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Lay Summary

The problem of how children learn to associate meaningswattals in the early stages
of the acquisition of their native language is a difficult paed psychologists have pro-
posed many mechanisms for contending with this challenigen oelying on notions
of inborn knowledge or other constraints that make the gmobinore manageable.
However, it remains unclear how necessary this inborn kedge really is, or, as-
suming it is necessary, from where the necessity derivepatticular, there are two
possible reasons for such a need: (1) limitations on thel'shihental resources such
as memory or processing power or, alternatively, (2) a pésgck in the information
a child has access to from his environment (separate fronmirerate knowledge he
may or may not have).

In this thesis, we explore the fundamental learning probtsetf, abstracting away
from whatever resource limitations a child may be subjetiytasing computer simu-
lations of the child’s situation. We find that a computer ipajale of learning even with
very limited innate knowledge, arguing against the ide& ¢hddren receive too little
external information and suggesting rather that perhapigaiions on human mental
resources offer stronger support for theories of innatevkedge.

Additionally, there are several valuable novel byproducthe research, including
a data set for testing alternative models and a computdtystem that can automat-
ically interpret the meanings of sentences. Furthermbecomputational system is
built on a very general framework that can be applied to maingrgroblems in natural
language processing.



Abstract

The cross-situational word learning paradigm argues tloatlwneanings can be ap-
proximated by word-object associations, computed frono@rirrence statistics be-
tween words and entities in the world. Lexicon acquisitiomolves simultaneously
guessing (1) which objects are being talked about (the "imgdnand (2) which words
relate to those objects. However, most modeling work fogwseacquiring meanings
for isolated words, largely neglecting relationships wwords or physical entities,
which can play an important role in learning.

Semantic parsing, on the other hand, aims to learn a mapjgitvgebn entire ut-
terances and compositional meaning representations sheherelations are central.
The focus is the mapping between meaning and words, whieeamte meanings are
treated as observed quantities.

Here, we extend the joint inference problem of word learnmgccount for com-
positional meanings by incorporating a semantic parsingehfor relating utterances
to non-linguistic context. Integrating semantic parsing aord learning permits us to
explore the impact of word-word and concept-concept rahasti

The result is a joint-inference problem inherited from therdvliearning setting
where we must simultaneously learn utterance-level anwidwhl word meanings,
only now we also contend with the many possible relatiorsbigtween concepts in
the meaning and words in the sentence. To simplify desigriaeterize the model into
separate modules, one for each of the world, the meaningth@nords, and merge
them into a single synchronous grammar for joint inference.

There are three main contributions. First, we introduce wehword learning
model and accompanying semantic parser. Second, we pr@docgpus which al-
lows us to demonstrate the importance of structure in waachiag. Finally, we also
present a number of technical innovations required for @manting such a model.
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Chapter 1
Introduction

Given a visual scene and an utterance describing it, untesg&mows what the words
mean, it is not at all obvious to which aspects of the scenaitteeance may be re-
ferring. For instance, in a scene with a boy and his dog gittilone in a bedroom,
an utterance may focus on the boy, the dog, the act of sittingny other aspect of
the scene. Words may refer to relations between entitiese#ls describing, for in-
stance, the proximity of the dog to the boy. Additionallyclealement of the scene
may be associated with any number of concepts, each of whigstitutes a possible
meaning candidate for a word. The boy may be referred to asrthster” and the
dog as “his pet”, even though these noun phrases do not gpdlgifilenote the con-
cepts of boy and dog, but more abstract ideas involving docagsd animals and their
keepers. The sheer number of candidate meanings for evegla siord, much less
the utterance as a whole, poses a daunting challenge thatja@ws worse when we
consider meanings for entire clauses and sentences. |rtHagbroblem is related to
the challenge of induction pointed out by Quine (1960): gpdly, there is always an
infinite number of hypothesis that might explain the leasexperience. The scale of
the problem has led psycholinguists to posit a number ofisis by which learners
may rapidly narrow the set of possible hypotheses to somgthiuch more obviously
tractable.

Some argue that learners may rely on a set of simple consti@iiases to prune
the space of possible meanings. These constraints may & ionacquired through
experience. They may be specific to language learning orrtiegyarise out of more
general properties of cognition. In any event, these caimt do appear to be useful,
however they arise and whatever specific shape they take.

Many of the problems of word learning are related to more g#rissues about
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category learning. How does one learn from a potentially genall set of examples
that the word “dog” can refer to a chihuahua or to a Great Diamenot to another four
legged furred animal like a cat, or to a body part such as th&sdail? To handle these
sorts of challenges, psychologists have proposed mechamsisch as the whole object
(Carey, 1978; Mervis, 1987), shape (Markman and WachteB)1 @8 taxonomic bias
(Markman, 1989) which may drive learners to prefer catexgoof certain types over
others. These lines of inquiry, while interesting and arading, are outside the scope
of our concern here.

We primarily address another set of problems which havededs with categories
and more to do with the question of how a learner determineshwbjects are being
talked about. One learning constraint that has been prdpwskelp deal with this
referential ambiguity is the principle ofiutual exclusivitythe idea that the same word
is unlikely to be used for two different concepts or for thensaconcept to be referred
to by completely different words (Markman and Wachtel, 98Bhis principle has
been used to explain how children sometimes seem to learnré with very little
exposure, sometimes on their very first encounter, a phemamsometimes referred
to asfast mapping The proposal is that children assume that novel words are mo
likely to map to new concepts, a corollary of the mutual egsiitly principle.

Psychologists have also suggested a number of cues that sesy the learner,
sometimes arguing that these can alleviate the need foifisdearning constraints.

e CrossSituational Consistency: Consistent co-occurrence between certain words
and objects in the non-linguistic context can help identifyrd-object mappings
(Pinker, 1989; Gleitman, 1990). For instance, a learnerecg@toit the situation
where hearing the word “dog” seems to increase the probabflithere being a
dog nearby and vice versa.

e Salience: Learners may come to associate the concepts that are nmbsdlcs
salient to a particular scene with the words they hear meguintly at the time
(Smith, 2000Db).

¢ Joint attention and other social cues:. Communicators make an effort to in-
crease the salience of the subject of discussion with gestaye gaze, or other
cues (Baldwin, 1993). Speakers also increase the salierwerds, not just ob-
jects in the non-linguistic context, using acoustic quediof the speech such as
pauses, stress, and pitch. (Fernald, 1985).



e Syntactic bootstrapping: Knowledge of syntactic features of the language may
also assist in learning the meanings of novel words (Gleitri&90). For in-
stance, knowing that agents of actions tend to occur eamliénglish sentences
than the objects being acted upon can help to focus atteatiavhere the word
that refers to the boy is likely to occur in a sentence debsugithe action of the
boy petting the dog.

There is a great deal of debate about how much of a role thesesties and cues
play in the word learning task and about how they may intesgitt one another. For
instance, some argue that salience may play such an impootarthat learners may
not need to rely so heavily on other cues or constraints (§r2200b). Similarly,
citing the notion of “poverty of the stimulus”, some streke importance of innate
constraints over any input the child may receive (Chomskg0).9In either of these
cases, the learning problem tends to be downplayed, and magldtively trivial,
at least in the early stages. Proponents of the crossisiiahatparadigm argue that
a sophisticated learning mechanism could serve to alkdame of the reliance on
innate constraints and biases, instead exploiting whatappgar to be relatively weak
cues in the form of co-occurrence statistics (Yu and Smid,72.

It seems that the truth of the matter may be some combinafidectors. Innate
constraints may inform a powerful learning mechanism ckgpab exploiting many
different cues in the data. The question in such a case is hethsr these different
features are useful but what is the magnitude of their inldial contribution and how
might they interact in an inclusive theory of language leagd The objective of this
dissertation is to explore these questions in the conteat @aimputational cognitive
model which can help shed light, if not on precisely how husnactually acquire lan-
guage, at least on what is possible when a powerful learnixghamism is applied to
data. We suspect statistical learning is often underestisna psychological studies,
but this mechanism does not stand alone, and nature, theatdtiopportunist, does not
hesitate to exploit whatever features or biases that prelgi.

Indeed, there are so many different biases and cues whidht iy a role that it
iS necessary to restrict consideration to the interacteiween just a few. Mutual ex-
clusivity, which is closely related to the concept of spgrsi machine learning, can be
explored as a soft constraint in a Bayesian framework witraasgpprior. Additionally,
there are other constraints from linguistic theory thatehanore to do with structural
properties of meaning representations, such as the senuamueness, completeness,
and coherence conditions for well-formedness in Lexiaakdtion Grammar (Bres-
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nan, 2001), aspects of which we incorporate into our expartsn For the most part,
however, the focus is on the contribution of different cuesancert and the ability of
a model to effectively exploit them to successfully negetia large search space. In
particular, we explore the interaction between all fourhsf tues listed above: cross-
situational statistics, salience, social cues, and stintedormation, with a particular
emphasis on the last.

Syntactic bootstrapping is often thought to come into playewhat late in word
learning, only after acquiring a basic starting vocabuldrige combination of previ-
ously learned words and a few basic facts about syntax cgnapsagnificant role in
constraining the meanings of any as yet unknown words ini@seea. As the learner’s
vocabulary grows, such syntactic cues also grow in impodato the point where
syntax can eventually dominate the learning problem. Tingse is a question of how
big must the vocabulary be before syntax begins to win out otleer aspects of the
problem, and when does it start to become useful at all? mg@f the role of syn-
tax versus other cues, we also ask the question of how coredrenust the learning
problem be before we begin observing syntactic bootstraplike effects?

Largely independent of the psycholinguistic work, thereehalso been a number
of developments related to syntactic bootstrapping in tiefeld of computational
linguistics known as semantic parsing. For instandgsBhinger et al. (2011) present
a PCFG-based semantic parsing model that can learn a mappmgséntence to a
formal representation of its meaning under an assumpti@noddest degree of refer-
ential ambiguity. Such a semantic parser can be interpestedkind of word learning
model, and they showed how word learning performance campeoved by simul-
taneously learning a simple syntactic feature such as thenieal order among the
subject, verb, and object of a sentence. In a similar veinialkowski et al. (2012)
present a joint semantic and syntactic model based on Cotobjn@ategorial Gram-
mar (CCG) and employ an online learning procedure to simileedyn word order
information and argue that such a model can exploit symtawfibrmation to perform
one-shot learning, or “fast mapping”.

These computational models touch on questions centralrttbous here. That is,
they each ask the question, “what is the role of syntax in vieadhing given a pow-
erful learning mechanism?” However, these previous aghres have only begun to
address the dynamic relationship among the various camtstrand cues posited by
psycholinguistics. In particular, such studies have béaitdd to cases where there
is relatively little referential ambiguity, due largely the computational constraints



of the models and algorithms employed. For instandaséhinger et al. (2011) ex-
periment in a setting where there are on average about twaingeaandidates per
sentence and Kwiatkowski et al. (2012) increases this terseMowever, these num-
bers are in marked contrast to the fully unconstrainedregttiith its possibly infinite
number of candidate meanings, and we show for one corpus ipt&ha that even
under several simplifying assumptions this number can weateed 1,000 candidate
meanings. Effectively, previous work has operated undemgticit assumption that
the vast majority of the ambiguity has already been prelveddy some unspecified
means. Of course, it is entirely possible that this is a nealsle assumption, i.e., that
some combination of cognitive biases and learning cueg tlmkeliminate much of the
ambiguity before syntax begins to play a role. Plausibleair however, it remains
unclear whether this assumption actually is a fundameme¢ssity or if it is only a
limitation of the computational techniques employed. Itynh& possible that, in the
absence of such computational constraints, a learningigdgocould perform much
of the disambiguation itself in parallel with the syntadgarning, and that word-to-
word and concept-to-concept relations in the syntax andaséas of utterances may
even play a crucial role in this disambiguation.

To better understand the problem, consider this logicalessgmntation of a very
simple scene where there is a boy and a frog looking at eadr atid the frog is
inside a jar:

Jdey, ex.l00k(e1) A experienceie, x1) A boy(xg) Atheméer, x2) Afrog(Xz)
Aloc-insidger, x3) Ajar(x3)
Nlook(e) A experiencefey, X2) Atheméen, x;)
Aloc-insidgxz,X3)

Suppose that while observing the scene, the learner alss tieautterance:
The boy is looking at the frog.

With no other information besides the scene descriptiortla@aords of the utterance,
the learner must somehow identify what is being describéds Jcene is quite simple
with only three entitiesk{oy, frog, andjar), two differentlook events, and six binary
relations, and is is important to note that these numbersrcantual practice be far
larger (something that will be argued via a corpus analystsented in Chapter 7
where scenes contain on average about 27 entities, 46 eaadt$14 binary relations).
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Even with such a small scene, however, there are already pandidates. Possible
meaning candidates include:

Jdej.look(ep) A experienceter, X1) Aboy(x1) Atheméey, x2) Afrog(xz)
the boy looked at the frog

Je;.look(ep) A experienceier, x1) A boy(x1) Aloc-insidder, x3) Ajar(xs)
the boy looked inside the jar

Jde;.look(e;) A experienceer, x1) A boy(x1) Atheméey, x2) Afrog(xz)
Nloc-insidger, x3) Ajar(xs)
the boy looked inside the jar at the frog

Jdej.look(ep) A experienceter, X1) Aboy(x1) Atheméey, x2) Afrog(xz)
Aloc-insidgxo, x3) Ajar(x3z)
the boy looked at the frog inside the jar

Jdej.look(er) A experiencere, x1) Aboy(x1) Aloc-insideg ey, x3) Ajar(Xs)
Aloc-insidexy, x3) A frog(xz)
the boy looked in the jar that the frog was inside

Jdej.look(er) A experienceter, X1) A boy(x1) Atheméey, x2) Afrog(xz)
Nloc-insidge, x3) Ajar(xs) Aloc-insidg Xz, X3)
the boy looked in the jar at the frog inside it

Jdej.look(er) Atheméey, x2) Afrog(x)
the frog was looked at

These expressions all involve the boy looking at the frog,there is a second set of
possibilities where the frog is doing the looking:

Jeo.look(ex) A experiencefes, x2) Afrog(xe) Athemées, x1) A boy(x1)
the frog looked at the boy

Jdey.look(ex) A experienceey, x2) A frog(x2) Athemdes, x1) A boy(x;)
Aloc-insidgxo, X3) Ajar(xs)
the frog inside the jar looked at the boy

Jdey.look(ex) Athemées, x1) A boy(x1)
the boy was looked at



There are several others in each set, omitted for brevitytla@re are still other pos-
sibilities involving both looking events at the same timeg(g“the boy and the frog
looked at each other”) or neither looking event (e.g., “éhesas a boy” or “the frog
was inside the jar”).

A little syntactic knowledge plus even a single known word gaickly narrow the
possibilities. Suppose the learner already knew the wartdg and that, in English,
experiencers are likely to appear earlier in sentencesttienes. He could then de-
duce that our example utterance (“the boy looked at the jrsgiore likely to have
a meaning involving the boy doing the looking (our first setandidates) rather than
the frog, and other features such as shared attention amthaalcould further nar-
row the candidate set, permitting him to learn the corregipin® via cross-situational
co-occurrence statistics.

Earlier computational models have dealt with this kind dérential ambiguity by
exhaustively enumerating all meaning candidates andgmyath one individually be-
fore eventually picking the candidate resulting in the npdstisible meaning-utterance
pair. The problem with this approach is that the number o$jds meanings generally
grows exponentially with the size of the scene descriptipmckly rendering exhaus-
tive enumeration intractable. Just for our toy example gmesd here for illustrative
purposes, there are well in excess of 20 possibilities, efem making several con-
straining assumptions. In fact, this toy example is alrelaelyond what previously
published work covers and it is dwarfed by the problem a modedt face when deal-
ing with the corpus of real data presented in Chapter 7, wiheretmay be hundreds
of meaning candidates per utterance.

To deal with this challenge, we take an alternative approaorking directly with
the scene description rather than an exhaustive list ofait®wus fragments, and rely
on Dynamic Programming to cope with combinatorial overlo&w some ways, the
problem resembles that of finding the most probable parseaneentional syntactic
parsing setting. In the case of syntactic parsing, rathar #xplicitly enumerating all
possible parses and comparing their probabilities, oniedilp relies on algorithms
like CKY which exploit shared structure between differentses to turn this exponen-
tial problem into a polynomial one. The situation for wordieing is not that different.
Consider our example. Although there are dozens of possibénings, most of them
are quite similar with a great deal of structural overlapt iRstance, in analyzing the
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various ways in which the meaning representation

Je;.look(er) A experienceter, x1) Aboy(x1) Athemdey, x2) Afrog(xz)

Aloc-insidexo, x3) A jar(Xs)

could possibly map to the words of “the boy looked at the fragg would effectively
perform all the work necessary for mapping the correct isgr&tion:

Jdes.look(er) A experiencefer, x1) Aboy(x1) Atheméer, x2) Afrog(x).

Thus, just as in the standard syntactic setting, it is ptss$texploit structural sim-
ilarities to avoid repeating identical computations, piging a moderately powerful
computational machine to tackle a much greater degree efamtial ambiguity.

We accomplish this speed-up by employing a grammar-basei@lnsonilar to the
CCG approach of Kwiatkowski et al. (2012) and the PCFG modelo$éhinger et al.
(2011) but where the grammar is extended beyond the mapgtvwgebn a sentence
and its meaning to also model the compositional structuthefisual scene so that
the entire problem is captured in a single grammar. Becaugersge meanings and
visual scenes have different properties from the ordenedgst and trees for which
traditional natural language processing formalisms haenldeveloped, it is hard to
directly extend PCFG-based models such assBhinger et al. (2011). Furthermore,
while CCG offers an elegant solution for mapping between nmgpand sentence, it
is much less clear how it applies to the mapping between soetheentence meaning.

Thus, we turn to graph grammars, a PCFG-like formalism capablgenerat-
ing unordered logical structures such as scene repregsgrgtarhile simultaneously
preserving many of the more convenient features of PCFGs. j@gsenting mean-
ings and non-linguistic contexts as unordered trees anelimgdhe mapping between
them using graph grammars, it becomes possible to explesetistructural similari-
ties between different candidate meanings using standandiic Programming tech-
nigues familiar from string parsing. Furthermore, by usgngph grammars which are
capable of generating general graphs, not just the treesileenusing, we leave the
door open for future extensions that may deal with more esgive meaning represen-
tation languages.

The product is not only a novel word learning model capablesting the effect
of syntactic bootstrapping in the face of greater ambiguity also a number of gen-
eral algorithmic contributions such as an efficient parsigprithm and a parameter
estimation procedure that could find use in a wide range dfcgijpns. Finally, as an



additional contribution, we also present a newly annotateid! learning corpus which

allows us to quantify the amount of referential ambiguityameasily measurable way
and to test the performance of word learning models undéerdiit data and model

assumptions.

Importantly, the model we present is less a proposal for hanvdn learners might
acquire word meanings and more of a demonstration of a framkemnder which we
can test the effects of various assumptions and combirsatbfactors. Our model
is designed to handle the computational overhead of a musdteyr level of ambi-
guity than generally assumed in the wider body of litergtueguiring less reliance
on salience and shared attention or other simplifying apsioms involving cognitive
constraints or learning biases. However, this should namstrued as a cavalier re-
jection of these ideas and the supporting psychologicaliesu Rather, by refusing
to build assumptions into the framework itself, the moddlienself is free to build
whatever constraints into the model that best serve to explis particular questions.
Because the psychological assumptions are not built intbutitdamental assumptions
of the computational framework itself, they can be far masilg added or removed,
permitting one to test the effects of different featuresssuanptions in isolation or in
various combinations.

As an example, the model presented in Chapter 8 explores ter @d the learn-
ing mechanism itself by testing its effectiveness with ag eiilt in assumptions as
possible, leading to a fairly high level of ambiguity. Thlfows us to explore the lim-
its of the the notion of the poverty of the stimulus, i.e., itiea that data alone does
not suffice and that language acquisition requires builbignitive biases. In fact, the
results demonstrate that, at least in theory, a learnedqooientially acquire some
semblance of a lexicon with far weaker built in constraiant previously tested in
computational settings. The results, of course, say kttleut what human learners
actually do or even whether they have the computationaliress to mimic the simu-
lation, and therefore do little to challenge the common vamong the psychological
community. However, the results suggest that perhaps ifamsneannot learn as the
model does, it is due not to poverty of the stimulus as mucltoagher constraints
such as computational limitations or to differences in ttenario faced by the model
versus that of children in the real world. The computatidreaheworks employed by
previous models limited their abilities to explore this gtien, and thus we are able
to speak more clearly to the power of statistical learnisglft(as opposed to built-in
constraints or notions of salience).
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As for testing the effects of various features, this is lardeft to future work, but
as a demonstration, the model in Chapter 8 combines wordihggnith a crude level
of syntactic learning, combined to demonstrate a synécgeffiect that improves the
guality of the lexicon in a manner consistent with hypotisesisyntactic bootstrap-
ping.

This document is broken down into 9 chapters, covering theviing topics:

Chapter 2 (Word Learning and Semantic Parsing Background) presents an
overview of the main psycholinguistic results on word |e&agnand relates this
to parallel developments in the semantic parsing liteeatlihis chapter is evenly
split between, in the first half, the main ideas circulatingpsycholinguistics,
and in the latter half, an overview of work in semantic pagsirmnterestingly,
while the objective of semantic parsing work has been soraedifferent, an in-
creasing interest in reducing reliance on annotation, lealywith an increasing
focus on statistical learning in psycholinguistics, has to a certain conver-
gence of ideas. In fact, some researchers have even propesehtic parsing
as an alternative view of word learning. This chapter attsrtghighlight these
points of convergence as it conducts a somewhat broadezysafithe psycho-
logical and semantic parsing literature in general. We ptegsent a case study
of a competing semantic parsing-inspired word learning ehta highlight the
source of the computational complexity our approach isghesd to address.

Chapter 7 (Frog Stories Corpus) describes a new set of annotations for a mul-
tilingual psycholinguistic corpus and follows up with a pas analysis quanti-
fying the degree of potential ambiguity that human wordrneas face. Due to
divergent interests in semantic parsing and psycholitiggigrior to this work,
it was difficult to identify a corpus suitable for our purpesaf exploring the
syntax in resolving referential ambiguity in word learninghus, we turn to
hand annotating an existing psycholinguistic corpus knawthe Frog Stories
(Berman and Slobin, 1994). These annotations not only fat@lnew computa-
tional experiments but also have the added benefit of pengitis to quantify
in a concrete way the amount of referential ambiguity that@dn learner may
face. We discuss in detail the many of the assumptions ansl exgoited by
our model in the experiments in Chapter 8 and quantify theaioh on the raw
number of meaning candidates. In summary, this chapteridescthe anno-
tation scheme chosen, provides a brief justification foraheotation choices
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made, and presents the corpus analysis quantifying theteféé various con-
straints on reducing referential ambiguity.

Chapter 3 (Grammar Background) lays out the necessary definitions and ba-
sic theoretical properties of the context-free synchrergrammars we use. Our
grammars are close enough cousins to PCFGs that the reaittetyigd already
be familiar with many of the algorithmic foundations, sudlae inside-outside
algorithm, but there are a number of new notational coneestirequired for
precisely describing how these technologies apply in tevs setting. Addition-
ally there are some extensions to synchronous and proftabijrammars that
offer increased modeling flexibility which we make use of ina@ters 6 and 8.
One innovation in particular includes a generalizationrob@bilistic grammars
to allow rule probabilities to be modeled by entire Bayesiatworks, allowing
for the modeling of rule-internal independence assumptighich can alleviate
many sparsity problems commonly encountered in synchigammars.

Chapter 4 (Parsing Unordered Trees) follows up with a description of a novel
algorithm for parsing ranked unordered trees with a pdedrcsub-class of graph
grammar. There are a few papers describing general gragingaalgorithms

and their complexities. However, the general case is faerpowerful than our

relatively modest needs, and, in the most general cases teaah exponential
time algorithm. Instead, we outline a procedure specidlipe the ranked un-

ordered trees necessary for parsing the Frog Stories ctinpisemains fairly

general while permitting a much more efficient solution. dotf the algorithm

includes a number of optimizations that are applicable teengeneral graph
parsers, potentially leading to major performance impnosets that could make
the difference between a theoretically interesting forsmaland a practical tool
for natural language parsing.

Chapter 5 (Inference in Multi-weighted Grammars) describes a variational
algorithm for applying Bayesian inference to the multi-wegd grammars in-
troduced in Chapter 3. Just as the Bayes net grammars are algaatem of
standard probabilistic context-free grammar, the infeeealgorithm includes
the standard mean-field variational Bayesian inferenceoagpr as a special
case.

Chapter 6 (Semantic Parsing) presents a model based on the grammatical
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framework described in Chapter 3 to the traditional problésemantic parsing.

The problem is simpler than that of word learning, since daener is presented
with an observed meaning representation for each sentepnoggthing that a
child must infer from context as he learns word meanings. ¢&l@x it can be

interpreted as a sub-problem of the word learning taskingetthe stage for the
full word learning model presented in Chapter 8. At the same twe demon-

strate the effectiveness of expressing semantic parsiagstandard grammar
framework, showing performance improvements over seyerdlem-specific

state-of-the-art solutions.

Chapter 8 (Word L earning) incorporates the semantic parsing model of Chap-
ter 6 using the grammar framework of Chapter 3 into a generadl Wearning
model, applying it to the Frog Stories corpus. In the procegsdemonstrate
that roughly the same model works just as well for semantisipg as for pre-
vious word learning tasks (without syntactic bootstragpirFinally, turning to
the problem of word learning with syntactic bootstrapping, present experi-
ments testing the impact of syntactic cues under highly gothis settings, and
measure the effectiveness of joint learning on resolvimngréferential ambigu-

ity in combination with several other sources of informatiéend constraining
assumptions.

Chapter 9 (Conclusion) concludes with a discussion of some additional impli-
cations of our results, highlights several additional asa=mnfor future inquiry,
and suggests other applications of the grammar framework.



Chapter 2

Word Learning and Semantic Parsing

Background

Given the apparent difficulty of the various entangled peaid involved in learning
the meanings of words, it is amazing how regularly childrecceed. By one year of
age children are typically already producing words, likehderstand far more than
they produce, and are rapidly adding to their repertoire. Vih#he nature of the
mechanism they use to accomplish this feat? Perhaps thepmehnate language-
specific learning biases, or maybe there are clues hidddreiddta that simplify the
task, but to what extent might these factors ease the legpnoblem? In other words,
how powerful is the learning mechanism itself? Many psyegits have spent their
careers searching for answers to these questions, butghguastion has begun to
attract greater attention with a relatively recent resnicgen interest in theories relying
on statistical learning.

While psychologists explore the nature of the human facuteguired for solving
the problem, researchers in natural language processing)(Mave pursued similar
guestions but focused more directly on the learning probteeif and on the com-
putational techniques required for its solution. From theeption of the field, NLP
has sought to automate language understanding, enablimguters to extract and act
directly on linguistic information. In a task known as “semtia parsing”, computer
systems attempt to translate sentences in natural langui&geEnglish into unam-
biguous formal languages that are more readily interpketayp machine. Given the
magnitude of the task of manually engineering a broad cgesggammar and lexicon
from scratch, work typically relies on machine learning tibcenatically construct this
word-to-meaning map directly from data, much as childreanséo rely on their own
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learning mechanisms. Of course, the data fed to the medideaner differs signifi-
cantly from the world the child experiences, but an increggnterest in larger, richer
data sets, with simultaneously less reliance on hand atmotéias narrowed this dif-
ference somewhat. Thus, while psychologists have beguxptore how the existence
of a powerful statistical learning mechanism might impactrdvlearning, semantic
parsing experts have converged on a very similar problerheshave gravitated to-
ward semi- or unsupervised learning with richer input tihmsome cases, resembles
more closely what children experience.

Given the similar focus and, in some cases, computatiomigeas employed by
researchers in the two sub-areas of semantic parsing ardlleaming, the situation
seems ripe for cross-pollination. Are there ideas from pelagy that can help to
better define the semantic parsing problem, and are therpuwtational techniques
that can shed light on the situation of the human learner?® Glmpter seeks to shed
some light on this question, examining the previous workadthlields for promising
points of intersection.

2.1 Word learning

In analyzing the situation facing children, psychologtsase identified several layers
to the problem, cross-cutting all areas of linguistics artkrding into other more
general aspects of cognition such as perception, categamihg, and theory of mind.
Children must learn about the surface forms of the languagm fairly basic things
like categorizing speech sounds into the phonetic categofi the target language, to
identifying words in an unbroken stream of speech, learhing individual words are
constructed from smaller morphemes, and how such words ioen form phrases.
However, the term “word learning” is usually used to refanyarily to the problem of
learning to associate these surface forms with meanings.

Somehow, a child must learn that the word “doggy” refers togtuffed animal in
mom’s hand, as opposed to the many other things that arenpraseh as the chair,
the table, a shoe and so on. This is the problem of referestidiguity, where the
listener must resolve which specific object is being talkbdus. In fact, the child
must rule out other possible candidate referents sudbgasr tail, two other things
that are both present when the child hears the word “doggySsufing the child
has somehow identified both the surface form and the refenemtever, there is still
much more to a word meaning than a surface form-object pairirsStance, the child



2.1. Word learning 15

must learn that “doggy” is more than a label for that speciiiéfed animal; “doggy”
can be used for a whole category of things. The child must komenfer that the
category includes actual animals like Terriers and Dalamatbut not other four legged
mammals like cats. There is a whole hierarchy of categdnigsnclude that particular
stuffed animal, and somehow the child must determine theecblevel of abstraction
(i.e., that “doggy” refers to canines rather than mammalgeineral). Actually, there
are other hierarchies one might consider, given that thestldfed animal is a kind of
doll which is in turn a toy and so on, and the child must resdhescorrect level of
abstraction within each hierarchy. Furthermore, differ@ards can be used to refer
to construct the same mental scene, where the only differisrtbhe emphasis that the
speaker places on certain entities. For instance, therssntéhe boy received the jar
from his father” can describe exactly the same set of siinatas “his father gave the
jar to the boy.” It seems that learning the distinction betwthe meanings of the verbs
“receive” and “give” must somehow involve reading the smeakmind. Thus, there
is a tremendous amount of ambiguity, both referential ategcaial, that a child must
somehow resolve, a seemingly intractable task which hagdgchologists to propose
a number of innate constraints and heuristics to guide thre \earning process.

2.1.1 Learning biases and constraints

One proposal that could help resolve some of the ambiguignigssumption that
different word forms tend to be used to refer to talk aboufed&nt concepts, a prin-
ciple known as mutual exclusivity (Markman and Wachtel, &98ittschwager and
Markman, 1994). If the learner encountered a new word anegwad down the pos-
sible referents to two objects, a familiar one for which advaas already known and
the other completely novel, mutual exclusivity would matice novel object with the
novel word. While such a heuristic fails in the case of homopywhere the same
word form has two different meanings, or synonymy, wheréedsnt words have the
same meaning, such cases seem to be fairly rare, so one wqédteéhe heuristic
to be helpful in general. Of course there are other phenoretanutual exclusivity
cannot explain on its own.

As an example, the part-of relations alluded to above wheog™ and “tail” both
refer to the same object, albeit different subsets of theatpgo mutual exclusivity
fails even though “dog” and “tail” are neither homonyms ngn@nyms, and part-of
relations are frequent enough that they are harder to disnikis difficulty has led
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to the proposal that children may also make use of a wholeephjas, according to
which they would assume by default that “dog” refers to theolehstuffed animal
rather than to its tail or leg (Carey, 1978; Mervis, 1987).sMihole-object bias seems
to help with deciphering child-directed speech.

Similarly, additional biases have been proposed for résglthe appropriate level
of abstraction. While mutual exclusivity and the whole-@bjbias offer little help,
additional biases could help resolve whether “dog” is singlabel for the particular
toy, for toys in general, or thanimal concept. Markman (1989) argues that children
could rely on a “taxonomic bias” to map words by default to agpis that optimize
utility with respect to a certain level in the hierarchy. 8Suugh utility concepts are
known as basic level categories in the psychological liteea(Rosch et al., 1976). A
taxonomic bias would help rule out learning labels for cqrtaally strange categories
such as “all spotted animals, but not leopards, plus chairge it is hard to imagine
such a category being very useful. Additionally, it shoulsbabias learners away
from other plausible categories which are less frequerdgdu One might assume
that “dog”, for example, refers to canines in general, andoisjust a name for that
particular toy, or Terriers only, or all mammals, becacseineoptimizes some metric
of utility that the others do not.

Related to the taxonomic bias, researchers have also odgéatechildren tend to
generalize words to novel objects of the same shape, butgessarily to objects with
other shared features such as texture, color, or materiailian and Wachtel, 1988;
Landau et al., 1998; Smith et al., 2002). This bias could kelpct between different
overlapping hierarchies. Thus, rather than generalifiedabel “dog” to other objects
with the same color (spotted animals), a learner would terggheralize to other four
legged animals with a tail.

2.1.2 Helpful features

At the same time as proposing biases that could help conghailearning problem to
some more tractable set of hypotheses, psychologists fewvexplored questions of
exactly what information is available to a child. Perhapsré¢his some cue or combi-
nation of cues in the data that could successfully guideraézaven in a vast space of
mostly incorrect guesses. Sensitivity to such featurefdogither complement innate
learning biases or allow the learner to avoid the use of itectanstraints altogether.
Whether it is because (1) higher frequency simply means thede has more
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learning opportunities or because (2) humans make expheiof frequency numbers,
word frequencies are one type of correlate with successiud 'earning. For instance,
arguing for the first case, Huttenlocher et al. (1991) obebthat learners who receive
greater exposure to speech in general tend to acquire a lavgabulary. Similarly,
it has been observed that nouns tend to be learned far moezklyjin English and
other languages where nouns are more frequently occumimgaminent locations
such as the end of the sentence (Gentner, 1982). Howevesia sther languages
where verbs are more frequent such as Mandarin (Tardif e129.7), Korean (Choi
and Gopnik, 1995), or Tzeltal (Brown, 1998), children leaenbs far earlier than they
tend to do in English. On the other hand, itis possible tlegdency could have a more
subtle impact on learning, possibly providing an alteneagiccount for the shape bias,
relying on learning instead of assuming an innate constr&or example, Smith et al.
(2002) exposed subjects to words for categories of objetitsaxcommon texture and
found that this increased the likelihood that they wouldegahze new words across
texture-based categories, counter to what one would exjpeler a shape bias.

Frequencies could also be exploited in cross-situatiogaining (Pinker, 1989;
Gleitman, 1990; Yu and Smith, 2007; Akhtar and Montague 9)9%e idea that chil-
dren may be able to exploit consistencies in word-objech@mirrences across multi-
ple scenes to help eliminate ambiguities. That is, if a cbilderved that mom tended
to be holding the stuffed dog at the same time as saying “ddggywas far less likely
to say “doggy” when holding some other toy, say a ball, it vdosgem reasonable to
prefer the mapping that associates “doggy” with the studiieidhal rather than the ball.
As an example, (Smith et al., 2011) exposed subjects to a&erequof scenes with up
to nine potential referents simultaneously with novelased words. At test time, sub-
jects were shown the full set of objects for which words wevergduring training and
asked to point out the best object for each new word and fcetdearners performed
fairly well, well above chance in spite of the fact that theesimental setup seemed to
deprive learners of other information that might allow thtese alternative strategies
such as mutual exclusivity.

It has also been argued that word learning is fundamentatycal phenomenon,
and thus social cues such as body language should play alcrole. As an exam-
ple, it seems that children are sensitive to and capablellofximg the direction of a
speaker’s gaze to infer which object is being discussed (#ald.993; Baldwin et al.,
1996). This observation is closely associated with the tdatchildren are able from
a relatively young age of inferring and reasoning aboutrsthreental states, allowing
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them in turn to infer the intended referents for words (Toetlas2001; Bloom, 2000).
Salience is another useful feature type. For instancenéeaiseem to learn words
faster if they appear in prominent locations such as at tlieogrsentences. This is
an example of accidental salience, where it happens to bataréeof the language;
hence in some languages children learn verbs earlier thersopossibly because of
the accident of word order (Tardif et al., 1997; Choi and Gkph995; Brown, 1998;
Gentner, 1982). In other cases caregivers may deliberatplpit salience to facilitate
the child’s understanding and learning. For example, gamay make a special effort
to engage very young children by talking about whatever thi&l shows greatest
interest in, so that the child’s gaze dictates the topic olvecsation: the most salient
object in the child’s field of vision. Infant directed spedds many features that may
relate to salience: exaggerated pauses, vowels, slowlspae; and pitch contours.
At the very least, such exaggerated speech does seem it atif@ren’s attention,
since children show a preference for listening to it (Fetn&b85; Cooper and Aslin,
1990), and it also seems to facilitate word learning (Grae&snd Hurley, 2013).
Infant-directed speech may also serve to attract the shdttention to increase the
salience of particular words. Fernal and Mazzie (1991) nfeskthat new words in
particular are more likely to occur at such positions of preence, possibly helping
the child identify the novel word to be identified with the n&pic of conversation.
Another effect of this exaggerated prosody is that it cap teetontrast function words
vs. content words, since content words are more likely tatessed in this way.
Finally, syntax also provides a set of features that can indgarning new words,
a phenomenon that has been called syntactic bootstrapplagrfan, 1990). Naigles
(1990) demonstrated that 2-year-olds were able to idettfysitive verbs with scenes
depicting causative relations, e.g., “the rabbit is gagpire duck,” as opposed to non-
causative relations like “the rabbit and duck are gorpiagjuing that children exploit
syntactic information (verb arity) to correctly match tsétive verbs to their referents.
Similarly, Gillette et al. (1999) conducted an experimdabahowing that knowledge
of nouns can help learn verb meanings. Lany and Saffran jZ0itber demonstrated
syntax can help learn nouns, not just verbs, exploiting eeaof case marking to help
identify nouns with their referents. In their experimentbgcts were exposed to two
different categories of words in an artificial language, osed for describing vehicles,
another for animals, where each type of word was precededdaytecular word that
correlated with its category: vehicles got one prefix, atsraaother. Subjects showed
greater success at learning words in this configuration tiaen the prefixes were
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random. By exploiting such syntactic features, it is easyew® Isow learning could
accelerate as vocabulary grows, helping to quickly rulesogteat deal of ambiguity
that would otherwise interfere.

2.1.3 Computational models

There are a number of computational models of word learmintpé literature, but
because the problem is so cross cutting, touching on viyta#llaspects of cognition,
models necessarily focus on different aspect of the problem

There are models that assume the input consists entirelyotdted words, and
some, in fact, that train on observed word-referent paesaving all referential
ambiguity. These models instead tend to focus on categamiley. For instance,
there are the connectionist models of (Regier, 2005; Plueket., 1992; Schafer and
Mareschal, 2001; Colunga and Smith, 2005; Gasser and S8, BEmith, 2000a).
These models simultaneously learn sound categories, m@apifferent instances of
the same word to the same form, while also learning to idethié relevant features
of the referent to identify with the meaning of the word. Red®005), for instance,
exhibits behavior consistent with the shape bias. Li et2z8l04; 2007) presents an in-
cremental, associative model, demonstrating a vocabs|aust-like pattern, an often
observed acceleration in rate of acquisition the occues #fe learner surpasses some
threshold. Another model demonstrates fast mapping, angtienomenon observed
in children where they are sometimes able to learn a new witedasingle exposure
Horst et al. (2006).

Aside from the connectionist models, there are also a fewrstthat assume the
input consists of isolated word-object pairs. The “contp@itbased models” which
formulate categories by selecting the relevant featuresdmyrasting training exam-
ples (MacWhinney, 1989; Merriman, 1999). These models aliyuexhibit behavior
consistent with mutual exclusivity. Other models rely anigrity metrics, identifying
different instances of the same word, or generalizing tr@atvio different objects if
the word instances and objects are similar enough (Landaly, 088; Roy and Pent-
land, 2004). There is also the Bayesian model of Xu and Tenenl{g007), which
relies on the frequency with which certain object featumesassociated with a given
word meaning to generalize across different words and thjeBy this means, the
model is able identify the correct level of abstraction amd@elect between different
overlapping category hierarchies, and is capable of laegrtiiings like the shape bias
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directly from data and word frequencies.

Other models deal with referential ambiguity, working witbrds in context (i.e.,
whole sentences rather than isolated words) coupled withipteucandidate referents
and relying on cross-situational information to resolvebajuity. Siskind (1996) rep-
resents one of the earliest examples of these models, wdachd by identifying for
each word a minimal set of features that is consistent wighdifferent situations,
where a “situation” is a pairing between a scene and a seatdtiowever, as a rule-
based model, it was quite vulnerable to noise. Other modsdsirdy with referential
ambiguity usually rely on symbolic meaning representaiorstead of raw sensory
data or the feature vector representations used by theargtlegrning models. Fleis-
chman and Roy (2005) dealt with the part-of relationship @@ntifying individual
steps of a plan with the meaning of a specific sentence, lggrifior example, that
“find axe” maps to a sub-problem within a broader plannedadtke the one identi-
fied with “get axe” (one must locate the axe before acquiripg i

Others tend to frame the problem in more or less the same wayenthe input
typically consists of transcripts of the utterances codipléh the set of objects present
at the time.

(2.1) what does the doggy say ?
{ ball, dog, pig, mirror}

Lexical entries in these models consist of word-objectpavhere the object serves as
the meaning of the word. The model of Yu (2005) treated thes@anslation problem,
applying IBM model 1 (Brown et al., 1993) to learn word-objessaciation probabil-
ities and applying thresholds. Fazly et al. (2010) presantgher model, which learn
incrementally and demonstrates mutual exclusivity, faapping, and a vocabulary
spurt. Frank et al. (2009) introduced a Bayesian model witexguticit representation
of the lexicon as a set of word-object pairs, which couldgrag¢e social cues into the
learning process. By placing a prior over the size of the xidiasing in favor of
smaller lexicons, this model showed that behavior such asahaxclusivity and fast
mapping could be seen as a result of a preference for a sgaiseri.

Other Bayesian models followed. Jones et al. (2010) trastsklie model of Frank
et al. (2009) into a product of Dirichlet-multinomials,@iling them to integrate word
learning with the word segmentation model of Goldwater e(2009). This, in turn,
was translated into a PCFG framework, allowing for greatedilflity in exploring
other varieties of learning synergies in the form of phogalal learning and word
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structure (Johnson et al., 2010), and later the model wandgt to include social
cues (Johnson et al., 2012), and discourse structure (Leioalg 2013).

There have also been some models that attempt to incorpsyatactic knowl-
edge into cross-situational word learning. Assuming thktaaner already acquired
certain basic syntactic word categories, Alishahi andy-62010) demonstrated that
such knowledge helps, since only certain categories agéylth map to certain kinds
of semantic concepts (e.g., nouns with objects). By assuffaimly sophisticated
knowledge about the syntax-semantics interface, Niyo@DZ» showed how these
rules about how word meanings combine within a sentence nstn the mean-
ings of unknown words. However, it is unclear how such a modalid operate
given only incomplete or noisy syntactic knowledge, or hbes flearner might acquire
such a sophisticated syntactic model, and it was only detraded for a small set of
hand picked examples. Other models jointly learn syntak wieanings, such as Yu
(2006), which simultaneously categorizes words by comneariesitial contexts and
maps words from these categories to objects such that wamalsd common category
are more likely to be associated with objects of the same. tivfeurits et al. (2009)
also jointly learns word order and meanings, but assumesla ¢@nstrained set of
possible word orders.

As apparent from the preceding discussion, there are nwsermdels of how
cross-situational learning can be combined with othewufestor learning biases to re-
solve referential ambiguity, but thus far the amount of agulty considered has been
fairly limited. Typically, there are no more than a handféitandidate objects, some-
thing often necessitated by the inherent computationalptexity underlying the as-
sumptions of the models on sentence meanings. In partithése models essentially
explore all possible subsets of objects, resulting in a setlndidate meanings that is
exponential in the size of the scene. Thus, hampered byahipatational constraint,
there has been little work exploring the limits of crosssaitonal learning. How much
ambiguity is too much?

2.2 Semantic parsing

Largely independent of the psychological community, regears in natural language
processing have been pursuing solutions to a related pnolaletomating the extrac-
tion of “meaning” from natural language by computer, a taskimonly referred to
as semantic parsing Similar to the computational models of word learning, &es
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systems automatically learn associations between wordisyanbolic meaning repre-
sentations. Semantic parsing as a field has been underst@oddr many different

tasks, where the unifying objective is that of mapping aeserd to a representation of
its meaning expressed in a machine-interpretable formgiuage. For our purposes,
however, we use a more narrow definition centered on a siragi lbask where the

typical input to the learning algorithm consists of a setearitences paired with their
meaning representations such as the following:

(2.2) How many states does the Colorado River flow through?
answer(count(state(traverse(river(riverid(colorapy)

This task is sometimes referred tosagervised semantic parsingince the system is
given an explicit meaning representation for each sentaticaining time, to contrast
with other training schemes some of which are discussedeiiatiter portion of this
section. By learning a correspondence between individughseats of the meaning
representation with the words of the accompanying senfsgstems can generalize to
novel sentences, permitting the computer to act directlgainral language to answer
users’ questions just as it might execute a database quergssed in a computer
language like SQL, for example.

Many of the problems that a child faces in word learning aesent in this se-
mantic parsing scenario as well. In particular, given neepihformation other than
sentence and meaning expression, there is a fair amourfeoénéial ambiguity to re-
solve. A model must learn that “how many” signifies a questaord that the answer is
expected to be a number, signaling a call to funcdoswer(NUM) that “many states”
indicates that the answer requires counting statesnt(STATE)that the “Colorado
River” signifiesriverid(colorado) and that “flow through” indicates a call to the-
verse(RIVERjunction. Without any additional information, any word tmetsentence
could map to any symbol in the meaning representation. Ity fae meaning-word
map could even be many-to-many with a single word relatingnyp number of sym-
bols in the meaning representation (or none) or where aesgyghbol is expressed by
zero or more words, leading to an exponential number of pialenappings, most of
which are not very useful. The model is ideally expected le out the poor mappings
purely by observing consistencies across multiple trginpairs in exactly the same
way that a child might exploit cross-situational infornaattito learn word meanings.

Semantic parsers quickly rule out a large number of canginetppings by mak-
ing an assumption that amounts to something known in thehodygical literature
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as semantic bootstrapping (Grimshaw, 1981; Pinker, 1989®kemantic bootstrap-
ping, semantic information is used to assist in the infegarfcsyntactic structure. For
instance, in a sentence like “the dog broke the jar”, knowthmat the jar is the se-
mantic argument of thbreak predicate might suggest that it should also appear as a
syntactic argument of the verb “broke”. In the case of semadrsing, systems ef-
fectively assume a structural relationship between theningaepresentation and the
syntactic analysis of the sentence, and then perform a gracnmar induction, re-
lying on the structure inherent in the meaning represemdtr guidance. Because
riverid(colorado)is an argument ofraverse(RIVER)n the meaning representation,
a system may also tend toward derivations of the sententegémerate “Colorado
River” as a dependent of “flow”. In this way, rather than inilegra grammar based
on the words alone, semantic parsers infer a grammar overingeaentence pairs, a
somewhat different objective than in purely unsupervigedactic parsing. Similarly,
some semantic parsers may also exploit regularities indameéd syntax-semantics
map to generalize across predicates which can in turn almtastic knowledge to
assist in word learning (i.e., syntactic bootstrapping).

2.2.1 Two general approaches

Most semantic parsing models can be roughly categorizedrunk of two different
approaches. One approach, which we will refer to as the ta@sformation approach,
assumes that meaning representations are either thesms$edes or that they can be
parsed by an unambiguous grammar to identify a tree, andhisatee closely resem-
bles, and can be used to produce, a parse tree for the serffemas et al., 2012b;
Lu et al., 2008; Kate and Mooney, 2006; Wong and Mooney, 2Q067; Tang and
Mooney, 2000; Jones et al., 2012a). In this case, the meaaprgsentation (or its
parse), is a tree where each node is typically identified @i#ctly one function sym-
bol in the meaning expression. The strategy is to transfbremieaning representation
tree into a derivation for the sentence by first reorderirenid then attaching words
as needed to produce a projective parse tree. Conceptinlydea is related to the
syntactic theory of Transformational Grammar (Chomsky,71 @ooper, 1975), where
an underlying form (i.e., the meaning) is transformed tadpie the surface form. In
principle any transformation is permissible, but to keepdh tractable, permutations
are usually restricted to local rotations among siblingegdWhere words attach is
dictated by maintaining some kind of meaning-word map tpatgies which mean-
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ing symbols correspond to which words: attachment is péechlietween a given node
in the meaning representation tree and a word if and onleitthrresponding meaning
symbol and word pair are in the map. Assuming that the rasuftarse tree for the

sentence is projective significantly cuts down on the nurobpossible meaning-word

links that might be proposed, reducing the search space akuhgithe problem more

tractable. The transformation from meaning represenmtatiosentence is governed
by a formalism that can be interpreted either in terms of Bymwous context-free

grammar or tree transducers. The systems primarily diffehe details of how the

meaning-word map is structured and in the learning mechaeamployed.

The other main approach employs Combinatorial Categoriah@rar (CCG) (Steed-
man, 2000) to identify a homomorphism between meaning septation and natural
language syntax (Zettlemoyer and Collins, 2005; Kwiatkawshkl., 2010). Under this
approach, CCG lexical items are inferred by decomposing tteing representation
into several smaller lambda expressions and mapping wortlete sub-expressions
while simultaneously assigning a syntactic category tophie The resultant CCG
rules combine in ways dictated by the syntactic categooisgnultaneously derive the
meaning representation and the sentence. As per the CCG this®igxicon in this
case consists of these labeled meaning-word pairs. Thareagponential number of
ways of decomposing a given meaning representation, amihigaconsists of identi-
fying a small subset of highly reusable rules to enter in®léxicon. To make things
tractable, systems typically restrict search to a certabssts of meaning representa-
tion decompositions, greatly reducing the search space.

Although the two approaches may appear very different orstinface, the basic
underlying idea is similar. They look different becausele/kie transformation-based
approach deals in meaning representation trees, the CC@-appeoach deals in de-
compositions. However, this difference disappears whenrealizes that a parse tree
is simply another way of representing a particular decontiposThus, the key differ-
ence between the two is really just that the transformabiased approach starts with a
single decomposition for the meaning representation agwl titansforms it to produce
a set of different decompositions, while the CCG-based apprsiarts off by enumer-
ating the set of decompositions directly. In practice, haaveCCG-based systems usu-
ally apply fewer restrictions to the decompositions coesad than tree transformation-
based systems do to the final transformed trees. As a resmisformation-based sys-
tems are often more efficient in terms of computing resouwdake CCG-based sys-
tems explore a larger space of possible grammars, potgngralducing better results.
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This observation is born out empirically by the experimamgsorted in Chapter 8,
where the model of Kwiatkowski et al. (2010) performs quitellvbut takes around
8 hours to run to completion on a single language of the ddfavgle the systems
of Wong and Mooney (2006) and Lu et al. (2008) perform soméwdss well but
complete in under an hour.

Both approaches are capable of simulating syntactic bapysing effects. For
instance, in the transformation-based approach, diffesenghts can be assigned to
different permutations whereby models can learn basic fabbut word order in a
given language. Similarly, the syntactic labels of the dakitems in the CCG ap-
proach specify the order in which words combine to form aessrd (word order, in
other words). If general patterns are learned which gezertd novel verbs, models
under either approach can learn the canonical ordering g@itt@wverb and its subject
and objects, potentially facilitating fast mapping andeyatly guiding convergence to
more accurate lexicons.

Finally, while these models can easily be interpreted aspeational word learn-
ers, they operate under much less ambiguity than childiten édce.Specifically, these
models assume training items are sentence-meaning paeseithe model is given the
true meaning of the sentence and the referential ambigaitgists entirely of deter-
mining which words go with which parts of the meaning repnéaon. However, this
seems like an oversimplification when one considers the &fridformation a child
receives. For one thing, itis difficult to imagine that a dralways knows exactly what
a sentence means. If a child’s caregiver were reading a, storinstance, the child
has an entire picture where a large number of things migheberibed. The caregiver
may point to the character being talked about, but is thisaztar the agent or the pa-
tient or something entirely different, and which event isgedescribed? Thus, a more
realistic model should ideally be capable of dealing witmesater degree of ambiguity.
The next section discusses more recent attempts to addressit of problem which
build on but go beyond our restricted definition of semanéicspg.

2.2.2 Alternative sources of supervision

In the scenario outlined so far, the model receives two gie¢enformation for each
training item: the words of the sentence and the sentence@ing representation.
However, many have also experimented with other forms oésugion. For instance,
one might expect that the gold syntactic analysis of a sesteould be leveraged
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to improve the quality of grammars that jointly generate tieaning-sentence pair.
In fact, several such systems have been designed (Ge andeylodd05; Le and
Zuidema, 2012; Jones et al., 2012a). Often times, these@agipes resemble the in-
verse of the transformation-based approach, starting fh@ensyntactic parse tree and
generalizing it to cover the meaning representation. Hewexiewed as a model of
word learning, this approach effectively assumes a leanter already possesses a
mature grasp of syntax, but while there is evidence to sugipdslren begin learning
things like basic word classes fairly early in life, theyteg@mly do not master syntax at
the level assumed by these models until much later.

At the same time, driven by the goal of scaling up to larger arate diverse
domains, work has also focused on reducing dependence amngaapresentation
annotations, which typically require expensive manuabtaMost methods seek to
exploit task-specific features of the target applicatiortha system. For instance,
for systems that seek to automatically learn natural lagguaterfaces to databases,
the learning algorithm can make use of the database itsalad of explicit mean-
ing representations (i.e., queries in a database languag8QL) by testing guessed
meanings to see whether the inferred query returns the egaaswer (Clarke et al.,
2010; Liang et al., 2011). In this case, sentences are m#fcpaired with the gold
queryresult rather than thequery itself Other systems seek to learn to map natu-
ral language instructions to the actions they describe @sam et al., 2010; 2011).
Such systems exploit information about success at perfyritie desired task as a
measure of accuracy and can optimize this metric. Anotimer &f work focuses on
mapping navigational instructions to movements withinnawdated world (Mogel and
Jurafsky, 2010; Chen and Mooney, 2011; Kim and Mooney, 200232 Again, sys-
tems can simulate following the instructions and use scoefailure (i.e, arrival at
the expected destination) to inform learning. Alterndsivgiven current location and
target destination, systems can plot out a path betweemtherd attempt to align
individual steps to segments of the natural language icstms. Thus, instead of
meaning-sentence pairs, the learner effectively recatsof candidate meanings for
each sentence and must simultaneously infer the correatingeéor each sentence
and the meanings for each individual word in the sentence.

In fact, this last approach of simultaneously inferring best meaning candidate
from a set and the map from meaning to sentence is a very destiexegy that can
in theory be applied to any domain. It has been applied to asgasting domain,
where the model attempts learn to identify natural langudegcriptions of how a
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ball is passed around a field in a simulation to the underlgtage information of
said simulation (Chen et al., 2010; Kim and Mooney, 2010; ChnehMooney, 2008;
Borschinger et al., 2011). It has also been applied to a nawigd domain (Artzi
and Zettlemoyer, 2013) and child-directed speech (Kwiagko et al., 2012). In most
cases, the model was adapted from a previous semantic pl@signed to train from
observed meaning-sentence pairs where there is no ambahout what each sen-
tence means. Systems can do this in either a pipelined fastere first the meaning
is selected and then it is mapped to the sentence, or byyoiridrring the candidate
meaning and the mapping. Pipelined systems first employaatpalignment model
to attempt to identify the true meaning representation aytbe set of candidates.
This alignment model may itself be based on a semantic parsewuld be a different
model specialized for the task such as Liang et al. (2009)lowimg the alignment
step, the semantic parser is then trained as before usiag theesses. In the case of
joint inference, the semantic parser must devise a map fiaeh possible meaning
candidate, effectively parsing the sentence repeatedlye per meaning candidate.
This need to parse every candidate can be more expensivththpipelined approach,
but it is often only slightly so since even in that settingleateaning candidate must
be analyzed separately before a guess can be made. Hovwevpipelined approach
potentially introduces noise by forcing a hard choice eviemthere is a great deal of
uncertainty that the joint learner could in theory accowntdy hedging its bets with
multiple possible choices, each weighted according to ston&dence score.

Any system that must separately analyze each meaning @adsbound to scale
poorly with increasing uncertainty (i.e., as meaning cdatéis increase), and semantic
parsing is typically fairly expensive even when the gold meg representations are
observed, so most systems limit the set of meaning candidaest a handful. This
is one area that the model proposed in Chapter 8 is intendettitess, allowing us to
better explore word learning performance under much hitgvets of uncertainty.

Some work has even been done on learning without meaningseptation anno-
tations by exploiting domain knowledge (Goldwasser et2dl1,1; Poon, 2013; Reddy
et al., 2014). The domain knowledge in question would tylpiaaot be available to
child language learners, however. For one thing, theseoappes often rely on string
similarity between the words of the natural language andstmbols of the target
meaning representation language (i.e., words such as lpagfuor “populations” are
biased to map to the symbpbpulationin the meaning representation language). In
addition to string similarities, Goldwasser et al. (201hpdoys various heuristic met-
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rics again not necessarily well suited for simulating thédchsituation to gauge parse
guality at each iteration of a self-training procedure. ®¢2013) and Reddy et al.
(2014), on the other hand, make use of supervised syntausers pre-trained on out-
side corpora and rely on the parse structure to map syntatétons to database re-
lations. These approaches show that cross-situatioraimggis not strictly necessary
for learning a word-meaning map, but they rely crucially oformation unavailable to

child language learners, making poor candidates as cegmitodels of word learning.

As methods develop for reducing annotation overhead, refseis have also begun
working on large scale knowledge bases such as Freebasd edntains over 39 mil-
lion topics Doe (2014). Because annotating the vast amoumebfscale data required
for training would be prohibitive, systems typically eitteutomatically extract mean-
ing representations Cai and Yates (2013) or employ simit@mtejues to those already
described to reduce dependency on such information (Kausiunthy and Mitchell,
2012; Kwiatkowski et al., 2013; Reddy et al., 2014), or sommlgimation of the two
(Berant et al., 2013). Furthermore, just as with the taskifip@approaches, they also
tend to exploit rich syntactic information or string sinmitees between words and the
symbols of the knowledge base, or assume all sentences andekiye base queries.
Thus, although results have been impressive, these modeEsd inappropriate as
cognitive models.

Finally, there are still other lines of work that seek to grduvords in raw sen-
sory data (Krishnamurthy and Kollar, 2013; Kollar et al.120Matuszek et al., 2012).
These techniques require simultaneously solving varieusgptual problems such as
object recognition in raw visual data. Research in thesesdrage whole fields ded-
icated to solving the various related problems which addento and often dominate
the word learning problem. In order to focus on the word leaynask, we will set
aside sensory data for our work here and instead map to siondath as described in
Chapter 7.

2.3 Case study: CCG

Kwiatkowski et al. (2012) propose a word learning model bdas® Combinatory Cat-
egorial Grammar (CCG) to explore synergies in word learnirdysgmtactic grammar
induction. The model attempts to tackle the problem wheeeetlare multiple candi-
date meanings for any given sentence and both the sentermrengeand the individ-
ual word meanings must be simultaneously inferred. As a grarrbased model that
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jointly infers sentence and word meanings, the artificiatdvearner they describe is
similar in spirit to the model we propose in Chapter 8. At thexedime, being based
on CCG as opposed to our synchronous grammar approach, theal mso repre-

sents a competitive example of the other leading approasbkrantic parsing. Both
the similarities and differences make it an interestingdadette for a more in depth
look. We pay particular attention to computational comjtiexighlighting the source

of the complexity, since this effectively bounds the amaaframbiguity a model can
tackle, and ultimately we wish to reduce this computatiavairhead to make way for
learning performance itself as the main focus of study.

Performing grammatical inference using CCG, a strongly kiked formalism,
results in a grammar that doubles as a syntax-enrichedolexiwhere each lexical
entry consists of three parts, a word, its syntactic categjwat dictates how words
combine into phrases, and its meaning in the form of a logigpftession, represented
in typical CCG notation as

wordF syntactic category : meaning representation
Some example entries might include

thek NP/N : A fAX.the(x, f(X)),
doghk N : Ax.dog(x),

licked S\NP/NP :AxAy.lick(y, x), and
girl = N : Ax.girl(x),

where the syntactic component of each entry specifies (1jytbes of words with
which it can combine, (2) the relative position of those vgrand (3) the resultant
type of the combination. For instance, type NP/N indicated the determiner “the”
combines with a noun (type N) such as “dog” to the right to picla noun phrase
(NP). Precisely how lexical entries combine to form phrasesdictated by combina-
tors, of which there are two types in their model: applicatiand composition.

Application, the simpler of the two combinator types, takesiame from the fact
that it involves a applying the lambda expression that 1sgres the meaning of one
word to the expression associated with the other.

XIY:f Y:g= X:f(0) >)
Y:g X\Y:f = X:f(g) (<)
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Right application £) applies the lambda expression of a word of type X/Y to that of
the word to its right (a ), while left application<) , assuming a type of XY, applies
it to that of the word of type Y to the left. The combination dfé” with “dog” is an
example of right application.

The other combinator employed involves composing the lambgbressions.

XIY: f YIZ:g = XIZ:Ix.f(g(X)) (> B)
Y\Z:g X\Y:f = X\Z:f(g(x)) (< B)

Again, there are two directions, left and right compositiatich are applicable de-
pending on the syntactic types of the respective words.

Given a lexicon and following these rules, the model can peedarses for whole
sentences such as the example in Figure 2.1. Typicallye timary be a forest of such
trees, consisting of all parses for the sentence that argistent with the meaning
representation. However, to simulate the problem wherklrem do not know the
meaning of the sentence, training data consists of serdgradeed with asetof possi-
ble meaning candidates rather thasirgleobserved gold meaning. The parse forest
for a complete training item, as opposed to a single sertsrg@ning pair, is con-
structed by taking the union of the parses of each pairinchefdentence with its
various meaning candidates. Thus, they employ a versioheoparsing model de-
scribed in Kwiatkowski et al. (2010) to parse each senteneaning pair individually
and combine the results into a single forest.

The probability of a particular parse is computed in muchdhme way as for a
probabilistic context-free grammar (i.e., by weightinggwuctions and computing their
product), where a production consists of a local tree (apaed its immediate chil-
dren), and its weight defines a conditional probability & dhildren given their com-
mon parent. Defining their model according to this contegefformulation results
in a generative joint model of meaning-sentence pairs, anu®@ying a packed forest
representation for the union of the parses over all poss#nénce-meaning pairs per-
mits the applications of techniques familiar from probistit context-free grammar.
For instance, the most probable parse can be computed as péraG# the model
can propose meanings for a sentence by reading off the lagipaession associated
with this most probable parse. Similarly, the expected t®tor each production can
be estimated using the inside-outside algorithm, whicly theorporate into an on-
line parameter estimation algorithm that makes a single pasr the training data and
updates the production weights after each sentence.
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Figure 2.1: A CCG-based parse tree for the sentence “the dog licked the girl” with
meaning representation lick(the(X, dog (X)), the(y, girl(y))).

The lexicon itself is populated according to a proceduré émumerates all the
possible decompositions according to the combinators aamgkrthe individual sub-
expressions of the decompositions to words of the acconpgrsentence. At the
heart of this procedure issplit function which takes a CCG category X paired with
a fragmenth of the meaning representation and enumerates all poss#yjeiwcan
be split into two sub-expressioghandg with syntactic categories €rt and RiguT
which recombine according to application or compositioretmover the original X h
pair. In practice,f andg must be constrained since there are technically an infinite
number of ways to decompokeln particular, there are three restrictions.

e No Vacuous Variables: All variables that appear as arguments must also appear
in the body of the lambda expression. That isf i of the formAx.e, wheree
is a logical expressiorg must contain variable.

e Limited Application: f cannot contain meta-variables (i.e., variables that stand
in for functions) that are applied to non-variable sub-esgions ofh. This
restriction forbids decompositions such as:

h = Ax.lick(x, Sam

f =Ag.q(Sam
g = AyAxlick(x,y).
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Algorithm 1 The parsing algorithm of Kwiatkowski et al. (2012) with a glie ob-
served meaning, takes a sentence paired with a meaning sitelaach span of the
sentence in a fashion similar to a top down variant of CKY,grs8ig a syntactic cate-

gory and meaning fragment to each.
function PARSE(sentencev,,...w,, meaning representation)

Ch =the parse chart as arx n matrix of category-meaning pair sets
Ch[1][n-1] - C:m > where C is the top-level category of the parse
fori=n,..,2,j=1.(n—i)+1do
for X: h e Ch[j][i] do
for (CL:m,Cr:mR) € split(X: h) do
fork=1,...i—1do
Ch[jI[K] <= Cp:mg

Ch[j+K][i — K] + Cr:mRr
return Ch

e Limited Coordination Extraction: g cannot contain more than some num-
ber N of the conjuncts irh. For instance, it is lick(x,y) A the(x,dog(x)) A
the(y, girl(y)), a set of three conjuncts, aftl= 1, g could only contain one of

lick(x,y), the(x,dog(x)), or they, girl (y)).

The first two restrictions guarantee at most an exponentialber of decompositions,
while the third further restricts this to a polynomial of degN. Thatis, if the meaning
m contains|m| conjuncts, the number of possible splits at each node indhsepree

is at mostO(|m[N).

The parsing procedure is outlined in Algorithm 1. Assumirgjregle meaningn,
the procedure starts by applyisglit to h = m, and then populates the parse chart by
repeatedly applyingplit to the successively smaller sub-expression while simettan
ously matching them up with spans of the sentence. The #igonesembles CKY
but where the grammar rules are generated on the fly from th@imgrepresentation.
If there are|w| words in sentencev, parsing a single sentence-meaning gaim)
has an upper bound & (|w|3- |m|N), whereN is an arbitrary parameter specifying the
maximum number of conjuncts of the meaning that can be mdteftl a single rule
and is chosen manually to balance the tradeoff between exitybhnd accuracy. If
there areM possible meaning candidates in the scene, this bec@tids|w[3- |m/N).

In particular, Kwiatkowski et al. (2010) cites &hof 4 and Kwiatkowski et al. (2012)
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anM of 7 in their experiments. If one assumes that the number juoats within
the meaning representation is roughly proportional to thalwer of words in the sen-
tence, this essentially means that parsing requires rgrairO(|w|’) algorithm for
each meaning candidate in the scene for each sentence.

As a syntax-aware word learner, the model incorporatesexiesrof both syntactic
bootstrapping and semantic bootstrapping, i.e., the &g of syntactic informtion
for acquiring word meanings and the leveraging of semantarmation in the acqui-
sition of syntax. For instance, by learning lexical enttike the one for “licked” in
our example which expects a NP to the right, the model candtieally narrow down
the set of words that are likely to map to the object of the vénlfact, they showed
that the model preferred an SVO order for transitive comsivas when trained on a
an English corpus of child-directed speech.

This acquisition of syntactic categories, in turn, is justprted by the deterministic
assignment of basic atomic syntactic categories such a®PNant PP based on a small
set of templates. For example, if a lexical entries meangpgasentation component
consists of a single unary predicate suchA\aslog(x), the model deterministically
assigns a category of.

Being based on a grammatical formalism that tightly coupémamntics and syn-
tax, the model elegantly incorporates syntactic and samksatrning in a single joint
model. Indeed they showed that the model learned to assggngibbability to the
gold meaning of words, and argued that syntactic bootsimggpelped the most in the
case of infrequent words, possibly simulating the role oftay in fast mapping.

The model is similar in several respects to the novel modepresent in Chap-
ter 8, but there are limitations that make it less suitabteoior purposes. The most
significant issue is the constraints on referential amibygai their experiments, i.e.,
a maximum of seven meaning candidates per scene, since dkissnt impossible to
judge the learning performance of the model, and, thus,fteetef syntax, at higher,
and possibly more realistic, levels of ambiguity. Thesest@ints on ambiguity are
due in large part to the sheer computational complexity o$ipg, which is roughly
O(|w|N*3) for a single meaning candidate and increasing by an addit@fw|N*3)
for each additional candidate meaning, since the systerhneqsatedly parse the same
sentence multiple times, once per candidate. Thus, a signtfamount of the limit-
ing complexity arises from the linear growth in complexigrpneaning candidate, but
also from the flexibility allowed to the system to explorecattative decompositions
of the meaning representation. We will address both of tise=mses in our choice of



34 Chapter 2. Word Learning and Semantic Parsing Background

model and parsing algorithms laid out primarily in Chapterandl 8. At the same
time, we intend to address a few less significant points. IRer @ is difficult to as-
sess the exact contribution of syntax since they do not pteseomparison with other
syntax-unaware word learners. Secondly, the meaningseptations of their corpus
is automatically constructed from syntactic dependeneyyaes, possibly resulting in
an artificially tight syntax-semantics match, which woutibbt performance for their
syntactic model, something that will be addressed by thpusintroduced in Chap-
ter 7.



Chapter 3
Grammar Background

This chapter covers the background in formal language yheecessary for under-
standing the semantic parsing and word learning modelepted in Chapters 6 and
8. We begin with a brief overview of context-free grammardtsmg languages, where
we establish some notation and otherwise set the stagesftatdr sections that may be
less familiar on graph and synchronous graph-string grasunidoe chapter is primar-
ily review, extracted from existing literature, but there aovel elements introduced in
Section 3.3.1 on a minor extension to synchronous gramntb$aation 3.4 on a gen-
eralization of probabilistic grammar where rules are ndy @ssociated with a single
weight, but also a factorization of that weight.

3.1 Context-free grammar

A context-free grammar (CFG) can be formally defined by a t¢bl&\(,S R ).
e 2 is a an alphabet of terminal symbols.
e Al C Zis an alphabet of nonterminal symbols.

e Sc Al is a nonterminal specially designated as the start symhthleoframmar
from which all derivations begin.

e R is a set of productions of the ford — x whereA is a nonterminal ana
(ZUA()* is an arbitrary string of terminal and nonterminal symbols.

Figure 3.1 illustrates a simple CFG which generates senseswh as

(3.1) The dog licked the girl as she sternly scolded him.

35
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(@)
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Figure 3.1: (a) A CFG with start symbol S, (b) a parse tree, and (c) the equivalent
derivation tree representing all possible derivations of an example sentence. Words are

numbered for ease of reference in parsing discussion in Section 3.3.2.

Context-free grammar is a type of string rewriting formalig/nere strings are grad-
ually built up by replacing nonterminal symbols by their arpions according to the
right hand sides of rules. A full derivation consists of awsstce of such rule applica-
tions, repeated until we arrive at a string consisting ehtiof terminal symbols. As
an example, one possible derivation for sentence 3.1 uhdegrammar of Figure 3.1
might begin with the following two steps

sYSas$E NPVPas $

wherex = y denotes that string can be arrived at by applying ruteto rewrite some
occurrence of the symbol on the left hand side of rukestringx. The process is non-
deterministic since, for example, there is nothing spé&uogfyhat a derivation must first
expand the left-most occurrence dfébove before the right occurrence. This nonde-
terminism can be explicitly represented in a parse tree asaa@hown in Figure 3.1(b)
or an equivalent derivation tree as in Figure 3.1(c). Déiavetrees are essentially the
same as parse trees where the relationship to rule apphsas made more explicit.
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3.2 Hyperedge replacement grammar

Hyperedge Replacement Grammar (HRG) is a generalization of ©©F§eaph lan-
guages (see Drewes et al. (1997) for an overview). Where a CH@ loy stringsby
replacingsymbolswvith newsubstringsan HRG buildggraphsby replacingedgeswith
subgraphsAlthough there has been a recent surge in interest in gnagwhrgar, driven
by the availability of corpora for representing linguisti@aning with graphs, HRG is
a relatively new introduction and current empirical worlsisl at a fairly preliminary
stage (Jones et al., 2012a; Braune et al., 2014). However, HRGden formally stud-
ied by theoretical computer scientists for much longer @fel971; Pavlidis, 1972),
increasing its appeal since the properties of HRG are alreatlyexplored and there
are many existing algorithms for working with them. Furthere, the similarity to
CFG makes HRG particularly interesting for natural languagegssing, because it is
easier to adapt and integrate with the prolific literaturesypmtactic parsing with CFG
than many more distantly related formalisms might be.

That said, parsing with HRG is expensive. In fact, in the mestegal form, pars-
ing is NP complete (Drewes et al., 1997). Of course, therekaosvn polynomial
time algorithms for parsing relatively general classes BG4 but the computational
expense can still be prohibitive, depending on the apphinatThe parsing algorithm
of Chiang et al. (2013), for instance, takes time exponeititiie degree and the tree
width of the graph, both of which closely relate to the dgnsitthe graph. However,
Chapter 4 describes a novel algorithm that operates spdigificatree-shaped graphs
which takes time linear in the size of the tree.

The un-forestized scene graphs of the Frog Stories desdcib€hapter 7 which
we use for our word learning experiments are fairly denseéimgethem expensive to
handle. Instead, we work with a special case of HRG for geimgrainordered trees
to work with the forestized scenes described in Section Adwever, there are few
context-free grammar-based formalisms for describingdered trees that are as well
studied as HRG. Furthermore, much of the work we describe asithe optimizations
in the parsing algorithm in 4 generalize to more expressigplys. Additionally, there
is growing interest in applying graph formalisms to probéeimnatural language pro-
cessing, and it is our hope that adopting the same standanthtdogy used in both
these forays into applied HRG as well as that of the theoldiieeaature will make it
easier to draw connections. Thus, although we work primpavith a restriction, we
define HRG in full.
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We start by defining a hypergraph, a generalization of a grelpére edges may
link any finite number of vertices. Typically, such edges@akedhyperedgesbut we
will use the terms edge and hyperedge interchangeably. d&lytra hypergraph is a
tuple(V,E,a,/,X).

e 7 andZ are finite sets of vertices and hyperedges, respectively.

e Theattachment functigra: £ — 9*, maps each hyperedge E to a sequence
of pairwise distinct vertices froni/, where we call the length of the vertex se-
quencea(e) thearity of edgee.

e Thelabeling function ¢ : £ — %, maps each hyperedge to a symbol in some
ranked alphabeX, where the rank of the label symbg(e) is the same as the
arity of edgee.

e Finally, each graph has a set of zero or mexréernal verticesarranged in a
sequence € 1%, where the vertices are pairwise distinct just as those gfa h
peredge. As another point of similarity with hyperedgegdrgraphs also have
an arity, defined as the number of its external vertices, (it length ofx).
There is a strong parallel between the external verticeypétgraphs and the
vertices of hyperedges, a fact that, as we shall see, playscekrole in the
edge rewriting mechanism of HRG.

Observant readers may notice that while functidabels edges, there is no such func-
tion for labeling vertices. In fact, vertices are unlabelaat labels can be simulated by
treating unary hyperedges (i.e., hyperedges with a siregkex) as vertex labels.

While edges can link an arbitrary number of vertices, we aragnily interested in
languages of simple directed graphs, hypergraphs wheleeshe is either binary or,
for vertex labels, unary. In this case, we can indicate Vigtlae ordering on a binary
edge with vertex sequenegvy by an arrow pointing from vertex to vi. The graph
at the bottom right of Figure 3.2(b), is an example of a gragpmjlar to the scene
graphs described in Chapter 7. In fact, we can apply the sameictons introduced
in Section 7.3 for translating between the language of pegdicalculus expressions
and graphs to arrive at the following:

(3.2) lick(e1) Nagenter, x1) Adog(x1) Athemder, x2) A girl (x2) A
scoldex) A agentex, x2) Athemées, x1) A sterr(ey)
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The graph representation has unary edges for expressitigestich agjirl anddog
and predicates likkkck andscoldand binary edges with labels lilkgentfor specifying
the thematic relations in events. Additionally, while vegt are unlabeled in the formal
definition of hypergraphs, we have also included labels tquely identify vertices in
the figure, simply to facilitate discussion and to make iaobe how the graph relates
to the logical expression in example 3.2 above.

We now describe hyperedge replacement grammar, an edgeingveystem for
generating hypergraphs, formally defined in a manner sit@l@FG as a tupléx, A[,S R).

e > is a ranked alphabet of terminal symbols (i.e, a set of symiadiere each
symbol is associated with some integer greater than or eégualro identifying
its rank).

e Al is a ranked alphabet of nonterminal symbols.
e Sc Al is the start symbol.

e R is a finite set of rules of the forrA — h, whereh is a hypergraph with edge
labels fromZ U AL andA € AL has rank equal to the arity bf

Figure 3.2 shows an example of an HRG and a sample derivatimexternal vertices
of the right-hand side graphs have been shaded and numlms@dii;mg to their order,
while other vertices (the internal vertices) such as inr@lé have been left unlabeled.
Edges named with nonterminal symbols are dashed to make ebsrar to identify.
Sometimes we will refer to such edges that are labeled witttemminal symbols as
nonterminal edges

Hyperedge replacementhe basic rewriting mechanism of HRG, is an operation
which substitutes an entire hypergraph for a single edggisl& hypergraph containing
edgee, andhis another hypergraph with the same arityedise., with the same number
of external vertices ashas vertices), edgecan be replaced with by first removinge
from g and then “fusing’h andg together at the external verticestoénd the vertices
of the sequenca(e). So, ifa(e) = vpvi...vx andh has external verticaespus....Uy, we
would fuse eaclu; to the corresponding.

Much like with CFG where a derivation begins with a string astisg of a single
instance of the start symbol and proceeds by successiyabciag nonterminals with
substrings, derivations under HRG begin with a single edgth (arity equal to the
rank of the start symbol) and each subsequent step replat@sterminal edge with
the right-hand side graph of some rule with a matching lafichside. For example,
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Figure 3.2: (a) An HRG with start symbol S, (b) a particular derivation under the gram-
mar of a graphical representation of a sample meaning representation, and (c) a deriva-
tion tree representing all possible derivations. External vertices are shaded and num-
bered according to their order and nonterminal edges are dashed, while in the derivation

the nonterminal edge being replaced is highlighted in red.

in the application of rule2.1 in the second step of the derivation in Figure 3.2(b), the
edged i g is replaced by the graphﬁ? o1 by removing the Sedge and then
attaching the new subgraph by identifying vertideendg with external vertices 0 and



3.2. Hyperedge replacement grammar 41

1, respectively. Note that the orderingadbéndg in edged i g and the ordering of the
external vertices im2.1 fully specifies exactly which vertices are “fused” durirng t
replacement operation.

An HRG is context-free in the sense that whether a given ruideaapplied at any
given stage of a derivation only depends on whether the noirtal on the left-hand
side (and its rank) matches some isolated nonterminal ahteemediate hypergraph
derivation, exactly as for string derivations under CFG. @guently, the order in
which rules are applied during a derivation does not imgaeiset of possible expan-
sions of any of the remaining nonterminals. Again, just ahWiFG, this nondeter-
minism can be represented explicitly by a derivation tredlJastrated in Figure 3.2(c).

As a notational convenience, we can represent graphs usrignguage of predi-
cate logic, where vertices are identified with variablesassnsequence, edges, which
are labeled tuples of vertices, can be treated as relatioasiselves merely tuples of
variables. A hypergraph can then be considered to be a lagingunction of relations.
Following this convention, we can translate the final grapkthe HRG derivation in
Figure 3.2(b) into the logical expression:

like(e1) Atheméer,g) Agirl(g) Aagente,d) A dog(d)
Ascold ex) Aagentez, g) Atheméey, d) A sterr{en).

For completeness, one can assume that all variables aterdgialy quantified, though
we will generally omit these existential quantifiers for #ake of brevity.

Thus, one can reinterpret the grammar in Figure 3.2(a) asabpg directly on
logical expressions.

S— S(d,g) AS(g,d) (r2.0)

S — Ad,g.NP(e,d) AVP(e, ) (r2.1)
VP — Ae,g.lick(e) ANP(e,g) (r2.2)
VP — Ae d.scolde) AADV (e) ANP(e,d) (r2.3)
NP — Ae,d.agente,d) Adog(d) (r2.4)
NP — Ae,g.themée, g) A girl(g) (r2.5)
NP — Ae,g.agente, g) (r2.6)
NP — Ae,d.themde d) (r2.7)

ADV — Aesterr{e) (r2.8)
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Here, we have extended the logical language with lambdaesgms in order to spec-
ify the external vertices of the right-hand side graphsablt,fdrawing on this analogy
between external vertices and the lambda arguments pseseother way of visual-
izing the edge replacement operation, as a substitutioratipe where nonterminal
edges are treated as metavariables. For example, the fplstadion ofr2.1 in the
example derivation involves replacing the first instancéhef $ nonterminal in the
intermediate graph with the right hand side of the rule.

(Sp(d, 9) A Sy(g,d)) [Sp := Ado, go-NP(e, dp) A VP(e,go)]
= (Ado,go-NP(e,do) A VP(e go))(d,g) A S(g,d)
= NP(e,d) AVP(e,g) AS(g,d).

After the substitution, the function is applied to argunseahaindg, resulting in a beta
reduction and a second substitution whedge= d andgp := g. This parallel between
edge replacement and substitution in lambda calculus draesser tie with linguistic
theories of Montague semantics and the syntax-semantiedaoe, something that
should become clearer in Section 3.3 when we discuss symohsgrammar. In fact,
because the logical notation is relatively concise and weeixthe audience may be
somewhat more familiar with lambda calculus than with edgg@acement, we will
usually rely on this notation and only return to explicit gingcal representations when
it is useful for discussing properties that are more easalscdbed in terms of graph
theory.

As mentioned in the introductory paragraphs of this sectdthough HRG is de-
signed to describe languages of arbitrary hypergraphspwaesfon HRG that generate
trees. This tree assumption is a common theme in previowsngawork. For in-
stance, work involving semantic dependency graphs oftgroreminimum spanning
tree algorithms (McDonald et al., 2005), an approach whashlbeen adapted to more
general semantic graph structures (Flanigan et al., 2db4pact, since the parses of
HRG are themselves trees, it is possible to identify every HR(Ggwith a particular
tree decomposition of a graph (Lautemann, 1988). Thusshraped representations of
more general graphs seem to be a fundamental feature of gresnwith context-free
derivations. The difference in our work here is that whiléhia general case there are
many such possible tree decompositions and a parser mushsansearch over this
set to identify a particular one, we assume there is a singih decomposition and
enforce the assumption in a preprocessing step appliecetodipus as described in
Section 7.4. This decision to enforce a single tree is mainiyen by parsing efficiency
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concerns, since parsing with arbitrary HRGs can be highlgegpe.

Unordered trees differ in one important respect from thesgd trees that most
readers will be familiar with from syntactic parsing. Thealer of, for instance, the
agentand patientunder adisturb event is indeterminate. The ordering is a matter
of how the particular language realizes such semantic eltenie the syntax, but not
something to encode in the meaning representation itski§ [ack of ordering corre-
sponds to the commutative property of predicate calculnses

disturb(e) A agente, x1) A boy(xy) A patiente,x2) A owl(x)
is true in exactly the same circumstances that a slightlydesed expression is true:
disturb(e) A patiente, x2) A owl(x2) A agente, x1) A boy(xy).

This lack of ordering is something that is impossible to oapusing formalisms based
on ordinary CFGs or regular tree grammars, but straightfatwaing an HRG. Lack
of ordering plays a key role in parsing, an issue we will netiarin Chapter 4.

Even if we do not make full use of the expressive power of HRGrasttict con-
sideration to tree-shaped graphs, there are still key dadgas over some other tree
grammars such as regular tree grammar (RTG). For one theaguse there is already
a more general formalism, it may be easier to generalize fhentree case to other va-
rieties of graph in future work. Furthermore, unlike stsndirected graphs only define
a partial ordering on their constituent vertices, so thesi@ur grammars generate will
also be only partially ordered. This is in contrast to thesréamiliar from syntactic
parsing, where sibling nodes cannot be reordered withangihg the sentence (and,
consequently, the syntax tree). However, the tree-shagaohimg representations we
will deal with are intended to represent logical structusdeere order does not mat-
ter. For an example, consider the following logical expi@sswhich corresponds to a
tree-shaped graph:

lick(e) Aagente, x1) A dog(x1) Athemée, xo) A girl (x2).

It would be undesirable if our grammar treated the followasgan entirely different
expression since it is logically equivalent and evaluadeété same truth values under
the same conditions:

lick(e) Athemée, x2) A girl(x2) Aagente, x1) Adog(Xy).

This is an advantage of using a formalism such as graph grasnmiach is capable of
generating and parsing unordered structures. An RTG, &taite, suffers from the
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same ordering constraint as a CFG, where different ordearggeated as completely
different trees, resulting in different parses. Unlike R®1iGother formalisms that only
work with ordered trees, however, any HRG would assign theteseane set of parses
to both expressions, drawing no distinction.

3.3 Synchronous grammar

A synchronous grammar is a formalism that simultaneousheges items from two
or more languages, implicitly defining a relation betweenlinguages. In principle,
the languages could be of strings, trees, or arbitrary grafiynchronous grammars
are closely related to tree transducers, which define oglabetween tree languages
(Shieber, 2004; 2014). Synchronous grammars and treedtreess have both figured
prominently in syntax-based machine translation, wheeg #ire used to map between
the syntax of a source language to that of some target laegiNesson et al., 2006;
DeNeefe and Knight, 2009; Yamada and Knight, 2001). We apytghronous gram-
mar to semantic parsing, which can be seen as a kind of tteomsfaroblem between
natural language and meaning representation, and to mgdak word learning prob-
lem. Synchronous grammars have already been applied taobéem of modeling
the syntax-semantics interface (Nesson and Shieber, 2086;and Hedberg, 2008)
and semantic parsing (Wong and Mooney, 2007), and otherrgenparsing models
such as Lu et al. (2008) or Kate and Mooney (2006), though xitaitly expressed
in terms of synchronous grammar, can also be re-interpestadch. In fact, chapter 6
makes this last assertion clearer by explicitly re-implatmgy the hybrid tree model
of Lu et al. (2008) as a synchronous grammar. Our greatesirtlgp from previous
work is to integrate HRG into the synchronous grammar frankewo better model
commutative meaning languages (i.e., unordered tree®renprevious synchronous
grammar-based models assume an ordered meaning reptieselataguage.
Synchronous grammars can be thought of as a kind of amalgamoodr more
different monolingual grammars, produced by binding tbhgetules from these sub-
grammars. During derivations, rules are applied in logépdashion to produce par-
allel derivations and yielding tuples of items from the grbmmars’ respective lan-
guages. These tuples thereby define a relation. For a mareafatescription, we
simplify by defining synchronous grammars that are resti¢d binary relations (i.e.,
that map between two languages), but it is straightforwaigkeineralize the definition
to include grammars for trinary or higher order relationssséme there are already
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grammars with rule set® and®;. Then the rules of the synchronous grammar are
tuples of the form(ro,r1, ~) whererg € Ky andr; € ®; and~ is a bijection defining
a one-to-one correspondence between the nonterminalg oigtit-hand sides of the
monolingual rulesg andrs. During derivations, rules expand pairs of nonterminals,
where the legal nonterminal pairs are dictated by the lgect-.

For example, we can bind together the sample HRG and CFG indsgu® and
3.1 into a single synchronous graph-string grammar by defirules such as

(S — Ad,g.NPg(e,d) AVPg(e,g) || S — NPg VPg)

where the bijection between nonterminals is indicated bwiiflying symbols with the
samey) indices. During a derivation these monolingual rule pares @pplied simul-
taneously to expand corresponding nonterminals in pardllensider how this syn-
chronous rule might be applied to the following intermeglistage of a synchronous
derivation:

(Sp(d,9) ASm(9.d) || Smas S1).

There are two choices for nonterminals that the rule canrekpeither the paitS[g|, S[o))

or the pair(S[, S[r). However, the bijection does not permit the expansion aofspai
(S, Sm) or (S, S[o), because there is no map between those nonterminal pairs (as
indicated by the mismatching indices). Thus, either of wléoding are legal next
steps in the derivation:

( NPg(e,d) AVP(e,g) A S(g,d) || NRg VP as &z)
or

(Sw(9.d) ANPg(e,d) AVPg(e,g) || Sgas NRg VPg),
but not

( NPg|(e,d) AVP(e,g) A SE(9.d) || Spras NRg VPg).

In practice, we will assume that only nonterminals of the saymbol map to one
another, permitting a more compact representation forregmous rules:

S — (Ad,g.NPg|(e,d) AVPg|(e,g) || NPg VP ) (r3.1)

where we can use a single left-hand side symbol since bolteaub-rules are guaran-
teed to have the same left-hand side (modulo symbol ranighndan be inferred from
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— (Spo(d,9) ASm(g.d) || Sgas ) (r3.0)

— (Ad,g.NPg|(e,d) AVPg(eg) || NRg VP ) (r3.1)

VP — ( Ae,g.lick(e) ANRg(e,g) || licked NRg)) (r3.2)
VP — ( Ae,d.scolde) AADV[g[(e) ANRz(e d) | ADV[g scolded NR;) (r3.3)
NP — ( Ae,d.agente,d) A dog(d) || the dog) (r3.4)
NP — ( Ae,g.themée,g) Agirl(g) || the girl) (r3.5)
NP — ( Ae g.agente,g) || she) (r3.6)
NP — ( Ae,d.themée,d) || him) (r3.7)
ADV — ( Aesterr(e) || sternly) (r3.8)
VP — ( Ae,d.scolde) ANPg|(e,d) || MADV scolded NRy ) (r3.9)
MADV — ( — || sternly) (r3.10)

Table 3.1: A synchronous grammar that jointly generates (meaning representation,
sentence) pairs. Rule r3.10 is monolingual, expanding the MADV nonterminal in
r3.9 without generating anything in the meaning representation, as described in Sec-
tion 3.3.1.

the right-hand side). Creating synchronous rules from theaneing rules from our
example graph and string grammars produces the grammabla 3dl. These rules
can then be applied according to the derivation tree in Ei@J2 to simultaneously
produce thémeaning representation, sentenpair:

(lick(e1) Nagenter, x2) Adog(x2) Atheméer, x1) Agirl (X1)A
scoldez) Aagentey, x1) Athemeey, o) Asterr(ey) ||

the dog licked the girl as she sternly scolded him

3.3.1 Adding monolingual rules

With a traditional synchronous grammar the number of nomiteals in each of the
linked sub-rules must be exactly equal. Thus, each corimibdio one side of the
yield during a derivation always accompanies a simultaaeoutribution to the others.
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What this means in the case of joint semantics-syntax gramisé#rat, effectively, the
grammar would need to decompose the meaning represengaiibtne sentence and
pair these up so that every word is assigned meaning and fagiment of meaning
is represented in the words.

It may make intuitive sense that all words must be represeéntsome form in the
meaning representation, but only so long as one assumehé¢haieaning representa-
tion fully covers the sentence. The validity of this assuorptiepends on the corpus
and the annotation scheme employed, and it is definitelyhetase for most word
learning and semantic parsing corpora (and the frog steoesus is no exception)
where there could be any number of words with no obvious dariton to the mean-
ing representation. For instance, sometimes annotatidhsmit modifiers such as
sternin our running example.

The conventional lock-step derivation process of a synabuwe grammar is not
well suited for modeling this sort of situation, but a minotension could help. In
particular, it is possible to relax the bijection betweenteominals,~, so that instead
of requiring it to cover all nonterminals, we can restrictatsome subset, where the
remaining nonterminals are monolingual. These monolihgoaterminals must be
expanded by special rules that behave like ordinary mogoeédhgrammar rules that
only contribute to one side of the yield (words in the senédmat not predicates in the
meaning, for example). Thus, in addition to synchronoussoff the form(ro,ri, ~),
the grammar may also include monolingual rules suckr@s-,0) that only expand
monolingual nonterminals on the left @r,rq,0) which only expand monolingual
nonterminals on the right.

The bottom two rules in Table 3.1 illustrate how monolinguales can be in-
troduced into a synchronous grammar to generate words wmiteunterparts in the
meaning representation. Rulg.9 is semi-synchronous, where the MADV nontermi-
nal is monolingual and does not correspond to anything omiening representation
side. This monolingual nonterminal cannot be expanded lerB.8 since it expands
two nonterminals instead of one. Rather, a derivation mugi@nthe monolingual
ruler3.10 to expand that portion of the sentence, which has no ingrattie meaning
representation portion of the yield. By including monoliagtules, the grammar can
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sternly

Figure 3.3: A monolingual production in a synchronous derivation. The MADV has
no counterpart in the meaning representation but generates the word “sternly” in the

sentence.

still generatemeaning representation, sentenpairs such as

(lick(e1) Aagenter, x2) Adog(x2) Atheméey, x1) A girl (x1)A
scoldex) A agentey, x;) A theméey, xo) ||
the dog licked the girl as she sternly scolded him

where the meaning representation fails to include dte#n modifier for the event.
However, removing rules3.9 andr3.10 would cause a parser to fail.

Note that because synchronous rules can only expand syrasmonterminals
and monolingual rules can only expand monolingual nonteafsj it is impossible
once a particular branch of a derivation tree enters a mogwdil mode to return to
synchronous generation downstream. The entire subtreetadiied out with mono-
lingual rules.

These synchronous grammars with monolingual rules havesg cklationship to
the top-down tree transducers with regular look-aheadiestiuioy Engelfriet (1977).
Transducers with regular look-ahead are able to look indelfyndeep into a left tree
to see if it meets some preset condition before decidinghdneb apply a rule, where
the look-ahead mechanism can be described as an RTG. Edlgeatiule can only be
applied at a particular location within the left tree if itgérees satisfy a membership
test in the tree language defined by the look-ahead grammaurlcase, the mono-
lingual rules behave like this look-ahead mechanism wher@arsing, a particular
semi-synchronous rule containing monolingual nonterisioan only be included in a
valid parse if the monolingual portions of the yield satisfgmbership tests defined by
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the monolingual portion of the grammar. In terms of the exi@np Figure 3.3r3.9
only applies if the one word substring “sternly” can be pdmssing monolingual rule
r3.10. One key difference is that while Engelfriet (1977) watketh RTGs, the syn-
chronous grammars with monolingual rules are general tagasayymar with context-
free derivations. Another important difference is that &friet (1977) only defined
look-ahead for one side, but in our case “look-ahead” canppdiedd on either side
or both simultaneously, since rules of eiter—,0) or (—,r,0) form are permitted, a
feature we will find useful when modeling a joint scene-maggitterance three-way
grammar, where, in addition to modeling the sort of meanitigrance relationship
just discussed, utterances will also tend to only discussgively small subsets of the
scene as a whole.

3.3.2 Parsing: Training vs. translating

Synchronous grammars can be used in one of two different:waytest whether a
given tuple of items from two or more languages satisfies Hqodeir relation, or to
generate translations from one language to another. Thesfieghieved by parsing
tuples synchronously (i.e., memberships checking). Therse®is achieved by parsing
an item from one of the languages usingrajectionof the grammar where only the
portion of the rules relating to the item to be translatedsedi Either case yields a
parse forest which can be interpreted as yet another gramh&e rules are based on
those from the original grammar that appear in the parsesibuhonterminals refined
to identify (nonterminal,spancombinations. Table 3.2 presents an example which we
will discuss in greater detail momentarily. In the case afckyonous parsing, the
grammar has one tuple in its language, while in the secoede ik a potentially very
large language of tuples where one of the elements of eveig ts constrained to
equal the item that was parsed. In the case of translati@mgia projection of the
language of tuples can produce a set of possible candidatslations in the target
language. Both of these cases will prove useful for our apptios. In particular,
while training a semantic parser from a corpus of observedning representations
paired with their corresponding sentences, we will wantge fuwll synchronous pars-
ing to enumerate the ways that the grammar might map meapsprggentation to
sentence. However, at test time semantic parsers are velly tiie sentence and must
translate this into a meaning representation, a case iimgpprojection.

Table 3.2 illustrates an example of a translating gramnfe, résult of parsing
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Sto— ( S30(d,9) A STam(g.d) || S3mas Sax) (r4.0)
S's — (Ad,g.NPjg(e d) A VPEz(e,g) || NPSg VPET) (r4.1a)
S50 — ( Ad,g.NP3g(e,d) A VPIqz(e,g) || NP3 VPIqm ) (r4.1b)
VP2 — ( Ae,g.lick(e) ANPEg(e,g) || licked NFg) ) (4.r2)
VP], — ( Ae,d.scolde) A ADV §gi(e) ANP} (e, d) | ADV §g scolded NByz )
(r4.3)
NP — ( Ae d.agente, d) A dog(d) || the dog) (r4.4)
NP2 — ( Ae,g.themée,g) Agirl(g) || the girl) (r4.5)
NP5 — ( Ae,g.agente,g) || she) (r4.6)
NP}, — ( e, d.themde,d) || him) (r4.7)
ADVE — ( Aesterr(e) || sternly) (r4.8)
o— ( Ae,d.scolde) ANPjg|(e d) || MADV { scolded NByg) ) (r4.9)
|\/|ADV7 — ( — || sternly) (r4.10)

Table 3.2: The synchronous grammar that encodes the set of possible translations of
the string in Figure 3.1 using the grammar of Table 3.1. There are two possible meaning
candidates, one that includes the sternmodifier, the other that omits it, depending on

whether rule r4.3 or r4.9 is used for the second VP.

the sentence in Figure 3.1 with the synchronous grammarhbieTal. By marking
nonterminals with the span they dominate in the string, tiaengnar enforces that the
string portion of the pairs it generates must be the sameaastirigure 3.1. However,
the meaning representation is less constrained, since #rerthe monolingual rules
that permit the optional omission efern yielding two possible candidates.

3.3.3 Synchronous grammar, transducers, and CCG

At this stage, let us return briefly to our discussion of tHéedénces among the tree
transformation- and CCG-based approaches to semantic gaesirewed in Chap-

ter 2. First of all, we note that the “tree transformationpegach could actually be
further broken down into approaches that employ tree tnaced and those that em-
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ploy synchronous grammar to map between trees, two difféoemalisms that were
developed by separate communities with a close relatipnshiwe could, in fact, view
the two popular semantic parsing paradigms as three. Hayad/three can be viewed
as simply different ways of defining a function mapping fraemis in one language
(the language of meaning representations, in our case)dih@n(natural language).
Under the tree transducer view, typically one conceptaalihe function by describing
an automaton that walks a tree-shaped meaning represerdatl translates it step by
step into a sentence, while under the synchronous grammadigen the function is
defined by derivations which simultaneously generate thening representations and
sentences. CCG takes a third view by defining a homomorphisweketsyntax and
semantics.

In fact, all three not only perform the same task; but theecadso deeper links in
how they are often applied. Shieber (2004; 2014) showedhledtee transducers and
synchronous grammars most commonly employed in NLP arevalguit, and even if
one ventures into the realm of so-called “mildly contextsséve” grammars such as
with synchronous Tree Adjoining Grammar, tree transduaagssynchronous gram-
mar still fall within a single overarching class of formalis CCG in its most general
form, has a somewhat less well studied relationship to therdivo formalisms, but
in computational settings, practitioners often restignselves to a simplified form
which amounts to a variety of CFG, placing it in the domain afidyonous context-
free grammar. Thus, no matter the paradigm, the vast majafrinot all) approaches
to semantic parsing can be identified as not only working enstime problem, but
also using formalisms of the same class with the same bagressive power.

There are various different formalisms with varying exgres powers and compu-
tational complexities referred to as tree transducersstesgmous grammar, or CCG.
For the following discussion we will primarily restrict ceideration to those restricted
forms that have typically found their way into recent sentaparsing applications. In
particular, for practical considerations, all three agdslly restricted to context-free
languages.

Considering this restriction, all three classes are equdpressive from the per-
spective of formal language theory, at least for the purpdsgeveloping practical
computational models, leaving it up to other consideratihen one chooses which
one to adopt for a particular purpose. For instance, CCG isastgap by a well-
developed linguistic theory and elegantly simulates vegisubtle linguistic phenom-
ena, while synchronous grammar and tree transducers weeégded largely by the-
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oretical computer scientists with little consideratiom fiaguistic theory, albeit with
some early exceptions involving Transformational Gram(@dwomsky, 1957; Cooper,
1975; Rounds, 1970). However, the linguistic theory that$e@CG its elegance as
a tool for modeling the syntax-semantics interface is ledpfhl for explaining the
relationship between word meaning and other aspects ofittmgrsuch as percep-
tion, which deals heavily with phenomena that are usuatiyved as lying outside the
scope of linguistic theory. Thus, CCG would need to be adamtdbde word learn-
ing task, requiring one either extend or compromise thauistge theory. Synchronous
grammars and transducers, on the other hand, are agnasitig koguistic theory, sim-
plifying the modeler’s task to some extent. In particulahile it is common to think
of synchronous grammar as generating a set of pairs (e.@nintgrepresentation-
sentence pairs), it is easy to add a third dimension to anghsgnous grammar so
that it instead generates triples. Thus, it is relativetgightforward to extend a syn-
chronous PCFG-based semantic parsing model to define a jolvalpility distribution
over world-meaning-sentence triples, provided that thddvs describable by some
context-free formalism such as a HRG.

Finally, one also might consider computational complexiEyen in cases where
CCG can be simulated by a CFG, the simulating grammar typicatyains far more
nonterminals than a typical CFG-based syntactic grammeudljrig to increased pars-
ing time. For this reason, among others, the existing toansition-based semantic
parsing systems often require less computational ressurde a practical concern,
this last fact is critical for our word learning experimentghere there is far more
ambiguity with its accompanying computational complexiycontend with than in
traditional semantic parsing.

Synchronous grammar can essentially be thought of as a ajema¢ion of tree
transducers, with tree transducers as a restricted cafiagledth regular tree lan-
guages, so the first choice is between the CCG and synchronamsngrr/tree trans-
ducer classes. The two points of computational complexitthe ease of extending a
model to the three-way relationship between world, megrand sentence leads us to
opt for a synchronous grammar or tree transducer for our weukthermore, because
there are important differences between the trees we wdlkamd those of the typical
regular tree language-based tree transducers, we willrgignadopt a synchronous
grammar view. As an additional benefit, it is also easierrik to the HRG literature
with a synchronous grammar, helping to ground our work incaber literature.
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3.4 Multi-weighted probabilistic context-free grammar

By associating a non-negative real valued weight with ealghand enforcing certain
simple constraints (specifically, that each weight is lbastone, and that the weights
of rules with the same left-hand side sum to one) allows orlevierage the power
of grammars for defining probabilistic models over derwas and their yields, be
they strings, graphs, trees, or, in the case of synchron@umsrgar, some combination
of these. In particular, one can compute the probability afeavation by simply
multiplying the weights of the individual rules and to congpthe probability of the
yield by summing over all possible derivation trees. Suabpbilistic grammars work
best when one is interested in the full joint probability lo& tderivation, but are less
well suited if one is only interested some marginal probgbiln the grammar-based
word learning models of Johnson et al. (2012; 2010), formimst, the grammars define
a joint probability over the scene, the meaning, and theantz, but the word learning
objective is the lexicon itself consisting of isolated weghired with their meanings.
Thus, evaluation requires integrating out many extra Wéemthat, while necessary for
modeling the full joint probability, are extraneous to thgiton.

Computing the necessary marginals may be more or less diffieglending on
the specific grammar, where independence assumptionsemthier the context-free
nature of the derivations can be exploited to improve efficye However, it may be
hard to model certain independence assumptions withostidatly re-factoring the
grammar which can have negative side effects, such as alwatigg class of grammar
rendering certain class-specific algorithms, such as fosipg, inapplicable. This
problem may be particularly severe in the case of synchmwammar since the
amount of information in a synchronous grammar rule is macgdr than that of the
corresponding rules in monolingual grammars, meaningthi@e is more to integrate
out, and, even worse, synchronous grammars are often har@ésen impossible to
re-factor into smaller rules without changing the languafjghe grammar. In these
cases it may be necessary to work with a less desirable madameterization and
then compute rule-internal marginals, such as, for exantipdeconditional probability
of the utterance given its meaning representation, by realizing rules in a post-
processing step. However, such a post-processing stepndbesolve the problem
of how to enforce independence assumptions within the metieh they cannot be
modeled by a simple re-factoring of the grammar, somethiagwill prove necessary
for implementing the models in Chapters 6 and 8.
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This section introduces a novel generalization of conesati probabilistic gram-
mars that addresses some of these problems without the aeedthfer re-factoring
the grammar or for a post-processing step by re-intergregtach rule as a collection
of multinomial random variables and computing the rule \Wwe@s a product of their
individual probabilities. The dependencies between thekeinternal variables can
be manually specified, allowing one to factorize the paransedf the model without
necessarily re-factoring the grammar rules themselvedtipung these rule-internal
probabilities together results in a conventional weigldeainmar, but the factoriza-
tion additionally defines a rule-internal Bayesian network&rdhe various features that
make the rule. In effect, while in a conventional PCFG, the right-hand-side is gen-
erated all at once as a single monolithic event, in a mulgiveid grammar the right-
hand-side is generated from several smaller events gavdiymea Bayes net. These
local Bayesian networks can define rule-internal indepecel@ssumptions, expand-
ing the space of models one can express without necesshahygag the grammar
rules themselves.

For example, the following two rules can be thought of as desg two different
probabilistic outcomes, each specifying how nonterminas &xpanded in a deriva-
tion.

A—BC
A—-DC

In a conventional PCFG, there are two random variables andgiesprobabilistic
dependency between them, one corresponding to the camdgianformation (i.e.,
the left-hand side symbol), and one corresponding to tharesipn of the left-hand
side symbol as follows:

A —BC.
~— ~—~
lhs rhs

The weights on the two example rules together help definerthtgapility distribution
P(rhglhs= A), where, in one case, the string B C is sampledfigr and in the other
D C is sampled.

However, under the multi-weighted generalization, thenedeawn forrhs can be
further broken down into smaller sub-events, leading torthér factorization of the
probability of A’s expansion. The outcome fdrs can, say, be broken down into two
separate variabletisy andrhs; corresponding to the first and second symbols of the
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string on the right-hand side as illustrated below:

A - B C.
~—~ ~
Ihs rhsy rhsy

If we like, we can choose to moddisy andrhs; independently of one another given
Ihs, leading to the following factorization:

P(rhs=B C|lhs=A) = P(rhsg =B|lhs= A) - P(rhs; = C|lhs = A).

There are many additional ways of factoriziRgrhs|lhs), either using variableghsy
andrhs; or some other way of breaking down the rules.

These multi-weighted grammars are related to the locallyralized local feature
models described by (Berg-Kirkpatrick et al., 2010), whiwhen applied to a PCFG-
based model, would weight rules according to a logisticasgion parameterized by
features of the rule. That is, like our multi-weighted graams) each rule is identified
with its own local probabilistic model, but in our case thedebs a Bayesian network
of multinomial variables instead of a logistical regressinodel. One advantage of
a Bayesian network over logistical regression is that a Bapesetwork permits one
to manually specify conditional independence assumpt@omsng particular features.
As a consequence, it requires extra work to compute margnodlabilities of specific
features in logistic regression, while, in a Bayesian neftwihiese may be built into the
parameterization of the model, depending on the specifizarkt Another advantage
is that since the variables of the Bayesian networks araactestito be multinomial, the
result is a product of multinomials just like for ordinary PG$; allowing one to em-
ploy essentially the same class of inference and estimatgorithms (e.g., maximum
likelihood).

The cascades of probabilistic grammars and automata aftploged in machine
translation to factorize larger problems into smaller pubblems are also of a simi-
lar spirit, and can be seen as a special case of multi-wealgiteanmar. For instance,
Knight and Graehl (1998) describe an approach to modelingignloan words in
Japanese as a three stage process involving (1) mappinglammiénglish to a phone-
mic representation, (2) applying Japanese phonologidak o adapt this English
phonemic representation to a Japanese phonemic form, anth(fing the Japanese
phonemes to the Japanese script. While each stage is mogetectlatively simple
string automaton with its own weights, they can be composg&ma single automa-
ton that models the full joint probability of the entire cade all at once, where the
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weights of the composed automaton are computed by muhiglthose of the indi-
vidual sub-automata. Chiang et al. (2010) describe an aftgorfor estimating the
weights of each individual automaton using only the souratarget surface forms
by essentially training the composed machine while tragkime individual factors to
each composite rule weight contributed by the sub-machihe$act, the composed
automaton is effectively a multi-weighted grammar whegeBlayesian network asso-
ciated with each rule describes how the weights of the idd&i sub-automata com-
bine, and our inference algorithm described in Chapter Sssrgglly a generalization
of the Chiang et al. (2010) training algorithm.

However, multi-weighted grammars are more general thamposed probabilistic
automata, since a multi-weighted grammar need not be trdupt@f composing or
intersecting separate grammars. Indeed, there is no deswrgposition algorithm
for HRG, since hyperedge replacement languages are notdclos®er intersection.
However, one can still define a factorization of rule weigthigt produce the same
effect as one might wish to model with such a cascade of smgpéanmars.

Formally, each rule is broken down into a sequenctaotforsby arule factoriza-
tion function¢ : X — (X x X)*, whereX is the set of possible rule features. That is
d(r) =da(r)-da(r) - ... - dn(r), essentially returns a Bayes net for rulevhere each
¢i(r) is a pair of features of rule of the form(c, e) defining the directed edges of the
network. Each of these feature pairs is assigned a weightatdtiere is also effec-
tively a weight functionw : ® — R*, which maps each ruleto a weight factorized
into a sequence of real numbets(r) - wp(r) - ... - wy(r), wherewy (r) corresponds
to ¢1(r), wp(r) to ¢2(r), and so on. Thuspi(r) = (e c) corresponds to probabil-
ity P(e|c) = wi(r), and, when multiplied ouip(r) defines the full weight of the rule
ity oa(r).

In the preceding example with ruleA B C, rhs, rhsy, andrhs; are all essentially
feature functions, where, in the ordinary PCFG case,

¢(r) = (lhs(r),rhs(r))
w(r) = P(rhs(r)|lhs(r))

and in the second case

0(r) = ¢a(r)p2(r) = (Ihs(r),rhso(r)){lhs(r),rhsy(r))
W(r) = wy(r)wp(r) = P(rhso(r)|Ihs(r))P(rhsy(r)[Ihs(r)).

Figure 3.4 illustrates a few examples of different posdiedtures; they could iden-
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tify substrings of rule right-hand sides, a count of the raminals, or some combina-
tion of these and other features. As in the PCFG case wheré&tsday rules fall in the
range O to 1, eacty (r) must also fall between 0 and 1. Likewise, where in the PCFG
case weights for rules with the same left-hand side sum toiarthis more general
setting we have the constraint that all weights correspanth feature pairs with the
same conditioning informatioa must sum to one. That i, .¢;(r)=(c—ke Wi(r) =1

for each fixed feature valde

One can view a parse under a multi-weighted grammar as eesBagtesian net-
work where each rule supplies some module which are bourethiegat the nonter-
minals of rules. Each of these modules can be defined fairkbfie but there are
some constraints. To maintain consistency with conveatiprobabilistic grammars,
w can only assign weights to features of the right-hand sidhéctware typically con-
ditioned on, but do not include, the nonterminal on the lheftd side (i.e., there can
be no cycles in the Bayes net). This way, derivation prob#slican be computed in
the conventional way by simply multiplying rule weights &tlger without fear of mul-
tiplying the probability of each nonterminal more than on&émilarly, nonterminals
on the right-hand side should be accounted for by the préibebiof the Bayesian
network. Otherwise, the derivation weight will fail to dedia full joint probability of
the variables of the network.

Let us consider some examples. Figure 3.4 contains two, nd&sandr 3.3, where
several possible features and their integer identifiere baen indicated. In the HRG
ruler2.3, feature functiorf; corresponds to the left-hand side and (VP in this case) and
f> to the external vertices and terminal root edgmo{d of the graph on the right-hand
side. To construct a conventional probabilistic grammanweuld define(r2.3) to be
just a single paix f1(r2.3), f5(r2.3)), wheref; identifies the left-hand side arfg the
entire rule, as shown in the figure. Assuming this sdhet-hand side, rulescheme
were applied consistently over the grammar, it would resudt rule weight of

w(r2.3) = wy(r2.3) = P(r2.3|VP). (3.3)

With the grammar in Figure 3.2, one would find thfatr2.2) = f1(r2.3), indicating
thatw, (r2.2) andwy (r2.3) must sum to one, forming a multinomial vector.
However, it is possible to define several alternative prdiséib models with the
same underlying grammar by just changing the rule factbozavith a redefinition of
wandd. In particular, one might want to further factorize the pabhity of r2.3 so that
the ADV and NP are independent. One could, for instance,tamtsa probabilistic
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Figure 3.4: HRG and synchronous HRG-CFG rules with example features for imple-
menting several alternative multi-weighted models with the same grammar. In rule r2.3
feature function f; identifies the nonterminal of the left-hand-side, and f; identifies the
entire right-hand-size graph, while fg includes f, as well as the number of nontermi-
nals. Similarly, f3 and f4 correspond to those nonterminal edges, and fg identifies the
entire rule itself. The features of Rule r3.3 are defined in a similar manner, where, for
example, feature functions f4 and fg indicate particular subgraphs (excluding NP and

ADV, respectively).

model that first selects the predicate and the number ofrefmlthe predicate has, and
then proceeds to choose the particular nonterminals faretiohildren one at a time.
This scheme could be implemented as follows:

P(r2.3|VP) = w(r2.3) = wn(r2.3) - ap(r2.3) - us(r2.3) (3.4)
where we have chosean(r2.3) = ¢1(r2.3) - ¢2(r2.3) - $3(r2.3) so that

$1(r2.3

)= (f1(r2.3), fs(r2.3)) —
wy(r2.3) = P(fg(r2.3)| f1(r2.3)) = P(Ae,d.scolde), 2 childrernVP)
$2(r2.3) = (f2(r2.3), f3(r2.3)) —
(r2.3
)= {
(

wp(r2.3) = P(f3(r2.3)| f2(r2.3)) = P(ADV (e)|Ae,d.scold e))
$3(r2.3 f2(r2.3), f4(r2.3)) =
w3(r2.3) = P(f4(r2.3)| f2(r2.3)) = P(NP(e,d)|Ae d.scold e))
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In this casew; (r2.3) is the probability of generating scoldpredicate with two chil-
dren (fs(r2.3) = Ae,d.scolde) A ehas 2 children) given a VP on the left-hand side
(f1(r2.3) = VP). The probability of ADV appearing as a child given parpredi-
catescoldis indicated by, (r2.3) = (f2(r2.3), f3(r2.3)), and the NP is generated in
exactly the same manner accordingpistr2.3). In this way, a multi-weighted gram-
mar can implement a greater range of models than could anargdprobabilistic HRG
such as the one in Example 3.3 where the predicate and tltergdmterminals are all
generated in a single step without any independence assunspt

The functionsw and¢ behave exactly the same if the underlying grammar is syn-
chronous. To define a conventional probabilistic synchusngrammar that jointly
generates both the meaning and sentence using rules su8t8as Figure 3.4, we
would definep to be a scalar as follows:

$(r3.3) = (f1(r3.3), fo(r3.3)) = wy(r3.3) = P(r3.3|VP).

That is, just as with the conventional probabilistic HRG iraBple 3.3, we assign one
weight per rule and condition on the left-hand side.

Weighted synchronous grammars are also often used to inepleronditional dis-
tributions, like, for instance, the probability of genéngta sentence given a particular
meaning representation. This scheme can again be impletheith a single weight
per rule, but where the rule probabilities are conditionedh® meaning portion of the
rule as well as the nonterminal on the left-hand side, giviei@d (r3.3) = $1(r3.3) of
(f2(r3.3), fo(r3.3)), implying

wy(r3.3) = P(r3.3|Ae,d.scolde) A ADV[g(e) ANRg(e d), VP). (3.5)

We can also model the effect of composing rul@s3 andr3.3 so that the rule
weights are the product of those of Examples 3.3 and 3.5, limgdiae generation of
the meaning representation followed by its translatioa English.

P(r3.3|VP) = w1 (r3.3) - wp(r3.3) (3.6)

Whereg is defined so thafi(r3.3) = (f1(r3.3), f2(r3.3)) andd(r3.3) = (f2(r3.3), f10(r3.3))
to indicate conditioning information of the left-hand safed(left-hand side, meaning
respectively, yielding probabilities

wy(r3.3) = P(Ae,d.scolde) AADV (e) ANP(e,d)|VP)
wp(r3.3) = P(ADV[g scolded NRj|Ae,d.scolde) A ADV[g(e) ANRg(e d),VP).
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Finally, it is also possible to factorize synchronous rulegabilities just as we did
for the HRG rule in example 3.4.
P(meaninglhs) P(wordgmeaning

P(r3.3]VP) = wy(r3.3) - wp(r3.3) - wa(r3.3) - ou(r3.3) - s (r3.3) - we(r3.3)

For P(meaninglhs), i.e., the probability of the meaning given the left handesidie
assign the same factorization as for Example 3.4.

$1(r3.3) = (f1(r3.3), f11(r3.3)) = wy(r3.3) = P(Ae,d.scolde), 2 childrenVP)
$2(r3.3) = (f2(r3.3), f4(r3.3)) = wp(r3.3) = P(ADV (e)|Ae,d.scolde))
$3(r3.3) = (f3(r3.3), f5(r3.3)) = w3(r3.3) = P(NP(e)|Ae,d.scolde))

For P(wordgmeaning, i.e., the probability of the sentence given the meaning, we
assign a similar factorization, where we first generate #rb wnd the number of left
and right arguments, and then choose the locations for thé amxl NP arguments
conditioned on the meaning.

$4(r3.3) = (f3(r3.3), f7(r3.3)) =
wy(r3.3) = P(scolded1 left, 1 right|Ae,d.scold e))
$5(r3.3) = (f4(r3.3), f5(r3.3)) =
3
{

) =
(
)
ws(r3.3) = P(ADV, leftjAe,d.scolde) A ADV (e))
)
(

(I’33 f5(l’3 3) fs(r3.3)> -
we(r3.3) = P(NP, right|Ae,d.scold e) ANP(e,d))

Finally, in principle, we should also assign a probabilibygenerating the bijection
function ~. This step was folded into the final step of Example 3.6 to #eneously
generate the bijection and the sentence, but it is alsolgegsiinclude it as a separate
step and weight it with yet another factor. However, if we stoain the grammar to
only match nonterminals in the meaning with nonterminalshef same type in the
syntax, the choice is deterministic (in the case of this)ride one can omit this factor
(which is a constant of 1) without impacting the probalshti

3.4.1 Tied weights

It is also possible to definé so that the same factor is shared across multiple rules,
which can be useful for tying parameters. For instance, idenghe factorization
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scheme of Example 3.6 where each rulbas two factorse (r) which models the
probability of the meaning representation, angr) which models the conditional
probability of the utterance given the meaning. One mighitwalesr3.3 andr3.9 of
the example grammar in Table 3.1 to have the same probadiilggnerating meaning
representations with and withostern This parameter-tying could be accomplished
by simply defining¢ such that rules3.3 andr3.9 share a feature padr(r3.3) =
$1(r3.9), resulting in a common factan (r3.3) = wy(r3.9). This kind of parameter
tying can be useful for smoothing purposes (Headden et@b9)or for integrating
out certain details like in this case, where the model wotfiecévely smooth over
the decision of whether to introduce ADV-type modifiers sashternin the meaning
representation foscoldevents.

3.5 Conclusion

The formalisms laid out in this chapter establish a geneaahéwork for modeling a
wide range of problems. Most of the ideas are already weadbdished and thoroughly
studied with their own set of algorithms, and we will makeegdive use of this fact in
the semantic parsing and word learning models described apt€hs 6 and 8. Even
the more novel elements such as the synchronous grammanmhaiito-lingual rules in
Section 3.3.1 or the multi-weighted grammars of SectioraBedclosely tied to previ-
ous work with probabilistic context-free grammar with itfgensive set of algorithms.
For instance, the same general parsing algorithms used f8rdak be used for syn-
chronous grammars with mono-lingual rules, and multi-weeg grammars are built
on top of context-free style grammars and make use of mosteofame algorithms
for inference, such as probabilistic CKY.

This is not to say that innovation is completely unnecesdaut/the novel com-
ponents have a higher potential applicability due to thelatronship to a common,
general framework. Chapter 4 describes a novel parsingitdgooptimized for work-
ing with a particular subclass of HRG for describing langsagfeunordered tree, and
Chapter 5 lays out the derivation of an inference algorithmefstimating the rule
weights of multi-weighted grammars. Yet, even in thesegabe choice to work with
formalisms so closely related to CFG and the family of simitamalisms such as
regular tree grammar will prove useful. In fact, the unoedetree parsing algorithm
is closely based on a standard algorithm for RTG parsing, asdve will see, the
training algorithm for multi-weighted grammars follows @i that may already be
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familiar from a similar algorithm for PCFGs and makes use dieotcommon tools
such as the inside-outside algorithm for computing the etguecounts of rules from a
parse forest. Furthermore, by focusing on general formalisather than ad hoc solu-
tions, it becomes much easier for others to make use of thggethmic innovations,
potentially applying them to very different problems.



Chapter 4
Parsing Unordered Trees

This chapter describes the parsing algorithm for unordesss which we use for the
word learning and semantic parsing models in Chapters 6 and/8 make use of
hyperedge replacement grammar for our parsing model, Btriaethe formalism to
a specialized class that only generates languages of uedrtiees. The choice of
context-free graph grammars as the basic underlying fasmahakes it easy to inte-
grate the grammars with context-free string grammars foraseic parsing while still
modeling the commutative property of the predicate cakwliuthe meaning expres-
sions. However, graph parsing is exponential in the moseéggitase, and even the
algorithm of Chiang et al. (2013) which is polynomial in thepgh for our grammars
is still quite expensive. Instead, we define a parsing algorivhich is general enough
for a broad class of tree languages but sufficiently speedlto allow relatively effi-
cient parsing. In fact, the grammars we work with are rouginiglogous to regular tree
languages where the trees are unordered, and, also likiaregee grammar, parsing
is linear in the size of the tree. At a very high level, the pamsssentially explores
every possible permutation and parses as per a regularraegrgar while fixing each
possible ordering. Of course, in spite of this theoretiradr time complexity bound,
parsing can still be surprisingly expensive due to the faat there is a large number of
possible orderings, a number that is exponential in the gramConsequently, while
the basic parsing algorithm itself is very simple and can taesgnted fairly quickly,
the bulk of the chapter is dedicated to describing optinorat for reducing the com-
binatorial blowup in the grammar constant.
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Figure 4.1: (a)-(b)Two equivalent unordered trees. (c)-(d) Two distinct derivation trees

(which are ordered).

4.1 Unordered vs. ordered trees

Derivation trees such as (c) and (d) in Figure 4.1 are ordevkdre the order dictates
which nonterminal is expanded by which rule. We can see filwrderivation tree in
(c) that rulerl, for instance, has two nonterminals. The first nontermsakpanded
by applying ruler2 and the second liyl. This contrasts with (d), where the opposite is
true, i.e., the first nonterminal is expandedrdyand the second by2. Because the two
different orderings of 2 andr4 indicate different expansions for each of the nontermi-
nals and therefore represent distinct sets of derivatiblesprdering is important. This
same convention of using the order of siblings in the daowatree to indicate which
nonterminals are expanded by which rules is general to xbfree formalisms of all
kinds, producing ranked, ordered derivation trees. In fawe test for context-freeness
of a particular formalism is whether its derivation treesrica regular tree language
(sets of trees which are necessarily ranked and ordered).

However, trees used to represent predicate calculus expnessuch as (a) in Fig-
ure 4.1 ideally should not be sensitive to order, since thed interpretation is invari-
ant over alternative orderings such as (b). That is, botdstaee logically equivalent to
the expression

look(e) A themée,y) A frog(y) Aloc(y, z) Ajar(z) A experiencer(y,s) A happy(s)

A agente, x) A dog(x).
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In fact, the reordering of the tree is similar to reorderingjancts in the logical expres-
sion, where the commutative property of the conjunctiorrat@en guarantees that the
interpretation does not change. Similarly, reorderingibliregs in an unordered tree
does not change its interpretation. Since ordering doematier for the conjuncts in
predicate calculus due to the commutative property, negtheuld the ordering of sib-
lings in the corresponding tree representation. Thus,endriflered trees are necessary
for representing parses, we use unordered trees for meagjmgsentation expres-
sions. Parts (a) and (b) of the figure can thus be thought ofaslydifferent ways of
drawing the same tree which corresponds to a single meagjmgsentation expressed
in predicate calculus notation.

To capture this unordered-ness property effectively onstrage an appropriate
formalism, where we choose a subset of HRG which generatgadaes of unordered
trees. To understand the dichotomy between ordered vsdereat formalisms, note
that an ordered formalism would be forced to treat the twestfa) and (b) in Figure 4.1
as distinct, potentially leading to different parses arifétent probabilities. Thus, un-
der some particular grammar, parse (c) might yield tree ffd) (d) might yield (b).
For instance, one may wish to use a grammar to define a langiiageaning repre-
sentations as defined by set of predicate calculus exprsssfn ordered formalism
would not be ideal for this given that it might both accept aegct a particular ex-
pression depending on the particular tree being parsedila@iynone might wish to
compute the probability of a predicate calculus expressging a weighted grammar,
and a weighted ordered grammar might produce differentghitibes depending on
the tree. The problems could grow even more complicated vainenconsiders syn-
chronous grammars. An unordered formalism such as HRG, ootliee hand, would
assign the exact same set of parses to both (a) and (b),epgexy these issues.

The fact that derivation trees are ordered while the yieldnerdered results in
there being many possible derivation trees with the sanid that differ only in order
and otherwise are completely symmetric, like (c) and (d)iguFe 4.1. Thus, a parse
forest tends to consist of many nearly identical trees, ttfat plays a central role in
the parsing algorithm described in Section 4.3. First, harnaeve formally define the
particular class of HRG we use for our tree languages.
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4.2 Unordered tree-generating HRG

Next, we define the restricted class of HRG for generatingdered trees, formally
expressed as a tupl&, A\, £, S, R.) where

e 2 is an alphabet of terminals,

e Al is an alphabet of unary edge-generating nonterminals,
e Zis an alphabet of binary edge-generating nonterminals,
e Se Al is the start symbol, and

e R is asetof rules.

Rules come in two specific forms: those that generate vere@tdan the form of unary
edges and those that generate binary edges. For the fofjaiscussion assume that
N e A/, E E1,....En € E, and ae € Z. Then the two types of rule are:

e Node-generating rules of the form
N — Ax.a(x) AE1(X) A ... AEn(X) (4.1)

generate a node label (in the form of a unary edge) and intethe child non-
terminals h, ..., Ey that generate the edges leading to its subtrees.

e Edge-generating rules of the form
E — AXo.€(X0,X1) AN(X1) (4.2)

generate a binary edge and introduce the nonterminal tingtrgees the subtree
rooted at the child vertex.

There are a few key properties of these rules. For one, teexlevays exactly one
external vertex (i.e., one argument of the lambda expreysgmeach rule right hand
side. This feature enforces the tree property so that ther@@reentrancies in the
generated graph. Also, each right hand side contains gxaudl terminal and zero or
more nonterminals drawn either framif the rule is edge-generating o¢ if it is node-
generating. Noting that S is a node-generating nontermdeivations begin with
a node-generating rule and alternate between edge-gmgeeatd node-generating
rules. These HRG-based ranked, unordered tree grammarsaogeaus to regular
tree grammars without hidden states, except that the cbidenminals E, ..., E, are
unordered and the binary edges of the tree are labeled.
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Algorithm 2 The basic parsing algorithm for unordered trees.
function PARSE(vertex-rooted treg(x))

Ch = parse chart fot(x)
for d = deptht(x)),...,0do
for all verticesy in t(x) at depthd do
Chit(y)] <= MATCH_VERTEX(Ch,t(y))
if d > Othen

Chit(parenty),y)] < MATCH_EDGE(Ch,t(parenty),y))
return Ch

Algorithm 3 The vertex-matching algorithm. Returns all rule matchestlfier root
vertex of treet(x) assuming all matches for the child edgesxdiave already been

found.
function MATCH_VERTEX(parse charCh, treet(u) = a(u) At(u,v1) A ... At(u,vp))

ltems« 0
for all rulesr = N — Ax.a(x) AE1(X) A ... AEn(X) € R do
for all (Ej,,...,Ej,) € permutéEy,...,Ey) do
if (Ei, — 01,1) € Chit(u,v1)] A... A (Ei, = On, Th) € Chit(u,vp)] then

Items« Itemsu {(r, (i1, ...,in)})}
return ltems

4.3 Frontier-to-root parsing

The parsing algorithm is similar to a regular tree grammasgra Proceeding from the
deepest nodes at the frontier of the tree and gradually wonkp the tree to the root, it
first matches each node of the tree with a rule of type (4.1}laewl matches its parent
edge with a rule of type (4.2). Algorithm 2 presents the pseode. The main point
where the algorithm deviates from a regular tree parserhewmit handles the lack of
ordering among child edges on the right hand side of nodergéng rules.

Before going into the details, let us first define some notatiodenote subtrees
of the yield, where there are two types of subtrees, vertexed and edge-rooted sub-
trees. The subtree in Figure 4.1(a) rooted afitbgvertex corresponding to the logical
expressiorirog(x) A experiencer(x,s) A happy(s) Aloc(x,y) Ajar (y) is an example of
a vertex-rooted tree, and if we prepend the the binary edgeaémée, x) we end up
with an edge-rooted tree. We will us@) to denote the subtree rooted at verteand
t(u,v) to denote(v) plus the edge linking to its parent vertex.. We can define them
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Algorithm 4 The edge-matching algorithm. Returns all rule matches ®rdlot edge

of treet(u,v) assuming all matches for vertehave already been found.
function MATCH_EDGE(parse charCh, edge-rooted tregu,Vv) = e(u,v) At(V))

ltems« 0
for all rulesr = E — Axp.€(Xo,X1) AN(X1) € R do
if there is a matciN — o, 1) € Ch[t(v)] then

ltems< ltemsU {(r, (1))}
return ltems

recursively:
t(u) = a(u) At(u,va) A... At(u,vn)
wherevy, ..., vy areu’s children, and
t(u,v) = e(u,v) At(v).

As Algorithm 2 proceeds from the leaves toward the root,sttgieach node- and
edge-rooted tree finding parse items for node-generatidgedge-generating rules.
Parse items consist of a rule and a mapping from the nontatsnonm its right-hand
side to the child subtrees of the corresponding edge or naueh we denote by

(A—=Bm

whererttis a bijection between nonterminals in rule-A3 and the subtrees of the tree
being parsed. In terms of the derivation tree, succesdiualting such a match means
that there is at least one derivation that expands eachmointd in (3 to the subtree it
maps to inpi.

These parse items are recorded in a parse chart which simsfdyHe set of parse
items found for each subtree. The parse chart is a tree-Shdgia structure in its
own right where each node is identified with some node- or edgtd subtree of
the ground term being parsed and consists of the set of pass found for the
corresponding root node or edge. As the parser visits eadh and edge, the al-
gorithm alternates between Algorithm 3 which enumeratesgidems corresponding
to the node-generating rules and Algorithm 4 which enunesrdgems for the edge-
generating rules.

Note that each parse is just a tree of the same general shape &ge being
parsed (modulo sibling ordering considerations). Thukspatses follow the same
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shape and are in effect identical except for different liagsl to indicate the different
rules and permutations which are used. Consequently, theg@darest itself can also
be represented as a single tree where each node is a congtasitere containing all
the different possible rule-permutation pairs for the sedbbf the yield in the full set
of parses.

Algorithm 4 describes the edge-matching procedure whisardgally just looks up
the set of rules that contain an instance of the binary edgpe tmatched which have
nonterminals that are consistent with the previously mhys®tion of the yield. Be-
cause edge-generating rules are comparatively simplé&ioomg exactly one terminal
edge and one nonterminal in parent-child relation, thezenarordering issues, and the
parser behaves no differently from how one might proceedamsipg a fully ordered
tree.

Algorithm 3 returns parse items for the node-generatingsroff type (4.1) and is
considerably more complex due to the need to account foattledf ordering on the
yield tree. In ordinary RTG or CFG parsing, the built-in odgrof the yield constrains
which nonterminals can cover which subtrees or spans ofitld.yAs an example,
suppose we had a CFG rule such as

S— NP VP.

Due to the ordering constraint built into CFG, if we had matthiee NP to a span
of the yield string covering, for example, words 5 throught& VP could only be
matched to a span starting at 6. However, this is not the aasanfunordered tree
grammar rule such as

EVENT — Ax.look(X) A ROLE; (x) A ROLE(x),

where the ROLE nonterminal could be assigned to @igentand ROLE to thetheme
of the tree in Figure 4.1(a) or vice versa. In fact, becauseyibld is unordered, any
nonterminal on the right hand side of the rule can, depenaiinine specific grammar,
generate any subtree of the yield. Thus, instead of simplgimay each nonterminal
to a subtree according to a set order as one might do if the yele ordered, we
must explore all the possible mappings between nontersarad subtrees. Each such
mapping between nonterminals and subtrees correspondpdaudieular permutation
of the nonterminals on the rule right hand side (or, equiviyesubtrees in the yield).
Thus, much of the work of the parser consists of enumeragngptations, and parse
items are constructed by temporarily enforcing each ofdlpessible orderings of the
nonterminals and parsing as though the tree were fully edder



70 Chapter 4. Parsing Unordered Trees

Treating the grammar as constant, the complexity is exéledysame as for pars-
ing in the ordered tree setting with regular tree grammaisat Ts, assuming a tree
consisting ofm| vertices, the algorithm has bo@®(|m|) time and memory complex-
ity. The complexity of both the edge- and node-matching itigms are absorbed into
the grammar constant, since the number of rules and pelrongahat must be ex-
plored are entirely grammar dependent. Nevertheless, rirargar constant can be
quite large, especially if there are large grammar ruleb wiany nonterminals on the
right hand side (resulting in many possible permutatioas thust be explored during
vertex-matching). In fact, our problem is closely relatedhat of Immediate Domi-
nance/Linear Precedence parsing (Shieber, 1984), a dieagom of General Phrase
Structure Grammar parsing intended to handle propertiss-atlled free-word-order
languages. Barton (1985) pointed out that the lack of ordesmrule right-hand sides
in these grammars leads to time complexity that, while pogial in the string, is ex-
ponential in the size of the rule right-hand sides. We aredatith the same problem,
as is any more general HRG parser such as Chiang et al. (201@)evdn there is a
relatively efficient method of encoding many of the necgsparmutations which can
help bring the grammar constant down to something more ipedcain optimization
described in the next sections.

4.3.1 A compact encoding for symmetric parses

It is possible for distinct, but symmetric, parses to geteeisomorphic trees. In fact,
there can be an exponential number of such symmetric pateggever, it is possible
to detect such symmetries even before explicitly enumegatiem by simply look-
ing at the rules of the grammar, suggesting an optimizatiah ¢an greatly improve
parsing performance both in terms of memory and time conitglexJnder this op-
timization, instead of exhaustively enumerating all thensyetric parses, the parser
need merely produce one from which the others can be cotestias necessary.

For instance, consider derivation trees in (c) and (d) otifFdgd.1. Assuming a
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grammar like the following, both derivation trees genethtesame unordered tree.

EVENT — Aelook(e) A ROLE(e) A ROLE(e) (r1)
ROLE — Ae.agente,x) AENTITY (x) (r2)
ROLE — Aetheméde x) AENTITY (x) (r3)
ENTITY — Ax.dog(x) (rd)
ENTITY — Ax.frog(x) A ROLE(x) A ROLE(X) (r5)
ROLE — Ax.experiencer(x,e) AAFFECT(e) (r6)
AFFECT — Ae.happye) (r7)
ROLE — Ax.loc(x,y) A PLACE(y) (r8)

PLACE — Ax.jar(x) (r9)

Although the derivation trees are distinct, they are pelffesymmetric, include the
exact same rules, and have the same probability no matteérwéights are assigned
to the rules of the grammar. These permutations arise fr@mntiernal symmetries
within the branching rulesl andr5. Each of the two rules has two possible identical
permutations, which combine in a multiplicative fashiodion a total of four possible
parses, of which (c) and (d) are just two. For probabilistiggoses we need not list all
four; instead we can annotate the parse items correspotwlihg applications of2
andr5 with the number of symmetries. These extra symmetry carartde ignored if
one simply wants the probability of a single tree, but if orents to, say, compute the
sum of all trees such as when calculating inside probadslita the inside-outside algo-
rithm, one can simply multiply them into the product of théerweights. For instance,
when computing the inside probability of nodg we multiply the probabilities of the
sub trees rooted a6 andr8 by that ofr5 as well as by 2, the number of symmetries
for the rule. Similarly, applying the same procedurerfbimultiplies in an additional
factor of 2, so the total probability of the parse and its 3eotlymmetric brethren is
just the probability of one of these parses times 2- 2.

More generally, consider node-generating rules of typ®) (A here may be multi-
ple nonterminal edges sharing the same label so there ar&anh distinct symbol
types among th&;,...,E,. Let these symbols bgAy, ..., A} where there are; in-
stances of eacA; among thekEs,...,E,. Then there arﬂrzl n;! permutations of the
tree on the right hand side of the rule that are all identiwa@lrte another. This implies
that if a single match is found for ruke there may be as many fjﬁ;l n;! symmetric
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matche$. This is because, given the lack of ordering on the yielddgeE; (x) can be
expanded to produce a particular subtree of the yield, secdotd any other nonter-
minal edgeE;(x) of the same label (i.e., whefg = E;), andE;(x) can be expanded
according to the exact same set of derivations as dauid.

Because the symmetric parses all have the same probabitityhensame yield,
for the purposes of finding the most probable parse or comgtitie expectation of a
rule, they are all equivalent, making it sufficient to starstjone instead of amg‘zl n;!
parses. To preserve probability mass in the parse forestawennotate each parse
item with the number of symmetries in the match, which we déhotedsyms, and
multiply this in when computing the total probability of tlymmetric parse trees.
That is, to compute the total probability of a particulargeaplus all of if its symmetric
brethren, one simply needs to compute a single product:

[ -syms, (4.3)

rex

whereX is a specific parse,is a particular instance of a grammar ruleXinwy, isr’s
weight, andsyms is the total number of symmetries involvimga quantity we show
how to compute in equation 4.4.

The resultis a reduction in memory usage by a factor that eastarge ag|<_; nj!
for each node in the tree being parsed since there are thig feewer parse items
that must be explicitly stored. Furthermore, the funcip@mmutein Algorithm 3 can
be implemented to only return the distinct permutationsrehy potentially reducing
time complexity as well (see Knuth (2005) for an algorithm éaumerating multiset

permutations). The number of permutations that we mustidenss still considerable,

n!

L but it may be a sizable reduction compareda!to

4.3.2 Excluding duplicate parses

While we take care to count the symmetric parses even as we éxggicitly enumer-
ating them, in doing so it is important that we do not doublardaduplicate parses.
The full set of[];nj permutations will sometimes include identity permutasighat
produce multiple copies of the same parse tree, each of vghiohld only be counted
once. Otherwise algorithms like the inside-outside atyamiwill over-estimate the
total probability mass of the forest. This case comes up weheartex in the yield
tree has multiple identical subtrees among its immediaseatedants. In matching a

This 1k, ni! term is an upper bound. We will return to this in Section 2.3.
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Figure 4.2: The six isomorphic permutations of an unordered tree with two identical
subtrees. The permutations can be factorized into those producing distinct orderings
(horizontal axis) and the identity permutations arising from the identical A; and Ay sub-

trees (vertical axis).

rule with such a tree, a parser must account for all posselengs between the non-
terminals of the rule with the subtrees of the yield, effegir involving enumerating
permutations of the tree. However, owing to the identichliees, some permutations
lead to identical trees, resulting in duplicate parses.

Consider the example tree and its six permutations in Figute Bach of these
permutations correspond to a particular rule matchingduyparsing, and thus a set of
parses that include that particular rule matching. For @angiven a rule such as

N — Ax.a(x) A C(x) AD(x) AE(X),

(a) corresponds to an assignment of nonterminal C to subBjree to B, and E toA;.
The assignment corresponding to (d) would produce the sagudtrsince subtreely
andA; are identical and it does not matter whether they are relspcpaired off with
C and E or E and C. The same holds for permutations (b) and (e¢lhas\(c) and (f).
Thus, there are only three distinct sets of parses ratherdixa and a parser should
only count the three, omitting the others as duplicates.

To prevent this kind of double counting of parses, the pamsest filter out the
permutations that lead to identical parses. Duplicategsacan only arise from the
identity permutations, since a unique permutation of noniteal symbols necessarily
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produces a unique parse. Thus, we focus on those perm@étiarhave been summa-
rized by the symmetry counts for each parse used in the cdrapanetry encoding
scheme. Say, one were matching a rule with three identicabnminals such as

N — Ax.a(x) A E(x) A E(X) A E(X).

In this instance, the parser would produce a single pansetdeover all six cases since
there is only one unique permutation for the rule, and wowlthgute the maximum
number of symmetries as 3! 6. However this total set of permutations can be fac-
tored into two different sets of permutations, the distianatl identity permutations, as
illustrated in Figure 4.2, where each individual permatattan be reinterpreted as the
composition of one of the distinct permutations (a), (bXa)r followed by one of two
identity permutations. In fact, the total set of permutasi@6 in this example) is the
product of the number of distinct permutations (3) and thalner of identity permuta-
tions (2). Consequently, knowing the total number of pertimnta and the number of
identity permutations allows one to compute the number stfrtit symmetric parses.

In general, the number of identity permutations can be cdaetphy counting the
instances of each nonterminal-tree pair in the matchingd: (EQ\), and 1 of(E,B) in
this case. Say, there afsuch pair types ang instances of each of theggairs. Then,
the number of identity permutations |i'$f:1n!. In the compact symmetry encoding
scheme we compute the actual number of symmetries with wibi@nnotate each
parse item as

K il
syms = n'f—ln' (4.4)
Mi=1 Ti!
In our example this becom%% = 3. Thissyms can then be used as per equation 4.3
to compute the total probability mass of a set of symmetrisga

4.3.3 Canonical orders and hashing

As in CFG parsing, it is often useful to index rules by theirtidpand sides. For
instance, one can optimize the vertex- and node-matchgagiims to simultaneously
match all rules with isomorphic right hand sides. This iglgliy more complicated
in an unordered formalism since there are many isomorpbestthat may still be
distinct because they differ in the order in which the claldiare listed in the rule



4.3. Frontier-to-root parsing 75

representation. For example, there could be two diffengetr

A — Aelick(e) NAGENT(e) ATHEME(e)
B — Aelick(e) \THEME(e) AAGENT(e)

One simple way of handling these orderings is to define a deabardering so
that all isomorphic trees will receive the same represemtaso the two rules in our
example would have identical (not just isomorphic) rightéhaides. A simple lexical
sort on nonterminal labels suffices.

4.3.4 Correctness and Complexity

Determining each possible way a particular node-gengragiammar rule could fea-
ture in a particular parse, one must consider all possibies\tfee nonterminals on the
right-hand side might expand to produce the subtrees initld peneath the corre-
sponding vertex. Each of these ways of generating the sagt@responds to a partic-
ular permutation of the nonterminals of the rule, matchivegrtonterminals to subtrees,
implying that parses correspond to rule permutations. Araagtive enumeration of
such permutations covers all possible parses, but, asgoomuit in Section 4.3.1, brute
force enumeration is not only expensive but, in many casesecessary. Employ-
ing the optimization described there, the parser avoidsnenating the unnecessary
derivation trees by partitioning the parses into subsetymimetric parses. For present
purposes, we define the symmetry relation such that any pparses are symmetric
if and only if either one can be constructed from the otherfgylyang identity permu-
tations to the grammar rules (i.e., permutations of the eromihal symbols that result
in the same sequence). The symmetry relation in turn defimpestdion of the total
set of possible parses, where any two parses appear withsathe subset if and only
if they are symmetric. We call these subsets the symmetsgetaof the parse forest.
Consequently, the parser need identify only one represeniadrse from each sym-
metry class since all other parses in the set can be recotesiriny permuting the parse
tree according to the symmetries in the constituent granmuies.

To show that this compact parse encoding scheme correatywats for all parses
even without explicitly computing many of them, we must destoate that all nonterminal-
to-subtree mappings are correctly accounted for withoet-oer under-counting any
parses in the final parse forest. The full set of permutatfonsa rule withn non-
terminals is simplyn!, where, as discussed in Section 4.3.2, a certain propoéie
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redundant since they lead to duplicate parses. In factgaikito account these du-

=1t
thety,..., Ty are the counts of the unique pairings between rule righttisaate nonter-

plicates, there are actually onﬁﬂj permutations that lead to unique parses, where

minal edge labels and their final yields according to theg#ee. The total number
of permutations can be factored into the product of the seiifpermutations (the per-
mutations which lead to distinct label sequences) and #hatiiy permutations (which
result in identical label sequences):

( n! ): n! ‘ Hlj(:]_nj!
Miza ! |_||j(:1nj! =

N J/ N

total permutations multiset permutationsidentity permutations
whereny, ..., Nk are the number of occurrences of each of the unique nontarsym-
bol labels among the nonterminal edges.

First, consider only the explicitly enumerated permutai¢the multiset permuta-
tions returned byermutg which we argue are in one-to-one relation with the sym-
metry classes. Multiset permutations only produce unigggiences of nonterminal
symbols. However, according to our definition for “symmetrisymmetric parses
can only be produced by permuting sibling subtrees of theepaiith identical non-
terminals at their roots. Consequently, given two distinattiset permutations, it is
impossible for one to be constructed from the other by apglginy such permutation,
implying that their corresponding parses must belong t@isgp symmetry classes.
By a nearly identical argument, any two parses drawn fromra¢gpaymmetry classes
must also correspond to separate multiset permutationas, There is a one to one
relation between the multiset permutations of rule righdh sides and the symmetry
classes of the parses.

Then, to show that the algorithm neither over- nor undemt®parses, it suffices to
demonstrate that the compact encoding scheme itself ¢clgreaxcounts for all parses
within a given symmetry class. That is, given a particulansyetry class and a repre-
sentative parse, we must show a one-to-one relation betiveedentity permutations
of the constituent rules and the symmetric parses thensdByedefinition, given two
parses from the same symmetry class one can be construmtethie other by permut-
ing sibling subtrees that expand nonterminals of the sammdel These permutations
correspond to rule identity permutations. Thus, the onlyglthat remains to be shown
is that there are no more identity permutations than thexgparses in the symmetry
class (i.e., they do not lead to duplicate parses), whichaveydcontradiction.

Assume that there are two distinct permutations that somdéad to the same
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parse tree. Since the permutations are distinct, we haveuatisn where at least
two nonterminals map to separate subtrees of the yield.elictrresponding parses
are identical, however, this requires that these two nanitels, in spite of expand-
ing to cover separate portions of the yield, still have id@ttexpansions (otherwise
the parses would differ). However, this situation is alsdradsed by Section 4.3.2,
which eliminates this case from the symmetry counts whetirdgavith implicitly
represented parses. Furthermore, because the permstaticiespond to the same
parse, they must both belong to the same symmetry class wahle@st one is encoded
implicitly.

Therefore, all parses are accounted for and none are guersented by either the
multiset permutations or the implicit symmetry counts.

4.3.4.1 Complexity

Given that Algorithm 2, which outlines the parsing procegyust visits each vertex
and edge exactly once and neither the vertex- or edge-magtsbbroutines depends on
the yield, complexity is linear in the size of the tree. Hoeg\this result is somewhat
deceptive given that so much of the work is being done by Aflgor 3, whose com-
plexity is entirely dependent on the grammar. In fact, tgkime grammar back into
consideration, the naive implementation, which simplyuassspermute(k, ..., Ep)

is the set of permutations without consideration for dwgibcsymbols among ths,
results in a complexity oO(|R | - n! - |m|), where|R | is the number of rules in the
grammar anch is the maximum number of nonterminals on the right-hand sfdey
rule.

Considering the rate of growth of the factorial function, tiieterm can easily
dominate in practice, motivating the optimization desedbn Section 4.3.1 which
exploits symmetries in the rule and limits consideratioth®unique permutations of
the multiset of nonterminal symbols among teof which there are—k— wherek
is the number of distinct symbols among tBeandn; is the number 61‘ éccurrences
of a particular symbol among thege The count of multiset permutations is at its
Iargest when there are equal numbers of each symbol leadiag tipper bound of

B 1 . Thus, the compact encoding optimization produces a totajpdexity bound of
O(| R - e - Imi)-

However, it is important to note that the optimization onlyilds when there are
symmetries in the rule; if it is completely asymmetric (i#ne nonterminal symbols
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associated with edgés, ..., E, are all distinct), we are stuck with the original bound of
O(|R|-n!-|m|). On the other hand, the algorithm is relatively fast if treee have a low
branching factok. In the best case, wheke= 1, there is only one distinct nonterminal
symbol among thé&jy, ..., E,, and the vertex-matching algorithm need only consider a
single permutation for each rule since all the others predyonmetric parses, leading

to a bound of5(|R | - |m|). Thus, grammar design features such as the number of rules,
rule size, and how symmetric each rule is, all have impoitapacts on performance,
where rule symmetries in particular can play a crucial rolparsing feasibility.

4.3.5 Relation to graph parsing

Many of the details of unordered tree parsing are also aggkcto HRG parsing in
general. For instance, just as the unordered tree parserexplere the permutations
of nonterminals in the rule right hand side trees, so too raugtneral HRG parser
explore the isomorphisms of right hand side hypergraphssé&mmently, HRG parsers
are also plagued by symmetric parses and can benefit fronothpact parse encoding
scheme described for unordered tree parses, the diffeleneg that instead of ordi-
nary permutations, a HRG parser must count graph isomorghiangeneralization
that reduces to tree permutations in the case of our unatdieze restriction of HRG.
In fact, during one of our experiments described in Chapteve3tested the general
HRG parser described by Chiang et al. (2013) both with and witthos compact sym-
metric parse encoding scheme and found that it reduces nyezansumption from a
prohibitive 27GB or so to approximately 5GB. Similarly, orenadefine a canonical
form for general HRG rule right-hand-side graphs, allowiagihdexing just as in the
tree case. We are unaware of any prior paper that details tsnizations for either
unordered tree or general graph parsing, however.

Similarly, and potentially more seriously, we are unawdrany HRG parsing pa-
per that discusses how to correctly account for duplicategsa(Section 4.3.2), and
because the duplicate parses are a side effect of the lackdefilng on the yield,
something unfamiliar from string parsing, even expertstiimg parsing are unlikely
to immediately notice the problem. Most existing graph paypapers are primarily
theoretical and aim mainly to demonstrate polynomial timenhership checking al-
gorithms rather than to construct parses per se, leavindetzals of how one builds a
complete parse forest to the reader. Even Chiang et al. (2@4®)se interests were,
in fact, in building explicit parse forests, did not addr#ss issue even though it has
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potentially profound impact on any probabilistic modeltthelies on the parser for
inference.

Beyond these HRG general implications, the parser also emmjogeased efficiency
due to the restriction to tree-shaped graphs. For instdinedime and space complex-
ity of the graph parsing algorithm of Chiang et al. (2013)iggéneralQ((39-|m|)**1)
andO((29- |m)**1), whered is the maximum degree of any vertex in the graph and
k is the graph’dreewidth another quantity closely related to the density of the lgrap
For our purposed] is a constant of the grammar, and the treewidth of a treeeshap
graph is just 1, so the algorithm has both a time and space legitypof O(|m|?) as
compared to our tree-specific parser’s linear bound.

Furthermore, this is only the asymptotic analysis. Muchha implementation
work of Chiang et al. (2013) algorithm deals with tracking tmundary of the sub-
graph dominated by each node of the parse tree, analgousrtg spans in CFG
parsing. Just as in CFG parsing, where combining two pamsesitender a new parent
node in the parse is only valid if the two spans (subgraplesjiejoint, and if they are
contiguous. However, it is more difficult to guarantee thsge conditions in general
graphs, a detail that accounts for much of the implememtatiohallenge of Chiang
et al. (2013). However, in the case of our grammars, a subaede identified by a
single vertex, its root, saving us a great deal of memoryleal, and we need not con-
duct any explicit intersection or contiguity testing besawe join all subtrees under a
given node simultaneously.

4.4 Tree-string synchronous parsing

If utterance meanings are represented by trees, mappingéetmeaning and utter-
ances can be modeled as a synchronous tree-string gramahtesitogether a mono-
lingual unordered tree grammar for parsing the meaning ambolingual context
free string grammar for modeling the utterance. Parsindpi; gcenario can be for-
mulated as a two stage parsing problem where first we parsieetheaising the tree
portion of the grammar rules and then subsequently prunesthdtant parse forest to
only include parses that are also consistent with the sporgon of the input. Each
parse item of the tree parsing algorithm corresponds toeaafulhe original grammar
where the tree portion yields some subtree of the input bynsiebone or more partial
derivations in sefX. To convert such a monolingual parse item to a parse item of a
tree-string synchronous parse, the parser must find atdeastf these partial deriva-
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tions in.X that also yields some substring consistent with the inpintgst This process
can be implemented in a straightforward manner by conygttie parse items of the
tree parsing stage into a projection grammar as describ&edation 3.3.2, thereby
encodingX as a grammar, and then parsing the string using this new gaamm

Crucial to the complexity analysis, the tree parser prodaceacked parse forest
requiring memory linear in the tree. The vertex- and edgé&ehiag algorithms output
the set of all possible matches for each vertex and edge,raating the grammar
as constant, there af(1) per vertex/edge (leading to the linear bound for the entire
tree). Converting the parse forest to a projection gramnaah enatch corresponds to a
single rule. Thus, assuming an input tree of simg the first stage yields a projection
grammar withO(|m|) rules, in time which is also linear ifjm|. The second stage
then takes this projection grammar and uses the stringgmoofithe rules to parse the
utterance which is of lengtiw|. Any string parsing algorithm capable of handling
rules of arbitrary size such as Earley’s algorithm (Earl&y0) can be adapted for the
purpose, which in general has tiré|® | - |w|3), where|R | is the number of rules in
the string grammar. Using the projection grammar of the §itage, then, the second
stage of the synchronous parsing algorithm has complé&Xiy| - |w|3). Overall time
complexity includes the cost of both stages, where treangaosly takes timed(|m|)
and disappears from the asymptotic analysis as it is dosdnay the second, string-
parsing stage.

In generating the projection grammar, to accommodate &sgnous monolingual
rules of the type described in Section 3.3.1, the parser dmsbme additional work
just prior to the string parsing stage. This work basicaliyads adding any string-
only monolingual rules from the original grammar whose-tehd-side nonterminal
appears on the right-hand side of any rule in the projectramgnar (repeated until
there are no more monolingual rules to add). The number skthdes is dependent
only on the original grammar and adding them to the projeagi@mmar has no effect
on the asymptotic complexity analysis. Downstream, in thag-parsing stage, these
extra rules produce an additior@(|w|®) time complexity, which, like the first stage
parsing cost, also disappears in the final asymptotic aisalys

Some complications arise, however, when applying the commparse encoding
scheme described in Section 4.3.1 since monolingual syrmesehay not hold when
one considers the rule as a whole, requiring some addittwaradling.



4.4. Tree-string synchronous parsing 81

4.4.1 Symmetries in synchronous grammars

Because synchronous nonterminals shared across multgreents of a rule right
hand side can break symmetries, we need to be careful abautvechandle parse
symmetries, particularly if the synchronous grammar dbesra language of ordered
structures such as strings. That is, a tree-string synolmogrammar will need to be
treated with additional care, since nonterminals that appeboth the tree and string
portions of a rule right hand side can no longer be reordeesly

In translating the tree in Figure 4.1, for instance, we migbply a synchronous
grammar rule such as the following.

EVENT — ( Aelook(e) A ROLEg|(e) AROLEg|(e) || ROLEL looked ROLEg) )

When considering the unordered tree alone, there are paltgiivo symmetric matches.
So if we were only interested in monolingual parsing, we darhit one of the parses
and simply multiply the probabilities of the other by two wheomputing total prob-
ability mass. However, the string portion of the rule bretdessymmetry due to the
ordering on ROLFjand ROLE. Ignoring the string portion of the rule and treating it
as a monolingual unordered tree grammar rule, it does naemahich of ROLEg or
ROLEz maps to

agente, x) A dog(x)
and which to
themde, y) A frog(y) A experiencer!(y,s) A happy(s) A loc(y, z) Ajar(2).

In translating these expressions into words, one mightebgbe first to translate as
something like “the dog” and the second as “at the happy indge jar” to arrive at a
the sentence “the dog looked at the happy frog in the jar” trassy ROLEf gener-
ates “the dog” and ROLfg generates “the happy frog...” In contrast to the unordered
tree case, however, the result on the string side is vergreffit if ROLEf were to
generate “the happy frog...” and ROLE2 “the dog”. That is,levin the monolin-
gual unordered tree case, each nonterminal only generatgdstiee of the unordered
tree which can be generated in any order without changingitgid, but in the syn-
chronous case each nonterminal generates a subtreensgisir. While subtrees
can be reordered, substrings cannot, thereby constraihegossible mappings and
eliminating the symmetry. Thus, when computing the numlbesymmetries during
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synchronous parsing we need to consider all componenteafght hand side of the
rule.

In synchronous grammars that link unordered with orderechétisms (such as
HRG and CFG), one may lose much of the benefit of the compact stnorparse
encoding scheme, but there is still a potential benefit ifglnmmar contains mono-
lingual rules like those described in Section 3.3.1. Consideule where there are
monolingual “background” nonterminals BG.

EVENT — ( Aellook(e) A ROLEz)(e) AROLEz(e) ABG(e) ABG(e)
|| ROLEg looked ROLE )

A rule like this might be useful if the fully specified eventshiour roles, perhaps a
location and temporal specifier in addition to the agent dine, but where only
the agent and theme are expressed in the sentence. In thisjusisas before, any
symmetries involving the two ROLE in the tree are broken leydtdering in the string,
but the background nonterminals BG only appear in the uneddgee and thus there
may be symmetric parses even during synchronous parsing.

We can encode the permutations of the monolingual nontadmijast as in the
fully monolingual setting even as we explicitly enumeratie permutations for the
shared, conventional synchronous nonterminals such &Q@h& nonterminals in the
example rule. We still multiply rules by the symmetry codﬂ%ﬂ: but where then,

[Ti=1 i
andt; counts are limited to the monolingual nonterminals.

45 Conclusion

The unordered tree grammars defined at the beginning ofttajgter combine features
of both hyperedge replacement grammar and regular treengaasn The partial order-
ing of general directed graphs lends the formalism the tghkiti generate and parse
languages of unordered trees, a feature that is useful frkimgpwith tree representa-
tions of a subclass of predicate calculus expressions.efgdime time, the similarities
to regular tree grammar permit a far more efficient parsiggrthm, one that is lin-
ear in the size of the tree, an efficiency which will proveicat for exploring a highly
ambiguous space of candidate meanings such as those tidentee scene graphs de-
scribed in Chapter 7. Furthermore, because the grammarsbaiext-free derivations
they are compatible with context-free string grammarsilifating integration into a
synchronous grammar for jointly modeling meaning and ser@gairs for semantic
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parsing (or scene-meaning-sentence triples for word ilegyn Specifically, training
a semantic parser based on a synchronous unordered frepggammar would have
a time complexity ofO(|m| - |w|®) where|m| is the size of the meaning representa-
tion and|w| the size of the sentence, &(|w|?) if one assumefm| ~ |w|. Parsing is
therefore more expensive than typical for conventional ofiagual syntactic parsing
but comparable to other approaches to semantic parsingasilong (2007) and less
than others such as ti@(|w|’) time complexity of Kwiatkowski et al. (2010). Ad-
ditionally, the grammar class and algorithmic innovationlined are more generally
applicable than those employed by many other semantic garsefact, many of the
optimizations and implementation details apply equallyl weeHRG parsing in gen-
eral, increasing the generality of the innovations desdilm this chapter to a much
wider class of languages which may be valuable for many @pplications.






Chapter 5
Inference in Multi-weighted Grammars

Any grammar formalism with context free derivation trees @@ used to define a
probabilistic model by assigning weights. For instance, B€Ho this by assigning
weights to each rule such that the sum of the weights of adbkrulith a given left hand
side is one. In particular, the model thus defined is a produstultinomials, where
the probability of a derivation tree is a product of the wesgbrf its constituent rules.
That is, given a derivation tree its yieldy and rule weight®, we have the following

probability:

p(y:x[8) = [] 6(r)™™
rex.

or if there are multiple items to be parsed (d4), as is more commonly the case,

N
ply:x|6) = ] ] 8}, (5.1)
I=1reR

wherer is a rule of the gramma€(r) is its weight, and (x) is the number of times
appears irx.

Recall our definition for multi-weighted grammars in Sect®4, where each rule
weightO(r) is factored into a sequence of weights ) = wy (r)up(r)...wn(r), and each
scalar weighto; (r) is a single parameter of a multinomial identified by the ctiading
informationc in feature pair;(r) = (c,e). Then Equation 5.1 holds equally well as
for PCFGs, and inference is consequently very similar, butmwuet pay some care to
the factorswi(r). Before we proceed, it is useful to list a few definitions, viteill
make the following derivation flow more smoothly. First, wefide ¥ as the set of all
feature pairs associated with any rufg, a subset off where all feature pairs share
the same conditioning informatiar) and C, the set of features used as conditioning

85
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information.

F:={(c,e)=¢i(r):i€ZreR}
Fe:={({c.e) € T}
C:={c:(ce) e F}
Every factor in a multi-weighted grammar is defined as a damdhl probability,

P(elc), whereP(elc) is a multinomial with a set of weights as parameters. This set
and the individual weights are denoted@yand6.(e), respectively.

Oc :={wi(r) 1 i(r) € Fc},
Bc(e) := wi(r) € 6 whered;(r) = (c,e) foranyr € R,i € Z
That is,Bc(e) = P(€|c) is the specific weight for paifc,e), and 6. is the full set of

all parameters foP(-|c). It will also sometimes be useful to refer to the full set df al
multinomials:

0:={6::ce C}.

Using this notation, Equation 5.1 can be expressed in tefifeature pairs:

N
p(y.x[8) =[] [] 8(r)™* (52)
rexk.

I_l !—l nr(Xi)nc,e(q)(r))
reR (ce)ed(r)

nce Xi)

;zgzl

C

wherenc e(r) andnc ¢(X) are, respectively, the number of instances of feature(pasy
in ruler and in all the rules of derivation tree Note that this feature pair-based form
reduces to Equation 5.1 if each rule only has a single fe@ireconsisting of the rule
itself paired with the left-hand side symbol as the conditig information.

In the expectationmaximization (EM) algorithm, we are gy interested in find-
ing the point estimate fod that maximizep(y|0), wherey is the vector ofN items
in the training data (strings in syntactic parsing or gréigle- pairs in a synchronous
grammar-based semantic parser, for example). In the Bayesiting, however, we
place a prior over each of the multinomial parameter 8gsnd estimate a posterior
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distribution over both the vector of derivatiornand the full set of multinomial param-
etersf.

_ Meec P(Bclote) 14 P(Yi,Xi[©)
J Meec P(Belate) MLy Yxex; P(vi:X6)d0

One particularly popular choice for the prip(6c|a) is the Dirichlet distribution:

(5.3)

r(Z(c,e}eﬂfc GC(e))

D(Bclac) =
( c| C) |—|<C7E>E%F(O(c(e)) (c.e)eFe

Bc(e)c® 1, (5.4)

Like 6, the Dirichlet parameters is a set of parameter settings, one parameter set
o perBc. While 6.(e) is the particular weight i associated with feature eacha
is a set of positive real valued pseudocounts for the numiceraurrences of features,
including that ofe denoted by (e). If eachac(e) > 1, the Dirichlet can be interpreted
as defining the probability over a particular assignmenthéovteight.(e) given that
each has been seen(e) — 1 times. When the pseudocounts are @(e) < 1, the
Dirichlet defines a sparse prior that assigns high prolgh weight vectors with
only a few weights having large values. This can be usefulfiproximating power
law distributions, which are endemic to natural languagel, @an also be helpful for
unsupervised learning where there is often a large set ahlgesules but only a few
are useful and we do not know a priori which ones they may be.

The Dirichlet is also notable as tlsenjugate priorto the multinomial. This means
that given a Dirichlet prior over multinomial parametéxs the posterior probability
of B; given observationsg is also Dirichlet. That is,

P(X, Bc|ac) = p(X|Bc) D(6clac) = P(Bc|x,ac) = D(6c|Ac) (5.5)

whered¢(e) = nce(X) +0c(e). As we will see, this property greatly simplifies infer-
ence.

In spite of this nice property of the Dirichlet, however, alplem often arises in
Bayesian inference, and our situation is no different, witleeefull posterior (Equa-
tion 5.3) proves to be intractable. This has lead to a numbstrategies that employ
approximations that are more readily computed, such aslseaggy variational Bayes
(VB). We employ the latter strategy, making use of the poptrtegan field” assump-
tion to limit the space of solutions to a tractable set. Theidapproach of VB has
been outlined by Bishop (2006), who presents a high levebdhiction to variational
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Bayes. Our algorithm is very similar to that of Kurihara andoS2006), who present
a mean field-based VB algorithm for PCFGs. In fact, the apprasmsely resembles
that commonly taken with models based on products of muttiats such as HMMs,
a special case of PCFGs, which was worked out in detail by Be&R or the popular
latent Dirichlet allocation model (Blei, 2004).

In this chapter we derive a batch learning algorithm formjting a lower bound
on the joint posterior probability of the parses and data%ection 5.4 describes the
algorithm itself that closely resembles the Expectationxidtézation algorithm for un-
supervised grammar rule weight estimation. Since our alinpurpose is to simulate
a human learner, some may object that a batch learner, whahd by repeatedly
iterating over the entire data set, is less appropriate dnaterative learner which vis-
its each training item exactly once, updating parameteesael step. However, our
primary interest is in the model itself rather than any df#dbe training algorithm
or data set size may have on learning performance. A batdritilg usually does
a better job of exploiting a small data set to optimize thereea objective, making
it a better choice for testing the model since a less optieining procedure could
confound model properties with those of the learning praced Furthermore, it is
often straightforward to adapt a batch learning algoritlemain incremental learning
procedure. Kwiatkowski et al. (2012), for example, deserém online Variational
Bayesian Expectation Maximization algorithm, essentiallyincremental variant of
the algorithm described by Kurihara and Sato (2006). In, fagt own algorithm can
be adapted in exactly the same way, so researchers inttiasgxploring learning
progressions, measuring changes training item by trairiérg can easily make the
necessary changes.

5.1 The mean field approximation (8,x) = q(08)q(x)

Since the integral in the denominator of the expression lier gosterior in Equa-
tion 5.3 is intractable, we look for an appropriate appraadionq(6,x) ~ p(6,x|y,a).
In particular, we assume the feature weights and the demstare independent,
i.e., q(8,x) = ge(B)ax(x). The basic idea is then to define a lower boufid] <
Inp(y,w|a) in terms ofg and then apply the calculus of variations to findj éhat
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maximizesL|q].

Inp(ylcr) = In | p(6la) p(y x|6)decx
p(Bla) p(y, )
:In/q(e,x) o daox
p(ela)p(y,XIe)}
q(6,x)
p(ela)p(y,XIe)}
q(8,x) '

The last step is arrived at through Jensen’s Inequality, thrsdfinal quantity is our

> Eq [In

lower boundﬁ[q] which we are to maximizé Equivalently, this maximization is often
visualized instead as a minimization of the quantity

p(8la)p(y.X8)] [, p(8la)p(xly.6)
e ]‘ E“{'” a(6.%)

which is the Kullback-Leibler divergend€L(q||p). That is, maximizing the lower

Inp(y|a) —Eq {

bound is the same as minimizing the KL divergence betweerapproximation and
the true posterior.

Simplifying the lower bound by applying our independencsuasption yields the
following formula:

L{q] = Eq[In p(y, x|8)] +Eq[In p(8Jar)] — Eq[In(8,x)]
= Eq[Inp(y;x|8)] + Eqp In p(8|a)] — Eqq INq(6)] — Eq, [INa(x)].  (5.6)

We can optimize functionaL[q] subject to the constraints thgt8) andq(x) both
integrate to one (they should be probability distributiamsing the method of Lagrange
multipliers, with the Lagrange function:

] = Eq Inply,X0)]~ Ea, Ina0] 4 e [ a0 1)

+ gy Imp(OIe)] s Ing(®)] + o ( [ a(B)a- 1)

1The problem formulation may be familiar form EM. However tive case of EM, the objective is
different because there is no prior o#teading to a slightly different lower bound

o [ B

whereq(x) is just p(x|y, 8) with a particular assignment fér

(EM objective)
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Then we have the following derivatives:

5t de
5~ [In p(y,x|6)] +In p(Bja) —INq(8) — 1+ Ag e /Q(G)de— 1
de

Y4
2 = Eg Inply.x(0)] - Ina(x) — 1+, g = [ aaax—1

Setting the derivatives to zero and solving grandgy yields:
_ p(Bla) exp(Eq, [Inp(y,X[6)])
J p(6a) exp(Eq, [Inp(y,x|0)]) d6”

() = exp(Eg, (I p(y. x(6)])
T Jexp(Eg, [Inply, x[0)]) dx’

o (6) (5.7)

(5.8)

5.2 Deriving q(0)

Plugging in the definitions fop(B|a) and p(y, x|6) in Equations 5.4 and 5.2, respec-
tively, results in the following expression for the exp¢icta Eq, [In p(y,Xx|0)]:

N
Eq, Inp(y. X|8)] = Eq, [Inr! Py, re>] (5.9)

N
- ;qu [In p(yi, xi[6)]

- iqu lm M ec<e>“c~re<ﬁ>]
i= (ce)eF
N
= Eq, [nC,e(Xi)]> InBc(e)
Z3s

=1In I_I ec(e)ZiN:l Eax[Nc.e(%)]
(c.e)eF
N
—1In Bc(e)2i-1 Eax [Ne.e(Xi)]
cle_lc (c.,(la)_elfc
Note that although we only assumed independence bet@vaadx, the factoriza-
tion of Eq, [In p(y,x|0)] produces an even stronger independence result. Spegificall
0e(6) can be expressed as a product of independent probabdgidsy combining
Equations 5.7 and 5.9.
P(8cltc) [ c.0c 7 Bl €)2172 S el

de(0) = _ = [ 9e.(6c)
CIG_IC J p(Bclac) [Niceer Bc(e) 2 Eacnee(x)] 06, cle_|C
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Simplifying gg, yields

p(ecfdc) M (c.e)eFe Oc(e)ZiN:l Eqx [Nc.e(%)]
JpBclac) Miceer ec(e)ZiN:l Bax [nc.e()] 4@,
By introducing a change of variables

qec (ec> =

N
ac(e) =ac(e) + Zl Eq, [Nc.e(Xi)] (5.10)

and making use of the definition of the Dirichlet distributio Equation 5.4 we arrive
at the final simplification:

( ) |_| c.e e?cec(e)%( &-1
B(o) ™t [ Mceen Bc(e)9e(®-1de

=B(6) [] 6c(e)*® L.
(c.e)eTe

0o (Oc) = (5.11)

Here, the beta functioB(a) = [[cees 0.(e)?<(®~1d@ is the partition function for
the Dirichlet distribution.

Thus, gg,(8¢) is also Dirichlet with parameters.. We have essentially just re-
derived the proof of Dirichlet-Multinomial conjugacy skéed in Equation 5.5.

5.3 Deriving q(X)

All that is left is to find the optimal variational distriboth over derivation treeg(x),
which we note from Equation 5.8 is defined in terms of the etqigmEg, [In p(y, X|0)].
The definition ofp(y,x|8) in Equation 5.2 takes us most of the way.
[N
Eap NPy, X[6)] = Egs | In[] ] ec<e>”cﬁe<m]
i=l(ceecF

N

— Eg | I 8 (e)“cﬁem)]
qu L ilj!cle_lcmgl% )

N
= Ne.e(Xi)Eqg, (INBc(€)].
i; CGZC <c,é§e % =

Making the variable substitutioBy(e) = exp(Eg,, [In6c(€)]) we get

N

Eqe [IN P(Y, X|6)] :.Zl ZC< >Z Ne.e(%) INBc(e)
ceC(ce)cFc

=In r! D C!3>_| (e)NeeXi). (5.12)
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Finally, plugging this expression fdq, [In p(y, X|8)] into the formula previously de-
rived for q(x) (Equation 5.8) produces

N 6
Ox(X) = Mecc Miseress Ol o r!qu Xi) (5.13)
er)q ncecn ceetfe eC el

which, like gg(0), can be expressed in terms of a product of separate prdigabigk
tributions over the derivation trees of the individyal
To computeé we make use of a standard result for the Dirichlet distrimgti

Eqe, [In6c(€)] Z‘P(ﬁ((:(e))—”’(< >Z ac(e)) =
cecthc

~

Be(e) = exp(Eq, IN6c(e)]) = exp<w<ac<e>> —w( ac<e>>) . (5.14)

(c.e)eFe
Thesed parameters are sub-normalized, i e 0c(€) < 3 (ceje s Oc(€) =1,
shown by Jensen’s Inequality:

6c(e) = exp(Ep(a,ja) [INB:()]) < exp(INEpg jao)[0c(€)]) = Ep(or/ac)[Oc(E)]-

The distributiong(x;) is the variational counterpart {@(x;|y;,8), which is the pos-
terior probability of a derivation tree given the rule weigh and a particular data
itemy;. In fact, q(x) takes exactly the same form, except thais substituted for
the multinomial parameters qf(x;,yi|8). Because is sub-normalizedg(x;) is not
a true posterior, but the normalization constant in the denator guarantees that it
is, nonetheless, a genuine probability distribution inoien right. Consequently, it
is not necessary or desirable to re-normalize éhchn fact, doing so will destroy a
particularly felicitous property of th&#(-) function, which is clear from the following
approximation:

X (1)) {%@2 f Ge(e) < (0.1

Gc(e) —3 if Ge(e) > 1

That is, exfW(dc(e))) effectively subtract% from the expected counts while tak-
ing care to keep everything well defined by avoiding negatouents wherii¢(e) is less
than%. This is precisely what allows VB to model sparsity, subtiragcounts from
rules so that those for which we see very little use get onlgrg small weight.

2See Appendix A for a derivation.
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5.4 The variational Bayes inference algorithm

To summarize, we have found th&;) andq(x;) that maximizeZ[q] by taking deriva-
tives of the Lagrangian, setting them to zero, and solvinglding the variational
distributions

d(6c) = D(Bclac) (5.11)

N |_|(c,e>ef éC(e)nC’e(Xi) 5.13

) 2xex [iceer Bc(g)ee” (643

which have parameters
N
Oc(e) = ac(e) +'Zlqui [Nc.e(Xi)] (5.10)
Bc(e) = exp <W(dc(e)) —¥( ; dc<e>)) : (5.14)
(c.e e

The parameters af(6;) are defined in terms af(x;) and the parameters qfx;)
with respect to the parametersgiB.). When computing thé parameters, the inside-
outside algorithm efficiently calculates the variationadlgability of a derivation tree
g(xi). Thus, we can perform an EM-like alternation between catug and6. 3
Just as we would in EM, we use the inside-outside algorithootopute the expected
counts of the rules, from which we can, in turn, estimate thelper of occurrences
of each pair(c, e), using the relatiome ¢(X) = nce(r) - N (X), wherenc¢(r) is the num-
ber of times(c,e) appears in rule. This expected count is denoted by &y(e) in
Equation 5.10. Then we use these parameters to estimatggbeted values of the
parameters.

Repeatedly alternating between computing these two expmtiathe algorithm
eventually converges to a local maximum of the variatiopaldr bound. This is es-
sentially the same as for the conventional EM algorithm &bineating the rule weights
of ordinary PCFGs, but in the case of the multi-weighted grammheé parameters
are identified with individual factors of the rule probatisw(r ), rather than complete
rule probabilities themselves. In factgi(r) is a scalar and (r) just identifies a single
feature pair comprised of the rule and its left-hand sidentime algorithm is identical
to the PCFG case, and this assumption would result in exdwlysame expression

3Because of the resemblance to EM, this procedure has bded ¥8EM. Unlike EM, however,
the procedure alternates between computing the expectedsvaf two different sets of variational
parameters and lacks a maximization step.
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for the objective function presented by Kurihara and Sat®@2 for PCFGs. We will
now describe this objective function for the more generakaaf full multi-weighted
grammars.

5.5 The lower bound

For judging whether the procedure has converged, as webraa iumber of other
things such as model selection, it is useful to have an expdionula for computing

the variational lower bound.|q], sometimes referred to as the evidence lower bound
(ELBO), or negative free energy. The general form of the eqodor the mean field
assumption is Equation 5.6, but it is possible to get a sfioption using the formula
for q(x) (Equation 5.8).

exp(Eg, [In p(y,X(0)])
Jexp(Eg, [Inp(y,x|6)]) dx

— Eq[Inp(y, x[6)] — |n/exp(|5qe [In p(y, x|8)]) dx

Eq INq(x)] = Eq, [In

Substituting this foEg, [Inq(x)] in Equation 5.6 yields the following formula far[q):

L[] = EqlIn p(y:X/8)] + Eq In p(8Jar)] — Eqy ING(6)) — Eq, [Ing(x)
—In [ exp(Eg, I p(y.x[8)]) -+ Egy [ (B])] — Egy (inc(8)].

Breaking things down term by term results in the following:

In/exp(qu [In p(y,x|8)]) dx_In/r! [T 8c(e)=*dx (from Eq.5.12)
ceC{ce efc
N
:Zlm ST [ 8@
i=1 xeXceC(ceef
EqelInp(6ja)] = 5 Egq [INp(8la)] (apply Eq. 5.4)
ceC
= Z InT( Z oc(e)) — Z InT (ac(e))
ceC (ce)eTe (c.e)eFe

+ (ac(€) — 1)Eqgg, [IN6c(€)]
(c ‘gefc !

:ZInr( 2 oc(e)) — Z InT (ac(e))

ceC (c,e)€Fe (ceese

+ (ac(e) —1)Inb¢(e)
(c (gefc
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Eq[Inq(6)] = chnr(< ; Gc(e))—< ; InT(Gc(e))
ce ceeTc c.eefe

+ Y (6c(e) — 1) InB¢(e). (from Eq. 5.11)
(c.e)eFe

Finally, putting it all back together again, we arrive at

N
L[Q]:Zln ST [ Geere (5.15)
i=1 xeXceCl(cecT
+3 (Y ae)— Y Inf(ac(e)+ § (ac(e)—1)inbe(e)
ceC (c.e)e e (c.e)efe (c.e)eFec
—InT( z O Z InT (Gc(e) z (G¢(e )Inec()
(c.e)eFe (c.e)efec (c.e)eFe

The first term can be computed by adding the inside “prolgbif the start sym-
bol for each training item and is produced as a by-produdi@irference algorithrfh.
In fact, it is exactly the same as the quantity computed irBkesetting where there
is no prior, but wher® has been substituted for

5.6 Estimating Dirichlet parameters with variational EM

The basic VB algorithm treats the Dirichlet parameteras fixed quantities, which
are assigned manually at the start. However, if we want toraatically estimate the
Dirichlet prior parameters, a la Empirical Bayes, we canwdea kind of Variational
EM algorithm where the E-step performs the updates for thiatanal parametera
and®, and the M-step maximizef;[q] with respect toa. Although working with a
different Dirichlet-Multinomial model, Airoldi et al. (20B) did precisely this, as did
Braun and McAuliffe (2010) working with yet another combioeatof model and prior.

One approach to performing the update in the M-step is teearNewton-Raphson
algorithm, requiring the first and second derivativesbtﬂi] (Equation 5.15). For sim-
plicity, assume the Dirichlet priors are symmetric, ig;(e) = a. for all (c,e) € ¥,
and that 7c| = Kc. The only terms that depend directly arare the ones in

EqelInP(Bla)]] = 3 IF (Keac) — KelnT (ac) + Ke(ac — 1) InBe(e)

ceC

where Irgc(e) = Kic Yceesin 6.(e). This expectation is essentially just that of the log
of the likelihood of a set of multinomial parameters underiaddlet. Consequently,

“Technically, S ex Meec Micees Bc(€)™™) is not a proper probability becausk is sub-
normalized, but the inside-outside algorithm works justshme.
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maximizingZ[q] reduces to that of estimating the Dirichlet parametersrtieatimizes
this likelihood, which is exactly the problem addressed bigkd (2000) and our solu-
tion follows the same form.

Computing the gradient and second derivative,

gla0) = 0 = Ko (Wi(keoe) ~ Wia) +Indc(e))
% = ddL—eEg] =Kc- (ch/(Kcac) - W/(ac)>7

we arrive at the following Newton-Raphson update rule:
A ,1 A~
dZ[q] "dZ[q]
new __ o
W(Keae) — W(ac) +Inbe(e)
KeW'(Keae) —W(ac)

However, sincex is a Dirichlet parameterZ;[q] (and its gradient) is only defined for

:aC_

ac > 0 which sometimes leads to a violation of the assumptionsevithin-Raphson,
resulting in a negative value f@®". One way around this is to simply re-initialize
ac whenevera; < 0, but this is inelegant and slows convergence. Anothercampr is
to introduce a change of variables in the gradient so thaniains well defined and
then search for the root of this new equation. Here we chagseexp(a;,) and the
derivative of the gradient with respectapbecomes

T~ e = Kerexplal) (Ko (Ke-explel)) — ¥ (expi))).

leading to a new fixed point equation:

W —a..exp| — W(Kcac) —W(ac) + |néc<e> .
ac- <KCLIJ/(KCaC) - LP/(aC))

This update is well behaved as longasis initialized to some valid parameter
setting (i.e.ac > 0). (Convergence is still slow for roots wheagis close to 0, but we
have at least sidestepped the need to re-initialize.) tastical to the MLE solution
for p(Bc|oc) where8, is observed except the variational parameter ve@as filling
in for 6¢. In fact, any MLE solution could be adapted for our purposas klinka
(2000) describes several alternatives for computing thieidet MLE.

The resultant coordinate ascent algorithm works just likg BM algorithm; the
expected sufficient statistics @n’n this case) are computed during the E-step condi-
tioned on some initial choice of parameter settings, and these statistics are used
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to compute a new MLE for the model parametex$ ih the M-step. By repeatedly
alternating between these two steps we eventually contergdocal optimum. The
only difference from standard EM is that the E-step is a fult to convergence of
the VB algorithm outlined in Section 5.4, and the MLE compuie the M-step is

approximate, based ob[q] rather than the true likelihood which is intractable.

5.7 Conclusion

The algorithms outline in this chapter for training multeighted grammars is both
simple to implement and highly general. In the end it is vemilar to the standard
EM algorithm for estimating rule weights in a PCFG. In factugtions 5.10 and 5.14
have the same form as the mean field VB algorithm for PCFGs (iduai and Sato,
2006). The biggest difference is that the multinomial pageers6; are defined, not
by rule left-hand sides but rather by the more flexiplginction for multi-weighted
grammar, which, in terms of implementation, is mainly a eratif indexing. Indeed,
the algorithm can be used to train PCFGs or ordinary prolstioisynchronous gram-
mars when thgt andw functions are defined appropriately. It works just as well fo
end-to-end training of cascades of synchronous grammarsasto the algorithm of
Chiang et al. (2010) for finite state automata, provided tlaengnars are composable,
but is more general still since it does not require that thétimueighted grammar be
decomposable into a cascade.






Chapter 6
Semantic Parsing

This chapter presents an adaptation of work previously ghield in Jones et al. (2012b).
However, we have translated the tree-to-string model desdrithere to the multi-
weighted synchronous tree-string grammar framework laidio@hapters 3 through
5.

In this chapter, we introduce a model for semantic parsinglemented in our
multi-weighted probabilistic synchronous HRG frameworkatébed in Chapter 3. Al-
though, as mentioned in Chapter 2, the term semantic parsisdpéen used to refer
to a range of different tasks, we restrict consideration tairdy typical special case
where a system is trained on pairs of natural language ssgeand their meaning
representation expressions, as in figure 6.1(a), and thensysust generalize to novel
sentences. This observed meaning-sentence pair traiomgjtion is probably the
most thoroughly studied task within semantic parsing, mgi a good standard task
to demonstrate the effectiveness of the framework sinae tliee many other models
with which to compare. Furthermore, the task lends itsedf tairly concise model de-
scription, making both testing and elaboration easieratm, the primary motivation of
starting with this task is that it will be relatively straigirward to extend to our more
general word learning scenario described in Chapter 8, amglprtantly, most other
approaches rely on alternative sources of supervisiotn, asiclatabase query answers
or other lexical information not typically available to hamlearners Goldwasser et al.
(2011); Liang et al. (2011). In fact, the model presente@ lcerresponds very closely
to a sub-module of the full word learner in Chapter 8.

Most semantic parsing models rely on an assumption of straicsimilarity be-
tween meaning representation and sentence. Since stmbiphism is overly re-

99
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(@

Sentence: ‘what is the population of portland maine’
Meaning: answe(populatioricityid(portland maine))

() e
answer ‘what is’
2
populationo ‘the population’
5
o®,-" R
cityid o ‘of’
portland ‘portland’
maine ‘maine’

Figure 6.1: (a) An example sentence/meaning pair and (b) a possible mapping between

them.

strictive, this assumption is often relaxed by applyingisfarmations. Several ap-
proaches assume a tree structure to the sentence, megmiegamrtation, or both (Ge
and Mooney, 2005; Kate and Mooney, 2006; Wong and Mooneyg;A00et al., 2008;
Borschinger et al., 2011), and often involve tree transfaiona either between two
trees or a tree and a string.

The synchronous grammar is well suited to formalizing suele trelations by
jointly deriving both structures simultaneously. Yet, fehinany semantic parsing sys-
tems resemble the formalism, most have been proposed akmkiaa formalisms re-
quiring custom algorithms, leaving it unclear how develepits in one line of inquiry
relate to others. We argue for a unifying theory of tree tiamsation based semantic
parsing by presenting a synchronous grammar model buitt thi¢ framework pre-
sented in Chapters 3 through 5 and draw connections to othdassystems.

Semantic parser training can be seen as a special case ofeaonthg where the
learner has perfect knowledge of the speaker’s intendedhimgéor every utterance.
There is still referential ambiguity since the learner doesknow which words con-
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tribute which elements of the meaning, but the problem ishreasier than one might
expect when the learner must simultaneously infer bothpkealeer’s intention and the
meanings of the individual words. The grammar-based seoygartser presented here
lays the groundwork for the word learning model in Chapter 8th\standard pars-
ing and inference algorithms, grammar-based models ailgy eatended and adapted
since one merely need add or change rules, freeing the niddaete inventing and
implementing a custom algorithm for every model variatignsaoften necessary for
other less standardized model families.

Seeing the semantic parser as a special case of the wor@deam can test and
validate the learning performance of the model on a bendhseanantic parsing data
set and demonstrate another dimension of the functior@litye word learning model.
In order to calibrate the system we test it against otheesikthe-art systems on the
most common data set, GeoQuery (Wong and Mooney, 2006).

6.1 Meaning representations and trees

In semantic parsing, a meaning representation is typieallgxpression in an application-
specific machine interpretable language (e.g., a datahssy tanguage like SQL).
Typically, such languages are unambiguous context-fraguages. Consequently
each expression can be identified with a single tree withosg bf information be-
cause the parse itself is a tree. Thus, these expressiber bécause they themselves
are trees or because their parses are, fit neatly into théased synchronous grammar
framework outlined in Chapters 3-5.

The particular model we describe in this chapter is geneeglplicable to any
application with such an unambiguous target meaning reptason language, but our
examples are drawn from a standard semantic parsing cdgaeQuery (Wong and
Mooney, 2006). Figure 6.1(a) illustrates a typical sentemeaning representation
pair. The corpus centers on the task of learning a naturglukzge interface for a
database of geographical facts, and the data consists oéfuser questions expressed
in natural language paired with a database query that wetligtve the answer to the
guestion. The meaning representation database querynsssea in an unambiguous
functional language where the nesting of the expressioremtie tree shape easy to
identify even by eye. The left-hand side of part (b) of Figéré shows the tree that
corresponds to the meaning representation of the examplarin(a). Functions and
constants correspond to nodes of the tree and each fursciagniments are identified
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by its child edges.

The tree embodied by the basic nesting structure of the ssjore is elaborated
slightly in the figure with edge labels identifying the argemb type (i.e., the return
type of the child function). This information is readily aadle from the grammar of
the meaning representation language, a sample of whiclovershelow.

NUM — populatior{PLACE)
PLACE — cityid(CITY, STATE)
CITY — portland
STATE — maine

The tree in the figure can be directly extracted from the paese For consistency with
the conventions for representing edge-labeled graphsraes described in Chapter 7,
we can translate the meaning representation in Figure)@rit¢athe following predi-
cate calculus expression:

answe(a) A num(a, p) A populatiorip)
Aplacg p,c) A cityid(c)

Acity(c,X) A portland x)

Astatéc,y) A maingy)

Using this predicate calculus expression will make it @asiéllow the example when
we describe the model in terms of grammar rules.

6.2 Model

Our probabilistic model can be thought of as a translatiomlehthat first generates
an expression in the source language (the meaning repatisefitand then generates
its corresponding translation into natural language.tfms meaning is generated ac-
cording to the meaning representation grammar, guaragfeeat it is a well formed
query. The model then generates the words correspondirig tvee, node by node,
in a manner similar to the alignment illustrated in Figurgé(B). In terms of imple-
mentation, the scheme is realized as a synchronous gramiein,viike the hybrid
tree semantic parser (Lu et al., 2008) and WASP (Wong and Bygd006), another
synchronous grammar-based system, jointly generatesplue imeaning representa-
tion tree and the corresponding natural language string.niéaning representation is
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()0 -

J

Figure 6.2: The generative model of the semantic parser over a corpus of J meaning-
utterance pairs. Wj is an utterance, m; is its corresponding meaning representation,
and yj is the latent mapping between them governed by the probabilistic synchronous
grammar. [ is the set of multinomial parameters for the language model over meaning
representations m, w is the set of parameters for the utterances w given their corre-
sponding meaning representation, and a and 3 are the parameters for their respective

Dirichlet priors.

built up one production at a time according to a tree gramnialevgimilar CFG-like
productions are applied to the natural language side in-$bef formation, repeated
until both the meaning representation and natural langaegtilly generated. In each
step, the model selects a meaning representation rule andthlds the correspond-
ing natural language by first choosing a word ordering pated then filling out that
pattern with words drawn from a unigram distribution.

Figure 6.2 illustrates the graphical model, which generéite meaning-sentence
pairs (m;,w;j) of a corpus consisting of a total dfsuch pairs. First, a meaning rep-
resentationm; is drawn from a product of Dirichlet-multinomials definedthvmulti-
nomial parameterg and Dirichlet parameters. Then a mapping; from meaning to
words is generated according to conditional probab#ity;, y;|m;, w), which in turn
is another product of Dirichlet-multinomials with multimeal and Dirichlet parame-
tersw andf, respectively.

The entire model can be implemented as a single synchroneusngar using
the multi-weighted probabilistic extension defined in 88t8.4. Each rule consists
of two monolingual components, one that generates the mgarpresentation tree
according to an unordered tree grammar of the form desciib&hapter 4, while
the second monolingual component generates the words detfitence as an ordi-
nary CFG. Coupled together, the joint derivation simultais§odescribes both how
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the meaning is generated and how this meaning relates tottiw@ance, where the
meaning-to-word map can be broken down into two types ofcd®i(1) word order
decisions, and (2) word selection decisions. These mapgiioges are probabilisti-
cally decided step by step, in synchrony with each step ofnimgageneration. Fig-
ure 6.1, for instance, illustrates which word choices mighhtmade as each function is
generated in the meaning. Additionally, ordering choiaesadso being made at each
step, where the words corresponding to the funcpopulationare generated after
those foranswerand, similarly, a sequential ordering is chosen for the wdmbrt-
land” and “maine”. These decisions are encoded in the mapganiabley;, which
consists of the portion of the synchronous derivation tleatgins only these two types
of choices.

Thus, the entire probabilistic model can be summarizedarfdahowing formula:

P(m,x,w, i, wla, B) = P(uja)P(w|B) FLP(mj W P(wj, yj|m;, w)
€

where P(pja) and P(w|B) are products of Dirichlet probabilities, arR{m;|u) and
P(wj,yj|m;j,w) are product of multinomial distributions defined by the gnaan which
are defined in detail in the next two sections. The weighte@&lynchronous grammar
are defined in a modular fashion according to a multi-weigpt®babilistic grammar.
One module defineB(m;|y), the otherP(wj,y;|m;,w), where we use functiop(r)
to denote the product of the weights on rul¢hat pertain to the probability of the
meaning representation, aodr) to denote the product of the weights that govern the
generation of the mapping from meaning to words. Thug; i§ a derivation of the
synchronous grammar yielding;, wj, andy;, we can write
P(mj|) = [ H(r)
rex;
P(wj,yj|mj,w) = [ o(r).

rex;
Thep weights govern the generation of the meaning representatid thew weights
the words of the utterance. In general, a single rule simattasly contributes to the
generation of both the meaning and words, implying that &meesrule can have both a
pandw weight, something that, while impossible in a conventiomalghted grammar,
is perfectly legal using a multi-weighted grammar.
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6.2.1 Meaning generation: P(m;|L)

The model starts by generating the function correspondirige root node of the tree
and then generates its children, recursively generatioly feaction until the meaning
representation is complete, where the probability of eactetion is conditioned on
information about its parent. Specifically, each functisrconditioned on the label
and list of argument types of its parent, a combination whiehwill refer to as the
function’ssignature Similarly, at the same time as a function is generated, theeain
simultaneously selects its signature. For instance, ieigegimg the node labeletityid
and its two children in the tree in Figure 6.1, the model firgi@ses function signature
cityid/CITY/STATEonditioned on the signature of its pargrpulation/PLACEand
then proceeds to choose the signaturesitgfd’s first and second argumergsrtland
andmaine where we treat constants as functions with no argumentsesiosignatures
are justportlandandmaine respectively.

This language model over meaning representation expressam be defined for-
mally as

P(mlp) = ﬂ P(sig(f)|sig(paren(f)),arg(f), W)

wheresig(f) is the signature of functio, paren{ f) is its parent, andrg(f) is the
index into the argument list of's parent.

This process can be captured by an unordered tree gramntae tyfte described
in Chapter 4 that alternates between node (i.e., functidra)laules and edge (i.e.,
argument type) rules. In keeping with that grammar definjtiwve define two sets
of nonterminals, node-generating and edge-generatingermimals, and index each
by the combination of function signature and the argumember to be generated.
That is, there is a node-generating nonterminal specijidall choosing the CITY
child of function cityid, and another for choosing its STATE child. Notationally,
we identify such a node-generating nonterminal by N[CITYCD/Y/STATE] for the
CITY child and N[CITYID/CITY/STATE] for the STATE child. Similarly, the corre-
sponding edge-generating nonterminals are denoted by EJOICITY /STATE] and
E[CITYID/CITY/STATE].

Table 6.1 presents the fragment of the grammar that geseafatemeaning rep-
resentation in Figure 6.1. Rules m1 through m5 are node-gengirules which de-
termine the function label and the number of its argumentee Weights of these
rules are defined such that they are equivalent to the conditiprobability of the
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N[START] — answe(x) A E[ANS/NUM](x) (m1)

N[ANS/NUM] — Ax.populatiorix) A E[POP/PLACH(X) (m2)
N[POP/PLACH — Ax.cityid(x) A E[CITYID/CITY /STATE](X)

AE[CITYID/CITY/STATE](x) (m3)

N[CITYID/CITY /STATE] — Ax.portlandX) (m4)

N[CITYID/CITY/STATE] — Ax.main€x) (m5)

E[ANS/NUM] — Ax.num(x,y) AN[ANS/NUM](y) (m11)

E[POP/PLACE — Ax.placex,y) AN[POP/PLACRY) (m12)

E[CITYID/CITY /STATE] — Ax.city(x,y) AN[CITYID/CITY /STATE](y) (m13a)
E[CITYID/CITY/STATE] — Ax.statéx, y) AN[CITYID/CITY/STATE](y) (m13b)

Table 6.1: A grammar fragment that generates the meaning representation in Fig-
ure 6.1. The top rules are node-generating, which select the function’s label and arity,

while the bottom edge-generating rules produce the argument type labels.

function signature identified with the nonterminal(s) oe tight given the function
signature associated with the nonterminal on the left haohel af the rule. For ex-
ample, we assign a weight equivalentRpop/PLACE | ang/NUM) to rule m2 and
P(portland| cityid/CITY /STATE) to rule m4. Thus, these rules model the probability
of choosing a particular function given the signature opasent.

The edge-generating nonterminals are expanded accominges m11 through
m13b. These rules simply produce the edge label correspgndithe specified type
and hand off generation to the next node-generating noitatmwhich then proceeds
to perform the next function selection. These edge-geingrateps are perfectly de-
terministic, so each has a probability of one.

Figure 6.3(a) shows the derivation tree of the meaning sgmtation in Figure 6.1
under the grammar in Table 6.1. Lettipng ) be the product of the meaning represen-
tation language model weights of rulgthen the probability of this derivation (and the
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() (b)
ml wlb
\ /
mll w2la wll
\ / N\ |
m2 w3la w21b w2b
\ | e N
mi2 w31b w22a wl2
| / N\ |
m3 w32a w22b w3b
/ AN | VA N
ml3a m13b w32b w23b wil3a wl3b
\ | | \ |
m4 m5 w33a w4 wh
\ \
w24b w25b
| |
w34a w3ba

Figure 6.3: A derivation tree for (a) the meaning representation and (b) the meaning-
sentence mapping illustrated in Figure 6.1 with the monolingual meaning grammar (Ta-
ble 6.1) and synchronous meaning-sentence grammar (Table 6.2), respectively. Track-
ing the correspondence between the rules of the meaning representation grammra and
the meaning-word grammar, the meaning representation can be seen as the skeleton

of the meaning-to-word map.

example meaning representation) would be

P(m{p) = p(m1)p(m11)p(m2) p(mi2)p(m3)u(mi3a) u(md)u(mi3o)u(ms)
H(mL) pu(m2) pu(m3) p(md) pu(md)

P(ans/NUM |START, ) - P(pop/PLACE | ang/NUM, 1)
-P(cityid/CITY/STATE|pop/PLACE, p)

- P(portlandcityid/CITY/STATE, p)
(

-P(maine| cityid/CITY/STATE, )

To see how this relates to the formal definition of multi-we&d grammars in
Section 3.4, observe that the weights of rules m1-m5 can pkeimrented with just two
feature functionsths(r) that returns the left-hand side nonterminat oéindsig(r) that
returns the name of the unary and the type of it's argumerddattin the nonterminal
on the right-hand side. Given these feature functions,tafaation function ofp(r) =
(Ins(r),sig(r)) yields the probabilities above. As for rules m11-m13b, thkyave a
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W value of 1, which could be implemented withpér) = (0,0) that simply returns a
dummy value with a weight of 1.

6.2.2 Sentence generation: P(wj,yj|mj,w)

Sentence generation can be conceptualized as a processiating meaning to
words through a sequence of permutation and word substitrisertion operations.
Walking down the meaning representation tree node by nbéembdel first chooses
a particular linearization of the node and its children dmehtinserts words into that
linearization, generated according to a unigram distidioutAs with the meaning rep-
resentation, both the choice of linearization and wordcsigle are conditioned on the
full signature of the corresponding function. A linearipatof nodef consists of a

particular ordering among the children and a choice of wasgition points, where
words can be optionally inserted before, after, or anywireteetween children. For
example, there are three possible orderings foptiulationnode and its children.

CHILD
WORDS CHILD

CHILD WORDS
WORDS CHILD WORDS

Similarly, there are 16 possible linearizationsddyid (2 different permutations of the
children with 8 different choices of word insertion points £ach). In general, for a
function of arityk, there are&! permutations of its children arld+ 1 locations in these
sequences where words can be inserted, leadiky- @1 possible linearizations to
choose from. We force a single linearization (i.e., WORDS$ funstants so that they
each contribute some sequence of words within the sentence.

To define the probability distribution formally, let laterdriabley be the sequence
of permutation and substitution operations for the engréence, ang; be alineariza-
tion followed by a sequence of word substitution operatitvas translate a particular
function f with arity k in the meaning representation into a substring of the seaten
Let /s be the linearization containirig+ 1 places for words, angs 1,...,wr k1 be the
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particular word sequences chosen to fill those place holders

P(w,y|m, w) = J_| Pyt = (1, Wr 1,.... Wt ky1)[SiQ(), )
em

kil
P(¢¢|sig(f) r!P wi j|sig(f), w)

The probabilityP(¢;|sig(f),w) is just a multinomial distribution over linearizations
and the word substitution; ; is defined according to a unigram distribution associated
with sig(f), wherews ; is a sequence of wordgord ;...word p,:

P(ws j[sig(f),w) = rﬁlP(wordLj sig( ), w)P(continuésig( f), w)
J=1
P(word p, |sig(f), w)P(stopsig(f),w).

In terms of implementation, these linearization and woggrtion operations can
be specified by extending each production of the monolinguedning-generating
grammar in Table 6.1 with CFG-style string-generating potidns, one for each pos-
sible linearization. Words can then be generated accotdisging-only monolingual
rules that expand word-generating nonterminals, denotétl[sig( f )] andU [sig(f)].
Table 6.2 lists the rules necessary for producing the magpifigure 6.1(b), and Fig-
ure 6.3(b) illustrates the derivation tree. The four pdsdibearizations fopopulation
corresponding to rule m2 would lead to the following set af@dyonous rules:

N[ANS/NUM] — ( Ax.populatior{x) A E[POP/PLACHm|(x) ||

gpopulation>
wherelpopulationis one of
E[POP/PLACHq (w2a)
W[POP/PLACE] E[POP/PLACH (w2b)
E[POP/PLACH1 W[POP/PLACE] (w2c)
W[POP/PLACE] E[POP/PLACE W[POP/PLACE] (w2d)

The particular mapping in Figure 6.1 linearizespulationby inserting words be-
fore the substring corresponding to the translation ofiitgle subtree as dictated by
rule w2b.
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N[START] — ( answe(x) A E[ANS/NUM]g(x) ||
W[ANS/NUM] E[ANS/NUM ) (wilb)
N[ANS/NUM] — ( Ax.populatior{x) A E[POP/PLACH(x) ||
W[POP/PLACE] E[POP/PLACE]) (w2b)
N[POP/PLACH — ( Ax.cityid(x) A E[CITYID/CITY /STATE}(X)
AE[CITYID/CITY/STATE]z|(X) ||

WI[CITYID/CITY/STATE] (w3b)

E[CITYID/CITY /STATE]g E[CITYID/CITY/STATE]z )
N[CITYID/CITY /STATE] — ( Ax.portlandx) | W[PORTLAND] ) (w4)
N[CITYID/CITY/STATE] — ( Ax.maingXx) || WIMAINE] ) (W5)

E[ANS/NUM] — ( Ax.num(x,y) A N[ANS/NUM](y) |

N[ANS/NUM]g ) (wil)
E[POP/PLACH — ( Ax.placex,y) AN[POP/PLACEK(Y) ||

N[POP/PLACH] ) (W12)

E[CITYID/CITY /STATE] — ( Ax.city(x,y) AN[CITYID/CITY /STATE]1(y) ||
N[CITYID/CITY /STATEJg ) (w13a)

E[CITYID/CITY/STATE] — ( Ax.statéx,y) AN[CITYID/CITY/STATE]z(y) ||
N[CITYID/CITY/STATE]q ). (w13b)
WISIG — ( — || U[SIG W[SIF ) (w21-25a)
WISIG — ( — || U[SIG ) (W21-25b)
U[ANS/NUM] — ( — || what) (w31a)
U[ANS/NUM] — ( — ||is) (w31b)
U[POP/PLACE]— ( — || the) (w32a)
U[POP/PLACE]— ( — || population) (w32b)
U[CITYID/CITY/STATE] — ( — || of ) (w33a)
U[PORTLAND] — ( — || portland) (w34a)
U[MAINE] — ( — || maine) (w35a)

Table 6.2: A grammar for the meaning-to-sentence map in Figure 6.1: (from top) func-

tion generating/linearization, edge generating, and word stopping and generating rules.
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The meaning-to-word mapping weights for each of these spmcius rules, de-
noted byw(r), is simply the weight of the particular linearization. Sar, &xample, the
word-generating weight of rule w2b is constructed to beajant to

w(w2b) = P(WORDS CHILD | pop/PLACE, ).

The word generation unigram is implemented by two diffetentls of rules, one
kind of rule for determining when the unigram stops genegatvords, and one for
actually generating the specific words. Specifically, tregeea pair of stopping rules
following the pattern of w21-25a and w21-25b in Table 6.2dach function signature,
which are weighted according R{stogsig( f)) andP(continuesig(f)). For instance,
there are two such rules fpop/PLACE

W[POP/PLACE]- ( — || U[POP/PLACE] W[POP/PLACE} (w22a)
W[POP/PLACE]- ( — || U[POP/PLACE]). (w22b)

Rule w22a is assigned a weight®Bfcontinue pop/PLACE) and rule w22b a weight
of P(stog pop/PLACE). A chain of such rules in a derivation simulates the flipping
of a coin after each word is generated to determine wheth&pfoor continue adding
more words to the string. Similar rules necessary for eaobtion signature in the

corpus
WIANS/NUM] — ( — || UIANS/NUM] W[ANS/NUM] ) (w21a)
W[ANS/NUM] — ( — || U[ANS/NUM] ) (w21b)
WI[CITYID/CITY/STATE] — ( — || (W23a)
U[CITYID/CITY/STATE] W[CITYID/CITY/STATE] )

WICITYID/CITY/STATE] — ( — || U[CITYID/CITY/STATE] ) (w23b)
W[PORTLAND] — ( — || UlPORTLAND] W[PORTLAND] )  (w24a)
W[PORTLAND] — ( — || U[PORTLAND] ) (W24b)

W[MAINE] — ( — || UIMAINE] W[MAINE] ) (w25a)
W[MAINE] — ( — || UIMAINE] ) (W25b)
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The words themselves are generated according to rules such a

U[POP/PLACE]- ( — || the) (w32a)
U[POP/PLACE]— ( — || population) (w32b)
U[POP/PLACE]— ( — || what) (w32c)
U[POP/PLACE]— ( — || is) (w32d)

These word-generating rules are each weighted accorditigetanigram probability
so that, for instance, rule w32c receives weight equéd(tehat | pop/PLACE) and
rule w32d receives weighR(is | pop/PLACE). In general, every function can map to
any sequence of words in the vocabulary of the languageirneguules such as w3la
through w35a for every word and function in the corpus votayu!

The deterministic edge-generating rules of the monolihgneaning representation
grammar are extended as per rules wll to wl3b to simply padpdige nonterminals
through the string generating portion of derivations. Rggiing the node-generating
nonterminals into the string side ensures that the stringesponding to the transla-
tion of the subtrees of the meaning representation are gyapserted into the string.
Again, these expansions are deterministic.

To compute the probability of the mapping conditioned onrtteaning represen-
tation, again, we simply multiply the weights for each rule in the derivation.

P(w,y|m, w) = w(wlb)w(w21la)w(w31a)w(w21b)w(w31b)
- w(Wll)w(w2b)w(w22a)w(w32a)w(w22b)w(r32b)
- W(W12)w(w3b)w )
- w(wWl3a)w(wa)w(w24b)w(w34a)
- W(W13b)w(wh)w(w25b)w(w35a)
= w(wlb)w(w21a)w(w3la)w(w21b)w(w31b)
- W(W2b)w(w22a) w(r32a)w(w22b)w(r32b)
- w(W3b)w(w23b)w(w33a)
w(W4) w(w24b)w(w34a) w(ws) w(w25b)w(w35a)

(
(
(
(

w2
w23b)w

(
(

There are roughly 25,000 rules in the transducers in ourrarpets, and the majority of these
implement the unigram word distributions since every grtitthe MR may potentially produce any of
the words it is paired with in training.
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This derivation weight, when interpreted in terms of pralds resolves to
P(w,y|m, ) = P(WORDS CHILDans/NUM, w)
P(‘what’|ang’NUM, w)P(continugans/NUM, w)
-P(‘is’ Jang NUM, w)P(stogans/NUM, w)
-P(WORDS CHILDpopulatiory PLACE, w)
- P(‘the’|populatiory PLACE, w)P(continugpopulatiory PLACE, w)

P(’
(
(
(
- P(‘population’|populatiory PLACE, w)
- P(stoppopulatiory PLACE, w)
. P(WORDS CHILD; CHILD|cityid/CITY /STATE, w)
-P(‘of’
(
(

)P(stopcityid/CITY /STATE, w)
-P(WORDSportland w)P(‘portland’|portland w)P(stogportland w)
-P(WORDSmaine w)P(*

)P(stogmaine w)

The derivation first chooses a linearization &mswer then inserts words “what” and
“is”, linearizespopulationand its arguments, inserts words “the” and “population”,
and so on until the entire meaning representation has baeslated.

After carrying over the meaning representation weigiits from the monolingual
meaning representation grammar, we can computep) in exactly the same way as
before, by walking the joint derivation and multiplying ahie p(r) weights. In fact,
the monolingual derivation for the meaning representasioown in Figure 6.3(a) is
embedded within the synchronous derivation shown in pgrbflihe figure, it has
simply been extended by adding on the linearization andramgproductions.

Defining the model formally requires just four feature fuons: the signature
functionsig(r) defined as beford(r) which identifies the word order linearization pat-
tern,word(r) which identifies the word on the right-hand side, @bojir), a boolean
function returning true if and only if the rule is of the forn2d25b. Folding in the fac-
tors from the meaning generation model definition of the joev section, rules wlb-
w5 have factorization functions of the form

(r) = (Ihs(r),sig(r)) - (sig(r), £(r))-
The (Ihs(r),sig(r)) factor is inherited from the definition of the weights, and the

second factor corresponds to the linearization patterbghidity. This results in a
weight vector of the form

K(r) - (r) = P(sig(r)[Ihs(r), ) - P(£(r)[sig(r), )
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The word-generating portion of rules w11-w13b are deteistig) so thewweights
can be defined by using an empty fact@ 0) just as before in the definition of
KL Rules w21-25a and w35a all only generate words, contrigutiothing to the
meaning, so have np weights (or, equivalently, have a weight of 1 defined as per
the empty factor). Rules w21-25a and w21-25b have a wordrgéng factor of
the form (lhs(r),stopr)), resulting in a weight oto(r) = P(stop(r)|lhs(r),w). Fi-
nally, rules w3la-w35a have factors of the fofths(r),word(r)), with a weight of
w(r) = P(word(r)|lhs(r), w).

Because all feature pairs withweights are defined exclusively in terms of the
meaning representatian, and all feature pairs withy weights are defined with fea-
tures from word portion of the rules on the right, the modegliaranteed to factorize as
perP(m,w|p, w) = P(m|u)P(w|m, w), as described by the plate diagram in Figure 6.2.

6.3 Relation to other models

The multi-weighted synchronous grammar model can be vieitedr as a generative
procedure for building up two separate structures or asnaftvtemative machine that
takes one as input and produces another as output (a ladresiticers). Different se-
mantic parsing approaches have taken one or the other vieMy@h can be captured
in this single framework. WASP (Wong and Mooney, 2006) is xaneple of the for-
mer perspective, coupling the generation of the meaningeseptation and sentence
with a different sort of synchronous grammar. The most §icgmt difference from
our approach is that they use machine translation techsifgue@utomatically extract-
ing rules from parallel corpora (Galley et al., 2004). Ouprach differs in that we
specify general rules based on theguageof meaning representations rather than the
particularexample®f meaning representations in the training corpus. A keyathge
of this language-based approach over the example-baseabapgs that the mapping
rules can be specified without assuming the meanings arevellseln the narrow
context of semantic parsing where training is conductet wiitserved meanings this
may seem like a subtle and purely theoretical distinctianfakct, since WASP only
extracts the rules required to explain the alignments irtrieing examples, its gram-
mars tend to be much smaller than ours, leading to a moreegifiparser. However,
abstraction away from reliance on observed meaning repiasens during training is
crucial for generalization to the word leaning scenario imfkr 8 since meanings are
completely latent, rendering a WASP-like alignment-basggroach untenable.
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The hybrid tree model (Lu et al., 2008) takes an approachgimsome ways more
similar to our model. In fact, there is a very close corresjgmte between the parame-
ters of our model and those of the hybrid tree. Furthermdee dur model, the hybrid
tree system does not require alignments between observadimgerepresentations
and sentences for grammar extraction. However, they doepoesent their model as
an explicit grammar, instead inventing a new notion of thgdfid tree” that unifies the
meaning and sentence into a single structure requiringtaroysarsing algorithm and
additional work in disentangling the two at test time. Oundyonous grammar, on
the other hand, naturally captures many of the same praosiabdlependencies while
making use of a more standard grammar framework which bupds a larger body of
theory. This reliance on a general grammatical framewankideus greater flexibility
when it comes to model extension and adaptation, somethengnake extensive use
of in Chapter 8.

KRISP (Kate and Mooney, 2006) uses string classifiers to labe$trings of the
sentence with functions and constants from the meaningeseptation. To focus
search, they impose an ordering constraint based on thetgtelof the meaning repre-
sentation tree, which they relax by allowing the re-ordgohsibling nodes and devise
a procedure for recovering the meaning from the permuted frkis procedure corre-
sponds to backward-application in synchronous grammaesjifying the most likely
source tree given a particular target string. As with thertdytvee, KRISP is not based
on a grammar, even if it closely approximates one, which mékerder to extend and
forces the authors to rely on custom algorithms tailoreai$ipally to their problem.

Borschinger et al. (2011) take a similar stance to ours buteafgr the PCFG as
an alternative model class, which they advocate on the Hesi$?CFGs facilitate the
application of conventional grammar induction technique are sympathetic to this
argument, particularly since our framework is a genertbpneof PCFGs and benefits
from the same features and allows us to incorporate the samdelimg techniques.
However, the PCFG is less amenable to conceptualizing guneences between
parallel structures, and their model is more restrictively applicable to domains
with finite meaning representation languages, since tleirtarminals encode entire
meaning representations. The multi-weighted synchrogoasimar framework, on
the other hand, allows us to exploit the compositional prioge of the meaning repre-
sentations so that linearizations and word probabilittresd@pendent on local features
(function signatures, specifically). Furthermore, the PGp@Eroach can quickly be-
come conceptually unwieldy as it is extended into more cemphodels, something
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that is much easier for us.

Finally, the UBL system of Kwiatkowski et al. (2010) also takeegrammar-based
approach, employing a restricted context-free variant of C@@king it somewhat
similar to our framework. The biggest departure from ourrapph and that of any
of the others mentioned is in how it treats the meaning remtesion. While all the
other approaches essentially leave the meaning représearitdact and utilize this to
restrict the search space, Kwiatkowski et al. (2010) deas®p it into more arbitrary
fragments as enumerated by gpdit function. This allows UBL to analyze the mean-
ing representation in different ways which permits a latgeoretical space of poten-
tial meaning-to-word mappings. However, this flexibilityroes at the cost of greater
parsing complexity. In the experiments described in Sadid, for example, we run
UBL as well as WASP and the hybrid tree and find that while it csiegatly takes 6-8
hours across four languages to train on a 600 training pasetwf GeoQuery, while
the others all complete in under two hours. WASP takes ewesthan half an hour due
to the relatively small number of rules in its grammar. Thasputational complexity
that UBL must contend with makes it harder to scale to acconateotthe additional
complexity inherent in less constrained word learningrsgst

6.4 Experiments

6.4.1 Evaluation

We evaluate the system on GeoQuery (Wong and Mooney, 20Q&radlel corpus
of 880 English questions and database queries about Unitééelsyeography, 250 of
which were translated into Spanish, Japanese, and Tullklsipresent here additional
translations of the full 880 sentences into German, Greedt, Tdhai. For evaluation,
following from Kwiatkowski et al. (2010), we reserve 280 sarces for test and train
on the remaining 600. During development, we use crossiatadin on the 600 sen-
tence training set. At test, we run once on the remaining 2&8Dperform 10 fold
cross-validation on the 250 sentence sets.

Training consists of parsing meaning-sentence pairs aing tise resultant parse
forests and the VB algorithm described in Chapter 5 to eséimae weights. Thus,
at test time, we parse just the sentence and use the transtgimmar as described
in Section 3.3.2 to find the meaning associated with the nrodtgble joint meaning-
sentence derivation. To judge correctness, we follow stahgractice and submit each
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parse as a GeoQuery database query, and say the parse « oatyeif the answer

matches the gold standard. We report raw accuracy (themege of sentences with
correct answers), as well as F1: the harmonic mean of poec{¢he proportion of

correct answers out of sentences with a parse) and recalbpfthportion of correct

answers out of all sentencés).

We run three other state-of-the-art systems for compariséhSP(Wong and
Mooney, 2006) and thieybrid tree(Lu et al., 2008) are chosen to represent tree trans-
formation based approaches, and, while this comparisomriprimary focus, we also
reportUBL-S (Kwiatkowski et al., 2010) as a non-tree based top-perfogsystem.
The hybrid tree is notable as the only other system based energtive model, and
uni-hybrid a version that uses a unigram distribution over words, lig s®nilar to our
own model. We also report the best performing versieshybrid which incorporates
a discriminative re-ranking step.

We report the performance of our synchronous grammar uhdsg tifferent train-
ing conditions:scfgEMusing EM, scfgVB-autausing VB with empirical Bayes, and
scfgVB-handusing hyper-parameters manually tuned on the German rnigpidata
with three different hyper-paramter settings, one for nmgggeneration parameters
(a of 0.3), one for the different linearization patterns sustshown in the sentence-
generating side of rules such as rules wlb-w5 in Table 6.th(af of 0.8), and one
for word generation ruleg3(of 0.25).

Table 6.3 shows results for 10 fold cross-validation on théing set. The re-
sults highlight the benefit of the Dirichlet prior, whetheanually or automatically set.
VB improves over EM considerably, most likely because (&)landling of unknown
words and meaning representation functions allows it tarnedn analysis for all sen-
tences, and (2) the sparse Dirichlet prior favors fewersruleasonable in this setting
where only a few words are likely to share the same meaning.

On the test set (Table 6.4), we only run the model variantspdorm best on the
training set. Test set accuracy is consistently higherHer\tB trained synchronous
grammar than the other tree transformation based modedsoféen highest overall),
while f-score remains competitive.

The relatively high performance of our model is likely duelange part to two
factors owing to VB! First, the sparse prior is a better match to our problem where

°Note that accuracy and f-score reduce to the same formuiariétare no parse failures.

3Numbers differ slightly here from previously publishedus due to the fact that we have stan-
dardized the inputs to the different systems.

4Kwiatkowski et al. (2012) also observed that their incretabl/B algorithm applied to a model
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DEV geo600 - 10 fold cross-val
German Greek
Acc F1 Acc F1
UBL-S 76 7 76. 9 76 2 76 5
WASP | 66 3 75. 0 7. 2 79. 7
uni-hybrid 61. 7 66. 1 71. O 75. 4
re-hybrid 62. 3 69. 5 70. 2 76. 8
scfgEM 61. 7 67. 9 67. 3 73. 2
scfgVB-auto 74. O 74. 0 e79. 8 e79. 8
scfgVB-hand e78. 0 e78. 0 79. O 79. O
English Thai
UBL-S 85. 3 85. 4 74. O 74. 1
WASP | 73 5 79. 4 69. 8 73. 9
uni-hybrid 76. 3 79 0 71 3 73. 7
re-hybrid 77. O 82. 2 71. 7 76. O
scfgeEM 73. 5 78. 1 69. 8 72. 9
scfgVB-auto 81. 2 81. 2 74. 7 74. 7
scfgVB-hand e383. 7 83. 7 o76. 7 o76. 7

Table 6.3: Accuracy and F1 score comparisons on the geo600 training set. Highest
scores are in bold, while the highest among the tree based models are marked with a

bullet. The dotted line separates the tree based from non-tree based models.
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only a few words are likely to be used to express a particudacept in the meaning
representation language. Second, the prior also allowstitel to generalize to words
and meaning representation symbols previously unseengltnaining, acting as a
kind smoothing scheme. WASP and the hybrid tree simply daieturn a parse in the
cases of unknown words, negatively impacting recall, batBayesian prior permits
our model to always propose a meaning representation fogaey sentence. It is
less clear why our approach improves over UBL-S, which engtotwo-pass parsing
approach to return a best guess in the case of failure, bbhéipstthe Dirichlet prior’'s

ability to model sparsity helps here as well.

We have argued that tree transformation based semantingaean benefit from
the literature on formal language theory and tree autonaaid,have taken a step in
this direction by presenting a synchronous grammar-basexistic parser. Drawing
this connection facilitates a greater flow of ideas in theaesh community, allowing
semantic parsing to leverage ideas from other work withargemata, while making
clearer how seemingly isolated efforts might relate to onetlzer. We lose nothing
in terms of performance by relying on these general formrajswith results that are
competitive with or better than the state of the art on a stethdata set, but gain signif-
icantly in terms of modeling flexibility and ease of implentegion. Once the parsing
and training framework itself is implemented, a one-offasiment, any number of
models can be designed and tested without ever needing éatiavnew algorithm.
In fact, the model is closely related to the hybrid tree maxfdlu et al. (2008), but
where they found it necessary to develop several novelighgas specifically tailored
to their model we have relied on the general parsing andenfar procedures outlined
in Chapters 4 and 5 which are applicable to a large class of imodituating the
model in this general framework makes it easier to extenavitrd in this chapter on
semantic parsing to our ultimate goal of implementing ow merd learning model
presented in the next chapter.

similar to that of UBL improved performance.
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TEST geo880 - 600 train/280 test
German Greek
Acc F1 Acc F1

UBL-S 7. 0 7. 0 73. 6 73. 7
WASP | 65. 7 74 9| 70. 7 78 6
re-hybrid 62. 1 68. 5 69. 3 74. 6
scfgVB-hand e74. 6 74. 6 /5. 4 75. 4

English Thai
UBL-S 82. 1 82. 1 66. 4 66. 4
WASP | 7.1 77,1 7. 4 75. 0
re-hybrid 76. 8 e81l. O 73. © 76. 7
scfgVB-hand e79. 3 79. 3 e78. 2 /8. 2

geo250 - 10 fold cross-val

English Spanish
UBL-S 80. 4 80. 79. 7 80. 1
WASP | 70. 0 8. § 72. 4 81. 0
re-hybrid 74. 8 82. 6 78. 8 86 2
scfgVB-hand e83. 2 e83. 2 e80. O 80. O

Japanese Turkish
UBL-S 80. 5 80. 74. 2 74. 9
WASP | 74. 4 e82. 9| 62. 4 75. 9
re-hybrid 76. 8 82. A4 66. 8 e77. 5
scfgVB-hand e78. O 78. O 75 6 75. 6

Table 6.4: Accuracy and F1 score comparisons on the geo880 and geo250 test sets.
Highest scores are in bold, while the highest among the tree based models are marked

with a bullet. The dotted line separates the tree based from non-tree based models.3



Chapter 7

Frog Stories Corpus: Language and

Context

Marchman and Slobin collected data from over 100 subjetifjren and adults, in

several different languages to assemble what is sometefesed to as the Frog Sto-
ries Corpus (Berman and Slobin, 1994). The corpus consistargdribed narratives,
describing the events visually depicted in the wordlessipgcbook “Frog, Where Are

You?” by childrens book author Mayer (1969). The origingjeatiive of the data col-

lection was to study the development of narrative as chmldnatured, but it captured
the imaginations of numerous psychologists, resultingneaddition of narratives in
several more languages, and was used to study a wide rangeibgdmental phe-

nomena, partially collected in two volumes (Berman and $lob®94; Stromqvist and
Verhoven, 2004).

The book tells the story entirely through a sequence of 2dkbéand white line
drawings (see Figure 7.1 for a sample). Because the book dleass, it permits the
telling of the story with endless variations, and each rarreells a slightly different
version of events. At the same time, the pictures tell a ad@augh story that a fair
amount of consistency is maintained across speakers andaguages, making for
an appealing data set for machine learning experiments hsasvéhe already exis-
tent psychological studies. In particular, we are intes@$h modeling child language
learners, and focus on the adult narratives to simulate-chilected speech, of which
there are 12 for each language. We also focus on three of tigeidges, English,
German, and Turkish, as these are the three with the largestiret of data, about
1,000 utterances per language. The corpus was originathegad for the purpose
of studying narrative development, where narrative coriplevas measured by the

121
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Figure 7.1: A sample picture from Mercer Mayer's wordless picture book “Frog, Where
Are You?” (Mayer, 1969).

total number of events related over the course of the stamus;Tthe original coding
of the data was fairly event-centric, where utterances warescribed and manually
segmented so that each utterance contains at most one €uerdgriginal encoding of
the data, segmented event by event, made it easy to countsglsahotherwise there
was little semantic analysis of the utterances.

The objective of our new semantic corpus annotations isdwige a data set for
testing simulations of child learners, where the child suased to learn word mean-
ings from the pairing of non-linguistic scenes (picturesha book) with the words
of the language. For this purpose, we have added two levelardtation: a logical
description of each of the 24 scenes in the book and meanimgsentations for each
utterance of the three languages. We also provide Enghsistation for the German
and Turkish utterances, performed by PhD student volusitgdvlacquarie University.
The intention is that, using our annotations, a model canlsita a child’s experience
of trying to learn new words by listening to the narration lhsimultaneously ob-
serving the pictures of the book, and meaning inferencedednsted by comparing



123

Utterances
) _ Scenes
English| German Turkish
events 46.3
words 6.8 6.5 4.2 -
entities 26.6
events 0.9 0.9 0.9
- mods 7.9
entities 1.3 11 1.1
roles 114.4
mods 0.1 0.1 0.1 :
vertices 74.0
roles 1.7 15 1.2
: edges 108.0
vertices 2.6 2.4 2.1 )
re-entrancies 14.8
edges 1.6 1.4 1.2
components 7.3
utts/scene 38.6 52.9 35.4
num dags 11
total utts 927 1270 850
total 24

Table 7.1: Frog Stories corpus: utterances

Table 7.2: Frog Stories corpus: scenes.
per language.

them to the gold annotations. The utterance- and scenkdewetations both consist
of a basic Neo-Davidsonion style semantics represented tise language of predi-
cate calculus expressions, describing the action and tbe obthe various actors and
subjects of the action, a “who did what to whom” style repnéaon. The scene de-
scriptions and meaning representations follow the sameerdions, and use the same
symbolic language, a deliberate choice intended to fat#lithe modeling of logical
relationships between scene and individual utterances.

The annotation work for all three languages was performetth&yauthor, working
initially from English translations in the case of Germanl dnrkish. Thus, the anno-
tations are likely somewhat biased toward the English tagios, although we made
some effort to correct for this in subsequent passes oveddke using a bilingual
dictionary to check for consistency with the vocabularyle original language.

The resultant corpus with its annotations is similar in seespects to other cor-
pora that have been used for semi-supervised semantiaigassch as the work of
Chen and Mooney (2008) or Kwiatkowski et al. (2012). Chen ancidy (2008),
for instance, use machine-extracted summaries of a soeree gimulation for the
non-linguistic context where each sentence in a sporteeasttive is assumed to cor-
respond to an individual event. In contrast to the Frog 8&their Robocup Sportscast
Corpus uses meaning representations that are generaggeemdkently from the natural
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Concept/Word Types
words

concepts en d% tr
events 315 278 43
entities 148 121 193 304

mods 64 14| 30| 24
roles 23 - - -
other - 374| 558 530

Table 7.3: Frog Stories corpus: number of concept types and the word types the word

types that correspond to them for each language.

language narrative, which could potentially complicate lgarning problem beyond
what is permitted in the Frog Stories due to the fact that oeammng representations
and scene descriptions are both based on the natural lamgaaative, potentially

enforcing a tighter match between language and meaningaharmight otherwise

expect. However, the complexity of the natural language ibdeap Sportscast is
very simple and repetitive with little variability and a simezocabulary of about 300

word types in a corpus of approximately 2000 sentences.h&urore, the language
of meaning representations is finite, permitting only a fewdred different semantic
expressions which are themselves very simple and relptileti There are only 9

different possible event types where about 70% are of thma fmass(src-player, dst-

player) and only 30 possible entities. Finally, the scenes in Rob&pgrtscast are

also small with very limited ambiguity so that on averager¢hare only about two

meaning candidates per sentence.

Kwiatkowski et al. (2012), on the other hand, use a corpusdas the CHILDES
Eve corpus (MacWhinney, 2015) where meaning represensagieautomatically de-
rived from syntactic parses. This choice allows them to phyederive semantic anno-
tations for a considerably larger data set of about 14 thulisaturalistic utterances
with much more variability and complexity than Robocup Sgoast. However, the
corpus lacks annotations specifically relating to the nogtlistic context at the time of
utterance. Thus, the authors are forced to approximate stescriptions by arbitrarily
defining a set of meaning candidates for each utterancesstiogf the meaning rep-
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resentation for the utterance and its immediately precedimd following utterances.
The corpus is also monolingual (Sportscast contains Bngligl Korean narrations),
making it impossible to test how well models might geneméizross languages.

Frog Stories bears similarities to both corpora but witheamique characteristics
largely centered on the scene descriptions. Like syntaieabtmeaning approxima-
tions of Kwiatkowski et al. (2012), our meaning represeatet are also somewhat
language dependent, where annotations for German andshuake loosely based on
English translations. Still, despite the English biassipossible to test a model on
different languages, unlike with the Eve corpus. In confrdss language language
dependence is somewhat less apparent in Robocup Sportdeast sentence “mean-
ings” are actually derived automatically from non-lingiasvents in a sports simula-
tor. Also like Kwiatkowski et al. (2012), and in contrast to&hand Mooney (2008),
meaning representations of Frog Stories bear a resembiarsymtactic dependency
analyses. However, Frog Stories meaning representatiema@e abstract, shedding
much of the detail a syntactic parse would contain, thusirfigra learner to work
slightly harder to map directly between words and meanings.

The biggest departure from both the Robocup Sportscast andES8 Eve cor-
pora, however, is in that scene descriptions, which, rétrer simple sets of meaning
candidates, are structured representations of a large m@ndpings that may be said
about a picture in the children’s book. One way these desanip differ from the sets
of meaning candidates in the case of Kwiatkowski et al. (2@42andidates consist
only of things that are actually said, whereas the Frog &mcenes permit many ut-
terances that, while logically consistent with the thingsttveresaid may not, in fact,
correspond to any utterance itself.

Using a corpus based on a picture book also allows for artiveudreak-point to
indicate where non-linguistic context begins and ends &mheutterance. In the case
of both Sportscast and Eve, experiments are forced to relgrbitrary windows to
identify meaning candidate sets, where the size is chosbkotincases based on the
computational and learning performance of the model beestetl. However, Frog
Stories relies on a model-independent factor to define aeseemere a scene is con-
structed to cover all utterances associated with a single pathe picture book.

Finally, these scene descriptions also contain discdekg-information, identi-
fying coreference across utterances, and capture altezragscriptions of the same
entities, where a single entity may be described as a goalseguirrel, a mole, or sim-
ply by pronoun “he”. Although we make limited use of this derence information,
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it could prove of interest for future work in modeling disecse level contributions to
the word learning problem.

7.1 Truth-conditional semantics

In the original annotations, each utterance was identifigll the picture it describes.
As part of this dissertation work, we have added an extral leivannotation, cod-
ing the utterance meanings in the tradition of Neo-Davigsostyle truth conditional
semantics (Lepore and Ludwig, 2007), with predicate logigressions as meaning
representations such as the following:

(7.1) the little boy fell from the tree
Je x1, xp.fall(e) A patiente, x1) A boy(x1) A sourcée, xo) Atregxo) Alittle (x1).

In keeping with the Davidsonian tradition, we say a logicgdression represents
the meaning of a natural language utterance if it evaluatésue exactly when the
utterance itself is true and not otherwise. By conventiomenésy, entities, and other
gualifying features such dgtle are represented by unary relations and binary relations
identify relationships between concepts such as the themsdations identifying the
agent or patient of a particular action.

The compositional nature of such expressions permits usderibe a large number
of utterances with a relatively small set of relations. NEe¢idsonian semantics tends
to be event-centric, where unary relations likedl act as the main idea or pivot linking
entities via their thematic relations. Thus, Neo-Davidanrsemantics seems like a
particularly appropriate choice for representing utteesnin the event-centric frog
stories corpus. Neo-Davidsonion semantics often leaderastic analyses that are
similar to the syntax, where events are usually realizecdssy entities as nouns, and
the thematic relations as arcs in a dependency analysikafi@ng reasoning about the
syntax/semantic interface, another topic central to ocu$o

Because we are primarily interested in modeling child lagguecquisition where
the representations learned are likely to be fairly simpiepmplete, and somewhat
crude, we dispense with many of the finer nuances of the sesrthabry, focusing on
the high level “who did what to whom” notion of meaning thatanight expect a pre-
verbal child to infer from listening to a narrative while @pging an interaction among
non-linguistic entities. We largely omit things like tepaspect, and mode and entirely
ignore issues of quantification and scope. All variablesargtentially quantified, and
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we will often omit the quantifier itself in our examples sintis implicit. Also, proper
names receive no special treatment; while the boy may beeeféo as “Alex” in the
narrative, we simply treat this name as an alternative wordby.

7.1.1 Thematic relations

The binary thematic relations specify the role of each gmtithe event. For instance,
in example 7.1, patientand sourcespecify that boy is the one falling and he is
falling from tree The thematic relations form a closed set consisting of #&reint
types such aagent patient experiencerthemeloc, source goal, recipient time, and
instrument

Also, sometimes entities are related to each other withmudirect intervention of
a mediating event or action. For instance, one may desdridbttation of one entity
in relation to another.

the frog is inside the jar
loc-in(xg,X2) Afrog(xg) Ajar(xz).

To handle this case of location, we appropriate a thematitioa loc, normally used
to describe the location of an event and generalize it tordestocations for entities
as well.

Possessives are another variety of inter-entity relatibickvwe represent by a
simple binary relatiompos

the elk’s antlers
pogx1,X2) A elk(x1) Aantlergxz).

In some cases, these thematic relations are also annotatedub-types, such as
in our example of “the frog is inside the jar”, whefi@ has been appended lmc to
specify a particular type of location relation, distinatrin loc-behindin the following
example:

the frog behind the log
loc-behindxz, x2) A frog(x1) Alog(x2)

7.1.2 Pronouns

We annotate pronouns according to the information that #rdqoular word encodes.
For instance, pronouns in English may encode gender, nyabhaanimacy.
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he popped out of the hole
pop-oute) A agenfe, x1) A a-m-sgxi) A sourcée, xz) A hole(xz)

the child climbed onto it
climb(e) A agente,x1) A child(x1) A dest-orte, x2) A sg(X2)

The use of the word “he” indicates that the subject is malegudar, and animate,
a combination of features which we encode by the constamtsg while “it”, on
the other hand, is neuter, singular, and possibly inanigeting the constama-
sg specifying that it is singular with indeterminate animadyhe exact information
encoded in a pronoun is language dependent. For exampleisifum contrast to
English, lacks a direct counterpart for “hed-(n-sg, “’she” (a-f-sg, or “it” (na-sg,
and instead has a pronoun “0” which can be used for animaa@jnrate, male, or
female entities, and only specifies number (singular), tviare denote bgg

To keep things simple, we omit possessive pronouns suchaittfmy” from the
annotations. Also, in the case of Turkish, a pro-drop lagguave asked the translator
to note where pronouns were supplied in translation tha¢ wet present in the original
transcription and omitted these from the semantic anmotatas well.

7.1.3 The lexicon

The particular set of unary relations and constants chasanriotate a given utterance
is chosen based on the content words of the utterance. Sdlgifin addition to
the utterance level annotations, the corpus also includs@n which identifies the
words each constant and unary relation corresponds to indtpis. The lexicon is
carefully constructed so as to enforce a soft mutual-exatygorinciple in keeping
with the literature on word learning, so that for each largguavery event concept
corresponds to a single verb stem, and similarly for estgied so on.

7.2 Scene descriptions

Since we are interested in modeling the learning of languaggnings from scenes, we
also annotate the pictures of the picture book. These aveerislered as expressions in
predicate logic, much like the Neo-Davidsonian logicahisrof the natural language,
a kind of world semantics. In fact, in an effort to remain detent with the utterance-
level annotations, we rely on essentially the same conwesitive did there, using
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Neo-Davidsonian semantics to describe the images as wibkkasdividual utterances
that describe them.

There is much we are abstracting away from in our choice ofies@notation
scheme. Much as a learner must work his way backward thrdwgglexical and syn-
tactic levels from surface form to meaning representatibare are similar layers of
inference and interpretation between the raw sensual iopatpicture and what a
learner eventually perceives as the scene. For instarere, éne questions of saliency,
which features or objects stand out over others and are ywoftlmention. Just identi-
fying a collection of raw features as a coherent object ign@t task. There are also
principles of social perception that govern how a line dragyinight resolve to an ani-
mate character, and by which motivations and intentionassegned to this character.
Children must solve all of these problems as well.

Most of these interesting perceptual problems are beyoaddtbpe of our work
here, however. Instead, we pick up where the perceptual imaghhas largely left
off, assuming that the learner has already rendered therpittto some representation
conducive to natural language description. This is an als/@versimplification of the
problem the child actually faces, but the enormous compl@filanguage acquisition
plus perception insists on some form of simplifying assuam The many interesting
challenges of artificial vision are far from solved, and imyaespects fall short of the
levels one might expect a human language learner to perfgrsoain some ways,
an assumption of a greater level of competence than we caentlyr achieve with
artificial vision technology has the potential to yield a moealistic model of human
cognition.

Of course, our situated semantic parsing model cannoegnignore the mapping
between world and utterance. However, we carefully ciraribe the relationship
between scene and utterance by enforcing two assumptiosg.We assume that any-
thing any narrator, across all languages, ever says is atatement about the scene.
Second, we make a closed world assumption, assuming thttimgyot mentioned
by any of the narrators is untrue. Thus, we abstract away &lomost all the perceptual
problems with the exception of some aspects of saliencde#ttaer must still resolve
which aspects of the scene each utterance describes.

Given these assumptions of the relationship between saswiption and utter-
ance meaning, and the utterance-level annotations, itssilple with some additional
effort to work backwards to derive the scene description. fige compile the list
of utterances across all languages that describe a giveie.s@den we combine the
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meaning representations into a single logical descrigifdhe scene so that each scene
description is guaranteed to subsume the meaning of eathasdsociated utterances.
l.e., each scene description entails every utterance imdnetion about the corre-
sponding picture in the book. The guiding principle is to fthd simplest subsuming
expression that only entails true statements about theescen

For example, given the meaning representations of fouerdifft utterances

der Junge ist vom Baum hinuntergefallen (German)
/ The boy has fallen down off the tree /
fall(e) A patiente, x1) A boy(x1) A sourcée, xo) Atreg(x)

the boy fell to the ground (English)
fall(e) A patiente, x1) A boy(x1) A deste, x3) A earth{xz)

the boy disturbed the owl in his tree (English)
disturb(e) A agente, x;) A boy(x1) A patiente,Xa) A owl(X4)
Nloc(e xo) AtregXz)

arilar kucuk kopegi kovaliyor (Turkish)
/ the bees are chasing the little dog /
chasée) A agente, xs) A beegxs) Athemée, xg) A dog(Xe) A little (Xg)

the scene description will contain something like the fwllg

fall(ep) A patientep, x1) A boy(x1) A sourcéep, x2) A destep, x3) Aearth{xs)  (7.2)
Adisturb(e;) Aagenter, x1) A patienter, Xa) A owl(xs) Aloc(eg, X2) Atreg(xo)
A chaséey) A agentey, xs5) A beegxs) Atheméey, Xg) A dog(Xe) A little (X)

Constructing the scene requires resolving a coreferentdgunovhere we identify
the variable modified byboyin the first utterance with that of tHeoyin the second
and third, and similarly we note that ttiall event is the same in both the first and
second utterances.

7.2.1 Entity coreference

Often coreference resolution is trivial given the semargpresentation, since the con-
stantboy always refers to the same character throughout the stomyet#r, in many
cases, the same entity may be described very differentlyur&i7.2 illustrates an ex-
ample where the same entity is conceptualized as bh#nssterand agopher and is
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He pops out of his hole
emergée) A\ agente, x1) A a-m-sgxi) A sourcée, xz) A hole(xo)

pop-out
e —9,
A /~C
And out popped a hamster Qé?*\ \e
emergge) A agente,y1) A hamstefy;) hole

[gopher,hamster,a-m-sg]

nose
2.
The gophehbit his nose % o o
- N
bite(e) A agente, z;) A gophefz;) A patiente, z,) A noséz,) bite N

X1=Y1=2

Figure 7.2: Linking variables that correspond to the same entity.

sometimes referred to by pronoun. Since hamsters and goptesemantically differ-
ent, even if they all refer to the same animal in the story, mmotate each differently,
but add notes to indicate that they share the same referbig.sdime strategy gener-
alizes to tracking the referents of pronouns. Thus, eaaheskas a set of equivalence
classes indicating which concepts and pronouns refer teghee entities in the story.
For the example of the figure, the variable tfeggoher hamster anda-m-sgpronoun
all refer to the same entity, resulting in the equality:

X1=Y1=2.

We indicate the equality by enforcing that the same variabl®e is used across all
utterances for the scene. That is, we essentially raisettbence-specific existential
guantifiers to the scene level to cover the full set at once.

Similarly, sometimes different referents will be descdlibe same way. In one
scene there are multiple frogs, a father and mother frody ewhich my be referred
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to asfrog, even though they are different entities. In this case, wérdjuish the dif-

ferent frogs by using different variables just as we do foratimer dissimilar concepts.
Furthermore, they are described as “he” and “she” depenalinghich one is being
talked about. So for the male frog, we have

frog(xo) and a-m-s@xo)
and for the female frog we have
frog(x1) and a-f-s@xz )

wherexg # Xj.

7.2.2 Event coreference

In constructing the example scene in the opening examplas$éction 7.2 we had to
solve a similar coreference problem for the evatit

the boy fell from the tree
fall(e) A patienfe, x1) A boy(x1) A sourcée, x2) A treg(xo)

the boy fell to the ground
fall(e) A patiente, x1) A boy(x1) A deste x2) A earth(x)

to arrive at
fall(e) A patiente, x1) A boy(x1) A sourcée, xo) AtregX2) A deste, x3) A earth(X3).

We treat the two utterances as partial descriptions of threesavent and thereby con-
struct the full description by computing their conjunction

Additionally, just as different entity referents may sh#lre same semantic type,
the same goes for events. Consider the following example:

the boy looks at the frog
look(e) A experience(e, x1) A boy(x1) Athemée, x2) A frog(Xz)

the frog looks at the dog
look(e) A experience(e, x1) Afrog(x1) Athemée, x2) A dog(x2)
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If these were two (incomplete) instances of the same evengdene would contain
this single logical expression
look(e) A experience(e, x1) A boy(x1) Athemée, x2) A frog(x)
A experiencee, x2) Athemée, x3) A dog(x3)

implying that the following would also be true

* the frog looks at the frog
look(e) A experiencee, x2) A frog(xz) Athemée, x)

* the boy looks at the dog
look(e) A experiencefe, X1 ) A boy(x1) Athemée, x3) A dog(X3)

However, neither of these are part of a valid descriptiorhefdtory. To prevent such
over-generalizations when we form the scene descriptienyse different event vari-
ables to distinguish distinct events of the same type:

the boy looks at the frog
look(ep) A experienceey, x1) A boy(x1) Atheméep, x2) A frog(xz)

the frog looks at the dog
look(ez) A experiencefer, x2) Afrog(xz) Atheméer, x3) A dog(X3)
whereey # €.

Thus, the scene would be

look(ep) A experience(ep, x1) A boy(x1) Atheméey, x2) A frog(x2)
Nlook(er) A experience(er, x2) Athemée, x3) A dog(xg)

which entails the true statements but not the false ones.

Given these referent equivalence classes for the entiieé®eents, we can easily
assemble the individual utterances into scene descrgptidesembly merely involves
eliminating duplicate relations involving the same valesb

7.3 Graphs

There is a long tradition of representing logical exprassim graphical terms, and
it is still in active development. See Figure 7.3 for somenegies of just a few dif-
ferent approaches. The conceptual graphs of Sowa (19#@hskance, represent the
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logical predicates as nodes in a graph, and draw edges betveles corresponding
to the sharing of variable arguments. Entity-relation daags for describing the ta-
bles of relational databases are very similar to the coneg¢graph convention. The
dependency-based compositional semantics of Liang e2@L.1), though limited to
trees, follows a similar scheme of representing predicasesodes and arguments as
edges. It is also possible to represent predicates by edgel,as in the semantic
dependency graphs of Titov et al. (2009); Martin and Whitel (30 Semantic depen-
dency graphs are designed to represent semantic depeesibetiveen words, much
as the edges in syntactic dependency graphs. In yet anotaemée, the discourse
representation structure graphs of Le and Zuidema (20p2@sent both variables and
predicates by nodes, drawing edges from variable nodesetprédicates that take
them as arguments.

We choose a graphical representational scheme that cladatgs to the semantic
dependency graphs (see Figure 7.3(c)), where

e variables are identified with vertices,

e binary relations specify edges, directed from the vertexidied with the left
argument to that of the right argument,

e vertex and edge labels are identified by their associatadionk, where unary
relations specify vertex labels and binary relations dpexige labels.

Thus, the graph represented in Figure 7.3(c) can be tradsiato the following ex-
pression:

climb(ep) A agentep, x1) A boy(x1) Atheméep, x2) A tregxz)
Ndisturb(er) A agenter, x1) A patienter, x3) A owl(x3) Aloc(eg, x2)
Achaséey) A agentey, xa) A beegxa) Athemdes, xs) A dog(xs) Alittle (xs).

Our approach differs from the semantic dependency graphgaf et al. (2009);
Martin and White (2011) principally in that we do not identifpdes directly with
words, since we are interested in a more general scheme ¢liéd ailow us to graphi-
cally represent scene descriptions where word nodes doaike sense. Also, a major
part of the phenomena we wish to model is the learning of thgping between predi-
cates and words and we do not want to start from the assungdtamidentity relation
given directly in the meaning representation. Note thates@im and syntactic depen-
dency graphs, though not identical, often closely reserobke another by virtue of
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little

Figure 7.3: Three different graph representations of the expression in equation 7.2. (a)
A conceptual graph. (b) A discourse representation structure graph (global wrapper

node omitted for clarity). (c) Our representation scheme.

the close relationship between thematic relations andasyiotarguments. In fact, se-
mantic dependency graphs often feature in work at the sysgeaantics interface. It
is for this close correspondence between syntax and sessaas well as the relative
simplicity of the representation, that we choose a simitgaraach for our work here.
Coreference can be represented in the graph by identifyioy eserent with a
single vertex of the graph. If there are semantically défgrways of referring to the
referent, these become multi-labeled vertices, one laeddch descriptive type. For
instance, in Figure 7.2, the rodent that emerges from thangtdo bite the boy on
the nose is called a “hamster,” a “gopher,” and sometimessisrgferred to as “he,”
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resulting in three different labels for the correspondiegex.

7.4 Encoding scenes as forests

A graph is capable of representing an arbitrary expressiayur subset of predicate
calculus, but this expressivity comes at computational c@smpared to trees and tree
languages, the set of tools for processing more generaledas graph is considerably
more limited, and those that exist tend to be expensivewetisinderstood, and diffi-
cultto implement. Itis easier to implement efficient algfoms for parsing trees, on the
other hand, and a general graph parser seems somewhatweegdaonsidering that
the vast majority of utterances in our corpus can be destiiyerees. In fact, there
are only 12 out of a total of 3030 utterances whose meaningatare represented
by trees. Of course, even if meanings can usually be repexséry trees, scene de-
scriptions are invariably more complex graphs, but theaplyg can be approximated
using multiple trees aggregated into a forest. We can theseghese forests using the
highly optimized tree parser presented in Chapter 4. Inelyithe resultant forests are
larger than the more compact graph representations (byt 868t), leaving it unclear
exactly how much forestization saves over parsing the gdieletly using a similarly
optimized graph parser. However, we can still justify foizsion over direct graph
parsing considering that the optimizations described inp@had, while still theoreti-
cally applicable, are considerably more difficult to impmhefficiently in the general
graph parsing setting.

To “forestize” the graphs, there are two features that wetrano®rce. The first
is rootedness, i.e., every node of each subtree must beatdadby following a di-
rected path from some root node. The second is the singlafganeerty where every
node except the root which has only outgoing edges must hactlg one incoming
edge (i.e., no reentrancies). We enforce these two pregartithe Frog Stories scene
graphs using a semi-automated process with some manualent®n for handling
reentrancies.

Rather than construct the scene graphs and then forestezedhaphs, the process
starts by first enforcing the tree property at the individoeganing representations,
then joining these meaning representation trees into sphgrat using the coreference
annotations. Finally, we make another pass over these apig/to again enforce the
tree properties, forming the forest.

We start by enforcing the rootedness and single parent grepé& each meaning
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Figure 7.4: (a) A scene graph. (b) A forest approximation, one event per tree. Indices in-
dicate duplicate nodes required for preserving the tree property. (c) The transformation

of a meaning representation into a rooted tree.

representation. First, we pick the node to make root by ity@ng by prioritizing
events first, and then affects likeppyor angry over entities. There is typically only
one event per utterance, given the way the original corpissanaoded, but in the case
of affects or entities, occasionally there may be multiedidates for the root. In
such cases, we score each candidate by calculating itseguéel minus its in-degree
and choose the one with the highest score, breaking tiesailyi Once the root is
identified, we invert all of its incoming edges and then inglee minimum number of
additional edges in the graph necessary so that all othécesare reachable from the
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root by some directed path. To preserve the semantics of tlegsrsed edges, we add
an extra notation in the edge label so that, for instanceyséawy edge experiencerx)
results in experiencet(x,e). Figure 7.4(c) illustrates an example whelisturb, as
the event node, is chosen as root andekgerienceredge is reversed so that it has a
directed path t@urious

Next, we remove the reentrancies from the meaning reprasems, of which there
are only 12. We do so by splitting the vertex by introducing @n more additional
vertices, one per in-edge, and dividing up the incoming s@geong them, leaving the
out-edges attached to the original vertex.

Once we have guaranteed that the meaning representatitims iotlividual utter-
ance is a tree, we proceed to construct the maximal treesecdbne forest. These
trees are essentially the maximal frames of the scene,rcotesd by taking the union
of the roles of each instance of the root concept (eventciafte entity) in the ut-
terances. The union operation may introduce new reentranehich can again be
removed by splitting vertices and distributing the incoghadges among them until
there are no more reentrancies. Outgoing edges may alsotméedduplicated de-
pending on whether every meaning representation is cousréie graph, which we
enforce manually and test with a script. Occasionally cya@y be introduced during
the union operation, which we also break by splitting vextiand redistributing edges
to guarantee that every utterance meaning is included aste@esyanother step which
enforced manually and tested with a script.

These trees then make up the forest, which itself can begepted as a single tree
by adding an extra root node. Figure 7.4(b) illustratesdisaltant forest representation
corresponding to the scene graph fragment in part (a). Natetriousalong with the
accompanyinghemeand itsloc are duplicated as well as appearing as root of its own
tree. This allows for utterances such as

“the boy is curious about the hole”
curiouss) A experience(s, X1) A boy(x1) Athemés, x2) A hole(xp)

as well as utterances corresponding to the tree in Figu(e)&dch as

“the curious boy disturbed the owl”
disturb(e) A agente, x1) A boy(x1) A patiente,x2) A owl(x2)
A curiougs) A experience(s, x1)

The resultant forest is potentially much larger than th@lnaould be, with com-
putational implications since the parsing algorithm pnése in Chapter 4 takes time
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directly proportional to the size of the tree. However, iagiice we find that the neces-
sary vertex splitting and edge duplication leads to forestgaining about 1.29 times
as many vertices and 1.1 as many edges as the unforestiptgt@eneral graph pars-
ing typically requires far more than time quadratic in thagir being parsed, usually
exponential in the degree or tree width of the graph sucheaasiltjorithm of Chiang
et al. (2013), so our forest transformation potentiallyesaws some computational ex-
pense, at least in terms of the asymptotic bounds. Howevedifficult to say exactly
how much the forestization step actually saves in practiteowt a direct run-time
comparison, and a fair comparison would require first imgetimg the optimizations
described in Chapter 4 in a general graph parser, somethihggawe for future work.

7.5 Quantifying and constraining ambiguity

A scene description is a compact way of defining a set of plessibe statements
about the scene, and we can always expand the representedioexplicit set by sim-
ply enumerating all possible logically entailed statersettnrestricted, however, this
set would be astronomically large, essentially the powerfsall concepts in the scene
with roughly an average of?3° entailments per scene, and very few of these entail-
ments actually correspond to anything someone is likelctoaly say. For instance,

it is hard to conceive of a statement with the following megniepresentation

agentep, x1) Aboy(x1) A curiougs) A sourcéey, x2) Atregxy).

The expression is merely a jumble of disconnected concémsboy is an agent of
some event, the tree the source of some other, and it is unetest curious has to
do with either. Even the most efficient computational modelild also likely need to
employ some sort of filter just to keep the problem tractadhel it seems likely that
human learners employ biases or constraints that allow theguickly dismiss such
nonsensical meaning candidates. Thus, a word learningraysbuld likely do well to
constrain this set of entailments to something that is moreputationally tractable,
focusing attention on only the more plausible possibditie
We employ five main constraints.

e Single Event: Utterances can contain at most one event. This assumption is
not only guaranteed by the fact that utterances were mamssgimented by the
original encoders so there would be at most a single evenitfgrance (Berman
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and Slobin, 1994), it might also be a reasonable assumptigaeneral since ut-
terances in child-directed speech are often relativelytsiperhaps consisting
of a single clause. Such a simplifying assumption could tyreaduce pro-
cessing overhead both for human and computational leanqentscularly in the
early stages of word learning when there are few known wardsly on disam-
biguating novel words.

e Connectedness. Everything in the meaning representation either plays ecdir
role in the main event of the utterance or is related to somgtthat is through
a chain of binary relations. Representing the scene as a grapge, this means
that all meanings must be connected subgraphs or subtreescofinectedness
restriction reflects an intuition that entities that int#ran the scene are more
likely to also be talked about in the same utterance than rtiges that seem
to have no relationship. This constraint is related to theddmns for well-
formedness in Lexical Functional Grammar (LFG), wheaherencedictates
that every grammatical function must be licensed by somdigae in the sen-
tence (Bresnan, 2001).

e Relation Completeness. If an entity or event is omitted, all binary relations
that include it, either as a left or right argument, must dsoomitted. For
instance, excludingpoy from the meaning representation corresponding to the
scene in Figure 7.4(a) would also exclude the incigey@nt patient andexpe-
rienceredges. While connectedness relates to the coherenceasriteriwell-
formedness in LFG, this constraint that relations must tig fpecified relates
to completenessvhich states that a sentence containing a particular qaeli
must also contain all of its required grammatical functi@sesnan, 2001).

e Rooted Tree: Meanings must be tree shaped (i.e., no concept can play more
than one role). Additionally, this tree must be rooted sudt there is some
node (i.e., concept) from which all others can be reachealywing a directed
path. Again, this assumption matches the data since the@r a dozen utter-
ances out of roughly 3000 that contain reentrancies. Alssyming the scene
description has been encoded as a forest as described iarSadt, it is easy to
enforce the rootedness constraint. This constraint hasgvedy small impact
on the total number of meaning representations, but cannagmputational
modeling since, as mentioned in Section 7.4, there are nigogithimic tools
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unpruned pruned
max 1,333 352
avg 339 183
min 82 33

Table 7.4: The number of meanings entailed by the scene description with and without
frequency pruning. In the frequency-pruned scenes all but the most frequent 20 entities

and 20 events have been removed from the scene and meaning representations.

(which are also usually more easily implemented) for effitf@ocessing of tree
structures than for most other varieties of graph.

e Singly Labeled: Every vertex of the tree has exactly one label. In our graghic
language, adjectives and adverbs likike andquicklyare realized as additional
labels on the entity or event predicate vertex. Howeverofar work we are
primarily interested in noun learning, and multi-labelegkt present additional
complexity, so we further simplify the problem by removingk modifiers from
the scene. There may still be multi-labeled vertices insttenedescription due
to varying ways of referring to the same entity (see the gopkample in Fig-
ure 7.2), but only one of these may be chosen for a specific imgpagpresenta-
tion.

It seems reasonable that human word learners might emplogt these exact con-
straints, at least some similar sort of simplifying assuon®. The first three in par-
ticular are fairly plausible as constraints human learngght place on the problem at
early stages of learning. Furthermore, most of the comgtraire justified by the data
since they turn out to be true for all but a few utterances énRfog Stories corpus.
Employing these constraints, we arrive at much more marmdgeambers. The
first column of Table 7.4 lists the maximum, minimum, and agernumber of mean-
ings for the 24 scenes of the Frog Stories corpus. In one stieere are well over a
thousand meaning candidates even under this fairly consttaetting, a number that
even the dynamic programming-based word learner in Chapseui@able to handle.
Psychologists often appeal to the notion of saliency toagrgthe ability of children
to quickly home in a manageable set of candidates. Certangghare more likely
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to be discussed than others, either because they stand roeppelly and draw the
storyteller’s eye or figure more prominently in the story.r Festance, a child might
exploit an understanding of the typical structure of stogyrative and pay greater
attention to the actions surrounding the main charactarstinmore peripheral action
like a bird flying in the distance. Focusing on the more ceéaspects of the story could
allow a learner to grasp the basic narrative even with anitifapeunderstanding of the
language used. Such a focus could aid in the learning of wiordsie more central
concepts even as the less central ones are ignored, thaneplfysng the learning
problem to something more manageable.

One would expect this kind of scene-level saliency to catesWith the actual de-
scriptions produced by the storytellers themselves, so aveapproximate it using
frequency counts where the more salient actors and actrensiantioned more fre-
guently. In line with this idea, Table 7.4 also reports théoaguity numbers where all
but the most frequent event and entity types are pruned fhens¢ene and meaning
representations. Relying on saliency in this way, and pgipmonouns and a few of the
more abstract concepts, we restrict the corpus to just 2€rdift event types and en-
tity types, reducing the number of meaning candidates immst difficult scene from
over a thousand down to about 350, and down to 183 candidatagavage. Even in
this further constrained set, however, there are on avevafiever four times as many
meaning candidates as actual utterances per scene frorh wicitild or model must
learn, suggesting that the learning problem is still likielyrove quite challenging.

In fact, in spite of the simplifying assumptions and saliebased pruning, there
is still far more ambiguity in the training data than typlgassumed in either psycho-
logical or computational experiments where the learnerllisonly chooses from a
handful of concepts in the non-linguistic context. Thatwijle relying on many of
the same ideas, the annotations of our corpus are far lessraiming than typically
assumed. Chapter 8 explores the effect of this added ampiguiesting whether a
statistical learner is capable of learning under theseitiond.



Chapter 8
Word Learning

Infants are confronted with a challenging problem whenies to learning the mean-
ings of the words they hear in the arbitrary stream of soupd&en around them, but
they nevertheless seem to be quite effective at leverapmgntany sources of infor-
mation available to work the problem out. In particular, tlue of co-occurrence
patterns between words and objects across varying noniitigg contexts has been
demonstrated repeatedly both through computational nragehd behavioral experi-
ments, a phenomenon known as cross situational learniqgcdily, the non-linguistic
context in both the computational and behavioral expertsieonsists of a set of iso-
lated objects that varies across utterances. By assumihgiinds refer to objects in
the immediate environment, the learner can use the facatpatticular word is more
likely to be heard in the presence of a particular object ttude that the word refers to
the object. There are many computational models that aperathis principle (Frank
etal., 2009; Yu and Ballard, 2007; Fazly et al., 2010; Jona €2010). Of course, the
world is much richer than portrayed in such simulations wltbe learner essentially
only has one kind of information, the variation in the presenr absence of words
and objects across utterances and scenes. This chaptentsrascross situational
learning model that exploits an additional source of infation: relational informa-
tion among the words in the utterance and among the nonifiigwoncepts in the
scene. Concept-concept relations are represented ebypircthe scene description,
while word-word relations are latent, left to be inferredthg model.

There are different ways that such relational informationld influence the learn-
ing problem. For one, relations between entities in the sceay directly shape the
learner’'s hypotheses about the meanings of descriptieeamtes. For instance, one
might assume that things that interact in the scene are nkefg to be referred to in
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the same sentence than two completely unrelated entitiess, Tocusing on connected
sub-components of the scene could have a pruning effececsptiice of subsets, help-
ing to guide learning and simplify search. For instancehdf $cene portrays a swarm
of bees chasing a dog with an owl and trees in the backgrotiseems plausible that
bees and dog might appear within the same utterance, wialérdles and owl with
which the dog and bees do not directly interact are less/lilcebe included. A learner
has much less to judge from in the case where the scene isegpee as a completely
unstructured set of concepts any of which may or may not ae@land, thus, any
subset is as plausible as any other. If one must consideulihgofverset of concepts,
inference can quickly become intractable, and any plaagihining strategy based on
their relationships could prove invaluable in terms of tabdity as well as the quality
of learning outcomes.

Secondly, structured representations of the non-linguggintext also provide a
more subtle source of cross situational information, sinaerelational setting, situa-
tions vary not only by the presence or absence of entitiealbatby the particular rela-
tions among them. Consider the example sentence in Figurd/&te co-occurrence
statistics for the conceptoyanddogand the words in the following two sentences

(8.1) lick(e) Aagente,x1) Adog(x1) Athemée, x2) A boy(x2)
the dog licked the boy

(8.2) scolde) Aagente, x1) Aboy(x1) Athemée, x2) A dog(Xz)
the boy scolded the dog

provides no information since both are present in eacht&tuaCo-occurrence statis-
tics might help infer the meanings of the verbs “licked” amgddlded”, but there are
other useful patterns such as the fact that the agent octting deginning and the
theme at the end that a learner could exploit.In fact, tHeticmal information about
agents and themes and subjects and objects in English cesikt & the learning of
the nouns even if the learner failed to identify the verb niegs

This correspondence between relations and word order carotleled by exploit-
ing the similarity between word learning and semantic parso integrate the key
features of both into a single model. Semantic parsers seé&atn compositional
meanings for whole sentences rather than isolated words@amckepts, and already
make heavy usage of such relational information. Word kexa;non the other hand,
often deal with a much greater degree of referential ambjigsince semantic parsers
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(@) Utterance: “the boy looked at the frog in the jar”

Scene: 100K(€) Aagente, xq) Aboy(x1) A possesia, Xz) A themée, x3)
Ahappy(s) A experience(s, X3) A frog(xs) Aloc(xs,X2) Ajar(xz)
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Figure 8.1: (a) An example utterance, its latent meaning representation, and the accom-

panying scene description and (b) a mapping from words to scene via the meaning.

are trained on observed meaning-sentence pairs. Worcelsamust instead simulta-
neously infer from context alone the meaning of the sentascegell as the meanings
of individual words.

Others have proposed similar solutions by using semantgepaas word learners
while replacing the single observed gold meaning by a sebs$iple candidate mean-
ings (Borschinger et al., 2011; Kwiatkowski et al., 2012; Chen anaMzy, 2008; Kim
and Mooney, 2010). However, this approach has been limiygddues of computa-
tional complexity, forcing models to work with relativelynsll sets of half a dozen or
so candidate meanings. We propose to expand this set of ngeeandidates by rep-
resenting it as a language in its own right, defined by a pntibab grammar, which
allows us to apply dynamic programming techniques to affelst search and perform
inference over the set in a far more efficient manner. The grarbased framework
presented in Chapters 3 through 5 makes it relatively stifaigtard to adapt and
incorporate the semantic parsing model of Chapter 6, andasvedll-suited to imple-
menting such a language-centric approach to represemtagpsmeaning candidates.

The key idea is to represent the non-linguistic contexisg@ne by a single log-
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ical structure as described in Chapter 7 rather than a calfeof unrelated meaning
representations and then search over the possible meaamalidates for statements
about the scene. Figure 8.1(a) presents an example of ttmengacenario based on
the Frog Stories corpus described in Chapter 7: the learraes libe utterance and
observes a scene and must infer the utterance’s meaninggdhe process of learn-
ing the contributions of the individual words to that meanirPart (b) of the figure
illustrates the relationship among the words, meaning,saete, where the meaning
serves as a bridge explaining which aspects of the scenedius\are describing.

As with the simpler semantic parsing model of Chapter 6, thediearner is im-
plemented as a single synchronous grammar that jointlyekescene, meaning, and
words. The meaning-to-words relationship is modeled byrarmtiof the semantic
parsing grammar, but we add a third dimension to the grammainat the yield of
each derivation is a triple: scene representation, meaepiggesentation, and words.
Because the entire model is implemented as a grammar it isvedyaeasy to incor-
porate syntactic aspects for joint inference with wordnéag to explore the impact of
syntactic bootstrapping. In fact, the semantic parsingehabteady incorporates this
kind of joint syntactic-semantic learning. Coupled with daility to manage a larger
number of meaning candidates, our fully grammar-basedagprpermits us to better
explore the strength of the influence of various effects sigcjoint syntactic learning
on resolving referential ambiguity during word learning.

With greater ambiguity, we can measure this strength mdeetfely than previ-
ously possible, asking the question, “from where do theniegrbiases and constraints
come?” Are they a necessity of the learning problem, i.éarmation theoretic lim-
itations, or are they constraints necessitated mainly byctignitive resources of the
learner? If a computational model can learn under less @nst settings, one leans
toward ruling out the first possibility, leaving cognitivertstraints as the more likely
explanation.

However, while the grammar framework allows a model to esgolmore ambigu-
ous learning scenarios, there are fundamental challehges& can only hope to ease,
not entirely avoid. As psychologists have argued, it isl{ikbat human learners rely
on cognitive biases and exploit a combination of altermatources of information
to further simplify the task. We do not go so far as most presiaork, however,
in assuming that these biases narrow the space of possipteh®ses to a dozen (or
often fewer) candidate meanings per utterance, since thigdandefeat the purpose
of the exercise. Imposing such constraints or biases, henvdees not not necessar-
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ily eliminate that much ambiguity. In fact, the corpus as#yof Chapter 7 suggests
there may still be hundreds of candidates remaining even lafavily constraining the
problem. Instead, we explore a marriage of the two, comstrgibiases plus greater
computational power, to address a greater degree of rei@rambiguity.

The model incorporates both soft statistical propertieguiole learning and hard
constraints to make the task computationally tractablde Inost statistical models
of word learning, we rely on cross-situational consistetecyiome in on reasonable
word-concept pairs. We implement it as a Bayesian modelgusiaparse prior on
word-concept pairs in the lexicon encouraging the learnexdopt a kind of mutual-
exclusivity-like bias for small lexicons. Furthermore tout feeding the model any
additional language-specific information, we allow the eldd learn and exploit sim-
ple syntactic cues based on canonical word orderings fautitkitraining data. These
soft constraints provide the statistical learner with th#itg to gradually home in on
a lexicon, but there are additional hard computationalthtrons that such soft con-
straints do little to mitigate. In particular, in our gramniiEamework more ambiguity
translates directly into terms of larger packed parse fer@sd heavier memory costs,
and a highly ambiguous scenario can quickly exhaust menesigurces, necessitating
the introduction of several additional hard constraints.

We enforce four main types of hard constraints. Section [feady outlined the
structural constraints, some of which are closely relatetth¢ connectedness and co-
herence properties of LFG (Bresnan, 2001). Additionallihaigh we relax the as-
sumption of previous work that salience and shared attemioninates most of the
ambiguity, we still find a place for them here. Psychologmstee observed that speak-
ers often employ intonation to highlight content words pived to focus children’s at-
tention and distinguish them from other background wordsr{&l and Mazzie, 1991).
Thus, we distinguish content words in the input to our systsmvell. Furthermore,
shared attention may serve to direct the learner’s attentidhe most salient events
and actors in a story, which we implement through scene pguas described in Sec-
tion 7.5. This scene pruning can also be seen as a kind ofytliéonind (Tomasello,
2001), where the learner follows the story and comes to igatie which entities and
events are most likely to be mentioned. Finally, since wepairarily interested in
interactions with early stage syntactic learning, whichkisly to be more easily mea-
sured after the learner has acquired at least a small setrdbywve also simulate this
prior knowledge by providing the model with a small seedderi. Of course, even
after incorporating these additional constraints, therstill considerable ambiguity
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remaining, with hundreds of meaning candidates per utteramore than sufficient
to explore our main questions of whether the stricter cairs assumed in previous
work are necessary for learning to occur at all or are simpbyaauct of cognitive
limitations.

8.1 Model Definition

Word learning in the Frog Stories scenario consists of thenker listening to a story
told by a narrator while examining and collating this dgstton with the story told
through the images in the picture book and other non-liriguesies. The modeling
objective is to explore how a learner might infer word megsiby reasoning about
the parallel sources of input to determine which words r&dewhich aspects of the
scene. This reasoning process might manifest as a sequiegueesses: the learner lis-
tens to a sequence of utterances, makes a guess as to theagnafaemch as it comes,
checks this guess against the scene to test whether it makes & the current con-
text, and then performs some analysis akin to a semantiemp@arsesolve which words
relate to which components of the proposed meaning. We ntioidgdrocedure proba-
bilistically as a generative process where the model firesges a meaning, generates
a mapping from meaning to scene (i.e., verifies that the ggesansistent with the
context), and then proceeds to generate the words conelition the meaning. The
process can be conceptualized as a two stage procedurestgefirerating a scene-to-
meaning map and then the meaning-to-words map (althougtettieular order of the
stages can be reversed without changing anything).

The meaning-to-scene map is governed by several simgifggsumptions. First,
the model assumes that every utterance is true, and setandhe scene description
contains everything that one may wish to describe, i.e.paecl world assumption.
Thus, in order to verify the validity of a guess for the uttera meaning, the model
merely needs to check whether the scene description cenghileast one instance
of the meaning representation expression as a subset. \Whulsiinplifies the task
considerably, it still leaves a number of possible meanggsnential in the size of
the scene description, so we further restrict the modelpmmopose meanings that are
connected subtrees of the scene description forest. Beobtiseway these forests are
constructed (see Chapter 7), this has the further effectfof@ng an assumption that
every meaning candidate includes at most one event. Giese gissumptions, the map
from meaning to scene consists of deterministically geimega copy of the meaning
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Figure 8.2: The generative model for (a) the semantic parser described in Chapter 6
and (b) the word learner for a corpus of J utterances. W;j is an utterance, mj is its corre-
sponding meaning representation, and s;j is the scene that the utterance is describing.
Variables y;j and z; map from meaning to words and meaning to scene, respectively, as
governed by the probabilistic synchronous grammar. [Lis the set of multinomial parame-
ters for the language model over meaning representations m, wis the set of multinomial
parameters for the utterances W given their corresponding meaning representation, and
pi are the parameters for multinomial parameters for the meaning-to-scene mapping.

a, B, and y are the parameters for their respective Dirichlet priors.

representation and then randomly adding onto this seednergee the remainder of
the scene.

The map from meaning to words is very similar to the semardisipg model of
Chapter 6, and consists of choosing words with which each ooet of the meaning
is expressed and determining a linear order in which to gedéinese words.

Figure 8.2(b) presents a plate diagram describing the motleé meaning rep-
resentatiomrm is drawn from a product of multinomials with parametgre/hich are
drawn from Dirichlet priors with parametecs This meaning representation is then
checked against the observed scene by generating a map asqgiker product of
multinomials with parameters drawn from another set of Dirichlet distributions with
parametery. Finally, the words are generated in more or less the sarhefaas done
for the semantic parser. In fact, part (a) presents the sin@arsing model for com-
parison, demonstrating that, at this high level, it is eBaliy a subset of the model
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wheremis observed during training. Equation 8.3 summarizes theeho
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e P(m;|p) is the probability over plausible meaning candidates gavbasic knowl-
edge about what sorts of things are likely to appear in a greéation to one
another. For instance, frogs are more like to hop than to, lzaf&ct that can be
learned by the model and encoded in the parameters

e P(wj,yj|mj,w) describes the conditional probability of the map to word&gi
a particular meaning representation, dictating which wandd word orders are
most likely when expressing a particular concept or contlmnadf concepts.

¢ P(sj,zj|mj,0) describes the conditional probability of the scene give same
meaning representation, modeling our closed world assamahd our assump-
tion that every utterance is a true statement. This digtahwalso encodes in-
ferred information about which aspects of a scene are ldady lto be talked
about and instead be generated as background information.

Since the model is implemented as a multi-weighted syndusigrammar, these
three distributions can be explicitly defined in terms of tiights on the rules in a
derivation. For consistency with the semantic parsing tdrapssume(r) andw(r)
are the products of the weights of rulepertaining to the meaning and the words,
respectively. Additionally, let(r) be the product of weights relating to the scene.
Then we can compute all three by simply multiplying the wésgbf the rules in a
particular derivatiorx;.

P(mj ) = [] K(r)

rex;

P(wj,yjlmj, w) = [ w(r)

rex
P(sj,zjlmj,0) = [] o(r)
rex;
The precise definition of these probability distributiondl ve covered in the follow-
ing sections, but like in the case of the semantic parser irpt&h&®, each rule may
contribute to all three portions of the yield simultanegushd therefore have a weight
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vector that includes @, w, ando, which can be implemented as a multi-weighted
grammar as defined in Section 3.4.

However, before diving into the implementation details wawd like to first ac-
knowledge that there are, of course, other ways of forrmgatie word learning prob-
lem, and some that may even seem more intuitive to some e#than the one pre-
sented here. We could, for instance, first generate the soamhenly then generate
the meaning representation while conditioning on the saestead of the guess-and-
check approach we have taken where first the meaning is indep#y generated and
then the scene is generated conditioned on the meaning. Védnsidering alternative
approaches, however, it is important to keep in mind thatuttimate objective is to
learn a correspondence between the meaning and wordsheggint distribution of
m, y andw. The probability over the scersand the related multinomial variables and
parameters are only necessary for training, and are notdissztly in computing the
lexicon itself. The particular factorization chosen in Bgan 8.3 makes it straight-
forward to compute this joint probability oven, y andw while integrating out the
additional variables pertaining to the scene. In fact, bseaf the conditional inde-
pendence between the words and the scene, one can simplg, drepd pi, resulting
in the basic semantic parsing model shown in Figure 8.2¢@jnl alternative model
where the meaning is generated conditioned on the scenejgié for example, have
the following factorization:

P(w,m,s) = P(s)P(m|s)P(w|m).

In this case, information about the meanimgs conflated with information about the
scenes so that one would need to somehow sum over all possible s¢ehesich
there are an infinite number under our scene-generatingngaam

P(w, m) :/P(s)P(m]s)P(w\m)ds: P(m)P(w|m)

This is not necessarily an insurmountable obstacle sirgesynaing the model were
implemented as a grammar, one could likely utilize a var@inthe inside-outside
algorithm to perform this integration. Our formulationww®ver, allows us to forgo this
extra complexity altogether. Furthermore, our model deggimplified by the close
relationship to the semantic parsing model which would tiee require refactoring
to accommodate the alternative scene-first approach.
We now turn to the implementation of the model in terms of greamrules and

weights.
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N[ROOT] — Ae.look(e) A E[LOOK/AGENT](e) A E[LOOK/THEME] (e)

(m1)

N[LOOK/AGENT] — Ax.boy(x) (m2)
N[LOOK/THEME] — Ax.frog(x) A E[FROG/LOQ(x) (m3)
N[FROG/LOQ — Ax.jar(x) (m4)
E[LOOK/AGENT] — Ae.agente, x) A N[LOOK/AGENT](x) (mlla)
E[LOOK/THEME] — Ae.themée, x) A N[LOOK/THEME](x) (m11b)
E[FROG/LOQ — AXp.loc(xg,X1) AN[FROG/LOQ (x1) (m12)

Table 8.1: A grammar that generates the meaning in Figure 8.1. Node-generating rules
(top) yield event and entity predicates while edge-generating rules (bottom) yield the

role labels.

8.1.1 Meaning generation: P(m|p)

The generative process starts off by generating the meaaprgsentation, much as
the semantic parser in Chapter 6 does. First, we choose aftalibe root node and
then proceed to generate the thematic role labels for itd edges conditioned on the
root label. These thematic roles are filled with entities threo events of their own,
each generated independently conditioned on its parentad@dype, and generation
continues in recursive fashion, choosing each node lalmelitoned on its parent and
role type and then generating its own children in turn by 8edecting their number
and type conditioned on the node label. In this way we desogewkrating the tree
until terminating at the leaves.

Table 8.1 shows the grammar fragment for generating the imgaepresentation
in example 8.1. Nonterminals of the form NJ...] expand toerate event and entity
concept labels on the nodes of the tree, while those of time Eqjr..] expand to produce
the role types, represented as binary edges. Thus, theagenesf the meaning repre-
sentation of our running example begins with rule m1 genegatlook event with an
agent and theme. Rule mlla then yields the agent role lab#&handule m2 produces
boy. Thefrog is generated as a themelobk in much the same way by rules m11b
and m3, and then the frog’s location is specified by rules nmtPra4.
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Multiplying the weightsu(r) for each step of the derivation defines the following
probability distribution over meaning representationbeve we assume (for entity
or evenj stands for a node in the meaning representation:

P(mlp) = |_| P(e|parent-rolde), paren{e), ) P(child-rolege)|e, u)

ecm

where

child-rolege) = the set of child roles oé,
parent-rolge) = the parent role og, and

paren{e) = the parent node predicate @f

Rules such as m1 through m4 implement the main behavior of riblgapilistic
model where each rule is weighted in order to (1) generateuéet or entity label and
(2) the number and type of roles:

pu(ml) = P(look|ROOT, u)P(agentthemelook, )
H(m2) = P(boyllook, agentp)P(0|boy, )

n(m3) = P(frog|look, themep)P(loc|frog, 1)
H(md) = P(jar|look, loc, u)P(0Jjar, p)

These rules have factors of the form
¢u(r) = (Ins(r),eventr)) - (eventr), child-roleqr)),

wherelhs(r) identifies the left-hand-side symbelentr) identifies the event unary on
the right-hand side, anchild — roles(r) lists the roles as encoded in the nonterminals
on the right-hand side. Rules mlla through m12 then produeditiary relation
edge labels in deterministic fashion (after already behlmgsen probabilistically in the
previous steps), with a factorization function@f(r) = (0,0) leading to a weight of

1.

The process is very similar to that of the semantic parsaritesi in Chapter 6, but
involves a few additional independence assumptions toracemlate added variation
in the Frog Stories corpus. For one, instead of conditiomiagh entity/event on the
full signature of its parent (i.e., the parent node label @sdull set of child role
labels), each concept is only conditioned on its own roletgpd parent, irrespective
of the number and roles of its siblings. Additionally, eaclle label and its child edge
labels are chosen in two separate steps rather than all at drfeese independence
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assumptions help accommodate the greater degree of \Vyiafithe Frog Stories
narrations over the considerably more formulaic senteimc@€goQuery. For instance,
there can sometimes be multiple agents, or the agent may higedrtespecially in
pro-drop languages like Turkish), while in GeoQuery a bmfamnction will always
have exactly two arguments.

8.1.2 Word generation: P(w,y|m, w)

Once the meaning is generated, the probabilistic modebgagto generate the words
conditioned on the meaning, walking from root to leaves aaddlating each concept
in the meaning representation into a string of words. Aghie process is very similar
to that of the semantic parser, but there are a few modificaitio better match the ob-
jectives of the word learning task. In particular, our wagdrner only attempts to learn
meanings for content words (roughly corresponding to whatwwl call foreground
words), and the model maintains a sepataekgroundunigram distribution to ac-
count for function words. This distinction between foragnd and background words
helps the model learn a more compact lexicon than the setrjaantsing model would
which better matches the assumptions behind the constnuatithe gold lexicon, our
target. While the introduction of the background unigrantrdistion is a departure
from the semantic parsing model, translation from a concetite meaning represen-
tation to a substring of the utterance proceeds in an otkerwery similar fashion.
First the concept and its children are linearized into ai@aler word order pattern
that determines where words of each type are to be inserted.wbrds themselves
are then generated to fill in the details such that each comeaentified with exactly
one word in the substring, drawn from a concept-specifigiigion over foreground
words, and the remaining words are selected from the umvbesckground unigram
distribution.

For example, the linearization of a node likeg in Figure 8.1 which has a single
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child is drawn from the following eight possible patterns:

FG-WORD CHILD
BG-WORDS FG-WORD CHILD
FG-WORD CHILD BG-WORDS
BG-WORDS FG-WORD CHILD BG-WORDS
CHILD FG-WORD
BG-WORDS CHILD FG-WORD
CHILD FG-WORD BG-WORDS
BG-WORDS CHILD FG-WORD BG-WORDS

There are three sub-steps to choosing one of these partitidarizations, all condi-
tionally independent. Specifically, if the local tree belimgarized containa children,
these steps are

1. the ordering of childrem{ possibilities) conditioned only on the set of their role
labels,

2. the placement of the single foreground word, which cantlibeabeginning or
end or anywhere between the children with- 1 choices conditioned on the
parent node label and the number of children, and

3. the placement of strings of background words which camimoaaywhere be-
tween or at the beginning or end of the string of children v@ith! configura-
tions, also conditioned on the parent node label and nunflildren.

The process is implemented by pairing the monolingual nmgarepresentation
grammar rules with word generating rules (shown in Tablg#@n@, while retaining the
meaning generating weightr ), adding word-to-meaning translation weighi§ ) to
each rule to jointly generate meaning and words. Rules wla-avé examples of
linearization rules, where rule w3b corresponds to thersgpattern in the list above.
The weights of this rule governing the meaning-to-word ra#ip) are defined such
that

w(w3b) = P(CHILD[{loc}, w)P(FG-WORD__|frog, 1, w)
-P(BG-WORDS_|frog, 1, w),
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N[ROQOT] — ( Aellook(e) A E[LOOK/AGENT]g|(e) (wla)

A E[LOOK/THEME]m(e) ||
E[LOOK/AGENT]jq W[LOOK] E[LOOK/THEME] )

N[LOOK/AGENT] — ( Ax.boy(x) || W[BG] W[BOY] ) (w2b)
N[LOOK/THEME] — ( Ax.frog(x) A E[FROG/LO([g|(X) || (w3b)
W[BG] W[FROG] E[FROG/LOQ )
N[FROG/LOQ — ( Axjar(x) || W[BG] W[JAR] ) (w4b)
E[LOOK/AGENT] — ( Ae.agente, x) A N[LOOK/AGENT]g|(X) || (wlla)
N[LOOK/AGENT]g )
E[LOOK/THEME] — ( Ae.themée, x) A E[LOOK/THEME]g|(X) || (wllb)
N[LOOK/THEME]g| )
E[FROG/LOQ — ( Axo.loc(xo,x1) AN[FROG/LO[|(x1) || (w12)
N[FROG/LO([ )
W[BG] — ( — || U[BG] W[BG] ) (w20a)
W[BG] — ( — || U[BG] ) (W20b)
U[BG] — ( — || the) (w30a)
U[BG] — ( — | at) (w30b)
U[BG] — ( — ||in) (w30c)
W[LOOK] — ( — || look ) (w31)
W[BOY] — ( — || boy) (W32)
W[FROG]— ( — || frog ) (w33)
WIAR] — ( — || jar) (W34)

Table 8.2: Rules for generating the meaning-to-word map in Figure 8.1. The five cat-
egories of rule are for event type, role, background unigram stopping, and background

and foreground word generation.
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where FG-WORD _and BG-WORDS _denote the appearance of the foreground and
background words at the start of the string (as opposedR&-WORD which would
denote the end of the string).

Each word is either drawn from one of various foregroundritistions or from a
single background distribution. Foreground words are geed one per node in the
meaning representation by rules w31-w34, guaranteeingetrexy entity and event
label in the meaning is represented in the utterance. Inrgknthere is one rule
for every concept-word pair, permitting the model to mapheea@ncept to any word
in the utterance, where the gold alignment portrayed in fleéi@ul is achieved by a
derivation constructed from the rules in Table 8.2. Thedesrhave weights such
as w(w31) = P(look|look). Background words are generated in a similar fashion
according to rules w20a-w30c, but where multiple words cardtawn to build up
a multi-word string with stopping probability determineg the weights of w20a
(P(continuew)) and w20b P(stogw)) and w30a-w30b draw words from the distribu-
tion. Edge-generating rules such as wlla-wl2 are detesticiand simply coordinate
nonterminals in the meaning representation and word string

The entire process is summarized by the following equation:

P(w,ylm w) = [ P(Ye = (£,fg-word bg-w, ..., bg-w} e, child-rolege), w)
ecm
K
= P(/|e,child-roleqe), w)P(fg-word e, w) |‘lP(bg-w|w)
i=

Variabley is a sequence of linearization and word generation stepsregtfor translat-
ing meaning representatian into word stringw, whereye is the particular sequence
required for translatingg, made up of a single linearization stégdollowed by the
choice of foreground wordig-word and zero or more background word substrings
bg-w,...,bg-w,. Linearization/ is further broken down into the three steps of choos-
ing the order ofe’s children ¢3S, the position of the foreground wort®, and the
number and location of the background substritR§s If c is the number o€'s chil-
dren, the probability of factorizes as

P(¢|e, child-roleg(e), w) = P(¢2"%|child-rolege), w)P(¢M]e ¢, w)P(¢9e, ¢, w)

where each oP(¢2'9S|child-rolege), w), P(¢¥e, ¢, w), andP(¢*Y|e, ¢, w) are multino-
mial distributions.

The foreground word is drawn from a multinomial distributiB(fg-worde, w)
specific toe’s label, and the background substrifggw,, ..., bg-w, are generated as
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per the background unigram distribution, where ebghw is made up of; words
bg-word 4, ...,bg-word , .

P(bg-w|w) = nlill P(bg-word ;|w)P(continugw)
=

P(bg-word p, |w)P(stopw).

To implement as a multi-weighted grammar, we define theioiig four feature
functions:

e event-rolegr) identifying the event and its roles in the meaning portiorthef
right-hand side of rules such as wla-w4b,

e /(r) which identifies the linearization pattern in the word-gatieg portion of
rules such as wla-w4b,

e stop(r), a boolean function which returns true if and only if the riglev20b, and

¢ word(r) which identifies the word on the right-hand side of rules sagkv30a-
w34.

With these feature functions, we can define the portion ofdlesfactorization function
that deals with generating the words of utterances as fstlow

d(r) = (event-rolegr), ¢(r)) (wla-w4b)
dw(r) = (0,0) (wlla-wl2)
d(r) = (stoppingstofr)) (w20a-w20b)
dw(r) = (backgroundword(r)) (w30a-w30c)
dw(r) = (eventr),word(r)). (w31-w34)

Thesed(r) factors will be concatenated witfy(r), as well as those of the scene
generation process, to produce the full sequence of faictbine complete grammar as
described in the next section.

8.1.3 Scene generation: P(s,Zim,0)

The scene is generated in parallel with the words in simédahiion, by walking down
the meaning representation and translating it into theesddowever, the relationship
to the scene, which in the Frog Stories can be thought of a aotmppresentation of
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the union of all possible meaning representations, is @mplmany ways. The key
constraint of the scene generation model is that the prapossaning is contained
within the scene with probability one. The remainder of there (thebackground
scene) is generated in a probabilistic fashion by addingaewles and children onto
the nodes of the meaning representation, choosing thetdaandomly.

Like word generation, the process walks down the meaningsentation, gener-
ating portions of the scene that correspond to each nodedg&lie the meaning. For
each node in the meaning, it and each of its children are adibe@ scene with prob-
ability one, and an additional number of background subtere added, determined
by a roll of a die with outcomes from zero up to some corpus déeet maximum.
These background trees are then generated by drawing thetetabel from another
multinomial distribution, followed by the child backgradinode label. The number of
background edges appearing under background nodes ardetdésmined by rolling
a die with outcomes from zero to some corpus determined maxrinand their labels
and children are determined by repeating the process reelyrs

The rules in Table 8.3 extend the word-generating rules teigge the scene in
addition to the meaning and words, adding scene-genenagightso(r) to each rule
r. The first element of each of the rule right-hand sides dist#tie contribution to the
scene of the portion of the meaning representation in thenseelement of the rule
right-hand side. For instance, rule sla simply duplicdtesdok node and starts the
process of generating isggentandthemechild edges. This rule has a scene-generating
weight of

o(sla) = P(look(e) A agente, x) A themee, y)|look(e) A agente, x) Atheméde, y), 0)
- P(bg-children= 0|look, o)
= P(bg-children= 0|look, 6)

The rule simply duplicates the node and its children and addsackground subtrees,
but other node-generating rules such as s2b do a little moeentbellishing the mean-
ing representation with a few more details, in this case lajradone additional child
beneath théoy node so that(s2b) = P(bg-children= 1|boy,o). Edge-generating
rules such as sl1la through s12 similarly ensure that thedf@noles in the meaning
representation are also present in the scene, a process tbatpletely deterministic.
Table 8.4 lists the rules that govern the generation of trekdraund trees in
the scene description. Rule sO begins the derivation by mé&terg how many ad-
ditional trees there are in the scene forest, only one in ¢dhise with probability
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N[ROQOT] — ( Aellook(e) A E[LOOK/AGENT]g|(e) (sla)
A E[LOOK/THEME]m(e) ||
Aelook(e) A E[LOOK/AGENT]g|(e)
A E[LOOK/THEME]m(e) ||
E[LOOK/AGENT]jg) W[LOOK] E[LOOK/THEME]1] )

N[LOOK/AGENT] — ( Ax.boy(x) A E[BG](X) | (s2b)
Ax.boy(x) || W[BG] W[BOY] )
N[LOOK/THEME] — ( Ax.frog(x) A E[FROG/LOQ[(x) || (s3b)

Ax.frog(x) A E[FROG/LOQ[(X) ||
W[BG] W[FROG] E[FROG/LOGg )

N[FROG/LOQ — ( Axjar(x) || Axjar(x) || W[BG] W[JAR] ) (s4b)
E[LOOK/AGENT] — ( Ae.agente, x) A N[LOOK/1AGENT]g|(X) || (slla)
Ae.agente,x) A N[LOOK/AGENT]g|(X) ||
N[LOOK/AGENT]g )
E[LOOK/THEME] — ( Aethemée,x) A E[LOOK/THEME]g(X) | (s11b)

Aethemée, x) A E[LOOK/THEME]g|(X) ||
N[LOOK/THEME]q )

E[FROG/LOQ — ( Axo.loc(xo,x1) A N[FROG/LO[)(x1) || (s12)
Axo.loc(xo, X1) A N[FROG/LOQg|(x1) ||
N[FROG/LOd[ )
W[LOOK] — ( — || — || look) (s31)
W[BOY] — ( — || — || boy) (s32)
W[FROG]— ( — || — || frog) (s33)
WQIAR] — (— || — | jar) (s34)

Table 8.3: A grammar fragment for jointly generating the meaning-to-scene and
meaning-to-word maps in Figure 8.1. There are three categories: (from the top) fore-

ground event/entity, role label, and word generation rules.
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N[START] — ( forest{x) A E[ROOTIg|(x) A E[BG](X) || (s0)
E[ROOT[g|(e) || E[ROOTIg))
E[ROOT]— ( Aeroot(e,x) AN[ROOT]g(X) || (s10a)

N[ROOT]g|(e) || N[ROOT]g))

N[BG] — ( As.happy(s) AE[BG](x) || — H — (s5)
N[BG] — ( Ax.frog(x) AE[BG](X) || — || — (s6)
E[BG] — ( As.affect(s,x) AN[BG](x) || — H — (s10b)
E[BG] — ( As.experience(s,x) A N[BG](x || — || — (s15)
E[BG] — ( Asloc(s,x) AN[BG](X) || — || - (s16)
W[BG] — ( — || — || UIBGI W[BG] ) (s20a)
W[BG] — ( — || — || V[BG] ) (s20b)
U[BG] — ( — || — || the) (s30a)
UBG] — (— || — || at) (s30b)
UBG] — (— || — [/ in) (s30c)

Table 8.4: Rules for generating the background event/entities and words for the
meaning-to-word map in Figure 8.1. The first pair of rules start the process by selecting
a foreground root and demoting all others to the background. The four remaining types
of rules, in order, are the foreground event selection, background event/entity, role label,

and unigram stopping and word generation rules.

o(s0) = P(bg-children= 1jroot,0). Rules s5-s16 then generate these trees and any
subtrees added by the meaning representation duplicatles sla-s4b. Rules that
generate background nodes such as s5 select the node ldld@rse the number of
children with probability

0(S5) = Pyg(happyo)P(bg-children= 1|o).

Background edges are generated in similar manner by ruldssli® with scene-
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generating weights such as

0(s16) = Ryg(loc|o).

To summarize, let latent variablebe a mapping from meaning representation
onto some isomorphic tree of scene descriptosy,m be the background portion of
the scene (i.e. the scene description minus thenthagps to viaz), and, finally, letce
be the number of children of noaein the background. Then we have the following
equation.

P(S,ZIm»O)ZeDmP(Ce!e;G) Phg(€l0)P(Ce|0) Q Phg(t|o)

ecs/zm teroles(s/zm)

That is, we add. subtrees to eaahaccording to a multinomial distribution over num-
bers from zero to some corpus-determined maximum, and tbeargte each back-
ground node and edge accordingg(e|o) andPygy(t|o), respectively.

The scheme can be implemented with four feature functions:

e evenfr) identifies the type of the event in the meaning portion of rule

e bg-nonterm§& ) returns the count of background nonterminals in sceneqorti
ofr,

e bg-event-nonternts) identifies the event and the count of background nonter-
minals in the scene portion, and

e bg-role(r) which identifies the role type in the scene portion of the.rule

We define the scene portion of the rule factorization fumctith these feature
functions as follows:

do(r) = (forest bg-nontermg’)) (s0)
do(r) = (eventr),bg-nontermg)) (sla-s4b)
do(r) = (background-scenbg-event-nonterngs)) (s5-s6)
do(r) = (background-scenég-role(r)) (s10b-s16)
do(r) = (0,0). (slla-s34, s10a, s20a-s30c)

The full set of factors for each rule is the concatenatiorhose for the meaning,
utterance, and scene generating factors:

O(r) = du(r)dw(r)dq(r).
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Here, rule sla inherits it® andu weights from rule wla and rule m1, rule s2b from
w2b and m2, sl1lafromwllaand mlla, and soon. Rules sO andre#erministic

in terms of the meaning- and utterance-generating portismsve can either define
du(r) = dw(r) = (0,0) for these two rules or set them to the pair sequences of length
zero.

The probabilistic independence assumptions describeldyylate diagram in Fig-
ure 8.2 follow directly from this definition of the rule faetpation function. Because
the ¢, factors are only defined in terms of the meaning portion ofrthe, m has no
dependencies on either the scame wordsw. Defining theg, in terms of the words
and meaning where features of the meaning always appeag éissthn feature pairs
results in a dependency betwemrandw but enforces the conditional independence
with the scene. Similarly, the definition ofpg is strictly in terms of the scene and the
meaning, where, again, all features of the meaning porfitimearule appear as the first
element of each feature pair, further enforcing the cooéi independence between
w ands givenm. Without the multi-weighted extension to weighted gramsnauch
independence assumptions would be difficult to implemerd,\would require a sig-
nificant refactoring of the grammar where any such refacgpnwould almost certainly
render our parsing algorithm in Chapter 4 inapplicable.

8.2 Evaluation

We train the model according to the algorithm derived in Ceaptand estimate the
Dirichlet parameters using Empirical Bayes. The objectiva word learning model

is to infer the lexicon that best explains the data, wherexeda is conventionally

represented by a set of concept-word pairs. Our model esdbdeinformation in the

weights of the rules, which we tease out by estimating theebgal count for instances
of each word in the corpus being drawn from foreground distion associated with
€

Ele,word = E[e]P(word|e, w)
versus the background distribution
E[bg, word| = E[bgPyg(Word|w).

Here,E[e] andE|bg] are the expected counts of words in an utterance drawn frem th
foreground distribution oé and the background distribution. These two expectations
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can be computed using a variant of the inside-outside dlgorivhere the derivation
forest consists of all possible derivations for meaningesentation trees of some
maximum depthd and utterances of length where we usel = 4 andn = 10. Using
these counts, we extract the lexicon by calculating

argmax.E[e, word|

for each word, where ranges over the set of all possible concept labels ipduéf the
maximum is produced blyg, the word is classified as a background word and omitted,
otherwise paife,word) is inserted into the lexicon.

Given the inferred set of concept-word pairs and the goldveetcan compute the
amount of overlap between them as measured by precgsioecallr, and f-scoref.
Precision is the proportion of pairs in the inferred lexidbat are also present in the
gold, recall is the proportion of pairs in the gold lexicoathre in the inferred set, and
f-score is their harmonic mean:

8.2.1 Unstructured scenes

To calibrate our approach, we first compare our model agpmesious work, shown
in Table 8.5. These experiments are performed on the Rolbrus which, unlike
the Frog Stories, lacks structured scene representatibnat is, scene descriptions
consist of sets of isolated entities and utterance “meafiauge simply subsets of these
scene descriptions. In our forest-based scene descrgaimventions, these sets simply
translate into a forest of height-zero trees (i.e., teel vhildless roots), one per entity
in the scene, linked together into a single tree by addingaimode and edges to each
of the entity trees.

Performance is comparable to if slightly lower than thatorégd for Frank et al.
(2009), showing that our model, although designed to hamleh more structured
data, still performs reasonably well without this extraommhation. In fact, the syntactic
features that our model relies on for syntactic bootstragppare also neutralized since
the word order patterns the model learns depend on thenwéidabels which are
completely absent in Rollins. We now turn to the experimehtaain interest on the
Frog Stories with structured scene and meaning repregargat



8.2. Evaluation 165

Lexicon
p r f
association frequency 0.06 0.26 0.10
conditional probability (object—word 0.07 0.21 0.10
conditional probability (word—object| 0.06 0.32 0.11
mutual information 0.06 0.47 0.11
Yu & Ballard 2007 0.15 0.38 0.22
Frank et al. 2009 0.66 0.47 0.55
this work 0.54 0.33 0.41

Table 8.5: Comparison of word learning models with unstructured scenes on the Rollins

corpus. All scores for competing systems are taken from Frank et al. (2009).

8.2.2 The contribution of relational information

Figure 8.3(a) shows a pre-forestized scene descriptioregmonding to the logical

expression

chaseéep) A agentep, x1) A beegxy) Atheméep, x2) Adog(xz)
Ndisturlie;) A agenter, x3) A patienter, Xa) A owl(x4) Aloc(eg, Xs)
Nfall(e2) A patientey, X3) A boy(X3) A sourcées, Xs) AtregXs).

There are several sources of information, which we can bideak into roughly four
parts: entity labels, the thematic role linkages (i.e.,clfdoncepts share a binary re-
lation), the thematic role labels, and the event type lab&sexplore the individual
contributions of each, we can experiment by constructirghsy different scene de-
scriptions by removing each type of information, retragnthe model, and measuring
the quality of the inferred lexicon. Figure 8.3(b)-(c) 8luates three different scene
description types based on different combinations of tiie $ources of information.

e Entities Only (Figure 8.3(d)): At this level of structurégre are no constraints
on the subsets of entities that could be talked about. Angedulsi entities is
equally valid. This scenario approximates the basic gpihmost previous
computational work in word-learning (Frank et al., 2009n&® et al., 2010;
Johnson et al., 2010; Yu and Ballard, 2007; Yu, 2006; Fazly€@10; Alishahi
and Fazly, 2010), and matches the calibration experimarggction 8.2.1.
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Figure 8.3: A scene description (a) and three variants produced by removing (b) the

event type labels, (c) the event and semantic role labels, and (c) everything but the
entities.

e Anonymous Relations (Figure 8.3(c)): With the addition dbmmation about
which entities interact in the scene, the model has a litieenielp, since one
might reasonably assume that entities that interact in¢baesare more likely
to be discussed together in the same utterance. Such an@gsuconstrains
the entity subsets, even if the learner has no way of knowihgtwhe exact
nature of the interaction are or what role each entity plays.i Observe that
in the scene in the figure{tree, owl and {tree, owl, boy are both eliminated
as possible subsets since there is no direct interactiomeleet these entities,
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helping to narrow the search space and aid learning.

e Anonymous Relations and Events (Figure 8.3(b)): Additionfdrmation about
the roles of the entities — which entity is acting and whicke @ being acted
upon — further helps constrain the relationship betweerdaamd words. For
instance, the learner can take advantage of English’s teyde place theagent
at the front and thehemeat the end of a sentence to guess that the woraltay
is likely to appear at the end of sentences given the scee iigure.

We are primarily interested in the contribution of relaabmnformation to the
learning problem, the question being whether this leveltafcsure in the scene and
meaning representations coupled with joint syntactialegrhave a significant impact
on learning. For our purposes, then, we are interested @id€h), (c), and (d). In the
entities-only scenario (d), meanings are completely ussired and scenes contain no
information about which entities are likely to co-occur imatterance, so word learn-
ing models would have a difficult time eliminating most subsaf entities, a priori,
and the number of possible subsets is exponential in theoithee scene description.
In the example shown in Figure 8.3(d), there are 5 entitéegjihg to 2 = 32 meaning
candidates. This may not seem like such a large number @nfacabout what word
learners operating on the Rollins corpus must handle) battdyi example is much
smaller than any of the scenes in the Frog Stories corpusanhere can be up to 20
entities, leading to? ~ 1,000,000 possible candidates, thousands of times the num-
ber for previous work. This number is daunting even for oangmar-based model
which relies on dynamic programming for inference. In castythe scene description
with anonymous events and roles shown in (b) is much les$ycsisice, restricting
meanings to include at most one tree in the scene forest #neonly 3+ 22 - 1=11
meaning candidates to explore in our toy example, and thg &tories corpus has up
to about two hundred candidates for some scenes at thisdesglicture. We thus re-
strict ourselves to experiments involving the two morectited scenarios involving
anonymous roles and events. By contrasting performancesketacenarios (b) and
(c), scene descriptions with and without role labels, weisalate the contribution of
role labels and explore the benefit of learning the order irckvthey tend to appear
within an utterance.
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8.2.2.1 Further constraining information

Even after exploiting structural information to vastly raw the search space, there
remain over 300 meaning candidates for some scenes, posiralange for learning.
Even parsing is difficult since the parse forests are veryelarequiring memory on
the order ofO(|s| - |w|? - G), whereG is the grammar constant which, in the worst
case, can be exponential in the grammar. This computatexp@nse motivates the
incorporation of several aids to prune the search spacearticplar, we rely on four
types of constraints

e prior knowledge in the form of a small seed lexicon of coneeptd pairs,
¢ linguistic salience to distinguish content words from fuioic words,

e non-linguistic salience to focus attention on the most reérdoncepts of the
story,

e structural constraints on the meaning candidates suchna®ctedness and com-
pleteness.

The last two, non-linguistic salience and structural caists, are as described in
Section 7.5 and have already been incorporated into theoessts for our purposes
(and the 300 meaning candidates mentioned assumes thesgpegoof constraints
have already been taken into account).

As for prior knowledge, we aim to simulate word learners wh® somewhat far-
ther along in the process than those of (Frank et al., 2008)efore assume the learner
has already acquired a small set of seed words. In fact, darsga of roughly 1000
utterances per language amounts to about 20-30 minutegpuf, iand seems better
suited for simulating how a learner might perform at a cars&iage of development
rather than a full study of development from infancy to adodtd. In particular, psy-
chologists tend to agree that syntactic bootstrappingsffare more likely to show
after at least a few words have already been acquired. Farthe, starting with a
small set of known words may help to better highlight the po&t impact of syntax
in the resolution of referential ambiguity for the remaipivords. Thus, for our sim-
ulations, we assume the model already knows the words fothtiee most frequent
entities in the corpus: dog, boy, and frog.

It is common practice to use such seed lexicons in semantsingaapplications,
where systems are often fed a list of named entities, effgtgiving the model a gold
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lexicon for the entire set of entities in the corpus. Giveat tinese entity-word pairs
are precisely what the model is intended to learn in ourrggthiowever, this is clearly
not appropriate for our purposes, but we can still exploeséffiect of joint syntactic

learning with a small, partial seed lexicon. This assunmppimbably better approxi-
mates the situation of most human word learners who are atége of learning the
syntax of their language. In terms of computational compjethis small seed lexicon
helps to eliminate many false analyses; when the model enersia sentence with a
known word (e.g., “dog”), it can safely rule out meaning daiates that exclude the
dogentity. Similarly, if the model does not observe any wordstfi@ known concepts
in the utterance, it can rule out meaning candidatesitichidethose concepts.

It has also been argued that acoustic features of speeclenants heighten the
salience of content words, thus drawing a distinction betweontent and function
words. Fernal and Mazzie (1991), for instance, observetctivetent words are more
likely to occur at intonational peaks, setting them apastrfrfunction words. This
situation can be approximated in our model by using a stomtifunction words to
relegate them to the background word distribution. The $gian serve to drive
down referential ambiguity by eliminating a need to expld-meaning maps (and
the corresponding parses) that incorrectly link functioorae to entities and event
predicates.

8.2.2.2 Human-subject-esque testing

Evaluation on the Frog Stories is similar to that for the wiealning scenario of prior

work already described but with a slight departure. In paté#r, in a procedure more
similar to human experiments (Yu and Smith, 2007; Smith gt2111; Graf Estes

and Hurley, 2013), testing the model consists of preserttiegset of nouns in the

lexicon one by one and asking for the model's best guess @pbliject meaning of

each. This procedure differs subtly from that of Frank ef2009) where many words
that are excluded from the lexicon (e.g., verbs or functiands) are also presented
at test time (where the gold proposal is the null object). sThaur test procedure,
while more similar to that used in human experiments, inetugwer distractors and
is thus somewhat easier than the test procedure employegreitious computational

models. Our primary motivation for this choice is due to thetfthat learning is much

harder in our case than previous work, with faoredistractors at training time, and
subtle changes in performance are more difficult to measitfethe same level of

test-time noise.
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scenario ‘ English German Turkish
anonymous roles 0.29 0.14 0.08
anonymous event 0.58 0.23 0.07

Table 8.6: Learning words for entities given different amounts of information in the
scene. Anonymous roles corresponds to Figure 8.3(c), including only the entity labels
and information about which ones are related to each other, while anonymous events
corresponds to Figure 8.3(b) where type labels for the roles the entities play in these
interactions have been added. Event type labels themselves are omitted in both cases

to reduce the search space and focus on the contribution of role labels.

8.2.2.3 Performance

Table 8.6 shows the performance of the model while emplotiege additional pieces
of information across our two layers of structure and thriem@nt languages. As

we can see by the considerable difference in performancarfonymous roles and

anonymous events there is a sizable performance boost wdhaddhthe binary relation

labels into the scene representation. The boost is maiyalsyntactic bootstrapping,
since the primary thing the model learns with the binarytietalabels included is the

typical order such relations are likely to occur in the seoé(i.e., agent-event-theme
type ordering information).

Performance on English is considerably higher than for tiherotwo, which is
somewhat to be expected given the implicit bias in the artioois toward English
vocabulary. Additionally, both German and Turkish are farenagglutinative, and
Turkish in particular has several inflections for each vemd aoun, reflecting case
marking and so on, leading to a sparsity problem and sugaggttat we might need to
include a morphological element to model Turkish word le@agnRelated to morphol-
ogy, the Turkish sentences also include a greater degreariabiity in the ordering
of thematic roles in the utterance, partly due to the offlogddf information from
word order to morphology and partly because morphologittatrations can signal
different standard orders for verb arguments. The Germanislalso difficult because
utterances tend to be longer, leading to greater refetemtibiguity. However, we do
see a similar trend in German to the English performance.

It is also interesting to explore the effect of the seed lexion performance. Hav-
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Word Learning vs. Seed Lexicon Size
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Figure 8.4: The effect of seed lexicon size on word learning performance for the cases
where the model can and cannot learn canonical orders in which thematic roles are
realized in utterances. Words in the seed are excluded from the test set, and numbers

are for the English section of Frog Stories.

ing a few already known words can boost a learner’s prodiixtinv picking out new
ones, but how many does a learner need to know for the effestidev? Figure 8.4
plots the change in performance for unknown concepts aseptmi@re added to the
seed lexicon, contrasting the behavior of the role ordenlag model vs. the model
learned with anonymous roles. Interestingly, the first fencepts make the biggest
difference after which there are diminishing returns, lienxpoff at around six seed
concepts or so. This is partly due to the fact that we havedddecepts in order of
decreasing frequency in the corpus, so the first two conceptshe most frequent.
After all, the first few concepts, which are the most usefulléarning other concepts
because they are most frequent and often also occur in theegtenumber of contexts,
allow the model to learn many of the less frequent conceptsatte added to the right
in the graph in Figure 8.4. However, the role order learnirgglet peaks much faster,
apparently making more efficient use of the first two or threecepts in the seed lex-
icon. This suggests that even a very small arsenal of wondsnzke a big difference
for a learner, especially for those capable of identifying axploiting word order pat-
terns. Of course, it depends on the particular corpus whimtasvwill be most useful,
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but overall, assuming words are learned roughly in orderecfeasing frequency, one
might expect a similar effect. Essentially, in the world loé tFrog Stories, all events
revolve around either the boy, the dog, or the frog, so kngwire words for these
characters gives us most of what we could hope to gain fronecIs&icon. However,
in the real world, the vocabulary and set of concepts to imésbare both much larger
than can be represented by a fairly small corpus like the Btoges, and these curves
would likely level off more slowly for larger corpora.

8.3 Discussion and conclusion

Our primary interest is twofold: (1) to examine the impliagsumption of previous
behavioral and computational studies that learners museBow narrow down the
set of candidate meanings to a handful of possibilities ftacéve learning, and (2)
to test the effect of syntactic bootstrapping on learningighly ambiguous settings.
While we have employed several simplifying assumptions t&entae problem more
tractable, we have explored these questions with rouglty times the amount of
ambiguity reported for previous semantic parsing-basedvearners in terms of the
number of meaning candidates per sentence.

It is mainly due to the efficiency of our particular choice obdeling framework
that allows us to explore this larger space of potential imgprandidates per utterance.
Let |s| be the size of the scene graph after being converted to a fasetescribed in
Section 7.4. Then, using the synchronous parsing algoritbseribed in Section 4.4
to jointly parse scene and utteranegthe time complexity for a single utterance in
our approach i©(|s| - |w|3). This is in contrast to other approaches such as that of
Chen and Mooney (2008) which have a time complexitDofm| - |w|*) per meaning
candidatam, of which there are essentially as many as there are suldtrdestrees of
forests, leading to a worst case bound @(2|S|) possible meaning candidates. Thus,
for them, parsing takes time exponential in the size of thenecand their overall
parsing bound (2 - |m| - |w|3) per utterance wherm| is the size of the largest
meaning candidate. The approach of Kwiatkowski et al. (2053 a similar analysis
but is somewhat more expensive due to the greater flexiilibyved in the meaning-
to-words map. Our purely grammar-based model permits uskm full advantage of
the dynamic programming solutions to parsing and inferesmeve can share common
sub-analyses and avoid redundant recomputation acrdssedif meaning candidates
with shared sub-structure, exploring @i{2/$!) candidates at once in time linearsn
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While it is sometimes assumed that arguments in favor of moveedul learn-
ing mechanisms and arguments in favor of learning biaseatavdds, we believe in
the importance of both. In fact, our work can be seen as délyidm the side of the
importance of such learning constraints. At the same timegcorpus study in Chap-
ter 7 suggests that the effect of these constraints may bevgloat overrepresented, as
even after the application of several highly constrainiaguanption the task remains
far from solved, with a level of referential ambiguity that fexceeds previously ex-
plored computational scenarios. Specifically, we havedatin notions of scene-level
saliency to reduce the complexity of the scene descriptind,granted the model ad-
ditional knowledge in the form of a small seed lexicon and distinction between
function and content words. However, even at the reducesl vambiguity after
scene-level pruning, the roughly 200 meaning candidatdsamonymized events that
our model faces, while far less than the unpruned, unanagarii,300 candidates, far
exceeds previous work that has been limited to a few dozdreisitnple unstructured
scenario of work such as Frank et al. (2009) or just a handftiheé structured case
such as that of Kwiatkowski et al. (2012). Thus, we are in tstpn to test synergis-
tic effects between learning syntax and word meanings iirly tiifferent setting than
previously possible.

In our preliminary explorations of this expanded space, we fhat the model is
still capable of learning even under scenarios of greatéigunty, setting the stage for
testing various learning effects. As an example of such #iedtewe observe that the
model performs better when itis given sufficient informatio learn some simple facts
about canonical word order (i.e., the order in which theovaties tend to be realized),
demonstrating that joint syntactic learning further imy@® learning performance. It
remains to be seen whether humans are able to learn as well asatistical model
under similar circumstances, but the success of our modgjesis that a failure to
learn would likely be due more to computational rather thatadimitations.

Finally, we also find that the importance of structural imf@tion in the scene de-
scription proves essential for managing computationaitead. Flat scenes consist-
ing only of a set of disconnected entities found in most presicomputational work
in word learning such as Frank et al. (2009) or Fazly et all@@®ffer no informa-
tion about which entities are likely to be discussed in theesatterance, but relational
information allows a learner to better focus on the more gilda subsets. It helps to
focus on sets of entities that relate to each other in theess@nce these sets are also
more likely to co-occur in an utterance. Are there other $ypiestructural information
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that might further aid in learning?



Chapter 9
Conclusion

We set out to explore how relations between words and relsbetween entities in the
world might interact in the acquisition of word meanings amthe process produced
several technical innovations, a corpus, and two diffepeaibabilistic models, one for
semantic parsing, the other for word learning. Observirg ith some ways semantic
parsers and models of word learning are attacking diffegispects of the same prob-
lem, we introduced a framework under which it is possiblertibythe two into a single
joint model. To ease our way, This particular choice of matleds brings with it many
useful tools from context-free grammar, such as the insidside algorithm for com-
puting expectations and an efficient method for inferrirginost probable parse. We
add to this toolbox by introducing three technical innowas: an extension to proba-
bilistic grammar that allows us to express a much larger spossible models in the
same basic framework, a Bayesian inference algorithm feetgeammars, and a pars-
ing algorithm for parsing the restricted class of HRG we usenfodeling scene and
meaning representation languages. Using this toolbox,eveldp a semantic parsing
model which is modular and extensible, which we modify foroael word learning
model that enjoys greater computational efficiency thaerathmodels and can explore
a larger hypothesis space, permitting us to test the effgatiss of statistical learning
in the face of a large degree of referential ambiguity. Fyn&br experiments with this
model, we introduce a new data set, annotating the FrogeStoarpus (Berman and
Slobin, 1994) with meaning representations for each utter@and scene descriptions
to represent non-linguistic context in word learning.

Testing the word learning model necessitates the annotafia new corpus with
scene descriptions and utterance meaning representatitdresform of the Frog Sto-
ries corpus, work that is described in Chapter 7. The cordawsilthe simulation of

175
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word learners who must somehow infer the referents for iddad words given only
two pieces of information: the words themselves, and thelimguistic information
containing the set of possible referents. The choice teessgt non-linguistic context
as a single structured description allows experiments ecadntribution of such struc-
ture to learning. Furthermore, the corpus is naturally saged by pictures which
contain hundreds of elements, leading to a significant atrmfumcertainty, with over
a thousand meaning candidates to sort through for somenttes. This vast ambigu-
ity sets a much higher bar for future work in computationatielong of word learning,
since previous models have tended to focus on far simpleasios, contending with
orders of magnitude fewer meaning candidates. In fact, aurwork only makes a
modest start at the problem, leaving much room for improvenmefuture efforts.

Besides computational simulations, it is also possible t@atcorpus could serve
in other capacities. Our very preliminary analysis in Chafteor instance, already
demonstrates that there is far more ambiguity than is tylgidsscussed or assumed
in experiments. Of course, this ambiguity is completelyatefent on the assumptions
one makes on the availability of different types of inforioat but the corpus may
also serve as a useful discussion point here too; by varymas @assumptions and
applying them to the corpus, one can explore their effecteims of reduction in
ambiguity. By approximating saliency with frequency infation, we demonstrate
one example of how a highly complex scenario of over 1,300nmngacandidates
can be curtailed to 350 or so. As a multilingual corpus, itl®gossible to test
models and hypotheses over several languages, invaldatre iis interested in the
fundamental learning problem facing children of any lirggigi setting as opposed to
language specific solutions.

The handling of this large space of meaning candidates atetva few technical
innovations.

e First, we introduced a generalization of probabilistic teot-free grammar in
Section 3.4 which associates multiple weights per rule eafdrm of a mini-
Bayes net, permitting us to implement a much larger classasfgiilistic mod-
els in a weighted grammar. In particular, these multi-we2dlgrammars give us
the ability to make additional independence assumptidlwsyiag one to imple-
ment models that are more robust in the face of data spaseityething that can
often be especially problematic with synchronous grammiachy in practice,
often have very large rules.
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e Second, we derived a variational algorithm in Chapter 5 folgpeming Bayesian
inference with these generalized probabilistic grammarke algorithm is a
strict generalization of that for PCFGs, owing to the factt ttee underlying
model is itself a generalization of PCFG. Here too, we enjay libnefits of
building from a standard formalism since we are able to kgerthe inside-
outside algorithm for key portions of the algorithm.

e Finally, our third technical contribution comes in the fooha novel parsing
algorithm for unordered trees. Parsing takes time linedahénsize of the tree
being parsed, which allows us to model the commutative ptpmé predicate
calculus while keeping computational expense at a mansgéakel. At the
same time, while the parser is designed for a special clagsph grammar, the
key optimizations are also applicable to general HRG parsing

Each of these three innovations centers on a fairly broaddbsm, giving our con-
tributions a generality as broad as the set of applicatioresroight find for the cor-
responding model class. Synchronous grammar, for instane®t only used in se-
mantic parsing, but is often used for syntax-driven maclhvaeslation, among other
applications. Perhaps the ability to enforce finer graimetependence assumptions
of multi-weighted grammar could be useful in the large ruksguired for translating
syntactic patterns with medium range dependencies.

There are also close relationships between these fornstsother classes, where
our multi-weighted grammars are generalizations of PCF@&d,the unordered tree
grammars are a special case of HRG, which help to situate otrilwations in a larger
context. One benefit of this larger context is that it may aidhie extension of our
algorithms to other formalisms and still further applioas. Furthermore, inference
algorithms that apply to a genenmalodel clasgather than a specifimodelallow one
to focus on designing, extending, and testing the moddf tather than on one-off
algorithm design and implementation; so long as each madétion remains in the
same class, one can utilize the same algorithm and softvearkeage over and over
again.

The semantic parsing and word learning models in Chapter €aagter 8 serve
as demonstrations of the power of the framework. The semaatiser can be seen
as a re-implementation of the Lu et al. (2008) as a synchmgoammar. However,
while Lu et al. (2008) developed model-specific parsing arfdrence procedures,
we are able to rely on general grammar-based algorithms. r&sudt, although our



178 Chapter 9. Conclusion

model is very similar, our framework better supports moddksign and makes it far
easier to extend the semantic parser, a feature we explewhbsigning the word
learning case. Furthermore, in terms of performance, owtainsuffers not at all for
exchanging the model-specific algorithms of Lu et al. (2d08}the grammar-general
training algorithm of Chapter 5, performing as well or betserd parsing has the same
O(Jm| - |w|®) time complexity bound.

In fact, implementation of the word learner in Chapter 6 rezgionly a few modi-
fications of the semantic parser, which can be seen as a sdolenaf the larger word
learning model. We merely add one additional monolinguahgnar for the scene,
integrate this grammar into the semantic parsing gramnmar séghtly re-factor the
model probabilities to accommodate the increased vaitialmil the Frog Stories data
set. The flexibility of the framework should also make futwerk easier as we ex-
plore other model variations. Capturing the entire scenanmg-word relationship
as a synchronous grammar has design implications, sincewese the same stan-
dard parsing and inference algorithms as we explore diftemeodel variations and
extensions. At the same time, our grammar-based approsalnas important impli-
cations for the computational overhead since we can quihkty compactly enumer-
ate the entire set of possible meaning-to-word mappingspsse forest computed
in O(|s2 - |w[3) time, considerable savings over the bound¢2!s - |m| - |w3) for the
next fastest solution.

In some sense, the word learner is simply a preliminary destnation, and there
are many alternative factorizations and subtly differer@ngmars that might better
integrate syntactic or other features. For instance, owtahimcorporate mutual ex-
clusivity through the use of a Dirichlet prior which promstsparsity (i.e., a small
lexicon), cross-situational learning in the form of a ddtasen statistical learner, and
syntactic features in the form of ordering patterns. We alsorporate notions of
salience by pruning the scene to only the most salient cas@eqm prosodic cues, a
variety of social cue, that serve to draw attention to cantesrds by distinguishing
function words. The added efficiency of our framework allavgsto test the impact
of these features under much higher levels of referentibiguity than previously ex-
plored. This added efficiency has real impact on the set cgrex@nts we can run and
the questions we can explore, permitting us to test hypethabout the fundamental
limitations of statistical learning and the contributiooisdifferent types of features
and biases to word learning. In particular, the results ofpf#ra8 demonstrate that a
statistical learner can indeed acquire a kind of lexiconemmduch more ambiguous
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circumstances than previously explored. Both behaviotaliss and computational
work have primarily focused on settings where there werg anhandful of possi-

ble candidate meanings, while the referential ambiguitgun experiments is orders
of magnitude greater but the model still succeeds in inigra lexicon with several
reasonable word-concept associations, albeit with theofgkveral simplifying as-

sumptions.

Representing scenes as structured objects rather tharf setmpletely unrelated
concepts also allows us to explore the impact of differenmn®of information in the
scene description. At one extreme, we find that the use of tfagntities” repre-
sentations for non-linguistic context, a common sort ohgcdescription in previous
computational work (Frank et al., 2009; Fazly et al., 2010a¥id Ballard, 2007; Jones
et al., 2010), provides too few constraints on the types aimrgy representations a
model must explore. Even our model finds it prohibitive to lexp the exponential
space of all possible subsets, but a more structured repiediem of the scene permits
the model to make more intelligent guesses, narrowing thechespace to something
that is far more tractable, if often still challenging. Jadtling unlabeled edges to in-
dicate which entities interact makes things much moreadtdet something that may
seem obvious in retrospect, but one often expects thatetodhtrary, richer represen-
tations mean greater complexity. In a sense this is trueahphocessing structured
scene descriptions does require extra machinery, butdtpatsffers extra signposts to
guide inference, leading to greater efficiency.

Besides making inference tractable, additional infornmatian also aid learning,
even under highly ambiguous settings. In testing the impiohe simple type of syn-
tactic information, specifically, the canonical orderifgleematic roles in a sentence,
we found that learning further improves, beyond merely pemactable. Indeed, at
least in the case of one language in our experiments, thasively crude syntactic
information about whether agents come before or after tiema sentence has a sig-
nificant impact on performance. So, while psychologistetagued that this type of
information may be necessary, we find that it does indeed, heipis not necessary
at least for a certain basic level of performance. HoweVer,mhodel incorporates no
features that allow it to learn about function words or marsgntactic properties,
leaving the door open for future work. We anticipate addimghsextensions might be
easier working within our or some other grammar-based fraome

In fact, there are several fruitful avenues open for futuoekw One could explore
alternative sources of information and extensions to thedvearner, for one. One
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could extend the unordered tree parsing algorithm to hamdiee general classes of
graph. One could continue in the vein of Chapter 6 and assandther semantic
parsing models into a more general framework for the puigpo$érawing new con-
nections among seemingly isolated efforts.

Discourse structure is one interesting direction to talkeword learning model.
Luong et al. (2013), for instance, utilizes a grammar-basedel to parse entire doc-
uments in order to exploit discourse-level structure indhearning. However, Luong

et al. work with the more typical “bag of entities” style ungttured scene representa
tions. Our framework coupled with structured scene repitadi®ns make a grammar-
based approach to discourse modeling particularly apppalt present, our model
treats every utterance independently, drawing each abrarftbm among the set of
statements that are logically entailed by the scene demaripHowever, these utter-
ances form a narrative and are not truly independent. Givana storyteller already
mentioned a particular event, for example, it seems les$ylithat he will repeat the
same statement over again rather than choose some othana#eghat would better
advance the story. Importantly, the scene descriptionaigtancodes the full narra-
tive the storyteller intends to relate, suggesting thatethe a more interesting model
for breaking this description down into a sequence of smaligiements. Although
we had pruned pronouns from the scene descriptions for tkes afasimplicity and
because discourse was outside our focus, the full, unprsoees not only contain
pronouns but also indicate to which entities they refereptially raising other possi-
bility relating to discourse and coreference.

As an extension to the grammar framework itself, Chapter 4ioesnseveral ways
that our tree parsing algorithm generalizes to the unststtiHRG parsing problem.
Implementing these optimizations in a general HRG parsem isbaious direction to
go for future work, particularly because processing gdrgmaphs rather than forest
approximations could have an important impact on learnifigsee how, recall that
the forestization procedure in Section 7.4 removes reecita by duplicating portions
of the graph that are shared between different trees. Thasmsthat certain entities
like boyin the example illustrated in Figure 7.4 are over-represgit the scene. One
consequence of this is that, since the model essentialysdsabtrees at randorbpy
has multiple chances of being drawn while other entitief stsowl have only one, bi-
asing the model in favor of meanings involvibgyover those witlrowl, and therefore
preferring to match words withoy in the lexicon. Operating from the unforestized
graph would eliminate this particular source of bias, dadgsmproving word learning
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performance and reducing the number of false positivesanriterred lexicon.

However, our analysis in Chapter 4 argues that, even aftdyiagpour compact
symmetric parse encoding scheme, the lack of ordering igitiyeh being parsed still
leads to an algorithm that is exponential in the size of tgktrhand side of the gram-
mar rules. Thus, we may wish to consider other classes ohdamguages where there
is an ordering constraint among the edges. While adoptingeatdeting would remove
the particular feature we chose HRG for, modeling the comtivet@roperty, there
could be considerable utility in other applications foremedd graphs. Just as an exam-
ple, semantic dependency graphs have an ordering propeptysed by the words of
the sentence.

Considering more general graph parsing, it also seems litkalythe CCG-based
approach of Kwiatkowski et al. (2010) may very well be reemprreted as a HRG-based
model. When one take a closer look at Algorithm 1, it actudihgely resembles a syn-
chronous parsing algorithm where thglit operation that enumerates the various de-
compositions of the meaning representation essentialtg tlee job of a monolingual
HRG parser. This HRG parser would necessarily be more geenalhe tree parser
of Chapter 4, but treating the meaning representation aspghgeach split returned is
essentially a particular parse item under some more gegeaph grammar. In fact,
one could think of these splits as a kind of translation gramsomewhat similar to the
example grammar given in Table 3.2. The model’s reliance@mnéext-free restriction
of CCG makes it especially tempting to attempt to simulate Kkanaski et al.’s model
with a monolingual HRG for decomposing the meaning into a Byortous grammar
that maps these meaning fragments to segments of the dnvigtkowski et al. found
it necessary to restrict the set of decompositions in aewtalys for efficiency reasons,
just as we have had to in our own experiments. However, vigwiasplit operation as
a HRG parser may suggest alternative ways of restrictingpheesof decompositions
that preserve efficiency while allowing other types of wordamings. In any event,
such a project might at least help situate that model in theepf other approaches,
perhaps offering other insights.

We have outlined just a few possibilities. There are sewarls in which the
grammar framework could be extended. There are also marsiyildges for extend-
ing the semantic parsing and word learning models, perhapeasing capabilities
or allowing one to explore the effect of alternative souraemformation or learning
biases and their interactions.
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The standard form of a distribution in the exponential fgnslas follows:

p(Bja) = eXp(Zlﬂl (6 (a)).

where@ anda aren-dimensional vectors such th@ts a random variable and is a
parameter vector, and th€0) are the sufficient statistics of the distribution. A starmtar
result of the exponential family states that the expeatatioa sufficient statistic can
be derived by taking the derivative of the log-partitiondtiong(a):

dg(a)
dni(a)’

Restating the Dirichlet in this same standard form results in

p(6a) = exp (i(ai ~1)In(8y) - ”('Z fa. )

From this, we see that

Efti(x)] =

h(8) =
ni(a) =ai—1
t(6) =In®,
ity (o)
gla) =In"==—= (Z._lau’

leading to

Epe|a) [IN6i] —d— [ZInF Inr(éai)]
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