

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Graph Pattern Matching on Social Network

Analysis

Xin Wang
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2013

Abstract
Graph pattern matching is fundamental to social network analysis. Its effectiveness

for identifying social communities and social positions, making recommendations and

so on has been repeatedly demonstrated. However, the socialnetwork analysis raises

new challenges to graph pattern matching. As real-life social graphs are typically

large, it is often prohibitively expensive to conduct graphpattern matching over such

large graphs,e.g., NP-complete for subgraph isomorphism, cubic time for bounded

simulation, and quadratic time for simulation. These hinder the applicability of graph

pattern matching on social network analysis. In response tothese challenges, the thesis

presents a series of effective techniques for querying large, dynamic, and distributively

stored social networks.

First of all, we propose a notion ofquery preserving graph compression, to com-

press large social graphs relative to a classQ of queries. We then develop both batch

and incremental compression strategies for two commonly used pattern queries. Via

both theoretical analysis and experimental studies, we show that (1) using compressed

graphsGr benefits graph pattern matching dramatically; and (2) the computation ofGr

as well as its maintenance can be processed efficiently.

Secondly, we investigate the distributed graph pattern matching problem, and ex-

plore parallel computation for graph pattern matching. We show that our techniques

possess following performance guarantees: (1) each site isvisitedonly once; (2) the to-

tal network traffic isindependent ofthe size ofG; and (3) the response time is decided

by the size of largest fragment ofG rather thanthe size of entireG. Furthermore, we

show how these distributed algorithms can be implemented inthe MapReduce frame-

work.

Thirdly, we study the problem of answering graph pattern matching using views

since view based techniques have proven an effective technique for speeding up query

evaluation. We propose a notion ofpattern containmentto characterise graph pat-

tern matching using views, and introduce efficient algorithms to answer graph pattern

matching using views. Moreover, we identify three problemsrelated to graph pattern

containment, and provide efficient algorithms for containment checking (approxima-

tion when the problem is intractable).

Fourthly, we revise graph pattern matching by supporting a designated output node,

which we treat as “query focus”. We then introduce algorithms for computing the top-k

relevant matchesw.r.t. the output node for both acyclic and cyclic pattern graphs, re-

spectively, withearly termination property. Furthermore, we investigate thediversified

i

top-k matchingproblem, and develop an approximation algorithm withperformance

guaranteeand a heuristic algorithm withearly termination property.

Finally, we introduce an expert search system, calledExpFinder, for large anddy-

namicsocial networks.ExpFinder identifies top-k experts in social networks by graph

pattern matching, and copes with the sheer size of real-lifesocial networks by inte-

grating incremental graph pattern matching, query preserving compression and top-k

matching computation. In particular, we also introduce bounded (resp. unbounded)

incremental algorithms to maintain the weighted landmark vectors which are used for

incremental maintenance for cached results.

ii

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Wenfei Fan, for all

his invaluable guidance, support and inspiration. He led meinto the area of databases

and taught me on every perspective of the principles of research. Moreover, this dis-

sertation is profoundly marked by his scholarship and advice, without his kind encour-

agement and unfailing support, this dissertation would nothave been possible.

Many thanks to Professor Don Sannella, who made it possible for me to enrol

in the PhD program at University of Edinburgh. My special thanks go to Professor

Peter Buneman and Professor Marcelo Arenas who have served on my committee and

provided insightful comments and advice.

In addition, I would like to thank my colleague Dr. Yinghui Wu, with whom I co-

operated happily during the past years. I really benefit fromthe thoughtful discussions

with him. Thanks must go to all folks in the database group: Floris Geerts, Xibei Jia,

Shuai Ma, Nan Tang, Wenyuan Yu, Tony Tan, and Yang Cao...I really enjoy the happy

time with you, and especially thank you for the supportive discussions and construc-

tive suggestions during my research. Thanks must also go to Benedict Kavanagh who

shared his valuable comments on my dissertation, and my Chinese colleagues: Jing-

cai Huang, Jizhou Luo, Zijing Tan, Yunpeng Wu, and Lixiao Zheng, you generously

shared your valuable experiences and encouraged me with your own passion, which

benefited me immensely for conducting efficient research.

Many thanks to my friends in Edinburgh: Xi Bai, Lorenzo Clemente, Liwei Deng,

Yansong Feng, Jiansen He, Zhiyu Huang, Zhe Liu, Zhiguo Kang,Juan Rutter and

Hongxia Xu, I quite enjoy the time with you guys in Edinburgh.I am also grateful to

my colleagues and friends in China, who encouraged and made strong support for me

to pursue my PhD.

Finally, I would like to thank my family: my parents for theirsupport and encour-

agement over the years; my wife for her love, devotion support. Without you, I might

give up during the hard time.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text,and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Xin Wang)

iv

Table of Contents

1 Introduction 2

1.1 Graph Pattern Matching : A Review 2

1.2 Graph Pattern Matching: the State of the Art 6

1.2.1 Approaches to Subgraph Isomorphism 6

1.2.2 Approaches to Graph (Bounded) Simulation8

1.2.3 Approaches to Variants of Graph Pattern Matching 9

1.3 Challenges for Social Network Analysis 10

1.4 Contributions . 12

1.5 Outline of Dissertation . 14

1.6 Publications . 15

2 Query Preserving Graph Compression 17

2.1 Introduction . 17

2.2 Query Preserving Graph Compression20

2.3 Reachability Preserving Compression 22

2.3.1 Reachability Equivalence Relations22

2.3.2 Compression Method for Reachability Queries 24

2.4 Graph Pattern Preserving Compression 26

2.4.1 Compressing Graphs via Bisimilarity 27

2.4.2 Compression Algorithm for Graph Pattens29

2.5 Incremental Compression . 30

2.5.1 Incremental Maintenance for Reachability 31

2.5.2 Incremental Maintenance for Graph Patterns 35

2.6 Experimental Evaluation . 38

2.7 Related work . 45

v

3 Distributed Graph Pattern Matching 49

3.1 Introduction . 49

3.1.1 Distributed Graphs . 52

3.1.2 Partial evaluation . 53

3.2 Distributed Graph Pattern Matching 54

3.2.1 Distributed Reachability Queries54

3.2.2 Distributed Bounded Reachability Queries 59

3.2.3 Distributed Regular Reachability Queries 62

3.3 Distributed Graph Pattern Matching with MapReduce 68

3.4 Experimental Evaluation . 71

3.5 Related Work . 79

4 Graph Pattern Matching Using Views 81

4.1 Introduction . 81

4.2 Preliminary . 83

4.2.1 Graph Pattern Matching Revisited 83

4.2.2 Graph Pattern Matching Using Views 85

4.3 Pattern Containment: A Characterization 86

4.4 Pattern Containment Problems . 93

4.5 Determining Pattern Containment99

4.5.1 Pattern Containment . 99

4.5.2 Minimal Containment Problem 102

4.5.3 Minimum Containment Problem 104

4.6 Bounded Pattern Matching Using Views106

4.6.1 Answering Bounded Pattern Queries 107

4.6.2 Bounded Pattern Containment 109

4.7 Experimental Evaluation . 115

4.8 Related Work. 122

5 Diversified Top-k Graph Pattern Matching 124

5.1 Introduction . 125

5.2 Graph Pattern Matching Revisited127

5.2.1 Graph Pattern Matching Revised 127

5.3 Ranking Pattern Matches . 128

5.3.1 Relevant Matches . 128

5.3.2 Match Diversity . 130

vi

5.3.3 Match Diversification . 131

5.3.4 Generalized Top-k Matching 132

5.4 Algorithms for Top-k Matching . 133

5.4.1 Algorithm for Acyclic Patterns 135

5.4.2 Algorithm for Cyclic Patterns 140

5.5 Algorithms for Diversifying Matches 147

5.5.1 Approximating Diversification 149

5.5.2 Early Termination Heuristics 152

5.6 Top-k matching with multiple output nodes 154

5.7 Experimental Evaluation . 158

5.8 Related work . 166

6 ExpFinder: Finding Experts by Graph Pattern Matching 169

6.1 Introduction . 169

6.2 Incremental maintenance of landmarks 171

6.2.1 Landmark Vectors . 171

6.2.2 Incremental maintenance of landmarks 172

6.2.3 Performance Evaluation . 176

6.3 The ExpFinder System . 179

6.4 System Overview . 182

7 Conclusion and Future Work 187

7.1 Summary . 187

7.2 Future Work . 190

Bibliography 192

vii

List of Figures

1.1 Data Graph and Pattern Graphs . 5

2.1 Compressing a real-life P2P network 18

2.2 Recommendation Network . 19

2.3 Query preserving compression . 20

2.4 Reachability equivalence . 23

2.5 AlgorithmcompressR for reachability 24

2.6 Examples of bisimulation relations 27

2.7 AlgorithmcompressB for pattern queries 29

2.8 AlgorithmincRCM . 33

2.9 Incremental compression: reachability 35

2.10 AlgorithmincPCM . 36

2.11 Incremental compression: graph pattern 38

2.12 Effectiveness: query processing 42

2.13 Efficiency of incremental compression 44

2.14 Effectiveness of incremental compression 45

3.1 Querying a distributed social network 50

3.2 Fragment graph and partial evaluation 53

3.3 AlgorithmdisReach . 55

3.4 ProcedureevalDG . 58

3.5 Dependency graphs . 59

3.6 ProcedurelocalEvald andevalDGd 60

3.7 Query automatonGq(R) . 63

3.8 ProcedurelocalEvalr and cmpRvec 65

3.9 Assembling with dependency graph 67

3.10 AlgorithmMRdRPQ . 69

3.11 Processing path of algorithmreduceRPQ 70

viii

3.12 Efficiency and Scalability ofdisReach 74

3.13 Efficiency ofdisDist . 75

3.14 Efficiency and scalability ofdisRPQ 77

3.15 Efficiency ofMRdRPQ . 78

4.1 Data graph, views and pattern queries 82

4.2 AlgorithmMatchJoin . 86

4.3 Answering pattern queries using views 90

4.4 Algorithmcontain . 101

4.5 Containment for pattern queries .102

4.6 Algorithmminimal . 103

4.7 Algorithmminimum . 104

4.8 Containment for bounded pattern queries 111

4.9 Youtube views . 115

4.10 Query answering using views . 117

4.11 Optimization techniques . 118

4.12 Determining query containment .119

4.13 Efficiency and scalability ofBMatchJoin 120

5.1 Querying collaboration network .126

5.2 AlgorithmTopKDAG . 137

5.3 AlgorithmTopK . 141

5.4 ProcedureSccProcess . 142

5.5 AlgorithmTopKDiv . 150

5.6 Case study . 160

5.7 Effectiveness of top-k matching . 161

5.8 Efficiency and scalability of top-k matching 162

5.9 Algorithms for diversified top-k matching 164

6.1 Pattern queryQb and collaboration networkG 170

6.2 ProceduredelLM . 174

6.3 Performance evaluation : efficiency 178

6.4 Architecture ofExpFinder . 180

6.5 Visual interface:ExpFinder Manager 183

6.6 Visual interface: Pattern Builder 184

6.7 Match Results relevant to output node ofQ1, Q2 andQ3 185

ix

List of Tables

2.1 Reachability preserving: compression ratio 40

2.2 Pattern preserving: compression ratio 40

3.1 Notations: graphs and queries . 52

3.2 Size of graphs : (bounded) reachability queries 72

3.3 Size of graphs : regular reachability queries 72

3.4 Efficiency and data shipment: real life data 74

4.1 Notations: graphs, pattern queries and views 84

7.1 Summary: computational complexities 187

7.2 Summary: performances . 188

7.3 Summary: complexity analysis . 189

7.4 Summary: property and complexity analysis of the problems 189

7.5 Summary: complexity analysis . 190

x

Chapter 1

Introduction

Graph pattern matching has been extensively studied for more than 30 years, and spans

a diverse range of application domains,e.g.,knowledge discovery, computer vision, bi-

ology, cheminformatics, dynamic network traffic and intelligence analysis. With the

rapid increase in social network services popularity, there has been renewed interest

in graph pattern matching for social network analysis. In this chapter, we first briefly

review the existing techniques of graph pattern matching, along with the basic nota-

tions and terminologies we will use in the thesis. We then introduce the characteristics

of social networks and discuss the challenges of using graphpattern matching in so-

cial network analysis. Finally, we outline the structure ofthe thesis and present its

contributions.

1.1 Graph Pattern Matching : A Review

Graphs are among the most ubiquitous models of both natural and human-made struc-

tures. They can be used to model many types of relations and process dynamics in

many areas,e.g.,a social network can be modelled as a graph, where each node de-

notes a person, and edges indicate the relationships among those people.

Due to the wide application of graph models, a series of relevant problems were

studied,e.g.,graph pattern matching, which spans a diverse range of research commu-

nities.

Generally speaking, the problem of graph pattern matching is defined as follows:

given a data graphG, and a pattern graphQ, find all the matches inG for Q. Due to

varying semantics, the graph pattern matching problem ranges from theNP-complete

problemsubgraph isomorphismto the polynomial time problems, includingbounded

2

Chapter 1. Introduction 3

simulation(cubic time), andsimulation(quadratic time). Moreover, to overcome high

computational complexities and capture more meaningful matches, a variety of ex-

tensions have been explored,e.g., inexact matching, etc, which makes the problem

domain more diverse.

Below we first present data graphs and pattern graphs, and then define graph pattern

matching problem. The notations introduced will be used throughout the thesis.

Data graphs. A data graphis defined asG= (V,E,L), where

◦ V is a set of nodes;

◦ E ⊆V ×V is a set of edges, in which(v,v′) denotes an edge from nodev to v′;

and

◦ L is a function defined onV such that for eachv in V, L(v) is the label ofv.

In practice, the labelL(v) may indicate a variety of real-life semantics,e.g., label,

keywords, blogs and rating.

We shall use the following notations.

(1) A pathρ from nodev to v′ in G is a sequence of nodesv= v0,v1, · · · ,vn = v′

such that(vi−1,vi) ∈ E for every i ∈ [1,n]. The lengthof pathρ, denoted bylen(ρ),
is n, i.e., the number of edges inρ. The pathρ is said to benonemptyif len(ρ) ≥ 1.

Abusing notations for trees, we refer tovi as achild of vi−1 (or vi−1 as a parent ofvi),

andv j as adescendantof vi−1 for i, j ∈ [1,n] andi < j.

(2) Thedistancebetween nodev andv′ is the length of the shortest paths fromv to

v′, denoted bydis(v,v′).

(3) A graphG′ = (V ′,E′) is a subgraph ofG if and only if V ′ ⊆V andE′ ⊆ E.

(4) A node induced subgraphGs of G is a graph(Vs,Es,Ls), where (a)Vs ⊆ V,

(b) there is an edge(u,v) ∈ Es iff u,v ∈ Vs and (u,v) ∈ E, and (c) for eachv ∈ Vs,

Ls(v) = L(v).

(5) Thestrongly connected components(SCC) of a directed graphGare its maximal

strongly connected subgraphs. Thestrongly connected component graph GSCC is a

DAG obtained by shrinking each strongly connected componentSCC of G into a single

node.

Pattern graphs [FLM+10]. A pattern graphis defined asQ= (Vp,Ep, fv, fe), where

◦ Vp is a set of nodes andEp is a set of directed edges, as defined for data graphs;

◦ fv() is a function defined onVp such that for each nodeu, fv(u) is a label inΣ.

fv() can be readily extended to specify search conditions in terms of Boolean

predicates [FLM+10]; and

Chapter 1. Introduction 4

◦ fe() is a function defined onEp such that for each edge(u,u′) in Ep, fe(u,u′) is

either a positive integerk or a symbol∗.

Intuitively, the predicatefv(u) of a nodeu specifies a search condition. An edge

(u,u′) in Q is to be mapped to a pathρ from v to v′ in a data graphG. As will be seen

shortly, fe(u,u′) imposes a bound on the length ofρ.

We refer toQ as anormal patternif for each edge(u,u′) ∈ Ep, fe(u,u′) = 1. Intu-

itively, a normal pattern enforces edge to edge mappings, asfound in graph simulation

and subgraph isomorphism.

Graph Pattern Matching Problem. Given a pattern graphQ and a data graphG, find

all matches inG for Q, denoted byM(Q,G). Here matching is typically defined in

terms of the following notions:

◦ Subgraph isomorphism [Gal06]:M(Q,G) consists of subgraphsG′ of G to which

Q is isomorphic,i.e.,, there exists a bijective functionh from the nodes ofQ to

the nodes ofG′ such that(u,u′) is an edge inQ if and only if (h(u),h(u′)) is an

edge inG′; or

◦ Bounded simulation [FLM+10]: M(Q,G) is a binary relationS⊆Vp×V, where

Vp andV are the set of nodes inQ andG, respectively, such that

– for each nodeu in Vp, there exists a nodev in V such that(u,v) ∈ S, and

– for each(u,v) ∈ Sand each edge(u,u′) in Q, there exists anonempty path

ρ from v to v′ in G such that(u′,v′) ∈ S, andlen(ρ)≤ k if fe(u,u′) = k

◦ Simulation [HHK95]: Graph simulation is a special case of bounded simulation

whenQ is a normal pattern,i.e.,, when fe(u,u′) = 1 for all (u,u′) ∈ Ep. That is,

it only allows edges in the pattern to be mapped to edges in thedata graph.

To ease the presentation, in the remaining part of the thesis, we shall useQb to

denote bounded simulation queries, andQs as simulation queries, unless otherwise

stated.

Remark. Note that different semantics for graph pattern matching yield different

computational cost and capability in identifying meaningful matching. In particu-

lar, subgraph isomorphism is aNP-complete problem (cf [GJ79]), and there are pos-

sible exponentially many matches. Although graph simulation can be computed in

quadratic time, this notion and subgraph isomorphism are often too restrictive to find

matches (only edge to edge mapping); bounded simulation allows edges to be mapped

to (bounded) paths instead of edge-to-edge mappings, hencefinds more meaningful

matches but requires more computational cost,i.e., cubic time, compared with graph

Chapter 1. Introduction 5

DB1

PM2

AI2DB2

SE2

AI1

SE1 Bio2

DB

Bio SE

AI

PM

Bio3

(a) Graph G (b) Pattern Graph Q1

Bio1

PM1 SE3

DB

Bio SE

PM

2

22

(c) Pattern Graph Q2

1

Figure 1.1: Data Graph and Pattern Graphs

simulation.

Example 1.1: Figure 1.1 depicts graphG, a fraction of social network. Each node in

G denotes a person, with job titlee.g.,project manager (PM), artificial intelligence re-

searcher (AI), software engineer (SE), database administrator (DB) and bioinformatics

researcher (Bio); and each edge indicates collaboration,e.g.,(PM1, SE1) indicates that

SE1 worked well withPM1 on a project led byPM1. Also shown in Fig. 1.1 are pattern

graphsQ1 andQ2:

(1) If patternQ1 is to find all subgraphs ofG that are isomorphic toQ1. Then, the

setM(Q1,G) is empty, as there does not exist a subgraph ofG that is isomorphic to

Q1.

(2) WhenQ1 is to find matches based on graph simulation [HHK95], the return

result is a binary relationM(Q1,G) = {(PM,PM2),(AI,AI1),(AI,AI2),(DB,DB1),

(DB,DB2),(Bio,Bio2),(Bio,Bio3),(SE,SE1),(SE,SE2)}.

(3) PatternQ2 is to find matches based on the semantics of bounded simula-

tion [FLM+10]. It requires that thePMs connect toDBs, Bio researchers andSEs,

respectively, all in 2 hops; and theSEs connect toDBs in 1 hop. One may verify that

the query resultM(Q2,G) equals{(PM,PM2),(DB,DB1),(DB,DB2),(Bio,Bio2),

(Bio,Bio3),(SE,SE1),(SE,SE2)}. ✷

To allow the extension for edge to path mapping, one central problem is to answer

the reachability queries, which is introduced as following.

Reachability queries. Reachability queries are one of the most important graph

queries. Informally, a reachability query asks whether there exists a path from a node

s to another nodet in graphG. Starting from the general reachability queries, two

important variants, bounded reachability queries and regular reachability queries, are

proposed and investigated ine.g.,[FWW12, JHW+10]. We now formally introduce

them below.

(1) A reachability query, denoted asqr(s, t), determines whether nodes can reach

Chapter 1. Introduction 6

another nodet in G.

(2) A bounded reachability query, denoted asqbr(s, t, l), decides whetherdis(s, t)≤ l

for a given integer (bound)l .

(3) A regular reachability (path) query, denoted asqrr(s, t,R), determines whether

there exists a pathρ from s to t such thatρ satisfiesR. HereR is a regular expression:

R ::= ε | a | RR| R∪R | R∗,

whereε is the empty string,a is a label inΣ, RR, R∪R andR∗ denote concatenation,

alternation and the Kleene closure, respectively. We say that a pathρ satisfies Rif the

label ofρ is a string in the regular language defined byR. Here we do not requireρ to

be a simple path,i.e.,we allow multiple occurrences of the same node onρ.

Indeed, reachability queries are a special case of pattern queries, and can be readily

represented as pattern graphs. One may verify that :

(1) A reachability queryqr(s, t) can be represented as a pattern graph with only one

edgee= (s, t) such thatfe(s, t) = ∗.

(2) A bounded reachability queryqbr(s, t, l) can be represented as a pattern graph with

the same structure asqr(s, t), but differs in thatfe(s, t) = l .

(3) A regular reachability (path) queryqrr(s, t,R) can be represented as the same pat-

tern graph asqr(s, t), with the exception that there must exist a pathρ from s to t such

that the labels of the nodes along the pathρ satisfies the regular expressionR.

It is worth noting that when a simple boolean pattern is used for graph pattern

matching, the return result is not necessarily the entire match setM(Q,G), in contrast,

a Boolean value indicating whether the boolean pattern exists is desired.

1.2 Graph Pattern Matching: the State of the Art

In this section, we introduce the background and state-of-the-art approaches to the

graph pattern matching problem.

1.2.1 Approaches to Subgraph Isomorphism

Traditionally, graph pattern matching is defined in terms ofsubgraph isomorphism.

With this notion, graph pattern matching corresponds to finding a structure-preserving

bijection, which makes graph pattern matching anNP-complete problem. To efficiently

Chapter 1. Introduction 7

find matches, various techniques have been explored, which can be grouped into three

categories: Exact Matching, Inexact Matching, and the Extensions.

Exact matching. The first subgraph isomorphism algorithm was introduced in[Ull76],

which is applicable for untyped graphs with directed or undirected edges, and with ex-

ponential worst case time complexity. To overcome the high computational complex-

ity, an algorithm with quadratic worst-case time complexity was proposed in [MB95].

This algorithm can also be operated on untyped graphs with directed or undirected

edges, however, it requires to preprocess the graph to generate all possible permuta-

tions of the graph adjacency matrices and organize them intoa decision tree, which

may grow exponentially with respect to the size of the data graph. Following the

same strategy as Ullmann’s, another backtracking algorithm SD [SD76] was devel-

oped for directed graphs. Although SD uses distance matrix to reduce the search

space, it still has exponential worst case time complexity.The more recent algorithms

Nauty [McK81], VF [CFSV99] and VF2 [CFSV04] are all developed for exact matches

and also have exponential worst-case time complexity. To compare the performances

of the above algorithms, [FSV01] conducted a set of comprehensive tests over small

synthetic graphs with thousands of nodes and edges, and presented detailed results,

from which one may conclude that due to the high computational complexities, these

algorithms are not applicable on large graphs with millionsof nodes and billions of

edges,e.g.,social networks.

There are also works to find exact matches by leveraging indices. [ZLY09] con-

structs an index by (a) sampling best discriminative substructures in the data graph;

and (b) computing NDS distance for a pair of nodes satisfyingdistance constraint.

Then the matching process proceeds by progressively findingmatches of one pair of

vertices in the pattern graph. GraphGrep [GS02] builds indices to represent graphs

as sets of paths. Given a pattern graph, GraphGrep decomposes it into a set of paths

and conducts path verification via the index for each path. Itdetermines whether the

pattern graph matches the data graph by verifying whether all the pattern paths can be

concatenated.

Inexact matching. To fight the high computational complexity for exact matching and

the incomplete or errors in the data graph, a variety of techniques for inexact matching

were developed. For example, [ZYJ10] studies how to findall the matches withedge

edit distanceless than or equal to a specified threshold. It introduced an approach to

find inexact matches by incorporating an index structure, named as SAPPER. [TP08]

Chapter 1. Introduction 8

studies the problem of finding matches on graphs with noise and incomplete informa-

tion. As opposed to [ZYJ10], it defines different measurements to evaluate the match

quality, and builds up a hybrid index to speed up query evaluation.

Extensions. The problems of graph pattern matching when allowing edge to path

mapping are further studied in [CYD+08, ZCO09]. In [CYD+08], the query model

is to find all matches in a data graph that match all the reachability conditions con-

junctively specified in a pattern graph. While, [ZCO09] allows edges in pattern graph

to be mapped to a path with length bounded byδ in the data graph. The key differ-

ences between the two works are that the distance bound from edge to path mapping

in [CYD+08] is unlimited, rather thanδ in [ZCO09].

1.2.2 Approaches to Graph (Bounded) Simulation

We start from graph simulation, and then introduce various extensions to the problem

as well as their corresponding approaches.

In contrast to subgraph isomorphism, graph simulation seeks to find a maximum

simulation relation rather than a set of isomorphic subgraphs via a bijective function.

This improves the computational complexity of graph pattern matching substantially,

e.g.,graph simulation is computed in quadratic time [HHK95]. Moreover, the size of

the return result is bounded byO(|Vp||V|), whereVp andV are node sets in the pattern

graph and the data graph, respectively, rather than the possibly exponentially many

matches when using subgraph isomorphism.

Incorporating edge to path mapping. Edge to edge mappings are often too restric-

tive for graph pattern matching. With this comes the need to incorporate graph pat-

tern matching with edge to path mapping. The central problemwe must address is

how to answer reachability queries, which has been studied extensively. In particu-

lar, various kinds of indices are developed to speed up queryevaluation,e.g.,transi-

tive closure [Sim88], 2-hop labelling [CHKZ03a], 3-hop labelling [JXRF09], Dual-

labeling [WHY+06] and so on. Moreover, taken into consideration that real-life social

networks often take semantics over edges, [JHW+10] introduced approaches to label-

constraint reachability queries, which asks whether nodes reachest via a path with

edge labels constrained by a set of labels.

To further extend graph pattern matching by incorporating edge to path mapping,

[FLM+10] proposed bounded simulation which maps edges in the pattern graph to

Chapter 1. Introduction 9

paths in the data graph with distance less than a given bound.Unlike [ZCO09],

[FLM+10] allows bounds associated with the pattern edges to vary,rather than a single

bound for all the pattern edges. With regards to the computational cost, bounded sim-

ulation does not make our lives much harder, as it takes cubictime to find a maximum

bounded simulation relation. Regular pattern matching, which is a more sophisticated

extension, is studied in [FLM+11], where each edgee in a pattern graph is mapped

to a pathρ in a data graph such that the concatenation of edge labels along the path

ρ is a string in the language of the regular expressionfe(e). It is also shown that the

computational complexity of regular pattern matching is incubic time.

Pattern graph processing. Another optimization topic in graph pattern matching is to

minimize pattern graphs. Via minimization, redundant nodes and edges can be maxi-

mally eliminated, while the query result remains the same. One trial of this direction

is the work from [BG00]. Given a pattern graphQ, it introduces algorithms to find a

smallest structure that is simulation equivalent toQ. [FLM+11] studied minimization

problem for regular pattern graphs, and introduced a cubic time algorithm to minimize

pattern graphs.

Incremental computation. It is often too expensive to compute graph pattern match-

ing from scratch, especially when queries are issued frequently on large social net-

works. Moreover, it is not feasible to analyse incremental algorithms by using the tradi-

tional complexity analysis for batch algorithms. In light of these, [FLM+10, FLL+11]

studied incremental problem for both graph simulation and bounded simulation and

introduced bounded or unbounded incremental algorithms.

1.2.3 Approaches to Variants of Graph Pattern Matching

There has been much work [JWYZ07, HS06, ZYY07, YYH04] on finding occurrences

of a pattern graph in a graph database which includes a large quantity of medium sized

data graphs. Most of the work follows a filter-and-verification framework. That’s, they

(1) identify a set of feature substructures; (2) construct inverted indices; and (3) filter

and find data graphs in which the pattern graph is contained.

There are also works on semantic matching rather than structured matching, which

attempt to find matches relevant to the semantics by taking into consideration types

and attributes of nodes and edges as well as graph structure [AMHWS+05, CGM04,

WBH+03].

Chapter 1. Introduction 10

Similarity between pattern and data graphs are often measured by edit distance,

however this yields the drawback, since it requires specification of costs for edit oper-

ations. In light of this, [BS98] and [BJK00] propose alternative methods to measure

the distance based on the idea ofmaximal common subgraphandminimum common

serigraph. Indeed, these methods measure the amount of structural overlap between

graphs.

It is worth noting that most of these algorithms are not applicable for graph pattern

matching on social networks, the reasons are (1) the graphs in a database are generally

of medium size, hence these techniques are not scalable on large graphs,e.g.,social

networks; and (2) the approaches are to find occurrences of pattern graph in a set of

data graphs, in contrast, our goal is to find all the matches inonly one large data graph.

Nevertheless, some of these techniques apply to the problems studied in the thesis.

1.3 Challenges for Social Network Analysis

A social network can be modelled as a graph, where each vertexin the graph represents

an actor in the social network, and each (directed) edge indicates the relationship be-

tween two actors within the social network. As a result, graph pattern matching is one

of the most fundamental techniques for social network analysis. For example, graph

pattern matching can be applied for social relationship search [JHW+10], social role

analysis [BHK+10, WF94], expert search [LLT11, TM05] and so on.

However, it is nontrivial to perform graph pattern matchingon social networks.

The challenges come from the inherent characteristics of social network and the hard-

ness of graph pattern matching problem itself. The most important challenges are the

following:

(1) Social networks are typicallylarge. Real-life social networks are often con-

sisted of millions of nodes and billions of edges. For instance, Facebook currently has

more than 850 million users with 110 billion links1. The sheer size of social network

raises two main issues: (i) the computational costs of graphpattern matching are often

too high,e.g., it is in exponential time to check whether there exists matchin social

network via subgraph isomorphism, not to mention finding allthe matches; and (ii) the

result set may be extremely large,e.g.,there may exist exponentially many matches

in social networkG which are isomorphic to the pattern graphQ, hence it would be a

daunting task for the users to inspect and find what they are searching for.

1http://www.facebook.com/press/info.php?statistics

Chapter 1. Introduction 11

(2) Social networks are oftenheterogeneouslytyped. Real-life social networks

often consist of nodes and edges with multiple types. For example, nodes in Twitter

represent users or blogs, and edges indicate different relationships,e.g.,edge from user

u1 to useru2 indicates thatu1 follows u2, while edge from useru1 to blog B denotes

thatu1 tweets blog B. Moreover, in contrast to XML, social networksdo not have any

predefined schema, these together make graph pattern matching and the corresponding

optimizations even more difficult.

(3) Social networks evolve constantly. It is observed that real-life social networks

are evolving constantly,e.g., in Facebook, new users are registered constantly; and

the relationship among the users also change frequently,e.g.,adding (resp. deleting)

friends continuously. In addition, the attributes associated with the nodes and edges are

changing over time,e.g.,changes are made to age, employer, job title etc of the nodes,

and relationship of the edges. However, the changes are typically small [NCO04a]. It is

often prohibitively expensive to recompute the matches starting from scratch when so-

cial networks are updated with minor changes. Worse still, when graph pattern match-

ing queries are issued frequently, it would be infeasible torepeatedly compute the

matches from scratch due to high computational costs.

(4) Social networks are distributively stored. A social network may be distributed

across different servers and data centres for performance,management or data pri-

vacy reasons [GHMP08, MD08, PER09, Row09]e.g.,Twitter and Facebook are geo-

distributed over different data centres [GHMP08, PER09]. Moreover, various data

associated with people (e.g.,friends, products, companies) are typically found in dif-

ferent social networks [Row09], and have to be taken together when one needs to find

the complete information about a person. Hence, graph pattern matching will be even

harder in the distributed environment, when the difficulties of graph pattern matching

in the centralized environment are considered.

(5) Social networks carry characteristics of complex networks.

◦ Power-law node degrees. [MMG+07] shows that all the social network sites,

e.g.,Flickr, LiveJournal, Orkut and Youtube show behaviour consistent with a

power-law network.

◦ Short diameters. The length of longest shortest path is viewed as diameter of a

social network. As verified by [MMG+07], the diameters of social networks are

relatively short.

◦ Densely connected core. The definition ofcore is omitted here, as it is out of

scope of the thesis. Briefly, the social networks have a densely connected core

Chapter 1. Introduction 12

comprising of the highest degree nodes, such that removing this core completely

disconnects the social networks.

◦ Tightly clustered fringe. Social networks often exhibit high clustering coeffi-

cients [MMG+07], which in turn is consistent with the observation that people

tend to be introduced to other people via mutual friends, increasing the proba-

bility that two friends of a single user are also friends.

◦ Groups. It is also observed that real-life social networks are comprised of a large

number of small, tightly clustered local user communities held together by nodes

of high degree [MMG+07].

These characteristics which reveal the inherent structureof social networks have

direct or indirect impact on the computation and optimization of graph pattern match-

ing.

From the above analysis, one may find that the inherent characteristics of social

networks bring challenges to graph pattern matching and hinder its application. To

conquer the challenges, we need (1) effective techniques which ease the graph pattern

matching on large social graphs; (2) efficient approaches tocope with dynamic na-

ture of social networks; (3) distributed techniques which allow graph pattern matching

computation to proceed in parallel, and also to possess performance guarantees; and

(4) revised semantics of graph pattern matching, to reduce the computational cost and

make result inspection easier.

1.4 Contributions

The following contributions are made in the thesis.

◦ A novel query preserving graph compression is introduced inChapter 2, to cope

with sheer size of social networks and assist graph pattern matching evaluation.

– Query preserving graph compression only preserves information needed

for answering queries in a particular classQ , and hence, achieves a better

compression ratio. Better still, the compressed graphs canbe directly used

by algorithms for evaluating queries ofQ , without decompression.

– Query preserving compression for reachability,i.e.,simple boolean pattern,

and pattern queries is studied. Efficient techniques which compress large

social graphs relative to these two classes of queries are hence provided.

– To maintain compressed graphs, incremental algorithms which depend on

∆G andGr , independent ofG are provided, for two classes of queries.

Chapter 1. Introduction 13

– Effectiveness and efficiency of the (incremental) compression techniques

are experimentally verified by using synthetic and real-life data.

◦ To speed up graph pattern matching evaluation, distributedalgorithms for three

types of reachability queries (graph pattern matching via simple boolean pat-

terns) are presented in Chapter 3. The algorithms exploreparallelismvia partial

evaluation, and possess severalperformance guarantees.

– These algorithms (a) visit each site only once, (b) have total network traffic

determined by the size ofQ and the fragmentation ofG, independent of

the size ofG, and (c) retain computational complexity determined by the

largest fragment ofG rather than the entireG.

– These algorithms can be readily implemented on the MapReduce frame-

work, and one such algorithm for regular reachability queries is provided.

– Efficiency and scalability of these algorithms are verified,using both real-

life and synthetic data.

◦ The techniques for answering graph pattern matching using views is provided in

Chapter 4. The need for this study is evident: social networks are typical large

and distributively stored, and view-based techniques benefit query evaluation.

– Starting from graph simulation, a notion of pattern containment is pro-

posed, based on which an evaluation algorithm for answeringgraph pattern

queries using views is developed.

– Three fundamental problems related to pattern containmentare identified,

where the problems range from quadratic-time toNP-complete. Further-

more, efficient algorithms (approximation when the problemis intractable)

are provided for containment checking.

– The results of graph simulation carry over to bounded simulation, and the

complexities of the algorithms remain the same or are comparable.

– Effectiveness and efficiency of the view-based graph pattern matching tech-

niques are verified by using real-life and synthetic data.

◦ Approaches to finding diversified top-k matches are introduced in Chapter 5.

These algorithms only find matches of specified query nodes inthe pattern

graph, and hence facilitate the computation and result inspection of graph pattern

matching.

– The notion of graph pattern matching is firstly revised by designating an

output nodeuo, along with generalised relevance and distance functions

devised for ranking matches ofuo.

Chapter 1. Introduction 14

– Algorithms with the early termination property are provided to find top-k

relevant matches, for both cyclic and acyclic patterns.

– In light of the intractability of diversified top-k matching problem, one ap-

proximation algorithm with approximation ratio 2 and one heuristic one

with the early termination property are developed, respectively.

– Extensions to the techniques are introduced to support pattern graphs with

multiple output nodes which are not necessarily “root” nodes.

– Efficiency and effectiveness of the approaches are verified,using both real-

life and synthetic data.

◦ Based on (bounded) simulation as well as techniques introduced in the thesis, a

novel systemExpFinder, for expert recommendation on social networks is de-

veloped.

– By integrating incremental graph pattern matching, query preserving graph

compression and top-k matching computation,ExpFinder can efficiently

identify top-k experts on social networks via (bounded) simulation.

– To efficiently maintain landmark vectors which are used for updating

cached views, incremental maintenance techniques as well as performance

evaluations for landmark vectors are provided.

1.5 Outline of Dissertation

The remainder of this thesis is organised as follows.

Chapter 2 studies query preserving graph compression. It proposes query pre-

serving compression for two commonly used pattern queries,develops both batch and

incremental compression algorithms, and experimentally verifies the efficiency and ef-

fectiveness of the algorithms.

Chapter 3 introduces distributed algorithms with performance guarantees for three

types of simple boolean patterns. It also shows how the algorithm for regular reacha-

bility queries is implemented on the MapReduce framework. Using both synthetic and

real-life data, it verifies the efficiency of the algorithms.

Chapter 4 investigates the problem of answering graph pattern matching using

views. It first characterises pattern containment and develops algorithm for answer-

ing graph pattern matching using views. It then studies three problems related to graph

containment, and develops efficient algorithms for containment checking. It further

shows that the results from graph simulation carry over to bounded simulation. Finally,

Chapter 1. Introduction 15

it experimentally verifies the effectiveness and scalability of the algorithms. This work

is taken from the paper submitted to 2014 ICDE.

Chapter 5 revises graph pattern matching by supporting designated output nodes.

With this change, it develops algorithms to find top-k relevant matches. It also stud-

ies the diversified top-k matching problem, and develops approximation and heuristic

algorithms, that have approximation ratio 2 and the early termination property, respec-

tively. Extensions to the techniques are also studied for pattern graphs with multiple

output nodes that are not necessarily “root” nodes. Experiments are conducted to ver-

ify the scalability and effectiveness of the algorithms.

Chapter 6 introduces a novel systemExpFinder for expert recommendation ap-

plied on social networks. It shows the system architecture of ExpFinder and presents

the main functions ofExpFinder; in addition, it introduces techniques applied by

ExpFinder for incremental maintenance of landmark vectors, and experimentally veri-

fies the performance of the algorithms.

Chapter 7 concludes the thesis.

1.6 Publications

During the course of the PhD study at the University of Edinburgh, I have published

the following articles as a co-author.

[FLL+11] Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing Tan,Xin Wang, and

YinghuiWu. Incremental graph pattern matching. In SIGMOD,2011.

[FLWW12] Wenfei Fan, Jianzhong Li,Xin Wang, and Yinghui Wu. Query preserving

graph compression. In SIGMOD, 2012.

[FWW12] Wenfei Fan,Xin Wang, and Yinghui Wu. Performance guarantees for dis-

tributed reachability queries. In PVLDB, 2012.

[FWW13b] Wenfei Fan,Xin Wang, and Yinghui Wu. Expfinder: Finding experts by

graph pattern matching. In ICDE demo, 2013.

[FWW] Wenfei Fan,Xin Wang, and Yinghui Wu. Incremental graph pattern match-

ing. In ACM Transactions on Database Systems (TODS), 2013.

[FWW13a] Wenfei Fan,Xin Wang, and Yinghui Wu. Diversified top-k graph pattern

matching. In VLDB, 2013.

Remark. The (partial) results of this dissertation appear in the above publications:

◦ the notion of query preserving graph compression, batch andincremental al-

Chapter 1. Introduction 16

gorithms for both reachability and pattern queries, and experimental studies in

Chapter 2 appear in [FLWW12];

◦ distributed algorithms for three types of simple boolean patterns, the MapRe-

duce algorithm for regular reachability queries, and the efficiency test of the

algorithms in Chapter 3 are all from [FWW12];

◦ (resp. approximation and heuristic) algorithms for (resp.diversified) top-k

matching in Chapter 5 appear in [FWW13a];

◦ techniques as well as performance evaluation for incremental maintenance of

landmark vectors in Chapter 6 are from [FWW]; while the system architecture

and the presentation of system functions appear in [FWW13b].

Chapter 2

Query Preserving Graph Compression

It is common to find large graphs with millions of nodes and billions of edges ine.g.,

social networks [KNT06a]. Queries on such graphs are often prohibitively expensive,

e.g.,exponential time for subgraph isomorphism, cubit time for bounded simulation,

quadratic for simulation, and it isunlikely that we can lower its computational com-

plexity. These suggest us to reduce the size of the input of graph pattern matching

algorithms, to achieve better query performance.

In this chapter we proposequery preserving graph compression, which is to com-

press graphs relative to a classQ of queries. For a classQ of queries, we find a smaller

graphGr for a given graphG via an efficient compression function, such that forall

queriesQ ∈ Q , M(Q,G) can be found by computingM(Q′,Gr). Moreover, taking

evolving property of social network into consideration, wealso develop approaches to

incrementally maintain compressed graphs for two classes of graph pattern matching.

As will be seen, (1) the compressed graphs are much smaller than its original coun-

terparts, (2) they can also dramatically reduce the cost of graph pattern matching, and

(3) the maintenance algorithms are effective to cope with the dynamic nature of social

networks.

2.1 Introduction

Real life social networks are typically very large. For example, Facebook currently

has more than 800 million users links1. It is costly to query such large graphs. Indeed,

graph pattern matching takes quadratic time (by simulation[HHK95]) or cubic time

(via bounded simulation [FLM+10]) to determine whether there exists a match in a

1http://www.facebook.com/press/info.php?statistics; visited Jan. 2012

17

Chapter 2. Query Preserving Graph Compression 18

Figure 2.1: Compressing a real-life P2P network

data graph for a graph pattern. Worse still, it isNP-complete when matching is defined

in terms of subgraph isomorphism. Even for reachability queries that are to decide

whether there exists a path connecting a pair of nodes in a graph G= (V,E), it takes

O(|V|+ |E|) time via DFS/BFS search. Although one may use indexes to speed up the

evaluation, indexes incur extra cost,e.g.,a reachability matrix takesO(|V|(|V|+ |E|))

time to build andO(|V|2) space to maintain (see [YC10] for a survey). Hence it is

oftenprohibitively expensiveto evaluate queries on graphs with millions of nodes and

billions of edges, and it isunlikelythat we can lower its computational complexity.

Not all is lost. Observe that users typically adopt a classQ of queries when query-

ing data graphsG. We proposegraph compression preserving queries ofQ : givenG,

we find a smaller graphGr via an efficient compression functionR, such that forall

queriesQ ∈ Q , Q(G) = Q′(Gr), whereQ′ is a query in the same classQ , computed

from Q via an efficient query rewriting function. In other words, while we may not

change the complexity functions of graph queries, we reducethe size of their parame-

ters,i.e., the data graphs.

In contrast to previous lossless compressions (e.g.,[BV04, CKL+09, HWYY05]),

query preserving compression isrelative toa classQ of queries of users’ choice,i.e.,

it generates small graphs that preserve the informationonly relevantto queries inQ

rather than the entire original graphs, and hence, achievesa better compression ratio.

We find that this approach is effective when querying large graphs. For instance, a

real-life P2P network can be reduced 94% and 51% for reachability and graph pattern

queries, respectively, as depicted in Fig. 2.1. These reduce query evaluation time by

93% and 77%, respectively.

To illustrate the idea, let us consider an example.

Example 2.1: GraphG in Fig. 2.2 is a fraction of a multi-agent recommendation

Chapter 2. Query Preserving Graph Compression 19

Qb
FA1 FA2

Gr

MSAr

BSAr

MSA1 MSA2

BSA1 BSA2

FA1 FA2 FA3 FA4

...C1 C2 C3 Ck

......
MSA1MSA2

BSA 1 BSA 2

FA3 FA4

C1 C2 C3 Ck
...

FAr FAr'

Cr Cr'

G

BSA FA

C

2

Figure 2.2: Recommendation Network

network. Each node denotes a customer (C), a book server agent (BSA), a music shop

agent (MSA), or a facilitator agent (FA) assisting customers to findBSAs and MSAs.

Each edge indicates a recommendation.

To locate potential buyers, a bookstore owner issues a querydepicted as a pattern

graphQb shown in Fig. 2.2. It is to find a set ofBSAs such that they can reach a set

of customersC who interact with a set ofFAs, and moreover, the customers should be

within 2 hops from theBSAs. One may verify that the match ofQb in G is a relation

S = {(X,Xi)} for X ∈ {BSA,FA,C} and i ∈ [1,2]. It is expensive to computeS when

G is large. Among other things, one has to check the connectivity between all thek

customers and all theBSAs in G.

We can do better. Observe thatBSA1 andBSA2 are of the same type of nodes (BSA),

and both make recommendations toMSA andFA. Since they “simulate” the behavior

of each other in the recommendation networkG, they could be consideredequivalent

when evaluatingQb. Similarly, the pairs (FA1, FA2), (C1, C2), and any pair (Ci, C j) of

nodes fori, j ∈ [3,k] can also be considered equivalent, among others.

This suggests that we build a compressed graphGr of G, also shown in Fig. 2.2.

GraphGr consists of hypernodesXr for X ∈ {MSA,BSA,FA,FA’,C,C’}, each denoting a

class of equivalent nodes. Observe that (1)Gr has fewer nodes and edges thanG, (2)

Qb can be directly evaluated onGr ; its resultSr = {(X,Xr)} can be converted to the

original resultS by simply replacingXr with the set of nodes represented byXr ; and

(3) the evaluation ofQb in Gr is more efficient than inG since, among other things, it

only needs to checkCr andC′
r in Gr to identify matches for the query nodeC.

One can verify thatGr preserves the result forall pattern queries defined in terms

of (bounded) simulation, not limited toQb. That is, for any such pattern queryQb on

Chapter 2. Query Preserving Graph Compression 20

R
G Gr

(G) (Gr)

qr

qr

qr

qr

'

'

R
G Gr

Q

Q(G)
P

Q'(Gr)

Q'

R
G Gr

Qb

(G)
P

(Gr)

Qb'

Qb Qb'

(a) General framework
(b) Reachability

preserving compression

(c) Graph pattern

preserving compression

Figure 2.3: Query preserving compression

G, we can directly evaluateQb on the much smallerGr instead. ✷

2.2 Query Preserving Graph Compression

Below we first introduce the notions used in the entire chapter.

To distinguish two kinds of pattern queries, we will useqr(v,w) to indicate reacha-

bility queries, andQb to represent pattern graphs, which is to find matches via bounded

simulation.

For a classQ of queries, aquery preserving graph compressionis a triple

<R,F,P>, whereR is acompression function, F : Q → Q is aquery rewriting func-

tion, andP is a post-processing function. For any graphG, Gr = R(G) is a graph

computed fromG by R, referred to as thecompressed graphof G, such that|Gr | ≤ |G|,

andfor any query Q∈ Q , Q(G) = P(Q′(Gr)). HereQ′ = F(Q), Q(G) is the answer to

Q in G, Q′(Gr) is the answer toQ′ in Gr , andP(Q′(Gr)) is the result of post-processing

the answer toQ′ in the compressedGr .

As shown in Fig. 2.3(a), (1) for any queryQ ∈ Q , the answerQ(G) to Q in G

can be computed by evaluatingQ′ in the (smaller) compressed graphGr of G; and

moreover, since bothQ andQ′ are in the same classQ of queries, it can be verified

that algorithms that are used for evaluatingQ in G can also be used for evaluatingQ′ in

Gr directly,i.e.,without any adaption, these algorithms take bothQ andG (resp.Q′ and

Gr) as input, and returnQ(G) (resp.Q′(Gr)) as the query answer; (2) the compression

is generic: any data structures and indexing techniques for the original graph can be

directly applied toGr (e.g.,the 2-hop techniques of [CHKZ03a], see Section 2.6); (3)

the post-processing function finds the answer in the original G by only accessing the

query answerQ′(Gr) and an index on the inverse of node mappings ofR; (4) in contrast

to generic lossless compression schemes (e.g.,[FM95]), we do not need to restore the

original graphG from Gr , and moreover, the compressed graphGr is not necessarily a

subgraph ofG.

Chapter 2. Query Preserving Graph Compression 21

For instance, a query preserving compression for graph pattern queries is described

in Example 2.1, where the compression functionRgroups nodes into hypernodes based

on graph bisimulation; the query rewriting functionF is the identity mapping: for any

pattern queryQ, F(Q) = Q; and the post-processing functionP simply replaces each

hypernode with the set of equivalent nodes it represents.

In this chapter, we consider two classes of queries,i.e., reachability queries and

pattern queries, which are commonly used in practice. We then show that there ex-

ist query preserving compressions with efficientR,F andP functions in Sections 2.3

and 2.4, for two classes of queries, respectively.

(1) For reachability queries,R reduces graphG by 95% in average, inO(|V||E|) time;

andF is in O(1) time. Moreover, as shown in Fig. 2.3(b), post-processingP is not

needed at all.

(2) For pattern queries,R reduces the size ofG by 57% in average, inO(|E| log|V|)

time;F is theidentitymapping, andP is in linear timein the size of the query answer,

a costnecessaryfor any evaluation algorithm (see Fig. 2.3(c)). Better still, for Boolean

pattern queries,P is no longer needed.

Remarks. Observe the following. (1) The compressed graphGr is computedonce

for all queries in Q , and is incrementally maintainedin response to updates toG

(Section 2.5). (2) The compressed graphGr is not necessarily a subgraph ofG. On

the contrary, in graph minimization (e.g., [AGU72]) a minimized graph must be a

subgraph of the original graph. (3) In contrast to the generic lossless compression

(e.g., [FM95]), we do not need to restore the original graphG from Gr , as long as

Gr can be queried directly to produce the same result as over theoriginal graphG

after necessary processing. (4) In case of simple boolean patterns (such as reachability

queries) no post-processing functionP is required (as shown in Fig. 2.3(b)). (5) We do

not assume labels over the edges in the graph. However, the compression techniques in

this paper can be adapted to the edge labeled graphs with slight modifications. (6) the

compression is complementary to the chosen data structuresand indexing techniques

over the original graph,i.e., the techniques (e.g.,[Jac89, CHKZ03a, JRDY12]) can be

applied directly on the compressed graphs, for example, thecompressed graphs for

reachability queries can further be indexed withe.g.,2-hop [CHKZ03a], as verified in

Section 2.6.

Applications. Different from traditional graph compression, query-oriented graph

Chapter 2. Query Preserving Graph Compression 22

compression focuses on graph compression preserving only the information for spec-

ified queries. We expect the query-oriented graph compression will find applications

in the following, among other things. (1) Efficiently querying large graphs with reach-

ability and distance queries with compressed instead of theoriginal graphs. For the

frequent reachability and distance queries, we can performa compression and directly

conduct queries over the compressed graphs; (2) the performance of existing graph

compression and indexing [Jac89, CHKZ03a, QLO03, JRDY12] can further be im-

proved, treating our techniques as a preprocess. Indeed, given a large social network

G, one may first compressG to Gr by using reachability preserving compression, and

then compute index onGr , e.g.,finding a backbone structure ofGr following the strat-

egy in [JRDY12], which further reducesGr . As will be seen in Section 2.6, the com-

pressed graphs can further be indexed withe.g., 2-hop [CHKZ03a], which benefits

query evaluation.

2.3 Reachability Preserving Compression

In this section we study query preserving compression for reachability queries, referred

to asreachability preserving compression. The main result of the section is as follows.

Theorem 2.3.1 There exists a reachability preserving compression<R,F>, where R

is in quadratic time, and F is in constant time, while no post-processing P is required.

2.3.1 Reachability Equivalence Relations

Our compression is based on the following notion.

Reachability equivalence relations. We first define areachability relationon a graph

G= (V,E,L) to be a binary relationRe ⊆V ×V such that for each(u,v) ∈ Re and any

nodex∈V, (1) x can reachu iff x can reachv; and (2)u can reachx iff v can reachx.

Intuitively, (u,v) ∈ Re if and only if they have the same set of ancestors and the same

set of descendants. One can readily verify the following.

Lemma 2.3.2:For any graph G, (1) there is a unique maximum reachability relation

Re on G, and (2) Re is an equivalence relation,i.e., it is reflexive, symmetric and

transitive. ✷

Thereachability equivalence relation of Gis the maximum reachability relation of

G, denoted byRe(G) or simplyRe. We denote by[v]Re the equivalence class containing

Chapter 2. Query Preserving Graph Compression 23

Figure 2.4: Reachability equivalence

nodev.

Example 2.2: Consider graphG given in Fig. 2.2. One can verify that (BSA1,BSA2)

∈ Re(G). Indeed,BSA1 andBSA2 share the same ancestors and descendants. Similarly,

(MSA1,MSA2) ∈ Re(G). In contrast, (FA3, FA4) /∈ Re(G) sinceFA3 can reachC3, while

FA4 cannot. ✷

Reachability preserving compression. Based on reachability equivalence relations

we define<R,F> as follows.

(1) Compression function R. GivenG= (V,E,L), we defineR(G) = Gr = (Vr ,Er ,Lr),

where (a)Vr = {[v]Re | v∈ V}; (b) Er consists of all edges([v]Re, [w]Re) if there exist

nodesv′ ∈ [v]Re andw′ ∈ [w]Re such that(v′,w′)∈E, and (c) for eachu∈Vr , Lr(u) = σ,

whereσ is a fixed label inΣ. HereRe is the reachability equivalence relation ofG.

Intuitively, (a) for each nodev∈ V, there exists a node[v]Re in Vr ; abusingR, we

useR(v) to denote[v]Re; (b) for each edge(v,w) ∈ E, (R(v),R(w)) is an edge inEr ;

and (c) all the node labels inGr are fixed to be a symbolσ in Σ since node labels are

irrelevant to reachability queries.

(2) Query rewriting function F. We defineF such that for any reachability query

qr(v,w) on G, F(qr(v,w)) = Q′, whereQ′ = qr(R(v),R(w)) is a reachability query on

Gr . It simply asks whether there is a path from[v]Re to [w]Re in Gr . Using index struc-

tures for the equivalence classes ofRe, Q′ can be computed fromqr(v,w) in constant

time.

Correctness. One can easily verify that<R,F> is a reachability preserving compres-

sion. Indeed,|Gr | ≤ |G| since|Vr | ≤ |V| and|Er | ≤ |E|. Moreover, for any reachability

queryqr(v,w) posed onG, one can show by contradiction that there exists a path from

v to w in G if and only if R(v) can reachR(w) in Gr . Hence, givenqr(v,w) on G, one

can find its answer inG by evaluatingqr(R(v),R(w)) in the smaller compressed graph

Gr of G, as shown in Fig. 2.3(b).

Chapter 2. Query Preserving Graph Compression 24

Input: A graphG= (V,E,L).

Output: A compressed graphGr = R(G) = (Vr ,Er ,Lr).

1. setVr := /0, Er := /0;

2. computeSCC graphGSCC = (VSCC,ESCC) of G;

3. compute reachability preserving relationRe of GSCC;

4. compute the partitionPar := V/Re of GSCC;

5. for each S∈ Par do

6. create a nodevS; Lr(vS) := σ; Vr := Vr ∪{vS};

7. for each vS,vS′ ∈Vr do

8. if there existu∈ S, v∈ S′ such that

(u,v) ∈ ESCC but vS does not reach vS′

9. then Er := Er ∪{(vS,vS′)};

10.return Gr = (Vr ,Er ,Lr);

Figure 2.5: Algorithm compressR for reachability

Example 2.3:Recall graphG of Fig. 2.2. Using the reachability preserving compres-

sion<R,F> given above, one can getGr = R(G) shown in Fig. 2.4, in which,e.g.,

R(C1) = R(C2) = R(FA2) = CFAr . Given a reachability queryqr(BSA1,C2) on G, F(qr) =

qr(MBr ,CFAr) on the smallerGr . As another example,Gr1 andGr2 in Fig. 2.4 are the

compressed graphs generated byR for G1 andG2 of Fig. 2.4, respectively. ✷

As remarked earlier, there has been work on index graphs based on bisimula-

tion [MS99, KSBG02, QLO03]. However, such indexes do not preserve reachability.

To see this, consider the index graphG′
r2

of G2 shown in Fig. 2.4, where{C1,C2}

and{E1,E2} are bisimilar and thus merged [MS99]. However,G′
r2

cannot be directly

queried to answere.g., qr(C1,E2) posed onG2, i.e., one cannot find its equivalent

reachability query onG′
r2

. Indeed,C2 can reachE2 in G2 butC1 does not, while inG′
r2

,

C1 andC2 are merged into a single node.

2.3.2 Compression Method for Reachability Queries

We next present an algorithm that, given a graphG = (V,E,L), computes its com-

pressed graphGr = R(G) based on the compression functionR given earlier. The

algorithm, denoted ascompressR, is shown in Fig. 2.5.

Given a graphG, the algorithmcompressR first shrinks each strongly connected

Chapter 2. Query Preserving Graph Compression 25

componentSCC and obtains theSCC graphGSCC = (VSCC,ESCC) of G (line 2). In-

deed, for allv ∈ [v], where[v] ∈ VSCC, they have the same ancestor and descendant

nodes, hence are in the same equivalence class; in addition,the mapping between

v and itsSCC node [v] is also maintained for further usage. It then computes the

reachability equivalence relationRe and the induced partitionPar by Re over theSCC

graphGSCC (lines 3-4). HereRe is found as follows: for each node[v] in VSCC, algo-

rithm compressR computes[v]’s descendants and ancestors, via forward and backward

BFS traversals, respectively; it then identifies those nodes with the same ancestors and

descendants. After this, for each equivalence classS∈ Par, it creates a nodevS repre-

sentingS, assigns a fixed labelσ to vS, and addsvS to Vr (lines 5-6). It constructs the

edge setEr by connecting nodes(vS,vS′) in Vr if (1) there exists an edge(v,w) ∈ ESCC

of GSCC, wherev andw are in the equivalence classes represented byS andS′, re-

spectively, and (2)vS does not reachvS′ via Er (lines 7-9). Condition (2) assures that

compressR inserts no redundant edges,e.g.,if (vS,vS′) and(vS′,vS′′) are already inEr ,

then(vS,vS′′) is notadded toEr ; one may also verify that the checking of Condition (2)

takesO(|Vr |(|Vr |+ |Er |)) time by using the reachability information when computing

Re (line 3). While it is a departure from the reachability equivalence relationRe, it is

an optimization without losing reachability information,as noted for transitivity equiv-

alent graphs [AGU72] (lines 7-9). The compressed graphGr is then constructed and

returned (line 9).

Correctness & Complexity. One can verify that the algorithm correctly computesGr

by the definition ofR given above. In addition,compressR is in O(|V|2+ |V||E|) time.

Indeed,GSCC is computed inO(|V|+ |E|) time (line 2),Re andPar can be computed

in O(|V|(|V|+ |E|)) time (lines 3-4). The construction ofGr is in O(|Vr |(|Vr |+ |Er|))

time (lines 5-9). This completes the proof of Theorem 2.3.1.

Remarks. (1) Gr is not only smaller and sparser thanG, but also structurally different

with G, unlessG can not be compressed. As remarked earlier, the compressed graph

Gr is not necessarily a subgraph ofG. Indeed, during the compression, a data graph

G is (a) firstly compressed toGSCC by shrinking nodes in the same strongly connected

component ofG; and (b) further reduced by collapsing nodes inGSCC which are in the

same equivalence classes. Hence,Gr is structurally different withG after compression

(unlessG can not be compressed and hence keeps the same structure asGr). As is

verified by experimental study, the compressed graphsGr are much smaller and sparser

than their original counterparts due to the shrink of the densely connected cores.

Chapter 2. Query Preserving Graph Compression 26

(2) Given G and its compressed graphGr , algorithms for evaluating reachabil-

ity queriesqr(·, ·) on G can bedirectly applied for evaluatingqr′(·, ·) on Gr . To see

this, observe thatqr(·, ·) andqr′(·, ·) are in the same class of queries,i.e., reachability

queries, hence algorithms applicable with inputqr(·, ·) andG are also applicable for

other inputqr′(·, ·) andGr ; and still retain the same computational complexity with

different inputs. Consider thatGr is typically much smaller and sparser thanG, hence,

taking smaller input,e.g., Gr andqr′(·, ·) benefits the computation of algorithms for

reachability queries. For example, when two commonly used algorithmsBFS (breadth

first search) andDFS (depth first search) are employed for reachability queries,one

may verify that no change is needed when algorithmBFS (resp.DFS) evaluatesqr(·, ·)

onG or qr′(·, ·) onGr ; moreover, it is better to callBFS (resp.DFS) on the compressed

graphsGr , since|Vr |+ |Er | is much less than|V|+ |E|, and it takesBFS (resp.DFS)

O(|Vr |+ |Er |) (resp.O(|V|+ |E|)) time to traverseGr (resp.G). Even whenGr andG

are equivalent, that’sG can not be compressed, the computational complexity byBFS

(resp.DFS) onGr andG are the same,i.e., O(|V|+ |E|) time.

(3) As will be seen in Section 2.6 (see Table 2.1), the reachability preserving com-

pression gains better compression ratios over social networks than web graphs and

citation networks. This is because social networks have high connectivity and densely

connected cores. Via closer examination, we find that socialnetworks often have a

very large densely connected core, which is also a strongly connected component. This

densely connected core occupies about 30% to 60% of the size of the social network,

and hence yields a good the compression ratio when it is shrank. On the contrary,

due to much smaller densely connected core in web graphs and citation networks,e.g.,

citation networks are typicallyDAG, the performance of reachability preserving com-

pression is not as good as the performance on social networks.

2.4 Graph Pattern Preserving Compression

We next study query preserving compression for graph pattern queries, referred to as

graph pattern preserving compression. The main result of the section is as follows.

Theorem 2.4.1 There exists a graph pattern preserving compression<R,F,P> in

which for any graph G =(V,E,L), R is in O(|E| log|V|) time, F is the identity mapping,

and P is in linear time in the size of the query answer.

Chapter 2. Query Preserving Graph Compression 27

Figure 2.6: Examples of bisimulation relations

To show the result above, we first define the compression<R,F,P> in Sec-

tion 2.4. We then provide an algorithm to implement the compression functionR in

Section 2.4.2.

2.4.1 Compressing Graphs via Bisimilarity

We construct a graph pattern preserving compression in terms ofbisimulationrelations,

which are defined as follows.

Bisimulation relations [DPP01]. Abisimulation relationon a graphG = (V,E,L) is a

binary relationB⊆V ×V, such that for each(u,v) ∈ B, (1) L(u) = L(v); (2) for each

edge(u,u′) ∈ E, there exists an edge(v,v′) ∈ E, such that(u′,v′) ∈ B; and (3) for each

edge(v,v′) ∈ E, there exists an edge(u,u′) ∈ E such that(u′,v′) ∈ B.

Intuitively, (u,v) ∈ B if and only if for each childu′ of u, there exists an childv′

of v such that(u′,v′) ∈ B, and vice versa. Similar to Lemma 2.3.2, one can verify the

following.

Lemma 2.4.2:For any graph G, (1) there is a unique maximum bisimulation relation

Rb on G, and (2) Rb is an equivalence relation,i.e., it is reflexive, symmetric and

transitive. ✷

We define thebisimulation equivalence relationof G to be the maximum bisimula-

tion relation ofG, denoted byRb(G) or simplyRb. We denote by[v]Rb the equivalence

class containing node v. We say that nodesu andv arebisimilar if (u,v) ∈ Rb. Since

for any nodesv andv′ in [v]Rb, L(v) = L(v′), we simply callL(v) the labelof [v]Rb.

Example 2.4:Recall the graphG given in Fig. 2.2. One can verify thatFA3 andFA4 are

bisimilar. In contrast,FA2 andFA3 are not bisimilar; indeed,FA2 has a childC2, which

is not bisimilar to anyC child of FA3.

Consider graphs given in Fig. 2.6. Note thatA1 andA2 in G1 are not bisimilar, as

there is no child ofA1 bisimilar to childB2 or B3 of A2. Similarly,A1 andA3 in G1 are

not bisimilar. In contrast,A5 andA6 in G2 are bisimilar.

Chapter 2. Query Preserving Graph Compression 28

Note thatA4 andA5 in G2 are not bisimilar, but they are in the same reachability

equivalence class; whileA5 andA6 are bisimilar, they are not reachability equivalent.

This illustrates thedifferencebetween the reachability equivalence relation and the

bisimulation equivalence relation. ✷

Graph pattern preserving compression. Based on bisimulation equivalence rela-

tions, we define<R,F,P>.

(1) Compression function R. GivenG= (V,E,L), we defineR(G) = Gr = (Vr ,Er ,Lr),

where (a)Vr = {[v]Rb | v ∈ V}; (b) an edge([v]Rb, [w]Rb) is in Er as long as there

exist nodesv′ ∈ [v]Rb andw′ ∈ [w]Rb such that(v′,w′) ∈ E, and (c) for each[v]Rb ∈Vr ,

Lr([v]Rb) is its labelL(v). Intuitively, (a) for each nodev∈V, there exists a node[v]Rb

in Vr ; (b) for each edge(v,w) ∈ E, ([v]Rb, [w]Rb) is an edge inEr ; and (c) each[v]Rb has

the same label asL(v).

(2) Query rewriting function Fis simply the identity mapping,i.e., F(Qb) = Qb.

(3) Post processing function P. Recall thatQb(G) is the maximum match inG for

patternQb. We definePsuch thatP(Qb(Gr)) =Qb(G) as follows. For each(vp, [v]Rb)∈

Qb(Gr) and eachv′ ∈ [v]Rb, (vp,v′) ∈ Qb(G). Intuitively, if [v]Rb simulatesvp in Gr ,

then so does eachv′ ∈ [v]Rb in G. Hence,P expandsQb(Gr) by replacing[v]Rb with all

the nodesv′ in the class[v]Rb, in O(|Qb(G)|) time via an index structure for the inverse

node mapping ofR. WhenQb is a Boolean pattern query,P is not needed.

Example 2.5: Recall the graphG of Fig. 2.2. Using the graph pattern preserving

compression<R,F,P>, one can get the compressed graphGr of G shown in Fig. 2.2,

in whiche.g., R(FA1) = R(FA2) = FAr , whereFAr is the equivalence class containingFA1

andFA2. For the graphG2 of Fig. 2.6, its compressed graphR(G2) is G2r , as shown in

Fig. 2.6. ✷

Correctness. We show that<R,F,P> given above is indeed a graph pattern preserving

compression. (1)|Gr | ≤ |G|, as|Vr | ≤ |V| and|Er | ≤ |E|. (2) For any pattern queryQb,

Qb(G) = P(Qb(Gr)). To see this, it suffices to verify that(u,v) ∈ Qb(G) if and only if

(u, [v]Rb) ∈ Qb(Gr). If (u, [v]Rb) ∈ Qb(Gr), then for any childu′ of u, there is a child

[v′]Rb of [v]Rb such that(u′, [v′]Rb) ∈ Qb(Gr). By the definition ofR, we can show that

for each nodew∈ [v]Rb, there is a childw′ ∈ [v′]Rb of w, such that(u,w) ∈ Qb(G) and

(u′,w′) ∈ Qb(G). Conversely, if(u,v) ∈ Qb(G), then one can show that for any node

w bisimilar tov in G, (u,w) ∈ Qb(G), and moreover, for each query edge(u,u′), [v]Rb

has a child[v′]Rb in Gr with (u′,v′) ∈ Qb(G). Hence(u, [v]Rb) ∈ Qb(Gr). From these

Chapter 2. Query Preserving Graph Compression 29

Input: A graphG= (V,E,L).

Output: A compressed graphGr = R(G) = (Vr ,Er ,Lr).

1. Vr := /0; Er := /0;

2. compute the maximum bisimulation relationRb of G;

3. compute the partitionPar := V/Rb;

4. for each S∈ Par do

5. create a nodevS and setLr(vS) := L(v) wherev∈ S;

6. Vr := Vr ∪{vS};

7. for each vS, vS′ ∈Vr do

8. if there existu∈ Sandv∈ S′ such that(u,v) ∈ E

9. then Er := Er ∪{(vS,vS′)};

10. return Gr = (Vr ,Er ,Lr);

Figure 2.7: Algorithm compressB for pattern queries

it also follows thatP(Qb(Gr)) is indeed the unique maximum match inG for Qb. In

light of this, as shown in Fig. 2.3(c), we can find the match ofQb in G by computing

P(Qb(Gr)) via anyalgorithm for answeringQb.

As remarked earlier,A(k)-index andD(k)-index [KSBG02, QLO03] maynot pre-

serve the answers to graph pattern queries. To see this, consider graphG1 of Fig. 2.6

and its index graphG′
2r

of A(k)-index whenk = 1, also shown in Fig. 2.6. AlthoughA1,

A2 andA3 are not bisimilar, they all have and only haveB children; as such, they are

1-bisimilar [QLO03], and are merged into a single node inG′
2r

. However,G′
2r

cannot

be directly queried bye.g.,aQb consisting of two query edges{(B,C),(B,D)}, both

with bound 1. Indeed, forQb, G′
2r

returns all theB nodes inG as matches for query

nodeB in Qb, while onlyB1 andB5 are the true matches inG1.

2.4.2 Compression Algorithm for Graph Pattens

We next present an algorithm that computes the compressed graphGr = R(G) for a

given graphG = (V,E,L), whereR is the compression function given earlier.

The algorithm, denoted ascompressB, is shown in Fig. 2.7. Given a graphG =

(V,E,L), compressB first computes the maximum bisimulation relationRb of G, and

finds the induced partitionPar by Rb over the node setV (lines 2-3). To do this, it

follows [DPP01]: it first partitionsV into {S1, . . . ,Sk}, where each setSi consists of

nodes with the same label; the algorithm then iteratively refinesPar by splittingSi if

Chapter 2. Query Preserving Graph Compression 30

it does not represents an equivalence class ofRb, until a fixpoint is reached (details

omitted). For each classS∈ Par, compressB then creates a nodevS, assigns the label

of a nodev∈ S to vS, and addsvS toVr (lines 4-6). For each edge(u,v) ∈ E, it adds an

edge(vS,vS′), whereu andv are in the equivalence classes represented byvS andvS′,

respectively (lines 7-9). FinallyGr = (Vr ,Er ,Lr) is returned (line 10).

Correctness & Complexity. Algorithm compressB indeed computes the compressed

graphGr by the definition ofR(Section 2.4). In addition,compressB is inO(|E| log|V|)

time: Rb andPar can be computed inO(|E| log|V|) time [DPP01] (lines 2-3), and

Gr can be constructed inO(|Vr |+ |E|) time (lines 4-9). This completes the proof of

Theorem 2.4.1.

Remarks. (1) As is verified by experimental studies, the compressed graphGr is often

smaller thanG after pattern preserving compression, since nodes inG which are bisim-

ilar to each other are collapsed. (2) GivenG andGr , algorithms for evaluatingQs(G)

(resp.Qb(G)) can bedirectlyapplied for evaluatingQs(Gr) (resp.Qb(Gr)) (only post-

processing is needed to restore the original result). Taking algorithmMatch [HHK95]

(simulation) andBMatch [FLM+10] (bounded simulation) as examples, one may ver-

ify that (a) no change is needed when algorithmMatch (resp. BMatch) evaluates

Qs(G) or Qs(Gr) (resp. Qb(G) or Qb(Gr)); (b) no matter what input is taken, the

computational complexity of algorithmMatch (resp.BMatch) remains the same,i.e.,

O((|Vp|+ |V|)(|Ep|+ |E|)) (resp. O(|V||E|+ |Ep||V|2+ |Vp||V|)) time, but with the

different parameters; and (c) due to the smaller size of the compressed graphsGr , it

takesMatch (resp.BMatch) less time to computeQs(Gr) (resp.Qb(Gr)), compared

with the cost ofQs(G) (resp.Qb(G)).

2.5 Incremental Compression

To cope with the dynamic nature of social networks and Web graphs, incremental tech-

niques have to be developed to maintain compressed graphs. Given a query preserv-

ing compression<R,F,P> for a classQ of queries, a graphG, a compressed graph

Gr =R(G) of G, andbatch updates∆G (a list of edge deletions and insertions) toG, the

incremental query preserving compressionproblem is to compute changes∆Gr to Gr

such thatGr ⊕∆Gr = R(G⊕∆G), i.e., the updated compressed graphGr ⊕∆Gr is the

compressed graph of the updated graphG⊕∆G. It is known that while real-life graphs

are constantly updated, the changes are typically minor [NCO04b]. As remarked ear-

Chapter 2. Query Preserving Graph Compression 31

lier, when∆G is small,∆Gr is often small as well. It is thus often more efficient to

compute∆Gr than compressingG⊕∆G starting from scratch, by minimizing unnec-

essary recomputation.

As observed in [RR96], it is no longer adequate to measure thecomplexity of in-

cremental algorithms by using the traditional complexity analysis for batch algorithms.

Following [RR96], we characterize the complexity of an incremental compression al-

gorithm in terms of the size of theaffected area (AFF), which indicates the changes in

the input∆G and the output∆Gr , i.e.,|AFF| = |∆G| + |∆Gr |. An incremental algorithm

is said to beboundedif its time complexity can be expressed as a functionf (|AFF|),

i.e., it depends only on|∆G| + |∆Gr | rather than the entire inputG. An incremen-

tal problem isboundedif there exists a bounded incremental algorithm for it, and is

unboundedotherwise.

2.5.1 Incremental Maintenance for Reachability

We first study the incremental graph compression problem forreachability queries,

referred to asincremental reachability compressionand denoted asRCM. One may

want to develop a bounded algorithm for incremental reachability compression. The

problem is, however, nontrivial.

Theorem 2.5.1RCM is unbounded even for unit update,i.e., a single edge insertion

or deletion.

Proof sketch: We verify this by reduction from thesingle source reachability prob-

lem (SSR). Given a graphGs, a fixed source nodes and updates∆Gs, SSR is to

decide whether for allu ∈ Gs, s reachesu in Gs⊕∆Gs. It is known thatSSR is un-

bounded [RR96]. We show thatSSR is bounded iffRCM with unit update is bounded.

✷

Incremental algorithm . Despite the unbounded result, we present an incremental

algorithm forRCM that is inO(|AFF||Gr |) time, i.e., it only depends on|AFF| and|Gr |

instead of|G|, and solvesRCM without decompressing Gr .

To present the algorithm, we need the following notations: (1) As introduced in

Section 1.1, we useGscc = (Vscc,Escc) to represent the strongly connected component

graph ofG, vscc to denote anSCC node containingv, andEscc to represent the edges

betweenSCC nodes. (2) Thetopological rank r(s) of a node s in Gis defined as

follows: (a) r(s) = 0, if sscc is a leaf inGscc, wheres is in theSCC sscc; and (b)

Chapter 2. Query Preserving Graph Compression 32

r(s) = {(1+ r(s′))|(sscc,s′scc) ∈ Escc} otherwise. We also definer(e) = r(s) for an

edge updatee = (s,v). One can verify the lemma below, which reveals the connection

between topological ranks and the reachability equivalence relationRe in a graph.

Lemma 2.5.2:In any graph G, r(u) = r (v) if (u,v) ∈ Re. ✷

Leveraging Lemma 2.5.2, we present the algorithm, denoted as incRCM and shown

in Fig. 2.8. It has three steps.

(1) Preprocessing. The algorithm first preprocesses updates∆G and compressed graph

Gr (lines 1–2). (a) It first removes redundant updates in∆G that have no impact on

reachability (line 1). More specifically, it removes (i) edge insertions(u,u′) where

[u]Re 6= [u′]Re, and[u]Re can reach[u′]Re in Gr ; and (ii) edge deletions(u,u′) if either

[u]Re reaches[u′]Re via a path of length no less than 2 inGr , or if [u]Re = [u′]Re, and

there is a childu′′ of u such that(u,u′′) /∈ ∆G and[u]Re = [u′′]Re. (b) It then identifies

a set of nodesu with r(u) changed inGr , for each edge update(u,u′) ∈ ∆G; it updates

the rank ofu in Gr accordingly.

(2) Updating. The algorithm then updatesGr based onr (line 3). It first splits those

nodes[u]Re of Gr in which there exist nodes with different ranks. By Lemma 2.5.2,

these nodes are not in the same equivalence class, thus[u]Re must be split. Then it

finds all the newly formedSCCs in G, and introduces a new node for each of them in

Gr . These two steps identify an initial area affected by updates ∆G.

(3) Propagation. The algorithm then locates∆Gr by propagating changes from the ini-

tial affected area identified in step (2). It processes updatese= (u,u′) in the ascending

topological rank (line 4). It first finds[u]Re and[u′]Re, the (revised) equivalence classes

of u andu′ in the current compressed graphGr . It then invokes procedureincRCM+

(resp. incRCM−) to updateGr when e is to be inserted (resp. deleted) (lines 5–8).

UpdatingGr may make some updates in∆G redundant, which are removed from∆G

(line 9). After all updates in∆G are processed, the updated compressed graphGr is

returned (line 10).

Given an edgee= (u,u′) to be inserted intoG and their corresponding nodes[u]Re

and [u′]Re in Gr , procedureincRCM+ updatesGr as follows. First, note that since

(u,u′) is not redundant (by lines 1 and 9 ofincRCM), u cannot reachu′ in G, but after

the insertion ofe, u′ becomes a child ofu. Moreover, no nodes in[u]Re\{u} can reach

u′ in G. Henceu and nodes in[u]Re \ {u} can no longer be in the same equivalence

class after the insertion ofe. ThusincRCM+ splits [u]Re into two nodes representing

{u} and[u]Re\{u}, respectively; similarly for[u′]Re (line 1). This is done by invoking

Chapter 2. Query Preserving Graph Compression 33

Input: A graphG, its compressed graphGr , batch updates∆G.

Output: New compressed graphGr ⊕∆Gr .

1. reduce∆G;

2. update the topological rankr of the nodes inGr w.r.t. ∆G;

3. updateGr w.r.t. the updatedr;

4. for each updatee= (u,u′) ∈ ∆G

following the ascending topological rankdo

5. if e is an edge insertion

6. then incRCM+(e, [u]Re, [u
′]Re,Gr);

7. else ife is an edge deletion

8. then incRCM−(e, [u]Re, [u
′]Re,Gr);

9. reduce∆G;

10. return Gr ;

Procedure incRCM+

Input: Compressed graphGr = (Vr ,Er), edge insertion(u,u′),

and node[u]Re, [u
′]Re in Gr .

Output: An updatedGr .

1. Split (u,u′, [u]Re, [u
′]Re);

2. if r([u]Re)> r([u′]Re) then

3. for each v∈ B([u]Re) doMerge ({u},v);

4. for each v′ ∈ B([u′]Re) doMerge ({u′},v′);

5. else ifr([u]Re) = r([u′]Re) then

6. for each v∈ P([u′]Re) doMerge ({u},v);

7. for each v′ ∈C([u]Re) doMerge ({u′},v′);

8. return Gr ;

Figure 2.8: Algorithm incRCM

procedureSplit (omitted).

In addition, nodes may also have to be merged (lines 2–8). We denote the set of

children (resp. parents) of a nodeu asC(u) (resp.P(u)), and useB(u) to denote the set

of nodes having the same parents asu. By Lemma 2.5.2, considerr(u) andr(u′) in the

updatedG. Observe thatr(u)≥ r(u′) sinceu′ is a child ofu after the insertion ofe. (1)

If r(u) > r(u′), i.e., uandu′ are not in the sameSCC, then{u} may only be merged

with those nodesv′ ∈ B([u]Re) such thatC({u}) = C(v′); similarly for u′ (lines 2–4).

Chapter 2. Query Preserving Graph Compression 34

Hence we invoke procedureMerge (omitted) that works onGr : given nodesw andw′,

it checks whetherP(w) = P(w′) andC(w) =C(w′); if so, it mergesw andw′ into one

that shares the same parents and children asw andw′. (2) Whenr(u) = r(u′), ase is

non-redundant,u andu′ may not be in the sameSCC. Thus{u} (resp.{u′}) may only

be merged with a parent of[u′]Re (resp. a child of[u]Re; lines 5–7).

Similarly, procedureincRCM− updatesGr by usingSplit andMerge in response to

the deletion of an edge (omitted). Here when a node is split, its parents may need to be

split as well,i.e., the changes are propagated upward.

Example 2.6: Recall graphG of Fig 2.2. A subgraphGs (excludinge1 ande2) of

G and its compressed graphGr are shown in Fig 2.9. (1) Suppose that edgese1 and

e2 are inserted intoGs. Algorithm incRCM first identifiese1 as a redundant insertion,

sinceFA1 can reachv in Gr (line 1). It then updates the rankr of FA1 to be 0 due to the

insertion ofe2 (line 2), by traversingGr to identify a newly formedSCC. It next invokes

procedureincRCM+ (line 6), which mergesFA1 to the nodev in Gr , and constructsG′
r

as the compressed graph, shown in Fig 2.9. The affected areaAFF includes nodesv, vr

and edge(vr ,vr). (2) Now suppose that edgese3 ande4 are removed. The algorithm

first identifiese3 as a redundant update, sinceFA1 has a childC2 in the nodesVr . It then

processes updatee4 by updating the rank ofFA2, and splits the nodevr in G′
r into FA2

andv′r via incRCM− (line 8). This yieldsG′′
r by updatingG′

r (see Fig 2.9). TheAFF

includes nodesvr , v′r , C1 and their edges. ✷

Correctness & Complexity. Algorithm incRCM correctly maintains the compressed

graphGr . Indeed, one can verify that the loop (lines 3-7) guaranteesthat for any nodes

u andu′ of G, u can reachu′ if and only if [u]Re reaches[u′]Re in Gr whenGr is updated

in response to∆G. In particular, procedureMerge is justified by the following: nodes

can be merged iff they share same parents and children after non-redundant updates.

This can be verified by contradiction.

For the complexity, one can show that the first two steps of thealgorithm (lines 1-3)

are inO(|AFF||Gr |) time. Indeed, (1) it takesO(|AFF||Gr |) time to identify redundant

updates by testing the reachability of the nodes inGr , which accessesR but doesnot

searchG; and (2) it takesO(|AFF||Gr |) time to identify the nodes and their changed

rank for each update in∆G, and updatesGr accordingly. ProceduresincRCM+ and

incRCM− are inO(|AFF||Gr |) time. ThusincRCM is in O(|AFF||Gr |) time. As will be

verified by our experimental study,|Gr | and|AFF| are typically small in practice.

Chapter 2. Query Preserving Graph Compression 35

FA1

C1

FA2 C2

Gs

vr'

C1 FA2 C2

FA1C1 FA2 C2

Gr

FA1

v

Gr'

C1

Gr''

FA2C2FA1
vr

e3

e1

e2

e4

Figure 2.9: Incremental compression: reachability

2.5.2 Incremental Maintenance for Graph Patterns

We next study the incremental graph compression problem forgraph pattern queries,

referred to asincremental graph pattern preserving compressionand denoted asPCM.

Like RCM, PCM is also unbounded and hard.

Theorem 2.5.3PCM is unbounded even for unit update.

Proof sketch: We show thatSSR is bounded iffPCM with unit update is bounded,

also by reduction fromSSR. ✷

Incremental algorithm . Despite this, we develop an incremental algorithm forPCM

that is in O(|AFF|2+ |Gr |) time. Like incRCM, the complexity of the algorithm is

independent of|G|. It solvesPCM without decompressing G.

We first define some notations. (1) A strongly connected component graphGscc

is as defined in Section 2.5.1. (2) Following [DPP01], we define thewell foundedset

WF to be the set of nodes that cannot reach any cycle inG, and thenon-well-founded

setNWF to beV\ WF. (3) Based on (1) and (2), we define therank rb(v) of nodesv

in G: (a) rb(v) = 0 if v has no child; (b)rb(v) = −∞ if vscc has no child inGscc but v

has children inG; and (c)rb(v) = max({rb(v′)+1}∪{rb(v′′}), where (vscc,v′scc) and

(vscc,v′′scc) are inEscc, for all v′ ∈ WF and allv′′ ∈ NWF. We also definerb([u]Rb) =

rb(u) for a node[u]Rb in Gr , andrb(e) = rb(v) for an updatee= (u,v).

Analogous to Lemma 2.5.2, we show the lemma below.

Lemma 2.5.4: For any graph G and its compressed graph Gr , (1) rb(u) = r b(v) if

(u,v) ∈ Rb, and (2) each node u in Gr can only be affected by updates e with rb(e) <

rb(u). ✷

For PCM, the affected areaAFF includes (1) the nodes inG with their ranks

changed afterG is modified, as well as the edges attached to them, and (2) the changes

to Gr , including the updated nodes and the edges attached to them.

Chapter 2. Query Preserving Graph Compression 36

Input: A graphG, a compressed graphGr , batch updates∆G;

Output: An updatedGr .

1. AFF:= /0;

2. incR(G,Gr ,∆G); /* update rank andGr */

3. for each i ∈ {−∞}∪ [0,max(rb(v))] do

4. AFF := AFF.add {AFFi}, whereAFFi is

the set of new nodesv with rb(v) = i;

5. for eachAFFi of ascending rank orderdo

6. PT(AFFi); /*update compressed graph at rank i*/

7. minDelta(AFFi ,Gr ,∆G); updateAFF;

8. for each [u′]Rb ∈ AFFi ande= (u,u′) ∈ ∆G do

9. SplitMerge([u′]Rb,Gr ,e,AFF);

10. return Gr ;

ProcedureSplitMerge

Input: Compressed graphGr = (Vr ,Er ,Lr), an update(u,u′),

node[u′]Rb, AFF;

Output: An updatedGr .

1. Boolean flag := true; AFFp := /0;

2. AFFp := AFFp∪{[u]Rb}∪P([u′]Rb);

3. for each node[vp]Rb ∈ AFFp with r([vp]Rb)> r([u′]Rb) do

/* split [vp]Rb w.r.t. [u′]Rb into [vp1]Rb and[vp2]Rb */

4. flag := bSplit ([vp]Rb, [u
′]Rb);

5. if flag then

6. AFFrb([vp]Rb)
:= AFFrb([vp]Rb)

∪{[vp1]Rb, [vp2]Rb};

7. for each v′ with rb(v′) = rb([vp1]Rb) do

8. if mergeCon (v′, [vp1]Rb) then bMerge (v′, [vp1]Rb);

9. for each v′′ with rb(v′′) = rb([vp2]Rb) do

10. if mergeCon (v′′, [vp2]Rb) then bMerge (v′′, [vp2]Rb);

11. updateAFF; return Gr ;

Figure 2.10: Algorithm incPCM

Our incremental algorithm is based on Lemma 2.5.4, denoted as incPCM and

shown in Fig. 2.10. It has two steps.

(1) Preprocessing.The algorithm first finds an initial affected areaAFF (lines 1-4). It

uses procedureincR (omitted) to do the following (line 2) : (a) update the rank ofthe

Chapter 2. Query Preserving Graph Compression 37

nodes in the updatedG; and (b) split those nodes[u]Rb of Gr in which there exist nodes

with different ranks. By Lemma 2.5.4, these nodes are not bisimilar. It then initializes

AFF, consisting ofAFFi for each ranki of G, whereAFFi is the set of newly formed

nodes inGr with rank i (lines 3–4).

(2) Propagating.It then identifies∆Gr by processing eachAFFi in the ascending rank

order (lines 5-9). At each iteration of the loop (lines 5-9),it first computes the bisim-

ulation equivalence relationRb of the subgraph induced by the new nodes inAFFi

(line 6), via procedurePT (omitted). Revising the Paige-Tarjan algorithm [PT87],PT

performs a fixpoint computation until each node of ranki in Gr finds its bisimulation

equivalence class. The algorithm then reduces those updates that become redundant via

procedureminDelta (see optimization below), and reducesAFF accordingly (line 7). It

then propagates changes fromAFFi towards the nodes with higher ranks, by invoking

procedureSplitMerge.

Given an affected node[u′]Rb and an updatee= (u,u′), procedureSplitMerge iden-

tifies other nodes that are affected. It starts with[u]Rb and its parentsP([u′]Rb) (line 2).

For each[vp]Rb of these nodes with a rank higher than[u′]Rb, SplitMerge splits it into

[vp1]Rb and [vp2]Rb, denoting node sets[v1]Rb \ [u
′]Rb and [v1]Rb ∩ [v2]Rb, respectively

(line 4). Indeed, no nodesvp1 ∈ [vp1]Rb andvp2 ∈ [vp2]Rb are bisimilar. Here we call

[u′]Rb asplitterof [vp]Rb, and conduct the splitting via procedurebSplit (omitted). The

changes are propagated toAFFrb([vp]Rb])
(line 6). SplitMerge then merges[vp1]Rb with

nodes having the same rank; similarly for[vp2]Rb (lines 7-10). The merging takes place

under conditionmergeCon, specified and justified by the lemma below.

Lemma 2.5.5: Nodes v1 and v2 can be merged in Gr if and only if (1) they have the

same label, and (2) there exists no node v3 that is a splitter of v1 but is not a splitter of

v2. ✷

Optimization . ProcedureminDelta reduces redundant updates based on rules. Con-

sider a node[u′]Rb in Gr updated byincPCM (line 6). For a node[u]Rb with rb([u]Rb)≥

rb([u′]Rb), we give some example rules used byminDelta (the full set of rules is omit-

ted). (1)Insertion: The insertion of(u,w) is redundant ifw∈ [u′]Rb and([u]Rb, [u
′]Rb)

∈ Er . (2)Deletion: The deletion of(u,w) is redundant ifw∈ [u′]Rb, ([u]Rb, [u
′]Rb) ∈ Er ,

u has a childw′ in [u′]Rb andw 6= w′. (3) Cancellation: An insertion(u,u1) and a

deletion(u,u2) are both redundant if there is a nodeu3 such that{u1, u2, u3} ⊆ [u′]Rb,

(u,u3) ∈ E and([u]Rb, [u
′]Rb) ∈ Er .

Chapter 2. Query Preserving Graph Compression 38

G

FA1 FA2 FA3 FA4

C1 C2 C3 Ck

BSA1 BSA2

MSA1 MSA2

...-e1

+e 2 -e3

Gq

MSA 1 MSA 2 BSA 1 BSA2

 C 2

 C 1

FA3 FA4FA1FA2

 C 3 C k...

-e3

AFF

Figure 2.11: Incremental compression: graph pattern

Example 2.7:RecallG and its compressed graphGr from Fig 2.2. Consider removing

e1 ande3 from G, followed by the insertion ofe2, as indicated in Fig 2.11. Whene1

is removed, the algorithmincPCM first updates the rank ofC1 (line 2), and addsC1 to

AFF (line 4). SinceC1 has a different rank fromC2, it is split from (C1,C2) at the same

time (line 4). The algorithm then invokesPT to mergeC1 and(C3,. . .,Ck) (line 6), and

usesSplitMerge to (a) removeFA1 from (FA1,FA2), and (b) mergesFA1 with (FA3,FA4)

(line 9). Observe that the deletion ofe3 becomes redundant, as identified byminDelta

(line 7). The updated compressed graphGq is shown in Fig 2.11, in whichAFF is

marked. ✷

Correctness & Complexity. One can verify thatincPCM correctly maintains com-

pressed graphs, by induction on the rank of nodes inGr processed by the algorithm. For

its complexity, note that procedureincR is in O(|AFF| log|AFF|) time. Moreover, pro-

ceduresminDelta, PT andSplitMerge takeO(|AFF|) time,O(|AFF| log|AFF|+ |Gr |),

andO(|AFF|2) time in total. HenceincPCM is inO(|AFF|2+ |Gr |) time. The algorithm

accessesR andGr , withoutsearchingG.

2.6 Experimental Evaluation

We next present an experimental study using both real-life and synthetic data. For

reachability and graph pattern queries, we conducted four sets of experiments to eval-

uate: (1) the effectiveness of the query preserving compressions proposed, measured

by compression ratio,i.e., the ratio of the compressed graph size to the original graph

size, (2) query evaluation time over original and compressed graphs, (3) the efficiency

of the incremental compression algorithms, and (4) the effectiveness of incremental

compression.

Experimental setting. We used the following datasets.

Chapter 2. Query Preserving Graph Compression 39

(1) Real-life data. For graph pattern queries, we used the following graphs with at-

tributes and labels on the nodes: (a)Youtube2 where nodes are videos labeled with

their category; (b)California3, a Web graph in which each node is a host labeled with

its domain; (c)Citation [TZY+08], a citation network in which nodes represent papers,

labeled with their publishing information; and (d)Internet4 where a node represents

an autonomous system labeled with its location.

For reachability queries, we used (a) six social networks: aWikipedia voting

network wikiVote5, a Wikipedia communication networkwikiTalk5, an online so-

cial network a product co-purchasing networkamazon5, socEpinions5, a fragment of

facebook [VMCG09], andYoutube2;(b) three Web graphs: a peer-to-peer network

P2P5, a Web graphNotreDame5, andInternet4; and (c) a citation networkcitHepTh5.

The sizes of these graphs (the number|V| of nodes and the number|E| of edges)

are shown in Tables 2.1 and 2.2.

(2) Synthetic data. We designed a graph generator to produce synthetic graphs.Graph

generation was controlled by three parameters: the number of nodes|V|, the number

of edges|E|, and the size|L| of the node label setL.

(3) Pattern generator. We implemented a generator for graph pattern queries controlled

by four parameters: the number of query nodesVp, the number of edgesEp, label set

Lp along the same lines as their counterpartL for data graphs, and an upper boundk

for edge constraints.

(4) Implementation. We implemented the following algorithms, in Java. (1) our

compression algorithmscompressR (Section 2.3) andcompressB (Section 2.4); (2)

AHO [AGU72] which, as a comparison tocompressR, computes transitive reduced

graphs; (3) our incremental compression algorithmsincRCM and incPCM for batch

updates (Section 2.5); we also implementedIncBsim, an algorithm that invokes the al-

gorithm of [Sah07] (for a single update) multiple times whenprocessing batch updates;

(4) query evaluation algorithms: for reachability queries, the breadth-first (resp. bidi-

rectional) search algorithmBFS (resp.BIBFS); for pattern queries, algorithmMatch

and its incremental versionIncBMatch [FLM+10]; and (5) algorithms for building

2-hop indexes [CHKZ03a].

All experiments were run on a machine powered by an Intel Core(TM)2 Duo

2http://netsg.cs.sfu.ca/youtubedata/
3http://www.cs.cornell.edu/courses/cs685/2002fa/
4http://www.caida.org/data/overview/
5http://snap.stanford.edu/data/index.html

Chapter 2. Query Preserving Graph Compression 40

dataset |G|(|V|, |E|) RCaho RCscc RCr

facebook 1.6M (64K, 1.5M) 13.19% 5.89% 0.028%

amazon 1.5M (262K, 1.2M) 35.09% 18.94% 0.18%

Youtube 931K(155K, 796K) 41.60% 17.02% 1.77%

wikiVote 111K(7K, 104K) 65.56% 8.33% 1.91%

wikiTalk 7.4M (2.4M, 5.0M) 48.21% 16.82% 3.27%

socEpinions 585K (76K, 509K) 29.53% 19.59% 2.88%

NotreDame 1.8M (326K, 1.5M) 43.27% 10.75% 2.61%

P2P 27K (6K, 21K) 73.24% 17.02% 5.97%

Internet 155K (52K, 103K) 88.32% 28.89% 16.08%

citHepTh 381K (28K, 353K) 71.32% 37.15% 14.70%

Table 2.1: Reachability preserving: compression ratio

dataset |G|(|V|, |E|, |L|) PCr

California 26K (10K, 16K, 95) 45.9%

Internet 155K (52K, 103K, 247) 29.8%

Youtube 951K (155K, 796K, 16) 41.3%

Citation 1.2M (630K, 633K, 67) 48.2%

P2P 27K (6K, 21K, 1) 49.3%

Table 2.2: Pattern preserving: compression ratio

3.00GHz CPU with 4GB of memory, using scientific linux. Each experiment was

run 5 times and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness: Compression ratio. We first evaluate the compression ratios

of our methods using real-life data. We define thecompression ratioof compressR to

beRCr = |Gr |/|G|, whereG is the original graph andGr is its compressed graph by

compressR. Similarly, we definePCr of compressB, andRCaho of AHO [AGU72] in

whichGr denotes the transitive reduced graph. We also considerSCC graphsGscc (Sec-

tion 2.3), and defineRCscc as|Gr |/|Gscc| to evaluate the effectiveness ofcompressR on

SCC graphs.

Observe the following. (1) Thesmallerthe compression ratio is, themore effective

the compressing scheme used is. (2) We treat the compressionratio as a measurement

for representation compression, which differs from the ratio measuring the memory

Chapter 2. Query Preserving Graph Compression 41

cost reduction (to be discussed shortly).

The compression ratios of reachability preserving compressioncompressR are re-

ported in Table 2.1. We find the following. (1) Real-life graphs can be highly com-

pressed for reachability queries. Indeed,RCr is in average 5% over these datasets. In

other words, it reduces real-life graphs by 95%. (2) Algorithm compressR performs

significantly better thanAHO. It also reducesSCC graphs by 81% in average. (3) The

compression algorithms perform best on social networkse.g.,wikiVote, socEpinions,

facebook andYoutube. The averageRCr is 2%, 8% and 14.7% for (six) social net-

works, (three) Web graphs and the citation network, respectively. This is because

social networks have higher connectivity.

The effectiveness ofcompressB is reported in Table 2.2. We find that (1) graphs can

also be effectively compressed by pattern preserving compression, withPCr of 43%

in average,i.e., it reduces graphs by 57%; (2)Internet can be better compressed for

graph pattern queries than social networks (Youtube) and citation networks (Citation),

since the latter two have more diverse topological structures than the former, as ob-

served in [NRS08]; and (3)compressR performs better thancompressB over all the

datasets. This is because it is more difficult to merge nodes due to the requirements on

topological structures and label equivalence imposed by pattern queries, compared to

reachability queries.

Exp-2: Effectiveness: query processing. In this set of experiments, we evaluated

the performance of the algorithms for reachability and pattern queries on original and

compressed graphs, respectively. We used exactlythe samealgorithms in both settings,

without decompressinggraphs.

For a pair of randomly selected nodes, we queried their reachability and evaluated

the running time ofBFS andBIBFS on the original graphG and its compressed graph

Gr . As shown in Fig. 2.12(a), the evaluation time on the compressedGr is much less

than that onG, when eitherBFS orBIBFS is used. Indeed, forsocEpinions the running

time ofBFS on Gr is only 2% of the cost onG in average.

For graph pattern queries, Figure 2.12(b) shows the runningtime of Match on

Youtube andCitation, and on their compressed counterparts (Lp is the same asL; see

Table 2.2). In addition, we conducted the same experiments on synthetic graphs with

|V| = 50K, |E| = 435K while |L|=10 or |L|=20, and on compressed graphs. Fixing

Lp = 10, we varied(Vp,Ep,k) of these queries from(3,3,3) to (8,8,3), as reported

in Fig. 2.12(c). These results tell us the following: (a) therunning time ofMatch on

Chapter 2. Query Preserving Graph Compression 42

 0

 20

 40

 60

 80

 100

 120

 140

P2P wiki
Vote

cit
HepTh

soc
Epinions

Notre
Dame

P
er

ce
nt

ag
e

(%
)

Graph

BFS on G
BIBFS on G

BFS on Gr
BIBFS on Gr

(a) reachability queries: real-life

 0

 2

 4

 6

 8

 10

 12

(3,3,3) (4,4,3) (5,5,3) (6,6,3) (7,7,3) (8,8,3)

T
im

e(
se

co
nd

)

Pattern size

Match on Youtube
Match on Youtuber
Match on Citation
Match on Citationr

(b) pattern queries: real-life

 0

 5

 10

 15

 20

 25

(3,3,3) (4,4,3) (5,5,3) (6,6,3) (7,7,3) (8,8,3)

T
im

e(
se

co
nd

)

Pattern size

Match on G(|L|=10)
Match on Gr(|L|=10)
Match on G(|L|=20)
Match on Gr(|L|=20)

(c) pattern queries: synthetic

 0.01

 0.1

 1

 10

 100

 1000

 10000

P2P wiki
Vote

cit
HepTh

soc
Epinions

face
book

Notre
Dame

S
iz

e(
M

B
)

Graph

G
Gr

2-hop on G
2-hop on Gr

(d) memory cost comparison

Figure 2.12: Effectiveness: query processing

compressed graphs is only 30% of that on their original graphs; and (b) when|L| is

changed from 10 to 20 on synthetic data,Match runs faster as the compressed graphs

contain more node labels.

As remarked earlier, the compression ratio of Table 2.1 onlymeasures graph rep-

resentation. In Fig. 2.12(d) we compare the memory cost of the original graphG,

the compressed graphGr by reachability preserving compression, and their 2-hop in-

dexes [CHKZ03a], for real-life datasets. The result tells us the following: (a) at least

92% of the memory cost ofG is reduced byGr ; (b) the 2-hop indexes have higher

space cost thanG andGr ; e.g.,2-hop onwikiVote took 234MB memory, while its orig-

inal graph took 8.9MB and the compressed graph took 0.2MB; and (c) 2-hop indexes

can be built over small compressed graphs, but may not be feasible over large original

graphs,e.g.,facebook, due to its high cost.

The results of the same experiments on other real-life graphs are consistent and

hence, are not reported here.

Exp-3: Efficiency of incremental compression. We next evaluate the efficiency of

incRCM andincPCM. Fixing the number of nodes in the social networksocEpinions,

we varied the number of edges from 509K to 617K (resp. from 509K to 374K) by

Chapter 2. Query Preserving Graph Compression 43

inserting (resp. deleting) edges in 12K increments (resp. 15K decrements). The re-

sults in Figures 2.13(a) and 2.13(b) tell us thatincRCM outperformscompressR when

insertions are up to 20% and deletions are up to 22% of the original graph.

Figure 2.13(c) shows the performance ofincPCM on Youtube compared with

compressB and IncBsim in response to mixed updates, where we fixed the node size,

and varied the size of the updates|∆E| in 0.8K increments. The result shows that

incPCM is more efficient thancompressB when the total updates are up to 5K, and

consistentlyoutperformsIncBsim, due to the removal of redundant updates byincPCM.

Figure 2.13(d) compares the performance of the following two approaches, both

for incrementally evaluating pattern queries overCitation: (1) we usedIncBMatch to

incrementally update the query result, and alternatively,(2) we first usedincPCM to

update the compressed graph, and then ranMatch over the updated compressed graph

to get the result. The total running times, reported in Fig. 2.13(d), tell us that once

the updates are more than 8K, it is more efficient to update andquery the compressed

graphs than to incrementally update the query results.

We also conducted the same experiments on other real-life datasets. The results are

consistent and hence not reported.

Exp-4: Effectiveness of incremental compression. We evaluated the effectiveness of

incRCM and incPCM, in terms of compression ratiosRCr andPCr, respectively. (1)

Fixing |L| = 10 and starting with|V0| = 1M, we varied the size of synthetic graphsG by

simulating the densification law [LKF07]: for a synthetic graphGi with |Vi | nodes and

|Ei| = |Vi |
α edges at iterationi, we increased its nodes to|Vi+1| = β|Vi|, and edges to

|Ei+1| = |Vi+1|
α in the next iteration. (2) We varied the size of real-life graphs following

power-law [MMG+07], where the edge growth rate was fixed to be 5%, and an edge

was attached to the high degree nodes with 80% probability.

Figure 5.6(a) shows that for reachability queries,RCr varies from 2.2% to 0.2%

with α =1.05, and decreases from 1.4% to 0.05% withα = 1.1, whenβ is fixed to be

1.2. This shows that the more edges are inserted into dense graph, the better the graph

can be compressed for reachability queries. Indeed, when edges are increased, more

nodes may become reachability equivalent, as expected (Section 2.3). The results over

real-life graphs in Fig. 5.6(b) also verify this observation.

The results in Fig. 2.14(c) tell us that for graph pattern queries,PCr is not sensi-

tive to the changes of the size of graphs. On the other hand, Figure 2.14(d) shows the

following. (1) When more edges are inserted into the real-life graphs,PCr increases;

Chapter 2. Query Preserving Graph Compression 44

 0

 100

 200

 300

 400

 500

 600

 700

 800

0k 12k 24K 36K 48K 60K 72K 84K 96K 108K

T
im

e(
se

co
nd

)

∆|E| on socEpinions

incRCM+

compressR

(a) incRCM for edge insertions

 0

 100

 200

 300

 400

 500

 600

 700

 800

0k 15k 30K 45K 60K 75K 90K 105K 120K 135K

T
im

e(
se

co
nd

)

∆|E| on socEpinions

incRCM-

compressR

(b) incRCM for edge deletions

 0

 500

 1000

 1500

 2000

 2500

0 0.8K 1.6K 2.4K 3.2K 4.0K 4.8K 5.6K

T
im

e(
se

co
nd

)

∆|E| on Youtube

IncPCM
incBsim

compressB

(c) incPCM for batch updates

 0

 200

 400

 600

 800

 1000

 1200

0k 2k 4K 6K 8K 10K 12K 14K
T

im
e(

se
co

nd
)

∆|E| on Citation

IncBMatch on G
IncPCM+Match on Gr

(d) Incremental querying time

Figure 2.13: Efficiency of incremental compression

this is because when new edges are added, the bisimilar nodesmay have diverse topo-

logical structures and hence are no longer bisimilar; and (2) PCr is more sensitive to

the changes of the size of Web graphs (e.g.,California, Internet) than social networks

(e.g.,Youtube), because the high connectivity of social networks makes most of the

insertions redundant,i.e.,having less impact onPCr.

Summary. From the experimental results we find the following. (1) Real-life social

graphs can be effectively and efficiently compressed by reachability and graph pattern

preserving compressions. (2) Evaluating queries on compressed graphs is far more

efficient than on the original graphs, and is less sensitive to the query sizes. Moreover,

existing index techniques can be directly applied to compressed graphs,e.g.,2-hop

index. (3) Compressed graphs by query preserving compressions can be efficiently

maintained in response to batch updates. Better still, it ismore efficient to evalu-

ate queries on incrementally updated compressed graphs than incrementally evaluate

queries on updated original graphs.

Chapter 2. Query Preserving Graph Compression 45

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 1 2 3 4 5 6 7 8 9

R
at

io
(%

)

Evolution times

α=1.05
α=1.10

(a) RCr for synthetic graphs

 0

 2

 4

 6

 8

 10

 12

 14

0 5 10 15 20 25 30 35 40 45

R
at

io
(%

)

∆|E|(%)

P2P
wikiVote
citHepTh

(b) RCr for real-life graphs

 36

 38

 40

 42

 44

 46

 48

 50

0 1 2 3 4 5 6 7 8 9

R
at

io
(%

)

Evolution times(|L|=10)

α=1.05
α=1.10

(c) PCr over synthetic graphs

 20

 30

 40

 50

 60

 70

 80

 90

0 5 10 15 20 25 30 35 40 45
R

at
io

(%
)

∆|E|(%)

California
Internet

Youtube

(d) PCr over real-life graphs

Figure 2.14: Effectiveness of incremental compression

2.7 Related work

We categorize related work as follows.

General graph compression. Graph compression has been studied fore.g.,Web graphs

and social networks [CKL+09, RGM03, BRSV11]. The idea is to encode a graph

or its transitive closure into compact data structures via node ordering determined by,

e.g., lexicographic URL and hosts [RGM03], linkage similarity [BV04], and docu-

ment similarity [CKL+09]. These general methods preserve the information of the

entire graph, and highly depend on extrinsic information, coding mechanisms and ap-

plication domains [BRSV11]. To overcome the limitations, [BRSV11] proposes a

compression-friendly node ordering but stops short of giving a compression strategy.

Our work differs from these in the following: (a) our compression techniques rely only

on intrinsic graph information that is relevant to a specificclass of queries; (b) our

compressed graphscan be directly queried without decompression; in contrast, even

to answer simple queries, previous work requires the original graph to be restored from

compact structures[CKL+09], as observed in [BRSV11]; and (c) we provide efficient

Chapter 2. Query Preserving Graph Compression 46

incremental maintenance algorithms.

Query-friendly compression. Closer to our work are compression methods developed

for specific classes of queries.

(1) Neighborhood queries [MP10, RGM03, NRS08], to find nodesconnected to a des-

ignated node in a graph. The idea of query-able compression (querying without de-

compression) for such queries is advocated in [MP10], whichadopts compressed data

structures by exploiting Eulerian paths and multi-position linearization. A S-node rep-

resentation is introduced in [RGM03] for answering neighborhood queries on Web

graphs. Graph summarization [NRS08] aims to sketch graphs with small subgraphs

and construct hypergraph abstraction. These methods construct compact data struc-

tures that have to be (partially) decompressed to answer thequeries [BRSV11]. More-

over, the query evaluation algorithms on original graphs have to be modified to answer

queries in their compact structures.

(2) Reachability queries [MT69, FM95, AGU72, vSdM11]. To answer such queries,

[MT69] computes the minimum subgraphs with the same transitive closure as the

original graphs, and [AGU72] reduces graphs by substituting a simple cycle for each

strongly connected component. These methods allow reachability queries to be evalu-

ated on compressed graphs without decompression. We show inSection 2.3 (and ver-

ify in Section 2.6) that our method achieves a better compression ratio, because (1) our

compressed graphs do not have to be subgraphs of the originalgraphs, and (2) by merg-

ing nodes into hypernodes, we can further reduce edges. Bipartite compression [FM95]

reduces graphs by introducing dummy nodes and compressing bicliques. However, (1)

its compression is a bijection between graphs and their compressed graphs, such that

they can be converted to each other. In contrast, we do not require that the original

graphs can be restored; and (2) algorithms for reachabilityqueries have to be modified

before they can be applied to their compressed graphs [FM95]. [vSdM11] computes a

compressed bit vector to encode the transitive closure of a graph. In contrast, we com-

pute compressed graphs on which reachability algorithms and the compression scheme

in [vSdM11] can be directly applied. The incremental maintenance of the bit vectors

is not addressed in [vSdM11].

(3) Path queries [BGK03]. There has also been work on compressing XML trees

via bisimulation, to evaluate XPath queries. It is shown there that this may lead

to exponential reduction, an observation that carries overto our setting. In contrast

Chapter 2. Query Preserving Graph Compression 47

to [BGK03], we consider compressing general graphs, to answer graph-structured

queries rather than XPath. Moreover, we develop incremental techniques to maintain

compressed graphs, which are not studied in [BGK03].

We are not aware of any previous work on compressing graphs for answering graph

pattern queries.

Graph indexing. There has been a host of work on building indexes on graphs to

improve the query time [CHKZ03a, JXRF09, YCZ10, JXRW08, QLO03, HWYY05,

MS99, KSBG02]. (1) 2-hop [CHKZ03a], PathTree [JXRW08], 3-hop [JXRF09],

GRAIL [YCZ10] and HLSS [HWYY05] are developed for answeringreachability

queries. However, (a) these indexes come with high costs. For example, the con-

struction time is biquadratic for 2-hop and 3-hop, cubic forHLSS, and quadratic for

GRAIL and PathTree; the space costs of these indexes are all (near) quadratic [YC10,

YCZ10, HWYY05, YCZ10, vSdM11]; and maintenance for 2-hop index easily de-

grades into recomputation [YC10]. (b) The algorithms for reachability queries on orig-

inal graphs often do not run on these indexes. For example, itrequires extra search or

auxiliary data structures to answer the queries involving nodes that are not covered by

PathTree [JXRW08, vSdM11]. In contrast, all these algorithms can be directly applied

to our compressed graphs. (2) 1-index [MS99],A(k)-index [KSBG02] and their gen-

eralizationD(k)-index [QLO03] yield index graphs as structure summarizations based

on (parameterized) graph bisimulation. However, (a) only rooted graphs are considered

for those indexes; and (b) those indexes are for regular pathqueries, instead of graph

patterns and reachability queries. Indeed, none of these indexes preserves query results

for reachability queries (shown in Section 2.3), and neither A(k)-index norD(k)-index

preserves query results for graph pattern queries (shown inSection 2.4); (c) those in-

dexes are only accurate for those queries satisfying certain query load constraints (e.g.,

query templates [MS99], path lengths [KSBG02, QLO03]); in contrast, we compute

compressed graphs that preserve results forall queriesin a given query class; and (d)

Incremental maintenance is not studied for 1-index andA(k)-index [KSBG02, MS99].

The issue is addressed in [QLO03], but the technique there depends on the query load

constraints.

Incremental bisimulation. We use graph bisimulation to compress graphs for pattern

queries. A bisimulation computation algorithm is given in [DPP01]. Incremental com-

putation of bisimulation for single edge insertions is studied in [Sah07, DCXB11].

Our work differs from these in (1) that we give complexity bounds (boundedness and

Chapter 2. Query Preserving Graph Compression 48

unboundedness results) of incremental pattern preservingcompression, of which in-

cremental bisimulation is a subproblem, and (2) that we propose algorithms for batch

updates instead of single updates.

Chapter 3

Distributed Graph Pattern Matching

Large real-life social networks are often fragmented and stored distributively in dif-

ferent sites [Row09]. For instance, a graph representing a social network may be dis-

tributed across different servers and data centers for performance, management or data

privacy reasons [MD08, Row09, GHMP08, PER09] (e.g.,social graphs of Twitter and

Facebook are geo-distributed to different data centers [GHMP08, PER09]). More-

over, various data of people (e.g.,friends, products, companies) are typically found in

different social networks [Row09], and have to be taken together when one needs to

find the complete information about a person. With this comesthe need for effective

techniques to conduct graph pattern matching over distributed graphs. In this chapter,

we introduce the distributed algorithms for graph pattern matching, based on partial

evaluation.

3.1 Introduction

A number of algorithms and distributed graph database systems have been pro-

posed for evaluating queries on distributed graphs (e.g., [BCFK06, CFK07, FFP08,

ST09, Suc02]). Several distributed graph database systemshave also been devel-

oped [neo, hyp, MAB+10, tri]. However, few of these algorithms and systems provide

performance guarantees, on the number of visits to each site, network traffic (data

shipment) or computational cost (response time). The need for developing efficient

distributed evaluation algorithms with performance guarantees is particularly evident

for graph pattern matching (simple boolean patterns), which are most commonly used

in practice.

In the thesis, we propose to evaluate graph pattern matchingon distributed graphs

49

Chapter 3. Distributed Graph Pattern Matching 50

Figure 3.1: Querying a distributed social network

based onpartial evaluation. Partial evaluation (a.k.a.program specialization) has been

proved useful in a variety of areas including compiler generation, code optimization

and dataflow evaluation (see [Jon96] for a survey). Intuitively, given a functionf (s,d)

and part of its inputs, partial evaluation is to specializef (s,d) with respect to the

known inputs. That is, it conducts the part off ’s computation that depends only on

s, and generatesa partial answer, i.e., a residual functionf ′ that depends on the as

yet unavailable inputd. This idea can be naturally applied to distributed query evalu-

ation. Indeed, consider a query posed on a graphG that is partitioned into fragments

(F1, . . . ,Fn), whereFi is stored in siteSi . To computeQ(G), each siteSi can find the

partial answer toQ in fragmentFi in parallel, by takingFi as the known inputs while

treating the fragments in the other sites as yet unavailableinput d. These partial an-

swers are collected and combined by a coordinator site, to derive the answer to query

Q in the entireG.

Example 3.1: Figure 3.1 depicts a fractionG of a recommendation network, where

each node denotes a person with name and job titles (e.g.,database researcher (DB),

human resource (HR)), and each directed edge indicates a recommendation. The graph

G is geo-distributedto three data centersDC1, DC2 andDC3, each storing afragment

of G.

Consider a queryQ given in Fig. 3.1, posed atDC1. It is to find whether there exists

a chain of recommendations from aCTO Ann to her finance analyst (FA) Mark, through

either a list ofDB people or a list ofHR people. Observe that such a path exists: (Ann,

CTO) → (Walt, HR) → (Mat, HR) → (Fred, HR) → (Emmy, HR) → (Ross, HR) → (Mark,

FA). However, it is nontrivial to verify this in the distributed setting. A naive method is

to first ship data fromDC1, DC2 andDC3 to a single site, and then evaluate the query

using an algorithm developed for centralized data (i.e., graphs stored in a single site).

This is infeasible because its data shipment may be prohibitively expensive and worse

Chapter 3. Distributed Graph Pattern Matching 51

still, may not even be allowed for data privacy. Another way is to use a distributed

graph traversal algorithm, by sending messages between different sites. This, however,

requires messages to be sent alongDC1 → DC2 → DC1 → DC2 → DC3 → DC1,

incurring unbounded number of visits to each site, excessive communication cost, and

unnecessary delay in response.

We can do better by using partial evaluation. We send the query Q to DC1, DC2

andDC3, as is. We compute the partial answers to (sub-queries of)Q at each site, in

parallel, by taking the fragment residing in the site as known input and introducing

Boolean variables to indicate unknown input (i.e., fragments in the other sites). The

partial answers are vectors of Boolean formulas, one associated with each node that

has an edge from a fragment stored at another site. These Boolean formulas indicate

(1) atDC1, from Ann there exist anHR path toWalt and aDB path toBill, and fromFred

there is anHR path toEmmy; (2) atDC2, there exist anHR path fromEmmy to Ross, an

HR path fromMat to Fred; and (3) atDC3, there exists anHR path fromRoss to Mark.

These partial answers are collected by a coordinator site (DC1), which solves a system

of equations formed by these Boolean formulas that arerecursively defined, to find the

truth values of those Boolean variables. It yields answertrue to Q, i.e., there exists an

HR path fromAnn to Mark.

We will show that this method guarantees the following: (1) each site is visited

only once; (2) besides the queryQ, only2 messages are sent, all to the coordinator, and

each message isindependent ofthe size ofG, and (3) partial evaluation is conductedin

parallel at each site,without waiting forthe outcome or messages from any other site.

✷

While there has been work on query answering via partial evaluation [AK07,

BCFK06, CFK07, FFP08], the previous work has focused on either trees [AK07,

BCFK06, CFK07] or non-recursive queries expressed in first-order logic (FO) [FFP08].

We are not aware of any previous algorithms based on partial evaluation for answering

reachability queries, which arebeyondFO, onpossibly cyclic graphsthat arearbitrar-

ily fragmented and distributed.

We start with distributed graphs (Section 3.1.1), and a partial evaluation framework

(Section 3.1.2).

Chapter 3. Distributed Graph Pattern Matching 52

symbols notations

F = (F,Gf) graph fragmentation in whichGf is the fragment graph

Fi .I the set of in-nodes in a fragmentFi

Fi .O the set of virtual nodes in a fragmentFi

qr(s, t) reachability query

qbr(s, t, l) bounded reachability query

qrr(s, t,R) regular reachability query

Table 3.1: Notations: graphs and queries

3.1.1 Distributed Graphs

Distributed Graphs. In practice a social network, modelled as graphG is often parti-

tioned into a collection of subgraphs and stored in different sites [Row09, HDKT09].

We define afragmentationF of a graphG = (V,E,L) as a pair(F, Gf), whereF is

a collection of subgraphs ofG, andGf is called thefragment graphof F , specifying

edges across distinct sites. More specifically,F andGf are defined as follows.

(1) F = (F1, . . . ,Fk), where eachfragment Fi is specified by(Vi ∪Fi .O, Ei ∪ cEi , Li)

such that (a)(V1, . . . ,Vk) is a partition ofV, (b) each(Vi,Ei,Li) is a subgraph ofG

induced byVi , (c) for each nodeu ∈ Vi , if there exists an edge(u,v) ∈ E, wherev is

in another fragment, then there is avirtual node vin Fi .O, and (d)cEi consists of all

and only those edges(u,v) such thatu∈Vi andv is a virtual node, referred to ascross

edges. We also useFi.I to denote the set ofin-nodesof Fi, i.e., those nodesu∈Vi such

that there exists a cross edge(v,u) incomingfrom a nodev in another fragmentFj to

u, i.e., vis a virtual node inFj .

Intuitively, Vi ∪Fi .O of Fi consists of (a) those nodes inVi and (b) for each node in

Vi that has an edge to another fragment, a virtual node indicating the connection. The

edge setEi ∪cEi consists of (a) the edges inEi and (b)cross edgesin cEi , i.e.,edges to

other fragments. In a distributed social graph, for instance, cross edges are indicated

by eitherIRIs (universal uniqueIDs) or semantic labels of the virtual nodes [Row09,

MAB+10]. We also identifyFi .I , a subset of nodes inVi to which there are incoming

edges from another fragment.

We assumew.l.o.g.that eachFi is stored at siteSi .

Notations in this section are summarized in Table 3.1.

(2) The fragment graphGf is defined as(Vf ,Ef), whereVf =
⋃

i∈[1,k](Fi .O∪Fi .I) and

Chapter 3. Distributed Graph Pattern Matching 53

Sc

Q

S0 Sk

Q Q

...
Q(S)0

Q(S)k

G f

partial evaluation

assembling

Q(G)Q(S)0
Q(S)k

...

Bill, "DB"

Walt, "HR"

Fred, "HR"

F2F1

Emmy, "HR"

Mat, "HR"

Jack, "MK"

Pat, "SE" Ross, "HR" Tom, "AI"

F3

F3

F2F1

G f distributing

Figure 3.2: Fragment graph and partial evaluation

Ef =
⋃

i∈[1,k] cEi . HereFi .O∪Fi .I includes all the nodes inFi that have cross edges

to or from fragmentFi . These nodes can be grouped together, denoted by a single

“hyper-node”, indicatingFi . The setEf collects all the cross edges from all fragments.

Example 3.2: Figure 3.1 depicts a fragmentationF of graphG, consisting of three

fragmentsF1,F2,F3 stored in sitesDC1, DC2 andDC3, respectively. For fragmentF1,

F1.O consists of virtual nodesPat, Mat andEmmy, F1.I includes in-nodesFred, and its

cE set consists of cross edges (Fred, Emmy), (Bill, Pat) and (Walt, Mat), i.e.,all the edges

from F1 outgoing to another fragment; similarly forF2 andF3. In particular, edges (Mat,

Fred) and (Bill, Pat) are cross edges from fragmentsF2 to F1 andF1 to F3, respectively.

The fragment graphGf of F is shown in Fig. 3.2, which collects all in-nodes,

virtual nodes and cross edges, but does not contain any nodesand edges internal to a

fragment. ✷

We remark thatno constraintsare imposed on fragmentation,i.e., the graphs can

bearbitrarily fragmented. Observe that multiple fragments may reside in asingle site,

and our algorithms can be easily adapted to accommodate this.

3.1.2 Partial evaluation

Partial evaluation (a.k.a. program specialization) has been proved useful in a variety

of areas including compiler generation, code optimizationand dataflow evaluation (see

[Jon96] for a survey). Intuitively, given a functionf (s,d) and part of its inputs, partial

evaluation is to specializef (s,d) with respect to the known inputs. That is, it conducts

the part of f ’s computation that depends only ons, and generatesa partial answer,

i.e.,a residual functionf ′ that depends on the as yet unavailable inputd. This idea can

be naturally applied to distributed graph pattern matching. Indeed, consider a query

Chapter 3. Distributed Graph Pattern Matching 54

posed on a graphG that is partitioned into fragments(F1, . . . ,Fn), whereFi is stored in

siteSi . To computeM(Q,G), each siteSi can find the partial answer toQ in fragmentFi

in parallel, by takingFi as the known inputs while treating the fragments in the other

sites as yet unavailable inputd. These partial answers are collected and combined by

a coordinator site, to derive the answer to queryQ in the entireG.

Given a queryQ and a fragmentationF of a graphG, we computeQ(G), a Boolean

value indicating the reachability ofQ in G. Assume thatQ is posed on a siteSc, referred

to as acoordinator site, in which a mappingh from the fragments inF to different sites

is stored. As shown in Fig. 3.2, we use partial evaluation to computeQ(G).

(1) Distributing at site Sc. Upon receivingQ, the coordinating siteSc postsQ to each

fragment, as is, by usingh.

(2) Local evaluation at each site Si . Each siteSi evaluates (sub-queries) ofQ in paral-

lel, by treating the fragmentFi stored inSi as the known input toQ; the other fragments

Fj are taken as the yet unavailable input, denoted by Boolean variables associated with

virtual nodes inFi .O. The partial answers are represented as vectors of Boolean for-

mulas associated with nodes inFi .I , and are sent back toSc.

(3) Assembling at Sc. SiteSc assembles these partial answers to get the final answer

Q(G), by usingGf .

Following this, the next three sections develop evaluationalgorithms for (bounded,

regular) reachability queries.

3.2 Distributed Graph Pattern Matching

We next introduce distributed evaluation strategies for simple boolean patterns. We

start with reachability queries, bounded reachability queries and regular reachability

queries.

3.2.1 Distributed Reachability Queries

Given a simple boolean patternqr(s, t) and a fragmentationF = (F,Gf) of a graphG,

we decide whethers reachest in G. The main result of this section is as follows.

Theorem 3.2.1 Over a fragmentationF = (F,Gf) of a graph G, reachability queries

can be evaluated (a) in O(|Vf ||Fm|) time, (b) by visiting each site only once, and (c)

Chapter 3. Distributed Graph Pattern Matching 55

Algorithm disReach /* executed at the coordinator site */

Input: Fragmentation(F,Gf), reachability queryqr(s, t).

Output: The Boolean answerans to qr(s, t)in G.

1. post queryqr(s, t) to all the fragments inF;

2. RVset := /0;

3. for each fragmentFi in F do

4. RVset := RVset ∪ localEval(Fi,qr(s, t));

5. ans := evalDG(RVset);

6. return ans;

Procedure localEval /* executed locally at each site in parallel */

Input: A fragmentFi, a reachability queryqr(s, t).

Output: a setrvset of Boolean equations.

1. Fi.rvset:= /0; iset:= Fi.I ; oset:= Fi.O;

2. if s∈ Fi then iset:= iset ∪ {s};

3. if t ∈ Fi then oset:= oset ∪ {t};

4. for each nodev∈ oset do

5. if v= t then v.rf := true;

6. elsev.rf := Xv;

7. for each nodev∈ iset do

8. for each nodev′ ∈ oset do

9. if v′ ∈ des(v,Fi) then v.rf := v.rf ∨v′.rf;

10. Fi.rvset := Fi .rvset∪{Xv = v.rf};

11. sendFi.rvset to the coordinator siteSc;

Figure 3.3: Algorithm disReach

with the total network traffic bounded by O(|Vf |
2), where Gf = (Vf ,Ef) and Fm is the

largest fragment in F.

As a proof of the theorem, we provide an algorithm to evaluatereachability queries

qr(s, t) over a fragmentationF of a graphG. The algorithm, denoted asdisReach, is

given in Fig. 3.3. As shown in Fig. 3.2, the algorithm evaluatesqr(s, t) based on partial

evaluation, in three steps as follows.

(1) The coordinator siteSc posts the same queryqr(s, t) to each fragment inF (line 1).

Chapter 3. Distributed Graph Pattern Matching 56

(2) Upon receivingqr(s, t), each site invokes procedurelocalEval to partially evaluate

qr(s, t), in parallel (lines 3-4). This yields apartial answerFi .rvset from each fragment,

which is a set of Boolean equations (as will be discussed shortly) and is sent back to

the coordinator siteSc.

(3) The coordinator siteSc collectsFi .rvset from each site and assembles them into a

systemRVset of Boolean equations (lines 3-4). It then invokes procedureevalDG to

solve these equations and finds the final answer toqr(s, t) in G (line 5). In contrast to

partial query evaluation on trees [AK07, BCFK06, CFK07], the Boolean equations of

RVset are possiblyrecursively definedsince graphG may have a cyclic structure,

We next present procedureslocalEval andevalDG, for producing and assembling

partial answers, respectively.

Partial evaluation. ProcedurelocalEval evaluatesqr(s, t) on each fragmentFi in paral-

lel. For eachin-node vin Fi, it decides whetherv reachest. Later on procedureevalDG

will assemble such answers and find the final answer toqr(s, t).

Let us consider how to computeqr(v, t). If t ∈ Fi andv can reacht, thenqr(v, t)

can belocally evaluatedto betrue. Otherwise,qr(v, t) is true iff there existsa virtual

nodev′ of Fi such thatbothqr(v,v′) andqr(v′, t) are true. Indeed, in the latter casev can

reacht if thereexistsa virtual nodev′ such thatv′ can reacht. Observe thatqr(v,v′) can

belocally evaluatedin Fi , but notqr(v′, t) sincev′ andt are in other fragments. Instead

of waiting for the answer ofqr(v′, t), we introduceBoolean variables, one for each

virtual nodev′ in Fi.O, to denote the yet unknown answer toqr(v′, t) in G. The answer

to qr(v, t) is then aBoolean formula v.rf associated withv, which is thedisjunctionof

only the variables of those virtual nodesv′ to whichv can reach inFi.

More specifically, procedurelocalEval works as follows. It first initializes a set

Fi .rvset of Boolean equations, and puts the in-nodesFi .I and virtual nodesFi .O of Fi in

setsiset andoset, respectively (line 1). Ifs(resp.t) is in Fi , localEval includess (resp.t)

in iset (resp.oset) as well (lines 2-3). A Boolean variableXv is associated with each

nodev∈ oset∪ iset. For each virtual nodev∈ oset, if v is t or v can reacht via a path

in Fi , thenXv is assignedtrue (lines 4-5). For each in-nodev∈ iset, localEval locally

checks whetherv can reach a virtual nodev′ ∈ oset (lines 7-9). If so,localEval updates

v.rf, the Boolean formula ofv, to bev.rf∨v′.rf (line 9). Observe that ift is in des(v,Fi),

thenv.rf is evaluated to betrue. Herev′ ∈ des(v,Fi) denotes thatv′ is a descendant of

v in Fi ; this can be checked using any availablecentralized algorithmfor reachability

queries [YC10],locally in Fi . After the formula of in-nodev is constructed,Fi .rvset is

Chapter 3. Distributed Graph Pattern Matching 57

extended by including aBoolean equation Xv = v.rf (line 10). The setFi .rvset is then

sent to the coordinator siteSc (line 11).

Example 3.3: Consider a simple boolean patternqr(Ann,Mark) over G in Fig 3.1.

AlgorithmdisReach at the coordinator siteDC1 first sends the query to each site, where

a set of Boolean equations are computed, as shown below.

Fi Fi .I rf rvset

F1
Ann xPat ∨xMat

{xAnn = xPat ∨xMat, xFred = xEmmy}
Fred xEmmy

F2

Mat xFred

{xMat = xFred, xJack = xFred, xEmmy = xFred ∨xRoss}Jack xFred

Emmy xFred ∨xRoss

F3
Ross true

{xRoss = true, xPat = xJack}
Pat xJack

Observe that for eachi ∈ [1,3], each equation inFi .rvset is of the formXv =
∨

Xv′,

wherev is an in-node, andv′ is a virtual node thatv can reach inFi . In particular,

Ross.rf = true since the nodeRoss can reachMark in F3. ✷

Assembling. After the local evaluation, the equations collected inRVset at the coordi-

nator siteSc form aBoolean equation system(BES) [GK05]. It consists of equations of

the formXv = v.rf, wherev is an in-node in some fragmentFi , and Boolean variables

in v.rf are associated with virtual nodes (out-nodes), which in turn are connected to

in-nodes of some other fragments. In particular,RVset contains a Boolean equation

Xs = s.rf, where the truth value ofXs is the final answer toqr(s, t). GivenRVset, pro-

cedureevalDG is to compute the truth value ofXs. Observe that equations inRVset

may be definedrecursively. For example,xFred in Example 3.3 is defined indirectly in

terms of itself.

Observe thatRVset hasO(|Vf |) Boolean equations. It is known thatBESRVset

can be solved inO(|Vf |
2) time [GK05]. We next present such an algorithm, based

on a notion of dependency graphs. Thedependency graphof RVset is defined asGd

= (Vd,Ed,Ld), wherevd ∈ Vd is a Boolean variableXv in RVset; Ld(vd) =
∨

Xvi if

Xv =
∨

Xvi is in RVset; and there is an edge(vd,v′d) ∈ Ed if and only if X′
v is in

∨
Xvi

of Ld(vd). Note that the size|Gd| of Gd is in O(|Vf |
2), whereGf = (Vf ,Ef) is the

fragment graph ofF .

Based on this notion, we present procedureevalDG in Fig 3.4. It first constructs

the dependency graphGd of RVset (line 1). It groups into a single nodevtrue all those

Chapter 3. Distributed Graph Pattern Matching 58

ProcedureevalDG /* executed at the coordinator site */

Input: A systemRVset of Boolean equations.

Output: The Boolean answerans to qr(s, t).

1. construct dependency graphGd = (Vd,Ed,Ld) from RVset;

2. if there is novd ∈Vd such thatL(vd) = {Xv = true}

then return false;

3. elsemerge all such nodes into a nodevtrue;

4. if vtrue ∈ des(vs,Gd) then return true;

5. else return false;

Figure 3.4: Procedure evalDG

nodes (variables) that are known to betrue (line 3). It returnsfalse if no such node

exists, since no in-nodes can reacht in any of the fragment (line 2). Otherwise, it

returnstrue if vs (indicatingXs in Xs= s.rf) can reachvtrue (lines 4-5).

Example 3.4: Consider the Boolean equations of Example 3.3. Given these,evalDG

first builds its dependency graph, shown in Fig 3.5(a). It then checks whether there is

a path fromXAnn to Xtrue (XMark). It returnstrue as such a path exists. ✷

Correctness. One can easily verify the following:s can reacht in G iff there exist a

positive integerl and a path(s,x1, . . . ,xl , t) such thatxi .rf’s are built in some fragment

by localEval, and moreover, are evaluated totrue by procedureevalDG. This can be

shown by induction onl .

Complexity. Algorithm disReach guarantees the following.

The number of visits. Obviously each site is visited only once, when the coordinator

site posts the input query.

Total network traffic. For each fragmentFi , Fi .rvset has|Fi.I | equations, each of|Fi.O|

bits indicating the presence or absence of variables in the Boolean formula. Hence the

setRVset consists of at most|Vf | equations, each of at most|Vf | bits. The total network

traffic is thus bounded byO(|Vf |
2), independentof |G|, since|qr(s, t)| is negligible.

Computational cost. Observe the following. (1) ProcedurelocalEval is performed

on each fragmentFi in parallel, and it takesO(|Fi||Vf |) time to computeFi .rvset for

each fragment (see the discussion below). Hence it takes at mostO(|Vf ||Fm|) time to

get Fi.rvset from all sites, whereFm is the largest fragment ofF . (2) It takes proce-

Chapter 3. Distributed Graph Pattern Matching 59

XAnn

XMark="true"

XEmmy

XMat

XRoss

XFred

(a) Dependency graph

XPat
XJack

XAnn

XMark

XEmmy

XMat

XRoss

XFred

(b) Weighted dependency graph I

XPat
XJack

XWalt

XEmmy

XMat

XRoss

XFred

(c) Weighted dependency graph II

XPat

XJack

1

2

1

1
1

2

2

3

3
3

XTom

1 1

1

1

1

1

2
2

3
3

3

Figure 3.5: Dependency graphs

dureevalDG O(|Gd|) time to construct the dependency graphGd, and to find whether

vs reachesvtrue in Gd. Since|Gd| is in O(|Vf |
2), and|Vf | is typically much smaller

than|Fm| in practice, the computational cost is bounded byO(|Fm||Vf |). That is, the

response time is alsoindependentof the entire graphG.

To check whether a pair of nodes connect in a fragment or inGd, we useDFS/BFS

search, and thus get theO(|Vf ||Fm|) (resp.O(|Vf |
2)) complexity. In factany indexing

techniques (e.g.,reachability matrix [YC10], 2-hop index [CHKZ03b]), parallel and

graph partition strategies (e.g., Pregel [MAB+10]) developed forcentralized graph

query evaluationcan be applied here, which will lead to lower computational cost.

The analysis above completes the proof of Theorem 3.2.1.

Remarks. In theory, one can compute the transitive closure (TC) of a graph to decide

whether a node can reach another. However, it isimpractical to compute theTC over

large graphs due to its time and space costs. Worse still, when the graphs are dis-

tributed, computingTC may incurexcessive unnecessary data shipments. Indeed, we

are not aware of any distributed algorithms that computeTC with performance guaran-

tees on network traffic, even when indexing structures are employed (see [YC10] for

a survey on such indexes). In contrast, we show that in the distributed setting, partial

evaluation promises performance guarantees. Also observethat in practice, the size of

Vf is usually small [Row09].

3.2.2 Distributed Bounded Reachability Queries

We next develop a distributed evaluation algorithm for bounded reachability queries

qbr(s, t, l), to decide whetherdis(s, t) ≤ l . In contrast to reachability queries, to eval-

uateqbr(s, t, l) we need to keep track of the distances for all pairs of nodes involved.

Nevertheless, we show that the algorithm has the same performance guarantees as al-

gorithmdisReach.

Chapter 3. Distributed Graph Pattern Matching 60

Procedure localEvald /* executed locally at each site, in parallel */

Input: A fragmentFi, and a bounded reachability queryqbr(s, t, l).

Output: Partial answer toqbr in Fi (a setrvset of equations).

1. Initialize Fi.rvset, iset andoset;

2. for each nodev∈ oset do

3. if v= t then v.rf := 0;

4. elsev.rf := Xv;

5. for each nodev∈ iset do

6. st := /0;

7. for each nodev′ ∈ oset do

8. if dis(v,v′)< l then

9. st := st∪{(v′.rf+dis(v,v′))};

10. Fi.rvset := Fi.rvset∪{Xv = min(st)};

11. sendFi.rvset to the coordinator siteSc;

ProcedureevalDGd /* executed at the coordinator site */

Input: A systemRVset of equations.

Output: The Boolean answerans to qbr(s, t, l).

1. construct dependency graphGd := (Vd,Ed,Ld) from RVset;

2. Integerd := Dijkstra(Xs,Xt ,Gd);

3. if d ≤ l then return true;

4. else return false;

Figure 3.6: Procedure localEvald and evalDGd

Theorem 3.2.2 Over a fragmentationF = (F,Gf) of a graph G, bounded reachability

queries can be evaluated with the same performance guarantees as for reachability

queries.

As a proof of Theorem 3.2.2, we present an algorithm, denotedby disDist, for

evaluatingqbr(s, t, l) over a fragmentationF of a graphG. It is similar to algorithm

disReach for reachability queries (Fig. 3.3), but it needs differentstrategies for partial

evaluation at individual sites and for assembling partial answers at the coordinator site.

These are carried out by procedureslocalEvald andevalDGd, given in Fig. 3.6.

ProcedurelocalEvald. To evaluate bounded reachability queries, for each fragment Fi

and each in-nodev in Fi , we need to finddis(v, t), thedistancefrom v to t. To do this,

Chapter 3. Distributed Graph Pattern Matching 61

we find theminimumvalue ofdis(v,v′)+dis(v′, t) whenv′ ranges over all virtual nodes

in Fi to whichv can reach. We express the partial answer forv as a formulav.rf.

ProcedurelocalEvald partially evaluatesqbr(s, t, l) in each fragmentFi , in parallel.

It first initializesFi.rvset, iset andoset as indisReach (line 1). For each nodev in Fi .I ∪

Fi .O, it associates a variableXv to denotedis(v, t). For each virtual nodev (includingt if

t ∈Fi), if v= t, then it assigns 0 tov.rf (line 3), and otherwisev.rf isXv (line 4). For each

in-nodev ∈ iset and each virtual nodev′ ∈ oset, localEvald locally finds the distance

from v to v′ (lines 5-9). It uses a setst (line 6) to collect formulasv′.rf+ dis(v,v′) if

dis(v,v′) < l (line 9). The setFi .rvset collectsequations Xv = min(v.st) (line 10), and

is sent to the coordinator siteSc (line 11).

Example 3.5: Given queryqbr(Ann,Mark,6) posed on the graphG of Fig 3.1, proce-

duredisDist computes a set of equations of arithmetic formulas, rather than Boolean

equations.

Fi Fi.I st rvset

F1
Ann {(xPat +3),(xMat +2)} {xAnn = min{(xPat +3),(xMat +2)},

Fred {(xEmmy +1)} xFred = min{(xEmmy +1)}}

F2

Mat {(xFred +1)} {xMat = min{(xFred +1)},

Jack {(xFred +3)} xJack = min{(xFred +3)},

Emmy {(xFred +3),(xRoss +1)} xEmmy = min{(xFred +3),(xRoss +1)}}

F3
Ross {(xJack +2),1}

{xRoss = min{(xJack +2),1}, xPat = min{(xJack +2)}}
Pat {(xJack +2)}

After rvset is received by coordinatorDC1, procedureevalDGd first builds a

weighted dependency graphGd, shown in Fig 3.5(b). It then computes the shortest

path fromXAnn to XMark by applyingDijkstra to Gd. It returnstrue since the length of

the path is 6, satisfying the distance bound. ✷

ProcedureevalDGd. GivenFi .rvset from all the sites, procedureevalDGd assembles

these partial answers to find the answer toqbr(s, t, l) in G. As opposed toevalDG

(Fig. 3.4), it builds anedge weighted graph Gd = (Vd,Ed,Ld,Wd), where(Vd,Ed,Ld) is

a labeled dependency graph as defined before; and theweight Wd(e) of e is dis(vd,v′d).

Note that|Vd| ≤ |Vf | and|Ed| ≤ |Vf |
2, whereGf = (Vf ,Ef) is the fragment graph ofF .

The procedure then uses algorithmDijkstra [Zwi01] to compute the distanced from

Xs to Xt, in timeO(|Ed|+ |Vd| log|Vd|), whereXs∈Vd denotes the nodes in qbr(s, t, l).

It returnstrue iff d ≤ l . One can verify thatdis(s, t) in G is equal to the distance from

Xs to Xt in Gd.

Chapter 3. Distributed Graph Pattern Matching 62

Example 3.6: Given the equations of Example 3.5, procedureevalDGd first builds a

weighted dependency graphGd shown in Fig 3.5(b). It then computes the shortest path

from XAnn to XMark by applyingDijkstra to Gd. It returnstrue since the length of the

path is 6, satisfying the distance bound.

Consider another queryqbr(Walt,Tom,3). Its weighted dependency graphG′
d is

shown in Fig 3.5(c). AlthoughXWalt can reachXTom in G′
d, the shortest path has length

4> 3. Hence the procedure returnsfalse as the answer. ✷

One can verify that algorithmdisDist (1) visits each site only once, (2) its total net-

work traffic is bounded byO(|Vf |
2), and (3) it takes at mostO(|Fm||Vf |) time, where

Fm is the largest fragment inF . Moreover, indexing techniques [YC10] can be incor-

porated intolocalEvald andevalDGd, to reduce the cost of local evaluation and hence,

the response time (e.g.,with constant time via a distance matrix).

3.2.3 Distributed Regular Reachability Queries

We now develop techniques to distributively evaluate regular reachability queries.

Given such a queryqrr(s, t,R) and a fragmentationF of graphG, it is to find whether

there exists a pathρ from s to t in G such thatρ satisfiesR. In contrast to (bounded)

reachability queries, to evaluateqrr(s, t,R) we need to collect and transmit information

about not only whether there are paths from a node to another,but also whether the

paths satisfy the complex constraint imposed byR. The main result of this section is

as follows.

Theorem 3.2.3 On a fragmentationF = (F,Gf) of graph G, regular reachability

queriesqrr(s, t,R) can be evaluated (a) in O(|Fm||R|2+ |R|2|Vf |
2) time, (b) by vis-

iting each site once, and (c) with the total network traffic inO(|R|2|Vf |
2), where

Gf = (Vf ,Ef) and Fm is the largest fragment in F.

To prove Theorem 3.2.3, we first introduce a notion of query automaton, and then

present an evaluation algorithm based on query automaton.

Query Automaton

To effectively check whether a path satisfies a regular expressionR, we represent

R as a variation of nondeterministic finite state automata (NFA), referred to as query

automaton.

A query automaton Gq(R) of qrr(s, t,R) accepts pathsρ that satisfyR. It is defined

as<Vq,Eq,Lq,us,ut>, where (1)Vq is a set of states, (2)Eq ⊆ Vq ×Vq is a set of

Chapter 3. Distributed Graph Pattern Matching 63

,R=(DB* U HR*)Gq(R)

Ann

Mark

DB HR

Walt

Mark

DB

CTO

HR

,R'=(CTO DB*) U HR*Gq'(R'),R'=(CTO DB*) U HR*Gq'(R')

Figure 3.7: Query automaton Gq(R)

transitions between the states, (3)Lq is a function that assigns each state a label in

R, and (4)us andut in Vq are the start state and final state corresponding tos andt,

respectively. In contrast to traditionalNFA, at stateuv, for each edge(v,v′) on a path, a

transitionuv → u′v can be made via(uv,u′v) ∈ Eq if L(v) = Lq(uv) andL(v′) = Lq(u′v).

The automaton can be constructed inO(|R|(log(|R|))2) time, using a conversion similar

to that of [HSW01]. It is of linear size in|R|.

We say that a stateu is a child ofu′ (resp.u′ is a parent ofu) if (u′,u) ∈ Eq, i.e., u′

can transit tou.

Example 3.7: Recallqrr(Ann,Mark,R), the regular reachability query given in Exam-

ple 3.1, whereR = (DB* ∪ HR*). Its query automatonGq(R) is depicted in Fig 3.7.

The setVq has four statesAnn, DB, HR, Mark, where the start and final states areAnn and

Mark, respectively. The setEq of transitions is{(Ann,DB), (DB,DB), (DB,Mark), (Ann,HR),

(HR,HR), (HR,Mark)}. In contrast toNFA, it is to accept paths in,e.g., Gof Fig. 3.1,

and its transitions are made by matching the labels of its states with thejob labels on

the paths (except the start and final states, which are labeled with name).

As another example, consider queryqrr(Walt,Mark,R′), whereR′=((CTO DB*) ∪

HR*). Figure 3.7 shows its query automaton, which has 5 states and 7 transitions, with

Walt andMark as its start state and final state, respectively. ✷

We say that a nodev in G is amatchof a stateuv in Gq(R) iff (1) L(v) = Lq(uv),

and (2) there exist a pathρ from v to t and a pathρ′ from uv to ut , such thatρ andρ′

have the same label. The lemma below shows the connection betweenqrr(s, t,R) and

Gq(R), which is easy to verify.

Lemma 3.2.4:Given a graph G,qrr(s, t,R) over G is true if and only if s is a match of

us in Gq(R). ✷

Distributed Query Evaluation Algorithm We next present an algorithm to evaluate

regular reachability queries over a fragmentationF of a graphG. The algorithm,

Chapter 3. Distributed Graph Pattern Matching 64

denoted asdisRPQ (not shown), evaluatesqrr(s, t,R) based on partial evaluation in

three steps, as follows.

(1) It first constructs the query automatonGq(R) of qrr(s, t,R) at siteSc, and posts

Gq(R) to each fragment inF .

(2) Upon receivingGq(R), each site invokes procedurelocalEvalr to compute apartial

answerto qrr(s, t,R) by usingGq(R), in parallel. The partial answer at each fragment

Fi , denoted asFi .rvset, is a set ofvectors. Each entry in a vector is a Boolean formula

(as will be discussed shortly).

(3) The partial answer is sent back to the coordinator siteSc. The siteSc collects

Fi .rvset from each site and assembles them into a setRVset of vectors of Boolean

formulas. It then invokes procedureevalDGr to solve these equations and find the final

answer toqrr(s, t,R) in G.

We now present procedureslocalEvalr andevalDGr.

Local evaluation. We first formulate the partial answerv.rvec at each nodev in a

fragmentFi. It indicates whetherv is a match of some stateu in the query automa-

ton Gq(R), i.e., v reachest and moreover, satisfies the constraints imposed byGq(R)

(Lemma 3.2.4). Hence we definev.rvec to be avectorof O(|Vq|) entries, whereVq

is the set of states inGq(R). For each stateu in Vq, the entryv.rvec[u] is a Boolean

formula indicating whether nodev matchesstateu. In contrast to its counterparts for

(bounded) reachability queries, herev.rvec is avectorof Boolean formulas, instead of

a single formula.

Observe thatv matches a stateuv if and only if (1)L(v) = L(uv), and (2) eitherv is

t, or there exists a childw of v and a childuw of uv such thatw matchesuw. To cope

with virtual nodes, for eachw∈ Fi .O and each stateuw ∈Vq, we introduce a Boolean

variableX(w,uw), denoting whetherw matchesuw. The vector of each in-nodev in Fi .I

consists of formulas defined in terms of these Boolean variables.

Based on these, we give procedurelocalEvalr in Fig. 3.8. It first initializes a set

Fi .rvset of vectors, and puts the in-nodesFi .I and virtual nodesFi .O of Fi in setsiset

andoset, respectively (line 1). Ifs (resp.t) is in Fi , localEval includess (resp.t) in

iset (resp.oset) as well (lines 2-3). For each nodev in Fi , it associates aflag v.visit to

indicate whetherv.rvec is already computed, and initializes it to befalse if v is not in

oset (line 4).

Chapter 3. Distributed Graph Pattern Matching 65

Procedure localEvalr/* executed locally at each site, in parallel*/

Input: A fragmentFi, a query automatonGq(Vq,Eq,Lq,us,ut).

Output: Partial answer toqrr in Fi (a setrvset of vectors).

1. Fi .rvset := /0; iset:= Fi.I ; oset:= Fi.O;

2. if s∈ Fi then iset:= iset ∪ {s}; /* sdenoted byus */

3. if t ∈ Fi then oset:= oset ∪ {t}; /* t denoted byut */

4. for each nodev∈Vi \oset do v.visit := false;

5. for each nodev∈ oset do

6. v.rvset := /0;

7. for each nodeu∈Vq do

8. if v= t and u= ut then v.rvec[ut] := true;

9. else ifL(v) = Lq(u) then v.rvec[u] := X(v,u);

10. elsev.rvec[u] := false;

11. v.visit := true;

12. for each nodev∈ iset do

13. v.rvec := cmpRvec(v,Fi ,qrr,Gq(R));

14. Fi.rvset := Fi.rvset∪v.rvec;

15. sendFi.rvset to the coordinator siteSc;

ProcedurecmpRvec

Input: A nodev, a fragmentFi, and

a query automatonGq(Vq,Eq,Lq,us,ut).

Output: The vectorv.rvec of v, consisting of Boolean formulas.

1. if v.visit = true then return v.rvec;

2. for each nodevq ∈Vq do rvec[vq] := false;

3. for each nodew∈C(v,Fi) do

4. if w.visit = false then

5. w.rvec := cmpRvec(w,Fi,qrr,Gq(R));

6. for each nodevq ∈Vq do

7. if L(v) = Lq(vq) then

8. rvec[vq] := rvec[vq]∨ cmposeVec(vq,w,w.rvec,Gq(R));

9. v.visit := true;

10. return rvec;

Figure 3.8: Procedure localEvalr and cmpRvec

Chapter 3. Distributed Graph Pattern Matching 66

It then initializes the vectorv.rvec for each virtual nodev of Fi (lines 5-11), as

follows. If v= t, thenv.rvec[ut] is assignedtrue (line 8). Otherwise for each stateu

in Gq(R), if u andv have the same label, thenv.rvec[u] is a Boolean variable X(v,u),

indicating whetherv matches u(line 9); if not,v.rvec[u] is false (line 10). Sincev.rvec

is initialized (lines 6-10),localEval setsv.visit to betrue (line 11).

Then for each in-nodev, localEvalr invokes procedurecmpRvec to partially com-

pute the vector ofv, and extendsFi .rvset with v.rvec (lines 12-14). After all in-nodes

are processed,F.rvset is sent to siteSc (line 15).

ProcedurecmpRvec computes the vectorv.rvec for a nodev, as follows. Ifv.visit is

true, it returnsv.rvec (line 1). Otherwise, it initializes a vectorrvec (line 2).

The procedure then computesv.rvec following Lemma 3.2.4. For each childw of v,

if w is not visited, thenw.rvec is computed via a recursive call ofcmpRvec (lines 3-5;

hereC(v,Fi) denotes the set of children ofv in Fi). After w.rvec is known, for each

statevq in Gd, cmpRvec checks ifv andvq have the same label (lines 6-7); if so, it

usesw.rvec[v′q] to computervec[vq] via procedurecmposeVec (line 8). Afterv.rvec[vq]

is computed,v.visit is settrue (line 9) andv.rvec[vq] is returned (line 10).

ProcedurecmposeVec (not shown) takes a statevq and a nodew as input, and

constructs a formulaf using formulas inw.rvec. Initially f is false. For each child

statev′q of vq, it checks whetherw andv′q have the same label. If so,f is extended by

takingw.rvec[v′q] as a disjunct. The formulaf is returned after all child states ofvq is

processed.

Example 3.8: Given qrr(Ann,Mark,R), the query of Example 3.1 posed on the dis-

tributed graphG of Fig. 3.1, procedurelocalEvalr evaluates the query onF2 as fol-

lows. For each virtual node ofF2, it initializes its vector,e.g., the vector ofRoss is

(false, false,X(Ross,HR), false), corresponding to the states(Ann,DB,HR,Mark) in query

automatonGq(R) (see Fig. 3.7). It then invokes procedurecmpRvec to compute the

vector of each in-node inF2. For instance, consider in-nodeEmmy. Since (1)Emmy is

anHR that matches stateHR in Gq(R), and (2)Emmy has a childRoss that may match

stateHR, the formulaEmmy.[HR] is extended toX(Ross,HR) by procedurecmposeVec.

The final vectors forF2 are:

fragment in-node rvec(Ann,DB,HR,Mark)

F2

Mat false false X(Fred,HR) false

Jack false false false false

Emmy false false X(Ross,HR) false
✷

Chapter 3. Distributed Graph Pattern Matching 67

,R=(DB* U HR*)Gq(R)

Ann

Mark

HR...

(Ann,Ann)vd ,X(Mat,HR)

(Mat, HR)vd ,X(Fred,HR)

(Fred, HR)vd ,X(Emmy,HR)

(Emmy, HR)vd ,X(Ross,HR)

(Ross, HR)vd ,true

(Mark, Mark)vd ,true

...

Gd

Figure 3.9: Assembling with dependency graph

Assembling. ProcedureevalDGr (not shown) collects the partial answers from all the

sites into a setRVset, and assembles them to compute the answer toqrr(s, t,R) at the

coordinator siteSc. It is similar to procedureevalDG given in Fig. 3.4, except that it

uses a different notion of dependency graphs. Here thedependency graph Gd of RVset

is defined as(Vd,Ed,Ld), where (a) for each in-nodev and each entryu of its vector

v.rvec in RVset, there is a nodevd(v,u) ∈ Vd, (b) Ld(vd(v,u)) = v.rvec[u], a formula of

the form
∨

X(v′,u′); and (c) there is an edge(vd(v,u),vd(v′,u′)) ∈ Ed if and only if X(v′,u′)

appears inLd(vd(v,u)). In other words, the node setVd of Gd is defined in terms of both

in-nodes in the fragments ofF and the states in the query automatonGq(R).

ProcedureevalDGr constructs the dependency graphGd of RVset, and checks

whethervd(s,us) can reachvd(u,u′) for some nodeu, whereLd(vu,u′) is true. One can

verify thats matchesus iff there exists a nodevd(u,u′) ∈ Vd with Ld(vu,u′) = true, and

vd(s,us) reachesvd(u,u′).

Example 3.9:Consider again queryqrr(Ann,Mark,R) posed on the graphG of Fig. 3.1.

The vector setsFi .rvset are computed in parallel in all fragmentsFi , as described in

Example 3.8. Upon receivingFi.rvset from all the sites, procedureevalDGr first builds

a dependency graphGd based on the vector sets, as shown in Fig 3.9. Each node,e.g.,

vd(Ann,Ann) is shown together with its label,e.g., X(Mat,HR). It then checks whether

nodevd(Ann,Ann) reaches a node with labeltrue, which is nodevd(Ross,HR) here. It

returnstrue as the query answer, as there is a path (Ann, Mat, Fred, Emmy, Ross, Mark)

satisfying the regular expressionR. ✷

Correctness and complexity. One can readily verify the following. (1) The algo-

rithm disRPQ always terminates. (2) Given a queryqrr(s, t,R) and a fragmentationF

of graphG, algorithmdisRPQ returnstrue iff there exists a pathρ from s to t in G

Chapter 3. Distributed Graph Pattern Matching 68

such thatρ satisfiesR. To complete the proof of Theorem 3.2.3, observe the following

about its complexity.

The number of visits. Each site is visited only once, when the query automaton is

posted by the coordinator site.

Total network traffic. The communication cost includes the following: (1)

O(|Gq|card(F)) for sending query automatonGq(R) to each site, wherecard(F) is the

number of fragments, and|Gq| is in O(|R|); and (2)O(|R|2|Fi.I ||Fi.O|) for sending par-

tial answers from each fragmentFi to the coordinator site. Putting these together, the

total network traffic is inO(|R|2|Vf |
2), whereVf is the total number of virtual nodes,

since the numbercard(F) of fragments and query size|R| are much smaller than|Vf |

in practice. Note that the communication cost isindependent ofthe entire graphG.

Total computation. It takesO(|Fm||R|2) time to compute the vector set in each frag-

ment,in parallel, where|Fm| is the size of the largest fragmentFm in F . To see this,

observe that at each nodev, it takes at mostO(|C(v,Fm)||R|2) time to construct its vec-

tor, for each child ofv in C(v,Fm). Moreover, each node is visited once and its vector

is computed once. Thus, in total it takes at mostO(|Fm||R|2) time to compute all the

vectors. The assembling phase takes up toO(|R|2|Vf |
2) time. Taking these together,

the total computation time is inO(|Fm||R|2+ |R|2|Vf |
2).

3.3 Distributed Graph Pattern Matching with MapRe-

duce

We next present a simpleMapReduce algorithm to evaluate regular reachability

queries. This algorithm just aims to demonstrate how easy tosupport our techniques

in theMapReduce framework. More advancedMapReduce algorithms can be readily

developed based on partial evaluation.

MapReduce [DG08] is a software framework to support distributed computing on

large datasets with a large number of computers (nodes). (1)The data are partitioned

into a collection of key/value pairs. Each pair is assigned to a node (mapper) identified

by its key. (2) Each mapper processes its key/value pairs, and generates a set of in-

termediate key/value pairs, by using aMap function. These pairs are hash-partitioned

based on the key. Each partition is sent to a node (reducer) identified by the key. (3)

Each reducer produces key/value pairs via aReduce function, and writes them to a

distributed file system as the result [DG08].

Chapter 3. Distributed Graph Pattern Matching 69

ProcedurepreMRPQ

Input: GraphG, regular reachability queryqrr(s, t,R), integerK.

Output: Lists of key/value pairs to be sent to mappers.

1. construct query automatonGq(R); /*executed at coordinator*/

2. glist := parG(G,K,⌈ |G|
K ⌉); /* graph partition */

3. for each fragmentFi ∈ glist (i ∈ [1,K]) do

4. pairL := <i,(Fi,Gq(R))>;

5. sendL andGq(R) to mapperi;

ProceduremapRPQ /* executed at each mapper */

Input: A key/value pairL = <i,(Fi ,Gq(R))>.

Output: A key/value pairrdpair.

1. rvseti := localEvalr(Fi,Gq(R));

2. sendlocalEvalr(Fi ,Gq(R)) to a reducer;

ProcedurereduceRPQ /* executed at a single reducer */

Input: A list of key/value pairs.

Output: The Boolean valueans to qrr in G.

1. setRVset := /0;

2. for each pair<1, rvseti> in rdlist do

3. RVset:= RVset∪ rvseti ;

4. ans:= evalDGr(RVset);

5. return <0, ans >;

Figure 3.10: Algorithm MRdRPQ

Our MapReduce algorithm, MRdRPQ, is illustrated in Fig. 3.11 and given in

Fig. 3.10. It evaluatesqrr(s, t,R) on graphG using procedurespreMRPQ, mapRPQ

andreduceRPQ. We next present the three procedures in details.

ProcedurepreMRPQ. A coordinator first generates the query automatonGq(R) of

qrr(s, t,R) (line 1; see Section 3.2.3). The graphG is then partitioned intoK fragments

(line 2) using some strategyparG, whereK is the number of mappers. Each fragment

Fi is represented as a key/value pair, where the key isi ∈ [1,K], and its value is a pair

<Fi ,Gq(R)> (lines 3-4). It is sent to mapperMi along withGq(R) (line 5).

Chapter 3. Distributed Graph Pattern Matching 70

coordinator

mapper 1
mapper m mapper k

reducer

ans

1,<F1,Gq(R)> k,<Fk,Gq(R)>

m
,<

Fm,G
q(R)>... ...

coordinator

mapper m

reducer

<1,rvset1> <
1,rv

se
t m >

<1,rvset k >

process path P

Figure 3.11: Processing path of algorithm reduceRPQ

Graph partitioning is conducted implicitly byMapReduce implementation

(e.g.,Hadoop), provided the numberK of mappers and the average size⌈ |G|
K ⌉ of frag-

ments (line 2). To explore the maximum parallelism we want the fragments to be

of equal size; hence⌈ |G|
K ⌉. One may also want to minimize∑Fi∈F |Fi.I ||Fi.O|, where

Fi .I (resp.Fi .O) is the set of in-nodes (resp. virtual nodes) of fragmentFi . However,

this partition problem is intractable [Fjä98]. In our implementation we usedHadoop’s

default partitioning strategy.

ProceduremapRPQ at each mapper. Upon receiving a pair<i,(Fi,Gq(R))>, pro-

ceduremapRPQ is triggered at mapperMi, in parallel. It simply uses proce-

dure localEvalr of Fig. 3.8 as itsMap function, and computes a key/value pair

<1, rvseti> (line 1), wherervseti is the vector set as described in Section 3.2.3. It

sends the pair to a reducerRo. Note that pairs from all the mappers are sent to the

same reducer. partition problem is intraProcedurereduceRPQ at the reducerRo. Af-

ter collecting the key/value pairs from all the mappers, thereducer puts these pairs in

a setRVset (lines 1-3). It then invokes the assembling procedureevalDGd (see Sec-

tion 3.2.3) as theReduce functionto compute the answerans to qrr in G (line 4), and

writes a pair<0,ans> to the distributed file system (line 5).

Correctness and complexity.

The correctness of algorithmMRdRPQ immediately follows from the correctness

of algorithmdisRPQ (see Section 3.2.3). Following [AU10], we analyze the perfor-

mance ofMRdRPQ using theelapsed communication costECC (data volume cost),

which measures the total time cost of (parallel) data shipment. We define aprocess

path Pof MRdRPQ to be a path from the coordinator to the reducer, passing a single

mapper (see Fig. 3.11). The cost of a process pathα is the sum of thesize of input

Chapter 3. Distributed Graph Pattern Matching 71

datashipped to the nodes onα, following an edge ofα. TheECC of MRdRPQ is the

maximum cost over all process paths.

TheECC analysis unifies the time and network traffic costs of aMapReduce al-

gorithm. It does not count the in-memory computation cost oftheMap andReduce

functions. Nevertheless, (1) any indexes and compression techniques developed for

centralized graph query evaluation can be adopted by mappers, as remarked earlier,

(2) furtherMapReduce steps can be used to implement bothMap andReduce func-

tions, and (3) network traffic dominates the total computation time for real-life large

graphs [AU10].

For algorithmMRdRPQ, one can verify the following. (1) The input size of each

mapper is bounded byO(|Fm|), whereFm is the largest fragment returned byparG.

(2) The input size of the reducer is bounded byO(|R|2|Vf |
2), whereVf is the set of

nodes in the fragment graphGf . Putting these together, theECC of mapRPQ is

O(|Fm|+ |R|2|Vf |
2).

3.4 Experimental Evaluation

We next present an experimental study of our distributed algorithms. Using real-life

and synthetic data, we conducted four sets of experiments toevaluate the efficiency and

communication costs of algorithmsdisReach (Section 3.2.1),disDist (Section 3.2.2),

disRPQ (Section 3.2.3) and theMapReduce algorithmMRdRPQ (Section 3.3) on Ama-

zon EC2.

Experimental setting. We used the following data.

(1) Real-life graphs. For (bounded) reachability queries, we used the following1: (a)

a social networkLiveJournal, (b) a communication networkWikiTalk, (c) two Web

graphsBerkStan andNotreDame, and (d) a product co-purchasing networkAmazon.

The sizes of these graphs are shown in Table 3.2.

For regular reachability queries, we used the following graphs with attributes on

the nodes: (a)Citation2, in which nodes represent papers with id and venue, and edges

denote citations, (b)MEME5, a blog network in which nodes are Web pages and edges

are links, (c)Youtube3, a social network in which each node is a video with attributes

1http://snap.stanford.edu/data/index.html
2http://www.arnetminer.org/citation/
3http://netsg.cs.sfu.ca/youtubedata/

Chapter 3. Distributed Graph Pattern Matching 72

dataset |V| |E|

LiveJournal 2,541,032 20,000,001

WikiTalk 2,394,385 5,021,410

BerkStan 685,230 7,600,595

NotreDame 325,729 1,497,134

Amazon 262,111 1,234,877

Table 3.2: Size of graphs : (bounded) reachability queries

(e.g.,category), and each edge indicates a recommendation, and (d) Internet 4, where

each node is a system labeled with its id and location, and each edge represents internet

connection. The datasets are summarized below, where|L| is the size of node label set,

andcard(F) is the number of the fragments generated for regular reachability queries

(see below).

dataset |V| |E| |L| card(F)

Citation 1,572,278 2,084,019 6300 10

MEME 700,000 800,000 61065 11

Youtube 234,452 454,942 12 12

Internet 57,971 103,485 256 10

Table 3.3: Size of graphs : regular reachability queries

(2) Synthetic data. We designed a generator to produce large graphs, controlled by the

number|V| of nodes, the number|E| of edges, and the size|L| of node labels.

(3) Graph fragmentation. We randomly partitioned real-life and synthetic graphsG

into a setF of fragments, controlled bycard(F) and the average size of the fragments

in F (the sum of the numbers of nodes and edges), denoted bysize(F). Unless stated

otherwise,size(F) = |G|/card(F).

(4) Query generator. We randomly generated (a) reachability queries, (b) bounded

reachability queries with boundl , and (c) regular reachability queries from a setL of

labels.

(5) Algorithms. We implemented the following algorithms in Java: (A)disReach,

disReachn anddisReachm for reachability queries, where (a)disReachn ships all the

4http://www.caida.org/data/

Chapter 3. Distributed Graph Pattern Matching 73

fragments to a coordinator in parallel, which calls a centralized BFS algorithm to

evaluate the query [YC10]; and (b)disReachm, a message-passing based distributed

BFS algorithm following [MAB+10] (see details below); (B)disDist anddisDistn for

bounded reachability queries, wheredisDistn is similar to disReachn; (C) disRPQ,

disRPQn anddisRPQd for regular reachability queries, wheredisRPQn is similar to

disReachn, anddisRPQd is a variant of the algorithm of [Suc02] (see Section 3.1); and

(D) theMapReduce algorithmMRdRPQ.

Following [MAB+10], algorithmdisReachm assigns a workerSi for each fragment

Fi , and a masterSc that maintains the fragment graph. (i) Each nodev in the fragments

has a statusl(v) ∈ {inactive,active}, initially inactive. (ii) A message“T” can be sent

only from activenodesv1 (i.e., l(v1) = active) to their inactive children v2 (i.e., l(v2)

= inactive), which then becomeactive. (iii) no activenode can becomeinactiveagain.

(iv) Si can send“T”, “idle”, or avirtual nodeof Fi as a message toSc.

Upon receiving a reachability queryqr(s, t), Sc postsqr to all the workersSi . For

the fragmentFi that contains the nodes specified inqr(s, t), its workerSi changesl(s)

to active, and sends a message“T” to its immediate inactive children, which in turn

propagate“T” following aBFS traversal to inactive nodes. During the propagation, (i)

if “T” reaches an inactive virtual nodev, Si sends a messagev to Sc, which redirects the

message to workersSj where the fragmentsFj has inactive in-nodev; Sj then makes

v active, and propagates“T” along the same lines inFj ; (ii) if “T” reaches the nodet in

qr(s, t), Si sends message“T” to Sc, and algorithmdisReachm returnstrue, indicating

thatqr(s, t) = true; and (iii) when no message is propagating inSi , it sends message

“idle” to Sc. Algorithm disReachm returnsfalse if all the workers send“idle” to it.

Machines. We deployed these algorithms on Amazon EC2 High-Memory Double Ex-

tra Large instances5.

Each site stored a fragment. Each experiment was run 5 times and the average is

reported here.

Experimental results. We next present our findings.

Exp-1: Efficiency and scalability ofdisReach.

Efficiency. We first evaluated the efficiency ofdisReach, disReachn anddisReachm.

Fixing card(F) = 4, we randomly generated 100 reachability queries (where around

30% return “true”), and report the average evaluation time and the network traffic in

Table 3.4. The results show thatdisReach is far more efficient thandisReachn and

5http://aws.amazon.com/ec2/

Chapter 3. Distributed Graph Pattern Matching 74

Time(second) Traffic(MB)
Datasets

disReach disReachn disReachm disReach disReachn disReachm

LiveJournal 12.03 27.52 186.55 174 1800 27

WikiTalk 3.32 9.95 41.42 80 726 19

BerkStan 3.25 8.51 40.31 29 555 11

NotreDame 0.83 3.77 13.32 14 147 7

Amazon 0.55 2.55 7.86 10 120 5

Table 3.4: Efficiency and data shipment: real life data

 0

 100

 200

 300

 400

 500

2 4 6 8 10 12 14 16 18 20

T
im

e(
se

co
nd

)

disReachm
disReachn
disReach

(a) varying fragment number

 0

 5

 10

 15

 20

 25

 30

35K 75K 115K 155K 195K 235K 275K 315K
T

im
e(

se
co

nd
)

disReachm
disReachn
disReach

(b) varying fragment size

 0

 200

 400

 600

 800

 1000

10 12 14 16 18 20

T
im

e(
se

co
nd

)

disReachm
disReach

(c) varying fragment number

Figure 3.12: Efficiency and Scalability of disReach

disReachm. For example, onAmazon, disReach takes only 20% of the running time

of disReachn, and 6% of that ofdisReachm. On the real datasets it takes 4 seconds in

average.

For the network traffic ofdisReachm, we counted the total number of messages

sent between the workers and the master. Table 3.4 shows thatin average, the network

traffic of disReach is only 9% of that ofdisReachn (i.e.,the size of the original graphs),

but is not as good as that ofdisReachm. Indeed, the data shipment ofdisReachm is

linear in the number of the total virtual nodes. However, this reduction comes at the

Chapter 3. Distributed Graph Pattern Matching 75

 0

 2

 4

 6

 8

 10

 12

 14

2 4 6 8 10 12 14 16 18 20

T
im

e(
se

co
nd

)

disDistn
disDist

(a) varying fragment number

Figure 3.13: Efficiency of disDist

cost of serializing operations that can be conducted in parallel, as indicated by its extra

running time (Table 3.4). Moreover, it has no bound on the number of visits to each

site; for instance, whencard(F) = 4 onAmazon, the four sites were visited about 2500

times in total.

Scalability.To evaluate the scalability withcard(F), we usedLiveJournal as the dataset

and variedcard(F) from 2 to 20. We used the same set of queries as above. Fig. 3.12(a)

shows that the largercard(F) is, the less timedisReach and disReachn take. For

disReach, this is becausepartial evaluationof localEval takes less time on smaller

fragments. FordisReachn, while the evaluation time on the restored graph remains sta-

ble (about 10 seconds), it takes less time to ship each fragment to the coordinator when

card(F) increases. In contrast, the largercard(F) is, the more costlydisReachm is.

Indeed, smaller fragments require more frequent visits andthus, more communication

cost.

To evaluate the scalability with the averagesize(F) of fragments, we generated syn-

thetic graphs following thedensification law[LKF07], by fixing card(F) = 8 and vary-

ing the size of the graphs from 280K to 2.52M. As shown in Fig. 3.12(b), whensize(F)

is increased, so is the running time of all these algorithms,as expected. Nonetheless,

disReach scales well withsize(F), and is less sensitive tosize(F) than the others.

We also testeddisReach anddisReachm over a larger synthetic graph, which has

36M nodes and 360M edges. We variedcard(F) from 10 to 20 in 2 increments.

The results, shown in Fig 3.12(c), tell us the following. (1)disReach scales well with

card(F), and takes less time over largercard(F), and (2)disReachm takes more time

whencard(F) gets larger. The results are consistent with the observation of Fig 3.12(a).

Exp-2: Efficiency of disDist. This set of experiments evaluated the performance of

disDist anddisDistn. UsingWikiTalk, we variedcard(F) from 2 to 20, and randomly

Chapter 3. Distributed Graph Pattern Matching 76

generated 100 bounded reachability queries withl=10. Fig. 3.13(a) shows that (1)

disDist outperformsdisDistn by 62.5% in average, and (2)disDist anddisDistn take

less time over largercard(F), for the same reason as given above.

The performance ofdisDist anddisDistn (not shown) are consistent with their coun-

terparts (disReach anddisReachn).

Exp-3: Efficiency and scalability ofdisRPQ.

Efficiency. The third set of experiments focused on the performance of algorithms

disRPQ, disRPQn anddisRPQd [Suc02], for regular reachability queries. We specify

the complexity of such a query in terms of(|Vq|, |Eq|, |Lq|), whereVq,Eq andLq are

the sets of states, transitions and node labels in its query automaton, respectively (see

Section 3.2.3).

We first evaluated the response time and network traffic of these algorithms on

the four real-life datasets described earlier, with|V|, |E|, |L| andcard(F) given there.

We generated 30 regular reachability queries with(|Vq| = 8, |Eq| = 16, |Lq| = 8), and

report their average time (resp. network traffic) in Fig. 3.14(a) (resp. Fig 3.14(b)). We

find the following: (1)disRPQ is more efficient thandisRPQn anddisRPQd; indeed,

the running time ofdisRPQ is 61.8%, 88%, 64.8% and 56.6% of that ofdisRPQd

on Youtube, MEME, Citation and Internet, respectively; and (2)disRPQ incurs less

network traffic than the other algorithms: at most 25% of datashipped bydisRPQd

and 3% of that ofdisRPQn in average.

To evaluate the impact of query complexity, we usedYoutube and generated 40

regular reachability queries by varying|Vq| from 4 to 18 and|Eq| from 8 to 36, while

fixing |Lq| = 8. Fig. 3.14(c) shows that (1) all the algorithms take longer to answer

larger queries, and (2)disRPQ anddisRPQd are less sensitive to the size of queries

thandisRPQn.

Scalability. We generated synthetic graphs by fixingcard(F) = 10 while varying the

size of the graphs from 350K to 3.15M. We tested 30 queries with|Vq| = 8, |Eq| = 16

and |Lq| = 8, and report the average running time in Fig. 3.14(d). The result shows

thatdisRPQ scales well withsize(F), and performs better thandisRPQd anddisRPQn.

Moreover, it is efficient:disRPQ takes 16 seconds on graphs with 1.5M (million) nodes

and 2.1M edges. In addition, the largersize(F) is, the longer the three algorithms take,

as expected.

To evaluate the scalabilitycard(F), we generated graphs with 1.2M nodes and

4.8M edges, and variedcard(F) from 6 to 20. As shown in Fig. 3.14(e), the larger

Chapter 3. Distributed Graph Pattern Matching 77

 0

 20

 40

 60

 80

 100

 120

 140

YoutubeMEME CitationInternet

T
im

e(
S

ec
on

d)

disRPQn
disRPQd
disRPQ

(a) regular reachability

10-1

100

101

102

103

104

YoutubeMEME Citation Internet

N
et

w
or

k
tr

af
fic

(M
B

) disRPQn
disRPQd
disRPQ

(b) network traffic

 5

 10

 15

 20

 25

 30

 35

(4,8) (6,12) (8,16)(10,20)(12,24)(14,28)(16,32)(18,36)

T
im

e(
se

co
nd

)

disRPQn
disRPQd
disRPQ

(c) varying query complexity

 20

 40

 60

 80

 100

35K 75K 115K 155K 195K 235K 275K 315K

T
im

e(
se

co
nd

)

disRPQn
disRPQd
disRPQ

(d) varying fragment size

 0

 20

 40

 60

 80

 100

 120

 140

6 8 10 12 14 16 18 20

T
im

e(
se

co
nd

)

disRPQn
disRPQd
disRPQ

(e) varying fragment number

 0

 5

 10

 15

 20

 25

 30

 35

10 12 14 16 18 20

T
im

e(
m

in
ut

e)

disRPQd
disRPQ

(f) varying fragment number

Figure 3.14: Efficiency and scalability of disRPQ

card(F) is, the less timedisRPQ takes, since it conducts partial evaluation on smaller

fragments by exploring parallel computation. This confirmsour complexity analysis

for disRPQ (Section 3.2.3). Indeed, the time taken bydisRPQ whencard(F) = 6 is

reduced by 75% whencard(F) = 20. Similarly,disRPQd anddisRPQn take less time

whencard(F) is increased.

In addition, we evaluated the scalability ofdisRPQ anddisRPQd over large syn-

thetic graphs. Fixing|V| = 36M, |E| = 360M and|L| = 50, we variedcard(F) from

10 to 20 in 2 increments. As shown in Fig 3.14(f), (1) both algorithms scale well

with card(F), and take less time whencard(F) increases; and (2)disRPQ consistently

Chapter 3. Distributed Graph Pattern Matching 78

 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

35K 75K 115K 155K 195K 235K 275K 315K

T
im

e(
se

co
nd

)

MRdRPQ+[Q1]
MRdRPQ+[Q2]
MRdRPQ+[Q3]
MRdRPQ+[Q4]

(a) varying fragment size

 10

 20

 30

 40

 50

 60

 70

5 10 15 20 25 30

T
im

e(
se

co
nd

)

MRdRPQ+[Q1]
MRdRPQ+[Q2]
MRdRPQ+[Q3]
MRdRPQ+[Q4]

(b) varying mapper number

Figure 3.15: Efficiency of MRdRPQ

outperformsdisRPQd.

Exp-4: Efficiency ofMRdRPQ. Finally, we evaluated the efficiency and scalability of

MRdRPQ, implemented usingHadoop (http://hadoop.apache.org), and deployed on

Amazon EC2, where each instance serves as a mapper. We useYoutube and four sets

of qrr Q1, Q2, Q3,Q4 of different complexities(4,6,8), (6,8,8), (10,12,8), (12,14,8),

respectively.

To evaluate the scalability ofMRdRPQ, we fixed the number of mappers as 10, and

varied the graph size from 350K to 3.15M. As shown in Fig. 3.15(a),MRdRPQ scales

well with size(F). Moreover, the largersize(F) is or the more complex a query is, the

longer timeMRdRPQ takes, as expected. To evaluate its scalability with the number

|M| of mappers, we varied|M| from 5 to 30. As shown in Fig. 3.15(b), it takes less

time of MRdRPQ to evaluate queries with more mappers. Indeed, the time taken by

MRdRPQ using 5 mappers is reduced by 50% when 30 mappers are used forQ1.

We also find thatdisRPQ takes 17.4% of the running time ofMRdRPQ and 3.7%

of its network traffic onYoutube. The extra cost ofMRdRPQ is incurred in the Map

phase of theMapReduce framework, for distributing data to mappers.

Summary. From the experimental results we find the following. (1) All of our algo-

rithms scale well with the size of graphs, the number of fragments, and the complexity

of queries (fordisRPQ andMRdRPQ). (2) Our algorithms are efficient even onran-

domlypartitioned graphs. For instance, (a)disReach takes 20% and 6% of the running

time ofdisReachn anddisReachm overAmazon, and takes in average 4 seconds over all

real life datasets; and (b)disRPQ takes 67.8% and 46% of the time ofdisRPQd [Suc02],

and ships 47.9% and 45.9% of the data sent bydisRPQd, on real-life and synthetic

graphs in average, respectively. Overall our algorithms ship no more than 11% of the

Chapter 3. Distributed Graph Pattern Matching 79

entire graphs in average. (3) Partial evaluation works wellin theMapReduce model,

as verified by the performance ofMRdRPQ.

3.5 Related Work

We categorize related work as follows.

Distributed databases. A variety of distributed database systems have been developed.

(1) Distributed relational databases (see [OV99]) can store graphs in distributed rela-

tional tables, but do not support efficient graph query evaluation [F.C08, DHJ+07]. (2)

Non-relational distributed data storage manage distributed data via various data struc-

tures,e.g.,sorted map [Cha08], key/value pairs [DHJ+07]. These systems are built

forprimary-key only operations [F.C08, DHJ+07], or simple graph queries (e.g.,de-

gree, neighborhood)1, but do not efficiently support distributed reachability queries.

(3) Distributed graph databases. Neo4j6 is a graph database optimized for graph

traversal. Trinity7 and HyperGraphDB8 are distributed systems based on hypergraphs.

Unfortunately, they do not support efficient distributed (regular) reachability queries.

Closer to our work is Pregel [MAB+10], a distributed graph querying system based

on message passing It partitions a graph into clusters, and selects a master machine to

assign each part to a slave machine. A graph algorithm allows(a) the nodes in each

slave machine to send messages to each other, and (b) the master machine to commu-

nicate with slave machines. Several algorithms (distance,etc.) supported by Pregel

are addressed in [MAB+10]. Similar message-sending approaches are also developed

in [GL05]. These algorithms differ from ours as follows. (a)In contrast to our al-

gorithms, the message passing model in Pregel may serializeoperations that can be

conducted in parallel, and have no bound on the number of visits to each site, as shown

by our experimental study (Section 3.4). (b) How to support regular reachability query

is not studied in [MAB+10]. On the other hand, the techniques of Pregel can be com-

bined with partial evaluation to support local processing of reachability queries at each

site (see Section 3.2.1).

Distributed graph query evaluation. Several algorithms have been developed for evalu-

ating queries on distributed graphs (see [Kos00] for a survey). (1) Querying distributed

trees [BCFK06, CFK07, AK07]. Partial evaluation is used to evaluate XPath queries

6http://neo4j.org/
7http://research.microsoft.com/en-us/projects/trinity/
8http://www.kobrix.com/hgdb.jsp

Chapter 3. Distributed Graph Pattern Matching 80

on distributedXML data modeled as trees [BCFK06, CFK07], as well as for evaluating

regular path queries [AK07]. It is nontrivial, however, to extend these algorithms to

deal with (possiblycyclic) graphs. Indeed, the network traffic of [BCFK06, CFK07] is

bounded bythe number of fragmentsand the size of the query, in contrast tothe number

of nodeswith edges to different fragments in our setting. Moreover,we study (regu-

lar) reachability queries, which are quite different from XPath. Finally, our algorithms

only visit each site once, while in [AK07] each site may be visited multiple times. (2)

Querying distributed semi-structured data [Suc02, ST09, Sev, GL05]. Techniques for

evaluating regular path queries on distributed, edge-labeled, rooted graphs are studied

in [Suc02] and extended in [ST09], based on message passing.It is guaranteed that the

total network traffic is bounded byn2, wheren is the number of edges across different

sites. A distributedBFS algorithm is given in [Sev], which takes nearly cubic time in

graph size, and a table of exponential size to achieve a linear time complexity, and is

impractical for large graphs. These differ from our algorithms as follows. (a) Our al-

gorithms guarantee that each site is visitedonly once, as opposed totwice[Suc02]. (b)

As remarked earlier, message passing may unnecessarily serialize operations, while

our algorithms explore parallelism via partial evaluation. While an analysis of compu-

tational cost is not given in [Suc02, ST09], We show experimentally that our algorithms

outperform theirs (Section 3.4).

There has also been recent work on evaluatingSPARQLqueries on distributedRDF

graphs [FFP08], which is not applicaple to our setting due to(a) no performance guar-

antees or complexity bounds are provided in [FFP08], and (b)the queries considered

in [FFP08] are expressible inFO, while we study (regular) reachability queries beyond

FO.

Chapter 4

Graph Pattern Matching Using Views

Answering queries using views has proven an effective technique for querying rela-

tional data, XML and semistructured data. In this chapter, we investigate this issue for

graph pattern matching based on (bounded) simulation, which have been increasingly

used in social network analysis. We propose a notion ofpattern containmentto char-

acterize graph pattern matching using graph pattern views.We show that graph pattern

matching can be answered using a set of views if and only if thepattern is contained in

the views. Based on this characterization we develop efficient algorithms to compute

graph pattern matching. In addition, we identify three problems associated with graph

pattern containment. We show that these problems range fromquadratic-time to NP-

complete, and provide efficient algorithms for containmentchecking (approximation

when the problem is intractable). Using real-life data and synthetic data, we experi-

mentally verify that these methods are able to efficiently answer graph pattern queries

on large social graphs, by using views.

4.1 Introduction

Answering queries using views has been extensively studiedfor relational

queries [Hal01, Len02, Hal00], XML [LWZ06, WLY11, WTW09] and semistructured

data [CGLV00, PV99, ZGM98]. Given a queryQ and a setV = {V1, . . . ,Vn} of views,

it is to find another queryA such thatA is equivalent toQ, andA only refers to views

in V [Hal00]. This yields an effective technique for evaluatingQ: if such a query

A exists, then given a databaseD, one can compute the answerQ(D) to Q in D by

usingA, which uses only the data in the materialized viewsVi(D), without accessing

D. This is particular effective whenD is large and/or distributed. It is also useful

81

Chapter 4. Graph Pattern Matching Using Views 82

Walt

PM

Mary

DBA

Jean

BA

(a) Recommendation network G

Emmy

ST

Fred

DBA

Dan

PRG

(b) Views V and V(G)

PM

PRG

DBABob

PM

Pat

PRG

Bill

PRG

V1

PRG1

DBA1

PM

(c) Pattern Qs

Mat

DBA

e1

e2

V1(G)

PRG

DBA

V2

e3 e4

V2(G)

DBA2

PRG2

Bob->Mat

Walt->Mat

Bob->Dan

Walt->Bill

Se1

Se2

Fred->Pat

Mat->Pat

Mary->Bill

Dan->Fred

Pat->Mary

Pat->Mat

Bill->Mat

Se3

Se4

Figure 4.1: Data graph, views and pattern queries

in data integration [Len02], data warehousing, semantic caching [CR94], and access

control [FCG04].

Example 4.1: A fraction of a recommendation network is depicted as a graphG in

Fig. 4.1 (a), where each node denotes a person with name and job title (e.g.,project

manager (PM), database administrator (DBA), programmer (PRG), business analyst (BA)

and software tester (ST)); and each edge indicates collaboration,e.g.,(Bob, Dan) indi-

cates thatDan worked well withBob on a project led byBob.

To build a team, a human resource manager issues a pattern query [LLT11, TM05].

The query, expressed asQs in Fig. 4.1 (c), is to find a group ofPM, DBA and PRG.

It requires that (1)DBA1 and PRG2 worked well under the project managerPM; (2)

eachPRG (resp.DBA) had been supervised by aDBA (resp.PRG), represented as a

collaboration cycle [LLT11] inQs. With pattern matching based on graph simula-

tion [FLM+10, HHK95], the answerQs(G) to Qs in G can be denoted as a set of

pairs(e,Se) such that for each pattern edgee in Qs, Se is a set of edges (a match set)

for e in G. For example, pattern edge(PM,PRG2) has a match setSe = {(Bob, Dan),

(Walt, Bill)}, in which each edge matches the node labels and satisfies the connectivity

constraints of the pattern edge(PM,PRG2).

It is known that it takesO(|Qs|
2+ |Qs||G|+ |G|2) time to computeQs(G) [HHK95,

FLM+10], where|G| (resp. |Qs|) is the size ofG (resp.Qs). This is a daunting

cost whenG is large. For example, to identify the match set of each pattern edge

(DBAi ,PRGi) (for i ∈ [1,2]), each pair of (DBA, PRG) in G has to be checked, and more-

over, a number ofjoin operations have to be performed to eliminate invalid matches.

We can do better by leveraging a set ofviews. Suppose that a set of views

V = {V1,V2} is defined, materialized and cached (V (G) = {V1(G),V2(G)}), as

shown in Fig. 4.1 (b). Then as will be shown later, to computeQs(G), (1) we only

Chapter 4. Graph Pattern Matching Using Views 83

need to visit views inV (G), without accessing the original large graphG; and (2)

Qs(G) can be efficiently computed by “merging” views inV (G). Indeed,V (G) al-

ready contains partial answers toQs in G: for each query edgee in Qs, the matches

of e (e.g.,(DBA1,PRG1)) are contained either inV1(G) or V2(G) (e.g.,the matches of

e3 in V2). These partial answers can be used to constructQs(G). As a result, the cost

of computingQs(G) is quadratic in|Qs| and |V (G)|, whereV (G) is typically much

smaller than G. ✷

This example suggests that we conduct graph pattern matching by capitalizing on

available views. To do this, several questions have to be settled. (1) How to decide

whether a pattern queryQs can be answered by a setV of views? (2) If so, how to

efficiently computeQs(G) from V (G)? (3) Which views inV should we choose to

answerQs?

4.2 Preliminary

We first review graph pattern matching defined in terms of simulation. We then state

the problem of pattern matching using views.

4.2.1 Graph Pattern Matching Revisited

In this chapter we will use a different definition for data graphs, which is extended

from the previous definition.

Data graphs. A data graphis a directed graphG = (V,E,L), whereV, E are defined as

before , whileL is a function such that for each nodev in V, L(v) is a set of labels from

an alphabetΣ. Intuitively, L specifies the attributes of a node,e.g.,name, keywords,

social roles [AYBB07].

Pattern graphs. Thepattern graphis defined the same as in Chapter 1. While we shall

useQs to denote normal pattern,i.e.,pattern graph withfe(e) = 1 for eache in Qs, to

distinguish a regular patternQb, with edge bound specified byfe(e). More notions

used in the chapter are summarized in Table 4.1.

We next define graph pattern matching via simulation as following.

Graph pattern matching via simulation.We say that a data graphG= (V,E,L)matches

a queryQs = (Vp,Ep, fv) via simulation, denoted byQsEsimG, if there exists a binary

relationS⊆Vp×V such that (1) for each nodeu∈Vp, there exists a nodev∈V such

Chapter 4. Graph Pattern Matching Using Views 84

symbols notations

V (resp.Vp) node set in graph (resp. pattern query)

V (resp.V(G)) a view definition (resp. extension)

V = (V1, . . . ,Vn) a set of view definitions

V (G) = (V1(G), . . . ,Vn(G)) a set of view extensions

|Qs| (resp.|Qb|) size of queryQs (resp.Qb)

|Qs(G)| (resp.|Qb(G)|) size of query resultQs(G) (respQb(G))

|V | size of a set of view definitions

card(V) cardinality ofV

QsEsimG (resp.QbE
B
simG) graph simulation (resp. bounded simulation)

Qs ⊑ V (resp.Qb ⊑ V) Qs (resp.Qb) is contained inV

MQs

V (resp.MQb

V) view match from a viewV toQs (resp.Qb)

Table 4.1: Notations: graphs, pattern queries and views

that(u,v)∈ S, referred to as amatchof u; and (2) for each pair(u,v)∈ S, fv(u)∈ L(v),

and for each pattern edgee= (u,u′) in Ep, there exists an edge(v,v′) in E, referred to

as amatchof e in S, such that(u′,v′) ∈ S. We refer toSas amatchin G for Qs.

WhenQsEsimG, there exists aunique maximummatchSo in G for Qs [HHK95].

We derive{(e,Se) | e∈Ep} from So, whereSe is the set of all matches ofe in So, called

the match setof e. Note thatSe is nonemptyfor all e∈ Ep.

We define theresultof Qs in G, denoted asQs(G), to be the unique maximum set

{(e,Se) | e∈ Ep} if QsEsimG, and letQs(G) = /0 otherwise. We define the size of

queryQs, denoted by|Qs|, to be the total number of nodes and edges inQs, and the

size|Qs(G)| of resultQs(G) to be the total number of edges in setsSe for all edgese

in Qs (see Table 4.1).

Example 4.2:Consider the pattern queryQs shown in Fig. 4.1 (c), where each pattern

node carries a search condition (job title), and each pattern edge indicates collaboration

relationship between two people. WhenQs is posed on the networkG of Fig. 4.1 (a),

the resultQs(G) is shown in the table below:

Indeed, (1) bothBob andWalt are matches of pattern nodePM as they satisfy the

search condition ofPM; similarly, Fred, Mat, Mary are matches ofDBA, andDan, Pat, Bill

are matches ofPRG; (2) query edge(PM, DBA1) has two matches inG; and (3) query

edges(DBA1, PRG1) and(DBA2, PRG2) (resp.(PRG1,DBA2) and(PRG2,DBA1)) have

the same matches, as they are “structural equivalent”.

Chapter 4. Graph Pattern Matching Using Views 85

Edge Matches

(PM, DBA1) {(Bob, Mat), (Walt, Mat)}

(PM, PRG2) {(Bob, Dan), (Walt, Bill)}

(DBA1, PRG1)
{(Fred, Pat), (Mat,Pat), (Mary,Bill)}

(DBA2, PRG2)

(PRG1, DBA2) {(Dan, Fred), (Pat, Mary),

(PRG2,DBA1) (Pat, Mat), (Bill, Mat)}

✷

4.2.2 Graph Pattern Matching Using Views

We next formulate the problem of graph pattern matching using views. We studyviews

V defined as a graph pattern query, and refer to the query resultV(G) in a data graph

G as theview extensionin G or simply as aview[Hal00].

Given a pattern queryQs and asetV = {V1, . . . ,Vn} of view definitions,graph

pattern matching using viewsis to find another queryA such that (1)A is equivalent

to Qs, i.e., A(G) = Qs(G) for all data graphsG; and (2)A only refers to viewsVi ∈ V

and their extensionsV (G) = {V1(G), . . . ,Vn(G)} in G, without accessingG. If such a

queryA exists, we say thatQs can be answered usingV .

Observe that in contrast to query rewriting using views [Hal00] but along the same

lines as query answering using views [Len02], hereA is not required to be a pattern

query.

Example 4.3:Figure 4.1 (b) depicts a set of view definitionsV = {V1,V2} and exten-

sionsV (G) = {V1(G),V2(G)}. To answer the queryQs of Fig. 4.1 (c) usingV , we

want to find a queryA of Qs that computesQs(G) by using onlyV andV (G). HereA

is not necessarily a graph pattern. ✷

For a setV of view definitions, we define the size|V | of V to be the total size of

Vi ’s in V , and the cardinalitycard(V) of V to be the number of view definitions inV .

Remark. (1) We assumew.l.o.g.that pattern graphs are connected, since isolated pat-

tern nodes are be easily handled using the same matching semantic. (2) Our techniques

can be readily extended to graphs and queries with edge labels. Indeed, an edge labeled

graphG= (V,E,L, fe), wherefe is a function that labels edges inE can be transformed

to beG′ = (V ′,E′,L′) such thatV ⊆ V ′, E ⊆ E′ and for each edgee= (u,u′) ∈ E, a

new nodeve with L′(ve) = fe(e) is included inV ′, along with edges(u,ve) and(ve,u′)

Chapter 4. Graph Pattern Matching Using Views 86

Input: A pattern queryQs, a set of view definitionsV

and their extensionsV (G), a mappingλ.

Output: The query resultM asQs(G).

1. for each edgee in Qs do Se := /0;

2. M := {(e,Se) | e∈ Qs};

3. for each e∈ Qs do

4. for each e′ ∈ λ(e) do Se := Se∪Se′ ;

5. while there is change inSep for an edgeep = (u,u′′) in Qs do

6. for each e= (u′,u) in Qs ande′ = (v′,v) ∈ Se do

7. if there ise1 = (u′,u1) but noe′1 = (v′,v1) in Se1 then

8. Se := Se\{e′};

9. if there ise2 = (u,u2) but noe′2 = (v,v2) in Se2 then

10. Se := Se\{e′};

11. if Se = /0 then return /0;

12. return M = {(e,Se) | e∈ Qs}, which isQs(G);

Figure 4.2: Algorithm MatchJoin

in E′.

4.3 Pattern Containment: A Characterization

In this section we propose a characterization of graph pattern matching using views,

i.e., a sufficient and necessarycondition for deciding whether a pattern query can be

answered by using a set of views. We also provide a quadratic-time algorithm for

answering pattern queries using views.

Pattern containment. We introduce a notion of pattern containment, by extending

the traditional notion of query containment to a set of views. Consider a pattern query

Qs= (Vp,Ep, fv) and a setV = {V1, . . . ,Vn} of view definitions, whereVi = (Vi,Ei , fi).

We say thatQs is containedin V , denoted byQs ⊑ V , if there exists a mapping

λ from Ep to powersetP (
⋃

i∈[1,n]Ei), such that for all data graphsG, the match set

Se⊆
⋃

e′∈λ(e)Se′ for all edgese∈ Ep.

Example 4.4: Recall graphG, viewsV = {V1,V2} and queryQs from Example 1.

ThenQs ⊑ V . Indeed, there exists a mappingλ from the edges inQs to sets of edges

in V , which maps edges(PM,DBA1), (PM,PRG2) of Qs to their counterparts inV1; and

Chapter 4. Graph Pattern Matching Using Views 87

both(DBA1,PRG1) and(DBA2,PRG2) of Qs to edgee3 in V2, while (PRG1,DBA2) and

(PRG2,DBA1) to e4 (see Fig. 4.1(b)). One may verify that for all graphsG and any

query edgee of Qs, its matches inG are contained in the union of the match sets of

the edges inλ(e). For example, the match set of pattern edge(DBA1,PRG1) in G of

Fig. 4.1(a) is{(Fred,Pat),(Mat,Pat),(Mary,Bill)}, which is contained in the match set of

the view edge(DBA,PRG) of V2 in G. ✷

Note that the traditional notion of query containment [AHV95] is a special case

of pattern containment, whenV consists of a single viewV1, as will be elaborated in

Section 4.4.

Pattern containment and query answering. The main result of this section is as

follows: (1) pattern containment indeed characterizes pattern matching using views;

and (2) whenQs ⊑ V , for all graphsG, Qs(G) can be efficiently computed by using

viewsV (G) only, independent of|G|. In Sections 4.4 and 4.5 we will show how to

decide whetherQs ⊑ V by inspectingQs andV only, alsoindependent of|G|.

Theorem 4.3.1 (1) A pattern queryQs can be answered using viewsV if and only if

Qs ⊑ V . (2) For any graph G,Qs(G) can be computed in O(|Qs||V (G)|+ |V (G)|2)

time ifQs ⊑ V .

Proof of Theorem 4.3.1(1). We provide a detailed proof.

(I) We first prove theOnly If direction. Observe that the condition already holds for

any data graphG that does not matchQs. Indeed, ifG does not matchQs, then (1)

Qs ⊑ V , we can define a mappingλ that maps each edgee in Qs to an arbitrary edge

e′ in V , andSe = /0 ⊆
⋃

e′∈λ(e)Se′, and (2)Qs can be answered usingV by simply

removing all the matches fromV (G), yieldingQs(G) = /0.

We now prove theOnly If condition for all data graphsG that matchQs, by con-

tradiction. Assume thatQs can be answered usingV , while Qs 6⊑ V . By definition,

Qs 6⊑ V indicates that for some data graphG that matchesQs, there exists no mapping

λ such thatSe ⊆
⋃

e′∈λ(e)Se′ for all edgee in Qs, wheree′ is an edge in someVi ∈ V .

Thus, there must exist at least an edgeeo in G such thateo is in Se for some edgee in

Qs, but it is not inSe′ for anye′ ∈ λ(e). That is,eo cannot be included inSe′ for any

e′ ∈ λ(e). Henceeo is not contained inVi(G) for anyVi ∈ V . This contradicts the

assumption thatQs can be answered using onlyV , since at least the edgeeo is missing

from V (G).

Chapter 4. Graph Pattern Matching Using Views 88

Thus,Qs can be answered usingV only ifQs ⊑ V .

(II) The If condition states that ifQs ⊑ V , Qs can be answered usingV . Algo-

rithmMatchJoin has been provided as an constructive proof. We show thatMatchJoin

is correct.

Denote the match set inG as S∗e for each edgee in Qs. It suffices to show the

correctness ofMatchJoin by proving the following two invariants it preserves: (1) at

any time, for each edgee of Qs, S∗e ⊆ Se; and (2)Se = S∗e whenMatchJoin terminates.

For if these hold, thenMatchJoin never misses any match or introduces any invalid

match when it terminates. We next prove the two invariants.

Proof of Invariant(1) . ByQs⊑ V , there exists a mappingλ such thatSe⊆
⋃

e′∈λ(e)Se′.

Algorithm MatchJoin takes as inputλ, Qs andV (Fig. 4.2). (1) For each edgee in

Qs, it initializes Se by mergingSe′ for all e′ ∈ λ(e). HenceS∗e ⊆ Se due toQs ⊑ V .

(2) During thewhile loop (lines 5-10, Fig. 4.2),MatchJoin repeatedly refinesSe by

removing invalid matches that are no longer valid accordingto the definition of graph

simulation. More specifically, for an edgeep = (u,u′′) in Qs with Sep changed, the

matchese′ = (v′,v) ∈ Se for all e= (u′,u) in Qs become invalid if (a) there is an edge

e1 = (u′,u1) in Qs but there exists no match(v′,v1) ∈ Se1 (lines 7-8); or (b) there is

an edgee2 = (u,u2) in Qs but there exists no match(v,v2) ∈ Se2 (lines 9-10). Note

that (i) both cases indicate that at least a match becomes invalid, and (ii) there exist no

other cases that makes a match invalid, by the definition of graph simulation. In other

words,MatchJoin neverremoves a true match, andnevermisses an invalid match by

checking the two conditions. Thus,S∗e ⊆ Se during the loop (lines 5-10).

Proof of Invariant(2) . WhenMatchJoin terminates, either (1)Se becomes empty

(line 11), or (2) no invalid match can be found. SinceS∗e ⊆ Se during the loop (Invari-

ant (1)), if it is case (1), then for some edgee, S∗e is empty. That is,G does not match

Qs, andMatchJoin returns/0 correctly. Otherwise,i.e., in case(2), all invalid matches

are removed (lines 7-10), andS∗e = Se whenMatchJoin terminates, for alle in Qs.

From the analysis above, the correctness ofMatchJoin follows. That is, theI f

condition is verified.

Putting these together, we have shown Theorem 4.3.1(1).

Proof of Theorem 4.3.1(2). As we have seen above, AlgorithmMatchJoin correctly

computesQs(G) whenQs ⊑ V . To complete the proof of Theorem 4.3.1(2), we pro-

Chapter 4. Graph Pattern Matching Using Views 89

vide the time complexity analysis for AlgorithmMatchJoin as follows.

(1) It takesMatchJoin O(|Qs|) time to initialize an empty result setM (lines 1-2).

MatchJoin next merges matches inV (G) according to the mappingλ (lines 3-4). Note

that the size ofλ(e) is at mostΣV∈V |V|, which is bounded byO(|V |). Hence the

merge process is inO(|Qs||V |) time.

(2) MatchJoin next iteratively removes invalid matches by conducting afixpointcom-

putation (lines 5-11). Given a match(v′,v) in V (G), MatchJoin verifies its valid-

ity, i.e., whether it carries over toQs(G), in O(|V (G)|) time; this is because at most

Σe1=(u′,u1)∈Ep
Se1 + Σe2=(u,u2)∈Ep

Se2 matches have to be inspected, which is bounded by

O(|V (G)|). To speed up the validity checking,MatchJoin employs an index structure

I as a hash-table, which keeps track of a set of key-value pair.Each key is a pair of

nodes(u,v), whereu is in Qs andv can matchu. Each value corresponding to the key

(u,v) is a set of pattern edges and their match set pairs(e= (u,u1),Se). The index

structure dynamically maintains the key-value pair: (1) for each nodev, if there exists

an edgee emitting fromu with Se = /0, thenI (u,v) is set as/0, and (2) given a match

(v,v′) of e, if I (u,v) is already empty, no further checking is needed, and(v,v′) can

be removed fromSe. Following this, it takesMatchJoin constant time to check the

validity of a match(v′,v).

Observe that when a match is removed fromV (G), it will never be put back,i.e.,

V (G) is monotonically decreasing. Thus each match inV (G) is processed at most

once. In addition, the indexI can be initialized inO(|Qs||V (G)|) time. As a result,

thewhile loop (line 5) andfor loop (line 6) together are bounded byO(|V (G)|2) time.

Putting these together,MatchJoin is in O(|Qs||V (G)|+ |V (G)|2) time.

These complete the proof of Theorem 4.3.1.

Algorithm . The algorithm, denoted asMatchJoin, is shown in Fig. 4.2. It takes as

input (1) a pattern queryQs and a set of view definitionsV = {V1, . . . ,Vn}, (2) a

mappingλ for Qs ⊑ V (we defer the computation ofλ to Section 4.5); and (3) view

extensionsV (G) = {Vi(G) | i ∈ [1,n]}. In a nutshell, it computesQs(G) by “merging”

(joining) viewsVi(G) as guided byλ. The merge process removes those edges that

are not matches ofQs. When such edges are removed, more matches inV are found

invalid for Qs, and are propagated to further eliminate invalid matches. This process

proceeds untila fixpointis reached andQs(G) is correctly computed.

More specifically, algorithmMatchJoin works as follows. It first initializes, for

Chapter 4. Graph Pattern Matching Using Views 90

DB1

PM1AI2DB2

SE2

AI1

SE1

AI

Bio SEAI

DB

DB

Bio SE

AI

PM

V1 V2

PM

(a) Graph G

(b) View definitions and extensions

(c) Pattern query Qs

Bio1

e1 e2
e3

e4

e5

Se1

Se2

AI2->Bio1

PM1->AI2

V1(G) V2(G)

Se3

Se4

Se5

DB1->AI2
DB2->AI2
AI1->SE1

AI2->SE2

SE1->DB2

SE2->DB1

Figure 4.3: Answering pattern queries using views

each pattern edgeeof Qs, an empty match setSe (line 1), and adds(e,Se) to M (line 2).

Recall thatλ(e) is a set of edges fromV such thatSe ⊆
⋃

e′∈λ(e)Se′ . MatchJoin letsSe

:=
⋃

e′∈λ(e)Se′, whereSe′ is extracted fromV (G) (lines 3-4). It then performs a fixpoint

computation to remove all invalid matches fromSe (lines 5-10). More specifically, for

a pattern edgeep = (u,u′′) in Qs with changed match setSe, it checks for each edge

e= (u′,u) in Qs, whethere′ = (v′,v) is a match ofe, i.e., whether for each edgee1 =

(u′,u1) (resp.e2 = (u,u2)) in Qs, there exists a match(v′,v1) ∈ Se1 (resp.(v,v2) ∈ Se2)

(line 7) (resp. line 9). Ife′ violates the conditions, it is no longer a match, and is

removed fromSe (lines 8,10). In the process, ifSe becomes empty for some edgee,

MatchJoin returns/0 sinceQs has no match inG. Otherwise, the process (lines 5-11)

proceeds untilM=Qs(G) is computed and returned (line 12).

Example 4.5:Recall graphG, queryQs, view definitionsV and their extensionsV (G)

shown in Fig. 4.1. ThenMatchJoin can evaluateQs by usingV andV (G). The

algorithm takes as an input the mappingλ given in Example 4.4. One may verify that

in this case, for each edgee of Qs, its match setSe in G is exactly
⋃

e′∈λ(e)Se′. From

thisQs(G) is obtained, which is the same as the result shown in Example 4.2.

Edge Matches Edge Matches

(PM,AI) (PM1,AI2) (AI,Bio) (AI2,Bio1)

(DB,AI) (DB1,AI2) (AI,SE) (AI2,SE2)

(SE,DB) (SE2,DB1)

Consider another example shown in Fig. 4.3. One can verifyQs ⊑ V here, with a

mappingλ that maps(AI, Bio) and(PM, AI) toe1 ande2 inV1, respectively; and(DB, AI),

(AI, SE) and(SE, DB) toe3, e4 ande5 inV2, respectively. The algorithm initializesM by

mergingV1(G) andV2(G). It finds that(AI1,SE1) is not a valid match of pattern edge

Chapter 4. Graph Pattern Matching Using Views 91

(AI,SE), since there exists no valid match(AI1,v1) in Se1. Hence(AI1,SE1) is removed

from Se4, which also leads to the removal of(SE1,DB2) from Se5 and(DB2,AI2) from

Se3. This yieldsQs(G) shown in the table above as the final result. ✷

Correctness & Complexity. To see thatMatchJoin correctly computes query result

Qs(G) by only using viewsV (G), we denote the match set ofe in G asS∗e for each

edgee in Qs, and show thatMatchJoin preserves the following two invariants: (1)

at any time, for each edgee of Qs, S∗e ⊆ Se, and (2)Se = S∗e whenMatchJoin termi-

nates. Indeed,Se is initialized with
⋃

e′∈λ(e)Se′ , and sinceQs ⊑ V , S∗e ⊆ Se. During

thewhile loop (lines 5-10),MatchJoin only identifies and removes those edges from

Se that are not valid matches ofe. EachSe is refined until all invalid matches are re-

moved (lines 8,10), and henceSe = S∗e when the algorithm terminates. From these the

correctness ofMatchJoin follows.

For the complexity, it takesO(|Qs|) time to initializeM (lines 1-2) andO(|Qs||V |)

time to merge matches according toλ (lines 3-4). To efficiently process thefixpoint

computation,MatchJoin constructs an index structureI , which maps a pair(u,v) (u∈

Vp, v can matchu) to a set of pairs(e= (u,u1),Se) for each edge(u,u1) ∈ Qs, such

that(v,v1) ∈ Se. For a nodev, if there is an edgee emitting fromu with Se = /0, then

I (u,v)= /0. One may verify thatI can be constructed inO(|Qs||V (G)|) time. By using

I , MatchJoin identifies invalid matches by checking whetherI (u,v) is /0. If I (u,v) is

already empty, no further process (lines 7-10) is needed.MatchJoin verifies the validity

of (v′,v) in V (G), in O(|V (G)|) time, since at mostΣe1=(u′,u1)∈Ep
Se1 + Σe2=(u,u2)∈Ep

Se2

matches have to be inspected, which are bounded byO(|V (G)|). Hence, thewhile

loop (line 5) is bounded byO(|V (G)|2) time. Putting these together,MatchJoin is in

O(|Qs||V (G)|+ |V (G)|2) time.

The analysis above completes the proof of Theorem 4.3.1.

Remark. It is known that computingQs(G) directly in G takesO(|Qs|
2+ |Qs||G|+

|G|2) time [FLM+10]. In contrast,MatchJoin is in O(|Qs||V (G)|+ |V (G)|2) time,

withoutaccessingG. As will be seen in Section 4.7,V (G) is much smaller thanG,

andMatchJoin is more efficient than the algorithm of [FLM+10]. Indeed, forYoutube

dataset in our experiments, only 3 to 6 views are used to answer Qs, and the overall

size ofV (G) is no more than 4% of the size of theYoutubegraph.

Optimization. To remove invalid matches, the fixpoint computation ofMatchJoin

may visit eachSe multiple times. To reduce unnecessary visits, below we introduce an

Chapter 4. Graph Pattern Matching Using Views 92

optimization strategy forMatchJoin.

The strategy evaluatesQs by using atopological rankin Qs as follows. Given a pat-

ternQs, the strongly connected component graphGSCC of Qs is obtained by shrinking

each strongly connected componentSCC of Qs into a single nodes(u). Thetopologi-

cal rank r(u) of each nodeu in Qs is computed as follows: (a)r(u) = 0 if s(u) is a leaf

in GSCC, whereu is in theSCC s(u); and (b)r(u) = max{(1+ r(u′)) | (s(u),s(u′)) ∈

ESCC} otherwise. HereESCC is the edge set of theGSCC of Qs. The topological rank

r(e) of an edgee= (u′,u) in Qs is set to ber(u).

Bottom-up strategy. We reviseMatchJoin by processing edgese in Qs following an as-

cending order of their topological ranks (lines 5-11). One may verify that this “bottom-

up” strategy guarantees the following for the number of visit.

Lemma 4.3.2:For all edges e =(u′,u), where u′ and u do not reach any non-singleton

SCC in Qs,MatchJoin visits its match set Se at most once, using the bottom-up strategy.

✷

Proof of Lemma 4.3.2. We show Lemma 4.3.2 by contradiction. Assume that algo-

rithmMatchJoin visits an edgee= (u′,u) at least twice. We show that eitherMatchJoin

does not follow a bottom-up strategy in the rank order, or at leastu or u′ reaches a non-

singletonSCC in Qs. To show this, we define atraceas a sequence(e1, . . . ,en) formed

by the edges inQs thatMatchJoin visited in the process,i.e., it visits edgee1, . . ., en

one by one in this order (line 5). Assume that edgee in Qs is visited twice. Then there

must existk<l andk, l ∈ [1,n] such thate= ek = el . Nonetheless, this can only happen

in one of the following two cases.

(1) The ranks of the nodes in the trace are unordered. If so, the trace can be arbitrarily

large and any edgee may appear in the trace for multiple times. This contradictsthat

MatchJoin follows a bottom-up strategy and thatG is finite.

(2) The ranks of the nodes in the trace are ordered,i.e.,for anyi, j ∈ [1,n], if i ≤ j then

r(ei) ≤ r(ej). Thus, for anyi, j ∈ [k, l], r(ei) = r(ej), asr(ek) = r(el) = r(e). Observe

thate is visited only whenSe is changed (line 5), and only those edges “adjacent” toe

(i.e., sharing an endpoint) are visited. Hence there must exist at least a sub-sequence

from some edgeei (i ≥ k) in the trace that corresponds to a cycle inQs, and all the

nodes in the cycle have the same rank. More specifically, either (a) if k = i, edgeei

is in the cycle, and nodesu andu′ are in a nontrivialSCC, or (b) if k > i, then the

nodeu′ must have at least a descendant in a nontrivialSCC. Both cases lead to the

Chapter 4. Graph Pattern Matching Using Views 93

contradiction thatu andu′ do not reach any non-singletonSCC in Qs.

HenceMatchJoin visits the edges inQs that cannot reach any non-singletonSCC

at most once, following the bottom-up strategy. Lemma 4.3.2thus follows.

In particular, whenQs is aDAG pattern query (i.e.,acyclic),MatchJoin visits each

match set at most once, and the total visits are bounded by thenumber of the edges in

Qs. As will be verified in Section 4.7, the optimization strategy improves the perfor-

mance by at least 46% overDAG patterns, and is even more effective over denser data

graphs.

Example 4.6:Consider the patternQs and the viewsV = {V1,V2} shown in Fig. 4.3.

The topological ranks of the nodes inQs are r(Bio) = 0, r(DB) = r(AI) = r(SE) = 1

andr(PM) = 2. Thus we visit(AI,Bio), (AI,SE), (SE,DB), (DB,AI) and(PM,AI) in this

order. ✷

4.4 Pattern Containment Problems

We have seen that given a pattern queryQs and a setV of views, we can efficiently

answerQs by using the views whenQs ⊑ V , provided a mappingλ from Qs to V . In

the next two sections, we study how to determine whetherQs ⊑ V and how to compute

λ. Our main conclusion is that there are efficient algorithms for these, with their costs

as a function of|Qs| and|V |, which are typically small in practice, and areindependent

of data graphs and materialized views.

More specifically, in this section we study three problems inconnection with pat-

tern containment, and establish their complexity. In the next section, we will develop

effective algorithms for checkingQs ⊑ V and computingλ.

Pattern containment problem. The pattern containment problemis to determine,

given a pattern queryQs and a setV of view definitions, whetherQs ⊑ V . The need

for studying this problem is evident: Theorem 4.3.1 tells usthatQs can be answered

by using views ofV if and only ifQs ⊑ V .

The result below tells us thatQs ⊑ V can be efficiently decided, in quadratic-time

in |Qs| and|V |. We will prove the result in Section 4.5, by providing such analgorithm.

Theorem 4.4.1 Given a pattern queryQs and a setV of view definitions, it is in

O(card(V)|Qs|
2+ |V |2+ |Qs||V |) time to decide whetherQs ⊑ V and if so, to com-

pute a mappingλ fromQs to V , where|V | is the size of view definitions.

Chapter 4. Graph Pattern Matching Using Views 94

Proof of Theorem 4.4.1. As a constructive proof of Theorem 4.4.1, algorithmcontain

has been presented (Section 4.5.1). It suffices to verify thecorrectness and complexity

of algorithmcontain.

Correctness. It suffices to show thatcontain correctly checks the sufficient and nec-

essary condition given in Proposition 4.5.1,i.e., whether the union of all the view

matches fromV “covers” Ep. Indeed, (1)contain correctly computes the view match

for each view definition inV , by using an algorithm to compute graph simulation re-

lation [FLM+10]; and (2) whencontain halts, it correctly determines whetherQs ⊑ V

by checking if the union of the view matches coversEp, following Proposition 4.5.1.

Guaranteed by (1) and (2),contain correctly checks the sufficient and necessary con-

dition in Proposition 4.5.1. The correctness ofcontain then follows from the proof for

Proposition 4.5.1 (as will be shown later in the appendix).

Complexity. Algorithm contain iteratively computesview match MQs

Vi
for each view

definition Vi = (Vi,Ei , fi). It takesO((|Vp|+ |Vi |)(|Ep|+ |Ei |)) time for a single it-

eration. Thefor loop repeatscard(V) times; hence it takescontain ΣVi∈V ((|Vp|+

|Vi|)(|Ep|+ |Ei|)) time in total, which equalscard(V)|Vp||Ep|+ ΣVi∈V
(|Vp||Ei|+

|Ep||Vi|) + ΣVi∈V (|Vi ||Ei|) time. As |Vp| (resp. |Ep|) is bounded by|Qs|, it

can be verified that (1)card(V)|Vp||Ep| is bounded byO(card(V)|Qs|
2); (2)

ΣVi∈V (|Vp||Ei|+ |Ep||Vi|) is bounded byO(|Qs||V |) sinceΣVi∈V (|Ei|+ |Vi|) = |V |;

and (3) ΣVi∈V (|Vi||Ei|) is bounded byΣVi∈V (|Vi|
2), which is further bounded by

O(|V |2). Thus, algorithmcontain is in O(card(V)|Qs|
2+ |V |2+ |Qs||V |) time.

A special case of pattern containment is the classical querycontainment prob-

lem [AHV95]. Given two pattern queriesQs1 andQs2, the latter is to decide whether

Qs1 ⊑Qs2, i.e.,whether for all graphsG,Qs1(G) is contained inQs2(G). Indeed, when

V contains only a single view definitionQs2, pattern containment becomes query con-

tainment. From this and Theorem 4.4.1 the result below immediately follows.

Corollary 4.4.2: The query containment problem for graph pattern queries is in

quadratic time. ✷

Proof of Corollary 4.4.2. Observe thatthe query containment problemis a special

case of pattern containment problem, which allowsV to contain only a single view

definition. By the restriction, the Corollary 4.4.2 followsfrom the complexity analysis

of Algorithm contain given in the proof of Theorem 4.4.1. More specifically, given

two pattern queriesQs1 = (Vp1,Ep1, fv1) andQs2 = (Vp2,Ep2, fv2), it takesO((|Vp1|+

Chapter 4. Graph Pattern Matching Using Views 95

|Vp2|)(|Ep1|+ |Ep2|)) time to verify whetherQs1 ⊑ Qs2, which is thus in quadratic

time of |Qs1| and |Qs2|, as opposed to,e.g., NP-complete for relational conjunctive

queries [AHV95].

Along the same lines as its counterpart for relational queries (see,e.g.,[AHV95]),

the query containment analysis is important in minimizing and optimizing pattern

queries. Corollary 4.4.2 shows that the analysis can be efficiently conducted for graph

patterns, as opposed to the intractability of its counterpart for relational conjunctive

queries [AHV95].

Minimal containment problem . As shown in Section 4.3, the complexity of pattern

matching using views is dominated by|V (G)|. This suggests that we reduce the num-

ber of views used for answeringQs. Indeed, the less views are used, the smaller|V (G)|

is. This gives rise tothe minimal containment problem. GivenQs andV , it is to find a

minimal subsetV ′ of V that containsQs. That is, (1)Qs ⊑ V
′, and (2) for any proper

subsetV ′′ of V ′, Qs 6⊑ V
′′.

The good news is that the minimal containment problem does not make our lives

harder. We will prove the next result in Section 4.5 by developing a quadratic-time

algorithm.

Theorem 4.4.3 GivenQs andV , it is in O(card(V)|Qs|
2+ |V |2+ |Qs||V |) time to

find a minimal subsetV ′ ofV containingQs and a mappingλ fromQs toV ′ if Qs⊑ V .

Proof of Theorem 4.4.3. Algorithm minimal has been presented in Section 4.5 for

the minimal containment problem (Fig. 4.5). To complete theproof of Theorem 4.4.3,

we provide a detailed correctness and complexity analysis of Algorithm minimal as

follows.

Correctness. Given a patternQs and a set of view definitionsV , Algorithmminimal

either returns an empty set indicatingQs 6⊑ V , or a subsetV ′ of V . We show the cor-

rectness ofminimal by proving that (1)minimal always terminates, (2) it only removes

“redundant” view definitionsV′ from V ′, while keepingQs ⊑ V \{V′}, and (3) when

it terminates, no redundant view definition is inV ′.

(1) Algorithmminimal repeats thefor loop (lines 2-7, Fig. 4.5) at mostcard(V) times,

and in each iteration it computes the view match and adds a view definitionVi to a

result setV ′. Algorithmminimal then performs the redundant checking (lines 9-11) to

remove all redundant view definitions, if there exists any. AsV ′ is a finite set, and its

size is monotonically decreasing, the algorithm always terminates.

Chapter 4. Graph Pattern Matching Using Views 96

(2) We show thatminimal only removes “redundant” view definitions. (a) It either

generates a set of view definitionsV ′ in the for loop that containsQs (line 7), or

determinesQs 6⊑ V (line 8). Indeed, each time it computes the view match for a

view definitionVi (line 3), and it addsVi to V ′ only if the corresponding match set

of Vi can cover edges inQs that have not been covered yet. Hence when thefor

loop terminates, one may verify that either the union of the view matches fromV ′

coversEp (line 7), which indicates thatV ′ containsQs, or otherwiseQs 6⊑ V (line 8),

following Proposition 4.5.1. (b) A view definitionV j is removed fromV ′ only when

there already exist other view definitions inV ′ “covering” every pattern edgee∈ MQs

V j

(lines 10-11). Thus,minimal only removes redundant view definitions fromV ′.

(3) When Algorithmminimal terminates, for any view definitionV in V ′, there exists

at least an edgee that can only be introduced byV to coverEp. By Proposition 4.5.1,

this indicates thatQs 6⊑ V \{V} for anyV ∈ V . Thus, minimal returns a minimal set

that containsQs.

Putting these together, the correctness ofminimal follows.

Complexity. Similar to the complexity analysis ofcontain given above, Algo-

rithm minimal takes in totalO(card(V) |Qs|
2 + |V |2 + |Qs||V |) time to compute

all the view matches (line 3, Fig. 4.5). For each view match, the construction time

for the map structureM (line 6) takes in totalO(card(V)|Qs|) time (the outer loop

is conducted at mostcard(V) times). The process for eliminating redundant view

definitions (lines 9-11) takesminimal O(card(V)|Qs|) time. Hence, it is in total

O(card(V)|Qs|
2+ |V |2+ |Qs||V |) time to find a minimal subsetV ′ of V that con-

tainsQs.

The analysis above completes the proof of Theorem 4.4.3.

Minimum containment problem . One might also want to find aminimumsubsetV ′

of V that containsQs. Theminimum containmentproblem, denoted byMCP, is to find

a subsetV ′ of V such that (1)Qs ⊑ V
′, and (2) for any subsetV ′′ of V , if Qs ⊑ V

′′,

thencard(V ′) ≤ card(V ′′).

MCP is, however, nontrivial: its decision problem isNP-complete and it isAPX-

hard. HereAPX is the class of problems that allowPTIME algorithms with approxi-

mation ratio bounded by a constant (see [ACG+99] for APX). Nonetheless, we show

thatMCP is approximable withinO(log|Ep|) in low polynomial time, where|Ep| is

the number of edges ofQs. That is, there exists an efficient algorithm that identifies

Chapter 4. Graph Pattern Matching Using Views 97

a subsetV ′ of V with performance guaranteeswheneverQs ⊑ V such thatQs ⊑ V
′

andcard(V ′) ≤ log(|Ep|) · card(VOPT), whereVOPT is a minimum subset ofV that

containsQs.

Theorem 4.4.4 The minimum containment problem is (1)NP-complete (its de-

cision problem) andAPX-hard, but is (2) approximable within O(log|Ep|) in

O(card(V)|Qs|
2+ |V |2+ |Qs||V |+(|Qs| · card(V))

3/2) time.

Proof of Theorem 4.4.4. We show Theorem 4.4.4(1),i.e., the hardness results be-

low. For Theorem 4.4.4(2), we have presented Algorithmminimum and its complexity

analysis as a constructive proof.

(I) We first show thatMCP is NP-complete. The decision problem ofMCP is to decide,

given an integer boundk, whether there exists a subsetV ′ of V such thatQs ⊑ V
′ and

card(V ′) ≤ k. It is in NP since there exists anNP algorithm, which first guessesV ′,

and then checks whetherQs ⊑ V
′ andcard(V ′)≤ k in PTIME (Theorem 4.4.1).

We next show that this problem isNP-hard by reduction from theset cover problem

(SCP), which isNP-complete (cf. [Pap94]). Given a setX, a collectionU of its subsets

and an integerB, SCP is to decide whether there exists aB-element subsetU ′ of U

that coversX, i.e.,
⋃

U∈U ′ = X.

Given such an instance ofSCP, we construct an instance ofMCP as follows: (a)

for eachxi ∈ X, we create a unique edgeexi with two distinct nodesuxi andvxi ; (b) we

define a pattern queryQs as a graph consisting of all edgesexi constructed in (a); (c)

for each subsetU j ∈ U andxi ∈U j , we define a corresponding view definitionV j that

consists of all edgesexi from U j ; and (d) we setk = B.

It is easy to verify that the construction above is inPTIME. We next verify that this

is indeed a reduction from the instance ofSCP, i.e., there exists a set coverU ′ with

size no more thanB if and only if there exists a subsetV ′ of size no more thank that

containsQs.

(1) First assume that there exists a subsetU ′ of U that coversX with less thanB

elements. Then we construct a setV ′ of view definitionsV j corresponding to each

U j ∈ U
′. One can verify thatQs ⊑ V

′, since the union of all the edges from theseMQs

V j

(as the union of the elements fromU ′) is Ep (the element setX). Moreover,card(V ′)

= |U ′| ≤ B = k.

Chapter 4. Graph Pattern Matching Using Views 98

(2) Conversely, if there existsV ′ ⊆ V that containsQs with no more thank view

definitions, it is easy to see that the corresponding setU ′ is a set cover with at mostB

elements.

Therefore, the construction above is a reduction. AsSCP is known to beNP-

complete,MCP is NP-complete.

(II) Recall that the classAPX is the set of allNP optimization problems that allow

PTIME approximation algorithms with an approximation ratio bounded by a constant.

A problem isAPX-hard if everyAPX optimization problem can be reduced to it via

PTIME approximation preserving reductions (AFP-reductions [Vaz03]). Note that an

APX-complete problem can be approximated withinsomeconstant ratio, but unlessP

= NP, APX-hard problems cannot be approximated withineveryconstant factor. The

APX-hardness ofMCP is verified byAFP-reduction from the minimum set cover prob-

lem (also denoted asSCP), the optimization version ofSCP, which is known to be

APX-hard (cf. [Vaz03]).

Approximation preserving reduction. Let Π1 andΠ2 be two minimization problems.

An AFP-reduction from Π1 to Π2 is a pair ofPTIME functions (f , g) such that

◦ for any instanceI1 of Π1, I2 = f (I1) is an instance ofΠ2 such thatopt2(I2) ≤

opt1(I1), whereopt1 (resp. opt2) is the quality of an optimal solution toI1

(resp.I2);

◦ for any solutions2 of I2, s1 = g(I1,s2) is a solution ofI1 such thatobj1(I1,s1) ≤

obj2(I2,s2), whereobj1() (resp.obj2()) is a function measuring the quality of a

solution toI1 (resp.I2).

In other words,AFP-reductions preserve approximation bounds. If a problemΠ1

is APX-hard, then the problemΠ2 is APX-hard if there is anAFP-reduction from Π1

to Π2.

We next construct anAFP-reduction from SCP toMCP, which indicates thatMCP

is at least as hard asSCP in terms of approximation. TheAFP-reduction is as follows.

(1) We first define functionf . Given an instanceI1 of theSCP as its input,f outputs

an instanceI2 of theMCP following the same transformation as the one given in (I).

Hereopt2(I2)≤ opt1(I1), whereopt1() (resp.opt2()) measures the size of the optimal

solution forI1 (resp. I2), i.e., the size of the minimum set cover (resp. the minimum

view definition set) that coversX (resp. Qs). It is easy to see that functionf is in

PTIME.

Chapter 4. Graph Pattern Matching Using Views 99

(2) We then construct functiong. Given a feasible solutionV ′ for the instanceI2, g

outputs a correspondingU ′ following the construction given in (1) above. Hereobj1()

(resp.obj2()) measures the size of the solutionU ′ to I1 (resp.V ′ to I2). Note thatg is

trivially in PTIME.

We now show that(f ,g) is anAFP-reduction from theSCP to MCP. It suffices

to show that (a)opt
2
(I2) ≤ opt1(I1), and that (b)obj1(I1,s1) ≤ obj2(I2,s2). Indeed,

the construction guarantees an one-to-one mapping from theelements in a set cover

for I1 to the view definitions in a view definition set forI2. Thus,opt2(I2) = opt1(I1),

andobj1(I1,s1) = obj2(I2,s2). Hence,(f ,g) is indeed anAFP-reduction. As SCP is

APX-hard,MCP isAPX-hard.

4.5 Determining Pattern Containment

In this section we prove Theorems 4.4.1, 4.4.3 and 4.4.4(2) by providing effective

(approximation) algorithms for checking pattern containment, minimal containment

and minimum containment, in Sections 4.5.1, 4.5.2 and 4.5.3, respectively.

4.5.1 Pattern Containment

To prove Theorem 4.4.1, we first propose asufficient and necessarycondition to char-

acterize pattern containment. We then develop a quadratic-time algorithm for checking

pattern containment, based on the characterization.

Sufficient and necessary condition. To characterize pattern containment, we intro-

duce a notion ofview matches.

Consider a pattern queryQs and a setV of view definitions. For eachV ∈ V , let

V(Qs) = {(eV,SeV) | eV ∈ V}, by treatingQs as a data graph. Obviously, ifVEsimQs,

thenSeV is the nonempty match set ofeV for each edgeeV of V (see Section 4.2.1). We

define theview matchfrom V to Qs, denoted byMQs

V , to be the union ofSeV for all eV

in V.

Intuitively, if Qs ⊑ V , then each edgee of Qs is “covered” by some view inV . If

we treatQs a data graph and inspect matches ofV in Qs, then there must exist some

V ∈ V such thatVEsimQs ande∈ SeV for some view edgeeV in V, sinceV imposes

a weaker constraint as a query thanQs. Moreover,Qs is contained inV if and only if

the union of the view matches fromV to Qs exactly “covers” the edges ofQs. This is

Chapter 4. Graph Pattern Matching Using Views 100

stated formally as follows, which shows that view matches yield a characterization of

pattern containment.

Proposition 4.5.1:For view definitionsV and patternQs with edge set Ep, Qs ⊑ V if

and only if Ep =
⋃

V∈V MQs

V . ✷

Proof of Proposition 4.5.1. We show theIf condition and theOnly If condition of

Proposition 4.5.1, one by one as follows.

(I) We first prove theIf condition. Assume thatEp =
⋃

V∈V MQs

V , i.e., the union of

all the view matches fromV “covers” Ep. We show thatQs ⊑ V by constructing a

mappingλ from Ep to the edges inV , such that for all data graphsG and all edgese

in Qs, Se⊆
⋃

e′∈λ(e)Se′.

We construct a mappingλ as a “reversed” view matching relation: for each edge

ep of Qs, λ(ep) is a set of edgese′ from the view definitions inV , such that for each

edgee′ of a view definitionV ∈ V , if e′ ∈ λ(ep), thenep is a match ofe′ in the view

matchMQs

V of V in Qs.

We next show thatλ ensuresQs ⊑ V . Foranydata graphG, (i) if Qs(G) = /0, then

Qs ⊑ V by definition; (ii) otherwise, for each pattern edgeep of Qs, there exists at

least one edgee as a match ofep in G via simulation. Moreover, for any edgee′ (of

view V) in λ(ep), ep is in turn a match ofe′ via simulation. One can verify that any

matche of ep in G is also a match ofe′ ∈ λ(ep) in V. To see this, note that (a)e is a

match ofep; as a result, for any edgee′p adjacent toep, there exists an edgee′′ adjacent

to esuch thate′′ is a match ofe′p, by the semantics of simulation (Section??); and (b)

ep is a match ofe′; hence similar to the argument for (a), for any edgee′a adjacent toe′

in a view definitionV, one can see that there exists an edgee′p adjacent toep such that

e′p is a match ofe′a, by the semantics of graph pattern matching via graph simulation.

From (a) and (b) it follows that for eache′ ∈ λ(ep) and its adjacent edgee′a in a view

definition, there exist an edgee of G and an adjacent edgee′′ in a simulation relation.

Thus,e is a match ofe′ in the view extension. Hence, givenanymatche of ep from

Qs in G, there exists an edgee′ in λ(ep) from a view definitionV, such thate is also a

match ofe′ in view extensionV(G). That it,λ guarantees thatQs ⊑ V , by definition.

(II) We next show theOnly If condition, by contradiction. Assume by contradiction

thatQs ⊑ V butEp 6=
⋃

V∈V MQs

V . To simplify the discussion, assumew.l.o.g.that each

node inQs has a distinct label. Then byQs ⊑ V , when we takeQs as a data graphG,

Chapter 4. Graph Pattern Matching Using Views 101

Input: A pattern queryQs = (Vp,Ep, fv), a set of view definitionsV .

Output: A boolean valueans that istrue if and only ifQs ⊑ V

1. E := /0;

2. for each view definitionV ∈ V do

3. computeMQs

V
; E := E ∪MQs

V
;

4. if E = Ep then ans:=true;

5. elseans:=false;

6. return ans;

Figure 4.4: Algorithm contain

it can be verified that (i) the result ofQs onG is {(ep, Sep = {ep}) | ep ∈ Ep}; and (ii)

there exists a mappingλ from each edgeep of Qs to an edgeei in some view ofV ,

such that{ep} ⊆ Sei . Indeed, this is required by the definition of pattern containment

Qs ⊑ V . On the other hand, (i)
⋃

V∈V MQs

V ⊆ Ep, since all the edges in view matches

are fromEp; and (ii) Ep 6=
⋃

V∈V MQs

V (by assumption). HenceEp 6=
⋃

V∈V MG
V , i.e.,

there existseo ∈ Ep such thateo /∈ MG
V for all V ∈ V . Thus,Qs 6⊑ V since{eo} * Sei

for all ei of V ∈ V . Hence the contradiction.

This completes the proof of Proposition 4.5.1.

Algorithm . Following Proposition 4.5.1, we now present an algorithm,denoted as

contain and shown in Fig. 4.4, to check whetherQs ⊑ V . Given a pattern queryQs

and a setV of view definitions, it returns a boolean valueans that istrue if and only

if Qs ⊑ V . The algorithm first initializes an empty edge setE (line 1) to record view

matches fromV to Qs. It then checks the condition of Proposition 4.5.1 as follows.

(1) Compute view matchMQs

V for eachV in V , by invoking the simulation evaluation

algorithm in [FLM+10], (2) AugmentE with MQs

V by union, sinceMQs

V is asubsetof

Ep (lines 2-3). After all view matches are merged,contain then checks whetherE =

Ep. It returnstrue if so, andfalse otherwise (lines 4-6).

Example 4.7: Recall the pattern queryQs and viewsV = {V1,V2} given in Fig. 4.1.

As remarked earlier,Qs ⊑ V . Indeed, one can verify that
⋃

i∈[1,2]M
Qs

Vi
= Ep.

Consider another pattern queryQs and a set of view definitionsV = {V1, . . . ,V7}

given in Fig. 4.5. The view matchesMQs

Vi
of Vi for i ∈ [1,7] are shown in the table

below.

Chapter 4. Graph Pattern Matching Using Views 102

B

E

A

B C

B C

D

B

D E

A

B

C

D

A

B

C

D

C

D

A

B

C

DE

V1 V2 V3 V4 V5 V6 V7Qs

Figure 4.5: Containment for pattern queries

Vi MQs

Vi
Vi MQs

Vi

V1 {(C,D)} V2 {(B,E)}

V3 {(A,B),(A,C)} V4 {(B,D),(C,D)}

V5 {(B,D),(B,E)} V6 {(A,B),(A,C),(C,D)}

V7 {(A,B),(A,C),(B,D)}

GivenQs andV , contain returnstrue since
⋃

Vi∈V MQs

Vi
is the set of edges ofQs.

One can verify thatQs ⊑ V . ✷

Correctness & Complexity. The correctness of algorithmcontain follows from

Proposition 4.5.1. For eachV ∈ V , it takesO(|Qs||V|+ |Qs|
2+ |V|2) time to compute

MQs

V [FLM+10], andO(1) time for set union. Thefor loop (lines 2-3) hascard(V)

iterations, and it takesO(card(V)|Qs|
2 + |V |2 + |Qs||V |) time in total, since both

card(V)|V| and|V| are bounded by|V |.

From these and Proposition 4.5.1, Theorem 4.4.1 follows.

Remarks. (1) Algorithmcontain can be easily adapted to return a mappingλ that spec-

ifies pattern containment (Section 4.3), to serve as input for algorithmMatchJoin. This

can be done by following the construction given in the proof of Proposition 4.5.1. (2)

In contrast to regular path queries and relational queries,pattern containment checking

is in PTIME.

4.5.2 Minimal Containment Problem

We now prove Theorem 4.4.3 by presenting an algorithm that, givenQs andV , finds

a minimal subsetV ′ of V containingQs in O(card(V)|Qs|
2+ |V |2+ |Qs||V |) time

if Qs ⊑ V . The algorithm capitalizes on the characterization of pattern containment

given in Proposition 4.5.1, and removes redundant views that are unnecessary for

answering a given pattern query.

Algorithm . The algorithm, denoted asminimal, is shown in Fig. 4.6. Given a query

Qs and a setV of view definitions, it returns either a nonempty subsetV ′ of V that

Chapter 4. Graph Pattern Matching Using Views 103

Input: A pattern queryQs, and a set of view definitionsV .

Output: A subsetV ′ of V that minimally containsQs.

1. setV ′ := /0; S := /0; E := /0; mapM := /0;

2. for each view definitionVi ∈ V do

3. computeMQs

Vi
;

4. if MQs

Vi
\E 6= /0 then

5. V ′ := V ′∪{Vi}; S := S∪{MQs

Vi
}; E := E∪MQs

Vi
;

6. for each e∈ MQs

Vi
doM(e) := M(e)∪{Vi};

7. if E= Ep then break ;

8. if E 6= Ep then return /0;

9. for each MQs

V j
∈ S do

10. if there is noe∈ MQs

V j
such thatM(e)\{V j}= /0 then

11. V ′ := V ′ \{V j}; updateM;

12. return V ′;

Figure 4.6: Algorithm minimal

minimally containsQs, or /0 to indicate thatQs 6⊑ V . The algorithm first initializes (1)

an empty setV ′ for selected views, (2) an empty setS for view matches ofV ′, and (3)

an empty setE for edges in view matches. It also maintains an indexM that maps each

edgee in Qs to a set of views (line 1).

Similar tocontain,minimal first computesMQs

Vi
for all Vi ∈ V (lines 2-7). However,

instead of simply merging the view matches as incontain, it extendsS with a new view

matchMQs

Vi
only if MQs

Vi
contains a new edge not inE, and updatesM accordingly (lines

4-7). Thefor loop stops as soon asE= Ep (line 7), asQs is already contained byV ′.

If E 6= Ep after the loop,minimal returns/0 (line 8), sinceQs can not be contained byV

(Proposition 4.5.1). The algorithm then eliminates redundant viewsV j ∈ V
′ (lines 9-

11). It checks whether the removal ofV j causesM(e) = /0 for somee∈ MQs

V j
(line 10).

If no sucheexists,minimal removesV j from V ′, and updatesM(e) (line 11). After all

view matches are processed,minimal returnsV ′ as the final result (line 12).

Example 4.8: ConsiderQs and V given in Fig. 4.5. AfterMQs

Vi
(i ∈ [1,4]) are

computed, algorithmminimal finds thatE already equalsEp, and breaks the loop,

whereM is initialized to be{((A,B) :{V3}),((A,C) :{V3}),((B,D) :{V4}), ((C,D) :

{V1,V4}),((B,E) : {V2})}. As the removal ofV1 does not make anyM(e) empty,

minimal removesV1 and returnsV ′ = {V2,V3,V4} as a minimal subset ofV . ✷

Correctness & Complexity. To see the correctness ofminimal, observe the following:

Chapter 4. Graph Pattern Matching Using Views 104

Input: A pattern queryQs and a set of view definitionsV .

Output: A minimum subsetV ′ of V that containsQs.

1. setV ′ := /0, S := /0; Ec := /0;

2. for each view definitionVi ∈ V do

3. computeMQs

Vi
; S := S∪{MQs

Vi
} if MQs

Vi
is nonempty;

4. while S 6= /0 do

5. findVi with the largestα(Vi); S := S\{MQs

Vi
};

6. if MQs

Vi
\Ec 6= /0 then

7. Ec := Ec∪MQs

Vi
; V ′ := V ′∪{Vi};

8. if Ec = Ep then return V ′;

9. return /0;

Figure 4.7: Algorithm minimum

(1) Qs ⊑ V
′ if V ′ 6= /0; indeed,V ′ is returnedonly if the union of the view matches in

S equalsEp, i.e.,Qs ⊑ V
′ by Proposition 4.5.1; and (2)Qs 6⊑ V

′′ for anyV ′′ ⊂ V ′.

To see this, note that by the strategy ofminimal for reducing redundant views inV ′

(lines 9-11), forany V ′′ ⊂ V ′,
⋃

V∈V ′′ MQs

V is not equal toEp, the edge set ofQs.

Hence again by Proposition 4.5.1,Qs 6⊑ V
′′.

It takes minimal O(card(V)|Qs|
2 + |V |2 + |Qs||V |) time to find all the view

matches ofV (line 3). Its nested loop forM (line 6) takesO(card(V) · |Qs|) time.

The redundant elimination is processed inO(card(V) · |Qs|) time (lines 9-11). Thus

minimal is in O(card(V)|Qs|
2+ |V |2+ |Qs||V |) time.

From the algorithm and its analyses Theorem 4.4.3 follows. Again algorithm

minimal can be readily extended to return a mappingλ that specifies containment of

Qs in V ′.

4.5.3 Minimum Containment Problem

We next prove Theorem 4.4.4 (2),i.e., MCP is approximable withinO(log|Ep|)

in O(card(V)|Qs|
2 + |V |2 + |Qs||V |+ (|Qs| · card(V))

3/2) time. We give such an

algorithm forMCP, following the greedy strategy of the approximation of [Vaz03]

for the set cover problem. The algorithm of [Vaz03] achievesan approximation ratio

O(logn), for ann-element set.

Algorithm . The algorithm is denoted asminimum and shown in Fig. 4.7. Given a

patternQs and a setV of view definitions,minimum identifies a subsetV ′ of V such

Chapter 4. Graph Pattern Matching Using Views 105

that (1)Qs ⊑ V
′ if Qs ⊑ V and (2)card(V ′) ≤ log(|Ep|) · card(VOPT), whereVOPT

is a minimum subset ofV that containsQs. In other words,minimum approximates

MCP with approximation ratioO(log|Ep|). Note that|Ep| is typically small.

Algorithm minimum iteratively finds the “top” view whose view match can cover

most edges inQs that are not covered. To do this, we define a metricα(V) for a view

V, where

α(V) =
|MQs

V \Ec|

|Ep|
.

HereEc is the set of edges inEp that have been covered by selected view matches, and

α(V) indicates the amount ofuncoverededges thatMQs

V covers. We selectV with the

largestα in each iteration, and maintainα accordingly.

Similar tominimal, algorithmminimum initializes setsV ′, S andEc (line 1), com-

putes the view matchMQs

Vi
for eachVi ∈ V , and collects them in setS (lines 2-3). It

then does the following. (1) It selects viewVi with the largestα, and removesMQs

Vi

from S (line 5). (2) It mergesEc with MQs

Vi
if MQs

Vi
contains some edges that are not in

Ec, and extendsV ′ with Vi (lines 6-7). During the loop (lines 4-8), ifEc equalsEp,

the setV ′ is returned (line 8). Otherwise,minimum returns/0, indicating thatQs 6⊑ V

(line 9).

As opposed tominimal that stops as soon as it findsE = Ep, minimum has to

compute view matches for all the views.

Example 4.9:GivenQs andV = {V1, . . . ,V7} of Fig. 4.5,minimum selects views by

their α values. More specifically, in the loop it first choosesV6, since its view match

MQs

V6
= {(A,B),(A,C),(C,D)}makesα(V6) = 0.6, the largest one. ThenV6 is followed

by V5, asα(V5) = 0.4 is the largest one in that iteration. AfterV5 andV6 are selected,

minimum finds thatEc = Ep, and thusV ′ = {V5,V6} is returned as a minimum subset

that containsQs. ✷

Correctness & Complexity. We now show thatminimum is correct. (1) It always

terminates since the setS is reduced monotonically. (2) It finds a nonemptyV ′ such

thatQs ⊑ V
′ if and only if Qs ⊑ V . Indeed, suchV ′ is returned when

⋃
V∈V ′ MQs

V =

Ep, and thusQs ⊑ V
′ by Proposition 4.5.1. (3) There is an approximation-preserving

reduction fromMCP to theset cover problem[Pap94], by treating eachMQs

Vi
in S as a

subset ofEp. The solution to set cover is exactly a minimum set of the subsets ofEp

(view matches) that “covers”Ep. It is known that set cover problem is approximable

within log(n) for ann-element set, by the algorithm of [Vaz03]. Algorithmminimum

extends the algorithm of [Vaz03] to query containment, and has approximation ratio

Chapter 4. Graph Pattern Matching Using Views 106

log|Ep|. Hereminimum can also be easily extended to return mappingλ.

Algorithm minimum computes view matches for allVi ∈ V in O(card(V)|Qs|
2+

|V |2 + |Qs||V |) time (lines 1-3). The while loop is executed at most

min{|Ep|,card(V)} ≤ (|Qs| · card(V))
1/2 times. Each iteration takesO(|Ep|card(V))

time to find a view with the largestα value, which is at mostO(|Qs| · card(V)). Thus,

minimum is in O(card(V)|Qs|
2+ |V |2+ |Qs||V |+(|Qs| ·card(V))

3/2) time. Note that

|Qs| andcard(V) are usually small compared to|V |.

This completes the proof of Theorem 4.4.4 (2).

4.6 Bounded Pattern Matching Using Views

In this section, we show that the results of the previous sections carry over tobounded

patternqueries, which extend patterns with connectivity constraints on pattern edges.

Bounded pattern queries[FLM+10]. A bounded pattern query, denoted asQb, is

defined in the same way as in Section 1.1.

A data graphG = (V,E,L) matchesQb via bounded simulation, denoted by

QbE
B
simG (Table 4.1), if there exists a binary relationS⊆ Vp ×V such that (1) for

each nodeu ∈ Vp, there exists amatch v∈ V such that(u,v) ∈ S, and (2) for each

pair (u,v) ∈ S, fv(u) ∈ L(v), and for each pattern edgee= (u,u′) in Ep, there exists a

nonemptypath from v to v′ in G, with its length bounded byk if fe(u,u′) = k. When

fe(u,u′) = ∗, there is no constraint on the path length.

Intuitively, Qb extends pattern queries by mapping an edge(u,u′) in Ep to a

nonempty path fromv to v′, such thatv can reachv′ within fe(u,u′) hops. Bounded

simulation has been verified effective in social network analysis [FLM+10].

It is known that whenQbE
B
simG, there exists aunique maximummatchSo in G

for Qb [FLM+10]. Along the same lines as Section 4.2.1, we define the queryresult

Qb(G) to be themaximumset{(e,Se) | e∈ Ep} derived fromSo, whereSe is a set of

node pairs fore = (u,u′) such that (1)v (resp.v′) is a match ofu (resp.u′), and (2) the

distance dfrom v to v′ satisfies the bound specified infe(e), i.e., d≤ k= fe(e).

Example 4.10: Consider a bounded pattern queryQb = (Vp,Ep, fv, fe) as follows:

(1) Vp, Ep and fv are the same as inQs of Fig 4.3; and (2)fe(PM,AI) = fe(AI,SE) =

fe(SE,DB) = fe(DB,AI) = 1 , fe(AI,Bio) = 2. The resultQb(G) in the graphG of Fig. 4.3

(a) is shown in the table below.

Chapter 4. Graph Pattern Matching Using Views 107

Edge Matches

(PM,AI) (PM1,AI1),(PM1,AI2)

(AI,Bio) (AI1,Bio1), (AI2,Bio1)

(DB,AI) (DB1,AI2),(DB2,AI2)

(AI,SE) (AI1,SE1),(AI2,SE2)

(SE,DB) (SE1,DB2),(SE2,DB1)

Note thatQb extends pattern queries by allowing an edge to be mapped to a path.

For example, the pattern edge(AI,Bio) is mapped to(AI1,Bio1), which actually denotes

path
(

(AI1,SE1),(SE1,Bio1)
)

of length 2. ✷

Pattern queries are a special case of bounded patterns whenfe(e) = 1 for all edges

e. While bounded patterns are more expressive than normal patterns, they do not incur

extra complexity when it comes to query answering using views. We study query

answering using views for bounded patterns in Section 4.6.1, and their containment

analysis in Section 4.6.2.

4.6.1 Answering Bounded Pattern Queries

Given a bounded pattern queryQb and a setV of view definitions (expressed as

bounded pattern queries), the problem of answering queriesusing views is to com-

puteQb(G) by only referring toV and their extensionsV (G).

Pattern containment forQb is defined in the same way as for pattern queries. That

is, Qb is contained inV , denoted asQb ⊑ V , if there exists a mappingλ that maps

eache∈ Ep to a setλ(e) of edges inV , such that for any data graphG, the match set

Se ⊆
⋃

e′∈λ(e)Se′ for all edgese of Qb. Along the same lines as Theorem 4.3.1, one

can readily verify that pattern containment also characterizes whether bounded pattern

queries can be answered using views.

Theorem 4.6.1 A bounded pattern queryQb can be answered using viewsV if and

only if Qb is contained inV .

Proof of Theorem 4.6.1. Theorem 4.6.1 can be shown along the same line as the proof

for Theorem 4.3.1. The only difference is that each match fora pattern edgee= (u,u′)

in a bounded pattern queryQb is a node pair(v,v′), connected by a path such that its

length satisfies the distance constraint imposed byfe(e).

Chapter 4. Graph Pattern Matching Using Views 108

Only If . Observe that the condition already holds for all data graphs G that do not

matchQb, which can be verified along the same line as the proof of Theorem 4.3.1.

We next prove theOnly If condition for all data graphsG that matchQb. Assume by

contradiction thatQs can be answered usingV , whileQs 6⊑ V . By definition,Qs 6⊑ V

indicates that for some data graphG that matchesQs, there exists no mappingλ such

thatSe⊆
⋃

e′∈λ(e)Se′ for all edgese in Qs. Thus,G contains a node pair(v,v′) in Se for

some edgee in Qs, but it is not inSe′ for anye′ ∈ λ(e). As a result, at least for edge

e, no match can be identified using anyV ∈ V . Hence, this contradicts the assumption

thatQb can be answered by only using views ofV .

If . Algorithm BMatchJoin given in Section 4.6 provides a constructive proof for

this direction. Hence it suffices to give a detailed correctness analysis for Algo-

rithmBMatchJoin.

Along the same line as in Theorem 4.3.1,BMatchJoin has the following properties:

(a) it always terminates, and (b) it only removes the node pairs (v,v′) from the view

extensions that can no longer match a pattern edgee, by keeping track of the distances

between them. Indeed,BMatchJoin iteratively reduces match setsSe of each pattern

edgee= (u′,u), when match setSep of ep = (u,u′′) is found to be changed. It inspects

whether matches(v′,v) in Se are still valid by checking whether (1) the distance from

v′ to v exceeds the distance bound specified byfe(ep); or (2) there does not exist match

e′1 = (v′,v1)∈Se1 (resp.e′2 = (v,v2)∈Se2). If any of the two cases happens,e′ becomes

an invalid match and is removed fromSe. The changes to the match set propagate and

BMatchJoin processes the updates until all the match sets of pattern edges can no

longer be further reduced. WhenBMatchJoin terminates, all the valid matches forQb

are identified, as guaranteed by property (b).

From these Theorem 4.6.1 follows.

Better still, answering bounded pattern queries using views is no harder than its

counterpart for pattern queries.

Theorem 4.6.2 Answering bounded pattern queryQb on graph G using viewsV is in

O(|Qb||V (G)|+ |V (G)|2) time.

To prove Theorem 4.6.2, we outline an algorithm for computing Qb(G) by using

V andV (G) whenQb ⊑ V . To cope with edge-to-path mappings, it uses an auxiliary

indexI(V) such that for each match(v,v′) in V (G) of some edge inV , I(V) includes

a pair〈(v,v′),d〉, whered is the distance fromv to v′ in G. Note that the size ofI(V)

is bounded by|V (G)|.

Chapter 4. Graph Pattern Matching Using Views 109

Algorithm. The algorithm, denoted byBMatchJoin (not shown), takes as inputQb,

V , V (G), I(V) and a mappingλ from the edges ofQb to edge sets inV . Similar

to algorithmMatchJoin (Fig. 4.2), it evaluatesQb by (1) “merging” views inV (G)

to M according toλ, and (2) removing invalid matches. It differs fromMatchJoin

in the following: for an edgeep = (u,u′′) of Qb with changed Sep, it reduces match

setSe of e= (u′,u) in Qb by gettingthe distance d(by queryingI(V) in O(1) time)

from v′ to v1 (resp.v to v2), checking whether(v′,v1) ∈ Se1 (resp.(v,v2) ∈ Se2) for

pattern edgee1 = (u′,u1) (resp.e2 = (u,u2)) such that distanced is no greater than

fe(u′,u1) (resp. fe(u,u2)), and removing(v′,v) from Se if no (v′,v1) (resp.(v,v2))

exists. The removal of(v′,v) may introduce more invalid matches inM, which are

removed repeatedly byBMatchJoin until a fixpoint is reached. ThenM is returned as

the answer.

The correctness ofBMatchJoin follows from Theorem 4.6.1. One can verify

that BMatchJoin takesO(|Qb||V (G)|+ |V (G)|2) time, the same as the complexity

of MatchJoin.

Remarks. (1) Evaluating bounded pattern queriesQb directly in a graphG takes cubic-

time O(|Qb||G|2) [FLM+10]. In contrast, it takesO(|Qb||V (G)|+ |V (G)|2) time us-

ing views, andV (G) is much smaller thanG in practice. (2) The bottom-up optimiza-

tion strategy given in Section 4.3 can be naturally incorporated intoBMatchJoin, by

using ranks defined onQb.

4.6.2 Bounded Pattern Containment

We next show that the containment analysis of bounded pattern queries is in cubic-

time, up from quadratic-time.

Theorem 4.6.3 Given a bounded pattern queryQb and a setV of view definitions,

(1) it is in O(|Qb|
2|V |) time to decide whetherQb is contained inV ; (2) the minimal

containment problem is also in O(|Qb|
2|V |) time; and (3) the minimum containment

problem (denoted asBMMCP) is (i) NP-complete andAPX-hard, but (ii) approximable

within O(log|Ep|) in O(|Qb|
2|V |+(|Qb| · card(V))

3/2) time.

To prove Theorem 4.6.3, we extend the notion of view matches (Section 4.4) to

bounded pattern queries. Given a bounded patternQb = (Vp,Ep, fv, fe) and a view

definitionV = (VV,EV, fVv , fVe), we define the view match fromV to Qb as follows.

(1) We treatQb as aweighted data graphin which each edgeehas a weightfe(e). The

Chapter 4. Graph Pattern Matching Using Views 110

distance from node u to u′ in Qb is given by the minimum sum of the edge weights

on shortest paths fromu to u′. (2) We defineV(Qb) = {(eV,SeV) | eV ∈ V} as its

counterpart forQs, except that for each edgeeV = (v,v′) in V, the distance fromu to

u′ in all pairs(u,u′) ∈ SeV is bounded byk if fVe (eV) = k. (3) One may verify that

there exists a unique, nonempty maximum setV(Qb) if VEB
simQb. The view match

MQb

V fromV toQb is the union ofSeV for all eV in V.

Proof of Theorem 4.6.3. We provide a detailed proof.

Proof of Theorem 4.6.3(1). AlgorithmBcontain has been given in Section 4.6) as part

of the proof of Theorem 4.6.3(1), which checks whether a bounded pattern queryQb

can be contained by a set of view definitionsV . To complete the proof of Theo-

rem 4.6.3(1), we give a complexity analysis for AlgorithmBcontain, as follows. Ob-

serve that given a bounded pattern queryQb = (Vp,Ep, fv, fe) and a view definition

Vi = (Vi ,Ei, fvi, fei), it takesO(|Vp||Ep|+ |Ei||Vp|
2+ |Vi||Vp|) time to compute view

matches ofVi inQb, via bounded simulation [FLM+10]. As a result, the total time used

for containment checking isΣVi∈V (|Vp||Ep|+ |Ei ||Vp|
2+ |Vi ||Vp|). As |Vi | (resp.|Ei|)

is bounded by|Vi |, and|Vp| (resp.|Ep|) is bounded by|Qb|, it takesBcontain in total

O(|Qb|
2|V |) time to decide whetherQb is contained inV .

Proof of Theorem 4.6.3(2). As part of the proof of Theorem 4.6.3(2), Algorithm

Bminimal has been outlined in Section 4.6. It takesO(|Qb|
2|V |) time to find a min-

imal subsetV ′ of V that containsQb. Algorithm Bminimal works in the same way

as Algorithmminimal, with the only exception thatBminimal computes view matches

in O(|Vp||Ep|+ |Ei ||Vp|
2+ |Vi ||Vp|) time. Following the proofs of Theorem 4.4.3 and

Theorem 4.6.3 (1), one can readily verify Theorem 4.6.3(2).

Proof of Theorem 4.6.3(3). We verify the complexity and approximation results of

Theorem 4.6.3(3) as follows.

(I) We first show Theorem 4.6.3(3)(i). The decision problem of BMMCP is to decide

whether there exists a subsetV ′ of V such thatQb ⊑ V
′ andcard(V ′)≤ k, wherek is

an integer bound. We show that it isNP-complete.

(1) The problem is inNP, since there exists anNP algorithm that first guessesV ′

and then checks whetherQb ⊑ V ′ and card(V ′) ≤ k in PTIME, by usingBcontain

(Theorem 4.6.3(1)).

(2) The lower bound is verified by reduction from theNP-complete set cover prob-

Chapter 4. Graph Pattern Matching Using Views 111

B

E

A

B C

A

B E

B

D E

A

B

C

D

A

B

C

D

C

D

A

B

C

DE

V1 V2 V3 V4 V5 V6 V7Qb

2

3

31

3

3 3 1 23

3

3 4 1

2

3 *

4

2

Figure 4.8: Containment for bounded pattern queries

lem (SCP). We construct a reduction that is similar to the one given inthe proof for

Theorem 4.4.4. The only difference is that the transformation assigns for each pattern

edge ofQs given there an additional length bound 1, transforming a pattern queryQs

to a bounded pattern queryQb, while keeping other construction unchanged. Indeed,

Qs is a special case ofQb in which each edge carries a bound 1. The transformation

remains to be inPTIME, and can be verified to be a reduction, via a argument similar

to the one given for Theorem 4.4.4. This verifies theNP-hardness. Thus,BMMCP is

NP-complete.

TheAPX-hardness ofBMMCP is verified by constructing anAFP-reduction from

the minimum set cover problem, along the same line as in the proof for Theorem 4.4.4.

(II) We next show Theorem 4.6.3(3)(ii). As part of the proof,Algorithm Bminimum

has been outlined in Section 4.6. To complete the proof, we next provide a detailed

complexity analysis forBminimum. Algorithm Bminimum is similar to Algorithm

minimum given earlier, except that it computes view matches differently, as shown

in the proofs of Theorem 4.6.3(1) and (2). Its approximationratio follows from

the algorithm in [Vaz03]. To see its computational complexity, observe that it takes

O(|Qb|
2|V |) time to find all view matches ofV . After the view matches are found,

Bminimum iteratively selects view definitions with the largestα(V), where the cost

of the selection process is inO(|Qb| · card(V)) time. In addition, the selection pro-

cess is executed at mostmin{|Qb|, |card(V)|} ≤ (|Qb| · |card(V)|)
1/2 times. Hence it

takesBminimum O(|Qb| ·card(V)
3/2) time to find a minimum subsetV ′ of V . Putting

these together,Bminimum takes at mostO(|Qb|
2|V |+(|Qb| ·card(V))

3/2) time to find

a subsetV ′ of V , which is no larger than log|Ep||card(VOPT)|, whereVOPT is amin-

imumsubset ofV that containsQb.

From (I) and (II) given above, Theorem 4.6.3(3) follows.

The analyses above complete the proof of Theorem 4.6.3.

Example 4.11:ConsiderQb andV = {V1, . . . ,V7} shown in Fig. 4.8. One may verify

that MQb

V3
= {(A,B),(B,E)}, where the corresponding node pairs inQb satisfies the

Chapter 4. Graph Pattern Matching Using Views 112

length constraints imposed byV3. As another example, it can be found that the view

matchMQb

V7
from V7 to Qb is /0, since the distance fromC to D in Qb is greater than 2.

✷

Similar to Proposition 4.5.1, the result below gives asufficient and necessarycon-

dition forQb containment checking.

Proposition 4.6.4:For view definitionsV and bounded pattern queryQb, Qb ⊑ V if

and only if Ep =
⋃

V∈V MQb

V . ✷

Proof of Proposition 4.6.4. Proposition 4.6.4 is verified along the same lines as for

Proposition 4.5.1. The only difference is that view matcheshere are defined by ap-

plying a view definition to a bounded pattern queryQb, whereQb is treated as a

“weighted” data graph, in which each edgee is assigned a weightfe(e). We next

verify its If condition andOnly If condition.

(I) We first prove theIf condition. Assume thatEp =
⋃

V∈V MQb

V , i.e., the union of all

the view matches fromV “covers” Ep. Similar to the proof of Proposition 4.5.1, we

construct a mappingλ as a “reversed” view matching relation fromEp to the edges

in V ; as will be seen shortly, this mapping guaranteesQb ⊑ V . More specifically,

for each edgeep of Qb with weight fe(ep), λ(ep) is a set of edgese′ from the view

definitions inV , such that for each edgeeV of a view definitionV ∈ V , if eV ∈ λ(ep),

thenep is a match ofeV in the view matchMQb

V of V in Qb. Note that this requires

fV
e (eV) ≥ fe(ep), where fV

e is the length bound posed on pattern edgeeV of V (see

Section 4.6).

We next show thatλ ensuresQb ⊑ V . Foranydata graphG, (i) if Qb(G) = /0, then

Qb ⊑ V by definition; (ii) otherwise, for each pattern edgeep of Qb, there exists at least

a node pair(v′,v) as a match ofep in G by the semantics of bounded simulation. In

other words,(v′,v) is connected via a path with length bounded byfe(ep). Moreover,

for any edgeeV (of view V) in λ(ep), ep is in turn a match ofeV by the definition of

view matches with bounded simulation. This indicates that any match(v′,v) of ep in

G is also a match ofeV ∈ λ(ep) fromV. To see this, observe the following.

(a) The pair(v′,v) is a match ofep. As a result, for any edgee′p adjacent toep, there

exists a node pair(v1,v2), such that(v1,v2) is a match fore′p, by the definition of

bounded simulation (Section 4.6). To simplify the discussion, we abuse the terminol-

ogy “adjacent”, and call such node pairs(v1,v2) an “adjacent” node pair to(v′,v), as

Chapter 4. Graph Pattern Matching Using Views 113

one may easily verify thatv1 or v2 is the same node as eitherv′ or v by the semantics

of pattern matching with bounded simulation.

(b) Pattern edgeep is a match ofeV . Hence similarly to (a), for any edgee′V adjacent

to eV in a view definitionV, there exists an edgee′p adjacent toep such thate′p is a

match ofe′V , by the definition of view match. This indicates thatfe(ep)≤ fV
e (eV) and

fe(e′p)≤ fV
e (e′V), for any adjacent edgee′p of ep in Qb and adjacent edgee′V of eV in V.

From (a) and (b) it follows that for eacheV ∈ λ(ep) and its adjacent edgee′a in a

view definition, there exist a node pair(v′,v) of G and an “adjacent” node pair(v1,v2)

in a bounded simulation relation. Indeed, one may verify that the distance fromv1 to

v2 is bounded byfe(e′p), which is further bounded byfV
e (eV). Thus,(v′,v) is a match

of eV in the view extension. Hence, givenanymatch(v′,v) of ep from Qb in G, there

exists an edgeeV in λ(ep) from a view definitionV, such that(v′,v) is also a match of

eV in view extensionV(G), connected by a path with length bounded byfV
e (eV). That

it, λ guarantees thatQb ⊑ V , by definition.

(II) We next show theOnly If condition by contradiction. Assume thatQb ⊑ V , while

Ep 6=
⋃

V∈V MQb

V . To simplify the discussion, assumew.l.o.g.that each node inQb has

a distinct label. We show that ifEp 6=
⋃

V∈V MQb

V , one can always construct a data

graphG, such thatQb 6⊑ V for G.

Assumew.l.o.g.that edgeep0 = (u′,u) ∈ Ep is not “covered” by the view match.

This can only happen in the following two cases. (a) There is no corresponding edge

eV from V with proper node predicates or edge bounds required in view matching; for

example,fe(ep0)> fV
e (eV) for all eV fromV . (b) For an adjacent edgee′p of ep0, there

is no corresponding adjacent edgee′V for eV that satisfy the search condition (node

label or predicate) or the distance constraint imposed bye′p. In both cases, one can

construct a data graphG = (V,E,L) as follows: (i) for each nodeu in Qb, G consists

of a nodev satisfying the predicatesfv of u; and (ii) for each edgeep = (u′,u) in Qb,

G contains a path connecting two nodesv′ andv corresponding tou′ andu in (i), such

that its length is equals tofe(ep). The path containsv′, v and a set of distinct “dummy”

nodes, where each dummy node does not match any node predicate fromQb. One may

verify that forG, there exists a match(v′,v) for the edgeep0 in (a), such that(v′,v) is

not in any view match for allV ∈ V . HenceQb 6⊑ V , a contradiction.

Bounded pattern containment. To prove Theorem 4.6.3 (1), we give an algo-

rithm for checking bounded pattern containment following Proposition 4.6.4, denoted

Chapter 4. Graph Pattern Matching Using Views 114

by Bcontain (not shown). Bcontain is the same ascontain (Fig. 4.4) except that it

computes view matches differently. More specifically, it extends the algorithm for

evaluating bounded pattern queries [FLM+10] to weighted graphs. It can be eas-

ily verified that it is still in O(|Qb|
2|V |) time to find all view matches forV . Thus

Bcontain decides whetherQb is contained inV in O(|Qb|
2|V |) time, from which The-

orem 4.6.3 (1) follows.

Minimal bounded containment. To show Theorem 4.6.3 (2), we give algorithm for

minimal containment checking, denoted byBminimal (not shown). Similar tominimal

(Fig. 4.6),Bminimal first computes view matches for eachV ∈ V , in O(|Qb|
2|V |)

time, and unions view matches untilE equals the edge setEp of Qb as described above.

Bminimal then follows the same strategies asminimal to eliminate redundant viewsVi

whose removel will not cause anyM(e) = /0 for eache∈ MQb

Vi
. ThusBminimal is in

O(|Qb|
2|V |) time.

Minimum bounded containment. To verify Theorem 4.6.3 (3) (i), observe thatMCP

is a special case ofBMMCP when fe(e) = 1 for all edges inQb. Thus from Theo-

rem 4.4.4(1) it follows that the decision problem ofBMMCP is NP-hard andBMMCP

is APX-hard. Moreover, it is inNP since there exists anNP algorithm to check the

containment of a bounded pattern in a subset of views with a given cardinality.

As a proof of Theorem 4.6.3 (3) (ii), we give an algorithm for minimum contain-

ment checking, denoted byBminimum (not shown). It is similar tominimum (Fig. 4.7),

except that it computes view matches differently. It takesO(|Qb|
2|V |) time to find

all view matches ofV . Thus,Bminimum still takes at mostO(|Qb|
2|V |+ (|Qb| ·

card(V))3/2) time, and it returns a subset ofV no larger than log(|Ep|) · card(VOPT),

whereVOPT is aminimumsubset ofV that containsQb.

Example 4.12:Recall the bounded patternQb and viewsV of Fig. 4.8. One can verify

thatQb is contained inV since there exists a mappingλ that maps each edgee in Qb

to λ(e) in V , e.g.,(A,B) ∈ Qb is mapped to its corresponding edges inV3, V4 and

V6. When computing a minimal subset ofV that containsQb, Bminimal first finds a

subsetV ′ = {Vi |i ∈ [1,5]} since
⋃

Vi∈V ′ MQb

Vi
equalsEp. It then removesV2 and returns

V ′ = {V1,V3,V4,V5}. While,Bminimum successively selectsV6 (α(V6)=0.6) andV5

(α(V5)=0.4), and returns{V5,V6} as a minimum subset ofV that containsQb. ✷

Chapter 4. Graph Pattern Matching Using Views 115

D

C="Music"

B

C E

P1 P2 P3 P4 P5

P7 P8 P9 P10

V>="10K" R>="4"

A<="100"

R>="5"

C="Sports"

C="Sports"

R>="4" L<="200" R>="5"

C="Ent."

V>="10K"

C="News"

R>="4"

A>="100"

V>="10K"

C="Music"

C="Comedy" V>="10K"

A>="100" V>="10K" C="Ent."

L>="200" R>="4" L>="200"

R>="5"

C="Comedy"

A>="200" R>="5"

C="Sports"

V>="10K"

C="Sports" C="Music"

V>="10K"C="Ent."

R>="4"

V>="10K"

C="Music"

R>="5"

C="Sports"

P6

P11 P12

Figure 4.9: Youtube views

4.7 Experimental Evaluation

In this section we present an experimental study. Using real-life and synthetic data,

we conducted four sets of experiments to evaluate (1) the efficiency and scalability of

algorithmMatchJoin for graph pattern matching using views; (2) the effectiveness of

optimization techniques forMatchJoin; (3) the efficiency and effectiveness of (mini-

mal, minimum) containment checking algorithms; and (4) thecounterparts of the al-

gorithms in (1) and (3) for bounded pattern queries.

Experimental setting. We used the following data.

(1) Real-life graphs. We used three real-life graphs: (a)Amazon(http://snap.

stanford.edu/data/index.html), a product co-purchasing network with 548,552

nodes and 1,788,725 edges. Each node has attributes such as title, group and sales-

rank, and an edge from productx to y indicates that people who buyx also buyy.

(b) Citation (http://www.arnetminer.org/citation/) with 1,397,240 nodes and

3,021,489 edges, in which nodes represent papers with attributes such as title, authors,

year and venue, and edges denote citations. (c)YouTube(http://netsg.cs.sfu.ca/

youtubedata/), a recommendation network with 1,609,969 nodes and 4,509,826

edges. Each node is a video with attributes such as category,age and rate, and each

edge fromx to y indicates thaty is in the related list ofx.

(2) Synthetic data. We designed a generator to produce random graphs, controlled

by the number|V| of nodes and the number|E| of edges, with node labels from an

alphabetΣ.

(3) Pattern and view generator. We implemented a generator for bounded pattern

queries controlled by four parameters: the number|Vp| of pattern nodes, the number

|Ep| of pattern edges|Ep|, label fv from Σ, and an upper boundk for fe(e) (Section 4.6),

which draws an edge bound randomly from[1,k]. Whenk= 1 for all edges, bounded

patterns are pattern queries. We use(|Vp|, |Ep|) (resp.(|Vp|, |Ep|,k)) to present the size

Chapter 4. Graph Pattern Matching Using Views 116

of a (resp. bounded) pattern query.

We generated a setV of 12 view definitions for each real-life dataset. (a) For

Amazon, we generated 12 frequent patterns following [LSK06], where each of the

view extensions contains in average 5K nodes and edges. The views take 14.4% of the

physical memory of the entire Amazon dataset. (b) ForCitation, we designed 12 views

to search for papers and authors in computer science. The view extensions account for

12% of the Citation graph. (c) ForYoutube, we generated 12 views shown in Fig. 4.9,

where each node specifies videos with Boolean search conditions specified bye.g.,age

(A), length (L), category (C), rate (R) and visits (V). Each view extension has about

700 nodes and edges, and put together they take up to 4% of the memory for Youtube.

For synthetic graphs, we randomly constructed a setV of 22 views with node labels

drawn from a setΣ of 10 labels. We cached their view extensions (query results), which

take in total 26% of the memory for the data graphs.

(4) Implementation. We implemented the following algorithms, all in Java: (1)contain,

minimum andminimal for checking pattern containment; (2)Bcontain, Bminimum

and Bminimal for bounded pattern containment; (3)Match, MatchJoinmin and

MatchJoinmnl, whereMatch is the matching algorithm without using views [HHK95,

FLM+10]; andMatchJoinmin (resp.MatchJoinmnl) revisesMatchJoin by using a min-

imum (resp. minimal) set of views; (4)BMatch, BMatchJoinmin andBMatchJoinmnl,

whereBMatch evaluates bounded pattern queries without using views [FLM+10],

and BMatchJoinmin and BMatchJoinmnl are the counterparts ofMatchJoinmin and

MatchJoinmnl for bounded pattern queries, respectively; and (5) we also implemented a

version ofMatchJoin (resp.BMatchJoin) without using the edge ranking optimization

(Section 4.3), denoted byMatchJoinnopt (resp.BMatchJoinnopt).

All the experiments were run on a machine powered by an Intel Core(TM)2 Duo

3.00GHz CPU with 4GB of memory, using scientific Linux. Each experiment was run

5 times and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Query answering using views.We first evaluated the performance of graph

pattern matching using views,i.e., algorithmsMatchJoinmin andMatchJoinmnl, com-

pared toMatch [HHK95, FLM+10]. Using real-life data, we studied the efficiency of

MatchJoinmin, MatchJoinmnl andMatchJoin, by varying the size of the queries. We

also evaluated the scalability of these three algorithms with large synthetic datasets.

Efficiency. Figures 4.10(a), 4.10(b) and 4.10(c) show the results onAmazon, Citation

Chapter 4. Graph Pattern Matching Using Views 117

 0

 5

 10

 15

 20

 25

(4,4) (4,6) (4,8) (6,6) (6,9) (6,12) (8,8) (8,12) (8,16)

T
im

e(
se

co
nd

)

Match
MatchJoinmnl
MatchJoinmin

(a) Varying|Qs| (Amazon)

 0

 10

 20

 30

 40

 50

(4,8) (5,10) (6,12) (7,14) (8,16)

T
im

e(
se

co
nd

)

Match
MatchJoinmnl
MatchJoinmin

(b) Varying|Qs| (Citation)

 0

 10

 20

 30

 40

 50

 60

(4,8) (5,10) (6,12) (7,14) (8,16)

T
im

e(
se

co
nd

)

Match
MatchJoinmnl
MatchJoinmin

(c) Varying|Qs| (Youtube)

 0

 5

 10

 15

 20

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T

im
e(

se
co

nd
)

Match
MatchJoinmnl
MatchJoinmin

(d) Varying|G| (synthetic)

 6

 8

 10

 12

 14

 16

 18

 20

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
im

e(
se

co
nd

)

MatchJoinmin [Q1]
MatchJoinmin [Q2]
MatchJoinmin [Q3]
MatchJoinmin [Q4]

(e) Varying|G| && |Qs| (synthetic)

Figure 4.10: Query answering using views

andYouTube, respectively. In thex-axis, a pair(n1,n2) represents(|Vp|, |Ep|). The

results tell us the following. (1)MatchJoinmin andMatchJoinmnl substantially outper-

form Match; indeed,MatchJoinmin (resp.MatchJoinmnl) only takes 45% (57%) of the

running time ofMatch in average, over all real-life datasets. (2) The more complex the

patterns are, the more costly these methods are, as expected. (3) All three algorithms

spend more time on larger patterns. Nonetheless,MatchJoinmin andMatchJoinmnl are

less sensitive thanMatch, since they reuse previous computation cached in the views.

Chapter 4. Graph Pattern Matching Using Views 118

 0

 10

 20

 30

 40

 50

1 1.05 1.1 1.15 1.2 1.25

T
im

e(
se

co
nd

)

MatchJoinnopt
MatchJoinmin

(a) Varyingα (synthetic)

Figure 4.11: Optimization techniques

Scalability. Using large synthetic graphs, we evaluated the scalability of MatchJoinmin,

MatchJoinmnl andMatch. Fixing pattern size with|Vp| = 4, |Ep| = 6, we varied the

node number|V| of data graphs from 0.3M to 1M, in 0.1M increments, and set|E| =

2|V|. As shown in Fig. 4.10(d), (1)MatchJoinmin scales best with|G|, consistent with

the complexity analysis ofMatchJoin; and (2)MatchJoinmin accounts for about 49%

of the time ofMatchJoinmnl. This verifies that evaluating pattern queries by using less

view extensions significantly reduces computational time,which is consistent with the

observation of Figures 4.10(a), 4.10(b) and 4.10(c).

To further evaluate the impact of pattern sizes on the performance ofMatchJoinmin,

we generated four sets of patternsQs with sizes (|Vp|,|Ep|) ranging from (4,8) to (7,14)

in 1 increments ofVp, kept|Ep| = 2|Vp|, and varied|G| as in Fig. 4.10(d). The results

are reported in Fig. 4.10(e), which tells us the following. (1)MatchJoinmin scales well

with |Qs|, which is consistent with the observation of Fig. 4.10(d). (2) The largerQs

is, the more costlyMatchJoinmin is. This is because for larger patterns, (a) more views

may be needed to coverQs; and (b)MatchJoinmin takes longer time to evaluateQs by

using the views chosen in step (a).

Exp-2: Optimization techniques. We evaluated the effectiveness of the optimiza-

tion strategy given in Section 4.3 forMatchJoin. We compared the performance of

MatchJoinmin andMatchJoinnopt using a pattern of size(4,6), whereMatchJoinnopt

used the same set of views asMatchJoinmin, but did not follow the bottom-up eval-

uation order based on edge ranks. The tests were conducted onsynthetic graphs,

which followed the densification law [LKF07]:|E| = |V|α. Fixing |V| = 200K, we

variedα from 1 to 1.25 in 0.05 increments. As shown in Fig. 4.11(a),MatchJoinmin

is more efficient thanMatchJoinnopt over all the datasets. Indeed, the running time

of MatchJoinmin is in average 54% of that ofMatchJoinnopt. The improvement be-

Chapter 4. Graph Pattern Matching Using Views 119

 0

 5

 10

 15

 20

 25

 30

 35

 40

(6,6)(6,12)(7,7)(7,14)(8,8)(8,16)(9,9)(9,18)(10,10)(10,20)

T
im

e(
m

ill
is

ec
on

d)

[QDAG]
[QCyclic]

(a) Varying|Qs| (synthetic)

 20

 40

 60

 80

 100

 120

(6,6) (6,12) (7,7) (7,14) (8,8) (8,16) (9,9) (9,18)(10,10)(10,20)

P
er

ce
nt

ag
e(

%
)

R1 [QCyclic]
R2 [QCyclic]

(b) Varying|Qs| (synthetic)

Figure 4.12: Determining query containment

comes more evident whenα increases,i.e.,when the graphs have more edges. This is

because when graphs become dense, more redundant edges can be removed by follow-

ing the bottom-up strategy used inMatchJoinmin. The results forBMatchJoinmin and

BMatchJoinnopt are consistent with Fig. 4.11(a) and are hence not shown.

Exp-3: Determining query containment. In this set of experiment, we evaluated the

performance of pattern containment checkingw.r.t. query complexity.

Efficiency ofcontain. We generated two sets ofDAG andcyclic patterns, denoted by

QDAG andQcyclic, respectively. Fixing a set of synthetic viewsV , we varied the pattern

size from(6,6) to (10,20), where each size corresponds to a set of patterns with differ-

ent structures and/or node labels. Figure 4.12(a) shows theresults ofcontain onDAG

andcyclic patterns. The results tell us that (1)contain is efficient,e.g., it takes only

39 ms to decide whether acyclicpatternQcyclic with |Vp|=10 and|Ep|=20 is contained

in V ; (2) the larger the pattern is, the more costlycontain is for bothDAG andcyclic

patterns, as expected; and (3) when pattern size is fixed,cyclicpatterns cost more than

DAG patterns forcontain. This is because when a pattern iscyclic, Match needs to

compute a fixpoint for its matches.

Efficiency and Effectiveness ofminimum andminimal. We next evaluated the efficiency

and effectiveness ofminimum andminimal, by using the same view definitionsV and

cyclicpatternsQcyclic as above. To compare the performances of these two algorithms,

we defineR1 = |Tmin|/|Tmnl| as the ratio of the time used byminimum to that of

minimal; andR2 = |Minimum|/|Minimal| for the ratio of the size of subsets of views

found byminimum to that ofminimal. We varied the size of pattens from (6,6) to

(10, 20). As shown in Fig. 4.12(b), (1)minimum is efficient on all patterns used,e.g.,

it takes about 0.4s to find a subset ofV that contains patterns with 10 nodes and 20

Chapter 4. Graph Pattern Matching Using Views 120

 0

 100

 200

 300

 400

 500

(4,4,2) (4,6,2) (4,8,2) (6,6,2) (6,9,2)(6,12,2)(8,8,2)(8,12,2)(8,16,2)

T
im

e(
se

co
nd

)

BMatch
BMatchJoinmnl
BMatchJoinmin

(a) Varying|Qb| (Amazon)

101

102

103

104

(4,8,3) (5,10,3)(6,12,3)(7,14,3)(8,16,3)

T
im

e(
se

co
nd

)

BMatch
BMatchJoinmnl
BMatchJoinmin

(b) Varying|Qb| (Citation)

101

102

103

104

2 3 4 5 6

T
im

e(
se

co
nd

)

BMatch
BMatchJoinmnl
BMatchJoinmin

(c) Varying fe(e) (Youtube)

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T

im
e(

se
co

nd
)

BMatch
BMatchJoinmnl
BMatchJoinmin

(d) Varying|G| (synthetic)

Figure 4.13: Efficiency and scalability of BMatchJoin

edges; (2)minimum is effective: whileminimum takes up to 120% of the time of

minimal (R1), it finds substantially smaller sets of views, only about 40%-55% of the

size of those found byminimal, as indicated byR2; and (3) bothminimal andminimum

take more time when pattern size increases, as expected.

Exp-4: Efficiency and scalability ofBMatchJoin. In this set of experiment we eval-

uated (1) the efficiency ofBMatchJoinmin vs.BMatchJoinmnl andBMatch, by using

the real-life datasets and varying the size of pattern queries, and (2) the scalability

of BMatchJoinmin with the size of data graphs and the complexity of patterns, by

using large synthetic graphs. HereBMatchJoinmin (resp.BMatchJoinmnl) denotes

BMatchJoin with minimum (resp.minimal) subset ofV , while BMatch [FLM+10]

usesBFS to find ancestors or descendants of a node within a distance bound specified

by fe(e).

Efficiency. We used the same patterns as forMatchJoin in Exp-1, except that the

edge bounds of the patterns are set to befe(e) = 2 (resp. fe(e) = 3) for queries over

Amazon(resp.Citation). Figure 4.13(a) shows the results onAmazonin which the

x-axis (|Vp|, |Ep|, fe(e)) indicates the size of patternsQs = (Vp,Ep, fe). From the

Chapter 4. Graph Pattern Matching Using Views 121

results we find thatBMatchJoinmin and BMatchJoinmnl perform much better than

BMatch: (1)BMatchJoinmin (resp.BMatchJoinmnl) needs only 10% (resp. 14%) of the

time ofBMatch; (2) when pattern size increases, the running time ofBMatchJoinmin

(resp.BMatchJoinmnl) grows slower than that ofBMatch; and (3)BMatchJoinmin al-

ways outperformsBMatchJoinmnl. These are consistent with the result forCitation,

shown in Fig. 4.13(b), in whichy-axis is on alogarithmic scale.

Fixing pattern size with|Vp| = 4 and |Ep| = 8, we varied fe from 2 to 6. Fig-

ure 4.13(c) shows the results onYouTube, where they-axis is also on a logarithmic

scale. The results tell us the following: (1)BMatchJoinmin substantially outperforms

BMatch; when fe(e) = 3, for example,BMatchJoinmin accounts for only 3% of the

computational time ofBMatch; (2) the largerfe(e) is, the more costlyBMatch is, as it

takes longer forBFS to identify ancestors or descendants of a node within the distance

bound fe(e); and (3)BMatchJoinmin is more efficient thanBMatchJoinmnl, as it uses

less views.

Scalability. Fixing patterns with|Vp| = 4, |Ep| = 6 and fe(e) = 3, we evaluated the

scalability ofBMatchJoinmin, BMatchJoinmnl andBMatch with the size|G| of syn-

thetic graphsG. We varied|V| from 0.3M to 1M in 0.1M increments, while letting

|E| = 2|V|. As shown in Fig 4.13(d), (1)BMatchJoinmin scales best with|G|; this is

consistent with its complexity analysis; and (2)BMatchJoinmin takes only 6% of the

computation time ofBMatch, and the saving is more evident whenG gets larger. This

verifies the effectiveness of answering bounded pattern queries using views.

Summary. From the experimental results we find the following. Answering (bounded)

pattern queries using views is effective in querying large social graphs. For example,

by using views, matching via bounded simulation takes only 6% of the time needed

for computing matches directly in synthetic graphs, and 3% on YouTube. For simula-

tion, the improvement is over 51% at least. (2) Our view-based matching algorithms

scale well with the query size and the data size. Moreover, byusing views, the match-

ing algorithms are much less sensitive to the size of data graphs. (3) It is efficient to

determine whether a (bounded) pattern query can be answeredusing views, by using

the algorithms for checking (minimal, minimum) pattern containment. In particular,

despite the intractability ofMCP, our approximation algorithm for minimum contain-

ment is efficient and effectively reduces redundant views, which in turn improves the

performance of matching by 55% (resp. 94%) for (resp. bounded) pattern queries. (4)

Better still, our optimization strategy based on edge ranksfurther improves the perfor-

Chapter 4. Graph Pattern Matching Using Views 122

mance of pattern matching using views, by 46% for pattern queries.

4.8 Related Work.

We categorize related work as follows. There are two view-based approaches for query

processing: query rewriting and query answering [Hal01, Len02]. Given a queryQ

and a setV of views, (1) query rewriting is to reformulateQ into a queryQ′ of a fixed

language such thatQ′ refers only toV , andQ andQ′ are equivalent,i.e., for all D,

Q(D) = Q′(D); and (2) query answering is to computeQ(D) by evaluating a query

A such thatA refers only toV and its extensionsV (D), andQ andA are equivalent.

While the former requires thatQ′ is in a fixed language, the latter imposes no constraint

onA. We study answering graph pattern queries using pattern views.

A related issue isquery containment: given two queriesQ1 and Q2, it is to

determine whether for any databaseD, the query resultQ1(D) is contained in

Q2(D) [AHV95]. As will be seen in Section 4.3, query containment isa special case

of pattern containment, whenV consists of a single view.

We next review previous work on these issues for relational databases, XML data

and general graphs.

Relational data. Query answering using views has been extensively studied for rela-

tional data (see [AHV95, Hal01, Len02] for surveys). It is known that for conjunctive

queries, the problem is already intractable [Hal01]. When it comes to query rewriting,

the problem is also intractable [LMSS95]. For the containment problem, the homo-

morphism theorem shows that one conjunctive query is contained in another if and

only if there exists a homomorphism between the tableaux representing the queries,

and it isNP-complete to determine the existence of such a homomorphism[AHV95].

Moreover, the containment problem is undecidable for relational algebra [AHV95].

XML queries. There has been a host of work on processing XML queries usingviews,

over XML trees [MS02, DHT04, PT05, NS03]. In [MS02], the containment of simple

XPath queries is shown coNP-complete. When disjunction, DTDs, and variables are

taken into account, the problem ranges from coNP-complete toEXPTIME-complete

to undecidable for various XPath fragments [NS03]. It is also shown [DHT04] that

the containment problem is alreadyΣp
2-complete for conjunctive XQuery with a fixed

nesting depth. In [ABMP07], pattern containment and query rewriting of XML are

studied under constraints expressed as a structural summary. To answer tree pattern

Chapter 4. Graph Pattern Matching Using Views 123

queries (a fragment of XPath), [LWZ06, WLY11, WTW09] have studied maximally

contained rewriting rather than equivalent rewriting.

Semistructured data and RDF. There has also been work on view-based query process-

ing for semistructured data andRDF, which are also modeled as graphs.

(1) Semistructure data. Views defined in Lorel are studied in,e.g.,[ZGM98], which

are quite different from graph patterns considered here. View-based query rewriting

for regular path queries (RPQs) is shownPSPACE-complete in [CGLV00], and anEX-

PTIME rewriting algorithm is given in [PV99]. The containment problem for various

RPQsis studied in [BHLW10, CGLV01, GT03]: it isEXPSPACE-complete for con-

junctive two-wayRPQs[CGLV01], and is undecidable forRPQsin the presence of

path constraints [GT03] or for extended conjunctiveRPQs[BHLW10].

(2) RDF. An EXPTIME query rewriting algorithm is given in [LDK+11] for SPARQL.

It is shown in [CEGL11] that query containment is inEXPTIME for PSPARQL, which

supports regular expressions. There has also been work on evaluatingSPARQLqueries

onRDF based on cached query results [CR94].

Our work differs from the prior work in the following. (1) We study query answer-

ing using views for graph pattern queries via (bounded) simulation, which are quite

different from previous settings, from complexity bounds to processing techniques.

(2) We show that the containment problem for the pattern queries is inPTIME, in con-

trast to its intractable counterparts fore.g.,XPath, regular path queries andSPARQL.

(3) We study a more general form of query containment betweena queryQs and a set

of queries, to identify an equivalent query forQs that is not necessarily a pattern query.

(4) The high complexity of previous methods for query answering using views hin-

ders their applications in the real world. In contrast, our algorithms have performance

guarantees and yield a practical method for graph pattern matching in real-life social

networks.

Chapter 5

Diversified Top- k Graph Pattern

Matching

Graph pattern matching has been widely used in social network analysis. A number of

matching algorithms have been developed that, given a pattern graphQs and a graph

G, compute the setM(Qs,G) of matches ofQs in G. However, these algorithms often

return an excessive number of matches, and are prohibitively expensive on large real-

life social graphs. Moreover, in practice one often wants tofind matches of a particular

pattern node, rather than the entireM(Qs,G).

In this chapter, we study the problem of top-k graph pattern matching. (1) We revise

graph pattern matching defined in terms of simulation, by supporting a designated

output nodeuo. Given G andQs, it is to find those nodes inM(Qs,G) that match

uo, instead ofM(Qs,G). (2) We propose two functions for ranking the matches: a

relevance functionδr() based on social impact, and a distance functionδd() to cover

diverse elements. (3) We develop two algorithms for computing top-k matches ofuo

based onδr(), with the early termination property, i.e.,they find top-k matches without

computing the entireM(Qs,G). (4) We also studydiversified top-k matching, a bi-

criteria optimization problem based on bothδr() andδd(). We show that its decision

problem isNP-complete. Nonetheless, we provide an approximation algorithm with

performance guaranteesand a heuristic one withthe early termination property. (5)

Using real-life and synthetic data, we experimentally verify that our (diversified) top-k

matching algorithms are effective, and outperform traditional matching algorithms in

efficiency.

124

Chapter 5. Diversified Top-k Graph Pattern Matching 125

5.1 Introduction

Graph pattern matching is being widely used in social network analysis [BHK+10,

TM05], among other things. A number of algorithms have been developed for graph

pattern matching that, given a graph patternQs and a graphG, computeM(Qs,G), the

set of matches ofQs in G (e.g.,[HHK95, FLM+10]).

Social data analysis, however, introduces new challenges to graph pattern match-

ing. Social graphs are typically large, with millions of nodes and billions of edges.

This gives rise to the following problems with the matching algorithms.

(1) The matching algorithms often return an excessive number of results. Indeed, when

matching is defined by subgraph isomorphism [GC08],M(Qs,G) may contain expo-

nentially many subgraphs ofG; when graph simulation is adopted,M(Qs,G) is a rela-

tion of sizeO(|G||Qs|) [HHK95], which may be larger than graphG. It is a daunting

task for the users to inspect such a largeM(Qs,G) and find what they are searching for.

(2) The sheer size of social graphs makes matching costly: for matching defined by

simulation, it takesO(|G||Qs|+ |G|2) time to computeM(Qs,G) [FLM+10]; for sub-

graph isomorphism, it isNP-complete to decide whether a match exists (cf. [Pap94]).

(3) Social queries often need to find matches of a specific pattern (query) nodeuo

as “query focus” [BMC10],i.e., we just want those nodes in a social graphG that

are matches ofuo in M(Qs,G), rather than the entire setM(Qs,G) of matches ofQs.

Indeed, this is how “graph search”1 of Facebook is conducted on a big social graph

with more than 1 billion users and 140 billion links2. The need for this is also evident

in, e.g.,egocentric search [CKKV11] and expert recommendation [MTP10, SCK+08].

In fact, a recent survey shows that 15% of social queries are to find matches of specific

pattern nodes [MTP10].

These highlight the need fortop-k graph pattern matching: given Qs, G and a

designated pattern nodeuo, it is to find top-k matches ofuo in M(Qs,G), ranked by a

quality function. The users only need to checkk matches ofuo instead ofM(Qs,G).

Better still, if we have an algorithm withthe early termination property, i.e., it finds

top-k matches ofuo withoutcomputing the entireM(Qs,G), we do not have to pay the

price of full-fledged graph pattern matching.

1http://www.facebook.com/about/graphsearch
2http://newsroom.fb.com/

Chapter 5. Diversified Top-k Graph Pattern Matching 126

PM1

PRG1

ST1

DB1

(b) Graph G

PM2

PRG3DB2

ST2

DB3

PRG2

PM4

ST3 ST4

PRG4

PM

PRG

ST

DB

(a) Pattern Q

*
PM3

BA1

UD2UD1

Figure 5.1: Querying collaboration network

Example 5.1: A fraction of a collaboration network is given as graphG in Fig. 5.1.

Each node inG denotes a person, with attributes such asjob title, e.g.,project man-

ager (PM), database developer (DB), programmer (PRG), business analyst (BA), user

interface developer (UD) and software tester (ST). Each edge indicates a supervision

relationship;e.g.,edge (PRG1, ST1) indicates thatPRG1 supervisedST1.

A company issues a graph search query “findPMs who supervised bothDBs and

PRGs”, and moreover, (1) theDB worked under thePRG directly or indirectly, and

vice versa; (2) both theDB and thePRG supervised anST [LLT11]. The requirements

for thePMs are expressed as a graph patternQs shown in Fig. 5.1 (a). HerePM is the

“focus” of the query,i.e., only the matches ofPM are asked for [BMC10]. This is

indicated by labelingPM with ‘∗’ as the “output node” ofQs.

When graph pattern matching is defined in terms of subgraph isomor-

phism [Pap94], no match ofQs can be identified inG. Indeed, it is too restrictive

to define matches as isomorphic subgraphs [FLM+10]. Bisimulation [DPP01] ex-

tends subgraph isomorphism with matching relations as equivalence relations, which

is still unable to identify some sensible matches,e.g.,PM1. Instead, we adopt sim-

ulation [HHK95] with designated node, extending graph search by supporting both

matching relation and specified “query focus”. With graph simulation,M(Qs,G) is a

binary relation on the pattern nodes inQs and their matches inG, including (PM, PMi),

(DB, DB j), (PRG, PRGi), (ST, STi) for i ∈ [1,4] and j ∈ [1,3].

Observe thatM(Qs,G) contains most of the nodes inG as matches, which are

excessive since,e.g.,the matchesSTi (i ∈ [1,4]) for ST are not required. Even for the

output nodePM, too manyPMi are returned (i ∈ [1,4]). However, what the user wants

are thePM matches. It is hence unnecessary and too costly to compute the entire large

setM(Qs,G).

We can do better with top-k matching. Whenk= 2, we find two top-rankedPMi ’s

that matchPM and return them in response to the request, instead ofM(Qs,G). Better

Chapter 5. Diversified Top-k Graph Pattern Matching 127

still, it is less costly. Indeed, while a naive algorithm fortop-k matching is to first

computeM(Qs,G) and then pick top-2PMi ’s, an algorithm with the early termination

property identifies thePMi ’s without computing the entireM(Qs,G).

To rank the matchesPMi ’s of PM, one may consider the following criteria. (1)

Social impact [LLT11]. Observe thatPM2 can reach more people than any other

PM, i.e., PM2 has collaborated with more people. ThusPM2 has stronger social im-

pact. (2) Social diversity [VRB+11, AGHP12]. Consider match sets{PM1,PM2} and

{PM2,PM3}. While PM2 andPM3 worked with the same people,PM1 andPM2 are quite

“dissimilar” since they covered different groups of people. Putting these together,

{PM1,PM2} makes a good candidate for top-2 matches in terms of both social impact

and diversity. ✷

This example shows that top-k graph pattern matching may rectify the limitations

of existing matching algorithms. To make practical use of it, however, several ques-

tions have to be answered. How can specific output nodes be incorporated into graph

pattern matching? What quality and diversity functions should be used to rank the

matches? What is the complexity of computing top-k matches based on one or both of

the functions? How can we guarantee early termination by ouralgorithms for comput-

ing top-k matches?

5.2 Graph Pattern Matching Revisited

In this section, we revise the traditional notion of graph pattern matching [HHK95] by

designating an output node. We then introduce the revised graph pattern matching.

5.2.1 Graph Pattern Matching Revised

Given G and a normal patternQs, the traditional notion of graph pattern match-

ing by simulation is to computeM(Qs,G). It is known thatM(Qs,G) can be com-

puted inO((|Vp|+ |V|)(|Ep|+ |E|)) time [FLM+10], where|M(Qs,G)| is bounded by

O(|V||Vp|) [HHK95].

Example 5.2: Example data graphG and patternQs are given in Fig. 5.1. One may

verify thatG matchesQs, with the unique, maximum matchM(Qs,G) given in Exam-

ple 5.1. The labelfv(u) of a query nodeu specifies a search condition: a nodev in G

can matchu only if L(v) = fv(u). ✷

Chapter 5. Diversified Top-k Graph Pattern Matching 128

We extend apattern graphto beQs = (Vp,Ep, fv,uo), whereuo is a query node in

Vp labeled with ‘*’, referred to as theoutput nodeof Qs, andVp, Ep and fv are the same

as defined in Section 1.1.

Given a patternQs and a graphG, we define thematchesof Qs in G to be

Mu(Qs,G,uo) = {v | (uo,v) ∈ M(Qs,G)}, i.e., the matches of the output nodeuo in

the unique maximumM(Qs,G). HereMu(Qs,G,uo) = /0 if G does not matchQs.

Note thatMu(Qs,G,uo) is smaller thanM(Qs,G): it is bounded by|V| as opposed

to |V||Vp|. Graph pattern matching can be readily extended to support (1) patterns

(resp. graphs) with multiple predicates (resp. attributes) on its nodes,i.e., search con-

ditions defined with multiple predicates; and (2) patterns with multiple output nodes.

We denote|Vp|+ |Ep| as|Qs|, and|V|+ |E| as|G|.

Example 5.3: Recall graphG and patternQs from Example 5.1. The nodePM is

marked as the output node ofQs. Then the setMu(Qs,G,PM) = {PMi | i ∈ [1,4]},

which consists of 4 nodes as opposed to 15node pairsin M(Qs,G). ✷

5.3 Ranking Pattern Matches

The result setMu(Qs,G,uo) could still be excessively large whenG is large, while

users are often only interested in the bestk matches of the output node ofQs [IBS08].

This suggests that we define certain functions to rank the matches, and compute top-k

matches foruo based on the functions.

In this section we first propose two functions to rank matches: a relevance function

based on social impact (Section 5.3.1), and adistance functionto measure match di-

versity (Section 5.3.2). We then define adiversification function, which is a bi-criteria

objective function combining both relevance and diversity(Section 5.3.3). Based on

these, we introduce two top-k graph pattern matching problems.

5.3.1 Relevant Matches

We first introduce a function to measure therelevanceof the matches ofuo, in terms of

the number of matches connected with the matches ofuo in a graphG. To define the

function, we first present a notion ofrelevant sets.

Relevant set. Given a matchv of a query nodeu in Qs, the relevant set ofv w.r.t. u is

the setR(u,v) such that for each descendantu′ of u in Qs, R(u,v) includes all matchesv′

Chapter 5. Diversified Top-k Graph Pattern Matching 129

of u′ that satisfy the following condition: ifu reachesu′ via a path(u,u1, . . . ,un,u′),

thenv reachesv′ via (v,v1, . . . ,vn,v′), such that(ui ,vi) ∈ M(Qs,G) for all i ∈ [1,n].

That is,R(u,v) includes all matchesv′ to whichv can reach via a path of matches.

Following [FLM+10], one can verify the following, which shows that the relevant set

is well-defined.

Lemma 5.3.1: Given a pattern graphQs and a data graph G, if G matchesQs, then

for any match v of a query node u, there exists a unique, maximum relevant set R(u,v).

✷

Proof of Lemma 5.3.1. To show Lemma 5.3.1, we first prove the following claim.

Claim 1: If G matchesQs, then for any two relevant setsR1(u,v) andR2(u,v) of a

matchv w.r.t. a query nodeu, R3 = R1∪R2 is also a relevant set ofv w.r.t. u.

We showClaim 1 by contradiction. AssumeR3 = R1∪R2 is not a relevant set. By

definition, either (a) there is a nodev′ in R3 that is not a match for any descendant of

u, or (b)v′ is a match of some descendant ofu, while v cannot reachv′ via a path that

consists of matches. Assumew.l.o.g. thatv′ ∈ R1. Then both (a) and (b) lead to the

contradiction thatR1 is a relevant set. Hence the claim follows.

We show that there exists amaximumrelevant setR(u,v) of any matchv w.r.t. u.

For any two relevant setsR1 andR2 of v w.r.t. u, R3 = R1∪R2 is also a relevant set of

v w.r.t. u(Claim 1). Thus, it follows that there always exists a maximum relevant set,

which is the union of all descendants ofv that are matches of descendants ofu.

We next show that the maximum relevant setR(u,v) of v w.r.t. uis unique. Assume

by contradiction that there exist two distinct maximum relevant setsR1 andR2 of v w.r.t.

u. Let R3 = R1∪R2. ThenR3 is also a relevant set, whileR1 ⊂ R3 andR2 ⊂ R3. This

suggests that|R1|> |R2|= |R3|, which contradicts thatR1 andR2 are both maximum.

Relevance function. On a matchv of u, we define the relevance functionδr() in terms

of the relevant setR(u,v):
δr(u,v) = |R(u,v)|.

That is, the relevance function favors those matches that can reach more other matches:

for a matchvo of the output nodeuo, the more matchesvo can reach, the bigger “im-

pact” it may have, as observed in social network studies [Bor06, KKT03]. Thus, the

matches with highδr() values are preferred for relevance.

Top-k matching problem. We now state thetop-k matching problem, denoted by

topKP. Given a graphG, a patternQs with output nodeuo, and a positive integerk, it

Chapter 5. Diversified Top-k Graph Pattern Matching 130

is to find a subsetS⊆ Mu(Qs,G,uo), such that|S|= k and

δr(S) = argmax
S′⊆Mu(Qs,G,uo),|S′|=k

∑
vi∈S′

δr(uo,vi).

Here abusingδr(), we useδr(S) to denote∑vi∈Sδr(uo,vi), referred to asthe relevance

of S to uo.

That is, topKP is to identify a set ofk matches ofuo that maximizes the total

relevance touo. In other words, for anyS′ ⊆ Mu(Qs,G,uo), if |S′| = k thenδr(S) ≥

δr(S′).

Example 5.4: Recall G andQs from Fig. 5.1. The relevant sets of the matches in

Mu(Qs,G,PM) are shown below.

match relevant set

PM1 { DB1, PRG1, ST1, ST2}

PM2 { DB2, DB3, PRG2, PRG3, PRG4, ST2, ST3, ST4}

PMi (i ∈ [3,4]) {DB2, DB3, PRG2, PRG3, ST3, ST4}

One may verify thatS= {PM2, PM3} or S= {PM2, PM4} is a top-2 relevant match

set,i.e., Sreaches more matches inG than other 2-match set forPM. The total relevance

δr(S) = δr (PM, PM2) + δr (PM, PM3) = 8 + 6 = 14. ✷

The need for studyingtopKP is evident: instead of inspecting possibly large set

Mu(Qs,G,uo), we want to find top-k elements that are most relevant to our search.

5.3.2 Match Diversity

We next introduce our metric for result diversity [QYC12]. As observed in [VRB+11,

AGHP12], it is important to diversify (social) search results to avoid repeated rec-

ommendations for similar elements (see Example 5.1), advocate elements in different

groups and to cover elements with new information.

Diversity function . To characterize the diversity of a match set, we define a distance

function to measure the “dissimilarity” of two matches. Given two matchesv1 andv2

of a query nodeu, we define theirdistanceδd(v1,v2) to be:

δd(v1,v2) = 1−
|R(u,v1)∩R(u,v2)|

|R(u,v1)∪R(u,v2)|
.

The distance functionδd() computes the number of distinct matches that two matches

of uo may impact. The largerδd(v1,v2) is, the more dissimilarv1 andv2 are. It indicates

Chapter 5. Diversified Top-k Graph Pattern Matching 131

the social diversity between the matches. Observe that the function constitutes ametric.

For any matchesv1, v2 andv3 of uo, (1) δd(v1,v2) = δd(v2,v1), and (2) it satisfies the

triangle inequality,i.e.,δd(v1,v2)≤ δd(v1,v3) + δd(v3,v2).

Example 5.5:GivenG andQs in Fig. 5.1, we have the following: (1)δd(PM3,PM4) =

0; this suggests thatPM3 and PM4 have impact on exactly the same group of peo-

ple in G, i.e., they cannot be distinguished in terms of “social impact”; and (2)

δd(PM1,PM2) =
10
11, δd(PM2,PM3) =

2
8, δd(PM1,PM3) = 1. ThusPM1 andPM3 are most

dissimilar to each other, as they are related to two completely different groups of peo-

ple. ✷

5.3.3 Match Diversification

It is recognized that search results should be relevant, andat the same time, be as

diverse as possible [VRB+11, GS09]. Based onδr() and δd() we next introduce a

diversification function.

Diversification function. On a match setS of the output nodeuo, the diversification

functionF() is defined as

F(S) = (1−λ) ∑
vi∈S

δ′r(uo,vi)+
2 ·λ
k−1 ∑

vi∈S,v j∈S,i< j

δd(vi ,v j),

whereλ∈ [0,1] is a parameter set by users,δ′r(uo,vi) is a normalized relevance function

defined asδr(uo,vi)
Cuo

, andCuo is the total number of the candidates of all those query nodes

u′ to whichuo can reach inQs. Here a nodev′ in G is called acandidateof a query

nodeu′ if L(v′) = fv(u′), i.e., they share the same label. The diversity metric is scaled

down with 2·λ
k−1, since there arek·(k−1)

2 numbers for the difference sum, while onlyk

numbers for the relevance sum.

The function F() is a minor revision of max-sum diversification introduced

by [GS09]. It is a bi-criteria objective function to captureboth relevance and diver-

sity. It strikes a balance between the two with a parameterλ that is controlled by users,

as a trade-off between the two [VRB+11].

Diversified top-k matching problem. Based on the functionF(), we next state the

diversified top-k matching problem, denoted bytopKDP. Given G, Qs with output

nodeuo, a positive integerk, and a parameterλ ∈ [0,1], it is to find a set ofk matches

S⊆ Mu(Qs,G,uo) such that

Chapter 5. Diversified Top-k Graph Pattern Matching 132

F(S) = argmax
S′⊆Mu(Qs,G,uo)

F(S′),

i.e., for all k-element setsS′ ⊆ Mu(Qs,G,uo), F(S)≥ F(S′). In contrast totopKP that

is to maximize relevance only,topKDP is to find a set ofk matches fromMu(Qs,G,uo)

such that the bi-criteria diversification function is maximized.

Example 5.6:Recall graphG and patternQs from Fig. 5.1. One can verify that when

λ = 0, i.e., when users only considers relevance, a top-2 set is{PM2, PM3}; and when

λ = 1, i.e.,when the users only care about diversity, a top-2 set is{PM1, PM3}. Indeed

when 4
33 < λ < 0.5, {PM1,PM2} makes a top-2 diversified match set, whenλ ≤ 4

33,

{PM2, PM3} is the best choice; and whenλ ≥ 0.5, {PM1, PM3} turns out to be the best

diversified match set. ✷

5.3.4 Generalized Top- k Matching

We next generalizeδr() andδd() to define generic relevance and distance functions,

based on which we characterizegeneralized (diversified) top-k matchingproblems.

Generalized ranking functions. For a matchv of a pattern nodeu, we use a gener-

alized relevant setR∗(u,v) to represent the set of descendants ofv in G that are “rel-

evant” tou or its descendants (denoted asR(u)) in Qs. We denote byM(Qs,G,R(u))

the matches of the nodes inR(u).

(1) We consider a class of generic relevance functions, which are arbitrary mono-

tonically increasing polynomial-time computable (PTIME) functions defined in terms

of R(u) andR∗(u,v). We refer to such functions asgeneralized relevance functions

δ∗r (u,v). Accordingly, the relevance function of a match setS, denoted byδ∗r (S), is a

monotonically increasingPTIME function ofδ∗r (u,v), for eachv∈ S.

(2) A generalized distance functionδ∗d(v1,v2) of two matchesv1 andv2 can be any

PTIME computable functionmetricdefined withR∗(u,v1) andR∗(u,v2). Given a match

setS, the generalized diversification functionF∗(·) is defined as

F∗(S) = (1−λ)δ∗r (S)+
2 ·λ
k−1 ∑

vi∈S,v j∈S,i< j

δ∗d(vi,v j),

whereλ ∈ [0,1] is a parameter set by users.

One may verify thatδr(), δd() andF() given earlier are special cases ofδ∗r (), δ∗d()
andF∗(), respectively. Moreover,δ∗r () andδ∗d() are able to express a variety of ranking

Chapter 5. Diversified Top-k Graph Pattern Matching 133

functions commonly used ine.g.,social/information networks [LHN06, LNK07] and

Web search [New01b], including the following:

Ranking functions Types Formulations

Preference attach-

ment [LNK07]
relevance |R(u)| ∗ |R∗(u,v)|

Common

neighbors [LHN06]
relevance |M(Qs,G,R(u))∩R∗(u,v)|

Jaccard Coeffi-

cient [New01b]
relevance |M(Qs,G,R(u))∩R∗(u,v)|

|M(Qs,G,R(u))∪R∗(u,v)|

Neighborhood

diversity [LY11]
distance 1- |R∗(u,v1)∩R∗(u,v2)|

|V|

Distance-based

diversity [VFD+07]
distance

1− 1
d(v1,v2)

(d(v1,v2) is the distance between

v1 andv2), or 1 if d(v1,v2)=∞.

Generalized top-k matching. GivenQs with output nodeuo, graphG and an integer

k, thegeneralizedtopKP (resp.topKDP) problemis to find a subsetS⊆Mu(Qs,G,uo)

of k matches, which maximizesδ∗r (S) (resp.F∗(S)).

Remarks. A function f (S) over a setSis calledsubmodularif for any subsetS1⊆S2⊂

Sandx∈S\S2, f (S1∪{x}) - f (S1)≥ f (S2∪{x}) - f (S2). Note that our diversification

functions arenot necessarily submodular. For example,F(·) (Section 5.3.3) is not

submodular. Indeed, one may verify thatF(S1∪{v}) - F(S1) ≤ F(S2∪{v}) - F(S2),

althoughF(·) contains a submodular componentδr(·).

To simplify the discussion, we present algorithms fortopKP (Section 5.3.1)

andtopKDP (Section 5.3.3). Nonetheless, we show that the algorithms can be readily

extended to support generalized top-k matching stated above.

5.4 Algorithms for Top-k Matching

We next develop three algorithms for solving the top-k matching problem (topKP).

Given a patternQs with an output nodeuo, a graphG = (V,E,L), and a positive inte-

ger k, these algorithms compute ak-element setS⊆ Mu(Qs,G,uo) such thatδr(S) is

maximum, in quadratic time.

The first one, referred to asMatch, follows a naive strategy: (1) it first finds

M(Qs,G) with the algorithm ine.g., [HHK95, FLM+10]; (2) it then computes the

relevanceδr(uo,v) for each matchv of uo in M(Qs,G,uo), and (3) sorts the matches in

M(Qs,G,uo), and selects the firstk matches. One may verify that the algorithm cor-

Chapter 5. Diversified Top-k Graph Pattern Matching 134

rectly finds the topk matches with the highest relevance, inO((|Qs|+ |V|)(|V|+ |E|))

time.

This algorithm, however, always computes the entireM(Qs,G) and is costly for

big G. We can rectify this by using “early termination” algorithms. In contrast tomat,

these algorithms stop as soon as top-k matches are identified, without computing the

entireM(Qs,G).

Proposition 5.4.1: For givenQs, G and an integer k,topKP can be solved by early-

termination algorithms. ✷

These algorithms leverage a sufficient condition for early termination. For a query

nodeu, we denote ascan(u) the set of all the candidatesv of u, i.e., vhas the same label

asu. We usel(u,v) andh(u,v) to denote alower boundandupper boundof δr(u,v),

respectively,i.e., l(u,v) ≤ δr(u,v) ≤ h(u,v). Then one can easily verify the following.

Proposition 5.4.2: A k-element set S⊆ can(uo) is a set of top-k matches of uo if (1)

each v in S is a match of uo, and (2)minv∈S(l(uo,v)) ≥ maxv′∈can(uo)\S(h(uo,v′)). ✷

Proof of Proposition 5.4.2We prove Proposition 5.4.2 by contradiction. Assume, for

any data graphsG that matchesQs, that (1) each nodev in S is a match ofuo, (2)

minv∈S(l(uo,v)) ≥ maxv′∈can(uo)\S(h(uo,v′)), while S is not a set of top-k matches of

uo. By assumption, there exists either (a) a node inSthat is not a match, or (b) a match

vi of uo that is not inSand it has a higher relevance than at least a nodev j ∈ S.

For case (a), it already contradicts the assumption that each nodev∈ S is a match of

uo.

For case (b), one may verify thatδr(S) ≤ δr((S∪{vi}) \ {v j}), which indicates that

δr(uo,v j)≤ δr(uo,vi). This suggests thatl(uo,v j)≤ δr(uo,v j)≤ δr(uo,vi)≤ h(uo,vi).

Thus, it contradicts the assumption in (2).

Thus, both cases lead to contradiction. Proposition 5.4.2 hence follows from the

analysis above.

That is, the smallest lower bound of the matches inS is no less than the largest

upper bound of those incan(uo) \S. We use this condition to decide whetherS is a

top-k match set.

We also use the notion of ranks. For a graphG, thestrongly connected component

graphGSCC is aDAG obtained by shrinking each strongly connected componentSCC

of G into a single node. We usevSCC to denote theSCC node containingv andESCC

Chapter 5. Diversified Top-k Graph Pattern Matching 135

as the set of edges betweenSCC nodes. Thetopological rank r(v) of a nodev in G is

defined as (a)r(v) = 0 if vSCC is a leaf inGSCC (i.e.,with indegree 0), and otherwise,

(b) r(v) = max{(1+ r(v′)) | (vSCC,v′SCC) ∈ ESCC}.

Example 5.7:Recall patternQs given in Fig. 5.1. One may verify that the topological

ranks of the nodes inQs arer(ST) = 0, r(DB) = r(PRG) = 1 andr(PM) = 2. ✷

Based on these notations and Proposition 5.4.2, we provide two algorithms for

topKP as a constructive proof of Prop. 5.4.1, whenQs is aDAGpattern (Section 5.4.1)

and a cyclic pattern (Section 5.4.2), respectively.

5.4.1 Algorithm for Acyclic Patterns

We start with an algorithm fortopKP whenQs is aDAG pattern, denoted asTopKDAG.

To simplify the discussion, we assume that the output nodeuo is a “root” of Qs, i.e., it

has no parent, and it can reach all the query nodes inQs. As will be seen at the end of

Section 5.4.1, the algorithm can be easily extended to the case whenuo is not a root in

Qs.

We use the condition given in Proposition 5.4.2 to achieve early termination. The

idea is to dynamically maintain, for each candidatev of a query nodeu in Qs, (1)

a Boolean formula to indicate whetherv is a match, (2) a subset of its relevant set

and (3) two integers to estimate the lower bound and upper bound of δ(u,v). Instead

of computingM(Qs,G), the algorithm first computes a set of matches for some query

nodes, and iteratively updates the formulas of the other candidates by “propagating” the

partially evaluated results. In the propagation, it (1) checks whether some candidates

become matches ofuo, and (2) updates the lower and upper bounds of the candidates,

until either the termination condition is satisfied, or all the matches are identified.

We now present auxiliary structures used byTopKDAG.

Data structures. For each query nodeu in Qs, TopKDAG maintains a candidate set

can(u). For each candidatev in can(u), TopKDAG assigns a vectorT = 〈bf,R, l ,h〉,

where (1)bf is a Boolean equation of the formXv = f , and f is a Boolean formula

that indicates whetherv is a match ofu; (2) R denotes a set of matches reachable

from v, i.e.,a subset of the relevant setR(u,v); (3) l andh are two integers denoting the

lower and upper bounds ofδr(u,v), respectively. We usev.T, v.bf, v.R, v.l andv.h to

denote these components, respectively.TopKDAG also uses a min-heapS of sizek to

maintain the matches ofuo, ranked byv.l .

Chapter 5. Diversified Top-k Graph Pattern Matching 136

Auxiliary structure . We use an indexI to efficiently estimate the relevance upper

bound of matches. Given a data graphG, I maps each nodev in G to a list I (v) of

triples〈d, lb, n〉, for eachd ∈ [1,diameter] andlb ∈ Σ, wherediameter is the diameter

(i.e., longest shortest path) ofG, andΣ is the label set ofG. Intuitively, each triple〈d,

lb, n〉 in the listI (v) indicates that there aren nodes labeled bylb within d hops from

v.

We show how to derive an upper bound of the relevance for the candidates, by

usingI only. Given a pattern nodeu and its candidatev, we check each triple〈d, lb,

n〉 in I (v), and see whether there exists a pattern nodeu′ with label lb, and isd hop

away fromu (i.e., reachable fromu via a shortest path of lengthd). If such a nodeu′

exists, thenv.h is increased byn.

To see thatv.h is indeed an upper bound, note that (a)v.h represents the size of a

node setC that consists of all candidates of any descendant of patternnodeu, and (b)

the relevant set ofv is always a subset ofC. Thus,v.h is a valid upper bound. Note

that the upper bound holds when a node inG is a candidate for more than one pattern

nodes.

We provide a time complexity analysis as follows. (1) The construction ofI is in

O(|V|(|V|+ |E|)) time, and the space cost ofI is in O(|diameter||Σ||V|). Typically,

both |diameter| and|Σ| are much smaller than|V|. (2) Given any patternQs, the cost

for checking upper boundv.h for a match candidatev is in O(|diameter||Qs|) time,

which is typically small. (3) The indexI (G) can be constructed once via off-line

computation.

Algorithm. AlgorithmTopKDAG is shown in Fig. 5.2. It has two stages:initialization

andpropagation, given as follows.

(1) Initialization (lines 1-4). TopKDAG first initializes (a) the min-heapS, and (b) a

Boolean variabletermination for the termination condition (line 1). It then initializes

structures for each query nodeu (lines 2-4). It computes the topological rankr(u) in

Qs and its candidate setcan(u) (line 3).

The vectorv.T is initialized as follows (line 4). For each candidatev of a query

nodeu, (1) if r(u) = 0, one may verify thatv is already a match, thusTopKDAG sets

v.bf asXv = true, v.R = /0, andv.l = v.h = 0. (2) Otherwise,v.T is initialized as follows:

(a) v.R = /0; (b) v.l = 0; (c) v.bf is set asXv =
∧

(u,ui)∈Ep
(
∨

vi∈can(ui)Xvi), for each child

vi of v in G; intuitively, Xv is true if and only if for each childui of u, v has a child

vi that is a match ofui; and (d)v.h = Cu(v), whereCu(v) is the total number of the

Chapter 5. Diversified Top-k Graph Pattern Matching 137

Input: An acyclic patternQs = (Vp,Ep, fv,uo),

a graphG= (V,E,L), and a positive integerk.

Output: A top-k match set ofuo.

1. min-heapS := /0; termination := false;

2. for each u∈Vp do

3. compute topological rankr(u); initialize can(u);

4. for each v∈ can(u) do initialize v.T;

5. while (termination = false) do

6. select a set of unvisited candidatesSc ⊆ can(u)

of query nodesu in Qs, wherer(u) = 0;

7. if Sc 6= /0 then

8. 〈G,S〉 := AcyclicProp(Qs,Sc,G,S);

9. check the termination condition and updatetermination;

10. elsetermination:= true;

11. return S;

ProcedureAcyclicProp

Input: Qs, G, S, and a set of candidatesSc.

Output: Updated〈G,S〉.

1. initialize queueVA with Sc;

2. while VA 6= /0 do

3. nodev := VA.pop();

4. for each (u′,u) ∈ Ep and(v′,v) ∈ E

wherev′ ∈ can(u′), v∈ can(u) do

5. updatev′.T according tov.T;

6. if u′ = uo then updateS;

7. if v′.T is changedthenVA.push(v′);

8. return 〈G,S〉;

Figure 5.2: Algorithm TopKDAG

candidates of all those query nodes to whichu can reach (section 5.3).

(2) Propagation(lines 5-10). In the propagation,TopKDAG (1) checks whether some

candidates become matches ofuo, and (2) updates the lower and upper bounds of the

candidates, until either the termination condition is satisfied, or all the matches are

identified. It iteratively propagates the known matches andtheir relevance to evaluate

Chapter 5. Diversified Top-k Graph Pattern Matching 138

Boolean equations of candidates, and adjusts their lower and upper bounds. Using

a greedy heuristic, it selects a setSc of candidates of query nodes ranked 0 (line 6),

which is aminimal setthat includes all the children of those candidates of query nodes

with rank 1. Note thatSc is already a match set since each node inSc is a leaf. IfSc is

not empty,i.e., there exist unvisited matches (line 7),TopKDAG then propagatesv.T

to all the ancestorsv′ of v and updatesv′.T andS, by invoking procedureAcyclicProp

(line 8). If the condition specified in Prop. 5.4.2 holds, or if Sc is empty,termination

is settrue (line 9-10). It returnsS as the result (line 11).

ProcedureAcyclicProp. Given a setSc of matches,AcyclicProp updatesG andS as

follows. It first initializes a queueVA with the nodes inSc (line 1). Then for each node

v ∈ can(u) in VA, whereXv is true, and each pattern edge(u′,u), it identifies all the

parentsv′ of v that are candidates ofu′ (lines 3-4), and updatesv′.T as follows (line 5):

◦ v′.bf is re-evaluated withXv = true;

◦ if Xv′ becomestrue, then for each childv′′ of v′ of which Xv′′ is true, v′.R :=

v′.R∪v′′.R∪{v′′};

◦ if Xv′ is true, the lower boundl is adjusted by lettingv′.l := |v′.R| after v′.R is

updated; intuitively, only whenv is determined to be a match, the lower bound

can be “safely” estimated byR;

◦ v′.h is set to be|v′.R| as soon as for all childrenv′′ of v′, none ofv′′.h is changed

further; and

◦ if v′.bf no longer has Boolean variables that are not instantiated,v.l = v.h, i.e.,

R(u,v) is determined now.

These guarantee the following invariant for any candidatev of a query nodeu, at

each iteration of thewhile loop (lines 5-10 of ofTopKDAG): (1) Xv is evaluated to be

true if and only if v is a match ofu; (2) v.l ≤ δ(u,v) ≤ v.h.

During the process, ifu′ is the output nodeuo,AcyclicProp inserts the new matches

v′ of uo into the min-heapS (line 6) if either (1)|S| ≤ k, i.e.,S has less thank nodes and

hence can take more nodes; or (2)v′.l is larger thanv′′.h for somev′′ ∈ S; in this case,

v′ replaces thev′′ with the smallestδr(uo,u′′) in S. If v′.T is updated,v′ is added to

VA for further propagation (line 7). The process repeats untilno node inVA has newly

updated information (line 8).

Example 5.8: Consider graphG given in Fig. 5.1 and aDAG patternQs1 with edge

set {(PM,DB), (PM,PRG), (PRG,DB)}, whereuo = PM. WhenQs1 is issued onG,

TopKDAG identifies the top-1 match foruo as follows.

Chapter 5. Diversified Top-k Graph Pattern Matching 139

(1) For initialization (lines 1-4),TopKDAG sets the vectorsv.T = 〈v.bf,v.R,v.l ,v.h〉 for

(parts of) candidates as follows.

v v.T = 〈v.bf,v.R,v.l ,v.h〉

PM2 〈XPM2 = (XPRG3 ∨XPRG4)∧XDB2, /0,0,3〉

PM3 〈XPM3 = XPRG3 ∧XDB2, /0,0,2〉

PRG j (j ∈ [3,4]) 〈XPRG j = XDB2, /0,0,1〉

DBk (k∈ [1,3]) 〈XDBk = true, /0,0,0〉

(2) In the propagation stage,AcyclicProp selectsSc ase.g.,a candidate{DB2} for the

query nodeDB ranked 0 inQs1. It then starts the propagation (lines 4-7). After one

iteration of thewhile loop (lines 2-7), the updated vectors are:

v v.T = 〈v.bf,v.R,v.l ,v.h〉

PM2 〈XPM2 = true,{PRG3,PRG4,DB2},3,3〉

PM3 〈XPM3 = true,{PRG3,DB2},2,2〉

PRG j (j ∈ [3,4]) 〈XPRG j = true,{DB2},1,1〉

One can verify thatPM2 is determined to be a match ofPM after a single iteration.

Better still, the early termination condition is satisfied:PM2.l is 3, which is already

the largest relevance value. Hence, algorithmTopKDAG returnsPM2 directly, without

computingM(Qs1,G). ✷

Correctness. Algorithm TopKDAG correctly computesS as a top-k match set foruo

based onδr(). (1) It always terminates. In eachwhile iteration (lines 5-10), a set of

unvisited candidatesSc is checked.TopKDAG terminates either when the termination

condition is true, or whenSc is empty,i.e.,all matches have been found. (2)TopKDAG

returnsS that consists of either top-k matches by Proposition 5.4.2, or all matches of

uo whenuo has less thank matches.

Complexity. The initialization (lines 1-4) takesO(|Qs||G|) time, by using an index

to estimate the upper bounds. It takes in totalO(|V|(|V|+ |E|)) time to propagate

changes and update vectors (lines 5-10). The maintenance ofthe min-heapS is in total

O(|V| logk) time (line 8). Checking early termination can be done in constant time

(line 9), by using a max-heap to record the upper bounds of those candidates ofuo.

ThusTopKDAG takesO(|Qs||G|+ |V|(|V|+ |E|)+ |V| logk) time in the worst case,

i.e., O(|Qs||G|+ |V|(|V|+ |E|)) since logk is typically much smaller than|Qs|.

Chapter 5. Diversified Top-k Graph Pattern Matching 140

Early termination. Algorithm TopKDAG has the early termination property. More

specifically, it combines the evaluation and ranking in one process, and terminates as

soon as top-k matches are identified based on Proposition 5.4.2. That is, it computes

top-k matches foruo withoutcomputing and sorting the entireMu(Qs,G,uo). As will

be verified in Section 5.7, whileTopKDAG has the same worst-case complexity as

Match, it substantially outperformsMatch.

Remark. AlgorithmTopKDAG can be easily extended to handle the case whenuo is

not a root node. In addition to the termination condition given in Proposition 5.4.2,

TopKDAG simply checks whether for each query nodeu that is not a descendant ofuo,

there exists a match foru. One can verify that the correctness and complexity results

hold for the extendedTopKDAG, as well as the early termination property.

5.4.2 Algorithm for Cyclic Patterns

WhenQs is cyclic, it is more intriguing to compute top-k matches with early termina-

tion, as illustrated below.

Example 5.9: Observe thatDB andPRG in patternQs of Fig. 5.1 form a cycle. To

check,e.g.,whetherDB1 andPRG1 matchDB andPRG, respectively, the corresponding

Boolean equations areXDB1 = XPRG1 ∧XST2, andXPRG1 = XDB1 ∧XST1 (seeTopKDAG).

These arerecursivelydefined and cannot be solved by a bottom-up propagation pro-

cess. ✷

To cope with cyclic patternsQs, we next provide an algorithm fortopKP, denoted

asTopK, by extendingTopKDAG. GivenQs, topKP first computes the strongly con-

nected component graphQsSCC of Qs (Section 5.4.1). TreatingQsSCC as aDAG pat-

tern, it then conducts initialization and bottom-up propagation along the same lines as

TopKDAG. It terminates as soon as the condition of Proposition 5.4.2is satisfied.

In contrast toTopKDAG, however,TopK has to deal withnontrivial nodesin SCC,

i.e.,those nodes inQsSCC that contain more than one query node ofQs. TopK employs

a fixpoint propagation strategyto process such nodes. When a nodeu of Qs in uSCC

finds a match, its vector are propagated to the candidates of those query nodesin uSCC

only, to adjust their vectors. The propagation proceeds until a fixpoint is reached,

i.e., when no vector can be updated in the propagation for all candidates of the query

nodes in thisuSCC.

Algorithm . AlgorithmTopK works along the same lines as algorithmTopKDAG (see

Chapter 5. Diversified Top-k Graph Pattern Matching 141

Input: A cyclic patternQs = (Vp,Ep, fv,uo),

a graphG= (V,E,L), and a positive integerk.

Output: A top-k match set ofuo.

1. min-heapS := /0; queueVA := /0; termination := false;

2. for each u∈Vp do

3. compute topological rankr(u); initialize can(u);

4. for each v∈ can(u) do initialize v.T;

5. while (termination = false) do

6. select a set of unvisited candidatesSc ⊆ can(u)

of query nodesu in Qs, wherer(u) = 0;

7. if Sc 6= /0 then

8. initializeVA with Sc;

9. while VA 6= /0 do

10. nodev := VA.pop();

/* verifies whetherv is a match ofu */

11. if v∈ can(u) and|uSCC|> 1 then

12. updated〈G,S〉 := SccProcess(G,Qs,v,uSCC,S);

/* propagates relevance values */

13. if v matchesu then /* v.bf := true */

14. if |uSCC|> 1 then /* propagates within a singleSCC */

15. propagate relevance changes withinuSCC;

16. updateS if uo ∈ uSCC;

17. VA.push(v1) if v1 is a match ofu1 ∈ uSCC, and

(v′,v1) ∈ E,(u′,u1) ∈ Ep,v′ ∈ can(u′),u′ 6∈ uSCC;

18. else/* propagates among differentSCCs */

19. for each (u′,u) ∈ Ep and(v′,v) ∈ E

wherev′ ∈ can(u′), v∈ can(u) andu′ 6∈ uSCCdo

20. updatev′.T according tov.T;

21. if u′ = uo then updateS;

22. if v′.T is changedthenVA.push(v′);

23. check the termination condition and updatetermination;

24. elsetermination:= true;

25. return S;

Figure 5.3: Algorithm TopK

Figure 5.3). It utilizes the same indexI (G) to estimate the upper bound of relevance

for candidates; maintains the same data structures,e.g.,a candidate setcan(u) for each

Chapter 5. Diversified Top-k Graph Pattern Matching 142

Procedure SccProcess

Input: patternQs = (Vp,Ep, fv,uo), graphG= (V,E,L), nodevc,

a nontrivial nodeuSCC ∈ QsSCC, and a min-heapS.

Output: Updated〈G,S〉.

1. stackVA := /0; termination := false;

2. pushvc ontoVA;

3. while VA 6= /0 andtermination = false do

4. nodev := VA.pop(); Xv := true;

5. for each (v′,v) ∈ E and(u′,u) ∈ Ep do

/*v∈ can(u) for u∈ uSCC, andv′ ∈ can(u′) */

6. updatev′.T;

7. if Xv′ is evaluated totrue then

8. if v′ 6= vc then VA.push(v′);

9. else ifv′ = vc then

10. updatevi .T for eachvi ∈VA;

11. if u′ = uo then updateS;

12. check the termination condition; updatetermination;

13. if termination = true then break ;

14. if v.bf 6= true then restorev′.bf for each visited nodev′;

15. return 〈G,S〉;

Figure 5.4: Procedure SccProcess

query node, a vectorT = 〈bf,R, l ,h〉 for each candidate, and a min-heapS, and lever-

ages the same sufficient condition for early termination.TopK differs fromTopKDAG

in that (a) it uses a procedureSccProcess to check the validity of candidates for those

nontrivial query nodesu, i.e., |uSCC| > 1, rather than simply evaluatingv.bf (lines

11-12); and (b) it employs a strategy similar toSccProcess to propagate changes of

relevance among nodes that are matches of query nodes in a singleSCC (lines 14-17).

We next take a closer look at procedureSccProcess.

ProcedureSccProcess. The procedure is given in Fig. 5.4. It takes as input a nontrivial

SCC nodeuSCC, a min-heapS to maintain the top-k matches, graphG, patternQs

and a candidatevc as an “entry” node. It uses a stackVA to perform propagation,

and a Boolean variabletermination to indicate termination (line 1-2). UtilizingVA, it

performs a reversed depth-first traversal ofG starting fromv at the top ofVA (lines 3-

13). For eachv′ ∈ can(u′) encountered (line 5), whereu′ is a query node,SccProcess

Chapter 5. Diversified Top-k Graph Pattern Matching 143

updatesv′.T in the same way as inTopKDAG (line 6). If v′.bf can be evaluated to be

true (line 7), (1) ifv′ is notvc, v′ is pushed onto the stack to continue the reversed depth-

first traversal (line 8). (2) otherwise (line 9), one can verify that all the nodes in stackVA

are valid matches, since they correspond to query nodes inuSCC. Hence for eachvi ∈

VA, it updatesvi .T by lettingvi .R := vi .R∪VA andvi .l := |vi .R| (line 10). Furthermore,

if u′ is the output node, it updatesS with new matches (line 11), checks the termination

condition (Proposition 5.4.2), and terminates if the condition holds (lines 12-13).

If v.bf is still false after thewhile loop,v is not a match. Thus for each nodev′ vis-

ited in the loop,v′.bf is restored to its original form saved earlier (line 14).SccProcess

returns the updated vectors andS for further propagation (line 15).

Example 5.10:Recall graphGand patternQs from Fig. 5.1.TopK finds top-2 matches

for PM as follows. It first computesQsSCC of Qs, which has a nontrivial nodeDBSCC

containingDB andPRG. It starts withe.g.,a set of candidatesSc={ST3,ST4}. When the

propagation reaches candidates ofDBSCC, (parts of) their vectors are shown as below.

v v.T = 〈v.bf,v.R,v.l ,v.h〉

DB2 〈XDB2 = XPRG2 ∧ true, /0, 0,6〉

PRG2 〈XPRG2 = XDB3 ∧ true, /0, 0,6〉

DB3 〈XDB3 = XPRG3 ∧ true, /0, 0,6〉

PRG3 〈XPRG3 = XDB2 ∧ true, /0, 0,6〉

PRG4 〈XPRG4 = XDB2 ∧ (true∨XST2), /0, 0,7〉

TopK then invokesSccProcess to propagate the updates within those candidates

for the query nodeDBSCC. Consider nodesDB2, PRG2, DB3 andPRG3. SccProcess first

pushesDB3 onto stackVA (line 3). It then propagatesXDB3 = true upwards, updates

PRG2.bf to XPRG2 = true and pushesPRG2 ontoVA. Similarly, DB2.bf andPRG3.bf

are updated toXDB2 = true andXPRG3 = true successively. WhenDB3 is encountered,

SccProcess updatesDB3.T to 〈Xdb3 = true, {ST3,ST4,DB2,DB3,PRG2,PRG3},6,6〉. It

then updates vector for each node inVA (line 11). After this, the vectors of the candi-

dates forPMs are as follows (i ∈ [3,4]):

v v.T = 〈v.bf,v.R,v.l ,v.h〉

PM2 〈XPM2 = true,{ST3,ST4,DB2,DB3,PRG2,PRG3},6,7〉

PMi 〈XPMi = true,{ST3,ST4,DB2,DB3,PRG2,PRG3},6,6〉

Observe that after a single propagation, the termination condition in Proposi-

tion 5.4.2 is satisfied:PM2.l = PM3.l = 6, which are no less thanPM1.h, i.e., 4 and

PM4.h. ThusTopK returnsPM2 andPM3 as top-2 matches. ✷

Chapter 5. Diversified Top-k Graph Pattern Matching 144

Correctness & Complexity. It suffices to show that given a candidatev of a query

nodeu with |uSCC|> 1,v is a valid match ofu, If there exists a loopρv= (v,v1 . . . ,vn,v)

in G, such that (a) all the query nodes inuSCC form a loopρu = (u,u1 . . . ,un,u) and

eachvi ∈ ρv (resp. v) has the same node label asui ∈ ρu (resp. u), wherei ∈ [1,n],

and (b) for each childu′i of ui ∈ ρu (resp.u′ of u), there must exist a childv′i of vi ∈ ρv

(resp.v′ of v) such thatv′i (resp.v′) has the same label asu′i (resp.u′), wherei ∈ [1,n].

We now prove theIf condition by contradiction. Assume that such a loopρv does

not exist butv matchesu. By the assumption, there exist three cases: (1)v cannot reach

itself following reverse depth first search, or (2) there exists at least one nodevc on ρv

that does not have the same node label asuc of ρu, or (3) at least a pair of nodes(uc,vc)

exists such thatvc does not have a childv′c with the same node label as one childu′c of

uc.

For case (1), by the definition of graph simulation, for each child u′ of u, there must

exist a childv′ that matchesu′; however, sincev cannot reachv itself, then the last node

vn appearing on the pathρv cannot match the parentun of u (un appears on the cycle

ρu and as a parent ofu), this is becausevn does not have a child as a valid match of

the childu of un. To see this, note that ifvn has a childvs (not v) that matchesu, then

by vs.bf := true, and sincevs can be reached by all the nodes on pathρv, v should

be a match already. However, this cannot happen sincev is a candidate ofu. Thus

v cannot matchu, hence this contradicts the assumption. For case (2), observe that

vc has different label fromuc, and hence cannot matchuc already; thus by induction,

v cannot matchu, for a reason similar to case (1). For case (3), one may verifythat

case (3) indeed imposes the constraint of the definition of graph simulation; hence a

violation of case (3) indicates thatvc is not a match ofuc; also by induction,v can not

matchu for the same reason as in case (1). Hence, the assumption is not valid and the

correctness ofSccProcess follows.

To see the computational complexity ofSccProcess, observe that it takesO(|V|+

|E|) time to evaluate the validity of a candidatev of u, and uses logk time to maintain

S. Hence it is inO(|V|+ |E|) time, ask is typically very small, and logk can be treated

as a constant.

From the analysis ofSccProcess, the complexity ofTopK is analysed as following.

Complexity. TopK takesO(|Qs||G|) time to initialize data structures, similarly to

howTopKDAG does. The propagation ofTopK is in O(|V|(|V|+ |E|)) time. This is

because a single verification for a candidate is inO(|V|+ |E|) time (viaSccProcess),

Chapter 5. Diversified Top-k Graph Pattern Matching 145

and the propagation among the matches of query nodes in a single SCC node follows

the same way asSccProcess, which is also inO(|V|+ |E|) time. ThusTopK is in

O(|Qs||G|+ |V|(|V|+ |E|)) time.

We next analyze algorithmTopK, especially the relevance propagation among

matches of query nodes inSCC, by using Example 5.10. We discuss two specific

cases, as follows.

Case I: As shown in Example 5.10, when propagation reaches candidates of nodes

in DBSCC, TopK first verifies the validity ofDB3. This is processed by proce-

dure SccProcess, via a reversed depth first search. The traversal follows thepath

DB3 → PRG2 → DB2 → PRG3 → DB3, which has the worst time complexityO(|V|+

|E|). It is worth mentioning that when a candidate is determined to be an invalid match

after the traversal, the restoring process for all the visited nodes is inO(|V|) time, in

the worst case (line 14 in Fig. 5.4). After a single process for DB3, all the visited

candidates turn to be matches and have their corresponding vectors updated. At this

moment, the relevant setDB3.R (given in Example 5.10) is the same as relevant sets

of all other newly verified matches, which indicates that no relevance change can be

propagated, and the fixpoint is reached.

Case II: Assume thatDB2 has one childST3 in G. ThenTopK does not terminate after

propagation inCase I, and a second round of propagation starts fromST3. When the

propagation reachesDB2, sinceDB2 is known as a valid match,TopK directly propa-

gates relevance changes,i.e.,{ST3} of DB2, following reverse depth first search, and

updates relevant sets for all the visited matches (line 15 inFig 5.3). This propagation

proceeds until no further change can be made.

One may verify that, in either case, the relevance propagation is processed follow-

ing a depth first search, which is inO(|V|+ |E|) time, and always terminates.

From the analysis above Proposition 5.4.1 follows.

Generalized top-k matching. The result below shows that our techniques can be

readily applied to generalized relevance functions given in Section 5.3.

Proposition 5.4.3:TopKDAG andTopK can be extended for generalizedtopKP, with

the early termination property. ✷

Proof of Proposition 5.4.3. As a proof of proposition 5.4.3, we extend the algo-

rithmTopKDAG andTopK for the generalizedtopKP problem as below.

Chapter 5. Diversified Top-k Graph Pattern Matching 146

(1) We extendTopK for the generalizedtopKP problem, using the same data structures

(e.g.,vectors attached to each candidate), and initializes the vectors using the corre-

sponding relevance function. The only part that needs to be changed forTopK is the

evaluation of the lower and upper bounds. To this end, one simply computes the lower

and upper bounds with the corresponding relevance function, using the generalized rel-

evance setR∗(u,v). More specifically, along the same line as algorithmTopKDAG, for

each matchv or u whose attached Boolean variableXv is true, it only needs to update

the vectorv′.T iteratively until a fixpoint is reached:

◦ v′.bf is evaluated withXv = true;

◦ if Xv′ becomestrue, then for each childv′′ of v′ of which Xv′′ is true, v′.R is

updated withv′.R, following a corresponding generalized relevance set;

◦ if Xv′ is true, the lower boundl is adjusted by updatingv′.l asδ∗r (u,v) (as a func-

tion of the generalized relevance setR∗(u,v)), afterv′.R is updated; otherwise, it

remains unchanged;

◦ v′.h is set to beδ∗r (u,v) usingv′.R, as soon as for all childrenv′′ of v′, none of

v′′.h is changed further; and

◦ if v′.bf no longer has Boolean variables that are not instantiated,v.l = v.h is set.

One may verify that in the process above, the following invariants are warranted

for any candidatev of a query nodeu at each iteration: (I)Xv is evaluated to betrue if

and only ifv is a match ofu; and (II) v.l ≤ δ(u,v) ≤ v.h, since the relevance function

is monotonically increasing.

The correctness of the extendedTopKDAG is ensured by the following: (a) Propo-

sition 5.4.2 always holds for top-k graph pattern matching as long as the relevance

function is monotonically increasing, and (b) invariants (I) and (II) hold for general-

ized relevance functions. In addition, the extendedTopKDAG terminates either when

the termination condition is true, or when all the matches are identified. Thus, it pre-

serves the early termination property.

(2) Similarly, algorithmTopK can be extended by simply replacing the relevance func-

tionδr()with any function of the formδ∗r (), with corresponding upper and lower bound

estimation. Following the analysis in (1), the extendedTopK also preserves the early

termination property.

This completes the proof of Proposition 5.4.3.

The techniques can be easily extended to patterns with multiple output nodes that

are not necessarily “roots” (will be discussed soon).

Chapter 5. Diversified Top-k Graph Pattern Matching 147

5.5 Algorithms for Diversifying Matches

In this section, we investigate the diversified top-k matching problem (topKDP). Given

a graphG, a patternQs with output nodeuo, a positive integerk, and a parameter

λ ∈ [0,1], it is to find ak-element setS⊆ Mu(Qs,G,uo) such that the diversification

valueF(S) is maximized.

In contrast totopKP that is based onδr() alone,topKDP is intractable. The main

result of this section is as follows.

Theorem 5.5.1 The topKDP problem is (1)NP-complete (decision problem); (2)

2-approximable in O(|Qs||G| + |V|(|V| + |E|)) time, and (3) has a heuristic in

O(|Qs||G|+ |V|(|V|+ |E|)) time, but with the early termination property.

Proof of Theorem 5.5.1(1). The decision problem oftopKDP is to decide whether

there exists ak-element subsetS⊆Mu(Qs,G,uo), such thatF(S)≥B for a given bound

B. It is in NP since there exists anNP algorithm, which first guessesS, and then checks

whetherF(S)≥ B and|S|= k in PTIME.

We show that thetopKDP problem isNP-hard, by reduction from the maximum

independent set (maxIS) problem, which is knownNP-complete [HRT97]. An instance

φ of maxIS consists of an undirected graphG0 = (V0,E0) and an integerK0. It is to

determine whether there exists an independent setVs ⊆V0, such that (a) no two nodes

in Vs are adjacent,i.e., they are not connected by any edge, and (b)|Vs| = K0.

Given any instanceφ of maxIS, we construct an instanceφ′ of topKDP as follows.

(1) We construct a patternQs as an edge(uo,u) with uo as the output node, whereuo

andu have two distinct labelsl(uo) andl(u), respectively.

(2) We construct a data graphG as follows. (a) For each nodev0i in G0, we construct a

distinct nodevoi with label l(uo) (i ∈ [1, |V0|]) in G. (b) For each edge(v0i ,v0 j) in G0,

we construct a distinct nodevi j with label l(u), and add it toG; moreover, we add two

edges(voi ,vi j) and(vo j ,vi j) in G. One may verify thatG has|V0|+ |E0| nodes, and

2|E0| edges.

(3) We setλ = 1 in F(), B= K0, andk= K0.

One may verify the following: (1) the transformation above is in PTIME, (2) every

nodevoi in G is a match ofuo in Qs; and every nodevi j in G is a match ofu in Qs

(i, j ∈ [1, |V0|] and i 6= j), and (3) the relevant setR(uo,voi) is exactly the children set

of voi in G.

Chapter 5. Diversified Top-k Graph Pattern Matching 148

We first prove the following claim.

Claim 1: for any matchvoi andvo j , R(uo,voi)∩R(uo,vo j) = /0 if and only if the corre-

sponding nodesv0i andv0 j are not adjacent inG0.

Below we prove theIf andOnly If conditions ofClaim 1, by contradiction. (1)

We first show theOnly If condition. Assume that for two adjacent nodesv0i andv0 j ,

R(uo,voi)∩R(uo,vo j) = /0. Since(v0i ,v0 j) is an edge inG0, then there must exist a node

vi j in G, such thatvi j ∈ R(uo,voi) andvi j ∈ R(uo,vo j); thus,R(uo,voi)∩R(uo,vo j) 6= /0,

which contradicts the assumption. (2) Conversely, assume thatR(uo,voi)∩R(uo,vo j)

6= /0, whilev0i andv0 j are not adjacent. AsR(uo,voi) is the children set ofvoi in G, there

exists a nodevi j as a child of bothvoi andvo j in G. This means(voi ,vo j) is an edge

in G0, andv0i andv0 j are adjacent inG0, which contradicts the assumption. Hence,

Claim 1 follows from (1) and (2).

Based onClaim 1, we next prove that the transformation is indeed a reduction, i.e.,

there exists an independent setVs of sizeK0 in G0 if and only if there exists a topk

match setS, whereF(S)≥ B.

(1) Assume that there exists a top-k match setS, whereF(S) ≥ B. We denote as

Vs the corresponding node set ofS in G0, and show thatVs is an independent set of

sizeK0. Note thatF(S) = 2
K0−1 ∑voi∈S,voj∈S,i< j δd(voi ,vo j) ≥ K0, which means that

∑vi∈S,v j∈S,i< j δd(voi ,vo j ≥
K0·(K0−1)

2 . Note thatδd(voi ,vo j)∈ [0,1], and there are in total
K0·(K0−1)

2 numbers for the difference sum. Hence, for every pair of matchesvoi andvo j ,

δd(voi ,vo j) = 1, i.e., R(uo,voi)∩R(uo,vo j) = /0. FollowingClaim 1, this indicates that

for any corresponding node pairv0i andv0 j in Vs, v0i andv0 j are not adjacent inG0.

Thus,Vs is an independent set of sizeK0.

(2) Conversely, assume thatVs is an independent set of sizeK0 for G0. We constructS

as the corresponding node set inG, which is a top-k match set withF(S)≥ B. Indeed,

one may verify that for each pair of matchesvoi andvo j in S, R(uo,voi)∩R(uo,vo j) =

/0, following Claim 1. Thus,F(S) = 2
K0−1* K0·(K0−1)

2 = K0 = B.

Putting (1) and (2) together, the transformation is indeed areduction. AsmaxIS is

known to beNP-hard,topKDP is NP-hard. Hence,topKDP is NP-complete.

We defer the proofs of Theorem 5.5.1(2) and (3) to Section 5.5.1 and 5.5.2, respec-

tively, where an approximation algorithm and a heuristic one are provided, respec-

tively.

Recent results for themax-sum diversification[BLY12] suggests thattopKDP is,

Chapter 5. Diversified Top-k Graph Pattern Matching 149

in general, nontrivial to approximate. Given a setU with a distance functionδo over

the elements inU , the problem is to find ak-element subsetS, which maximizesFo(S)

= f (S) + c ∑u,v∈S(δo(u,v)), where f (S) is a submodular function (see Section 5.3).

Our diversification functionF(·) is in the form ofFo(S), if normalized by(1−λ). It

is shown in [BLY12] that no polynomial time algorithm can approximateFo(·) within
e

e−1, assumingP 6= np. In addition, it is shown that the diversification problem for

submodular functions is approximable within(1− 1
e) [HTMS12]. However,F(·) is

notsubmodular, as remarked earlier in Section 5.3.

Despite the hardness, we provide two algorithms fortopKP. (1) One is an approx-

imation algorithm to compute diversified matches with approximation ratio 2, hence

proving Theorem 5.5.1(2) (Section 5.5.1). (2) The approximation algorithm may be

costly on large graphs, however. Thus we give a heuristic algorithm for topKDP with

the early termination property (Section 5.5.2), verifyingTheorem 5.5.1(3).

5.5.1 Approximating Diversification

We show Theorem 5.5.1 (2) by presenting an approximation algorithm, denoted

by TopKDiv. In a nutshell,TopKDiv iteratively chooses a pair of matches that “maxi-

mally” introduces diversity and relevance to the selected matches, following a greedy

strategy. This is done by (1) “rounding down” the diversification functionF(·) with a

revisedF ′(·), and (2) finding a solution that maximizesF ′(·), which in turn guarantees

an approximation ratio forF(·). This technique is commonly used for optimization

problems [Vaz03, GS09].

Algorithm . Algorithm TopKDiv is shown in Fig. 5.5. GivenQs, G and an integerk,

TopKDiv identifies a setS′ of k matches ofuo, such thatF(S′) ≥ F(S∗)
2 , whereS∗ is an

optimal set ofk matches that maximizesF(·). That is,TopKDiv approximatestopKDP

with approximation ratio 2.

TopKDiv first initializes a min-heapS for top-k matches, and an integer counteri

(line 1). It then computesM(Qs,G), the relevanceδ′r(uo,v) and diversityδd(v,v′) for all

matchesv,v′ ∈ Mu(Qs,G,uo) (line 2). Next, it iteratively selects two matches{v1,v2}

that maximizeF ′(·), adds (resp. removes) them toS (resp. fromMu(Qs,G,uo))

(lines 4-6). This process (lines 3-9) repeatsk
2 times (lines 3-6). Ifk is odd, |S| is

k−1; TopKDiv then greedily selects a matchv to maximizeF(S∪ {v}) (lines 8-9).

Finally, it returnsS (line 10).

Chapter 5. Diversified Top-k Graph Pattern Matching 150

Input: PatternQs = (Vp,Ep, fv,uo), graphG= (V,E,L), integerk.

Output: A k-element set of matches ofuo.

1. min-heapS := /0; integer variablei := 1;

2. computeM(Qs,G), relevance and diversity of matches foruo;

3. while i ≤ k
2 and Mu(Qs,G,uo) 6= /0 do

4. find(v1,v2) ∈ Mu(Qs,G,uo) that maximizes

F ′(v1,v2) = 1−λ
k−1(δ

′
r(uo,v1)+δ′r(uo,v2)) + 2λ

k−1δd(v1,v2);

5. S := S∪{v1,v2};

6. Mu(Qs,G,uo) := Mu(Qs,G,uo)\{v1,v2}; i := i+1;

7. if |S|< k and Mu(Qs,G,uo) 6= /0 then

8. selectv∈ Mu(Qs,G,uo) that maximizesF(S∪{v});

9. S :=S∪{v};

10. return S;

Figure 5.5: Algorithm TopKDiv

Example 5.11: Given graphG and patternQs of Fig. 6.1, and assumingλ = 0.5,

TopKDiv finds top-2 diversified matches forPM as follows. (1) It first computes

Mu(Qs,G,uo) = {PMi | i ∈ [1,4]}, and the relevance and diversity of thosePM nodes

(lines 1-2). (2) It then greedily selects a pair(v1,v2) of matches that maximizes

F ′(v1,v2) = 0.5(δ′r(uo,v1)+δ′r(uo,v2))+δd(v1,v2) (lines 3-9). Then{PM1, PM3} is se-

lected, sinceF ′(PM1,PM3) = 1.45 is maximum. ThusTopKDiv returns this pair. When

λ = 0.5, this pair is a top-2 match based onF(·) (see Example 5.6). ✷

Proof of Theorem 5.5.1(2). Below, we give a detailed proof to show the approxima-

tion ratio and computational complexity oftopKDP problem, respectively.

(I) To see the approximation ratio oftopKDP problem, it suffices to show that there

exists an approximation preserving reductionAFP-reduction [Vaz03] fromtopKDP to

MAXDISP, from which the conclusion follows sinceMAXDISP possesses approxima-

tion ratio 2.

We first reviewAFP-reduction reduction. LetΠ1 and Π2 be two minimization

problems. AnAFP-reduction from Π1 to Π2 is a pair ofPTIME functions (f , g) such

that

◦ for any instanceI1 of Π1, I2 = f (I1) is an instance ofΠ2 such thatopt2(I2) ≤

opt1(I1), whereopt1 (resp. opt2) is the quality of an optimal solution toI1

(resp.I2);

Chapter 5. Diversified Top-k Graph Pattern Matching 151

◦ for any solutions2 of I2, s1 = g(I1,s2) is a solution ofI1 such thatobj1(I1,s1) ≤

obj2(I2,s2), whereobj1() (resp.obj2()) is a function measuring the quality of a

solution toI1 (resp.I2).

In other words,AFP-reductions preserve approximation bounds. If there exists

a PTIME algorithm forΠ2 with performance guaranteeα, then there exists aPTIME

algorithm forΠ1 with the same performance guaranteeα [Vaz03].

We next construct anAFP-reduction (f ,g) from topKDP to MAXDISP.

(1) We first define functionf (). Given an instanceI1 of the topKDP as its input,f ()

outputs an instanceI2 of theMAXDISP. The instance ofI1 consists of a data graph

G, a patternQs with output nodeuo, a positive integerk and a parameterλ ∈ [0,1].

Algorithm f () first produces a weighted complete graphG0, with each nodev0i as a

mapping of a matchvi of uo; it then assigns1−λ
k−1(δr(uo,vi)+δr(uo,v j))+

2·λ
k−1δd(vi ,v j)

to each edge(v0i ,v0 j) as edge weight. Here,opt1 (resp.opt2) computesF(S∗) (resp.

F0(G∗
0)) of the optimal solutionS∗ (resp.G∗

0) for I1 (resp. I2). It is easy to verify that

function f () is in PTIME.

(2) We then construct functiong(). Given a feasible solutionG′
0 for the instanceI2, g()

outputs a corresponding solutionS following the construction given in (1) above. Here

obj1() (resp.obj2()) measuresF(S) (resp.F0(G′
0)) of the solutionS to I1 (resp.G′

0 to

I2). Note thatg() is trivially in PTIME.

We now show that(f ,g) is anAFP-reduction from topKDP to MAXDISP. It suf-

fices to show that (a)opt
2
(I2)≤ opt1(I1), and that (b)obj1(I1,s1)≤ obj2(I2,s2). Indeed,

the construction guarantees an one-to-one mapping from thematches forI1 to the nodes

in a complete graph forI2. Thus,opt2(I2) = opt1(I1), andobj1(I1,s1) = obj2(I2,s2).

Hence,(f ,g) is indeed anAFP-reduction. As MAXDISP is 2-approximable,topKDP

is also 2-approximable.

(II) We next show that algorithmTopKDiv for topKDP is in O(|Qs||G|+ |V|(|V|+

|E|)), and outputs ak-element setS with F(S) ≥ 1
2F(S∗), where S∗ is the opti-

mal solution of the input. Indeed,TopKDiv simulates the 2-approximable algorithm

for MAXDISP, following the proof in (I). HenceTopKDiv is 2-approximable. To

see its computational complexity, observe that it takesO((|Qs|+ |V|)(|V|+ |E|))

time to computeMu(Qs,G,uo), and the relevance and distance values (line 1). It

takes in totalO(k
2|V|2) time to updateS with the greedy strategy (lines 3-9). The

worst case happens when every node inG is a match ofuo. Thus,TopKDiv takes

Chapter 5. Diversified Top-k Graph Pattern Matching 152

O(|Qs||G|+ |V|(|V|+ |E|)) time in total in the worst case, since|V| ≤ |E| in real-life

social graphs, andk is typically treated a small constant.

Putting (I) and (II) together, Theorem 5.5.1(2) follows.

5.5.2 Early Termination Heuristics

AlgorithmTopKDiv requires all the matches inM(Qs,G) to be computed, which may

not be efficient for large graphs. To rectify this we present aheuristic algorithm for

topKDP, denoted asTopKDH, with the early termination property.

Algorithm . TopKDH (not shown) works in a way similar toTopK (Section 5.4): (1)

it uses a min-heapS to maintain top-k matches; and (2) it initializes the same vector

for each candidate, and updates the vectors via propagationto check the termination

condition given in Proposition 5.4.2.

In contrast toTopK, TopKDH utilizes a greedy strategy to choose matches foruo.

In each propagation, it collects a setS′ of matches ofuo with updated vectors. It

then chooses matches forS as follows: (a) if|S|+ |S′| ≤ k, S = S∪S′; (b) otherwise,

TopKDH iteratively performs the following to updateS: (i) it replacesv ∈ S with v′

to maximizeF ′′(S\ {v}∪{v′}) - F ′′(S); hereF ′′() revisesF(·) by replacingδr(uo,v)

with v.l/Cuo, andδd(vi ,v j) with 1- |vi .R∩v j .R|
|vi .R∪v j .R|

; and (ii) it removesv′ from S′. Intuitively,

TopKDH selects a set of matches that “maximally” diversifiesS in terms ofF ′′().

These steps repeat untilS′ is /0 or |S| =k.

Example 5.12:Consider graphG and patternQs from Fig. 6.1. Letλ = 0.1,TopKDH

finds top-2 diversified matches forPM as follows. It first selectsSc = {ST3,ST4}, and

adjusts the vectors of the candidates. After the propagation, it selects{PM2, PM3} as

top-2 matches, which maximizesF ′′() as 0.9∗ 13
11 + 0.2∗ 1

7 = 1.1. Now the condition

of Proposition 5.4.2 is satisfied. Hence,TopKDH returns{PM2, PM3}, which is indeed

a top-2 pair whenλ = 0.1 (see Example 5.6). ✷

Correctness & Complexity. Algorithm TopKDH differs from TopK only in that

it does extra computation to select the matches. One may verify its correctness

along the same lines as the argument forTopK given earlier. For the complex-

ity, the extra computation takesO(k|V|2) time in total. ThusTopKDH is still in

O(|Qs||G|+ |V|(|V|+ |E|)) time.

TopKDH terminates early: it processes as many matches asTopK does in propaga-

tion, and itstops as soon asthe termination condition of Proposition 5.4.2 is satisfied.

Chapter 5. Diversified Top-k Graph Pattern Matching 153

The analysis completes the proof of Theorem 5.5.1(3).

Generalized diversified top-k matching.

Our diversified matching algorithms can be easily extended for generalized diver-

sified functionF∗(·) (Section 5.3.4), preserving the nice properties,e.g.,early termi-

nation and approximation ratio.

Proposition 5.5.2: AlgorithmTopKDH (resp.TopKDiv) can be extended for gener-

alizedtopKDP, with the early termination property (resp. preserving approximation

ratio 2). ✷

Proof of Proposition 5.5.2. We provide a constructive proof for Proposition 5.5.2, by

extending algorithmsTopKDH andTopKDiv for the generalizedtopKDP problem.

(1) We first extend algorithmTopKDH for the generalizedtopKDP problem. The ex-

tendedTopKDH uses the same auxiliary data structures, and it adopts a greedy strategy

to iteratively choose a match for the output nodeuo. The difference is as below. (a)

In each propagation, it collects a setS′ of matches ofuo with updated vectors, com-

puted from the generalized relevance and diversified functions,i.e.,δ∗r () andδ∗d(). (b)

It then chooses matches forS by iteratively updatingS: (i) it replacesv∈ S with v′ to

maximizeF∗(S\ {v}∪{v′}) - F∗(S); and (ii) it removesv′ from S′. That is, it selects

a set of matches that “maximally” diversifyS in terms of the generalized diversified

functionF∗(). These steps repeat until eitherS′ is /0 or |S| =k.

One may verify that the early termination property is preserved by the ex-

tendedTopKDH, i.e., the algorithm stops oncek matches that maximally diversify

the match set are identified.

(2) We next extend algorithmTopKDiv for the generalizedtopKDP problem, where

the generalized diversified function is defined as:

F∗(S) = (1−λ)δ∗r (S)+
2 ·λ
k−1 ∑

vi∈S,v j∈S,i< j

δ∗d(vi,v j),

whereλ ∈ [0,1] is a parameter set by users.

To extend algorithmTopKDiv, it suffices to replace the functionF() with the gen-

eralized diversified functionF∗(), while all other the steps remain unchanged. That

is, the extendedTopKDiv simply selects a pair of matches(v1,v2) that maximize

F ′(v1,v2) as 1−λ
k−1 (δ∗r (uo,v1) + δ∗r (uo,v2)) + 2∗λ

k−1 δ∗d(v1,v2). It iteratively updates a

setSwith newly selected match pairs untilk matches are identified.

Chapter 5. Diversified Top-k Graph Pattern Matching 154

We next prove that the extension above preserves the approximation ratio. Observe

that we can construct a reduction from an instance of the generalizedtopKDP problem

to an instance of the maximum dispersion problem, whereδ∗d() is a metric. Moreover,

topKDP simulates a greedy algorithm over the maximum dispersion problem, which

guarantees approximation ration 2. Hence, the approximation ratio 2 is preserved for

generalizedtopKDP problem, following the proof of Theorem 5.5.1(2).

Proposition 5.5.2 follows from the analysis above.

5.6 Top-k matching with multiple output nodes

We next discuss how to extend our techniques for patterns with multiple output nodes,

which are not necessarily “root” nodes. To extend the top-k matching, we first charac-

terize the match set for a set of multiple output nodes. LetUo = (uo1, . . . ,uon) as a list

of n designated output nodes inQ. We shall use the following notations.

(1) We define amatchfor Uo as a “tuple”to = (vo1, . . . ,von), wherevoi is a match for a

pattern nodeuoi , for i ∈ [1,n]. Note thatvoi andvo j may refer to the same node inG.

(2) A k-match setSo for Uo is a set ofk tuples,i.e., So = {t1, . . . , tk}, where eachti ∈ So

is an-ary tuple as in (1).

One may verify thatSo degrades to ak-match set for a single output node (Sec-

tion 5.2), whenn = 1.

The ranking functions for multiple nodes are not unique. Forsimplicity, we extend

the relevance and diversified function defined in Section 5.3for multiple output nodes.

Measuring relevance. We measure therelevanceof a matcht of Uo in terms of total

social impact of the matches for then output nodes. (1) We define a “relevance set” of

t for Uo (denote byR(Uo,t)) as
⋃

ui∈Uo,vi∈t R(ui ,vi), whereR(ui ,vi) is the same as defined

in Section 5.3. In other words, it is the union of the relevance sets ofvi ∈ t for a

correspondingui ∈ Uo. (2) The relevance functionδr(Uo, t) is defined as|R(Uo,t)|.

Intuitively, the relevance oft for Uo is measured by the total number of matches in

M(Q,G) that are related toUo and are reachable from the matches int.

Along the same lines astopKP, given a data graphG, a patternQ with a set of

designated output nodesUo, and a positive integerk, the top-k matching problem for

multiple output nodes (denoted bytopKPM) is to find ak-match setSo for Uo, such

that

Chapter 5. Diversified Top-k Graph Pattern Matching 155

δr(So) = argmax
|S′o|=k

∑
ti∈S′

δr(Uo, ti).

That is,topKPM is to identify a set ofk matches (tuples) ofUo that maximizes the

total relevance. In other words, for allS′⊆Mu(Q,G,Uo), if |S′|= k thenδr(S)≥ δr(S′).

Measuring diversity. To capture the diversity of a match setSof Uo, we first charac-

terize the “dissimilarity” of two matchest1 andt2 of Uo as a functionδd(t1, t2):

δd(t1, t2) = 1−
|R(Uo,t1)∩R(Uo,t2)|

|R(Uo,t1)∪R(Uo,t2)|

In other words, the difference of two matchest1 andt2 is the Jaccard distance of their

relevance set forUo.

Based on the distance functionδd() and relevance functionδr(), we define the

diversification function as:

F(S) = (1−λ) ∑
ti∈S

δ′r(Uo, ti)+
2 ·λ
k−1 ∑

ti∈S,t j∈S,i< j

δd(ti, t j),

whereλ ∈ [0,1] is a user specified parameter,δ′r(Uo, ti) =
δr(Uo,ti)

CUo
is the normalized

relevance function, whereCUo is the total number of the candidates of all query nodes

u′ to whichui ∈Uo can reach inQ.

Along the same lines astopKDP, the diversified top-k matching problem for mul-

tiple output nodes, denoted bytopKDPM, is to find a set ofk matchesSo for Uo such

that
F(So) = argmax

|S′o|=k|
F(S′o),

Generalized ranking functions. We remark that the ranking functions above can be

further extended using the generalized relevance and diversification functions. The

corresponding topk graph pattern matching problems can also be defined similarly.

For example, (1) an extension for the relevance functionδ∗r (Uo, t) can be defined as

any monotonically increasing function ofR(Uo,t), and (2)δd(t1, t2) can be defined in

terms of anyPTIME metric that measures the difference of two tuplest1 andt2.

Algorithms fortopKPM. A naive “find-all-match” algorithm fortopKPM simply iden-

tifies all the matches for the output nodes, and enumerates all the possible combinations

of the matches to find topk matches as a tuple set. We next show that our techniques

can be readily extended to support multiple output nodes, with the early termination

property.

Chapter 5. Diversified Top-k Graph Pattern Matching 156

We first propose algorithms fortopKPM by extending algorithmTopK. To this end,

it suffices to (1) slightly revise the sufficient condition for identifying top-k matches as

a set of tuples, instead of nodes, and (2) revise the estimation of the upper and lower

bound inTopK in terms of matches as tuples, and (3) modify the terminationcondition

of TopK accordingly to achieve early termination.

We first present a sufficient condition for identifying topk tuples as matches. Given

Uo and a matcht, we usel(Uo, t) andh(Uo, t) to denote a lower bound and an upper

bound ofδr(Uo, t), respectively.

Proposition 5.6.1:A k-element set So is a top-k match set of Uo if (a) every ti ∈ So is a

match for Uo, and (b)mint∈So(l(Uo, t)) ≥ maxt ′\S(h(Uo, t ′)), where t′ is a n-ary tuple

(v′1, . . . ,v
′
n), such that for each pattern u′i ∈Uo, v′i is a candidate of ui. ✷

The extended algorithms work along the same lines asTopK orTopKDAG. They it-

eratively verify matches and propagate the estimated relevance lower bounds and upper

bounds. The difference lies in that (a)l(Uo, t) is estimated as the size of the relevance

set oft for Uo (as the union of the relevance sets collected from the matches in t), (b)

h(Uo, t) is estimated as the sum ofv.h, for eachv∈ t, and (c) the data structures and

propagation process are modified accordingly to maintain the auxiliary information for

matches as a tuple set, instead of a single list of nodes.

As soon as the early termination condition suggested by Proposition 5.6.1 is satis-

fied, the algorithms return either top-k matches forUo, or a set ofm (m< k) matches

if at mostm matches exist forUo. Guaranteed by Proposition 5.6.1, this process does

not need to enumerate every possible combination, in contrast to the “find-all-match”

strategy given earlier.

The analysis above also verifies that for a single output nodeuo that is not a “root”,

the early termination condition still holds. Indeed, algorithmTopK only needs to check

whether each node inQ has at least a match, in order to identify top-k matches for

uo, rather than to find all the matches for every node inQ as in the “find-all-match”

strategy.

Moreover, the algorithms above can be further extended to support generalized

ranking functions over multiple output nodes, by simply modifying the estimation of

the lower and upper bounds with corresponding relevance functions.

Algorithms for topKDPM. We next extend approximation algorithmTopKDiv and

heuristic algorithmTopKDH to cope withtopKDPM. We present the main results

below.

Chapter 5. Diversified Top-k Graph Pattern Matching 157

Theorem 5.6.2 ThetopKDPM problem is (1)NP-complete (decision problem); (2)2-

approximable in O(|Q||G|+ |V|2n+ |V|(|V|+ |E|)) time, for n output nodes, and (3)

has a heuristic with the early termination property.

The intractability and approximation hardness for thetopKDPM problem are not

hard to verify, as the results already hold for its special case whenn = 1. We next

provide extensions of our algorithms fortopKDPM, as proofs for Theorem 5.6.2(2)

and (3).

(I) We show that there exists a 2-approximation fortopKDPM, with time complex-

ity O(|Q||G|+ |V|2n + |V|(|V|+ |E|)). The algorithm works along the same lines

as TopKDiv, with the following differences. (a) It first identifies all the matches

for the output nodes inUo. For each output nodeuo, it maintains a list of all the

matches foruo. (b) It then enumerates all the possible combinations for the matches,

each corresponds to a tuplet as a match forUo. There exists in total|V|n such tu-

ples. (c) It then greedily selects two tuplest1 and t2 that maximizes the function

F ′(t1, t2) = 1−λ
k−1(δ

′
r(Uo, t1) + δ′r(Uo, t2)) + 2λ

k−1δd(t1, t2). In a nutshell, it simulates a

2-approximation over an instance of the maximum dispersionproblem, over a graph

with |V|n nodes, where each node corresponds to a tuple.

The algorithm either (1) returns/0, indicating that there exist no match, or (2) cor-

rectly finds a set ofk matchesSo, whereF(So) ≥
1
2F(S∗o), whereS∗o is the optimal set

of k matches forUo. For the complexity, observe that there exists at most|V|n tuples

as matches, and the total selection ofk matches takesO(|V|2n) time.

The result below readily follows from the analysis above.

Corollary 5.6.3: The problemtopKDPM is 2-approximable inPTIME for fixed number

of output nodes. ✷

(II) We next extend algorithmTopKDH for the problemtopKDPM. The extended

algorithm works along the same lines as the extendedTopK for multiple output nodes.

It differs from TopKDH in the following: (a) it adds new tuples as matches forUo,

instead of a single node for some output node, and (b) it greedily inserts tuples that

maximize the diversity function. It maintains a tuple setSo. Each time a new set of

matches forUo is identified, it either adds the matches toSo, if |So| ≤ k, or replaces

a matcht ′ ∈ So with a newly identified matcht for Uo, such that the functionF(So \

{t}∪{t ′}) - F(So) is maximized.

Chapter 5. Diversified Top-k Graph Pattern Matching 158

One may verify that the early termination property also holds: to find topk matches,

the extendedTopKDH (a) does not need to identify all the matches for each output

node, even when there are multiple output nodes, and (b) it terminates as soon ask

matches (as a tuple set) forUo are identified, following the analysis for the (extended)

algorithmTopK.

Putting these together, Theorem 5.6.2 follows.

Remarks. Algorithms for topKPM and topKDPM find a set of matchest =

(v1, · · · ,vn), where each attribute oft is a match of the corresponding output node

in Uo. The match setSo as a whole, however, does not necessarily preserve the topo-

logical structure of pattern graphs in their original graph. Indeed, when both multiple

output nodes and the connectivity of the matches are considered simultaneously, the

(diversified) top-k graph pattern matching problem becomes nontrivial, and deserves a

full treatment.

5.7 Experimental Evaluation

We next experimentally verify the effectiveness and efficiency of our top-k graph pat-

tern matching algorithms, using real-life and synthetic data.

Experimental setting. We used the following datasets.

(1) Real-life graphs. We used three real-life graphs.

(a) Amazon (http://snap.stanford.edu/data/index.html) is a product co-

purchasing network with 548,552 nodes and 1,788,725 edges. Each node has at-

tributes such as title, group and sales rank. An edge from productx to y indicates that

people who buyx also buyy.

(b) Citation (http://www.arnetminer.org/citation/) contains 1,397,240 nodes

and 3,021,489 edges, in which nodes represent papers with attributes (e.g.,title, au-

thors, year and publication venue), and edges denote citations.

(c) YouTube (http://netsg.cs.sfu.ca/youtubedata/) is a network with

1,609,969 nodes and 4,509,826 edges. Each node is a video with attributes (e.g.,

(A)ge, (C)ategory, (V)iews, (R)ate). An edge(x,y) indicates that the publisher of

videox recommends a related videoy.

(2) Synthetic data. We designed a generator to produce synthetic graphsG = (V,E,L),

Chapter 5. Diversified Top-k Graph Pattern Matching 159

controlled by the number of nodes|V| and edges|E|, whereL are assigned from

a set of 15 labels. We generated synthetic graphs following the linkage generation

models [GGCM09]: an edge was attached to the high degree nodes with higher

probability. We use(|V|, |E|) to denote the size ofG.

(3) Pattern generator. We also implemented a generator for graph patternsQ =

(Vp,Ep, fv,uo), controlled by four parameters:|Vp|, |Ep|, label fv from the sameΣ,

and the output nodeuo. We denote as(|Vp|, |Ep|) the size|Q| of Q. For synthetic

graphs, we manually constructed a set of 9 patterns including 4 DAGpatterns and 5

cyclic patterns.

For the real-life datasets we used the following patterns. (a) ForAmazon, we iden-

tified 10 cyclic patterns to search products with conditionsspecified on attributes (e.g.,

title, category) and their connections with other products. (b) Citation is a DAG, and

we designed 14DAGpatterns to find papers and authors in computer science. (c) For

Youtube, we found 10 cyclic patterns, where each node carried searchconditions for

finding videos,e.g.,category is “music”.

Two such patterns onYoutubeare shown in Figures 5.6(a) and 5.6(b). (a) The cyclic

patternQ1 in Fig. 5.6(a) is to find top-2 videos in category “music” (marked with “∗”

as the output node) with ratingR> 2 (out of 5), which are related to “entertainment”

videos withR> 2 and have been watched more than 5000 times (V > 5000). (b)

The DAGpatternQ2 in Fig. 5.6(b) is to identify top-2 “comedy” videos with rating

R> 3, which recommend (a) “entertainment” videos older than 500 days (A > 500),

(b) popular videos(V > 7000), and (c) videos posted 800 days ago (A> 800).

(4) Implementation. We implemented the following algorithms, all in Java: (1) our top-

k algorithmsTopKDAG for DAGpatterns andTopK for cyclic patterns; (2) algorithm

TopKnopt (resp.TopKDAGnopt), a naive version ofTopK (resp.TopKDAG) that ran-

domly selectsSc to start propagation, rather than choosing a minimal setSc that covers

those candidates of query nodes of rank 1 (see Section 5.4); (3) algorithmmat for top-

k matching, to compare withTopKDAG andTopK; (4) the approximation algorithm

TopKDiv and heuristic algorithmTopKDH (resp.TopKDAGHeu) to find diversified

top-k matches for general (resp.DAG) patterns.

All the experiments were run on a 64bit Linux Amazon EC2 Medium Instance with

3.75 GB of memory and 2 EC2 Compute Unit. Each experiment was repeated 5 times

and the average is reported here.

Experimental results. We next present our findings.

Chapter 5. Diversified Top-k Graph Pattern Matching 160

(b) Top-2 relevant matches (c) Top-2 diversified matches(a) Pattern Q1

C="music";

R>2

C="entertainment";

R>2

V>5000

*

(a) Pattern (I) and top-2 results onYoutube

(b) Top-2 relevant matches (c) Top-2 diversified matches(a) Pattern Q2

...
...

......

......
.....

.

......

......

......

......

......

......

......

......
......

......

C="comedy";

R>3

C="entertainment";

A>500

V>7000 A>800

(b) Pattern (II) and top-2 results onYoutube

Figure 5.6: Case study

Exp-1: Effectiveness of top-k matching. We first evaluated the effectiveness of

our top-k matching algorithms,i.e.,TopKDAG (resp.TopK) and its naive version

TopKDAGnopt (resp.TopKnopt), compared tomat. We measured their effectiveness

by (1) counting the number of the matches|Mt
u(Q,G,uo)| of uo inspected by them, and

(2) computing amatch ratioMR = |Mt
u(Q,G,uo)|

|Mu(Q,G,uo)|
.

We comparedMR of these algorithms over the three real life datasets: (1)

TopK, TopKnopt and mat on Youtubeby varying |Q| (Fig. 5.7(a)), (2)TopKDAG,

TopKDAGnopt and mat on Citation by varying |Q| (Fig. 5.7(b)), and (3)TopK,

TopKnopt andmat on Amazonby varyingk (Fig. 5.7(c)). The algorithms performed

consistently on different datasets, and hence we do not showall the results here.

Moreover, (a)mat always finds all the matches,i.e., itsMR = 1, and is thus not shown;

and (b)Citation is a DAG, and thus onlyTopKDAG, TopKDAGnopt andmat were

tested onCitation for DAGpatterns.

Performance for cyclic patterns. Fixing k = 10, we varied|Q| from (4,8) to (8,16)

for Youtube. The results are reported in Fig. 5.7(a). Observe the following: (1)TopK

andTopKnopt effectively reduce excessive matches. For instance, when|Q| = (4,8),

while mat had to compute all the matches (≥ 180),TopK only inspected 88,i.e.,MR

= 47%. On average,MR for TopK is 45%, and is 54% forTopKnopt. Indeed,TopK

terminates early: it finds top-k matches without computing all the matches. (2)TopK

(on average) inspects 16% less matches thanTopKnopt due to the greedy selection

Chapter 5. Diversified Top-k Graph Pattern Matching 161

 0

 10

 20

 30

 40

 50

 60

 70

 80

(4,8) (5,10) (6,12) (7,14) (8,16)

%
 o

f M
at

ch
es

MR[TopK]
MR[TopKnopt]

(a) Varying|Qs| (Youtube)

 0

 10

 20

 30

 40

 50

 60

 70

(4,6) (6,9) (8,12) (10,15)

%
 o

f M
at

ch
es

MR[TopKDAG]
MR[TopKDAGnopt]

(b) Varying|Qs| (Citation)

 40

 45

 50

 55

 60

 65

 70

 75

 80

5 10 15 20 25 30

%
 o

f M
at

ch
es

MR[TopK]
MR[TopKnopt]

(c) Varyingk (Amazon)

Figure 5.7: Effectiveness of top-k matching

heuristics: more relevant matches are likely to be identified earlier in the propagation

process (Section 5.4).

Performance forDAGpatterns. Fixing k = 10, we variedDAGpattern size|Q| from

(4,6) to (10,15) on Citation. As shown in Fig. 5.7(b), (1)TopKDAG inspects much

less matches thanmat. For example, itsMR is only 34% when|Q| = (8,12), and

is 40% on average. (2) On average,TopKDAG examined 18% less matches than

TopKDAGnopt. The reduction inMR is more evident forDAGpatterns than for cyclic

patterns becauseDAGpatterns are less restrictive and hence,M(Q,G) tends to be larger.

Varying k. Fixing pattern size|Q| = (4,8), we variedk from 5 to 30 in 5 increments,

and reportedMR for TopK andTopKnopt on Amazon. As shown in Fig. 5.7(c), the

match ratioMR of TopK (rsep.TopKnopt) increased from 42% (resp. 46%) to 69%

(resp. 77%) whenk was increased from 5 to 30. Indeed, whenk becomes larger, more

matches have to be identified and examined, for bothTopK andTopKnopt.

Case study. We manually inspected top-k matches returned by our algorithms on the

real-life data, and confirmed that the matches were indeed sensible in terms of their

relevance. For instance, Figures 5.6(a) and 5.6(b) depict the top-2 matches (circle

Chapter 5. Diversified Top-k Graph Pattern Matching 162

 0

 20

 40

 60

 80

 100

 120

 140

(4,8) (5,10) (6,12) (7,14) (8,16)

T
im

e(
se

co
nd

)

Match
TopKnopt

TopK

(a) Varying|Qs| (Youtube)

 0

 20

 40

 60

 80

 100

 120

(4,6) (6,9) (8,12) (10,15)

T
im

e(
se

co
nd

)

Match
TopKDAGnopt

TopKDAG

(b) Varying|Qs| (Citation)

 5

 10

 15

 20

 25

5 10 15 20 25 30

T
im

e(
se

co
nd

)

Match
TopKnopt

TopK

(c) Varyingk (Amazon)

 10

 20

 30

 40

 50

 60

 70

 80

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
T

im
e(

se
co

nd
)

Match
TopKDAGnopt

TopKDAG

(d) Varying|G| (Synthetic)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

T
im

e(
se

co
nd

)

Match
TopKnopt

TopK

(e) Varying|G| (Synthetic)

Figure 5.8: Efficiency and scalability of top-k matching

nodes) and graphs induced by their relevant setsw.r.t. patternsQ1 andQ2 given earlier,

respectively, onYoutube. These were confirmed to be the top-2 matches.

Exp-2: Efficiency and scalability of top-k matching. We next evaluated the ef-

ficiency of the algorithms. In the same settings as in Exp-1, we report the perfor-

mance of (1)TopK, TopKnopt andmat on Youtubeby varying |Q| (Fig. 5.8(a)), (2)

TopKDAG, TopKDAGnopt andmat on Citation by varying |Q| (Fig. 5.8(b)), and (3)

TopK, TopKnopt andmat on Amazonby varyingk (Fig. 5.8(c)). We also evaluated

their scalability with synthetic data.

Chapter 5. Diversified Top-k Graph Pattern Matching 163

Efficiency for cyclic patterns. The results for cyclic patterns onYoutubeare shown

in Fig. 5.8(a), which are consistent with Fig. 5.7(a): (1)TopK andTopKnopt always

outperformmat: TopK (resp.TopKnopt) takes 52% (resp. 64%) of the time ofmat

on average. (2) On average,TopK improvesTopKnopt by 18%. (3) While all the

algorithms take more time for larger patterns,mat is more sensitive to|Q| thanTopK,

becausemat spends 98% of its time on computing all the matches and their relevance,

which heavily depend on|Q|.

Efficiency for acyclic patterns. As shown in Fig. 5.8(b), the results forDAGpatterns on

Citation are consistent with Fig. 5.8(a). (1)TopKDAG (resp.TopKDAGnopt) outper-

formsmat by 64% (resp. 56%) on average, and (2)TopKDAG improvesTopKDAGnopt

by 16%. The improvement overmat is more evident forDAGpatterns than for cyclic

patterns (Fig. 5.8(a)) because (a)MR is smaller forDAGpatterns, and (b)TopKDAG

does not need fixpoint computation.

Varying k. OnAmazon, Figure 5.8(c) reports the efficiency results in the same setting

as in Fig. 5.7(c): (1)mat is insensitive tok, as it computes the entireMu(Q,G,uo).

(2) TopK andTopKnopt outperformmat, but are sensitive to the change ofk. Indeed,

the benefit of early termination degrades whenk gets larger and more matches need

to be identified. Nonetheless,k is small in practice, andTopK is less sensitive than

TopKnopt, as its selection strategy allows early discovery of top matches, reducing the

impact ofk.

In addition, we found thatTopK andTopKDAG perform better for patterns with

(a) smaller “height” (i.e., the largest rank of the pattern node), (b) output nodes with

smaller ranks, and (c) less candidates.

Scalability. We also evaluated the scalability of these algorithms using large syn-

thetic datasets. Fixing|Q| = (4,6) for DAGpatterns andk = 10, we varied|G| from

(1M,2M) to (2.8M,5.6M), and testedTopKDAG, TopKDAGnopt andmat. As shown

in Fig. 5.8(d), the results tell us the following: (a)TopKDAG andTopKDAGnopt scale

well with |G|, and better thanmat; they account for only 38.1% and 43.2% of the run-

ning time ofmat, respectively; and (b)TopKDAG takes 87% of the running time of

TopKDAGnopt. These are consistent with the results on real-life graphs.

Fixingk=10, we used cyclic patterns with size|Q| = (4,8), and tested the scalability

of TopK, TopKnopt andmat. As shown in Fig. 5.8(e), the results are consistent with

Fig. 5.8(d):TopK (resp.TopKnopt) accounts for 49% (resp. 56%) of the cost ofmat

for cyclic patterns. A closer examination of the above results also tells us that our

Chapter 5. Diversified Top-k Graph Pattern Matching 164

 0

 2

 4

 6

 8

 10

(4,8) (5,10) (6,12) (7,14) (8,16)

F
()

TopKDiv
TopKDH

(a) Varying|Qs| (Amazon)

 0

 20

 40

 60

 80

 100

(3,2) (4,3) (5,4) (6,5) (7,6)

T
im

e(
se

co
nd

)

TopKDiv
TopKDAGDH

(b) Varying|Qs| (Citation)

 0

 20

 40

 60

 80

 100

 120

 140

(4,8) (5,10) (6,12) (7,14) (8,16)

T
im

e(
se

co
nd

)

TopKDiv
TopKDH

(c) Varying|Qs| (Youtube)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
T

im
e(

se
co

nd
)

TopKDiv
TopKDH

(d) Varying|G| (Synthetic)

Figure 5.9: Algorithms for diversified top-k matching

algorithms do much better than their worst-case complexity, due to early termination.

Exp-3: Diversified top-k matching. Finally we evaluated (1) the effectiveness of

TopKDiv andTopKDH, (2) the efficiency ofTopKDiv, TopKDH andTopKDAGHeu,

as well as (3) their scalability using large synthetic data.

Effectiveness. Observe that (a) theMR of TopKDiv is always 1, as it requires

Mu(Q,G,uo) to be computed, and (2) theMR of TopKDH (resp.TopKDAGHeu) is

the same as that ofTopK (resp.TopKDAG), since they only differ in match selection

strategy (see Section 5.5). Thus, the comparison ofMR’s for TopKDiv, TopKDH and

TopKDAGHeu is consistent with the results in Figures 5.7(a) and 5.7(b).Instead, we

are interested in how wellTopKDH andTopKDAGHeu, as heuristics, “approximate”

the optimal diversified matches.

Fixing λ = 0.5 and k = 10, we testedF(S) and F(S′) on Amazonby varying

|Q|, whereS (resp.S′) is the set of top-k diversified matches found byTopKDiv

(resp.TopKDH), and F(·) is the diversification function given in Section 5.3. As

shown in Fig. 5.9(a), (1)F(S) ≥ F(S′), as expected sinceTopKDiv has approxima-

tion ratio 2, whileTopKDH is a heuristic. (2) However,TopKDH is not bad:F(S′) is

77% of F(S) in the worst case. ThusTopKDH, on average, “approximately” finds a

Chapter 5. Diversified Top-k Graph Pattern Matching 165

setS′ with F(S′) ≥ 1
2.6 of the optimal value, which is comparable to the performance

of TopKDiv.

Case study. We also manually checked the top-2 diversified matches found

by TopKDH for Q1 andQ2 of Figures 5.6(a) and 5.6(b), respectively. As also shown

in Fig. 5.6,TopKDH correctly replaced one of the top-2 relevant matches with another

(shadowed node) that made the match set diverse.

Efficiency. On Citation, we tested the efficiency ofTopKDiv andTopKDAGHeu, by

fixing k = 10 and varying|Q| from (3,2) to (7,6). As shown in Fig. 5.9(b), (1)

TopKDAGHeu takes only 42% of the time ofTopKDiv on average, but (2)TopKDiv is

less sensitive to|Q| thanTopKDAGHeu. This is because a largerQ imposes stronger

constraints on matches, and thus has smallerM(Q,G). Hence, there is tradeoff be-

tween the extra time incurred by largerQ for TopKDiv to computeM(Q,G) and the

reduced time for selecting diversified matches from smallerM(Q,G). In contrast,

TopKDAGHeu does not select matches from precomputedM(Q,G) and is not affected

much by|M(Q,G)|.

Fixing k = 10, we evaluated the efficiency ofTopKDiv vs. TopKDH on Youtube

by using the same patterns as forTopK in Exp-2 (Fig. 5.8(a)). Figure 5.9(c) shows the

results, which are consistent with Fig. 5.9(b) forDAGpatterns onCitation.

We also found that both algorithms are not sensitive to the change ofλ. Specifically,

TopKDiv takes slightly less time whenλ = 0, as it degrades tomat.

Scalability. We also evaluated the scalability ofTopKDiv andTopKDH, in the same

setting as in Fig. 5.8(e). As shown in Fig. 5.9(d), (1) both algorithms scale well with

|G|, and (2)TopKDH is less sensitive thanTopKDiv. The reason is thatTopKDiv

spends most of its time on computingM(Q,G). WhenG is larger, its cost grows faster

than that ofTopKDH. On the other hand,TopKDH seldom demonstrates its worst case

complexity due to the early termination condition.

Summary. (1) The revised graph pattern matching effectively reduces excessive

matches: TopKDAG (resp.TopK, TopKDH) only examines 40% (resp. 45%) of

matches inM(Q,G) on average. (2) Our early-termination algorithms outperform

mat, which is based on traditional matching. Indeed,TopKDAG (resp.TopK) takes

on average 36% (resp. 52%) of the time ofmat for DAG(resp. cyclic) patterns. (3)

Our algorithms effectively identify most relevant and diversified matches for output

nodes, and scale well withk and the sizes ofQ andG. (5) Our optimization tech-

nique improves the efficiency of the top-k matching algorithms by 16% (resp. 18%)

Chapter 5. Diversified Top-k Graph Pattern Matching 166

for DAG(resp. cyclic) patterns.

5.8 Related work

We categorize the related work as follows.

Top-k queries. There has been a host of work on top-k query answering for relational

data, XML and and graphs.

Relational databases. Top-k query answering is to retrieve top-k tuples from query

result, ranked by a monotone scoring function [IBS08]. Given a monotone scoring

function and sorted lists, one for each attribute, Fagin’s algorithm [Fag99] reads at-

tributes from the lists and constructs tuples from the attributes. It stops whenk tuples

are constructed from the top-ranked attributes that have been seen. It then performs

random access to find missing scores, and returnsk tuples with the highest scores. It is

optimal with high probability for some monotone scoring functions. Extending Fagin’s

algorithm, the threshold algorithm [FLN03] is optimal for all monotone scoring func-

tions, and allows early termination with approximate top-k matches. More specifically,

it reads all grades of a tuple once seen from the lists, and performs sorted access to tu-

ples by predicting maximum possible grades in unseen tuples, until k tuples are found.

Other top-k queries,e.g.,selection, join and datalog queries (e.g.,[CG99, Str06]), adapt

and extend the methods of [FLN03, Fag99].

We focus on top-k matching on graphs rather than relational tables. Moreover,

while the prior work assumes monotone scoring functions andrequires ranked lists

to be provided as input, (1) we combine the query evaluation and result ranking ina

single process, withoutrequiring ranked lists as input, and (2) our relevance and diver-

sification functions are more involved than monotone scoring functions. Nonetheless,

our algorithms promise early termination, and return answers without computing the

entireM(Qs,G).

XML and graph matching. Top-k queries have also been studied for XML, and for

graph queries defined in terms of subgraph isomorphism. (1) XML keyword search

(e.g., [GSBS03]) is to find top-k subtrees of a document, given a set of keywords.

The answers are ranked based on content relevance, and a structural score for con-

ciseness measurement. TopX system [TBM+08] is to retrieve top-k answers from

both text and semi-structured data for XPath-style queries. Essentially, the prior work

is to find top-ranked trees or connected subgraphs induced from a set of keywords,

Chapter 5. Diversified Top-k Graph Pattern Matching 167

rather than to find matches for a general graph pattern. (2) Top-k XPath queries are

to identify top matches for the nodes in a tree pattern, basedon tree pattern match-

ing. For example, [MAYKS05] finds top-ranked matches for tree patterns in terms

of keyword and document frequency, an extended measurementof TF*IDF. (3) Top-

k subgraph matching is to find top-ranked subgraphs that are isomorphic to a graph

pattern [ZCL07, WDL+12, GC08],e.g.,subgraphs ranked by the total node similar-

ity scores [ZCL07], answers for basic graph patterns (as conjunction of triple patterns

in SPARQL) on RDF graphs [WDL+12], and top-ranked trees that are isomorphic to

twig queries in rooted graphs, with minimum pairwise node distance [GC08].

Our work differs from the prior work in the following. (1) We study top-k queries

defined by graph simulation [HHK95], rather than subgraph (tree) isomorphism. Fur-

ther, we consider matches of a single output node that are computed with early ter-

mination. (2) We support result diversification, which is not studied in the prior work

mentioned above.

Result diversification. Result diversification is a bi-criteria optimization problem for

balancing result relevance and diversity [GS09], with applications ine.g.,social search-

ing [AGHP12]. (1) General frameworks for query result diversification are introduced

in [GS09, VRB+11, QYC12]. A set of axioms for designing diversification systems is

proposed in [GS09], to characterize reasonable diversification functions. Several diver-

sification strategies are experimentally compared in [VRB+11]. A general framework

for diversified top-k search is proposed in [QYC12], which consists of three general

functions that capture the termination conditions and search strategies. (2) Based

on result diversification, Top-k diversity queries are to findk answers that maximize

both the relevance and overall diversity, which have been studied fore.g.,keyword

search [DFZN10, GKS08]. Generally speaking, the approaches to finding top-k diver-

sified results consist of two steps: (1) a ranked listw.r.t. relevance score is computed;

and (2) the list is re-ranked by combining diversity scores to find top-k diversified ob-

jects [QYC12]. It is shown [GS09, VRB+11] that query diversification is intractable.

In contrast, (1) we study how to find top-k diversified matches for a designated

node in graph pattern matching, on which we are not aware of any prior work. (2) Our

algorithms combine query evaluation and result ranking, with early termination, while

the previous work assumes that the query result isalready known, except [DFZN10]

for keyword search. (3) We show that diversified graph pattern matching isAPX-hard,

a new result to the best of our knowledge.

Chapter 5. Diversified Top-k Graph Pattern Matching 168

Pattern queries with output nodes. Several query languages allow one to specify a

designated output node, notably twig queries on XML data [CAYLS02]. Such nodes

can also be specified with a “return” clause in XQuery [LC07],or a “select” clause in

SPARQL [PAG09]. These languages are typically based on subgraph (tree) isomor-

phism. For keyword queries, [LC07] proposes “return nodes”based on the category

information of the keywords. The nodes are, however, not specified by users. To re-

duce search effort, [TFGER07] proposes a “Seed-Finder” that identifies matches for

certain pattern nodes. This work extends twig queries to graph pattern matching de-

fined in terms of graph simulation, and provides algorithms for computing diversified

top-k matches with early termination, which were not studied for XPath. This work ex-

tends twig queries to graph pattern matching defined in termsof graph simulation, and

provides algorithms for computing diversified top-k matches with early termination,

which were not studied for XPath.

Chapter 6

ExpFinder: Finding Experts by Graph

Pattern Matching

In this chapter, we introduce a system, denoted asExpFinder, for finding experts in

social networks based on graph pattern matching. We show that (1) howExpFinder

identifies top-k experts in a social network by supporting bounded simulation of graph

patterns, and by ranking the matches based on a metric for social impact; (2) how it

copes with the sheer size of real-life social graphs by supporting incremental query

evaluation and query preserving graph compression, and (3)how theGUI of ExpFinder

interacts with users to help them construct queries and inspect matches.

6.1 Introduction

To effectively capture matches in real-life social graphs,we adoptbounded simula-

tion [FLM+10], a revision of the traditional notion of graph simulation, and study its

application in experts searches inlargeanddynamicreal-life social networks.

Example 6.1: Consider a fraction of a collaboration network (excluding edgee1) de-

picted as graphG in Fig. 6.1(b). Each node inG denotes a person, with attributes

such asname, field (e.g.,system architect (SA), system developer (SD), business ana-

lyst (BA), system tester (ST)), specialtyfor the field (e.g.,programmer and database

administrator forSD), andexperience(number of years). Each edge indicates col-

laboration,e.g., (Bob, Dan) indicates thatDan worked in a project led byBob and

collaborated well withBob. Two people may also collaborate indirectly via a path of

collaboration [LLT11].

169

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 170

e1BA

Walt

System Architect

5 years

Bill

Graphic Designer

2 years

Jean

Business Analyst

3 years

(b) Collaboration network G

Dan

Programmer

3 years

Mat

Programmer

4 years

(a) Pattern query Qb

Eva

Tester

2 years

2

2

3

1

Bob

System Architect

7 years

Pat

DBA

3 years

SA*
SD

ST

"System architect",

">=5 years"

"System developer",

">=2 years"

"Tester",

">=2 years"

"Business analysis"

">=3 years"

Name: Bob

Education: ...

Current: System Architect

Experience: 7 years

Projects: ...

2

...

Fred

DBA

2 years

Figure 6.1: Pattern query Qb and collaboration network G
Suppose that a company wants to hire a system architecture designer (SA) and form

a team to develop a medical record system [LLT11]. The requirements are expressed

as abounded simulation queryQb [FLM+10] (Fig. 6.1(a)) as follows: (1) theSA

expert must have worked in a team consisting of three other types of expertsSD, BA,

st, represented by the labeled nodes inQb; (2) theSA should have at least 5 years of

working experience, shown as a search condition at nodeSA; (3) there areSD and

BA experts who collaborated well withSA experts, via a collaboration chain no longer

than 2 and 3, respectively, as indicated by labeled edges(SA,SD) and(SA,BA) in Qb.

Similarly, the other nodes and edges inQb depict the requirements of the team andSA

experts. HereSA is marked as the “output node” with “∗”, i.e., the users only require

the matches ofSA to be returned as the desired experts.

The matches ofQb, denoted asM(Qb,G), is a relation between a query node and its

valid matches [FLM+10] in G. More specifically,M(Qb,G) = {(SA,Bob), (SA,Walt),

(BA,Jean), (SD,Mat), (SD,Dan), (SD,Pat), (st,Eva)}. Observe the following: (1)

the nodeSD in Qb is mapped to bothMat (programmer) andPat (DBA) in G, which is

not allowed by a bijection in subgraph isomorphism; and (2) the edge fromSA toBA in

Qb requires that theSA expert has supervised aBA within 3 hops; the edge is mapped

to a path (e.g.,the path fromBob to Jean) of a bounded length inG; in contrast, graph

simulation only allows edge to edge matching.

As SA may have multiple matches, a ranking metric should be provided to se-

lect the best experts with social impact. For example, bothBob andWalt are equally

experienced matches ofSA. Nevertheless,Bob has collaborated with all other team

members more “closely” via shorter collaboration paths. Thus,Bob has a stronger so-

cial impact [LLT11, New01a], and makes a better expert for coordinating with team

members. ✷

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 171

6.2 Incremental maintenance of landmarks

In [FLL+11], a notion of weighted landmark vectors is introduced to aid maintenance

of match results via bound simulation. It is also verified that with the aid of landmark

vectors, distance computations are far less costly than thealgorithms which traverse

the graph on the fly.

However, as remarked in Section 1.1, real-life graphs are typically large, and are

frequently updated. It is too costly to recompute landmarks, e.g.,it is NP-complete to

find a minimum landmark vectors, every time when the graphs are updated. With this

comes the need for incremental algorithms that compute changes to the landmarks in

response to updates, to minimize unnecessary recomputation. In this section, we study

the problems of incremental maintenance of landmark vectors and provide complexity

bounds and algorithms for maintaining landmark vectors.

6.2.1 Landmark Vectors

A landmark vectorlm=<v1, . . . ,v|lm|> for a data graphG is a list of nodes inG such

that for each pair(v′′,v′) of nodes inG, there exists a node inlm that is on a shortest

path fromv′′ to v′, i.e., lm “covers” all-pair shortest distances.

As observed in [PBCG09], we can use a landmark vector to find the distance be-

tween any pair of nodes inG as follows. (1) With each nodev in G we associate two

distance vectors, each of size|lm|: distv f = <dis(v,v1), . . . ,dis(v,v|lm|)>, anddistvt =

<dis(v1,v), . . . ,dis(v|lm|,v)>. (2) The distancedis(v′′,v′) from nodev′′ to v′ in G is the

minimum value among the sums ofdistv f [i] of v′′ anddistvt [i] of v′ for all i ∈ [1, |lm|].

This can be found by adistance query, denoted asdist(v′′,v′, lm), which performs at

most|lm| operations. In practice|lm| is typically small and can even be treated as a

constant [PBCG09].

Selection of landmarks. There are multiple landmark vectors for a graphG. For

example, anyvertex cover Vc of G can be considered as a landmark vector. Indeed,

sinceVc is a vertex cover, for any edgee= (v1,v2) in G, v1 or v2 is inVc. Thus, for any

two nodesv′ andv and any shortest pathρ from v′ to v, there is a nodev′′ ∈Vc that is

on some edgee∈ ρ. In our experimental study, we compute a minimum vertex cover

as a landmark vector using heuristic algorithm.

One may also want to use a “high-quality” landmark vectorlm, with a small number

of nodes that are not changed frequently whenG is updated. In this context, a set of

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 172

landmarks can also be selected as the nodes withe.g.,larger degrees, attached edges

that are less frequently updated [KNT06b], or larger betweenness centrality [WS03],

a normalized measurement for the number of shortest paths inG that go through the

nodev. Intuitively, the selection favors the smaller and more stable lm. We illustrate

this using an example, but defer a full treatment of such landmark vectors to a future

publication, due to the space constraint.

We next study how to incrementally maintain the landmark anddistance vectors.

6.2.2 Incremental maintenance of landmarks

In this section, we study incremental techniques to maintain landmark and distance

vectors. More specifically, for a data graphG, we study the following:the incremental

landmark problem, to maintain a landmark vector; andthe incremental landmark and

distance problem, to maintain a landmark vector as well as the distance vectors.

As argued in [RR96], it is not very informative to define the cost of an incremen-

tal algorithm as a function of the size of the input, as found in traditional complexity

analysis for batch algorithms. Instead, one should analyzethe algorithms in terms of

|CHANGED|, the size of the changes in the input and output of the incremental prob-

lem, which represents the updating costs that areinherent tothe problem itself [RR96].

(Un)boundedness. An incremental algorithm is said to beboundedif its time com-

plexity is bounded by a polynomial in|CHANGED|. An incremental maintenance of

landmarks problem is said to beboundedif there exists a bounded incremental algo-

rithm for it, and is said to beunboundedotherwise. A bounded problem can be solved

by aPTIME algorithm with time complexityindependentof |G|, the size of data graph.

Affected area. The affected area, denoted asAFF, includes not only the changes

to the output but also the local information of the nodes inG that must be accessed

to detect output changes. For example, givenP, ∆G, G and lm, the affected area

AFF of the incremental landmark and distance problems includes∆lm and changes to

the connectivity and distance information, represented bythe updated entries in the

landmark and distance vectors.

Maintaining landmarks . The incremental landmark problem, denoted asIncVLMK,

takes as input a graphG, a landmark vectorlm, and batch updates∆G. It is to find an

updated landmark vectorlm′ for G⊕∆G. Here |CHANGED| = |∆G|+ |∆lm|, where

|∆lm| is the size of different entries between the original and updatedlm. We show that

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 173

IncVLMK is bounded, and can be solved inlinear timeof |CHANGED|.

Proposition 6.2.1: IncVLMK is bounded for batch updates, in O(|CHANGED|) time.

✷

Proof sketch: We first show that for single edge insertions, the problem is bounded,

by providing a bounded algorithm as follows. Given an edge(v′,v) to be inserted into

G, the algorithm checks whetherv′ or v is already in the landmark vectorlm. If none of

them is inlm, it simply inserts eitherv′ or v into lm; otherwiselm remains unchanged.

The algorithm correctly maintainslm, because (a) edge insertions only cause new

nodes to be added intolm, (b) addingv′ or v to lm coversall the node pairs with their

distance changed, and (c) iflm is a landmark vector, thenlm∪ {v′} is a landmark

vector, for any nodev′ of G. The algorithm can be implemented inO(1) time (viae.g.,

hashing).

For single edge deletions, one can verify that iflm is already a landmark vector

of G, then it remains a landmark vector forG\ {(v′,v)}, where(v′,v) is the edge to

be deleted. Thus, there is no need to changelm in response to the deletion, and the

algorithm simply removes the edge fromG, which is inO(1) time.

For batch updates∆G, one can invoke the two algorithms above, one for each up-

date in∆G. The algorithm is in timeO(|CHANGED|). Hence the problem is bounded.

✷

Incremental landmark and distance problem. GivenP, G, a landmark vectorlm

and batch updates∆G, the incremental problem, denoted asIncLMDK, is to maintain

a landmark vector as well as the distance vectors in responseto ∆G.

Below we develop techniques forIncLMDK. Specifically,IncLMDKmaintains both

a landmark vector and distance vectors as auxiliary structures forIncBsim. It needs to

change those landmarks that affect matches, while leaving the rest to be adapted offline,

based on a “lazy” strategy. Here|CHANGED| is |∆G| + |∆lm| + |∆distv|, where|∆G|

and|∆lm| are the same as forIncVLMK, and|∆distv| is the size of the changed entries

in the distance vectors.

The distance vectors are updated oncelm is updated, using alazy strategyas fol-

lows. (a) We maintainlm in response to∆G, by keeping track of node pairs thatlm

covers. Weadda landmark only when necessary, and only extend the distancevectors

of those node pairs with changed distances; and (b) we rebuild space efficient landmark

vectors periodically via an offline process when,e.g.,|lm| approaches the number of

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 174

ProceduredelLM

Input: A b-patternP= (Vp,Ep, fV , fE), edgee= (v′,v) deleted,

landmark vectorlm.

Output: Landmark vectorlm′ as the updatedlm.

1. km := max(fE(ep)) for all ep ∈ Ep;

stackvset := {v′}; lm′ := lm;

2. if v′ has no childthen lm′ := lm′∪{v′};

3. while vset 6= /0 do

4. Booleanflag := false;

5. nodeu:=vset.pop(); affUP := affUP∪{u};

6. for each nodeu′ as parent ofu with dist(u′,v, lm) = 1+ dist(u,v, lm) do

7. for each nodeu′′ as child ofu′ with dist(u′,v, lm) = 1+ dist(u′′,v, lm) do

8. if u′′ /∈ affUP then flag := true; break ;

9. if flag = false and u′ is within km hops ofv′ then vset.push (u′);

10. computeaffDW similarly;

11. for each nodevAFF ∈ affUP do

12. for each nodevlm ∈ lm′ do vAFF.distv f [vlm] := dis(vAFF,vlm);

13. updatevAFF.distvt [vlm] similarly for vAFF ∈ affDW andvlm ∈ lm′;

14. return lm′;

Figure 6.2: Procedure delLM

nodes inG.

Proposition 6.2.2: IncLMDK is in O(|P|+ |AFF| log|AFF|+ |AFF|2) time, i.e., un-

bounded, for batch updates. ✷

We prove this by presenting unbounded algorithms to maintain landmark vectors

and distance vectors, for single edge deletions (ProceduredelLM), single edge inser-

tions (ProcedureInsLM), and batch updates (ProcedureincLM).

Single edge deletions. ProceduredelLM is given in Fig. 6.2. It updateslm in response

to a single edge deletione= (v′,v). Givene, delLM first initializes two setsaffUP and

affDW, to store the nodes with distance tov and fromv′ changed, respectively; it also

initializes vectorlm′ aslm, and a stackvset with v′ (line 1). delLM also updateslm by

adding those nodesv′ without any child (line 2). It then computesaffUP (lines 3-9).

More specifically, it first initializes a Booleanflag to be false, and selects a nodeu from

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 175

the stackvset and adds it toaffUP (line 5). It identifies the parentsu′ of u (by checking

distv), where theirold distance tov may be affected by the removal ofe (line 6). For

each such parentu′, it then checks if there is a childu′′ of u′ that is (a) not in the set

affUP, and (b) the original distance fromu to v is not changed. If there is no suchu′′, u

is inserted intoaffUP, and is pushed to the stackvset. The process stops whenvset is

empty. The setaffDW is similarly computed (line 10). Note thatdelLM only inspects

those nodes that have changed entries and are withinkm hops of the deleted edge.

After the setsaffUP andaffDW are computed, proceduredelLM updates the dis-

tance vectors for the affected nodes (lines 11-13). For eachaffected nodevAFF ∈ affUP

and each landmarkvlm, it updates the distance vectordistv f of vAFF with the new dis-

tance (lines 11-12). Similarly, it updates the distance vectors of the nodes inaffDW

(line 13). It then returns the updated landmark vectorlm′ (line 14).

Correctness & Complexity. ProceduredelLM correctly maintains the landmark vector

and updates distance vectors for each affected node (with local information changed).

Indeed, (1) the loop (lines 3-10) correctly finds affected node setsaffUP andaffDW. (2)

After affUP andaffDW are computed, proceduredelLM iteratively updates the distance

vectors for the affected nodes, by updating their distance from or to the new landmark

vectors, respectively (lines 11-13). For the complexity, observe the following. (1) It

takesO(|P|) to find km (line 1). (2) It takesO(|AFF|2) time to findaffUP andaffDW

(lines 3-10), as (a)delLM only visits the nodes with local information changed once,

and (b) each time it identifies the distance with linear time in |AFF|. (3) It takes in

total O(|AFF| log|AFF|) time to update the distance vectors, by implementingdistv as

priority queues (lines 11-13). To see this, note that (a)delLM visits each node inaffUP

as an ancestor of at least a landmark inlm′, in O(|AFF|) time, and (b)delLM updates

distv of a nodevAFF in affUP, by (i) updatingdistv of the children ofvAFF, and (ii)

computingdistv of vAFF directly withdistv of its children, via priority queue insertion

in O(log|AFF|) time. Thus proceduredelLM is in O(|P|+ |AFF| log|AFF|+ |AFF|2)

time. As verified by our experimental study,|AFF| is typically small in practice.

Single edge insertions. ProcedureInsLM incrementally updateslm in response to

a single edge insertion(v′,v), similarly asdelLM. It finds those nodesv1 such that

(1) dis(v1,v) is changed, and (2)v1 is within km hops ofv, wherekm is the maxi-

mum bound inP. It updates the old landmark vector anddistv f for these nodes, and

propagates the changes. Similarly it processesv′. The complexity ofInsLM is in

O(|P|+ |AFF| log|AFF|+ |AFF|2) time, the same asdelLM. Observe thatInsLM is

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 176

“lazy”: (a) the distance vectors of the nodes are updated only if they are withinkm

hops of the edgee andif their distances are changed; and (b) at most one new land-

mark is added, while the other landmarks are updated later byanofflineprocess in the

background.

Batch updates. We next presentincLM to incrementally maintain landmark vectors

and distance vectors in response to batch updates∆G. Instead of dealing with updates

one by one, it handles multiple updatessimultaneously.

Given ∆G, algorithm incLM first initializes two setsaffUP andaffDW . It uses

affUP to store all those nodesu for which there exists an update(v′,v) ∈ ∆G such that

dis(u,v) is changed inG⊕∆G. Similarly, affDW stores those nodesu with changed

distancedis(v′,u), for some(v′,v)∈∆G. After these, it updatesGwith ∆G, and updates

lm based on∆G following proceduresInsLM anddelLM. For each updatee∈ ∆G, it

then computesaffUP andaffDW, by identifying the affected nodes along the same lines

as in proceduresdelLM andInsLM. After all the affected nodes are identified,incLM

updates their distance vectors, and returns the updated vectors.

Correctness & Complexity. The correctness ofincLM follows from that ofInsLM and

delLM. For the complexity, observe the following: the numberkm is computed in

O(|P|) time once and can be reused, andlm can be updated inO(|∆G|) time (Propo-

sition 6.2.1). Affected node pairs can be found inO(|AFF|2) time. Note that|∆G| is

subsumed by|AFF|2 in this phase, asincLM handles multiple updates simultaneously

instead of one by one. The distance vectors can be updated inO(|AFF| log|AFF|) time.

ThusincLM is in O(|P|+ |AFF| log|AFF|+ |AFF|2) time. This completes the proof of

Proposition 6.2.2.

6.2.3 Performance Evaluation

We conducted one set of experiment to evaluate the efficiencyof InsLM, delLM and

incLM.

Experimental setting. We used the following real-life and synthetic graphs.

(1) Real-life data. We used two real-life datasets: (a) a crawledYouTubegraph [you]

with 18K nodes and 48K edges, in which each node denotes a video with attributes

(e.g.,length, category, age), and edges indicate recommendations, ; and (b) acitation

network [TZY+08] with 17k nodes and 62k edges, where each node represents a pa-

per with attributes (e.g., title, author and the year of publication), and edges denote

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 177

citations.

(2) Synthetic data. We used the Java boost graph generator to produce graphs, with 3

parameters: the number of nodes, the number of edges, and a set of node attributes.

We generated sequences of data graphs following the densification law [LKF07] and

linkage generation models [GGCM09].

We also developed a generator to produce updates, controlled by two parameters:

(a) update type (edge insertion or deletion), and (b) the size |∆G| of updates.

(3) Pattern generator.We designed a generator to produce meaningful pattern graphs,

controlled by 4 parameters: the number of nodes|Vp|, the number of edges|Ep|, the

average number|pred| of predicates carried by each node, and an upper boundk such

that each pattern edge has a boundk′ with k−c≤ k′ ≤ k, for a small constantc. We

shall use(|Vp|, |Ep|, |pred|,k) to characterize a pattern.

(4) Implementation. We implemented the algorithmsInsLM, delLM and incLM all in

Java.

All experiments were conducted on a machine with anIntel Core(TM)2 Dual Core

3.00GHz CPU and 4GB of RAM, using scientific Linux. Each experiment was run at

least 5 times, and the average is reported here.

Experimental results. We next report the performance ofInsLM, delLM andincLM.

Efficiency. We evaluated the efficiency ofInsLM vs. BatchLM+ (resp. delLM

vs. BatchLM−) over Youtube. HereBatchLM+ (resp.BatchLM−) denotes a batch

algorithm for edge insertion (resp. deletion). Fixing|V| = 18K andk = 5, we varied

|E| from 59K to 62K (resp. from 59K to 56K) by inserting (resp. deleting) edges, in

0.5K increments (resp. decrements). The results are reported inFigure 6.3(a), which

tell us the following: (1)InsLM (resp.delLM) is much more efficient thanBatchLM+

(resp.BatchLM−); indeed,InsLM takes only 8% of the time ofBatchLM+ when 3K

edges are inserted, anddelLM takes about 13% of time used byBatchLM− when the

same set of edges are removed fromYoutube; (2) InsLM is more efficient thandelLM;

this is because edge deletions tend to affect more nodes withchanged distance from

(resp. to) the nodes in landmark vector; hence, it takesdelLM more time to update

distance vectors; and (3)BatchLM+ outperformsBatchLM− for the same reason; this

is more evident when|∆G| gets larger.

We also evaluated the efficiency ofincLM vs. its batch counterpartBatchLM for

batch updates, usingYoutube. Fixing k = 5, we varied mixed updates from 1K to

6K, with 50% of edge insertions and 50% of edge deletion. The results are shown in

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 178

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.5K 1K 1.5K 2K 2.5K 3K

T
im

e(
se

co
nd

) InsLM
BatchLM(+)

delLM
BatchLM(-)

(a) LandMark maintenance over Youtube

 0

 20

 40

 60

 80

 100

 120

 140

 160

1K 2K 3K 4K 5K 6K

T
im

e(
se

co
nd

) incLM
BatchLM

(b) incLM over YouTube

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0.5K 1K 1.5K 2K 2.5K 3K

T
im

e(
S

ec
on

d)

K=3
K=6

(c) incLM over Citation

 10

 20

 30

 40

 50

 60

 70

0.5K 1K 1.5K 2K 2.5K 3K
T

im
e(

S
ec

on
d)

insLM
delLM
incLM

(d) LandMark maintenance over synthetic

Figure 6.3: Performance evaluation : efficiency

Fig. 6.3(b). These results tells us thatincLM is much more efficient thanBatchLM,

taking only 15% of the time used byBatchLM when 6K updates were incurred.

In addition, we evaluated the impact of the maximum boundk on incLM, using

Citation. Fixing |V| = 17K and |E| = 62K, we variedk from 3 to 6, and generated

batch updates∆G consisting of edge insertions and deletions. The results are reported

in Fig. 6.3(c). Compared tok = 3, it is more costly forincLM to maintain landmark

vectors whenk= 6. This is because the largerk is, the more node pairsincLM has to

inspect, to find out whether these nodes are affected by the updates.

Finally, we evaluated the efficiency ofincLM vs. a naive incremental algorithm,

denoted byInsLM+delLM. Given batch updates∆G, InsLM+delLM invokesInsLM

anddelLM one by one for each edge insertion and deletion in∆G. We used synthetic

graphs in this experiment. Fixing|V| = 15K, |E| = 40K and k = 5, we generated

∆G with both edge insertions and deletions, with|∆G| ranging from 0.5K to 3K. The

results are shown in Fig. 6.3(d), where thex-axis indicates|∆G|. From the results we

find that incLM consistently outperformsInsLM+delLM, by 20% in average. These

verified the effectiveness of the optimization strategies used byincLM, which, among

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 179

other things, substantially eliminated redundant updatesfrom ∆G.

6.3 The ExpFinder System

The architecture of theExpFinder system is shown in Fig. 6.4. It consists four mod-

ules. (1) AGraphical User Interface(GUI) provides a graphical interface to help users

formulate queries, manage data graphs and understand visualized query results. (2)

A Query Engineevaluates pattern queries and ranks query results. (3) AnIncremental

Computation Modulemaintains the query results of a set of frequently issued queries

(decided by the users) in response to updates incurred to data graphs. (4) AGraph

Compression Moduleconstructs and dynamically maintains compressed graphs, which

can be directly queried by the query engine. In addition, allthe graphs and query re-

sults are stored and managed as files. We next present the components ofExpFinder

and their interactions.

Graphical User Interface. TheGUI helps the users manage data graphs, construct

queries and browse query results. (1) It provides a task-oriented panel, which facilitate

the users to issue specific requests such as to view/select data graphs and construct

queries. (2) The users can construct a (bounded) simulationqueryQb by drawing

a set of query nodes and edges on a query panel of theGUI, specifying the search

conditions (e.g.,expertise=“developer”; experience=“3 years”), bounds onthe edges,

and indicating the particular “output” node for which userswant to find matches (e.g.,

SA in Fig. 6.1). They may also choose a data graphG to query. (3) TheGUI visualizes

the query results expressed as result graphs [FLM+10], in which each nodev is a match

of a query nodeu in Qb, and each edge(v1,v2) (marked with an integerd) represents

a shortest path with lengthd corresponding to a query edge(u1,u2).

Query Engine. The query engine performs (a) query evaluation, and (b) top-k re-

sult selection for the output node. It finds aunique, maximummatch graph for the

(bounded) simulation query [FLM+10]. The query result is then visualized by the

GUI.

Bounded simulation. Given a graphG and a pattern queryQb, M(Qb,G) is the max-

imum relation such that for each nodeu ∈ Q, there is a nodev ∈ G such that (1)

(u,v) ∈ M(Qb,G), and (2) for each(u,v) ∈ M(Qb,G), (a) the content ofv satisfies the

search condition specified by the pattern nodeu, and (b) for each edge(u,u′) in Qb,

there exists a nonempty pathρ from v to v′ in G such that(u′,v′) ∈ M(Qb,G), and the

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 180

Figure 6.4: Architecture of ExpFinder

length ofρ does not exceed the bound on(u,u′). Example 6.1 illustratesM(Qb,G) for

the queryQb and graphG given in Fig. 6.1.

As shown by [FLM+10], (1) M(Qb,G) is unique for eachG andQb, (2) graph

simulation is a special case when the bound on each pattern edge (u,u′) is 1, and (3)

bounded simulation is able to catch sensible matches that subgraph isomorphism and

simulation fail to identify, as we have seen in Example 6.1.

Query evaluation. To efficiently find M(Qb,G) in a large graphG, the query en-

gine coordinates with the incremental computation and graph compression modules

as follows. Upon receiving a pattern queryQb, (1) the query engine directly returns

M(Qb,G) if it is already cached; (2) otherwise, if a compressed graphGr for G is al-

ready computed by the compression module,Qb is evaluated onGr directly [FLWW12]

(as will be discussed); and (3) if the users opt not to compressG at this stage, the query

engine findsM(Qb,G), by employing a quadratic-time algorithm [HHK95] to evalu-

ate simulation queries, and a cubic-time algorithm [FLM+10] for bounded simulation

queries. AfterM(Qb,G) is computed, the query engine computes a result graph to

represent the result [FLM+10]. The users may decide whether the query and its result

need to be cached at this stage.

Results Ranking.As remarked earlier, the query result is typically large, while the

users may only be interested in the best K experts that match the designated output

node inQb, e.g.,SA in Example 6.1. To this end, the query engine identifies top-k

matches by using a ranking function. The intuition of the ranking function comes from

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 181

the following observation about social networks:two nodes that are closer to each

other often have more social impact to each other[LLT11, New01a]. Given an edge

(u′,u) in pattern queryQb, a matchv′ of u′, and two matchesv1 andv2 of u in a social

network, whereu is the output node,v1 is preferred tov2 if v′ is closer tov1. Indeed, in

practicev1 may represent an expert who collaborates with expertv′ more closely than

the other expertv2. In light of this, given an output nodeuo and its matchv in the result

graphGr = (Vr ,Er), the rankf (uo,v) is defined as:

f (uo,v) =
Σu∈Vrdist(u,v)+Σu′∈Vrdist(v,u

′)

|V ′
r |

where (a)dist(u,v) (resp. dist(v,u′)) represents the distance (as the sum of the edge

weight in a shortest path) from an ancestoru to v (resp. fromv to its descendantu′)

in Gr , and (b)V ′
r is the set of nodes inGr that can reachv or can be reached fromv.

Intuitively, f (uo,v) computes theaveragedistance ofv from (to) other nodes inGr .

The top-k matches ofuo is the set of K matches with theminimumranks.

The ranking functionf () assesses the social impact in terms of node distance,

as one of the commonly used metrics in social network analysis [LLT11, New01a].

Note that other metrics can be readily supported byExpFinder. We remark that top-k

matches were not studied in the previous work [FLM+10, FLL+11, FLWW12].

Example 6.2: Recall the match resultM(Qb,G) described in Exam-

ple 6.1. Its result graphGr is a weighted graph with a set of nodes

{Bob,Walt,Jean,Mat,Fred,Emmy,Eva}. One may verify that the rank

f (SA,Bob) = 1+2+3+2+2
5 = 2, and f (SA,Walt) = 2+2+3

3 = 2.33. Therefore,

Bob is the top-1 match forSA, since compared toWalt, he has shorter social distance

to other collaborators, and hence he has stronger social impact on the group members.

✷

Incremental Computation Module. Real-life social graphs are typically large and are

constantly changed. Given a graphG, a queryQb and updates∆G to G, it is costly to

recomputeM(Qb,G⊕∆G) starting from scratch each timeG is updated, whereG⊕∆G

denotesG updated by∆G. The incremental module copes with the dynamic nature of

social networks by incrementally identifying changes toM(Qb,G) in response to∆G,

withoutaccessingG. When∆G is small as commonly found in practice, it is far more

efficient to incrementally computeM(Qb,G⊕∆G) than to recompute it starting from

scratch. The module supports the incremental evaluation algorithms of [FLL+11] for

simulation and bounded simulation queries.

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 182

Example 6.3:Recall the queryQb and graphG of Fig. 6.1, and the matchesM(Qb,G)

from Example 6.1. Suppose thatG is updated by inserting the edgee1 (see Fig. 6.1(b)),

denoted by∆G. Then∆G incurs increment∆M to M(Qb,G) as a new pair(SD,Pat).

Instead of recomputingM(Qb,G⊕ ∆G), the incremental module finds the change

{(SD,Pat)} to M(Qb,G) by only accessingM(Qb,G) and the new edgee1. ✷

Graph Compression Module. The query engine and incremental module enable

ExpFinder to efficiently find matches in dynamic networks. Nevertheless, it is unlikely

to lower the computational complexity of query evaluation.The graph compression

module seeks to reduce the size of the input for query evaluation, by constructing

smallercompressedgraphsGr for a data graphG. The compressed graphGr (1) has

less nodes and edges thanG, and (2) can be directly queried by the query engine and

incremental module, such that forany (bounded) simulation queryQb, M(Qb,G) can

be obtained by a linear time post-processing fromM(Qb,Gr) [FLWW12]. Moreover,

Gr is incrementally maintained in response to changes toG.

The graph compression module is developed to (1) compute thecompressed graphs

Gr of G, and (2) dynamically maintainGr whenG is updated, by implementing the

techniques of [FLWW12]. The module works seamlessly with the other modules: it

invokes the compression algorithm to constructGr for data graphG upon receiving

requests fromGUI, and dynamically maintainsGr in response to changes toG issued

throughGUI. The compressed graphs are then stored, and are accessed by the query

engine when processing query, as remarked earlier.

Example 6.4: Recall pattern queryQb and data graphG from Fig. 6.1. Observe that

bothFred andPat (DBA) collaborated withst andBA people. Since they “simulate”

the behavior of each other in the collaboration networkG, they could be considered

equivalentwhen computingM(Qb,G). Similarly, pairs (Emmy, Eva) and (Dan, Mat)

can also be considered equivalent. The nodes that are pairwise equivalent form an

equivalence class, and the compressed graphGr is constructed by merging the nodes

in the same equivalence class. ✷

6.4 System Overview

The demonstration is to show the following: (1) how theGUI of ExpFinder handles

users’ requests and displays query results; (2) how efficient the query engine evaluates

queries and identifies top-k experts; (3) how the incremental module manages batch

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 183

Pattern Builder: construct

pattern query

Graph Editor: update

and maintain data graphs

Graph Compressor: construct

and maintain compressed graphs

Caches: cached query results Browse target Personal information: id, name, job, experience

Figure 6.5: Visual interface: ExpFinder Manager

updates to data graphs, and (4) how the compression module computes and maintains

compressed graphs.

DataSet. ExpFinder loads both synthetic and real-life datasets. (1) We design asyn-

thetic graph generator to generate arbitrarily large graphs and show the efficiency of

ExpFinder; and (2) we use a fraction ofTwitter to show the performance of each mod-

ule ofExpFinder, and interpret query results in details.

Interacting with the GUI. We invite users to use theGUI, from query design to intu-

itive illustration of query results.

(1) The users may operate onExpFinder Manager as the main control panel. As shown

in Fig. 6.5, the users can select, view and modify the detailed information of data

graphs, and may access the modules ofExpFinder as listed in the tools.

(2) Users can define their own queries through our Pattern Builder (PB) panel as shown

in Fig. 6.6. PB provides the users with a canvas to create a new pattern query. For

example, Figure 6.6 shows three pattern queriesQ1, Q2 andQ3 constructed viaPB,

with different search conditions and topology.

(3) TheGUI provides various ways to help users understand query results. We show

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 184

Figure 6.6: Visual interface: Pattern Builder

how the users can browse (a) result graphs relevant to matches, and (b) top-k matches,

by using theGUI. As an example, the result graphs and the top 1 (best)SA expert

(marked in red) are shown in Fig. 6.7 for queriesQ1, Q2 andQ3 (in Fig. 6.6), respec-

tively. Besides visualizing result graphs,ExpFinder also supportsDrill Down andRoll

Up analysis. That is, the users can drill down to see profiles of the nodes, edge weights

and other detailed information in a result graph, and can roll up to view the global

structure of the result graph. Hence theGUI enablesExpFinder to display the result at

different abstraction levels.

Performance of query evaluation. This demonstration also aims to show the per-

formance of the query engine, the incremental module and thegraph compression

module.

Performance of the query engine. We will show (a) how (bounded) simulation queries

are processed on large graphs by generating optimized queryplans, and (b) how top-k

matches are selected based on the ranking function. We will use real-life datasets and

queries to provide intuitive illustrations.

Coping with the dynamic world. We will also show the performance gains of incre-

mental computation compared to batch computation that recomputes the matches in

response to updates. We show the improvement by varying the size of the data graphs

with unit update (single edge insertion/deletion) as well as batch updates (a set of edge

insertions/deletions). We show that for batch updates and general (possibly cyclic)

patterns, our incremental module performs significantly better than their batch coun-

terparts, when data graphs are changed up to 30% for simulation, and 10% for bounded

simulation.

Querying compressed graphs. In addition, we will show (1) how graph compression

module effectively compresses a data graph, (2) how substantial the performance is

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 185

(a) Top-1 Match Result of Q1

(c) Top-1 Match Result of Q3(b) Top-1 Match Result of Q2

Figure 6.7: Match Results relevant to output node of Q1, Q2 and Q3

improved when evaluating (bounded) simulation queries by using compressed graphs

instead of the original graphs, and (3) how the compressed graphs are dynamically

maintained. We show that in average, the graphs can be reduced by 57%, which in

turn reduces query evaluation time by 70%. Moreover, the compression module effi-

ciently maintains the compressed graphs, and outperforms the method that recomputes

compressed graphs, even when large batch updates are incurred.

Summary. This demonstration aims to show the key ideas and performance of our

expert search systemExpFinder based on graph pattern matching.ExpFinder is able

to (1) effectively identify top-k experts in social networks by using pattern queries

specified with search conditions and bounded connectivity constraints, (2) efficiently

evaluate the queries on large real-life social graphs, (3) incrementally answer queries

on dynamic graphs in response to batch updates, (4) support graph compression for

efficient graph storage and query evaluation, and (5) provide intuitive graphical inter-

face to facilitate the users to construct queries and interpret query results. We contend

thatExpFinder can serve as a promising tool for expert finding in large and dynamic

Chapter 6. ExpFinder: Finding Experts by Graph Pattern Matching 186

real-life social networks.

Chapter 7

Conclusion and Future Work

In this chapter, we summarise the results of this thesis, andpropose future work.

7.1 Summary

The primary goal of the thesis has been to explore effective techniques to query “big”

social data such that social network analysis via graph pattern matching can be pro-

cessed more efficiently. We conclude the results as below.

Query Preserving Graph Compression. To cope with sheer size of social networks,

the thesis proposes to compress social graphs in terms of a class of queries, such that

graph pattern matching can be evaluated over compressed graphs which are much

smaller than their original counterparts. Moreover, taking dynamic nature of social net-

works into consideration, the thesis also introduces incremental techniques to maintain

the compressed graphs. The computational complexities of all the algorithms are listed

in Table 7.1, which shows that both batch and incremental algorithms have low poly-

nomial time complexities for two classes of commonly used queries. In addition, the

compression technique reduces the size of real-life graphsby 95% and 57%, on aver-

Problems Complexity

Batch compression
Simple boolean patternsO(|V|(|V|+ |E|))

General patterns O(|E| log|V|)

Incremental compression
Simple boolean patterns O(|AFF||Gr |)

General patterns O(|AFF|2+ |Gr |)

Table 7.1: Summary: computational complexities

187

Chapter 7. Conclusion and Future Work 188

age, for simple boolean patterns and general patterns, respectively, which in turn leads

to a reduction of 94% and 70% in query evaluation time, respectively. Putting these

together, we contend that query preserving graph compression provides a promising

technique for social network analysis via graph pattern matching.

Distributed Graph Pattern Matching . Social networks are often distributively

stored, in light of this, the thesis developed distributed algorithms for three types of

simple boolean patterns including reachability queries, bounded reachability queries

and regular reachability queries. It is shown that via the algorithms presented, graph

pattern matching can be evaluated in parallel, thereby improving the performance of

query evaluation significantly (see Table 7.2 for computational complexity and data

shipment analysis). We further show that these algorithms can be readily imple-

mented in the MapReduce framework, and the elapsed communication costECC of

the MapReduce algorithm for regular reachability queries isO(|Fm|+ |R|2|Vf |
2).

Problems Complexity Data Shipment

Reachability queries O(|Vf ||Fm|) O(|Vf |
2)

Bounded reachability queries O(|Vf ||Fm|) O(|Vf |
2)

Regular reachability queries O(|Fm||R|2+ |R|2|Vf |
2) O(|R|2|Vf |

2)

Table 7.2: Summary: performances

Graph Pattern Matching Using Views. The thesis investigated the problem of an-

swering graph pattern matching using views, and developed algorithms to compute

matches from pattern views when the pattern queries can be correctly answered using

views. Moreover, the thesis also studied three problems relevant to pattern contain-

ment, and provided efficient algorithms for containment checking. The complexity

analysis of the problems are summarised in Table 7.3. It is shown from the complexity

analysis and experimental study that the techniques of answering graph pattern match-

ing by using pattern views yield a promising method for social network analysis.

Diversified Top-k Graph Pattern Matching . In contrast to finding the entire set of

matches with high computational cost, the thesis revised the traditional notion of graph

pattern matching, by supporting a designated output node; and developed efficient al-

gorithms to find top-k relevant matches with an early termination property. Further-

more, to find diverse top-k matches, both approximation and heuristic algorithms are

provided, where the approximation algorithm obtains a constant approximation ratio,

Chapter 7. Conclusion and Future Work 189

Problems Complexity

Simulation

Query with views O(|Qs||V (G)|+ |V (G)|2)

Pattern Containment O(card(V)|Qs|
2+ |V |2+ |Qs||V |)

Minimal containment O(card(V)|Qs|
2+ |V |2+ |Qs||V |)

Minimum containment

NP-complete (Decision Problem)

O(card(V)|Qs|
2+ |V |2+ |Qs||V |+(|Qs| · card(V))

3/2)

(Approximation RatioO(log|Ep|))

Query with views O(|Qb||V (G)|+ |V (G)|2)

Bounded

Pattern Containment O(|Qb|
2|V |)

Minimal containment O(|Qb|
2|V |)

Simulation

Minimum containment

NP-complete (Decision Problem)

O(|Qb|
2|V |+(|Qb| · card(V))

3/2)

(Approximation RatioO(log|Ep|))

Table 7.3: Summary: complexity analysis

and the heuristic algorithm possesses the early termination property.

Problems Early Termination Complexity

Top-k Matching
TopKDAG Yes O((|Q|+ |V|)(|V|+ |E|))

TopK Yes O((|Q|+ |V|)(|V|+ |E|))

Diversified Top-k Matching
TopKDiv No

NP-complete (Decision Problem)

O((|Q|+ |V|)(|V|+ |E|))

(Approximation Ratio 2)

TopKDH Yes O((|Q|+ |V|)(|V|+ |E|))

Table 7.4: Summary: property and complexity analysis of the problems

We list the properties and complexity analyses in Table 7.4.We contend that the

techniques for top-k graph pattern matching yield a promising approach to querying

big social data.

ExpFinder: Finding Experts by Graph Pattern Matching . Based on the techniques

of incremental graph pattern matching, query preserving graph compression and top-

k matching computation, we developed an expert search systemapplicable to social

networks. In particular, we provided optimal and bounded incremental algorithms for

weighted landmark vector maintenance, and show the complexities of the problems in

Table 7.5.

Chapter 7. Conclusion and Future Work 190

Problems Complexity

Incremental landmark problem bounded

Incremental landmark and distance problemunbounded

Table 7.5: Summary: complexity analysis

7.2 Future Work

The research carried out in this thesis reveals many directions for the future work.

(1) We are studying compression methods for other queries,e.g.,pattern queries

with embedded regular expressions. We also plan to extend our compression and main-

tenance techniques to query distributed graphs. One interesting topic is to compress

social graphs into nested structures such that graphsGh at higher levels can be either

queried directly or decomposed with minimum cost to enable pattern queries indirectly.

(2) We are currently developing distributed evaluation algorithms for other queries,

notably graph pattern matching defined in terms of subgraph isomorphism or simula-

tion. Another topic is to combine partial evaluation and incremental computation, to

cope with frequent updates to graph data in practice and to provide efficient distributed

graph query evaluation strategies in the dynamic world.

(3) One open issue is to decide what views to cache such that a set of frequently

used pattern queries can be answered using the views. Another issue is to develop

efficient algorithms for computing maximally contained rewriting using views, when

a pattern query is not contained in available views [Len02].A third problem concerns

view-based pattern matching defined in terms of subgraph isomorphism, instead of

(bounded) simulation. Finally, to find a practical method toquery “big” social data,

one needs to combine techniques for querying large graphs, such as view-based, incre-

mental, distributed and compression methods.

(4) We are currently experimenting with real-life graphs invarious domains, to

fine-tune our diversification objective function. We are also exploring optimization

techniques to further reduce the number of matches examinedby our algorithms. The

ultimate goal is to make graph pattern matching feasible on big social data. To this

end, we are developing distributed top-k matching algorithms on social graphs that are

partitioned, distributed and possibly compressed.

Bibliography

[ABMP07] Andrei Arion, Véronique Benzaken, Ioana Manolescu, and Yannis Pa-

pakonstantinou. Structured materialized views for xml queries. In

VLDB, 2007.

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-

Spaccamela, and M. Protasi.Complexity and Approximation: Combi-

natorial optimization problems and their approximabilityproperties.

Springer Verlag, 1999.

[AGHP12] O. Alonso, M. Gamon, K. Haas, and P. Pantel. Diversity and relevance

in social search. InDDR, 2012.

[AGU72] Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. Thetransitive

reduction of a directed graph.SICOMP, 1(2), 1972.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu.Foundations of

Databases. Addison-Wesley, 1995.

[AK07] Vu Le Anh and Attila Kiss. Efficient processing regular queries in

shared-nothing parallel database systems using tree- and structural in-

dexes. InADBIS Research Communic, 2007.

[AMHWS+05] Boanerges Aleman-Meza, Christian Halaschek-Wiener, Satya Sanket

Sahoo, Amit Sheth, and I. Budak Arpinar. Template based seman-

tic similarity for security applications. InProceedings of the 2005

IEEE international conference on Intelligence and Security Informat-

ics, ISI’05, 2005.

[AU10] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-

reduce environment. InEDBT, pages 99–110, 2010.

192

Bibliography 193

[AYBB07] Sihem Amer-Yahia, Michael Benedikt, and Philip Bohannon. Chal-

lenges in searching online communities.IEEE Data Eng. Bull.,

30(2):23–31, 2007.

[BCFK06] Peter Buneman, Gao Cong, Wenfei Fan, and Anastasios Kementsi-

etsidis. Using partial evaluation in distributed query evaluation. In

VLDB, 2006.

[BG00] Doron Bustan and Orna Grumberg. Simulation based minimization.

In CADE, pages 255–270, 2000.

[BGK03] Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on

compressed XML. InVLDB, pages 141–152, 2003.

[BHK+10] Joel Brynielsson, Johanna Högberg, Lisa Kaati, Christian Martenson,

and Pontus Svenson. Detecting social positions using simulation. In

ASONAM, 2010.

[BHLW10] Pablo Barceló, Carlos A. Hurtado, Leonid Libkin,and Peter T. Wood.

Expressive languages for path queries over graph-structured data. In

PODS, 2010.

[BJK00] Horst Bunke, Xiaoyi Jiang, and Abraham Kandel. On the minimum

common supergraph of two graphs.Computing, 2000.

[BLY12] Allan Borodin, Hyun Chul Lee, and Yuli Ye. Max-sum diversifica-

tion, monotone submodular functions and dynamic updates. In PODS,

pages 155–166. ACM, 2012.

[BMC10] M. Bendersky, D. Metzler, and W.B. Croft. Learning concept impor-

tance using a weighted dependence model. InWSDM, 2010.

[Bor06] S.P. Borgatti. Identifying sets of key players in a social network.Com-

putational & Mathematical Organization Theory, 12(1):21–34, 2006.

[BRSV11] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna.

Layered label propagation: A multiresolution coordinate-free order-

ing for compressing social networks. InWWW, 2011.

[BS98] Horst Bunke and Kim Shearer. A graph distance metric based on the

maximal common subgraph.Pattern Recognition Letters, 1998.

Bibliography 194

[BV04] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: com-

pression techniques. InWWW, 2004.

[CAYLS02] S. Cho, S. Amer-Yahia, L.V.S. Lakshmanan, and D. Srivastava. Opti-

mizing the secure evaluation of twig queries. InVLDB, 2002.

[CEGL11] Melisachew Wudage Chekol, Jérôme Euzenat, Pierre Genevès, and

Nabil Layaida. PSPARQL Query Containment. Technical report,

2011.

[CFK07] Gao Cong, Wenfei Fan, and Anastasios Kementsietsidis. Distributed

query evaluation with performance guarantees. InSIGMOD Confer-

ence, 2007.

[CFSV99] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.Performance

evaluation of the vf graph matching algorithm. InProceedings of

the 10th International Conference on Image Analysis and Processing,

ICIAP ’99, 1999.

[CFSV04] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento.

A (sub)graph isomorphism algorithm for matching large graphs.IEEE

Trans. Pattern Anal. Mach. Intell., 26(10), 2004.

[CG99] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In

VLDB, pages 399–410, 1999.

[CGLV00] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and

Moshe Y. Vardi. View-based query processing and constraintsatis-

faction. InLICS, 2000.

[CGLV01] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and

Moshe Y. Vardi. View-based query answering and query containment

over semistructured data. InDBPL, pages 40–61, 2001.

[CGM04] Thayne Coffman, Seth Greenblatt, and Sherry Marcus. Graph-based

technologies for intelligence analysis.Commun. ACM, 47(3), 2004.

[Cha08] Fay Chang et al. Bigtable: A distributed storage system for structured

data.ACM Trans. Comput. Syst., 26(2), 2008.

Bibliography 195

[CHKZ03a] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reacha-

bility and distance queries via 2-hop labels.SICOMP, 32(5), 2003.

[CHKZ03b] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachabil-

ity and distance queries via 2-hop labels.SICOMP, 32(5):1338–1355,

2003.

[CKKV11] Sara Cohen, Benny Kimelfeld, Georgia Koutrika, and Jan Vondrák.

On principles of egocentric person search in social networks. In

VLDS, 2011.

[CKL+09] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzen-

macher, Alessandro Panconesi, and Prabhakar Raghavan. On com-

pressing social networks. InKDD, 2009.

[CR94] Chung-Min Chen and Nick Roussopoulos. The implementation and

performance evaluation of the adms query optimizer: Integrating

query result caching and matching. InEDBT, 1994.

[CYD+08] Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, Philip S. Yu, and Haixun

Wang. Fast graph pattern matching. InICDE, 2008.

[DCXB11] Jintian Deng, Byron Choi, Jianliang Xu, and SouravS. Bhowmick.

Optimizing incremental maintenance of minimal bisimulation of

cyclic graphs. InDASFAA, 2011.

[DFZN10] Elena Demidova, Peter Fankhauser, Xuan Zhou, and Wolfgang Nejdl.

DivQ: Diversification for keyword search over structured databases.

In SIGIR, 2010.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-

cessing on large clusters.Commun. ACM, 51(1), 2008.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-

ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s

highly available key-value store. InSOSP, pages 205–220, 2007.

[DHT04] Xin Dong, Alon Y. Halevy, and Igor Tatarinov. Containment of nested

xml queries. InVLDB, 2004.

Bibliography 196

[DPP01] Agostino Dovier, Carla Piazza, and Alberto Policriti. A fast bisimula-

tion algorithm. InCAV, 2001.

[Fag99] R. Fagin. Combining fuzzy information from multiple systems.JCSS,

58(1):83–99, 1999.

[F.C08] Brian F.Cooper et al. Pnuts: Yahoo!’s hosted data serving platform.

PVLDB, 1(2):1277–1288, 2008.

[FCG04] Wenfei Fan, Chee Yong Chan, and Minos N. Garofalakis. Secure

XML querying with security views. InSIGMOD, 2004.

[FFP08] Sergio Flesca, Filippo Furfaro, and Andrea Pugliese. A framework

for the partial evaluation of sparql queries. InSUM, pages 201–214,

2008.

[Fjä98] Per-Olof Fjällström. Algorithms for graph partitioning: A survey.

Link’́oping Electronic Articles in Computer and Information Science,

3, 1998.

[FLL+11] Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing Tan, Xin Wang, and

Yinghui Wu. Incremental graph pattern matching. InSIGMOD, 2011.

[FLM+10] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu,and

Yunpeng Wu. Graph pattern matching: From intractable to polyno-

mial time. PVLDB, 3(1), 2010.

[FLM+11] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and YinghuiWu.

Adding regular expressions to graph reachability and pattern queries.

In ICDE, pages 39–50, 2011.

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation

algorithms for middleware.JCSS, 66(4):614–656, 2003.

[FLWW12] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu.Query pre-

serving graph compression. InSIGMOD, pages 157–168, 2012.

[FM95] Tomás Feder and Rajeev Motwani. Clique partitions,graph compres-

sion and speeding-up algorithms.JCSS, 51(2):261–272, 1995.

Bibliography 197

[FSV01] P. Foggia, C. Sansone, and M. Vento. A performance comparison of

five algorithms for graph isomorphism. Inin Proceedings of the 3rd

IAPR TC-15 Workshop on Graph-based Representations in Pattern

Recognition, pages 188–199, 2001.

[FWW] Wenfei Fan, Xin Wang, and Yinghui Wu. Incremental Graph Pattern

Matching.TODS.

[FWW12] Wenfei Fan, Xin Wang, and Yinghui Wu. Performance guarantees for

distributed reachability queries.PVLDB, 5(11):1304–1315, 2012.

[FWW13a] Wenfei Fan, Xin Wang, and Yinghui Wu. Diversified top-k graph

pattern matching.VLDB, 6(9), 2013.

[FWW13b] Wenfei Fan, Xin Wang, and Yinghui Wu. Expfinder: Finding experts

by graph pattern matching. InICDE demo, 2013.

[Gal06] Brian Gallagher. Matching structure and semantics: A survey on

graph-based pattern matching.AAAI FS, 6:45–53, 2006.

[GC08] Gang Gou and Rada Chirkova. Efficient algorithms for exact ranked

twig-pattern matching over graphs. InSIGMOD, 2008.

[GGCM09] Sanchit Garg, Trinabh Gupta, Niklas Carlsson, andAnirban Mahanti.

Evolution of an online social aggregation network: an empirical study.

In IMC, 2009.

[GHMP08] Albert Greenberg, James Hamilton, David A. Maltz,and Parveen Pa-

tel. The cost of a cloud: research problems in data center networks.

SIGCOMM Comput. Commun. Rev., 39, 2008.

[GJ79] Michael Garey and David Johnson.Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman and Com-

pany, 1979.

[GK05] Jan Friso Groote and Misa Keinänen. A sub-quadraticalgorithm for

conjunctive and disjunctive boolean equation systems. InICTAC,

pages 532–545, 2005.

[GKS08] Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Key-

word proximity search in complex data graphs. InSIGMOD, 2008.

Bibliography 198

[GL05] Douglas Gregor and Andrew Lumsdaine. Lifting sequential graph

algorithms for distributed-memory parallel computation.In OOPSLA,

pages 423–437, 2005.

[GS02] Rosalba Giugno and Dennis Shasha. Graphgrep: A fast and universal

method for querying graphs. InICPR (2), 2002.

[GS09] Sreenivas Gollapudi and Aneesh Sharma. An axiomaticapproach for

result diversification. InWWW, 2009.

[GSBS03] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.XRANK:

ranked keyword search over XML documents. InSIGMOD, 2003.

[GT03] Gösta Grahne and Alex Thomo. Query containment and rewriting us-

ing views for regular path queries under constraints. InPODS, pages

111–122, 2003.

[Hal00] Alon Y. Halevy. Theory of answering queries using views.SIGMOD

Rec., 29(4):40–47, 2000.

[Hal01] Alon Y. Halevy. Answering queries using views: A survey. VLDB J.,

10(4):270–294, 2001.

[HDKT09] Mohammad Farhan Husain, Pankil Doshi, Latifur Khan, and Bha-

vani M. Thuraisingham. Storage and retrieval of large RDF graph

using hadoop and MapReduce. InCloudCom, pages 680–686, 2009.

[HHK95] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing sim-

ulations on finite and infinite graphs. InFOCS, 1995.

[HRT97] R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms

for maximum dispersion.Operations Research Letters, 21(3):133–

137, 1997.

[HS06] Huahai He and Ambuj K. Singh. Closure-tree: An index structure for

graph queries. InICDE, 2006.

[HSW01] Juraj Hromkovic, Sebastian Seibert, and Thomas Wilke. Translating

regular expressions into small -free nondeterministic finite automata.

J. Comput. Syst. Sci., 62(4):565–588, 2001.

Bibliography 199

[HTMS12] J. He, H. Tong, Q. Mei, and B. Szymanski. Gender: A generic diversi-

fied ranking algorithm. InAdvances in Neural Information Processing

Systems 25, pages 1151–1159, 2012.

[HWYY05] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. Compact reacha-

bility labeling for graph-structured data. InCIKM, 2005.

[hyp] Hypergraphdb project.http://www.kobrix.com/hgdb.jsp.

[IBS08] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey

of top-k query processing techniques in relational database systems.

ACM Comput. Surv., 40(4), 2008.

[Jac89] Guy Jacobson. Space-efficient static trees and graphs. InFOCS, 1989.

[JHW+10] Ruoming Jin, Hui Hong, Haixun Wang, Ning Ruan, and Yang Xiang.

Computing label-constraint reachability in graph databases. InSIG-

MOD Conference, pages 123–134, 2010.

[Jon96] Neil D. Jones. An introduction to partial evaluation. ACM Comput.

Surv., 28(3):480–503, 1996.

[JRDY12] Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Xu Yu. Scarab:

scaling reachability computation on large graphs. InSIGMOD Con-

ference, pages 169–180, 2012.

[JWYZ07] Haoliang Jiang, Haixun Wang, Philip S. Yu, and Shuigeng Zhou.

Gstring: A novel approach for efficient search in graph databases. In

ICDE, 2007.

[JXRF09] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 3-hop: A

high-compression indexing scheme for reachability query.In SIG-

MOD, 2009.

[JXRW08] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently

answering reachability queries on very large directed graphs. InSIG-

MOD, 2008.

[KKT03] D. Kempe, J. Kleinberg, and́E. Tardos. Maximizing the spread of

influence through a social network. InSIGKDD, 2003.

Bibliography 200

[KNT06a] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and

evolution of online social networks. InKDD, 2006.

[KNT06b] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and

evolution of online social networks. InKDD, 2006.

[Kos00] Donald Kossmann. The state of the art in distributedquery processing.

ACM Comput. Surv., 32(4):422–469, 2000.

[KSBG02] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon,and Ehud Gudes.

Exploiting local similarity for indexing paths in graph-structured data.

In ICDE, pages 129–140, 2002.

[LC07] Ziyang Liu and Yi Chen. Identifying meaningful return information

for XML keyword search. InSIGMOD, 2007.

[LDK +11] Wangchao Le, Songyun Duan, Anastasios Kementsietsidis, Feifei Li,

and Min Wang. Rewriting queries on sparql views. InWWW, 2011.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In

PODS, 2002.

[LHN06] E. A. Leicht, Petter Holme, and M. E. J. Newman. Vertex similarity

in networks.Phys. Rev. E, 73:026120, 2006.

[LKF07] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolu-

tion: Densification and shrinking diameters.TKDD, 1(1):2, 2007.

[LLT11] Theodoros Lappas, Kun Liu, and Evimaria Terzi. A survey of algo-

rithms and systems for expert location in social networks. In Social

Network Data Analytics. 2011.

[LMSS95] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh

Srivastava. Answering queries using views. InPODS, 1995.

[LNK07] David Liben-Nowell and Jon Kleinberg. The link-prediction problem

for social networks.Journal of the American society for information

science and technology, 58(7):1019–1031, 2007.

[LSK06] Jure Leskovec, Ajit Singh, and Jon M. Kleinberg. Patterns of influence

in a recommendation network. InPAKDD, 2006.

Bibliography 201

[LWZ06] Laks V. S. Lakshmanan, Wendy Hui Wang, and Zheng (Jessica) Zhao.

Answering tree pattern queries using views. InVLDB, 2006.

[LY11] Rong-Hua Li and Jeffrey Xu Yu. Scalable diversified ranking on large

graphs. InICDM, pages 1152–1157, 2011.

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C.

Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a

system for large-scale graph processing. InSIGMOD, pages 135–146,

2010.

[MAYKS05] A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava. Adaptive

processing of top-k queries in XML. InICDE, 2005.

[MB95] B. T. Messmer and H. Bunke. Subgraph isomorphism in polynomial

time. Technical report, 1995.

[McK81] Brendan D. McKay. Practical graph isomorphism, 1981.

[MD08] Tova Milo and Daniel Deutch. Querying and monitoringdistributed

business processes.PVLDB, 1(2):1512–1515, 2008.

[MMG+07] Alan Mislove, Massimiliano Marcon, P. Krishna Gummadi,Peter Dr-

uschel, and Bobby Bhattacharjee. Measurement and analysisof online

social networks. InInternet Measurement Comference, 2007.

[MP10] Hossein Maserrat and Jian Pei. Neighbor query friendly compression

of social networks. InKDD, 2010.

[MS99] Tova Milo and Dan Suciu. Index structures for path expressions. In

ICDT, 1999.

[MS02] Gerome Miklau and Dan Suciu. Containment and equivalence for an

xpath fragment. InPODS, pages 65–76, 2002.

[MT69] Dennis M. Moyles and Gerald L. Thompson. An algorithmfor finding

a minimum equivalent graph of a digraph.J. ACM, 16(3), 1969.

[MTP10] M.R. Morris, J. Teevan, and K. Panovich. What do people ask their

social networks, and why? A survey study of status message q&a

behavior. InCHI, 2010.

Bibliography 202

[NCO04a] Alexandros Ntoulas, Junghoo Cho, and ChristopherOlston. What’s

new on the web?: the evolution of the web from a search engine per-

spective. InWWW, 2004.

[NCO04b] Alexandros Ntoulas, Junghoo Cho, and ChristopherOlston. What’s

new on the Web? The evolution of the Web from a search engine

perspective. InWWW, 2004.

[neo] Neo4j project.http://neo4j.org/.

[New01a] M. E. Newman. Scientific collaboration networks II. shortest paths,

weighted networks, and centrality.Phys Rev E Stat Nonlin Soft Matter

Phys, 64(1 Pt 2), 2001.

[New01b] Mark EJ Newman. Clustering and preferential attachment in growing

networks.Physical Review E, 64(2):025102, 2001.

[NRS08] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph

summarization with bounded error. InSIGMOD, 2008.

[NS03] Frank Neven and Thomas Schwentick. Xpath containment in the pres-

ence of disjunction, dtds, and variables. InICDT, pages 312–326,

2003.

[OV99] M. Tamer Ozsu and Patrick Valduriez.Principles of Distributed

Database Systems. Prentice Hall, 1999.

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and

complexity of SPARQL.TODS, 34(3), 2009.

[Pap94] Christos H Papadimitriou.Computational Complexity. Addison-

Wesley, 1994.

[PBCG09] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides

Gionis. Fast shortest path distance estimation in large networks. In

CIKM, 2009.

[PER09] Josep M. Pujol, Vijay Erramilli, and Pablo Rodriguez. Divide and

conquer: Partitioning online social networks.CoRR, abs/0905.4918,

2009.

Bibliography 203

[PT87] Robert Paige and Robert Endre Tarjan. Three partition refinement

algorithms.SICOMP, 16(6), 1987.

[PT05] Daeil Park and Motomichi Toyama. Xml cache management based

on xpath containment relationship. InICDE Workshops, page 1238,

2005.

[PV99] Yannis Papakonstantinou and Vasilis Vassalos. Query rewriting for

semistructured data. InSIGMOD, pages 455–466, 1999.

[QLO03] Chen Qun, Andrew Lim, and Kian Win Ong. D(k)-index: An adaptive

structural summary for graph-structured data. InSIGMOD, 2003.

[QYC12] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Diversifyingtop-k results.

PVLDB, 5(11), 2012.

[RGM03] Sriram Raghavan and Hector Garcia-Molina. Representing Web

graphs. InICDE, 2003.

[Row09] Matthew Rowe. Interlinking distributed social graphs. In LDOW,

2009.

[RR96] G. Ramalingam and Thomas Reps. On the computational complexity

of dynamic graph problems.TCS, 158(1-2), 1996.

[Sah07] Diptikalyan Saha. An incremental bisimulation algorithm. In

FSTTCS, 2007.

[SCK+08] Ralf Schenkel, Tom Crecelius, Mouna Kacimi, Sebastian Michel,

Thomas Neumann, Josiane X. Parreira, and Gerhard Weikum. Effi-

cient top-k querying over social-tagging networks. InSIGIR, 2008.

[SD76] Douglas C. Schmidt and Larry E. Druffel. A fast backtracking algo-

rithm to test directed graphs for isomorphism using distance matrices.

J. ACM, 23(3), 1976.

[Sev] Mark Sevalnev. From prefix computation on pram for finding eu-

ler tours to usage of hadoop-framework for distributed breadth first

search.http://www.cs.hut.fi/.

Bibliography 204

[Sim88] Klaus Simon. An improved algorithm for transitive closure on acyclic

digraphs.Theor. Comput. Sci., 58:325–346, 1988.

[ST09] Maryam Shoaran and Alex Thomo. Fault-tolerant computation of dis-

tributed regular path queries.TCS, 410(1):62–77, 2009.

[Str06] U. Straccia. Towards top-k query answering in deductive databases.

In SMC, 2006.

[Suc02] Dan Suciu. Distributed query evaluation on semistructured data.

TODS, 27(1):1–62, 2002.

[TBM+08] M. Theobald, H. Bast, D. Majumdar, R. Schenkel, and G. Weikum.

Topx: Efficient and versatile top-k query processing for semistruc-

tured data.VLDB J., 17(1):81–115, 2008.

[TFGER07] Hanghang Tong, Christos Faloutsos, Brian Gallagher, and Tina

Eliassi-Rad. Fast best-effort pattern matching in large attributed

graphs. InKDD, 2007.

[TM05] Loren G. Terveen and David W. McDonald. Social matching: A

framework and research agenda. InACM Trans. Comput.-Hum. In-

teract., 2005.

[TP08] Yuanyuan Tian and Jignesh M. Patel. Tale: A tool for approximate

large graph matching. InICDE, 2008.

[tri] Trinity. http://research.microsoft.com/en-us/projects/trinity.

[TZY+08] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.

Arnetminer: extraction and mining of academic social networks. In

KDD, 2008.

[Ull76] Julian R. Ullmann. An algorithm for subgraph isomorphism.J. ACM,

23(1), 1976.

[Vaz03] Vijay V. Vazirani.Approximation Algorithms. Springer, 2003.

[VFD+07] Monique V. Vieira, Bruno M. Fonseca, Rodrigo Damazio, Paulo Braz

Golgher, Davi de Castro Reis, and Berthier A. Ribeiro-Neto.Efficient

search ranking in social networks. InCIKM, pages 563–572, 2007.

Bibliography 205

[VMCG09] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P.

Gummadi. On the evolution of user interaction in facebook. In SIG-

COMM Workshop on Social Networks (WOSN), 2009.

[VRB+11] Marcos R. Vieira, Humberto Luiz Razente, Maria Camila Nardini

Barioni, Marios Hadjieleftheriou, Divesh Srivastava, Caetano Jr.

Traina, and Vassilis J. Tsotras. On query result diversification. In

ICDE, 2011.

[vSdM11] Sebastiaan J. van Schaik and Oege de Moor. A memory efficient

reachability data structure through bit vector compression. In SIG-

MOD, 2011.

[WBH+03] Michael Wolverton, Pauline Berry, Ian W. Harrison, JohnD.

Lowrance, David N. Morley, Andres C. Rodriguez, Enrique H. Rus-

pini, and Jérôme Thoméré. Law: A workbench for approximate pat-

tern matching in relational data. InIAAI, 2003.

[WDL+12] A. Wagner, T. Duc, G. Ladwig, A. Harth, and R. Studer. Top-k linked

data query processing. InESWC, 2012.

[WF94] Stanley Wasserman and Katherine Faust.Social Network Analysis:

Methods and Applications. Cambridge University Press, 1994.

[WHY+06] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey XuYu.

Dual labeling: Answering graph reachability queries in constant time.

In ICDE, 2006.

[WLY11] Junhu Wang, Jiang Li, and Jeffrey Xu Yu. Answering tree pattern

queries using views: a revisit. InEDBT, pages 153–164, 2011.

[WS03] Scott White and Padhraic Smyth. Algorithms for estimating relative

importance in networks. InKDD, 2003.

[WTW09] Xiaoying Wu, Dimitri Theodoratos, and Wendy Hui Wang. Answer-

ing xml queries using materialized views revisited. InCIKM, 2009.

[YC10] Jeffrey Xu Yu and Jiefeng Cheng.Graph Reachability Queries: A

Survey. Springer, 2010.

Bibliography 206

[YCZ10] Hilmi Yildirim, Vineet Chaoji, and Mohammed JaveedZaki. Grail:

Scalable reachability index for large graphs.PVLDB, 3(1), 2010.

[you] Youtube dataset.http://netsg.cs.sfu.ca/youtubedata/.

[YYH04] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph indexing: A frequent

structure-based approach. InSIGMOD Conference, 2004.

[ZCL07] L. Zou, L. Chen, and Y. Lu. Top-k subgraph matching query in a large

graph. InPh.D. workshop in CIKM, 2007.

[ZCO09] Lei Zou, Lei Chen, and M. Tamer̈Ozsu. Distance-join: Pattern match

query in a large graph database. InVLDB, 2009.

[ZGM98] Yue Zhuge and Hector Garcia-Molina. Graph structured views and

their incremental maintenance. InICDE, 1998.

[ZLY09] Shijie Zhang, Shirong Li, and Jiong Yang. Gaddi: distance index

based subgraph matching in biological networks. InEDBT, 2009.

[Zwi01] Uri Zwick. Exact and approximate distances in graphs - a survey. In

ESA, 2001.

[ZYJ10] Shijie Zhang, Jiong Yang, and Wei Jin. Sapper: Subgraph indexing

and approximate matching in larged graphs.PVLDB, 3(1), 2010.

[ZYY07] Peixiang Zhao, Jeffrey Xu Yu, and Philip S. Yu. Graphindexing: Tree

+ delta>= graph. InVLDB, 2007.

	PhD coversheet April 2012
	thesis

