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Lay Summary

The problem of how children learn to associate meanings withwords in the early stages

of the acquisition of their native language is a difficult one, and psychologists have pro-

posed many mechanisms for contending with this challenge, often relying on notions

of inborn knowledge or other constraints that make the problem more manageable.

However, it remains unclear how necessary this inborn knowledge really is, or, as-

suming it is necessary, from where the necessity derives. Inparticular, there are two

possible reasons for such a need: (1) limitations on the child’s mental resources such

as memory or processing power or, alternatively, (2) a possible lack in the information

a child has access to from his environment (separate from anyinnate knowledge he

may or may not have).

In this thesis, we explore the fundamental learning problemitself, abstracting away

from whatever resource limitations a child may be subject toby using computer simu-

lations of the child’s situation. We find that a computer is capable of learning even with

very limited innate knowledge, arguing against the idea that children receive too little

external information and suggesting rather that perhaps limitations on human mental

resources offer stronger support for theories of innate knowledge.

Additionally, there are several valuable novel byproductsof the research, including

a data set for testing alternative models and a computational system that can automat-

ically interpret the meanings of sentences. Furthermore, the computational system is

built on a very general framework that can be applied to many other problems in natural

language processing.
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Abstract

The cross-situational word learning paradigm argues that word meanings can be ap-

proximated by word-object associations, computed from co-occurrence statistics be-

tween words and entities in the world. Lexicon acquisition involves simultaneously

guessing (1) which objects are being talked about (the ”meaning”) and (2) which words

relate to those objects. However, most modeling work focuses on acquiring meanings

for isolated words, largely neglecting relationships between words or physical entities,

which can play an important role in learning.

Semantic parsing, on the other hand, aims to learn a mapping between entire ut-

terances and compositional meaning representations wheresuch relations are central.

The focus is the mapping between meaning and words, while utterance meanings are

treated as observed quantities.

Here, we extend the joint inference problem of word learningto account for com-

positional meanings by incorporating a semantic parsing model for relating utterances

to non-linguistic context. Integrating semantic parsing and word learning permits us to

explore the impact of word-word and concept-concept relations.

The result is a joint-inference problem inherited from the word learning setting

where we must simultaneously learn utterance-level and individual word meanings,

only now we also contend with the many possible relationships between concepts in

the meaning and words in the sentence. To simplify design, wefactorize the model into

separate modules, one for each of the world, the meaning, andthe words, and merge

them into a single synchronous grammar for joint inference.

There are three main contributions. First, we introduce a novel word learning

model and accompanying semantic parser. Second, we producea corpus which al-

lows us to demonstrate the importance of structure in word learning. Finally, we also

present a number of technical innovations required for implementing such a model.
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Chapter 1

Introduction

Given a visual scene and an utterance describing it, unless one knows what the words

mean, it is not at all obvious to which aspects of the scene theutterance may be re-

ferring. For instance, in a scene with a boy and his dog sitting alone in a bedroom,

an utterance may focus on the boy, the dog, the act of sitting,or any other aspect of

the scene. Words may refer to relations between entities as well, describing, for in-

stance, the proximity of the dog to the boy. Additionally, each element of the scene

may be associated with any number of concepts, each of which constitutes a possible

meaning candidate for a word. The boy may be referred to as “the master” and the

dog as “his pet”, even though these noun phrases do not specifically denote the con-

cepts of boy and dog, but more abstract ideas involving domesticated animals and their

keepers. The sheer number of candidate meanings for even a single word, much less

the utterance as a whole, poses a daunting challenge that only grows worse when we

consider meanings for entire clauses and sentences. In fact, the problem is related to

the challenge of induction pointed out by Quine (1960): specifically, there is always an

infinite number of hypothesis that might explain the learner’s experience. The scale of

the problem has led psycholinguists to posit a number of heuristics by which learners

may rapidly narrow the set of possible hypotheses to something much more obviously

tractable.

Some argue that learners may rely on a set of simple constraints or biases to prune

the space of possible meanings. These constraints may be innate or acquired through

experience. They may be specific to language learning or theymay arise out of more

general properties of cognition. In any event, these constraints do appear to be useful,

however they arise and whatever specific shape they take.

Many of the problems of word learning are related to more general issues about
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2 Chapter 1. Introduction

category learning. How does one learn from a potentially very small set of examples

that the word “dog” can refer to a chihuahua or to a Great Dane,but not to another four

legged furred animal like a cat, or to a body part such as the dog’s tail? To handle these

sorts of challenges, psychologists have proposed mechanisms such as the whole object

(Carey, 1978; Mervis, 1987), shape (Markman and Wachtel, 1988), or taxonomic bias

(Markman, 1989) which may drive learners to prefer categories of certain types over

others. These lines of inquiry, while interesting and challenging, are outside the scope

of our concern here.

We primarily address another set of problems which have lessto do with categories

and more to do with the question of how a learner determines which objects are being

talked about. One learning constraint that has been proposed to help deal with this

referential ambiguity is the principle ofmutual exclusivity, the idea that the same word

is unlikely to be used for two different concepts or for the same concept to be referred

to by completely different words (Markman and Wachtel, 1988). This principle has

been used to explain how children sometimes seem to learn a word with very little

exposure, sometimes on their very first encounter, a phenomenon sometimes referred

to asfast mapping. The proposal is that children assume that novel words are more

likely to map to new concepts, a corollary of the mutual exclusivity principle.

Psychologists have also suggested a number of cues that may assist the learner,

sometimes arguing that these can alleviate the need for specific learning constraints.

• Cross Situational Consistency: Consistent co-occurrence between certain words

and objects in the non-linguistic context can help identifyword-object mappings

(Pinker, 1989; Gleitman, 1990). For instance, a learner canexploit the situation

where hearing the word “dog” seems to increase the probability of there being a

dog nearby and vice versa.

• Salience: Learners may come to associate the concepts that are most central or

salient to a particular scene with the words they hear most frequently at the time

(Smith, 2000b).

• Joint attention and other social cues: Communicators make an effort to in-

crease the salience of the subject of discussion with gestures, eye gaze, or other

cues (Baldwin, 1993). Speakers also increase the salience ofwords, not just ob-

jects in the non-linguistic context, using acoustic qualities of the speech such as

pauses, stress, and pitch. (Fernald, 1985).
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• Syntactic bootstrapping: Knowledge of syntactic features of the language may

also assist in learning the meanings of novel words (Gleitman, 1990). For in-

stance, knowing that agents of actions tend to occur earlierin English sentences

than the objects being acted upon can help to focus attentionon where the word

that refers to the boy is likely to occur in a sentence describing the action of the

boy petting the dog.

There is a great deal of debate about how much of a role these heuristics and cues

play in the word learning task and about how they may interactwith one another. For

instance, some argue that salience may play such an important role that learners may

not need to rely so heavily on other cues or constraints (Smith, 2000b). Similarly,

citing the notion of “poverty of the stimulus”, some stress the importance of innate

constraints over any input the child may receive (Chomsky, 1980). In either of these

cases, the learning problem tends to be downplayed, and may be relatively trivial,

at least in the early stages. Proponents of the cross-situational paradigm argue that

a sophisticated learning mechanism could serve to alleviate some of the reliance on

innate constraints and biases, instead exploiting what mayappear to be relatively weak

cues in the form of co-occurrence statistics (Yu and Smith, 2007).

It seems that the truth of the matter may be some combination of factors. Innate

constraints may inform a powerful learning mechanism capable of exploiting many

different cues in the data. The question in such a case is not whether these different

features are useful but what is the magnitude of their individual contribution and how

might they interact in an inclusive theory of language learning? The objective of this

dissertation is to explore these questions in the context ofa computational cognitive

model which can help shed light, if not on precisely how humans actually acquire lan-

guage, at least on what is possible when a powerful learning mechanism is applied to

data. We suspect statistical learning is often underestimated in psychological studies,

but this mechanism does not stand alone, and nature, the ultimate opportunist, does not

hesitate to exploit whatever features or biases that prove helpful.

Indeed, there are so many different biases and cues which might play a role that it

is necessary to restrict consideration to the interaction between just a few. Mutual ex-

clusivity, which is closely related to the concept of sparsity in machine learning, can be

explored as a soft constraint in a Bayesian framework with a sparse prior. Additionally,

there are other constraints from linguistic theory that have more to do with structural

properties of meaning representations, such as the semantic uniqueness, completeness,

and coherence conditions for well-formedness in Lexical-Function Grammar (Bres-
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nan, 2001), aspects of which we incorporate into our experiments. For the most part,

however, the focus is on the contribution of different cues in concert and the ability of

a model to effectively exploit them to successfully negotiate a large search space. In

particular, we explore the interaction between all four of the cues listed above: cross-

situational statistics, salience, social cues, and syntactic information, with a particular

emphasis on the last.

Syntactic bootstrapping is often thought to come into play somewhat late in word

learning, only after acquiring a basic starting vocabulary. The combination of previ-

ously learned words and a few basic facts about syntax can play a significant role in

constraining the meanings of any as yet unknown words in a sentence. As the learner’s

vocabulary grows, such syntactic cues also grow in importance, to the point where

syntax can eventually dominate the learning problem. Thus,there is a question of how

big must the vocabulary be before syntax begins to win out over other aspects of the

problem, and when does it start to become useful at all? In terms of the role of syn-

tax versus other cues, we also ask the question of how constrained must the learning

problem be before we begin observing syntactic bootstrapping-like effects?

Largely independent of the psycholinguistic work, there have also been a number

of developments related to syntactic bootstrapping in the sub-field of computational

linguistics known as semantic parsing. For instance, Börschinger et al. (2011) present

a PCFG-based semantic parsing model that can learn a mapping from sentence to a

formal representation of its meaning under an assumption ofa modest degree of refer-

ential ambiguity. Such a semantic parser can be interpretedas a kind of word learning

model, and they showed how word learning performance can be improved by simul-

taneously learning a simple syntactic feature such as the canonical order among the

subject, verb, and object of a sentence. In a similar vein, Kwiatkowski et al. (2012)

present a joint semantic and syntactic model based on Combinatory Categorial Gram-

mar (CCG) and employ an online learning procedure to similarlylearn word order

information and argue that such a model can exploit syntactic information to perform

one-shot learning, or “fast mapping”.

These computational models touch on questions central to our focus here. That is,

they each ask the question, “what is the role of syntax in wordlearning given a pow-

erful learning mechanism?” However, these previous approaches have only begun to

address the dynamic relationship among the various constraints and cues posited by

psycholinguistics. In particular, such studies have been limited to cases where there

is relatively little referential ambiguity, due largely tothe computational constraints
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of the models and algorithms employed. For instance, Börschinger et al. (2011) ex-

periment in a setting where there are on average about two meaning candidates per

sentence and Kwiatkowski et al. (2012) increases this to seven. However, these num-

bers are in marked contrast to the fully unconstrained setting with its possibly infinite

number of candidate meanings, and we show for one corpus in Chapter 7 that even

under several simplifying assumptions this number can wellexceed 1,000 candidate

meanings. Effectively, previous work has operated under animplicit assumption that

the vast majority of the ambiguity has already been pre-resolved by some unspecified

means. Of course, it is entirely possible that this is a reasonable assumption, i.e., that

some combination of cognitive biases and learning cues truly do eliminate much of the

ambiguity before syntax begins to play a role. Plausible or not, however, it remains

unclear whether this assumption actually is a fundamental necessity or if it is only a

limitation of the computational techniques employed. It may be possible that, in the

absence of such computational constraints, a learning algorithm could perform much

of the disambiguation itself in parallel with the syntacticlearning, and that word-to-

word and concept-to-concept relations in the syntax and semantics of utterances may

even play a crucial role in this disambiguation.

To better understand the problem, consider this logical representation of a very

simple scene where there is a boy and a frog looking at each other and the frog is

inside a jar:

∃e1,e2.look(e1)∧experiencer(e,x1)∧boy(x1)∧ theme(e1,x2)∧ frog(x2)

∧ loc-inside(e1,x3)∧ jar(x3)

∧ look(e2)∧experiencer(e2,x2)∧ theme(e2,x1)

∧ loc-inside(x2,x3)

Suppose that while observing the scene, the learner also hears the utterance:

The boy is looking at the frog.

With no other information besides the scene description andthe words of the utterance,

the learner must somehow identify what is being described. This scene is quite simple

with only three entities (boy, frog, andjar), two differentlook events, and six binary

relations, and is is important to note that these numbers canin actual practice be far

larger (something that will be argued via a corpus analysis presented in Chapter 7

where scenes contain on average about 27 entities, 46 events, and 114 binary relations).
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Even with such a small scene, however, there are already manycandidates. Possible

meaning candidates include:

∃e1.look(e1)∧experiencer(e1,x1)∧boy(x1)∧ theme(e1,x2)∧ frog(x2)

the boy looked at the frog

∃e1.look(e1)∧experiencer(e1,x1)∧boy(x1)∧ loc-inside(e1,x3)∧ jar(x3)

the boy looked inside the jar

∃e1.look(e1)∧experiencer(e1,x1)∧boy(x1)∧ theme(e1,x2)∧ frog(x2)

∧ loc-inside(e1,x3)∧ jar(x3)

the boy looked inside the jar at the frog

∃e1.look(e1)∧experiencer(e1,x1)∧boy(x1)∧ theme(e1,x2)∧ frog(x2)

∧ loc-inside(x2,x3)∧ jar(x3)

the boy looked at the frog inside the jar

∃e1.look(e1)∧experiencer(e,x1)∧boy(x1)∧ loc-inside(e1,x3)∧ jar(x3)

∧ loc-inside(x2,x3)∧ frog(x2)

the boy looked in the jar that the frog was inside

∃e1.look(e1)∧experiencer(e1,x1)∧boy(x1)∧ theme(e1,x2)∧ frog(x2)

∧ loc-inside(e,x3)∧ jar(x3)∧ loc-inside(x2,x3)

the boy looked in the jar at the frog inside it

∃e1.look(e1)∧ theme(e1,x2)∧ frog(x2)

the frog was looked at

...

These expressions all involve the boy looking at the frog, but there is a second set of

possibilities where the frog is doing the looking:

∃e2.look(e2)∧experiencer(e2,x2)∧ frog(x2)∧ theme(e2,x1)∧boy(x1)

the frog looked at the boy

∃e2.look(e2)∧experiencer(e2,x2)∧ frog(x2)∧ theme(e2,x1)∧boy(x1)

∧ loc-inside(x2,x3)∧ jar(x3)

the frog inside the jar looked at the boy

∃e2.look(e2)∧ theme(e2,x1)∧boy(x1)

the boy was looked at
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...

There are several others in each set, omitted for brevity, and there are still other pos-

sibilities involving both looking events at the same time (e.g., “the boy and the frog

looked at each other”) or neither looking event (e.g., “there was a boy” or “the frog

was inside the jar”).

A little syntactic knowledge plus even a single known word can quickly narrow the

possibilities. Suppose the learner already knew the word for boy and that, in English,

experiencers are likely to appear earlier in sentences thanthemes. He could then de-

duce that our example utterance (“the boy looked at the frog”) is more likely to have

a meaning involving the boy doing the looking (our first set ofcandidates) rather than

the frog, and other features such as shared attention and salience could further nar-

row the candidate set, permitting him to learn the correct mapping via cross-situational

co-occurrence statistics.

Earlier computational models have dealt with this kind of referential ambiguity by

exhaustively enumerating all meaning candidates and trying each one individually be-

fore eventually picking the candidate resulting in the mostplausible meaning-utterance

pair. The problem with this approach is that the number of possible meanings generally

grows exponentially with the size of the scene description,quickly rendering exhaus-

tive enumeration intractable. Just for our toy example presented here for illustrative

purposes, there are well in excess of 20 possibilities, evenafter making several con-

straining assumptions. In fact, this toy example is alreadybeyond what previously

published work covers and it is dwarfed by the problem a modelmust face when deal-

ing with the corpus of real data presented in Chapter 7, where there may be hundreds

of meaning candidates per utterance.

To deal with this challenge, we take an alternative approach, working directly with

the scene description rather than an exhaustive list of its various fragments, and rely

on Dynamic Programming to cope with combinatorial overload. In some ways, the

problem resembles that of finding the most probable parse in aconventional syntactic

parsing setting. In the case of syntactic parsing, rather than explicitly enumerating all

possible parses and comparing their probabilities, one typically relies on algorithms

like CKY which exploit shared structure between different parses to turn this exponen-

tial problem into a polynomial one. The situation for word learning is not that different.

Consider our example. Although there are dozens of possible meanings, most of them

are quite similar with a great deal of structural overlap. For instance, in analyzing the
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various ways in which the meaning representation

∃e1.look(e1)∧experiencer(e1,x1)∧boy(x1)∧ theme(e1,x2)∧ frog(x2)

∧ loc-inside(x2,x3)∧ jar(x3)

could possibly map to the words of “the boy looked at the frog”, we would effectively

perform all the work necessary for mapping the correct representation:

∃e1.look(e1)∧experiencer(e1,x1)∧boy(x1)∧ theme(e1,x2)∧ frog(x2).

Thus, just as in the standard syntactic setting, it is possible to exploit structural sim-

ilarities to avoid repeating identical computations, permitting a moderately powerful

computational machine to tackle a much greater degree of referential ambiguity.

We accomplish this speed-up by employing a grammar-based model similar to the

CCG approach of Kwiatkowski et al. (2012) and the PCFG model of Börschinger et al.

(2011) but where the grammar is extended beyond the mapping between a sentence

and its meaning to also model the compositional structure ofthe visual scene so that

the entire problem is captured in a single grammar. Because sentence meanings and

visual scenes have different properties from the ordered strings and trees for which

traditional natural language processing formalisms have been developed, it is hard to

directly extend PCFG-based models such as Börschinger et al. (2011). Furthermore,

while CCG offers an elegant solution for mapping between meaning and sentence, it

is much less clear how it applies to the mapping between sceneand sentence meaning.

Thus, we turn to graph grammars, a PCFG-like formalism capable of generat-

ing unordered logical structures such as scene representations while simultaneously

preserving many of the more convenient features of PCFGs. By representing mean-

ings and non-linguistic contexts as unordered trees and modeling the mapping between

them using graph grammars, it becomes possible to exploit these structural similari-

ties between different candidate meanings using standard Dynamic Programming tech-

niques familiar from string parsing. Furthermore, by usinggraph grammars which are

capable of generating general graphs, not just the trees we will be using, we leave the

door open for future extensions that may deal with more expressive meaning represen-

tation languages.

The product is not only a novel word learning model capable oftesting the effect

of syntactic bootstrapping in the face of greater ambiguity, but also a number of gen-

eral algorithmic contributions such as an efficient parsingalgorithm and a parameter

estimation procedure that could find use in a wide range of applications. Finally, as an
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additional contribution, we also present a newly annotatedword learning corpus which

allows us to quantify the amount of referential ambiguity inan easily measurable way

and to test the performance of word learning models under different data and model

assumptions.

Importantly, the model we present is less a proposal for how human learners might

acquire word meanings and more of a demonstration of a framework under which we

can test the effects of various assumptions and combinations of factors. Our model

is designed to handle the computational overhead of a much greater level of ambi-

guity than generally assumed in the wider body of literature, requiring less reliance

on salience and shared attention or other simplifying assumptions involving cognitive

constraints or learning biases. However, this should not beconstrued as a cavalier re-

jection of these ideas and the supporting psychological studies. Rather, by refusing

to build assumptions into the framework itself, the modelerhimself is free to build

whatever constraints into the model that best serve to explore his particular questions.

Because the psychological assumptions are not built into thefundamental assumptions

of the computational framework itself, they can be far more easily added or removed,

permitting one to test the effects of different features or assumptions in isolation or in

various combinations.

As an example, the model presented in Chapter 8 explores the power of the learn-

ing mechanism itself by testing its effectiveness with as few built in assumptions as

possible, leading to a fairly high level of ambiguity. This allows us to explore the lim-

its of the the notion of the poverty of the stimulus, i.e., theidea that data alone does

not suffice and that language acquisition requires built in cognitive biases. In fact, the

results demonstrate that, at least in theory, a learner could potentially acquire some

semblance of a lexicon with far weaker built in constraints than previously tested in

computational settings. The results, of course, say littleabout what human learners

actually do or even whether they have the computational resources to mimic the simu-

lation, and therefore do little to challenge the common viewamong the psychological

community. However, the results suggest that perhaps if humans cannot learn as the

model does, it is due not to poverty of the stimulus as much as to other constraints

such as computational limitations or to differences in the scenario faced by the model

versus that of children in the real world. The computationalframeworks employed by

previous models limited their abilities to explore this question, and thus we are able

to speak more clearly to the power of statistical learning itself (as opposed to built-in

constraints or notions of salience).
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As for testing the effects of various features, this is largely left to future work, but

as a demonstration, the model in Chapter 8 combines word learning with a crude level

of syntactic learning, combined to demonstrate a synergistic effect that improves the

quality of the lexicon in a manner consistent with hypotheses of syntactic bootstrap-

ping.

This document is broken down into 9 chapters, covering the following topics:

Chapter 2 (Word Learning and Semantic Parsing Background) presents an

overview of the main psycholinguistic results on word learning, and relates this

to parallel developments in the semantic parsing literature. This chapter is evenly

split between, in the first half, the main ideas circulating in psycholinguistics,

and in the latter half, an overview of work in semantic parsing. Interestingly,

while the objective of semantic parsing work has been somewhat different, an in-

creasing interest in reducing reliance on annotation, coupled with an increasing

focus on statistical learning in psycholinguistics, have led to a certain conver-

gence of ideas. In fact, some researchers have even proposedsemantic parsing

as an alternative view of word learning. This chapter attempts to highlight these

points of convergence as it conducts a somewhat broader survey of the psycho-

logical and semantic parsing literature in general. We alsopresent a case study

of a competing semantic parsing-inspired word learning model to highlight the

source of the computational complexity our approach is designed to address.

Chapter 7 (Frog Stories Corpus) describes a new set of annotations for a mul-

tilingual psycholinguistic corpus and follows up with a corpus analysis quanti-

fying the degree of potential ambiguity that human word learners face. Due to

divergent interests in semantic parsing and psycholinguistics, prior to this work,

it was difficult to identify a corpus suitable for our purposes of exploring the

syntax in resolving referential ambiguity in word learning. Thus, we turn to

hand annotating an existing psycholinguistic corpus knownas the Frog Stories

(Berman and Slobin, 1994). These annotations not only facilitate new computa-

tional experiments but also have the added benefit of permitting us to quantify

in a concrete way the amount of referential ambiguity that a human learner may

face. We discuss in detail the many of the assumptions and cues exploited by

our model in the experiments in Chapter 8 and quantify their impact on the raw

number of meaning candidates. In summary, this chapter describes the anno-

tation scheme chosen, provides a brief justification for theannotation choices
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made, and presents the corpus analysis quantifying the effects of various con-

straints on reducing referential ambiguity.

Chapter 3 (Grammar Background) lays out the necessary definitions and ba-

sic theoretical properties of the context-free synchronous grammars we use. Our

grammars are close enough cousins to PCFGs that the reader is likely to already

be familiar with many of the algorithmic foundations, such as the inside-outside

algorithm, but there are a number of new notational conventions required for

precisely describing how these technologies apply in this new setting. Addition-

ally there are some extensions to synchronous and probabilistic grammars that

offer increased modeling flexibility which we make use of in Chapters 6 and 8.

One innovation in particular includes a generalization of probabilistic grammars

to allow rule probabilities to be modeled by entire Bayesian networks, allowing

for the modeling of rule-internal independence assumptions which can alleviate

many sparsity problems commonly encountered in synchronous grammars.

Chapter 4 (Parsing Unordered Trees) follows up with a description of a novel

algorithm for parsing ranked unordered trees with a particular sub-class of graph

grammar. There are a few papers describing general graph parsing algorithms

and their complexities. However, the general case is far more powerful than our

relatively modest needs, and, in the most general case, leads to an exponential

time algorithm. Instead, we outline a procedure specialized for the ranked un-

ordered trees necessary for parsing the Frog Stories corpusthat remains fairly

general while permitting a much more efficient solution. In fact, the algorithm

includes a number of optimizations that are applicable to more general graph

parsers, potentially leading to major performance improvements that could make

the difference between a theoretically interesting formalism and a practical tool

for natural language parsing.

Chapter 5 (Inference in Multi-weighted Grammars) describes a variational

algorithm for applying Bayesian inference to the multi-weighted grammars in-

troduced in Chapter 3. Just as the Bayes net grammars are a generalization of

standard probabilistic context-free grammar, the inference algorithm includes

the standard mean-field variational Bayesian inference approach as a special

case.

Chapter 6 (Semantic Parsing) presents a model based on the grammatical
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framework described in Chapter 3 to the traditional problem of semantic parsing.

The problem is simpler than that of word learning, since the learner is presented

with an observed meaning representation for each sentence,something that a

child must infer from context as he learns word meanings. However, it can be

interpreted as a sub-problem of the word learning task, setting the stage for the

full word learning model presented in Chapter 8. At the same time, we demon-

strate the effectiveness of expressing semantic parsing ina standard grammar

framework, showing performance improvements over severalproblem-specific

state-of-the-art solutions.

Chapter 8 (Word Learning) incorporates the semantic parsing model of Chap-

ter 6 using the grammar framework of Chapter 3 into a general word learning

model, applying it to the Frog Stories corpus. In the process, we demonstrate

that roughly the same model works just as well for semantic parsing as for pre-

vious word learning tasks (without syntactic bootstrapping). Finally, turning to

the problem of word learning with syntactic bootstrapping,we present experi-

ments testing the impact of syntactic cues under highly ambiguous settings, and

measure the effectiveness of joint learning on resolving this referential ambigu-

ity in combination with several other sources of information and constraining

assumptions.

Chapter 9 (Conclusion) concludes with a discussion of some additional impli-

cations of our results, highlights several additional avenues for future inquiry,

and suggests other applications of the grammar framework.



Chapter 2

Word Learning and Semantic Parsing

Background

Given the apparent difficulty of the various entangled problems involved in learning

the meanings of words, it is amazing how regularly children succeed. By one year of

age children are typically already producing words, likelyunderstand far more than

they produce, and are rapidly adding to their repertoire. What is the nature of the

mechanism they use to accomplish this feat? Perhaps they rely on innate language-

specific learning biases, or maybe there are clues hidden in the data that simplify the

task, but to what extent might these factors ease the learning problem? In other words,

how powerful is the learning mechanism itself? Many psychologists have spent their

careers searching for answers to these questions, but the last question has begun to

attract greater attention with a relatively recent resurgence in interest in theories relying

on statistical learning.

While psychologists explore the nature of the human faculties required for solving

the problem, researchers in natural language processing (NLP) have pursued similar

questions but focused more directly on the learning problemitself and on the com-

putational techniques required for its solution. From the inception of the field, NLP

has sought to automate language understanding, enabling computers to extract and act

directly on linguistic information. In a task known as “semantic parsing”, computer

systems attempt to translate sentences in natural languages like English into unam-

biguous formal languages that are more readily interpretable by machine. Given the

magnitude of the task of manually engineering a broad coverage grammar and lexicon

from scratch, work typically relies on machine learning to automatically construct this

word-to-meaning map directly from data, much as children seem to rely on their own

13
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learning mechanisms. Of course, the data fed to the mechanical learner differs signifi-

cantly from the world the child experiences, but an increasing interest in larger, richer

data sets, with simultaneously less reliance on hand annotation, has narrowed this dif-

ference somewhat. Thus, while psychologists have begun to explore how the existence

of a powerful statistical learning mechanism might impact word learning, semantic

parsing experts have converged on a very similar problem as they have gravitated to-

ward semi- or unsupervised learning with richer input that,in some cases, resembles

more closely what children experience.

Given the similar focus and, in some cases, computation techniques employed by

researchers in the two sub-areas of semantic parsing and word learning, the situation

seems ripe for cross-pollination. Are there ideas from psychology that can help to

better define the semantic parsing problem, and are there computational techniques

that can shed light on the situation of the human learner? This chapter seeks to shed

some light on this question, examining the previous work in both fields for promising

points of intersection.

2.1 Word learning

In analyzing the situation facing children, psychologistshave identified several layers

to the problem, cross-cutting all areas of linguistics and extending into other more

general aspects of cognition such as perception, category learning, and theory of mind.

Children must learn about the surface forms of the language, from fairly basic things

like categorizing speech sounds into the phonetic categories of the target language, to

identifying words in an unbroken stream of speech, learninghow individual words are

constructed from smaller morphemes, and how such words combine to form phrases.

However, the term “word learning” is usually used to refer primarily to the problem of

learning to associate these surface forms with meanings.

Somehow, a child must learn that the word “doggy” refers to the stuffed animal in

mom’s hand, as opposed to the many other things that are present such as the chair,

the table, a shoe and so on. This is the problem of referentialambiguity, where the

listener must resolve which specific object is being talked about. In fact, the child

must rule out other possible candidate referents such asleg or tail, two other things

that are both present when the child hears the word “doggy”. Assuming the child

has somehow identified both the surface form and the referent, however, there is still

much more to a word meaning than a surface form-object pair. For instance, the child
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must learn that “doggy” is more than a label for that specific stuffed animal; “doggy”

can be used for a whole category of things. The child must somehow infer that the

category includes actual animals like Terriers and Dalmatians but not other four legged

mammals like cats. There is a whole hierarchy of categories that include that particular

stuffed animal, and somehow the child must determine the correct level of abstraction

(i.e., that “doggy” refers to canines rather than mammals ingeneral). Actually, there

are other hierarchies one might consider, given that the dogstuffed animal is a kind of

doll which is in turn a toy and so on, and the child must resolvethe correct level of

abstraction within each hierarchy. Furthermore, different words can be used to refer

to construct the same mental scene, where the only difference is the emphasis that the

speaker places on certain entities. For instance, the sentence “the boy received the jar

from his father” can describe exactly the same set of situations as “his father gave the

jar to the boy.” It seems that learning the distinction between the meanings of the verbs

“receive” and “give” must somehow involve reading the speaker’s mind. Thus, there

is a tremendous amount of ambiguity, both referential and categorial, that a child must

somehow resolve, a seemingly intractable task which has ledpsychologists to propose

a number of innate constraints and heuristics to guide the word learning process.

2.1.1 Learning biases and constraints

One proposal that could help resolve some of the ambiguity isan assumption that

different word forms tend to be used to refer to talk about different concepts, a prin-

ciple known as mutual exclusivity (Markman and Wachtel, 1988; Littschwager and

Markman, 1994). If the learner encountered a new word and narrowed down the pos-

sible referents to two objects, a familiar one for which a word was already known and

the other completely novel, mutual exclusivity would matchthe novel object with the

novel word. While such a heuristic fails in the case of homonymy, where the same

word form has two different meanings, or synonymy, where different words have the

same meaning, such cases seem to be fairly rare, so one would expect the heuristic

to be helpful in general. Of course there are other phenomenathat mutual exclusivity

cannot explain on its own.

As an example, the part-of relations alluded to above where “dog” and “tail” both

refer to the same object, albeit different subsets of the object, so mutual exclusivity

fails even though “dog” and “tail” are neither homonyms nor synonyms, and part-of

relations are frequent enough that they are harder to dismiss. This difficulty has led
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to the proposal that children may also make use of a whole-object bias, according to

which they would assume by default that “dog” refers to the whole stuffed animal

rather than to its tail or leg (Carey, 1978; Mervis, 1987). This whole-object bias seems

to help with deciphering child-directed speech.

Similarly, additional biases have been proposed for resolving the appropriate level

of abstraction. While mutual exclusivity and the whole-object bias offer little help,

additional biases could help resolve whether “dog” is simply a label for the particular

toy, for toys in general, or theanimalconcept. Markman (1989) argues that children

could rely on a “taxonomic bias” to map words by default to concepts that optimize

utility with respect to a certain level in the hierarchy. Such high utility concepts are

known as basic level categories in the psychological literature (Rosch et al., 1976). A

taxonomic bias would help rule out learning labels for conceptually strange categories

such as “all spotted animals, but not leopards, plus chairs”since it is hard to imagine

such a category being very useful. Additionally, it should also bias learners away

from other plausible categories which are less frequently used. One might assume

that “dog”, for example, refers to canines in general, and isnot just a name for that

particular toy, or Terriers only, or all mammals, becausecaninesoptimizes some metric

of utility that the others do not.

Related to the taxonomic bias, researchers have also observed that children tend to

generalize words to novel objects of the same shape, but not necessarily to objects with

other shared features such as texture, color, or material (Markman and Wachtel, 1988;

Landau et al., 1998; Smith et al., 2002). This bias could helpselect between different

overlapping hierarchies. Thus, rather than generalizing the label “dog” to other objects

with the same color (spotted animals), a learner would tend to generalize to other four

legged animals with a tail.

2.1.2 Helpful features

At the same time as proposing biases that could help constrain the learning problem to

some more tractable set of hypotheses, psychologists have also explored questions of

exactly what information is available to a child. Perhaps there is some cue or combi-

nation of cues in the data that could successfully guide a learner even in a vast space of

mostly incorrect guesses. Sensitivity to such features could either complement innate

learning biases or allow the learner to avoid the use of certain constraints altogether.

Whether it is because (1) higher frequency simply means the learner has more
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learning opportunities or because (2) humans make explicituse of frequency numbers,

word frequencies are one type of correlate with successful word learning. For instance,

arguing for the first case, Huttenlocher et al. (1991) observed that learners who receive

greater exposure to speech in general tend to acquire a larger vocabulary. Similarly,

it has been observed that nouns tend to be learned far more quickly in English and

other languages where nouns are more frequently occurring in prominent locations

such as the end of the sentence (Gentner, 1982). However, in some other languages

where verbs are more frequent such as Mandarin (Tardif et al., 1997), Korean (Choi

and Gopnik, 1995), or Tzeltal (Brown, 1998), children learn verbs far earlier than they

tend to do in English. On the other hand, it is possible that frequency could have a more

subtle impact on learning, possibly providing an alternative account for the shape bias,

relying on learning instead of assuming an innate constraint. For example, Smith et al.

(2002) exposed subjects to words for categories of objects with a common texture and

found that this increased the likelihood that they would generalize new words across

texture-based categories, counter to what one would expectunder a shape bias.

Frequencies could also be exploited in cross-situational learning (Pinker, 1989;

Gleitman, 1990; Yu and Smith, 2007; Akhtar and Montague, 1999), the idea that chil-

dren may be able to exploit consistencies in word-object co-occurrences across multi-

ple scenes to help eliminate ambiguities. That is, if a childobserved that mom tended

to be holding the stuffed dog at the same time as saying “doggy” but was far less likely

to say “doggy” when holding some other toy, say a ball, it would seem reasonable to

prefer the mapping that associates “doggy” with the stuffedanimal rather than the ball.

As an example, (Smith et al., 2011) exposed subjects to a sequence of scenes with up

to nine potential referents simultaneously with novel isolated words. At test time, sub-

jects were shown the full set of objects for which words were given during training and

asked to point out the best object for each new word and found that learners performed

fairly well, well above chance in spite of the fact that the experimental setup seemed to

deprive learners of other information that might allow themto use alternative strategies

such as mutual exclusivity.

It has also been argued that word learning is fundamentally asocial phenomenon,

and thus social cues such as body language should play a crucial role. As an exam-

ple, it seems that children are sensitive to and capable of following the direction of a

speaker’s gaze to infer which object is being discussed (Baldwin, 1993; Baldwin et al.,

1996). This observation is closely associated with the ideathat children are able from

a relatively young age of inferring and reasoning about others’ mental states, allowing
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them in turn to infer the intended referents for words (Tomasello, 2001; Bloom, 2000).

Salience is another useful feature type. For instance, learners seem to learn words

faster if they appear in prominent locations such as at the end of sentences. This is

an example of accidental salience, where it happens to be a feature of the language;

hence in some languages children learn verbs earlier than others possibly because of

the accident of word order (Tardif et al., 1997; Choi and Gopnik, 1995; Brown, 1998;

Gentner, 1982). In other cases caregivers may deliberatelyexploit salience to facilitate

the child’s understanding and learning. For example, parents may make a special effort

to engage very young children by talking about whatever the child shows greatest

interest in, so that the child’s gaze dictates the topic of conversation: the most salient

object in the child’s field of vision. Infant directed speechhas many features that may

relate to salience: exaggerated pauses, vowels, slow speech rate, and pitch contours.

At the very least, such exaggerated speech does seem to attract children’s attention,

since children show a preference for listening to it (Fernald, 1985; Cooper and Aslin,

1990), and it also seems to facilitate word learning (Graf Estes and Hurley, 2013).

Infant-directed speech may also serve to attract the child’s attention to increase the

salience of particular words. Fernal and Mazzie (1991) observed that new words in

particular are more likely to occur at such positions of prominence, possibly helping

the child identify the novel word to be identified with the newtopic of conversation.

Another effect of this exaggerated prosody is that it can help to contrast function words

vs. content words, since content words are more likely to be stressed in this way.

Finally, syntax also provides a set of features that can helpin learning new words,

a phenomenon that has been called syntactic bootstrapping (Gleitman, 1990). Naigles

(1990) demonstrated that 2-year-olds were able to identifytransitive verbs with scenes

depicting causative relations, e.g., “the rabbit is gorping the duck,” as opposed to non-

causative relations like “the rabbit and duck are gorping,”arguing that children exploit

syntactic information (verb arity) to correctly match transitive verbs to their referents.

Similarly, Gillette et al. (1999) conducted an experiment also showing that knowledge

of nouns can help learn verb meanings. Lany and Saffran (2010) further demonstrated

syntax can help learn nouns, not just verbs, exploiting a variety of case marking to help

identify nouns with their referents. In their experiment, subjects were exposed to two

different categories of words in an artificial language, oneused for describing vehicles,

another for animals, where each type of word was preceded by aparticular word that

correlated with its category: vehicles got one prefix, animals another. Subjects showed

greater success at learning words in this configuration thanwhen the prefixes were
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random. By exploiting such syntactic features, it is easy to see how learning could

accelerate as vocabulary grows, helping to quickly rule outa great deal of ambiguity

that would otherwise interfere.

2.1.3 Computational models

There are a number of computational models of word learning in the literature, but

because the problem is so cross cutting, touching on virtually all aspects of cognition,

models necessarily focus on different aspect of the problem.

There are models that assume the input consists entirely of isolated words, and

some, in fact, that train on observed word-referent pairs, removing all referential

ambiguity. These models instead tend to focus on category learning. For instance,

there are the connectionist models of (Regier, 2005; Plunkett et al., 1992; Schafer and

Mareschal, 2001; Colunga and Smith, 2005; Gasser and Smith, 1998; Smith, 2000a).

These models simultaneously learn sound categories, mapping different instances of

the same word to the same form, while also learning to identify the relevant features

of the referent to identify with the meaning of the word. Regier (2005), for instance,

exhibits behavior consistent with the shape bias. Li et al. (2004; 2007) presents an in-

cremental, associative model, demonstrating a vocabularyspurt-like pattern, an often

observed acceleration in rate of acquisition the occurs after the learner surpasses some

threshold. Another model demonstrates fast mapping, another phenomenon observed

in children where they are sometimes able to learn a new word after a single exposure

Horst et al. (2006).

Aside from the connectionist models, there are also a few others that assume the

input consists of isolated word-object pairs. The “competition-based models” which

formulate categories by selecting the relevant features bycontrasting training exam-

ples (MacWhinney, 1989; Merriman, 1999). These models naturally exhibit behavior

consistent with mutual exclusivity. Other models rely on similarity metrics, identifying

different instances of the same word, or generalizing that word to different objects if

the word instances and objects are similar enough (Landau etal., 1988; Roy and Pent-

land, 2004). There is also the Bayesian model of Xu and Tenenbaum (2007), which

relies on the frequency with which certain object features are associated with a given

word meaning to generalize across different words and objects. By this means, the

model is able identify the correct level of abstraction and to select between different

overlapping category hierarchies, and is capable of learning things like the shape bias



20 Chapter 2. Word Learning and Semantic Parsing Background

directly from data and word frequencies.

Other models deal with referential ambiguity, working withwords in context (i.e.,

whole sentences rather than isolated words) coupled with multiple candidate referents

and relying on cross-situational information to resolve ambiguity. Siskind (1996) rep-

resents one of the earliest examples of these models, which learns by identifying for

each word a minimal set of features that is consistent with the different situations,

where a “situation” is a pairing between a scene and a sentence. However, as a rule-

based model, it was quite vulnerable to noise. Other models dealing with referential

ambiguity usually rely on symbolic meaning representations instead of raw sensory

data or the feature vector representations used by the category learning models. Fleis-

chman and Roy (2005) dealt with the part-of relationship for identifying individual

steps of a plan with the meaning of a specific sentence, learning, for example, that

“find axe” maps to a sub-problem within a broader planned action like the one identi-

fied with “get axe” (one must locate the axe before acquiring it).

Others tend to frame the problem in more or less the same way where the input

typically consists of transcripts of the utterances coupled with the set of objects present

at the time.

(2.1) what does the doggy say ?

{ ball, dog, pig, mirror}

Lexical entries in these models consist of word-object pairs, where the object serves as

the meaning of the word. The model of Yu (2005) treated this asa translation problem,

applying IBM model 1 (Brown et al., 1993) to learn word-object association probabil-

ities and applying thresholds. Fazly et al. (2010) presentsanother model, which learn

incrementally and demonstrates mutual exclusivity, fast mapping, and a vocabulary

spurt. Frank et al. (2009) introduced a Bayesian model with anexplicit representation

of the lexicon as a set of word-object pairs, which could integrate social cues into the

learning process. By placing a prior over the size of the lexicon, biasing in favor of

smaller lexicons, this model showed that behavior such as mutual exclusivity and fast

mapping could be seen as a result of a preference for a sparse lexicon.

Other Bayesian models followed. Jones et al. (2010) translated the model of Frank

et al. (2009) into a product of Dirichlet-multinomials, allowing them to integrate word

learning with the word segmentation model of Goldwater et al. (2009). This, in turn,

was translated into a PCFG framework, allowing for greater flexibility in exploring

other varieties of learning synergies in the form of phonological learning and word
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structure (Johnson et al., 2010), and later the model was extended to include social

cues (Johnson et al., 2012), and discourse structure (Luonget al., 2013).

There have also been some models that attempt to incorporatesyntactic knowl-

edge into cross-situational word learning. Assuming that alearner already acquired

certain basic syntactic word categories, Alishahi and Fazly (2010) demonstrated that

such knowledge helps, since only certain categories are likely to map to certain kinds

of semantic concepts (e.g., nouns with objects). By assumingfairly sophisticated

knowledge about the syntax-semantics interface, Niyogi (2002) showed how these

rules about how word meanings combine within a sentence to constrain the mean-

ings of unknown words. However, it is unclear how such a modelwould operate

given only incomplete or noisy syntactic knowledge, or how the learner might acquire

such a sophisticated syntactic model, and it was only demonstrated for a small set of

hand picked examples. Other models jointly learn syntax with meanings, such as Yu

(2006), which simultaneously categorizes words by common sentential contexts and

maps words from these categories to objects such that words from a common category

are more likely to be associated with objects of the same type. Maurits et al. (2009)

also jointly learns word order and meanings, but assumes a fairly constrained set of

possible word orders.

As apparent from the preceding discussion, there are numerous models of how

cross-situational learning can be combined with other features or learning biases to re-

solve referential ambiguity, but thus far the amount of ambiguity considered has been

fairly limited. Typically, there are no more than a handful of candidate objects, some-

thing often necessitated by the inherent computational complexity underlying the as-

sumptions of the models on sentence meanings. In particular, these models essentially

explore all possible subsets of objects, resulting in a set of candidate meanings that is

exponential in the size of the scene. Thus, hampered by this computational constraint,

there has been little work exploring the limits of cross-situational learning. How much

ambiguity is too much?

2.2 Semantic parsing

Largely independent of the psychological community, researchers in natural language

processing have been pursuing solutions to a related problem, automating the extrac-

tion of “meaning” from natural language by computer, a task commonly referred to

as semantic parsing. Similar to the computational models of word learning, these
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systems automatically learn associations between words and symbolic meaning repre-

sentations. Semantic parsing as a field has been understood to cover many different

tasks, where the unifying objective is that of mapping a sentence to a representation of

its meaning expressed in a machine-interpretable formal language. For our purposes,

however, we use a more narrow definition centered on a single basic task where the

typical input to the learning algorithm consists of a set of sentences paired with their

meaning representations such as the following:

(2.2) How many states does the Colorado River flow through?

answer(count(state(traverse(river(riverid(colorado))))))

This task is sometimes referred to assupervised semantic parsing, since the system is

given an explicit meaning representation for each sentenceat training time, to contrast

with other training schemes some of which are discussed in the latter portion of this

section. By learning a correspondence between individual segments of the meaning

representation with the words of the accompanying sentence, systems can generalize to

novel sentences, permitting the computer to act directly onnatural language to answer

users’ questions just as it might execute a database query expressed in a computer

language like SQL, for example.

Many of the problems that a child faces in word learning are present in this se-

mantic parsing scenario as well. In particular, given no other information other than

sentence and meaning expression, there is a fair amount of referential ambiguity to re-

solve. A model must learn that “how many” signifies a question, and that the answer is

expected to be a number, signaling a call to functionanswer(NUM), that “many states”

indicates that the answer requires counting states,count(STATE), that the “Colorado

River” signifiesriverid(colorado), and that “flow through” indicates a call to thetra-

verse(RIVER)function. Without any additional information, any word in the sentence

could map to any symbol in the meaning representation. In fact, the meaning-word

map could even be many-to-many with a single word relating toany number of sym-

bols in the meaning representation (or none) or where a single symbol is expressed by

zero or more words, leading to an exponential number of potential mappings, most of

which are not very useful. The model is ideally expected to rule out the poor mappings

purely by observing consistencies across multiple training pairs in exactly the same

way that a child might exploit cross-situational information to learn word meanings.

Semantic parsers quickly rule out a large number of candidate mappings by mak-

ing an assumption that amounts to something known in the psychological literature
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as semantic bootstrapping (Grimshaw, 1981; Pinker, 1989).In semantic bootstrap-

ping, semantic information is used to assist in the inference of syntactic structure. For

instance, in a sentence like “the dog broke the jar”, knowingthat the jar is the se-

mantic argument of thebreakpredicate might suggest that it should also appear as a

syntactic argument of the verb “broke”. In the case of semantic parsing, systems ef-

fectively assume a structural relationship between the meaning representation and the

syntactic analysis of the sentence, and then perform a sort of grammar induction, re-

lying on the structure inherent in the meaning representation for guidance. Because

riverid(colorado) is an argument oftraverse(RIVER)in the meaning representation,

a system may also tend toward derivations of the sentence that generate “Colorado

River” as a dependent of “flow”. In this way, rather than inferring a grammar based

on the words alone, semantic parsers infer a grammar over meaning-sentence pairs, a

somewhat different objective than in purely unsupervised syntactic parsing. Similarly,

some semantic parsers may also exploit regularities in the learned syntax-semantics

map to generalize across predicates which can in turn allow syntactic knowledge to

assist in word learning (i.e., syntactic bootstrapping).

2.2.1 Two general approaches

Most semantic parsing models can be roughly categorized under one of two different

approaches. One approach, which we will refer to as the tree transformation approach,

assumes that meaning representations are either themselves trees or that they can be

parsed by an unambiguous grammar to identify a tree, and thatthis tree closely resem-

bles, and can be used to produce, a parse tree for the sentence(Jones et al., 2012b;

Lu et al., 2008; Kate and Mooney, 2006; Wong and Mooney, 2006;2007; Tang and

Mooney, 2000; Jones et al., 2012a). In this case, the meaningrepresentation (or its

parse), is a tree where each node is typically identified withexactly one function sym-

bol in the meaning expression. The strategy is to transform this meaning representation

tree into a derivation for the sentence by first reordering itand then attaching words

as needed to produce a projective parse tree. Conceptually, the idea is related to the

syntactic theory of Transformational Grammar (Chomsky, 1957; Cooper, 1975), where

an underlying form (i.e., the meaning) is transformed to produce the surface form. In

principle any transformation is permissible, but to keep things tractable, permutations

are usually restricted to local rotations among sibling nodes. Where words attach is

dictated by maintaining some kind of meaning-word map that specifies which mean-
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ing symbols correspond to which words: attachment is permitted between a given node

in the meaning representation tree and a word if and only if the corresponding meaning

symbol and word pair are in the map. Assuming that the resultant parse tree for the

sentence is projective significantly cuts down on the numberof possible meaning-word

links that might be proposed, reducing the search space and making the problem more

tractable. The transformation from meaning representation to sentence is governed

by a formalism that can be interpreted either in terms of synchronous context-free

grammar or tree transducers. The systems primarily differ in the details of how the

meaning-word map is structured and in the learning mechanism employed.

The other main approach employs Combinatorial Categorial Grammar (CCG) (Steed-

man, 2000) to identify a homomorphism between meaning representation and natural

language syntax (Zettlemoyer and Collins, 2005; Kwiatkowski et al., 2010). Under this

approach, CCG lexical items are inferred by decomposing the meaning representation

into several smaller lambda expressions and mapping words to those sub-expressions

while simultaneously assigning a syntactic category to thepair. The resultant CCG

rules combine in ways dictated by the syntactic categories to simultaneously derive the

meaning representation and the sentence. As per the CCG theory, the lexicon in this

case consists of these labeled meaning-word pairs. There isan exponential number of

ways of decomposing a given meaning representation, and training consists of identi-

fying a small subset of highly reusable rules to enter into the lexicon. To make things

tractable, systems typically restrict search to a certain subsets of meaning representa-

tion decompositions, greatly reducing the search space.

Although the two approaches may appear very different on thesurface, the basic

underlying idea is similar. They look different because while the transformation-based

approach deals in meaning representation trees, the CCG-based approach deals in de-

compositions. However, this difference disappears when one realizes that a parse tree

is simply another way of representing a particular decomposition.Thus, the key differ-

ence between the two is really just that the transformation-based approach starts with a

single decomposition for the meaning representation and then transforms it to produce

a set of different decompositions, while the CCG-based approach starts off by enumer-

ating the set of decompositions directly. In practice, however, CCG-based systems usu-

ally apply fewer restrictions to the decompositions considered than tree transformation-

based systems do to the final transformed trees. As a result, transformation-based sys-

tems are often more efficient in terms of computing resourceswhile CCG-based sys-

tems explore a larger space of possible grammars, potentially producing better results.
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This observation is born out empirically by the experimentsreported in Chapter 8,

where the model of Kwiatkowski et al. (2010) performs quite well but takes around

8 hours to run to completion on a single language of the data set, while the systems

of Wong and Mooney (2006) and Lu et al. (2008) perform somewhat less well but

complete in under an hour.

Both approaches are capable of simulating syntactic bootstrapping effects. For

instance, in the transformation-based approach, different weights can be assigned to

different permutations whereby models can learn basic facts about word order in a

given language. Similarly, the syntactic labels of the lexical items in the CCG ap-

proach specify the order in which words combine to form a sentence (word order, in

other words). If general patterns are learned which generalize to novel verbs, models

under either approach can learn the canonical ordering among the verb and its subject

and objects, potentially facilitating fast mapping and generally guiding convergence to

more accurate lexicons.

Finally, while these models can easily be interpreted as computational word learn-

ers, they operate under much less ambiguity than children often face.Specifically, these

models assume training items are sentence-meaning pairs, where the model is given the

true meaning of the sentence and the referential ambiguity consists entirely of deter-

mining which words go with which parts of the meaning representation. However, this

seems like an oversimplification when one considers the kindof information a child

receives. For one thing, it is difficult to imagine that a child always knows exactly what

a sentence means. If a child’s caregiver were reading a story, for instance, the child

has an entire picture where a large number of things might be described. The caregiver

may point to the character being talked about, but is this character the agent or the pa-

tient or something entirely different, and which event is being described? Thus, a more

realistic model should ideally be capable of dealing with a greater degree of ambiguity.

The next section discusses more recent attempts to address this sort of problem which

build on but go beyond our restricted definition of semantic parsing.

2.2.2 Alternative sources of supervision

In the scenario outlined so far, the model receives two pieces of information for each

training item: the words of the sentence and the sentence’s meaning representation.

However, many have also experimented with other forms of supervision. For instance,

one might expect that the gold syntactic analysis of a sentence could be leveraged
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to improve the quality of grammars that jointly generate themeaning-sentence pair.

In fact, several such systems have been designed (Ge and Mooney, 2005; Le and

Zuidema, 2012; Jones et al., 2012a). Often times, these approaches resemble the in-

verse of the transformation-based approach, starting fromthe syntactic parse tree and

generalizing it to cover the meaning representation. However, viewed as a model of

word learning, this approach effectively assumes a learnerwho already possesses a

mature grasp of syntax, but while there is evidence to suggest children begin learning

things like basic word classes fairly early in life, they certainly do not master syntax at

the level assumed by these models until much later.

At the same time, driven by the goal of scaling up to larger andmore diverse

domains, work has also focused on reducing dependence on meaning representation

annotations, which typically require expensive manual labor. Most methods seek to

exploit task-specific features of the target application ofthe system. For instance,

for systems that seek to automatically learn natural language interfaces to databases,

the learning algorithm can make use of the database itself instead of explicit mean-

ing representations (i.e., queries in a database language like SQL) by testing guessed

meanings to see whether the inferred query returns the expected answer (Clarke et al.,

2010; Liang et al., 2011). In this case, sentences are effectively paired with the gold

query result rather than thequery itself. Other systems seek to learn to map natu-

ral language instructions to the actions they describe (Branavan et al., 2010; 2011).

Such systems exploit information about success at performing the desired task as a

measure of accuracy and can optimize this metric. Another line of work focuses on

mapping navigational instructions to movements within a simulated world (Vogel and

Jurafsky, 2010; Chen and Mooney, 2011; Kim and Mooney, 2012; 2013). Again, sys-

tems can simulate following the instructions and use success or failure (i.e, arrival at

the expected destination) to inform learning. Alternatively, given current location and

target destination, systems can plot out a path between the two and attempt to align

individual steps to segments of the natural language instructions. Thus, instead of

meaning-sentence pairs, the learner effectively receivessets of candidate meanings for

each sentence and must simultaneously infer the correct meaning for each sentence

and the meanings for each individual word in the sentence.

In fact, this last approach of simultaneously inferring thebest meaning candidate

from a set and the map from meaning to sentence is a very general strategy that can

in theory be applied to any domain. It has been applied to a sportscasting domain,

where the model attempts learn to identify natural languagedescriptions of how a
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ball is passed around a field in a simulation to the underlyingstate information of

said simulation (Chen et al., 2010; Kim and Mooney, 2010; Chen and Mooney, 2008;

Börschinger et al., 2011). It has also been applied to a navigational domain (Artzi

and Zettlemoyer, 2013) and child-directed speech (Kwiatkowski et al., 2012). In most

cases, the model was adapted from a previous semantic parserdesigned to train from

observed meaning-sentence pairs where there is no ambiguity about what each sen-

tence means. Systems can do this in either a pipelined fashion where first the meaning

is selected and then it is mapped to the sentence, or by jointly inferring the candidate

meaning and the mapping. Pipelined systems first employ a separate alignment model

to attempt to identify the true meaning representation among the set of candidates.

This alignment model may itself be based on a semantic parseror could be a different

model specialized for the task such as Liang et al. (2009). Following the alignment

step, the semantic parser is then trained as before using these guesses. In the case of

joint inference, the semantic parser must devise a map from each possible meaning

candidate, effectively parsing the sentence repeatedly, once per meaning candidate.

This need to parse every candidate can be more expensive thanthe pipelined approach,

but it is often only slightly so since even in that setting each meaning candidate must

be analyzed separately before a guess can be made. However, the pipelined approach

potentially introduces noise by forcing a hard choice even when there is a great deal of

uncertainty that the joint learner could in theory account for by hedging its bets with

multiple possible choices, each weighted according to someconfidence score.

Any system that must separately analyze each meaning candidate is bound to scale

poorly with increasing uncertainty (i.e., as meaning candidates increase), and semantic

parsing is typically fairly expensive even when the gold meaning representations are

observed, so most systems limit the set of meaning candidates to just a handful. This

is one area that the model proposed in Chapter 8 is intended to address, allowing us to

better explore word learning performance under much higherlevels of uncertainty.

Some work has even been done on learning without meaning representation anno-

tations by exploiting domain knowledge (Goldwasser et al.,2011; Poon, 2013; Reddy

et al., 2014). The domain knowledge in question would typically not be available to

child language learners, however. For one thing, these approaches often rely on string

similarity between the words of the natural language and thesymbols of the target

meaning representation language (i.e., words such as “populous” or “populations” are

biased to map to the symbolpopulationin the meaning representation language). In

addition to string similarities, Goldwasser et al. (2011) employs various heuristic met-
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rics again not necessarily well suited for simulating the child’s situation to gauge parse

quality at each iteration of a self-training procedure. Poon (2013) and Reddy et al.

(2014), on the other hand, make use of supervised syntactic parsers pre-trained on out-

side corpora and rely on the parse structure to map syntacticrelations to database re-

lations. These approaches show that cross-situational learning is not strictly necessary

for learning a word-meaning map, but they rely crucially on information unavailable to

child language learners, making poor candidates as cognitive models of word learning.

As methods develop for reducing annotation overhead, researchers have also begun

working on large scale knowledge bases such as Freebase, which contains over 39 mil-

lion topics Doe (2014). Because annotating the vast amount ofweb-scale data required

for training would be prohibitive, systems typically either automatically extract mean-

ing representations Cai and Yates (2013) or employ similar techniques to those already

described to reduce dependency on such information (Krishnamurthy and Mitchell,

2012; Kwiatkowski et al., 2013; Reddy et al., 2014), or some combination of the two

(Berant et al., 2013). Furthermore, just as with the task-specific approaches, they also

tend to exploit rich syntactic information or string similarities between words and the

symbols of the knowledge base, or assume all sentences are knowledge base queries.

Thus, although results have been impressive, these models are also inappropriate as

cognitive models.

Finally, there are still other lines of work that seek to ground words in raw sen-

sory data (Krishnamurthy and Kollar, 2013; Kollar et al., 2010; Matuszek et al., 2012).

These techniques require simultaneously solving various perceptual problems such as

object recognition in raw visual data. Research in these areas have whole fields ded-

icated to solving the various related problems which add noise to and often dominate

the word learning problem. In order to focus on the word learning task, we will set

aside sensory data for our work here and instead map to symbolic data as described in

Chapter 7.

2.3 Case study: CCG

Kwiatkowski et al. (2012) propose a word learning model based on Combinatory Cat-

egorial Grammar (CCG) to explore synergies in word learning and syntactic grammar

induction. The model attempts to tackle the problem where there are multiple candi-

date meanings for any given sentence and both the sentence meaning and the individ-

ual word meanings must be simultaneously inferred. As a grammar-based model that



2.3. Case study: CCG 29

jointly infers sentence and word meanings, the artificial word learner they describe is

similar in spirit to the model we propose in Chapter 8. At the same time, being based

on CCG as opposed to our synchronous grammar approach, their model also repre-

sents a competitive example of the other leading approach tosemantic parsing. Both

the similarities and differences make it an interesting candidate for a more in depth

look. We pay particular attention to computational complexity, highlighting the source

of the complexity, since this effectively bounds the amountof ambiguity a model can

tackle, and ultimately we wish to reduce this computationaloverhead to make way for

learning performance itself as the main focus of study.

Performing grammatical inference using CCG, a strongly lexicalized formalism,

results in a grammar that doubles as a syntax-enriched lexicon, where each lexical

entry consists of three parts, a word, its syntactic category that dictates how words

combine into phrases, and its meaning in the form of a logicalexpression, represented

in typical CCG notation as

word⊢ syntactic category : meaning representation.

Some example entries might include

the⊢ NP/N :λ f λx.the(x, f (x)),

dog⊢ N : λx.dog(x),

licked⊢ S\NP/NP :λxλy.lick(y,x), and

girl ⊢ N : λx.girl(x),

where the syntactic component of each entry specifies (1) thetypes of words with

which it can combine, (2) the relative position of those words, and (3) the resultant

type of the combination. For instance, type NP/N indicates that the determiner “the”

combines with a noun (type N) such as “dog” to the right to produce a noun phrase

(NP). Precisely how lexical entries combine to form phrasesare dictated by combina-

tors, of which there are two types in their model: application, and composition.

Application, the simpler of the two combinator types, takesits name from the fact

that it involves a applying the lambda expression that represents the meaning of one

word to the expression associated with the other.

X/Y : f Y : g =⇒ X : f (g) (>)

Y : g X\Y : f =⇒ X : f (g) (<)
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Right application (>) applies the lambda expression of a word of type X/Y to that of

the word to its right (a Y), while left application (<) , assuming a type of X\Y, applies

it to that of the word of type Y to the left. The combination of “the” with “dog” is an

example of right application.

The other combinator employed involves composing the lambda expressions.

X/Y : f Y/Z : g =⇒ X/Z : λx. f (g(x)) (> B)

Y\Z : g X\Y : f =⇒ X\Z : f (g(x)) (< B)

Again, there are two directions, left and right composition, which are applicable de-

pending on the syntactic types of the respective words.

Given a lexicon and following these rules, the model can produce parses for whole

sentences such as the example in Figure 2.1. Typically, there may be a forest of such

trees, consisting of all parses for the sentence that are consistent with the meaning

representation. However, to simulate the problem where children do not know the

meaning of the sentence, training data consists of sentences paired with asetof possi-

ble meaning candidates rather than asingleobserved gold meaning. The parse forest

for a complete training item, as opposed to a single sentence-meaning pair, is con-

structed by taking the union of the parses of each pairing of the sentence with its

various meaning candidates. Thus, they employ a version of the parsing model de-

scribed in Kwiatkowski et al. (2010) to parse each sentence-meaning pair individually

and combine the results into a single forest.

The probability of a particular parse is computed in much thesame way as for a

probabilistic context-free grammar (i.e., by weighting productions and computing their

product), where a production consists of a local tree (a parent and its immediate chil-

dren), and its weight defines a conditional probability of the children given their com-

mon parent. Defining their model according to this context-free formulation results

in a generative joint model of meaning-sentence pairs, and employing a packed forest

representation for the union of the parses over all possiblesentence-meaning pairs per-

mits the applications of techniques familiar from probabilistic context-free grammar.

For instance, the most probable parse can be computed as per CKY, and the model

can propose meanings for a sentence by reading off the logical expression associated

with this most probable parse. Similarly, the expected counts for each production can

be estimated using the inside-outside algorithm, which they incorporate into an on-

line parameter estimation algorithm that makes a single pass over the training data and

updates the production weights after each sentence.
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λx.girl(x)

girl

Figure 2.1: A CCG-based parse tree for the sentence “the dog licked the girl” with

meaning representation lick(the(x,dog(x)), the(y,girl(y))).

The lexicon itself is populated according to a procedure that enumerates all the

possible decompositions according to the combinators and maps the individual sub-

expressions of the decompositions to words of the accompanying sentence. At the

heart of this procedure is asplit function which takes a CCG category X paired with

a fragmenth of the meaning representation and enumerates all possible waysh can

be split into two sub-expressionf andg with syntactic categories CLEFT and CRIGHT

which recombine according to application or composition torecover the original X :h

pair. In practice,f andg must be constrained since there are technically an infinite

number of ways to decomposeh. In particular, there are three restrictions.

• No Vacuous Variables: All variables that appear as arguments must also appear

in the body of the lambda expression. That is, iff is of the formλx.e, wheree

is a logical expression,emust contain variablex.

• Limited Application: f cannot contain meta-variables (i.e., variables that stand

in for functions) that are applied to non-variable sub-expressions ofh. This

restriction forbids decompositions such as:

h= λx.lick(x,Sam)

f = λq.q(Sam)

g= λyλx.lick(x,y).
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Algorithm 1 The parsing algorithm of Kwiatkowski et al. (2012) with a single ob-

served meaning, takes a sentence paired with a meaning and visits each span of the

sentence in a fashion similar to a top down variant of CKY, assigning a syntactic cate-

gory and meaning fragment to each.
function PARSE(sentencew1, ...wn, meaning representationm)

Ch = the parse chart as ann×n matrix of category-meaning pair sets

Ch[1][n-1]← C : mt ⊲ where C is the top-level category of the parse

for i = n, ...,2, j = 1...(n− i)+1 do

for X : h∈ Ch[ j][ i] do

for (CL : mL,CR : mR) ∈ split(X : h) do

for k= 1, ...i−1 do

Ch[ j][k] ← CL : mL

Ch[ j +k][ i−k] ← CR : mR
return Ch

• Limited Coordination Extraction: g cannot contain more than some num-

ber N of the conjuncts inh. For instance, ifh is lick(x,y)∧ the(x,dog(x))∧

the(y,girl(y)), a set of three conjuncts, andN = 1, g could only contain one of

lick(x,y), the(x,dog(x)), or the(y,girl(y)).

The first two restrictions guarantee at most an exponential number of decompositions,

while the third further restricts this to a polynomial of degreeN. That is, if the meaning

m contains|m| conjuncts, the number of possible splits at each node in the parse tree

is at mostO(|m|N).

The parsing procedure is outlined in Algorithm 1. Assuming asingle meaningm,

the procedure starts by applyingsplit to h= m, and then populates the parse chart by

repeatedly applyingsplit to the successively smaller sub-expression while simultane-

ously matching them up with spans of the sentence. The algorithm resembles CKY

but where the grammar rules are generated on the fly from the meaning representation.

If there are|w| words in sentencew, parsing a single sentence-meaning pair〈w,m〉

has an upper bound ofO(|w|3 · |m|N), whereN is an arbitrary parameter specifying the

maximum number of conjuncts of the meaning that can be matched with a single rule

and is chosen manually to balance the tradeoff between complexity and accuracy. If

there areM possible meaning candidates in the scene, this becomesO(M · |w|3 · |m|N).

In particular, Kwiatkowski et al. (2010) cites anN of 4 and Kwiatkowski et al. (2012)
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an M of 7 in their experiments. If one assumes that the number of conjuncts within

the meaning representation is roughly proportional to the number of words in the sen-

tence, this essentially means that parsing requires running anO(|w|7) algorithm for

each meaning candidate in the scene for each sentence.

As a syntax-aware word learner, the model incorporates elements of both syntactic

bootstrapping and semantic bootstrapping, i.e., the leveraging of syntactic informtion

for acquiring word meanings and the leveraging of semantic information in the acqui-

sition of syntax. For instance, by learning lexical entrieslike the one for “licked” in

our example which expects a NP to the right, the model can theoretically narrow down

the set of words that are likely to map to the object of the verb. In fact, they showed

that the model preferred an SVO order for transitive constructions when trained on a

an English corpus of child-directed speech.

This acquisition of syntactic categories, in turn, is jump-started by the deterministic

assignment of basic atomic syntactic categories such as N, NP, and PP based on a small

set of templates. For example, if a lexical entries meaning representation component

consists of a single unary predicate such asλx.dog(x), the model deterministically

assigns a category ofN.

Being based on a grammatical formalism that tightly couples semantics and syn-

tax, the model elegantly incorporates syntactic and semantic learning in a single joint

model. Indeed they showed that the model learned to assign high probability to the

gold meaning of words, and argued that syntactic bootstrapping helped the most in the

case of infrequent words, possibly simulating the role of syntax in fast mapping.

The model is similar in several respects to the novel model wepresent in Chap-

ter 8, but there are limitations that make it less suitable for our purposes. The most

significant issue is the constraints on referential ambiguity in their experiments, i.e.,

a maximum of seven meaning candidates per scene, since this makes it impossible to

judge the learning performance of the model, and, thus, the effect of syntax, at higher,

and possibly more realistic, levels of ambiguity. These constraints on ambiguity are

due in large part to the sheer computational complexity of parsing, which is roughly

O(|w|N+3) for a single meaning candidate and increasing by an additional O(|w|N+3)

for each additional candidate meaning, since the system must repeatedly parse the same

sentence multiple times, once per candidate. Thus, a significant amount of the limit-

ing complexity arises from the linear growth in complexity per meaning candidate, but

also from the flexibility allowed to the system to explore alternative decompositions

of the meaning representation. We will address both of theseissues in our choice of
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model and parsing algorithms laid out primarily in Chapters 4and 8. At the same

time, we intend to address a few less significant points. For one, it is difficult to as-

sess the exact contribution of syntax since they do not present a comparison with other

syntax-unaware word learners. Secondly, the meaning representations of their corpus

is automatically constructed from syntactic dependency analyses, possibly resulting in

an artificially tight syntax-semantics match, which would boost performance for their

syntactic model, something that will be addressed by the corpus introduced in Chap-

ter 7.



Chapter 3

Grammar Background

This chapter covers the background in formal language theory necessary for under-

standing the semantic parsing and word learning models presented in Chapters 6 and

8. We begin with a brief overview of context-free grammar forstring languages, where

we establish some notation and otherwise set the stage for the later sections that may be

less familiar on graph and synchronous graph-string grammars. The chapter is primar-

ily review, extracted from existing literature, but there are novel elements introduced in

Section 3.3.1 on a minor extension to synchronous grammar and Section 3.4 on a gen-

eralization of probabilistic grammar where rules are not only associated with a single

weight, but also a factorization of that weight.

3.1 Context-free grammar

A context-free grammar (CFG) can be formally defined by a tuple〈Σ,N ,S,R 〉.

• Σ is a an alphabet of terminal symbols.

• N ⊂ Σ is an alphabet of nonterminal symbols.

• S∈N is a nonterminal specially designated as the start symbol ofthe grammar

from which all derivations begin.

• R is a set of productions of the formA→ x whereA is a nonterminal andx ∈

(Σ∪N )∗ is an arbitrary string of terminal and nonterminal symbols.

Figure 3.1 illustrates a simple CFG which generates sentences such as

(3.1) The dog licked the girl as she sternly scolded him.

35
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(b) S
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(a)
(r1.0)

S→ S′ as S′
(r1.2)

VP→ licked NP
(r1.4)

NP→ the dog
(r1.6)

NP→ she

(r1.1)
S′→ NP VP

(r1.3)
VP→ ADV scolded NP

(r1.5)
NP→ the girl

(r1.7)
NP→ him

(r1.8)
ADV → sternly

Figure 3.1: (a) A CFG with start symbol S, (b) a parse tree, and (c) the equivalent

derivation tree representing all possible derivations of an example sentence. Words are

numbered for ease of reference in parsing discussion in Section 3.3.2.

Context-free grammar is a type of string rewriting formalismwhere strings are grad-

ually built up by replacing nonterminal symbols by their expansions according to the

right hand sides of rules. A full derivation consists of a sequence of such rule applica-

tions, repeated until we arrive at a string consisting entirely of terminal symbols. As

an example, one possible derivation for sentence 3.1 under the grammar of Figure 3.1

might begin with the following two steps

S
r1.0
⇒ S′ as S′

r1.1
⇒ NP VP as S′

wherex
r
⇒ y denotes that stringy can be arrived at by applying ruler to rewrite some

occurrence of the symbol on the left hand side of ruler in stringx. The process is non-

deterministic since, for example, there is nothing specifying that a derivation must first

expand the left-most occurrence of S′ above before the right occurrence. This nonde-

terminism can be explicitly represented in a parse tree suchas shown in Figure 3.1(b)

or an equivalent derivation tree as in Figure 3.1(c). Derivation trees are essentially the

same as parse trees where the relationship to rule applications is made more explicit.
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3.2 Hyperedge replacement grammar

Hyperedge Replacement Grammar (HRG) is a generalization of CFGto graph lan-

guages (see Drewes et al. (1997) for an overview). Where a CFG builds upstringsby

replacingsymbolswith newsubstrings, an HRG buildsgraphsby replacingedgeswith

subgraphs. Although there has been a recent surge in interest in graph grammar, driven

by the availability of corpora for representing linguisticmeaning with graphs, HRG is

a relatively new introduction and current empirical work isstill at a fairly preliminary

stage (Jones et al., 2012a; Braune et al., 2014). However, HRG has been formally stud-

ied by theoretical computer scientists for much longer (Feder, 1971; Pavlidis, 1972),

increasing its appeal since the properties of HRG are alreadywell explored and there

are many existing algorithms for working with them. Furthermore, the similarity to

CFG makes HRG particularly interesting for natural language processing, because it is

easier to adapt and integrate with the prolific literature onsyntactic parsing with CFG

than many more distantly related formalisms might be.

That said, parsing with HRG is expensive. In fact, in the most general form, pars-

ing is NP complete (Drewes et al., 1997). Of course, there areknown polynomial

time algorithms for parsing relatively general classes of HRG, but the computational

expense can still be prohibitive, depending on the application. The parsing algorithm

of Chiang et al. (2013), for instance, takes time exponentialin the degree and the tree

width of the graph, both of which closely relate to the density of the graph. However,

Chapter 4 describes a novel algorithm that operates specifically on tree-shaped graphs

which takes time linear in the size of the tree.

The un-forestized scene graphs of the Frog Stories described in Chapter 7 which

we use for our word learning experiments are fairly dense, making them expensive to

handle. Instead, we work with a special case of HRG for generating unordered trees

to work with the forestized scenes described in Section 7.4.However, there are few

context-free grammar-based formalisms for describing unordered trees that are as well

studied as HRG. Furthermore, much of the work we describe suchas the optimizations

in the parsing algorithm in 4 generalize to more expressive graphs. Additionally, there

is growing interest in applying graph formalisms to problems in natural language pro-

cessing, and it is our hope that adopting the same standard terminology used in both

these forays into applied HRG as well as that of the theoretical literature will make it

easier to draw connections. Thus, although we work primarily with a restriction, we

define HRG in full.
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We start by defining a hypergraph, a generalization of a graphwhere edges may

link any finite number of vertices. Typically, such edges arecalledhyperedges, but we

will use the terms edge and hyperedge interchangeably. Formally, a hypergraph is a

tuple〈V ,E ,a, ℓ,x〉.

• V andE are finite sets of vertices and hyperedges, respectively.

• Theattachment function, a : E→V ∗, maps each hyperedgee∈E to a sequence

of pairwise distinct vertices fromV , where we call the length of the vertex se-

quencea(e) thearity of edgee.

• The labeling function, ℓ : E → Σ, maps each hyperedge to a symbol in some

ranked alphabetΣ, where the rank of the label symbolℓ(e) is the same as the

arity of edgee.

• Finally, each graph has a set of zero or moreexternal vertices, arranged in a

sequencex∈ V ∗, where the vertices are pairwise distinct just as those of a hy-

peredge. As another point of similarity with hyperedges, hypergraphs also have

an arity, defined as the number of its external vertices (i.e., the length ofx).

There is a strong parallel between the external vertices of hypergraphs and the

vertices of hyperedges, a fact that, as we shall see, plays a crucial role in the

edge rewriting mechanism of HRG.

Observant readers may notice that while functionℓ labels edges, there is no such func-

tion for labeling vertices. In fact, vertices are unlabeled, but labels can be simulated by

treating unary hyperedges (i.e., hyperedges with a single vertex) as vertex labels.

While edges can link an arbitrary number of vertices, we are primarily interested in

languages of simple directed graphs, hypergraphs where each edge is either binary or,

for vertex labels, unary. In this case, we can indicate visually the ordering on a binary

edge with vertex sequencev0v1 by an arrow pointing from vertexv0 to v1. The graph

at the bottom right of Figure 3.2(b), is an example of a graph,similar to the scene

graphs described in Chapter 7. In fact, we can apply the same conventions introduced

in Section 7.3 for translating between the language of predicate calculus expressions

and graphs to arrive at the following:

(3.2) lick(e1)∧agent(e1,x1)∧dog(x1)∧ theme(e1,x2)∧girl(x2)∧

scold(e2)∧agent(e2,x2)∧ theme(e2,x1)∧stern(e2)



3.2. Hyperedge replacement grammar 39

The graph representation has unary edges for expressing entities such asgirl anddog

and predicates likelick andscoldand binary edges with labels likeagentfor specifying

the thematic relations in events. Additionally, while vertices are unlabeled in the formal

definition of hypergraphs, we have also included labels to uniquely identify vertices in

the figure, simply to facilitate discussion and to make it clearer how the graph relates

to the logical expression in example 3.2 above.

We now describe hyperedge replacement grammar, an edge rewriting system for

generating hypergraphs, formally defined in a manner similar to CFG as a tuple〈Σ,N ,S,R 〉.

• Σ is a ranked alphabet of terminal symbols (i.e, a set of symbols where each

symbol is associated with some integer greater than or equalto zero identifying

its rank).

• N is a ranked alphabet of nonterminal symbols.

• S∈N is the start symbol.

• R is a finite set of rules of the formA→ h, whereh is a hypergraph with edge

labels fromΣ∪N andA∈N has rank equal to the arity ofh.

Figure 3.2 shows an example of an HRG and a sample derivation. The external vertices

of the right-hand side graphs have been shaded and numbered according to their order,

while other vertices (the internal vertices) such as in ruler2.1 have been left unlabeled.

Edges named with nonterminal symbols are dashed to make themeasier to identify.

Sometimes we will refer to such edges that are labeled with nonterminal symbols as

nonterminal edges.

Hyperedge replacement, the basic rewriting mechanism of HRG, is an operation

which substitutes an entire hypergraph for a single edge. Ifg is a hypergraph containing

edgee, andh is another hypergraph with the same arity ase(i.e., with the same number

of external vertices asehas vertices), edgeecan be replaced withh by first removinge

from g and then “fusing”h andg together at the external vertices ofh and the vertices

of the sequencea(e). So, if a(e) = v0v1...vk andh has external verticesu0u1...uk, we

would fuse eachui to the correspondingvi.

Much like with CFG where a derivation begins with a string consisting of a single

instance of the start symbol and proceeds by successively replacing nonterminals with

substrings, derivations under HRG begin with a single edge (with arity equal to the

rank of the start symbol) and each subsequent step replaces anonterminal edge with

the right-hand side graph of some rule with a matching left-hand side. For example,
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Figure 3.2: (a) An HRG with start symbol S, (b) a particular derivation under the gram-

mar of a graphical representation of a sample meaning representation, and (c) a deriva-

tion tree representing all possible derivations. External vertices are shaded and num-

bered according to their order and nonterminal edges are dashed, while in the derivation

the nonterminal edge being replaced is highlighted in red.

in the application of ruler2.1 in the second step of the derivation in Figure 3.2(b), the

edged
S′
→ g is replaced by the graph 0

NP
← ◦

VP
→ 1 by removing the S′ edge and then

attaching the new subgraph by identifying verticesd andg with external vertices 0 and
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1, respectively. Note that the ordering ofd andg in edged
S′
→ g and the ordering of the

external vertices inr2.1 fully specifies exactly which vertices are “fused” during the

replacement operation.

An HRG is context-free in the sense that whether a given rule can be applied at any

given stage of a derivation only depends on whether the nonterminal on the left-hand

side (and its rank) matches some isolated nonterminal of theintermediate hypergraph

derivation, exactly as for string derivations under CFG. Consequently, the order in

which rules are applied during a derivation does not impact the set of possible expan-

sions of any of the remaining nonterminals. Again, just as with CFG, this nondeter-

minism can be represented explicitly by a derivation tree, as illustrated in Figure 3.2(c).

As a notational convenience, we can represent graphs using the language of predi-

cate logic, where vertices are identified with variables. Asa consequence, edges, which

are labeled tuples of vertices, can be treated as relations,themselves merely tuples of

variables. A hypergraph can then be considered to be a logical conjunction of relations.

Following this convention, we can translate the final graph in the HRG derivation in

Figure 3.2(b) into the logical expression:

like(e1)∧ theme(e1,g)∧girl(g)∧agent(e1,d)∧dog(d)

∧scold(e2)∧agent(e2,g)∧ theme(e2,d)∧stern(e2).

For completeness, one can assume that all variables are existentially quantified, though

we will generally omit these existential quantifiers for thesake of brevity.

Thus, one can reinterpret the grammar in Figure 3.2(a) as operating directly on

logical expressions.

S→ S′(d,g)∧S′(g,d) (r2.0)

S′→ λd,g.NP(e,d)∧VP(e,g) (r2.1)

VP→ λe,g.lick(e)∧NP(e,g) (r2.2)

VP→ λe,d.scold(e)∧ADV(e)∧NP(e,d) (r2.3)

NP→ λe,d.agent(e,d)∧dog(d) (r2.4)

NP→ λe,g.theme(e,g)∧girl(g) (r2.5)

NP→ λe,g.agent(e,g) (r2.6)

NP→ λe,d.theme(e,d) (r2.7)

ADV → λe.stern(e) (r2.8)
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Here, we have extended the logical language with lambda expressions in order to spec-

ify the external vertices of the right-hand side graphs. In fact, drawing on this analogy

between external vertices and the lambda arguments presents another way of visual-

izing the edge replacement operation, as a substitution operation where nonterminal

edges are treated as metavariables. For example, the first application of r2.1 in the

example derivation involves replacing the first instance ofthe S′ nonterminal in the

intermediate graph with the right hand side of the rule.

(S′0(d,g)∧S′1(g,d))
[
S′0 := λd0,g0.NP(e,d0)∧VP(e,g0)

]

= (λd0,g0.NP(e,d0)∧VP(e,g0))(d,g)∧S′(g,d)

= NP(e,d)∧VP(e,g)∧S′(g,d).

After the substitution, the function is applied to arguments d andg, resulting in a beta

reduction and a second substitution whered0 := d andg0 := g. This parallel between

edge replacement and substitution in lambda calculus drawsa closer tie with linguistic

theories of Montague semantics and the syntax-semantics interface, something that

should become clearer in Section 3.3 when we discuss synchronous grammar. In fact,

because the logical notation is relatively concise and we expect the audience may be

somewhat more familiar with lambda calculus than with edge replacement, we will

usually rely on this notation and only return to explicit graphical representations when

it is useful for discussing properties that are more easily described in terms of graph

theory.

As mentioned in the introductory paragraphs of this section, although HRG is de-

signed to describe languages of arbitrary hypergraphs, we focus on HRG that generate

trees. This tree assumption is a common theme in previous parsing work. For in-

stance, work involving semantic dependency graphs often rely on minimum spanning

tree algorithms (McDonald et al., 2005), an approach which has been adapted to more

general semantic graph structures (Flanigan et al., 2014).In fact, since the parses of

HRG are themselves trees, it is possible to identify every HRG parse with a particular

tree decomposition of a graph (Lautemann, 1988). Thus, treeshaped representations of

more general graphs seem to be a fundamental feature of grammars with context-free

derivations. The difference in our work here is that while inthe general case there are

many such possible tree decompositions and a parser must somehow search over this

set to identify a particular one, we assume there is a single such decomposition and

enforce the assumption in a preprocessing step applied to the corpus as described in

Section 7.4. This decision to enforce a single tree is mainlydriven by parsing efficiency
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concerns, since parsing with arbitrary HRGs can be highly expensive.

Unordered trees differ in one important respect from the ordered trees that most

readers will be familiar with from syntactic parsing. The order of, for instance, the

agentand patient under adisturb event is indeterminate. The ordering is a matter

of how the particular language realizes such semantic elements in the syntax, but not

something to encode in the meaning representation itself. This lack of ordering corre-

sponds to the commutative property of predicate calculus, since

disturb(e)∧agent(e,x1)∧boy(x1)∧patient(e,x2)∧owl(x2)

is true in exactly the same circumstances that a slightly reordered expression is true:

disturb(e)∧patient(e,x2)∧owl(x2)∧agent(e,x1)∧boy(x1).

This lack of ordering is something that is impossible to capture using formalisms based

on ordinary CFGs or regular tree grammars, but straightforward using an HRG. Lack

of ordering plays a key role in parsing, an issue we will return to in Chapter 4.

Even if we do not make full use of the expressive power of HRG andrestrict con-

sideration to tree-shaped graphs, there are still key advantages over some other tree

grammars such as regular tree grammar (RTG). For one thing, because there is already

a more general formalism, it may be easier to generalize fromthe tree case to other va-

rieties of graph in future work. Furthermore, unlike strings, directed graphs only define

a partial ordering on their constituent vertices, so the trees our grammars generate will

also be only partially ordered. This is in contrast to the trees familiar from syntactic

parsing, where sibling nodes cannot be reordered without changing the sentence (and,

consequently, the syntax tree). However, the tree-shaped meaning representations we

will deal with are intended to represent logical structureswhere order does not mat-

ter. For an example, consider the following logical expression, which corresponds to a

tree-shaped graph:

lick(e)∧agent(e,x1)∧dog(x1)∧ theme(e,x2)∧girl(x2).

It would be undesirable if our grammar treated the followingas an entirely different

expression since it is logically equivalent and evaluates to the same truth values under

the same conditions:

lick(e)∧ theme(e,x2)∧girl(x2)∧agent(e,x1)∧dog(x1).

This is an advantage of using a formalism such as graph grammars which is capable of

generating and parsing unordered structures. An RTG, for instance, suffers from the
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same ordering constraint as a CFG, where different orderingsare treated as completely

different trees, resulting in different parses. Unlike RTGor other formalisms that only

work with ordered trees, however, any HRG would assign the exact same set of parses

to both expressions, drawing no distinction.

3.3 Synchronous grammar

A synchronous grammar is a formalism that simultaneously generates items from two

or more languages, implicitly defining a relation between the languages. In principle,

the languages could be of strings, trees, or arbitrary graphs. Synchronous grammars

are closely related to tree transducers, which define relations between tree languages

(Shieber, 2004; 2014). Synchronous grammars and tree transducers have both figured

prominently in syntax-based machine translation, where they are used to map between

the syntax of a source language to that of some target language (Nesson et al., 2006;

DeNeefe and Knight, 2009; Yamada and Knight, 2001). We applysynchronous gram-

mar to semantic parsing, which can be seen as a kind of translation problem between

natural language and meaning representation, and to modeling the word learning prob-

lem. Synchronous grammars have already been applied to the problem of modeling

the syntax-semantics interface (Nesson and Shieber, 2006;Han and Hedberg, 2008)

and semantic parsing (Wong and Mooney, 2007), and other semantic parsing models

such as Lu et al. (2008) or Kate and Mooney (2006), though not explicitly expressed

in terms of synchronous grammar, can also be re-interpretedas such. In fact, chapter 6

makes this last assertion clearer by explicitly re-implementing the hybrid tree model

of Lu et al. (2008) as a synchronous grammar. Our greatest departure from previous

work is to integrate HRG into the synchronous grammar framework to better model

commutative meaning languages (i.e., unordered trees), where previous synchronous

grammar-based models assume an ordered meaning representation language.

Synchronous grammars can be thought of as a kind of amalgam oftwo or more

different monolingual grammars, produced by binding together rules from these sub-

grammars. During derivations, rules are applied in lock-step fashion to produce par-

allel derivations and yielding tuples of items from the sub-grammars’ respective lan-

guages. These tuples thereby define a relation. For a more formal description, we

simplify by defining synchronous grammars that are restricted to binary relations (i.e.,

that map between two languages), but it is straightforward to generalize the definition

to include grammars for trinary or higher order relations. Assume there are already
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grammars with rule setsR0 andR1. Then the rules of the synchronous grammar are

tuples of the form〈r0, r1,⌢〉 wherer0 ∈ R0 andr1 ∈ R1 and⌢ is a bijection defining

a one-to-one correspondence between the nonterminals of the right-hand sides of the

monolingual rulesr0 andr1. During derivations, rules expand pairs of nonterminals,

where the legal nonterminal pairs are dictated by the bijection ⌢.

For example, we can bind together the sample HRG and CFG in Figures 3.2 and

3.1 into a single synchronous graph-string grammar by defining rules such as

〈 S′→ λd,g.NP0(e,d)∧VP1 (e,g)
∥
∥ S′→ NP0 VP1 〉

where the bijection between nonterminals is indicated by identifying symbols with the

same i indices. During a derivation these monolingual rule pairs are applied simul-

taneously to expand corresponding nonterminals in parallel. Consider how this syn-

chronous rule might be applied to the following intermediate stage of a synchronous

derivation:

〈 S′ 0 (d,g)∧S′ 1 (g,d)
∥
∥ S′ 0 as S′ 1 〉.

There are two choices for nonterminals that the rule can expand: either the pair〈S′ 0 ,S′ 0 〉

or the pair〈S′ 1 ,S′ 1 〉. However, the bijection does not permit the expansion of pairs

〈S′ 0 ,S′ 1 〉 or 〈S′ 1 ,S′ 0〉, because there is no map between those nonterminal pairs (as

indicated by the mismatching indices). Thus, either of the following are legal next

steps in the derivation:

〈 NP0(e,d)∧VP1(e,g)∧S′ 2 (g,d)
∥
∥ NP0 VP1 as S′ 2 〉

or

〈 S′ 0 (g,d)∧NP1 (e,d)∧VP2(e,g)
∥
∥ S′ 0 as NP1 VP2 〉,

but not

〈 NP0(e,d)∧VP1(e,g)∧S′ 2(g,d)
∥
∥ S′ 0 as NP1 VP2 〉.

In practice, we will assume that only nonterminals of the same symbol map to one

another, permitting a more compact representation for synchronous rules:

S′→ 〈 λd,g.NP0(e,d)∧VP1(e,g)
∥
∥ NP0 VP1 〉 (r3.1)

where we can use a single left-hand side symbol since both of the sub-rules are guaran-

teed to have the same left-hand side (modulo symbol rank, which can be inferred from
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S→ 〈 S′ 0(d,g)∧S′ 1 (g,d)
∥
∥ S′ 0 as S′ 1 〉 (r3.0)

S′→ 〈 λd,g.NP0(e,d)∧VP1 (e,g)
∥
∥ NP0 VP1 〉 (r3.1)

VP→ 〈 λe,g.lick(e)∧NP0(e,g)
∥
∥ licked NP0 〉 (r3.2)

VP→ 〈 λe,d.scold(e)∧ADV 0(e)∧NP1(e,d)
∥
∥ ADV 0 scolded NP1 〉 (r3.3)

NP→ 〈 λe,d.agent(e,d)∧dog(d)
∥
∥ the dog〉 (r3.4)

NP→ 〈 λe,g.theme(e,g)∧girl(g)
∥
∥ the girl 〉 (r3.5)

NP→ 〈 λe,g.agent(e,g)
∥
∥ she〉 (r3.6)

NP→ 〈 λe,d.theme(e,d)
∥
∥ him 〉 (r3.7)

ADV → 〈 λe.stern(e)
∥
∥ sternly〉 (r3.8)

VP→ 〈 λe,d.scold(e)∧NP0 (e,d)
∥
∥MADV scolded NP0 〉 (r3.9)

MADV → 〈 −
∥
∥ sternly〉 (r3.10)

Table 3.1: A synchronous grammar that jointly generates 〈meaning representation,

sentence〉 pairs. Rule r3.10 is monolingual, expanding the MADV nonterminal in

r3.9 without generating anything in the meaning representation, as described in Sec-

tion 3.3.1.

the right-hand side). Creating synchronous rules from the remaining rules from our

example graph and string grammars produces the grammar in Table 3.1. These rules

can then be applied according to the derivation tree in Figure 3.2 to simultaneously

produce the〈meaning representation, sentence〉 pair:

〈 lick(e1)∧agent(e1,x2)∧dog(x2)∧ theme(e1,x1)∧girl(x1)∧

scold(e2)∧agent(e2,x1)∧ theme(e2,x2)∧stern(e2)
∥
∥

the dog licked the girl as she sternly scolded him〉.

3.3.1 Adding monolingual rules

With a traditional synchronous grammar the number of nonterminals in each of the

linked sub-rules must be exactly equal. Thus, each contribution to one side of the

yield during a derivation always accompanies a simultaneous contribution to the others.



3.3. Synchronous grammar 47

What this means in the case of joint semantics-syntax grammars is that, effectively, the

grammar would need to decompose the meaning representationand the sentence and

pair these up so that every word is assigned meaning and everyfragment of meaning

is represented in the words.

It may make intuitive sense that all words must be represented in some form in the

meaning representation, but only so long as one assumes thatthe meaning representa-

tion fully covers the sentence. The validity of this assumption depends on the corpus

and the annotation scheme employed, and it is definitely not the case for most word

learning and semantic parsing corpora (and the frog storiescorpus is no exception)

where there could be any number of words with no obvious contribution to the mean-

ing representation. For instance, sometimes annotations will omit modifiers such as

sternin our running example.

The conventional lock-step derivation process of a synchronous grammar is not

well suited for modeling this sort of situation, but a minor extension could help. In

particular, it is possible to relax the bijection between nonterminals,⌢, so that instead

of requiring it to cover all nonterminals, we can restrict itto some subset, where the

remaining nonterminals are monolingual. These monolingual nonterminals must be

expanded by special rules that behave like ordinary monolingual grammar rules that

only contribute to one side of the yield (words in the sentence but not predicates in the

meaning, for example). Thus, in addition to synchronous rules of the form〈r0, r1,⌢〉,

the grammar may also include monolingual rules such as〈r0,−, /0〉 that only expand

monolingual nonterminals on the left or〈−, r1, /0〉 which only expand monolingual

nonterminals on the right.

The bottom two rules in Table 3.1 illustrate how monolingualrules can be in-

troduced into a synchronous grammar to generate words without counterparts in the

meaning representation. Ruler3.9 is semi-synchronous, where the MADV nontermi-

nal is monolingual and does not correspond to anything on themeaning representation

side. This monolingual nonterminal cannot be expanded by rule r3.8 since it expands

two nonterminals instead of one. Rather, a derivation must employ the monolingual

rule r3.10 to expand that portion of the sentence, which has no impacton the meaning

representation portion of the yield. By including monolingual rules, the grammar can
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e1

lick

ddog g girl

e2
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e

〈
∥
∥ the dog licked the girl as she MADV scolded him〉

sternly

Figure 3.3: A monolingual production in a synchronous derivation. The MADV has

no counterpart in the meaning representation but generates the word “sternly” in the

sentence.

still generate〈meaning representation, sentence〉 pairs such as

〈 lick(e1)∧agent(e1,x2)∧dog(x2)∧ theme(e1,x1)∧girl(x1)∧

scold(e2)∧agent(e2,x1)∧ theme(e2,x2)
∥
∥

the dog licked the girl as she sternly scolded him〉

where the meaning representation fails to include thestern modifier for the event.

However, removing rulesr3.9 andr3.10 would cause a parser to fail.

Note that because synchronous rules can only expand synchronous nonterminals

and monolingual rules can only expand monolingual nonterminals, it is impossible

once a particular branch of a derivation tree enters a monolingual mode to return to

synchronous generation downstream. The entire subtree must be filled out with mono-

lingual rules.

These synchronous grammars with monolingual rules have a close relationship to

the top-down tree transducers with regular look-ahead studied by Engelfriet (1977).

Transducers with regular look-ahead are able to look indefinitely deep into a left tree

to see if it meets some preset condition before deciding whether to apply a rule, where

the look-ahead mechanism can be described as an RTG. Essentially, a rule can only be

applied at a particular location within the left tree if its subtrees satisfy a membership

test in the tree language defined by the look-ahead grammar. In our case, the mono-

lingual rules behave like this look-ahead mechanism where,in parsing, a particular

semi-synchronous rule containing monolingual nonterminals can only be included in a

valid parse if the monolingual portions of the yield satisfymembership tests defined by
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the monolingual portion of the grammar. In terms of the example in Figure 3.3,r3.9

only applies if the one word substring “sternly” can be parsed using monolingual rule

r3.10. One key difference is that while Engelfriet (1977) worked with RTGs, the syn-

chronous grammars with monolingual rules are general to anygrammar with context-

free derivations. Another important difference is that Engelfriet (1977) only defined

look-ahead for one side, but in our case “look-ahead” can be applied on either side

or both simultaneously, since rules of either〈r,−, /0〉 or 〈−, r, /0〉 form are permitted, a

feature we will find useful when modeling a joint scene-meaning-utterance three-way

grammar, where, in addition to modeling the sort of meaning-utterance relationship

just discussed, utterances will also tend to only discuss relatively small subsets of the

scene as a whole.

3.3.2 Parsing: Training vs. translating

Synchronous grammars can be used in one of two different ways: to test whether a

given tuple of items from two or more languages satisfies a particular relation, or to

generate translations from one language to another. The first is achieved by parsing

tuples synchronously (i.e., memberships checking). The second is achieved by parsing

an item from one of the languages using aprojectionof the grammar where only the

portion of the rules relating to the item to be translated is used. Either case yields a

parse forest which can be interpreted as yet another grammarwhere rules are based on

those from the original grammar that appear in the parses butwith nonterminals refined

to identify 〈nonterminal,span〉 combinations. Table 3.2 presents an example which we

will discuss in greater detail momentarily. In the case of synchronous parsing, the

grammar has one tuple in its language, while in the second, there is a potentially very

large language of tuples where one of the elements of every tuple is constrained to

equal the item that was parsed. In the case of translation, taking a projection of the

language of tuples can produce a set of possible candidate translations in the target

language. Both of these cases will prove useful for our applications. In particular,

while training a semantic parser from a corpus of observed meaning representations

paired with their corresponding sentences, we will want to use full synchronous pars-

ing to enumerate the ways that the grammar might map meaning representation to

sentence. However, at test time semantic parsers are only given the sentence and must

translate this into a meaning representation, a case involving projection.

Table 3.2 illustrates an example of a translating grammar, the result of parsing
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S0
10→ 〈 S′05 0(d,g)∧S′6101(g,d)

∥
∥ S′05 0 as S′6101 〉 (r4.0)

S′05→ 〈 λd,g.NP0
2 0(e,d)∧VP2

5 1(e,g)
∥
∥ NP0

2 0 VP2
5 1 〉 (r4.1a)

S′610→ 〈 λd,g.NP6
7 0(e,d)∧VP7

101(e,g)
∥
∥ NP6

7 0 VP7
101 〉 (r4.1b)

VP2
5→ 〈 λe,g.lick(e)∧NP3

5 0(e,g)
∥
∥ licked NP3

5 0 〉 (4.r2)

VP7
10→ 〈 λe,d.scold(e)∧ADV7

8 0(e)∧NP9
101 (e,d)

∥
∥ ADV7

8 0 scolded NP9101 〉

(r4.3)

NP0
2→ 〈 λe,d.agent(e,d)∧dog(d)

∥
∥ the dog〉 (r4.4)

NP3
5→ 〈 λe,g.theme(e,g)∧girl(g)

∥
∥ the girl 〉 (r4.5)

NP6
7→ 〈 λe,g.agent(e,g)

∥
∥ she〉 (r4.6)

NP9
10→ 〈 λe,d.theme(e,d)

∥
∥ him 〉 (r4.7)

ADV7
8→ 〈 λe.stern(e)

∥
∥ sternly〉 (r4.8)

VP7
10→ 〈 λe,d.scold(e)∧NP9

100 (e,d)
∥
∥MADV 7

8 scolded NP9100 〉 (r4.9)

MADV 7
8→ 〈 −

∥
∥ sternly〉 (r4.10)

Table 3.2: The synchronous grammar that encodes the set of possible translations of

the string in Figure 3.1 using the grammar of Table 3.1. There are two possible meaning

candidates, one that includes the sternmodifier, the other that omits it, depending on

whether rule r4.3 or r4.9 is used for the second VP.

the sentence in Figure 3.1 with the synchronous grammar in Table 3.1. By marking

nonterminals with the span they dominate in the string, the grammar enforces that the

string portion of the pairs it generates must be the same as that of Figure 3.1. However,

the meaning representation is less constrained, since there are the monolingual rules

that permit the optional omission ofstern, yielding two possible candidates.

3.3.3 Synchronous grammar, transducers, and CCG

At this stage, let us return briefly to our discussion of the differences among the tree

transformation- and CCG-based approaches to semantic parsing reviewed in Chap-

ter 2. First of all, we note that the “tree transformation” approach could actually be

further broken down into approaches that employ tree transducers and those that em-
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ploy synchronous grammar to map between trees, two different formalisms that were

developed by separate communities with a close relationship, so we could, in fact, view

the two popular semantic parsing paradigms as three. However, all three can be viewed

as simply different ways of defining a function mapping from items in one language

(the language of meaning representations, in our case) to another (natural language).

Under the tree transducer view, typically one conceptualizes the function by describing

an automaton that walks a tree-shaped meaning representation and translates it step by

step into a sentence, while under the synchronous grammar paradigm the function is

defined by derivations which simultaneously generate the meaning representations and

sentences. CCG takes a third view by defining a homomorphism between syntax and

semantics.

In fact, all three not only perform the same task; but there are also deeper links in

how they are often applied. Shieber (2004; 2014) showed thatthe tree transducers and

synchronous grammars most commonly employed in NLP are equivalent, and even if

one ventures into the realm of so-called “mildly context sensitive” grammars such as

with synchronous Tree Adjoining Grammar, tree transducersand synchronous gram-

mar still fall within a single overarching class of formalism. CCG in its most general

form, has a somewhat less well studied relationship to the other two formalisms, but

in computational settings, practitioners often restrict themselves to a simplified form

which amounts to a variety of CFG, placing it in the domain of synchronous context-

free grammar. Thus, no matter the paradigm, the vast majority (if not all) approaches

to semantic parsing can be identified as not only working on the same problem, but

also using formalisms of the same class with the same basic expressive power.

There are various different formalisms with varying expressive powers and compu-

tational complexities referred to as tree transducers, synchronous grammar, or CCG.

For the following discussion we will primarily restrict consideration to those restricted

forms that have typically found their way into recent semantic parsing applications. In

particular, for practical considerations, all three are typically restricted to context-free

languages.

Considering this restriction, all three classes are equallyexpressive from the per-

spective of formal language theory, at least for the purposeof developing practical

computational models, leaving it up to other considerations when one chooses which

one to adopt for a particular purpose. For instance, CCG is supported by a well-

developed linguistic theory and elegantly simulates various subtle linguistic phenom-

ena, while synchronous grammar and tree transducers were developed largely by the-
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oretical computer scientists with little consideration for linguistic theory, albeit with

some early exceptions involving Transformational Grammar(Chomsky, 1957; Cooper,

1975; Rounds, 1970). However, the linguistic theory that lends CCG its elegance as

a tool for modeling the syntax-semantics interface is less helpful for explaining the

relationship between word meaning and other aspects of cognition such as percep-

tion, which deals heavily with phenomena that are usually viewed as lying outside the

scope of linguistic theory. Thus, CCG would need to be adapted to the word learn-

ing task, requiring one either extend or compromise the linguistic theory. Synchronous

grammars and transducers, on the other hand, are agnostic toany linguistic theory, sim-

plifying the modeler’s task to some extent. In particular, while it is common to think

of synchronous grammar as generating a set of pairs (e.g., meaning representation-

sentence pairs), it is easy to add a third dimension to any synchronous grammar so

that it instead generates triples. Thus, it is relatively straightforward to extend a syn-

chronous PCFG-based semantic parsing model to define a joint probability distribution

over world-meaning-sentence triples, provided that the world is describable by some

context-free formalism such as a HRG.

Finally, one also might consider computational complexity. Even in cases where

CCG can be simulated by a CFG, the simulating grammar typically contains far more

nonterminals than a typical CFG-based syntactic grammar, leading to increased pars-

ing time. For this reason, among others, the existing transformation-based semantic

parsing systems often require less computational resources. As a practical concern,

this last fact is critical for our word learning experiments, where there is far more

ambiguity with its accompanying computational complexityto contend with than in

traditional semantic parsing.

Synchronous grammar can essentially be thought of as a generalization of tree

transducers, with tree transducers as a restricted case dealing with regular tree lan-

guages, so the first choice is between the CCG and synchronous grammar/tree trans-

ducer classes. The two points of computational complexity and the ease of extending a

model to the three-way relationship between world, meaning, and sentence leads us to

opt for a synchronous grammar or tree transducer for our work. Furthermore, because

there are important differences between the trees we work with and those of the typical

regular tree language-based tree transducers, we will generally adopt a synchronous

grammar view. As an additional benefit, it is also easier to link to the HRG literature

with a synchronous grammar, helping to ground our work in a broader literature.
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3.4 Multi-weighted probabilistic context-free grammar

By associating a non-negative real valued weight with each rule and enforcing certain

simple constraints (specifically, that each weight is less than one, and that the weights

of rules with the same left-hand side sum to one) allows one toleverage the power

of grammars for defining probabilistic models over derivations and their yields, be

they strings, graphs, trees, or, in the case of synchronous grammar, some combination

of these. In particular, one can compute the probability of aderivation by simply

multiplying the weights of the individual rules and to compute the probability of the

yield by summing over all possible derivation trees. Such probabilistic grammars work

best when one is interested in the full joint probability of the derivation, but are less

well suited if one is only interested some marginal probability. In the grammar-based

word learning models of Johnson et al. (2012; 2010), for instance, the grammars define

a joint probability over the scene, the meaning, and the utterance, but the word learning

objective is the lexicon itself consisting of isolated words paired with their meanings.

Thus, evaluation requires integrating out many extra variables that, while necessary for

modeling the full joint probability, are extraneous to the lexicon.

Computing the necessary marginals may be more or less difficult depending on

the specific grammar, where independence assumptions inherent to the context-free

nature of the derivations can be exploited to improve efficiency. However, it may be

hard to model certain independence assumptions without drastically re-factoring the

grammar which can have negative side effects, such as changing the class of grammar

rendering certain class-specific algorithms, such as for parsing, inapplicable. This

problem may be particularly severe in the case of synchronous grammar since the

amount of information in a synchronous grammar rule is much larger than that of the

corresponding rules in monolingual grammars, meaning thatthere is more to integrate

out, and, even worse, synchronous grammars are often harderor even impossible to

re-factor into smaller rules without changing the languageof the grammar. In these

cases it may be necessary to work with a less desirable model parameterization and

then compute rule-internal marginals, such as, for example, the conditional probability

of the utterance given its meaning representation, by renormalizing rules in a post-

processing step. However, such a post-processing step doesnot solve the problem

of how to enforce independence assumptions within the modelwhen they cannot be

modeled by a simple re-factoring of the grammar, something that will prove necessary

for implementing the models in Chapters 6 and 8.
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This section introduces a novel generalization of conventional probabilistic gram-

mars that addresses some of these problems without the need for either re-factoring

the grammar or for a post-processing step by re-interpreting each rule as a collection

of multinomial random variables and computing the rule weight as a product of their

individual probabilities. The dependencies between theserule-internal variables can

be manually specified, allowing one to factorize the parameters of the model without

necessarily re-factoring the grammar rules themselves. Multiplying these rule-internal

probabilities together results in a conventional weightedgrammar, but the factoriza-

tion additionally defines a rule-internal Bayesian network over the various features that

make the rule. In effect, while in a conventional PCFG, the rule right-hand-side is gen-

erated all at once as a single monolithic event, in a multiweighted grammar the right-

hand-side is generated from several smaller events governed by a Bayes net. These

local Bayesian networks can define rule-internal independence assumptions, expand-

ing the space of models one can express without necessarily changing the grammar

rules themselves.

For example, the following two rules can be thought of as describing two different

probabilistic outcomes, each specifying how nonterminal Ais expanded in a deriva-

tion.

A→ B C

A→ D C

In a conventional PCFG, there are two random variables and a single probabilistic

dependency between them, one corresponding to the conditioning information (i.e.,

the left-hand side symbol), and one corresponding to the expansion of the left-hand

side symbol as follows:

A
︸︷︷︸

lhs

→ B C
︸︷︷︸

rhs

.

The weights on the two example rules together help define the probability distribution

P(rhs|lhs= A), where, in one case, the string B C is sampled forrhs, and in the other

D C is sampled.

However, under the multi-weighted generalization, the event drawn forrhs can be

further broken down into smaller sub-events, leading to a further factorization of the

probability of A’s expansion. The outcome forrhs can, say, be broken down into two

separate variablesrhs0 andrhs1 corresponding to the first and second symbols of the
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string on the right-hand side as illustrated below:

A
︸︷︷︸

lhs

→ B
︸︷︷︸

rhs0

C
︸︷︷︸

rhs1

.

If we like, we can choose to modelrhs0 andrhs1 independently of one another given

lhs, leading to the following factorization:

P(rhs= B C|lhs= A) = P(rhs0 = B|lhs= A) ·P(rhs1 = C|lhs= A).

There are many additional ways of factorizingP(rhs|lhs), either using variablesrhs0

andrhs1 or some other way of breaking down the rules.

These multi-weighted grammars are related to the locally-normalized local feature

models described by (Berg-Kirkpatrick et al., 2010), which,when applied to a PCFG-

based model, would weight rules according to a logistic regression parameterized by

features of the rule. That is, like our multi-weighted grammars, each rule is identified

with its own local probabilistic model, but in our case the model is a Bayesian network

of multinomial variables instead of a logistical regression model. One advantage of

a Bayesian network over logistical regression is that a Bayesian network permits one

to manually specify conditional independence assumptionsamong particular features.

As a consequence, it requires extra work to compute marginalprobabilities of specific

features in logistic regression, while, in a Bayesian network, these may be built into the

parameterization of the model, depending on the specific network. Another advantage

is that since the variables of the Bayesian networks are restricted to be multinomial, the

result is a product of multinomials just like for ordinary PCFGs, allowing one to em-

ploy essentially the same class of inference and estimationalgorithms (e.g., maximum

likelihood).

The cascades of probabilistic grammars and automata often employed in machine

translation to factorize larger problems into smaller sub-problems are also of a simi-

lar spirit, and can be seen as a special case of multi-weighted grammar. For instance,

Knight and Graehl (1998) describe an approach to modeling English loan words in

Japanese as a three stage process involving (1) mapping a word in English to a phone-

mic representation, (2) applying Japanese phonological rules to adapt this English

phonemic representation to a Japanese phonemic form, and (3) mapping the Japanese

phonemes to the Japanese script. While each stage is modeled by a relatively simple

string automaton with its own weights, they can be composed into a single automa-

ton that models the full joint probability of the entire cascade all at once, where the



56 Chapter 3. Grammar Background

weights of the composed automaton are computed by multiplying those of the indi-

vidual sub-automata. Chiang et al. (2010) describe an algorithm for estimating the

weights of each individual automaton using only the source and target surface forms

by essentially training the composed machine while tracking the individual factors to

each composite rule weight contributed by the sub-machines. In fact, the composed

automaton is effectively a multi-weighted grammar where the Bayesian network asso-

ciated with each rule describes how the weights of the individual sub-automata com-

bine, and our inference algorithm described in Chapter 5 is essentially a generalization

of the Chiang et al. (2010) training algorithm.

However, multi-weighted grammars are more general than composed probabilistic

automata, since a multi-weighted grammar need not be the product of composing or

intersecting separate grammars. Indeed, there is no general composition algorithm

for HRG, since hyperedge replacement languages are not closed under intersection.

However, one can still define a factorization of rule weightsthat produce the same

effect as one might wish to model with such a cascade of simpler grammars.

Formally, each rule is broken down into a sequence offactorsby a rule factoriza-

tion functionϕ : R → (X ×X )∗, whereX is the set of possible rule features. That is

ϕ(r) = ϕ1(r) ·ϕ2(r) · ... ·ϕn(r), essentially returns a Bayes net for ruler where each

ϕi(r) is a pair of features of ruler of the form〈c,e〉 defining the directed edges of the

network. Each of these feature pairs is assigned a weight so that there is also effec-

tively a weight functionω : R → R
∗, which maps each ruler to a weight factorized

into a sequence of real numbers,ω1(r) ·ω2(r) · ... ·ωn(r), whereω1(r) corresponds

to ϕ1(r), ω2(r) to ϕ2(r), and so on. Thus,ϕi(r) = 〈e,c〉 corresponds to probabil-

ity P(e|c) = ωi(r), and, when multiplied out,ω(r) defines the full weight of the rule

∏n
i=1ωi(r).

In the preceding example with rule A→ B C, rhs, rhs0, andrhs1 are all essentially

feature functions, where, in the ordinary PCFG case,

ϕ(r) = 〈lhs(r), rhs(r)〉

ω(r) = P(rhs(r)|lhs(r))

and in the second case

ϕ(r) = ϕ1(r)ϕ2(r) = 〈lhs(r), rhs0(r)〉〈lhs(r), rhs1(r)〉

ω(r) = ω1(r)ω2(r) = P(rhs0(r)|lhs(r))P(rhs1(r)|lhs(r)).

Figure 3.4 illustrates a few examples of different possiblefeatures; they could iden-
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tify substrings of rule right-hand sides, a count of the nonterminals, or some combina-

tion of these and other features. As in the PCFG case where weights for rules fall in the

range 0 to 1, eachωi(r) must also fall between 0 and 1. Likewise, where in the PCFG

case weights for rules with the same left-hand side sum to one, in this more general

setting we have the constraint that all weights corresponding to feature pairs with the

same conditioning informationc must sum to one. That is,∑r,i:ϕi(r)=〈c=k,e〉ωi(r) = 1

for each fixed feature valuek.

One can view a parse under a multi-weighted grammar as a single Bayesian net-

work where each rule supplies some module which are bound together at the nonter-

minals of rules. Each of these modules can be defined fairly flexibly, but there are

some constraints. To maintain consistency with conventional probabilistic grammars,

ω can only assign weights to features of the right-hand side, which are typically con-

ditioned on, but do not include, the nonterminal on the left-hand side (i.e., there can

be no cycles in the Bayes net). This way, derivation probabilities can be computed in

the conventional way by simply multiplying rule weights together without fear of mul-

tiplying the probability of each nonterminal more than once. Similarly, nonterminals

on the right-hand side should be accounted for by the probabilities of the Bayesian

network. Otherwise, the derivation weight will fail to define a full joint probability of

the variables of the network.

Let us consider some examples. Figure 3.4 contains two rules, r2.3 andr3.3, where

several possible features and their integer identifiers have been indicated. In the HRG

ruler2.3, feature functionf1 corresponds to the left-hand side and (VP in this case) and

f2 to the external vertices and terminal root edge (scold) of the graph on the right-hand

side. To construct a conventional probabilistic grammar, we would defineϕ(r2.3) to be

just a single pair〈 f1(r2.3), f5(r2.3)〉, where f1 identifies the left-hand side andf5 the

entire rule, as shown in the figure. Assuming this same〈left-hand side, rule〉 scheme

were applied consistently over the grammar, it would resultin a rule weight of

ω(r2.3) = ω1(r2.3) = P(r2.3|VP). (3.3)

With the grammar in Figure 3.2, one would find thatf1(r2.2) = f1(r2.3), indicating

thatω1(r2.2) andω1(r2.3) must sum to one, forming a multinomial vector.

However, it is possible to define several alternative probabilistic models with the

same underlying grammar by just changing the rule factorization with a redefinition of

ω andϕ. In particular, one might want to further factorize the probability of r2.3 so that

the ADV and NP are independent. One could, for instance, construct a probabilistic
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f1
︷︸︸︷

VP →

f6= f2∧child count
︷ ︸︸ ︷

f2
︷ ︸︸ ︷

λe,d.scold(e)∧

f3
︷ ︸︸ ︷

ADV(e)∧

f4
︷ ︸︸ ︷

NP(e,d)
︸ ︷︷ ︸

f5

(r2.3)

f1
︷︸︸︷

VP → 〈

f2
︷ ︸︸ ︷

λe,d.scold(e)
︸ ︷︷ ︸

f3, f4, f5

∧ADV 0(e)
︸ ︷︷ ︸

f4

∧NP1(e,d)
︸ ︷︷ ︸

f5
︸ ︷︷ ︸

f11= f3∧child count

∥
∥

f10
︷ ︸︸ ︷

ADV 0
︸ ︷︷ ︸

f6

scolded
︸ ︷︷ ︸

f7

NP1
︸︷︷︸

f8

〉

︸ ︷︷ ︸

f9

(r3.3)

Figure 3.4: HRG and synchronous HRG-CFG rules with example features for imple-

menting several alternative multi-weighted models with the same grammar. In rule r2.3

feature function f1 identifies the nonterminal of the left-hand-side, and f2 identifies the

entire right-hand-size graph, while f6 includes f2 as well as the number of nontermi-

nals. Similarly, f3 and f4 correspond to those nonterminal edges, and f5 identifies the

entire rule itself. The features of Rule r3.3 are defined in a similar manner, where, for

example, feature functions f4 and f5 indicate particular subgraphs (excluding NP and

ADV, respectively).

model that first selects the predicate and the number of children the predicate has, and

then proceeds to choose the particular nonterminals for those children one at a time.

This scheme could be implemented as follows:

P(r2.3|VP) = ω(r2.3) = ω1(r2.3) ·ω2(r2.3) ·ω3(r2.3) (3.4)

where we have chosenϕ(r2.3) = ϕ1(r2.3) ·ϕ2(r2.3) ·ϕ3(r2.3) so that

ϕ1(r2.3) = 〈 f1(r2.3), f6(r2.3)〉 =⇒

ω1(r2.3) = P( f6(r2.3)| f1(r2.3)) = P(λe,d.scold(e),2 children|VP)

ϕ2(r2.3) = 〈 f2(r2.3), f3(r2.3)〉 =⇒

ω2(r2.3) = P( f3(r2.3)| f2(r2.3)) = P(ADV(e)|λe,d.scold(e))

ϕ3(r2.3) = 〈 f2(r2.3), f4(r2.3)〉 =⇒

ω3(r2.3) = P( f4(r2.3)| f2(r2.3)) = P(NP(e,d)|λe,d.scold(e))
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In this case,ω1(r2.3) is the probability of generating ascoldpredicate with two chil-

dren (f6(r2.3) = λe,d.scold(e)∧ ehas 2 children) given a VP on the left-hand side

( f1(r2.3) = VP). The probability of ADV appearing as a child given parentpredi-

catescold is indicated byϕ2(r2.3) = 〈 f2(r2.3), f3(r2.3)〉, and the NP is generated in

exactly the same manner according toϕ3(r2.3). In this way, a multi-weighted gram-

mar can implement a greater range of models than could an ordinary probabilistic HRG

such as the one in Example 3.3 where the predicate and the child nonterminals are all

generated in a single step without any independence assumptions.

The functionsω andϕ behave exactly the same if the underlying grammar is syn-

chronous. To define a conventional probabilistic synchronous grammar that jointly

generates both the meaning and sentence using rules such asr3.3 in Figure 3.4, we

would defineϕ to be a scalar as follows:

ϕ(r3.3) = 〈 f1(r3.3), f9(r3.3)〉 =⇒ ω1(r3.3) = P(r3.3|VP).

That is, just as with the conventional probabilistic HRG in Example 3.3, we assign one

weight per rule and condition on the left-hand side.

Weighted synchronous grammars are also often used to implement conditional dis-

tributions, like, for instance, the probability of generating a sentence given a particular

meaning representation. This scheme can again be implemented with a single weight

per rule, but where the rule probabilities are conditioned on the meaning portion of the

rule as well as the nonterminal on the left-hand side, givingus aϕ(r3.3) = ϕ1(r3.3) of

〈 f2(r3.3), f9(r3.3)〉, implying

ω1(r3.3) = P(r3.3|λe,d.scold(e)∧ADV 0(e)∧NP1 (e,d),VP). (3.5)

We can also model the effect of composing rulesr2.3 andr3.3 so that the rule

weights are the product of those of Examples 3.3 and 3.5, modeling the generation of

the meaning representation followed by its translation into English.

P(r3.3|VP) = ω1(r3.3) ·ω2(r3.3) (3.6)

Whereϕ is defined so thatϕ(r3.3)= 〈 f1(r3.3), f2(r3.3)〉 andϕ(r3.3)= 〈 f2(r3.3), f10(r3.3)〉

to indicate conditioning information of the left-hand sideand〈left-hand side, meaning〉,

respectively, yielding probabilities

ω1(r3.3) = P(λe,d.scold(e)∧ADV(e)∧NP(e,d)|VP)

ω2(r3.3) = P(ADV 0 scolded NP1 |λe,d.scold(e)∧ADV 0(e)∧NP1(e,d),VP).
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Finally, it is also possible to factorize synchronous rule probabilities just as we did

for the HRG rule in example 3.4.

P(r3.3|VP) =

P(meaning|lhs)
︷ ︸︸ ︷

ω1(r3.3) ·ω2(r3.3) ·ω3(r3.3) ·

P(words|meaning)
︷ ︸︸ ︷

ω4(r3.3) ·ω5(r3.3) ·ω6(r3.3)

For P(meaning|lhs), i.e., the probability of the meaning given the left hand side, we

assign the same factorization as for Example 3.4.

ϕ1(r3.3) = 〈 f1(r3.3), f11(r3.3)〉 =⇒ ω1(r3.3) = P(λe,d.scold(e),2 children|VP)

ϕ2(r3.3) = 〈 f2(r3.3), f4(r3.3)〉 =⇒ ω2(r3.3) = P(ADV(e)|λe,d.scold(e))

ϕ3(r3.3) = 〈 f3(r3.3), f5(r3.3)〉 =⇒ ω3(r3.3) = P(NP(e)|λe,d.scold(e))

For P(words|meaning), i.e., the probability of the sentence given the meaning, we

assign a similar factorization, where we first generate the verb and the number of left

and right arguments, and then choose the locations for the ADV and NP arguments

conditioned on the meaning.

ϕ4(r3.3) = 〈 f3(r3.3), f7(r3.3)〉 =⇒

ω4(r3.3) = P(scolded,1 left,1 right|λe,d.scold(e))

ϕ5(r3.3) = 〈 f4(r3.3), f6(r3.3)〉 =⇒

ω5(r3.3) = P(ADV , left|λe,d.scold(e)∧ADV(e))

ϕ6(r3.3) = 〈 f5(r3.3), f8(r3.3)〉 =⇒

ω6(r3.3) = P(NP, right|λe,d.scold(e)∧NP(e,d))

Finally, in principle, we should also assign a probability to generating the bijection

function⌢. This step was folded into the final step of Example 3.6 to simultaneously

generate the bijection and the sentence, but it is also possible to include it as a separate

step and weight it with yet another factor. However, if we constrain the grammar to

only match nonterminals in the meaning with nonterminals ofthe same type in the

syntax, the choice is deterministic (in the case of this rule), so one can omit this factor

(which is a constant of 1) without impacting the probabilities.

3.4.1 Tied weights

It is also possible to definef so that the same factor is shared across multiple rules,

which can be useful for tying parameters. For instance, consider the factorization
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scheme of Example 3.6 where each ruler has two factors,ω1(r) which models the

probability of the meaning representation, andω2(r) which models the conditional

probability of the utterance given the meaning. One might want rulesr3.3 andr3.9 of

the example grammar in Table 3.1 to have the same probabilityof generating meaning

representations with and withoutstern. This parameter-tying could be accomplished

by simply definingϕ such that rulesr3.3 andr3.9 share a feature pairϕ1(r3.3) =

ϕ1(r3.9), resulting in a common factorω1(r3.3) = ω1(r3.9). This kind of parameter

tying can be useful for smoothing purposes (Headden et al., 2009) or for integrating

out certain details like in this case, where the model would effectively smooth over

the decision of whether to introduce ADV-type modifiers suchassternin the meaning

representation forscoldevents.

3.5 Conclusion

The formalisms laid out in this chapter establish a general framework for modeling a

wide range of problems. Most of the ideas are already well established and thoroughly

studied with their own set of algorithms, and we will make extensive use of this fact in

the semantic parsing and word learning models described in Chapters 6 and 8. Even

the more novel elements such as the synchronous grammars with mono-lingual rules in

Section 3.3.1 or the multi-weighted grammars of Section 3.4are closely tied to previ-

ous work with probabilistic context-free grammar with its extensive set of algorithms.

For instance, the same general parsing algorithms used for CFG can be used for syn-

chronous grammars with mono-lingual rules, and multi-weighted grammars are built

on top of context-free style grammars and make use of most of the same algorithms

for inference, such as probabilistic CKY.

This is not to say that innovation is completely unnecessary, but the novel com-

ponents have a higher potential applicability due to their relationship to a common,

general framework. Chapter 4 describes a novel parsing algorithm optimized for work-

ing with a particular subclass of HRG for describing languages of unordered tree, and

Chapter 5 lays out the derivation of an inference algorithm for estimating the rule

weights of multi-weighted grammars. Yet, even in these cases, the choice to work with

formalisms so closely related to CFG and the family of similarformalisms such as

regular tree grammar will prove useful. In fact, the unordered tree parsing algorithm

is closely based on a standard algorithm for RTG parsing, and, as we will see, the

training algorithm for multi-weighted grammars follows a form that may already be
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familiar from a similar algorithm for PCFGs and makes use of other common tools

such as the inside-outside algorithm for computing the expected counts of rules from a

parse forest. Furthermore, by focusing on general formalisms rather than ad hoc solu-

tions, it becomes much easier for others to make use of these algorithmic innovations,

potentially applying them to very different problems.



Chapter 4

Parsing Unordered Trees

This chapter describes the parsing algorithm for unorderedtrees which we use for the

word learning and semantic parsing models in Chapters 6 and 8.We make use of

hyperedge replacement grammar for our parsing model, but restrict the formalism to

a specialized class that only generates languages of unordered trees. The choice of

context-free graph grammars as the basic underlying formalism makes it easy to inte-

grate the grammars with context-free string grammars for semantic parsing while still

modeling the commutative property of the predicate calculus of the meaning expres-

sions. However, graph parsing is exponential in the most general case, and even the

algorithm of Chiang et al. (2013) which is polynomial in the graph for our grammars

is still quite expensive. Instead, we define a parsing algorithm which is general enough

for a broad class of tree languages but sufficiently specialized to allow relatively effi-

cient parsing. In fact, the grammars we work with are roughlyanalogous to regular tree

languages where the trees are unordered, and, also like regular tree grammar, parsing

is linear in the size of the tree. At a very high level, the parser essentially explores

every possible permutation and parses as per a regular tree grammar while fixing each

possible ordering. Of course, in spite of this theoretical linear time complexity bound,

parsing can still be surprisingly expensive due to the fact that there is a large number of

possible orderings, a number that is exponential in the grammar. Consequently, while

the basic parsing algorithm itself is very simple and can be presented fairly quickly,

the bulk of the chapter is dedicated to describing optimizations for reducing the com-

binatorial blowup in the grammar constant.

63
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Figure 4.1: (a)-(b)Two equivalent unordered trees. (c)-(d) Two distinct derivation trees

(which are ordered).

4.1 Unordered vs. ordered trees

Derivation trees such as (c) and (d) in Figure 4.1 are ordered, where the order dictates

which nonterminal is expanded by which rule. We can see from the derivation tree in

(c) that ruler1, for instance, has two nonterminals. The first nonterminalis expanded

by applying ruler2 and the second byr4. This contrasts with (d), where the opposite is

true, i.e., the first nonterminal is expanded byr4 and the second byr2. Because the two

different orderings ofr2 andr4 indicate different expansions for each of the nontermi-

nals and therefore represent distinct sets of derivations,the ordering is important. This

same convention of using the order of siblings in the derivation tree to indicate which

nonterminals are expanded by which rules is general to context-free formalisms of all

kinds, producing ranked, ordered derivation trees. In fact, one test for context-freeness

of a particular formalism is whether its derivation trees form a regular tree language

(sets of trees which are necessarily ranked and ordered).

However, trees used to represent predicate calculus expressions such as (a) in Fig-

ure 4.1 ideally should not be sensitive to order, since the logical interpretation is invari-

ant over alternative orderings such as (b). That is, both trees are logically equivalent to

the expression

look(e)∧ theme(e,y)∧ frog(y)∧ loc(y,z)∧ jar(z)∧experiencer−1(y,s)∧happy(s)

∧agent(e,x)∧dog(x).
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In fact, the reordering of the tree is similar to reordering conjuncts in the logical expres-

sion, where the commutative property of the conjunction operation guarantees that the

interpretation does not change. Similarly, reordering of siblings in an unordered tree

does not change its interpretation. Since ordering does notmatter for the conjuncts in

predicate calculus due to the commutative property, neither should the ordering of sib-

lings in the corresponding tree representation. Thus, while ordered trees are necessary

for representing parses, we use unordered trees for meaningrepresentation expres-

sions. Parts (a) and (b) of the figure can thus be thought of as merely different ways of

drawing the same tree which corresponds to a single meaning representation expressed

in predicate calculus notation.

To capture this unordered-ness property effectively one must use an appropriate

formalism, where we choose a subset of HRG which generates languages of unordered

trees. To understand the dichotomy between ordered vs. unordered formalisms, note

that an ordered formalism would be forced to treat the two trees (a) and (b) in Figure 4.1

as distinct, potentially leading to different parses and different probabilities. Thus, un-

der some particular grammar, parse (c) might yield tree (a) and (d) might yield (b).

For instance, one may wish to use a grammar to define a languageof meaning repre-

sentations as defined by set of predicate calculus expressions. An ordered formalism

would not be ideal for this given that it might both accept andreject a particular ex-

pression depending on the particular tree being parsed. Similarly, one might wish to

compute the probability of a predicate calculus expressionusing a weighted grammar,

and a weighted ordered grammar might produce different probabilities depending on

the tree. The problems could grow even more complicated whenone considers syn-

chronous grammars. An unordered formalism such as HRG, on theother hand, would

assign the exact same set of parses to both (a) and (b), sidestepping these issues.

The fact that derivation trees are ordered while the yield isunordered results in

there being many possible derivation trees with the same yield that differ only in order

and otherwise are completely symmetric, like (c) and (d) in Figure 4.1. Thus, a parse

forest tends to consist of many nearly identical trees, a fact that plays a central role in

the parsing algorithm described in Section 4.3. First, however, we formally define the

particular class of HRG we use for our tree languages.
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4.2 Unordered tree-generating HRG

Next, we define the restricted class of HRG for generating unordered trees, formally

expressed as a tuple〈Σ,N ,E ,S,R 〉 where

• Σ is an alphabet of terminals,

• N is an alphabet of unary edge-generating nonterminals,

• E is an alphabet of binary edge-generating nonterminals,

• S∈N is the start symbol, and

• R is a set of rules.

Rules come in two specific forms: those that generate vertex labels in the form of unary

edges and those that generate binary edges. For the following discussion assume that

N ∈N , E,E1, ...,EN ∈ E , and a,e∈ Σ. Then the two types of rule are:

• Node-generating rules of the form

N→ λx.a(x)∧E1(x)∧ ...∧En(x) (4.1)

generate a node label (in the form of a unary edge) and introduce the child non-

terminals E1, ...,EN that generate the edges leading to its subtrees.

• Edge-generating rules of the form

E→ λx0.e(x0,x1)∧N(x1) (4.2)

generate a binary edge and introduce the nonterminal that generates the subtree

rooted at the child vertex.

There are a few key properties of these rules. For one, there is always exactly one

external vertex (i.e., one argument of the lambda expression) in each rule right hand

side. This feature enforces the tree property so that there are no reentrancies in the

generated graph. Also, each right hand side contains exactly one terminal and zero or

more nonterminals drawn either fromE if the rule is edge-generating orN if it is node-

generating. Noting that S is a node-generating nonterminal, derivations begin with

a node-generating rule and alternate between edge-generating and node-generating

rules. These HRG-based ranked, unordered tree grammars are analogous to regular

tree grammars without hidden states, except that the child nonterminals E1, ...,En are

unordered and the binary edges of the tree are labeled.



4.3. Frontier-to-root parsing 67

Algorithm 2 The basic parsing algorithm for unordered trees.
function PARSE(vertex-rooted treet(x))

Ch= parse chart fort(x)

for d = depth(t(x)), ...,0 do

for all verticesy in t(x) at depthd do

Ch[t(y)]← MATCH VERTEX(Ch, t(y))

if d > 0 then

Ch[t(parent(y),y)]← MATCH EDGE(Ch, t(parent(y),y))
return Ch

Algorithm 3 The vertex-matching algorithm. Returns all rule matches forthe root

vertex of treet(x) assuming all matches for the child edges ofx have already been

found.
function MATCH VERTEX(parse chartCh, treet(u) = a(u)∧ t(u,v1)∧ ...∧ t(u,vn))

Items← /0
for all rulesr = N→ λx.a(x)∧E1(x)∧ ...∧En(x) ∈ R do

for all 〈Ei1, ...,Ein〉 ∈ permute(E1, ...,En) do

if 〈Ei1→ σ1,π1〉 ∈ Ch[t(u,v1)]∧ ...∧〈Ein→ σn,πn〉 ∈ Ch[t(u,vn)] then

Items← Items∪{〈r,〈i1, ..., in〉}〉}
return Items

4.3 Frontier-to-root parsing

The parsing algorithm is similar to a regular tree grammar parser. Proceeding from the

deepest nodes at the frontier of the tree and gradually working up the tree to the root, it

first matches each node of the tree with a rule of type (4.1) andthen matches its parent

edge with a rule of type (4.2). Algorithm 2 presents the pseudocode. The main point

where the algorithm deviates from a regular tree parser is inhow it handles the lack of

ordering among child edges on the right hand side of node-generating rules.

Before going into the details, let us first define some notationto denote subtrees

of the yield, where there are two types of subtrees, vertex-rooted and edge-rooted sub-

trees. The subtree in Figure 4.1(a) rooted at thefrog vertex corresponding to the logical

expressionfrog(x)∧experiencer−1(x,s)∧happy(s)∧ loc(x,y)∧ jar(y) is an example of

a vertex-rooted tree, and if we prepend the the binary edge for theme(e,x) we end up

with an edge-rooted tree. We will uset(v) to denote the subtree rooted at vertexv, and

t(u,v) to denotet(v) plus the edge linkingv to its parent vertexu. We can define them
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Algorithm 4 The edge-matching algorithm. Returns all rule matches for the root edge

of treet(u,v) assuming all matches for vertexv have already been found.
function MATCH EDGE(parse chartCh, edge-rooted treet(u,v) = e(u,v)∧ t(v))

Items← /0
for all rulesr = E→ λx0.e(x0,x1)∧N(x1) ∈ R do

if there is a match〈N→ σ,π〉 ∈ Ch[t(v)] then

Items← Items∪{〈r,〈1〉〉}
return Items

recursively:

t(u) = a(u)∧ t(u,v1)∧ ...∧ t(u,vn)

wherev1, ...,vn areu’s children, and

t(u,v) = e(u,v)∧ t(v).

As Algorithm 2 proceeds from the leaves toward the root, it visits each node- and

edge-rooted tree finding parse items for node-generating and edge-generating rules.

Parse items consist of a rule and a mapping from the nonterminals on its right-hand

side to the child subtrees of the corresponding edge or node,which we denote by

〈A→ β,π〉

whereπ is a bijection between nonterminals in rule A→ β and the subtrees of the tree

being parsed. In terms of the derivation tree, successfullyfinding such a match means

that there is at least one derivation that expands each nonterminal in β to the subtree it

maps to inpi.

These parse items are recorded in a parse chart which simply lists the set of parse

items found for each subtree. The parse chart is a tree-shaped data structure in its

own right where each node is identified with some node- or edge-rooted subtree of

the ground term being parsed and consists of the set of parse items found for the

corresponding root node or edge. As the parser visits each node and edge, the al-

gorithm alternates between Algorithm 3 which enumerates parse items corresponding

to the node-generating rules and Algorithm 4 which enumerates items for the edge-

generating rules.

Note that each parse is just a tree of the same general shape asthe tree being

parsed (modulo sibling ordering considerations). Thus, all parses follow the same
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shape and are in effect identical except for different labelings to indicate the different

rules and permutations which are used. Consequently, the packed forest itself can also

be represented as a single tree where each node is a compositestructure containing all

the different possible rule-permutation pairs for the subtree of the yield in the full set

of parses.

Algorithm 4 describes the edge-matching procedure which essentially just looks up

the set of rules that contain an instance of the binary edge tobe matched which have

nonterminals that are consistent with the previously parsed portion of the yield. Be-

cause edge-generating rules are comparatively simple, containing exactly one terminal

edge and one nonterminal in parent-child relation, there are no ordering issues, and the

parser behaves no differently from how one might proceed in parsing a fully ordered

tree.

Algorithm 3 returns parse items for the node-generating rules of type (4.1) and is

considerably more complex due to the need to account for the lack of ordering on the

yield tree. In ordinary RTG or CFG parsing, the built-in ordering of the yield constrains

which nonterminals can cover which subtrees or spans of the yield. As an example,

suppose we had a CFG rule such as

S→ NP VP.

Due to the ordering constraint built into CFG, if we had matched the NP to a span

of the yield string covering, for example, words 5 through 6,the VP could only be

matched to a span starting at 6. However, this is not the case for an unordered tree

grammar rule such as

EVENT→ λx.look(x)∧ROLE1(x)∧ROLE2(x),

where the ROLE1 nonterminal could be assigned to theagentand ROLE2 to thetheme

of the tree in Figure 4.1(a) or vice versa. In fact, because the yield is unordered, any

nonterminal on the right hand side of the rule can, dependingon the specific grammar,

generate any subtree of the yield. Thus, instead of simply matching each nonterminal

to a subtree according to a set order as one might do if the yield were ordered, we

must explore all the possible mappings between nonterminals and subtrees. Each such

mapping between nonterminals and subtrees corresponds to aparticular permutation

of the nonterminals on the rule right hand side (or, equivalently, subtrees in the yield).

Thus, much of the work of the parser consists of enumerating permutations, and parse

items are constructed by temporarily enforcing each of these possible orderings of the

nonterminals and parsing as though the tree were fully ordered.
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Treating the grammar as constant, the complexity is exactlythe same as for pars-

ing in the ordered tree setting with regular tree grammars. That is, assuming a tree

consisting of|m| vertices, the algorithm has bothO(|m|) time and memory complex-

ity. The complexity of both the edge- and node-matching algorithms are absorbed into

the grammar constant, since the number of rules and permutations that must be ex-

plored are entirely grammar dependent. Nevertheless, the grammar constant can be

quite large, especially if there are large grammar rules with many nonterminals on the

right hand side (resulting in many possible permutations that must be explored during

vertex-matching). In fact, our problem is closely related to that of Immediate Domi-

nance/Linear Precedence parsing (Shieber, 1984), a generalization of General Phrase

Structure Grammar parsing intended to handle properties ofso-called free-word-order

languages. Barton (1985) pointed out that the lack of ordering on rule right-hand sides

in these grammars leads to time complexity that, while polynomial in the string, is ex-

ponential in the size of the rule right-hand sides. We are faced with the same problem,

as is any more general HRG parser such as Chiang et al. (2013). However, there is a

relatively efficient method of encoding many of the necessary permutations which can

help bring the grammar constant down to something more practical, an optimization

described in the next sections.

4.3.1 A compact encoding for symmetric parses

It is possible for distinct, but symmetric, parses to generate isomorphic trees. In fact,

there can be an exponential number of such symmetric parses.However, it is possible

to detect such symmetries even before explicitly enumerating them by simply look-

ing at the rules of the grammar, suggesting an optimization that can greatly improve

parsing performance both in terms of memory and time complexity. Under this op-

timization, instead of exhaustively enumerating all the symmetric parses, the parser

need merely produce one from which the others can be constructed as necessary.

For instance, consider derivation trees in (c) and (d) of Figure 4.1. Assuming a
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grammar like the following, both derivation trees generatethe same unordered tree.

EVENT→ λe.look(e)∧ROLE(e)∧ROLE(e) (r1)

ROLE→ λe.agent(e,x)∧ENTITY(x) (r2)

ROLE→ λe.theme(e,x)∧ENTITY(x) (r3)

ENTITY→ λx.dog(x) (r4)

ENTITY→ λx.frog(x)∧ROLE(x)∧ROLE(x) (r5)

ROLE→ λx.experiencer−1(x,e)∧AFFECT(e) (r6)

AFFECT→ λe.happy(e) (r7)

ROLE→ λx.loc(x,y)∧PLACE(y) (r8)

PLACE→ λx.jar(x) (r9)

Although the derivation trees are distinct, they are perfectly symmetric, include the

exact same rules, and have the same probability no matter what weights are assigned

to the rules of the grammar. These permutations arise from the internal symmetries

within the branching rulesr1 andr5. Each of the two rules has two possible identical

permutations, which combine in a multiplicative fashion toform a total of four possible

parses, of which (c) and (d) are just two. For probabilistic purposes we need not list all

four; instead we can annotate the parse items correspondingto the applications ofr2

andr5 with the number of symmetries. These extra symmetry countscan be ignored if

one simply wants the probability of a single tree, but if one wants to, say, compute the

sum of all trees such as when calculating inside probabilities in the inside-outside algo-

rithm, one can simply multiply them into the product of the rule weights. For instance,

when computing the inside probability of noder5, we multiply the probabilities of the

sub trees rooted atr6 andr8 by that ofr5 as well as by 2, the number of symmetries

for the rule. Similarly, applying the same procedure forr1 multiplies in an additional

factor of 2, so the total probability of the parse and its 3 other symmetric brethren is

just the probability of one of these parses times 4= 2·2.

More generally, consider node-generating rules of type (4.1). There may be multi-

ple nonterminal edges sharing the same label so there are only k≤ n distinct symbol

types among theE1, ...,En. Let these symbols be{A1, ...,Ak} where there areni in-

stances of eachAi among theE1, ...,En. Then there are∏k
i=1ni! permutations of the

tree on the right hand side of the rule that are all identical to one another. This implies

that if a single match is found for ruler, there may be as many as∏k
i=1ni! symmetric
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matches1. This is because, given the lack of ordering on the yield, if edgeEi(x) can be

expanded to produce a particular subtree of the yield, so toocould any other nonter-

minal edgeE j(x) of the same label (i.e., whereE j = Ei), andE j(x) can be expanded

according to the exact same set of derivations as couldEi(x).

Because the symmetric parses all have the same probability and the same yield,

for the purposes of finding the most probable parse or computing the expectation of a

rule, they are all equivalent, making it sufficient to store just one instead of all∏k
i=1ni !

parses. To preserve probability mass in the parse forest, wecan annotate each parse

item with the number of symmetries in the match, which we willdenotedsymsr , and

multiply this in when computing the total probability of thesymmetric parse trees.

That is, to compute the total probability of a particular parse plus all of if its symmetric

brethren, one simply needs to compute a single product:

∏
r∈X

ωr ·symsr , (4.3)

whereX is a specific parse,r is a particular instance of a grammar rule inX, ωr is r ’s

weight, andsymsr is the total number of symmetries involvingr, a quantity we show

how to compute in equation 4.4.

The result is a reduction in memory usage by a factor that can be as large as∏k
i=1ni !

for each node in the tree being parsed since there are this many fewer parse items

that must be explicitly stored. Furthermore, the functionpermutein Algorithm 3 can

be implemented to only return the distinct permutations, thereby potentially reducing

time complexity as well (see Knuth (2005) for an algorithm for enumerating multiset

permutations). The number of permutations that we must consider is still considerable,
n!

∏i ni !
, but it may be a sizable reduction compared ton!.

4.3.2 Excluding duplicate parses

While we take care to count the symmetric parses even as we forgo explicitly enumer-

ating them, in doing so it is important that we do not double count duplicate parses.

The full set of∏i ni permutations will sometimes include identity permutations that

produce multiple copies of the same parse tree, each of whichshould only be counted

once. Otherwise algorithms like the inside-outside algorithm will over-estimate the

total probability mass of the forest. This case comes up whena vertex in the yield

tree has multiple identical subtrees among its immediate descendants. In matching a

1This ∏k
i=1ni ! term is an upper bound. We will return to this in Section 4.3.2
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distinct

identity

(a) v

A1 B A2

(b) v

A1 A2 B

(c) v

B A1 A2

(d) v

A2 B A1

(e) v

A2 A1 B

(f) v

B A2 A1

Figure 4.2: The six isomorphic permutations of an unordered tree with two identical

subtrees. The permutations can be factorized into those producing distinct orderings

(horizontal axis) and the identity permutations arising from the identical A1 and A2 sub-

trees (vertical axis).

rule with such a tree, a parser must account for all possible pairings between the non-

terminals of the rule with the subtrees of the yield, effectively involving enumerating

permutations of the tree. However, owing to the identical subtrees, some permutations

lead to identical trees, resulting in duplicate parses.

Consider the example tree and its six permutations in Figure 4.2. Each of these

permutations correspond to a particular rule matching during parsing, and thus a set of

parses that include that particular rule matching. For example, given a rule such as

N→ λx.a(x)∧C(x)∧D(x)∧E(x),

(a) corresponds to an assignment of nonterminal C to subtreeA1, D to B, and E toA2.

The assignment corresponding to (d) would produce the same result, since subtreesA1

andA2 are identical and it does not matter whether they are respectively paired off with

C and E or E and C. The same holds for permutations (b) and (e) as well as (c) and (f).

Thus, there are only three distinct sets of parses rather than six, and a parser should

only count the three, omitting the others as duplicates.

To prevent this kind of double counting of parses, the parsermust filter out the

permutations that lead to identical parses. Duplicate parses can only arise from the

identity permutations, since a unique permutation of nonterminal symbols necessarily
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produces a unique parse. Thus, we focus on those permutations that have been summa-

rized by the symmetry counts for each parse used in the compact symmetry encoding

scheme. Say, one were matching a rule with three identical nonterminals such as

N→ λx.a(x)∧E(x)∧E(x)∧E(x).

In this instance, the parser would produce a single parse item to cover all six cases since

there is only one unique permutation for the rule, and would compute the maximum

number of symmetries as 3!= 6. However this total set of permutations can be fac-

tored into two different sets of permutations, the distinctand identity permutations, as

illustrated in Figure 4.2, where each individual permutation can be reinterpreted as the

composition of one of the distinct permutations (a), (b), or(c), followed by one of two

identity permutations. In fact, the total set of permutations (6 in this example) is the

product of the number of distinct permutations (3) and the number of identity permuta-

tions (2). Consequently, knowing the total number of permutations and the number of

identity permutations allows one to compute the number of distinct symmetric parses.

In general, the number of identity permutations can be computed by counting the

instances of each nonterminal-tree pair in the matching: 2 of 〈E,A〉, and 1 of〈E,B〉 in

this case. Say, there areℓ such pair types andτi instances of each of theseℓ pairs. Then,

the number of identity permutations is∏ℓ
i=1τi !. In the compact symmetry encoding

scheme we compute the actual number of symmetries with whichto annotate each

parse item as

symsr =
∏k

i=1ni !

∏ℓ
i=1τi!

. (4.4)

In our example this becomes3!
2!1! = 3. Thissymsr can then be used as per equation 4.3

to compute the total probability mass of a set of symmetric parses.

4.3.3 Canonical orders and hashing

As in CFG parsing, it is often useful to index rules by their right hand sides. For

instance, one can optimize the vertex- and node-matching algorithms to simultaneously

match all rules with isomorphic right hand sides. This is slightly more complicated

in an unordered formalism since there are many isomorphic trees that may still be

distinct because they differ in the order in which the children are listed in the rule
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representation. For example, there could be two different rules:

A→ λe.lick(e)∧AGENT(e)∧THEME(e)

B→ λe.lick(e)∧THEME(e)∧AGENT(e)

One simple way of handling these orderings is to define a canonical ordering so

that all isomorphic trees will receive the same representation, so the two rules in our

example would have identical (not just isomorphic) right hand sides. A simple lexical

sort on nonterminal labels suffices.

4.3.4 Correctness and Complexity

Determining each possible way a particular node-generating grammar rule could fea-

ture in a particular parse, one must consider all possible ways the nonterminals on the

right-hand side might expand to produce the subtrees in the yield beneath the corre-

sponding vertex. Each of these ways of generating the subtrees corresponds to a partic-

ular permutation of the nonterminals of the rule, matching the nonterminals to subtrees,

implying that parses correspond to rule permutations. An exhaustive enumeration of

such permutations covers all possible parses, but, as pointed out in Section 4.3.1, brute

force enumeration is not only expensive but, in many cases, unnecessary. Employ-

ing the optimization described there, the parser avoids enumerating the unnecessary

derivation trees by partitioning the parses into subsets ofsymmetric parses. For present

purposes, we define the symmetry relation such that any pair of parses are symmetric

if and only if either one can be constructed from the other by applying identity permu-

tations to the grammar rules (i.e., permutations of the nonterminal symbols that result

in the same sequence). The symmetry relation in turn defines apartition of the total

set of possible parses, where any two parses appear within the same subset if and only

if they are symmetric. We call these subsets the symmetry classes of the parse forest.

Consequently, the parser need identify only one representative parse from each sym-

metry class since all other parses in the set can be reconstructed by permuting the parse

tree according to the symmetries in the constituent grammarrules.

To show that this compact parse encoding scheme correctly accounts for all parses

even without explicitly computing many of them, we must demonstrate that all nonterminal-

to-subtree mappings are correctly accounted for without over- or under-counting any

parses in the final parse forest. The full set of permutationsfor a rule withn non-

terminals is simplyn!, where, as discussed in Section 4.3.2, a certain proportion are
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redundant since they lead to duplicate parses. In fact, taking into account these du-

plicates, there are actually onlyn!
∏ℓ

i=1 τi !
permutations that lead to unique parses, where

theτ1, ...,τℓ are the counts of the unique pairings between rule right-hand side nonter-

minal edge labels and their final yields according to the parse tree. The total number

of permutations can be factored into the product of the multiset permutations (the per-

mutations which lead to distinct label sequences) and the identity permutations (which

result in identical label sequences):
(

n!

∏ℓ
i=1τi !

)

︸ ︷︷ ︸

total permutations

=

(

n!

∏k
j=1n j !

)

︸ ︷︷ ︸

multiset permutations

·

(

∏k
j=1n j !

∏ℓ
i=1τi!

)

︸ ︷︷ ︸

identity permutations

,

wheren1, ...,nk are the number of occurrences of each of the unique nonterminal sym-

bol labels among then nonterminal edges.

First, consider only the explicitly enumerated permutations (the multiset permuta-

tions returned bypermute) which we argue are in one-to-one relation with the sym-

metry classes. Multiset permutations only produce unique sequences of nonterminal

symbols. However, according to our definition for “symmetric”, symmetric parses

can only be produced by permuting sibling subtrees of the parse with identical non-

terminals at their roots. Consequently, given two distinct multiset permutations, it is

impossible for one to be constructed from the other by applying any such permutation,

implying that their corresponding parses must belong to separate symmetry classes.

By a nearly identical argument, any two parses drawn from separate symmetry classes

must also correspond to separate multiset permutations. Thus, there is a one to one

relation between the multiset permutations of rule right-hand sides and the symmetry

classes of the parses.

Then, to show that the algorithm neither over- nor under-counts parses, it suffices to

demonstrate that the compact encoding scheme itself correctly accounts for all parses

within a given symmetry class. That is, given a particular symmetry class and a repre-

sentative parse, we must show a one-to-one relation betweenthe identity permutations

of the constituent rules and the symmetric parses themselves. By definition, given two

parses from the same symmetry class one can be constructed from the other by permut-

ing sibling subtrees that expand nonterminals of the same symbol. These permutations

correspond to rule identity permutations. Thus, the only thing that remains to be shown

is that there are no more identity permutations than there are parses in the symmetry

class (i.e., they do not lead to duplicate parses), which we do by contradiction.

Assume that there are two distinct permutations that somehow lead to the same
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parse tree. Since the permutations are distinct, we have a situation where at least

two nonterminals map to separate subtrees of the yield. If the corresponding parses

are identical, however, this requires that these two nonterminals, in spite of expand-

ing to cover separate portions of the yield, still have identical expansions (otherwise

the parses would differ). However, this situation is also addressed by Section 4.3.2,

which eliminates this case from the symmetry counts when dealing with implicitly

represented parses. Furthermore, because the permutations correspond to the same

parse, they must both belong to the same symmetry class whereat least one is encoded

implicitly.

Therefore, all parses are accounted for and none are over-represented by either the

multiset permutations or the implicit symmetry counts.

4.3.4.1 Complexity

Given that Algorithm 2, which outlines the parsing procedure, just visits each vertex

and edge exactly once and neither the vertex- or edge-matching subroutines depends on

the yield, complexity is linear in the size of the tree. However, this result is somewhat

deceptive given that so much of the work is being done by Algorithm 3, whose com-

plexity is entirely dependent on the grammar. In fact, taking the grammar back into

consideration, the naive implementation, which simply assumespermute(E1, ...,En)

is the set of permutations without consideration for duplicate symbols among theEi,

results in a complexity ofO(|R | · n! · |m|), where|R | is the number of rules in the

grammar andn is the maximum number of nonterminals on the right-hand sideof any

rule.

Considering the rate of growth of the factorial function, then! term can easily

dominate in practice, motivating the optimization described in Section 4.3.1 which

exploits symmetries in the rule and limits consideration tothe unique permutations of

the multiset of nonterminal symbols among theEi, of which there are n!
∏k

j=1 n j !
wherek

is the number of distinct symbols among theEi andn j is the number of occurrences

of a particular symbol among thesek. The count of multiset permutations is at its

largest when there are equal numbers of each symbol leading to an upper bound of
n!
⌈ n

k⌉!k
. Thus, the compact encoding optimization produces a total complexity bound of

O(|R | · n!
⌈ n

k⌉!k
· |m|).

However, it is important to note that the optimization only holds when there are

symmetries in the rule; if it is completely asymmetric (i.e., the nonterminal symbols
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associated with edgesE1, ...,En are all distinct), we are stuck with the original bound of

O(|R | ·n! · |m|). On the other hand, the algorithm is relatively fast if the trees have a low

branching factork. In the best case, wherek= 1, there is only one distinct nonterminal

symbol among theE1, ...,En, and the vertex-matching algorithm need only consider a

single permutation for each rule since all the others produce symmetric parses, leading

to a bound ofO(|R | · |m|). Thus, grammar design features such as the number of rules,

rule size, and how symmetric each rule is, all have importantimpacts on performance,

where rule symmetries in particular can play a crucial role in parsing feasibility.

4.3.5 Relation to graph parsing

Many of the details of unordered tree parsing are also applicable to HRG parsing in

general. For instance, just as the unordered tree parser must explore the permutations

of nonterminals in the rule right hand side trees, so too musta general HRG parser

explore the isomorphisms of right hand side hypergraphs. Consequently, HRG parsers

are also plagued by symmetric parses and can benefit from the compact parse encoding

scheme described for unordered tree parses, the differencebeing that instead of ordi-

nary permutations, a HRG parser must count graph isomorphisms, a generalization

that reduces to tree permutations in the case of our unordered tree restriction of HRG.

In fact, during one of our experiments described in Chapter 8,we tested the general

HRG parser described by Chiang et al. (2013) both with and without this compact sym-

metric parse encoding scheme and found that it reduces memory consumption from a

prohibitive 27GB or so to approximately 5GB. Similarly, one can define a canonical

form for general HRG rule right-hand-side graphs, allowing for indexing just as in the

tree case. We are unaware of any prior paper that details these optimizations for either

unordered tree or general graph parsing, however.

Similarly, and potentially more seriously, we are unaware of any HRG parsing pa-

per that discusses how to correctly account for duplicate parses (Section 4.3.2), and

because the duplicate parses are a side effect of the lack of ordering on the yield,

something unfamiliar from string parsing, even experts in string parsing are unlikely

to immediately notice the problem. Most existing graph parsing papers are primarily

theoretical and aim mainly to demonstrate polynomial time membership checking al-

gorithms rather than to construct parses per se, leaving thedetails of how one builds a

complete parse forest to the reader. Even Chiang et al. (2013), whose interests were,

in fact, in building explicit parse forests, did not addressthis issue even though it has
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potentially profound impact on any probabilistic model that relies on the parser for

inference.

Beyond these HRG general implications, the parser also enjoysincreased efficiency

due to the restriction to tree-shaped graphs. For instance,the time and space complex-

ity of the graph parsing algorithm of Chiang et al. (2013) is, in general,O((3d · |m|)k+1)

andO((2d · |m|)k+1), whered is the maximum degree of any vertex in the graph and

k is the graph’streewidth, another quantity closely related to the density of the graph.

For our purposes,d is a constant of the grammar, and the treewidth of a tree-shaped

graph is just 1, so the algorithm has both a time and space complexity of O(|m|2) as

compared to our tree-specific parser’s linear bound.

Furthermore, this is only the asymptotic analysis. Much of the implementation

work of Chiang et al. (2013) algorithm deals with tracking theboundary of the sub-

graph dominated by each node of the parse tree, analgous to string spans in CFG

parsing. Just as in CFG parsing, where combining two parse items under a new parent

node in the parse is only valid if the two spans (subgraphs) are disjoint, and if they are

contiguous. However, it is more difficult to guarantee thesetwo conditions in general

graphs, a detail that accounts for much of the implementational challenge of Chiang

et al. (2013). However, in the case of our grammars, a subtreecan be identified by a

single vertex, its root, saving us a great deal of memory overhead, and we need not con-

duct any explicit intersection or contiguity testing because we join all subtrees under a

given node simultaneously.

4.4 Tree-string synchronous parsing

If utterance meanings are represented by trees, mapping between meaning and utter-

ances can be modeled as a synchronous tree-string grammar that ties together a mono-

lingual unordered tree grammar for parsing the meaning and amonolingual context

free string grammar for modeling the utterance. Parsing in this scenario can be for-

mulated as a two stage parsing problem where first we parse thetree using the tree

portion of the grammar rules and then subsequently prune theresultant parse forest to

only include parses that are also consistent with the stringportion of the input. Each

parse item of the tree parsing algorithm corresponds to a rule of the original grammar

where the tree portion yields some subtree of the input by means of one or more partial

derivations in setX . To convert such a monolingual parse item to a parse item of a

tree-string synchronous parse, the parser must find at leastone of these partial deriva-
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tions inX that also yields some substring consistent with the input string. This process

can be implemented in a straightforward manner by converting the parse items of the

tree parsing stage into a projection grammar as described inSection 3.3.2, thereby

encodingX as a grammar, and then parsing the string using this new grammar.

Crucial to the complexity analysis, the tree parser producesa packed parse forest

requiring memory linear in the tree. The vertex- and edge-matching algorithms output

the set of all possible matches for each vertex and edge, and treating the grammar

as constant, there areO(1) per vertex/edge (leading to the linear bound for the entire

tree). Converting the parse forest to a projection grammar, each match corresponds to a

single rule. Thus, assuming an input tree of size|m|, the first stage yields a projection

grammar withO(|m|) rules, in time which is also linear in|m|. The second stage

then takes this projection grammar and uses the string portion of the rules to parse the

utterance which is of length|w|. Any string parsing algorithm capable of handling

rules of arbitrary size such as Earley’s algorithm (Earley,1970) can be adapted for the

purpose, which in general has timeO(|R | · |w|3), where|R | is the number of rules in

the string grammar. Using the projection grammar of the firststage, then, the second

stage of the synchronous parsing algorithm has complexityO(|m| · |w|3). Overall time

complexity includes the cost of both stages, where tree parsing only takes timeO(|m|)

and disappears from the asymptotic analysis as it is dominated by the second, string-

parsing stage.

In generating the projection grammar, to accommodate asynchronous monolingual

rules of the type described in Section 3.3.1, the parser mustdo some additional work

just prior to the string parsing stage. This work basically entails adding any string-

only monolingual rules from the original grammar whose left-hand-side nonterminal

appears on the right-hand side of any rule in the projection grammar (repeated until

there are no more monolingual rules to add). The number of these rules is dependent

only on the original grammar and adding them to the projection grammar has no effect

on the asymptotic complexity analysis. Downstream, in the string-parsing stage, these

extra rules produce an additionalO(|w|3) time complexity, which, like the first stage

parsing cost, also disappears in the final asymptotic analysis.

Some complications arise, however, when applying the compact parse encoding

scheme described in Section 4.3.1 since monolingual symmetries may not hold when

one considers the rule as a whole, requiring some additionalhandling.
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4.4.1 Symmetries in synchronous grammars

Because synchronous nonterminals shared across multiple elements of a rule right

hand side can break symmetries, we need to be careful about how we handle parse

symmetries, particularly if the synchronous grammar describes a language of ordered

structures such as strings. That is, a tree-string synchronous grammar will need to be

treated with additional care, since nonterminals that appear in both the tree and string

portions of a rule right hand side can no longer be reordered freely.

In translating the tree in Figure 4.1, for instance, we mightapply a synchronous

grammar rule such as the following.

EVENT→ 〈 λe.look(e)∧ROLE1(e)∧ROLE2(e)
∥
∥ ROLE1 looked ROLE2 〉

When considering the unordered tree alone, there are potentially two symmetric matches.

So if we were only interested in monolingual parsing, we could omit one of the parses

and simply multiply the probabilities of the other by two when computing total prob-

ability mass. However, the string portion of the rule breaksthe symmetry due to the

ordering on ROLE1 and ROLE2 . Ignoring the string portion of the rule and treating it

as a monolingual unordered tree grammar rule, it does not matter which of ROLE1 or

ROLE2 maps to

agent(e,x)∧dog(x)

and which to

theme(e,y)∧ frog(y)∧experiencer−1(y,s)∧happy(s)∧ loc(y,z)∧ jar(z).

In translating these expressions into words, one might expect the first to translate as

something like “the dog” and the second as “at the happy frog in the jar” to arrive at a

the sentence “the dog looked at the happy frog in the jar” – assuming ROLE1 gener-

ates “the dog” and ROLE2 generates “the happy frog...” In contrast to the unordered

tree case, however, the result on the string side is very different if ROLE1 were to

generate “the happy frog...” and ROLE2 “the dog”. That is, while in the monolin-

gual unordered tree case, each nonterminal only generates asubtree of the unordered

tree which can be generated in any order without changing theyield, but in the syn-

chronous case each nonterminal generates a subtree-substring pair. While subtrees

can be reordered, substrings cannot, thereby constrainingthe possible mappings and

eliminating the symmetry. Thus, when computing the number of symmetries during
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synchronous parsing we need to consider all components of the right hand side of the

rule.

In synchronous grammars that link unordered with ordered formalisms (such as

HRG and CFG), one may lose much of the benefit of the compact symmetric parse

encoding scheme, but there is still a potential benefit if thegrammar contains mono-

lingual rules like those described in Section 3.3.1. Consider a rule where there are

monolingual “background” nonterminals BG.

EVENT→ 〈 λe.look(e)∧ROLE1(e)∧ROLE2(e)∧BG(e)∧BG(e)
∥
∥ ROLE1 looked ROLE2 〉

A rule like this might be useful if the fully specified event has four roles, perhaps a

location and temporal specifier in addition to the agent and theme, but where only

the agent and theme are expressed in the sentence. In this case, just as before, any

symmetries involving the two ROLE in the tree are broken by the ordering in the string,

but the background nonterminals BG only appear in the unordered tree and thus there

may be symmetric parses even during synchronous parsing.

We can encode the permutations of the monolingual nonterminals just as in the

fully monolingual setting even as we explicitly enumerate the permutations for the

shared, conventional synchronous nonterminals such as theROLE nonterminals in the

example rule. We still multiply rules by the symmetry count∏k
i=1ni !

∏ℓ
i=1 τi !

but where theni

andτi counts are limited to the monolingual nonterminals.

4.5 Conclusion

The unordered tree grammars defined at the beginning of this chapter combine features

of both hyperedge replacement grammar and regular tree grammars. The partial order-

ing of general directed graphs lends the formalism the ability to generate and parse

languages of unordered trees, a feature that is useful for working with tree representa-

tions of a subclass of predicate calculus expressions. At the same time, the similarities

to regular tree grammar permit a far more efficient parsing algorithm, one that is lin-

ear in the size of the tree, an efficiency which will prove critical for exploring a highly

ambiguous space of candidate meanings such as those licensed by the scene graphs de-

scribed in Chapter 7. Furthermore, because the grammars havecontext-free derivations

they are compatible with context-free string grammars, facilitating integration into a

synchronous grammar for jointly modeling meaning and sentence pairs for semantic
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parsing (or scene-meaning-sentence triples for word learning). Specifically, training

a semantic parser based on a synchronous unordered tree-string grammar would have

a time complexity ofO(|m| · |w|3) where|m| is the size of the meaning representa-

tion and|w| the size of the sentence, orO(|w|4) if one assumes|m| ≈ |w|. Parsing is

therefore more expensive than typical for conventional monolingual syntactic parsing

but comparable to other approaches to semantic parsing suchas Wong (2007) and less

than others such as theO(|w|7) time complexity of Kwiatkowski et al. (2010). Ad-

ditionally, the grammar class and algorithmic innovationsoutlined are more generally

applicable than those employed by many other semantic parsers. In fact, many of the

optimizations and implementation details apply equally well to HRG parsing in gen-

eral, increasing the generality of the innovations described in this chapter to a much

wider class of languages which may be valuable for many otherapplications.





Chapter 5

Inference in Multi-weighted Grammars

Any grammar formalism with context free derivation trees can be used to define a

probabilistic model by assigning weights. For instance, PCFGs do this by assigning

weights to each rule such that the sum of the weights of all rules with a given left hand

side is one. In particular, the model thus defined is a productof multinomials, where

the probability of a derivation tree is a product of the weights of its constituent rules.

That is, given a derivation treex, its yieldy and rule weightsθ, we have the following

probability:

p(y,x|θ) = ∏
r∈R

θ(r)nr (x)

or if there are multiple items to be parsed (say,N), as is more commonly the case,

p(y,x|θ) =
N

∏
i=1

∏
r∈R

θ(r)nr (xi), (5.1)

wherer is a rule of the grammar,θ(r) is its weight, andnr(x) is the number of timesr

appears inx.

Recall our definition for multi-weighted grammars in Section3.4, where each rule

weightθ(r) is factored into a sequence of weightsω(r)=ω1(r)ω2(r)...ωn(r), and each

scalar weightωi(r) is a single parameter of a multinomial identified by the conditioning

informationc in feature pairϕi(r) = 〈c,e〉. Then Equation 5.1 holds equally well as

for PCFGs, and inference is consequently very similar, but wemust pay some care to

the factorsωi(r). Before we proceed, it is useful to list a few definitions, which will

make the following derivation flow more smoothly. First, we defineF as the set of all

feature pairs associated with any rule,Fc, a subset ofF where all feature pairs share

the same conditioning informationc, andC , the set of features used as conditioning

85
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information.

F := {〈c,e〉= ϕi(r) : i ∈ Z, r ∈ R }

Fc := {〈c,e〉 ∈ F }

C := {c : 〈c,e〉 ∈ F }

Every factor in a multi-weighted grammar is defined as a conditional probability,

P(e|c), whereP(e|c) is a multinomial with a set of weights as parameters. This set

and the individual weights are denoted byθc andθc(e), respectively.

θc := {ωi(r) : ϕi(r) ∈ Fc},

θc(e) := ωi(r) ∈ θc whereϕi(r) = 〈c,e〉 for anyr ∈ R , i ∈ Z

That is,θc(e) = P(e|c) is the specific weight for pair〈c,e〉, andθc is the full set of

all parameters forP(·|c). It will also sometimes be useful to refer to the full set of all

multinomials:

θ := {θc : c∈ C}.

Using this notation, Equation 5.1 can be expressed in terms of feature pairs:

p(y,x|θ) =
N

∏
i=1

∏
r∈R

θ(r)nr(xi) (5.2)

=
N

∏
i=1

∏
r∈R

∏
〈c,e〉∈ϕ(r)

θc(e)
nr (xi)nc,e(ϕ(r))

=
N

∏
i=1

∏
〈c,e〉∈F

θc(e)
nc,e(xi)

wherenc,e(r) andnc,e(x) are, respectively, the number of instances of feature pair〈c,e〉

in rule r and in all the rules of derivation treex. Note that this feature pair-based form

reduces to Equation 5.1 if each rule only has a single featurepair consisting of the rule

itself paired with the left-hand side symbol as the conditioning information.

In the expectationmaximization (EM) algorithm, we are typically interested in find-

ing the point estimate forθ that maximizesp(y|θ), wherey is the vector ofN items

in the training data (strings in syntactic parsing or graph-tree pairs in a synchronous

grammar-based semantic parser, for example). In the Bayesian setting, however, we

place a prior over each of the multinomial parameter setsθc and estimate a posterior
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distribution over both the vector of derivationsx and the full set of multinomial param-

etersθ.

p(θ,x|y,α) =
p(y,x,θ|α)

p(y|α)
(5.3)

=
∏c∈C p(θc|αc)∏N

i=1 p(yi ,xi|θ)∫
∏c∈C p(θc|αc)∏N

i=1∑x∈Xi
p(yi ,x|θ)dθ

One particularly popular choice for the priorp(θc|αc) is the Dirichlet distribution:

D(θc|αc) =
Γ(∑〈c,e〉∈Fc

αc(e))

∏〈c,e〉∈Fc
Γ(αc(e))

∏
〈c,e〉∈Fc

θc(e)
αc(e)−1. (5.4)

Like θ, the Dirichlet parametersα is a set of parameter settings, one parameter set

αc perθc. While θc(e) is the particular weight inθc associated with featuree, eachαc

is a set of positive real valued pseudocounts for the number of occurrences of features,

including that ofedenoted byαc(e). If eachαc(e)≥ 1, the Dirichlet can be interpreted

as defining the probability over a particular assignment to the weightsθc(e) given that

each has been seenαc(e)−1 times. When the pseudocounts are 0< αc(e) < 1, the

Dirichlet defines a sparse prior that assigns high probability to weight vectors with

only a few weights having large values. This can be useful forapproximating power

law distributions, which are endemic to natural language, and can also be helpful for

unsupervised learning where there is often a large set of possible rules but only a few

are useful and we do not know a priori which ones they may be.

The Dirichlet is also notable as theconjugate priorto the multinomial. This means

that given a Dirichlet prior over multinomial parametersθc, the posterior probability

of θc given observationsx is also Dirichlet. That is,

p(x,θc|αc) = p(x|θc)D(θc|αc) =⇒ p(θc|x,αc) = D(θc|α̂c) (5.5)

whereα̂c(e) = nc,e(x)+αc(e). As we will see, this property greatly simplifies infer-

ence.

In spite of this nice property of the Dirichlet, however, a problem often arises in

Bayesian inference, and our situation is no different, wherethe full posterior (Equa-

tion 5.3) proves to be intractable. This has lead to a number of strategies that employ

approximations that are more readily computed, such as sampling or variational Bayes

(VB). We employ the latter strategy, making use of the popular“mean field” assump-

tion to limit the space of solutions to a tractable set. The basic approach of VB has

been outlined by Bishop (2006), who presents a high level introduction to variational
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Bayes. Our algorithm is very similar to that of Kurihara and Sato (2006), who present

a mean field-based VB algorithm for PCFGs. In fact, the approach closely resembles

that commonly taken with models based on products of multinomials such as HMMs,

a special case of PCFGs, which was worked out in detail by Beal (2003), or the popular

latent Dirichlet allocation model (Blei, 2004).

In this chapter we derive a batch learning algorithm for optimizing a lower bound

on the joint posterior probability of the parses and data andSection 5.4 describes the

algorithm itself that closely resembles the Expectation Maximization algorithm for un-

supervised grammar rule weight estimation. Since our ultimate purpose is to simulate

a human learner, some may object that a batch learner, which learns by repeatedly

iterating over the entire data set, is less appropriate thanan iterative learner which vis-

its each training item exactly once, updating parameters ateach step. However, our

primary interest is in the model itself rather than any effects the training algorithm

or data set size may have on learning performance. A batch algorithm usually does

a better job of exploiting a small data set to optimize the learning objective, making

it a better choice for testing the model since a less optimal learning procedure could

confound model properties with those of the learning procedure. Furthermore, it is

often straightforward to adapt a batch learning algorithm for an incremental learning

procedure. Kwiatkowski et al. (2012), for example, describe an online Variational

Bayesian Expectation Maximization algorithm, essentiallyan incremental variant of

the algorithm described by Kurihara and Sato (2006). In fact, our own algorithm can

be adapted in exactly the same way, so researchers interested in exploring learning

progressions, measuring changes training item by trainingitem can easily make the

necessary changes.

5.1 The mean field approximation q(θ,x) = q(θ)q(x)

Since the integral in the denominator of the expression for the posterior in Equa-

tion 5.3 is intractable, we look for an appropriate approximationq(θ,x)≈ p(θ,x|y,α).
In particular, we assume the feature weights and the derivations are independent,

i.e., q(θ,x) = qθ(θ)qx(x). The basic idea is then to define a lower boundL̂ [q] ≤

ln p(y,w|α) in terms ofq and then apply the calculus of variations to find aq that
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maximizesL̂ [q].

ln p(y|α) = ln
∫

p(θ|α)p(y,x|θ)dθdx

= ln
∫

q(θ,x)
p(θ|α)p(y,x|θ)

q(θ,x)
dθdx

= lnEq

[
p(θ|α)p(y,x|θ)

q(θ,x)

]

≥ Eq

[

ln
p(θ|α)p(y,x|θ)

q(θ,x)

]

.

The last step is arrived at through Jensen’s Inequality, andthis final quantity is our

lower boundL̂ [q] which we are to maximize.1 Equivalently, this maximization is often

visualized instead as a minimization of the quantity

ln p(y|α)−Eq

[

ln
p(θ|α)p(y,x|θ)

q(θ,x)

]

=−Eq

[

ln
p(θ|α)p(x|y,θ)

q(θ,x)

]

which is the Kullback-Leibler divergenceKL(q‖p). That is, maximizing the lower

bound is the same as minimizing the KL divergence between ourapproximation and

the true posterior.

Simplifying the lower bound by applying our independence assumption yields the

following formula:

L̂ [q] = Eq [ln p(y,x|θ)]+Eq [ln p(θ|α)]−Eq [lnq(θ,x)]

= Eq [ln p(y,x|θ)]+Eqθ [ln p(θ|α)]−Eqθ [lnq(θ)]−Eqx [lnq(x)] . (5.6)

We can optimize functional̂L [q] subject to the constraints thatq(θ) and q(x) both

integrate to one (they should be probability distributions) using the method of Lagrange

multipliers, with the Lagrange function:

ℓ[q] = Eq [ln p(y,x|θ)]−Eqx [lnq(x)]+λx

(∫
q(x)dx−1

)

+Eqθ [ln p(θ|α)]−Eqθ [lnq(θ)]+λθ

(∫
q(θ)dθ−1

)

.

1The problem formulation may be familiar form EM. However, inthe case of EM, the objective is
different because there is no prior overθ, leading to a slightly different lower bound

Eq(x)

[

ln
p(y,x|θ)

q(x)

]

(EM objective)

whereq(x) is just p(x|y,θ) with a particular assignment forθ.
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Then we have the following derivatives:

δℓ
δqθ

= Eqx [ln p(y,x|θ)]+ ln p(θ|α)− lnq(θ)−1+λθ

δℓ
δqx

= Eqθ [ln p(y,x|θ)]− lnq(x)−1+λx

dℓ
dλθ

=
∫

q(θ)dθ−1

dℓ
dλx

=
∫

q(x)dx−1

Setting the derivatives to zero and solving forqθ andqx yields:

qθ(θ) =
p(θ|α)exp

(
Eqx [ln p(y,x|θ)]

)

∫
p(θ|α)exp

(
Eqx [ln p(y,x|θ)]

)
dθ

, (5.7)

qx(x) =
exp
(
Eqθ [ln p(y,x|θ)]

)

∫
exp
(
Eqθ [ln p(y,x|θ)]

)
dx

. (5.8)

5.2 Deriving q(θ)

Plugging in the definitions forp(θ|α) and p(y,x|θ) in Equations 5.4 and 5.2, respec-

tively, results in the following expression for the expectation Eqx [ln p(y,x|θ)]:

Eqx [ln p(y,x|θ)] = Eqx

[

ln
N

∏
i=1

p(yi ,xi|θ)

]

(5.9)

=
N

∑
i=1

Eqx [ln p(yi ,xi|θ)]

=
N

∑
i=1

Eqx

[

ln ∏
〈c,e〉∈F

θc(e)
nc,e(xi)

]

= ∑
〈c,e〉∈F

(
N

∑
i=1

Eqx [nc,e(xi)]

)

lnθc(e)

= ln ∏
〈c,e〉∈F

θc(e)∑N
i=1Eqx [nc,e(xi)]

= ln ∏
c∈C

∏
〈c,e〉∈Fc

θc(e)∑N
i=1Eqx [nc,e(xi)]

Note that although we only assumed independence betweenθ andx, the factoriza-

tion of Eqx [ln p(y,x|θ)] produces an even stronger independence result. Specifically,

qθ(θ) can be expressed as a product of independent probabilitiesqθc by combining

Equations 5.7 and 5.9.

qθ(θ) = ∏
c∈C

p(θc|αc)∏〈c,e〉∈Fc
θc(e)∑N

i=1Eqx [nc,e(xi)]

∫
p(θc|αc)∏〈c,e〉∈Fc

θc(e)∑N
i=1Eqx [nc,e(xi)]dθc

= ∏
c∈C

qθc(θc)
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Simplifying qθc yields

qθc(θc) =
p(θc|αc)∏〈c,e〉∈Fc

θc(e)∑N
i=1Eqx [nc,e(xi)]

∫
p(θc|αc)∏〈c,e〉∈Fc

θc(e)∑N
i=1Eqx [nc,e(xi)]dθc

By introducing a change of variables

α̂c(e) = αc(e)+
N

∑
i=1

Eqx [nc,e(xi)] (5.10)

and making use of the definition of the Dirichlet distribution in Equation 5.4 we arrive

at the final simplification:

qθc(θc) =
B(α)−1∏〈c,e〉∈Fc

θc(e)α̂c(e)−1

B(α)−1
∫

∏〈c,e〉∈Fc
θc(e)α̂c(e)−1dθ

(5.11)

= B(α̂)−1 ∏
〈c,e〉∈Fc

θc(e)
α̂c(e)−1.

Here, the beta functionB(α) =
∫

∏〈c,e〉∈Fc
θc(e)αc(e)−1dθ is the partition function for

the Dirichlet distribution.

Thus,qθc(θc) is also Dirichlet with parameterŝαc. We have essentially just re-

derived the proof of Dirichlet-Multinomial conjugacy sketched in Equation 5.5.

5.3 Deriving q(x)

All that is left is to find the optimal variational distribution over derivation treesq(x),

which we note from Equation 5.8 is defined in terms of the expectationEqθ [ln p(y,x|θ)].
The definition ofp(y,x|θ) in Equation 5.2 takes us most of the way.

Eqθ [ln p(y,x|θ)] = Eqθ

[

ln
N

∏
i=1

∏
〈c,e〉∈F

θc(e)
nc,e(xi)

]

= Eqθ

[

ln
N

∏
i=1

∏
c∈C

∏
〈c,e〉∈Fc

θc(e)
nc,e(xi)

]

=
N

∑
i=1

∑
c∈C

∑
〈c,e〉∈Fc

nc,e(xi)Eqθc
[lnθc(e)] .

Making the variable substitution̂θc(e) = exp
(
Eqθc

[lnθc(e)]
)

we get

Eqθ [ln p(y,x|θ)] =
N

∑
i=1

∑
c∈C

∑
〈c,e〉∈Fc

nc,e(xi) ln θ̂c(e)

= ln
N

∏
i=1

∏
c∈C

∏
〈c,e〉∈Fc

θ̂c(e)
nc,e(xi). (5.12)
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Finally, plugging this expression forEqθ [ln p(y,x|θ)] into the formula previously de-

rived forq(x) (Equation 5.8) produces

qx(x) =
N

∏
i=1

∏c∈C ∏〈c,e〉∈Fc
θ̂c(e)nc,e(xi)

∑x∈Xi ∏c∈C ∏〈c,e〉∈Fc
θ̂c(e)nc,e(xi)

=
N

∏
i=1

qxi(xi) (5.13)

which, like qθ(θ), can be expressed in terms of a product of separate probability dis-

tributions over the derivation trees of the individualyi.

To computêθ we make use of a standard result for the Dirichlet distribution2:

Eqθc
[lnθc(e)] = Ψ(α̂c(e))−Ψ( ∑

〈c,e〉∈Fc

α̂c(e)) =⇒

θ̂c(e) = exp
(
Eqθc

[lnθc(e)]
)
= exp

(

Ψ(α̂c(e))−Ψ( ∑
〈c,e〉∈Fc

α̂c(e))

)

. (5.14)

Theseθ̂ parameters are sub-normalized, i.e.,∑〈c,e〉∈Fc
θ̂c(e)≤ ∑〈c,e〉∈Fc

θc(e) = 1 ,

shown by Jensen’s Inequality:

θ̂c(e) = exp
(
Ep(θc|αc)[lnθc(e)]

)
≤ exp

(
lnEp(θc|αc)[θc(e)]

)
= Ep(θc|αc)[θc(e)].

The distributionq(xi) is the variational counterpart top(xi |yi,θ), which is the pos-

terior probability of a derivation tree given the rule weights θ and a particular data

item yi. In fact, q(xi) takes exactly the same form, except thatθ̂ is substituted for

the multinomial parameters ofp(xi ,yi|θ). Becausêθ is sub-normalized,q(xi) is not

a true posterior, but the normalization constant in the denominator guarantees that it

is, nonetheless, a genuine probability distribution in itsown right. Consequently, it

is not necessary or desirable to re-normalize eachθ̂c. In fact, doing so will destroy a

particularly felicitous property of theΨ(·) function, which is clear from the following

approximation:

exp(Ψ(α̂c(r)))≈







α̂c(e)2

2 if α̂c(e) ∈ [0,1]

α̂c(e)− 1
2 if α̂c(e)> 1

.

That is, exp(Ψ(α̂c(e))) effectively subtracts12 from the expected counts while tak-

ing care to keep everything well defined by avoiding negativecounts when̂αc(e) is less

than 1
2. This is precisely what allows VB to model sparsity, subtracting counts from

rules so that those for which we see very little use get only a very small weight.

2See Appendix A for a derivation.
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5.4 The variational Bayes inference algorithm

To summarize, we have found theq(θt) andq(xi) that maximizeL̂ [q] by taking deriva-

tives of the Lagrangian, setting them to zero, and solving, yielding the variational

distributions

q(θc) = D(θc|α̂c) (5.11)

q(xi) =
∏〈c,e〉∈F θ̂c(e)nc,e(xi)

∑x∈Xi ∏〈c,e〉∈F θ̂c(e)nc,e(x)
. (5.13)

which have parameters

α̂c(e) = αc(e)+
N

∑
i=1

Eqxi
[nc,e(xi)] (5.10)

θ̂c(e) = exp

(

Ψ(α̂c(e))−Ψ( ∑
〈c,e〉∈Fc

α̂c(e))

)

. (5.14)

The parameters ofq(θc) are defined in terms ofq(xi) and the parameters ofq(xi)

with respect to the parameters ofq(θc). When computing thêα parameters, the inside-

outside algorithm efficiently calculates the variational probability of a derivation tree

q(xi). Thus, we can perform an EM-like alternation between calculating α̂ and θ̂. 3

Just as we would in EM, we use the inside-outside algorithm tocompute the expected

counts of the rules, from which we can, in turn, estimate the number of occurrences

of each pair〈c,e〉, using the relationnc,e(x) = nc,e(r) ·nr(x), wherenc,e(r) is the num-

ber of times〈c,e〉 appears in ruler. This expected count is denoted by byα̂c(e) in

Equation 5.10. Then we use these parameters to estimate the expected values of thêθ
parameters.

Repeatedly alternating between computing these two expectations, the algorithm

eventually converges to a local maximum of the variational lower bound. This is es-

sentially the same as for the conventional EM algorithm for estimating the rule weights

of ordinary PCFGs, but in the case of the multi-weighted grammars theθ̂ parameters

are identified with individual factors of the rule probabilitiesω(r), rather than complete

rule probabilities themselves. In fact, ifω(r) is a scalar andf (r) just identifies a single

feature pair comprised of the rule and its left-hand side, then the algorithm is identical

to the PCFG case, and this assumption would result in exactly the same expression

3Because of the resemblance to EM, this procedure has been called VBEM. Unlike EM, however,
the procedure alternates between computing the expected values of two different sets of variational
parameters and lacks a maximization step.
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for the objective function presented by Kurihara and Sato (2006) for PCFGs. We will

now describe this objective function for the more general case of full multi-weighted

grammars.

5.5 The lower bound

For judging whether the procedure has converged, as well as for a number of other

things such as model selection, it is useful to have an explicit formula for computing

the variational lower bound̂L [q], sometimes referred to as the evidence lower bound

(ELBO), or negative free energy. The general form of the equation for the mean field

assumption is Equation 5.6, but it is possible to get a simplification using the formula

for q(x) (Equation 5.8).

Eqx [lnq(x)] = Eqx

[

ln
exp
(
Eqθ [ln p(y,x|θ)]

)

∫
exp
(
Eqθ [ln p(y,x|θ)]

)
dx

]

= Eq [ln p(y,x|θ)]− ln
∫

exp
(
Eqθ [ln p(y,x|θ)]

)
dx

Substituting this forEqx [lnq(x)] in Equation 5.6 yields the following formula for̂L [q]:

L̂ [q] = Eq [ln p(y,x|θ)]+Eqθ [ln p(θ|α)]−Eqθ [lnq(θ)]−Eqx [lnq(x)]

= ln
∫

exp
(
Eqθ [ln p(y,x|θ)]

)
dx+Eqθ [ln p(θ|α)]−Eqθ [lnq(θ)] .

Breaking things down term by term results in the following:

ln
∫

exp
(
Eqθ [ln p(y,x|θ)]

)
dx = ln

∫ N

∏
i=1

∏
c∈C

∏
〈c,e〉∈Fc

θ̂c(e)
nc,e(xi)dx (from Eq. 5.12)

=
N

∑
i=1

ln ∑
xi∈Xi

∏
c∈C

∏
〈c,e〉∈Fc

θ̂c(e)
nc,e(xi)

Eqθ[ln p(θ|α)] = ∑
c∈C

Eqθc
[ln p(θ|α)] (apply Eq. 5.4)

= ∑
c∈C

lnΓ( ∑
〈c,e〉∈Fc

αc(e))− ∑
〈c,e〉∈Fc

lnΓ(αc(e))

+ ∑
〈c,e〉∈Fc

(αc(e)−1)Eqθc
[lnθc(e)]

= ∑
c∈C

lnΓ( ∑
〈c,e〉∈Fc

αc(e))− ∑
〈c,e〉∈Fc

lnΓ(αc(e))

+ ∑
〈c,e〉∈Fc

(αc(e)−1) ln θ̂c(e)
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Eqθ[lnq(θ)] = ∑
c∈C

lnΓ( ∑
〈c,e〉∈Fc

α̂c(e))− ∑
〈c,e〉∈Fc

lnΓ(α̂c(e))

+ ∑
〈c,e〉∈Fc

(α̂c(e)−1) ln θ̂c(e). (from Eq. 5.11)

Finally, putting it all back together again, we arrive at

L̂ [q] =
N

∑
i=1

ln ∑
x∈Xi

∏
c∈C

∏
〈c,e〉∈Fc

θ̂c(e)
nc,e(xi) (5.15)

+ ∑
c∈C

lnΓ( ∑
〈c,e〉∈Fc

αc(e))− ∑
〈c,e〉∈Fc

lnΓ(αc(e))+ ∑
〈c,e〉∈Fc

(αc(e)−1) ln θ̂c(e)

− lnΓ( ∑
〈c,e〉∈Fc

α̂c(e))+ ∑
〈c,e〉∈Fc

lnΓ(α̂c(e))− ∑
〈c,e〉∈Fc

(α̂c(e)−1) ln θ̂c(e).

The first term can be computed by adding the inside “probability” of the start sym-

bol for each training item and is produced as a by-product of the inference algorithm.4

In fact, it is exactly the same as the quantity computed in theEM setting where there

is no prior, but wherêθ has been substituted forθ.

5.6 Estimating Dirichlet parameters with variational EM

The basic VB algorithm treats the Dirichlet parametersα as fixed quantities, which

are assigned manually at the start. However, if we want to automatically estimate the

Dirichlet prior parameters, a la Empirical Bayes, we can derive a kind of Variational

EM algorithm where the E-step performs the updates for the variational parameterŝα
and θ̂, and the M-step maximizeŝL [q] with respect toα. Although working with a

different Dirichlet-Multinomial model, Airoldi et al. (2008) did precisely this, as did

Braun and McAuliffe (2010) working with yet another combination of model and prior.

One approach to performing the update in the M-step is to derive a Newton-Raphson

algorithm, requiring the first and second derivatives ofL̂ [q] (Equation 5.15). For sim-

plicity, assume the Dirichlet priors are symmetric, i.e.,αc(e) = ac for all 〈c,e〉 ∈ Fc,

and that|Fc|= Kc. The only terms that depend directly onα are the ones in

Eqθ[ln p(θ|α)]] = ∑
c∈C

lnΓ(Kcac)−Kc lnΓ(ac)+Kc(ac−1) ln ¯̂θc(e)

where ln¯̂θc(e) = 1
Kc

∑〈c,e〉∈Fc
ln θ̂c(e). This expectation is essentially just that of the log

of the likelihood of a set of multinomial parameters under a Dirichlet. Consequently,

4Technically, ∑x∈Xi ∏c∈C ∏〈c,e〉∈Fc θ̂c(e)nc,e(xi) is not a proper probability becausêθc is sub-
normalized, but the inside-outside algorithm works just the same.
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maximizingL̂ [q] reduces to that of estimating the Dirichlet parameters thatmaximizes

this likelihood, which is exactly the problem addressed by Minka (2000) and our solu-

tion follows the same form.

Computing the gradient and second derivative,

g(ac) =
dL̂ [q]
dac

= Kc ·
(

Ψ(Kcac)−Ψ(ac)+ ln ¯̂θc(e)
)

dg
dac

=
dL̂ [q]
da2

c
= Kc ·

(

KcΨ′(Kcac)−Ψ′(ac)
)

,

we arrive at the following Newton-Raphson update rule:

anew
c = ac−

dL̂ [q]
da2

c

−1
dL̂ [q]
dac

= ac−
Ψ(Kcac)−Ψ(ac)+ ln ¯̂θc(e)

KcΨ′(Kcac)−Ψ′(ac)
.

However, sinceac is a Dirichlet parameter,̂L [q] (and its gradient) is only defined for

ac > 0 which sometimes leads to a violation of the assumptions of Newton-Raphson,

resulting in a negative value foranew
c . One way around this is to simply re-initialize

ac wheneverac≤ 0, but this is inelegant and slows convergence. Another approach is

to introduce a change of variables in the gradient so that it remains well defined and

then search for the root of this new equation. Here we chooseac = exp(a′c) and the

derivative of the gradient with respect toa′c becomes

dg
da′c

=
dg
dac

dac

da′c
= Kc ·exp(a′c) ·

(

KcΨ′(Kc ·exp(a′c))−Ψ′(exp(a′c)
)

,

leading to a new fixed point equation:

anew
c = ac ·exp



−
Ψ(Kcac)−Ψ(ac)+ ln ¯̂θc(e)

ac ·
(

KcΨ′(Kcac)−Ψ′(ac)
)



 .

This update is well behaved as long asaA is initialized to some valid parameter

setting (i.e.,ac > 0). (Convergence is still slow for roots whereac is close to 0, but we

have at least sidestepped the need to re-initialize.) It is identical to the MLE solution

for p(θc|αc) whereθc is observed except the variational parameter vectorθ̂c is filling

in for θc. In fact, any MLE solution could be adapted for our purposes and Minka

(2000) describes several alternatives for computing the Dirichlet MLE.

The resultant coordinate ascent algorithm works just like any EM algorithm; the

expected sufficient statistics (lnθ̂ in this case) are computed during the E-step condi-

tioned on some initial choice of parameter settings, and then these statistics are used
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to compute a new MLE for the model parameters (α) in the M-step. By repeatedly

alternating between these two steps we eventually convergeto a local optimum. The

only difference from standard EM is that the E-step is a full run to convergence of

the VB algorithm outlined in Section 5.4, and the MLE computed in the M-step is

approximate, based on̂L [q] rather than the true likelihood which is intractable.

5.7 Conclusion

The algorithms outline in this chapter for training multi-weighted grammars is both

simple to implement and highly general. In the end it is very similar to the standard

EM algorithm for estimating rule weights in a PCFG. In fact, Equations 5.10 and 5.14

have the same form as the mean field VB algorithm for PCFGs (Kurihara and Sato,

2006). The biggest difference is that the multinomial parametersθc are defined, not

by rule left-hand sides but rather by the more flexibleµ function for multi-weighted

grammar, which, in terms of implementation, is mainly a matter of indexing. Indeed,

the algorithm can be used to train PCFGs or ordinary probabilistic synchronous gram-

mars when theµ andω functions are defined appropriately. It works just as well for

end-to-end training of cascades of synchronous grammars, similar to the algorithm of

Chiang et al. (2010) for finite state automata, provided the grammars are composable,

but is more general still since it does not require that the multi-weighted grammar be

decomposable into a cascade.





Chapter 6

Semantic Parsing

This chapter presents an adaptation of work previously published in Jones et al. (2012b).

However, we have translated the tree-to-string model described there to the multi-

weighted synchronous tree-string grammar framework laid outin Chapters 3 through

5.

In this chapter, we introduce a model for semantic parsing implemented in our

multi-weighted probabilistic synchronous HRG framework described in Chapter 3. Al-

though, as mentioned in Chapter 2, the term semantic parsing has been used to refer

to a range of different tasks, we restrict consideration to afairly typical special case

where a system is trained on pairs of natural language sentences and their meaning

representation expressions, as in figure 6.1(a), and the system must generalize to novel

sentences. This observed meaning-sentence pair training condition is probably the

most thoroughly studied task within semantic parsing, making it a good standard task

to demonstrate the effectiveness of the framework since there are many other models

with which to compare. Furthermore, the task lends itself toa fairly concise model de-

scription, making both testing and elaboration easier. In fact, the primary motivation of

starting with this task is that it will be relatively straightforward to extend to our more

general word learning scenario described in Chapter 8, and, importantly, most other

approaches rely on alternative sources of supervision, such as database query answers

or other lexical information not typically available to human learners Goldwasser et al.

(2011); Liang et al. (2011). In fact, the model presented here corresponds very closely

to a sub-module of the full word learner in Chapter 8.

Most semantic parsing models rely on an assumption of structural similarity be-

tween meaning representation and sentence. Since strict isomorphism is overly re-

99
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(a)
Sentence: ‘what is the population of portland maine’

Meaning: answer(population(cityid(portland,maine)))

(b)
answer

population

cityid

portland

maine

num

place

city

st
at

e

‘what is’

‘the population’

‘of’

‘portland’
‘maine’

Figure 6.1: (a) An example sentence/meaning pair and (b) a possible mapping between

them.

strictive, this assumption is often relaxed by applying transformations. Several ap-

proaches assume a tree structure to the sentence, meaning representation, or both (Ge

and Mooney, 2005; Kate and Mooney, 2006; Wong and Mooney, 2006; Lu et al., 2008;

Börschinger et al., 2011), and often involve tree transformations either between two

trees or a tree and a string.

The synchronous grammar is well suited to formalizing such tree relations by

jointly deriving both structures simultaneously. Yet, while many semantic parsing sys-

tems resemble the formalism, most have been proposed as standalone formalisms re-

quiring custom algorithms, leaving it unclear how developments in one line of inquiry

relate to others. We argue for a unifying theory of tree transformation based semantic

parsing by presenting a synchronous grammar model built with the framework pre-

sented in Chapters 3 through 5 and draw connections to other similar systems.

Semantic parser training can be seen as a special case of wordlearning where the

learner has perfect knowledge of the speaker’s intended meaning for every utterance.

There is still referential ambiguity since the learner doesnot know which words con-
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tribute which elements of the meaning, but the problem is much easier than one might

expect when the learner must simultaneously infer both the speaker’s intention and the

meanings of the individual words. The grammar-based semantic parser presented here

lays the groundwork for the word learning model in Chapter 8. With standard pars-

ing and inference algorithms, grammar-based models are easily extended and adapted

since one merely need add or change rules, freeing the modeler from inventing and

implementing a custom algorithm for every model variation as is often necessary for

other less standardized model families.

Seeing the semantic parser as a special case of the word learner, we can test and

validate the learning performance of the model on a benchmark semantic parsing data

set and demonstrate another dimension of the functionalityof the word learning model.

In order to calibrate the system we test it against other state-of-the-art systems on the

most common data set, GeoQuery (Wong and Mooney, 2006).

6.1 Meaning representations and trees

In semantic parsing, a meaning representation is typicallyan expression in an application-

specific machine interpretable language (e.g., a database query language like SQL).

Typically, such languages are unambiguous context-free languages. Consequently

each expression can be identified with a single tree without loss of information be-

cause the parse itself is a tree. Thus, these expression, either because they themselves

are trees or because their parses are, fit neatly into the tree-based synchronous grammar

framework outlined in Chapters 3-5.

The particular model we describe in this chapter is generally applicable to any

application with such an unambiguous target meaning representation language, but our

examples are drawn from a standard semantic parsing corpus,GeoQuery (Wong and

Mooney, 2006). Figure 6.1(a) illustrates a typical sentence-meaning representation

pair. The corpus centers on the task of learning a natural language interface for a

database of geographical facts, and the data consists of a set of user questions expressed

in natural language paired with a database query that would retrieve the answer to the

question. The meaning representation database query is expressed in an unambiguous

functional language where the nesting of the expression makes the tree shape easy to

identify even by eye. The left-hand side of part (b) of Figure6.1 shows the tree that

corresponds to the meaning representation of the example inpart (a). Functions and

constants correspond to nodes of the tree and each function’s arguments are identified
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by its child edges.

The tree embodied by the basic nesting structure of the expression is elaborated

slightly in the figure with edge labels identifying the argument type (i.e., the return

type of the child function). This information is readily available from the grammar of

the meaning representation language, a sample of which is shown below.

NUM→ population(PLACE)

PLACE→ cityid(CITY,STATE)

CITY→ portland

STATE→maine

The tree in the figure can be directly extracted from the parsetree. For consistency with

the conventions for representing edge-labeled graphs and trees described in Chapter 7,

we can translate the meaning representation in Figure 6.1(a) into the following predi-

cate calculus expression:

answer(a)∧num(a, p)∧population(p)

∧place(p,c)∧cityid(c)

∧city(c,x)∧portland(x)

∧state(c,y)∧maine(y)

Using this predicate calculus expression will make it easier to follow the example when

we describe the model in terms of grammar rules.

6.2 Model

Our probabilistic model can be thought of as a translation model that first generates

an expression in the source language (the meaning representation) and then generates

its corresponding translation into natural language. First the meaning is generated ac-

cording to the meaning representation grammar, guaranteeing that it is a well formed

query. The model then generates the words corresponding to the tree, node by node,

in a manner similar to the alignment illustrated in Figure 6.1(b). In terms of imple-

mentation, the scheme is realized as a synchronous grammar which, like the hybrid

tree semantic parser (Lu et al., 2008) and WASP (Wong and Mooney, 2006), another

synchronous grammar-based system, jointly generates the input meaning representa-

tion tree and the corresponding natural language string. The meaning representation is
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α

µ mj y j w j

ω β

J

Figure 6.2: The generative model of the semantic parser over a corpus of J meaning-

utterance pairs. w j is an utterance, mj is its corresponding meaning representation,

and y j is the latent mapping between them governed by the probabilistic synchronous

grammar. µ is the set of multinomial parameters for the language model over meaning

representations m, ω is the set of parameters for the utterances w given their corre-

sponding meaning representation, and α and β are the parameters for their respective

Dirichlet priors.

built up one production at a time according to a tree grammar while similar CFG-like

productions are applied to the natural language side in lock-step formation, repeated

until both the meaning representation and natural languageare fully generated. In each

step, the model selects a meaning representation rule and then builds the correspond-

ing natural language by first choosing a word ordering pattern and then filling out that

pattern with words drawn from a unigram distribution.

Figure 6.2 illustrates the graphical model, which generates the meaning-sentence

pairs〈mj ,w j〉 of a corpus consisting of a total ofJ such pairs. First, a meaning rep-

resentationmj is drawn from a product of Dirichlet-multinomials defined with multi-

nomial parametersµ and Dirichlet parametersα. Then a mappingy j from meaning to

words is generated according to conditional probabilityP(w j ,y j |mj ,ω), which in turn

is another product of Dirichlet-multinomials with multinomial and Dirichlet parame-

tersω andβ, respectively.

The entire model can be implemented as a single synchronous grammar using

the multi-weighted probabilistic extension defined in Section 3.4. Each rule consists

of two monolingual components, one that generates the meaning representation tree

according to an unordered tree grammar of the form describedin Chapter 4, while

the second monolingual component generates the words of thesentence as an ordi-

nary CFG. Coupled together, the joint derivation simultaneously describes both how
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the meaning is generated and how this meaning relates to the utterance, where the

meaning-to-word map can be broken down into two types of choices: (1) word order

decisions, and (2) word selection decisions. These mappingchoices are probabilisti-

cally decided step by step, in synchrony with each step of meaning generation. Fig-

ure 6.1, for instance, illustrates which word choices mightbe made as each function is

generated in the meaning. Additionally, ordering choices are also being made at each

step, where the words corresponding to the functionpopulationare generated after

those foranswerand, similarly, a sequential ordering is chosen for the words “port-

land” and “maine”. These decisions are encoded in the mapping variabley j , which

consists of the portion of the synchronous derivation that pertains only these two types

of choices.

Thus, the entire probabilistic model can be summarized in the following formula:

P(m,x,w,µ,ω|α,β) = P(µ|α)P(ω|β)∏
j∈J

P(mj |µ)P(w j ,y j |mj ,ω)

whereP(µ|α) and P(ω|β) are products of Dirichlet probabilities, andP(mj |µ) and

P(w j ,y j |mj ,ω) are product of multinomial distributions defined by the grammar which

are defined in detail in the next two sections. The weights of the synchronous grammar

are defined in a modular fashion according to a multi-weighted probabilistic grammar.

One module definesP(mj |µ), the otherP(w j ,y j |mj ,ω), where we use functionµ(r)

to denote the product of the weights on ruler that pertain to the probability of the

meaning representation, andω(r) to denote the product of the weights that govern the

generation of the mapping from meaning to words. Thus, ifx j is a derivation of the

synchronous grammar yieldingmj , w j , andy j , we can write

P(mj |µ) = ∏
r∈x j

µ(r)

P(w j ,y j |mj ,ω) = ∏
r∈x j

ω(r).

Theµ weights govern the generation of the meaning representation and theω weights

the words of the utterance. In general, a single rule simultaneously contributes to the

generation of both the meaning and words, implying that the same rule can have both a

µandω weight, something that, while impossible in a conventionalweighted grammar,

is perfectly legal using a multi-weighted grammar.
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6.2.1 Meaning generation: P(mj |µ)

The model starts by generating the function corresponding to the root node of the tree

and then generates its children, recursively generating each function until the meaning

representation is complete, where the probability of each function is conditioned on

information about its parent. Specifically, each function is conditioned on the label

and list of argument types of its parent, a combination whichwe will refer to as the

function’ssignature. Similarly, at the same time as a function is generated, the model

simultaneously selects its signature. For instance, in generating the node labeledcityid

and its two children in the tree in Figure 6.1, the model first chooses function signature

cityid/CITY/STATEconditioned on the signature of its parentpopulation/PLACEand

then proceeds to choose the signatures ofcityid’s first and second argumentsportland

andmaine, where we treat constants as functions with no arguments so their signatures

are justportlandandmaine, respectively.

This language model over meaning representation expressions can be defined for-

mally as

P(m|µ) = ∏
f∈m

P(sig( f )|sig(parent( f )),arg( f ),µ)

wheresig( f ) is the signature of functionf , parent( f ) is its parent, andarg( f ) is the

index into the argument list off ’s parent.

This process can be captured by an unordered tree grammar of the type described

in Chapter 4 that alternates between node (i.e., functions label) rules and edge (i.e.,

argument type) rules. In keeping with that grammar definition, we define two sets

of nonterminals, node-generating and edge-generating nonterminals, and index each

by the combination of function signature and the argument number to be generated.

That is, there is a node-generating nonterminal specifically for choosing the CITY

child of function cityid, and another for choosing its STATE child. Notationally,

we identify such a node-generating nonterminal by N[CITYID/CITY/STATE] for the

CITY child and N[CITYID/CITY/STATE] for the STATE child. Similarly, the corre-

sponding edge-generating nonterminals are denoted by E[CITYID/CITY /STATE] and

E[CITYID/CITY/STATE].

Table 6.1 presents the fragment of the grammar that generates the meaning rep-

resentation in Figure 6.1. Rules m1 through m5 are node-generating rules which de-

termine the function label and the number of its arguments. The weights of these

rules are defined such that they are equivalent to the conditional probability of the
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N[START]→ answer(x)∧E[ANS/NUM](x) (m1)

N[ANS/NUM]→ λx.population(x)∧E[POP/PLACE](x) (m2)

N[POP/PLACE]→ λx.cityid(x)∧E[CITYID/CITY /STATE](x)

∧E[CITYID/CITY/STATE](x) (m3)

N[CITYID/CITY /STATE]→ λx.portland(x) (m4)

N[CITYID/CITY/STATE]→ λx.maine(x) (m5)

E[ANS/NUM]→ λx.num(x,y)∧N[ANS/NUM](y) (m11)

E[POP/PLACE]→ λx.place(x,y)∧N[POP/PLACE(y) (m12)

E[CITYID/CITY /STATE]→ λx.city(x,y)∧N[CITYID/CITY /STATE](y) (m13a)

E[CITYID/CITY/STATE]→ λx.state(x,y)∧N[CITYID/CITY/STATE](y) (m13b)

Table 6.1: A grammar fragment that generates the meaning representation in Fig-

ure 6.1. The top rules are node-generating, which select the function’s label and arity,

while the bottom edge-generating rules produce the argument type labels.

function signature identified with the nonterminal(s) on the right given the function

signature associated with the nonterminal on the left hand side of the rule. For ex-

ample, we assign a weight equivalent toP(pop/PLACE | ans/NUM) to rule m2 and

P(portland| cityid/CITY/STATE) to rule m4. Thus, these rules model the probability

of choosing a particular function given the signature of itsparent.

The edge-generating nonterminals are expanded according to rules m11 through

m13b. These rules simply produce the edge label corresponding to the specified type

and hand off generation to the next node-generating nonterminal which then proceeds

to perform the next function selection. These edge-generating steps are perfectly de-

terministic, so each has a probability of one.

Figure 6.3(a) shows the derivation tree of the meaning representation in Figure 6.1

under the grammar in Table 6.1. Lettingµ(r) be the product of the meaning represen-

tation language model weights of ruler, then the probability of this derivation (and the
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(a)
m1

m11

m2

m12

m3

m13a

m4

m13b

m5

(b)
w1b

w21a

w21bw31a

w31b

w11

w2b

w22a

w22bw32a

w32b

w12

w3b

w23b

w33a

w13a

w4

w24b

w34a

w13b

w5

w25b

w35a

Figure 6.3: A derivation tree for (a) the meaning representation and (b) the meaning-

sentence mapping illustrated in Figure 6.1 with the monolingual meaning grammar (Ta-

ble 6.1) and synchronous meaning-sentence grammar (Table 6.2), respectively. Track-

ing the correspondence between the rules of the meaning representation grammra and

the meaning-word grammar, the meaning representation can be seen as the skeleton

of the meaning-to-word map.

example meaning representation) would be

P(m|µ) = µ(m1)µ(m11)µ(m2)µ(m12)µ(m3)µ(m13a)µ(m4)µ(m13b)µ(m5)

= µ(m1)µ(m2)µ(m3)µ(m4)µ(m5)

= P(ans/NUM |START,µ) ·P(pop/PLACE | ans/NUM,µ)

·P(cityid/CITY/STATE|pop/PLACE,µ)

·P(portland|cityid/CITY/STATE,µ)

·P(maine| cityid/CITY/STATE,µ)

To see how this relates to the formal definition of multi-weighted grammars in

Section 3.4, observe that the weights of rules m1-m5 can be implemented with just two

feature functions:lhs(r) that returns the left-hand side nonterminal ofr, andsig(r) that

returns the name of the unary and the type of it’s argument encoded in the nonterminal

on the right-hand side. Given these feature functions, a factorization function ofϕ(r) =
〈lhs(r),sig(r)〉 yields the probabilities above. As for rules m11-m13b, theyall have a
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µ value of 1, which could be implemented with aϕ(r) = 〈 /0, /0〉 that simply returns a

dummy value with a weight of 1.

6.2.2 Sentence generation: P(w j ,y j |mj ,ω)

Sentence generation can be conceptualized as a process of translating meaning to

words through a sequence of permutation and word substitution/insertion operations.

Walking down the meaning representation tree node by node, the model first chooses

a particular linearization of the node and its children and then inserts words into that

linearization, generated according to a unigram distribution. As with the meaning rep-

resentation, both the choice of linearization and word selection are conditioned on the

full signature of the corresponding function. A linearization of node f consists of a

particular ordering among the children and a choice of word insertion points, where

words can be optionally inserted before, after, or anywherein between children. For

example, there are three possible orderings for thepopulationnode and its children.

CHILD

WORDS CHILD

CHILD WORDS

WORDS CHILD WORDS

Similarly, there are 16 possible linearizations forcityid (2 different permutations of the

children with 8 different choices of word insertion points for each). In general, for a

function of arityk, there arek! permutations of its children andk+1 locations in these

sequences where words can be inserted, leading tok! ·2k+1 possible linearizations to

choose from. We force a single linearization (i.e., WORDS) for constants so that they

each contribute some sequence of words within the sentence.

To define the probability distribution formally, let latentvariabley be the sequence

of permutation and substitution operations for the entire sentence, andyf be a lineariza-

tion followed by a sequence of word substitution operationsthat translate a particular

function f with arity k in the meaning representation into a substring of the sentence.

Let ℓ f be the linearization containingk+1 places for words, andwf ,1, ...,wf ,k+1 be the
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particular word sequences chosen to fill those place holders.

P(w,y|m,ω) = ∏
f∈m

P(yf = 〈ℓ f ,wf ,1, ...,wf ,k+1〉|sig( f ),ω)

= P(ℓ f |sig( f ),ω)
k+1

∏
i=1

P(wf ,i|sig( f ),ω)

The probabilityP(ℓ f |sig( f ),ω) is just a multinomial distribution over linearizations

and the word substitutionwf ,i is defined according to a unigram distribution associated

with sig( f ), wherewf ,i is a sequence of wordswordi,1...wordi,ni :

P(wf ,i|sig( f ),ω) =
n−1

∏
j=1

P(wordi, j |sig( f ),ω)P(continue|sig( f ),ω)

·P(wordi,ni |sig( f ),ω)P(stop|sig( f ),ω).

In terms of implementation, these linearization and word insertion operations can

be specified by extending each production of the monolingualmeaning-generating

grammar in Table 6.1 with CFG-style string-generating productions, one for each pos-

sible linearization. Words can then be generated accordingto string-only monolingual

rules that expand word-generating nonterminals, denoted by W[sig( f )] andU [sig( f )].

Table 6.2 lists the rules necessary for producing the mapping in Figure 6.1(b), and Fig-

ure 6.3(b) illustrates the derivation tree. The four possible linearizations forpopulation

corresponding to rule m2 would lead to the following set of synchronous rules:

N[ANS/NUM]→ 〈 λx.population(x)∧E[POP/PLACE] 1 (x)
∥
∥

ℓpopulation〉

whereℓpopulation is one of

E[POP/PLACE] 1 (w2a)

W[POP/PLACE] E[POP/PLACE] 1 (w2b)

E[POP/PLACE] 1 W[POP/PLACE] (w2c)

W[POP/PLACE] E[POP/PLACE] 1 W[POP/PLACE]. (w2d)

The particular mapping in Figure 6.1 linearizespopulationby inserting words be-

fore the substring corresponding to the translation of its single subtree as dictated by

rule w2b.
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N[START]→ 〈 answer(x)∧E[ANS/NUM] 1(x)
∥
∥

W[ANS/NUM] E[ANS/NUM] 1 〉 (w1b)

N[ANS/NUM]→ 〈 λx.population(x)∧E[POP/PLACE] 1(x)
∥
∥

W[POP/PLACE] E[POP/PLACE] 1 〉 (w2b)

N[POP/PLACE]→ 〈 λx.cityid(x)∧E[CITYID/CITY /STATE]1 (x)

∧E[CITYID/CITY/STATE] 2 (x)
∥
∥

W[CITYID/CITY/STATE] (w3b)

E[CITYID/CITY /STATE]1 E[CITYID/CITY/STATE] 2 〉

N[CITYID/CITY /STATE]→ 〈 λx.portland(x)
∥
∥W[PORTLAND] 〉 (w4)

N[CITYID/CITY/STATE]→ 〈 λx.maine(x)
∥
∥W[MAINE] 〉 (w5)

E[ANS/NUM]→ 〈 λx.num(x,y)∧N[ANS/NUM] 1 (y)
∥
∥

N[ANS/NUM] 1 〉 (w11)

E[POP/PLACE]→ 〈 λx.place(x,y)∧N[POP/PLACE1 (y)
∥
∥

N[POP/PLACE1 〉 (w12)

E[CITYID/CITY /STATE]→ 〈 λx.city(x,y)∧N[CITYID/CITY /STATE]1(y)
∥
∥

N[CITYID/CITY /STATE]1 〉 (w13a)

E[CITYID/CITY/STATE]→ 〈 λx.state(x,y)∧N[CITYID/CITY/STATE] 1(y)
∥
∥

N[CITYID/CITY/STATE] 1 〉. (w13b)

W[SIG]→ 〈 −
∥
∥ U[SIG] W[SIG] 〉 (w21-25a)

W[SIG]→ 〈 −
∥
∥ U[SIG] 〉 (w21-25b)

U[ANS/NUM] → 〈 −
∥
∥ what〉 (w31a)

U[ANS/NUM] → 〈 −
∥
∥ is 〉 (w31b)

U[POP/PLACE]→ 〈 −
∥
∥ the〉 (w32a)

U[POP/PLACE]→ 〈 −
∥
∥ population〉 (w32b)

U[CITYID/CITY/STATE] → 〈 −
∥
∥ of 〉 (w33a)

U[PORTLAND]→ 〈 −
∥
∥ portland〉 (w34a)

U[MAINE] → 〈 −
∥
∥maine〉 (w35a)

Table 6.2: A grammar for the meaning-to-sentence map in Figure 6.1: (from top) func-

tion generating/linearization, edge generating, and word stopping and generating rules.



6.2. Model 111

The meaning-to-word mapping weights for each of these synchronous rules, de-

noted byω(r), is simply the weight of the particular linearization. So, for example, the

word-generating weight of rule w2b is constructed to be equivalent to

ω(w2b) = P(WORDS CHILD| pop/PLACE,ω).

The word generation unigram is implemented by two differentkinds of rules, one

kind of rule for determining when the unigram stops generating words, and one for

actually generating the specific words. Specifically, thereare a pair of stopping rules

following the pattern of w21-25a and w21-25b in Table 6.2 foreach function signature,

which are weighted according toP(stop|sig( f )) andP(continue|sig( f )). For instance,

there are two such rules forpop/PLACE,

W[POP/PLACE]→ 〈 −
∥
∥ U[POP/PLACE] W[POP/PLACE]〉 (w22a)

W[POP/PLACE]→ 〈 −
∥
∥ U[POP/PLACE]〉. (w22b)

Rule w22a is assigned a weight ofP(continue| pop/PLACE) and rule w22b a weight

of P(stop| pop/PLACE). A chain of such rules in a derivation simulates the flipping

of a coin after each word is generated to determine whether tostop or continue adding

more words to the string. Similar rules necessary for each function signature in the

corpus

W[ANS/NUM] → 〈 −
∥
∥ U[ANS/NUM] W[ANS/NUM] 〉 (w21a)

W[ANS/NUM] → 〈 −
∥
∥ U[ANS/NUM] 〉 (w21b)

W[CITYID/CITY/STATE] → 〈 −
∥
∥ (w23a)

U[CITYID/CITY/STATE] W[CITYID/CITY/STATE] 〉

W[CITYID/CITY/STATE] → 〈 −
∥
∥ U[CITYID/CITY/STATE] 〉 (w23b)

W[PORTLAND]→ 〈 −
∥
∥ U[PORTLAND] W[PORTLAND] 〉 (w24a)

W[PORTLAND]→ 〈 −
∥
∥ U[PORTLAND] 〉 (w24b)

W[MAINE] → 〈 −
∥
∥ U[MAINE] W[MAINE] 〉 (w25a)

W[MAINE] → 〈 −
∥
∥ U[MAINE] 〉 (w25b)
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The words themselves are generated according to rules such as

U[POP/PLACE]→ 〈 −
∥
∥ the〉 (w32a)

U[POP/PLACE]→ 〈 −
∥
∥ population〉 (w32b)

U[POP/PLACE]→ 〈 −
∥
∥ what〉 (w32c)

U[POP/PLACE]→ 〈 −
∥
∥ is 〉 (w32d)

...

These word-generating rules are each weighted according tothe unigram probability

so that, for instance, rule w32c receives weight equal toP(what | pop/PLACE) and

rule w32d receives weightP(is | pop/PLACE). In general, every function can map to

any sequence of words in the vocabulary of the language, requiring rules such as w31a

through w35a for every word and function in the corpus vocabulary. 1

The deterministic edge-generating rules of the monolingual meaning representation

grammar are extended as per rules w11 to w13b to simply propagate the nonterminals

through the string generating portion of derivations. Propagating the node-generating

nonterminals into the string side ensures that the strings corresponding to the transla-

tion of the subtrees of the meaning representation are properly inserted into the string.

Again, these expansions are deterministic.

To compute the probability of the mapping conditioned on themeaning represen-

tation, again, we simply multiply theω weights for each rule in the derivation.

P(w,y|m,ω) = ω(w1b)ω(w21a)ω(w31a)ω(w21b)ω(w31b)

·ω(w11)ω(w2b)ω(w22a)ω(w32a)ω(w22b)ω(r32b)

·ω(w12)ω(w3b)ω(w23b)ω(w33a)

·ω(w13a)ω(w4)ω(w24b)ω(w34a)

·ω(w13b)ω(w5)ω(w25b)ω(w35a)

= ω(w1b)ω(w21a)ω(w31a)ω(w21b)ω(w31b)

·ω(w2b)ω(w22a)ω(r32a)ω(w22b)ω(r32b)

·ω(w3b)ω(w23b)ω(w33a)

·ω(w4)ω(w24b)ω(w34a)ω(w5)ω(w25b)ω(w35a)

1There are roughly 25,000 rules in the transducers in our experiments, and the majority of these
implement the unigram word distributions since every entity in the MR may potentially produce any of
the words it is paired with in training.
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This derivation weight, when interpreted in terms of probabilities resolves to

P(w,y|m,ω) = P(WORDS CHILD|ans/NUM,ω)

·P(‘what’|ans/NUM,ω)P(continue|ans/NUM,ω)

·P(‘is’ |ans/NUM,ω)P(stop|ans/NUM,ω)

·P(WORDS CHILD|population/PLACE,ω)

·P(‘the’|population/PLACE,ω)P(continue|population/PLACE,ω)

·P(‘population’|population/PLACE,ω)

·P(stop|population/PLACE,ω)

·P(WORDS CHILD1 CHILD2|cityid/CITY/STATE,ω)

·P(‘of’ |cityid/CITY/STATE)P(stop|cityid/CITY/STATE,ω)

·P(WORDS|portland,ω)P(‘portland’|portland,ω)P(stop|portland,ω)

·P(WORDS|maine,ω)P(‘maine’|maine,ω)P(stop|maine,ω)

The derivation first chooses a linearization foranswer, then inserts words “what” and

“is”, linearizespopulationand its arguments, inserts words “the” and “population”,

and so on until the entire meaning representation has been translated.

After carrying over the meaning representation weightsµ(r) from the monolingual

meaning representation grammar, we can computeP(m|µ) in exactly the same way as

before, by walking the joint derivation and multiplying outtheµ(r) weights. In fact,

the monolingual derivation for the meaning representationshown in Figure 6.3(a) is

embedded within the synchronous derivation shown in part (b) of the figure, it has

simply been extended by adding on the linearization and unigram productions.

Defining the model formally requires just four feature functions: the signature

functionsig(r) defined as before,ℓ(r) which identifies the word order linearization pat-

tern,word(r) which identifies the word on the right-hand side, andstop(r), a boolean

function returning true if and only if the rule is of the form w21-25b. Folding in the fac-

tors from the meaning generation model definition of the previous section, rules w1b-

w5 have factorization functions of the form

ϕ(r) = 〈lhs(r),sig(r)〉 · 〈sig(r), ℓ(r)〉.

The 〈lhs(r),sig(r)〉 factor is inherited from the definition of theµ weights, and the

second factor corresponds to the linearization pattern probability. This results in a

weight vector of the form

µ(r) ·ω(r) = P(sig(r)|lhs(r),µ) ·P(ℓ(r)|sig(r),ω)
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The word-generating portion of rules w11-w13b are deterministic, so theω weights

can be defined by using an empty factor〈 /0, /0〉 just as before in the definition of

µ. Rules w21-25a and w35a all only generate words, contributing nothing to the

meaning, so have noµ weights (or, equivalently, have a weight of 1 defined as per

the empty factor). Rules w21-25a and w21-25b have a word-generating factor of

the form 〈lhs(r),stop(r)〉, resulting in a weight ofω(r) = P(stop(r)|lhs(r),ω). Fi-

nally, rules w31a-w35a have factors of the form〈lhs(r),word(r)〉, with a weight of

ω(r) = P(word(r)|lhs(r),ω).
Because all feature pairs withµ weights are defined exclusively in terms of the

meaning representationm, and all feature pairs withω weights are defined with fea-

tures from word portion of the rules on the right, the model isguaranteed to factorize as

perP(m,w|µ,ω) = P(m|µ)P(w|m,ω), as described by the plate diagram in Figure 6.2.

6.3 Relation to other models

The multi-weighted synchronous grammar model can be viewedeither as a generative

procedure for building up two separate structures or as a transformative machine that

takes one as input and produces another as output (a la tree transducers). Different se-

mantic parsing approaches have taken one or the other view, and both can be captured

in this single framework. WASP (Wong and Mooney, 2006) is an example of the for-

mer perspective, coupling the generation of the meaning representation and sentence

with a different sort of synchronous grammar. The most significant difference from

our approach is that they use machine translation techniques for automatically extract-

ing rules from parallel corpora (Galley et al., 2004). Our approach differs in that we

specify general rules based on thelanguageof meaning representations rather than the

particularexamplesof meaning representations in the training corpus. A key advantage

of this language-based approach over the example-based approach is that the mapping

rules can be specified without assuming the meanings are observed. In the narrow

context of semantic parsing where training is conducted with observed meanings this

may seem like a subtle and purely theoretical distinction. In fact, since WASP only

extracts the rules required to explain the alignments in thetraining examples, its gram-

mars tend to be much smaller than ours, leading to a more efficient parser. However,

abstraction away from reliance on observed meaning representations during training is

crucial for generalization to the word leaning scenario in Chapter 8 since meanings are

completely latent, rendering a WASP-like alignment-basedapproach untenable.
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The hybrid tree model (Lu et al., 2008) takes an approach thatis in some ways more

similar to our model. In fact, there is a very close correspondence between the parame-

ters of our model and those of the hybrid tree. Furthermore, like our model, the hybrid

tree system does not require alignments between observed meaning representations

and sentences for grammar extraction. However, they do not represent their model as

an explicit grammar, instead inventing a new notion of the “hybrid tree” that unifies the

meaning and sentence into a single structure requiring a custom parsing algorithm and

additional work in disentangling the two at test time. Our synchronous grammar, on

the other hand, naturally captures many of the same probabilistic dependencies while

making use of a more standard grammar framework which buildsupon a larger body of

theory. This reliance on a general grammatical framework lends us greater flexibility

when it comes to model extension and adaptation, something we make extensive use

of in Chapter 8.

KRISP (Kate and Mooney, 2006) uses string classifiers to labelsubstrings of the

sentence with functions and constants from the meaning representation. To focus

search, they impose an ordering constraint based on the structure of the meaning repre-

sentation tree, which they relax by allowing the re-ordering of sibling nodes and devise

a procedure for recovering the meaning from the permuted tree. This procedure corre-

sponds to backward-application in synchronous grammars, identifying the most likely

source tree given a particular target string. As with the hybrid tree, KRISP is not based

on a grammar, even if it closely approximates one, which makes it harder to extend and

forces the authors to rely on custom algorithms tailored specifically to their problem.

Börschinger et al. (2011) take a similar stance to ours but argue for the PCFG as

an alternative model class, which they advocate on the basisthat PCFGs facilitate the

application of conventional grammar induction techniques. We are sympathetic to this

argument, particularly since our framework is a generalization of PCFGs and benefits

from the same features and allows us to incorporate the same modeling techniques.

However, the PCFG is less amenable to conceptualizing correspondences between

parallel structures, and their model is more restrictive, only applicable to domains

with finite meaning representation languages, since their non-terminals encode entire

meaning representations. The multi-weighted synchronousgrammar framework, on

the other hand, allows us to exploit the compositional properties of the meaning repre-

sentations so that linearizations and word probabilities are dependent on local features

(function signatures, specifically). Furthermore, the PCFGapproach can quickly be-

come conceptually unwieldy as it is extended into more complex models, something
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that is much easier for us.

Finally, the UBL system of Kwiatkowski et al. (2010) also takes a grammar-based

approach, employing a restricted context-free variant of CCG, making it somewhat

similar to our framework. The biggest departure from our approach and that of any

of the others mentioned is in how it treats the meaning representation. While all the

other approaches essentially leave the meaning representation intact and utilize this to

restrict the search space, Kwiatkowski et al. (2010) decomposes it into more arbitrary

fragments as enumerated by thesplit function. This allows UBL to analyze the mean-

ing representation in different ways which permits a largertheoretical space of poten-

tial meaning-to-word mappings. However, this flexibility comes at the cost of greater

parsing complexity. In the experiments described in Section 6.4, for example, we run

UBL as well as WASP and the hybrid tree and find that while it consistently takes 6-8

hours across four languages to train on a 600 training pair subset of GeoQuery, while

the others all complete in under two hours. WASP takes even less than half an hour due

to the relatively small number of rules in its grammar. This computational complexity

that UBL must contend with makes it harder to scale to accommodate the additional

complexity inherent in less constrained word learning settings.

6.4 Experiments

6.4.1 Evaluation

We evaluate the system on GeoQuery (Wong and Mooney, 2006), aparallel corpus

of 880 English questions and database queries about United States geography, 250 of

which were translated into Spanish, Japanese, and Turkish.We present here additional

translations of the full 880 sentences into German, Greek, and Thai. For evaluation,

following from Kwiatkowski et al. (2010), we reserve 280 sentences for test and train

on the remaining 600. During development, we use cross-validation on the 600 sen-

tence training set. At test, we run once on the remaining 280 and perform 10 fold

cross-validation on the 250 sentence sets.

Training consists of parsing meaning-sentence pairs and using the resultant parse

forests and the VB algorithm described in Chapter 5 to estimate rule weights. Thus,

at test time, we parse just the sentence and use the translation grammar as described

in Section 3.3.2 to find the meaning associated with the most probable joint meaning-

sentence derivation. To judge correctness, we follow standard practice and submit each
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parse as a GeoQuery database query, and say the parse is correct only if the answer

matches the gold standard. We report raw accuracy (the percentage of sentences with

correct answers), as well as F1: the harmonic mean of precision (the proportion of

correct answers out of sentences with a parse) and recall (the proportion of correct

answers out of all sentences).2

We run three other state-of-the-art systems for comparison. WASP(Wong and

Mooney, 2006) and thehybrid tree(Lu et al., 2008) are chosen to represent tree trans-

formation based approaches, and, while this comparison is our primary focus, we also

reportUBL-S(Kwiatkowski et al., 2010) as a non-tree based top-performing system.

The hybrid tree is notable as the only other system based on a generative model, and

uni-hybrid, a version that uses a unigram distribution over words, is very similar to our

own model. We also report the best performing version,re-hybrid, which incorporates

a discriminative re-ranking step.

We report the performance of our synchronous grammar under three different train-

ing conditions:scfgEMusing EM,scfgVB-autousing VB with empirical Bayes, and

scfgVB-handusing hyper-parameters manually tuned on the German training data

with three different hyper-paramter settings, one for meaning generation parameters

(α of 0.3), one for the different linearization patterns such as shown in the sentence-

generating side of rules such as rules w1b-w5 in Table 6.2 (with aβ of 0.8), and one

for word generation rules (β of 0.25).

Table 6.3 shows results for 10 fold cross-validation on the training set. The re-

sults highlight the benefit of the Dirichlet prior, whether manually or automatically set.

VB improves over EM considerably, most likely because (1) the handling of unknown

words and meaning representation functions allows it to return an analysis for all sen-

tences, and (2) the sparse Dirichlet prior favors fewer rules, reasonable in this setting

where only a few words are likely to share the same meaning.

On the test set (Table 6.4), we only run the model variants that perform best on the

training set. Test set accuracy is consistently higher for the VB trained synchronous

grammar than the other tree transformation based models (and often highest overall),

while f-score remains competitive.3

The relatively high performance of our model is likely due inlarge part to two

factors owing to VB.4 First, the sparse prior is a better match to our problem where

2Note that accuracy and f-score reduce to the same formula if there are no parse failures.
3Numbers differ slightly here from previously published results due to the fact that we have stan-

dardized the inputs to the different systems.
4Kwiatkowski et al. (2012) also observed that their incremental VB algorithm applied to a model
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DEV geo600 - 10 fold cross-val

German Greek

Acc F1 Acc F1

UBL-S 76. 7 76. 9 76. 2 76. 5

WASP 66. 3 75. 0 71. 2 79. 7

uni-hybrid 61. 7 66. 1 71. 0 75. 4

re-hybrid 62. 3 69. 5 70. 2 76. 8

scfgEM 61. 7 67. 9 67. 3 73. 2

scfgVB-auto 74. 0 74. 0 •79. 8 •79. 8

scfgVB-hand •78. 0 •78. 0 79. 0 79. 0

English Thai

UBL-S 85. 3 85. 4 74. 0 74. 1

WASP 73. 5 79. 4 69. 8 73. 9

uni-hybrid 76. 3 79. 0 71. 3 73. 7

re-hybrid 77. 0 82. 2 71. 7 76. 0

scfgEM 73. 5 78. 1 69. 8 72. 9

scfgVB-auto 81. 2 81. 2 74. 7 74. 7

scfgVB-hand •83. 7 •83. 7 •76. 7 •76. 7

Table 6.3: Accuracy and F1 score comparisons on the geo600 training set. Highest

scores are in bold, while the highest among the tree based models are marked with a

bullet. The dotted line separates the tree based from non-tree based models.
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only a few words are likely to be used to express a particular concept in the meaning

representation language. Second, the prior also allows themodel to generalize to words

and meaning representation symbols previously unseen during training, acting as a

kind smoothing scheme. WASP and the hybrid tree simply fail to return a parse in the

cases of unknown words, negatively impacting recall, but the Bayesian prior permits

our model to always propose a meaning representation for anygiven sentence. It is

less clear why our approach improves over UBL-S, which employs a two-pass parsing

approach to return a best guess in the case of failure, but perhaps the Dirichlet prior’s

ability to model sparsity helps here as well.

We have argued that tree transformation based semantic parsing can benefit from

the literature on formal language theory and tree automata,and have taken a step in

this direction by presenting a synchronous grammar-based semantic parser. Drawing

this connection facilitates a greater flow of ideas in the research community, allowing

semantic parsing to leverage ideas from other work with treeautomata, while making

clearer how seemingly isolated efforts might relate to one another. We lose nothing

in terms of performance by relying on these general formalisms, with results that are

competitive with or better than the state of the art on a standard data set, but gain signif-

icantly in terms of modeling flexibility and ease of implementation. Once the parsing

and training framework itself is implemented, a one-off investment, any number of

models can be designed and tested without ever needing to invent a new algorithm.

In fact, the model is closely related to the hybrid tree modelof Lu et al. (2008), but

where they found it necessary to develop several novel algorithms specifically tailored

to their model we have relied on the general parsing and inference procedures outlined

in Chapters 4 and 5 which are applicable to a large class of models. Situating the

model in this general framework makes it easier to extend thework in this chapter on

semantic parsing to our ultimate goal of implementing our new word learning model

presented in the next chapter.

similar to that of UBL improved performance.
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TEST geo880 - 600 train/280 test

German Greek

Acc F1 Acc F1

UBL-S 75. 0 75. 0 73. 6 73. 7

WASP 65. 7 • 74. 9 70. 7 • 78. 6

re-hybrid 62. 1 68. 5 69. 3 74. 6

scfgVB-hand • 74. 6 74. 6 •75. 4 75. 4

English Thai

UBL-S 82. 1 82. 1 66. 4 66. 4

WASP 71. 1 77. 7 71. 4 75. 0

re-hybrid 76. 8 • 81. 0 73. 6 76. 7

scfgVB-hand • 79. 3 79. 3 • 78. 2 • 78. 2

geo250 - 10 fold cross-val

English Spanish

UBL-S 80. 4 80. 6 79. 7 80. 1

WASP 70. 0 80. 8 72. 4 81. 0

re-hybrid 74. 8 82. 6 78. 8 • 86. 2

scfgVB-hand • 83. 2 • 83. 2 • 80. 0 80. 0

Japanese Turkish

UBL-S 80. 5 80. 6 74. 2 74. 9

WASP 74. 4 • 82. 9 62. 4 75. 9

re-hybrid 76. 8 82. 4 66. 8 • 77. 5

scfgVB-hand • 78. 0 78. 0 • 75. 6 75. 6

Table 6.4: Accuracy and F1 score comparisons on the geo880 and geo250 test sets.

Highest scores are in bold, while the highest among the tree based models are marked

with a bullet. The dotted line separates the tree based from non-tree based models.3
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Frog Stories Corpus: Language and

Context

Marchman and Slobin collected data from over 100 subjects, children and adults, in

several different languages to assemble what is sometimes referred to as the Frog Sto-

ries Corpus (Berman and Slobin, 1994). The corpus consists of transcribed narratives,

describing the events visually depicted in the wordless picture book “Frog, Where Are

You?” by childrens book author Mayer (1969). The original objective of the data col-

lection was to study the development of narrative as children matured, but it captured

the imaginations of numerous psychologists, resulting in the addition of narratives in

several more languages, and was used to study a wide range of developmental phe-

nomena, partially collected in two volumes (Berman and Slobin, 1994; Stromqvist and

Verhoven, 2004).

The book tells the story entirely through a sequence of 24 black and white line

drawings (see Figure 7.1 for a sample). Because the book is wordless, it permits the

telling of the story with endless variations, and each narrator tells a slightly different

version of events. At the same time, the pictures tell a clearenough story that a fair

amount of consistency is maintained across speakers and even languages, making for

an appealing data set for machine learning experiments as well as the already exis-

tent psychological studies. In particular, we are interested in modeling child language

learners, and focus on the adult narratives to simulate child-directed speech, of which

there are 12 for each language. We also focus on three of the languages, English,

German, and Turkish, as these are the three with the largest amount of data, about

1,000 utterances per language. The corpus was originally gathered for the purpose

of studying narrative development, where narrative complexity was measured by the

121
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Figure 7.1: A sample picture from Mercer Mayer’s wordless picture book “Frog, Where

Are You?” (Mayer, 1969).

total number of events related over the course of the story. Thus, the original coding

of the data was fairly event-centric, where utterances weretranscribed and manually

segmented so that each utterance contains at most one event.The original encoding of

the data, segmented event by event, made it easy to count events, but otherwise there

was little semantic analysis of the utterances.

The objective of our new semantic corpus annotations is to provide a data set for

testing simulations of child learners, where the child is assumed to learn word mean-

ings from the pairing of non-linguistic scenes (pictures inthe book) with the words

of the language. For this purpose, we have added two levels ofannotation: a logical

description of each of the 24 scenes in the book and meaning representations for each

utterance of the three languages. We also provide English translation for the German

and Turkish utterances, performed by PhD student volunteers at Macquarie University.

The intention is that, using our annotations, a model can simulate a child’s experience

of trying to learn new words by listening to the narration while simultaneously ob-

serving the pictures of the book, and meaning inferences canbe tested by comparing
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Utterances

English German Turkish

words 6.8 6.5 4.2

events 0.9 0.9 0.9

entities 1.3 1.1 1.1

mods 0.1 0.1 0.1

roles 1.7 1.5 1.2

vertices 2.6 2.4 2.1

edges 1.6 1.4 1.2

utts/scene 38.6 52.9 35.4

total utts 927 1270 850

Table 7.1: Frog Stories corpus: utterances

per language.

Scenes

events 46.3

entities 26.6

mods 7.9

roles 114.4

vertices 74.0

edges 108.0

re-entrancies 14.8

components 7.3

num dags 11

total 24

Table 7.2: Frog Stories corpus: scenes.

them to the gold annotations. The utterance- and scene-level annotations both consist

of a basic Neo-Davidsonion style semantics represented using the language of predi-

cate calculus expressions, describing the action and the roles of the various actors and

subjects of the action, a “who did what to whom” style representation. The scene de-

scriptions and meaning representations follow the same conventions, and use the same

symbolic language, a deliberate choice intended to facilitate the modeling of logical

relationships between scene and individual utterances.

The annotation work for all three languages was performed bythe author, working

initially from English translations in the case of German and Turkish. Thus, the anno-

tations are likely somewhat biased toward the English translation, although we made

some effort to correct for this in subsequent passes over thedata, using a bilingual

dictionary to check for consistency with the vocabulary of the original language.

The resultant corpus with its annotations is similar in somerespects to other cor-

pora that have been used for semi-supervised semantic parsing such as the work of

Chen and Mooney (2008) or Kwiatkowski et al. (2012). Chen and Mooney (2008),

for instance, use machine-extracted summaries of a soccer game simulation for the

non-linguistic context where each sentence in a sportscastnarrative is assumed to cor-

respond to an individual event. In contrast to the Frog Stories, their Robocup Sportscast

corpus uses meaning representations that are generated independently from the natural
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Concept/Word Types

words

concepts en de tr

events 315 278 437 408

entities 148 121 193 304

mods 64 14 30 24

roles 23 - - -

other - 374 558 530

Table 7.3: Frog Stories corpus: number of concept types and the word types the word

types that correspond to them for each language.

language narrative, which could potentially complicate the learning problem beyond

what is permitted in the Frog Stories due to the fact that our meaning representations

and scene descriptions are both based on the natural language narrative, potentially

enforcing a tighter match between language and meaning thanone might otherwise

expect. However, the complexity of the natural language in Robocup Sportscast is

very simple and repetitive with little variability and a small vocabulary of about 300

word types in a corpus of approximately 2000 sentences. Furthermore, the language

of meaning representations is finite, permitting only a few hundred different semantic

expressions which are themselves very simple and relatively flat. There are only 9

different possible event types where about 70% are of the form pass(src-player, dst-

player) and only 30 possible entities. Finally, the scenes in RobocupSportscast are

also small with very limited ambiguity so that on average there are only about two

meaning candidates per sentence.

Kwiatkowski et al. (2012), on the other hand, use a corpus based on the CHILDES

Eve corpus (MacWhinney, 2015) where meaning representations are automatically de-

rived from syntactic parses. This choice allows them to cheaply derive semantic anno-

tations for a considerably larger data set of about 14 thousand naturalistic utterances

with much more variability and complexity than Robocup Sportscast. However, the

corpus lacks annotations specifically relating to the non-linguistic context at the time of

utterance. Thus, the authors are forced to approximate scene descriptions by arbitrarily

defining a set of meaning candidates for each utterances consisting of the meaning rep-
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resentation for the utterance and its immediately preceding and following utterances.

The corpus is also monolingual (Sportscast contains English and Korean narrations),

making it impossible to test how well models might generalize across languages.

Frog Stories bears similarities to both corpora but with some unique characteristics

largely centered on the scene descriptions. Like syntax-derived meaning approxima-

tions of Kwiatkowski et al. (2012), our meaning representations are also somewhat

language dependent, where annotations for German and Turkish are loosely based on

English translations. Still, despite the English bias, it is possible to test a model on

different languages, unlike with the Eve corpus. In contrast, this language language

dependence is somewhat less apparent in Robocup Sportscast where sentence “mean-

ings” are actually derived automatically from non-linguistic events in a sports simula-

tor. Also like Kwiatkowski et al. (2012), and in contrast to Chen and Mooney (2008),

meaning representations of Frog Stories bear a resemblanceto syntactic dependency

analyses. However, Frog Stories meaning representations are more abstract, shedding

much of the detail a syntactic parse would contain, thus forcing a learner to work

slightly harder to map directly between words and meanings.

The biggest departure from both the Robocup Sportscast and CHILDES Eve cor-

pora, however, is in that scene descriptions, which, ratherthan simple sets of meaning

candidates, are structured representations of a large range of things that may be said

about a picture in the children’s book. One way these descriptions differ from the sets

of meaning candidates in the case of Kwiatkowski et al. (2012) is candidates consist

only of things that are actually said, whereas the Frog Stories scenes permit many ut-

terances that, while logically consistent with the things thatweresaid may not, in fact,

correspond to any utterance itself.

Using a corpus based on a picture book also allows for an intuitive break-point to

indicate where non-linguistic context begins and ends for each utterance. In the case

of both Sportscast and Eve, experiments are forced to rely onarbitrary windows to

identify meaning candidate sets, where the size is chosen inboth cases based on the

computational and learning performance of the model being tested. However, Frog

Stories relies on a model-independent factor to define a scene, where a scene is con-

structed to cover all utterances associated with a single page of the picture book.

Finally, these scene descriptions also contain discourse-level information, identi-

fying coreference across utterances, and capture alternative descriptions of the same

entities, where a single entity may be described as a gopher,a squirrel, a mole, or sim-

ply by pronoun “he”. Although we make limited use of this coreference information,
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it could prove of interest for future work in modeling discourse level contributions to

the word learning problem.

7.1 Truth-conditional semantics

In the original annotations, each utterance was identified with the picture it describes.

As part of this dissertation work, we have added an extra level of annotation, cod-

ing the utterance meanings in the tradition of Neo-Davidsonian style truth conditional

semantics (Lepore and Ludwig, 2007), with predicate logic expressions as meaning

representations such as the following:

(7.1) the little boy fell from the tree

∃e,x1,x2.fall(e)∧patient(e,x1)∧boy(x1)∧source(e,x2)∧ tree(x2)∧ little(x1).

In keeping with the Davidsonian tradition, we say a logical expression represents

the meaning of a natural language utterance if it evaluates to true exactly when the

utterance itself is true and not otherwise. By convention, events, entities, and other

qualifying features such aslittle are represented by unary relations and binary relations

identify relationships between concepts such as the thematic relations identifying the

agent or patient of a particular action.

The compositional nature of such expressions permits us to describe a large number

of utterances with a relatively small set of relations. Neo-Davidsonian semantics tends

to be event-centric, where unary relations likefall act as the main idea or pivot linking

entities via their thematic relations. Thus, Neo-Davidsonian semantics seems like a

particularly appropriate choice for representing utterances in the event-centric frog

stories corpus. Neo-Davidsonion semantics often leads to semantic analyses that are

similar to the syntax, where events are usually realized as verbs, entities as nouns, and

the thematic relations as arcs in a dependency analysis, facilitating reasoning about the

syntax/semantic interface, another topic central to our focus.

Because we are primarily interested in modeling child language acquisition where

the representations learned are likely to be fairly simple,incomplete, and somewhat

crude, we dispense with many of the finer nuances of the semantic theory, focusing on

the high level “who did what to whom” notion of meaning that one might expect a pre-

verbal child to infer from listening to a narrative while observing an interaction among

non-linguistic entities. We largely omit things like tense, aspect, and mode and entirely

ignore issues of quantification and scope. All variables areexistentially quantified, and
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we will often omit the quantifier itself in our examples sinceit is implicit. Also, proper

names receive no special treatment; while the boy may be referred to as “Alex” in the

narrative, we simply treat this name as an alternative word for boy.

7.1.1 Thematic relations

The binary thematic relations specify the role of each entity in the event. For instance,

in example 7.1, patient and sourcespecify that boy is the one falling and he is

falling from tree. The thematic relations form a closed set consisting of 21 different

types such asagent, patient, experiencer, theme, loc, source, goal, recipient, time, and

instrument.

Also, sometimes entities are related to each other without the direct intervention of

a mediating event or action. For instance, one may describe the location of one entity

in relation to another.

the frog is inside the jar

loc-in(x1,x2)∧ frog(x1)∧ jar(x2).

To handle this case of location, we appropriate a thematic relation loc, normally used

to describe the location of an event and generalize it to describe locations for entities

as well.

Possessives are another variety of inter-entity relation which we represent by a

simple binary relationpos.

the elk’s antlers

pos(x1,x2)∧elk(x1)∧antlers(x2).

In some cases, these thematic relations are also annotated with sub-types, such as

in our example of “the frog is inside the jar”, where-in has been appended toloc to

specify a particular type of location relation, distinct from loc-behindin the following

example:

the frog behind the log

loc-behind(x1,x2)∧ frog(x1)∧ log(x2)

7.1.2 Pronouns

We annotate pronouns according to the information that the particular word encodes.

For instance, pronouns in English may encode gender, number, and animacy.



128 Chapter 7. Frog Stories Corpus: Language and Context

he popped out of the hole

pop-out(e)∧agent(e,x1)∧a-m-sg(x1)∧source(e,x2)∧hole(x2)

the child climbed onto it

climb(e)∧agent(e,x1)∧child(x1)∧dest-on(e,x2)∧sg(x2)

The use of the word “he” indicates that the subject is male, singular, and animate,

a combination of features which we encode by the constanta-m-sg, while “it”, on

the other hand, is neuter, singular, and possibly inanimate, getting the constantna-

sg specifying that it is singular with indeterminate animacy.The exact information

encoded in a pronoun is language dependent. For example, Turkish, in contrast to

English, lacks a direct counterpart for “he” (a-m-sg), “”she” (a-f-sg), or “it” ( na-sg),

and instead has a pronoun “o” which can be used for animate, inanimate, male, or

female entities, and only specifies number (singular), which we denote bysg.

To keep things simple, we omit possessive pronouns such as “his” or “my” from the

annotations. Also, in the case of Turkish, a pro-drop language, we asked the translator

to note where pronouns were supplied in translation that were not present in the original

transcription and omitted these from the semantic annotations as well.

7.1.3 The lexicon

The particular set of unary relations and constants chosen to annotate a given utterance

is chosen based on the content words of the utterance. Specifically, in addition to

the utterance level annotations, the corpus also includes alexicon which identifies the

words each constant and unary relation corresponds to in thecorpus. The lexicon is

carefully constructed so as to enforce a soft mutual-exclusivity principle in keeping

with the literature on word learning, so that for each language every event concept

corresponds to a single verb stem, and similarly for entities and so on.

7.2 Scene descriptions

Since we are interested in modeling the learning of languagemeanings from scenes, we

also annotate the pictures of the picture book. These are also rendered as expressions in

predicate logic, much like the Neo-Davidsonian logical forms of the natural language,

a kind of world semantics. In fact, in an effort to remain consistent with the utterance-

level annotations, we rely on essentially the same conventions we did there, using
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Neo-Davidsonian semantics to describe the images as well asthe individual utterances

that describe them.

There is much we are abstracting away from in our choice of scene annotation

scheme. Much as a learner must work his way backward through the lexical and syn-

tactic levels from surface form to meaning representation,there are similar layers of

inference and interpretation between the raw sensual inputof a picture and what a

learner eventually perceives as the scene. For instance, there are questions of saliency,

which features or objects stand out over others and are worthy of mention. Just identi-

fying a collection of raw features as a coherent object is no trivial task. There are also

principles of social perception that govern how a line drawing might resolve to an ani-

mate character, and by which motivations and intentions areassigned to this character.

Children must solve all of these problems as well.

Most of these interesting perceptual problems are beyond the scope of our work

here, however. Instead, we pick up where the perceptual machinery has largely left

off, assuming that the learner has already rendered the picture into some representation

conducive to natural language description. This is an obvious oversimplification of the

problem the child actually faces, but the enormous complexity of language acquisition

plus perception insists on some form of simplifying assumptions. The many interesting

challenges of artificial vision are far from solved, and in many respects fall short of the

levels one might expect a human language learner to perform at, so, in some ways,

an assumption of a greater level of competence than we can currently achieve with

artificial vision technology has the potential to yield a more realistic model of human

cognition.

Of course, our situated semantic parsing model cannot entirely ignore the mapping

between world and utterance. However, we carefully circumscribe the relationship

between scene and utterance by enforcing two assumptions. First, we assume that any-

thing any narrator, across all languages, ever says is a truestatement about the scene.

Second, we make a closed world assumption, assuming that anything not mentioned

by any of the narrators is untrue. Thus, we abstract away fromalmost all the perceptual

problems with the exception of some aspects of salience: thelearner must still resolve

which aspects of the scene each utterance describes.

Given these assumptions of the relationship between scene description and utter-

ance meaning, and the utterance-level annotations, it is possible with some additional

effort to work backwards to derive the scene description. Wefirst compile the list

of utterances across all languages that describe a given scene. Then we combine the
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meaning representations into a single logical descriptionof the scene so that each scene

description is guaranteed to subsume the meaning of each of its associated utterances.

I.e., each scene description entails every utterance in thenarration about the corre-

sponding picture in the book. The guiding principle is to findthe simplest subsuming

expression that only entails true statements about the scene.

For example, given the meaning representations of four different utterances

der Junge ist vom Baum hinuntergefallen (German)

/ The boy has fallen down off the tree /

fall(e)∧patient(e,x1)∧boy(x1)∧source(e,x2)∧ tree(x2)

the boy fell to the ground (English)

fall(e)∧patient(e,x1)∧boy(x1)∧dest(e,x3)∧earth(x3)

the boy disturbed the owl in his tree (English)

disturb(e)∧agent(e,x1)∧boy(x1)∧patient(e,x4)∧owl(x4)

∧ loc(e,x2)∧ tree(x2)

arilar kucuk kopegi kovaliyor (Turkish)

/ the bees are chasing the little dog /

chase(e)∧agent(e,x5)∧bees(x5)∧ theme(e,x6)∧dog(x6)∧ little(x6)

the scene description will contain something like the following

fall(e0)∧patient(e0,x1)∧boy(x1)∧source(e0,x2)∧dest(e0,x3)∧earth(x3) (7.2)

∧disturb(e1)∧agent(e1,x1)∧patient(e1,x4)∧owl(x4)∧ loc(e1,x2)∧ tree(x2)

∧chase(e2)∧agent(e2,x5)∧bees(x5)∧ theme(e2,x6)∧dog(x6)∧ little(x6)

Constructing the scene requires resolving a coreference problem where we identify

the variable modified byboy in the first utterance with that of theboy in the second

and third, and similarly we note that thefall event is the same in both the first and

second utterances.

7.2.1 Entity coreference

Often coreference resolution is trivial given the semanticrepresentation, since the con-

stantboyalways refers to the same character throughout the story. However, in many

cases, the same entity may be described very differently. Figure 7.2 illustrates an ex-

ample where the same entity is conceptualized as both ahamsterand agopher, and is
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Hepops out of his hole

emerge(e)∧agent(e,x1)∧a-m-sg(x1)∧source(e,x2)∧hole(x2)

And out popped a hamster

emerge(e)∧agent(e,y1)∧hamster(y1)

The gopherbit his nose

bite(e)∧agent(e,z1)∧gopher(z1)∧patient(e,z2)∧nose(z2)

x1 = y1 = z1

[gopher,hamster,a-m-sg]

e0

pop-out

e1

bite

hole

noseagent

patie
nt

ag
en

t

source

Figure 7.2: Linking variables that correspond to the same entity.

sometimes referred to by pronoun. Since hamsters and gophers are semantically differ-

ent, even if they all refer to the same animal in the story, we annotate each differently,

but add notes to indicate that they share the same referent. This same strategy gener-

alizes to tracking the referents of pronouns. Thus, each scene has a set of equivalence

classes indicating which concepts and pronouns refer to thesame entities in the story.

For the example of the figure, the variable thegopher, hamster, anda-m-sgpronoun

all refer to the same entity, resulting in the equality:

x1 = y1 = z1.

We indicate the equality by enforcing that the same variablename is used across all

utterances for the scene. That is, we essentially raise the utterance-specific existential

quantifiers to the scene level to cover the full set at once.

Similarly, sometimes different referents will be described the same way. In one

scene there are multiple frogs, a father and mother frog, each of which my be referred
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to asfrog, even though they are different entities. In this case, we distinguish the dif-

ferent frogs by using different variables just as we do for any other dissimilar concepts.

Furthermore, they are described as “he” and “she” dependingon which one is being

talked about. So for the male frog, we have

frog(x0) and a-m-sg(x0)

and for the female frog we have

frog(x1) and a-f-sg(x1)

wherex0 6= x1.

7.2.2 Event coreference

In constructing the example scene in the opening example of this section 7.2 we had to

solve a similar coreference problem for the eventfall

the boy fell from the tree

fall(e)∧patient(e,x1)∧boy(x1)∧source(e,x2)∧ tree(x2)

the boy fell to the ground

fall(e)∧patient(e,x1)∧boy(x1)∧dest(e,x2)∧earth(x2)

to arrive at

fall(e)∧patient(e,x1)∧boy(x1)∧source(e,x2)∧ tree(x2)∧dest(e,x3)∧earth(x3).

We treat the two utterances as partial descriptions of the same event and thereby con-

struct the full description by computing their conjunction.

Additionally, just as different entity referents may sharethe same semantic type,

the same goes for events. Consider the following example:

the boy looks at the frog

look(e)∧experiencer(e,x1)∧boy(x1)∧ theme(e,x2)∧ frog(x2)

the frog looks at the dog

look(e)∧experiencer(e,x1)∧ frog(x1)∧ theme(e,x2)∧dog(x2)
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If these were two (incomplete) instances of the same event, the scene would contain

this single logical expression

look(e)∧experiencer(e,x1)∧boy(x1)∧ theme(e,x2)∧ frog(x2)

∧experiencer(e,x2)∧ theme(e,x3)∧dog(x3)

implying that the following would also be true

* the frog looks at the frog

look(e)∧experiencer(e,x2)∧ frog(x2)∧ theme(e,x2)

* the boy looks at the dog

look(e)∧experiencer(e,x1)∧boy(x1)∧ theme(e,x3)∧dog(x3)

However, neither of these are part of a valid description of the story. To prevent such

over-generalizations when we form the scene description, we use different event vari-

ables to distinguish distinct events of the same type:

the boy looks at the frog

look(e0)∧experiencer(e0,x1)∧boy(x1)∧ theme(e0,x2)∧ frog(x2)

the frog looks at the dog

look(e1)∧experiencer(e1,x2)∧ frog(x2)∧ theme(e1,x3)∧dog(x3)

wheree0 6= e1.

Thus, the scene would be

look(e0)∧experiencer(e0,x1)∧boy(x1)∧ theme(e0,x2)∧ frog(x2)

∧look(e1)∧experiencer(e1,x2)∧ theme(e1,x3)∧dog(x3)

which entails the true statements but not the false ones.

Given these referent equivalence classes for the entities and events, we can easily

assemble the individual utterances into scene descriptions. Assembly merely involves

eliminating duplicate relations involving the same variables.

7.3 Graphs

There is a long tradition of representing logical expressions in graphical terms, and

it is still in active development. See Figure 7.3 for some examples of just a few dif-

ferent approaches. The conceptual graphs of Sowa (1976), for instance, represent the
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logical predicates as nodes in a graph, and draw edges between nodes corresponding

to the sharing of variable arguments. Entity-relation diagrams for describing the ta-

bles of relational databases are very similar to the conceptual graph convention. The

dependency-based compositional semantics of Liang et al. (2011), though limited to

trees, follows a similar scheme of representing predicatesas nodes and arguments as

edges. It is also possible to represent predicates by edges,such as in the semantic

dependency graphs of Titov et al. (2009); Martin and White (2011). Semantic depen-

dency graphs are designed to represent semantic dependencies between words, much

as the edges in syntactic dependency graphs. In yet another example, the discourse

representation structure graphs of Le and Zuidema (2012) represent both variables and

predicates by nodes, drawing edges from variable nodes to the predicates that take

them as arguments.

We choose a graphical representational scheme that closelyrelates to the semantic

dependency graphs (see Figure 7.3(c)), where

• variables are identified with vertices,

• binary relations specify edges, directed from the vertex identified with the left

argument to that of the right argument,

• vertex and edge labels are identified by their associated relations, where unary

relations specify vertex labels and binary relations specify edge labels.

Thus, the graph represented in Figure 7.3(c) can be translated into the following ex-

pression:

climb(e0)∧agent(e0,x1)∧boy(x1)∧ theme(e0,x2)∧ tree(x2)

∧disturb(e1)∧agent(e1,x1)∧patient(e1,x3)∧owl(x3)∧ loc(e1,x2)

∧chase(e2)∧agent(e2,x4)∧bees(x4)∧ theme(e2,x5)∧dog(x5)∧ little(x5).

Our approach differs from the semantic dependency graphs ofTitov et al. (2009);

Martin and White (2011) principally in that we do not identifynodes directly with

words, since we are interested in a more general scheme that would allow us to graphi-

cally represent scene descriptions where word nodes do not make sense. Also, a major

part of the phenomena we wish to model is the learning of the mapping between predi-

cates and words and we do not want to start from the assumptionof an identity relation

given directly in the meaning representation. Note that semantic and syntactic depen-

dency graphs, though not identical, often closely resembleone another by virtue of
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Figure 7.3: Three different graph representations of the expression in equation 7.2. (a)

A conceptual graph. (b) A discourse representation structure graph (global wrapper

node omitted for clarity). (c) Our representation scheme.

the close relationship between thematic relations and syntactic arguments. In fact, se-

mantic dependency graphs often feature in work at the syntax-semantics interface. It

is for this close correspondence between syntax and semantics, as well as the relative

simplicity of the representation, that we choose a similar approach for our work here.

Coreference can be represented in the graph by identifying each referent with a

single vertex of the graph. If there are semantically different ways of referring to the

referent, these become multi-labeled vertices, one label for each descriptive type. For

instance, in Figure 7.2, the rodent that emerges from the ground to bite the boy on

the nose is called a “hamster,” a “gopher,” and sometimes is just referred to as “he,”
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resulting in three different labels for the corresponding vertex.

7.4 Encoding scenes as forests

A graph is capable of representing an arbitrary expression in our subset of predicate

calculus, but this expressivity comes at computational cost. Compared to trees and tree

languages, the set of tools for processing more general classes of graph is considerably

more limited, and those that exist tend to be expensive, lesswell understood, and diffi-

cult to implement. It is easier to implement efficient algorithms for parsing trees, on the

other hand, and a general graph parser seems somewhat overpowered considering that

the vast majority of utterances in our corpus can be described by trees. In fact, there

are only 12 out of a total of 3030 utterances whose meaning cannot be represented

by trees. Of course, even if meanings can usually be represented by trees, scene de-

scriptions are invariably more complex graphs, but these graphs can be approximated

using multiple trees aggregated into a forest. We can then parse these forests using the

highly optimized tree parser presented in Chapter 4. Inevitably the resultant forests are

larger than the more compact graph representations (by about 30%), leaving it unclear

exactly how much forestization saves over parsing the graphdirectly using a similarly

optimized graph parser. However, we can still justify forestization over direct graph

parsing considering that the optimizations described in Chapter 4, while still theoreti-

cally applicable, are considerably more difficult to implement efficiently in the general

graph parsing setting.

To “forestize” the graphs, there are two features that we must enforce. The first

is rootedness, i.e., every node of each subtree must be reachable by following a di-

rected path from some root node. The second is the single parent property where every

node except the root which has only outgoing edges must have exactly one incoming

edge (i.e., no reentrancies). We enforce these two properties in the Frog Stories scene

graphs using a semi-automated process with some manual intervention for handling

reentrancies.

Rather than construct the scene graphs and then forestize these graphs, the process

starts by first enforcing the tree property at the individualmeaning representations,

then joining these meaning representation trees into subgraphs at using the coreference

annotations. Finally, we make another pass over these subgraphs to again enforce the

tree properties, forming the forest.

We start by enforcing the rootedness and single parent properties in each meaning
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Figure 7.4: (a) A scene graph. (b) A forest approximation, one event per tree. Indices in-

dicate duplicate nodes required for preserving the tree property. (c) The transformation

of a meaning representation into a rooted tree.

representation. First, we pick the node to make root by identifying by prioritizing

events first, and then affects likehappyor angryover entities. There is typically only

one event per utterance, given the way the original corpus was encoded, but in the case

of affects or entities, occasionally there may be multiple candidates for the root. In

such cases, we score each candidate by calculating its out-degree minus its in-degree

and choose the one with the highest score, breaking ties arbitrarily. Once the root is

identified, we invert all of its incoming edges and then invert the minimum number of

additional edges in the graph necessary so that all other vertices are reachable from the
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root by some directed path. To preserve the semantics of these reversed edges, we add

an extra notation in the edge label so that, for instance, reversing edge experiencer(e,x)

results in experiencer−1(x,e). Figure 7.4(c) illustrates an example wheredisturb, as

the event node, is chosen as root and theexperienceredge is reversed so that it has a

directed path tocurious.

Next, we remove the reentrancies from the meaning representations, of which there

are only 12. We do so by splitting the vertex by introducing one or more additional

vertices, one per in-edge, and dividing up the incoming edges among them, leaving the

out-edges attached to the original vertex.

Once we have guaranteed that the meaning representations ofthe individual utter-

ance is a tree, we proceed to construct the maximal trees of the scene forest. These

trees are essentially the maximal frames of the scene, constructed by taking the union

of the roles of each instance of the root concept (event, affect, or entity) in the ut-

terances. The union operation may introduce new reentrancies which can again be

removed by splitting vertices and distributing the incoming edges among them until

there are no more reentrancies. Outgoing edges may also needto be duplicated de-

pending on whether every meaning representation is coveredby the graph, which we

enforce manually and test with a script. Occasionally cycles may be introduced during

the union operation, which we also break by splitting vertices and redistributing edges

to guarantee that every utterance meaning is included as a subtree, another step which

enforced manually and tested with a script.

These trees then make up the forest, which itself can be represented as a single tree

by adding an extra root node. Figure 7.4(b) illustrates the resultant forest representation

corresponding to the scene graph fragment in part (a). Note thatcuriousalong with the

accompanyingthemeand itsloc are duplicated as well as appearing as root of its own

tree. This allows for utterances such as

“the boy is curious about the hole”

curious(s)∧experiencer(s,x1)∧boy(x1)∧ theme(s,x2)∧hole(x2)

as well as utterances corresponding to the tree in Figure 7.4(c) such as

“the curious boy disturbed the owl”

disturb(e)∧agent(e,x1)∧boy(x1)∧patient(e,x2)∧owl(x2)

∧ curious(s)∧experiencer(s,x1)

The resultant forest is potentially much larger than the graph would be, with com-

putational implications since the parsing algorithm presented in Chapter 4 takes time
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directly proportional to the size of the tree. However, in practice we find that the neces-

sary vertex splitting and edge duplication leads to forestscontaining about 1.29 times

as many vertices and 1.1 as many edges as the unforestized graphs. General graph pars-

ing typically requires far more than time quadratic in the graph being parsed, usually

exponential in the degree or tree width of the graph such as the algorithm of Chiang

et al. (2013), so our forest transformation potentially saves us some computational ex-

pense, at least in terms of the asymptotic bounds. However, it is difficult to say exactly

how much the forestization step actually saves in practice without a direct run-time

comparison, and a fair comparison would require first implementing the optimizations

described in Chapter 4 in a general graph parser, something weleave for future work.

7.5 Quantifying and constraining ambiguity

A scene description is a compact way of defining a set of possible true statements

about the scene, and we can always expand the representationto an explicit set by sim-

ply enumerating all possible logically entailed statements. Unrestricted, however, this

set would be astronomically large, essentially the powerset of all concepts in the scene

with roughly an average of 2200 entailments per scene, and very few of these entail-

ments actually correspond to anything someone is likely to actually say. For instance,

it is hard to conceive of a statement with the following meaning representation

agent(e0,x1)∧boy(x1)∧curious(s)∧source(e1,x2)∧ tree(x2).

The expression is merely a jumble of disconnected concepts;the boy is an agent of

some event, the tree the source of some other, and it is unclear what curioushas to

do with either. Even the most efficient computational model would also likely need to

employ some sort of filter just to keep the problem tractable,and it seems likely that

human learners employ biases or constraints that allow themto quickly dismiss such

nonsensical meaning candidates. Thus, a word learning system would likely do well to

constrain this set of entailments to something that is more computationally tractable,

focusing attention on only the more plausible possibilities.

We employ five main constraints.

• Single Event: Utterances can contain at most one event. This assumption is

not only guaranteed by the fact that utterances were manually segmented by the

original encoders so there would be at most a single event perutterance (Berman



140 Chapter 7. Frog Stories Corpus: Language and Context

and Slobin, 1994), it might also be a reasonable assumption in general since ut-

terances in child-directed speech are often relatively short, perhaps consisting

of a single clause. Such a simplifying assumption could greatly reduce pro-

cessing overhead both for human and computational learners, particularly in the

early stages of word learning when there are few known words to rely on disam-

biguating novel words.

• Connectedness: Everything in the meaning representation either plays a direct

role in the main event of the utterance or is related to something that is through

a chain of binary relations. Representing the scene as a graphor tree, this means

that all meanings must be connected subgraphs or subtrees. The connectedness

restriction reflects an intuition that entities that interact in the scene are more

likely to also be talked about in the same utterance than are entities that seem

to have no relationship. This constraint is related to the conditions for well-

formedness in Lexical Functional Grammar (LFG), wherecoherencedictates

that every grammatical function must be licensed by some predicate in the sen-

tence (Bresnan, 2001).

• Relation Completeness: If an entity or event is omitted, all binary relations

that include it, either as a left or right argument, must alsobe omitted. For

instance, excludingboy from the meaning representation corresponding to the

scene in Figure 7.4(a) would also exclude the incidentagent, patient, andexpe-

rienceredges. While connectedness relates to the coherence criterion for well-

formedness in LFG, this constraint that relations must be fully specified relates

to completeness, which states that a sentence containing a particular predicate

must also contain all of its required grammatical functions(Bresnan, 2001).

• Rooted Tree: Meanings must be tree shaped (i.e., no concept can play more

than one role). Additionally, this tree must be rooted such that there is some

node (i.e., concept) from which all others can be reached by following a directed

path. Again, this assumption matches the data since there are only a dozen utter-

ances out of roughly 3000 that contain reentrancies. Also, assuming the scene

description has been encoded as a forest as described in Section 7.4, it is easy to

enforce the rootedness constraint. This constraint has a relatively small impact

on the total number of meaning representations, but can aid in computational

modeling since, as mentioned in Section 7.4, there are more algorithmic tools
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unpruned pruned

max 1,333 352

avg 339 183

min 82 33

Table 7.4: The number of meanings entailed by the scene description with and without

frequency pruning. In the frequency-pruned scenes all but the most frequent 20 entities

and 20 events have been removed from the scene and meaning representations.

(which are also usually more easily implemented) for efficient processing of tree

structures than for most other varieties of graph.

• Singly Labeled: Every vertex of the tree has exactly one label. In our graphical

language, adjectives and adverbs likelittle andquicklyare realized as additional

labels on the entity or event predicate vertex. However, forour work we are

primarily interested in noun learning, and multi-labeled trees present additional

complexity, so we further simplify the problem by removing such modifiers from

the scene. There may still be multi-labeled vertices in thescenedescription due

to varying ways of referring to the same entity (see the gopher example in Fig-

ure 7.2), but only one of these may be chosen for a specific meaning representa-

tion.

It seems reasonable that human word learners might employ, if not these exact con-

straints, at least some similar sort of simplifying assumptions. The first three in par-

ticular are fairly plausible as constraints human learnersmight place on the problem at

early stages of learning. Furthermore, most of the constraints are justified by the data

since they turn out to be true for all but a few utterances in the Frog Stories corpus.

Employing these constraints, we arrive at much more manageable numbers. The

first column of Table 7.4 lists the maximum, minimum, and average number of mean-

ings for the 24 scenes of the Frog Stories corpus. In one scene, there are well over a

thousand meaning candidates even under this fairly constrained setting, a number that

even the dynamic programming-based word learner in Chapter 8is unable to handle.

Psychologists often appeal to the notion of saliency to explain the ability of children

to quickly home in a manageable set of candidates. Certain things are more likely
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to be discussed than others, either because they stand out perceptually and draw the

storyteller’s eye or figure more prominently in the story. For instance, a child might

exploit an understanding of the typical structure of story narrative and pay greater

attention to the actions surrounding the main characters than to more peripheral action

like a bird flying in the distance. Focusing on the more central aspects of the story could

allow a learner to grasp the basic narrative even with an imperfect understanding of the

language used. Such a focus could aid in the learning of wordsfor the more central

concepts even as the less central ones are ignored, thereby simplifying the learning

problem to something more manageable.

One would expect this kind of scene-level saliency to correlate with the actual de-

scriptions produced by the storytellers themselves, so we can approximate it using

frequency counts where the more salient actors and actions are mentioned more fre-

quently. In line with this idea, Table 7.4 also reports the ambiguity numbers where all

but the most frequent event and entity types are pruned from the scene and meaning

representations. Relying on saliency in this way, and pruning pronouns and a few of the

more abstract concepts, we restrict the corpus to just 20 different event types and en-

tity types, reducing the number of meaning candidates in ourmost difficult scene from

over a thousand down to about 350, and down to 183 candidates on average. Even in

this further constrained set, however, there are on averagewell over four times as many

meaning candidates as actual utterances per scene from which a child or model must

learn, suggesting that the learning problem is still likelyto prove quite challenging.

In fact, in spite of the simplifying assumptions and saliency-based pruning, there

is still far more ambiguity in the training data than typically assumed in either psycho-

logical or computational experiments where the learner usually only chooses from a

handful of concepts in the non-linguistic context. That is,while relying on many of

the same ideas, the annotations of our corpus are far less constraining than typically

assumed. Chapter 8 explores the effect of this added ambiguity in testing whether a

statistical learner is capable of learning under these conditions.



Chapter 8

Word Learning

Infants are confronted with a challenging problem when it comes to learning the mean-

ings of the words they hear in the arbitrary stream of sounds spoken around them, but

they nevertheless seem to be quite effective at leveraging the many sources of infor-

mation available to work the problem out. In particular, thevalue of co-occurrence

patterns between words and objects across varying non-linguistic contexts has been

demonstrated repeatedly both through computational modeling and behavioral experi-

ments, a phenomenon known as cross situational learning. Typically, the non-linguistic

context in both the computational and behavioral experiments consists of a set of iso-

lated objects that varies across utterances. By assuming that words refer to objects in

the immediate environment, the learner can use the fact thata particular word is more

likely to be heard in the presence of a particular object to deduce that the word refers to

the object. There are many computational models that operate on this principle (Frank

et al., 2009; Yu and Ballard, 2007; Fazly et al., 2010; Jones etal., 2010). Of course, the

world is much richer than portrayed in such simulations where the learner essentially

only has one kind of information, the variation in the presence or absence of words

and objects across utterances and scenes. This chapter presents a cross situational

learning model that exploits an additional source of information: relational informa-

tion among the words in the utterance and among the non-linguistic concepts in the

scene. Concept-concept relations are represented explicitly in the scene description,

while word-word relations are latent, left to be inferred bythe model.

There are different ways that such relational information could influence the learn-

ing problem. For one, relations between entities in the scene may directly shape the

learner’s hypotheses about the meanings of descriptive utterances. For instance, one

might assume that things that interact in the scene are more likely to be referred to in

143
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the same sentence than two completely unrelated entities. Thus, focusing on connected

sub-components of the scene could have a pruning effect on the space of subsets, help-

ing to guide learning and simplify search. For instance, if the scene portrays a swarm

of bees chasing a dog with an owl and trees in the background, it seems plausible that

bees and dog might appear within the same utterance, while the trees and owl with

which the dog and bees do not directly interact are less likely to be included. A learner

has much less to judge from in the case where the scene is represented as a completely

unstructured set of concepts any of which may or may not be related and, thus, any

subset is as plausible as any other. If one must consider the full powerset of concepts,

inference can quickly become intractable, and any plausible pruning strategy based on

their relationships could prove invaluable in terms of tractability as well as the quality

of learning outcomes.

Secondly, structured representations of the non-linguistic context also provide a

more subtle source of cross situational information, sincein a relational setting, situa-

tions vary not only by the presence or absence of entities butalso by the particular rela-

tions among them. Consider the example sentence in Figure 8.1. Mere co-occurrence

statistics for the conceptsboyanddogand the words in the following two sentences

(8.1) lick(e)∧agent(e,x1)∧dog(x1)∧ theme(e,x2)∧boy(x2)

the dog licked the boy

(8.2) scold(e)∧agent(e,x1)∧boy(x1)∧ theme(e,x2)∧dog(x2)

the boy scolded the dog

provides no information since both are present in each situation. Co-occurrence statis-

tics might help infer the meanings of the verbs “licked” and “scolded”, but there are

other useful patterns such as the fact that the agent occurs at the beginning and the

theme at the end that a learner could exploit.In fact, this relational information about

agents and themes and subjects and objects in English could assist in the learning of

the nouns even if the learner failed to identify the verb meanings.

This correspondence between relations and word order can bemodeled by exploit-

ing the similarity between word learning and semantic parsing to integrate the key

features of both into a single model. Semantic parsers seek to learn compositional

meanings for whole sentences rather than isolated words andconcepts, and already

make heavy usage of such relational information. Word learners, on the other hand,

often deal with a much greater degree of referential ambiguity, since semantic parsers
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the boy looked at the frog in the jar

(a)
Utterance: “the boy looked at the frog in the jar”

Meaning: look(e)∧agent(e,x1)∧boy(x1)∧ theme(e,x2)∧ frog(x2)
∧ loc(x2,x3)∧ jar(x3)

LATENT

Scene: look(e)∧agent(e,x1)∧boy(x1)∧possess(x1,x2)∧ theme(e,x3)
∧happy(s)∧experiencer(s,x3)∧ frog(x3)∧ loc(x3,x2)∧ jar(x2)

Figure 8.1: (a) An example utterance, its latent meaning representation, and the accom-

panying scene description and (b) a mapping from words to scene via the meaning.

are trained on observed meaning-sentence pairs. Word learners must instead simulta-

neously infer from context alone the meaning of the sentenceas well as the meanings

of individual words.

Others have proposed similar solutions by using semantic parsers as word learners

while replacing the single observed gold meaning by a set of possible candidate mean-

ings (Börschinger et al., 2011; Kwiatkowski et al., 2012; Chen and Mooney, 2008; Kim

and Mooney, 2010). However, this approach has been limited by issues of computa-

tional complexity, forcing models to work with relatively small sets of half a dozen or

so candidate meanings. We propose to expand this set of meaning candidates by rep-

resenting it as a language in its own right, defined by a probabilistic grammar, which

allows us to apply dynamic programming techniques to effectively search and perform

inference over the set in a far more efficient manner. The grammar-based framework

presented in Chapters 3 through 5 makes it relatively straightforward to adapt and

incorporate the semantic parsing model of Chapter 6, and is also well-suited to imple-

menting such a language-centric approach to representing sets of meaning candidates.

The key idea is to represent the non-linguistic context (orscene) by a single log-
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ical structure as described in Chapter 7 rather than a collection of unrelated meaning

representations and then search over the possible meaning candidates for statements

about the scene. Figure 8.1(a) presents an example of the learning scenario based on

the Frog Stories corpus described in Chapter 7: the learner hears the utterance and

observes a scene and must infer the utterance’s meaning during the process of learn-

ing the contributions of the individual words to that meaning. Part (b) of the figure

illustrates the relationship among the words, meaning, andscene, where the meaning

serves as a bridge explaining which aspects of the scene the words are describing.

As with the simpler semantic parsing model of Chapter 6, the word learner is im-

plemented as a single synchronous grammar that jointly derives scene, meaning, and

words. The meaning-to-words relationship is modeled by a variant of the semantic

parsing grammar, but we add a third dimension to the grammar so that the yield of

each derivation is a triple: scene representation, meaningrepresentation, and words.

Because the entire model is implemented as a grammar it is relatively easy to incor-

porate syntactic aspects for joint inference with word learning to explore the impact of

syntactic bootstrapping. In fact, the semantic parsing model already incorporates this

kind of joint syntactic-semantic learning. Coupled with an ability to manage a larger

number of meaning candidates, our fully grammar-based approach permits us to better

explore the strength of the influence of various effects suchas joint syntactic learning

on resolving referential ambiguity during word learning.

With greater ambiguity, we can measure this strength more effectively than previ-

ously possible, asking the question, “from where do the learning biases and constraints

come?” Are they a necessity of the learning problem, i.e., information theoretic lim-

itations, or are they constraints necessitated mainly by the cognitive resources of the

learner? If a computational model can learn under less constrained settings, one leans

toward ruling out the first possibility, leaving cognitive constraints as the more likely

explanation.

However, while the grammar framework allows a model to explore more ambigu-

ous learning scenarios, there are fundamental challenges that we can only hope to ease,

not entirely avoid. As psychologists have argued, it is likely that human learners rely

on cognitive biases and exploit a combination of alternative sources of information

to further simplify the task. We do not go so far as most previous work, however,

in assuming that these biases narrow the space of possible hypotheses to a dozen (or

often fewer) candidate meanings per utterance, since this would defeat the purpose

of the exercise. Imposing such constraints or biases, however, does not not necessar-
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ily eliminate that much ambiguity. In fact, the corpus analysis of Chapter 7 suggests

there may still be hundreds of candidates remaining even after heavily constraining the

problem. Instead, we explore a marriage of the two, constraining biases plus greater

computational power, to address a greater degree of referential ambiguity.

The model incorporates both soft statistical properties toguide learning and hard

constraints to make the task computationally tractable. Like most statistical models

of word learning, we rely on cross-situational consistencyto home in on reasonable

word-concept pairs. We implement it as a Bayesian model, using a sparse prior on

word-concept pairs in the lexicon encouraging the learner to adopt a kind of mutual-

exclusivity-like bias for small lexicons. Furthermore, without feeding the model any

additional language-specific information, we allow the model to learn and exploit sim-

ple syntactic cues based on canonical word orderings found in the training data. These

soft constraints provide the statistical learner with the ability to gradually home in on

a lexicon, but there are additional hard computational limitations that such soft con-

straints do little to mitigate. In particular, in our grammar framework more ambiguity

translates directly into terms of larger packed parse forests and heavier memory costs,

and a highly ambiguous scenario can quickly exhaust memory resources, necessitating

the introduction of several additional hard constraints.

We enforce four main types of hard constraints. Section 7.5 already outlined the

structural constraints, some of which are closely related to the connectedness and co-

herence properties of LFG (Bresnan, 2001). Additionally, although we relax the as-

sumption of previous work that salience and shared attention eliminates most of the

ambiguity, we still find a place for them here. Psychologistshave observed that speak-

ers often employ intonation to highlight content words, helping to focus children’s at-

tention and distinguish them from other background words (Fernal and Mazzie, 1991).

Thus, we distinguish content words in the input to our systemas well. Furthermore,

shared attention may serve to direct the learner’s attention to the most salient events

and actors in a story, which we implement through scene pruning as described in Sec-

tion 7.5. This scene pruning can also be seen as a kind of theory of mind (Tomasello,

2001), where the learner follows the story and comes to anticipate which entities and

events are most likely to be mentioned. Finally, since we areprimarily interested in

interactions with early stage syntactic learning, which islikely to be more easily mea-

sured after the learner has acquired at least a small set of words, we also simulate this

prior knowledge by providing the model with a small seed lexicon. Of course, even

after incorporating these additional constraints, there is still considerable ambiguity



148 Chapter 8. Word Learning

remaining, with hundreds of meaning candidates per utterance, more than sufficient

to explore our main questions of whether the stricter constraints assumed in previous

work are necessary for learning to occur at all or are simply aproduct of cognitive

limitations.

8.1 Model Definition

Word learning in the Frog Stories scenario consists of the learner listening to a story

told by a narrator while examining and collating this description with the story told

through the images in the picture book and other non-linguistic cues. The modeling

objective is to explore how a learner might infer word meanings by reasoning about

the parallel sources of input to determine which words referto which aspects of the

scene. This reasoning process might manifest as a sequence of guesses: the learner lis-

tens to a sequence of utterances, makes a guess as to the meaning of each as it comes,

checks this guess against the scene to test whether it makes sense in the current con-

text, and then performs some analysis akin to a semantic parser to resolve which words

relate to which components of the proposed meaning. We modelthis procedure proba-

bilistically as a generative process where the model first guesses a meaning, generates

a mapping from meaning to scene (i.e., verifies that the guessis consistent with the

context), and then proceeds to generate the words conditioned on the meaning. The

process can be conceptualized as a two stage procedure for first generating a scene-to-

meaning map and then the meaning-to-words map (although theparticular order of the

stages can be reversed without changing anything).

The meaning-to-scene map is governed by several simplifying assumptions. First,

the model assumes that every utterance is true, and second, that the scene description

contains everything that one may wish to describe, i.e., a closed world assumption.

Thus, in order to verify the validity of a guess for the utterance meaning, the model

merely needs to check whether the scene description contains at least one instance

of the meaning representation expression as a subset. While this simplifies the task

considerably, it still leaves a number of possible meaningsexponential in the size of

the scene description, so we further restrict the model to only propose meanings that are

connected subtrees of the scene description forest. Becauseof the way these forests are

constructed (see Chapter 7), this has the further effect of enforcing an assumption that

every meaning candidate includes at most one event. Given these assumptions, the map

from meaning to scene consists of deterministically generating a copy of the meaning
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Figure 8.2: The generative model for (a) the semantic parser described in Chapter 6

and (b) the word learner for a corpus of J utterances. w j is an utterance, mj is its corre-

sponding meaning representation, and sj is the scene that the utterance is describing.

Variables y j and zj map from meaning to words and meaning to scene, respectively, as

governed by the probabilistic synchronous grammar. µ is the set of multinomial parame-

ters for the language model over meaning representations m, ω is the set of multinomial

parameters for the utterances w given their corresponding meaning representation, and

pi are the parameters for multinomial parameters for the meaning-to-scene mapping.

α, β, and γ are the parameters for their respective Dirichlet priors.

representation and then randomly adding onto this seed to generate the remainder of

the scene.

The map from meaning to words is very similar to the semantic parsing model of

Chapter 6, and consists of choosing words with which each component of the meaning

is expressed and determining a linear order in which to arrange these words.

Figure 8.2(b) presents a plate diagram describing the model. The meaning rep-

resentationm is drawn from a product of multinomials with parametersµ which are

drawn from Dirichlet priors with parametersα. This meaning representation is then

checked against the observed scene by generating a map as peranother product of

multinomials with parametersσ drawn from another set of Dirichlet distributions with

parametersγ. Finally, the words are generated in more or less the same fashion as done

for the semantic parser. In fact, part (a) presents the semantic parsing model for com-

parison, demonstrating that, at this high level, it is essentially a subset of the model
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wherem is observed during training. Equation 8.3 summarizes the model.

P(m,w,y,s,z,µ,ω,σ|α,β,γ) = P(µ|α)P(ω|β)P(σ|γ) (8.3)

·
J

∏
j=1

P(mj |µ)P(w j ,y j |mj ,ω)P(sj ,zj |mj ,σ)

• P(mj |µ) is the probability over plausible meaning candidates givena basic knowl-

edge about what sorts of things are likely to appear in a givenrelation to one

another. For instance, frogs are more like to hop than to bark, a fact that can be

learned by the model and encoded in the parametersµ.

• P(w j ,y j |mj ,ω) describes the conditional probability of the map to words given

a particular meaning representation, dictating which words and word orders are

most likely when expressing a particular concept or combination of concepts.

• P(sj ,zj |mj ,σ) describes the conditional probability of the scene given that same

meaning representation, modeling our closed world assumption and our assump-

tion that every utterance is a true statement. This distribution also encodes in-

ferred information about which aspects of a scene are least likely to be talked

about and instead be generated as background information.

Since the model is implemented as a multi-weighted synchronous grammar, these

three distributions can be explicitly defined in terms of theweights on the rules in a

derivation. For consistency with the semantic parsing chapter, assumeµ(r) andω(r)
are the products of the weights of ruler pertaining to the meaning and the words,

respectively. Additionally, letσ(r) be the product of weights relating to the scene.

Then we can compute all three by simply multiplying the weights of the rules in a

particular derivationx j .

P(mj |µ) = ∏
r∈x j

µ(r)

P(w j ,y j |mj ,ω) = ∏
r∈x j

ω(r)

P(sj ,zj |mj ,σ) = ∏
r∈x j

σ(r)

The precise definition of these probability distributions will be covered in the follow-

ing sections, but like in the case of the semantic parser in Chapter 6, each rule may

contribute to all three portions of the yield simultaneously and therefore have a weight
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vector that includes aµ, ω, andσ, which can be implemented as a multi-weighted

grammar as defined in Section 3.4.

However, before diving into the implementation details we would like to first ac-

knowledge that there are, of course, other ways of formulating the word learning prob-

lem, and some that may even seem more intuitive to some readers than the one pre-

sented here. We could, for instance, first generate the sceneand only then generate

the meaning representation while conditioning on the sceneinstead of the guess-and-

check approach we have taken where first the meaning is independently generated and

then the scene is generated conditioned on the meaning. When considering alternative

approaches, however, it is important to keep in mind that ourultimate objective is to

learn a correspondence between the meaning and words, i.e.,the joint distribution of

m, y andw. The probability over the scenesand the related multinomial variables and

parameters are only necessary for training, and are not useddirectly in computing the

lexicon itself. The particular factorization chosen in Equation 8.3 makes it straight-

forward to compute this joint probability overm, y andw while integrating out the

additional variables pertaining to the scene. In fact, because of the conditional inde-

pendence between the words and the scene, one can simply drops, z, andpi, resulting

in the basic semantic parsing model shown in Figure 8.2(a). In an alternative model

where the meaning is generated conditioned on the scene, we might, for example, have

the following factorization:

P(w,m,s) = P(s)P(m|s)P(w|m).

In this case, information about the meaningm is conflated with information about the

scenes so that one would need to somehow sum over all possible scenes(of which

there are an infinite number under our scene-generating grammar).

P(w,m) =
∫

P(s)P(m|s)P(w|m)ds= P(m)P(w|m)

This is not necessarily an insurmountable obstacle since, assuming the model were

implemented as a grammar, one could likely utilize a variantof the inside-outside

algorithm to perform this integration. Our formulation, however, allows us to forgo this

extra complexity altogether. Furthermore, our model design is simplified by the close

relationship to the semantic parsing model which would otherwise require refactoring

to accommodate the alternative scene-first approach.

We now turn to the implementation of the model in terms of grammar rules and

weights.
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N[ROOT]→ λe.look(e)∧E[LOOK/AGENT](e)∧E[LOOK/THEME](e)

(m1)

N[LOOK/AGENT]→ λx.boy(x) (m2)

N[LOOK/THEME]→ λx.frog(x)∧E[FROG/LOC](x) (m3)

N[FROG/LOC]→ λx.jar(x) (m4)

E[LOOK/AGENT]→ λe.agent(e,x)∧N[LOOK/AGENT](x) (m11a)

E[LOOK/THEME]→ λe.theme(e,x)∧N[LOOK/THEME](x) (m11b)

E[FROG/LOC]→ λx0.loc(x0,x1)∧N[FROG/LOC](x1) (m12)

Table 8.1: A grammar that generates the meaning in Figure 8.1. Node-generating rules

(top) yield event and entity predicates while edge-generating rules (bottom) yield the

role labels.

8.1.1 Meaning generation: P(m|µ)

The generative process starts off by generating the meaningrepresentation, much as

the semantic parser in Chapter 6 does. First, we choose a labelfor the root node and

then proceed to generate the thematic role labels for its child edges conditioned on the

root label. These thematic roles are filled with entities or other events of their own,

each generated independently conditioned on its parent androle type, and generation

continues in recursive fashion, choosing each node label conditioned on its parent and

role type and then generating its own children in turn by firstselecting their number

and type conditioned on the node label. In this way we descend, generating the tree

until terminating at the leaves.

Table 8.1 shows the grammar fragment for generating the meaning representation

in example 8.1. Nonterminals of the form N[...] expand to generate event and entity

concept labels on the nodes of the tree, while those of the form E[...] expand to produce

the role types, represented as binary edges. Thus, the generation of the meaning repre-

sentation of our running example begins with rule m1 generating a look event with an

agent and theme. Rule m11a then yields the agent role label andthen rule m2 produces

boy. The frog is generated as a theme oflook in much the same way by rules m11b

and m3, and then the frog’s location is specified by rules m12 and m4.
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Multiplying the weightsµ(r) for each step of the derivation defines the following

probability distribution over meaning representations, where we assumee (for entity

or event) stands for a node in the meaning representation:

P(m|µ) = ∏
e∈m

P(e|parent-role(e),parent(e),µ)P(child-roles(e)|e,µ)

where

child-roles(e) = the set of child roles ofe,

parent-role(e) = the parent role ofe, and

parent(e) = the parent node predicate ofe.

Rules such as m1 through m4 implement the main behavior of the probabilistic

model where each rule is weighted in order to (1) generate theevent or entity label and

(2) the number and type of roles:

µ(m1) = P(look|ROOT,µ)P(agent, theme|look,µ)

µ(m2) = P(boy|look,agent,µ)P( /0|boy,µ)

µ(m3) = P(frog|look, theme,µ)P(loc|frog,µ)

µ(m4) = P(jar|look, loc,µ)P( /0|jar,µ)

These rules have factors of the form

ϕµ(r) = 〈lhs(r),event(r)〉 · 〈event(r),child-roles(r)〉,

wherelhs(r) identifies the left-hand-side symbol,event(r) identifies the event unary on

the right-hand side, andchild− roles(r) lists the roles as encoded in the nonterminals

on the right-hand side. Rules m11a through m12 then produce the binary relation

edge labels in deterministic fashion (after already being chosen probabilistically in the

previous steps), with a factorization function ofϕµ(r) = 〈 /0, /0〉 leading to a weight of

1.

The process is very similar to that of the semantic parser described in Chapter 6, but

involves a few additional independence assumptions to accommodate added variation

in the Frog Stories corpus. For one, instead of conditioningeach entity/event on the

full signature of its parent (i.e., the parent node label andits full set of child role

labels), each concept is only conditioned on its own role type and parent, irrespective

of the number and roles of its siblings. Additionally, each node label and its child edge

labels are chosen in two separate steps rather than all at once. These independence
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assumptions help accommodate the greater degree of variability in the Frog Stories

narrations over the considerably more formulaic sentencesin GeoQuery. For instance,

there can sometimes be multiple agents, or the agent may be omitted (especially in

pro-drop languages like Turkish), while in GeoQuery a binary function will always

have exactly two arguments.

8.1.2 Word generation: P(w,y|m,ω)

Once the meaning is generated, the probabilistic model proceeds to generate the words

conditioned on the meaning, walking from root to leaves and translating each concept

in the meaning representation into a string of words. Again,the process is very similar

to that of the semantic parser, but there are a few modifications to better match the ob-

jectives of the word learning task. In particular, our word learner only attempts to learn

meanings for content words (roughly corresponding to what we will call foreground

words), and the model maintains a separatebackgroundunigram distribution to ac-

count for function words. This distinction between foreground and background words

helps the model learn a more compact lexicon than the semantic parsing model would

which better matches the assumptions behind the construction of the gold lexicon, our

target. While the introduction of the background unigram distribution is a departure

from the semantic parsing model, translation from a conceptin the meaning represen-

tation to a substring of the utterance proceeds in an otherwise very similar fashion.

First the concept and its children are linearized into a particular word order pattern

that determines where words of each type are to be inserted. The words themselves

are then generated to fill in the details such that each concept is identified with exactly

one word in the substring, drawn from a concept-specific distribution over foreground

words, and the remaining words are selected from the universal background unigram

distribution.

For example, the linearization of a node likefrog in Figure 8.1 which has a single
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child is drawn from the following eight possible patterns:

FG-WORD CHILD

BG-WORDS FG-WORD CHILD

FG-WORD CHILD BG-WORDS

BG-WORDS FG-WORD CHILD BG-WORDS

CHILD FG-WORD

BG-WORDS CHILD FG-WORD

CHILD FG-WORD BG-WORDS

BG-WORDS CHILD FG-WORD BG-WORDS

There are three sub-steps to choosing one of these particular linearizations, all condi-

tionally independent. Specifically, if the local tree beinglinearized containsn children,

these steps are

1. the ordering of children (n! possibilities) conditioned only on the set of their role

labels,

2. the placement of the single foreground word, which can be at the beginning or

end or anywhere between the children withn+ 1 choices conditioned on the

parent node label and the number of children, and

3. the placement of strings of background words which can occur anywhere be-

tween or at the beginning or end of the string of children with2n+1 configura-

tions, also conditioned on the parent node label and number of children.

The process is implemented by pairing the monolingual meaning representation

grammar rules with word generating rules (shown in Table 8.2) and, while retaining the

meaning generating weightsµ(r), adding word-to-meaning translation weightsω(r) to

each rule to jointly generate meaning and words. Rules w1a-w4b are examples of

linearization rules, where rule w3b corresponds to the second pattern in the list above.

The weights of this rule governing the meaning-to-word mapω(r) are defined such

that

ω(w3b) = P(CHILD|{loc},ω)P(FG-WORD |frog,1,ω)

·P(BG-WORDS |frog,1,ω),
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N[ROOT]→ 〈 λe.look(e)∧E[LOOK/AGENT] 0 (e) (w1a)

∧E[LOOK/THEME] 1 (e)
∥
∥

E[LOOK/AGENT] 0 W[LOOK] E[LOOK/THEME] 1 〉

N[LOOK/AGENT]→ 〈 λx.boy(x)
∥
∥W[BG] W[BOY] 〉 (w2b)

N[LOOK/THEME]→ 〈 λx.frog(x)∧E[FROG/LOC] 0 (x)
∥
∥ (w3b)

W[BG] W[FROG] E[FROG/LOC] 0 〉

N[FROG/LOC]→ 〈 λx.jar(x)
∥
∥W[BG] W[JAR] 〉 (w4b)

E[LOOK/AGENT]→ 〈 λe.agent(e,x)∧N[LOOK/AGENT] 0(x)
∥
∥ (w11a)

N[LOOK/AGENT] 0 〉

E[LOOK/THEME]→ 〈 λe.theme(e,x)∧E[LOOK/THEME] 0 (x)
∥
∥ (w11b)

N[LOOK/THEME] 0 〉

E[FROG/LOC]→ 〈 λx0.loc(x0,x1)∧N[FROG/LOC] 0(x1)
∥
∥ (w12)

N[FROG/LOC] 0 〉

W[BG]→ 〈 −
∥
∥ U[BG] W[BG] 〉 (w20a)

W[BG]→ 〈 −
∥
∥ U[BG] 〉 (w20b)

U[BG]→ 〈 −
∥
∥ the〉 (w30a)

U[BG]→ 〈 −
∥
∥ at 〉 (w30b)

U[BG]→ 〈 −
∥
∥ in 〉 (w30c)

W[LOOK] → 〈 −
∥
∥ look 〉 (w31)

W[BOY] → 〈 −
∥
∥ boy 〉 (w32)

W[FROG]→ 〈 −
∥
∥ frog 〉 (w33)

W[JAR]→ 〈 −
∥
∥ jar 〉 (w34)

Table 8.2: Rules for generating the meaning-to-word map in Figure 8.1. The five cat-

egories of rule are for event type, role, background unigram stopping, and background

and foreground word generation.
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where FG-WORD and BG-WORDS denote the appearance of the foreground and

background words at the start of the string (as opposed toFG-WORD which would

denote the end of the string).

Each word is either drawn from one of various foreground distributions or from a

single background distribution. Foreground words are generated one per node in the

meaning representation by rules w31-w34, guaranteeing that every entity and event

label in the meaning is represented in the utterance. In general, there is one rule

for every concept-word pair, permitting the model to map each concept to any word

in the utterance, where the gold alignment portrayed in Figure 8.1 is achieved by a

derivation constructed from the rules in Table 8.2. These rules have weights such

as ω(w31) = P(look|look). Background words are generated in a similar fashion

according to rules w20a-w30c, but where multiple words can be drawn to build up

a multi-word string with stopping probability determined by the weights of w20a

(P(continue|ω)) and w20b (P(stop|ω)) and w30a-w30b draw words from the distribu-

tion. Edge-generating rules such as w11a-w12 are deterministic and simply coordinate

nonterminals in the meaning representation and word string.

The entire process is summarized by the following equation:

P(w,y|m,ω) = ∏
e∈m

P(ye = 〈ℓ, fg-word,bg-w1, ...,bg-wk〉|e,child-roles(e),ω)

= P(ℓ|e,child-roles(e),ω)P(fg-word|e,ω)
k

∏
i=1

P(bg-wi |ω)

Variabley is a sequence of linearization and word generation steps required for translat-

ing meaning representationm into word stringw, whereye is the particular sequence

required for translatinge, made up of a single linearization stepℓ followed by the

choice of foreground wordfg-word, and zero or more background word substrings

bg-w1, ...,bg-wk. Linearizationℓ is further broken down into the three steps of choos-

ing the order ofe’s children ℓargs, the position of the foreground wordℓfg, and the

number and location of the background substringsℓbg. If c is the number ofe’s chil-

dren, the probability ofℓ factorizes as

P(ℓ|e,child-roles(e),ω) = P(ℓargs|child-roles(e),ω)P(ℓfg|e,c,ω)P(ℓbg|e,c,ω)

where each ofP(ℓargs|child-roles(e),ω), P(ℓfg|e,c,ω), andP(ℓbg|e,c,ω) are multino-

mial distributions.

The foreground word is drawn from a multinomial distribution P(fg-word|e,ω)
specific toe’s label, and the background substringsbg-w1, ...,bg-wk are generated as
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per the background unigram distribution, where eachbg-wi is made up ofni words

bg-wordi,1, ...,bg-wordi,ni
.

P(bg-wi |ω) =
ni−1

∏
j=1

P(bg-wordi, j |ω)P(continue|ω)

·P(bg-wordi,ni
|ω)P(stop|ω).

To implement as a multi-weighted grammar, we define the following four feature

functions:

• event-roles(r) identifying the event and its roles in the meaning portion ofthe

right-hand side of rules such as w1a-w4b,

• ℓ(r) which identifies the linearization pattern in the word-generating portion of

rules such as w1a-w4b,

• stop(r), a boolean function which returns true if and only if the ruleis w20b, and

• word(r) which identifies the word on the right-hand side of rules suchas w30a-

w34.

With these feature functions, we can define the portion of therule factorization function

that deals with generating the words of utterances as follows:

ϕω(r) = 〈event-roles(r), ℓ(r)〉 (w1a-w4b)

ϕω(r) = 〈 /0, /0〉 (w11a-w12)

ϕω(r) = 〈stopping,stop(r)〉 (w20a-w20b)

ϕω(r) = 〈background,word(r)〉 (w30a-w30c)

ϕω(r) = 〈event(r),word(r)〉. (w31-w34)

Theseϕω(r) factors will be concatenated withϕµ(r), as well as those of the scene

generation process, to produce the full sequence of factorsin the complete grammar as

described in the next section.

8.1.3 Scene generation: P(s,z|m,σ)

The scene is generated in parallel with the words in similar fashion, by walking down

the meaning representation and translating it into the scene. However, the relationship

to the scene, which in the Frog Stories can be thought of a compact representation of
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the union of all possible meaning representations, is simpler in many ways. The key

constraint of the scene generation model is that the proposed meaning is contained

within the scene with probability one. The remainder of the scene (thebackground

scene) is generated in a probabilistic fashion by adding extra roles and children onto

the nodes of the meaning representation, choosing their labels randomly.

Like word generation, the process walks down the meaning representation, gener-

ating portions of the scene that correspond to each node and edge in the meaning. For

each node in the meaning, it and each of its children are addedto the scene with prob-

ability one, and an additional number of background subtrees are added, determined

by a roll of a die with outcomes from zero up to some corpus dependent maximum.

These background trees are then generated by drawing the root role label from another

multinomial distribution, followed by the child background node label. The number of

background edges appearing under background nodes are alsodetermined by rolling

a die with outcomes from zero to some corpus determined maximum, and their labels

and children are determined by repeating the process recursively.

The rules in Table 8.3 extend the word-generating rules to generate the scene in

addition to the meaning and words, adding scene-generatingweightsσ(r) to each rule

r. The first element of each of the rule right-hand sides dictates the contribution to the

scene of the portion of the meaning representation in the second element of the rule

right-hand side. For instance, rule s1a simply duplicates the look node and starts the

process of generating itsagentandthemechild edges. This rule has a scene-generating

weight of

σ(s1a) = P(look(e)∧agent(e,x)∧ theme(e,y)|look(e)∧agent(e,x)∧ theme(e,y),σ)

·P(bg-children= 0|look,σ)

= P(bg-children= 0|look,σ)

The rule simply duplicates the node and its children and addsno background subtrees,

but other node-generating rules such as s2b do a little more by embellishing the mean-

ing representation with a few more details, in this case by adding one additional child

beneath theboy node so thatσ(s2b) = P(bg-children= 1|boy,σ). Edge-generating

rules such as s11a through s12 similarly ensure that the thematic roles in the meaning

representation are also present in the scene, a process thatis completely deterministic.

Table 8.4 lists the rules that govern the generation of the background trees in

the scene description. Rule s0 begins the derivation by determining how many ad-

ditional trees there are in the scene forest, only one in thiscase with probability
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N[ROOT]→ 〈 λe.look(e)∧E[LOOK/AGENT] 0 (e) (s1a)

∧E[LOOK/THEME] 1 (e)
∥
∥

λe.look(e)∧E[LOOK/AGENT] 0(e)

∧E[LOOK/THEME] 1 (e)
∥
∥

E[LOOK/AGENT] 0 W[LOOK] E[LOOK/THEME] 1 〉

N[LOOK/AGENT]→ 〈 λx.boy(x)∧E[BG](x)
∥
∥ (s2b)

λx.boy(x)
∥
∥W[BG] W[BOY] 〉

N[LOOK/THEME]→ 〈 λx.frog(x)∧E[FROG/LOC] 0 (x)
∥
∥ (s3b)

λx.frog(x)∧E[FROG/LOC] 0(x)
∥
∥

W[BG] W[FROG] E[FROG/LOC] 0 〉

N[FROG/LOC]→ 〈 λx.jar(x)
∥
∥ λx.jar(x)

∥
∥W[BG] W[JAR] 〉 (s4b)

E[LOOK/AGENT]→ 〈 λe.agent(e,x)∧N[LOOK/1AGENT] 0 (x)
∥
∥ (s11a)

λe.agent(e,x)∧N[LOOK/AGENT] 0 (x)
∥
∥

N[LOOK/AGENT] 0 〉

E[LOOK/THEME]→ 〈 λe.theme(e,x)∧E[LOOK/THEME] 0 (x)
∥
∥ (s11b)

λe.theme(e,x)∧E[LOOK/THEME] 0(x)
∥
∥

N[LOOK/THEME] 0 〉

E[FROG/LOC]→ 〈 λx0.loc(x0,x1)∧N[FROG/LOC] 0(x1)
∥
∥ (s12)

λx0.loc(x0,x1)∧N[FROG/LOC] 0 (x1)
∥
∥

N[FROG/LOC] 0 〉

W[LOOK] → 〈 −
∥
∥ −

∥
∥ look 〉 (s31)

W[BOY] → 〈 −
∥
∥ −

∥
∥ boy 〉 (s32)

W[FROG]→ 〈 −
∥
∥ −

∥
∥ frog 〉 (s33)

W[JAR]→ 〈 −
∥
∥ −

∥
∥ jar 〉 (s34)

Table 8.3: A grammar fragment for jointly generating the meaning-to-scene and

meaning-to-word maps in Figure 8.1. There are three categories: (from the top) fore-

ground event/entity, role label, and word generation rules.
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N[START]→ 〈 forest(x)∧E[ROOT]0 (x)∧E[BG](x)
∥
∥ (s0)

E[ROOT]0(e)
∥
∥ E[ROOT]0 〉

E[ROOT]→ 〈 λe.root(e,x)∧N[ROOT]0(x)
∥
∥ (s10a)

N[ROOT]0 (e)
∥
∥ N[ROOT]0 〉

N[BG]→ 〈 λs.happy(s)∧E[BG](x)
∥
∥ −

∥
∥ − 〉 (s5)

N[BG]→ 〈 λx.frog(x)∧E[BG](x)
∥
∥ −

∥
∥ − 〉 (s6)

E[BG]→ 〈 λs.affect(s,x)∧N[BG](x)
∥
∥ −

∥
∥ − 〉 (s10b)

E[BG]→ 〈 λs.experiencer(s,x)∧N[BG](x)
∥
∥ −

∥
∥ − 〉 (s15)

E[BG]→ 〈 λs.loc(s,x)∧N[BG](x)
∥
∥ −

∥
∥ − 〉 (s16)

W[BG]→ 〈 −
∥
∥ −

∥
∥ U[BG] W[BG] 〉 (s20a)

W[BG]→ 〈 −
∥
∥ −

∥
∥ U[BG] 〉 (s20b)

U[BG]→ 〈 −
∥
∥ −

∥
∥ the〉 (s30a)

U[BG]→ 〈 −
∥
∥ −

∥
∥ at 〉 (s30b)

U[BG]→ 〈 −
∥
∥ −

∥
∥ in 〉 (s30c)

Table 8.4: Rules for generating the background event/entities and words for the

meaning-to-word map in Figure 8.1. The first pair of rules start the process by selecting

a foreground root and demoting all others to the background. The four remaining types

of rules, in order, are the foreground event selection, background event/entity, role label,

and unigram stopping and word generation rules.

σ(s0) = P(bg-children= 1|root,σ). Rules s5-s16 then generate these trees and any

subtrees added by the meaning representation duplication rules s1a-s4b. Rules that

generate background nodes such as s5 select the node label and choose the number of

children with probability

σ(s5) = Pbg(happy|σ)P(bg-children= 1|σ).

Background edges are generated in similar manner by rules s10b-s16 with scene-
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generating weights such as

σ(s16) = Pbg(loc|σ).

To summarize, let latent variablez be a mapping from meaning representationm

onto some isomorphic tree of scene descriptions, s/zm be the background portion of

the scene (i.e. the scene description minus the thatmmaps to viaz), and, finally, letce

be the number of children of nodee in the background. Then we have the following

equation.

P(s,z|m,σ) = ∏
e∈m

P(ce|e,σ) ∏
e∈s/zm

Pbg(e|σ)P(ce|σ) ∏
t∈roles(s/zm)

Pbg(t|σ)

That is, we addce subtrees to eacheaccording to a multinomial distribution over num-

bers from zero to some corpus-determined maximum, and then generate each back-

ground node and edge according toPbg(e|σ) andPbg(t|σ), respectively.

The scheme can be implemented with four feature functions:

• event(r) identifies the type of the event in the meaning portion of ruler,

• bg-nonterms(r) returns the count of background nonterminals in scene portion

of r,

• bg-event-nonterms(r) identifies the event and the count of background nonter-

minals in the scene portion, and

• bg-role(r) which identifies the role type in the scene portion of the rule.

We define the scene portion of the rule factorization function with these feature

functions as follows:

ϕσ(r) = 〈forest,bg-nonterms(r)〉 (s0)

ϕσ(r) = 〈event(r),bg-nonterms(r)〉 (s1a-s4b)

ϕσ(r) = 〈background-scene,bg-event-nonterms(r)〉 (s5-s6)

ϕσ(r) = 〈background-scene,bg-role(r)〉 (s10b-s16)

ϕσ(r) = 〈 /0, /0〉. (s11a-s34, s10a, s20a-s30c)

The full set of factors for each rule is the concatenation of those for the meaning,

utterance, and scene generating factors:

ϕ(r) = ϕµ(r)ϕω(r)ϕσ(r).
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Here, rule s1a inherits itsω andµ weights from rule w1a and rule m1, rule s2b from

w2b and m2, s11a from w11a and m11a, and so on. Rules s0 and s10a are deterministic

in terms of the meaning- and utterance-generating portions, so we can either define

ϕµ(r) = ϕω(r) = 〈 /0, /0〉 for these two rules or set them to the pair sequences of length

zero.

The probabilistic independence assumptions described by the plate diagram in Fig-

ure 8.2 follow directly from this definition of the rule factorization function. Because

the ϕµ factors are only defined in terms of the meaning portion of therule, m has no

dependencies on either the scenes or wordsw. Defining theϕω in terms of the words

and meaning where features of the meaning always appear as the first in feature pairs

results in a dependency betweenm andw but enforces the conditional independence

with the scenes. Similarly, the definition ofϕσ is strictly in terms of the scene and the

meaning, where, again, all features of the meaning portion of the rule appear as the first

element of each feature pair, further enforcing the conditional independence between

w ands givenm. Without the multi-weighted extension to weighted grammars, such

independence assumptions would be difficult to implement, and would require a sig-

nificant refactoring of the grammar where any such refactoring would almost certainly

render our parsing algorithm in Chapter 4 inapplicable.

8.2 Evaluation

We train the model according to the algorithm derived in Chapter 5 and estimate the

Dirichlet parameters using Empirical Bayes. The objective of a word learning model

is to infer the lexicon that best explains the data, where a lexicon is conventionally

represented by a set of concept-word pairs. Our model encodes this information in the

weights of the rules, which we tease out by estimating the expected count for instances

of each word in the corpus being drawn from foreground distribution associated with

e,

E[e,word] = E[e]P(word|e,ω)

versus the background distribution

E[bg,word] = E[bg]Pbg(word|ω).

Here,E[e] andE[bg] are the expected counts of words in an utterance drawn from the

foreground distribution ofe and the background distribution. These two expectations
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can be computed using a variant of the inside-outside algorithm where the derivation

forest consists of all possible derivations for meaning representation trees of some

maximum depthd and utterances of lengthn, where we used = 4 andn= 10. Using

these counts, we extract the lexicon by calculating

argmaxeE[e,word]

for each word, wheree ranges over the set of all possible concept labels plusbg. If the

maximum is produced bybg, the word is classified as a background word and omitted,

otherwise pair〈e,word〉 is inserted into the lexicon.

Given the inferred set of concept-word pairs and the gold set, we can compute the

amount of overlap between them as measured by precisionp, recallr, and f-scoref .

Precision is the proportion of pairs in the inferred lexiconthat are also present in the

gold, recall is the proportion of pairs in the gold lexicon that are in the inferred set, and

f-score is their harmonic mean:

f =
2· p· r
p+ r

.

8.2.1 Unstructured scenes

To calibrate our approach, we first compare our model againstprevious work, shown

in Table 8.5. These experiments are performed on the Rollins corpus which, unlike

the Frog Stories, lacks structured scene representations.That is, scene descriptions

consist of sets of isolated entities and utterance “meanings” are simply subsets of these

scene descriptions. In our forest-based scene descriptionconventions, these sets simply

translate into a forest of height-zero trees (i.e., tees with childless roots), one per entity

in the scene, linked together into a single tree by adding a root node and edges to each

of the entity trees.

Performance is comparable to if slightly lower than that reported for Frank et al.

(2009), showing that our model, although designed to handlemuch more structured

data, still performs reasonably well without this extra information. In fact, the syntactic

features that our model relies on for syntactic bootstrapping are also neutralized since

the word order patterns the model learns depend on thematic role labels which are

completely absent in Rollins. We now turn to the experiments of main interest on the

Frog Stories with structured scene and meaning representations.
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Lexicon

p r f

association frequency 0.06 0.26 0.10

conditional probability (object—word) 0.07 0.21 0.10

conditional probability (word—object) 0.06 0.32 0.11

mutual information 0.06 0.47 0.11

Yu & Ballard 2007 0.15 0.38 0.22

Frank et al. 2009 0.66 0.47 0.55

this work 0.54 0.33 0.41

Table 8.5: Comparison of word learning models with unstructured scenes on the Rollins

corpus. All scores for competing systems are taken from Frank et al. (2009).

8.2.2 The contribution of relational information

Figure 8.3(a) shows a pre-forestized scene description corresponding to the logical

expression

chase(e0)∧agent(e0,x1)∧bees(x1)∧ theme(e0,x2)∧dog(x2)

∧disturb(e1)∧agent(e1,x3)∧patient(e1,x4)∧owl(x4)∧ loc(e1,x5)

∧fall(e2)∧patient(e2,x3)∧boy(x3)∧source(e2,x5)∧ tree(x5).

There are several sources of information, which we can breakdown into roughly four

parts: entity labels, the thematic role linkages (i.e., which concepts share a binary re-

lation), the thematic role labels, and the event type labels. To explore the individual

contributions of each, we can experiment by constructing slightly different scene de-

scriptions by removing each type of information, retraining the model, and measuring

the quality of the inferred lexicon. Figure 8.3(b)-(c) illustrates three different scene

description types based on different combinations of the four sources of information.

• Entities Only (Figure 8.3(d)): At this level of structure, there are no constraints

on the subsets of entities that could be talked about. Any subset of entities is

equally valid. This scenario approximates the basic setting of most previous

computational work in word-learning (Frank et al., 2009; Jones et al., 2010;

Johnson et al., 2010; Yu and Ballard, 2007; Yu, 2006; Fazly et al., 2010; Alishahi

and Fazly, 2010), and matches the calibration experiments in Section 8.2.1.
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e0

bees dog

e1/e2

boy owl tree

(d)
/0

boy owl tree bees dog

Figure 8.3: A scene description (a) and three variants produced by removing (b) the

event type labels, (c) the event and semantic role labels, and (c) everything but the

entities.

• Anonymous Relations (Figure 8.3(c)): With the addition of information about

which entities interact in the scene, the model has a little more help, since one

might reasonably assume that entities that interact in the scene are more likely

to be discussed together in the same utterance. Such an assumption constrains

the entity subsets, even if the learner has no way of knowing what the exact

nature of the interaction are or what role each entity plays in it. Observe that

in the scene in the figure,{tree, owl} and {tree, owl, boy} are both eliminated

as possible subsets since there is no direct interaction between these entities,
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helping to narrow the search space and aid learning.

• Anonymous Relations and Events (Figure 8.3(b)): Additionalinformation about

the roles of the entities – which entity is acting and which one is being acted

upon – further helps constrain the relationship between world and words. For

instance, the learner can take advantage of English’s tendency to place theagent

at the front and thethemeat the end of a sentence to guess that the word fordog

is likely to appear at the end of sentences given the scene in the figure.

We are primarily interested in the contribution of relational information to the

learning problem, the question being whether this level of structure in the scene and

meaning representations coupled with joint syntactic learning have a significant impact

on learning. For our purposes, then, we are interested in levels (b), (c), and (d). In the

entities-only scenario (d), meanings are completely unstructured and scenes contain no

information about which entities are likely to co-occur in an utterance, so word learn-

ing models would have a difficult time eliminating most subsets of entities, a priori,

and the number of possible subsets is exponential in the sizeof the scene description.

In the example shown in Figure 8.3(d), there are 5 entities, leading to 25 = 32 meaning

candidates. This may not seem like such a large number (in fact, it is about what word

learners operating on the Rollins corpus must handle) but this toy example is much

smaller than any of the scenes in the Frog Stories corpus where there can be up to 20

entities, leading to 220≈ 1,000,000 possible candidates, thousands of times the num-

ber for previous work. This number is daunting even for our grammar-based model

which relies on dynamic programming for inference. In contrast, the scene description

with anonymous events and roles shown in (b) is much less costly since, restricting

meanings to include at most one tree in the scene forest, there are only 23+22−1= 11

meaning candidates to explore in our toy example, and the Frog Stories corpus has up

to about two hundred candidates for some scenes at this levelof structure. We thus re-

strict ourselves to experiments involving the two more structured scenarios involving

anonymous roles and events. By contrasting performance between scenarios (b) and

(c), scene descriptions with and without role labels, we canisolate the contribution of

role labels and explore the benefit of learning the order in which they tend to appear

within an utterance.



168 Chapter 8. Word Learning

8.2.2.1 Further constraining information

Even after exploiting structural information to vastly narrow the search space, there

remain over 300 meaning candidates for some scenes, posing achallenge for learning.

Even parsing is difficult since the parse forests are very large, requiring memory on

the order ofO(|s| · |w|2 ·G), whereG is the grammar constant which, in the worst

case, can be exponential in the grammar. This computationalexpense motivates the

incorporation of several aids to prune the search space. In particular, we rely on four

types of constraints

• prior knowledge in the form of a small seed lexicon of concept-word pairs,

• linguistic salience to distinguish content words from function words,

• non-linguistic salience to focus attention on the most central concepts of the

story,

• structural constraints on the meaning candidates such as connectedness and com-

pleteness.

The last two, non-linguistic salience and structural constraints, are as described in

Section 7.5 and have already been incorporated into the scene forests for our purposes

(and the 300 meaning candidates mentioned assumes these twotypes of constraints

have already been taken into account).

As for prior knowledge, we aim to simulate word learners who are somewhat far-

ther along in the process than those of (Frank et al., 2009), therefore assume the learner

has already acquired a small set of seed words. In fact, our data set of roughly 1000

utterances per language amounts to about 20-30 minutes of input, and seems better

suited for simulating how a learner might perform at a certain stage of development

rather than a full study of development from infancy to adulthood. In particular, psy-

chologists tend to agree that syntactic bootstrapping effects are more likely to show

after at least a few words have already been acquired. Furthermore, starting with a

small set of known words may help to better highlight the potential impact of syntax

in the resolution of referential ambiguity for the remaining words. Thus, for our sim-

ulations, we assume the model already knows the words for thethree most frequent

entities in the corpus: dog, boy, and frog.

It is common practice to use such seed lexicons in semantic parsing applications,

where systems are often fed a list of named entities, effectively giving the model a gold
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lexicon for the entire set of entities in the corpus. Given that these entity-word pairs

are precisely what the model is intended to learn in our setting, however, this is clearly

not appropriate for our purposes, but we can still explore the effect of joint syntactic

learning with a small, partial seed lexicon. This assumption probably better approxi-

mates the situation of most human word learners who are at thestage of learning the

syntax of their language. In terms of computational complexity, this small seed lexicon

helps to eliminate many false analyses; when the model encounters a sentence with a

known word (e.g., “dog”), it can safely rule out meaning candidates that exclude the

dogentity. Similarly, if the model does not observe any words for the known concepts

in the utterance, it can rule out meaning candidates thatincludethose concepts.

It has also been argued that acoustic features of speech can serve to heighten the

salience of content words, thus drawing a distinction between content and function

words. Fernal and Mazzie (1991), for instance, observed that content words are more

likely to occur at intonational peaks, setting them apart from function words. This

situation can be approximated in our model by using a stop list of function words to

relegate them to the background word distribution. The stoplist can serve to drive

down referential ambiguity by eliminating a need to exploreword-meaning maps (and

the corresponding parses) that incorrectly link function words to entities and event

predicates.

8.2.2.2 Human-subject-esque testing

Evaluation on the Frog Stories is similar to that for the wordlearning scenario of prior

work already described but with a slight departure. In particular, in a procedure more

similar to human experiments (Yu and Smith, 2007; Smith et al., 2011; Graf Estes

and Hurley, 2013), testing the model consists of presentingthe set of nouns in the

lexicon one by one and asking for the model’s best guess for the object meaning of

each. This procedure differs subtly from that of Frank et al.(2009) where many words

that are excluded from the lexicon (e.g., verbs or function words) are also presented

at test time (where the gold proposal is the null object). Thus, our test procedure,

while more similar to that used in human experiments, includes fewer distractors and

is thus somewhat easier than the test procedure employed with previous computational

models. Our primary motivation for this choice is due to the fact that learning is much

harder in our case than previous work, with farmoredistractors at training time, and

subtle changes in performance are more difficult to measure with the same level of

test-time noise.
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scenario English German Turkish

anonymous roles 0.29 0.14 0.08

anonymous events 0.58 0.23 0.07

Table 8.6: Learning words for entities given different amounts of information in the

scene. Anonymous roles corresponds to Figure 8.3(c), including only the entity labels

and information about which ones are related to each other, while anonymous events

corresponds to Figure 8.3(b) where type labels for the roles the entities play in these

interactions have been added. Event type labels themselves are omitted in both cases

to reduce the search space and focus on the contribution of role labels.

8.2.2.3 Performance

Table 8.6 shows the performance of the model while employingthese additional pieces

of information across our two layers of structure and three different languages. As

we can see by the considerable difference in performance foranonymous roles and

anonymous events there is a sizable performance boost when we add the binary relation

labels into the scene representation. The boost is mainly due to syntactic bootstrapping,

since the primary thing the model learns with the binary relation labels included is the

typical order such relations are likely to occur in the sentence (i.e., agent-event-theme

type ordering information).

Performance on English is considerably higher than for the other two, which is

somewhat to be expected given the implicit bias in the annotations toward English

vocabulary. Additionally, both German and Turkish are far more agglutinative, and

Turkish in particular has several inflections for each verb and noun, reflecting case

marking and so on, leading to a sparsity problem and suggesting that we might need to

include a morphological element to model Turkish word learning. Related to morphol-

ogy, the Turkish sentences also include a greater degree of variability in the ordering

of thematic roles in the utterance, partly due to the offloading of information from

word order to morphology and partly because morphological alternations can signal

different standard orders for verb arguments. The German data is also difficult because

utterances tend to be longer, leading to greater referential ambiguity. However, we do

see a similar trend in German to the English performance.

It is also interesting to explore the effect of the seed lexicon on performance. Hav-
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Figure 8.4: The effect of seed lexicon size on word learning performance for the cases

where the model can and cannot learn canonical orders in which thematic roles are

realized in utterances. Words in the seed are excluded from the test set, and numbers

are for the English section of Frog Stories.

ing a few already known words can boost a learner’s productivity in picking out new

ones, but how many does a learner need to know for the effect toshow? Figure 8.4

plots the change in performance for unknown concepts as concepts are added to the

seed lexicon, contrasting the behavior of the role order learning model vs. the model

learned with anonymous roles. Interestingly, the first few concepts make the biggest

difference after which there are diminishing returns, leveling off at around six seed

concepts or so. This is partly due to the fact that we have added concepts in order of

decreasing frequency in the corpus, so the first two conceptsare the most frequent.

After all, the first few concepts, which are the most useful for learning other concepts

because they are most frequent and often also occur in the greatest number of contexts,

allow the model to learn many of the less frequent concepts that are added to the right

in the graph in Figure 8.4. However, the role order learning model peaks much faster,

apparently making more efficient use of the first two or three concepts in the seed lex-

icon. This suggests that even a very small arsenal of words can make a big difference

for a learner, especially for those capable of identifying and exploiting word order pat-

terns. Of course, it depends on the particular corpus which words will be most useful,
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but overall, assuming words are learned roughly in order of decreasing frequency, one

might expect a similar effect. Essentially, in the world of the Frog Stories, all events

revolve around either the boy, the dog, or the frog, so knowing the words for these

characters gives us most of what we could hope to gain from a seed lexicon. However,

in the real world, the vocabulary and set of concepts to be learned are both much larger

than can be represented by a fairly small corpus like the FrogStories, and these curves

would likely level off more slowly for larger corpora.

8.3 Discussion and conclusion

Our primary interest is twofold: (1) to examine the implicitassumption of previous

behavioral and computational studies that learners must somehow narrow down the

set of candidate meanings to a handful of possibilities for effective learning, and (2)

to test the effect of syntactic bootstrapping on learning inhighly ambiguous settings.

While we have employed several simplifying assumptions to make the problem more

tractable, we have explored these questions with roughly thirty times the amount of

ambiguity reported for previous semantic parsing-based word learners in terms of the

number of meaning candidates per sentence.

It is mainly due to the efficiency of our particular choice of modeling framework

that allows us to explore this larger space of potential meaning candidates per utterance.

Let |s| be the size of the scene graph after being converted to a forest as described in

Section 7.4. Then, using the synchronous parsing algorithmdescribed in Section 4.4

to jointly parse scene and utterancew, the time complexity for a single utterance in

our approach isO(|s| · |w|3). This is in contrast to other approaches such as that of

Chen and Mooney (2008) which have a time complexity ofO(|m| · |w|3) per meaning

candidatem, of which there are essentially as many as there are subtreesin the trees of

forests, leading to a worst case bound ofO(2|s|) possible meaning candidates. Thus,

for them, parsing takes time exponential in the size of the scene, and their overall

parsing bound isO(2|s| · |m| · |w|3) per utterance where|m| is the size of the largest

meaning candidate. The approach of Kwiatkowski et al. (2013) has a similar analysis

but is somewhat more expensive due to the greater flexibilityallowed in the meaning-

to-words map. Our purely grammar-based model permits us to take full advantage of

the dynamic programming solutions to parsing and inference, so we can share common

sub-analyses and avoid redundant recomputation across different meaning candidates

with shared sub-structure, exploring allO(2|s|) candidates at once in time linear ins.
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While it is sometimes assumed that arguments in favor of more powerful learn-

ing mechanisms and arguments in favor of learning biases areat odds, we believe in

the importance of both. In fact, our work can be seen as decidedly on the side of the

importance of such learning constraints. At the same time, our corpus study in Chap-

ter 7 suggests that the effect of these constraints may be somewhat overrepresented, as

even after the application of several highly constraining assumption the task remains

far from solved, with a level of referential ambiguity that far exceeds previously ex-

plored computational scenarios. Specifically, we have relied on notions of scene-level

saliency to reduce the complexity of the scene description,and granted the model ad-

ditional knowledge in the form of a small seed lexicon and thedistinction between

function and content words. However, even at the reduced level of ambiguity after

scene-level pruning, the roughly 200 meaning candidates with anonymized events that

our model faces, while far less than the unpruned, unanonymized 1,300 candidates, far

exceeds previous work that has been limited to a few dozen in the simple unstructured

scenario of work such as Frank et al. (2009) or just a handful in the structured case

such as that of Kwiatkowski et al. (2012). Thus, we are in the position to test synergis-

tic effects between learning syntax and word meanings in a fairly different setting than

previously possible.

In our preliminary explorations of this expanded space, we find that the model is

still capable of learning even under scenarios of greater ambiguity, setting the stage for

testing various learning effects. As an example of such and effect, we observe that the

model performs better when it is given sufficient information to learn some simple facts

about canonical word order (i.e., the order in which thematic roles tend to be realized),

demonstrating that joint syntactic learning further improves learning performance. It

remains to be seen whether humans are able to learn as well as our statistical model

under similar circumstances, but the success of our model suggests that a failure to

learn would likely be due more to computational rather than data limitations.

Finally, we also find that the importance of structural information in the scene de-

scription proves essential for managing computational overhead. Flat scenes consist-

ing only of a set of disconnected entities found in most previous computational work

in word learning such as Frank et al. (2009) or Fazly et al. (2010) offer no informa-

tion about which entities are likely to be discussed in the same utterance, but relational

information allows a learner to better focus on the more plausible subsets. It helps to

focus on sets of entities that relate to each other in the scene, since these sets are also

more likely to co-occur in an utterance. Are there other types of structural information
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that might further aid in learning?



Chapter 9

Conclusion

We set out to explore how relations between words and relations between entities in the

world might interact in the acquisition of word meanings andin the process produced

several technical innovations, a corpus, and two differentprobabilistic models, one for

semantic parsing, the other for word learning. Observing that in some ways semantic

parsers and models of word learning are attacking differentaspects of the same prob-

lem, we introduced a framework under which it is possible to unify the two into a single

joint model. To ease our way, This particular choice of modelclass brings with it many

useful tools from context-free grammar, such as the inside-outside algorithm for com-

puting expectations and an efficient method for inferring the most probable parse. We

add to this toolbox by introducing three technical innovations: an extension to proba-

bilistic grammar that allows us to express a much larger set of possible models in the

same basic framework, a Bayesian inference algorithm for these grammars, and a pars-

ing algorithm for parsing the restricted class of HRG we use for modeling scene and

meaning representation languages. Using this toolbox, we develop a semantic parsing

model which is modular and extensible, which we modify for a novel word learning

model that enjoys greater computational efficiency than other models and can explore

a larger hypothesis space, permitting us to test the effectiveness of statistical learning

in the face of a large degree of referential ambiguity. Finally, for experiments with this

model, we introduce a new data set, annotating the Frog Stories corpus (Berman and

Slobin, 1994) with meaning representations for each utterance and scene descriptions

to represent non-linguistic context in word learning.

Testing the word learning model necessitates the annotation of a new corpus with

scene descriptions and utterance meaning representationsin the form of the Frog Sto-

ries corpus, work that is described in Chapter 7. The corpus allows the simulation of

175
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word learners who must somehow infer the referents for individual words given only

two pieces of information: the words themselves, and the non-linguistic information

containing the set of possible referents. The choice to represent non-linguistic context

as a single structured description allows experiments on the contribution of such struc-

ture to learning. Furthermore, the corpus is naturally segmented by pictures which

contain hundreds of elements, leading to a significant amount of uncertainty, with over

a thousand meaning candidates to sort through for some utterances. This vast ambigu-

ity sets a much higher bar for future work in computational modeling of word learning,

since previous models have tended to focus on far simpler scenarios, contending with

orders of magnitude fewer meaning candidates. In fact, our own work only makes a

modest start at the problem, leaving much room for improvement in future efforts.

Besides computational simulations, it is also possible thatthe corpus could serve

in other capacities. Our very preliminary analysis in Chapter 7, for instance, already

demonstrates that there is far more ambiguity than is typically discussed or assumed

in experiments. Of course, this ambiguity is completely dependent on the assumptions

one makes on the availability of different types of information, but the corpus may

also serve as a useful discussion point here too; by varying one’s assumptions and

applying them to the corpus, one can explore their effects interms of reduction in

ambiguity. By approximating saliency with frequency information, we demonstrate

one example of how a highly complex scenario of over 1,300 meaning candidates

can be curtailed to 350 or so. As a multilingual corpus, it is also possible to test

models and hypotheses over several languages, invaluable if one is interested in the

fundamental learning problem facing children of any linguistic setting as opposed to

language specific solutions.

The handling of this large space of meaning candidates motivates a few technical

innovations.

• First, we introduced a generalization of probabilistic context-free grammar in

Section 3.4 which associates multiple weights per rule in the form of a mini-

Bayes net, permitting us to implement a much larger class of probabilistic mod-

els in a weighted grammar. In particular, these multi-weighted grammars give us

the ability to make additional independence assumptions, allowing one to imple-

ment models that are more robust in the face of data sparsity,something that can

often be especially problematic with synchronous grammar which, in practice,

often have very large rules.
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• Second, we derived a variational algorithm in Chapter 5 for performing Bayesian

inference with these generalized probabilistic grammars.The algorithm is a

strict generalization of that for PCFGs, owing to the fact that the underlying

model is itself a generalization of PCFG. Here too, we enjoy the benefits of

building from a standard formalism since we are able to leverage the inside-

outside algorithm for key portions of the algorithm.

• Finally, our third technical contribution comes in the formof a novel parsing

algorithm for unordered trees. Parsing takes time linear inthe size of the tree

being parsed, which allows us to model the commutative property of predicate

calculus while keeping computational expense at a manageable level. At the

same time, while the parser is designed for a special class ofgraph grammar, the

key optimizations are also applicable to general HRG parsing.

Each of these three innovations centers on a fairly broad formalism, giving our con-

tributions a generality as broad as the set of applications one might find for the cor-

responding model class. Synchronous grammar, for instance, is not only used in se-

mantic parsing, but is often used for syntax-driven machinetranslation, among other

applications. Perhaps the ability to enforce finer grained independence assumptions

of multi-weighted grammar could be useful in the large rulesrequired for translating

syntactic patterns with medium range dependencies.

There are also close relationships between these formalisms to other classes, where

our multi-weighted grammars are generalizations of PCFGs, and the unordered tree

grammars are a special case of HRG, which help to situate our contributions in a larger

context. One benefit of this larger context is that it may aid in the extension of our

algorithms to other formalisms and still further applications. Furthermore, inference

algorithms that apply to a generalmodel classrather than a specificmodelallow one

to focus on designing, extending, and testing the model itself rather than on one-off

algorithm design and implementation; so long as each model variation remains in the

same class, one can utilize the same algorithm and software package over and over

again.

The semantic parsing and word learning models in Chapter 6 andChapter 8 serve

as demonstrations of the power of the framework. The semantic parser can be seen

as a re-implementation of the Lu et al. (2008) as a synchronous grammar. However,

while Lu et al. (2008) developed model-specific parsing and inference procedures,

we are able to rely on general grammar-based algorithms. As aresult, although our
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model is very similar, our framework better supports modular design and makes it far

easier to extend the semantic parser, a feature we exploit when designing the word

learning case. Furthermore, in terms of performance, our model suffers not at all for

exchanging the model-specific algorithms of Lu et al. (2008)for the grammar-general

training algorithm of Chapter 5, performing as well or better, and parsing has the same

O(|m| · |w|3) time complexity bound.

In fact, implementation of the word learner in Chapter 6 requires only a few modi-

fications of the semantic parser, which can be seen as a sub-module of the larger word

learning model. We merely add one additional monolingual grammar for the scene,

integrate this grammar into the semantic parsing grammar, and slightly re-factor the

model probabilities to accommodate the increased variability in the Frog Stories data

set. The flexibility of the framework should also make futurework easier as we ex-

plore other model variations. Capturing the entire scene-meaning-word relationship

as a synchronous grammar has design implications, since we can use the same stan-

dard parsing and inference algorithms as we explore different model variations and

extensions. At the same time, our grammar-based approach also has important impli-

cations for the computational overhead since we can quicklyand compactly enumer-

ate the entire set of possible meaning-to-word mappings as aparse forest computed

in O(|s|2 · |w|3) time, considerable savings over the bound ofO(2|s| · |m| · |w|3) for the

next fastest solution.

In some sense, the word learner is simply a preliminary demonstration, and there

are many alternative factorizations and subtly different grammars that might better

integrate syntactic or other features. For instance, our model incorporate mutual ex-

clusivity through the use of a Dirichlet prior which promotes sparsity (i.e., a small

lexicon), cross-situational learning in the form of a data-driven statistical learner, and

syntactic features in the form of ordering patterns. We alsoincorporate notions of

salience by pruning the scene to only the most salient concepts and prosodic cues, a

variety of social cue, that serve to draw attention to content words by distinguishing

function words. The added efficiency of our framework allowsus to test the impact

of these features under much higher levels of referential ambiguity than previously ex-

plored. This added efficiency has real impact on the set of experiments we can run and

the questions we can explore, permitting us to test hypotheses about the fundamental

limitations of statistical learning and the contributionsof different types of features

and biases to word learning. In particular, the results of Chapter 8 demonstrate that a

statistical learner can indeed acquire a kind of lexicon under much more ambiguous
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circumstances than previously explored. Both behavioral studies and computational

work have primarily focused on settings where there were only a handful of possi-

ble candidate meanings, while the referential ambiguity inour experiments is orders

of magnitude greater but the model still succeeds in inferring a lexicon with several

reasonable word-concept associations, albeit with the aidof several simplifying as-

sumptions.

Representing scenes as structured objects rather than sets of completely unrelated

concepts also allows us to explore the impact of different forms of information in the

scene description. At one extreme, we find that the use of “bagof entities” repre-

sentations for non-linguistic context, a common sort of scene description in previous

computational work (Frank et al., 2009; Fazly et al., 2010; Yu and Ballard, 2007; Jones

et al., 2010), provides too few constraints on the types of meaning representations a

model must explore. Even our model finds it prohibitive to explore the exponential

space of all possible subsets, but a more structured representation of the scene permits

the model to make more intelligent guesses, narrowing the search space to something

that is far more tractable, if often still challenging. Justadding unlabeled edges to in-

dicate which entities interact makes things much more tractable, something that may

seem obvious in retrospect, but one often expects that, to the contrary, richer represen-

tations mean greater complexity. In a sense this is true in that processing structured

scene descriptions does require extra machinery, but it also proffers extra signposts to

guide inference, leading to greater efficiency.

Besides making inference tractable, additional information can also aid learning,

even under highly ambiguous settings. In testing the impactof one simple type of syn-

tactic information, specifically, the canonical ordering of thematic roles in a sentence,

we found that learning further improves, beyond merely being tractable. Indeed, at

least in the case of one language in our experiments, this relatively crude syntactic

information about whether agents come before or after themes in a sentence has a sig-

nificant impact on performance. So, while psychologists have argued that this type of

information may be necessary, we find that it does indeed help, but is not necessary

at least for a certain basic level of performance. However, the model incorporates no

features that allow it to learn about function words or morpho-syntactic properties,

leaving the door open for future work. We anticipate adding such extensions might be

easier working within our or some other grammar-based framework.

In fact, there are several fruitful avenues open for future work. One could explore

alternative sources of information and extensions to the word learner, for one. One



180 Chapter 9. Conclusion

could extend the unordered tree parsing algorithm to handlemore general classes of

graph. One could continue in the vein of Chapter 6 and assimilate other semantic

parsing models into a more general framework for the purposes of drawing new con-

nections among seemingly isolated efforts.

Discourse structure is one interesting direction to take the word learning model.

Luong et al. (2013), for instance, utilizes a grammar-basedmodel to parse entire doc-

uments in order to exploit discourse-level structure in word learning. However, Luong

et al. work with the more typical “bag of entities” style unstructured scene representa-

tions. Our framework coupled with structured scene representations make a grammar-

based approach to discourse modeling particularly appealing. At present, our model

treats every utterance independently, drawing each at random from among the set of

statements that are logically entailed by the scene description. However, these utter-

ances form a narrative and are not truly independent. Given that a storyteller already

mentioned a particular event, for example, it seems less likely that he will repeat the

same statement over again rather than choose some other utterance that would better

advance the story. Importantly, the scene description actually encodes the full narra-

tive the storyteller intends to relate, suggesting that there is a more interesting model

for breaking this description down into a sequence of smaller statements. Although

we had pruned pronouns from the scene descriptions for the sake of simplicity and

because discourse was outside our focus, the full, unprunedscenes not only contain

pronouns but also indicate to which entities they refer, potentially raising other possi-

bility relating to discourse and coreference.

As an extension to the grammar framework itself, Chapter 4 mentions several ways

that our tree parsing algorithm generalizes to the unrestricted HRG parsing problem.

Implementing these optimizations in a general HRG parser is an obvious direction to

go for future work, particularly because processing general graphs rather than forest

approximations could have an important impact on learning.To see how, recall that

the forestization procedure in Section 7.4 removes reentrancies by duplicating portions

of the graph that are shared between different trees. This means that certain entities

like boy in the example illustrated in Figure 7.4 are over-represented in the scene. One

consequence of this is that, since the model essentially draws subtrees at random,boy

has multiple chances of being drawn while other entities such asowl have only one, bi-

asing the model in favor of meanings involvingboyover those withowl, and therefore

preferring to match words withboy in the lexicon. Operating from the unforestized

graph would eliminate this particular source of bias, possibly improving word learning
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performance and reducing the number of false positives in the inferred lexicon.

However, our analysis in Chapter 4 argues that, even after applying our compact

symmetric parse encoding scheme, the lack of ordering in thegraph being parsed still

leads to an algorithm that is exponential in the size of the right-hand side of the gram-

mar rules. Thus, we may wish to consider other classes of graph languages where there

is an ordering constraint among the edges. While adopting andordering would remove

the particular feature we chose HRG for, modeling the commutative property, there

could be considerable utility in other applications for ordered graphs. Just as an exam-

ple, semantic dependency graphs have an ordering property imposed by the words of

the sentence.

Considering more general graph parsing, it also seems likelythat the CCG-based

approach of Kwiatkowski et al. (2010) may very well be re-interpreted as a HRG-based

model. When one take a closer look at Algorithm 1, it actually closely resembles a syn-

chronous parsing algorithm where thesplit operation that enumerates the various de-

compositions of the meaning representation essentially does the job of a monolingual

HRG parser. This HRG parser would necessarily be more general than the tree parser

of Chapter 4, but treating the meaning representation as a graph, each split returned is

essentially a particular parse item under some more generalgraph grammar. In fact,

one could think of these splits as a kind of translation grammar somewhat similar to the

example grammar given in Table 3.2. The model’s reliance on acontext-free restriction

of CCG makes it especially tempting to attempt to simulate Kwiatkowski et al.’s model

with a monolingual HRG for decomposing the meaning into a synchronous grammar

that maps these meaning fragments to segments of the string.Kwiatkowski et al. found

it necessary to restrict the set of decompositions in certain ways for efficiency reasons,

just as we have had to in our own experiments. However, viewing thesplit operation as

a HRG parser may suggest alternative ways of restricting the space of decompositions

that preserve efficiency while allowing other types of word meanings. In any event,

such a project might at least help situate that model in the space of other approaches,

perhaps offering other insights.

We have outlined just a few possibilities. There are severalways in which the

grammar framework could be extended. There are also many possibilities for extend-

ing the semantic parsing and word learning models, perhaps increasing capabilities

or allowing one to explore the effect of alternative sourcesof information or learning

biases and their interactions.
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The standard form of a distribution in the exponential family is as follows:

p(θ|α) = h(θ)exp(
n

∑
i=1

ηi(α)ti(θ)−g(α)).

whereθ andα aren-dimensional vectors such thatθ is a random variable andα is a

parameter vector, and theti(θ) are the sufficient statistics of the distribution. A standard

result of the exponential family states that the expectation of a sufficient statistic can

be derived by taking the derivative of the log-partition functiong(α):

E[ti(x)] =
dg(α)
dηi(α)

.

Restating the Dirichlet in this same standard form results in

p(θ|α) = exp

(
n

∑
i=1

(αi−1) ln(θi)− ln
∏n

i=1Γ(αi

Γ(∑n
i=1αi

)

.

From this, we see that

h(θ) = 1

ηi(α) = αi−1

ti(θ) = lnθi

g(α) = ln
∏n

i=1Γ(αi)

Γ(∑n
i=1αi

,

leading to

Ep(θ|α)[lnθi ] =
d

dαi

[
n

∑
i=1

lnΓ(αi)− lnΓ(
n

∑
i=1

αi)

]

= Ψ(αi)−Ψ(
n

∑
i=1

αi).
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