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ABSTRACT 

High -resolution neutron elastic- diffraction data have been collected 

for the cubic perovskites CsPbCZ3, RbCaF3, KMnF3 and SrTiO3 at a few 

degrees above their cubic -- tetragonal phase transition temperatures, Tc. 

Similar data have also been collected for RbCaF3 and KMnF3 at room 

temperature - well above the transition. 

Use of both cumulant- and Fourier -invariant -expansion formalisms in 

the characterisation of anharmonic temperature factors is examined. 

The relative merits of each formalism are compared with particular 

reference to computational aspects and to the ease with which reliable 

descriptions of atomic probability density functions may be derived. 

It is found that the regimes of validity of both formalisms fall 

considerably short of systems displaying classically disordered micro- 

structure. The superiority of Fourier -invariant techniques in the 

regime of relatively small anharmonic thermal motion is, however, 

clearly established. 

Cumulant and Fourier -invariant expressions have been used in the 

analysis of the data collected for the cubic perovskites. It is 

found that such anharmonicity as does exist in these crystals just 

above Tc is predominantly associated with the thermal motion of the 

cations; that the magnitude and significance of this anharmonicity 

varies considerably between the different cations; but that its 

structure shows similar features in each. The motion of the cations 

is shown to be preferentially in the plane of the cubic unit cell 

face; a further slight preference is established for motion in the 

directions along which the ions are known to displace on passing to the 

lower- temperature phase. Clear evidence is found, for RbCaF3 and 

KMnF3, that the thermal anharmonicity of the cations is anomalously 

enhanced just above Tc, while that of the anions is qualitatively as 

expected. 

Suggestions are made as to the nature of further work which will 

be required in order to clarify the full range of anharmonic atomic 

distributions susceptible to meaningful analysis by elastic- diffraction 

techniques. 
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CHAPTER 1 : INTRODUCTION 



CHAPTER 1 : INTRODUCTION 

1.1 OBJECTIVES 

The overall aim of this thesis is to carry out an examination 

of the methods and problems associated with the collection and 

analysis of high -resolution neutron elastic -diffraction data. In 

particular, attention is focused on systems falling in the region 

between those describable in terms of purely harmonic thermal 

motions and those in which the atoms are classically and un- 

ambiguously disordered over spacially distinct sites. An attempt 

is made to probe the suitability and potential yield of general 

anharmonic temperature- factor formalisms over a wide range of 

anharmonicity and, in particular, to examine the ease with which 

reliable descriptions of the corresponding real -space probability 

density function (p.d.f.) may be extracted. 

The systems studied all undergo structural phase transitions 

and the p.d.f.'s derived from these analyses are examined in the 

light of recent theoretical ('cluster' model) thinking as to 

possible types of non -linear atomic motion near the transition 

temperature, Tc. 

Considerable effort is put throughout into the identification 

of spurious effects arising from model inadequacies and into an 

examination of the statistical justification for the conclusions 

reached. 

1.2 CLUSTER MODELS 

In the last ten years or so it has become apparent that the 

long- serving phenomenology of the soft mode (Cochran (1960); 

Anderson (1960)) cannot explain various observed features of quasi - 

elastic response. The experiments which aroused much of the initial 

interest were those performed by Riste et al (1971) and 

Shapiro et al (1972) in which a two- component response was observed 

- 1 - 
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in the spectral functions of SrTiO3 and KMnF3 above their high - 

temperature phase transitions. One component was found to 

soften as expected but to saturate above Tc. In the case of 

KMnF3, the soft phonons were overdamped 40 °Kabove the transition. 

The other component - the so- called centrai peak - at zero energy 

transfer, was observed to form at temperatures well above Tc and 

to grow critically as the transition was approached. 

Qualitatively similar features have since been reported in many 

compounds, for example, lead germanate (Cowley et al (1976)). 

Considerable theoretical interest has been shown in the 

problem although no rigorous or universally accepted solution has 

yet been formulated (see the review by Bruce and Cowley (1979)). 

What does seem clear is that a significant part of the additional, 

non -classical response can be attributed to extrinsic effects such 

as strain fields set up by crystal defects (Halperin and Varma 

(1976)); however, it is now generally held that intrinsic effects 

are at least partly responsible. 

One particularly interesting line of approach has grown around 

the proposition that just above Tc there occurs a change in the 

collective motion of the atoms in the crystal (Bruce (1978)); 

that, as the short -range order increases in the critical region, 

there is a crossover from a system displaying a predominantly 

displacive form to one which is of a classical order -disorder 

type. The concept of universality is therefore a central feature 

of this type of thinking, linking as it does two regimes which 

have often previously been treated as conceptually (and 

intrinsically) distinct. 

Is is not the intention here to give a resume of the current 

theoretical status of this very complex and continually evolving 

field; rather it is hoped to illustrate some of the more easily 

interpreted experimental results which may be of use in formulating 

models for the test refinements of Chapter 2.5, and which may in 

themselves suggest plausible models for the crystals studied 

(Chapter 4). 
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The most illuminating manifestations of the crossover from 

'displacive' to 'order -disorder' regimes, referred to above, have 

emerged from studies of low- dimensional model systems. Using a 

one -dimensional model Hamiltonian, Krumhansl and Schrieffer 

(1975) obtained solutions to the resulting non -linear equation 

of motion which may be interpreted as travelling 'cluster' waves. 

Computer- simulation techniques have been used by Schneider and 

Stoll (1976) to demonstrate the formation of regions with non -zero 

local order parameter (clusters) whose spacial extent is found to 

increase as Tc is approached from above. Within each cluster 

the atoms are displaced towards one of their possible positions 

in the low- temperature phase (below Tc), the displacement 

(called the local order parameter and denoted 6) being constant 

throughout the cluster but changing at the cluster wall. (However, 

the vector sum of all such displacements above Tc must be zero 

in a homogeneous crystal.) It is further postulated (Bruce et al 

(1979)) that the change from one configuration to another within a 

cluster occurs on a timescale much longer than typical inverse 

phonon frequencies. A series of 'snap- shots' taken just above Tc 

at small time intervals, 6t, will then reveal spacially distinct 

regions of non -zero 6 which will change their configuration over 

some time interval of many 6t. The atomic p.d.f. will therefore 

be intrinsically multi - peaked at any instant. 

Until recently, direct experimental support for this type of 

microstructure in real three -dimensional systems has been lacking; 

however, the EPR results of Bruce et al (1979) for monodomain 

transforming SrTiO3 (see Section 4) are at least highly indicative 

of such underlying two -timescale dynamics. Moreover, their 

findings do in fact suggest evidence of a simple type of ordering 

similar to that obtained by Krumhansl and Schrieffer (1975) for 

their highly idealised, one -dimensional model system. For the 

sake of definiteness, any further reference in this thesis to a 

'cluster model' will imply a system displaying the simple intrinsic 

manifestations of disorder outlined in the previous paragraph. 

It should be borne in mind, though, and is reiterated, that the 

theoretical justification for the existence of such behaviour in a 



4 

real three -dimensional system has not yet been unambiguously 

established. 

It must also be realised that the existence of two -timescale 

dynamics constitutes the only absolute distinction between the 

cluster model and a model based on anharmonic (one -timescale) phonon 

theory. It is possible (if unlikely) to envisage within the 

latter, the existence of regions with non -zero 6. Clearly then, 

experimental verification of cluster -model dynamics is only strictly 

possible by suitable discrimination between frequencies - as in the 

EPR experiment of Bruce et al (1979). However, the observation 

of such intrinsic multi -peaking in any atomic p.d.f. just above a 

structural phase transition could be taken as highly suggestive of 

a plausible interpretation within the cluster formalism (as it is 

outlined here). 

1.3 ANHARMONICITY 

It has been, and still is in many cases, assumed that atoms 

in a real crystal can be treated in elastic- diffraction analyses 

as though they vibrate in harmonic potential wells : in other 

words that they can be treated as independent, Einsteinian, harmonic 

oscillators. This led to a great simplification of the analysis 

required in the refinement of crystal structures (as outlined in 

Chapter 2.2), and it is only comparatively recently (Lonsdale 

(1962)), with the availability of large -scale digital computers, 

that progress has been made in taking account of non -harmonic 

interactions. 

The approximate nature of the above assumption has been 

recognised for a long time. It is apparent that many observed 

physical properties of real crystals (for example, thermal 

expansion) are incompatible with purely harmonic models. Of 

particular relevance from the point of view of the present study, 

is the fact that a system undergoing a structural phase transition 

must be anharmonic (Bruce (1978)). Recently, direct evidence of 



anharmonicity has been obtained from a variety of experiments : the 

determination of non -zero third -order elastic constants in Zn 

(Schwartz and Elbaum (1970)), the occurrence of 'forbidden' reflections 

in white tin (Merisalo and Järvinen (1978)), among many others. 

Details of the modifications to the temperature factor due to 

thermal expansion - the so- called quasi -harmonic contribution - have 

been summarised by Willis (1969). It is assumed that the force 

constants soften when the crystal expands and that the relative 

change in frequency of the normal modes is the same for each mode. 

This change in frequency is proportional to -T( °K), the proportionality 

constant being the product of the Gruneisen constant, 1G, and the volume 

coefficient of expansion, x. The quasi- harmonic temperature factor 

is then obtained from the harmonic one by multiplication by (1 + 2 YG XT). 

Using the KCZ X -ray diffraction data of James and Brindley (1928), 

Willis shows that most of the anharmonicity observed in the temperature 

dependence of the Bragg intensities (for KCZ) can be accounted for in 

terms of thermal expansion. 

For the cases in which it can not, two principal methods of 

approaching the problem have been investigated. The first, and more 

rigorous, involves the estimation of anharmonic contributions to the 

measured Bragg intensities by a lattice dynamical calculation. 

However, such calculations are extremely difficult and virtually 

intractable for all but the simplest structures (see, for example, 

Maradudin and Flinn (1963)). The second type of approach, and the 

one with which this thesis is mainly concerned, involves the 

parameterisation of the anharmonic effects in some discernable atomic 

quantity such as the p.d.f. or the effective single -particle potential. 

It is then possible to refine the corresponding anharmonic parameters 

in the modified temperature factor together with those of the 

conventional (harmonic) thermal model.* This approach, in contrast 

to the first, does not, therefore, presuppose any knowledge of the 

microscopic interactions within the crystal. 

* Much of the pioneering theoretical work, and the first applications 
to the refinement of crystal structures, were carried out by Dawson 
and his coworkers (Dawson (1967, 1967a); Dawson et al (1967); 
Dawson and Willis (1967)). Using temperature factors based on 
their formalism, successful analyses have since been carried through 
for a variety of compounds (see, for example, the study of BaF2 by 

Cooper et al (1968)). 
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Following Willis (1969), the atomic temperature factor, 

W.J (Q), is given by the ensemble average of the quantity 

exp(iQ . r.), where r. denotes the thermal displacement of the 
nth 

atom from its mean position and Q is a reciprocal lattice 

vector. < exp(iQ . r.)> can be calculated by assigning to 

each exp(iQ . ri) a thermodynamic probability based on the form 

chosen for the atomic potential. Usually (see, for example, 

Merisalo and Larsen (1977); Prager and Harvey (1975)), the 

potential is expanded as a power series in terms of r1, r2 and 

r3, the Cartesian coordinates of the atomic displacement. 

It is common practice to partition the anharmonic temperature 

factor, and expressions derived therefrom such as the atomic 

p.d.f., into constituent parts : 'the harmonic part' and 'the 

anharmonic part' are used in the literature in a rather arbitrary 

(although consistent and mathematically well defined) way. This 

essentially derives from the fact that any anharmonic contribution 

is usually considered as a perturbation to be added to an under- 

lying, dominant, harmonic distribution. Such a division may be 

made for one or both of the following reasons. First, the 

analysis technique may be inadequate unless some artificial division 

is made. For example, depending upon the size and range of the 

sample space (the list of observed structure amplitudes - see 

Chapter 3.6), it may prove impossible to refine simultaneously 

parameters describing second- (harmonic) and higher -order effects. 

Johnson (1970) suggests that an observation /parameter ratio of at 

least 5:1 be maintained in the refinements and many authors 

(Merisalo and Larsen (1977); Kurki -Suonio et al (1979)) have 

encountered insuperable parameter correlation problems. Second, 

it may seem conceptually beneficial to do so. A situation, in many 

ways analogous, exists in the division of a distribution into 

isotropic and anisotropic components (Willis (1969)). This 

division is often made so that the anisotropic contributions sum 

to zero over the sphere defining the isotropic distribution, and 

assuming proper normalisation, can only be made when the best - 

fitting isotropic distribution is found first. The difference 



between the two distributions then gives an immediate indication 

of the way in which 'the' isotropic (or harmonic) part is modified 

by the presence of anisotropic (or anharmonic) components. In 

their discussion, Merisalo and Larsen (1977) point to the fact 

that the refined parameters which they obtain in their expression 

for the anharmonic potential in Zn can take widely different sets 

of values and still result in identical fits to their data. They 

contend that this is due to parameter correlation and conclude, 

for one of the sets of refined parameters,that 'part of the an- 

harmonic contribution is included in the harmonic parameters'. 

Implicitly recognising the difficulties involved in making any 

absolute division, they go on to examine the effects due to 

anharmonicity in terms of so- called integral parameters 

(presumably meaning those likely to be independent of parameter 

correlation effects) such as thermal mean - square amplitudes 

(m.s.a.'s). This theme is taken up later by Kurki -Suonio et al 

(1979). 

From the limited number of examples discussed here, and 

from a study of the available literature, several points emerge. 

(i) 

( 
ii 

It seems that<,although the problem of thermal 

anharmonicity is demonstrably a real one to be faced 

in crystallographic refinements, few estimates have 

been made of the range over which the methods presently 

available are expected to be satisfactory. 

Results derived using different methods have seldom 

been compared - the work of Kurki -Suonio et al (1979) 

is an exception. 

(iii) There appears to be some doubt as to whether anharmonic 

parameters can be meaningfully and unambiguously 

interpreted. 
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Care must be taken to ensure that any conclusions 

reached as regards possible anharmonic thermal motion 

are physically reasonable. As pointed out by 

Merisalo and Járvinen (1978), the observation of 

'forbidden' reflections in white tin by Field (1976) 

cannot result from anharmonic atomic vibration as 

suggested by Field (since then the true crystal 

symmetry would be violated); rather, it must be 

due to either multiple scattering or higher -order 

wavelength contamination. 

1.4 PEROVSKITES 

Although the name 'perovskite' has been given specifically 

to the substance with chemical formula CaTiO3, it is also commonly 

used to denote the family of ionic compounds with general formula 

ABX3. Here, A and B are monovalent and divalent metal ions 

respectively and X are halogen or oxygen ions. In the high - 

temperature phase, the structure is simple cubic with each ion 

occupying a site of high symmetry in the unit cell as 

Figure 1.4.1. The perovskite structure will hereafter be used 

to denote this particular structure. 

Quite apart from recent, potentially useful applications 

in industry (Mel'nikova et al (1977)) these compounds have been 

well studied because of many characteristics of theoretical 

interest which they exhibit. Many are found to undergo structural 

or magnetic phase transitions, often accompanied by drastic, 

anomalous behaviour in their physical properties. 

The sequence CsPbC13 - RbCaF3 -4 KMnF3 - SrTiO3 is the 

subject of the present study. Each of these compounds has been 

found to undergo an antiferroelectric cubic -4tetragonal phase 

transition (at temperatures ranging from 325 °K for CsPbC1 3 to 105 °K 

for SrTiO3) characterised by a small rotation of the BX6 octahedra 

about one of the <1,0,0> axes (see Figure 1.4.2). The metal -ion 



Figure 1.4.1 The sites occupied in the standard perovskite structure. 

One cubic unit cell is shown. The (arbitrary) 

labelling of the axes is to establish a consistent 

convention between diagram and diagram, and between 

diagram and text. 

Ion Type Site Symmetry Coordinates 

A m3m (0,0,0) 

B m3m (e1,z,z) 

X 4/mmm (¡,¡,0)., 
( ). 0,2,2 

, 

(z 
2,0,2 

) 



Figure 1.4.2 The displacement patterns of the X ions in the 

cubic perovskite ABX3 arising from M3- and R25- 

mode vibration. For the M3 mode, the BX6 

octahedra oscillate about one of the <1,0,0> 

directions - here denoted [1,0,0] - and are in 

phase along their oscillation axis as shown; 

the rotations about nearest -neighbour parallel 

axes are in antiphase. When the mode condenses, 

the X ions move to new positions in the directions 

shown arrowed. For the R25 mode (not explicitly 

illustrated here), the successive BX6 octahedra 

oscillate in antiphase along [1,0,0]. 
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subiattice remains essentially rigid on passing through Tc. 

Bearing in mind the equivalence of the three principal crystal 

axes above Tc, it is clear that below the transition the X ion 

may take up one of several positions (see Figure 1.4.3) : to 

sites 1 or 2 if the rotation is about [1,0,01 , to sites 3 or 4 if 

the rotation is about [0,1,01 and to sites 5 or 6 (coincident and 

undisplaced) if the rotation is about [0,0,1] - using the arbitrary 

axes adopted in the diagram. The low- temperature phase is thus 

characterised by an order parameter, ô°, the displacement of the 

X ion from its high- symmetry position to one of the sites 1, 2, 3 

or 4. 

In the spirit of the simplified cluster model as developed 

in Section 2 - and neglecting effects due to domain walls (Cowley 

et al (1976)) - a homogeneous perovskite crystal just above Tc 

is then composed equally of regions in which the X ion is displaced 

to sites 1/2, or to sites 3/4, or undisplaced at sites 5/6. (So, 

for these perovskites, three distinguishable clusters are 'predicted', 

though any one unit cell may assume six different configurations.) 

It seems intuitively clear that the magnitude of the displacement, 

6 , will be less than that of ao. It is also not unreasonable to 

expect that the size of S will increase with ôo and with the 

strength of the anharmonic interactions present (Bruce and 

Schneider (1977)). 

SrTiO3 has been the subject of extensive study over the last 

decade. The crystal is found to undergo a second -order (continuous) 

phase transition at Tc 105 °K. (Tc is found to be rather 

sensitive to the sample purity - see, for example, Hastings et al 

(1978).) Just above Tc, the primary instability, against rotation 

of the Ti06 octahedra about [1,0,0] , is in strong competition 

with an instability against rotation about [1,1,1] (Bruce and Cowley 

(1973)). From EPR (Muller and Berlinger (1971)) and birefringence 

(Courtens (1972)) measurements, a value of about 0.07 Á has been 

obtained for 80. Hirotsu and Sawada (1973) have confirmed this 

value down to 4.2 °K. From very recent EPR measurements just above 

Tc, Bruce et al (1979) extract a value 6 0.008 A. In their 



Figure 1.4.3 The X sites obtained by the M3 -mode rotation of the 

BX6 octahedron about the [1,0,0] axis (sites 1 and 2) 

the [0,1,0] axis . (sites 3 and 4) and the [ 0,0,1] 

axis (sites 5 and 6). Sites 5 and 6 are coincident 

(and undisplaced) so that the resulting single site 

has twice the 'occupancy' of the others. The axes 

established here are those used in the X -ion p.d.f. 

maps throughout this thesis. [1,0,0] and [0,1,0] 

will often be referred to as the X and Y axes 

respectively. 
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experiment, the 4s t ;e4(e. of motional narrowing was used to 

discriminate between the predominant, harmonic (short -timescale) 

vibrations and the non -linear (comparatively long -timescale) 

fluctuations. The linewidth from the Fe3+ - Vo centre, caused 

by a charge misfit resulting from substitution of the Ti4+ ion, 

was observed to change from a purely Lorentzian shape far above 

Tc , through a Gaussian shape to a 'flattened' Gaussian near Tc. 

By showing that two spatially separated Gaussians can be made to 

fit this shape better than a single one, Bruce et al thereby 

extract evidence of separated clusters whose frequency 

fluctuations match that of their EPR probe. 

KMnF3 is found to undergo a first -order (discontinuous) phase 

transition at Tc 186 °K (Minkiewicz et al (1970)), caused by a 

condensation of the R25 mode of the cubic phase. The soft phonons 

are found to be overdamped well above the transition, unlike those 

in SrTiO3 (Shapiro et al (1972)), but similar anisotropic 

dispersion has been observed along the R -T direction in both 

crystals (Kjems et al (1973)). A finite displacement, óc, is 

stabilised at Tc and is of the order 0.13 Á (Minkiewicz et al (1970) ; 

Shirane et al (1970)). Bruce et al (1979a) obtain an upper limit 

for S of the order 0.12 Á. Although a value for ô° has not 

yet been measured, it is expected to be at least as large as that 

derived for RbCaF3 - about 0.4 Á (Hirotsu and Sawada (1973)). 

The dynamics of RbCaF3 have been extensively studied by 

Rousseau and his co- workers and bear many similarities to those of 

KMnF3 (Rousseau et al (1977)): a weak discontinuous transition 

can be observed at Tc = 193 °K; the central peak first starts to 

form about 60° above Tc, at which point the soft -phonon side 

bands are already overdamped; and the temperature dependence 

of the soft mode (given by the relation w2(0,T) = a(T -T0), To= 212 °K) 

holds to within +60° of the transition where deviations start to 

become significant (Almairac et al (1977)). Values obtained for 

c 
from the works of Buzaré et al (1977) and Maetz et al (1978) are 

in accord : both give a value of about 0.08 A. From their 

recent detailed study of Raman activity just above Tc, Bruce et al 
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(1979a) can assign an upper bound of about 0.11 A for 

CsPbCZ3 is found to undergo three structural phase transitions 

at 320 °K, 315 °K and 310 °K : that at 315 °K is continuous, and the 

others discontinuous (Hirotsu and Sawada (1969); Torberg- Jensen 

(1969)). From inelastic neutron -scattering studies, Fujii et al 

(1974) have established the space group in each of the four 

phases and have shown that the successive transitions may be 

understood in terms of soft M3 and R25 modes of the cubic phase. 

In particular, they show that the cubic --> tetragonal transition 

at 320 °K is associated with a condensation of the M3 mode, in 

which the PbCZ6 octahedra oscillate about a<1 00> direction and 

are in phase along that direction (see Figure 1.4.2). The 

existence of several closely separated transitions suggests that 

there may be competing instabilities in the cubic phase, similar 

to those witnessed in SrTiO3. For example, one of the low - 

temperature phases corresponds to a rotation of the PbC16 

octahedra about [1,1,01 (Fujii et al (1974)). Any significant 

development of clusters characterised by such (possibly) 

competing instabilities would render the CZ -ion distribution more 

isotropic than that suggested by Figure 1.4.3. Because of the 

successive phase transitions below Tc it is impossible to obtain 

an estimate for S o; however, Mel'nikova et al (1977) have 
o 

determined a value ,5 0.33 A (compared with about 0.1 Á in both 

RbCaF3 and KMnF3) so that S might be expected to be correspondingly 

higher than that obtaining in the other perovskites (if indeed it 

exists in any of them). 

In fact, disorder above Tc in CsPbCZ3 has already been 

proposed by Moller (1959) on the basis of results obtained with 

X -ray diffraction data. Since then, however, Harada et al (1976) 

have shown that the approximations made by Moller in his analysis are 

not valid with displacements as large as those he obtained. With 

their own data, Harada et al carried out refinements of parameters 

describing the disordered models proposed by Moller, and showed 

that a better fit could be obtained with the standard perovskite 

structure. Recently (Sakata et al (1979)), the functional forms 
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of the ionic potentials have been examined in a series of 

elastic neutron -diffraction experiments covering the range of 

temperatures from Tc up to 623 °K. From their analysis, 

Sakata et al conclude that the anharmonic components in the 

potential are large for the Cs and Ci ions but insignificant for 

the Pb ions. They also find that the temperature factor of the 

CZ ion, in the plane perpendicular to the unique axis and 

containing the principal axes of the harmonic thermal ellipsoid, 

shows anomalous behaviour which they connect with the softening 

of the phonon mode. 

From the point of view of the objectives set out in Section 1, 

it is clear that the perovskites discussed here constitute an 

ideal subject for investigation. Their structure and dynamics 

have been well studied both theoretically and experimentally, 

enabling objective comparisons to be made with any conclusions 

reached from the results of further study. Because the standard 

perovskite structure is so simple it might be expected (or at 

least hoped with some justification) that the fine detail sought 

in the description of the atomic thermal motions will not be masked 

by uncertainties in other crystal characteristics such as, for 

example, atomic positions within the unit cell. Furthermore, the 

strength of anharmonic interactions within the series 

CsPbC1 -4 RbCaF3 -4 KMnF3 -4 SrTiO3 appears to extend over a 

wide range of the anharmonic spectrum, thus establishing a 

reasonable basis for using the series to probe the generality of the 

anharmonic thermal treatments to be investigated. 

1.5 THE PRESENT WORK AND OUTLINE OF THE THESIS 

Since elastic neutron diffraction yields the time- and 

space -averaged crystal structure, it is clear that no direct 

information about two- timescale dynamics can be extracted. 

However, the cluster model - as presented in Section 2 - 

necessarily predicts intrinsic disorder of the X ions in these 

perovskites above Tc. If that is accepted, and if it is also 

accepted that an anharmonic phonon theory would be extremely 
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unlikely to predict such disorder, then in principle elastic 

diffraction may be used to reveal highly suggestive evidence 

for cluster -type disordering. Whether or not such evidence is 

accessible in practice will clearly depend upon the relative 

magnitudes of and the thermal m.s.a. about each of the separated 

sites. It is clear that intrinsic disorder will only be 

resolvable (in a time- averaged situation) if ; 

if it is not then the equilibrium p.d.f. will be single -peaked 

(although perhaps markedly non -Gaussian). Certainly no 

resolvable disorder can be expected to be found in SrTiO3 where 

the value of ó (Bruce et al (1979)) is very small compared with 

the known thermal amplitudes. However, in this case, and in 

the cases of the other crystals examined in this study, the 

shape of the p.d.f. derived from elastic- scattering data should 

at least be compatible with any other results purporting to 

demonstrate intrinsic disorder (or the lack of it). 

For this reason, high- resolution neutron -scattering data 

have been collected for the perovskites CsPbC13, RbCaF3, 

KMnF3 and SrTiO3 at a few degrees above Tc. Similar data have 

also been collected for both RbCaF3 and KMnF3 at room temperature - 

considerably above Tc where collective motion is not expected to 

be so important. The latter will therefore act as a form of 

'control' data against which the lower - temperature data will be 

compared. 

The rest of this thesis is organised as follows : 

Chapter 2 contains a detailed account of the mathematical 

formalisms used to characterise the ionic thermal motions and a 

discussion of the validity of each. Chapter 3 gives an account 

of the general features associated with the collection and analysis 

of neutron elastic- diffraction data. Details of the experimental 

work undertaken are described in Chapter 4 together with the 

results of the refinements. Finally, Chapter 5 examines the 

results obtained for features of interest and relevance vis á vis 

the objectives set out in Section 1. 



CHAPTER 2 : TREATMENT OF THERMAL MOTION 
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CHAPTER 2 : TREATMENT OF THERMAL MOTION 

2.1 INTRODUCTION 

An atom in a crystal is not fixed rigidly : it has 

vibrational energy so that at any given instant it may be 

displaced from its mean position. From a diffraction point 

of view, the electron (or nuclear) density around any atomic 

site is then the convolution of the density of the atom at rest 

with a 'smearing' function characteristic of the nature of the 

vibrational motion. This assumes the validity of treating the 

atomic sites as separable - usually a good approximation. The 

three -dimensional smearing function will be called the 

probability density function (p.d.f.) of the atom, and will be 

denoted P.(r) = P.(r, - r) where rl - r0 denotes displacements 

from the mean positon 1.0 and i labels the atoms in the unit cell. 

The value of P.(r) gives the probability that at any time the 

atom is displaced to a specified position r relative to its 

mean position. 

As a consequence of the convolution of the atomic density 

in direct space, the corresponding atomic scattering factor, fi 

(or coherent neutron scattering length, bi), must be modified by 

multiplication by the temperature factor, Wi(Q), which is the 

Fourier transform (F.T.) of P1(r). (This is a standard result 

of F.T. theory - see for example, Lipson and Cochran (1966).) 

The products fiWi(Q) (or biWi(Q)) can then be used (see Chapter 3.7) 

in the calculation of structure amplitudes, F 
calc 

(Q), which may be 

compared with those derived from the measured diffracted intensities. 

(The structure amplitude is the modulus of the structure factor 

(see, for example, Lipson and Cochran (1966)). Most references 

in this thesis will be to structure amplitudes because the 

imaginary part of the structure factor is identically zero for 

the crystal symmetries considered here.) The parameters used 

to characterise W.(Q) are therefore among those to be optimised 

in the refinements. 
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There is no unique mathematical form for Wi(Q); the actual 

choice is governed by a variety of factors such as 

(i) computational ease, particularly with large data sets; 

(ii) Fourier transformability, since often (and certainly in 

the cases considered here ) it is the direct -space p.d.f. 

which is of more interest; and 

(iii) the 'expected' form of the p.d.f. : that is, because the 

expansion used will always be an approximation to the 

transform of Pi(r), one particular approximation might 

offer a better description in a given case. 

Nevertheless, certain similarities must exist between the 

functional forms of any temperature- factor expressions used to 

parameterise the motion of a given atom. In particular, they 

must satisfy the symmetry of the atomic site (Kurki- Suonio (1977)). 

An important corollary is then that the number of independent 

parameters required to specify Wi(Q) is greatly reduced for 

highly symmetric sites compared with the number required for a 

general (symmetry 1) site. The specific forms used for Wi(Q) 

in this analysis are now described (Sections2, 3 and 4) and their 

suitability tested (Section 5). 

2.2 HARMONIC TREATMENT OF THERMAL MOTION 

This treatment is based on the assumption that the 

restoring force acting upon an atom is proportional to the 

magnitude of the atom's displacement from its mean position in 

any given direction (Hooke's Law). Pi(r) can then be written 

in tensor notation (Johnson (1969, 1970)) as 

IP12 3 

Pi(r) = = exp -z r pjk rj rk 
/2 j,k =1 

c27P 

... (2.2.1) 
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where p is a second -rank tensor and the components rj of r are 

based ón the crystal axes. (The label i will frequently be dropped 

for clarity.) The integral of Pi(r) over space is normalised to 

unity as required. 

Use of the harmonic p.d.f. as given by expression (2.2.1) offers 

the advantage that Pi(r) can be transformed analytically giving the 

conventional, harmonic approximation to the temperature factor, 

3 

W (Q) = exp - 2r2 uJk h' hk 
k 

j , k=1 

... (2.2.2) 

where h. = 
hjB 

/a., hjB being the Bragg indices and a. the lattice 

constants. u3k are the elements of the mean - square vibrational 

amplitude tensor. 

2.3 CUMULANT TREATMENT OF ANHARMONIC THERMAL MOTION 

2.3.1 Introduction 

In this treatment the second -order, harmonic approximation 

to the p.d.f. as given by expression (2.2.1) is used as a 

developing function about which higher -order approximations may 

be expanded. The most general p.d.f. so obtained, when rearranged 

to give the best possible approximation with a finite number of 

terms, is called the Edgeworth Series Expansion (Edgeworth expansion). 

This expansion was first used by Edgeworth (1905) and its 

development has been reviewed by Wallace (1958). More recently, 

the formalism has been applied specifically in the treatment of 

p.d.f.'s (Chambers (1967) and references therein). 

As discussed by Johnson (1970), it is most convenient for 

the purposes of thermal vibration analysis and subsequent least - 

squares refinement, to express the Edgeworth expansion as a 

series of differential operators acting on the harmonic 

approximation to the p.d.f.. Set out explicitly, a more general, 

* The theoretical development of cumulant methods is still evolving 
(Rae (1975)) and the application of cumulants in studies of 
thermal anharmonicity is now quite common (see, for example, 
Cooper and Sakata (1979)_). 
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higher -order p.d.f. can then be written (adopting for convenience 

a notation based on that of Johnson (1970)) 

P(rl; 1K, 2K, 3K, ... ; general) = 1 + Q1(r1) + Q2(r2) + 

ro, a; harmonic) ... (2.3.1) 

where nK are tensors of rank n, a is the variance -covariance 

matrix (6 
-1 

= ipjk} j,k = 1, 2, 3, the matrix of covariant 

components of the second -rank tensor p) and Qm(r1) are terms 

involving products of the differential operators, a /a(rl)j, 

with the elements of the tensors, nK. The rank of the 

highest -rank tensor included in the term Qm(rl) increases with m. 

The anharmonic temperature factor (the F.T. of expression 

(2.3.1)) may then be written as a product of exponentials, the 

arguments of which contain progressively higher -order terms in 

h : 

Wi(Q) = exp L, 47 
2 

2KJk hj hk 

J ',k=1 

+ E 887 
3 3KJkZ 

hj hk h + .. ... (2.3.2) 3 
j,k,Z=1 

W.(Q) could be used in this form and values refined for the 

independent non -zero elements of the tensors, nK; however, it is 

conventional to eliminate the factors of Tr by the substitutions 

bJk = 
2_2 2Kjkg cjkZ 473 3jkZjkZm 24 4 jkZm i ,d = 

K 

... (2.3.3) 
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(bik is therefore related to 
uJk 

by uJk = bik/272.) 

n 
2 +n +2 

Because 
n 

contains in the symmetry 1 case 
fi 

unique 

elements (the parameters to be optimised in the refinements), it 

is clear that the temperature- factor expansion will have to be 

truncated after a few terms so that an acceptable parameter/ 

observation ratio can be maintained in the refinements. 

The distinction between the rank and the order of a tensor 

is a possible source of confusion. Following the terminology 

common in the literature (see, for example, Willis (1969)) 

nth -order anharmonicity will be used here to mean anharmonicity 

specified by terms involving reciprocal -space dimensions of power 

n. Clearly then, in expression (2.3.2), the term involving 

the nth -rank tensor specifies nth -order anharmonicity. The 

order of the tensors, n, is always three here, irrespective of 

the rank, n. 

2.3.2 Features of the Cumulant Treatment 

The ease of computer implementation is an obvious advantage 

of using this formalism: any order of anharmonicity may be 

incorporated into the refinement model by the straightforward 

addition of terms to the temperature- factor expansion 

(expression (2.3.2)). The resulting series is then divided 

into two component series - one involving only even tensors, 
2nK, 

and the other involving only odd tensors, 
2n +lK, 

- which can 

be inserted into the conventional crystallographic terms A(Q) 

and B(Q) used to calculate structure factors (see Lipson and 

Cochran (1966); Johnson (1970)). Furthermore, the derivatives 

of the structure factors with respect to the tensor elements may 

be calculated analytically, resulting in a considerable saving 

in computational time over any method requiring a numerical 

calculation. Any atomic site symmetry can be treated readily 

by determining those elements of the tensors, nK, which are 

independent and not identically zero. Such elements can be 



19 

obtained from a consideration of the transformation matrices 

appropriate to the symmetry operators of the atomic site. 

Weighed against these computational advantages are several 

features which may cause problems in interpretation. First, 

by virtue of the approximations involved in its derivation, the 

Edgeworth expansion can show markedly non -physical effects. 

These can arise from the fact that truncation of the temperature - 

factor expansion after only a few terms biasses the values of 

those factors which are retained from their 'true' values. In 

addition, it is not strictly permissible (although it is necessary) 

to truncate the Edgeworth expansion simply because the temperature - 

factor expansion has been truncated. This is because each 

Qm(rl) contains elements from tensors of different ranks (see 

Johnson (1970)). Two approximations have therefore to be made : 

the first in the truncation of the temperature- factor expansion 

and the second in the subsequent use of expression (2.3.1) to 

obtain the corresponding direct -space p.d.f.. It has been shown 

(Barton and Dennis (1952)) that the three -cumulant model (in which 

cumulant tensors are retained only up to third rank in expression 

(2.3.2)) cannot produce a completely non -negative p.d.f. - although 

the four -cumulant model can. A further difficulty may arise 

depending upon the resolution of the data collected. From 

expression (2.3.2) it is clear that the elements of the tensors 

could be chosen in such a way that the temperature factor 

diverges at finite wave vector. The possibility of obtaining 

elements with such values via the standard refinement techniques 

will increase in general if the data collected is of low 

resolution, ie, if it is concentrated relatively close to the 

origin of the reciprocal space. For points close to the origin, 

the contribution to Wi(Q) from tensors with n > 2 will almost 

certainly be insignificant compared with the second -order 

contribution. However, the higher -order contribution will become 

dominant as the value of Q increases, so that effects on Wi(Q) 

which are small and apparently well -behaved at low Q may become 

large and completely non -physical when extrapolated beyond the 

range of the measured data to high Q. A third (usually less 
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important) difficulty sometimes becomes apparent when an attempt 

is made to visualise the effect of individual, higher -cumulant 

tensor elements on the form of the temperature factor (Johnson 

(1970)). This problem can be overcome to some extent by 

decomposition of the standard tensors into mutually orthogonal 

component tensors of increasing symmetry (Sirotin (1964); 

Thornley (unpublished)). The tensor coefficients in the 

orthogonal representation are linearly related to the tensor 

elements in the non -orthogonal representation. Although it is 

certainly possible to refine the coefficients of the orthogonal 

component tensors directly (see the next section) and hence 

obtain greater accuracy in their refined values, the method of 

cumulants then loses its generality and specific routines have 

to be written to calculate the temperature factor and the 

appropriate least- squares derivatives for each different site 

symmetry individually. 

2.3.3 Computer Implementation 

The crystallographic least - squares fitting program, ORFLS 

(Busing et al (1962)), has been modified so that cumulant 

parameters of orders three and four may be refined in the 

temperature- factor expansion for any site symmetry. Optionally, 

fourth- and sixth -order orthogonal -cumulant parameters may be 

refined for symmetries m3m and 4 /mmm (those relevant to the 

perovskite structure). A program, EDGE, has also been written 

to calculate the Edgeworth expansion up to fourth order based on 

the formula of Johnson (1970) (his equations 4 -7). 

For the perovskite structure it can be shown that the only 

independent non -zero nth -order cumulant parameters for 25_ n S 6 

are as follows. For the metal ions, M, on sitesymmetry m3m, 

these six : 
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n 2 u(M) = ull(M) = u22(M) = u33(M) 

n = 4 1111(M) K2222(M) K3333(M) 

<1122(M) ,<2233(M) 
= 

<3311(M) 

n _ 6 
K111111(M) <222222(M) K333333(M) 

111122(M) <111133(M) K222211(M) 

K222233(M) K333311(M) K333322(M) 

K112233(M) 

and for the X ion, on site symmetry 4 /mmm, these twelve : 

n 

n 

n 

= 

= 

= 

2 

4 

6 

u11(X) 

K1111(X) 

K1122(X) 

111111(X) 
K 

<111122(X) 

u22(X) 
; 

u33(X) 

K2222(X) 
; 

K3333(X) 

K2233(X) K3311(X) 

<222222(X) <333333(X) 

<222211(X) 

K111133(X) 
= K222233(X) 

K113333(X) K223333(X) 

K112233(X) 

The elements of the odd -rank tensors are all zero for these 
(and for any centrosymmetric) site symmetries. 
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In an attempt to illustrate and clarify the modifications 

made to the harmonic temperature factor resulting from the addition 

of individual higher -order orthogonal -cumulant terms, the maps of 

Figures 2.3.1(a) - (d) have been compiled. Having chosen site 

symmetry 4 /mmm as more suitable for the example than m3m (purely 

because it has a greater number of independent non -zero parameters), 

the maps were constructed as follows. The fourth- and sixth - 

rank cumulant tensors, 4K(X) and 6K(X), were orthogonalised giving 

four and six component tensors respectively. The resulting set 

of fourth -rank tensors comprises two with tetragonal symmetry, 

and one each with cubic and isotropic symmetry; the corresponding 

set of sixth -rank tensors comprises three with tetragonal 

symmetry, two with cubic and one with isotropic symmetry. 

Coefficients of the orthogonal component tensors are related to 

the elements of the corresponding standard tensors (as given in 

expression (2.3.3)) via the relationships (Nelmes (private 

communication)) : 

Tensor Symmetry Coefficient 

n = 4 

isotropic do 

-- 

{(2d1111 d3333) + 2(2d1133 
d1122)} 

cubic do = {2(2d1111 
d3333) 

6(2d1133 
d1122)} 

first - tetragonal dTl 
3 { dllll d3333 

second -tetragonal dT2 
3 { d1133 d1122 

n =6 

isotropic fo 
(2f111111+f333333) 

- 

_I{ 

' 

+ 6(f111122+f111133+f113333+f112233)1 



first -cubic 

second -cubic 

23 

fCl = 1 
{(2f111111+f333333, 

_ 5(f111122+f111133+f113333)} 

f 
2 2T111111+f333333 

- 2311( ) 

+ 6(f111122+f111133+f113333) - 99f 
112233} 

first - tetragonal fTl = 
3 ffllllll 

- 
f333333 

second - tetragonal fT2 = 
-- 

f111122 f111133 
- 

2f113333 

third- tetragonal fT3 = 
ff111122 

- 
f111133 

A small ('infinitesimal') value was then assigned to each 

of these coefficients. Using expression (2.3.2) suitably modified 

for orthogonal tensors, the higher -order (n > 2) terms involving 

the individual component tensors were then added separately to the 

harmonic term and the resulting three -dimensional temperature 

factors calculated. Retaining the same (arbitrary) second -order 

term on its own, the corresponding harmonic temperature factor 

was also calculated. (By choosing the coefficients of the 

higher -order tensors to be very small, it can be assumed that 

resulting bias in the second -order terms is negligible for the 

purposes considered here.) The difference between each of 

the ten distinct anharmonic temperature factors so produced and 

the harmonic one can now be identified specifically with the 

addition of the corresponding anharmonic orthogonal -cumulant 

tensor to the harmonic model. 

Difference temperature -factor maps are shown in Figures 

2.3.1(a) - (d), by way of example, for the isotropic, cubic and 



first -cubic 

second -cubic 

23 

fCl 
= 

12 f (2f111111+f333333) 

- 5(f111122+f111133+f113333) 

fC2 2 
2f111111+f333333 - m(21- 31{( ) 

+ 6(f111122+f111133+f113333) - 99f 
112233} 

first - tetragonal fTl = {flii'll 
f333333 

second - tetragonal fT2 - 
f f111122 f111133 

- 
2f113333 1 

third - tetragonal fT3 = 
íf111122 f111133 

A small ('infinitesimal') value was then assigned to each 

of these coefficients. Using expression (2.3.2) suitably modified 

for orthogonal tensors, the higher -order (n > 2) terms involving 

the individual component tensors were then added separately to the 

harmonic term and the resulting three- dimensional temperature 

factors calculated. Retaining the same (arbitrary) second -order 

term on its own, the corresponding harmonic temperature factor 

was also calculated. (By choosing the coefficients of the 

higher -order tensors to be very small, it can be assumed that 

resulting bias in the second -order terms is negligible for the 

purposes considered here.) The difference between each of 

the ten distinct anharmonic temperature factors so produced and 

the harmonic one can now be identified specifically with the 

addition of the corresponding anharmonic orthogonal -cumulant 

tensor to the harmonic model. 

Difference temperature -factor maps are shown in Figures 

2.3.1(a) - (d), by way of example, for the isotropic, cubic and 



Figure 2.3.1 Difference maps illustrating the modifications to the 

harmonic, 4 /mmm- symmetry temperature factor arising 

from the addition of individual, fourth -order, 

orthogonal -cumulant terms to the expansion. Maps 

(a) -(d) are obtained using the d °, dc, dTl and dT2 

terms respectively. The method of construction is 

fully described in the text. Only one section of 

the difference maps is shown; the axes labelled X* 

and Y* are perpendicular to the four -fold axis of 

the distribution and along the conventional major axes 

of the harmonic thermal ellipsoid (so that the planes 

containing the four -fold axis and either X* or Y* are 

mirror planes.) The sign in the bottom right -hand 

corner is that given to the coefficient of the fourth - 

order term. Wa and Wh are the anharmonic and harmonic 

temperature factors respectively. 
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first- and second -tetragonal fourth -rank tensors respectively; 

corresponding maps showing the modifications due to the addition 

of the sixth -rank component tensors are not reproduced here. 

The axes labelled X* and Y* in the figures are perpendicular to 

the unique (four -fold) axis and along the conventional major 

axes of the harmonic thermal ellipsoid. The sign of the fourth - 

order coefficient used in each case is also given; one of opposite 

sign would in some cases cause divergence of the temperature 

factor in the section considered here (for the reasons discussed 

in Section 3.2). 

It is the intention of these maps only to give an indication 

of the type of deductions which might be possible from a refinement 

yielding significant higher -order cumulant parameters, and to 

provide a qualitative comparison with corresponding maps derived 

from an alternative anharmonic temperature- factor formalism 

described in the next section. From Figure 2.3.1(c) for instance, 

it may be tentatively concluded that refinement of a significant 

first - tetragonal fourth -cumulant parameter would not imply 

significant thermal anisotropy in the X* - Y* section, whereas 

refinement of a significant second -tetragonal parameter (Figure 

2.3.1(d)) might well do. Caution must be exercised, however, 

in the interpretation of these maps; very small anharmonic 

parameters have been used in their construction. Relatively 

large anharmonic parameters will in general bias the second -order 

parameters so that the shape (though not the symmetry) of the 

extracted difference maps could change significantly from those 

of Figures 2.3.1(a) - (d). The magnitude of the difference 

p.d.f. would also be correspondingly greater. (No scale has 

been attached to the maps shown here because the anharmonic 

parameters were chosen so small as to be considered infinitesimal.) 
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2.4 FOURIER- INVARIANT TREATMENT OF ANHARMONIC THERMAL MOTION 

2.4.1 Introduction 

This method is based on the formalism developed by 

Kurki -Suonio and his co- workers (Kurki -Suonio (1977); 

Kurki -Suonio et al (1979)) and most of the notation and 

terminology used in this section is theirs. 

It is assumed that the effective one -particle potential, 

V(r), may be separated into the sum of two parts - Vo(r), which 

has the form of a quadratic polynomial, and AV(r), which contains 

higher -order terms in r . While Kurki- Suonio et al (1979) 

speak of Vo(r) as the 'basic harmonic approximation' there seems 

no obvious reason why Vo(r) need necessarily be the same as the 

best -fitting harmonic approximation (see the discussion of 

Chapter 1.3), although in practice it will probably not differ 

greatly - see the results of the refinements in Chapter 4. The 

general, anharmonic atomic p.d.f. takes the form 

-Vo(r) - AV(r) 

Pi(r) = Ñ 
exp 

kT 

... (2.4.1) 

where k and T are the Boltzmann constant and the absolute temperature 

respectively, and N is a normalisation constant. 

Making a first -order approximation in the exponential and 

defining unit vectors in the directions of the principal axes 

of the harmonic p.d.f., the general p.d.f. can be written as 

3 AV(r) 

Pi(r) = 
Ñ 

exp -Z E 8j2 rj2 1 ... (2.4.2) 

j=1 kT 

where B.2 is the reciprocal of the mean - square second -order 

vibrational amplitude along axis j and r = (r1, r2, r3). 
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As pointed out by Kurki -Suonio (1977), V(r) could in principle be 

expanded in terms of any complete set of functions, and some of 

the points relevant to the selection are discussed by him. One 

particularly appealing approach is revealed through an examination 

of the Fourier -invariance Theorem (F.I.T.) : 

"If the ground state of a three -dimensional harmonic 

oscillator is given by 4) 

0 
= exp( -2 E1 Bj2 r2) and an arbitrary 

n- phonon excited state by in = f(B1r1, B2r2, B3r3), then 

ff(B1r1, B2r2, B3r3) exp(27i S . r) d3r = in (27)3/2/B1B2B3 x 

f(b1S1, b2S2, b3S3) where Bibi = 27 and S = Q /2u is the 

scattering vector." (S has been used instead of Q here to 

facilitate comparison with the text of Kurki -Suonio et al (1979).) 

From this, it can be seen that if Pi(r) is written in the 

form f(B1r1, B2r2, B3r3), then the corresponding temperature 

factor may be derived analytically. This form can be realised 

through a consideration of the stationary wave functions of a 

harmonic oscillator and can best proceed by an initial division 

of the problem into one of three separate cases : one in which 

the harmonic approximation to Pi(r) has either isotropic, axial, 

or general (1) symmetry. The procedure in the axial symmetry case 

(it being relevant to 4 /mmm site symmetry) will be outlined here 

by way of example. For full details concerning the derivation of 

the functions required in each of these three cases see Kurki- 

Suonio et al (1979). 

First, taking full account of the site symmetry, the set of 

wave functions forming a basis is obtained. These functions are 

given, for the axial symmetry cases, by 

{Hnz(B3r3)Pn (B1 o) c)mp(0)eXP(-Z(B12 p + 632r32) ) f (2.4.3) 

where Hnz are the Hermite polynomials; P 
n0m1(x) = xmLm 2(n- m)(x2), 

where L is the associated Laguerre polynomial; 4 mp(0)= cos m0 

or sin m0 according as p = + or - ; and (r3,P , 0) are the cylindrical 
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coordinates of r. The indices (nz, n, m, p) run as follows : 

nz = 0, 1, 2, 

n = 0, 1, 2, 

m = n, n-2, , -n ; 

p = +or - . 

nz + n specifies the order of the anharmonicity (the degree of 

excitation). 

By representing the potential as an expansion in terms of the 

basis wave functions and assuming the second -order terms to 

dominate the expansion, Pi(r) can be written 

B1 
2 

Pi(r) = 32 exp(-Z(B12p2+ B32r32)) {1 - 

(2Tr) N 

n 
E 

b Hnz(B3r3) Pnm(Blp) 
p(0)} ... (2.4.4) 

z 
p 

nznmp 

where N, the normalisation constant, is a finite expansion depending 

only upon the coefficients bn 
nmp 

to be determined in the refinement 

and is defined by Kurki- Suoni6 et al (1979). 

By the F.I.T., W(S) is then given as 

W(S) = 
Ñ 

exp(-Z(b1262 + b32S32)) {1 - 

(n +n) 

E E E E i z bn nmp Hn 
(b 

3S3) ñm(b16)01mp(0S) } 

nz n m p z z 

... (2.4.5) 
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where (S3, c , 0s) are the cylindrical coordinates of S and i 

For any specific site symmetry the independent, non -zero functions in 

these expansions are obtained from a list of 'index -picking rules' 

constructed from a consideration of the site symmetry's constituent 

operators. 

The steps in the derivation of Pi(r) and Wi(S) are similar for 

the other two cases in which the harmonic approximation to Pi(r) has 

either isotropic or general symmetry. 

2.4.2 Features of the Fourier -Invariant Treatment 

As suggested by the name, the ease of Fourier transformation 

is a very clear advantage of this method. In spite of, and indeed 

because of, the mathematical approximations made in the derivation of 

expressions (2.4.2) and (2.4.4), it is true that the exact, analytic 

nature of the transformation is not compromised in any way. The 

generality of the space spanned by Pi(r) is however modified 

(restricted) because of these approximations. Compared with the 

method of cumulants, the expressions involved for Wi(S) tend to 

be rather unwieldy. Furthermore, separate computer routines have 

to be written to calculate Wi(S) and its least- squares derivatives 

for each individual site symmetry. It will, nevertheless, be 

possible to achieve some condensation of the computer programming 

for site symmetries involving similar groups of operators. For 

the symmetries relevant to this study (m3m and 4 /mmm), the exact 

mathematical forms (expression (2.4.5)) were used in the calculation 

of the temperature factors. Since a similar exact calculation 

for the necessary derivatives would involve very lengthy expressions 

indeed (because the normalisation constant, N, is a function of some 

of the variable parameters of Wi(S)), the approximation N = 1 was 

made in the computations. As noted later in this section, this 

is a possible source of convergence problems in the refinements, 

although the use of suitable damping factors applied to the 

parameter shifts might be expected to give satisfactory results 

if N ti 1, ie, if the anharmonic terms are not too large. 
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2.4.3 Computer Implementation 

Separate subroutines have been written, to be accessed from 

ORFLS (see Section 3.3), so that Wi(S) and its derivatives may be 

calculated for m3m and 4 /mmm site symmetries up to sixth order. 

Again, the odd -order terms are identically zero for these symmetries. 

A program, FOURREAL, has also been written to calculate the 

corresponding direct -space p.d.f.'s up to sixth order - the program 

is of course substantially the same as the routines written to 

calculate the temperature factors (compare expressions (2.4.4) and 

(2.4.5)). 

The non -zero functions required in the calculation of Wi(S) 

for the site symmetries m3m and 4 /mmm can be obtained from the list 

of index -picking rules tabulated by Kurki -Suonio et al (1979). 

The corresponding parameters to be determined in the refinements 

are then as given below, using the notation of Kurki -Suonio et al 

for the orders n > 2. For the metal ions, M, on site symmetry m3m, 

these six : 

n = 2 u(M) = ull(M) = 

n = 4 a40 
+(M) ; a44 +(M) 

n = 6 a60 
+(M) ; a64 +(M) ; 

u22(M) = u33(M) 

a66 +(M) 

and for the X ions, on site symmetry 4 /mmm, these twelve : 

u33(X) 

; b220 +(X) ; b400 +(X) 

; b240 +(X) 

n = 2 u11(X) = u22(X) ; 

n = 4 b040 
+(X) ; b044 +(X) 

n = 6 b060 
+(X) ; b064 +(k) 

b244 +(X) b420+(X) ' b600+(X) 
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Difference temperature- factor maps, appropriate to the 4 /mmm 

site symmetry and illustrating the modifications to the harmonic 

temperature factor due to the addition of individual higher -order 

Fourier -invariant (F.I.) terms, were constructed in an entirely 

analogous way to those described in detail for cumulant terms in 

Section 3.3. These maps are reproduced in Figures 2.4.1(a) - (h) 

for the functions with indices (nz, n, m, p) = (0, 4, 0, +), 

(0, 4, 4, +), (2, 2, 0, +), (0, 6, 0, +), (0, 6, 4, +), (2, 4, 0, +), 

(2, 4, 4, +) and (4, 2, 0, +) respectively; those with indices 

(4, 0, 0, +) and (6, 0, 0, +) have been omitted because they are 

identically zero in the plane of the reciprocal space considered 

here. It is noted that only those functions with m = 4 characterise 

the four -fold symmetry of the site : the others are isotropic 

about the unique axis. The choice of sign given to the coefficients, 

bnznmp , of the F.I. terms is stated on the maps - one of opposite 

sign would simply reverse the sign of the observed differences. 

The note of caution as regards interpretation, voiced at the 

end of Section 3.3, is again relevant. However, it does seem, at 

least so far as fourth -order terms are concerned, that the gross 

features observed in the difference maps are substantially similar 

whether cumulant or F.I. anharmonic terms are used (compare 

Figures 2.3.1(a) - (d) with Figures 2.4.1 (a) - (c)) - bearing in 

mind any differences attributable only to the choice of sign of the 

F.I. coefficients. It might therefore be expected that the 

improvement in fit to observed data, resulting from the addition 

of fourth -order parameters to the harmonic temperature factor, will 

be about the same for either cumulant or F.I. parameters - at least 

for site symmetry 4,'mmm. This observation is confirmed in the 

refinements of Chapter 4. 

2.5 TEST REFINEMENTS 

2.5.1 Introduction 

In this section, the words 'real' and 'test' will be used to 

denote respectively situations which deal with the actual data 



Figure 2.4.1 Difference maps illustrating the modifications to 

the harmonic, 4 /mmm- symmetry temperature factor 

arising from the addition of individual F.I. terms 

to the expansion. Maps (a) -(h) are obtained 

using the b040 
+, b044 +, b220 +, b060 +, b064 +, b240+, 

b244+ 
and b420+ terms respectively. The method of 

construction is fully described in the text. Only 

one section of the difference maps is shown; the 

axes labelled X* and Y* are perpendicular to the 

four -fold axis of the distribution and along the 

conventional major axes of the harmonic thermal 

ellipsoid (so that the planes containing the four- 

fold axis and either X* or Y* are mirror planes). 

The sign in the bottom right -hand corner is that 

given to the coefficient of the anharmonic term. 

Wa and Wh are the anharmonic and harmonic temperature 

factors respectively. 
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collection and its analysis (Chapter 4) and situations in which 
the data involved have been artificially generated using the 
methods to be described in Sections 5.2 and 5.3. 

The object of carrying out the series of refinements on such 
test data was to obtain some estimate of the reliability and 
physical meaning of the anharmonic parameters obtained during the 
analysis of the real data : in other words, to determine the 

extent to which these parameters may be artefacts resulting from 

some systematic error in data collection /analysis. 

With this aim in view, it was decided to carry out a fairly 

thorough investigation using as 'data', structure amplitudes 

generated from model crystals whose positional and thermal 

parameters were given precisely known values. To keep within 

manageable time schedules, it was decided to restrict the 

investigation to systems whose parameters were representative - 

as far as possible - of those of the real crystals studied (cubic 

perovskites) and to data sets of comparable size and accuracy to 

the ones actually collected. Ultimately, the parameters obtained 

from refinements using the data sets so produced can be used to 

reconstitute the test model structure. Objective comparison is 

then possible between what is known to exist and what may be 

derived with the tools available. 

It is an inevitable consequence in a detailed analysis of 

this kind that some condensation of the terminology employed is 

both desirable and essential. For this reason, an attempt is 

made in the next two sections to develop a concise method of 

labelling the large number of test models used and the data sets 

obtained from them. 

2.5.2 The Structure of the Test Model 

The structure of the test model, illustrated in Figure 2.5.1(a), 

was based on the standard perovskite structure of Figure 1.4.1. The 
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Figure 2.5.1 The structure of the test models. One cubic unit cell 

is shown. The labelling of the axes is the same as that 

of Figure 1.4.1. Only one X ion is shown here; the 

others are located at the symmetry- related face -centre 

positions. 

(a) The central component of the X -ion distribution, 

denoted by the large open diamond, has twice the 

occupancy of the 'satellites', denoted by the small 

open diamonds. S, the site separation, is the only 

variable parameter. This is the structure denoted 

k = 1 in the text. 

(b) The X -ion distribution rotated by 45° about the 

unique axis (the four -fold perpendicular to the 

cube face and passing through its centre). This is 

the structure denoted k = 2 in the text. 
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o 

cubic cell edge was assigned a dimension a = 4 A and the ions A, B 

and X were placed as shown on site symmetries m3m, m3m and 4 /mmm 

respectively. Since one tentative conclusion reached from 

initial refinements on the real perovskite data was that thermal 

anharmonicity is largely confined to the 'cations', X, the 

'metal ions', A and B, were constrained to vibrate in harmonic 

potential wells. 

The X -ion distribution was parameterised as shown in 

Figure 2.5.1(a) for the following reasons. First, because recent 

theoretical thinking (see Chapter 1.2) may be suggestive of some 

underlying, intrinsic disorder in cubic perovskites just above Tc. 

If such disorder is in fact present it might be expected, in a 

time - averaged situation, to display this type of intrinsic micro- 

structure (see Chapter 1.4). However, so that the analysis would 

in no way appear to assume the correctness of this postulation, data 

sets were also generated using models with the same X -ion distri- 

bution rotated by 45° about the four -fold axis, ie, taking the 

'satellite' ions to the positions shown in Figure 2.5.1(b). 

Second, it is possible by varying S (the local order parameter 

and the only variable parameter in the test models) to observe a 

smooth progression from a harmonic p.d.f. ((5 = 0) to one which is 

unambiguously disordered (S >> v/u(X), u(X) being the m.s.a.'s 

assigned to the constituent parts of the X ion). 

Irrespective of the value assigned to S, the central part of 

the X ion, located at the standard perovskite position, was given 

twice the occupancy of each of the 'satellites' (see Chapter 1.4 

for 'justification'). The total scattering length was fixed at 

b(X) = 0.6 x 10 -12cm. b(A) and b(B) were fixed at 0.75 and 

0.45 x 10 -12cm respectively. Each ion (treating the X -ion 

satellites now as individual ions) was constrained to vibrate 

harmonically and isotropically with the following m.s.a.'s : 

u(A) = 0.02 Á2, u(B) = 0.01 Á2, and u(X) = 0.01 A2. Extinction 

in the test crystal was assumed to be isotropic, secondary, Type I, 

with Lorentzian mosaic spread and therefore specified by a single 

parameter, g (see Becker and Coppens (1974)), which was assigned 
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a value 100. This gives a r.m.s. mosaic spread of l' of arc and 

results in the most severely affected 'intensities' being 

attenuated by about 20 %. 

It is again emphasised that the microstructure of the test 

model has been chosen primarily for convenience in prescribing 

a controlled amount of anharmonicity to the thermal motion of 

the X ion. Specifically, it is not intended to serve as a 

proposed microstructure existing in any cubic perovskite crystal. 

2.5.3 The Test Data 

For convenience, the list of 146 independent reflections 

obtained during the refinement on RbCaF3 at 205 °K (see Chapter 4.3) 

was adopted. A set of structure amplitudes was then generated 

for each model, specified by the single parameter, 6, and the 

orientation of the X -ion satellites. An incident wavelength 
o 

= 0.4 A was used. Because of the high (sin eB 
/A)max 

resolution 

of the data collected and also because of the relatively high 

thermal amplitudes often obtaining, it was found in the real 

experiments that the accuracy of the measured intensities fell off 

rather markedly with increasing Bragg angle. To reproduce the 

effects of this in the test data and to take proper account of 

the effects due to random errors in the 'collection', each of 

the generated data sets was passed through a specially written 

program for modification. This program did the following : 

First, each Fobs, the observed structure amplitude, was 

assigned a corresponding standard deviation, 
cT(Fobs), 

based on 

a given empirical relationship - either al(Fobs) =.(1 
+ 30 /F0 bs) x 

Fobs /100 
or 

a2(Fobs) = (1 
+ 7 /Fobs + 

50 /Fobs) 
Fobs /100. 

The percentage accuracy assigned to each Fobs was then as shown in 

Figure 2.5.2. It was found that these accuracies were broadly 

representative of those achieved in the real data collections. 

(The arbitrary scale factor applied to the generated Fobs values 

was chosen so that the 'strong' reflections had Fobs;,-, 100 and 



Figure 2.5.2 The variation of accuracy, (c(Fobs)/Fobs) with 

Fobs ' 
as applied to the data used in the test 

refinements. Graph 1 is the accuracy obtained 

using standard deviations calculated from 

61(Fobs) = (1 
+ 30 /Fobs)Fobs 

/100; 

Graph 2 is that obtained from a2 
(Fobs) 

(1 + 7 /Fobs + 50 /Fobs)Fobs /100. 
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therefore a(Fobs)/Fobs 0.01.) 

In the second stage, the program employed a random number 

generator (see Appendix C) to modify each Fobs by some small 

pseudo- random amount calculated using the flow chart of Figure 2.5.3. 

The modifications were constrained to be between +3G(Fobs) and 

chosen so that the spread in departures from the true Fobs's, as 

generated by the test model, followed an approximately normal 

distribution, as it might reasonably be expected to do. 

Different initial integers used as input to the generator enabled 

different, but reproducible, modified data sets to be obtained. 

Three different sets of initial integers were used, giving three 

modified data sets denoted 1, 2 and 3 for each test model. It 

was found, taking the data set 1 statistics as an example, that 

65% of the modified F 
obs 

's were less than lo(Fobs) from the 'true' 

Fobs 
with a further 27% less than 2u(Fobs) away. The other data 

sets gave similar statistics. 

Each of the structure amplitude lists so produced can then 

be completely specified by four parameters and will, for the sake 

of conciseness and ease of reference, be denoted List(i,j,k,Z). 

i may be either 1, 2 or 3 and serves as a label for different 

statistical fluctuations during the 'collection', i = 1 

corresponding to data set 1 etc; j is the value assigned to S in 

the test model and hence specifies the extent of the intrinsic 

X -ion disorder (the amount of anharmonicity); k specifies the 

orientation of the X -ion 'satellites', that is, the structure of 

the anharmonicity - 1 and 2 denoting the orientations of 

Figures 2.5.1(a) and (b) respectively; and Z = 1 or 2 specifies 

the empirical formula used to generate the 6(Fobs)'s - either 

u1 (Fobs) 
or 62(Fobs). 

A short computer program has been written so that the actual 

real -space p.d.f. of the X ion can be calculated and mapped out 

directly from the model parameters. This allows a comparison to 

be made between the known distribution, as used to generate the 

unmodified structure amplitudes, and the distributions derived from 



Figure 2.5.3 The flow chart used to calculate small pseudo- 

random modifications to the F 
obs 

's of the test 

data. The random vector (N1, N2, N3) is 

obtained from the generator (see Appendix C) 

by taking three successive random numbers 

N1, N2 and N3. The range of possible values 

for each number has been chosen so that the 

spread in modifications to the Fobs 's is 

approximately Gaussian. 
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the refined parameters of the temperature- factor expressions 

discussed in the earlier sections of this Chapter. 

2.5.4 The Test Refinements 

In each series of test refinements carried out on these 

generated data sets the parameters allowed to vary were (i) the 

overall scale parameter, Sc (see equation (3.7.1)), (ii) the 

extinction parameter, g, and (iii) the thermal parameters as 

specified. Neutron scattering lengths were fixed at their 

test -model values. Refinements were carried out by the method 

of least squares (Chapter 3.7) with the weight attached to each 

Fobs 
being proportional to the inverse square of the corresponding 

a(Fobs). 
The final data sets are labelled according to the 

convention established earlier : that is, according to the 

specific test model used (defined by j and k), and the specific 

modifications made (defined by i and Z), in their production. 

The notation employed later in this section is most 

easily illustrated by an example 
0 

: for instance, the heading 

'Refinements using List(i, 0.10 A, k, Z) i = 1, 2, 3, k = 1, 2, 

Z = 1, 2, means that the refinements specified in the text 

following the heading are carried out using each of the twelve data 

sets obtained by taking all combinations of i, k and Z with 

S = 0.10 A. The amount of intrinsic X -ion disorder is therefore 
o 

fixed at S= 0.10 A in the test models used to generate these 

particular data sets. By changing the values of i, k and Z 

individually, it is then possible to link specific differences 

in the refined parameter values with specific differences in the 

X -ion structure (the value of k) or the 'statistical' modifications 

made to the generated data sets (the values of i and Z). 

It would be extremely time -consuming, and would add little 

of value, to reproduce the results of every refinement in detail. 

In the example just quoted, twelve different data sets were used 

and five different refinement models tested for each - a total 

of sixty refinements. Therefore, although the results from each 
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of these refinements were fully considered, only a concise summary 

is given below of the general and unambiguous conclusions. For 

instance, condensed terminology such as 'statistical fluctuations 

in the data collection do not significantly bias parameter values' 

is used wherever possible to imply a more lengthy statement such 

as 'it was found that if j, k and l are fixed, then the refined 

parameter values are not sensitive to changes in the value of i'. 

Continual, explicit reference to the parameters i, j, k and Z is 

therefore avoided. 

(a) Refinements using List(i, 0, 1, Z) i = 1, 2, 3, Z = 1, 2 

The main points of interest extracted from refinements on 

these harmonic (6 = 0) data sets were as follows. 

(i) 

( 
ii 

Neither statistical fluctuations in the data collection 

nor reasonable changes in the weighting scheme 

significantly affect the refined parameter values : 

the value of any particular parameter obtained using 

any of the data sets was never more than two estimated 

standard deviations, as determined by the least- squares 

program, from its 'true' value. It is noted here that 

the six different data sets used in these refinements 

are derived from a single test model; the choice of 

i and Z simply specifies the modification of the 'true' 

data (which would be obtained in a completely ideal and 

error -free experiment) for effects due to the un- 

avoidable inadequacies inherent in a real data 

collection. 

The partial weights analysis (p.w.a.) - see Chapter 3.7 - 

is good : any fluctuations in the partial residuals 

over the Bragg range covered are non -systematic and can 

be entirely explained by random errors in the data 

collection (choice of i). 
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(iii) The addition of fourth -order anharmonic terms to any of 

the ionic temperature factors produces no significant 

improvement in fit to the data. 

(b) Refinements using List (i, 0.05 Á, k, i) i = 1, 2, 3, k = 1, 2 

Z =1, 2 

The conclusions summarised in paragraph (a), including 

(iii), remain true even in the face of the small X -ion 

anharmonicity. 

0 
(c) Refinements using List (i, 0.10 A, k, i) i = 1, 2, 3, k = 1, 2 

Z = 1, 2 

It is still true that the refined parameter values are 

insensitive to either statistical fluctuations in the data 

collection or choice of weighting scheme. However, the addition 

of fourth -order terms, whether cumulant or F.I., to the X -ion 

temperature factor now results in a significantly better fit than 

that obtained using a purely harmonic model. As might be 

expected, the significance is greater when the more accurate 

(Z = 2) data is used (j;= 4 compared with E= 3 for the Z = 1 

data - see Chapter 3.8 for a definition of ). The p.w.a., which 

shows some disturbing structure in the harmonic refinement, 

becomes much better (smoother as a function of Bragg angle) when 

the significant anharmonic terms are included. It is also noted 

that parameter correlation between the coefficients of the mutually 

orthogonal cumulant tensors is less than that between the elements 

of the non -orthogonal ones. Practically identical residuals 

(see equation (3.8.3))are obtained using either the cumulant or 

the corresponding F.I. anharmonic descriptions. The refined 

anharmonic X -ion parameters are found to be extremely sensitive 

to the configuration of the 'satellites' (k = 1 or 2). In 

particular, the F.I. parameter b044 +(X) 
is well determined and 

statistically very significant, as shown by an addditional 

refinement constraining it alone to be zero. The value of 
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is found to be negative or positive according as k = 1 or 2. b044 
+(X) 

The modification to the harmonic temperature factor resulting from 

the inclusion of this parameter in the anharmonic expansion is shown 

in Figure 2.4.1(b); the four -fold symmetry about the unique axis is 

clearly illustrated. It is sometimes found that refinements involving 

F.I. metal -icn anharmonic parameters tend to oscillate slightly. 

However, the use of damping coefficients of the order 0.7 - 0.8 

applied to the parameter shifts, always results in satisfactory 

convergence. The fourth -order metal -ion parameters are again 

insignificant. 

Á, (d) Refinements using List (1, 0.15 A, k, Z) k = 1, 2, Z = 1, 2 

o 
From the results of the refinements using the F < 0.15 A test 

data, there seemed little point in continuing to test the effect on 

the refined parameter values arising from random errors in the 

data collection : it is reasonable to assume that fluctuations of 

this nature will not be a major source of inaccuracy in the refined 

parameter values. For this reason only data sets with i = 1 are 

considered from now on in these test refinements. 

The points to emerge from refinements carried out using the 
o 

b = 0.15 A data sets confirm and reinforce those summarised in 

the previous paragraphs : if k = 1 then b044 +(X) is negative; 

if k = 2 then b044 
+(X) 

is positive; the significance of the 

inclusion of fourth -order anharmonic terms in the X -ion temperature 

factor is greater for the more accurate (i = 2) data set; and 

the thermal anharmonicity of the A and B ions is insignificant. 

However, effects due to the magnitude of the intrinsic, underlying 

disorder now begin to manifest themselves more clearly : even 

the inclusion of full fourth -order anharmonic thermal terms in the 

model does not result in an entirely satisfactory p.w.a. - although 

it is a substantial improvement over the very unsatisfactory one 

obtained from the harmonic refinement. 

Á, (e) Refinements using List (1, 0.2 A, 1, i) Z = 1, 2 

Since the configuration of the X -ion satellites has been shown 
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to give such unambiguous results with regard to the sign of 

it was decided to restrict the remaining refinements to b044 +(X), 

the test configuration k = 1 (Figure 2.5.1(a)). 

Again, the improvement in fit resulting from the inclusion of 

fourth -order anharmonic terms in the X -ion temperature factor is 

extremely significant (s = 28 for the i = 2 data); the further 

addition of metal -ion anharmonic terms is not. However, the fits 

(and the p.w.a.'s) have now become so poor that the refinement 

models themselves must be considered inadequate. Further 

refinements were therefore carried out using the more accurate 

(Z = 2) data with models incorporating anharmonic terms up to 

sixth order in the X -ion temperature factor. The results are 

very interesting. The improvement in fit using the cumulant 

formalism, over that obtained with the full fourth -order model, is 

slight (E = 2); on the contrary, a very substantial reduction in 

the weighted residual is obtained when the F.I. formalism is used 

( = 19). Two of the sixth -order parameters, b060 +(X) 
and b064 

+(X), 
are reasonably well determined - to 14% and 6% respectively - 

implying a correspondingly large degree of statistical significance. 

Even so, the p.w.a. is not completely satisfactory. It is 

nonetheless true that the reduction in the weighted sum of squares 

(equation (3.7.2)) from the harmonic fit value (6000) to the value 

obtained using the sixth -order F.I. model (400) is extremely large 

by any normal standards. 

Á, (f) Refinements using List (1, 0.3 A, 1, 2) 

This model structure was investigated for the sake of 
o 

completeness, since the large value of 6 (= 0.3 A) means that 

the disorder within the X ion is in principle resolvable, ie, the 

p.d.f. is multi - peaked in an equilibrium situation. As expected, 

the resulting residuals are very large (R = 0.21 and Rw = 0.29) 

for the harmonic model. In spite of this, the p.w.a. for the model 

with up to sixth -order F.I. terms is not completely unacceptable 

and certainly much better than that obtained from the refinement 

using the sixth -order cumulant model. The model limitations are, 
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however, clearly highlighted by the unacceptably large values 

obtained for the residuals (R and = 0.08 and 0.09 respectively 

for the full sixth -order F.I. model). 

2.5.5 Analysis of the Results of the Test Refinements 

Some indication of the appropriateness of the different 

anharmonic thermal formalisms discussed earlier in the chapter 

can clearly be obtained from a consideration of such features 

as the fit (the value of the weighted residual) obtained from 

the refinements and the amount of structure in the p.w.a.. 

However, the criteria to be adopted in determining the 

suitability of the models used should certainly be more rigorous 

than these. In particular, care should be taken to ensure that 

each refined parameter is susceptible to a meaningful physical 

interpretation : in other words, if a particular variance analysis 

(for example the Ratio Test of Hamilton - see Chapter 3.8) shows 

that the addition of extra variable parameters to the refinement 

model gives a significantly better fit, then the information 

contained therein should manifest some feature of the system 

being modelled which is not accessible to the refinement model 

without the extra parameters. It may happen that the refined 

values of the additional parameters are, in themselves, of little 

interest to the analyst. For instance, although corrections for 

attenuation due to extinction are now commonplace in crystallography, 

the fact that extinction parameters can often be made to yield some 

estimate of the spread in mosaic block orientations is usually 

ignored; if such corrections give an improvement in fit then they 

are usually assumed to be valid and greater confidence is accordingly 

placed in the values of the other, more interesting parameters. 

However, care must be taken when some interpretation of the 

refined parameters is required. Both Merisalo and Larsen (1977) 

and Sakata et al (1979) have reported results from diffraction 

analyses in which completely different sets of refined anharmonic 

potential parameters have given quantitatively similar and otherwise 



41 

acceptable fits to the data being tested. In the latter case, 

the specific functional form of the refinement model was different 

for each set of parameters; in the former, the model was the same 

for each set. 

For the purpose of the present study it is therefore of 

interest and importance to critically compare the p.d.f.'s derived 

from the parameters of the test refinements with the known 

generating distribution. In the ideal case - that is, with a 

perfect model - the distributions would be the same. In practice, 

the shape of the derived p.d.f. will deviate from the true shape. 

The appropriateness of the anharmonic models must therefore be 

crucially dependent upon the size of such deviations and, just as 

important, upon their structure if any. 

2.5.6 Comparison of the Known and Derived Test Model P.d.f.'s 

Comparisons were restricted to the X -ion p.d.f.'s because 

harmonic thermal descriptions were always found to be adequate 

for the A and B ions. It was further decided to concentrate 
o 

attention on those model systems with S > 0.15 A; anharmonicity 

for those with S < 0.15 A was small (see Sections 2.5.4(a) - (c)). 

Several different methods are available for the reconstitution of 

the p.d.f.'s from the refined thermal parameters and from these the 

following three were chosen. 

(i) Fourier Method 

The parameters from the cumulant -model refinements were used 

to generate complete three -dimensional structure -amplitude lists 

out to a resolution limit (sin 8B /X)max 
= 

1.8 Á . This was the 

resolution of the 'real' data, ie, the data obtained during the 

experiment on RbCaF3 at 205 °K. Because of the high crystal 

symmetry, only 1/48 of the complete set has to be calculated. The 

p.d.f. was then obtained by a standard Fourier summation. It 

was found from a few initial trials that series termination effects 

(see Lipson and Cochran (1966)) were often disturbingly large. 
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For this reason, the lists were extended to a resolution of 
0 

-1 2.2 A , this choice affording a reasonable compromise between 

accuracy and speed of calculation. Difference syntheses were 

also calculated using unweighted coefficients (FA - FH), so that 

any significant features in the p.d.f.'s obscured by termination 

ripples might be more apparent. (FA and FH are respectively the 

structure amplitudes generated from the models with and without 

anharmonic cumulant parameters.) 

(ii) Edgeworth Expansion Method 

The refined cumulant parameters, having been converted from 

the orthogonal status to the standard non -orthogonal, were also 

used to obtain p.d.f.'s via the Edgeworth expansion (expression 

(2.3.1)). Again difference maps were calculated using the best - 

fitting harmonic approximation as the reference. Normalisation 

of the anharmonic p.d.f. to the value obtained for the best - 

fitting harmonic approximation was checked by summation over the 

full three -dimensional distributions. 

It is noted in passing that any observed differences between 

the p.d.f.'s generated using the methods (i) and (ii) must be 

attributable to the different approximations involved in the use of 

the refined parameters, since the parameter values themselves are 

the same in each case. 

(iii) Fourier -invariants Method 

The p.d.f.'s were obtained using expression (2.4.4) and 

difference maps from these by subtraction of the best -fitting 

harmonic distribution. From an examination of the work of 

Kurki -Suonio et al (1979), it is clear that particular attention 

must be paid to the proper normalisation of Pi(r) so that the 

p.d.f.'s derived from different sets of parameters can be meaning- 

fully compared. This potential problem does not arise in the work 

just quoted for two reasons : (a) due to parameter correlation 

problems, the second -order thermal parameters were kept fixed at 
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their refined harmonic -approximation values; and (b) only fourth - 

order thermal parameters were refined. The result of (a) is that 

the prefactor B12B3 in expression (2.4.4) remains unchanged between 

their harmonic -model and anharmonic -model analyses. For reason (b), 

the part within curly brackets in expression (2.4.4) takes precisely 

the value N at r = O. (This must be so because, since i4 = 1, the 

expansions in expressions (2.4.4) and (2.4.5) have the same value 

when S = r = O.) If, however, the second -order thermal parameters 

are allowed to (and do) change between refinements, or if sixth -order 

terms are included, Pi(0) will not be a constant in general. 

Restrictions on the generality of the temperature factor, such as 

those - (a) and (b) - imposed by Kurki -Suonio et al (1979), therefore 

lead to clearly identifiable restrictions on the extracted p.d.f. 

Anharmonic and difference maps were calculated for the three 
o 

test models, List (1, 0.15/0.20/0.30 A, 1, 2) using each of these 

methods. Each p.d.f. was calculated at the points of a cubic 

grid. Spacings along the principal axes of the grid of 0.02 X, 
o n o o 

0.025ppA and 0.03 A respectively for the 8 = 0.15 A, 0.20 A and 

0.30 X models were found to be adequately small so that no detail 

was obscured. 

An examination of the resulting X -ion maps showed that the 

interesting anharmonic features were predominantly confined to the 

section perpendicular to the unique four -fold axis and containing 

the A ions - not an unexpected observation considering the 

structure of the test models. Only the difference maps of this 

section are reproduced here for the S = 0.15pX and 0.20 Á models 

(Figures 2.5.4 and 2.5.5); for the S = 0.3 X model both p.d.f. and 

difference maps of this section are shown (Figure 2.5.6). The 

axes labelled X and Y are respectively those denoted [1, 0, 0] and 

[0, 1, 0] in Figure 1.4.3, ie, the conventional major axes of the 
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harmonic p.d.f.. The model used in the anharmonic refinement 

in each case is specified in the accompanying figure captions. 

For each series of maps, corresponding to the three different test 

models examined, the best -fitting harmonic p.d.f.was normalised 

so that the value P(0) = 10,000; the p.d.f.'s derived from the 

anharmonic parameters via the methods (i), (ii) and (iii) above 

were then normalised in the ways already stated. The p.d.f.'s 

calculated from the known distributions were normalised by summation 

over the full three- dimensional grid; the arbitrary scaling 

constants were then adjusted so that the sum was equal to that 

obtained from a parallel summation over the harmonic distribution. 

In this way, the total density was maintained constant between each 

of the p.d.f.'s obtained for any given test model. It should be 

noted, however, that the density in any given section of the p.d.f. 

need not be a constant and, in general, will not be. 

A clear qualitative comparison of the appropriateness of the 

methods used in the derivation of these p.d.f.'s can be obtained 

from an examination of the maps shown in Figures 2.5.4 - 6. For 

ease of reference, specific features of interest are detailed in 

the accompanying figure captions and need not be repeated here. 

It is clear though, that caution must be exercised in drawing 

conclusions from these maps : in particular , the different vertical 

scales should be noted. 

To put the comparison of the anharmonic p.d.f.'s derived by 

the three different methods on a more quantitative basis, several 

specific features were measured for the known and each of the 

derived p.d.f.'s and the results tabulated in Table 2.5.1. 

First, the height of the distribution at the mean position, 0, 

was obtained. Second, the distances along [1, 0, 0] to the points 

at which the p.d.f. drops to 0.5 and to 0.25 of its peak value 

were measured. And third, a measure of the anisotropy in the 

section arising from the underlying structured anharmonicity was 

obtained as the ratio of the p.d.f. values at equal distances from 

0 along the [1, 0, 0] and [1, 1, 0] directions. These distances 



Figure 2.5.4 Known and reconstituted X -ion difference p.d.f.'s obtained 

for the test model List (1, 0.15, 1, 2). The labelling 

of the axes (X and Y) is as established in Figure 1.4.3; 

the full A -X section may therefore be obtained by 90° 

rotations about the four -fold axis. Each anharmonic 

p.d.f., Pa, is normalised to the value of the harmonic 

approximation p.d.f., Ph, which is assigned the (arbitrary) 

value 10,000 at 0. The r.m.s.a. in the harmonic 

approximation (which is isotropic about the four -fold 

axis) is indicated by the vertical line on the X -axis at 
o 

0.137 A. 

(a) The known difference p.d.f.. 

(b) The Fourier -invariant difference p.d.f., constructed 

using the methods of Section 5.6(iii) from the fourth - 

order parameters obtained for the model with fourth -order 

parameters on all ions. 

(c) The Fourier -difference p.d.f., constructed using the 

methods of Section 5.6(i) from the structure amplitudes 

obtained for the model with fourth -order cumulant parameters 

on all ions. 

(d) The Edgeworth- expansion difference p.d.f., constructed 

using the methods of Section 5.6(ií) from the fourth -order 

cumulant parameters obtained for the same model as that of (c). 

The different vertical scales used in the maps should be 

noted before any objective comparisons are made. For 

instance, the magnitude of the known difference -distribution 

peaks along X and Y (see map (a)), is not reproduced in 

either of maps (b) and (c), although (b) provides a better 

approximation. The known difference distribution shows a 

large dip at 0 corresponding to a reduction of about 15% in 

the p.d.f. at that point compared with the value given by the 

harmonic -approximation p.d.f.; by comparison, the dip shown 

in map (c) corresponds to a difference of less than 2 %. 



Clearly, the distribution given by map (d) provides (at 

least subjectively) the worst agreement with the known 

distribution. It is recalled that maps (c) and (d) 

have been produced from the same refined parameters. 
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Figure 2.5.5 Known and reconstituted X -ion difference p.d.f.'s obtained 

for the test model List (1, 0.20, 1, 2). The labelling 

of the axes (X and Y) is as established in Figure 1.4.3; 

the full A -X section may therefore be obtained by 90° 

rotations about the four -fold axis. Each anharmonic 

p.d.f., Pa, is normalised to the value of the harmonic - 

approximation p.d.f., Ph, which is assigned the (arbitrary) 

value 10,000 at 0. The r.m.s.a. in the harmonic 

approximation (which is isotropic about the four -fold 

axis) 
o 
is indicated by the vertical line on the X -axis at 

0.16 A. 

(a) The known difference p.d.f.. 

(b) The Fourier -invariant difference p.d.f., constructed 

using the methods of Section 5.6 (iii) from the fourth - 

and sixth -order parameters obtained for the model with 

such parameters on all ions. 

(c) The Fourier difference p.d.f., constructed using the 

methods of Section 5.6(i) from the structure amplitudes 

obtained for the model with fourth- and sixth -order 

cumulant parameters on all ions. 

(d) The Edgeworth -expansion difference p.d.f., constructed 

using the methods of Section 5.6(ií) from the fourth -order 

cumulant parameters obtained for the same model as that 

of (c). The sixth -order parameters were not used in the 

construction because the program written to calculate the 

Edgeworth expansion is truncated at fourth order. 

However, as stated in the text (Section 5.4(e)), the 

sixth -order terms are only marginally significant and do 

not bias the lower -orders. 



The different vertical scales used in these maps should 

again (see the caption to Figure 2.5.4) be noted. 

Subjectively (see the text for a more quantitative and 

objective comparison), the reconstituted difference 

distributions vary considerably in their agreement with 

the known distribution of map (a). Map (b) compares 

very favourably while map (d) certainly does not. 

Series termination ripples are very clearly shown in 

map (c). 
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Figure 2.5.6 X -ion p.d.f.'s and difference p.d.f.'s obtained for the 

test model List (1, 0.30, 1, 2). The labelling of the 

axes (X and Y) is as established in Figure 1.4.3; the 

full A -X section may therefore be obtained by 90° 

rotations about the four -fold axis. The anharmonic 

p.d.f.'s, Pa, are normalised to the value of the harmonic - 

approximation p.d.f., Ph, which is assigned the (arbitrary) 

value 10,000 at 0. The r.m.s.a. in the harmonic 

approximation (which is isotropic about the four -fold axis) 

is indicated by the vertical line on the X -axis at 0.2 A. 

(a) The known p.d.f.. 

(b) The Fourier -invariant p.d.f., constructed using the 

methods of Section 5.6(iii) from the fourth- and sixth - 

order parameters obtained for the model with such 

parameters on all ions. 

(c) The known difference p.d.f.. 

(d) The Fourier -invariant difference p.d.f.. 

Known resolvable disorder has clearly not been reproduced 

in map (b). Comparison of maps (b) and (d) shows that 

what appears in the difference map to be a substantial 

modification to the harmonic -approximation p.d.f., may 

in fact produce an apparently small change in the actual 

p.d.f.. 
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Table 2.5.1. Comparison of known X -ion p.d.f.'s with 

corresponding p.d.f.'s derived from refined F.I. and cumulant 

thermal parameters. The test distributions 5 = 0.15Á /0.20Á/ 

0.30Á are those labelled List (1, 0.15/0.20/0.30, 1, 2) in the 

text. The distributions Known, F.I., Fourier and Edgeworth 

refer respectively to the p.d.f.'s generated direct from the 

test model parameters, to those generated using the F.I. method 

(section 5.6(iii)), to those generated using the Fourier method 

(section 5.6 (i) ) and to those generated using the Edgeworth 

expansion method (Section 5.6 (ii) ). The columns list (i) 

the value of the p.d.f. at the centre of the distribution - P(0) 

- when the harmonic- approximation p.d.f. is normalised to 

10,000 at that point, (ii), the distance along the axis [1,0,0 ] 

of Figure 1.4.3 at which the value of the p.d.f. falls to ZP(0) 

- X(ZP(0) ), (iii) the corresponding distance for ¡P(2) - X(áP(0) ), 

and (iv) the ratio of the p.d.f. values at equal distances along 

[1,0,0 ] and [1,1,01 - Ratio. These distances are taken to be 

0.2Á, 0.25Á and 0.3Á for the 6 = 0.15Á, 0.2Á and 0.3Á test models 

respectively, and the integers specifying the ratio are the 

p.d.f. values divided by 100. The d = 0.3Á model p.d.f.'s 

have not been reconstituted using the Fourier or Edgeworth - 

expansion methods because the corresponding fits in the refine- 

ments were so poor. 

The meaning of the numbers can be clarified by an 

example. For instance, the p.d.f. reconstituted via the 

Fourier method,from the cumulant parameters refined using the 

6 = 0.2Á test data,is characterised as follows. The value of 

the distribution at its centre (10018) is greater than the known 

value at that point (9402). The distribution falls off rather 

more quickly than the known one, to 0.5 and 0.25 of P(0) at 

distances 0.19Á and 0.27Á along [1,0,0] compared with 0.22, and 

0.31Á in the known distribution. The anisotropy in the A -X 

section, defined by P(0.25Á, 0,0) : P(v/0.25 Ág/0.25 A, 0) is 

3100 : 2800 - much less than that obtaining in the known 

distribution (4000 : 2100). 



Distribution P (0) X (ZP(0) ) X (;P(0) ) Ratio 

ô = 0.10 

Known 8419 0.19 0.20 38:33 
F.I. 9992 0.16 0.24 36:33 
Fourier 9839 0.16 0.24 36:35 

Edgeworth 

ó = 0.20 

10451 0.16 0.23 33:32 

Known 9402 0.22á 0.31 40:21 

F.I. 10350 0.20 0.31 38:22 

Fourier 10018 0.19 0.27 31:28 

Edgeworth 10511 0.17 0.25 26:24 

3 = O.30ß 

Known 11841 0.20 0.42 60:10 

F.I. 12970 0.22 0.42 53:10 

Fourier - 

Edgeworth - - 
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o 
were taken to be 0.2 A, 0.25 Á and 0.3 Á respectively for the 

6 = 0.15 Á, 0.2 Á and 0.3 Á test models. 

The results of these comparisons for each of the three test 

models were as follows. 

(i) 5 = 0.15 Á Model 

The value of the known p.d.f. (as used in the test model), 

at the mean position, 0, is about 20% less than the corresponding 

value obtained from the harmonic approximation to it. Furthermore, 

none of the derived anharmonic p.d.f.'s is able to improve 

significantly upon this large disagreement - each gives a value 

about 20% high (see Table 2.5.1, Column 1). It also appears, 

perhaps as a corollary of the first observation, that the 

flattened shape of the p.d.f. near 0 cannot be reproduced 

satisfactorily : each derived p.d.f. is sharper than the known 

one, and by about the same amount for each. This can be seen 

from the fact that the distance from 0 to the position along X at 

which the p.d.f. falls to ZP(0) is significantly greater for the 

known distribution - see Table 2.5.1, Column 2. However, further 

from 0 along the X axis, the point at which the distribution 

drops to 4P(0) is reproduced reasonably well by each method. The 

specific area in which one method seems clearly to be preferred to 

the others is in the description of the anisotropy of the 

distribution. The parameters of the cumulant model, whether 

employed via the Edgeworth expansion method or via the Fourier 

Synthesis method, yield anharmonic p.d.f.'s which underestimate 

the anisotropy : in fact, using this ad hoc definition of 

anisotropy, the X -Y sections are nearly isotropic about the four- 

fold axis - see Table 2.5.1, Column 4. Although the F.I. p.d.f. 

does not show quite enough anisotropy, it is clear that in this 

respect it provides a more realistic description of the true 

distribution. It is interesting to point out that the weighted 

sum of squares obtained in the refinement yielding the cumulant 

parameters was actually slightly lower than that obtained with 

the F.I. model (249 and 260 respectively). 
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0 
(ii) ô = 0.20 A Model 

Again, the values of the derived anharmonic p.d.f.'s at 0 

are higher than that of the known distribution. There is still a 

tendency to underestimate the distance along X at which the 

distribution height is 0.5 of its peak value (at 0), so that the 

flattening of the p.d.f. around 0 is not accurately reproduced 

by any of the methods. However, it can be seen that the p.d.f. 

derived from the F.I. parameters does provide a slightly better 

description than those derived from the cumulant parameters 

(see Table 2.5.1, Column 2). Further along the X -axis, it is 

found that the p.d.f. derived from the F.I. parameters matches 

the known distribution very closely. Turning to the question 

of anisotropy in the X -Y section, it is clear from the last column 

in Table 2.5.1 that the ratio obtained from the F.I. p.d.f. is in 

very good agreement with the true ratio; the ratios obtained from 

the cumulant p.d.f.'s certainly are not. The apparent superiority 

of the F.I. description might have been expected for this test 

model because the weighted sums of squares obtained from the F.I. - 

and cumulant - model refinements were 409 and 941 respectively. 

o 

(iii) ô = 0.3 A Model 

The fit obtained with the anharmonic cumulant model was so 

poor that it was not considered worthwhile constructing the X -ion 

p.d.f. from the refined parameters. However, the maps obtained 

from the refined F.I. parameters were examined for significant 

features. From Table 2.5.1 it can be seen that the derived p.d.f. 

is again the sharper - as it has been for each of the test models 

investigated. In spite of this, some consolation can be extracted 

from the facts that the known and derived p.d.f.'s match well 

further from 0 and that there is a reasonable correspondence 

between the ratios specifying the anisotropy. Clearly, though, 

the resolvably disordered structure in the p.d.f. is not reproduced. 
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2.5.7 Conclusions 

In attempting to summarise the findings from these test 

refinements, it must be borne in mind that strictly speaking, 

any conclusions reached may only be valid for the specific 

symmetry (4 /mmm) examined. The proper validation of any 

general description of atomic thermal motion must be based on 

its proven suitability over a much greater range of conditions 

(different site symmetries, thermal amplitudes, etc) than time 

has permitted here. However, because the model systems have 

been chosen so as to reproduce specific features (and (perhaps ?) 

postulated features) of cubic perovskite crystals, it is 

reasonable to contend that the conclusions reached will have some 

relevance in the analysis of these crystals. 

The conclusions summarised below are based on input from a 

large number of test refinements some of which, as stated at the 

outset, have not been specifically identified in this chapter. 

(i) In no cases are the refined values of the higher -order 

(n > 2) thermal parameters found to be significantly 

affected by reasonable modifications of the data such 

as might be attributable either to random fluctuations 

during the data collection, or even to specific trends 

in the accuracy of the measured intensities (the choice 

of weighting scheme). 

(ii Any significant improvement in fit resulting from the 

addition of anharmonic terms to the harmonic temperature 

factor is invariably accompanied by a flattening in the 

structure of the p.w.a. as a function of Bragg angle. 

(iii) The use of mutually orthogonal cumulant tensors instead 

of the standard ones significantly reduces inter -parameter 

correlation. Correlation problems encountered when 

second- and higher -order F.I. metal -ion parameters are 

refined simultaneously may be due to some inadequacy in 
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the approximations made in the calculation of the 

corresponding least - squares derivatives (see 

Chapter 2.4.2). 

From the results of ANOVA significance tests (see 

Chapter 3.8) it is generally true that anharmonic 

thermal parameters with refined accuracy less than 

about 20% are of marginal significance g 2). 

(v) Harmonic models provide completely adequate descriptions 

of intrinsically disordered systems in which S ;¡--\/ Q, 

S being the site separation and 6 the m.s.a. of 

vibration. (It must be remembered that the occupancy 

of the X -ion 'satellites' was only half that of the 

central component, so that this conclusion only serves 

to draw attention to the fact that the harmonic treatment 

will 'work' even in the face of surprisingly large site 

separations.) 

(vi The derived anharmonic p.d.f.'s may include regions of 

negative (non -physical) density. However, such 

regions are always well removed from 0 and their values 

are never more than one or two percent of P(0). 

(vii) Comparison of Figures 2.5.6(a) and (b) shows clearly 

that disorder which is in principle resolvable may not 

be reproducible using the F.I. formalism. Such large 

anharmonicity also appears to be completely out;tdd the 

regime of validity of the cumulant formalism. 

(viii) No evidence of artefacts is found in the description of 

the ionic thermal motion; in particular, the metal -ion 

anharmonic parameters (constrained to be zero in the 

test models) are always found to be insignificant in the 

refinements. 
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ix) An examination of the corresponding difference maps of 

Figures 2.5.4 - 6 and the contents of Table 2.5.1 shows 

that, in general, the anharmonic p.d.f.'s derived from 

the refined F.I. parameters are much more satisfactory 

than those derived from the corresponding cumulants. 

Furthermore, the relative superiority of the F.I. 

formalism appears to increase with increasing 

anharmonicity. If cumulants are to be used in the 

thermal description of an atom, then there are fairly 

clear indications that the construction of a Fourier 

map - using extrapolated data if necessary - may give 

a more realistic description than the Edgeworth map 

(compare especially Figures 2.5.5(c) and (d) with 

Figure 2.5.5(a)). It is recalled, however, that 

the generation of useful high Q data will depend upon 

the sign of the refined cumulant parameters being 

favourable. Otherwise, the temperature factor may 

diverge. 



CHAPTER 3 : METHODS OF STUDY 
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CHAPTER 3 : METHODS OF STUDY 

3.1 INTRODUCTION 

It is the intention in this chapter to outline the features 

of the collection and analysis of single -crystal elastic- 

diffraction data which are common to all of the experimental 

studies described in Chapter 4. Unless specifically stated 

otherwise in that chapter, it may be assumed that the procedures 

involved in any aspect of the data collection, handling or 

refinement are as described here. 

In a crystallographic structural study some incident beam of 

X -rays or neutrons is diffracted from arrays of atoms within the 

crystal. Taking into account the periodicity of the crystal 

lattice, the diffracted beams emerge from the crystal in well 

defined directions and their intensities can be measured using 

some suitable counter. After making corrections for various known 

geometrical factors, these measured intensities can be transformed into 

the corresponding Fobs's (see Section 6). However, it is found 

that several additional corrections to the measured intensities will 

in general be required if the derived Fobs's are to be close 

approximations to the true ones. For example, the importance of 

systematic errors due to absorption, extinction and thermal diffuse 

scattering (TDS), as well as random errors due to instabilities in 

the incident flux or counting chain, must all be considered and 

corrected for if possible. If a rigorous correction is not 

possible for any reason then the resulting existence of bias in the 

Fobs's 
should be recognised and its possible effects on any 

conclusions estimated. 

In the studies carried out here, the crystal structures are 

already known approximately, enabling a reasonably accurate list of 

structure amplitudes to be calculated a priori. The variable 

parameters of the model describing the structure can then be 

adjusted by the method of least - squares refinement until the 

agreement between the calculated and observed structure amplitudes 



is optimised. 

3.2 NEUTRONS AND X -RAYS 

Since most of the technical details of neutron and X -ray 

beam production are well expounded in the literature, only those 

features which have a direct bearing on the present experimental 

study are recapped here. 

The choice of whether to use an incident beam of neutrons 

or X -rays in any given diffraction experiment will depend, in 

general, upon a consideration of many aspects, several of which 

are highly correlated. However, because of the much higher 

running costs of neutron production machinery - reactors - compared 

with X -ray generators, the onus of justification falls heavily on 

those proposing to use neutron -diffraction methods. 

A common feature of the spectra emitted from X -ray and neutron 

sources is that it is polychromatic and must be monochromated for 

the purposes of elastic- diffraction experiments. This is 

usually accomplished in the neutron case by Bragg diffraction of 

the 'white' beam from a crystal (often copper or beryllium) whose 

inter -planar spacing is well known; the diffracted beam is then 

a selected 'window' of the spectrum as shown in Figure 3.2.1. 

The white spectrum from an X -ray tube takes a more structured 

form (see Arndt and Willis (1966)), the wavelength of the prominent 

lines being characteristic of the metal target in the tube. In 

addition to the monochromating technique described above, a second, 

and more common method is available for X -rays in which a metal 

filter is used to attenuate the unwanted Kß component. 

In this study, neutron -diffraction methods were used in each 

of the principal experiments described in Chapter 4. The 

justification for using neutrons (instead of X -rays) was based on 

the following facts. 



Intensity (arbitrary units) 

1 2 

Wavelength (A) 

D 

Figure 3.2.1 The wavelength spectrum from a reactor showing 

a typical 'window' selected by the monochromating 

crystal. 
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First, there are purely physical considerations associated 

with the different scattering mechanisms involved; X -rays are 

scattered from the electron cloud surrounding the nuclei, neutrons 

from the nuclei themselves. As a result, neutron scattering is 

nearly isotropic and does not depend upon atomic number in any 

systematic way. On the contrary, X -ray scattering is proportional 

to the number of atomic electrons at low Bragg angles and displays 

a marked fall -off with increasing angle of scatter. For these 

reasons, neutron -diffraction methods are often to be preferred when 

there are light atoms in the crystal in the presence of heavy ones 

which will dominate the scattering for X-rts, 

A further consideration arises through the inverse relation- 

ship existing between attainable, reciprocal -space resolution and 

incident wavelength; the shortest commonly available X -ray 
o 

wavelength (a 0.56 A from a silver tube) is significantly longer 

than the ultra -short wavelengths now available from a 'hot' source 
o 

at a modern, high -flux reactor (X c 0.4 A or less at the Institut 

Laue -Langevin, Grenoble (I.L.L.) - still with a usable flux). 

In principle, then, assuming that Bragg angles eB 
60° can be 

reached with both X -ray and neutron diffractometers, the maximum 

attainable resolution (sin 
8B /X)max 

is of the order 1.6 A A and 

2.1 A respectively. 

Additional technical problems have to be overcome if the data 

have to be collected at non -ambient temperatures or pressures. 

In general, the much larger and heavier neutron diffractometers are 

more suitable for the mounting of ancilliary equipment such as 

cryostats, furnaces and pressure cells. 

Weighed against these points are others favouring the use of 

X -ray techniques. The question of cost has been mentioned already. 

Availability of sources is a natural consequence. More important 

from a strictly physical point of view, is that the usable flux 

from an X -ray tube is very much greater than that which is obtainable 

from a reactor. This means that X -ray samples can be much smaller 

(and indeed have to be because of absorption within the crystal) 
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and that the counting times required to reach a given level of 

statistical accuracy in the measurements are usually relatively 

short. These can be important considerations if either the 

growth of a 'neutron -size' single crystal is difficult or if 

the crystal interacts with the atmosphere in any way after 

prolonged exposure. 

All of the points summarised in this section are considered 

and enlarged upon by Arndt and Willis (1966). 

3.3 THE DIFFRACTOMETERS 

The diffractometers used in the data collection were the D8 

and D9 four -circle machines at I.L.L.. Since they differ from each 

other in detail rather than overall features, only a general 

description is given here. 

A schematic diagram of a standard four -circle diffractometer 

is illustrated in Figure 3.3.1, with the independent machine shafts, 

conventionally labelled A, w, x and (1), as shown. (This diagram 

is essentially a modified version of that used by Arndt and Willis 

(1966) - their Figure 15.) The crystal is mounted at position C, 

defined as the intersection of the four shafts, and can therefore 

be rotated to any specified orientation about that point. In the 

Normal Beam Equatorial Geometry (Arndt and Willis (1966)), the 

detector moves in the horizontal equatorial plane with the incident 

beam normal to the crystal oscillation axis, w. 

Before starting any experiment, a check should be made that 

the uniform cross -section of the incident beam is large enough to 

clothe the crystal completely. The point C, as determined 

optically using a suitably placed telescope, should be in the 

middle of the beam (within a small acceptable error) for any of 

the possible crystal orientations taken up during the measurements. 

This can be checked by placing a small Cd point on the crystal - 

mounting head at C and photographing the incident beam with the 

machine axes in several extreme positions. 



Figure 3.3.1 Independent shafts of a conventional four - 

circle diffractometer, based on the diagram 

used by Arndt and Willis (1966) (their 

Figure 15): the w and e (table and detector) 

shafts rotate about a common (fixed) vertical 

axis; the shaft is mounted on the X- 

circle; and the x shaft is perpendicular to 

the plane of the x- circle and through its 

centre. The crystal sample is mounted at C, 

the intersection of the shafts. 
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Figure 3.3.1 



Cryostats and furnaces, when used, are fixed to the 

X- circle (see Figure 3.3.1) and their temperature stability 

monitored via their thermocouple output on a chart recorder. 

For the purposes of the experiments described in Chapter 4 it 

was not necessary to calibrate the temperature devices accurately. 

In each case, the temperature was set to a value a prescribed 

number of degree relative to some well defined critical point 

(in practice a few degrees above Tc). The temperature controls 

were found to be stable within about 
2 °. 

A low- efficiency monitor is placed in the incident beam 

so that the crystal may be exposed to a predetermined quantity 

of radiation during each measurement; small random fluctuations 

in reactor power output are therefore inconsequential to the 

running of the experiment. Detection of the diffracted beam is 

by means of an enriched BF3 counter. Diffractometer control 

during an experiment is carried out by an on -line computer working 

from a sequence of input parameters : the attention of the 

experimentalist is therefore largely of a supervisory nature. 

3.4 GENERAL ASPECTS OF CRYSTAL AND EXPERIMENTAL PREPARATION 

The production of single crystals of high purity and optical 

isotropy,which are suitable for use in neutron -diffraction 

experiments,is a time -consuming and often difficult specialist 

task. For this reason, the crystals used in these experiments 

were obtained from the sources acknowledged in the introduction 

to each experiment (Chapter 4). Because neutron beam time is 

so expensive, strict time limits are set for the completion of 

each experiment. This means that careful sample preparation and 

preliminary analysis are essential if the best possible use is to 

be made of the allocated time. Usually, some compromise between 

conflicting ideals will have to be made in the preparatory work. 

The size and shape to which the crystal will be cut is an 

important decision and will depend upon a variety of considerations. 

An exact constraint is the cross -sectional size of the uniform 
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incident beam, which in turn depends upon the geometry of the beam 

collimation : the size of the crystal must not be so great that in 

some possible orientation it is not irradiated uniformly. 

Quantitatively, for experiments using the D9 diffractometer, this 

imposes an upper limit of about 6mm for the largest crystal dimension. 

(A crystal cut to the shape of a cube with side 4mm would therefore 

be too large since its cube diagonal dimension is nearly 7mm. If, 

however, the actual orientations taken up in the experiment are a 

subset of the possible orientations, it may be feasible to use such 

a crystal.) Scattering power scales approximately with crystal volume 

so that if very weak reflections are anticipated it will be desirable 

to use as large a crystal as possible. On the other hand, if 

extinction (see Appendix A) is expected to be severe, a large crystal 

will make for a more difficult and unreliable correction. From the 

point of view of making an absorption correction, the crystal should 

ideally be spherical so that the mean path length of the beam through 

it is the same for all orientations (reflections). No correction 

is then required. However, physical grinding has the disadvantage 

that strain may thereby be induced in the crystal. 

The (cubic) crystals used in the experiments of this study were 

usually cleaved along principal lattice planes to a cuboid shape with 

approximately equal sides. The bounding surfaces were then easily 

characterised for the purposes of making the path -length calculations 

sometimes necessary for the corrections involved in the data processing 

(Section 6). 

After cleaving, the crystals were examined for signs of strain 

or high impurity content. Indications of these can be obtained 

respectively by rotating the crystal under a polarising microscope 

and observing the degree of uniformity of the transmitted light, and 

by noting the amount of side - scattered light from a low -power laser 

beam in transmission through the crystal. X -ray back- scattering 

photographs were then taken as a check that the cleavage planes were 

in fact those anticipated. The photographs were also examined for 

evidence of poorly defined or split spots. Finally, if possible, 
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preliminary elastic- scattering measurements were made using 
diffractometers at A.E.R.E., Harwell, with a view to ensuring that 

the crystal was not twinned and to obtaining some estimate of the 

atomic thermal parameters and the severity of extinction. As a 

result, reflections could be grouped according to predicted relative 

intensities, thus optimising the data collection as outlined in the 

next section. 

3.5 DATA COLLECTION 

The orientation of the crystal axes with respect to some 

specified diffractometer axes must be known accurately if the 

reflections are to be well centred in the detector aperture. In 

practice, the transformation (UB -) matrix giving the desired relation- 

ship is found by indexing a group of reasonably strong reflections on 

the basis of the known crystal cell parameters. A recursion centering 

program is then used to scan through each reflection, varying the 

independent diffractometer shafts in turn until the measured angular 

setting of the profile remains unchanged from the previous cycle of 

scans. The UB- matrix is then refined from the list of angular 

settings by the method of least -squares (see Section 7). The 

reflections chosen for this purpose should preferably have diffraction 

vectors well separated (orthogonal or nearly so) in the reciprocal 

space. The software of some diffractometers allows for a periodic 

check of the centering of a few control reflections; where it does 

not, and depending upon the timescale of the experiment, some manual 

check of the orientation stability should be made periodically. 

Choice of standard reflection(s) is fairly arbitrary except that 

the reflection should be strong enough for its intensity to be measured 

readily to at least one percent accuracy and, if there are two or 

more, they should be well separated in the reciprocal space. The 

frequency of measurement should be as high as reasonably practical. 

It was, however, soon realised that long measurement times were often 

required if very high -angle reflections were to be measured to an 

acceptable accuracy. The computer software on the D8 and D9 

diffractometers was not of sufficient sophistication to enable the 
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specification of shorter counting times for the standard reflections, 

so that on some occasions the time between their measurement was of 
necessity several hours. (On the other hand, this is not so 

worrying as it appears at first because short -term fluctuations, which 

are the ones most likely to avoid detection, will not affect the 

measured intensity of very weak reflections so significantly.) 

The w:20, background - peak -background mode of collection was 

employed in which the table and detector (w and =) shafts rotate about 

a common vertical axis, the stepping interval of the former being 

half that of the latter. Although the optimum w:x a ratio (in the 

sense that the diffracted beam passes through the centre of the 

detector aperture) is a function of Bragg angle, it was always found 

that setting x =2 was adequate, even in the low -angle region where 

xopti mum 2. 

In the case of the very high -resolution experiments on the D9 

diffractometer, time did not permit the collection of an entire data 

set of independent reflections (with at least one additional symmetry 

equivalent for each) out to the desired angular limit. However, from 

refinements carried out on a lower -resolution, but complete, perovskite 

data set, it was clear that the refined model parameter values were 

not sensitive to a reduction in the data set achieved by deleting a 

random selection of reflections. The accuracy of the refined 

parameter values decreases of course. Bearing in mind the 

experimental objectives, it was clearly desirable to sacrifice a small 

amount of parameter accuracy for the collection of high -resolution data. 

For this reason, in the experiments carried out on the 09 diffractometer, 

a random number was assigned to each independent reflection by the 

method outlined in Appendix C, and only those reflections whose 

associated number fell within a given range were measured. The 

specified range could be modified easily depending upon changes in 

the experimental conditions without affecting the random nature of the 

choice of reflections. 

Because the number of reflections to be measured in these 

experiments was relatively small (in crystallographic terms), 



58 

the reflections were often input individually by paper tape instead 

of using one of the more sophisticated hki zig -zag generation schemes 

available. Thus it was possible to group together reflections with 

comparable predicted intensities and measure them at the same rate. 

The machine 'dead -time' must also be taken into account. This 

is the time during which the machine shafts are in motion and no 

counting is being done, and is long enough to cause concern, 

especially on D9. The number of steps in each scan was therefore 

determined by the conflicting needs to reduce dead -time and to make 

the integration under the reflection peak profile valid. Usually 

about 35 steps in the total scan including background afforded the 

best compromise. 

The reflection profiles and full documentation were stored 

directly on to either discs or magnetic tape. 

3.6 DATA PROCESSING 

The data collected on the D8 and 09 diffractometers are background 

corrected in the routine processing by scanning each peak profile, 

designating peak and background areas on the basis of trends in the 

recorded counts, and making a linear subtraction. A check is then 

made that the background areas are large enough to be statistically 

accurate and that they show no systematic structure. Reflections 

failing to meet those requirements are marked in the output and their 

profiles can be further examined by the user. 

An estimated standard deviation, based on the counting statistics, 

is then assigned to each integrated intensity and a correction made 

for the reduction in the true intensity due to the Lorentz Effect 

(Arndt and Willis (1966)). When this has been done, each data set 

can be checked for signs of either long -term drift or erratic variation 

in the standard reflection intensities. If any such variation is 

considered significant, an empirical fit can be made to these 

intensities and the resulting function applied as a correcting 

factor to the entire data set. 
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Absorption effects are usually found to be negligible in 

neutron elastic- scattering experiments, particularly if the samples 

are of reasonable shape as here. A quick calculation of a few 

sample transmission factors (with exaggerated path- length differences 

for safety) confirms this to be so for each of the crystals studied. 

However, effects due to TDS are sometimes found to be very 

significant, especially at high Bragg angles, and a correction was 

made to each data set using the method outlined in Appendix B. 

At this point, the agreement between the corrected intensities 

of symmetry -equivalent reflections was examined. If it appeared 

that the agreement was reasonable (that is, if the differences 

in intensity were compatible with the accuracy of the measurements), 

the equivalents were averaged and converted to give a set of non- 

equivalent structure amplitudes (see Lipson and Cochran (1966)). 

The assigned standard deviations were taken to be the larger of 

the counting statistics error and the r.m.s. deviation of the set 

of equivalent reflections. If the agreement was considered to be 

unacceptably poor, no averaging was done. Extinction effects are 

sometimes found to be significantly anisotropic (Rossmanith (1977)) 

and observed differences in the intensities of equivalent reflections 

can arise from them. Path -length effects (see Appendix A) can 

cause similar problems if the extinction is severe - whether it is 

anisotropic or not. Corrections for extinction are, however, made 

using parameters obtained in the refinements. 

Finally, constraints were often placed on the accuracy of the 

s. Since the weight assigned to each during the refinements 
Fobs' 

is proportional to the inverse square of the corresponding c(Fobs) 

(see the next section), it is often found that the refinement is 

heavily biassed towards fitting the strong, statistically well 

determined reflections. For this reason, a limiting accuracy 

(usually about 1 %) was assigned for each Fobs whose measured 

accuracy exceeded this value. Those Fobs 's with accuracy less 

than some specified lower limit were often discarded, although in 

practice this was not found to significantly affect the refined 

parameter values. 
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3.7 REFINEMENT METHOD 

For the simple cubic structures considered in this study, 

the structure amplitudes were calculated using the formula 

Fcalc(Q) 
= Sc . E(Q) E bi cos(Q. ro)iWi(Q) 

i 

... (3.7.1) 

where Sc is the overall scaling factor and E(Q) is the extinction 

correction factor defined in Appendix A. The functional forms 

used for W.(Q) are fully discussed in Chapter 2. 

The refinements were carried out by the full- matrix least - 

squares method using computer programs based on ORFLS (Busing et al 

(1962)). Modifications to incorporate the general anisotropic 

extinction correction of Becker and Coppens (1974 , 1975) and 

anharmonic temperature- factor calculations are described in 

Appendix A and Chapter 2 respectively. 

The theory of the least- squares method is covered in many 

standard texts (for example, Lipson and Cochran (1966)) and only a 

brief summary of the details relevant to crystallography in general 

and the present study in particular is given here. 

The object of the method is to achieve a minimisation of the 

quantity 

Ew2 = E wi ( Fobs I Vca icl); 
2 

... (3.7.2) 

by a suitable, controlled variation of the model parameters used 

to compute the Fcalc s The summation is over the independent 

structure amplitudes and w, is the weight to be assigned to the 

ith 
Fobs. E wd2 is commonly called the Weighted Sum of Squares. 

Incorrect choice of values for the wi's will make the estimation 
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of the accuracy of the derived model parameter values uncertain, 

and as has been pointed out by Cruickshank et al (1961), the 

formula used to estimate the parameter standard deviations is in 

fact invalid unless the weighting scheme is reasonable. In spite 

of this, the refined parameter values themselves are often found 

to be rather insensitive to the choice of even drastically 

different weighting schemes (see Chapter 4.2 in particular). 

Cruickshank et al (1961) have advocated the use of the empirical 

weighting scheme wi = 1 /(a + 
'Fobs' + c 

IFobsl 2)i 
where a and 

min 
c are about 2Fobs and 2 /Fobs respectively. However, other 

schemes have given 'better' results in some cases (Truter et al 

(1960)). In the refinements of Chapter 4, the weights are based 

on the counting statistics - wi = 1 /a.2(Fobs) - 
often with some 

specified upper and lower limits on the percentage accuracy of any 

Fobs (see Section 6). 

It is common practice, towards the end of a refinement, to 

partition the weighted sum of squares (expression (3.7.2)) into 

component sums over small intervals of 
IFobsl 

or position in 

reciprocal space, Q. A check is then made that there are no 

systematic variations of unacceptable proportions with either of 

these variables (or indeed with any variable which might be supposed 

to have a bearing on the assigned standard deviations). This 

check is called a partial weights analysis. (The words 'partial 

weights analysis' will often be used in this thesis to mean the 

spectrum of partial weighted residuals as a function of some 

variable (usually 33).) Of course, the observation of any such 

systematic trend need not necessarily be an indictment of the 

weighting scheme itself; the use of an entirely inappropriate 

structure model could result in similar features. Clearly, then, 

care must be taken to identify correctly the cause of any disturbing 

trends in the partial weights analysis. 

The correlation matrix, X, is calculated at the end of each 

refinement from the elements of the design matrix. Although, in 

principle, each variable parameter may be determined if Xi, / 1 for 

all i / j, difficulties may arise if any of the 
values is close to 
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unity. It may then be worth reconstituting the functional form 

of the structure model in such a way that the correlation between 

the new parameters is reduced. For instance, decomposition of the 

standard cumulant tensors into orthogonal component tensors (see 

Chapter 2.3.2) is shown to lead to a significant reduction in 

interparameter correlation (see conclusion (iii) of Chapter 2.5.7). 

Correlation coefficients will be relatively large in general between 

parameters describing physical characteristics of any given atom and 

will tend to be smaller between parameters describing characteristics 

of different atoms. 

The least- squares refinement program also allows a modification 

to the standard calculation of structure -amplitude derivatives so 

that it is possible to constrain any parameter to have a fixed 

relationship with any others. This is particularly useful when 

some statistical measure of the significance of the inclusion of 

additional parameters in the model is desired, and full use has 

been made of the facility in the present study (see the next section 

for a discussion of the statistical considerations and Chapter 4 for 

examples obtained from the refinements). 

Finally, provision was made for the use of a damping or 'fudge' 

factor. This is a number (typically-0.7) by which each 

calculated parameter shift is multiplied at the end of each cycle of 

the refinement. Otherwise, and often for no very apparent reason, 

the refinement may tend to oscillate or even diverge about a position 

in the parameter space close to the minimum sought. 

3.8 STATISTICAL TESTS 

In the refinements of each of the crystal structures to follow 

(Chapter 4), it is of crucial importance to be able to state as 

objectively as possible, the merit of adopting one model as opposed 

to some other. For this reason, the statistical basis of the tests 

carried out to determine such merit is examined in some detail. 
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Usually one structure model will contain more variable 

parameters than another and will fit the observed data better; 

in fact, it has been pointed out by Hamilton (19.65) that if the 

parameters of the smaller set constitute a subset of the larger, 

then the model with the larger set of parameters can always be 

made to give at least as good a fit to the data. This is 

intuitively obvious - as is the realisation that a position must 

eventually be reached at which the addition of any further 

parameters to the model will not contribute to a better under- 

standing of the true crystal structure. That is to say, the 

accuracy of such parameters will be very small, so that the extra 

structural information which may be extracted therefrom will be 

slight and incompatible with the extra time and effort required to 

obtain it. The problem then is to construct some test which will 

have as wide a range of applicability as possible and which will 

provide a suitable indicator of the worth of adopting the model with 

the extra parameters. 

The general problem has been extensively studied in statistics. 

First, it is necessary to define the hypothesis to be tested : that is, 

some statement about the population whose truth is to be tested in the 

light of the observed sample taken from it. Assuming the hypothesis 

to be true, the test is then a determination of whether or not the 

result obtained from a given sample could reasonably have been 

expected. In other words, the possibility to be explored is that 

the (non - perfect) final fit of a model to the observed data is a 

reasonable consequence of purely statistical fluctuations within 

the observed data. If the hypothesis were true, then the fit would 

be expected to become better with an increased number of observations, 

whereas it would not in general if the hypothesis were incorrect. 

In any test of this nature, with a finite sample of data, it 

is necessary to partition the sample space (that is, the set of all 

possible observations) into two regions; if the actual observations 

fall into one - the critical region - the hypothesis is rejected, 

and if they fall into the other - the acceptance region - the 

hypothesis is accepted. These two regions of the sample space may 
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be delineated if the probability distribution of the observations 

under the hypothesis is known and if some decision is made as to a 

suitable significance level for the test. The significance level, 

as, gives the probability of rejecting the hypothesis when in actual 

fact it is true, and is commonly taken in statistics to be 0.05 or 0.01. 

The level chosen in any test is of course arbitrary to some extent and 

clearly depends upon the 'cost' of reaching an ill- judged conclusion 

about the hypothesis. 

The extension of the methods of hypothesis testing to the 

problem in hand (as outlined at the beginning of this section) is 

through the statistical process of analysis of variance (ANOVA) 

(Kobayashi (1978)). The weighted sums of squares,Ew,2, are 

obtained for the models with and without constraints (restrictions) 

and are denoted GQ and G 
0 

respectively, adopting the notation of 

Hamilton (1965). The hypothesis to be tested is that the 

constrained model, with the fewer number of parameters, affords 

an acceptable description of the real system as characterised by the 

set of observations. It can be shown that if n is the number of 

independent observations, m and m -b are the number of parameters 

used in the unconstrained and constrained models respectively, and 

the hypothesis is true then 

F 

GQ - GO (n - m) 

G0 

... (3.8.1) 

has the F- distribution for b and n -m degrees of freedom. The 

hypothesis is therefore rejected if the value of F obtained from 

expression (3.8.1) is greater than the point on the F- distribution, 

for b and n -m degrees of freedom, which cuts off 100 of of the 

distribution tail. Hamilton (1965) then goes on to show that the 

ratio F may be manipulated and recast as a ratio of conventional 

weighted residuals R = RQ /RO whose significant points are obtained 

as 
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1 
z 

n-m Fb,n-m, s 
+ 1 ... (3.8.2) 

The weighted and unweighted residuals, Rw and R, are defined by 

1 1 

R = Ewo21 wFobs 
z 

' 

R 
= 02/ Fobs 

Z 

. . . (3.8.3) 

The ratio R above may be obtained from either the weighted or 

unweighted residuals; however, in this study, the weighted residuals 

will always be used for the purposes of ANOVA tests. This method 

therefore provides a ready statistical measure of the significance 

of the additional b parameters used in the unconstrained model. 

The problems of non -linearity in the hypothesis being tested 

are discussed by Hamilton (1965). Although the effects are often 

difficult to assess accurately, it appears that they are probably 

not too serious in the types of problem normally encountered in 

crystallography. It is also true that the statistical information 

extracted using ANOVA methods is to be preferred to any judgement 

based on the parameter standard deviations as estimated from the 

least - squares refinement (Hamilton (1965)). In this way, Merisalo 

and Järvinen (1978) have used ratio -test methods in prescribing 

an accuracy to refined parameters. The errors were taken to be 

the parameter shifts required, from the refined values, in order to 

produce a significantly Ps = 0.25) worse fit to their data. 

Unfortunately, the relationship between statistical and physical 

or chemical significance is seldom clear from the results of least - 

squares refinement of crystal structures. The basis of the 

difficulty lies in the fact that in many cases there is some 

uncertainty about the validity of the structure model being used; 

for example, when extinction and TDS corrections are non -negligible. 

Even a small adjustment in the weighting scheme can sometimes manifest 

itself in noticeable changes in the derived levels of statistical 
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significance (see Chapter 2.5.4). It is contended then that some 

effort be made to ensure that the significance levels obtained from 

any ratio test are not dependent upon the unfounded acceptance of any 

particular set of corrections made to the data. For instance, if 

the corrections due to TDS might be in error by ten percent (not 

unreasonable in some cases - see Chapter 4.2), the dependence of 

the refined R- factors upon changes of this order to these corrections 

should be examined. 

In an attempt to work towards a plausible criterion for the 

assertion of physical significance, Pawley (1971) suggests that the 

ratio 

= (R - 1)/(Rb,n-m,0.01 
1) ... (3.8.4) 

be calculated. has been given the evocative title of 'the 

(Pawley) factor of scepticism' (Thornley et al (1976)). The 

values obtained for from the results of a variety of constrained 

and unconstrained refinements, using data obtained for different 

materials, are shown to fall predominantly in the range 1 - 10. 

A tentative conclusion, based on the results of complementary 

experiments on the same materials and theoretical considerations, 

is that a value for towards the lower end of this range might not 

be indicative of actual physical significance. Values of F, are 

commonly quoted where appropriate in this thesis as a ready measure 

of the comparative significance of the addition of different sets of 

parameters to a given model. Care must, however, be taken to avoid 

the attachment of too much meaning to individual, absolute values of 

E - the test is entirely empirical. 

Of course, if the validity of the model were assured then the 

concepts of statistical and physical significance would be inter- 

changeable : the fact that such validity cannot in general be 

assumed means that caution must be exercised when stating conclusions 

based on these significance tests. For instance, many examples are 
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found in the analyses of Chapter 4 in which the addition of a set 

of parameters to a basic refinement model is 'statistically 

significant' at a level as < 0.001. That is, the possibility that 

the additional parameters are not statistically significant is less 

than 1 part in 1000. Such levels would often be treated with 

some scepticism by a statistician - which is why significance levels 

as = 0.05 or 0.01 have become the 'standard' criteria in statistical 

work. This is not to say that figures as < 0.001 (or any other 

level) are in themselves disputable; they are obtained using well - 

founded statistical principles. Rather, the implication is that 

the additional parameters may compensate to some extent for 

inaccuracies in the corrections for extrinsic effects such as TDS, 

extinction and absorption; the indispensibility of the additional 

parameters, implied by terminology such as '1 part in 1000', may 

therefore be somewhat exaggerated. 



CHAPTER 4 ; EXPERIMENTAL WORK 
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CHAPTER 4 : EXPERIMENTAL WORK 

4.1 INTRODUCTION 

Sections 2 -7 of this chapter contain accounts of each of the 

six experiments and the processing and refinements carried out on the 

data obtained. Each section is divided into three subsections as 

follows. 

1. An account is given of those specific features of the experiment 

and data processing not already included in the general 

descriptions of Chapter 3. 

2. A summary is first given - part (a) - of the results obtained 

from the 'control' refinements, defined as those using Fobs 's 

properly corrected for TDS, o(Fobs)'s as derived from the 

counting statistics, and coherent neutron scattering lengths 

as quoted by Bacon (1975). Absorption within the bulk crystal 

is negligible in each case as shown in Chapter 3.6 and 

corrections were therefore not made. Overall scale and 

extinction correction parameters were always included in the 

refinements along with thermal parameters as specified. 

A description is then given - part (b) - of further refinements 

which were carried out using data and/or conditions modified 

in some way from those obtaining in the 'control' refinements. 

These refinements were considered necessary because of the 

specific nature of the conclusions it was hoped to extract 

from the refined model parameters : it was essential to 

eliminate extrinsic effects as a possible cause of confusion 

and misinterpretation. In other words, modifications to 

phenomena supposedly independent of the method of 
parameter - 

isation of the ionic thermal motion must not have a 

significant bearing upon the qualitative nature of any 

conclusions extracted from the refined thermal parameters. 
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The effects which might come into this category are those due 

to extinction, TDS, choice of weighting scheme, assignment 

of coherent neutron scattering lengths and so on. Of these, 

extinction is refined along with the other parameters and 

therefore cannot be considered as a truly extrinsic effect - 

although the refined extinction parameters would not be 

expected to change significantly between refinements using 

different thermal models. Ad hoc modifications to the 

others are however possible, and were made as described in 

each section. 

Details of refined parameter values, residuals and significance 

levels are given in the appropriate tables. 

3. A general discussion is given of the results obtained in the 

refinements described in Subsection 2 with particular 

emphasis placed on the derived descriptions of the ionic 

thermal p.d.f.'s. 

Section 8 then goes on to give a general overview and to 

compare and contrast the results obtained and the conclusions 

derived for the series of crystals as a whole. 

4.2 THE CsPbC13 EXPERIMENT 

4.2.1 Experimental Details 

The sample used in the experiment was a cuboid of approximate 

dimensions 5.5 x 4.0 x 3,0 mm cut from a crystal grown by 

Dr P M Dryburgh, University of Edinburgh. It was opaque with a 

greenish tinge and was found to cleave easily along the principal 

crystal planes. When examined under crossed polars it appeared 

to be reasonably strain -free (optically isotropic) 
and X -ray 

back -scattering photographs showed no evidence of poorly defined 

spots. 
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The experiment was performed on the D9 diffractometer at 

I.L.L. with the (2,0,0) planes of the Cu monochromator being used 
0 

to give an incident wavelength of 0.656 A. During the experiment, 

the crystal was enclosed in a furnace maintained at 325 °K, 5° 

above the cubic 4 tetragonal phase transition. The cell 

constant used was the one quoted by Harada et al (1976), namely 

a = 5.605 A. Coupled w:2e scans were made of nearly all of the 

independent reflections in the first five reciprocal lattice layers 
0 

out to a maximum Bragg angle of 50° ((sin eB 
/)max - 

1.2 A -1), 

beyond which no measureable peaks were observed. This gave a 

total of 230 reflections whose measured accuracy, in general, fell 

off markedly with increase of Bragg angle. Time did not permit 

the measurement of a symmetry -related reflection for each of the 

independent reflections. Instead, a sample of 38 was chosen at 

random and a symmetry- equivalent reflection measured for comparison. 

It was found that the agreement in integrated intensity was, except 

in a very few cases, within three standard deviations (for the weaker 

reflections) and within 5% (for the strong, statistically well 

determined reflections). It seemed, then, that variation in 

absorption with crystal orientation could be assumed to be small. 

This was in fact confirmed in a subsequent lower -resolution 

experiment in which at least two equivalents were measured for all 

reflections. 

Because only one measurement was made for most of the 

reflections , the resulting data set cannot be considered ideal. 

However, it was felt that the agreement between those equivalents 

which were measured, together with the subsequent good fits in 

the refinements, justified acceptance of the data. 

The standard reflections were found to agree within 

acceptable limits and so no adjustment for long -term variation 

in the counting chain stability was required. TDS contributions 

were calculated using the method described in Appendix B; the 

circular receiving aperture actually used in the experiment was 

replaced, for the purposes of the computer program, by a square one 
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of the same area. The elastic constants, derived from the 

dispersion curves of Fujii et al (1974), were as follows : 

C11 = 3 x 1011, 
C44 = 

0.76 x 1011 and C12 = 2.1 x 10i1 dyne /cm2. 

These values give correction factors of up to a --1 for reflections 

at the highest Bragg angles - that is, modifications to the 

observed structure amplitudes of up to about 30 %. It was 

estimated that the values obtained for the elastic constants 

could well be in error by about 10% because of inaccuracies 

inherent in the reading of the dispersion curves. A lower 

limit a(Fobs) 
/Fobs 

> 0.02 was applied and 20 reflections with 

(Fobs) /Fobs 
0.50 were omitted from the refinements leaving 210 

independent measurements. (The refinements were not found to be 

sensitive to changes in these specified limits.) 

Since preliminary refinements showed extinction to be small, 

an approximation to the Becker and Coppens (1974) treatment of 

secondary extinction was used - see Appendix A - in which it was 

assumed that the mean path length through the crystal was the same 

for all reflections. The extinction was assumed to be isotropic, 

Type I, with Lorentzian mosaic spread. 

4.2.2 The Refinements 

(a) The Control Refinements 

The thermal parameters obtained from the refinement using 

a purely harmonic model (see Table 4.2.1) are larger than those 

obtained by Harada et al (1976) with lower -resolution data. 

(Their value should be divided by 
872 

to convert them to 

m.s.a.'s in A 2.) This is probably at least partly due to their 

failure to make a TDS correction. An examination of the p.w.a., 

however, shows the distribution of partial weighted residuals 

to have a marked structure both as a function of 
IFobs1 

and as a 

function of Bragg angle : a very large peak in the spectrum 

(see Figure 4.2.1) is observed corresponding to observations 

made around 03 20° - the middle of the range in Fobs values. 



Table 4.2.1 The refined parameters of CsPbCZ3 at 

325 °K. Model I contains harmonic thermal parameters 

on all ions. Models II, III, IV and V contain, in 

addition to the parameters of Model I, fourth -order 

F.I. parameters on the Cs, Pb and Cl ions and on all 

ions respectively. Models VI and VII contain, in 

addition to the parameters of Model V, sixth -order 

F.I. parameters on the Cl ions and on all ions 

respectively. In addition, the scale (arbitrary) 

and extinction parameters, Sc and g, were always 

refined. The extinction parameter is as defined by 

Becker and Coppens (1974) for isotropic Type I 

secondary extinction with a Lorentzian mosaic spread. 

Estimated standard deviations (from the least- squares 

refinement) are given in parentheses; where none is 

given, the parameter was fixed during refinement. 

R, Rw and EwA2 are defined in the text. 
çwo2 

is the 

weighted sum of squares obtained in the corresponding 

refinement using cumulant parameters instead of F.I. 

parameters. 



Model I II III IV V VI VII 
Sc 8.3(1) 8.3(1) 8.6(2) 8.3(1) 8.7(1) 8.7(1) 8.5(1) 

Caesium 

0.55 0.55 0.55 0.55 0.55 0.55 0.55 

bx1012cm 

u (R2) 0.082(1) 0.081(1) 0.083(1) 0.077(1) 0.079(1) 0.079(1) 0.079(1) 
a40+ -0.01(1) 

-0.004(7) -0.004(6) -0.004(7) 
a44+ -0.016(5) 

-0.008(2) -0.007(2) -0.006(2) 
a60+ 

0.00(1) 
a64+ 

0.001(1) 
a66+ 

-0.0002(2) 

Lead 

0.94 0.94 0.94 0.94 0.94 0.94 0.94 

bx1012cm 

u (Q2) 0.0249(4) 0.0249(4) 0.0147(4) 0.0250(4) 0.0224(3) 0.0229(4) 0.0229(4) 
a40+ -0.24(1) -0.054(5) -0.043(5) -0.05(1) 
a44+ -0.01(1) -0.003(2) -0.002(2) -0.02(1) 
a60+ 

-0.01(1) 
a64+ 

-0.007(3) 
a66+ 

-0.0010(4) 

Chlorine 

0.96 0.96 0.96 0.96 0.96 0.96 0.96 
bx1012cm 

u11(ß2) 0.194(1) 0.194(1) 0.196(1) 0.199(1) 0.201(1) 0.201(1) 0.200(1) 
u33(ß2) 0.0233(3) 0.0233(5) 0.025(1) 0.0238(3) 0.0258(5) 0.0253(5) 0.0258(5) 

b040+ 0.050(3) 0.047(3) 0.052(3) 0.053(3) 

b044+ -0.011(1) -0.010(1) -0.011(1) -0.011(1) 

b220+ 0.002(2) 0.003(2) 0.001(2) -0.001(2) 

b400+ -0.0006(4) -0.0004(4) -0.0005(8) 0.001(1) 

b060+ 0.008(3) 0.008(3) 

b064+ -0.0022(4) -0.0023(4) 

b240+ 0.001(1) 0.001(1) 

b244+ 0.0004(4) 0.0005(4) 

b420+ 0.0004(3) 0.0005(4) 
b600+ 

0.0000(1) -0.0001(1) 

gx10-4 0.17(5) 0.16(4) 0.23(6) 0.21(3) 0.29(3) 0.28(3) 0.25(3) 

R 0.060 0.060 0.054 0.043 0.037 0.035 0.034 

16.1 0.074 0.073 0.072 0.040 0.036 0.032 0.031 

Ew02 1274 1219 1188 369 306 234 217 

Éw6 2 1274 1227 1187 505 415 353 328 



Model 

N.P. 

F. I. 

Ew 

as 

S 

cumulant 

NA 

as 

E 

Parameter 

E 

I II III IV V VI VII 

6 8 8 10 14 20 26 

1274 1219 1188 369 306 234 217 

0.005I 0.001I 0.0011 0.001IV 0.001v 0.05VI 

1 2 27 3 3 1 

1274 1227 1187 505 415 353 328 

0.0051 0.0011 0.0011 0.001IV 0.001v 0.05VI 

1 2 19 3 2 1 

a44+(Cs) 
a40+(Pb) b040+(C1) b044+(C1) b060+(C1) b064+(C1) 

lI 21 18I 14I 4V 6V 

Table 4.2.2 The significance levels derived from the fits 

of Table 4.2.1. The models with N.P. variable parameters 
c 

and fits specified by EwA2 and NA are as defined in 

Table 4.2.1. as and ; are defined in the text. The 

meaning of the value for as and its subscript can best be 

made clear by an example : 0.00l for Model V means that the 

improvement in fit given by this model, compared with the fit 

of Model IV, is statistically significant at the level 

a 
s 
S 0.001. The corresponding value for E is stated on the next 

line in each case. The bottom two rows give the most significant 

of the anharmonic F.I. parameters. The subscript on the E 

value indicates the model against which the improvement in fit 

due to the addition of the individual parameter is tested. 
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Figure 4.2.1 The partial weighted residuals obtained from the 

refinements of the CsPbC13 (325 °K) data. The 

contributions to 
partial 

were averaged over small 

intervals of 9B and gave the values marked by 

crosses. The lines are guides to the eye. The 

graphs labelled I, V and VII were obtained with 

the 'control' data using Models I, V and VII defined 

in Table 4.2.1. Those labelled Iu, Vu and VIIu 

were obtained in the same way using the data with 

unit weights applied to each observation. 
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In addition, the overall weighted residual, Rw, is 0.074 - rather 
higher than might be expected on the basis of the accuracies 

achieved in the data collection. It appears, then, that either 

the harmonic model is not a plausible one or that the counting - 

statistics weighting scheme is inappropriate. 

The addition of either F.I. or cumulant fourth -order 

parameters to each of the metal -ion temperature factors in turn 

gives similar, relatively small (in the sense of ;) reductions 

in EwA2 from the value obtained in the harmonic refinement - 

see Tables 4.2.1 and 4.2.2.for a summary of the fits and significance 

levels obtained in these refinements. From separate refinements 

it can be shown that practically all of the improvements in fit 

can be attributed to the addition of the a44+ (Cs) and a40+ (Pb) 

parameters. (In cases where the addition of F.I. and cumulant 

parameters give comparable improvements in fit only the individual 

significance of the F.I. parameters will be investigated in this 

way.) It is noted in the passing that the inclusion of the a40+ (Pb) 

parameter in the model results in the Pb second -order thermal 

falling to just its harmonic -approximation 

value (see Table 4.2.1 Models I and III) although the appropriate 

correlation coefficient is only 0.75. 

The corresponding reduction inEwz2 arising from the addition 

of fourth -order CZ -ion thermal parameters to the harmonic model 

is found to be massive for both the cumulant and F.I. treatments 

and larger (significantly so) for the F.I. model (7 = 27 compared 

with 19 - see Table 4.2.2). Nearly all of this improvement is 

due to the b040+ (CZ) and b044+ (CZ) parameters (E, = 18 and 14 

for the addition of each individually); added separately to the 

harmonic model, the b220+ (CZ) and b400+ (CZ) parameters hardly 

reducepA2 at all. 

As can be seen from Table 4.2.1, the addition of up to 

fourth -order and up to sixth -order terms to the temperature factors 

of all ions produces further, but relatively small, improvements 

to the fit obtained with fourth -order terms 
on the CZ ion alone. 
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Even so, it is worth pointing out that two of the sixth -order 
parameters, 

b060+ 
(Cl) and b064+ (Cl), can be added with some 

justification to the model with fourth -order parameters on all 

ions ( = 4 and 6 respectively). 

It is interesting to examine the way that the p.w.a. evolves 
from the totally unacceptable spectrum derived from the harmonic 

fit. The corresponding p.w.a.'s for the full fourth -order and 

full sixth -order models have been added to Figure 4.2.1. The 

improvement in the structure of the partial residuals as a function 

of Bragg angle is clearly very satisfactory. 

(b) The Non- standard Refinements 

Refinements were first carried out using the data uncorrected 

for TDS. Although the second -order thermal parameters are found 

to decrease significantly from the values obtained with the corrected 

data, as expected (and in fact to become very close to the values 

quoted by Harada et al (1976)), the higher -order parameters are 

remarkably insensitive. The resulting fits are also slightly 

poorer than the corresponding ones obtained with the corrected data 

which gives confidence that the TDS corrections are at least 

reasonable. 

The correctness of the counting- statistics weighting scheme 

is largely justified by the observed flatness of the anharmonic 

p.w.a. graphs of Figure 4.2.1. As a check for unforeseen features, 

however, selected refinements were carried out using the data with 

unit weights applied to each Fobs. The corresponding p.w.a. graphs 

have been added to those already shown in Figure 4.2.1. It can 

be seen that the refinement of higher -order terms need not, in itself, 

lead to a dramatic flattening of the p.w.a. spectrum. Despite the 

obvious (and expected) unsuitability of these weights, it is found 

that the refined parameter values do not change significantly from 

those obtained in the refinements using the 'control' data. 
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From the form of the structure -amplitude expression 

(equation (3.7.1)), it is clearly impossible to refine the scale 

parameter and each of the scattering lengths simultaneously. For 

this reason, b (CZ) was fixed at the value quoted by Bacon (1975) 

and refinements carried out allowing the others to vary. It was 

found that b (Cs) tends to increase by about 4% from the quoted 

value, but that neither the refined values of the other parameters 

nor the significance levels associated with the addition of specific 

anharmonic thermal parameters change significantly. 

4.2.3 Discussion 

From the results of the previous section it can be stated 

with reasonable certainty that any inherent inaccuracy (of 

foreseeable proportions) in the TDS corrections, the weighting 

scheme, or the assignment of neutron scattering lengths, is 

unlikely to affect the value or significance of the refined 

anharmonic thermal parameters. Furthermore, on the basis of a 

comparison of the weighted residuals obtained in the 'control' and 

the 'non- standard' refinements, it seems clear that reasonable 

choices have been made in the control data processing and refine- 

ment for all of these. The value of b(Cs) does show a consistent 

tendency to increase slightly from the value quoted by Bacon (1975) 

when it is refined with the other parameters; however, it is 

difficult to assess the significance of this increase and in any 

case the effect on the values of the other parameters is negligible. 

b (Cs) is therefore not highly correlated with any other individual 

model parameter. 

For these reasons, the parameter values as set out in Table 4.2.1 

and the significance levels as summarised in Table 4.2.2 are taken 

to be accurate, and are used with confidence in the derivation of 

the ionic p.d.f.'s to follow. (It must of course be remembered 

that the refinement models cannot be treated with equal confidence - 

see Chapter 2.5.) 
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One interesting feature to emerge from a comparison of the 

results of the harmonic refinements using the TDS -and non -TDS- 

corrected data is that the difference between the refined values 

of u (Cs) is only about 2 %; the corresponding difference for 

u11 (CZ) is comparable. On the other hand, the differences for 

u (Pb) and u33 (CZ) are each about 12%. It is further observed 

that u (Pb) u33 (CZ) (see Table 4.2.1 Model I). Similar 

features are found to arise in the experimental results for 

the other perovskites investigated (see the following sections). 

Bearing in mind the general conclusions reached with regard 

to the comparative suitability of the cumulant and F.I. thermal 

treatments (Chapter 2.5.7 especially conclusion (ix)) and the fits 

and significance levels obtained from the control refinements, it 

seems entirely justifiable, in the derivation of the ionic p.d.f.'s, 

to confine attention primarily to the F.I. models. The 

corresponding cumulant models will only be considered explicitly 

if they give results either in sharp qualitative disagreement or in 

very close agreement. 

The F.I. and cumulant models for the Cs ion give results in 

good agreement with each other. The a40+ and d° fourth -order terms, 

characterising isotropic thermal anharmonicity about the m3m site, 

are completely insignificant when added singly to the harmonic model. 

(The expression 'a40+ fourth -order term' is used throughout to mean 

that term within the temperature- factor expansion of which a401 is 

the coefficient.) Such anharmonicity as does exist, then, although 

of highly marginal significance, appears to be structured and 

characterised adequately by a single cubic -symmetry term - either 

a44+ 
or dc. These conclusions are qualitatively confirmed even in 

the presence of full fourth -order anharmonic terms on the Pb and CZ 

ions (compare the Cs -ion thermal parameters of Models II and V 

in Table 4.2.1.) This result seems very clear, but the marginal 

significance of the anharmonicity is at variance with the results 

of Sakata et al (1978, 1979) who find Cs to be in a 'very strong 

anharmonic potential'. 
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The lead -ion anharmonicity is more open to question. 

Although the addition of F.I. and cumulant fourth -order terms to 

the harmonic model give identical (if small) improvements in fit 

which can be traced almost exclusively to the effects of the 

isotropic a40+ and d° terms respectively, the resulting bias in 

the second -order parameter is very different in each case. u (Pb) 

is found to decrease very significantly when fourth -order F.I. 

parameters are refined simultaneously and to increase when the 

corresponding cumulant parameters are refined. However, in the 

presence of anharmonic terms on the other ions, the refined value 

of u (Pb) reverts close to its harmonic -approximation value with an 

accompanying decrease in the size of the anharmonic parameters 

(compare Models III and V of Table 4.2.1). It is tempting to 

relate this behaviour to an attempt by the anharmonic terms to 

compensate for effects arising from the non -inclusion of anharmonic 

terms on the other ions. (The instability of the Pb -ion thermal 

parameters is also reminiscent of the observations reported by 

Merisalo and Larsen (1977) concerning their refined potential 

parameters.) In any case, the addition of fourth -order terms to 

the Pb -ion temperature factor, despite causing such drastic 

modifications to the second -order parameter, does not result in a 

very significant improvement in fit. This conclusion substantiates 

the findings of Sakata et al (1978, 1979). 

For the reasons just given, it was not considered worthwhile 

constructing the direct -space p,d.f.'s for either the Cs or Pb ions. 

It is clear from an inspection of Tables 4.2.1 and 4.2.2 

that the improvement in fit resulting from the addition of anharmonic 

F.I. or cumulant terms to the CZ ions is very large indeed. 

Accordingly, the CZ -ion p.d.f. was calculated from the refined 

parameters of Model VI. (The extra metal -ion parameters refined 

in Model VII do not improve the fit further or modify the CZ 

parameters significantly.) Several points emerge : 
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A small ripple can be seen in the anharmonic p.d.f. map 
(not shown here) such that some regions have a negative 
value. However, these negative regions always have 

values less than 4% of the peak height at the mean ionic 

position, 0 (the 4 /mmm site), and are always at least 1 A 

from it. It is therefore thought unlikely that they 

will affect the detail of the p.d.f. appreciably. The 

p.d.f. map is not shown here because, in spite of its 

extremely significant anharmonicity, its shape does not 

Zook very non -Gaussian. 

The thermal anisotropy in the plane perpendicular to the 

unique axis and containing the 4 /mmm site (the Cs -CZ 

plane) is fairly small but increases with distance from 

the centre causing the p.d.f. to bulge out in the directions 

[1,0,0 ] and [0,1,0] of Figure 1.4.3. This observation is 

in agreement with the results obtained by Harada et al 

(1976) using difference -Fourier methods. Put on a 

quantitative scale, the differences between the p.d.f. 

values along [1,0,0] and along the face -diagonal 
o o 

direction [1,1,0] are 5 %, 25% and 90% at 0.5 A, 0.7 A and 
o 

1.0 A from 0. 

(iii) There is no evidence of resolvable disorder; that is, 

the p.d.f. is single -peaked. 

(iv) An examination of the difference map, obtained by subtracting 

the Model I p.d.f. from the Model VI p.d.f., shows in a 

clearer way how the harmonic approximation to the p.d.f. 

is modified by the anharmonic terms. A quarter of the 

Cs -CZ section is shown in Figure 4.2.2. It must be 

remembered, in the interpretation of the map, that the best - 

fitting harmonic distribution has been normalised to 10,000 

at 0, so that the apparently large peaks and troughs, when 

viewed in that light, become less dramatic. For instance, 

the negative value of the map at 0 means that the probability 

of the CZ ion being located at that position is about 10% 



Figure 4.2.2 The CZ-ion difference p.d.f. for CsPbCZ3 at 325 °K 

obtained by subtraction of 
PModel I(r) 

- Ph - from 

PModel VI(r) 
Pa. The labelling of the axes 

(X and Y) is as established in Figure 1.4.3; the 

full A -X section may therefore be obtained by 90° 

rotations about the four -fold axis. Pa is 

normalised to Ph which is assigned the value 10,000 

at 0. The r.m.s.a. of Ph (which is isotropic about 

the four -fold axis) is indicated by the vertical line 
o 

on the X -axis at 0.44 A. As an aid to interpretation, 

the quantity Fa Ph)/Pa is expressed as a percentage 

at a number of starred locations on the map. 
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Figure 4.2.2 
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less than the harmonic approximation p.d.f. would predict. 
As an aid to interpretation, the quantity 

(PModel VI(r) PModel I(r))/PModel VI (r) 
is expressed as 

a percentage on the map at a number of locations. From 

these figures it is clear that, in qualitative terms, the 

probability density has been removed from around 0 and 

deposited further along the principal axes (X and Y) of the 

diagram. The density is largely unchanged along the face - 

diagonal direction. (The calculated difference of -12% 

marked on the map along this direction can be seen to 

correspond to a distance of about four r.m.s.a.'s from 0 

so that the density at this point is negligible anyway.) 

From the observations of this section and the results obtained 

from the test refinements of Chapter 2.5, several conclusions may be 

advanced as regards the extent and character of thermal anharmonicity 

in cubic CsPbC1 3 at Tc + 5 °. First, there is no good reason to 

propose any very significant level of anharmonicity on either of the 

metal ions. This is a particularly interesting conclusion for the 

Cs ion in the face of its exceptionally large thermal amplitude. 

Second, the anharmonicity on the CZ ions is extremely large. The 

very size of the effect on the fit precludes any reasonable inter- 

pretation in terms of systematic errors in data collection or 

analysis. Third, the CZ -ion p.d.f. bulges out perpendicular to 

the unique axis and along the directions of the principal crystal 

axes, <1,0,0. There is, however, no indication of resolvable 

disorder. 

4.3 THE RbCaF3 EXPERIMENT AT Tc + 10° 

4.3.1 Experimental Details 

The RbCaF3 specimen, provided by Dr M Rousseau, Le Mans, was 

cut to the shape of a cuboid of sides 4.5 x 4.5 x 3.0 mm. A 

considerable amount of side scatter from an incident low -power 

laser beam was observed, indicating the likely presence of 

impurities, although the crystal was optically isotropic under 
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crossed polars. Some evidence of split spots in an X -ray back - 

scattering photograph prompted a preliminary experiment at A.E.R.E. 
(Harwell) on a two- circle diffractometer. This experiment 

confirmed the crystal to be split by about 0.5° around a (1,1,0 

direction. However, a consideration of the diffraction geometry 

showed that the effects on the measurements arising from this 

splitting could be minimised by a careful choice of the equivalents 

to be measured, and that the size of the receiving aperture required 

to accommodate the beam would not be unmanageably large. 

Data were collected on the D9 diffractometer at I.L.L. 
o 

with an incident wavelength X = 0.528 A, using Hf filters to 

reduce the X/2 contamination. The crystal was enclosed in a 

cryostat whose temperature was maintained at 205 °K, 10° above 

the cubic -- tetragonal phase transition temperature, Tc. 

(Tc was found by monitoring the scattered intensity at x(3,1,1) 

of the cubic phase against temperature - see Figure 4.3.1.) 

The cell constant used was obtained from the work of Ridou et al 
o 

(1977) - a = 4.445 A. Using the w:20 scan method, two 

symmetry -equivalent reflections were measured for a randomly 

selected sample of about 40% of the available independent 

reflections out to eB = 60 °. This gave a resolution (sin eB /x)max 
= 

1.7 A l. Some of these reflections were too weak to be measured 

to an acceptable accuracy in a realistic time and were discarded. 

Preliminary refinements showed extinction to be negligibly 

small; that is, the inclusion of any extinction parameter in the 

refinement models resulted in no significant improvement in the 

fit. In fact, in some cases, a slightly negative (physically 

impossible) extinction was refined. For these reasons, extinction 

parameters were not included in the refinements described in the 

next section. 

Equivalent reflection intensities were averaged leaving 146 

independent measurements. TDS correction factors were then 

calculated as outlined in Appendix B, using the approximation 



Intensity (arbitrary units) 

198 195 192 

TN) 

Figure 4.3.1 The intensity of scattering observed at the 

2(3,1,1) point of the cubic phase in RbCaF3 

near the cubic -i tetragonal phase transition 

temperature. The temperature scale is accurate 

to within +10 . 
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described therein in the definition of the circular receiving 
aperture. Elastic constants were calculated from the work 

of Rousseau et al (1977) and were found to result in the 

derivation of extremely large correction factors (a - 2 for 
the reflections at the high -angle limit). 

A maximum accuracy of 1.5% was finally assigned to the Fobs 

values. 

4.3.2 The Refinements 

(a) The Control Refinements 

The residual R = 0.027, obtained from the harmonic -model 

refinement, is of the order to be expected on the basis of the 

accuracy achieved in the data collection. The refined thermal 

parameters (see Table 4.3.1) are found to be in good agreement 

with the values quoted by Bulou et al (1979). Again, as in the 

corresponding harmonic refinement using the CsPbC13 data (Section 2.2), 

the p.w.a. shows a marked, but not so systematic structure with 

Bragg angle. The reason for this is clear from an examination 

of the final lists of Fobs and Fcalc values : of the total 

DA2 = 631, over 200 is contributed by six outliers to the fit - 

an unreasonably large proportion. It is also found that, in 

general, the Fcalc of very high -angle reflections underestimates 

the observed structure amplitude. In the light of these 

observations, the individual reflection profiles were scrutinised 

for any evidence to support the downweighting or deletion of any 

reflections. None was found. 

It was discovered immediately that any attempt to refine fourth - 

order F.I. parameters on either the Rb or Ca ions causes the 

refinement to diverge, even if damping factors are used. This is 

surprising in view of the fact that no evidence of high parameter 

correlation is obtained from the correlation matrices. 

Moreover, when the refinements are repeated allowing b(Rb) and 

b(Ca) to vary, the convergence is good and the refined values of 

* The elastic constants used were : 

c11 = 0.23, c44 = 0.04 and c12 = 0.02 x 1012 dyne /cm2 



Table 4.3.1 The refined parameters of RbCaF3 at 205 °K. 

Model I contains harmonic thermal parameters on all ions. 

Models II, III, IV and V contain, in addition to the 

parameters of Model I, fourth -order F.I. parameters on 

the Rb, Ca and F ions and on all ions respectively. 

In addition, the arbitrary scale parameter, Sc, was 

always refined. Convergence of the refinements using 

Models II, III and V was conditional upon the simultaneous 

refinement of the metal -ion scattering lengths. Extinction 

within the crystal was neglected. Estimated standard 

deviations (from the least -squares refinement) are given 

in parentheses; where none is given, the parameter was 

fixed during refinement. R, Rw and Ew2are defined in 
c 

the text. EwA2 is the weighted sum of squares obtained 

in the corresponding refinement using cumulant parameters 
cc 2 

instead of F.I. parameters. EwA is the value obtained 

using cumulant parameters with the metal -ion scattering 

lengths fixed at the values used in the Model I refinement. 



Model I II III IV V 

Sc 214(1) 214(3) 218(2) 216(1) 210(2) 

Rubidium 

0.71 0.70(1) 0.70(1) 0.71 0.73(1) 
bx1012cm 

u (2) 0.0182(1) 0.0186(3) 0.0182(2) 0.0182(2) 0.0182(2) 

a40+ 0.013(5) 
-0.002(4) 

a44+ -0.007(2) -0.001(2) 

Calcium 

0.47 0.47(1) 0.47(1) 0.47 0.50(2) 
bx1012cm 

u (Q2) 0.0077(1) 0.0076(1) 0.0073(3) 0.0080(1) 0.0076(4) 

a40+ -0.03(2) -0.03(2) 

a44+ -0.023(4) -0.006(5) 

Fluorine 

0.56 0.56 0.56 0.56 0.56 
bx1012cm 

u11(gi2) 0.0431(5) 0.0431(5) 0.0431(5) 0.0439(4) 0.0431(5) 

u33(g2) 0.0076(2) 0.0076(2) 0.0085(2) 0.0068(1) 0.0072(4) 

b040+ 0.036(4) 0.037(5) 

b044+ -0.006(1) -0.007(1) 

b220+ 0.002(2) -0.001(2) 

b400+ -0.0033(4) -0.002(1) 

g 0 0 0 0 0 

R 0.027 0.027 0.024 0.021 0.019 

Rw 0.041 0.038 0.035 0.027 0.025 

EwA 2 631 565 466 271 234 

Éwp 

cc 

2w+2 

631 568 

576 

463 

477 

292 264 

2E1 



Model I 

N.P. 5 

F.I. 

Ewp2 631 

as 

cumulant 
C 

Ewa2 

as 

631 

II III IV V 

9 9 9 15 

565 466 271 234 

0.0051 0.0011 0.0011 * 

1 
3 11 * 

568 463 292 264 

0.0051 0.0011 0.0011 

1 3 10 

a44+(Ca) 
b040+(F) b044+(F) b400+(F) 

8I 3I 6I 

Parameter 
a44+(Rb) 

1 6I 

Table 4.3.2 The significance levels derived from the 

fits of Table 4.3.1. This table has been constructed 

in an entirely analogous way to Table 4.2.2; the reader 

is referred to the caption of that table for an 

explanation of the notation used. The symbol ' *' indicates 

that the refined values of the metal -ion scattering lengths 

were not consistent with those refined using the other 

models. The derivation of significance levels is therefore 

inappropriate. 



the scattering lengths are not significantly different from 
those held fixed initially (see Table 4.3.1). The corresponding 
refinements with cumulant parameters converge normally, whether 
the scattering lengths are refined or not, giving very similar 
fits to those obtained in the refinements using F.I. parameters. 

Refinement of a model with fourth -order parameters on only 

the fluorine ions results in a substantial reduction in the 

value of:2w41 2 from the value obtained with the harmonic model. 

The reduction is greater, and more significant, than that obtained 

when fourth -order parameters are refined on either of the metal 

ions individually. A very much improved p.w.a. is also 

produced, the contribution from the outliers referred to above 

being only slightly higher than average. Refinements of models 

with fourth -order terms in the temperature factor of every ion 

and further models with up to sixth -order terms, continue to 

give small improvements in fit. However, convergence of 

the refinements with F.I. metal -ion parameters always depends 

upon the simultaneous refinement of b(Rb) and b(Ca). It is 

found in these cases that the refined values of the scattering 

lengths differ significantly from those quoted by Bacon (1975) 

(see for example Table 4.3.1, Model V). 

(b) The Non -Standard Refinements 

Because the TDS correction factors are very large indeed 

(in some extreme high -angle cases reducing the measured intensity 

by over 60 %) it is desirable to give some consideration to the 

dependence of the refined parameter values upon the exact corrections 

used. Refinements were therefore carried out for several models 

using the data completely uncorrected for TDS contributions. 

The thermal parameters obtained using the harmonic model are found 

to decrease by large amounts, as expected, from the corresponding 

values obtained with the corrected data. However, it is 

disturbing to note that the weighted residual actually i^!proves by 

a small but significant amount. On the other hand, the weighted 
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residual obtained using the model with fourth -order F.I. terms 
on the F ions alone is slightly poorer than that obtained from 
the corresponding refinement using the corrected data. In none 
of the refinements were the values of the fourth -order thermal 
parameters found to be sensitive to the TDS corrections made. 

4.3.3 Discussion 

It is disturbing that the fourth -order F.I. refinements 

using Models II, III, and V in Table 4.3.1 only converge if 

b(Rb) and b(Ca) are refined simultaneously with the other 

parameters. The reason for this is not obvious - especially 

in view of the facts (i) that when they are refined their values 

do not change significantly (except in the case of Model V where 

both appear to increase slightly) and (ii) that the corresponding 

refinements using cumulant parameters converge normally. For 

the cumulant refinements using Models II, III and V the value 

ofpw A2 is given in Table 4.3.1 for the separate cases in which 

b(Rb) and b(Ca) were and were not refined. From a comparison 

of each set of values (wA2 and 
12 wog) it can be seen that most 

of the reduction inz_w,2 from the harmonic model value does not 

result from the simultaneous refinement of the scattering lengths. 

However, the significance levels of Tables 4.3.2 are based on the 

number of parameters actually refined, including scattering lengths. 

The probable result of this will be to slightly reduce the derived 

significance levels associated with the addition of metal -ion 

anharmonic terms compared with the levels which would be obtained 

were it possible to keep these scattering lengths fixed. (This 

change arises from the different degrees of freedom, b and n -m, 

used in the ANOVA significance tests (Chapter 3.8).) 

The TDS correction factors are very large and therefore the 

cause of some concern. It might be worthwhile to attempt a more 

exact correction than has been possible here, although any 

resulting modifications to the anharmonic thermal parameters 

would probably be small - bearing in mind their relative 

insensitivity to whether a correction is made or not. The values 
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quoted in Table 4.3.1 for the second -order thermal parameters, 

however, may be subject to some additional (although again 

probably small) systematic error. While it is true that the 

harmonic -model refinement gives a lowerEwo2 value with the 

uncorrected data, this may be as much an indictment of the model 

as of the TDS correction. 

A check was not made on the validity of the weighting scheme. 

From the results of the test refinements (Chapter 2.5) and the 

refinements carried out using the CsPbC13 data (Section 2.2), any 

slight inaccuracy in the weights is thought to be an unlikely 

source of error in the refined parameter values. In addition, 

an examination of the p.w.a.'s of Models IV and V reveals no 

systematic trends of any significance. 

For the above reasons, the parameters of Table 4.3.1 are 

assumed to provide accurate descriptions of the thermal motion 

obtaining in the crystal (within any limitations imposed by model 

inadequacies, as discussed in Chapter 2.5); it is expected, with 

some justification, that any non -Gaussian structure in the derived 

ionic p.d.f.'s will not be significantly biassed by the slight 

uncertainty surrounding the values of the second -order parameters. 

Attention is first drawn to the near equivalence of the 

refined harmonic -model values of u(Ca) and u33(F) (see Table 4.3.1 

Column 1). This equivalence is observed to hold even when the 

parameter values themselves change significantly as a result of 

using the data uncorrected for TDS. 

The anharmonic descriptions provided by the F.I. and cumulant 

models for the Rb ion are in good agreement with each other 

(see Table 4.3.1 Model II). The anharmonicity is small - although 

its significance is not entirely negligible - and predominantly 

characterised by the fourth -order cubic - symmetry terms with 

coefficients a44+ and dc. 
It is found, however (Model V), that 

the value and significance of the Rb fourth -order terms becomes 

more open to question in the presence of fourth -order 
terms on all 

of the ions. 
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The thermal description of the Ca ion (Model III) is very 

similar to that of the Rb ion except that the anharmonicity is 

apparently much greater and considerably more significant (see 

Table 4.3.2). Again it is characterised predominantly by the 

cubic - symmetry terms, and in fact the significance of a44 +(Ca) 

( = 6) could be advanced - see Chapter 3.8 - as evidence of 

physically significant anharmonicity, were it not for the 

observation that in the presence of anharmonic terms on the other 

ions (Model V) the value of a44+ (Ca) becomes small and ill - 

determined. 

From Tables 4.3.1 and 4.3.2 it can be seen that the improvement 

in fit, resulting from the addition of fourth -order terms to the F 

ions alone, is large and of comparable size for both the F.I. and 

cumulant treatments. It is also clear that the F -ion anharmonic 

parameters are the only ones to maintain their integrity in the 

presence of anharmonic terms on the other ions (compare the results 

for Models IV and V). Table 4.3.2 shows that the most significant 

of these parameters are b040+ and b400+ (s = 8 and 6 respectively for 

their individual addition to the harmonic temperature factor). The 

functions corresponding to both of these parameters are isotropic 

about the four -fold axis. 

In the light of the marginal significance of the Rb -ion anharmonic 

parameters, and their corresponding ill- determinacy, the construction 

of the p.d.f. from the parameters of Model II was not thought worth- 

while. It would also seem inappropriate, for the reasons given 

above, to derive much significance from a Ca -ion p.d.f. based on the 

parameters of Model III. Only the F -ion p.d.f. - from the F.I. 

parameters of Model IV - was therefore constructed. An examination 

of this p.d.f. (not shown here) shows the following features. 

The regions of negative density always have values less 

than 0.5% of the peak height at the mean position, 0, and are well 

removed from it, so that their effect on the gross features of the 

distribution can be assumed to be negligible. Slight bulges in 

the p.d.f. can be observed along the directions 
[1,0,0] and [0,1,0] 
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of Figure 1.4.3. The thermal anisotropy in the Rb -F plane 
(defined previously as the difference of the p.d.f. at equal 

distances from 
o 
0 along [1,0,01 and 11,1,01 is 2 %, 25% and 70% at 

distances 0.3 A, 0.4 Á and 0.5 Á respectively. Although the 

anisotropic bulging of the F -ion p.d.f. is not large, its 

significance is probably non -negligible (;.; = 3 for the addition 

of b044 
+(F) 

to the parameters of the harmonic model which is 

isotropic in the Rb -F section). In any case, whether the bulging 

is or is not significant, the present results would appear to be 

qualitatively incompatible with the dynamical model proposed 

recently by Rousseau (1977, 1979). His model would also suggest 

a time- averaged bulging in the Rb -F section, but along the face 

diagonal directions of the cubic unit cell as shown in 

Figure 2.5.1(b). Such a microstructure would, as demonstrated 

unambiguously in the test refinements of Chapter 2.5.4, result in 

the refined value of b044+ being positive. 

Subtracting the Model I p.d.f. from that of Model IV, the 

difference p.d.f., of which the Rb -F section is shown in 

Figure 4.3.2, is obtained. The points marked on the map show the 

quantities 
(P Model IV(r) PModel I(r)) /PModel IV(r). 

From the 

map, it is clear that the effect of the anharmonic terms is to 

concentrate density into the Rb -F section - note that the difference 

density is predominantly of positive sign. There must therefore 

be a corresponding depletion of density elsewhere in the distribution. 

The peak in the difference distribution occurring at the harmonic 

r.m.s.a. is mainly due to the b040+ parameter. 
The relatively small 

value obtained for b044+ results in only very slight evidence of 

four -fold symmetry about the unique axis. 

4.4 THE KMnF3 EXPERIMENT AT Tc + 100 

4.4.1 Experimental Details 

The single - crystal KMnF3 specimen, obtained from Dr J Storey 

of the Clarendon Laboratory, Oxford, was melt -grown 
and showed no 

signs of strain birefringence. It was slightly pink in colour and 



Figure 4.3.2 The F -ion difference p.d.f. for RbCaF3 at 205 °K 

obtained by subtraction of 
Model I(r) 

- Ph - from 

- Pa. The labelling of the axes 
PModel IV(r) 

(X and Y) is as established in Figure 1.4.3; the 

full A -X section may therefore be obtained by 90° 

rotations about the four -fold axis. Pa is 

normalised to Ph which is assigned the value 10,000 

at 0. The r.m.s.a. of Ph (which is isotropic about 

the four -fold axis) is indicated by the vertical line 

on the X -axis at 0.21 Á. As an aid to interpretation, 

the quantity (Pa - Ph) /Pa is expressed as a percentage 

at a number of starred locations on the map. 



Pa- Ph 

70 

R 

Figure 4.3.2 
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was found to cleave rather less easily than RbCaF3 along its 

principal planes. Nonetheless, a reasonable 'cube' of side 

approximately 4 mm was obtained. 

The experiment was carried out on the D9 diffractometer at 
0 

I.L.L. with an incident wavelength a= 0.4245 A. From a 

knowledge of the pre- determined machine resolution curves at 

various wavelengths it was decided that this choice would leave 

enough background between reflection profiles for an accurate 

correction to be made, whilst maximising the attainable resolution. 

Hf filters were used to reduce higher -order wavelength contamination. 

Using a small crystal from the same batch, the cryostat was 

calibrated by observing the abrupt change in scattered intensity 

with temperature at the superlattice point ¡(3,1,1) of the cubic 

phase. A very small amount of reproducible hysteresis was 

observed so that Tc was subject to an error of about 1° on the 

temperature control scale. The experiment was carried out at 
o 

Tc + 10° (probably --197 °K). Using a cell constant a = 4.190 A 

(Rousseau et al (1974)), two symmetry- equivalent reflections were 

measured for about 40% of the independent reflections out to a 

eB - limit of 60 °, giving over 200 independent measurements with a 

resolution (sin eB 
/X)max 2 

A A At the highest Bragg angles 

it was found beneficial, from the point of view of obtaining smooth 

background, to tape extra Cd sheeting to the diffractometer x- circle. 

TDS contributions were calculated with the circular aperture 

used in the experiment being approximated by a square one of the 

same area (see Appendix B). The values adopted for the elastic 

constants were those of Aleksandrov et al (1966) *and resulted in 

correction factors, a, of up to 0.5 at the eB limit. Even the 

most severely affected measured intensities were therefore reduced 

by only about 30 %. 

From preliminary refinements using the harmonic model it was 

clear that extinction, although not severe, was certainly non - 

negligible. The various extinction models summarised 
in 

* The elastic constants used were : 

c11 = 1.15, c44 = 0.4 and c12 = 0.27 x 1012 dyne /cm2 
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Appendix A were therefore tested in turn by carrying out refinements 
using the harmonic thermal model together with the appropriate 
extinction parameter(s). From these refinements it was clear 
first, that the Type 1 Lorentzian mosaic spread model gives a 

significantly better fit than any other isotropic model and second, 

that the further improvement in fit obtained as a result of 

adopting an anisotropic correction was completely insignificant. 

For this reason, the isotropic Type l model with Lorentzian mosaic 

spread was used throughout the refinements described in the next 

section. It was therefore implicitly assumed that the relative 

suitabilities of the extinction models were not dependent upon the 

particular thermal models being tested. 

4.4.2 The Refinements 

(a) The Control Refinements 

The weighted residual Rw = 0.034, obtained from the harmonic - 

model refinement, is reasonable considering the accuracy of the data 

collected. However, an inspection of the p.w.a. reveals that the 

fit to the low -angle reflections is very poor. For example, the 

partial weighted residual for the 24 reflections with sin 
~B 

0.2 

is nearly 0.090. Bearing in mind that the harmonic model gives a 

not entirely unsatisfactory fit to the RbCaF3 data (Section 3.2) 

and that the thermal anharmonicity in KMnF3 is not expected to be 

significantly greater than that obtaining in RbCaF3 (see the general 

discussion of Chapter 1.4), it was thought improbable that any 

inadequacies inherent in the harmonic model itself would manifest 

themselves in this way. Nor would any inaccuracy in either TDS 

corrections (small anyway for KMnF3 and especially so for low -angle 

reflections) or extinction corrections (less than about 10% to the 

of even the most severely affected reflections - well within 
Fcalc 
the regime of validity of the methods used) be expected to present 

problems. Accordingly, a further refinement, still using the harmonic 

thermal model, was carried out allowing b(K) and b(Mn) to refine 

along with the other parameters. The results of interest were as 

follows : 
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The refined value of b(Mn) was found to change by about 5% 
from the value quoted by Bacon (1975) ( -0.39 -0.37 x 10- 12cm). 
Mn has many isotopes with widely different scattering lengths 
so that difficulty might have been anticipated in the 

assignment of a mean value. The refined value is actually 
in better agreement with the one quoted by Bacon (1974). 

ii) The refined values of some of the other parameters, including 

b(K), changed by small but significant amounts from the 

values refined keeping the scattering lengths fixed at the 

values quoted by Bacon (1975). 

(iii) The improvement in fit achieved by refining the two scattering 

lengths (Ew02 = 1465 -- *1275) is statistically significant at 

a level a S 0.001. 

(iv The p.w.a., although still not completely smooth as a function 

of Bragg angle, is very much improved. 

For these reasons it was decided to carry out the anharmonic 

thermal model refinements allowing b(K) and b(Mn) to refine with the 

other parameters. 

(b) The Non - Standard Refinements 

A summary of the refined F.T. parameters and the significance 

levels obtained from the Ratio Test calculations (Chapter 3.8) is 

given in Tables 4.4.1 and 4.4.2 respectively. The broad measure of 

agreement between the fits obtained from corresponding refinements 

using the cumulant and F.I. thermal treatments is again apparent. 

It is also clear that the only anharmonic thermal parameters with any 

noteworthy degree of significance are the fourth -order ones on the 

F ions : the metal -ion anharmonicity is negligible by comparison. 

It is considerably reassuring that the refined values for the 

coherent scattering lengths of the metal ions are found to be 

consistent between all of the refinements. 



Table 4.4.1 The refined parameters of KMnF3 at 197 °K. 

Model I contains harmonic thermal parameters on all ions. 

Models II, III, IV and V contain, in addition to the 

parameters of Model I, fourth -order F.I. parameters on 

the K, Mn and F ions and on all ions respectively. In 

addition, the arbitrary scale parameter, Sc, the extinction 

parameter, g, and the metal -ion scattering lengths, b(K) 

and b(Mn), were always refined. The extinction parameter 

is as defined by Becker and Coppens (1974) for isotropic 

Type I secondary extinction with a Lorentzian mosaic spread. 

Estimated standard deviations (from the least - squares 

refinement) are given in parentheses; where none is given, 

the parameter was fixed during refinement. R, Rw and EwA2 
c 

are as defined in the text. EwA is the weighted sum 

of squares obtained in the corresponding refinement using 

cumulant parameters instead of F.I. parameters. 



Model II III IV V 

Sc 16.4(1) 16.4(1) 16.4(1) 16.3(1) 16.3(2) 

Potassium 

0.369(3) 0.369(3) 0.369(3) 0.369(3) 

bx1012cm 0.369(3) 

u (R2) 0.0132(1) 0.0134(2) 0.0132(2) 0.0132(2) 0.0134(3) 
a40+ 0.00(1) 

0.013(8) 
a44+ -0.005(3) 

-0.004(3) 

Manganese 

-0.375(3) -0.375(3) -0.381(3) -0.38(1) 
bx1012cm -0.375(3) 

u (R2) 0.0044(1) 0.0044(1) 0.0047(3) 0.0046(1) 0.0047(3) 

a40+ 0.02(2) 0.01(2) 
a44+ 

-0.008(7) 0.01(1) 

Fluorine 

0.56 0.56 0.56 0.56 
bx1012cm 0.56 

u11(2) 0.0312(2) 0.0312(2) 0.0312(2) 0.0320(3) 0.0320(3) 
u33(2) 0.0050(1) 0.0050(1) 0.0050(1) 0.0048(2) 0.0046(4) 

b040+ 0.021(2) 0.022(3) 

b044+ -0.0027(6) -0.0026(7) 

b220+ 0.000(2) 0.000(2) 

b400+ -0.0006(6) -0.001(1) 

g x 10-4 0.11(1) 0.11(1) 0.11(1) 0.11(1) 0.11(1) 

R 0.054 0.054 0.054 0.051 0.051 

Rw 0.032 0.031 0.032 0.029 0.029 

EwL2 1275 1266 1270 1074 1061 

C 

2 Ew 1275 1265 1270 1077 1065 



Model I 

N.P. 8 

F.I. 

Ewp2 1275 

as 

E 

cumulant 

ÉwA 1275 

as 

II III IV V 

10 10 12 16 

1266 1270 1074 1061 

0.5I 0.5I 0.0011 lIV 

0 0 3 0 

1265 1270 1077 1065 

0.51 0.51 0.0011 1IV 

0 0 3 0 

Parameter b040 
+(F/ 

3I 

Table 4.4.2 The significance levels derived from the 

fits of Table 4.4.1. The table has been constructed 

in an entirely analogous way to Table 4.2.2; the reader 

is referred to the caption of that table for an explan- 

ation of the notation used. 
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4.4.3 Discussion 

The reasonable p.w.a.'s, the consistency of the refined 

scattering lengths, and the smallness of the corrections required 

both for TDS and extinction, give confidence that the parameters 

set out in Table 4.4.1 constitute accurate descriptions of the 

KMnF3 structure at Tc + 10o (within, as usual, any inherent 

limitations of the F.I. thermal formalism). From the harmonic 

parameters (Model I), it can be seen that KMnF3 follows, to a fair 

approximation, the trend established earlier for CsPbCl3 and 

RbCaF3 : u(Mn) u33(F). It is also noted that the thermal 

m.s.a.'s are about 30% lower than those found in RbCaF3 at a 

similar temperature (Table 4.3.1). 

The refinements have also demonstrated convincingly the need 

to establish the correctness of the scattering lengths used and, 

if possible, to refine them as a check with the other parameters. 

As noted previously, the complete correlation between Sc and the 

set of scattering lengths means that at least one scattering length 

(or Sc) must remain fixed in any given refinement so that only the 

ratio between the scattering lengths can be obtained in general. 

However, in this case, both b(F) (fixed) and b(K) (refined) remain 

unchanged from the values quoted by Bacon (1975) and are assumed 

to be accurate (with justification since b(K) could have changed). 

The departure from the quoted value by b(Mn) is therefore implicitly 

significant. 

The construction of anharmonic p.d.f.'s for the K and Mn 

ions, based on the refined parameters of Models II and III 

respectively, was not carried out; only the F -ion p.d.f., based on 

the parameters of Model IV, was produced. 

An examination of the F -ion p.d.f. (not shown here) shows that 

the values of the negative regions are extremely small and can 

therefore be ignored. The thermal anisotropy in the K -F plane 

is also small except at distances far from the mean ionic position, 

0, where the value of the p.d.f. itself is small. For example, 
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following the definition established in Sections 2.3 and 3.3, the 
o o o anisotropy at distances 0.25 A, 0.35 A and 0.45 A from 0 is 0 %, 

15% and 55 %. 

The K -F section of the difference map, obtained by subtraction 
of PModel 

I(r) 
from PModel 

IV(r), 
is shown in Figure 4.4.1. Clearly, 

the F -ion anharmonicity is predominantly isotropic about the four -fold 
axis. (Comparison of the relative sizes of the refined b040 

+(F) 
and b044 

+(F) 
in Table 4.4.1) shows that this must be the case.) 

4.5 THE SrTiO3 EXPERIMENT 

4.5.1 Experimental Details 

The flux - grown single -crystal specimen, provided by 

Dr H J Scheel, I.B.M., Zürich, was cut to an approximately cuboidal 

shape with sides 3.2 mm, 3.0 mm and 2.8 mm. The crystal had a 

yellow tinge and was found to show marked strain birefringence 

under crossed polars. However, only one inclusion, contributing 

no more than an estimated few percent of the birefringence, was 

identified (Scheel (private communication)). Any remaining 

strain was thought to be the result of damage caused to the crystal 

surface when it was cut. Accordingly, about 100 um was etched off 

the surface using concentrated phosphoric acid at 553 °K. The 

crystal was then found to be uniformly black under the crossed 

polars with only a little stray light emanating from some residual 

surface pitting. 

The measurements were made on the D9 diffractometer at I.L.L. 

using the (3,1,1) planes of the Cu monochromator to give a wavelength 
o 

X = 0.3976 A. Scans along the principal directions of the 

reciprocal lattice showed that this choice of wavelength left just 

enough background between peak profiles to enable accurate background 

measurements to be made. 

Using another crystal from the same batch, the cryostat to be 

used in the experiment was calibrated by monitoring scattered 



Figure 4.4.1 The F -ion difference p.d.f. for KMnF3 at 197 °K 

obtained by subtraction of PModel 
I(r) 

- Ph - from 

- Pa The labelling of the axes PModel IV(r) 

(X and Y) is as established in Figure 1.4.3; the 

full A -X section may therefore be obtained by 90° 

rotations about the four -fold axis. Pa is 

normalised to Ph which is assigned the value 10,000 

at 0. The r.m.s.a. of Ph (which is isotropic about 

the four -fold axis) is indicated by the vertical 

line on the X -axis at 0.18 Á. As an aid to 

interpretation, the quantity (Pa Ph) /Pa is 

expressed as a percentage at a number of starred 

locations on the map. 
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intensity against temperature near Tc at the (2,0,0).point of the 
cubic phase. A very large change in intensity was observed at 

about 107 °K and the measurements were made 50K above this. The 

cell constant used was a = 3.905 A (Heidemann and Wettengel (1973)). 

At least two symmetry -equivalent reflections were then measured 

for about 40% of the total number of independent reflections out 

to 
OB 

= 60°. This gave nearly 240 independent measurements with a 
o 

resolution (sin 03 
/X)max 

2'1 A -l. 

Two features of interest were observed during the data collection 

itself : first, symmetry- equivalent reflections with a large Z index 

scattered up to 60% more intensity than those with small Z index; 

and second, the difference in intensity between the strong reflections 

and the weak ones was much less than that expected on the basis of 

calculated thermal parameters (Stirling (1972)). 

TDS corrections, calculated using the elastic constants of 

Bell and Rupprecht (1963) were small : even those reflections at 

the angular limit required less than 10% correction to their measured 

intensity. 

4.5.2 The Refinements 

(a) The Control Refinements 

From the observations noted in the previous section, it was 

clear that effects due to extinction are very large and anisotropic. 

The first problem was then to decide which of the extinction models 

available is best able to cope, and indeed to decide whether any 

of them can cope satisfactorily. An additional problem was 

anticipated in the choice of value to be assigned to b(Ti). (Ti 

is similar to Mn in that it has a variety of isotopes and published 

values for its mean scattering length.) However, since these two 

problems were not expected to be highly correlated, it was decided 

in the first instance to set b(Ti) = -0.33 x 10 -12 cm and to find the 

most satisfactory extinction model. 

* The elastic constants used were : 

c11 = 3.3, c44 = 1.3 and c12 = 1.0 x 1012 dyne /cm2 
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Refinements were therefore carried out using purely harmonic 

thermal parameters and different extinction models as summarised 

in Appendix A. The results of these refinements are shown in 

Table 4.5.1. From them, it is clear that the choice of extinction 

model will be a matter of considerable importance; not only do the 

weighted residuals vary by large amounts depending upon the model 

used but also the refined values of the scale and thermal parameters. 

It seems sensible to disregard Type II extinction (Model I of 

Table 4.5.1 - see Becker and Coppens (1974, 1975)) as a realistic 

model. The residual is the highest obtained for any of the models 

and the value of the refined Sr -ion m.s.a. is very different from 

the corresponding values obtained when the other extinction models 

are used. These values are, between themselves, reasonably consistent. 

Perhaps the most surprising observation is the very much poorer fit 

obtained using the Gaussian mosaic distribution (Model II) compared 

with the Lorentzian (Model V) -I2w6 2 = 4095 and 1077 respectively. 

It has been pointed out in the past (Rossmanith (1977) and 

references therein) that a Lorentzian distribution is usually found 

to offer a more realistic description but it is nonetheless remarkable 

that the observed difference is of this magnitude. The use of an 

anisotropic correction (Model V) instead of an isotropic one 

(Model III) has considerable statistical justification. However, 

it is found that the inclusion of a primary extinction correction 

in the most general model available (Model IV) - refining Types I 

and II simultaneously - gives rise to correlation problems and in 

fact leads to a worse fit than that obtained with the Type I 

secondary extinction correction alone. 

From all of these considerations it is reasonable to conclude 

that the model best suited to describe the extinction effects (at 

least, the best suited of those considered here) is the anisotropic 

one based on Type I secondary extinction with the crystal mosaic 

blocks oriented as a three -dimensional Lorentzian distribution. 

However, returning to the note of caution expressed earlier 
in 

the section, can it be said that this model copes in a satisfactory 

way? To answer this, it is helpful to examine the p.w.a. as a 

function of Bragg angle. When this is done, it is clear that 



Table 4.5.1 The refined harmonic parameters of SrTiO3 at 

112 °K obtained using different extinction models as defined 

by Becker and Coppens (1974, 1975). The arbitrary scale 

constant, Sc, was always refined along with the harmonic 

thermal parameters. The additional parameters contained 

in each model are as follows. 

Model I contains the parameters specifying anisotropic 

Type II secondary extinction. g(1) - g(6) are the 

parameters g(l,l), g(2,2), g(3,3), g(1,2), g(1,3), g(2,3) 

x 10 -8 defining the mean particle size tensor. The negative 

value of g(3,3) is non -physical. 

Model II contains the parameters specifying anisotropic 

Type I secondary extinction with Gaussian mosaic spread. 

g(1) - g(6) are the parameters g(1,1) - g(2,3) x 108 defining 

the mosaic spread tensor. 

Model III contains the parameter specifying isotropic 

Type I secondary extinction with Lorentzian mosaic spread. 

g(1) is the parameter g x 10 -4 defining the mosaic spread 

tensor. 

Model IV contains the parameters specifying anisotropic 

general extinction with Lorentzian mosaic spread. g(1) - g(6) 

are the parameters g(1,1) - g(2,3) x 108 defining the mosaic 

spread tensor and g(7) is the parameter r/X x 104 where r is 

the mean radius of the mosaic blocks (in cm). 

Model V contains the parameters specifying anisotropic 

Type I secondary extinction with Lorentzian mosaic spread. 

g(1) - g(6) are the parameters g(1,1) - g(2,3) x 108 defining 

the mosaic spread tensor. 

Estimated standard deviations (from the least- squares 

refinement) are given in parentheses; where none is given, 

the parameter was fixed during refinement. R, Rw and Ew42 are 

defined in the text. 



Model I II lII IV V 

Sc 9.3(2) 8.4(1) 10.5(2) 9.2(1) 10.3(1) 

Strontium 

0.69 0.69 0.69 0.69 0.69 
bx1012cm 

u (g2) 0.0019(1) 0.0027(1) 0.0027(1) 0.0025(1) 0.0026(1) 

Titanium 

-0.33 -0.33 -0.33 -0.33 -0.33 bx1012cm 

u (R2) 0.0013(1) 0.0015(1) 0.0021(1) 0.0016(1) 0.0020(1) 

Oxygen 

0.58 0.58 0.58 0.58 0.58 bx10 2cm 

ul1(2) 0.0046(1) 0.0059(1) 0.0056(1) 0.0053(1) 0.0056(1) 

u33(g2) 0.0014(1) 0.0024(1) 0.0023(1) 0.0021(1) 0.0023(1) 

g(1) 0.0020(3) 0.20(5) 22(1) 0.04(1) 0.010(2) 

g(2) 0.0015(3) 0.08(4) 0.03(1) 0.010(2) 

g(3) -0.001(4) 0.044(3) 0.007(2) 0.0022(2) 

g(4) 0.0000(1) -0.04(3) -0.01(1) -0.001(1) 

g(5) 0.003(1) 0.01(1) 0.000(2) 0.0006(3) 

g(6) -0.003(1) 0.00(1) 0.002(2) 0.0017(3) 

g(7) 75(6) 

R 0.058 0.055 0.034 0.036 0.032 

Rw 0.066 0.060 0.039 0.034 0.031 

2,42 4908 4095 1746 1306 1077 
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the low -angle reflections are by far the most poorly fitted in 

general. The partial residual is about 0.090 for those 

reflections with sin e3 < 0.3 and about 0.020 for all of the 

others. This cannot be considered acceptable and it appears 

that the extinction model is being pushed beyond its regime of 

validity. This conclusion is hardly surprising considering that 

the calculated corrections to the most severely affected reflection 

intensities are about 98 %. However, to gauge the extent to which 

the highly structured p.w.a. may result from an incorrect choice 

of b(Ti), further refinements were carried out allowing b(Ti) 

to refine simultaneously with the other parameters. The results 

are summarised in part (b). 

(b) The Non - Standard Refinements 

Adopting the extinction model deemed to be the most satisfactory 

(Model V of Table 4.5.1), a harmonic -model refinement was carried 

out allowing b(Sr) and b(Ti) to refine simultaneously with the other 

parameters. The following observations were made. First, the 

value of b(Sr) does not change significantly from the value quoted 

by Bacon (1975) whilst that of b(Ti) decreases from -0.33 -4 -0.37 

x 10 -12 cm. Second, although the reduction in the weighted sum of 

squares from the value obtained keeping the scattering lengths 

fixed (1077 -*944) is not large, it is accompanied by significant 

changes in the refined parameter values. And finally, the fit 

to the troublesome low -angle reflections is improved, that to the 

others remaining about the same as before. It is still true, 

nevertheless, that the low -angle reflections are still the most 

poorly fitted. 

For this last reason in particular, it was decided that although 

the extinction -model inadequacy is perhaps exaggerated by the use 

of an incorrect value for b(Ti), the model is intrinsically 

unable to describe the drastic extinction obtaining in this crystal. 

Accordingly, the remaining refinements were carried out using the 

data set obtained by deleting from the full list those reflections 

with h2 + k2 + 
2 < 40. The refined parameters listed in 
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Table 4.5.2 and the significance levels summarised in Table 4.5.3 

are those obtained using this reduced data set. In each of the 

refinements, b(Sr) and b(Ti) were refined simultaneously with the 

other model parameters and their values were found to be 

consistent between the different models. It was however found 

that the simultaneous refinement of Sr -ion second- and higher - 

order F.I. parameters in Model II was impossible because of very 

high correlation. 

4.5.3 Discussion 

The refined harmonic thermal parameters are found to be in 

reasonable agreement with the lattice dynamical calculations of 

Stirling (1972) - especially with his Model 5. From an 

examination of Table 4.5.3, it is clear that the significance of 

any of the anharmonic thermal parameters is marginal. 

Although the extinction correction factors are exceedingly 

large, considerable effort has been made to ensure that the model 

used is satisfactory over the range of extinction obtaining in the 

final data set. By diagonalising the mosaic spread tensor, g(i,j), 

obtained from the refinements of Table 4.5.2, it can be shown that the 

r.m.s. mosaic orientations along the 'principal' axes of the 

distribution, are quantified by the dimensions (0.44, 0.40, 0.20) 

seconds of arc. Clearly these figures should be treated as order 

of magnitude estimates only. For example, taking the mosaic spread 

tensor obtained in Model V of Table 4.5.1 (ie, with the unabridged 

data set), the corresponding dimensions are about 30% lower. From 

these figures it would be fair to describe the crystal as highly 

'perfect'. There is, however, no apparent reason from either the 

p.w.a.'s, the refined values of the thermal parameters, or the 

consistency of the refined scattering lengths, to doubt that the 

extinction corrections made are reasonable. The deletion of the 

very low -angle reflections would not be expected 
to alter the main 

conclusion drawn : that there is no very significant anharmonicity 

associated with the thermal motion of any of the ions in SrTiO3 at 

Tc + 5 °. 



Table 4.5.2 The refined parameters of SrTiO3 at 112 °K. 

Model I contains harmonic thermal parameters on all ions. 

Models II, III, IV and V contain, in addition to the 

parameters of Model I, fourth -order F.I. parameters on 

the Sr, Ti and 0 ions and on all ions respectively. 

In addition, the arbitrary scale parameter, Sc, the 

extinction parameters, g (i,j), and the metal -ion 

scattering lengths, b(Sr) and b(Ti), were always refined. 

The extinction parameters are as defined by Becker and Coppens 

(1974, 1975) for anisotropic Type I secondary extinction 

with a Lorentzian mosaic spread. Estimated standard 

deviations (from the least- squares refinement) are given 

in parentheses; where none is given, the parameter was 

fixed during refinement. R, Rw and Ew42 are defined 
c 

in the text. Ew42 is the weighted sum of squares 

obtained in the corresponding refinement using cumulant 

parameters instead of F.I. parameters. 



Model I II III IV V 

Sc 9.6(2) 9.6(2) 9.4(3) 9.5(3) 

Strontium 

bx1012cm 0.687(5) 0.688(5) 0.70(2) 0.7(2) 
u (R2) 0.00248(7) 0.00248(7) 0.00243(7) 0.002(1) 

a40+ -0.1(1) 

a44+ -0.04(3) 

Titanium 

bx1012cm -0.35(1) -0.35(1) -0.36(1) -0.36(4) 

u (2) 0.0021(1) 0.0020(8) 0.0022(1) 0.0023(5) 

a40+ 0.0(1) 0.0(1) 

a44+ 0.00(2) -0.01(2) 

Oxygen 

bx1012cm 0.58 0.58 0.58 0.58 

ull (?,2) 0.00557(6) 0.00556(6) 0.0058(1) 0.0057(1) 

u33 (R2) 0.0022(1) 0.0022(1) 0.0025(2) 0.0026(2) 

b040+ 0.00(1) -0.01(1) 

b044+ -0.003(2) -0.004(2) 

b220+ 
-0.016(6) -0.018(6) 

b400+ 0.001(1) 0.001(1) 

g(1,1)x108 0.016(3) 0.016(3) 0.018(4) 0.016(4) 

g(2,2) 0.016(3) 0.016(3) 0.018(4) 0.016(4) 

g(3,3) 0.0039(6) 0.0039(6) 0.004(1) 0.004(1) 

g(1,2) -0.003(1) -0.003(1) -0.004(2) -0.003(2) 

g(1,3) 0.001(1) 0.001(1) 0.001(1) 0.001(1) 

g(2,3) 0.002(1) 0.002(1) 0.002(1) 0.002(1) 

R 0.030 0.030 0.030 0.030 

Rw 0.027 0.027 0.027 0.026 

LwL 2 641 641 616 589 

c 

7,2+4 641 641 626 640 616 588 



Model 

N.P. 

F.I. 

EwA 2 

as 

cumulant 

EwA2 

as 

Parameter 

E 

I 

13 

641 

641 

II III IV V 

15 15 17 21 

* 641 616 589 

* 1I 0.01 0.05IV 

* 0 1 1 

626 640 616 588 

0.05I lI 0.01 0.05IV 

1 0 1 1 

Table 4.5.3 The significance levels derived from the 

fits of Table 4.5.2. The table has been constructed 

in an entirely analogous way to Table 4.2.2; the reader 

is referred to the caption of that table for an explanation 

of the notation used. The symbol ' *' indicates that 

convergence could not be obtained with the model. 
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4.6 THE RbCaF3 EXPERIMENT AT ROOM TEMPERATURE 

4.6.1 Experimental Details 

The crystal used in this experiment was the same one as 

used in the experiment at Tc + 10° (see Section 3.1 for details). 

Experimental conditions were also largely as described in that 

section except that the cryostat was removed and the measurements 

made at room temperature, 100° above Tc. The lattice constant 

was taken from the work of Ridou et al (1977) - a = 4.454 . 
Two symmetry -equivalent reflections were measured for nearly 25% 

of the available independent reflections out to an angular limit 
o 

8B = 60°, giving a resolution (sin eB 
/X)max = 

1.7 A -l. 

As found in Section 3.1, extinction in the crystal is negligible 
o 

at this wavelength ( X = 0.528 A) so that the symmetry- equivalent 

reflection intensities were averaged leaving 98 independent measure- 

ments. TDS corrections were found to be extremely large, as 

expected, giving correction factors a -3 for those reflections at 

the highest Q values. The structure amplitudes of these 

reflections were thus reduced to about 50% of their 'observed' 

values. 

A maximum accuracy of 1.5% was assigned to the resulting Fobs's. 

4.6.2 The Refinements 

(a) The Control Refinements 

The refinement of a purely harmonic model yields thermal 

parameters larger than those obtained by Bulou et al (1979) from 

powder- diffraction data. For u(Rb) and u11(F) the difference is 

only about 4% but it is larger for u(Ca) and u33(F) 
- about 10% 

and 14% respectively. The p.w.a. found here is slightly structured 

but not unacceptable. 

* The elastic constants used were -:0 
02 x 1012 dyne /cm2 

clé = 0.23, c44 = 0.04 and c12 
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Similar convergence problems to those mentioned in the 

refinements using the Tc + 10° data (Section 3.2) were discovered 

when an attempt was made to refine fourth -order F.I. parameters 

on either of the metal ions; however, suitable parameter shift 

damping did give convergence of the refinement with Ca -ion 

anharmonic terms. No convergence problems were encountered in 

the corresponding refinements using anharmonic cumulant models. 

Nor was any evidence found of exceptionally high parameter correlation. 

A summary of the refined F.I. parameters and the fits and significance 

levels obtained is given in Tables 4.6.1 and 4.6.2. Addition of 

fourth -order F.I. parameters to the F -ion temperature factor alone 

results (see Model IV of Table 4.6.2) in a significant improvement 

to the fit obtained using a purely harmonic model. The p.w.a. 

is now much improved and shows hardly any structure with angle. 

The corresponding refinement using the cumulant model gives a better 

(although not very significantly so) fit. 

Refinement of fourth -order parameters on all ions and sixth - 

order F -ion parameters continues to give improvements in the fit. 

However, the improvements are of marginal significance and are not 

considered further. 

(b) The Non -Standard Refinements 

Particular care must be taken for two main reasons when 

attempting to draw conclusions from the parameters obtained in the 

control refinements. In the first instance, the data set is the 

smallest of those used in this study. Although the ratio between 

the number of observations and the maximum number of variable 

parameters ( 6.5 : 1) would still normally be considered acceptable 

(Johnson (1970)) there remains some doubt as to whether the 

selection of such a small sample (25 %) of the independent reflections 

is entirely justified. Second, the TDS corrections are the 

largest calculated for any of the data sets and are extremely 

large in absolute terms. 



Table 4.6.1 

temperature. 

on all ions. 

The refined parameters of RbCaF3 at room 

Model I contains harmonic thermal parameters 

Models II, III, IV and V contain, in addition 

to the parameters of Model I, fourth -order F.I. parameters 

on the Rb, Ca and F ions and on all ions respectively. 

In addition, the arbitrary scale parameter, Sc, was always 

refined. Convergence of the Models II and V was 

conditional upon the simultaneous refinement of the 

metal -ion scattering lengths. Extinction within the 

crystal was neglected. Estimated standard deviations 

(from the least -squares refinement) are given in parentheses; 

where none is given, the parameter was fixed during refine- 

ment. R, Rw and Ew42 are defined in the text. EwA2 is 

the weighted sum of squares obtained in the corresponding 

refinement using cumulant parameters instead of F.I. parameters. 



Model I 

Sc 22.6(1) 

Rubidium 

bx1012cm 0.71 

u (ß2) 0.0246(1) 

a40+ 

a44+ 

Calcium 

bx1012 cm 0.47 

u (R2) 0.0101(1) 

a40+ 

a44+ 

Fluorine 

bx1012cm 0.56 

U 
11 

(A"9 0.0479(4) 

u33(R2) 0.0099(2) 

b040+ 

b044+ 

b220+ 

b400+ 

9 

R 

RN 

EwL 2 

c 

EwL 2 

o 

0.024 

0.028 

216 

216 

II III IV V 

23.0(2) 23.1(2) 23.2(1) 23.2(2) 

0.68(1) 0.71 0.71 0.69(1) 

0.0247(2) 0.0252(1) 0.0252(1) 0.0248(1) 

0.012(4) 0.003(3) 

-0.006(1) -0.002(1) 

0.45(1) 0.47 0.47 0.46(1) 

0.0098(1) 0.0094(1) 0.0106(1) 0.0101(2) 

-0.033(5) -0.01(1) 

-0.009(3) 0.000(4) 

0.56 0.56 0.56 0.56 

0.0488(4) 0.0481(3) 0.0474(3) 0.0482(3) 

0.0101(2) 0.0106(2) 0.0092(1) 0.0097(3) 

0.004(4) 0.009(4) 

-0.004(1) -0.004(1) 

0.004(2) 0.001(2) 

-0.0028(3) -0.0018(5) 

0 0 0 0 

0.020 0.020 0.019 0.015 

0.025 0.025 0.021 0.017 

162 161 117 81 

162 158 100 80 



Model I II III IV V 

N.P. 5 
9 7 9 15 

F.I. 

EwA2 216 162 161 117 81 

as 0.001I 0.001I 0.001I O.00IIV 

E 

cumulant 

2 4 5 2 

c 
Ewo2 216 162 158 100 80 

as 0.0011 0.0011 0.0011 0.005IV 

E 2 4 7 1 

Parameter a44+(Rb) a40+(Ca) a44+(Ca) 
b044+(F) b400+(F) 

2I 2I 4I 2I 6I 

Table 4.6.2 The significance levels derived from the 

fits of Table 4.6.1. The table has been constructed 

in an entirely analogous way to Table 4.2.2; the reader 

is referred to the caption of that table for an explanation 

of the notation used. 
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Accordingly, the validity of the already restricted data set 
was tested by further reducing it and carrying out a series of 
duplicate refinements. As expected, the accuracy of the refined 
parameters systematically decreases as the number of independent 

reflections is reduced. However, it is noted that their values do 

not change significantly. In the light of these observations, it 

is assumed that the number of independent reflections measured 

in the experiment is sufficiently large to justify the use of the 

data set. 

Unfortunately, the tests carried out to check the validity of 

the TDS corrections did not yield such unambiguous results. For 

each of the F.I. models listed in Table 4.6.1, a refinement was 

carried out using the data set without correction for TDS. It 

was found in each case that a significantly lowerEwo2 value was 

obtained with the uncorrected data. (It is recalled that a 

similar feature was found in the corresponding harmonic refinements 

using the Tc + 10° data (Section 3.2) although better fits were 

obtained in that case for the anharmonic models using the corrected 

data.) The harmonic -model thermal parameters refined using the 

uncorrected data are found to be much smaller, as expected, than 

those obtained using the corrected data. - by up to about 60% for 

u(Ca) and u33(F) - and to be in far worse agreement with values 

quoted by Bulou et al (1979). The observations then to be 

reconciled are (i) that the use of the non -TDS- corrected data 

always produces the better fits irrespective of the thermal model 

being refined, and (ii) that the use of the TDS- corrected data provides 

refined parameters in better agreement with those quoted in the 

literature. From the point of view of a study of the anharmonic 

effects it was reassuring, however (if surprising), that the values 

of the refined F.I. parameters are not sensitive to whether the TDS 

corrections are made or not, and further, that the significance of 

each parameter is about the same using either corrected or 

uncorrected data sets. 

It was noted that b(Rb) and b(Ca) tend to become slightly 

smaller than the values quoted by Bacon (1975) when they are 
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refined with the other parameters (see Models II and V of Table 4.6.1). 

From separate refinements it was, however, seen that the refined values 

of the other parameters were not sensitive to these small changes. 

4.6.3 Discussion 

Clearly the uncertainty surrounding the validity of the TDS 

corrections is disturbing, and any conclusions must be drawn with 

this in mind. Little confidence can therefore be attached to the 

exact values extracted for the second -order thermal parameters, 

although as said they are in fair agreement with those obtained by 

Bulou et al (1979). 

In spite of this uncertainty, some features of interest do appear 

irrespective of whether a correction is made or not. First, it is 

found that u(Ca) u33(F) when the harmonic model is refined. Second, 

although a significant improvement in fit is obtained when fourth - 

order thermal parameters are included in the metal -ion temperature 

factors (Models II and III of Table 4.6.2), these parameters become 

ill- determined in the presence of fourth -order parameters on the 

F -ions (Model V). This means that the derived significance of 

a44 +(Ca) 
especially (a = 4) must be treated with some scepticism. 

There is, however, no reason to doubt the integrity of the refined 

F.I. anharmonic F -ion parameters. Of these parameters by far the 

most significant (see Table 4.6.2) is b400 +(F) 
It is interesting 

to note that the function within the temperature- factor expansion 

corresponding to this parameter (see equation (2.4.5)) is identically 

zero in the Rb -F plane. The effect of b400 +(F) 
on the F -ion p.d.f. 

may therefore be considered to be primarily along the direction of 

the unique axis. 

The F -ion p.d.f. has been constructed using the F.I. parameters 

of Model IV. An examination of the p.d.f. shows that it bulges out 

slightly in the same directions as the F -ion p.d.f. derived from the 

refined parameters using the Tc + 10° data. The size of the thermal 

anisotropy in the Rb -F plane is small; adopting the definition of 

Section 2.3, it is quantified by the values 3 %, 7% and 40% at 
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o o o 
distances 0.35 A, 0.45 A and 0.55 A from the mean position, 0. 

Again, as in the case of the observed bulging at Tc + 10° (see 

the comments of Section 3.3) these results seem qualitatively 

incompatible with the predictions of Rousseau (1977, 1979). 

The nature of the modifications to the harmonic p.d.f. due to 

the refined anharmonic parameters of Model IV can be seen more 

clearly by an examination of the difference map obtained by 

subtracting PModel 
I 

from PModel 
IV(r). 

The Rb -F section is 

shown in Figure 4.6.1. From this, it appears that the density 

around 0 is slightly greater than that predicted by the harmonic 

model. (It must be remembered that the p.d.f. need not be 

normalised in any particular section.) As stated above, the most 

significant, although still small, modifications to the harmonic - 

approximation p.d.f. do not affect the probability density in the 

plane considered in Figure 4.6.1. 

4.7 THE KMnF3 EXPERIMENT AT ROOM TEMPERATURE 

4.7.1 Experimental Details 

The sample, obtained from the same batch as the one used in 

the experiment at Tc + 10° (Section 4.1), was cleaved to a cube of 

side approximately 3 mm. The experiment was carried out on the D8 

diffractometer at I.L.L. using an incident wavelength À = 0.7235 A. 

This gave a resolution (sin eB/ 
)max = 

1.1 A -l. 

Two symmetry -equivalent reflections were collected for a 

complete set of independent reflections with a third equivalent 

being measured for a further 25. Because the wavelength used in 

this experiment was longer than that used in the experiment at 

Tc + 10°, extinction effects were expected to be correspondingly 

larger. For this reason, the intensities of symmetry- equivalent 

reflections were not averaged in case there were significant 
path - 

length differences between them. The isotropic, Type I extinction 

model with Lorentzian mosaic distribution was 
used in all of the 



Figure 4.6.1 The F -ion difference p.d.f. for RbCaF3 at room 

temperature obtained by subtraction of 
Model I(r) 

Ph - from 
Model IV(r) 

- Pa. The labelling of 

the axes (X and Y) is as established in 

Figure 1.4.3; the full A -X section may therefore 

be obtained by 90° rotations about the four -fold 

axis. Pa is normalised to Ph which is assigned the 

value 10,000 at 0. The r.m.s.a. of Ph (which is 

isotropic about the four -fold axis) is indicated by the 

vertical line on the X -axis at 0.22 Á. As an aid 

to interpretation, the quantity (Pa Ph) /Pa is 

expressed as a percentage at a number of starred 

locations on the map. 



Figure 4.6.1 
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refinements. (It was found from refinements carried out using the 

data obtained at Tc + 10° that the extinction was not significantly 

anisotropic.) TDS corrections were then made as described in 

Appendix B. 

4.7.2 The Refinements 

(a) The Control Refinements 

Because the value of b(Mn) was previously found to deviate from 

the value quoted by Bacon (1975), and because this was found to 

significantly bias the refined parameter values (see Section 4.2), 

it was decided to allow both b(K) and b(Mn) to refine simultaneously 

with the other parameters in each refinement. These refinements 

are therefore described in part (b). 

(b) The Non -Standard Refinements 

The refined model parametersand the derived significance levels 

are given in Tables 4.7.1 and 4.7.2 respectively. Again only the 

F.I. parameters have been listed explicitly; corresponding models 

using cumulant parameters always produce practically identical fits. 

The weighted residual Rw = 0.026, obtained from the harmonic - 

model refinement is reasonable,given the accuracy achieved in the 

data collection. An examination of the p.w.a. shows a rather 

uneven distribution with Bragg angle although there are no 

systematic trends. It is also noted that the refined value of 

b(Mn) is significantly smaller than that obtained from the refinements 

using the Tc + 10° data set. 

The addition of fourth -order F.I. parameters to each of the 

constituent ions in turn results in reductions to EwA2 ranging from 

very substantial (for the Mn ion - see Model III) to negligible 

(for the K ion - see Model II). Disturbing inconsistency is found 

in the refined values obtained for b(Mn); those obtained for b(K) 

are consistent and compatible with the values refined using the 

Tc + 10° data set. Refinement of fourth -order 
F.I. parameters on 

* The elastic constants used were : 

cll = 
1.15, c44 = 0.4 and c12 = 0.27 x 1012 dyne /cm2 



Table 4.7.1 The refined parameters of KMnF3 at room 

temperature. Model I contains harmonic thermal parameters 

on all ions. Models II, III, IV and V contain, in addition 

to the parameters of Model I, fourth -order F.I. parameters 

on the K, Mn and F ions and on all ions respectively. 

In addition, the arbitrary scale parameter, Sc, the 

extinction parameter, g, and the metal -ion scattering 

lengths, b(K) and b(Mn), were always refined. The 

extinction parameter is as defined by Becker and Coppens 

(1974) for isotropic Type I secondary extinction with a 

Lorentzian mosaic spread. Estimated standard deviations 

(from the least - squares refinement) are given in parentheses; 

where none is given, the parameter was fixed during refinement. 

R, Rw and Ewt2 are as defined in the text. EwA2 is the weighted 

sum of squares obtained in the corresponding refinement using 

cumulant parameters instead of F.I. parameters. 



Model I II III IV y 

Sc 80(1) 81(1) 81(1) 77(1) 70(1) 

Potassium 

0.37(1) 0.375(2) 0.368(5) 0.369(3) 
bx10 12 cm 0.368(2) 

u (2) 0.0227(3) 0.0218(7) 0.0234(3) 0.0217(4) 0.0233(3) 

a40+ -0.02(1) 
0.05(1) 

a44+ 0.000(3) 
0.000(1) 

Manganese 

-0.351(3) -0.341(5) -0.368(3) -0.376(3) 
bx1O12cm -0.354(3) 

u (ß2) 0.0096(1) 0.0095(1) 0.0130(4) 0.0095(2) 0.0142(3) 

a4O+ 0.08(1) 0.11(1) 

a44+ 0.003(4) 0.014(4) 

Fluorine 

0.56 0.56 0.56 0.56 bx1O12cm 0.56 

ull(g2) 0.0384(2) 0.0386(2) 0.0383(2) 0.0387(3) 0.0387(2) 

u33(á2) 0.0115(2) 0.0116(2) 0.0115(2) 0.0130(5) 0.0143(3) 

bO4O+ 0.012(3) 0.029(3) 

bO44+ -0.001(1) 0.000(1) 

0220+ -0.004(2) -0.012(2) 

b4OO+ 0.003(1) 0.0055(5) 

g x 10-4 0.39(2) 0.40(2) 0.39(2) 0.33(2) 0.23(1) 

R 0.031 0.032 0.028 0.029 0.021 

Rw 0.026 0.025 0.023 0.024 0.017 

Ew2 730 718 597 634 333 

Éw2 730 718 587 632 330 



Model I II III IV V 

N.P. 8 10 10 
12 16 

F.I. 

DNA 730 718 597 634 333 

as 0.11 0.0011 0.0011 0.001IV 

cumulant 

1 7 2 15 

EwA2 730 718 587 632 330 

as 0.11 0.0011 0.0011 O.00IIV 

1 7 2 15 

Parameter a 
40+(Mn) 

b040+(F) 
b400+(F) 

E 61 2 2 

Table 4.7.2 The significance levels derived from the 

fits of Table 4.7.1. The table has been constructed 

in an entirely analogous way to Table 4.2.2; the 

reader is referred to the caption of that table for an 

explanation of the notation used. 
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each ion simultaneously (Model V) reducesEw` significantly from 
the values obtained when these parameters are added to the individual 

ions. The values obtained for the anharmonic thermal parameters 

are also found to be sensitive to the presence of such parameters 

on the other ions (compare the values of Model V with those of 

Models II, III and IV). The refined value of b(Mn) using 

Model V is in good agreement with those obtained previously 

(Section 4.2) and the corresponding p.w.a. is very satisfactory. 

It is worth noting that the refined value of the overall scale 

parameter, Sc, changes from about 80 to about 70 between the harmonic 

and the most general fourth -order refinements. This change is 

compensated for to some extent by the change in the extinction 

parameter. For example, the most highly extinguished reflection, 

(1,1,1), has its true intensity reduced by 72% according to the 

harmonic -refinement value of E(1,1,1), compared with 67% according 

to the Model V value. Clearly, this compensation does not adequately 

account for the observed difference in the scale -parameter values. 

The difference must therefore be taken up in the refined values of 

the other parameters, in particular b(Mn) which changes by about 6`T 

between Models I and V. 

4.7.3 Discussion 

The TDS corrections are small enough to be discounted as a 

source of significant error in the refined parameters. Extinction, 

although quite severe (see the example of the previous section), seems 

to be treated adequately by the model used : no particularly poorly 

fitted low -angle reflections were found. The most disturbing 

feature is the range of refined values obtained for b(Mn), although 

it is of some comfort that the best -fitting model (Model V) gives 

scattering lengths in good agreement with those refined in Section 4.2. 

It seems reasonable then to consider that the refined parameters 

of Model V yield a plausible description (within any limitations 

inherent in the F.I. formalism - see Chapter 2.5) of the crystal 
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structure at room temperature. Caution is required, however, in 

prescribing significance levels based on the residuals obtained using 

Models II, III and IV where the refined values of b(Mn) are probably, 

on the evidence of Model V and the refined values of Table 4.4.1, 

too small. 

The thermal parameters extracted from the harmonic refinement 

again demonstrate the near equivalence in value of u(B) and u33(X). 

From Models II and V, it is clear that the thermal anharmonicity of 

the K ion is small and isotropic; the cubic -symmetry parameter, 

a44 +(K), 
is zero to a high degree of accuracy. The authenticity of 

the refined Mn -ion anharmonicity is somewhat shadowed by the 

uncertainty surrounding the value of b(Mn). In spite of this, 

comparing the parameters of Models III and V, it does seem that 

the anharmonic thermal parameters, particularly a40 +, 
are rather 

insensitive to significantly large changes in the other parameters. 

From Table 4.7.2 it can be seen that this anharmonicity is pre- 

dominantly isotropic, like that of the K ion, and very significant 

( = 6 for 
a40 +(Mn)). 

Comparison of Models IV and V shows that 

the refined accuracy (and most probably the significance) of the 

F -ion anharmonic parameters is influenced by the simultaneous 

refinement of the metal -ion anharmonic parameters. The significance 

of the individual parameters is therefore probably higher than the 

values quoted in Table 4.7.2, which are based on the addition of the 

F -ion anharmonic parameters to the harmonic model and take no account 

of correlated metal -ion anharmonicity. It is quite clear, however, 

that b044 
+(F), 

the parameter characterising any anisotropy about the 

four -fold axis, is the least significant of the F -ion anharmonic 

parameters. 

The K- and Mn -ion p.d.f.'s have not been reproduced here, in the 

case of the former because deviations from harmonicity are 
negligible, 

and in the case of the latter because the deviations are principally 

isotropic about the mean position, 0. The sign of a40 +(Mn) means 

that the p.d.f. is flattened around the centre of the distribution. 

The difference p.d.f., obtained by subtraction of PModel I(r) 
from 

PModel V(r), 
would then take the form of a shell of positive 
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density surrounding a region of negative density around 0. Using 
the refined F.I. parameters of Model V, the F -ion p.d.f. has been 
calculated and is found to show the following features. 

The values of the p.d.f. in regions of negative density are so 

small as to be insignificant. Because the refined value of 
is zero, there is no anisotropy about the unique axis. b044 

+(F) 

Subtracting 
Model I(r) 

from 
PModel V(r), 

the difference p.d.f. is 

obtained, of which the K -F section is shown in Figure 4.7.1. The 

most obvious feature shown by the map is the very considerable 

flattening of the p.d.f. (as evidenced by the large dip in the 

difference p.d.f.) around the mean position, 0, reducing the value 

of the p.d.f. from the harmonic -approximation value at that point 

by over 10 %. Further from 0, beyond the r.m.s.a. of the harmonic 

approximation, the effects arising from inclusion of anharmonic 

terms in the model are very small. 

4.8 INTERPRETATION OF THE RESULTS 

It is clear from the results of the test refinements (Chapter 2.5) 

that even the F.I. formalism by no means offers a completely 

satisfactory description of anharmonic p.d.f.'s (compare for example 

the difference p.d.f.'s of Figures 2.5.6(c) and (d)). However, it 

does seem in general that any discrepancies between the real and 

derived distributions are due primarily to the fact that the 

formalism cannot satisfactorily handle the magnitude of the anharmonicity 

rather than its structure. For this reason, features such as the 

degree of anisotropy arising from intrinsic, underlying anharmonicity 

are reproduced reasonably well (see the last column of Table 2.5.1), 

whereas the amount of anharmonicity itself tends to be underestimated 

(see the first example of the paragraph). These facts must be 

borne in mind in attempting to interpret the p.d.f.'s derived in the 

preceding sections of this chapter. 

It must also be remembered that detailed analysis has been 

restricted primarily to the thermal motion of the X ions in the 

A -X plane. The reasons for this are three -fold : first, the motions 



Figure 4.7.1 The F -ion difference p.d.f. for KMnF3 at room temperature 

obtained by subtraction of PModel 
I(r) 

- Ph - from . 

PModel V(r) 
- Pa. The labelling of the axes (X and Y) 

is as established in Figure 1.4.3; the full A -X section 

may therefore be obtained by 90° rotations about the 

four -fold axis. Pa is normalised to Ph which is 

assigned the value 10,000 at 0. The r.m.s.a. of Ph 

(which is isotropic about the four -fold axis) is 

indicated by the vertical line on the X -axis at 0.20 Á. 

As an aid to interpretation, the quantity (Pa Ph) /Pa 

is expressed as a percentage at a number of starred 

locations on the map. 
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of the metal ions have been shown to be describable to a good 

approximation in terms of purely harmonic potentials (the motion 

of the Mn ion in KMnF3 at room temperature is the only un- 

ambiguous exception found here); second, time has not permitted 

fully adequate testing of the anharmonic thermal formalisms so that 

any derived conclusions regarding motion of the X ions out of the 

A -X planes would be rather tentative at present; and finally, the 

interesting anharmonic thermal motion in these perovskites is 

expected to be predominantly associated with the X ions in the A -X 

planes. 

An examination of the refined harmonic thermal parameters obtained 

for each of the crystals shows that in general u(B) u33(X). The 

same feature can be seen in the parameters obtained by Sakata et al 

(1979) for cubic CsPbCZ3 over a range of temperatures above Tc. 

For KMnF3 the agreement is no more than qualitative, the two 

parameters differing from each other by 13% and 18% at Tc + 10° 

and at room temperature respectively. However, for the other 

crystals, and in particular RbCaF3 at both temperatures investigated, 

the equivalence in value is quite remarkable. This may be evidence 

of a 'hard' interaction along the B -X direction and could well be 

connected with the anomalous behaviour sometimes exhibited by the 

B -ion thermal parameters - especially the Ca ion in RbCaF3 (compare 

Models III and V in both Tables 4.3.1 and 4.6.1). 

As far as trends in the thermal anharmonicity in the series 

CsPbCZ3- RbCaF3 --> KMnF3 -- SrTiO3 (a few degrees above Tc) are 

concerned, some of the results seem quite clear. In particular, 

the degree of anharmonicity associated with the thermal motion 

of the X ion decreases significantly along the series. This 

conclusion may be unambiguously extracted from a consideration of 

several features. 

(i) A comparison may be made of the reductions inDo2 

associated with the addition of X -ion fourth -order F.I. parameters 

to the harmonic model. These reductions are 3.4 51, 2.33 --1, 
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1.18-1, and 1.04- -*1 for the CZ, F, F and 0 ions respectively 

in the above crystal series. 

(ii) An examination and comparison of the difference maps of 

Figures 4.2.2, 4.3.2 and 4.4.1 - the corresponding map for 

SrTiO3 is not shown because the anharmonic parameters are so 

insignificant - reveals the modifications made to the harmonic 

p.d.f. due to addition of F.I. parameters. These modifications 

are largest for the CZ ion in CsPbC13, the difference between the 

anharmonic and harmonic densities ranging from about -10% to +16 %. 

The corresponding values for RbCaF3 and KMnF3 are about +4% to 

+14% and 0% to +8% respectively. From comparisons with the results 

of the test refinements it would not be unreasonable to expect the 

magnitude of the actual difference p.d.f.'s to be greater than those 

derived here from the F.I. model parameters - perhaps by as much as 

a factor of two (compare the differences between the test p.d.f.'s of 

Figures 2.5.4(a) and (b) and between 2.5.5(a) and (b)). This 

observation would not, however, significantly affect the relative 

sizes of the anharmonicities specified by the numbers above. 

A clear qualitative comparison of the amount of anharmonic 

structure (that is, structure of a lower symmetry to that accessible 

using a harmonic temperature factor) in the A -X plane of the X -ion 

p.d.f.'s can be obtained from Figures 4.2.2, 4.3.2 and 4.4.1. The twin 

peaks for CsPbCZ3 begin to merge for RbCaF3 and to practically dis- 

appear for KMnF3. The different vertical scales should be noted in 

any comparison, especially those associated with the maps for RbCaF3 

and KMnF3. In the light of the unambiguous results obtained in 

the test refinements (see the last column of Table 2.5.1), it can be 

stated with reasonable certainty that these features are at least 

qualitatively authentic. 

In each of these crystals just above Tc it can therefore be 

asserted that the thermal motion of the X ion is preferentially 

along the directions [1,0,0] and [0,1,0] established in Figure 1.4.3, 

that the degree of this preference is greatest for the CZ ion in 

CsPbCZ3 and that it decreases along the series CsPbCZ3 ... SrTiO3, 
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becoming negligible for SrTiO3. 

Several features of interest may also be extracted from an 

examination of the refined thermal parameters obtained for the 

same crystal at different temperatures. 

In the case of RbCaF3, the improvement in fit, both at Tc + 10° 

and at room temperature, arising from the addition of F -ion anharmonic 

terms to the harmonic thermal model, is comparable. Further, the 

significance associated with the addition of the parameters b044 
+, 

b220+ 
and b400+ individually is about the same at both temperatures 

g 3, 0 and 6 respectively - see Tables 4.3.2 and 4.6.2). The 

main difference lies in the value and significance of b040 
+. 

At 

Tc + 10° it can be seen from Figure 4.3.2 that the large positive 

refined value for this parameter results in a predominantly isotropic 

bulge in the difference p.d.f. around the unique axis. On the 

contrary at room temperature b040+ is relatively small so that this 

feature is missing - see Figure 4.6.1. The amount of structure 

in the Rb -F plane of the F -ion p.d.f., characterised by b044 
+, 

is 

small and similar at both temperatures. On cooling towards Tc, 

it therefore appears that the F -ion p.d.f. becomes slightly flatter 

around its mean position than the harmonic approximation to it. 

At room temperature there is no significant flattening. 

It is usually expected that the thermal m.s.a.'s obtaining in 

a crystal scale approximately with absolute temperature, ie, 

<02_ ßT2. However, using the RbCaF3 harmonic parameters of 

Tables 4.3.1 and 4.6.1, it is found that the ratio u293°K/u205oK 

is 1.35, 1.31, 1.11 and 1.30 for the Rb, Ca, F11 and F33 ions 

respectively, while the ratio of the temperatures is 1.43. Although 

the scaling between u's and T's is not exact for any of the ions, it is 

nonetheless clear that the ratio obtained for F11 is anomalous. 

For this reason, an attempt was made to fit the ratios by assuming 

that in addition to the expected thermal scaling, a critical 

component,, with dimensions of length, exists such that 

<u11>2 observed = <ull +A. takes a finite value 

as Tc is approached from above and is zero at sufficiently high 
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temperatures above T. It is further assumed that 
u11intrinsic 

scales with temperature as the average of the scaling factors of 

the other three independent m.s.a.'s which do not have an additional 

critical component. Using the refined RbCaF harmonic m.s.a.'s 

of Tables 4.3.1 and 4.6.1, a value 0 = 0.018 X is then extracted. 

It is emphasised that this is an empirical result and 

specifically that v is not to be identified with ô , the local order 

parameter obtaining in a cluster -model system. 0 merely gives an 

estimation of the linear extent of the F11 motion which is 

incompatible with the thermal scaling law obeyed by the other m.s.a.'s. 

The temperature dependence of the anharmonicity in KMnF3 appears 

to display a markedly different form from that observed in RbCaF3. 

Thermal anharmonicity is very significant at room temperature and is 

peculiar in that it constitutes the only example, of those considered 

here, in which the effects are not predominantly associated with 

the thermal motion of the cation. An examination of the functions 

in the temperature- factor expansion associated with a40 +(Mn) and 

F), together with a consideration of the large positive values 
b400 

+( 

refined for these parameters using the room -temperature data, 

clearly indicates a hardening of the Mn- and F -ion potentials along 

the Mn -F direction. In other words,significant values of the ionic 

p.d.f.'s do not extend so far along this direction from the mean 

positions as predicted using the harmonic thermal model. The 

corresponding parameters obtained using the Tc + 10° data set show 

that this hardening of the potentials becomes insignificant as Tc 

is approached. From Figures 4.4.1 and 4.7.1, it is clear that 

the F -ion p.d.f. is flatter than harmonic around the mean position 

at both temperatures and that there is no very significant anisotropy 

about the unique axis. 

Carrying out an empirical analysis similar to that already 
o 

described for RbCaF3, a value 0 = 0.04 A is obtained. However, 

the corresponding ratios of the m.s.a.'s for K, Mn and F33 are not 

so consistent between themselves as those obtained 

for RbCaF3, so that less confidence can be placed in the derived 
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value of A. (If, for instance, the thermal scaling of u11(F)intrinsic 

is taken to be the same as that of u(K), a value A = 0.03 Á is 

derived.) 

The number of independent observations made by Sakata et al (1979) 

for CsPbC1 at a range of temperatures above Tc is unfortunately not 

large enough to justify refinement of a full anharmonic model. As 

pointed out by these authors, the relatively low resolution of their 

data may also be insufficient for the refinement of accurate anharmonic 
o 

parameters. However, a value A= 0.1 A can be extracted from their 

refined harmonic thermal parameters at 325 °K and 623 °K. 

As stated in Chapter 1.2 only a demonstration of the existence 

of two -timescale dynamics can provide unqualified support for the 

formation of clusters. To the extent that the techniques used in 

this study cannot in principle provide such a demonstration, it is 

clear that the results of this chapter cannot be interpreted 

completely unambiguously. Although no evidence of resolvable 

disorder has been found in any of the ions, the p.d.f.'s of several, 

in particular some of the cations, have shown significantly anharmonic 

features. The question therefore addressed is : what is the most 

likely explanation of the derived modifications to the harmonic 

p.d.f.'s? 

(i) 

( 
ii 

Clearly there are several possibilities : 

The ions are not disordered in any way. The refined 

anharmonic parameters merely indicate a 'flattening' or 

'hardening' of the potentials compared with the best - 

fitting harmonic distribution, such as might be predicted 

by an anharmonic phonon theory. 

There is actual disorder, possibly arising from an 

underlying cluster structure, but it is unresolvable 

so that the equilibrium p.d.f.'s are single -peaked. 
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(iii) There is disorder, which in principle is resolvable, 

but the models used are inadequate to reproduce it. 

(iv) The refined anharmonic parameters are artefacts. 

The latter two proposals may be discarded as highly unlikely 

in the light of the results obtained in the test refinements of 

Chapter 2.5. Although it is true that actual resolvable disorder 

would probably not be reproduced anyway, even using the F.I. 

formalism (see Figures 2.5.6(a) - (d)), it is clear from the 

refinements of Chapter 2.5.4(f) that the weighted residuals obtained 

in the harmonic -model refinements of the real perovskite data sets 

(always significantly less than 0.10) are incompatible with 

resolvably disordered structures. 

Proposals (i) and (ii) cannot be distinguished on the basis 

of these results alone. In principle, bearing in mind that the 

F.I. formalism tends to underestimate the magnitude of the anharmonic 

contributions considerably, and making the unlikely assumption that 

the idealised cluster -model structure adopted in Chapters 1.2 and 1.4 

is entirely appropriate, it would be possible to extract an upper 

bound for 5 from each of the derived X -ion p.d.f.'s. This has not 

been done here. Nor has any attempt been made to interpret more 

fully the significance of the values derived for A; the anomalous 

scaling with temperature is however of interest in itself. As 

pointed out by Bruce et al (1979) and confirmed by the results of 

the test refinements of Chapter 2.5.4(b), the derived value of 

6 = 0.008 
o 

obtaining in SrTiO3 at a few degrees above Tc (an order 

of magnitude less than the refined r.m.s.a.) will be entirely 

masked by harmonic fluctuations. The insignificant anharmdnicity 

found here for SrTiO3 is therefore at least compatible with a ô 

of this order. 

It may be said then that although the equilibrium ionic p.d.f.'s 

existing in the perovskites studied here are qualitatively as re- 

produced in this chapter, the underlying dynamics giving rise to them 

cannot be unambiguously identified in an analysis of this type. 
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It is, however, worth giving some consideration to the form that 

the temperature dependence of the anharmonic thermal parameters might 

be expected to take. This was done, earlier in the section, for 

the harmonic m.s.a.'s in RbCaF3 and KMnF3, and although anomalous 

behaviour was found (so that values could be derived for A), it was 

clear that the m.s.a.'s did scale (if only approximately) with 

temperature. For higher -order parameters, it is expected - at least 

for systems not complicated by the occurrence of a phase transition - 

that a similar, but more rapidly increasing, dependence upon 

temperature exists (see, for example, Willis (1969)). It would 

then be natural to link any obvious departure from this general 

trend, on approaching Tc, to the onset of criticality. From a 

consideration of the ionic displacements made in these perovskites 

(see Figure 1.4.2), it is reasonable to expect that the temperature 

dependence of the metal -ion anharmonic parameters - even close to 

Tc- will behave qualitatively according to the above ' phase - 

transitionless' trend. (The B -ion sublattice, in particular, 

remains essentially rigid on passing through Tc.) The cation 

anharmonic parameters, however, might well be expected to show 

anomalous enhancement as T - Tc. 

When the RbCaF3 and KMnF3 anharmonic parameters are examined in 

the light of these observations, some interesting features are found. 

In the case of RbCaF3 (Model V at both temperatures), the metal -ion 

anharmonic parameters are very small and poorly determined; any 

attempt to establish a general trend in their temperature dependence 

would therefore be inconclusive. The F -ion anharmonic parameters, 

on the other hand, show what appears to be a marked dependence upon 

temperature, and one which indicates a significant enhancement of 

anharmonicity as Tc is approached. In the case of KMnF3, the values 

of the significant metal -ion anharmonic parameters (Model V at both 

temperatures) certainly increase, qualitatively as expected, with 

temperature - a40+ (Mn) by an order of magnitude. The temperature 

dependence of the F -ion anharmonic parameters is less clear because 

these parameters are significantly biassed at room temperature by 
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the presence of similar parameters on the Mn ion (compare Models IV 

and V). In any case, whether the parameters of Model IV or V are 

used as the basis for comparison, it is clear that the significant 

F -ion anharmonic parameters do not (in general) decrease with 

temperature in the dramatic way found for those of the metal ions. 

In fact, the parameters of Model IV indicate an enhancement in 

anharmonicity as T -* Tc +, qualitatively similar to that found for 

the F ion in RbCaF3. 

Direct evidence is therefore provided that the thermal 

anharmonicity of the cations in RbCaF3 and KMnF3 becomes anomalously 

enhanced as T - Tc +. No such evidence is found for the anions. 

Given the characteristic ionic displacement pattern at Tc, it is 

clear that the results presented here provide qualitative support 

for those theories of structural phase transitions in which the 

existence of pre- cursor non -linearity above Tc plays a central role. 
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CHAPTER 5 : CONCLUSIONS 

This final chapter contains a brief summary of the main 

conclusions reached regarding the collection and analysis of high - 

resolution neutron elastic- diffraction data. In a study such as 

this it is important, although sometimes not straight forward, to 

estimate the regime of validity of the conclusions reached; some may 

be perfectly general, others rather restricted in their applicability. 

Given sufficient time, collection of the data itself was not 

found to present any particular problems other than those associated 

with ensuring long -term stability in the temperature control devices, 

counting chain and sample orientation. The measurement of a 

randomly selected subset of the total number of independent reflections 

always gives satisfactory results. (It was, however, found that the 

deletion of a non -random subset of the data, such as, for example, 

those reflections with one odd index, will not in general yield 

unbiassed model parameters.) Because the crystals studied here 
o 

have small unit cells (linear dimensions of about 4 -5 A) and highly 

symmetric structures, the total number of independent reflections 

to be collected is relatively small. Considering that the data - 

collection time for some of these experiments was nearly four 

weeks, it is therefore clear that the collection of such high - 

resolution neutron data is likely to be impractical except for simple 

systems such as these. Nor would X -ray diffraction techniques provide 

a satisfactory alternative, being subject as they are to severe 

limitations arising from the fall -off in scattering power at high Q 
o 

and the non -availability of wavelengths less than about 0.56 A. 

The proper treatments of TDS and thermal anharmonicity are two 

of the most immediately identifiable problems encountered in the 

analysis of high- resolution data. 

It is already well established that the derivation of accurate 

harmonic thermal parameters is dependent upon reasonable corrections 

being made for TDS; this has certainly been confirmed. However, 

it has been found that higher -order F.I. parameters are almost 
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completely insensitive to whether corrections are made or not - 

irrespective of the size of the corrections themselves. On the 

contrary, the form of the cumulant- formalism temperature factor 

(expression (2.3.2)) ensures that the refined values of the 

anharmonic parameters will be (usually only slightly) biassed 

if a correction is not made. The possible limitations in analysis 

arising from inaccurate TDS calculations are not at their most 

apparent in a study such as has been carried out here; the focus 

of attention has been on parameters which, as found consistently 

in the refinements, are relatively insensitive to TDS corrections. 

However, it is worth pointing out that, in the case of the RbCaF3 

room -temperature data set, the correction factors applied to the 

measured intensities increased from about 50% at a resolution 

sin eB /X = 1 A A to about 75% at 1.5 A -l. Bearing in mind the 

disturbing results obtained from the refinements in Chapter 4.6.2(b), 

it is clear that the further development of high -resolution 

diffraction techniques should be accompanied by an investigation of 

the likely inaccuracies in the calculation of very large TDS 

contributions. 

Most of the specific conclusions regarding the refinement of 

terms describing thermal anharmonicity have already been summarised 

in Chapter 2.5.7 and will not be repeated here. It is clear from 

these conclusions that some qualitatively authentic information 

about the time- averaged motion of atoms in a crystal can be 

extracted from the anharmonic thermal parameters obtained via 

refinements using elastic -diffraction data. That such a statement 

can be made has not been generally accepted in the past - see the 

discussion by Merisalo and Larsen (1977). 

Although a definite preference has been established favouring 

the use of the F.I. formalism as opposed to the cumulant formalism, 

it is nonetheless true that the derived atomic p.d.f.'s are at best 

in only qualitative agreement with those actually obtaining in the 

real system. The extent of this agreement is also found to decrease 

(more markedly when cumulants are used) as the magnitude of the 

thermal anharmonicity increases. This is not surprising in view 

* In the experiments, the detector apertures were always sufficiently 
large that anisotropy in the TDS corrections was small. If the 
required corrections had been markedly anisotropic, it is possible 
that the refined values of the anharmonic parameters might have 
been significantly biassed by inaccuracy in (or omission of) these 
corrections. 
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of the fact that the higher -order p.d.f.'s obtained using either 

formalism are essentially perturbations of a dominant second - 

order distribution (note the forms of Pi(r) as given in 

expressions (2.3.1) and (2.4.4)). 

One of the most immediately obvious inadequacies of the 

present analysis has been its restriction to systems of high 

symmetry; the anharmonic descriptions of the ionic thermal motion 

have consequently required a relatively small number of additional 

parameters. This number was often further reduced in practice by 

the specific nature of the anharmonicity : many cases were found 

in which the perovskite -ion anharmonicity was characterised just 

as well by two of the four independent fourth -order parameters 

as by the complete set. In cases such as these, constrained 

refinements can then be carried out and more accurate estimates 

obtained for those parameters known to be significant. Although 

the techniques of constrained refinement and significance testing 

may in general be expected to yield valuable information, 

additional problems can still be anticipated in the application of 

these anharmonic formalismsto the thermal analysis of atoms 

occupying positions of lower site symmetry. For example, the 

fourth -order temperature factor appropriate to the monoclinic, 2/m 

symmetry, contains nine independent anharmonic parameters. If 

the anharmonic motion of an atom occupying such a site is not 

predominantly characterised by any small subset of these twelve 

parameters, it is possible to envisage the existence of substantial 

refined anharmonicity without the accompanying procurement of any 

very significant, well determined anharmonic thermal parameters. 

The derivation of the corresponding atomic p.d.f. would then become 

unreliable. 

Unfortunately, the problem which was often found to prevent 

convergence of refinements containing m3m symmetry F.I. parameters 

has not been resolved. The approximation made in the calculation 

of the least -squares derivatives (Chapter 2.4.2) would be expected 

to become less satisfactory as the size of the anharmonic parameters 

increases; it is therefore surprising that the problem persists 
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even when the anharmonic parameters are very small (Model II of 

Table 4.6.1) - and even more surprising that acceptable convergence 

is obtained with relatively very large anharmonic parameters 

(Model III of Table 4.2.1). It is also difficult to see how the 

approximation made could apparently become more reasonable when 

scattering lengths are refined simultaneously!' The problem is 

probably not then connected with this approximation. Further 

investigation is clearly required before the situation can be 

resolved. It would seem, however, that high correlation between 

the thermal parameters of different orders (as obtained by 

Kurki -Suonio et al (1979)) must be at least partly responsible 

for these effects - although there is no direct evidence of this 

from the elements of the correlation matrices. The simultaneous 

refinement of scattering lengths must therefore act to break this 

correlation. 

Whether or not the possibility of including anharmonic terms 

in a refinement model should be investigated, is clearly rather 

subjective and will depend upon a consideration of the nature and 

accuracy of the conclusions sought. The additional time and effort 

required to program and refine anharmonic terms is non -negligible 

and must also be borne in mind. Several definite statements may 

be made with regard to the latter. 

(i) The additional computer programming required so that F.I. 

anharmonic parameters may be refined in the atomic temperature 

factors is considerably greater than that required to include the 

corresponding cumulant parameters. Separate routines must in 

general be written for each site symmetry individually, and the 

functions involved in the calculation of the temperature factors 

and the necessary least- squares derivatives become increasingly 

tedious as the order of the anharmonicity increases and the site 

symmetry decreases. 

* The scattering lengths used in this work are, apart from b(Ca), 
in good agreement with those recently tabulated by Koester (1977). 
Although b(Ca) differs significantly, its refined value is 

consistent throughout the present analysis, ie, it is insensitive 
to the particular thermal model and data set being examined. 
The value refined here is also in good agreement with that of 
Bacon (1975). For these reasons, the scattering lengths adopted 
are taken to be reliable; the possibility of significant bias in 

the refined thermal parameters, arising from the use of inaccurate 
scattering lengths, is therefore considered to be very small. 
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(ii) The difference in the computer running time required for 

anharmonic F.I. refinements and the corresponding cumulant refinements 

is considerable. Although difficult to generalise on the basis of 

the limited number of site symmetries investigated here, it would 

appear that the difference will be of the order 20 %. The increase 

in running time over that required for a harmonic -model refinement 

is entirely dependent upon the number of anharmonic parameters to 

be refined; it is, however, clear that increases by factors of 

2 -4 will not be uncommon. 

(iii) The derivation of atomic p.d.f.'s from the refined F.I. 

thermal parameters can be accomplished using essentially the same 

programming required to calculate the anharmonic temperature 

factors. The construction of a program to calculate the Edgeworth 

expansion (expression (2.3.1)) is also straightforward. 

From these observations, it is clear that the relative 

superiority of the F.I. formalism is obtained at a price. For 

this reason, if only an estimate of the magnitude of the intrinsic 

anharmonicity is required, with no direct -space information, it may 

be more convenient to use the cumulant formalism - especially if 

the anharmonicity is small. 

Input from many more refinements involving anharmonic thermal 

parameters will certainly be required before the full scope and 

potential yield of the methods described in this thesis can be 

identified. Experiments should preferably be confined to systems 

of high symmetry and in particular to those expected to display 

some characterisable anharmonic structure in their thermal motion - 

such as was tentatively proposed at the outset for the crystals 

studied here. Where possible,the plausibility of the results 

should be estimated by comparison with other experimental evidence. 

From the point of view of comparison with known thermal characteristics, 

information provided by further test refinements could again prove 

useful; care should be taken, however, to ensure that test data is 

generated in such a way that no spurious effects can bias the 
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refined parameter values. 

Up to this point in the chapter, discussion of the cumulant and 

F.I. formalisms has been focused primarily on the relative merits of 

each. It is clear that the regime of validity of both formalisms 

falls considerably short of systems displaying resolvable atomic 

disorder. Returning now to the objectivesset out in Chapter 1.1, 

the question then arises : can disordered models cope satisfactorily 

with that part of the anharmonic thermal spectrum extending from 

resolvably disordered structures to that part in which the 

anharmonic formalismsdiscussed in this thesis provide realistic 

descriptions? In other words, is the entire spectrum from harmonic 

to resolvably disordered structures susceptible to analysis by elastic - 

diffraction methods? Clearly, if the answer to this question is 

the affirmative, then one would expect the existence of a region of 

overlap in which both distinct types of model provide acceptable 

descriptions. From the conclusions already reached regarding the 

regimes of validity of the cumulant and F.I. formalisms, intrinsically 

disordered models would then have to cope with p.d.f.'s whose true 

equilibrium structure displays no evidence of resolvable peaks. 

Such a capacity has probably not yet been established. 

Some of the potential interpretative pitfalls have been high- 

lighted recently by Nelmes (1979). Concentrating attention on the 

family of hydrogen- bonded ferroelectrics isomorphous with KH2PO4, 

he shows that the simple (and commonly accepted) concept of proton 

disorder above Tc is not unambiguously established by structural 

work to date. Specifically, he argues that refinement of a 

disordered model, even when its parameters yield a resolvably dis- 

ordered p.d.f., does not in itself provide unqualified support for 

the actual existence of disorder, and that such an outcome may be 

a natural consequence of limitations in the generality of the 

refinement model. The situation described in Chapter 2.5.6, 

regarding the inability of the F.I. model to reproduce known dis- 

order, is in many ways similar although it occurs in a different 

part of the anharmonic spectrum. 
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More work will have to be done, probably on test systems displaying 

a controlled amount of intrinsic disorder, before any general approach 

to the diffraction analysis of real systems like KH2PO4 can be 

formulated. It will be essential to compare very closely the results 

obtained using anharmonic (but single -site) models, such as those 

considered in this thesis, with results obtained using disordered 

models. Until this is done, the true time - averaged nature of such 

strongly anharmonic distributions will remain inaccessible to elastic - 

diffraction techniques. 



APPENDIX A 

EXTINCTION CORRECTION 

Extinction is the phenomenon of attenuation, due to Bragg 

reflection, of the primary beam in its passage through the crystal. 

If it is severe, it can lead to a marked decrease in the observed 

scattered intensity. Two types are distinguishable : primary 

extinction, which is the result of multiply scattered beams in a 

perfect mosaic block, and secondary extinction, which is the 

result of scattering from similarly oriented mosaic blocks through- 

out the crystal volume. 

The procedure adopted for the calculation of extinction 

corrections was based on the program LINEX74 (a modified version of 

ORFLS (Busing et al (1962)) ) which incorporates the formalism of 

Becker and Coppens (1974 , 1975). The range of validity of this 

formalism is much greater than that due to Zachariasen (1967), which 

becomes unreliable for corrections to intensities greater than 

about 25 %. Considerable flexibility in the choice of extinction 

model is available. The various options are as follows : 

(i) 

( 
ii 

The extinction may be either isotropic or anisotropic. 

In general, five additional parameters are required in 

the latter case. 

The extinction may be either secondary Type I, secondary 

Type II (Zachariasen (1967)) or general. Type I 

extinction refers to attenuation arising from the range 

of orientations of the mosaic blocks; Type II to attenuation 

arising from the size of the perfect blocks (see Becker 

and Coppens (1974 , 1975) for details). The general 

model contains parameters describing extinction arising 

from a combination of Types I and II effects; a 

component of the resulting correction factor can then be 

identified specifically with primary extinction. 



(iii) The orientation of the mosaic blocks producing the 

Type I extinction effects can be described by a three - 

dimensional distribution function of either Gaussian or 

Lorentzian shape. The mean orientation of the blocks 

corresponds to the centre of the (symmetric) distribution 

and the relative number of blocks oriented at some 

slightly different angle is given by the value of the 

function at that point. 

LINEX74 allows for a further choice between the 'Coppens - 

Hamilton' and 'Thornley -Nelmes' methods of the way in which the 

mosaic spread parameter(s) appropriate to Type I extinction is 

calculated (Coppens and Hamilton (1970); Thornley and Nelmes 

(1974)). However, the method due to Coppens and Hamilton has 

been shown to be incorrect in all situations (Nelmes (1979a)) and 

has not been considered in the present study. 

If anisotropic extinction is to be refined, it is necessary 

to specify two unit vectors for each reflection (relative to the 

crystal axes when the crystal is in the Bragg reflection orientation). 

The first is the normal to the diffraction plane and the second is 

the direction of the primary beam. The corresponding mean path 

length through the crystal, T, is also required whether the extinction 

is anisotropic or not. In view of the number of refinements to be 

carried out using each data set, it was decided to write a separate 

program to produce a file containing this information instead of 

using a routine in the main least - squares program to generate it 

during each refinement. The vectors are easily obtained from a 

consideration of the standard diffractometer settings. The T's 

are obtained by using a dummy linear absorption coefficient, u, in 

the program ABSCOR (Stewart (1972)) and calculating Ti = 1/11 ln(1 /A0 

where Ai is the transmission factor of the ith reflection output by 

the program. Using this information, together with the refined 

parameter(s) specifying the nature and magnitude of the extinction (see 

Becker and Coppens (1974, 1975)) the correction factors E(Q) are 

obtained for each reflection. These are then used in the calculation 

of the structure amplitudes (equation (3.7.1)). 



Clearly, several approximations are possible other than the 

one obviously made in assuming that any extinction can be described 

as truly isotropic. For instance, if the sample used is of 

nearly equi- dimensional shape (say a 'reasonable' cube), path - 

length differences will not be large. If the extinction is small, 

it may then be permissible to assign a 'mean' path length to each 

reflection, and hence eliminate the considerable computing time 

required for the exact I calculations using ABSCOR. Unfortunately, 

an alternative, more protracted method of calculating extinction 

corrections is often required simply to establish the validity of 

using an approximate method. 



APPENDIX B 

THERMAL DIFFUSE SCATTERING CORRECTION 

The anisotropic TDS correction employed was that of 

Merisalo and Kurittu (1978), using the program SXTDS1 (Kurittu 

and Merisalo (1977)). Their treatment assumes the second- and 

higher -order phonon scattering to be allowed for in the linear 

background subtraction and the dispersive effects in the acoustic 

modes to be small. The authors show that the three -dimensional 

numerical integration often required in such calculations can be 

reduced to a two -dimensional one and that further simplifications 

can be made if the scans are symmetric (as they always are in the 

cases considered here). 

Although SXTDS1 is written specifically for calculations 

involving rectangular receiving apertures, it was clear from a 

number of trials that circular apertures can sometimes be 

accommodated within acceptable errors. For instance, the 

substitution of square apertures of area equal to the circular 

ones often used in the experiments of Chapter 4 will induce errors 

less than those in the counting statistics. Bearing in mind the 

inaccuracies often inherent in the derivation of suitable elastic 

constants (see for example Chapter 4.2.1), it is believed that 

the errors resulting from this approximation are not unacceptable. 

The Bragg intensity, IB, is given from the measured intensity, 

IM, by IB = IM /(1 + a) where 

2 
[Xl()llm 

a= 2kBT 1: T Tm ni 2 d 
Ai 

Lm i A 
i 

In this expression kB is the Boltzmann constant, 

T is the absolute temperature, 

Ti is the ith component of the reciprocal 

lattice vector, 



and 

q is the phonon wavevector, 

= q /Iq 

X is the dynamical matrix, 

ni are the normal distances from the 

reciprocal lattice point to the surfaces, 

Ai, over which the integration is carried 

out. 

See Merisalo and Kurittu (1978) for definitions of the surfaces, 

Ai, and the labelling of the axes to which the vector components are 

referred. 



APPENDIX C 

RANDOM NUMBER GENERATION 

Lists of (pseudo -) random numbers were obtained by the linear 

congruential method using the recurrence relation 

Zi = aZi_1 + c (modulus m) 

(see Kobayashi (1978)) where a, c, m and Zo are the starting 

(random) integers. Each Zi lies in the range 0 m and can be 

converted to lie in any other specified range by straightforward 

division. Statistical tests were included in the generating 

program as a check on the randomness of the output. 



APPENDIX Dl 

The observed structure amplitudes and errors for 

CsPbC1 at 325 °K as used in the refinement of the 

parameters in Table 4.2.1. 
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APPENDIX D2 

The observed structure amplitudes and errors for 

RbCaF3 at 205 °K as used in the refinement of the 

parameters in Table 4.3.1. 
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APPENDIX D3 

The observed structure amplitudes and errors for 

KMnF3 at 197 °K as used in the refinement of the 

parameters in Table 4.4.1. 
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APPENDIX D4 

observed structure amplitudes and errors for 

SrTiO3 at 112 °K as used in the refinement of the 

parameters in Table 4.5.2. 

Those reflections with h2 + k2 + i 
2 

< 40 are included 

for completeness; they were not used in the refinements. 
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APPENDIX D5 

The observed structure amplitudes and errors for RbCaF3 

at room temperature as used in the refinement of the 

parameters in Table 4.6.1. 
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APPENDIX D6 

The observed structure amplitudes and errors for 

KMnF3 at room temperature as used in the refinement of 

the parameters in Table 4.7.1. 
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te the W's in Eq. (1) in terms of the 
phonon normal coordinates A(q j) 

Wa(0Iq) =I 1h /2mOw ( q j ) fot(Oalq j ) A ( q j ) 

(4) 
with the renormalized shell eigenvectors 

fX 
MrU2(So 

)_1 
TaM -VzèA ( 5 ) 

After the factorization involved in the 
Hartree approximation and the use of Eq. 
(4), Eq. (1) becomes 

(1, 

H 
= (ñ /4N)Z,(CaX /waw,)AAjAA, , (6) 

where the 4th order phonon -phonon coup - 
ling coefficients are 

Caa, 
= (KOB,Bh /4m)Z fa(0a1X)fá(0a1V) (7) 

a 
The ferroelectric mode,(0,T10), is most 
strongly coupled with the T10 and TA mo- 
des in(100) and(110) directions. These 
couplings are strongly q- dependent, as 
it is shown in Fig, 2 for g11(100) in 
KTa03. 

0 0) 0,2 0,3 O,G 0,5 

r y=(çoo) z11ia X 

Fig. 2. A- dependence, in [1001- direction, 
of the coupling coefficients CFa 
between the ferroelectric, F= 
(6,T10), and the TA and T10 modes 
in KTa03. 

The non linear dipolar interaction, 
Eq. (1), corresponds to a very delocali- 
zed 4th order effective interionic po- 
tential, in contrast with previous at- 
tempts to explain the ferroelectric soft 
mode behaviour in ABO perovskites by 
considering anharmonid extensions of the 
short range interionic forces, partigu7 
larly those between the 0 and B ions 
The displacement amplitudes W are rela- 
ted to those corresponding to the cores, 
U, in the same way as f to e, Eq. (5). 
If 4), Eq. (1), is factorized as in the 
Hartree approximation, the W's are ex- 
pressed in terms of the U's, and these 
are transformed to the direct lattice, 
the following biquadratic effective in- 
terionic potential results: 

=(K /12)q(u.- u.,)(iï)(u.- u.,))2 of OB,B 
2 ii' 1 1 1 1 

(8) 
where i E (xi), and the 3x3 matrices 
((i i') are given by 

(Qßß,(i i')= ÑAaß(0aKlq)Aaß,(Oae'lq) x 
aq 

x cos(qri i,) (9) 

Here A is the matrix (S +A) -1 Tt. The co- 
efficients ßß,(i i') save bee?' calcula- 
ted for several next nearest neighbours 
around each ion type. The most important 
correlations occur among the 0 and B 
ions which lie on a line parallel to one 
of the principal symmetry directions. 
For these ions the correlations between 
displacements parallel to the considered 
line are at least one order of magnitude 
stronger than those between transverse 
displacements. In Fig. 3 we show the 
range of these relevant correlations in 
KTa03. 

En 0.15 
a, 
c 
0 

°1 0.10 
E 

0.05 
} N 

Fig. 3. The coefficients PZ2(ii') for the 
ion pairs (B,B) (full line), (B, 
0) (dashed line) and (0,0) (dot- 
ted line) lying on the z- axis.On 
the abscissa the positions of 
the succecessive neighbours of 
an ion (B or 0) placed at the or- 
igin are indicated. 

The anharmonic extensions of the 0- 
B and 0 -A interionic force constants de- 
termined by constraining the model to 
fit various anharmonic properties, have 
been shown to describe satisfactorily 6 

the softening of the R0, mode in SrTiOqq 
In attempting to fit the temperature dé- 
pendence of the ferroelectric mode, how- 
ever, an unreasonably strong 4th order 
O -B interaction had to be considered in 
order to overcompensate the negative con- 
tribution of the 3rd order anharmonicity. 
As a consequence of this choice, anhar- 
monic properties which depend on the Ti- 
m interaction are not described satisfac- 
torily . Now, a non -linear intraionic 
oxygen polarizability leads to a consi- 
stent description of the Raman scatte- 
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ring and all the phonon interactions re- 
lated to the ferroelectric soft mode not 
only in SrTiO but also in KTa03, where 
no R 

25 
soft mdde has been observed. We 

believe, therefore, that the interionic 
anharmonicities are indeed responsible 
for those soft modes corresponding to 
the rotations of the octahedra, which 
appear also in non -oxidic perovskites, 
but that the effects of these anharmoni- 
cities on the ferroelectric soft mode 
nearly cancel out,so that the non -linear 
oxygen polarizability becomes the domi- 
nating mechanism in this case. This ex- 
plains the appearance of ferroelectric 
soft mode behaviour in oxydic perovski- 
tes only. Moreover, the fact that this 
behaviour is observed only in those cry- 
stals with a transition metal ion cen- 
tered in the oxygen octahedra supports 
the idea that the oxygen polarizability 

is anisotropically enhanced due to hy- 
bridization between oxyge9 p- states and 
transition metal d- states . It is inte- 
resting to note that this type of hybri- 
dization has been shown to be respon- 
sible for phonon anomalies which lead to 

superconducting transitions in cubic car- 
bides and nitrides )j th ti sam5+trap i- 

tion metal ions (Ti , Zr , Nb ,Ta . 

Summarizing, the pathological beha- 
viour of the oxygen polarizability, 
which leads to strong Raman scattering 
in oxides, is, in addition, the origin 
of phonon -phonon interactions in the 
perovskites which explains the appearan- 
ce of ferroelectricity in these struc- 
tures. A self- consistent treatment of 
these interactions gives a satisfacto- 
ry description of the phonons in the 
incipient ferroelectrics SrTiO3 and 
KTa03 down to 0°K. 
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1. 

HIGH -RESOLUTION (DIRECT SPACE) STUDIES OF ANHARMONIC MOTION 
ASSOCIATED WITH THE STRUCTURAL PHASE TRANSITION IN SrTiO3 

G.M. Meyer, R.J. Nelmes and J. Hutton 
Department of Physics, Edinburgh University, 

Mayfield Road, Edinburgh 9, Scotland. 

Data have been collected at room temperature on SrTiO3 to a high 
resolution limit of sin Omax /a = 1.2 R -1 on a four -circle neutron diffr- 
actometer. The harmonic (2nd order) and anharmonic (4th order) thermal 
parameters have been refined within the approximation of the truncated 
cumulant expansion. The motions of the strontium and titanium atoms 
are found to have isotropic mean- square amplitudes --- U(Sr) = 0.0054(1) Á2 
and U(Ti) = 0.0035(2) g2 - with no significant (anharmonic) fourth - 
cumulant terms. The oxygens have very anisotropic harmonic thermal 
parameters - U11 = 0.0125(3) X2 and U33 = 0.0058(3) g2 - with a 
large, predominantly isotropic, fourth -cumulant term a' = 0.0069(8) X». 

A comparison is made with KMnF3 in which the fourth -order cumulant terms 
on the fluorine atoms display tetragonal components. The relevance of 
these results to recent models of phase transitions is discussed. 

INTRODUCTION 

Many of the classical structural phase 
transitions of the soft -mode, displacive type 

have been found more recently to be associated 
with low-frequency, heavily -damped response and 
highly anisotropic dynamics (e.g. the soft mode 
heavily damped well above the transition, the 
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much -debated central peak, strongly structured 

diffuse scattering). Models put forward to 

explain these phenomena (e.g. Lambert- Comésl in 

relation to structured diffuse scattering, and 
the more general microdomain picture proposed 

by Krumhansl and Schrieffer2) imply that even 
for such displacive systems the time -averaged 

structure of the high -temperature phase is a 

disordered one --with atoms occupying an array 
of sites like that obtained by operating on the 
Pow -temperature structure with the high- temper- 
ature symmetry. 

If the displacement of sites from the 
man position obtained in this way from the 
ifully saturated low- temperature order para- 
nter is do, then the actual displacement, d, 

'_ay be anywhere in the range 0 4 S S do, The 
- .agnitude of d is expected to increase from 
zero as the temperature falls and inter -atomic 
iynamic correlations extend'. 

One attractive line of attack on the 

problem of testing the predictions of such 
zlmdels for real systems is to do careful con - 
eentional crystal structure studies - measur- 
ing S(Q,w =O). The latter transforms to 

G(r,t)dt directly (where G(r,t) is the time- _ 
npendent pair -correlation function). Making 
)nly the assumption of separable scatterers in 
a periodic lattice one extracts fp(r,t)dt, the 
time- averaged scattering density. The advant- 
age of this procedure is that it makes no 
assumptions whatever about the dynamics of the 
system. Our argument then is that if d ¢ 0 the 
probability distribution function (p,d.f.) for 
the atom(s) concerned (E fp(r,t)dt in the 
region of the atom(s)) will be disordered: 
that is, the p.d.f. will be made up of normal 
single- peaked, quasi -harmonic distributions 
centred on each of the sites. Whether or not 
these peaks can be resolved depends on the size 
of d relative to thermal amplitudes and on the 
resolution to which the p.d.f. is determined. 
Evidently it will generally be necessary to 
work to very high resolution. 

We report here on an investigation of 
the p.d.f. of oxygen in SrTiO3 at room temp- 
erature. SrTiO3 undergoes a cubic to 
tetragonal transition at ti 105 K, The change 
in structure at this transition is known to be 
Principally a small rotation of the oxygen octa- 
hedra around one of the four -fold axes of the 
cubic Rhase; the oxygen displacement, do, is 
ti 0.1 X. 

The 'classical' structure of SrTiO in its 
cubic phase (space group Pm3m) is shown in 
Figure 1A. Applying the cubic symmetry to 
rotations of the oxygen octahedra about all the 
Pour -fold axes leads to disordering of the type 
shown in Figure 1B. 

2. EXPERIMENTAL DETAILS 

The sample was a strain- free,flux- grown, 
single crystal of SrTiO3, of approximate 
dimensions 5 mm by 2 mm by 1 mm,kíndly supplied 
by Dr. H.J. Scheel of I.B.M., Zurich. 

The experiment was carried out at room 
temperature on the D8 four -circle neutron 

A B C 

Ti Sr 4o: 0 .: 
Figure 1. The structure of cubic SrTiO3(A) and 

possible disordered arrays 
(exaggerated) for oxygen (B and C), 

diffractometer at the Institut Laue -Langevin 
(I.L.L.), Grenoble. Three equivalents of each 
independent reflection were measured out to a 

limit of sinO /X = 1,2 Á -1 (t = 0.72 ñ). 
Standard reflections were measured regularly 
and the intensity of each was within two stand- 
ard deviations of the mean value. The full 
data -set was symmetry- averaged to yield 112 
independent reflections. Estimated standard 
deviations (e.s.d.'s), for weighting subsequent 
least- squares refinements, were obtained from 
counting statistics - except for 19 of the 

low -angle strong reflections (h, k and Z all 
even or all odd) which had one or more of the 
three equivalents differing by more than would 
be expected from counting statistics. The 
e.s.d.'s for these were taken from the spread 
found in the three values. The (111) reflection 
was later found to be very highly extinguished 
and was omitted from the data -set used in 
refinements. 

Corrections for thermal diffuse scatter- 
ing were not made: the corrections at this 

neutron wavelength are complicated because the 

neutron velocity is approximately that of the 

transverse acoustic phonons. However the 
phonon velocities are quite large, so the 

corrections would not be expected to alter 
qualitatively the parameters obtained from the 

fitting. 

3, REFINEMENTS 

A standard crystallographic least- squares 
program, modified to refine an isotropic 

extinction parameter and third- and fourth - 
cumulant parameters, was used in all the refine- 

ments. The addition of third and fourth 
cumulants" modifies the conventional Gaussian 

Debye- Waller factor by multiplication with 
third- and fourth -order exponential terms 

exp( -W) = exp(i2Eh.h,K3k) x exp(i3Ehjhkh1K3ld) 

x exp(i "Eh.hkhihmK3kRm) 

where the summations are over j,k,k,m = 1,2,3. 
The h's are hM /a, where hM are Miller indices 
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and a is the unit -cell dimension. K519 and 

KJkQm are the terms of the third- and fourth - 

order cumulant tensors respectively. The 

program refines these parameters along with the 

parameters KJk of the second -order cumulant 

tensor. The latter is described in this paper 

in terms of the mean- square amplitudes 
Usk = K3k /2Tr2 (or simply U for the isotropic 

case) . 

The atoms of SrTiO3 have no non -zero 
third cumulants (because of atomic site 

symmetry). The fifteen terms in the general 

fourth-cumulant tensor are reduced to two 

independent terms in the cases of strontium 
and titanium and to four independent terms in 

the case of the oxygen atoms. 
Three refinements, I, II and III, were 

carried out, the refined parameters in each 

case being: 
I) a scale factor, an isotropic extinction 

parameter and harmonic thermal para- 

meters (i.e. second cumulants) on all 

atoms; 

II) as for I) but in addition fourth -cumulant 
parameters on oxygen atoms only; 

III) as for I) but in addition fourth -cumulant 
parameters on all the atoms. 
The addition of fourth -cumulant para- 

meters on the oxygen atoms was found to result 

in a very highly significant improvement in the 

fit to the data. In the notation of Hamilton5, 
the R- factor ratio of the weighted residuals 
for models I and II is A. = 1.7 , The 99.99% 

significance point of the distribution of 2. for 
the relevant degrees of freedom is 1.1, so the 

improvement in fit with the addition of fourth - 
cumulant parameters on the oxygens is significant 

well beyond the 99.99% level, In contrast the 
addition of fourth- cumulant parameters on the 
strontium and titanium atoms (model III) was 
not significant even at the 50% level. 

TABLE 1. The thermal parameters for SrTiO3. 
The models, I and II, are described in the 

text. The U's are (harmonic) second cumulants 
(mean- square amplitudes) in A2; U11(0) is the 

amplitude in the Sr -0 plane, and U33(0) along 
the Ti -0 direction. The K's are (enharmonic) 

fourth cumulants on the oxygen in X ". Estimat- 
ed standard deviations on refined values are 
given in parentheses. 

Harmonic Anharmonic Calculated 
model (I) model (II) valuess 

U(Sr) 0.0052(2) 0.0054(1) 0.0062 

U(Ti) 0.0040(2) 0.0035(2) 0.0032 
011(0) 0.0101(2) 0.0125(3) 0.0102 

033(0) 0.0039(2) 0.0058(3) 0.0035 

K1111= K2222 

K3333 

K1122 
K2233= K3311 

0.0076(8) 
0.0057(7) 
0.0023(4) 
0.0023(2) 

The results for models I and II are shown 
in Table 1. Stirlings has fitted harmonic, but 
deformable, shell models to the phonon dispers- 
ion curves in SrTiO3. From these models he 
calculated the thermal parameters shown in 

Table 1. It is seen that there is good agree- 
ment between his calculations and our results. 
(It is not obvious that either of our refine- 
ments should produce the same results as 

Stirling's calculations since the agreement is 
dependent on the form and extent of the 

anharmonicity in SrTiO3.) 

4. OXYGEN PROBABILITY DISTRIBUTION FUNCTION 

The probability distribution function 
(p.d.f.) of an atom is the Fourier Transform 
of its Debye- Waller factor. If the cumulant 
terms higher than second -order are small, an 

approximation to the transform is given by the 

Edgeworth expansion" about the harmonic p.d.f. 
(as determined in refinement I). When this is 
done for the oxygen atoms, we find that the 

ripples from truncating the Edgeworth expans- 
ion at the fourth -order terms are so severe 
that a significant proportion of the resulting 
approximate p.d.f, is negative, And it is not 
possible to transform the Pebye- Waller factor 
(as approximated by the second and fourth 
cumulants) numerically since, with the cumulant 
parameters found in this case, it falls to only 
ti 0.5 (from unity at the origin of reciprocal 
space) before increasing indefinitely at large 

reciprocal lattice vectors (beyond the range of 
our present measurements). Some other method 
must then be found to describe either the Debye- 

Waller factor or the p.d.f. more realistically; 
and at present it is not possible to say more 
about the oxygen p.d.f. than that it is very 
significantly non -Gaussian and that the perturb- 
ation seems (see below) to be principally 
isotropic. 

5. DISCUSSION 

It is instructive to decompose the oxygen 
fourth cumulants into tensors of decreasing 
symmetry8 - isotropic, cubic and tetragonal. 
TABLE 2. Values for the oxygen and fluorine 
fourth cumulants when decomposed into symmetry 
elements (in X ") . 

Component 

Isotropic a' 

Cubic ac 

aT 
Tetragonal {T 

J 

0 in SrTiO 
3 

F in KMnF3 

0.0069(8) -0.0017(41) 

0.0000(6) 0.0023(34) 

0.0006(5) -0.0032(19) 

0.0000(2) 0.0035(15) 

The result of doing this is shown in Table 2 

column 1. It is seen that only the isotropic 
term defined ass 

aI 
- 

(2K1111 + K3333) 2(2K3311 K1122) 

5 

is significant. This is of interest in view of 
the work of Bruce and Cowley , which extends 
the harmonic model fitting of Stirlings to 

include enharmonic force constants. The free 

energy they obtain for SrTiO3 suggests that 
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there are two different competing superpositions 
of the three -fold degenerate soft mode in the 
cubic phase. (The parameter An in equation 14 
of that paper is small.) Thus, although SrTiO3 

has the same tetragonal structure as KMnF3 
below Tc (a rotation of the oxygen octahedra 
about a <100> axis), the crystal is 'unaware' 
of this above Tc and there is competition from 
the superposition which condenses in the rhombo- 
hedral LaA103 structure (a rotation of the 
oxygen octahedra about a .<111> axis), The 
latter distortion would correspond to a dynamic 
disorder in the cubic phase of the type shown 
in Figure IC. So, if d ¢ 0, the oxygens in 
SrTiO3 may show a mixture of the distributions 
illustrated in Figures 1B and 1C and thus be 
disordered over nine sites - a quasi- isotropic 
distribution, at least in the Sr----0 plane. 

It is also of interest to compare the 
SrTiO3 refinements with refinements of a pre - 
liminary experiment on KMnF3 rorfn+ -",Pd under 
similar conditions (but with fewer reflections 
and collected to less precision). The KMnF3 

TABLE 3. The thermal parameters for KMnF3. 
The models, I and II, are as for SrTiO3. The 
units and symbols are as explained in the 
legend to Table 1 ----with Sr, Ti and 0 
replaced, respectively, by K, Mn and F. 

Harmonic 
model (I) 

Anharmonic 
model (II) 

U(K) 0.0187(3) 0.0185(5) 

U(Mn) 0.0066(2) 0.0067(5) 

U11(F) 0.0344(2) 0.0340(4) 

U33(F) 0.0068(2) 0.0080(4) 

K1111= K2222 -0.0026(36) 
K3333 

0.0070(20) 

K1122 -0.0088(32) 

K2233= K3 311 0.0018(12) 

results are shown in Table 3. 

features are: 
The salient 

1) the significantly larger harmonic terms on 
all atoms (in comparison to SrTiO3); 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

2) a large anisotropy in the fluorine harmonic 
parameters (similar to oxygen) ; 

3) a lack of anharmonicity on the potassium and 
manganese atoms (similar to strontium and 
titanium), and significant anharmonicity on 
the fluorine; 

4) but, in contrast to the oxygen atoms in 
SrTiO3, the fluorine atoms in KMnF3 exhibit 
non -isotropic anharmonicity. On decomposing 
the fourth -cumulant tensors (see Table 2) 

only the tetragonal components° 

aT 
(K1111 K3333) 

and 
.T 

- 
(K 
3311-K 1122 

) 

3 j 3 

appear significant (at the accuracy to which 
the data are collected), This possibly 
suggests that KMnF3 is more dominated by the 
superposition which would generate disorder 
of the type shown in Figure 1B. (As far as 

the authors are aware, no anharmonic lattice - 
dynamic calculations have been made for 
KMnF3, so the parameter An (Bruce and Cowley, 
equation 14) is unknown.) 

In conclusion we reiterate and emphasise 
that we are not yet able to derive a p.d.f. for 
anharmonicity as large as that found on the 

oxygen of SrTiO3 (and the fluorine of KMnF3). 
So we cannot say whether our results, in their 
present form, suggest S # O. We are currently 
investigating a more realistic description of the 
p.d.f. and developing the techniques of 
incorporating this into least- squares refine- 
ment. These methods will be used op much high- 
er resolution (sin 0/1 limit _ 2.2 A -1) SrTIO3 
data recently collected at 115 K on the D9 four - 
circle diffractometer at the I.L.L. In the 

future we hope to compare the results with 
similar very high -resolution data from other 

'antiferroelectric' perovskites. 
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LATTICE DYNAMICAL PROPERTIES OF DISORDERED OR UNSTABLE LATTICES 

K. L. Ngai and T. L. Reinecke 
Naval Research Laboratory, Washington, D. C. 20375, USA 

A model based on local structural excitations can account for many unusual 

lattice properties of systems with disorder or lattice instability. Such 

systems include nonstoichiometric ferroelectrics, binary and ternary super- 

conductors, amorphous semiconductors, and ionic conductors. The effects of 

the interaction between phonons and local structural excitations on the 

lattice properties are obtained and discussed. 

1. INTRODUCTION 

Recently we have studied the lattice dynam- 
ical properties of several different classes of 

noncrystalline or disordered solids. These 
include (i) the insulating non -stoichiometric 
ferroelectrics in the tetragonal tungsten bronze 
Tl structure,' (e.g. Sr Ba Nb206 (SBN), and 
Ba4 +xNa2_2xNb10030), (iii binary and ternary 
superconductors with structural instabilities =2,3 

(iii) amorphous semiconductors and insulators,4 
and (iv 

-) 

Na I3-alumina, a typical superionic con- 
ductor. In these systems there are invariably 
some "anomalous" lattice dynamical and thermo- 
dynamical properties which cannot be understood 
on the basis of crystalline lattice dynamics. We 
have recently contributed to the fundamental 
understanding of various aspects of the anomalous 
behavior of these materials, by identifying a 

physical ingredient which is common to all of 
these "disordered" solids. 

The common characteristic of these systems 
is the existence of what can be called "local 
structural excitations "1 -5 which interact with 
the lattice and give rise to the "anomalous" 
lattice properties. The local structural excita- 

tions are known in the literature by several 
names including "local rearrangement modes, "4 
"disorder modes, "5 "Anderson Halperin Varma- 
Phillips tunneling centers, "6 "local structural 
excitations "2,3 and "configuration tunneling 

excitations. "' For example, in amorphous semi- 
conductors and insulators it was suggested6 that, 
due to the structural disorder, a group of atoms 
can be excited from one configuration to another 
separated by an energy barrier. These AHV- Phillips 
tunneling excitations 6 account for the observed 
linear specific heat7 and other lattice properties 
of such materials. Another possible source for 
such excitations in amorphous systems are the 
two -electron states8 in the energy gap. 

Consider the tetragonal tungsten bronze 
structure ferroelectrics1,9 such as SBN or the 
isostructural Ti superconducting tungsten bronze 
compound3 NaxW03. The network of distorted Nb06 
(or W03) octahedra are connected in such a way 
that there are pentagonal and square tunnels 
which are occupied randomly by the Ba and Sr ions 
of SBN, and Na ions of Na WO3. The structures of 
these materials are unusuál because there are 
other structural phases such as the T2 separated 
from Tl by a small energy. There exists a geomet- 

rical operation1910 by which a local group of octa- 

hedra form a local T2 defect in Tl structure. 
Hence, locally, each group of four corner -sharing 
octahedra have (at least) two free -energy states 
corresponding to the local Tl and T2 states; they 
are separated by a barrie due to the electronic 
bonding changes involved. We have called the 
excitations between these two local states "con- 
figurational tunneling excitations" (CTEs).1 

"High" Tc superconductors such as sputtered 
films, the A -15s, and binary and ternary com- 
pounds and alloys, are often characterized by the 
existence of structural instabilities, by the 
presence of more than one phase, by defects, and 
by structural disorder and nonstoichiometry. 
Again there is the possibility of the existence 
of more than one local structural state.2,3 
Excitations between the two local states then 
constitute the "local structural excitations" in 
these materials.2,3 

As a final example consider Naß- alumina, a 
typical fast ion conductor. It was first sug- 
gested by us5 that the Na+ ionic motion involves 
cooperative changes in position and energy of 

varying numbers of ions and atoms in clusters of 
different configurations; these cooperative 
effects in turn can give rise to excitations 
between two (or more) of the ionic cluster con- 
figurations with an accompanying spectrum of 
excitation energies which constitute the local 
structural excitations. We have deduced the 
existence of a smooth power low density of states 
of these modes from the low frequency (ti1011Hz) 

conductivity of Na-8 alumina.5 Such modes lead 
naturally to a linear specific heat, and indeed 
such a linear specific heat in 8-alumina was later 
observed experimentally.11 

Thus local structural excitations occur 
widely in disordered systems but are not present 
in crystalline solids. The effects of these exci- 
tations on the lattice dynamical properties are 
therefore of great interest. 

2. LATTICE DYNAMICAL EFFECTS ARISING FROM 
LOCAL STRUCTURAL EXCITATIONS 

The physical effects of "local structural 
excitations" (LSEs) arise mainly from the two 
lowest lying states. Thus for simplicity we con- 
sider only these two states separated by energy 
Aj spanned by the Pauli spin operators .aj. We 
consider a distribution of isolated LSEs interact- 
ing with the harmonic phonons by means of 



GLOSSARY OF COMMONLY USED SYMBOLS AND ABBREVIATIONS 

an Zj 
an nth -order F.I. parameter associated with an ion 

on m3m site symmetry 

b(X) the coherent neutron scattering length of ion X 

b 
n nmp 

an (nz +n)th -order F.I. parameter associated with an 

Z ion on 4 /mmm site symmetry 

di a fourth -order orthogonal- cumulant parameter 

EPR electron paramagnetic resonance 

Fcalc(Q) 
a calculated structure amplitude 

Fobs(Q) 
an observed structure amplitude 

F.I. Fourier -invariant 

I.L.L. Institut Laue -Langevin, Grenoble 

m.s.a. mean -square amplitude 

p.d.f. probability density function 

p.w.a. partial weights analysis 

Pi(r) the probability density of ion i at r 

Q a vector of the reciprocal lattice 

r the ionic displacement from the mean position 

R the residual 

Rw the weighted residual 



Sc 

T 

T 
c 

TDS 

the overall scaling factor 

the absolute temperature 

the cubic -- tetragonal phase transition temperature 

thermal diffuse scattering 

jk 
u the (j,k) element of the mean -square vibrational 

amplitude tensor 

V(r) the one -particle ionic potential at r 

wi the weight assigned to the ith Fobs(Q) 

Wi(Q) the temperature factor at Q 

a 

as 

E 

66 

X 

a(Fobs) 

the quantity used in the correction of the measured 

intensity for the effects due to TDS 

the significance level used in the ratio tests 

the local order parameter 

the 'factor of scepticism' 

the Bragg angle 

the incident wavelength 

the weighted sum of squares 

the standard deviation of Fobs 


