toR-matches without computing all the matches. TapK
(on average) inspects 16% less matches fhapK,op: due to the greedy selection

Chapter 5. Diversified Top-k Graph Pattern Matching 161

80 T T T T T 70 T T T T
MR[TopK] x=x=x1 MR[TopKDAG] x=x=x1
70 MR[TopKnop RIXZZS 60 MR[TopK AGnop RIXZZS o
- - P
0 60 o - 0 50 < B
el [2 - i 2 i
gl & B Sa0F [.
sS40 P48 R be S s &
5 SN O ¥ 530 S -
30 F X% X 24 o ° o
8 G M & = =
20 | P SIS S 201 QR }
XA e (\Qﬁ <>4, x
10 | P 2 b SEE 0 K2 T
0 >4 o bXg X 0
(48 (5100 (6,12) (7,14) (8,16) (4,6) (8,12) (10,15)
(a) Varying|Qs| (Youtube) (b) Varying|Qs| (Citation)
80 T T T T
MR[TopK] —+— e
75 - MR[TOpKopd ——>-- X7 T

al

% of Matches
a o O
o O

(c) Varyingk (Amazon)

Figure 5.7: Effectiveness of top-k matching

heuristics: more relevant matches are likely to be idexntiéiarlier in the propagation
process (Section 5.4).

Performance fomAGpatterns Fixing k = 10, we variedbAGpattern sizg¢Q| from
(4,6) to (10,15) on Citation. As shown in Fig. 5.7(b), (1JopKDAG inspects much
less matches thamat. For example, itdVIR is only 34% when|Q| = (8,12), and

is 40% on average. (2) On averagkpKDAG examined 18% less matches than
TopKDAG0p:. The reduction irfVIR is more evident fobAGpatterns than for cyclic
patterns becausmGpatterns are less restrictive and her€Q), G) tends to be larger.

Varying k Fixing pattern sizeQ| = (4,8), we variedk from 5 to 30 in 5 increments,
and reportedR for TopK and TopK,q,: 0n Amazon As shown in Fig. 5.7(c), the
match ratioMR of TopK (rsep.TopK,qpt) increased from 42% (resp. 46%) to 69%
(resp. 77%) whek was increased from 5 to 30. Indeed, whemecomes larger, more
matches have to be identified and examined, for GofK and TopKnopt.

Case studyWe manually inspected tdpmatches returned by our algorithms on the
real-life data, and confirmed that the matches were indeesitde in terms of their
relevance. For instance, Figures 5.6(a) and 5.6(b) dejpectdp-2 matches (circle

Chapter 5. Diversified Top-k Graph Pattern Matching 162

T T T T T 120 T T T T
140 - Match xxXx3J - Match Xxx1
TopKpopt BEZ525] 100 |- TOPKDAG oy mzsz2s 3 i
120 - TopK 21z 1 TopKDAé Bl
S 100 | K . T 8o .
3 3
8 8o0F 8 6ol |
7] <] 7]
g 60 = K =
[P @4 = 40 T
O Sel e B o
20 |- P L R 201 Ko Lol ST
JLRE BRA KR R R JLBE R KB M
(4,8) (510) (6,12) (7,14) (8,16) (4,6) (6,9 (8.12) (10,15)
(a) Varying|Qs| (Youtube) (b) Varying|Qs| (Citation)
25 T T T T 80 T T T T T T T
Match —+—
70 - TOpPKDAG, ot —->¢--
TOpKDAG -----
20 - .
=) 560 7
15 15
o o 50]
2151 .)
qé ekt ——X‘;‘7/‘> q§) 40 -
i S OIS x i o
104 - . 30 | xS
7§/,/ Match —+— //i"‘* *
TopKpopt —-%-- 20 - ¥ -
Topﬁ e e =
5 | | 10 %= I | | | | | |
5 10 15 20 25 30 1.0 1.2 1.4 16 1.8 20 22 24 26 238
(c) Varyingk (Amazon) (d) Varying|G| (Synthetic)
100 T T T T T T T T
90 -
80
T 70
o
g 60
@
o 50
£
= 40
301
20 b
¥
10 | | | | | | | |

10 12 14 16 18 20 22 24 26 28

(e) Varying|G| (Synthetic)
Figure 5.8: Efficiency and scalability of top-k matching
nodes) and graphs induced by their relevantwsats patterngQ; andQ, given earlier,
respectively, orYoutube These were confirmed to be the top-2 matches.

Exp-2: Efficiency and scalability of topk matching. We next evaluated the ef-
ficiency of the algorithms. In the same settings as in Exp-&,r@port the perfor-
mance of (1)TopK, TopK,opt @andmat on Youtubeby varying |Q| (Fig. 5.8(a)), (2)
TopKDAG, TopKDAGop: andmat on Citation by varying |Q| (Fig. 5.8(b)), and (3)
TopK, TopKnept @andmat on Amazonby varyingk (Fig. 5.8(c)). We also evaluated
their scalability with synthetic data.

Chapter 5. Diversified Top-k Graph Pattern Matching 163

Efficiency for cyclic patterns The results for cyclic patterns oroutubeare shown
in Fig. 5.8(a), which are consistent with Fig. 5.7(a): (bpK and TopKop: always
outperformmat: TopK (resp. TopK,opt) takes 52% (resp. 64%) of the time ofat

on average. (2) On averagéopK improvesTopKnopt by 18%. (3) While all the
algorithms take more time for larger patternst is more sensitive t¢Q| thanTopK,

becausenat spends 98% of its time on computing all the matches and tbkevance,
which heavily depend ofQ)|.

Efficiency for acyclic patternsAs shown in Fig. 5.8(b), the results foaGpatterns on
Citation are consistent with Fig. 5.8(a). (TppKDAG (resp.TopKDAG,:) outper-
formsmat by 64% (resp. 56%) on average, and [8pKDAG improvesTopKDAG,opt
by 16%. The improvement overtat is more evident fobAGpatterns than for cyclic
patterns (Fig. 5.8(a)) because (@R is smaller forbAGpatterns, and (bJopKDAG
does not need fixpoint computation.

Varying k On AmazonFigure 5.8(c) reports the efficiency results in the saminget
as in Fig. 5.7(c): (I)mat is insensitive tdk, as it computes the entitd,(Q, G, Up).
(2) TopK and TopKop: OUtperformmat, but are sensitive to the changekofindeed,
the benefit of early termination degrades whegets larger and more matches need
to be identified. Nonethelesk,is small in practice, andopK is less sensitive than
TopKnopt, as its selection strategy allows early discovery of topomes, reducing the
impact ofk.

In addition, we found thafTopK and TopKDAG perform better for patterns with
(a) smaller “height” (;e., the largest rank of the pattern node), (b) output nodes with
smaller ranks, and (c) less candidates.

Scalability We also evaluated the scalability of these algorithmsgu$ange syn-
thetic datasets. FixingQ| = (4,6) for bAGpatterns andk = 10, we variedG| from
(1M, 2M) to (2.8M,5.6M), and testedopKDAG, TopKDAGpt andmat. As shown
in Fig. 5.8(d), the results tell us the following: (&ppKDAG and TopKDAGopt Scale
well with |G|, and better thamat; they account for only 38 % and 43% of the run-
ning time ofmat, respectively; and (bJopKDAG takes 87% of the running time of
TopKDAG,op:. These are consistent with the results on real-life graphs.

Fixing k=10, we used cyclic patterns with si@| = (4,8), and tested the scalability
of TopK, TopKnept andmat. As shown in Fig. 5.8(e), the results are consistent with
Fig. 5.8(d): TopK (resp.TopK,ept) accounts for 49% (resp. 56%) of the costnadt
for cyclic patterns. A closer examination of the above rssalso tells us that our

Chapter 5. Diversified Top-k Graph Pattern Matching 164

10 T T T T T 100 T T T
TopKDiv KxX=x1 TopKDiv XXX

TOpKDH 58x225 [TOpKDAGDH 255228
8 . 80 .
~ i i b =) —
c
61 [] . S 60 .
o i 3 3
s i 1 5 L @
>4 o | x4 Q
4 L < B 5 . £ 40| , -
5 - & S = . KR
) o i 3 & 8 g :
2F K& <) i <) . 20 - DI - ;ﬂ‘ 04 o
g S o 5 - . <) S S
! S i <, j X &1 A o
) 2 4 : : I I o S O
(48) (5100 (6,12) (7,14) (8,16) (32 43 (G4 (65 (7.6
(a) Varying|Qs| (Amazon) (b) Varying|Qs| (Citation)
T B T T T T T T T T T T T T
140 |- TopKDiv X =xx] e 200 |- TopKDiv —+—
TopKDH =&&z23 0] 180 L TOpKDH ---- N
120 .
T 100 | - |
o
[S]
8 8of . i
5] o
£ 60 i S i
3 : .
40 - A 4 /:\\1 - -
0 oal el <l Xj e i M R R R RO R R
(4,8) (510) (6,12) (7,14) (8,16) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 26 2.8
(c) Varying|Qs| (Youtube) (d) Varying|G| (Synthetic)

Figure 5.9: Algorithms for diversified top-k matching

algorithms do much better than their worst-case complediig to early termination.

Exp-3: Diversified top-k matching. Finally we evaluated (1) the effectiveness of
TopKDiv and TopKDH, (2) the efficiency ofTopKDiv, TopKDH and TopKDAGHeu,
as well as (3) their scalability using large synthetic data.

Effectiveness Observe that (a) th&R of TopKDiv is always 1, as it requires
Mu(Q, G, Up) to be computed, and (2) tHdR of TopKDH (resp. TopKDAGHeu) is
the same as that dfopK (resp. TopKDAG), since they only differ in match selection
strategy (see Section 5.5). Thus, the comparisa®s for TopKDiv, TopKDH and
TopKDAGHeu is consistent with the results in Figures 5.7(a) and 5.7fmtead, we
are interested in how wellopKDH and TopKDAGHeu, as heuristics, “approximate”
the optimal diversified matches.

Fixing A = 0.5 andk = 10, we tested=(S) and F(S) on Amazonby varying
|Q|, whereS (resp.S) is the set of togk diversified matches found byopKDiv

(resp. TopKDH), andF(-) is the diversification function given in Section 5.3. As

shown in Fig. 5.9(a), (1F(S) > F(S), as expected sincBopKDiv has approxima-
tion ratio 2, whileTopKDH is a heuristic. (2) HoweveifopKDH is not bad:F(S) is
77% of F(S) in the worst case. ThuSopKDH, on average, “approximately” finds a

Chapter 5. Diversified Top-k Graph Pattern Matching 165

setS with F(S) > %6 of the optimal value, which is comparable to the performance
of TopKDiv.

Case study We also manually checked the top-2 diversified matches doun
by TopKDH for Q; andQ- of Figures 5.6(a) and 5.6(b), respectively. As also shown
in Fig. 5.6, TopKDH correctly replaced one of the top-2 relevant matches wittraar
(shadowed node) that made the match set diverse.

Efficiency On Citation, we tested the efficiency dfopKDiv and TopKDAGHeu, by
fixing k = 10 and varying Q| from (3,2) to (7,6). As shown in Fig. 5.9(b), (1)
TopKDAGHeu takes only 42% of the time dfopKDiv on average, but (2)opKDiv is
less sensitive t¢Q| than TopKDAGHeu. This is because a larg€ imposes stronger
constraints on matches, and thus has smalléD,G). Hence, there is tradeoff be-
tween the extra time incurred by larg@rfor TopKDiv to computeM(Q, G) and the
reduced time for selecting diversified matches from smal¢@,G). In contrast,
TopKDAGHeu does not select matches from precompWE®, G) and is not affected
much by|M(Q,G)|.

Fixing k = 10, we evaluated the efficiency @bpKDiv vs. TopKDH on Youtube
by using the same patterns as TapK in Exp-2 (Fig. 5.8(a)). Figure 5.9(c) shows the
results, which are consistent with Fig. 5.9(b) BoxGpatterns orCitation.

We also found that both algorithms are not sensitive to t@gh ofA. Specifically,
TopKDiv takes slightly less time whex= 0, as it degrades t@at.

Scalability We also evaluated the scalability ®6pKDiv and TopKDH, in the same
setting as in Fig. 5.8(e). As shown in Fig. 5.9(d), (1) botoaithms scale well with
|G|, and (2) TopKDH is less sensitive thaifiopKDiv. The reason is thatopKDiv
spends most of its time on computiMy Q,G). WhenG is larger, its cost grows faster
than that ofTopKDH. On the other handlopKDH seldom demonstrates its worst case
complexity due to the early termination condition.

Summary. (1) The revised graph pattern matching effectively reduercessive
matches: TopKDAG (resp. TopK, TopKDH) only examines 40% (resp. 45%) of
matches inM(Q,G) on average. (2) Our early-termination algorithms outpenfo
mat, which is based on traditional matching. Inde@dpKDAG (resp.TopK) takes
on average 36% (resp. 52%) of the timenadt for DAG(resp. cyclic) patterns. (3)
Our algorithms effectively identify most relevant and disiéed matches for output
nodes, and scale well witk and the sizes o andG. (5) Our optimization tech-
nique improves the efficiency of the tdpmatching algorithms by 16% (resp. 18%)

Chapter 5. Diversified Top-k Graph Pattern Matching 166

for DAG(resp. cyclic) patterns.

5.8 Related work

We categorize the related work as follows.

Top-k queries. There has been a host of work on toguery answering for relational
data, XML and and graphs.

Relational databasesTop-k query answering is to retrieve tdptuples from query
result, ranked by a monotone scoring function [IBS08]. @Gigemonotone scoring
function and sorted lists, one for each attribute, Fagifgerdthm [Fag99] reads at-
tributes from the lists and constructs tuples from thelaitgs. It stops whek tuples
are constructed from the top-ranked attributes that haee keen. It then performs
random access to find missing scores, and retkituples with the highest scores. It is
optimal with high probability for some monotone scoringdtions. Extending Fagin’s
algorithm, the threshold algorithm [FLNO3] is optimal fdf mmonotone scoring func-
tions, and allows early termination with approximate topatches. More specifically,
it reads all grades of a tuple once seen from the lists, arfdipes sorted access to tu-
ples by predicting maximum possible grades in unseen tupigg k tuples are found.
Other topk queriesg.g.,selection, join and datalog queriesd.,[CG99, Str06]), adapt
and extend the methods of [FLNO3, Fag99].

We focus on togk matching on graphs rather than relational tables. Moreover
while the prior work assumes monotone scoring functions ragires ranked lists
to be provided as input, (1) we combine the query evaluati@hrasult ranking ira
single processwithoutrequiring ranked lists as input, and (2) our relevance awvelrédi
sification functions are more involved than monotone sgpfimctions. Nonetheless,
our algorithms promise early termination, and return amswathout computing the
entireM(Qs, G).

XML and graph matching Topk queries have also been studied for XML, and for
graph queries defined in terms of subgraph isomorphism. [} Xeyword search
(e.g.,[GSBSO03]) is to find togk subtrees of a document, given a set of keywords.
The answers are ranked based on content relevance, ancctuisthiscore for con-
ciseness measurement. TopX system [THM] is to retrieve togk answers from
both text and semi-structured data for XPath-style quekssentially, the prior work
is to find top-ranked trees or connected subgraphs induced & set of keywords,

Chapter 5. Diversified Top-k Graph Pattern Matching 167

rather than to find matches for a general graph pattern. (@kT¢Path queries are
to identify top matches for the nodes in a tree pattern, basetlee pattern match-
ing. For example, [MAYKSO05] finds top-ranked matches foetmatterns in terms
of keyword and document frequency, an extended measuresh@&rt*IDF. (3) Top-

k subgraph matching is to find top-ranked subgraphs that amneagphic to a graph
pattern [ZCLO7, WDLF 12, GCO08],e.g.,subgraphs ranked by the total node similar-
ity scores [ZCLO7], answers for basic graph patterns (aguoation of triple patterns

in SPARQL) on RDF graphs [WDL12], and top-ranked trees that are isomorphic to
twig queries in rooted graphs, with minimum pairwise nodsatice [GCO08].

Our work differs from the prior work in the following. (1) Wewsly topk queries
defined by graph simulation [HHK95], rather than subgrapge(tisomorphism. Fur-
ther, we consider matches of a single output node that arg@ut@a with early ter-
mination. (2) We support result diversification, which ig studied in the prior work

mentioned above.

Result diversification. Result diversification is a bi-criteria optimization pleim for
balancing result relevance and diversity [GS09], with aggpions ine.g.,social search-
ing [AGHP12]. (1) General frameworks for query result dsication are introduced
in [GS09, VRB"11, QYC12]. A set of axioms for designing diversificationtsyss is
proposed in [GS09], to characterize reasonable diversditéunctions. Several diver-
sification strategies are experimentally compared in [VRE]. A general framework
for diversified topk search is proposed in [QYC12], which consists of three ggner
functions that capture the termination conditions andceatrategies. (2) Based
on result diversification, Tog-diversity queries are to fink answers that maximize
both the relevance and overall diversity, which have beadiatl fore.g., keyword
search [DFZN10, GKSO08]. Generally speaking, the appraatihénding topk diver-
sified results consist of two steps: (1) a rankedWisit. relevance score is computed,;
and (2) the list is re-ranked by combining diversity scocefrtd topk diversified ob-
jects [QYC12]. Itis shown [GS09, VRBL1] that query diversification is intractable.

In contrast, (1) we study how to find tdpeiversified matches for a designated
node in graph pattern matching, on which we are not awareyopaar work. (2) Our
algorithms combine query evaluation and result rankingy @arly termination, while
the previous work assumes that the query resulinsady knownexcept [DFZN10]
for keyword search. (3) We show that diversified graph patteatching isAPX-hard,

a new result to the best of our knowledge.

Chapter 5. Diversified Top-k Graph Pattern Matching 168

Pattern queries with output nodes Several query languages allow one to specify a
designated output node, notably twig queries on XML dataf{C302]. Such nodes
can also be specified with a “return” clause in XQuery [LC®f]a “select” clause in
SPARQL [PAGO09]. These languages are typically based onrapbgtree) isomor-
phism. For keyword queries, [LCO7] proposes “return nodesSed on the category
information of the keywords. The nodes are, however, notifipd by users. To re-
duce search effort, [TFGEROQ7] proposes a “Seed-Findet itlemtifies matches for
certain pattern nodes. This work extends twig queries tplgpattern matching de-
fined in terms of graph simulation, and provides algorithorscbmputing diversified
topk matches with early termination, which were not studied fBxa¥h. This work ex-
tends twig queries to graph pattern matching defined in tefrgsaph simulation, and
provides algorithms for computing diversified tepnatches with early termination,
which were not studied for XPath.

Chapter 6

ExpFinder: Finding Experts by Graph
Pattern Matching

In this chapter, we introduce a system, denotedad-inder, for finding experts in
social networks based on graph pattern matching. We shaw{ih&ow ExpFinder
identifies topk experts in a social network by supporting bounded simulatfcgraph
patterns, and by ranking the matches based on a metric fal sopact; (2) how it
copes with the sheer size of real-life social graphs by stpmpincremental query
evaluation and query preserving graph compression, arttb(@theGUI of ExpFinder
interacts with users to help them construct queries ancotispatches.

6.1 Introduction

To effectively capture matches in real-life social graphe, adoptbounded simula-
tion [FLM 710], a revision of the traditional notion of graph simulatj@nd study its
application in experts searchedange anddynamicreal-life social networks.

Example 6.1: Consider a fraction of a collaboration network (excludinigee;) de-
picted as grapl® in Fig. 6.1(b). Each node i6 denotes a person, with attributes
such asname field (e.g.,system architectA), system developefD), business ana-
lyst (BA), system testery(T)), specialtyfor the field €.9.,programmer and database
administrator forSD), andexperiencgnumber of years). Each edge indicates col-
laboration,e.g., (Bob, Dan) indicates thaDan worked in a project led byob and
collaborated well wittBob. Two people may also collaborate indirectly via a path of
collaboration [LLT11].

169

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 170

Name:Bob
Education: ... Bob Walt
"System architect", Current: System Architect| , ’ L
">=5 years" Experience: 7 years / “ “
& Projects: ...
"System developer", 7 — System Architect System Architect
">=2 years" “ 5 years
2 . .
; SAxk ol Wist.. Bill
S 3 : e (RN a
! Rrogrammer Programmer Fred Graphic Designer
2 2 '3~y.e_ars 4 ye?‘rs" c 2 years
a N &
A ~ DBA
!’; BA e]_‘,v" 2 years
"Business analysis" Eva Pat Jean
ST ">=3 years" é ; &
/\
"Tester", ~_ (]
">=2 years" Tester DBA Business Analyst
2 years 3 years 3 years
(a) Pattern query Q, (b) Collaboration network G

Figure 6.1: Pattern query Qp and collaboration network G
Suppose that a company wants to hire a system architectsignée 6A) and form

a team to develop a medical record system [LLT11]. The reqguénts are expressed
as abounded simulation quer@, [FLM*10] (Fig. 6.1(a)) as follows: (1) th6A
expert must have worked in a team consisting of three otlpastpf expert§D, BA,

st, represented by the labeled node1 (2) theSA should have at least 5 years of
working experience, shown as a search condition at 1¥@de(3) there areSD and
BA experts who collaborated well wiA experts, via a collaboration chain no longer
than 2 and 3, respectively, as indicated by labeled efgesSD) and(SA,BA) in Qp.
Similarly, the other nodes and edgeip depict the requirements of the team &
experts. Her&A is marked as the “output node” witk™, i.e.,the users only require
the matches d®A to be returned as the desired experts.

The matches oy, denoted aM (Qy, G), is a relation between a query node and its
valid matches [FLM 10] in G. More specificallyM(Qp,, G) = {(SA,Bob), (SA, Walt),
(BA, Jean), (SD,Mat), (SD,Dan), (SD,Pat), (st,Eva)}. Observe the following: (1)
the node&sD in Qp is mapped to botMat (programmer) an®at (DBA) in G, which is
not allowed by a bijection in subgraph isomorphism; andi{2)d¢dge fron$A to BA in
Qp requires that th8A expert has superviseddA within 3 hops; the edge is mapped
to a path €.g.,the path fromBob to Jean) of a bounded length i; in contrast, graph
simulation only allows edge to edge matching.

As SA may have multiple matches, a ranking metric should be peait se-
lect the best experts with social impact. For example, IBatlhandWalt are equally
experienced matches 6. NeverthelessBob has collaborated with all other team
members more “closely” via shorter collaboration pathsus[Bob has a stronger so-
cial impact [LLT11, NewO1a], and makes a better expert fardmating with team

members. O

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 171

6.2 Incremental maintenance of landmarks

In [FLL "11], a notion of weighted landmark vectors is introduceditonaaintenance
of match results via bound simulation. It is also verified thdh the aid of landmark
vectors, distance computations are far less costly thaaltwrithms which traverse
the graph on the fly.

However, as remarked in Section 1.1, real-life graphs gre&jly large, and are
frequently updated. It is too costly to recompute landmaeks. it is NP-complete to
find a minimum landmark vectors, every time when the grapbsipdated. With this
comes the need for incremental algorithms that computegesato the landmarks in
response to updates, to minimize unnecessary recomputétithis section, we study
the problems of incremental maintenance of landmark veetod provide complexity
bounds and algorithms for maintaining landmark vectors.

6.2.1 Landmark Vectors

A landmark vectofm = <vi, ...,V > for a data graplG is a list of nodes irG such
that for each paifV’,V') of nodes inG, there exists a node im that is on a shortest
path fromv’ to Vv, i.e.,Im “covers” all-pair shortest distances.

As observed in [PBCG09], we can use a landmark vector to fiadlibtance be-
tween any pair of nodes i@ as follows. (1) With each nodein G we associate two
distance vectorseach of sizéim|: distvy = <dis(V, V1), . ..,dis(V, V|j;y) >, anddistvy =
<dis(v1,V),...,dis(Vm[,V)>. (2) The distancéis(v",V') from nodev’ to V' in G is the
minimum value among the sumsdiftv¢[i] of v/ anddistv;[i] of V' for all i € [1,|Iml]].
This can be found by distance querydenoted aglist(V’,V,Im), which performs at
most|Im| operations. In practicém| is typically small and can even be treated as a
constant [PBCGO09].

Selection of landmarks There are multiple landmark vectors for a graph For
example, anyertex cover Y of G can be considered as a landmark vector. Indeed,
since\, is a vertex cover, for any ed@gs= (v1,V2) in G, v1 or vz is in V. Thus, for any
two nodes/ andv and any shortest pafihfrom V' to v, there is a nodg”’ €\, that is

on some edge € p. In our experimental study, we compute a minimum vertex cove
as a landmark vector using heuristic algorithm.

One may also want to use a “high-quality” landmark vebtgwith a small number
of nodes that are not changed frequently wieeis updated. In this context, a set of

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 172

landmarks can also be selected as the nodeseajthlarger degrees, attached edges
that are less frequently updated [KNTO6b], or larger betwmess centrality [WS03],
a normalized measurement for the number of shortest patBsliat go through the
nodev. Intuitively, the selection favors the smaller and mordkténm. We illustrate
this using an example, but defer a full treatment of suchrzamit vectors to a future
publication, due to the space constraint.

We next study how to incrementally maintain the landmark @isthnce vectors.

6.2.2 Incremental maintenance of landmarks

In this section, we study incremental techniques to main@ndmark and distance
vectors. More specifically, for a data gra@hwe study the followingthe incremental
landmark problemto maintain a landmark vector; atige incremental landmark and
distance problemto maintain a landmark vector as well as the distance vector

As argued in [RR96], it is not very informative to define thestcof an incremen-
tal algorithm as a function of the size of the input, as foumtraditional complexity
analysis for batch algorithms. Instead, one should anahealgorithms in terms of
|CHANGED
lem, which represents the updating costs thatrdarerent tathe problem itself [RR96].

, the size of the changes in the input and output of the incnésherob-

(Un)boundedness An incremental algorithm is said to mundedf its time com-
plexity is bounded by a polynomial ftHANGED|. An incremental maintenance of
landmarks problem is said to lm®undedf there exists a bounded incremental algo-
rithm for it, and is said to benboundeatherwise. A bounded problem can be solved
by aPTIME algorithm with time complexityndependenof |G

, the size of data graph.

Affected area The affected areadenoted as\FF, includes not only the changes
to the output but also the local information of the node&ithat must be accessed
to detect output changes. For example, gi®em\G, G andIm, the affected area
AFF of the incremental landmark and distance problems inclddl@esand changes to
the connectivity and distance information, representedhleyupdated entries in the
landmark and distance vectors.

Maintaining landmarks. The incremental landmark problem, denotedra¥ LMK,

takes as input a graph, a landmark vectolm, and batch updatesG. It is to find an
updated landmark vectdm’ for G AG. Here|CHANGED| = |AG| + |Alm|, where
|Alm| is the size of different entries between the original andatgdim. We show that

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 173

IncVLMK is bounded, and can be solvediimear timeof [CHANGED|.

Proposition 6.2.1: IncVLMK is bounded for batch updates, if[QHANGED|) time.
O

Proof sketch: We first show that for single edge insertions, the problenoisioled,
by providing a bounded algorithm as follows. Given an eflgev) to be inserted into
G, the algorithm checks whetheror v is already in the landmark vectn. If none of
them is inlm, it simply inserts eithey’ or vinto Im; otherwiselm remains unchanged.

The algorithm correctly maintairisy, because (a) edge insertions only cause new
nodes to be added intm, (b) addingv or v to Im coversall the node pairs with their
distance changed, and (c)lifi is a landmark vector, thelm U {V'} is a landmark
vector, for any nod& of G. The algorithm can be implemented@{l) time (viae.g.,
hashing).

For single edge deletions, one can verify thatifis already a landmark vector
of G, then it remains a landmark vector f@r\ {(V,v)}, where(V,v) is the edge to
be deleted. Thus, there is no need to change response to the deletion, and the
algorithm simply removes the edge fra& which is inO(1) time.

For batch updateAG, one can invoke the two algorithms above, one for each up-
date inAG. The algorithm is in tim&(|CHANGED|). Hence the problem is bounded.

O

Incremental landmark and distance problem GivenP, G, a landmark vectoim
and batch updateG, the incremental problem, denotedlasLMDK, is to maintain
a landmark vector as well as the distance vectors in resgorse.

Below we develop techniques forcLMDK. Specifically/ncLMDK maintains both
a landmark vector and distance vectors as auxiliary strestiorincBsim. It needs to
change those landmarks that affect matches, while leakiengesst to be adapted offline,
based on a “lazy” strategy. HefEHANGED)| is |AG| + |Alm| + |Adistv|, where|AG|
and|Alm| are the same as fimicVLMK, and|Adistv| is the size of the changed entries
in the distance vectors.

The distance vectors are updated oheas updated, using kzy strategyas fol-
lows. (a) We maintainm in response téd\G, by keeping track of node pairs thiat
covers. Weadda landmark only when necessary, and only extend the distaaaters
of those node pairs with changed distances; and (b) we tegpelce efficient landmark
vectors periodically via an offline process wherg.,|Im| approaches the number of

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 174

ProceduredelLM

Input: A b-patternP = (Vp, Ep, fv, fg), edgee = (V,v) deleted,
landmark vectotm.

Output: Landmark vectotm’ as the updatet.

1. km:=maxfe(ep)) forall e, € Ep;
stackvset := {V'}; Im" :=Im;
2. if v has no childhen Im’ := Im" U {V'};
3. while vset # 0do
4 Booleanflag := false;
5. nodeu:=vset.pop(); affUP := affUP U {u};
6 for eachnodeu’ as parent ofi with dist(u’,v,Im) = 1+dist(u,v,Im) do
7 for each nodeu” as child ofu’ with dist(U',v,Im) = 1+dist(u”,v,Im) do
8 if u” ¢ affUP then flag := true; break ;
9 if flag = false and U’ is within ky, hops ofV then vset.push (U);
10. computeaffDW similarly;
11. for each nodevagr € affUP do
12. for eachnodevi, € Im" do Vapg.distv¢|[Vim] := dis(VAFF, Vim);
13. updatevapr.distvt[Vim| similarly for vagg € affDW andvi, € Im’;
14. return Im’;

Figure 6.2: Procedure delLM

nodes inG.

Proposition 6.2.2: IncLMDK is in O(|P|+ |AFF|log|AFF| + |AFF|?) time, i.e., un-
bounded, for batch updates. O

We prove this by presenting unbounded algorithms to maingidmark vectors
and distance vectors, for single edge deletions (Procetilit®), single edge inser-
tions (ProcedurénsLM), and batch updates (Procedurel M).

Single edge deletionsProcedurelelLM is given in Fig. 6.2. It updates in response
to a single edge deletia= (V,Vv). Givene, delLM first initializes two setaffUP and
affDW, to store the nodes with distancewtand fromv' changed, respectively; it also
initializes vectolm’ asim, and a stackset with V' (line 1). delLM also updatesn by
adding those nodeg without any child (line 2). It then compute$fUP (lines 3-9).
More specifically, it first initializes a Booledtag to be false, and selects a nag&om

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 175

the stacluset and adds it taffUP (line 5). It identifies the parents of u (by checking
distv), where theirold distance tor may be affected by the removal efline 6). For
each such parent, it then checks if there is a child’ of U’ that is (a) not in the set
affUP, and (b) the original distance frooto v is not changed. If there is no suah, u
is inserted intaffUP, and is pushed to the stacket. The process stops wheset is
empty. The sesffDW is similarly computed (line 10). Note thd¢lLM only inspects
those nodes that have changed entries and are vikithimops of the deleted edge.

After the setsaffUP andaffDW are computed, procedudelLM updates the dis-
tance vectors for the affected nodes (lines 11-13). For atiebted nod@arr € affUP
and each landmank,,, it updates the distance vecitistv; of vapr with the new dis-
tance (lines 11-12). Similarly, it updates the distancdamscof the nodes inffDW
(line 13). It then returns the updated landmark vebtor(line 14).

Correctness & ComplexityProcedurelelLM correctly maintains the landmark vector
and updates distance vectors for each affected node (vaigh ilformation changed).
Indeed, (1) the loop (lines 3-10) correctly finds affectedasetaffUP andaffDW. (2)
After affUP andaffDW are computed, procedudelLM iteratively updates the distance
vectors for the affected nodes, by updating their distaram® Pbr to the new landmark
vectors, respectively (lines 11-13). For the complexityserve the following. (1) It
takesO(|P|) to find ky, (line 1). (2) It takesO(|AFF|?) time to findaffUP andaffDW
(lines 3-10), as (aglelLM only visits the nodes with local information changed once,
and (b) each time it identifies the distance with linear tim¢AFF|. (3) It takes in
total O(|AFF|log|AFF|) time to update the distance vectors, by implementiisty as
priority queues (lines 11-13). To see this, note thaté)M visits each node inffUP

as an ancestor of at least a landmarknify in O(|AFF|) time, and (b)delLM updates
distv of a nodevagr in affUP, by (i) updatingdistv of the children ofvarg, and (ii)
computingdistv of vapr directly with distv of its children, via priority queue insertion
in O(log|AFF|) time. Thus procedureelLM is in O(|P| + |AFF|log|AFF| + |AFF|?)
time. As verified by our experimental studFF| is typically small in practice.

Single edge insertions ProcedurdnsLM incrementally updatebn in response to
a single edge insertiofV,v), similarly asdelLM. It finds those nodes; such that
(1) dis(v1,Vv) is changed, and (2} is within ky, hops ofv, whereky, is the maxi-
mum bound inP. It updates the old landmark vector adidtv¢ for these nodes, and
propagates the changes. Similarly it procesgesThe complexity oflnsLM is in
O(|P| + |AFF|log|AFF| + |AFF|?) time, the same adelLM. Observe thatnsLM is

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 176

“lazy”: (a) the distance vectors of the nodes are updatey ibrihey are withinkq,
hops of the edge andif their distances are changed; and (b) at most one new land-
mark is added, while the other landmarks are updated latanbyfline process in the
background.

Batch updates We next presenincLM to incrementally maintain landmark vectors
and distance vectors in response to batch updgBednstead of dealing with updates
one by one, it handles multiple updatasiultaneously

Given AG, algorithmincLM first initializes two setaffUP and affDW . It uses
affUP to store all those nodesfor which there exists an update,v) € AG such that
dis(u,Vv) is changed irG® AG. Similarly, affDW stores those nodaswith changed
distancelis(V, u), for some(V,v) € AG. After these, it updateS with AG, and updates
Im based omAG following proceduresnsLM anddelLM. For each update € AG, it
then computesffUP andaffDW, by identifying the affected nodes along the same lines
as in proceduregelLM andInsLM. After all the affected nodes are identifieglcLM
updates their distance vectors, and returns the updatéorsec

Correctness & ComplexityThe correctness aficLM follows from that ofinsLM and
delLM. For the complexity, observe the following: the numlbgris computed in
O(|P|) time once and can be reused, amdcan be updated i®(|AG|) time (Propo-
sition 6.2.1). Affected node pairs can be foundd({AFF|?) time. Note thaiAG]| is
subsumed byAFF|? in this phase, amcLM handles multiple updates simultaneously
instead of one by one. The distance vectors can be upda@dARF|log|AFF|) time.
ThusincLM is in O(|P| + |AFF|log|AFF| + |AFF|?) time. This completes the proof of
Proposition 6.2.2.

6.2.3 Performance Evaluation

We conducted one set of experiment to evaluate the efficiehtysLM, delLM and
incLM.

Experimental setting. We used the following real-life and synthetic graphs.

(1) Real-life dataWe used two real-life datasets: (a) a crawyediTubegraph [you]
with 18K nodes and 48 edges, in which each node denotes a video with attributes
(e.g.,length, category, age), and edges indicate recommendatiand (b) aitation
network [TZY"T08] with 17k nodes and 82edges, where each node represents a pa-
per with attributes€.g.,title, author and the year of publication), and edges denote

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 177

citations.

(2) Synthetic dataWe used the Java boost graph generator to produce graghs3 wi
parameters: the number of nodes, the number of edges, andarsmle attributes.
We generated sequences of data graphs following the dextsifidaw [LKFO7] and
linkage generation models [GGCMO09].

We also developed a generator to produce updates, codtimtlevo parameters:
(a) update type (edge insertion or deletion), and (b) the|Ai3| of updates.

(3) Pattern generatoMVe designed a generator to produce meaningful pattern graph
controlled by 4 parameters: the number of nofig$, the number of edgeEy|, the
average numbdpred| of predicates carried by each node, and an upper bksudh
that each pattern edge has a bouhdith k — c < k' <k, for a small constant. We
shall us€(|Vp|, |Epl, |pred|, k) to characterize a pattern.

(4) Implementation We implemented the algorithmssLM, delLM andincLM all in
Java.

All experiments were conducted on a machine withragl Core(TM)2 Dual Core
3.00GHz CPU and 4GB of RAM, using scientific Linux. Each expenmwas run at
least 5 times, and the average is reported here.

Experimental results. We next report the performancelatLM, delLM andincLM.

Efficiency We evaluated the efficiency dfisLM vs. BatchLM™ (resp. delLM
vs. BatchLM™) over Youtube Here BatchLM™ (resp.BatchLM™) denotes a batch
algorithm for edge insertion (resp. deletion). Fixiivj = 18K andk =5, we varied
|E| from 5K to 62X (resp. from 5% to 56K) by inserting (resp. deleting) edges, in
0.5K increments (resp. decrements). The results are reportégime 6.3(a), which
tell us the following: (1)insLM (resp.delLM) is much more efficient thaBatchLM™
(resp.BatchLM™); indeed,InsLM takes only 8% of the time dBatchLM™ when X
edges are inserted, addlLM takes about 13% of time used BatchLM™ when the
same set of edges are removed frgautube (2) InsLM is more efficient tharelLM;
this is because edge deletions tend to affect more nodeschéthged distance from
(resp. to) the nodes in landmark vector; hence, it talsM more time to update
distance vectors; and (BatchLM™ outperformsBatchLM~ for the same reason; this
is more evident whefAG| gets larger.

We also evaluated the efficiency oiLM vs. its batch counterpaBatchLM for
batch updates, usingoutube Fixing k =5, we varied mixed updates fronK1to
6K, with 50% of edge insertions and 50% of edge deletion. Thelteeare shown in

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 178

160£ T T T T 160 T T T T
------------------ K————=—7 N S T
1400 ~===p) é R I LR = 140F x * * N
120 InsSLM —+— 7] 120 = incktM —+— 7|
100 BatchLM(+) —->-- i 100 b BatchLM --3¢-- i

delLM ---%--
BatchLM(-) -8 i

Time(second)
(o]
o
T
Time(second)
(o]
o
T
|

60 . 60 .
40 | . 40 | -
20 g s 20 _//4%
09 """" I 0] 1 1 1 1
05K 1K 15K 2K 25K 3K 1K 2K 3K 4K 5K 6K
(a) LandMark maintenance over Youtube (b) incLM over YouTube
90 T T T T T T 70 . T T T T T T
K=3 &Z=x=1 e insSLM E==1
80 FKk=6 === - S 60 I delLM i
70 - $ K incLM _
2 60} o - 50 - _ s
o < % Q "
© 50 1 H Al A 840 | 7
3 S) ks
2 0ol b ool TR
= 30| N = = 20)
‘ X] e — N —
20 - ? % o
0} gﬁ 1 0}]
0 A4 bE X S B - :
05K 1K 15K 2K 25K 3K 05K 1K 15K 2K 25K 3K
(c) incLM over Citation (d) LandMark maintenance over synthetic

Figure 6.3: Performance evaluation : efficiency

Fig. 6.3(b). These results tells us thatLM is much more efficient thaBatchLM,
taking only 15% of the time used BatchLM when & updates were incurred.

In addition, we evaluated the impact of the maximum bolrah incLM, using
Citation. Fixing |[V| = 17K and |E| = 62K, we variedk from 3 to 6, and generated
batch updateAG consisting of edge insertions and deletions. The resuwdtsegorted
in Fig. 6.3(c). Compared th= 3, it is more costly folincLM to maintain landmark
vectors wherk = 6. This is because the largers, the more node paiigcLM has to
inspect, to find out whether these nodes are affected by thatep.

Finally, we evaluated the efficiency ofcLM vs. a naive incremental algorithm,
denoted byinsLM+delLM. Given batch updateAG, InsLM+delLM invokesInsLM
anddelLM one by one for each edge insertion and deletioA@ We used synthetic
graphs in this experiment. Fixinly| = 15K, |E| = 40K andk = 5, we generated
AG with both edge insertions and deletions, wifits| ranging from 05K to 3K. The
results are shown in Fig. 6.3(d), where thaxis indicate3AG|. From the results we
find thatincLM consistently outperformisLM+delLM, by 20% in average. These
verified the effectiveness of the optimization strategsdubyincLM, which, among

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 179

other things, substantially eliminated redundant updates AG.

6.3 The ExpFinder System

The architecture of th&xpFinder system is shown in Fig. 6.4. It consists four mod-
ules. (1) AGraphical User Interfac€GUI) provides a graphical interface to help users
formulate queries, manage data graphs and understandizesliquery results. (2)
A Query Engineevaluates pattern queries and ranks query results. (3n&amental
Computation Modulenaintains the query results of a set of frequently issuedigsie
(decided by the users) in response to updates incurred #gogiaphs. (4) AGraph
Compression Moduleonstructs and dynamically maintains compressed graghishw
can be directly queried by the query engine. In additiontredlgraphs and query re-
sults are stored and managed as files. We next present thenentp ofExpFinder
and their interactions.

Graphical User Interface. The GUI helps the users manage data graphs, construct
queries and browse query results. (1) It provides a tagtated panel, which facilitate
the users to issue specific requests such as to view/selecgahs and construct
queries. (2) The users can construct a (bounded) simulgtieny Q, by drawing
a set of query nodes and edges on a query panel oGthe specifying the search
conditions €.g.,expertise="developer”; experience="3 years”), boundstenedges,
and indicating the particular “output” node for which usesnt to find matches(g.,
SA in Fig. 6.1). They may also choose a data gr&aio query. (3) ThesUI visualizes
the query results expressed as result graphs [FL®], in which each nodeis a match
of a query nodei in Qp,, and each edger,Vv2) (marked with an integed) represents
a shortest path with lengthcorresponding to a query edge;, uy).

Query Engine. The query engine performs (a) query evaluation, and (bktop-
sult selection for the output node. It findsuaique, maximunmatch graph for the
(bounded) simulation query [FLMLO]. The query result is then visualized by the
GUL.

Bounded simulationGiven a graplG and a pattern querQ,, M(Qyp,G) is the max-
imum relation such that for each nodec Q, there is a node € G such that (1)
(u,v) € M(Qp,G), and (2) for eacliu,v) € M(Qp, G), (a) the content o¥ satisfies the
search condition specified by the pattern nadand (b) for each edggu, ') in Qp,

there exists a nonempty pagtifrom vto Vv in G such thafu’,v') € M(Qy, G), and the

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 180

Actions ' Recommendations

I >

Eprinder: GUI

4
Top-K results

Updates to G Compression over G Query G
Graph Compressio
o ion | le Module
Incremental I\Iﬂnqrcimental Query Evaluation
Query Evaluation s
Off-line ! Result Ranking
i Compression
Pattern Matching Server

<4 Cached _ B Compressed =
@ Results é Graphs Gr Ei Graphs G
Figure 6.4: Architecture of ExpFinder

length ofp does not exceed the bound @nu’). Example 6.1 illustrateli (Qyp, G) for
the queryQp and graptG given in Fig. 6.1.

As shown by [FLM 10], (1) M(Qp,G) is unique for eachG andQp,, (2) graph
simulation is a special case when the bound on each pattgm(ed/) is 1, and (3)
bounded simulation is able to catch sensible matches thatraph isomorphism and
simulation fail to identify, as we have seen in Example 6.1.

Query evaluation. To efficiently find M(Qy,G) in a large graphG, the query en-
gine coordinates with the incremental computation and lg@mpression modules
as follows. Upon receiving a pattern que®y, (1) the query engine directly returns
M(Qp,G) if it is already cached; (2) otherwise, if a compressed gi@pfor G is al-
ready computed by the compression modQlgis evaluated o, directly [FLWW12]

(as will be discussed); and (3) if the users opt not to conytees this stage, the query
engine findM(Qy, G), by employing a quadratic-time algorithm [HHK95] to evalu-
ate simulation queries, and a cubic-time algorithm [FLIM] for bounded simulation
queries. AfterM(Qp,G) is computed, the query engine computes a result graph to
represent the result [FLMLO]. The users may decide whether the query and its result
need to be cached at this stage.

Results RankingAs remarked earlier, the query result is typically large,ilevithe
users may only be interested in the best K experts that mha&kldésignated output
node inQp, €.9.,SA in Example 6.1. To this end, the query engine identifieskop-
matches by using a ranking function. The intuition of thekrag function comes from

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 181

the following observation about social networksio nodes that are closer to each
other often have more social impact to each othéiT11, New0O1la]. Given an edge
(U, u) in pattern quen®),, a match/ of U, and two matcheg; andv, of uin a social
network, wherau is the output nodey; is preferred tas if V' is closer tov;. Indeed, in
practicev; may represent an expert who collaborates with exgertore closely than
the other expert,. In light of this, given an output nodg and its matctv in the result
graphG; = (\;, E;), the rankf (uo, v) is defined as:

2 ey, dist(U, V) + Zy ey, dist (v, Uf
f(uO,V) — ue (>|VI‘ u eV, ()
r

where (a)dist(u,V) (resp. dist(v,u’)) represents the distance (as the sum of the edge

weight in a shortest path) from an ancestdo v (resp. fromv to its descendant’)
in Gr, and (b)V/ is the set of nodes i, that can reacl or can be reached from
Intuitively, f(uo,Vv) computes theveragedistance ofv from (to) other nodes i@, .
The topk matches ofl, is the set of K matches with theinimumranks.

The ranking functionf() assesses the social impact in terms of node distance,
as one of the commonly used metrics in social network aray4iT11, NewO1a].
Note that other metrics can be readily supportediyFinder. We remark that tofx
matches were not studied in the previous work [FLM, FLLT11, FLWW12].

Example 6.2: Recall the match resultM(Qp,G) described in Exam-

ple 6.1. Its result graphG; is a weighted graph with a set of nodes

{Bob, Walt, Jean,Mat, Fred, Emmy, Eva}. One may verify that the rank

f(SA,Bob) = 2E3282 — 2 and f(SA,Walt) = #22 = 2.33. Therefore,

Bob is the top-1 match fofA, since compared td/alt, he has shorter social distance

to other collaborators, and hence he has stronger socialdingm the group members.
O

Incremental Computation Module. Real-life social graphs are typically large and are
constantly changed. Given a graBha queryQ, and updatedG to G, it is costly to
recomputeM (Qp, G AG) starting from scratch each tin@eis updated, wher& ®©AG
denote<s updated byAG. The incremental module copes with the dynamic nature of
social networks by incrementally identifying change®t(Qy,, G) in response t&G,
withoutaccessings. WhenAG is small as commonly found in practice, it is far more
efficient to incrementally computd (Qp, G® AG) than to recompute it starting from
scratch. The module supports the incremental evaluatgorighms of [FLLT11] for
simulation and bounded simulation queries.

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 182

Example 6.3:Recall the querR;, and graplG of Fig. 6.1, and the match@&4(Qy, G)
from Example 6.1. Suppose thatis updated by inserting the edgge(see Fig. 6.1(b)),
denoted byAG. ThenAG incurs incremenfAM to M(Qp, G) as a new paifSD, Pat).
Instead of recomputind/(Qp, G @ AG), the incremental module finds the change
{(SD,Pat)} to M(Qy, G) by only accessini(Qy, G) and the new edge;. 0

Graph Compression Module. The query engine and incremental module enable
ExpFinder to efficiently find matches in dynamic networks. Neverthg|é@ss unlikely
to lower the computational complexity of query evaluatidrhe graph compression
module seeks to reduce the size of the input for query evalyaby constructing
smallercompresse@raphsG; for a data grapl&s. The compressed grafh (1) has
less nodes and edges th@nand (2) can be directly queried by the query engine and
incremental module, such that fany (bounded) simulation quergy,, M(Qp, G) can
be obtained by a linear time post-processing flditQy, G,) [FLWW12]. Moreover,
Gy is incrementally maintained in response to changés. to

The graph compression module is developed to (1) computmtneressed graphs
Gy of G, and (2) dynamically maintai®, whenG is updated, by implementing the
techniques of [FLWW12]. The module works seamlessly with ¢tther modules: it
invokes the compression algorithm to constrGgtfor data graphG upon receiving
requests fronGUI, and dynamically maintainG, in response to changes @®issued
throughGUI. The compressed graphs are then stored, and are accessexiduety
engine when processing query, as remarked earlier.

Example 6.4: Recall pattern quer®, and data grapls from Fig. 6.1. Observe that
both Fred andPat (DBA) collaborated witlst andBA people. Since they “simulate”
the behavior of each other in the collaboration netw@tkhey could be considered
equivalentwhen computindV(Qy, G). Similarly, pairs Emmy, Eva) and Dan, Mat)
can also be considered equivalent. The nodes that are paieguivalent form an
equivalence class, and the compressed gf@&pis constructed by merging the nodes
in the same equivalence class. O

6.4 System Overview

The demonstration is to show the following: (1) how GBI of ExpFinder handles
users’ requests and displays query results; (2) how eftithenquery engine evaluates
gueries and identifies topexperts; (3) how the incremental module manages batch

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 183

Pattern Builder: construct | |Graph Editor: update Graph Compressor: construct
pattern query and maintain data graphs| [and maintain compressed graphs
ano \ ExpFinder Mahager
| Graphs Edit \View Help
ii Conscle Root Pattern Builder / ame | Last Namg~TCurrent # of Years |
v @ Graphs Graph Editor Programmer 3 'm
v @ Twitter Graph Compressor Database Administrator 3
3 Tester z
_| Graph White Tester 1
| Compressed Graph| ||140690936 Joe Brown Programmer 1
v [l Caches 146191588 Adam Russell Programmer 5
" Caches_Q1 153161372 Keith Randolph Tester 2
© Caches Q2 188116366 Paul Brown Graphical Designer 2
= o 133471396 Eric Palmer Tester 1
) ~| Caches 03 *11149650141 Gary Howard Programmer 6
¥ [Synthetic 145655170 Scoft Evans Programmer 5
_'j 154770624 James Hunt Database Administrator 3
_" Compressed Gravh 162528725 Thomas White Tester Z
v @@ Caches 125262533 Br_ad Re_e.d Tester 6
_' 132805639 Alice Fh[lLEs ngra_mmer : 5
— - 37661303 Wedny Davis Graphical Designer 3
_| Caches Q2 59615 Paula
| Caches_Q3 123230108 Lynn
149262799 Joan |
\[156196752 William Baker phical Designer 5 l:
User: A7¢min \ Z|

\
|Caches: cached query results| |Browse target| | Personal information: id, name, job, experience ‘

Figure 6.5: Visual interface: ExpFinder Manager

updates to data graphs, and (4) how the compression modulgutes and maintains
compressed graphs.

DataSet. ExpFinder loads both synthetic and real-life datasets. (1) We desigyna
thetic graph generator to generate arbitrarily large gsagid show the efficiency of
ExpFinder; and (2) we use a fraction diwitter to show the performance of each mod-
ule of ExpFinder, and interpret query results in details.

Interacting with the GUI. We invite users to use theUl, from query design to intu-
itive illustration of query results.

(1) The users may operate GrpFinder Manager as the main control panel. As shown
in Fig. 6.5, the users can select, view and modify the detaidormation of data
graphs, and may access the moduleBx@fFinder as listed in the tools.

(2) Users can define their own queries through our Patterid&uPB) panel as shown
in Fig. 6.6. PB provides the users with a canvas to create a new pattern.qkery
example, Figure 6.6 shows three pattern que@gesQ. and Qs constructed viéB,
with different search conditions and topology.

(3) TheGUI provides various ways to help users understand query sesie show

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 184

enoO " \Pattern Builder

Twitter
@ Clear m Color Top-K: 5 @ Execute

SA¥ SA*
2 ¢ G2 €1
ST 2
ST
Q Q.

ST
Figure 6.6: Visual interface: Pattern Builder

Qs

how the users can browse (a) result graphs relevant to ngtahd (b) tog¢ matches,
by using theGUI. As an example, the result graphs and the top 1 (&5Stexpert
(marked in red) are shown in Fig. 6.7 for queri@s Q> andQs (in Fig. 6.6), respec-
tively. Besides visualizing result graphpFinder also support®rill Down andRoll
Up analysis. That is, the users can drill down to see profiles@hbdes, edge weights
and other detailed information in a result graph, and cahuplto view the global
structure of the result graph. Hence tBiél enableExpFinder to display the result at
different abstraction levels.

Performance of query evaluation This demonstration also aims to show the per-
formance of the query engine, the incremental module andythph compression
module.

Performance of the query enginé/e will show (a) how (bounded) simulation queries
are processed on large graphs by generating optimized giaeryg, and (b) how tog-
matches are selected based on the ranking function. We selteal-life datasets and
queries to provide intuitive illustrations.

Coping with the dynamic worldWe will also show the performance gains of incre-
mental computation compared to batch computation thatmpotes the matches in
response to updates. We show the improvement by varyingzéesthe data graphs
with unit update (single edge insertion/deletion) as webatch updates (a set of edge
insertions/deletions). We show that for batch updates am@l (possibly cyclic)
patterns, our incremental module performs significantlyedoehan their batch coun-
terparts, when data graphs are changed up to 30% for simnijaind 10% for bounded
simulation.

Querying compressed graphb addition, we will show (1) how graph compression
module effectively compresses a data graph, (2) how sulpstéme performance is

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 185

MO Match Results

& R
(D
4390 3197

X
(a) Top-1 Match Result of Q1
M M O Match Results ~_® M O Match Results
P 2253 o \
és BA 2 8 /
AN s 3
PG 999 A
BA Qﬂ e S
L75494 413 'ﬁ
ST DB, BA
B Y > W A aA o’ Y
3 Y. (vé 79\ [
2978 3070 3022 2023 o a3 4
ST ST ST 1465
ST

(b) Top-1 Match Result of Q2 (c) Top-1 Match Result of Q3
Figure 6.7: Match Results relevant to output node of Q1, Q2 and Q3

improved when evaluating (bounded) simulation queriessiggicompressed graphs
instead of the original graphs, and (3) how the compressaghgrare dynamically
maintained. We show that in average, the graphs can be mdyc67%, which in
turn reduces query evaluation time by 70%. Moreover, thepression module effi-
ciently maintains the compressed graphs, and outperfdrensiethod that recomputes
compressed graphs, even when large batch updates aresthcurr

Summary. This demonstration aims to show the key ideas and perforenahour
expert search systefxpFinder based on graph pattern matchinigxpFinder is able

to (1) effectively identify topk experts in social networks by using pattern queries
specified with search conditions and bounded connectiahstraints, (2) efficiently
evaluate the queries on large real-life social graphs,n@ementally answer queries
on dynamic graphs in response to batch updates, (4) supramt gompression for
efficient graph storage and query evaluation, and (5) peowitlitive graphical inter-
face to facilitate the users to construct queries and irééquery results. We contend
that ExpFinder can serve as a promising tool for expert finding in large antadyic

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 186

real-life social networks.

Chapter 7
Conclusion and Future Work

In this chapter, we summarise the results of this thesispampbse future work.

7.1 Summary

The primary goal of the thesis has been to explore effectighriiques to query “big”
social data such that social network analysis via graplepathatching can be pro-
cessed more efficiently. We conclude the results as below.

Query Preserving Graph Compression To cope with sheer size of social networks,
the thesis proposes to compress social graphs in terms aa af queries, such that
graph pattern matching can be evaluated over compressptisgvéhich are much
smaller than their original counterparts. Moreover, tgidgnamic nature of social net-
works into consideration, the thesis also introduces mergal techniques to maintain
the compressed graphs. The computational complexitidstbkealgorithms are listed
in Table 7.1, which shows that both batch and incrementalréfgns have low poly-
nomial time complexities for two classes of commonly usedrms. In addition, the
compression technique reduces the size of real-life grapl®5% and 57%, on aver-

Problems Complexity

Simple boolean patternsO(|V|(|V| + |E|))
General patterns O(|E|log|V])

Batch compression

Simple boolean patterns O(|AFF||Gy|)
General patterns | O(|AFF[2+ |G, |)

Incremental compression

Table 7.1: Summary: computational complexities

187

Chapter 7. Conclusion and Future Work 188

age, for simple boolean patterns and general patterngataagy, which in turn leads
to a reduction of 94% and 70% in query evaluation time, respay. Putting these
together, we contend that query preserving graph compregsbvides a promising
technique for social network analysis via graph patterrchiag.

Distributed Graph Pattern Matching. Social networks are often distributively
stored, in light of this, the thesis developed distributEgbathms for three types of
simple boolean patterns including reachability queriesjrigled reachability queries
and regular reachability queries. It is shown that via tlgoathms presented, graph
pattern matching can be evaluated in parallel, therebyamipg the performance of
query evaluation significantly (see Table 7.2 for compotal complexity and data
shipment analysis). We further show that these algorithars lze readily imple-
mented in the MapReduce framework, and the elapsed comatiomacostECC of
the MapReduce algorithm for regular reachability quersed(iFn| + |R|?|Vt|?).

Problems Complexity Data Shipment
Reachability queries O(|Vs||Fml) O(|Vs[?)
Bounded reachability querigs O(|Vs||Fml) O(|Vs[?)
Regular reachability queries O(|Fm||RI%+ |RI?[Vt|?) | O(|RI?|Vs|?)

Table 7.2: Summary: performances

Graph Pattern Matching Using Views. The thesis investigated the problem of an-
swering graph pattern matching using views, and develojggatithms to compute
matches from pattern views when the pattern queries canrbectly answered using
views. Moreover, the thesis also studied three problenevael to pattern contain-
ment, and provided efficient algorithms for containmentokingy. The complexity
analysis of the problems are summarised in Table 7.3. Itaestirom the complexity
analysis and experimental study that the techniques ofemsgvgraph pattern match-
ing by using pattern views yield a promising method for sbogwork analysis.

Diversified Top-k Graph Pattern Matching. In contrast to finding the entire set of
matches with high computational cost, the thesis revisedr#ditional notion of graph
pattern matching, by supporting a designated output natkdaveloped efficient al-
gorithms to find topk relevant matches with an early termination property. Farrth
more, to find diverse tog-matches, both approximation and heuristic algorithms are
provided, where the approximation algorithm obtains a trtsapproximation ratio,

Chapter 7. Conclusion and Future Work 189

Problems Complexity
Query with views O(|Qs||7V (G)|+[v (G)?)
Pattern Containment O(card (V)| Qs|2+ |7 2+ |Qs||7])
Simulation | Minimal containment O(card (V)| Qs|2+ |7 2+ |Qs||7])

NP-complete (Decision Problem)
Minimum containmen®(card ()| Qs[>+ | >+ |Qs||¥ | + (|Qs| - card(#))%/?)
(Approximation RaticO(log|Ep|))

Query with views O(|Qb||7 (G)|+ |7V (G)|?)
Pattern Containmerjt O(|Qbl?|7])
Bounded | Minimal containment O(|Qbl?|7])
Simulation NP-complete (Decision Problem)
Minimum containment O(|Qp|?|7V | + (|Qp| - card(v))%/?)

(Approximation RaticO(log|Ep|))

Table 7.3: Summary: complexity analysis

and the heuristic algorithm possesses the early termmatiaperty.

Problems Early Terminatiop Complexity

TopKDAG Yes O +|VD(V|+|E
Topk Matching p ((QI+ VD(VI+[E])
TopK Yes O((IQ[+ VDIV + [E])

NP-complete (Decision Problem)

TopKDi No O +V)(V]|+|E
Diversified Topk Matching PR (<l _‘ D_(‘ | \-\))
(Approximation Ratio 2)
TopKDH Yes O((IQ[+ VDIV + [E])

Table 7.4: Summary: property and complexity analysis of the problems

We list the properties and complexity analyses in Table Wé.contend that the
techniques for tofgraph pattern matching yield a promising approach to quagryi
big social data.

ExpFinder: Finding Experts by Graph Pattern Matching . Based on the techniques
of incremental graph pattern matching, query preserviaglyicompression and top-
k matching computation, we developed an expert search sysppiicable to social
networks. In particular, we provided optimal and boundeniemental algorithms for
weighted landmark vector maintenance, and show the cortipkerf the problems in
Table 7.5.

Chapter 7. Conclusion and Future Work 190

Problems Complexity

Incremental landmark problem bounded

Incremental landmark and distance problémnbounded

Table 7.5: Summary: complexity analysis
7.2 Future Work

The research carried out in this thesis reveals many diesfor the future work.

(1) We are studying compression methods for other quegigs,pattern queries
with embedded regular expressions. We also plan to extenzboupression and main-
tenance techniques to query distributed graphs. One stiegetopic is to compress
social graphs into nested structures such that gr&ghet higher levels can be either
queried directly or decomposed with minimum cost to enaateegpn queries indirectly.

(2) We are currently developing distributed evaluatioroalipms for other queries,
notably graph pattern matching defined in terms of subgrapmaorphism or simula-
tion. Another topic is to combine partial evaluation andr@mental computation, to
cope with frequent updates to graph data in practice andtoge efficient distributed
graph query evaluation strategies in the dynamic world.

(3) One open issue is to decide what views to cache such trettad Fequently
used pattern queries can be answered using the views. Anesue is to develop
efficient algorithms for computing maximally contained réing using views, when
a pattern query is not contained in available views [Len®@2fhird problem concerns
view-based pattern matching defined in terms of subgraphasgehism, instead of
(bounded) simulation. Finally, to find a practical methodjteery “big” social data,
one needs to combine techniques for querying large grapbls,as view-based, incre-
mental, distributed and compression methods.

(4) We are currently experimenting with real-life graphsvarious domains, to
fine-tune our diversification objective function. We areoaéxploring optimization
techniques to further reduce the number of matches exarbyedr algorithms. The
ultimate goal is to make graph pattern matching feasibleigrsbcial data. To this
end, we are developing distributed tlpratching algorithms on social graphs that are
partitioned, distributed and possibly compressed.

Bibliography

[ABMPOQ7] Andrei Arion, Véronique Benzaken, loana Manaesand Yannis Pa-
pakonstantinou. Structured materialized views for xmlirgpge In
VLDB, 2007.

[ACG™99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Matthe
Spaccamela, and M. Prota§lomplexity and Approximation: Combi-
natorial optimization problems and their approximabilfiyoperties
Springer Verlag, 1999.

[AGHP12] O. Alonso, M. Gamon, K. Haas, and P. Pantel. Ditgiand relevance
in social search. IIDDR, 2012.

[AGU72] Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. Thensitive
reduction of a directed grap&ICOMP, 1(2), 1972.

[AHV95] Serge Abiteboul, Richard Hull, and Victor VianuFoundations of
DatabasesAddison-Wesley, 1995.

[AKO7] Vu Le Anh and Attila Kiss. Efficient processing regulgueries in
shared-nothing parallel database systems using treetractisal in-
dexes. IPADBIS Research Communz007.

[AMHWS*05] Boanerges Aleman-Meza, Christian Halaschek-Wieraye8Sanket
Sahoo, Amit Sheth, and I. Budak Arpinar. Template based sema
tic similarity for security applications. I®roceedings of the 2005
IEEE international conference on Intelligence and Segunformat-
ics, ISI'05, 2005.

[AU10] Foto N. Afrati and Jeffrey D. Ullman. Optimizing jogin a map-
reduce environment. IBDBT, pages 99-110, 2010.

192

Bibliography 193

[AYBBO7] Sihem Amer-Yahia, Michael Benedikt, and Philip Bannon. Chal-
lenges in searching online communitiedEEE Data Eng. Bull.
30(2):23-31, 2007.

[BCFKO6] Peter Buneman, Gao Cong, Wenfei Fan, and Anastdsémentsi-
etsidis. Using partial evaluation in distributed querylaa#ion. In
VLDB, 2006.

[BGOO] Doron Bustan and Orna Grumberg. Simulation basedmization.
In CADE, pages 255-270, 2000.

[BGKO3] Peter Buneman, Martin Grohe, and Christoph Kochthaeries on
compressed XML. IVLDB, pages 141-152, 2003.

[BHK 710] Joel Brynielsson, Johanna Hogberg, Lisa Kaati, Gans¥lartenson,
and Pontus Svenson. Detecting social positions using atmoal In
ASONAM 2010.

[BHLW10] Pablo Barcel6, Carlos A. Hurtado, Leonid Libkend Peter T. Wood.
Expressive languages for path queries over graph-stecuata. In
PODS 2010.

[BJKOO] Horst Bunke, Xiaoyi Jiang, and Abraham Kandel. Oa thinimum
common supergraph of two grapifSomputing 2000.

[BLY12] Allan Borodin, Hyun Chul Lee, and Yuli Ye. Max-sum\drsifica-
tion, monotone submodular functions and dynamic updatd30DS
pages 155-166. ACM, 2012.

[BMC10] M. Bendersky, D. Metzler, and W.B. Croft. Learningncept impor-
tance using a weighted dependence modelW8DM 2010.

[BorO6] S.P. Borgatti. Identifying sets of key players imo&isl network.Com-
putational & Mathematical Organization Theqr$2(1):21-34, 2006.

[BRSV11] Paolo Boldi, Marco Rosa, Massimo Santini, and S&hao Vigna.
Layered label propagation: A multiresolution coordinfte order-
ing for compressing social networks. \WiWW 2011.

[BS98] Horst Bunke and Kim Shearer. A graph distance metged on the
maximal common subgraplPattern Recognition Letter4998.

Bibliography 194

[BV04] Paolo Boldi and Sebastiano Vigna. The webgraph fraor& i: com-
pression techniques. WWW 2004.

[CAYLSO02] S. Cho, S. Amer-Yahia, L.V.S. Lakshmanan, and Bv&tava. Opti-
mizing the secure evaluation of twig queriesMhDB, 2002.

[CEGL11] Melisachew Wudage Chekol, Jerdme Euzenat r®i&eneves, and
Nabil Layaida. PSPARQL Query Containment. Technical repor
2011.

[CFKO7] Gao Cong, Wenfei Fan, and Anastasios Kementsistsidistributed
guery evaluation with performance guaranteesSIGMOD Confer-
ence 2007.

[CESV99] L. P. Cordella, P. Foggia, C. Sansone, and M. VerRRerformance
evaluation of the vf graph matching algorithm. MRroceedings of
the 10th International Conference on Image Analysis anat&ssing
ICIAP '99, 1999.

[CFSVO04] Luigi P. Cordella, Pasquale Foggia, Carlo Sansand Mario Vento.
A (sub)graph isomorphism algorithm for matching large gsafEEE
Trans. Pattern Anal. Mach. Inte]l26(10), 2004.

[CG99] S. Chaudhuri and L. Gravano. Evaluating top-k sedeafjueries. In
VLDB, pages 399-410, 1999.

[CGLVO0O0] Diego Calvanese, Giuseppe De Giacomo, MaurizioZegini, and
Moshe Y. Vardi. View-based query processing and constistis-
faction. InLICS, 2000.

[CGLVO01] Diego Calvanese, Giuseppe De Giacomo, MaurizioZegini, and
Moshe Y. Vardi. View-based query answering and query cantaint
over semistructured data. DBPL, pages 40-61, 2001.

[CGMO04] Thayne Coffman, Seth Greenblatt, and Sherry Marcaisaph-based
technologies for intelligence analysiSommun. ACM47(3), 2004.

[Cha08] Fay Chang et al. Bigtable: A distributed storageesydor structured
data.ACM Trans. Comput. SysR6(2), 2008.

Bibliography 195

[CHKZ03a] Edith Cohen, Eran Halperin, Haim Kaplan, and Unigk. Reacha-
bility and distance queries via 2-hop labe®’dICOMP, 32(5), 2003.

[CHKZ03b] Edith Cohen, Eran Halperin, Haim Kaplan, and Uniizk. Reachabil-
ity and distance queries via 2-hop labes$COMP, 32(5):1338-1355,
2003.

[CKKV11] Sara Cohen, Benny Kimelfeld, Georgia Koutrika,dadan Vondrak.
On principles of egocentric person search in social netgorkn
VLDS 2011.

[CKL*09] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Miakl Mitzen-
macher, Alessandro Panconesi, and Prabhakar Raghavanon®n c
pressing social networks. KDD, 2009.

[CR94] Chung-Min Chen and Nick Roussopoulos. The implesigort and
performance evaluation of the adms query optimizer: |ty
guery result caching and matching. BDBT, 1994.

[CYD'08] Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, Philip S. Yu,daHaixun
Wang. Fast graph pattern matching.IGDE, 2008.

[DCXB11] Jintian Deng, Byron Choi, Jianliang Xu, and SoufvBhowmick.
Optimizing incremental maintenance of minimal bisimudatiof
cyclic graphs. I'DASFAA 2011.

[DFZN10] Elena Demidova, Peter Fankhauser, Xuan Zhou, aoifgahg Nejdl.
DivQ: Diversification for keyword search over structured dasaisa
In SIGIR 2010.

[DGO08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: diegliata pro-
cessing on large cluster€ommun. ACM51(1), 2008.

[DHJ"07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,\atdtzan
Kakulapati, Avinash Lakshman, Alex Pilchin, SwaminatharaSub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amiazo
highly available key-value store. BOSR pages 205-220, 2007.

[DHTO4] Xin Dong, Alon Y. Halevy, and Igor Tatarinov. Contement of nested
xml queries. INVLDB, 2004.

Bibliography 196

[DPP01] Agostino Dovier, Carla Piazza, and Alberto PalicA fast bisimula-
tion algorithm. InCAYV, 2001.

[Fag99] R. Fagin. Combining fuzzy information from mule@ystemsJCS$S
58(1):83-99, 1999.

[F.CO8] Brian F.Cooper et al. Pnuts: Yahoo!s hosted dataisg platform.
PVLDB, 1(2):1277-1288, 2008.

[FCGO04] Wenfei Fan, Chee Yong Chan, and Minos N. Garofalal$gcure
XML querying with security views. I'8IGMOD, 2004.

[FFPO8] Sergio Flesca, Filippo Furfaro, and Andrea Puglied framework
for the partial evaluation of spargl queries. UM, pages 201-214,
2008.

[Fja98] Per-Olof Fjallstrom. Algorithms for graph paidning: A survey.
Link'oping Electronic Articles in Computer and Information &cte
3,1998.

[FLL"11] Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing Tan, Xin Vdarand
Yinghui Wu. Incremental graph pattern matching SIGMOD, 2011.

[FLM T10] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui \&od
Yunpeng Wu. Graph pattern matching: From intractable tympo
mial time. PVLDB, 3(1), 2010.

[FLM*11] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui
Adding regular expressions to graph reachability and patjgeries.
In ICDE, pages 39-50, 2011.

[FLNO3] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimabeggation
algorithms for middlewareJCS$ 66(4):614-656, 2003.

[FLWW12] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui WQuery pre-
serving graph compression. 8iIGMOD, pages 157-168, 2012.

[FM95] Tomas Feder and Rajeev Motwani. Clique partitiagraph compres-
sion and speeding-up algorithmBCSS$51(2):261-272, 1995.

Bibliography 197

[FSVO01] P. Foggia, C. Sansone, and M. Vento. A performancepawison of
five algorithms for graph isomorphism. in Proceedings of the 3rd
IAPR TC-15 Workshop on Graph-based Representations irerRatt
Recognitionpages 188—-199, 2001.

[FWW] Wenfei Fan, Xin Wang, and Yinghui Wu. Incremental Gnapattern
Matching. TODS

[FWW12] Wenfei Fan, Xin Wang, and Yinghui Wu. Performanceaguntees for
distributed reachability querie®VLDB, 5(11):1304-1315, 2012.

[FWW13a] Wenfei Fan, Xin Wang, and Yinghui Wu. Diversifiedotl graph
pattern matchingVLDB, 6(9), 2013.

[FWW13b] Wenfei Fan, Xin Wang, and Yinghui Wu. Expfinder: &ing experts
by graph pattern matching. ICDE demg 2013.

[Gal06] Brian Gallagher. Matching structure and semantidssurvey on
graph-based pattern matchil§AAI FS 6:45-53, 2006.

[GCO08] Gang Gou and Rada Chirkova. Efficient algorithms faot ranked
twig-pattern matching over graphs. $iGMOD, 2008.

[GGCMO09] Sanchit Garg, Trinabh Gupta, Niklas Carlsson, Angtban Mahanti.
Evolution of an online social aggregation network: an emplistudy.
In IMC, 2009.

[GHMPO08] Albert Greenberg, James Hamilton, David A. Mattad Parveen Pa-
tel. The cost of a cloud: research problems in data centerankes.
SIGCOMM Comput. Commun. Re’9, 2008.

[GJ79] Michael Garey and David Johnsa@omputers and Intractability: A
Guide to the Theory of NP-Completene¥%. H. Freeman and Com-
pany, 1979.

[GKO5] Jan Friso Groote and Misa Keinanen. A sub-quadi@gorithm for
conjunctive and disjunctive boolean equation systems.ICIFAC,
pages 532-545, 2005.

[GKSO08] Konstantin Golenberg, Benny Kimelfeld, and Yehasltsagiv. Key-
word proximity search in complex data graphs SisMOD, 2008.

Bibliography 198

[GLO5] Douglas Gregor and Andrew Lumsdaine. Lifting seqgusrgraph
algorithms for distributed-memory parallel computatiotnOOPSLA
pages 423-437, 2005.

[GS02] Rosalba Giugno and Dennis Shasha. Graphgrep: Arfdat@iversal
method for querying graphs. ICPR (2) 2002.

[GS09] Sreenivas Gollapudi and Aneesh Sharma. An axiorappcoach for
result diversification. I'WWW 2009.

[GSBS03] L. Guo, F. Shao, C. Botev, and J. ShanmugasundabdRANK:
ranked keyword search over XML documents SicMOD, 2003.

[GTO3] Gosta Grahne and Alex Thomo. Query containment andliting us-
ing views for regular path queries under constraintsP@DS pages
111-122, 2003.

[Hal00] Alon Y. Halevy. Theory of answering queries usingws. SIGMOD
Rec, 29(4):40-47, 2000.

[Hal01] Alon Y. Halevy. Answering queries using views: A say. VLDB J,
10(4):270-294, 2001.

[HDKT09] Mohammad Farhan Husain, Pankil Doshi, Latifur Khand Bha-
vani M. Thuraisingham. Storage and retrieval of large RD&pbr
using hadoop and MapReduce.@floudCom pages 680—-686, 2009.

[HHK95] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Qauiting Sim-
ulations on finite and infinite graphs. FOCS 1995.

[HRT97] R. Hassin, S. Rubinstein, and A. Tamir. Approximatialgorithms
for maximum dispersion.Operations Research Letterg1(3):133—
137, 1997.

[HS06] Huahai He and Ambuj K. Singh. Closure-tree: An indexcure for
graph queries. IhCDE, 2006.

[HSWO01] Juraj Hromkovic, Sebastian Seibert, and Thomagé&VilTranslating
regular expressions into small -free nondeterministi¢diautomata.
J. Comput. Syst. S¢b2(4):565-588, 2001.

Bibliography 199

[HTMS12] J. He, H. Tong, Q. Mei, and B. Szymanski. Gender: Agy& diversi-
fied ranking algorithm. IMdvances in Neural Information Processing
Systems 2%ages 1151-1159, 2012.

[HWYYO05] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. C@uogreacha-
bility labeling for graph-structured data. GIKM, 2005.

[hyp] Hypergraphdb projecthttp://www.kobrix.com/hgdb.jsp

[IBSO8] Ihab F. llyas, George Beskales, and Mohamed A. SmiimA survey
of topk query processing techniques in relational database sgstem
ACM Comput. Sury40(4), 2008.

[Jac89] Guy Jacobson. Space-efficient static trees antgrag-OCS 1989.

[JHW*10] Ruoming Jin, Hui Hong, Haixun Wang, Ning Ruan, and Yangnj.
Computing label-constraint reachability in graph datalsadnSIG-
MOD Conferencgpages 123-134, 2010.

[Jon96] Neil D. Jones. An introduction to partial evaluaticACM Comput.
Surv, 28(3):480-503, 1996.

[JRDY12] Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Xu YScarab:
scaling reachability computation on large graphs SIGMOD Con-
ference pages 169-180, 2012.

[JWYZ07] Haoliang Jiang, Haixun Wang, Philip S. Yu, and Sjang Zhou.
Gstring: A novel approach for efficient search in graph dasals. In
ICDE, 2007.

[JXRF09] Ruoming Jin, Yang Xiang, Ning Ruan, and David FuhByhop: A
high-compression indexing scheme for reachability qudry.SIG-
MOD, 20089.

[JXRWO08] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wagf{ficiently
answering reachability queries on very large directedlgganSI1G-
MOD, 2008.

[KKTO03] D. Kempe, J. Kleinberg, ané. Tardos. Maximizing the spread of
influence through a social network. 8iGKDD, 2003.

Bibliography 200

[KNTO6a] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. uture and
evolution of online social networks. KDD, 2006.

[KNTO6b] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. uSture and
evolution of online social networks. KDD, 2006.

[Kos00] Donald Kossmann. The state of the art in distribapieery processing.
ACM Comput. Sury32(4):422-469, 2000.

[KSBGO02] Raghav Kaushik, Pradeep Shenoy, Philip Bohanawot Ehud Gudes.
Exploiting local similarity for indexing paths in graphrgttured data.
In ICDE, pages 129-140, 2002.

[LCO7] Ziyang Liu and Yi Chen. Identifying meaningful retumformation
for XML keyword search. I'61IGMOD, 2007.

[LDK T11] Wangchao Le, Songyun Duan, Anastasios Kementsiet§iditei Li,
and Min Wang. Rewriting queries on spargl views WWW 2011.

[Len02] Maurizio Lenzerini. Data integration: A theoretigerspective. In
PODS 2002.

[LHNOG6] E. A. Leicht, Petter Holme, and M. E. J. Newman. Vergmilarity
in networks.Phys. Rev. E73:026120, 2006.

[LKFO7] Jure Leskovec, Jon Kleinberg, and Christos FalositsGraph evolu-
tion: Densification and shrinking diametef®<DD, 1(1):2, 2007.

[LLT11] Theodoros Lappas, Kun Liu, and Evimaria Terzi. Ay of algo-
rithms and systems for expert location in social networksSacial
Network Data Analytics2011.

[LMSS95] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagmwd Divesh
Srivastava. Answering queries using viewsPIoDS 1995.

[LNKO7] David Liben-Nowell and Jon Kleinberg. The link-gietion problem
for social networks.Journal of the American society for information
science and technolog8(7):1019-1031, 2007.

[LSKO06] Jure Leskovec, Ajit Singh, and Jon M. Kleinberg.teats of influence
in a recommendation network. PAKDD, 2006.

Bibliography 201

[LWZ06] Laks V. S. Lakshmanan, Wendy Hui Wang, and Zhengdide3$ Zhao.
Answering tree pattern queries using viewsVItDB, 2006.

[LY11] Rong-Hua Liand Jeffrey Xu Yu. Scalable diversifiechking on large
graphs. INCDM, pages 1152-1157, 2011.

[MAB *10] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bikmis C.
Dehnert, llan Horn, Naty Leiser, and Grzegorz Czajkowskegel: a
system for large-scale graph processingSIBMOD pages 135-146,
2010.

[MAYKSO05] A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivaga. Adaptive
processing of top-k queries in XML. CDE, 2005.

[MB95] B. T. Messmer and H. Bunke. Subgraph isomorphism ilympamial
time. Technical report, 1995.

[McK81] Brendan D. McKay. Practical graph isomorphism, 198

[MDO08] Tova Milo and Daniel Deutch. Querying and monitoridiptributed
business processeBVLDB, 1(2):1512-1515, 2008.

[MMG t07] Alan Mislove, Massimiliano Marcon, P. Krishna Gumméeigter Dr-
uschel, and Bobby Bhattacharjee. Measurement and anafymidine
social networks. Innternet Measurement Comferen2@07.

[MP10] Hossein Maserrat and Jian Pei. Neighbor query ftieadmpression
of social networks. I'KDD, 2010.

[MS99] Tova Milo and Dan Suciu. Index structures for pathreggions. In
ICDT, 1999.

[MS02] Gerome Miklau and Dan Suciu. Containment and egaive for an
xpath fragment. IiPODS pages 65-76, 2002.

[MT69] Dennis M. Moyles and Gerald L. Thompson. An algoritfonfinding
a minimum equivalent graph of a digraph.ACM 16(3), 19609.

[MTP10] M.R. Morris, J. Teevan, and K. Panovich. What do ge@sk their
social networks, and why? A survey study of status message g&
behavior. INCHI, 2010.

Bibliography 202

[NCOO04a] Alexandros Ntoulas, Junghoo Cho, and Christoghiston. What's
new on the web?: the evolution of the web from a search engine p
spective. INWWW 2004.

[NCOO04b] Alexandros Ntoulas, Junghoo Cho, and Christo@lston. What's
new on the Web? The evolution of the Web from a search engine
perspective. IWWW 2004.

[neo] Neodj projecthttp://neodj.org/

[NewOla] M. E. Newman. Scientific collaboration networksdlhortest paths,
weighted networks, and centralighys Rev E Stat Nonlin Soft Matter
Phys 64(1 Pt 2), 2001.

[NewO1lb] Mark EJ Newman. Clustering and preferential dtaent in growing
networks.Physical Review 54(2):025102, 2001.

[NRSO08] Saket Navlakha, Rajeev Rastogi, and Nisheeth &tava. Graph
summarization with bounded error. 8iGMOD, 2008.

[NS03] Frank Neven and Thomas Schwentick. Xpath contaitimehe pres-
ence of disjunction, dtds, and variables. I€DT, pages 312-326,
2003.

[OV99] M. Tamer Ozsu and Patrick ValduriezPrinciples of Distributed
Database System®rentice Hall, 1999.

[PAGO9] Jorge Pérez, Marcelo Arenas, and Claudio Guter8mantics and
complexity of SPARQL.TODS 34(3), 2009.

[Pap94] Christos H Papadimitriou.Computational Complexity Addison-
Wesley, 1994.

[PBCGO09] Michalis Potamias, Francesco Bonchi, Carlosibasand Aristides
Gionis. Fast shortest path distance estimation in larg@ar&s. In
CIKM, 2009.

[PERO9] Josep M. Pujol, Vijay Erramilli, and Pablo RodrigueDivide and
conquer: Partitioning online social networkSoRR abs/0905.4918,
2009.

Bibliography 203

[PT87] Robert Paige and Robert Endre Tarjan. Three pantitefinement
algorithms.SICOMR 16(6), 1987.

[PTO5] Daeil Park and Motomichi Toyama. Xml cache managerbased
on xpath containment relationship. IBDE Workshopspage 1238,
2005.

[PV99] Yannis Papakonstantinou and Vasilis Vassalos. Quawriting for
semistructured data. BIGMOD, pages 455-466, 1999.

[QLOO03] Chen Qun, Andrew Lim, and Kian Win Ong. D(k)-indexnAdaptive
structural summary for graph-structured dataSIGMOD, 2003.

[QYC12] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Diversifyirtgp-k results.
PVLDB, 5(11), 2012.

[RGMO03] Sriram Raghavan and Hector Garcia-Molina. Représg Web
graphs. INCDE, 2003.

[Row09] Matthew Rowe. Interlinking distributed social gres. InLDOW,
2009.

[RR96] G. Ramalingam and Thomas Reps. On the computationgblexity
of dynamic graph problemd.CS 158(1-2), 1996.

[Sah07] Diptikalyan Saha. An incremental bisimulation caithm. In
FSTTCS2007.

[SCK'08] Ralf Schenkel, Tom Crecelius, Mouna Kacimi, Sebastiaichil,
Thomas Neumann, Josiane X. Parreira, and Gerhard Weikufir. Ef
cient top-k querying over social-tagging networks SIGIR 2008.

[SD76] Douglas C. Schmidt and Larry E. Druffel. A fast baekiing algo-
rithm to test directed graphs for isomorphism using distanatrices.

J. ACM, 23(3), 1976.

[Sev] Mark Sevalnev. From prefix computation on pram for fimgdeu-
ler tours to usage of hadoop-framework for distributed Gtledirst

search.http://www.cs.hut.fi/

Bibliography 204

[Sim88] Klaus Simon. An improved algorithm for transitidesure on acyclic
digraphs.Theor. Comput. Sgi58:325-346, 1988.

[STO9] Maryam Shoaran and Alex Thomo. Fault-tolerant cotaton of dis-
tributed regular path querie3CS 410(1):62—77, 2009.

[StrO6] U. Straccia. Towards top-k query answering in déidacdatabases.
In SMC 2006.

[Suc02] Dan Suciu. Distributed query evaluation on semdtred data.
TODS 27(1):1-62, 2002.

[TBMT08] M. Theobald, H. Bast, D. Majumdar, R. Schenkel, and G.Kai.
Topx: Efficient and versatile top-k query processing for s#mc-
tured dataVLDB J, 17(1):81-115, 2008.

[TFGERO7] Hanghang Tong, Christos Faloutsos, Brian Ghbagand Tina
Eliassi-Rad. Fast best-effort pattern matching in largebated
graphs. INKDD, 2007.

[TMO5] Loren G. Terveen and David W. McDonald. Social maichi A
framework and research agenda. AGM Trans. Comput.-Hum. In-
teract, 2005.

[TPO8] Yuanyuan Tian and Jignesh M. Patel. Tale: A tool fopragimate
large graph matching. IFCDE, 2008.

[tri] Trinity. http://research.microsoft.com/en-us/projects/tyinit

ie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, a g Su.

TZYT08] Jie T Jing Zh Limin Yao, J I Li, Li Zh bAg S
Arnetminer: extraction and mining of academic social nekso In
KDD, 2008.

[UlI76] Julian R. Ullmann. An algorithm for subgraph isonpbism.J. ACM
23(1), 1976.

[Vaz03] Vijay V. Vazirani. Approximation AlgorithmsSpringer, 2003.

[VFD*07] Monigue V. Vieira, Bruno M. Fonseca, Rodrigo Damazio,lBaraz
Golgher, Davi de Castro Reis, and Berthier A. Ribeiro-N&ibicient
search ranking in social networks. GiKM, pages 563-572, 2007.

Bibliography 205

[VMCGO09] Bimal Viswanath, Alan Mislove, Meeyoung Cha, andistna P.
Gummadi. On the evolution of user interaction in faceboakSIG-
COMM Workshop on Social Networks (WOSR)09.

[VRB™11] Marcos R. Vieira, Humberto Luiz Razente, Maria Camilardiiai
Barioni, Marios Hadjieleftheriou, Divesh Srivastava, Gew Jr.
Traina, and Vassilis J. Tsotras. On query result diversitioa In
ICDE, 2011.

[vSdM11] Sebastiaan J. van Schaik and Oege de Moor. A menfbcyeat
reachability data structure through bit vector comprassitn SIG-
MOD, 2011.

[WBH*™03] Michael Wolverton, Pauline Berry, lan W. Harrison, Joln
Lowrance, David N. Morley, Andres C. Rodriguez, Enrique HISR
pini, and Jérdome Thomeéré. Law: A workbench for appraatienpat-
tern matching in relational data. 1AAI, 2003.

[WDL*12] A. Wagner, T. Duc, G. Ladwig, A. Harth, and R. Studer. Tolnked
data query processing. ESWGC 2012.

[WF94] Stanley Wasserman and Katherine Faustcial Network Analysis:
Methods and Application€ambridge University Press, 1994.

[WHY T06] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and JeffreyYxu
Dual labeling: Answering graph reachability queries instant time.
In ICDE, 2006.

[WLY11] Junhu Wang, Jiang Li, and Jeffrey Xu Yu. Answeringédrpattern
queries using views: a revisit. BEDBT, pages 153-164, 2011.

[WSO03] Scott White and Padhraic Smyth. Algorithms for estiimg relative
importance in networks. IKDD, 2003.

[WTWO09] Xiaoying Wu, Dimitri Theodoratos, and Wendy Hui W@anAnswer-
ing xml queries using materialized views revisited AiKM, 2009.

[YC10] Jeffrey Xu Yu and Jiefeng ChengGraph Reachability Queries: A
Survey Springer, 2010.

Bibliography 206
[YCZ10] Hilmi Yildirim, Vineet Chaoji, and Mohammed Javeedki. Grail:
Scalable reachability index for large grapi®/LDB, 3(1), 2010.
[you] Youtube datasethttp://netsg.cs.sfu.ca/youtubedata/

[YYHO4] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph indleg: A frequent
structure-based approach. S'GMOD Conferenge2004.

[ZCLO7] L. Zou, L. Chen, and Y. Lu. Top-k subgraph matchingguin a large
graph. InPh.D. workshop in CIKIM2007.

[ZCO09] Lei Zou, Lei Chen, and M. Tam@zsu. Distance-join: Pattern match
guery in a large graph database MhDB, 2009.

[ZGM98] Yue Zhuge and Hector Garcia-Molina. Graph strueturviews and
their incremental maintenance. IGDE, 1998.

[ZLYOQ9] Shijie Zhang, Shirong Li, and Jiong Yang. Gaddi: tdisce index
based subgraph matching in biological networksEDBT, 2009.

[ZwiO1] Uri Zwick. Exact and approximate distances in grapta survey. In
ESA 2001.

[Z2YJ10] Shijie Zhang, Jiong Yang, and Wei Jin. Sapper: Saplrindexing
and approximate matching in larged grapR¥.LDB, 3(1), 2010.

[ZYYQ7] Peixiang Zhao, Jeffrey Xu Yu, and Philip S. Yu. Graipldexing: Tree
+ delta>= graph. InVLDB, 2007.

	PhD coversheet April 2012
	thesis

