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Abstract 

The United Kingdom (UK) has an ambitious greenhouse gas (GHG) 

reduction target with legally binding commitment of 80% reduction by 2050 

relative to 1990 levels. The Committee on Climate Change (CCC) sets 

carbon budgets to meet this goal, and suggested that electricity generation 

should be below 50 g CO2e per kWh(e) by 2030. At the same time, the UK is 

renewing gas distribution pipeline systems to decrease leakages and 

increase efficiency of gas delivery, all while pursuing a domestic shale gas 

industry to meet continued demand as traditional gas production decreases. 

Competing in the same market, the United States (US) became a net 

exporter of natural gas at the end of 2017, largely due to increased 

production of shale gas, and holds contracts for distribution in the UK. It is 

clear that the UK is continuing reliance on natural gas in the near term, 

despite climate targets, and will need advanced mitigation strategies.  

One such strategy is using Enhanced Oil Recovery (EOR) with CO2 and 

coupling it with Carbon Capture and Storage (CCS). This strategy can create 

of a large commercial market for EOR offshore of the UK, and maintain a 

50% chance of keeping temperature rise below +2°C throughout the 21st 

century. The market has the potential to accelerate CO2 storage investment, 

and aid in meeting UK climate targets. A coupled CCS-EOR scenario might 

contribute to decarbonisation of UK grid electricity. Using UK data, 

progressive introduction from 2020 of 11 CCS-to-EOR gas-power plant 

projects is estimated to store 52 Mt CO2 yr-1 from 2030. These 11 projects 

also produce extra revenue of 1,100 MM bbls of taxable EOR-oil from 2020 

to 2049. The total average electricity grid factor in the UK reduces from 490 

to 90 – 142 kg CO2e MWh-1, with gas generating 132 TWh of clean electricity 

annually. This life cycle analysis (LCA) is unusual in linking oil production and 

combustion with CCS and gas fuelled electricity. With a full LCA, this 

aggressive CCS-EOR scenario provides a net carbon reduction, and 

progressively reduces net oil combustion emissions beyond 2040. 
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A second strategy could be needed if the projected domestic gas supply gap 

for power generation (without CCS) were to be met by UK shale gas with low 

fugitive emissions (0.08%). In this case an additional 20.4 Mt CO2e would 

need to be accommodated during carbon budget periods 3 – 6. However, a 

modest fugitive emissions rate (1%) for UK shale gas would increase global 

emissions compared to importing an equal quantity of Qatari liquefied natural 

gas, and risk exceeding UK carbon budgets. Additionally, natural gas 

electricity generation would emit 420 – 466 Mt CO2e (460 central estimate) 

during the same time period within the traded EU emissions cap.  

In addition to electricity generation, shale gas supply chain emissions for heat 

are assessed. This thesis assesses the greenhouse gas emissions intensity 

of US and UK shale gas as determined by source, distribution and end use 

for heat. It assesses the merit order of shale gas imported to the UK from the 

US versus domestic production and use of shale gas in the US or UK, 

considering distribution network renewals and the total emissions intensity of 

shale gas used. The import and use of US-produced shale gas liquefied 

natural gas (LNG) in the UK would increase GHG emissions relative to 

domestic UK shale gas production and use by 178 Mt CO2e, yet only 

increasing UK carbon budgets 3-6 by 14.2 Mt CO2e (19.2%). It is found that 

losses in the distribution phase represent a highly uncertain, but potentially 

important component of shale gas GHG intensity. This thesis considers the 

implications for GHG emissions measurement and reporting, climate change 

mitigation via municipal pipeline renewal, and national carbon budgets to 

2035.   

Most importantly, under the current production-based greenhouse gas 

accounting system, the UK is incentivized to import natural gas rather than 

produce it domestically throughout each of the cases studied. This thesis 

gives policy recommendations to mitigate the impact of perverse incentives in 

new GHG regulations.  
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Lay summary 

As part of a commitment to reduce impacts of climate change, the United 

Kingdom (UK) has an ambitious greenhouse gas (GHG) reduction target with 

legally binding commitment of 80% reduction by 2050 relative to 1990 levels. 

The Committee on Climate Change (CCC) sets carbon budgets to meet this 

goal, and suggested that electricity generation should be below 50 g CO2e 

per kWh(e) by 2030. At the same time, the UK is renewing gas distribution 

pipeline systems to decrease leakages. The UK is pursuing a domestic shale 

gas industry to meet continued demand as traditional gas production 

decreases. The United States (US) became a net exporter of natural gas at 

the end of 2017, largely due to increased production of shale gas, and is now 

a net exporter of natural gas.  

When combined with CCS, shale gas could support both the UK and US 

plans to meet reduced GHG electricity supply and maintain a 50% chance of 

keeping temperature rise below +2°C throughout the 21st century. However, 

there is a projected shortcoming in the UK’s fourth carbon budget of 7.5%. 

This shortfall, and future carbon budget gaps, may be increased if the UK 

pursues a domestic shale gas industry to offset projected decreases in 

traditional gas supply. Additionally, importing foreign gas may aid in meeting 

carbon budgets while increasing total atmospheric GHG emissions for the 

same quantity of traded gas. 

This thesis is structured as a collection of research papers discussing the 

GHG impacts of gas usage through different segments of the supply chain to 

end use. The first results chapter of the thesis considers the use of Enhanced 

Oil Recovery (EOR) as a funding mechanism for Carbon Capture and 

Storage (CCS) as a pathway to UK decarbonization targets. The second 

results chapter examines the implications to grid electricity targets for 

importing shale gas or producing it domestically. The third results chapter 

discusses the carbon budget implications of importing US shale liquified 

natural gas for used in the residential sector compared to the same quantity 

of UK shale gas. This thesis considers the implications for GHG emissions 
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measurement and reporting, climate change mitigation via municipal pipeline 

renewal, and national carbon budgets to 2035.   

Most importantly, under the current production-based greenhouse gas 

accounting system, the UK is incentivized to import natural gas rather than 

produce it domestically throughout each of the cases studied. Finally the 

thesis examines the carbon price and policy implications, of these pathways 

and suggest areas for policy changes. 
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Chapter 1 Introduction 

1.1 Context  

The introduction and growth of shale gas production in the US has increased 

over tenfold since 2007 (See Figure 1-1). The US energy market has 

decoupled natural gas prices from oil, and created a shift from coal to gas 

electricity generation.  As a result, the US has significantly reduced US GHG 

emissions to meet US Kyoto Protocol targets, which were never ratified by 

the US (EIA, 2012). 

 

Figure 1-1 - US Shale Gas Production 2000 - 2018 in million cubic meters per day. Data 
adapted from US Energy Information Agency (EIA, 2018a). 

In the US, hydraulic fracturing (“fracking”) for shale gas was not initially 

regulated by federal laws specific to the new process. Instead, it was 

regulated under laws for traditional natural gas drilling, and drilling approved 

by individual state legislatures (Rahm, 2011). These factors highlight the 

need for clear regulation and measurement of shale gas developments to 

compare against a baseline of emissions.  
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In the first paper on fugitive methane from shale gas, Howarth et al. (2011) 

mention that the sampling methods used for the US GHG inventory were 

shown to be from flawed methods (Harrison et al., 1996; Kirchgessner et al., 

1997), due to selective and voluntary participation from industry partners 

rather than random sampling. Howarth et al. (2011) claim the Environmental 

Protection Agency’s (EPA)  baseline GHG emissions are therefore invalid. 

The paper called into question the ability for shale gas to reduce GHG 

emissions in the US, and set a break-even point of 2.4-3.2% of fugitive 

methane (CH4) being the “break-even” point for gas being equal to coal for 

lifecycle CO2e per MWh(e) of delivered electricity (Howarth et al., 2011; 

Howarth, 2014).   

In the UK, electrical supply was roughly 500 kg CO2e per MWh(e) of delivered 

electricity in 2013, including gas, coal, renewables (DECC, 2014a).  The 

Committee on Climate Change (CCC) (2014) recommended reducing the 

electrical supply to 50 kg CO2e per MWh(e) by 2030. When coal plants are 

removed from a national power inventory there is a reduction in the CO2 

intensity of power generation, because coal plants emit the most CO2 of 

conventional power supply. In Figure 1-2 below, it is assumed that UK coal 

plants generate 1000 kg CO2 per MWh(e) and gas plants generate 500 kg 

CO2 per MWh(e). Removing coal plants and increasing renewable generation 

will gradually reduce the portfolio average towards the CCC (2014) 

recommended goal. If a larger quantity of coal is rapidly retired or removed 

from the portfolio, there will be an immediate reduction in emissions (Figure 

1-2, point A). If this retired coal is replaced by new gas plants, it is assumed, 

in this simplified illustration, that the new gas plants will be used at least 20 

years. The CO2 emissions savings that was experienced by removing coal 

would eventually turn into a penalty (at point B) and extend the progress on 

reaching GHG reduction goals to point C. 
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Figure 1-2 – Simplified fuel switching schematic and future carbon lock-in for UK 
power. 

Regardless of these issues, the UK is moving forward with a shale gas 

agenda. There are six shale gas basins being explored in the UK for 

characterisation (Andrews, 2013)(See Figure 1-3). This thesis will aid in the 

understanding of the financial incentives, proper regulation, best practices, 

and climate forcing implications of a UK shale gas industry. It will look to 

discuss downrange of factors of climate impacts of the US shale gas boom, 

and model the GHG impacts of this boom in the UK. The thesis will examine 

UK shale gas development under the constraints of UK GHG reduction goals.  

The project will evaluate and discuss whether carbon capture and storage 

(CCS) and/or enhanced oil recovery (EOR) can lessen the climate impacts of 

shale gas while ensuring a secure electricity supply. 
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Figure 1-3 – UK shale gas basins identified by BGS in Andrews (2013). The UK may 
have upwards of 3.6 Tm3 of shale gas across 6 shale basins, enough to supply energy 
at the current rate for over a generation. 

1.1.1 Global Warming Potential and time horizons 

An important consideration when calculating GHG inventories and the impact 

of methane is the Global Warming Potential of methane. The Global 

Warming Potential (GWP) is an index of the total energy added to the climate 

system by a gas relative to the same weight of that added by CO2. The GWP 

is the default metric for converting and transferring values of GHGs on 20, 

100, and 500-year time scales consistent with Houghton et al. (1990). Until 

2006, national GHG inventories have reported CH4 to have a GWP value of 

21 on a 100-year time horizon, consistent with IPCC Second Assessment 

Report (1996). UNFCCC GHG reporting protocol was updated in 2006, but 

the same GWP value of 21 was used for weighted values of CH4 to maintain 

consistency across previous reports and flexibility mechanisms (US EPA, 
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2014; Myhre et al., 2013). In 2015 GHG inventory reports, values for CH4 

were updated to be consistent with the IPCC Fourth Assessment Report 

(2007) value of 25 on a 100-year scale. It should be noted that there is no 

scientific basis for selecting a 100-year scale for GWPs in international 

reporting and flexibility mechanisms (Fuglestvedt et al., 2003; Shine, 2009). 

The IPCC Fifth Assessment Report (AR5) updates the GWP for CH4 to be 28 

on a 100-year scale. The report includes indirect effects of CH4 oxidation in 

the atmosphere (Boucher et al., 2009), which were not included in previous 

reports. Shindell et al. (2009) estimate that CH4 has a substantial climate 

effect because of changes in the rate of oxidation of SO2 to sulphate 

aerosols. When considering climate-carbon feedbacks, the 100-year GWP is 

increased by 20% to 34 due to a warming-induced release of CO2 in the land 

biosphere and ocean (Gillett and Matthews, 2010). One notable shale gas 

study (Howarth et al., 2011) uses the 20-year GWP, because of the stated 

need for urgent action on mitigating the negative effects of climate change. 

These figures indicate a continuously evolving understanding of the effects of 

CH4 on climate change, which are slow to be incorporated into carbon 

markets.  

1.1.2 Fugitive methane emissions from shale gas in the US  

In late 2010, the EPA (2010) concluded that fugitive emissions of methane 

from unconventional gas production may far exceed those of conventional 

gas. Furthermore, Howarth et al. (2011) stated that lifetime GHG emissions 

from shale gas wells may exceed the emissions from coal if fugitive 

emissions rates are greater than 2-3% of lifetime production. Extraction of 

shale gas has additional processes which are not used in traditional gas 

drilling. The hydraulic fracturing process involves large quantities of water 

and chemical lubricants (EPA, 2010), which aid in breaking shale rock layers, 

and releasing previously entrapped gas. As a result, the shale well is under 

greater pressure than a traditional gas well and incurs “flowback” during the 

well completion process, releasing pressure and gas / chemical mixtures. 

Based on the release of the flowback emissions, Howarth et al. (2011) 
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concluded that the total life-cycle fugitive emissions of shale gas wells are 3.6 

– 7.9% of total production compared with 1.7 – 6.0% of conventional wells 

due to fugitive emission during extraction and processing (see Table 1-1). 

Table 1-1 – Fugitive methane emissions by production process phase. Fugitive 
methane emissions associated with development of natural gas from conventional 
wells and from shale formations (expressed as the percentage of methane produced 
over the lifecycle of a well) (Howarth et al., 2011). 

Process Phase Conventional Gas Shale Gas 

Emissions during well completion 0.01% 1.9% 

Routine venting and equipment leaks at well 
site 

0.3 to 1.9% 0.3 to 1.9% 

Emissions during liquid unloading 0 to 0.26% 0 to 0.26% 

Emissions during gas processing 0 to 0.19% 0 to 0.19% 

Emissions during transport, storage, and 
distribution 

1.4 to 3.6% 1.4 to 3.6% 

Total Emissions 1.7 to 6.0% 3.6 to 7.9% 

 

Abrahams et al. (2015) indicate that the leakage rate is the most impactful 

figure on the upstream emissions in shale gas usage. However, the 

maximum leakage rate is that study is only 4% based on Heath et al. (2014) 

and Weber and Clavin (2012). There is discussion in the literature that 

fugitive emission rates have systemically reduced in the US (Schwietzke et 

al., 2016) since the beginning of the shale boom. However, there have been 

observations of leakage rates of 12% (Howarth, 2015; Schneising et al., 

2014), and an overall increase in CH4 emissions from gas production in US 

inventory data (EPA, 2017). Schneising et al. (2014) estimate 9.5% leakage 

rates at well-completion and an additional 2.5% from upstream distribution 

leakages based on satellite observations. 

Heath et al. (2014) harmonized LCA estimates for shale gas and 

conventional gas power according to leakage rates at the time, and cite an 
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emissions of intensity for upstream emissions of 21.3 g CO2e MJ-1 HHV (17.6 

– 24.8, 90% CI).1 

In 2012, the IEA outlined “golden rules” (IEA, 2012) to be adopted to 

profitable reduce fugitive methane emissions in the shale gas industry. The 

most impactful is the usage of reduced emissions completions (RECs) or 

“green completions” which reduce flowback emissions and capture more 

commercial product. RECs have been compulsory in the US since 2015, and 

can reduce emissions from well completions by 75 – 99% (Oil and Natural 

Gas Sector: New Source Performance Standards, National Emission 

Standards for Hazardous Air Pollutants, and Control Techniques Guidelines). 

Balcombe et al. (2017) surveyed the shale gas literature after the RECs rule 

change. They found that natural gas supply chain combined CO2 and CH4 

emissions ranged from 3.6 to 42.4 g CO2e MJ-1 HHV with a central estimate 

of 10.5. This is a significant decrease from previous findings by Heath et al. 

(2014). However, Balcombe et al. also found six estimates of fugitive 

emissions from shale gas production above 100 g CO2e MJ-1 HHV (232, 285, 

304, 618, 1910, 5250), illustrating a wide spread of fugitive emissions 

observations. 

Following, the Howarth et al. (2011) paper, many studies have been carried 

out that have found underreporting of methane leakages, and characterize 

this spread of emissions rates. The studies follow two methodologies: 

“bottom-up” and “top-down” studies. Bottom-up studies are performed with 

on-the-ground measurements as close to a point source as possible. These 

point sources could be well pads, storage facilities, or pipelines. However, 

this sampling method could miss large single point sources of emissions. 

                                            
1 Note that Heath et al. (2014 and Abrahams et al. (2014) are based on methodology of 
Weber and Clavin (2012a) who cite guidance from EIA (2011) which recommends reporting 
higher heating value (HHV) rather than net or lower heaving value (LHV). The HHV is 
conventionally used in the energy accounting and conversion from chemical potential energy 
to delivered energy (e.g. electricity). The HHV exceed LHV by the latent heat of vaporization 
of water. Unless otherwise noted, it is assumed that HHV is used throughout this thesis.   
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Top-down studies use tower, aerial, or satellite sensing to determine the total 

CH4 fluxes in a studied area. This method can gather readings for large area, 

but may also miss individual point sources of methane outside a given study 

area. 

1.1.1.1 Top-down leakage rates 

Using aerial sensors aboard a single aircraft above the Marcellus Shale in 

SW Pennsylvania, Caulton et al. (2014) measured a regional methane flux of 

2.0-14g CH4 s-1 km-2 over a ~2,800-km2 area. This measurement did not 

differ statistically from bottom-up calculations of 2.3-4.6 g CH4 s-1 km-2. 

However, large emissions (34 g CH4 / per well) were detected from seven 

wells in the drilling phase of operations. This result is 2-3 orders of magnitude 

greater than the US EPA accounting for this phase of operations. These 7 

wells represented ~1% of wells, and 4-30% of regional methane flux. This 

observation highlights the great uncertainty of methane leakage throughout 

the production chain. It is important to note that these figures were observed 

before the hydraulic fracturing took place, but after the drilling phase. 

Other aerial studies have concluded similar under-reporting in the EPA 

baseline. Karion et al. (2013) used a mass balancing model approach with an 

aerial sensor over a natural gas field in Uintah County, Utah. They detected 

CH4 emissions of 6.2 - 11.7% (1σ) of average hourly natural gas production. 

Kort et al. (2014) quantified CH4 emissions over established oil and gas fields 

in the Four Corners region of the US using space-based remote sensing. 

They observed fugitive CH4 totaling nearly 10% of EPA accounting estimates 

for all of the US. Miller et al. (2013) surveyed results from aerial and tower-

based sensors around the US to adjust CH4 inventories for ruminants and 

fossil fuels. They found that CH4 from fossil fuels could be 4.9 ± 2.6 times 

larger than in the EPA database. They conclude that both animal husbandry 

and fossil fuel industries have larger GHG impacts than reporting in the EPA 

inventories. 
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1.1.1.2 Bottom-up leakage rates 

Using bottom up sampling methods, Kang et al. (2014) measured direct 

methane leakage from retired oil and gas wells in Western Pennsylvania.  

The study concluded that the measured leaks from 19 sampled measured 

wells could be scaled to represent 4-7% of anthropogenic methane 

emissions in Pennsylvania. Furthermore, the EPA does not account for these 

methane leaks in current GHG inventories. The study area was expanded to 

an additional 88 wells from 163 measurements, and increase the estimates 

to 5-8% of annual anthropogenic methane emissions in Pennsylvania (Kang 

et al., 2016). The studies underscore the need for a reworked GHG baseline 

emissions study from the EPA in the US. In any further oil and gas 

development, it is imperative that old wells are properly surveyed and 

monitored, as the failure of concrete and steel casing over time can provide a 

pathway for subsurface migrating methane to be released (Ingraffea et al., 

2014). This also demonstrates the need for monitoring wells after production 

has ceased. 

1.1.1.3 Downstream distribution leakages 

Phillips et al. (2013) used a cavity-ring-down mobile CH4 analyser across 785 

road miles in Boston to assess gas infrastructure leaks. They found 3356 

CH4 leaks exceeding 15 times the global background level of CH4. Jackson 

et al. (2014) used the same sampling method as the Philips et al. in 

Washington DC and found CH4 concentrations to be 45 times higher than 

background concentrations in the atmosphere. Both studies found a δ13 CH4 

signature consistent with fossil fuel CH4, rather than biogenic sources.  

Boothroyd et al. (2018) carried out a similar analysis in the UK and found 

leakage rates along the National Transmissions System (NTS) to be of 

similar magnitude and density to lower end of US distribution leaks 

(Chamberlain et al., 2016; Gallagher et al., 2015). However, Boothroyd et al. 

note that local distribution leak rates remain unclear. 
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While these leakages are not directly related to shale gas extraction, the 

expansion of gas development in the US and UK would need to address 

infrastructure leaks to lessen impacts on climate. 

1.1.1.4 Industry studies 

A number of studies have been performed by industry operators in 

conjunction with partnership with industry lobbying groups such as America’s 

Natural Gas Alliance (ANGA) and The American Petroleum Institute (API). 

Shires and Lev-On (2012) surveyed 91,000 wells operated by over 20 

companies and found methane emissions to be 50% lower than EPA (2010) 

estimates, but only a small percentage were shale wells. The study claims 

Howarth et al. (2011) overestimate industry-wide leakage rates due to a 

small sample size and isolated incidents during well completion and liquid 

unloading. Specifically, the venting of methane into the atmosphere during 

liquid unloading is 86% lower than EPA estimates; 72% lower during well re-

fracturing, and that re-fracturing rates are significantly lower than estimates. 

The survey did not randomly sample, and used selected industry wells for 

measurement. 

Another industry study by Allen et al. (2013) measured methane emissions 

from 190 wells in Texas and found leakages between 0.01 Mg to 17 Mg per 

event. This was significantly lower than average of 81 Mg per event in the 

EPA inventory (2017), and corresponds to a fugitive emissions rate 0.42% of 

lifetime production. While these studies were not performed under best 

scientific practices, they do indicate that industry operators are capable of 

producing shale gas with minimal fugitive emissions if monitored, and best 

practices are enforced. Furthermore, Allen et al. (2013) states it is unlikely 

and uneconomical that 8% (Howarth et al. (2011) top-end leakage rate) of 

recovered shale gas is brought to the surface and not captured for industry 

use. 

1.1.3 Shale gas growth 

In 2011, the IEA predicted a 50% growth of natural gas by 2035, accounting 

for more than 25% of global energy demand (IEA, 2011). The IEA based 
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these predictions on four main points: (1) increased gas usage in China, (2) 

slower growth of nuclear power development, (3) increased usage of natural 

gas in the transportation sector, and (4) low-cost shale gas.  

The IEA (2012) outlines and calls for the adoption of twenty-two rules by 

governments and industry to minimize the environmental impacts of shale 

gas. One rule specifically pertinent to fugitive methane emissions requires 

measurement and disclosure of all air emissions from the supply chain.  

The IEA predicts that the adoption of the best practices could increase the 

overall financial outlay of a shale gas well by 7% (IEA, 2012). However, 

operational efficiency savings at larger well fields could reduce these costs, 

and profitably reduce up to 80% of methane emissions (Harvey, 2012), 

indicating the possible competitiveness of shale gas on a global market, 

when managing fugitive CH4. 

1.1.4 UK resource estimates and recovery rates 

Recent global shale gas and oil estimates have identified 1,013 Tm3 of shale 

gas in place with 220 Tm3 technically recoverable. In the UK, Kuuskraa et al. 

(2013) updated their 2011 global shale estimates and identified and 0.7 

Billion barrels of shale oil and 736 Bm3 of shale gas which are technically 

recoverable (see Figure 1-3). These estimates are part of a larger 3.8 Tm3 of 

shale gas in-place and 17 billion barrels of shale oil in place. Stamford and 

Azapagic (2014) increased these figures to 3.6 Tm3 of recoverable shale gas, 

based on industry samplings of 4 of the 6 shale basins in the UK. 

Undoubtedly, resource estimates will continue to climb in the UK, as 

operators are making the case for profitable shale gas on shore. 

Kuuskraa et al. (2013, 2011) have indicated that roughly 20% of US shale 

gas in place is technically recoverable. However, due to less favourable 

geology, the estimate that a recovery rate for the UK would be roughly half of 

the US (Bickle et al., 2012). 
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Life cycle emissions of MacKay and Stone (2013) estimate that extracting 

shale gas for electricity generation in the UK will be in line with the life-cycle 

emission of on-shore gas and imported LNG, due to the resource being 

largely onshore. In Scotland, methane emissions could further increase if 

development of well pads occurs on peat; but these emissions are avoided 

with best practices (Bond et al. 2014). Stamford and Azapagic (2014) 

estimate that UK shale gas could emit 412 – 1102 kg CO2e per MWh(e)
2 with 

a central estimate of 461 kg CO2e. This central figure is comparable to 

current North Sea gas power of 401 kg CO2e per MWh(e).   

Westaway et al. (2015a) refute the findings of Stamford and Azapagic (2014) 

that shale gas would be as dirty as coal in the worst case scenario on the 

basis of kg CO2e per MJ. Westaway et al. incorrectly cite MacKay and Stone 

(2013) figures on carbon intensity of electricity delivered rather than potential 

chemical energy before combustion. Stamford & Azapagic (2015) note this 

mistake in their response. This discussion highlights an area of confusion in 

the literature on the use SI units of chemical energy content and GWP of 

delivered electricity. Chemical energy (QT in g CO2e MJ-1) is the convention 

in engineering papers; GWP (QE in g CO2e kWh-1) is the convention in 

climate change-related papers. The choice of unit either embeds or ignores 

the efficiency and rate of converting chemical energy to electrical energy 

through combustion, adding further discussion of the merits of shale gas for 

achieving climate change targets. 

1.1.5 Electricity Market Reform, Energy Performance 
Standard, and perverse incentives 

The UK Energy Act 2013 established an ‘Emissions Performance Standard’ 

of 450 g CO2e per kWh(e) (Energy Act 2013, p.Part 2, Chapter 8) on new 

baseload power plants. In essence, new baseload power plants would need 

to be fitted with CCS technology to continue using coal. Old coal plants were 

exempted from this performance standard through 2015. 

                                            
2 Megawatt hours electrical energy. 
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When considering the life cycle assessment (LCA) results (MacKay and 

Stone, 2013; Bond et al., 2014), shale gas appears to be an excellent new 

source of baseload power in accordance with The Energy Act (Energy Act 

2013). In the time between passing The UK Energy Act 2013 and the 

expiration of the coal exemption two years later, the UK continued coal 

imports (see Figure 1-4), largely displaced from the US after shale gas made 

the coal unprofitable to use there. It is now the ambition of the UK energy 

sector to have shale gas displace some of these coal imports for domestic 

supply (BEIS, 2018b; Cuadrilla Resources, 2016). 

Prior to the expiration of the coal exemption, there was a perverse incentive 

for UK coal operators to continue importing cheap coal from the US. US coal 

had become less economical in the US, due to the rise of shale gas. And 

although the US was claiming decreases in domestic GHG emissions 

because of shale gas, coal was still being extracted, but exported in greater 

quantities. As shown in Figure 1-4 below, coal was already in decline in the 

UK prior to the 2013 rule. However, the well-intentioned rule, gave a perverse 

incentive to use as much coal as possible during the window prior to 

expiration of the coal exemption. Although difficult to predict, future carbon-

reduction rules should attempt to mitigate against perverse incentives and 

reduce program design failures which allow for GHG exemptions. 
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Figure 1-4 - UK Coal Imports, Production, and Consumption, annual data. UK Coal 
imports dropped from Q4 2008 until a steep climb in 2010 until the end of the 
exemption in The Energy Act 2013 (Energy Act 2013). Note that Coal exports are 
inconsequential compared to electricity generation, and imports/production. Data 
adapted from BEIS (2018a). 

1.1.6 Carbon reduction goals 

The UK has an ambitious GHG reduction target with legally binding 

commitment of 80% reduction by 2050 relative to 1990 levels. The 

Committee on Climate Change (CCC) sets carbon budgets to meet this goal, 

and suggest that electricity generation should be below 50 g CO2e per kWh(e) 

by 2030 (CCC, 2014). The US has no such legally binding target. 

Through “The Clean Power Plan,” President Obama proposed a 30% 

reduction in power plant emissions from 2005 levels by 2030, and a further 

40-45% reduction on methane emissions from 2012 levels by 2025 (White 

House, 2013, 2015; Carbon Pollution Emission Guidelines for Existing 

Stationary Sources: Electric Utility Generating Units; Final Rule). President 

Obama also proposed an increase in natural gas capacity to 70%. The US 

-

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

Th
o

u
sa

n
d

 T
o

n
n

es

UK Coal Consumption

Total coal consumption Imports Power Stations

Blast Furnaces Indigineous Production



 Compatibility of fossil fuel energy system in the UK for climate targets. 

Chapter 1  15 

GHG baseline from 2005 is 562 g CO2e per kWh(e), and a 30% reduction 

would require electricity below 394 g CO2e per kWh(e) (US EPA, 2014).  It 

should be noted that these emissions figures do not include emissions 

associated with extraction or transportation of fossil fuels. If these emissions 

were included, US grid GHG emission factors would be increased to 655 g 

CO2e per kWh(e) (Jaramillo et al., 2009). 

The Trump Administration cancelled the “Clean Power Plan” prior to taking 

effect and recently proposed that individual states set their own carbon 

targets (US EPA, 2018) through the “Affordable Clean Energy Rule”. Under 

the proposed rule, states would set their own GHG reduction targets, and 

seek EPA approval. This process would theoretically allow for new coal 

plants to be built under a state-defined GHG target. The plan could slow 

down the reduction of coal plant usage for power, but not eliminate the 

growth of gas-fired power due to the favourable economics of gas compared 

to coal. The regulation proposal creates a loophole which allows for states to 

continue using coal power plants while relaxing regulations placed on coal 

plants (Rodriguez, 2018). It should be noted that this rule is not yet law, and 

the Clean Power Plan was not ratified either. The delays in regulating 

emissions in the US place emphasis on the economics of the energy market 

rather than the regulations. 

US and UK plans indicated an increased use of natural gas as baseload 

power for domestic supply to meet GHG reduction goals. When combined 

with CCS, shale gas could support both the UK and US plans to meet 

reduced GHG electricity supply and maintain a 50% chance of keeping 

temperature rise below +2°C throughout the 21st century. However, the 

cumulative global carbon emissions between 2011 and 2050 must be limited 

to around 1,100 Gt CO2e, while current global fossil fuel reserves represent 

three times this quantity of embodied CO2e (McGlade et al., 2013; McGlade 

and Ekins, 2015; Ekins et al., 2013).  
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1.1.7 Science-based targets 

One possible mechanism for to maintain the carbon budget and Paris 

Agreement ambition of staying below +2°C throughout the 21st century is the 

Science-Based Targets Initiative (SBTi). Through partnership with the CDP, 

UN Global Compact, World Resources Initiative (WRI), and World Wildlife 

Fund (WWF), companies declare actions and policies for decarbonization 

targets which evolve with the growing understanding of remaining carbon 

budgets. The SBTi encourages both absolute and intensity targets for 

companies, and purchasing of renewable energy under the GHG Protocol 

guidance (WRI, 2004). To be verified by the SBTi, targets must represent a 

2.1% year-on-year decline in total emissions, in line with the RCP 2.6 

pathway in IPCC AR5 (IPCC, 2013a), which is aligned with the +2°C budget. 

The SBTi does not supersede national carbon budgets, rather seeks to be 

geographically ambivalent, and provide global guidance for corporate actions 

aligned with targets of the Paris Agreement. The initiative highlights global 

leaders through the CDP reporting mechanism, however, it is entirely 

voluntary.  

It is not clear how the SBTi will adjust the GHG budget as the understanding 

of the GWP of GHGs evolves. As discussed above, the GWP for CH4 has 

increased from 21 to 34, however carbon accounting and carbon markets 

accept values from AR4 and AR5. It is therefore possible, that ambitions and 

budgets could experience price shocks as GWPs are further characterized 

(see above), and the science-based target (SBTs) move accordingly.  

1.1.8 Accounting and emissions transfers 

Under current GHG accounting rules, emissions are attributed to the country 

where GHGs are emitted or produced, “production-based” (PB) accounting. 

For example, if shale gas extraction emissions occur in the US, but the final 

combustion of shale gas occurs in the UK, the extraction emissions are 

counted in the US and the combustion in the UK. An alternative method 

attributes all of the embodied emissions in a good to count against the 
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budget where the final good is consumed, or “consumption-based” (CB) 

accounting. In the prior example, all emissions associated with the 

production, transportation and combustion emissions would count towards 

UK GHG budgets and targets. The PB system allows for countries to 

transfer, or offshore, the emissions associate with their goods. In the case of 

this thesis, the UK could potentially export the GHG responsibility of the 

extraction of natural gas to another country while consuming the same 

quantity of gas. If the imported gas displaces gas which would have 

otherwise been produced in the UK, the UK would see a net savings in GHG 

budgets, while atmospheric emissions may not see the same savings. 

Peters et al. (2011) describe the above perverse incentive as “emissions 

transfers,” and they have grown from 4.3 Gt CO2 in 1990 to 7.8 Gt CO2 in 

2008, representing an increase from 20% to 26% of global GHG emissions. 

This rise in CB emissions has occurred while developed countries (Kyoto 

Protocol Annex B countries) have stabilized their emissions and developing 

countries (Kyoto Protocol non-Annex B countries) have seen their emissions 

double (Peters et al., 2011; Fischer, 2011). 

This perverse incentive could be decreased if countries counted their CB 

emissions and/or were signatories to the SBTi. However, the SBTi is 

currently being developed for corporate targets. Furthermore the CB 

emissions initiative would require new accounting protocols, and would 

necessitate rebalancing international carbon targets and budgets.  
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1.2 Thesis structure 

This thesis is structured as a collection of research papers discussing the 

GHG impacts of gas usage through different segments of the supply chain to 

end use (See Figure 1-5 & Figure 1-6). The objectives of this work are to use 

shale gas extraction and trade as a series of case studies for examining 

GHG emissions through the natural gas supply chain, and point out gaps in 

the carbon accounting budgets for the UK under different gas production 

scenarios. Two papers, presented in Chapters 2 and 3, from this work have 

been published in peer reviewed journals. A third paper, presented in 

Chapter 4, is currently submitted and under review. 

Chapter 2 outlines and discusses the potential for enhanced oil recovery to 

aid in the funding for carbon capture and storage with upstream gas sources 

from the UK and abroad.  

 

Figure 1-5 – Simplified shale gas schematic showing distinct phases in extraction, 
transportation, and usage. Chapter 2 discusses the usage of gas for electricity aided 
by CCS and EOR (red area). Chapter 3 discuss multiple sources of upstream gas, 
including shale gas in the UK power sector (green area). Figure adapted from 
(Stamford and Azapagic, 2014) 

Chapter 3 expands the “gate” upstream to include UK shale gas for domestic 

power supply, and the usage of imported US shale gas for electricity 

production compared to the business as usual case. This chapter uses the 
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well-characterized UK projections for gas demand as a basis for calculating 

emissions compared to UK climate targets and carbon budgets (BEIS, 

2017e, 2016a). 

Chapter 4 discusses the impact of importing US shale gas as LNG to the UK 

or extracting UK shale gas for domestic heat production in light of initiatives 

to improve pipeline distribution networks in the US and UK. 

Chapter 5 summarizes the results of this work and makes recommendations 

for policy makers and areas of future study.  

 

Figure 1-6 - Simplified shale gas schematic showing distinct phases in extraction, 
transportation, and usage. Chapter 4 discusses the usage of shale gas from US and 
UK in the distribution phases for domestic heat (red area). Figure adapted from 
(Stamford and Azapagic, 2014) 
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Chapter 2 UK grid electricity carbon intensity 
can be reduced by enhanced oil 
recovery with CO2 sequestration 

Summary 

Enhanced Oil Recovery (EOR) using CO2 coupled with Carbon Capture and 

Storage (CCS) can potentially accelerate CO2 storage investment through 

creation of a large commercial market for EOR. This chapter assesses how 

coupled a CCS-EOR scenario might contribute to decarbonization of UK grid 

electricity. Progressive introduction of 11 CCS-to-EOR gas-power plant 

projects from 2020 is estimated to store 52 Mt CO2 yr−1 from 2030. These 11 

projects produce extra revenue of 1100 MM bbls of taxable EOR oil from 

2020 to 2049. After each 20-year EOR project ceases, its infrastructure is 

paid for, and has many years of life. UK climate change targets would 

necessitate continued CO2 storage at low cost. Considering all greenhouse 

gas emissions – from power generation, CCS-EOR operations, and oil 

production and combustion – this project suite emits an estimated 940–1068 

Mt CO2e from 2020 to 2049, while storing 1358 Mt CO2. The total average 

electricity grid factor in the UK reduces to 90–142 kg CO2e MWh−1, with gas 

generating 132 TWh yr-1. This life-cycle analysis (LCA) is unusual in linking 

oil production and combustion with CCS and gas-fueled electricity, yet 

provides a net carbon reduction, and progressively reduces net oil 

combustion emissions beyond 2040. 

Work presented in this chapter is based on the manuscript published as: 

Turk, J. K., Reay, D. S., and Haszeldine R. S., UK grid electricity carbon 

intensity can be reduced by enhanced oil recovery with CO2 sequestration, 

Carbon Management, vol. 9, pp 115-126, 2018, 

https://doi.org/10.1080/17583004.2018.1435959.  
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2.1 Introduction 

The UK is legally bound to reduce greenhouse gas (GHG) emissions by 80% 

of 1990 levels by 2050. Within this goal, the Committee on Climate Change 

(CCC) recommends the GHG intensity of electricity generation fall to 50-100 

kg CO2 per megawatt hour (MWh) by 2030 (CCC, 2015a, 2010). Total UK 

electricity generation (including pumped storage) fell by 5.6% from 359 

terawatt-hours (TWh) in 2013 to 339 in 2015; gas-fired generation increased 

from 96 TWh in 2013 to 100 TWh in 2015 representing 30% of total supply 

(DECC, 2015a; BEIS, 2016a). Coal-fired generation fell from 131 TWh in 

2013 to 76 TWh in 2015, and is projected to continue to decline rapidly 

through the next decade (DECC, 2014b, 2015b; BEIS, 2017e) due to 

Electricity Market Reform (Energy Act 2013) and The Industrial Emissions 

Directive (Directive 2010/75/EU of the European Parliament and of the 

Council of 24 November 2010 on industrial emissions (integrated pollution 

prevention and control)). However, according to Government projections 

published in 2017, the UK is projected to need 96 gigawatts (GW) of new 

peak electricity generation capacity by 2035 to replace coal-fired generation, 

support renewables intermittency, and meet decarbonisation goals. 

Unabated gas power is projected to deliver 35 TWh by 2035, up from 28 

TWh in the previous projections (BEIS, 2017e; DECC, 2015b). UK’s 

Department for Business, Energy & Industrial Strategy (BEIS) indicates that 

this 20% increase in unabated gas electricity delivery will come from gas 

infrastructure with 20% reduced capacity in their latest projections (BEIS, 

2017e; DECC, 2015b) for the years 2031-2035 compared to previous 

projections. This suggests that gas power will continue be used in very high 

load factors, being relied upon for peaking power, yet there will be less built 

capacity. This indicates a projected reliance on a high level of gas fossil fuels 

in power generation. 

GHG emissions from power generation are traded as part of a UK EU-ETS 

capped market, and do not affect the UK’s ability to meet its own carbon 

budgets. The continued use of fossil fuels by major power producers (MPPs), 

companies whose primary activity is electricity generation (DECC, 2012), 
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maintains a domestic demand for fossil fuels which can create consequential 

emissions in other non-traded sectors of the economy (e.g. fugitive CH4 

emissions from coal and gas extraction). Despite cuts in coal-fired capacity 

(Directive 2010/75/EU of the European Parliament and of the Council of 24 

November 2010 on industrial emissions (integrated pollution prevention and 

control); Energy Act 2013) and increased renewable capacity, BEIS indicates 

a gap in meeting Carbon Budgets 4 and 5 by 146 and 247 Mt CO2e 

respectively (BEIS, 2017e). The projections include a 27% increase in 

interconnection capacity by 2035, which delivers electricity that does not 

affect the UK carbon targets, and is ostensibly zero carbon for the UK. 

Uncertainty in reaching grid decarbonisation goals through UK electricity 

generation places increased reliance on buying electricity through 

interconnection from elsewhere in Europe, and carbon offsets through the EU 

Emissions Trading Scheme (EU ETS). With the UK’s place in the EU now in 

political negotiation, and hence EU-ETS will not be available in future, this 

chapter examines an independent multi-decadal plan to aid UK grid 

decarbonisation, and provide domestic oil production. 

Carbon Capture and Storage (CCS) use in conjunction with large point 

sources of CO2 emissions, such as power plants, is a key technology to 

support plans to meet UK decarbonisation goals (DECC, 2015b, 2014b), but 

investment and profitability issues have thus far limited CCS development in 

the UK (Scott et al., 2012; Carrington, 2015; BBC News, 2015; Oxburgh, 

2016). The UK’s Department of Environment and Climate Change (DECC) 

(2013b) concluded that electricity with CCS in the UK would cost between 

£64 – £128 MWh-1 while electricity with unabated gas costs between £63 – 

£109 MWh-1. Similarly, Rubin and Zhai (2012) reported the cost of CCS as 

$76 – 114 MWh-1 (mean $93) and unabated gas as $52 – 75 MWh-1 (mean 

$63). The latter study also estimated a carbon tax of $73 per t CO2 as being 

the breakeven point where CCS and unabated gas power generation reach 

equal cost. Welkenhuysen et al. (2017) probabilistically allocated Monte 

Carlo cycles to oil production uncertainty and selling price uncertainty and 

found that Enhanced Oil Recovery (EOR) in the North Sea has positive Net 
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Present Value with an oil price above €50 bbl-1. In the absence of a direct 

CCS subsidy or a high carbon price, EOR coupled with CCS has the 

potential to bridge this gap in costs between unabated gas and CCS 

(Haszeldine, 2016; Welkenhuysen et al., 2017).  

Here, this chapter examines the potential impact of such a transition to 

coupled EOR-CCS on grid intensity and greenhouse gas (GHG) emissions in 

the UK through to 2035 and beyond. This chapter assesses the size and 

number of EOR-supported CCS projects needed to satisfy projected CCS 

capacity projections by DECC (2015b), electricity decarbonisation targets 

(CCC, 2010, 2015a), and CO2 storage goals by Element Energy (Durusut et 

al., 2013). This chapter provides the unique perspective of extending LCA 

estimates of grid electricity and downstream interventions to reduce grid 

emissions in the UK via EOR-CCS. Previous EOR studies excluded 

emissions associated with venting and flaring recycled CO2 and CH4 

(Hertwich et al., 2008), or were too dissimilar in location and upstream fuel 

type (i.e. Canadian coal, Manuilova et al., 2014). Note that a modified 

amount of CCS electricity predicted in 2017 (BEIS, 2017e) for the UK is 

linked to the perception of CCS under current Government policies, it is not a 

target or pathway. In simple terms the amount of CCS electricity changed 

from 2016 (DECC, 2015b) to 2017 (BEIS, 2017e) has been replaced by a 

similar amount of “zero carbon” electricity imports, with no plan for delivery. 

In this analysis, this chapter offers scenarios for a cash-poor Government to 

obtain development of CCS, maintain electricity, keep high employment and 

efficient oil extraction from the UK offshore. 

2.2 Methodology 

In order to assess cradle-to-grave emissions of an EOR chain with natural 

gas combined cycle (NGCC) electricity, first the Life Cycle Analysis (LCA) of 

Stewart and Haszeldine (2015) is extended to include upstream phases (see 

Figure 2-1). Stewart and Haszeldine (2015) examined two EOR scenarios to 

assess GHG balances in a CO2 storage-focused system compared to an oil 

recovery-focused system. Here a storage-focused system is used and the 
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LCA scope extended upstream to include power capacity needs, coupled 

EOR-CCS development over the next 20 years, and further CO2 storage via 

CCS beyond 2040. Throughout the estimations, it is assumed that CO2 

stored through EOR would have otherwise been emitted through unabated 

gas power. This unabated gas pathway in the UK is implied by DECC’s 2015 

projections of development of new-built gas capacity, used intensively to 

deliver electricity from unabated gas through to 2035 (DECC, 2015b; BEIS, 

2017e). Stewart and Haszeldine (2015) focused on EOR emissions and 

present results in t CO2 emitted or stored per barrel of incremental oil 

produced. This chapter shifts the focus upstream to examine implications of 

the modelled interventions on grid electricity targets. The EOR literature is 

split between including (Jaramillo et al., 2009; Condor et al., 2010) or 

excluding (Faltinson and Gunter, 2011) oil emissions in estimates. This 

chapter incorporates the CCS and EOR emissions, along with imported and 

produced oil emissions during EOR because they are a direct result of EOR 

interventions, and encompass the net GHG emissions more fully. To make 

comparisons with the business as usual (BAU) unabated gas pathway in kg 

CO2e MWh-1, the modelled sums of all emissions are divided by the delivered 

grid electricity to give LCA estimates in kg CO2e MWh-1, units normally used 

for grid factors not LCAs. 

 

Figure 2-1 – In this chapter, the boundary of Stewart and Haszeldine (2015) is 
extended upstream to include fossil fuel and power plant emissions. Figure adapted 
from Stewart and Haszeldine (2015). 
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2.2.1 Natural gas supply and demand 

In 2015, the UK consumed 741 TWh of gas from domestic and imported 

sources (DECC, 2015b; BEIS, 2016a). The total gas supplied was 861 TWh, 

of which 47.7% was met by UK sources. Imported pipeline gas (34.7%) came 

from Norway, Belgium, and The Netherlands via interconnections (BEIS, 

2016b). An additional 152 TWh of liquefied natural gas (LNG) was supplied 

from Qatar (16.4%), Algeria (0.6%), Trinidad & Tobago (0.6%), and Nigeria 

(< 0.1%). UK net gas production was 410 TWh in 2015, (460 TWh total 

minus 50 TWh used by producers), and UK gas production is expected to fall 

by 5% yr-1 from 2020 until 2035, while demand is expected to remain steady 

(DECC, 2015b; BEIS, 2016b; OGA, 2017). 

To satisfy the predicted requirement for electricity generation capacity in 

2035 (DECC, 2015b) and CO2 storage required to meet grid electricity GHG 

targets (Durusut et al., 2013), this chapter therefore develops a scenario 

based around the build of 11 new gas-fuelled electricity power plants, each of 

1,930 MW capacity and producing 5.56 Mt CO2 yr-1 per plant (see below). 

Then, the grid emissions intensity of this portfolio of unabated gas plants is 

compared to the same portfolio fitted with CCS and coupled to EOR 

operations offshore (North Sea). Under this scenario, additional oil produced 

through the coupled EOR-CCS system would displace imported oil 

production and would use CO2 from each of the 11 power plants. 

For the purposes of estimating upstream GHG emissions it is also assumed 

that the gas power plants are supplied with gas from the UK National 

Transmission System (NTS). When gas arrives in the UK via interconnection 

or LNG terminal, it enters the NTS making the geographic origin for the 

customer unknown. The net gas flows between the UK and Belgium and The 

Netherlands have represented +/- 1% of total supply since 2010 (BEIS, 

2016b), and are therefore regarded as irrelevant for GHG estimation in this 

study. In the absence of nation-specific data, LNG imports from Nigeria and 

Trinidad & Tobago are assumed to have the same GHG emissions footprint 
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as LNG from Algeria. Finally, imported North Sea gas is assumed to have the 

same emissions footprint as UK domestic gas.  

To estimate UK gas supply, usage, and related GHG emissions to 2050 this 

chapter uses the projected gas demand from DECC (2015b), in the same 

geographic proportions (places of origin) as the current gas supply entering 

the NTS, as described above.  

2.2.2 CCS and future UK electricity supply 

The assumptions on UK electricity production and CCS roll-out are based on 

the DECC reference scenario (DECC, 2015b). Recent projections by BEIS 

(BEIS, 2017e) severely cut expected CCS capacity to just 963 MW in 2035, 

the final year of the projections. This modelled cut is in response to the UK 

Government’s withdrawal of £1 billion funding for CCS. These same BEIS 

projections also indicate a gap in Carbon Budgets 4 and 5, described above. 

The UK Government has since released a plan to invest up to £100 million in 

CCS development (BEIS, 2017d), which would still fall short of reaching mid-

century carbon reduction goals (Hickman et al., 2017). Considering these 

recent funding cuts, and reiterated gaps in legally-binding carbon targets and 

pathways, this chapter considers the previous CCS projections from DECC 

(DECC, 2015b) and storage targets from Element Energy (Durusut et al., 

2013) as benchmarks for grid decarbonisation goals and actions. The project 

output is multiplied by 11 to achieve these benchmarks, and explore the 

needed capacity (see below).  

An estimated 365 TWh of electricity would be produced domestically in the 

UK in 2035 with nearly 40 TWh of this expected to be produced from coal 

and natural gas CCS. Unabated natural gas is projected to supply 44 TWh by 

2035 (DECC, 2015b). In the shorter term it is assumed that – again, based 

on the DECC reference scenario - 638 MW of CCS capacity will be in place 

by 2019, increasing to 8,382 MW by 2035. DECC (2015b) projects that the 

electricity generated by CCS plants would then be utilised for base load 

power (85% load factor) by 2022, then reduce to less than 70% after 2030 
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(see Figure 2-2). A reduction in CCS load factor could have adverse effects 

on CO2 capture rates and delivery to offshore injection sites. For simplicity, it 

is assumed that the electricity generated by the CCS plants would then be 

utilised for baseload power from 2022 onwards with a continuous 85% load 

factor. 

 

Figure 2-2 - Projected new CCS capacity from DECC (DECC, 2015b) reference 
scenario. Load factor is calculated from projected delivered electricity divided by 
capacity. DECC projections suggest using CCS plants for baseload power (85% load 
factor) early next decade before reducing to 70% after 2030. For simplicity, a 
continuous 85% load factor is assumed in the models. 

To assess the GHG impact of natural gas electricity generation and 

infrastructure, a LCA was scaled from Stamford and Azapagic (2014). All 

phase emissions in the Stamford and Azapagic LCA are proportionally 

increased, and operational emissions equal to the onshore CO2 required for 

Stewart and Haszeldine (2015). This assumes equal combustion 

(operational) emissions at a gas plant regardless of gas origin and so shifts 

CO2 emissions variance for natural gas power plants to production and 

transportation emissions. The scaling method without CO2 capture indicates 
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that 96.4% of emissions associated with North Sea gas power are from 

combustion emissions, with a total output of 14.4 TWh yr-1 per plant before 

CO2 capture. The combustion emissions intensity for all natural gas plants 

are assumed to be equal and from steady state combustion, at 386.3 kg 

CO2e MWh-1. This figure is from a proprietary dataset by Ecoinvent 

(Ecoinvent Centre, 2010; Weidema and Hischier, 2006), and falls within the 

calculated range of 365 – 415 kg CO2e MWh-1 annually reported by DECC 

(2015a, 2014a, 2013a, 2012). As such, onshore emissions total 5.56 Mt CO2 

yr-1 for each of the 11 new unabated gas-fired power plants in the 

projections. This is considered the BAU case, projected to supply 44 TWh of 

unabated electricity (DECC, 2015b) by 2030. 

For coupled EOR-CCS it is assumed that 90% of CO2 operational emissions 

from the gas power plants (equivalent to 5.0 Mt CO2 yr-1) will be captured 

onshore and transferred offshore to EOR operations (see Figure 2-1). The 

carbon capture energy penalty was assumed to be 16% of total output - the 

mean value of recent findings ranging from 13% to 18% for natural gas 

combined cycle (NGCC) retrofits (Rubin et al., 2015). Note that Stamford and 

Azapagic (2014) assume a plant efficiency of 52.5% based on lower heating 

value (LHV), whereas DECC (2015a) lists the average for the UK as 47.0% 

based on LHV. Using the DECC figures would increase the combustion 

emissions relative to the 52.5% LHV value used in the projections. 

The upstream emissions associated with CO2 capture for EOR from Stewart 

and Haszeldine (2015) are identical to the CCS upstream emissions for each 

respective 20-year case study considered here. Both CCS and EOR models 

capture 90% of CO2 from their respective power plants, and have identical 

grid electricity outputs for the fuel sources. The EOR models have additional 

operational emissions and reduced CO2 storage associated with venting, and 

CO2 recycling as described in Stewart and Haszeldine (2015). It is assumed 

that post-capture CO2 or EOR does not need additional compression for, or 

during, transportation to offshore platforms, compared to the CCS case. It is 

assumed that the energy cost associated with compression and 
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transportation of CO2 to offshore platforms is minimal. For pipeline distances 

greater than 1,000 km, 6.5 kWh per tonne CO2 is required for recompression 

(Jaramillo et al., 2009). This equates to less than 0.3% additional energy 

costs per project. When including coupled EOR-CCS operations, this figure is 

further diminished. In an offshore environment, these costs could increase, 

but would be mitigated by clustering of projects (Welkenhuysen et al., 2017), 

reuse of current pipeline infrastructure (Pershad and Slater, 2007), and 

shorter pipeline distances (Jaramillo et al., 2009). This is indeed an area in 

need of further study, but is not cost-prohibitive or significantly impactful on 

the full project GHG balances. Any energy and associated emissions 

required to compress or recompress CO2 specifically for EOR are therefore 

excluded.  

Offshore, CO2 injection operations incur one-time fixed emissions 

demonstrated in EOR models (Stewart and Haszeldine, 2015). New well 

drilling, well workover, and steel construction are 45,816 t CO2e. For coupled 

CCS-EOR, annual offshore operational emissions include fugitive CO2, and 

additional offshore CO2 compression for injection equal to 57,723 t CO2e yr-1 

(Stewart and Haszeldine, 2015). It is assumed that greater than 4 Gt CO2 

storage capacity exists in UK offshore oilfields with greater than 2,000 MM 

bbls recoverable EOR-oil (Pershad and Slater, 2007; Holloway et al., 2006). 

Liability and decommissioning costs for these systems remains uncertain 

(Pale Blue Dot Energy et al., 2016; Pershad and Slater, 2007). For this 

chapter zero liability is assumed, and decommissioning costs are excluded. 

Costs associated with extending the life of offshore platforms can be offset by 

proper investment of funds for decommissioning. Welkenhuysen et al. (2017) 

suggest that interest payments will create a positive cash flow, more than 

covering the cost of extending the life of offshore operational infrastructure. 

The storage liability would transfer at sale to an operator who can profit from 

production of EOR oil, but would likely transfer back to government if EU ETS 

CO2 prices remain low. However, this is an area in need of future study. 
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2.2.3 Geographic origins of natural gas 

To examine the sensitivity of modelled GHG emissions estimates to changing 

geographical origins of UK gas supply, this chapter also projects the supply 

of gas forward to 2050 based on DECC projections as discussed above. The 

presumed decline of UK North Sea gas generates three sub-models which is 

explored, specifically: 

 Fuel-Mix 1 (S1). The 2015 geographic distribution of natural gas 

supply extends through 2050 in the same distribution as 2015. The 

total gas demand fluctuates according to DECC and Oil & Gas 

Authority (OGA) (OGA, 2016, 2017; BEIS, 2016a) estimates to 2035, 

the 2035 value extends to 2050. This gives the baseline emissions 

figures. 

 Fuel-Mix 2 (S2). The total UK gas demand fluctuates identically to 

fuel-mix 1. As UK gas declines in production from 2020 through 2050 

(DECC estimates end in 2035), North Sea gas from Norway increases 

to meet gas demand in place of falling UK production. Imported LNG 

supplies the same percentage of demand from 2015 forward. This 

demonstrates the shifting responsibility of extraction and 

transportation emission away from the UK, while total atmospheric 

emissions are equal. 

 Fuel-Mix 3 (S3). UK gas demand fluctuates as in fuel mix 1 and 2, UK 

gas declines in production from 2020 through 2050, Qatari LNG 

increases in supply to meet gas demand in place of falling UK 

production. This model also demonstrates a shift of responsibility of 

extraction and transportation away from the UK, and places more 

emphasis on GHG-intense LNG from Qatar. 

2.3 Results and discussion 

2.3.1 EOR emissions vs. CCS emissions 

Without the use of EOR, a single CCS project can be deployed to nearly 

meet the DECC projection of 5 Mt CO2 injected yr-1 by 2030 (DECC, 2014b, 
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2013a). Any of the CCS projects modelled here would inject 4.95 Mt CO2 yr-1 

starting in year 1 of injection, and continue for 20 years. The coupled EOR-

CCS model projects 100 MM bbls of EOR-produced oil production over the 

course of the 20-year project. This oil contains an additional 44.83 Mt CO2e 

in downstream emissions from oil refining (4.47 Mt CO2e) and combustion 

(40.36 Mt CO2e). It is assumed that the EOR-produced oil negates 100 MM 

bbls of oil being imported to the UK, thereby negating extraction and 

transportation emissions from oil produced elsewhere. In the case of Saudi 

oil, extraction emissions for 100 MM bbls are 3.93 Mt CO2e and transporting 

this oil emits a further 0.62 Mt CO2e (Mangmeechai, 2009). These values 

assume port-to-port emissions from Saudi Arabia to USA, transportation to 

the UK would likely be lower. 

A key assumption of the EOR operation is that the 100 MM bbls of 

incremental oil will negate the same quantity of imported oil from another 

source. If imported oil is Saudi light oil, extraction, transportation, refining, 

and combustion of Saudi oil is 493.8 kg CO2e bbl-1 (Mangmeechai, 2009) 

compared with 448.3 kg CO2e bbl-1 for domestic EOR-produced oil described 

above. For the purposes of this study, the North Sea EOR-produced oil is 

assumed to have negligible transportation emissions; production emissions 

are counted in the EOR model.  

2.3.2 EOR-to-CCS project 

Under the coupled EOR-CCS scenario, after a 20-year EOR project is 

completed the complete infrastructure for further CCS has been financially 

subsidized by production of 100 MM bbls of EOR-oil. This would represent a 

very substantial saving for the UK Treasury as no CCS subsidy is needed. It 

would also represent a saving for the UK electricity customer, as 

infrastructure costs are paid via EOR revenue rather than rising electricity 

prices. A full economic analysis is beyond the scope of this study, but would 

be an important next step for this approach.  
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After a typical 20 years of CO2-EOR oil production lifespan, the pipeline and 

borehole infrastructure has 20 – 40 years of remaining life, and can be 

converted to operate as injection of pure CO2 for storage into storage 

destinations well proven by CO2-EOR injection (Pale Blue Dot Energy et al., 

2016). If each EOR project transitions to CCS for an additional 20 years, 

annual injected CO2 increases from 4.62 Mt CO2 yr-1 to 4.95 Mt CO2 yr-1 and 

annual net emissions reduction increases from -0.94 Mt CO2 yr-1 (coupled 

EOR-CCS) to -1.66 Mt CO2 yr-1 (CCS-only) when oil imports resume.  

As such, a 40-year EOR-to-CCS project that switches to CCS-only in year 20 

and uses only North Sea Gas, stores 192.7 Mt CO2e, and emits 139.5 Mt 

CO2e – a net carbon reduction of over 50 Mt CO2e per project. These figures 

include 100 MM bbls of EOR oil in the first 20 years, and 100 MM bbls of 

Saudi Oil imported during the final 20 years. During the EOR phase, the 

project produces grid electricity while emitting 305 kg CO2e MWh-1, including 

the emissions associated with the EOR-produced oil. During the CCS phase, 

grid electricity is produced at 273 kg CO2e MWh-1 including the emissions 

from imported Saudi oil.  

If during the CCS phase, no oil is imported to replace the EOR-oil supply, 

grid electricity emissions intensity reduces to 68 kg CO2e MWh-1 for a single 

CCS project. Of course, a project does not use gas from one geographic 

origin, rather what is supplied by the NTS as discussed above. 

Stamford and Azapagic (2014, 2012) assumed a lifespan of 25 years for a 

gas plant. It is here assumed that, because construction emissions are less 

than 0.2% of total lifecycle emissions (Stamford and Azapagic, 2014), the 

extension of a service life of a gas plant to 40 years for the EOR-to-CCS 

model would have a negligible impact on overall project emissions savings. 

2.4 EOR-to-CCS in the context of UK climate targets 

DECC (2015b) projects that new CCS will contribute 638 MW of new power 

capacity in 2019, growing to 3,527 MW in 2030 and 8,382 MW in 2035. 

However, this capacity will contribute 2.55 TWh of electricity in 2019, growing 
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to 23.14 TWh in 2030, and reaching 39.5 TWh in 2035. A single EOR-to-CCS 

project delivers 12.1 TWh to the grid from 1,930 MW of capacity, and meets 

the DECC CCS capacity and electricity projections for 2025.  

The Committee on Climate Change’s (CCC) Fourth Carbon Budget 

suggested that the carbon intensity of electricity in the UK would need to fall 

to 50 g CO2e kWh-1 by 2030 with a mixture of renewables, nuclear, and CCS 

(CCC, 2010). In response to this, Element Energy (Durusut et al., 2013) 

modelled scenarios to fulfil the carbon intensity target, storing 52 Mt CO2 in 

2030 with coal CCS, gas CCS, and industrial sites. This is a highly ambitious 

scenario in this context. However, this scenario is included to illustrate the 

very large commitment required by the UK to reach the 50 Mt CO2 yr-1 stored 

by 2030. This is of particular importance and relevance because of the 

statement made by Element Energy that, without CCS, reaching climate 

targets would double costs to all industries from a minimum £30 billion per 

year in 2050 (Durusut et al., 2015). This chapter calculates that reaching this 

storage goal is possible with only gas power through 11 EOR-to-CCS 

projects, starting one per year in 2020 (a scenario that is also in-line with 

DECC and BEIS projections of new unabated gas capacity in the UK through 

2035 (BEIS, 2017e; DECC, 2015b)). 
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Figure 2-3 - Cumulative required new power capacity from 2015-2035 (DECC, 2015b). 
DECC projects that new CCS capacity will begin in 2019 with 640 MW (blue line) while 
5 GW of new unabated gas capacity will be installed at the same time (black line). 
Unabated gas is projected to contribute over 27 GW of capacity by 2035. The 
projections of gas capacity with CO2-EOR and CCS will contribute 1.9 GW (dashed 
blue), 7.7 GW (dashed orange), and 21.2 GW (dashed red) of capacity. 

By deploying 1 EOR-to-CCS project per year from 2020 onwards, the suite of 

projects examined here also builds capacity at the same pace as DECC’s 

projection (DECC, 2015b) for unabated gas power, while capturing CO2, and 

lowering the grid intensity of UK electricity supply. As previously stated, 

deploying just one project meets the current projections for CCS capacity 

projections (see Figure 2-3).  

If CCS alone were deployed to meet the Element Energy target, 54.5 Mt CO2 

would be injected by year 11 (2030), storing 1,416 Mt CO2 by 2050. 

However, EOR does reduce the CO2 injection rate after year 2. 11 EOR 

projects would inject 51.8 Mt CO2 by 2030, meeting the Element Energy 

(Durusut et al., 2013) goal while providing the additional revenue required for 

expansion of CCS infrastructure. If these 11 EOR projects were mandated to 
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continue to CCS after 20 years of EOR, 1,358 Mt CO2 would be stored by 

2050; that is a 56 Mt reduction in CO2 emissions compared to using only 

CCS and no EOR, with oil imported from Saudi Arabia. Considering all 

emissions with EOR and CCS operations, including combustion of resumed 

Saudi oil imports, this suite of projects emits 1,076 – 1,204 Mt CO2 from 2020 

to 2049, while storing 1,358 Mt CO2. If Saudi oil imports do not resume after 

EOR operations, total emissions are reduced to 940 – 1,068 Mt CO2 from 

2020 to 2049. 

2.4.1 Coupled EOR-CCS and UK oil sources 

The suite of coupled EOR-CCS projects considered here would provide 132 

TWh of grid electricity by 2030 between 152 – 184 kg CO2e MWh-1 without 

considering the EOR-produced oil. As each EOR project reaches its 20th 

year, and transitions to CCS only, the average grid intensity drops to 90 - 142 

kg CO2e MWh-1 by 2049, assuming oil is not imported or combusted to 

replace the EOR-oil – thus a net reduction of oil use. 

Emissions from CCS offshore operations are 1.2 Mt CO2 for 20 years and for 

EOR total around 13.5 Mt CO2 for 20 years. 100 MM bbls of EOR-oil contains 

44.83 Mt CO2 (assuming normal combustion); 100 MM bbls of Saudi Oil 

(imports during CCS with combustion) contains 49.38 Mt CO2. The sum of 

these differences indicates that a CCS project emits 7.75 Mt CO2 less than 

an EOR project over 20 years when comparing CO2 sourced from the same 

power plant. Therefore, if CCS is performed while importing oil with greater 

than 571.3 kg CO2 bbl-1 embedded, EOR is actually more advantageous. 

This embodied carbon penalty of oil source requires low carbon production 

sources, and so would eliminate most shale oil and other synthetic crude 

from North America, as shown in Mangmeechai (2009).  

Producing oil through CO2-EOR helps to avoid oil transportation emissions, 

and incorporates extraction emissions into the EOR process. If the 100 MM 

bbls displaces Saudi (light) oil, there is an estimated additional saving of 4.55 

Mt CO2e from avoided extraction and shipping of Saudi oil (Mangmeechai, 



 Compatibility of fossil fuel energy system in the UK for climate targets. 

Chapter 2  36 

2009). However, it should be noted that the production and most of the 

transport GHG emissions associated with oil from Saudi Arabia would fall 

outside of current UK GHG reporting boundaries for the United Nations 

Framework Convention on Climate Change (UNFCCC) (IPCC et al., 2006) as 

well as ISO 14064 carbon accounting frameworks (ISO, 2009a, 2009b, 

2009c).  

The key advantage of the EOR-to-CCS model envisaged in this chapter is 

that the EOR-oil helps to pay for CCS infrastructure. However, there is the 

issue of additionality (rather than substitution) of EOR-oil. There is an 

underlying assumption that introducing new EOR-oil would stop the same 

amount of Saudi Arabian oil from being produced.  

2.4.2 Responsibility of upstream emissions 

As UK gas production declines over the next decade, the projected gas 

demand remains constant (DECC, 2015b, 2014b). The 2015 gas mix is 

modelled along with gas decline under two fuel-mix scenarios as discussed 

above. When UK gas production declines, and other North Sea gas replaces 

the supply (S2), the responsibility – in terms of current reporting requirements 

- of gas production-related GHG emissions shifts away from the UK, while 

actual GHG emissions to the atmosphere stay constant. This is due to the 

equal LCA estimates of all North Sea gas, but shift in responsibility for 

reporting of extraction and transportation emissions.  

For instance, if declining UK gas production is replaced with imported Qatari 

LNG, GHG emissions to the atmosphere from this source might increase, yet 

reported UK GHG emissions would decrease (see Table 2-1 and Figure 2-4).  

Under current accounting practices, only the combustion emissions are 

counted towards the grid intensity of electricity supply. Figure 2-5 

demonstrates the grid intensity of three pathways to illustrate the differences 

in GHG emissions accounting compared to life cycle assessments.  

When comparing all models and gas sources for CO2e emissions per unit of 

power output, EOR from LNG is not as advantageous because of energy 
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associated with liquefying and transporting gas for LNG (Stamford and 

Azapagic, 2012, 2014).  North Sea gas appears the best option for CCS and 

EOR in this context due to the low production, transportation, and operational 

emissions.  However, ‘UK-owned’ emissions would be lowest using Qatari 

LNG because the emissions associated with extraction and transportation 

are regarded as foreign emissions under current GHG accounting regimes 

(see Figure 2-4 and Figure 2-5).  
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Table 2-1 - Upstream emissions associated with gas power production for 9 model 
simulations to 2050. The figures do not include emissions associated with EOR/CCS 
operations, oil production, end-use of oil or stored CO2. Emissions which occur in the 
UK, and impact UK GHG budgets, are lowest when imported gas is used in the fuel-
mix. However, atmospheric emissions are highest in Fuel-Mix 3, which has greater 
dependence on Qatari LNG. This indicates a perverse incentive for UK GHG budgets 
to import rather than produce gas. 

Upstream emissions through 2050  
(Mt CO2e) 

Fuel-Mix 1 
UK Gas 

Fuel-Mix 2 
Norwegian Gas 

Fuel-Mix 3 
Qatari LNG 

1 EOR-to-
CCS 
Project 

Emissions to 
atmosphere 

32.03 32.03 44.82 

UK emissions  20.54  18.92  18.92  

UK emissions share 
of project emissions 

64.14% 59.07% 42.20% 

4 EOR-to-
CCS 
projects 

Emissions to 
atmosphere 

121.91 121.91 172.06 

UK emissions  78.20 71.83 71.83 

UK emissions share 
of project emissions 

64.14% 58.92% 41.74% 

11 EOR-
to-CCS 
projects 

Emissions to 
atmosphere 

295.47 295.47 423.52 

UK emissions 189.53 173.26 173.26 

UK emissions share 
of project emissions 

64.14% 58.64% 40.91% 
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Figure 2-4 – Comparison of onshore gas LCAs from Stamford and Azapagic (2014) for 
UK EOR and CCS. Under current emissions accounting practices, the UK would be 
responsible for emissions associated with construction and operation of plants in the 
UK, but not extraction and transportation outside of the UK (partially shaded). Using 
Qatari LNG would result in the highest GHG emissions to the atmosphere but the UK 
would have the lowest share of emissions ownership. The current accounting 
practices incentivizes the UK to pursue the cheapest gas, regardless of total GHG 
emissions. 
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Figure 2-5 - Single year grid intensity for 3 EOR-to-CCS fuel-mix simulations. Plant 
combustion emissions are counted towards grid intensity under current GHG 
accounting practices. Other UK emissions are also counted towards the UK total 
emissions, but not counted towards grid intensity. These emissions include plant 
construction, UK fuel extraction and transportation, & EOR operational emissions. 
Non-UK Emissions include fuel extraction and transportation occurring outside the 
UK. Current accounting practices incentivize the UK to minimize domestic emissions 
(S2 or S3) for carbon budget targets and lower grid intensity. 

2.4.3 Other upstream gas sources 

DECC’s projected demand for natural gas power would likely have other 

effects not examined in this chapter. Continued demand for natural gas, 

along with declining North Sea gas production, could incentivize new 

domestic gas sources, or other sources from abroad. 

Stamford & Azapagic (2014) also estimate the GHG emissions of UK shale 

gas used for electrical power to be 412 – 1102 kg CO2e MWh-1 with a central 

estimate of 462 kg CO2e. Using the same methodology as above, utilizing 

this gas in CCS would correspond to a grid intensity 76.8 – 898.3 kg CO2e 

MWh-1 (136 kg CO2e mean), depending on limits to extraction emissions. 

This is an area in need of further study, as the UK plans to move forward with 

a shale gas agenda. 

Increased UK gas demand could increase demand on the supply entering the 

NTS from The Netherlands and Belgium. This could increase gas supplied 
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from Russia to the European Continental grid. This gas is of unknown LCA 

values, and would see an unknown change in atmospheric emissions. 

Finally, the UK could also import gas from the USA. This gas would likely be 

shale gas transported as LNG and contains increased extraction emissions, 

and LNG processing & transportation emissions.  

UK shale gas would be the only option of the above three which would add to 

the UK GHG emissions total. However, the global GHG footprint for each of 

these additional options is the subject of further study. 

2.5 Conclusions and discussion 

The goal of 50 Mt CO2 stored can be achieved by 2030 with the use of 21.2 

GW of gas capacity at baseload utilisation (constant 85% load factor) using 

coupled CCS-CO2-EOR. However, this is achieved through the production of 

1,100 MM bbls EOR-oil, and immediate development of these modelled 

projects (see Figure 2-6). Considering all greenhouse gas emissions - from 

power generation, EOR and CCS operations, and oil production and 

combustion - this project suite emits an estimated 940 – 1,068 Mt CO2e from 

2020 to 2049, while storing 1,358 Mt CO2.  



 Compatibility of fossil fuel energy system in the UK for climate targets. 

Chapter 2  42 

 

Figure 2-6 - EOR oil production per year from Stewart & Haszeldine (2015). A single 
EOR project (purple) produces 77.8 million barrels of EOR oil in the first ten years. 
The final five years produces 6.88 million barrels. A suite of 11 projects produces 405 
million barrels in the first ten years. 

Additional emission savings could occur if replacement oil imports do not 

continue after EOR operations cease. Note that there is greater variation 

emissions associated with EOR oil due to recycling of CO2 in the production 

of EOR-oil (Stewart, 2014; Stewart and Haszeldine, 2015). The grid factor 

could be reduced from 273.9 – 388.1 kg CO2e MWh-1 during EOR to 294.7 – 

346.8 kg CO2e MWh-1 during CCS. If oil is excluded from the CCS phase – or 

is not imported to replace EOR oil – the grid factor reduces again to 90.3 – 

142.4 kg CO2e MWh-1 (see Table 2-2). On an annualized basis, these 

projects emit 3.31 – 4.69 Mt CO2e yr-1 compared to the current BAU case 

which emits 8.50 – 9.09 Mt CO2e yr-1 (see Table 2-3). In any fuel-mix 

scenario, the projects modelled above are better than the BAU scenario of 

combusting unabated natural gas.  

These savings could occur if EOR operators are contracted to continue CCS 

operations for an additional 20 years after the end of EOR operations. It is 

assumed that the financial incentive of producing 100 MM bbls per project 
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will pay for the operational costs of 20 more years of CCS. In reality, policy 

action and/or carbon prices will be needed to force continued storage. 

The above savings also rely upon decreases in oil use after EOR-oil is no 

longer produced. If, when EOR transitions to CCS and EOR-oil no longer is 

produced, oil imports continue, the advantage of CCS is decreased through 

the additionality of replacement oil. This assumes that the UK will decrease 

oil usage by 2040, when the first EOR-to-CCS project transitions to CCS. 

This also assumes that 1,100 MM bbls of EOR-oil from 2020 through 2049 

does not exceed demand, and over-supply the UK and global market. 

Current DECC projections indicate that the demand for oil in the UK will not 

decrease below 500 MM bbls yr-1 before 2035 under any of the 7 modelled 

policy scenarios (DECC, 2015b). Annual EOR-oil production from 11 EOR-to-

CCS projects will peak in year 2032 with 84 MM bbls, well below the 500 MM 

bbls yr-1 projected demand.  

In the studied scenarios, it is assumed that deployment of these projects in 

2020 in order to reach the goal of 50 Mt CO2 yr-1 stored by 2030, however 

funding cuts have delayed the development of CCS. Recent funding pledges 

(BEIS, 2017d; Hickman et al., 2017) indicate a continued commitment to 

CCS. Considering these delays in combination with project development 

timelines, and legally binding carbon reduction commitments, the 2030 goal 

of 50 Mt CO2 yr-1 stored is in jeopardy, which could cost UK industry £30 

billion per year after 2050 (Durusut et al., 2015).  

The key advantage of the EOR-to-CCS model envisaged in this chapter is 

that the EOR-oil helps to pay for CCS infrastructure to have long-term GHG 

savings. However, if produced EOR oil is not sufficient to cover costs for 

infrastructure, or there is disruption in the 40-year model, the advantage of 

CO2 storage during the CCS phase could be lost. In this instance, the UK 

GHG budgets would experience the emissions associated with these projects 

without enjoying the GHG savings during the CCS phase. This could occur if 

the global oil prices are too volatile for dependable project funding, 

reputational risks depress the price of oil and prevent the UK or operational 
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partner(s) from funding or proceeding with these projects, or public opinion 

will not tolerate a limited oil consumption to allow for more CO2 storage.  

Finally, it is assumed that the reduction of 1,100 MM bbls imported oil will aid 

in lowering UK GHG emissions, but also assume that the previously imported 

oil is no longer produced. The use of EOR-oil introduces new oil into the 

global system. If the previously imported oil is still produced, and EOR-oil is 

used, then there may be a small increase in oil-based GHG emissions 

globally. The 1,100 MM bbls of oil, additional or not, are trivial in comparison 

to the reduction realised in achieving CCS through the use of EOR. On a full 

life cycle analysis, with the unusual aspect of lining across the economy from 

electricity to oil, this aggressive CCS-EOR scenario provides a net carbon 

reduction. More carbon is stored, sooner, for less public funding, than any 

rival method. 
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Table 2-2 - Annual project emissions as grid factors for one EOR-to-CCS project 
compared to a BAU scenario. In all fuel-mix scenarios, the EOR-to-CCS project 
produces fewer emissions that the BAU scenario of the same mix. The BAU scenario 
compares the same power plant as in the EOR-to-CCS scenario, but delivers more 
power to the grid because no CO2 is captured for EOR/CCS. 

Grid emissions per project 

(kg CO2e MWh-1) 

Fuel-Mix 1 

UK gas 

Fuel-Mix 2 

Norwegian gas 

Fuel-Mix 3 

Qatari LNG 

EOR phase 247.5 – 254.5 247.5 – 254.5 257.9 – 291.3 

including EOR oil  273.9 – 344.4 273.9 – 344.4 286.3 – 388.1 

CCS Phase 90.3 – 98.6 90.3 – 98.6 102.7 – 142.4 

including imported Saudi oil 294.7 – 303.0 294.7 – 303.0 307.0 – 346.8 

BAU Emissions (no 
EOR/CCS) including 
imported Saudi oil 

591.1 – 595.0 591.1 – 595.0 601.5 – 631.7 

BAU emissions (no 
EOR/CCS) excluding oil 
emissions 

419.5 – 423.3 419.5 – 423.3 429.9 – 460.1 

BAU emissions (no 
EOR/CCS) excluding oil 
emissions, UK emissions 
only 

393.7 388.6 – 394.8 377.6 – 408.8 
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Table 2-3 - Annual project emissions. In all fuel-mix scenarios, the EOR-to-CCS 
project produces fewer emissions that the BAU scenario of the same mix. The BAU 
scenario compares the same power plant as in the EOR-to-CCS scenario, but delivers 
2.4 MWh more power to the grid because no CO2 is captured for EOR/CCS. 

Annual emissions per project 

(Mt CO2e) 

Fuel-Mix 1 

UK gas 

Fuel-Mix 2 

Norwegian gas 

Fuel-Mix 3 

Qatari LNG 

Upstream power plant with CO2 
capture  

1.03 – 1.09 1.03– 1.09 1.18 - 1.62 

EOR/CCS operations 0.03 – 0.83 0.03 – 0.83 0.03 – 0.83 

CO2 stored (4.62 – 4.95) (4.62 – 4.95) (4.62 – 4.95) 

Embedded oil emissions 2.24 – 2.47 2.24 – 2.47 2.24 – 2.47 

Total annual project emissions 3.31 – 4.16 3.31 – 4.16 3.46 – 4.69 

BAU power emissions 6.03 – 6.09 6.03 – 6.09 6.18 - 6.62 

BAU oil emissions  2.47 2.47 2.47 

BAU total emissions 8.50 – 8.56 8.50 – 8.56 8.65 – 9.09 
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Chapter 3 Gas-fired power in the UK: Bridging 
supply gaps and implications of 
domestic shale gas exploitation for 
UK climate change targets 

Summary 

The UK is legally bound to limit domestic GHG emissions, and reduce 

emissions associated with electricity generation. Currently, there is a 

projected shortcoming in the UK’s fourth carbon budget of 7.5%, while 

projected demand for fossil fuels remains steady. This shortfall may be 

increased if the UK pursues a domestic shale gas industry to offset projected 

decreases in traditional gas supply. This chapter estimates that if the 

projected domestic gas supply gap for power generation were to be met by 

UK shale gas with low fugitive emissions (0.08%), an additional 20.4 Mt 

CO2e would need to be accommodated during carbon budget periods 3 – 6. 

More importantly, it is found that a modest fugitive emissions rate (1%) for 

UK shale gas would increase global emissions compared to importing an 

equal quantity of Qatari liquefied natural gas. Additionally, it is estimated that 

natural gas electricity generation would emit 420 – 466 Mt CO2e (460 central 

estimate) during the same time period within the traded EU emissions cap. It 

is concluded that domestic shale gas production with even a modest 1% 

fugitive emissions rate would risk exceedance of UK carbon budgets. 

Additionally, under the current production-based greenhouse gas accounting 

system, the UK is incentivized to import natural gas rather than produce it 

domestically. 

Work presented in this chapter is based on the manuscript published as: 

Turk, J. K., Reay, D. S., and Haszeldine R. S., Gas-fired power in the UK: 

Bridging supply gaps and implications for domestic shale gas exploitation for 

UK climate change targets, Science of the Total Environment, vol. 616-617, 

pp 318-325, 2018, https://doi.org/10.1016/j.scitotenv.2017.11.007.  
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3.1 Introduction 

The United Kingdom (UK) is legally bound by ‘The Climate Change Act’ to 

reduce greenhouse gas (GHG) emissions by 2050 to 80% below a 1990 

baseline (Energy Act 2004). The Climate Change Act also empowers an 

independent body, The Committee on Climate Change (CCC), to advise the 

Government on progress towards the 2050 goal. The CCC recommends 

reduction targets in 5-year budget periods. The UK met its first carbon budget 

(CB1: 2008 – 2012) of 3,018 Mt CO2e, and is likely to meet the second and 

third carbon budgets, covering the years 2013 – 2022 (DECC, 2015b, 

2014b). However, the Department for Energy and Climate Change (DECC - 

now the Department for Business, Energy, and Industrial Strategy - BEIS) 

suggests that the UK may fail to meet its fourth carbon budget (CB4: 2023 – 

2027) by as much as 146 Mt CO2e (BEIS, 2017e; DECC, 2015b, 2014b). The 

DECC projections indicate a 7.5% overshoot in CB4, with an uncertainty 

range of 6-13%. This projected overshoot (DECC 2015a) increases into the 

fifth carbon budget (CB5: 2028-2032), which the UK is at risk of exceeding by 

more than 14% (BEIS, 2017e). 

Major Power Producers (MPPs), companies whose primary activity is 

electricity generation (DECC, 2012), produce 94% of all electricity in the UK. 

In 2015 over half of this production was from the combustion of coal (120 

Terawatt Hours - TWh) and natural gas (71 TWh) (DECC, 2015a). GHG 

emissions from MPPs are traded within the European Union Emissions 

Trading Scheme (EU ETS), and are capped by UK emissions allowances 

granted by EU ETS. These emissions do not affect the UK’s ability to meet 

carbon budgets directly, however, the continued use of fossil fuels by MPPs 

maintains a domestic demand for fossil fuels, which can create emissions in 

other non-traded sectors of the economy (e.g. coal and gas extraction). UK 

electricity production is projected to shift away from coal generation towards 

gas power, to supplement growing renewables and nuclear capacity (BEIS, 

2017e, 2016a; Directive 2010/75/EU of the European Parliament and of the 

Council of 24 November 2010 on industrial emissions (integrated pollution 

prevention and control); Energy Act 2013). Yet, domestic production of 



 Compatibility of fossil fuel energy system in the UK for climate targets. 

Chapter 3  49 

natural gas will continue to fall (OGA, 2016). If the UK shifts the source of this 

gas from domestic North Sea gas to imported liquid natural gas (LNG), 

associated UK gas production emissions will fall while production-phase 

emissions elsewhere in the globe would increase. Conversely, a domestic 

shale gas industry could provide increased energy security for the UK, but 

would create a new source of domestic industrial emissions that is not yet 

fully accounted for within planned UK carbon budgets. 

The CCC has stated that a UK shale gas industry is not compatible with UK 

climate change targets unless three test criteria are met: (1) production 

emissions are strictly limited; (2) UK gas consumption declines, remains in 

line with carbon budgets, and displaces imports; (3) production emissions are 

offset elsewhere in UK carbon budgets (CCC, 2016a, 2016b). The first test 

can be met by strict regulation of practices associated with shale gas 

production, many of which are agreed upon by industry (UKOOG, 2015). The 

second test may be met by maintaining or lowering UK gas consumption, 

while measuring and prioritizing the lowest carbon footprint gas to be 

consumed in the UK. The third test will require national coordination of 

sectoral GHG emissions to accommodate any additional emissions 

associated with domestic shale gas production.  

In addition to the shale gas criteria, the CCC recommended a grid electricity 

emissions target of 50 g CO2e kWh-1 by 2030 in the fourth carbon budget 

report (CCC, 2010), but have since relaxed that goal to below 100 g CO2e 

kWh-1 by 2030 (CCC, 2015b). The CCC projects this goal will be met by a 

combination of renewables, natural gas, carbon capture and storage (CCS), 

and nuclear power. DECC / BEIS has projected several scenarios which 

illustrate pathways to a 100 g CO2e kWh-1 target by 2030. This chapter aims 

to quantify the emissions associated with gas consumption in the UK for 

electricity generation under scenarios projected by DECC / BEIS, and identify 

‘CCC-test’ limits on emissions for a domestic shale gas industry. 
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3.1.1 DECC & BEIS projections 

DECC / BEIS produce annual projections for Updated energy and emissions 

scenarios (BEIS, 2017e; DECC, 2015b, 2014b) which incorporate GHG-reduction 

policies, fossil fuel prices, and economic growth projections. The Reference 

Scenario is based on central estimates of economic growth and fossil fuel 

prices - it is therefore treated as the central estimate in this study. It contains 

all agreed-upon policies and planned policies. DECC’s Low Growth, High 

Growth, Low Prices, and High Prices projections assume the same policies 

as the Reference Scenario but incorporate variance on fossil fuel prices and 

economic growth. Their Existing Policies projection contains central 

estimates, but excludes planned policies; it is an assessment of the current 

state of policies projected forward. Finally, the DECC Baseline Policies 

projection contains only policies that existed before the Low Carbon 

Transition Plan of 2009 (Great Britain and HM Government, 2009), and is 

therefore excluded from this analysis.  

3.1.2 Gas demand and production 

In 2016, UK gas demand was 67.0 - 72.0 billion cubic meters (bcm) (BEIS, 

2017b; OGA, 2017), which was supplied by domestic and imported sources. 

Total domestic production, before exports, was 37.0 bcm. Imported gas (30.9 

bcm) came from Norway, Belgium, and The Netherlands via 

interconnections. An additional (13.9 bcm) of liquefied natural gas (LNG) was 

supplied from Qatar (12.9 bcm), Algeria (0.5 bcm), Trinidad & Tobago (0.5 

bcm), with negligible amounts from Nigeria (44 mcm), and Norway (55 mcm). 

Exports through interconnection were 14.2 bcm with an additional 276 mcm 

exported as LNG. After subtracting exported gas, UK used around 27% of 

gas in electricity generation or 19.2 bcm. Of this, 16.9 bcm were used by 

MPPs, the remaining gas being used in autogenerators (BEIS, 2016a, 2016b; 

OGA, 2017). 

The Oil and Gas Authority (OGA) forecasts that domestic oil and gas 

production will decline by 5% yr-1 from 2022 until 2035, with gas production 

dropping from 34.7 bcm in 2018 to 14.5 bcm in 2035. Demand across all UK 
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sectors is projected to decline more slowly - from 74.1 bcm in 2018 to 61.5 

bcm in 2035 - despite impetus from carbon budgets and further growth in 

renewable energy supply. Without a shale gas industry, falling domestic 

production could increase the UK’s domestic supply gap to more than 796 

bcm (OGA, 2017) (see Figure 3-1).  This would require imports to increase 

from 53% of demand in 2018 to an estimated 76% of demand in 2035.  

 

Figure 3-1 UK natural gas production and demand for all sectors projected to 2035. 
Declining domestic production will create an import demand of 796 billion cubic 

meters from 2018 to 2035. Figure generated from OGA projections (OGA, 2017). 

3.1.2.1 UK shale gas resource estimates 

The potential of the UK shale gas resource to fill the projected domestic gas 

supply gap is an area of substantial policy and commercial interest 

(Bradshaw et al., 2014). Advanced Resources International (ARI) estimate 

that the UK holds 3,783 bcm (133.4 trillion cubic feet, tcf) of technically 

recoverable– gas which may be accessed given geological knowledge, 
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economic feasibility, and production history - from a larger 17,641 bcm (623 

tcf) of total shale gas in place. Of the gas in-place, 728 bcm (25.7 tcf) is 

estimated to be economically recoverable (Kuuskraa et al., 2013). This 

corresponds to a 19.2% recovery rate of technically recoverable resources, 

similar to the mean estimates of around 20% used by Kuuskraa et al. (2013, 

2011).   

 

Figure 3-2 -Stylized representation of oil and natural gas resource categorizations. As 
geologic understanding, technical capabilities, and economic conditions allow, shale 
gas reserves can be designated from ‘in-place’ (identified) to ‘proved reserves’. 
Schematic adapted from EIA (2014) 

The British Geological Survey (BGS) estimate that the UK has a total of 

39,900 bcm of shale gas in place, with a range of 24,700 – 68,400 bcm 

(Andrews, 2013; Monaghan, 2014). Though considerably more than the ARI 

estimate, BGS surveyed three basins (Carboniferous Midland Valley, 

Carboniferous Bowland-Hodder, Jurassic Weald) while the ARI estimate 

covers all Carboniferous shale basins grouped together along with the 

Jurassic Weald basin (it is likely that these estimates will be further refined as 

Cuadrilla begins shale gas exploration in Lancashire (Cuadrilla Resources, 

2016).  

BGS do not provide estimates of technically recoverable resources, or 

economically recoverable resources. If it is assumed that the ARI ratio of 

risked gas-in-place to total resource estimate of 21.4% is also applicable to 
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the BGS resource estimates, the range of risked gas-in-place across the 

three BGS-surveyed basins is 5,297 – 14,668 bcm. Based on industry 

experiences in Poland, applying a conservative economic recovery rate of 

10% (Inman, 2016; Kuuskraa et al., 2013) to these low-end gas in-place 

estimates (ARI and BGS-derived) therefore corresponds to 378 – 530 bcm of 

economically recoverable domestic shale gas. This compares to the UK’s 

projected 796 bcm gas supply gap over the next two decades.  

3.2 Methodology 

This study examines two specific GHG emission scopes: ‘grid emissions from 

natural gas power’ and ‘associated gas production emissions’. Here, ‘grid 

emissions’ are defined as the direct GHG emissions arising from combustion 

of fossil fuels for electricity generation divided by total electricity delivered. 

These GHG emissions are traded within the EU ETS, and count towards the 

grid emissions goal of 100 g CO2e kWh-1 by 2030. ‘Associated gas 

production GHG emissions’ here include power plant construction, fuel 

extraction and processing, and fuel transportation.  

When ‘associated gas production emissions’ occur within the UK, they are 

counted towards non-traded carbon budgets. ‘Associated gas production 

emissions’ occurring outside the UK do not affect carbon budgets, and would 

represent a saving to the UK carbon budgets, but break CCC’s third test 

criteria (CCC, 2016a, 2016b). These emissions are also counted in a ‘non-

UK’ category.  

The sum of ‘grid emissions’ and all ‘associated gas production emissions’ 

provides a fuller assessment of the GHG impact of each fuel source used for 

UK electricity supply. The GHG footprint estimates from Stamford and 

Azapagic (2014) are used to calculate the impact of DECC / BEIS projections 

of future gas electricity against CCC’s test criteria for UK shale gas 

exploitation and the grid emissions goal (100 g CO2e kWh-1 by 2030). The 

Stamford and Azapagic (2014) study is used for all phase emissions for 

natural gas production and combustion for electricity generation. Other gas 
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studies were examined but either did not compare geographic origins (Heath 

et al., 2014a; Laurenzi and Jersey, 2013; Dale et al., 2013) or embedded 

phase emissions (Bouman et al., 2015) which bundles the production, 

transportation, and combustion emissions.  

‘Associated gas production emissions’ by UK carbon budget period for those 

occurring within the UK are also categorized. ‘Associated gas production 

emissions’ occurring outside the UK are also tallied based on origin of gas 

supply within each model (see 3.2.2 below). 

3.2.1 Gas supply from NTS 

Here it is assumed that all gas demand for electricity generation in the UK is 

supplied via the UK National Transmission System (NTS). Natural gas for 

combustion at each power plant is assumed to come from the NTS, 

combustion phase emissions are therefore assumed to be equal. When gas 

arrives in the UK via interconnection or LNG terminal, it enters the NTS 

making the geographic origin unknown to the end user. Gas flows between 

the UK and continental Europe are excluded from the calculations because 

they account for less than 1% of total consumption, fluctuate rapidly with 

market demand, and lack GHG footprint figures because of the unquantified 

sources of European continental gas (BEIS, 2017e; Stamford and Azapagic, 

2014). In the absence of nation-specific data, LNG from Nigeria and Trinidad 

& Tobago are here assumed to have the same production phase emissions 

as LNG from Algeria. The imports from each of these countries represent 

less than 1% of gas supply, but are reported in annual UK gas supply figures 

(BEIS, 2016b). Finally, imported North Sea gas is assumed to have the same 

production phase emissions as UK domestic gas.  

The projected gas demand from DECC / BEIS, and OGA (BEIS, 2017e; 

OGA, 2017) is used. Dependency on imports is assumed equal to OGA 

estimates of domestic demand minus domestic production. There are 

statistical differences between the net sum of all imports minus exports, and 

the import dependency. This is due to the constraints of monthly, quarterly, 
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and annual measurements and reporting. It is assumed that the net 

import/exports are zero over the life of the calculations, and are rounded to 

zero by adjustments in pipeline imports. Zero bunkering of gas is assumed. 

Upstream gas extraction emissions count towards the UK carbon budget, 

when occurring within the UK. Emissions from the transportation of fuel 

(natural gas) are reported in the Mobile Combustion Process category within 

the energy sector (IPCC, 2000), are pre-combustion, and so are not counted 

towards grid emissions. These emissions are counted under ‘associated gas 

production emissions’. Furthermore, shipping of natural gas products as 

liquid natural gas (LNG) contains transportation emissions which are tallied in 

the carbon budget of the ship’s home country. 

The emissions intensity of imported gas represents the current estimates of 

global supply. Further expansion of fracking in nations from which gas is 

imported to the UK could further increase overseas emissions while leaving 

reported emission in the UK unaffected. To determine the potential impact of 

a shale gas industry versus increased gas imports on UK carbon budgets,  

four gas supply scenarios are modelled: 

3.2.1.1 Scenario 1 – current gas supply projected forward 

Here total UK gas demand fluctuates according to DECC / BEIS and OGA 

estimates from 2018 to 2035, while UK production declines -5% yr-1 from 

2022 onwards (OGA, 2017). The 2016 global supply sources of natural gas 

to the UK (BEIS, 2017b) are assumed to remain the same through to 2035. 

The growing UK gas supply gap is assumed to be met by Norwegian North 

Sea imports, Qatari LNG, and other LNG imports. These three gas sources 

increase proportionately from 2016 onwards to meet projected demand, with 

a presumption that shale gas is not produced in the UK. This scenario 

represents the baseline emissions scenario. 

3.2.1.2 Scenario 2 – increased gas from Norway 

Here total UK production falls as projected by OGA estimates, as in scenario 

1. As UK gas declines in production from 2022 onwards, North Sea gas 
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supply from Norway increases to meet UK demand. Qatari LNG and other 

LNG imports continue in the same quantity as 2016 (10.1 bcm, and 0.91 bcm 

respectively). Again, this scenario assumes that shale gas is not produced in 

the UK. This scenario demonstrates shifting of associated gas production 

emissions from the UK to Norway. 

3.2.1.3 Scenario 3 – increased LNGs from Qatar 

Here UK gas demand fluctuates as in scenarios 1 & 2, UK gas production 

again declines as projected by OGA estimates. North Sea gas from Norway, 

and other LNG imports, continue to be imported in the same quantity as 2016 

(19.6 bcm and 0.91 bcm respectively) and shale gas is not produced in the 

UK. Instead, Qatari LNG imports increase to meet the growing supply gap. 

This scenario demonstrates of shifting responsibility of associated gas 

production emissions from the UK, and places more emphasis on LNG from 

Qatar. 

3.2.1.4 Scenario 4 – shale gas from UK 

In this final scenario, UK gas demand fluctuates as in scenarios 1, 2, & 3, UK 

gas production declines falls as projected by OGA estimates. Imports from 

Norway, Qatar and other LNG are imported in the same quantities as in 2016 

(19.6 bcm, 10.1 bcm, and 0.91 bcm respectively). Here, UK shale gas 

production is assumed to expand to meet the supply gap starting in 2018 with 

8.9 bcm production. Shale gas reaches 27% of supply by 2035 with 16.4 bcm 

produced, totalling 246 bcm over the model period. This scenario illustrates 

the potential impact of UK shale gas exploitation on carbon budget periods 

due to increased domestic ‘associated gas production’ emissions.  

3.2.2 Electricity source emissions and capacity 

As discussed above, within the GHG footprint of electricity generation are 

combustion emissions and GHG emissions associated with power plant 

construction, fuel extraction, materials manufacturing, and decommissioning 

(Stamford and Azapagic, 2014). Combustion emissions divided by electricity 

delivery are counted toward the grid decarbonisation goal of 100 g CO2e 
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kWh-1. Other ‘associated emissions’ count as non-traded industrial emissions 

and affect carbon budgets (CCC, 2016a, 2016b; IPCC, 2000). For the 

following electricity fuel sources, the ‘combustion emissions’ are multiplied by 

the DECC / BEIS projections for delivered electricity to measure the progress 

towards the grid emissions goal of 100 g CO2e kWh-1. ‘Associated emissions’ 

are emissions associated with the production and supply of gas that is then 

used in UK power generation.  

3.2.2.1 Fossil electricity sources 

Future GHG emissions from oil combustion are not considered in this 

analysis as oil has been phased out as a major grid electricity source in the 

UK since 2013, and generated just 0.60 TWh in 2015 (BEIS, 2017e). When 

incorporating past emissions, electricity from oil is assumed to have a 

‘combustion emissions’ intensity of 750 g CO2e kWh-1 (Weisser, 2007).  

It is assumed that coal power in the UK will be phased out in the next decade 

(Directive 2010/75/EU of the European Parliament and of the Council of 24 

November 2010 on industrial emissions (integrated pollution prevention and 

control)), but will play some role in UK power until 2026 particularly in the 

BEIS High Prices Scenario (BEIS, 2017e). It is assumed that coal has 

‘combustion emissions’ factor of 941 g CO2e kWh-1 (Stamford and Azapagic, 

2014). 

By 2035, it is projected that 25.6 GW of new gas capacity will have been built 

by MPPs. The total capacity will be 34.2 GW in 2035. Natural gas is expected 

to deliver 20.2 – 38.3 TWh in 2035, with 27.9 TWh as the central estimate. It 

is assumed that natural gas power in the UK has a ‘combustion emissions’ of 

386 g CO2e kWh-1 based on Stamford and Azapagic (2014). This is in 

agreement with the range of 365 – 415 g CO2e kWh-1 annually reported by 

BEIS / DECC (BEIS, 2016a; DECC, 2015a, 2014a, 2013a, 2012). Likewise, 

GHG intensity figures from Stamford and Azapagic (2014) of 401 – 508 g 

CO2e kWh-1 are assumed, including the shale gas central estimate of 462 g 

CO2e kWh-1 (see Table 3-1). Variance in geographic gas supply changes the 
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GHG intensity figures for gas in each of the four fuel mix scenarios as 

described above.  

Table 3-1 – GHG phase emissions of UK natural gas combined cycle power from 

Stamford and Azapagic (2014). All combustion emissions count towards the gird 

emissions target of 100 g CO2e kWh-1. The remaining ‘associated emissions,’ 

including plant construction, extraction and processing, and fuel transportation count 

UK carbon budgets when occuring within the UK. Stamford and Azapagic assume a 

small (0.08%) fugitive emissions rate for UK shale gas production during the 

extraction and processing phase.  

Phase emissions 

(g CO2e kWh-1)  

UK North 

Sea gas 

Norwegian 

North Sea 

gas 

LNG 

Algeria 

LNG 

Qatar 

UK shale 

gas 

(central) 

Plant construction 0.958 0.958 0.958 0.958 0.958 

Extraction and 

processing 

2.8 2.8 15.8 2.8 65.9 

Fuel transport 10.8 10.8 82.2 118.0 8.9 

Combustion 386.3 386.3 386.3 386.3 386.3 

Total 400.8 400.8 485.3 508.1 462.0 

 

3.2.2.2 Low GHG electricity sources 

This chapter assumes 16.0 GW of new nuclear capacity by 2035, part of a 

projected 17.2 GW of total nuclear capacity producing 135 TWh or 38% of 

UK demand by 2035 based on BEIS projections (2017e). It is assumed the 

‘combustion emissions’ for nuclear power are zero (Sovacool, 2008).  

The installed UK renewable energy capacity projected by BEIS / DECC does 

not specify what percentage will be solar, wind, hydro, or biomass. To 

simplify, it is assumed that 174 – 177 TWh of renewable electricity will be 

generated from 63 GW of wind and solar capacity in 2035 based on BEIS 

projections (2017e). Previously, DECC (2015b) projected 152 TWh with a 

range of 142.8 – 159.0 TWh in the central scenarios. In 2016, solar and wind 

generated 57.8% of renewable electricity (12.4% and 45.3% respectively) up 

from 37% in 2009 (BEIS, 2017c). It is assumed that the ‘combustion 
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emissions’ for these renewables are zero (Nugent and Sovacool, 2014). 

Biomass contributed 22% of renewable electricity in 2016 (BEIS, 2017c). 

However, there is very high variability in LCA estimates for biomass energy 

GHG intensity, including potentially negative emissions (Stephenson and 

MacKay, 2014). Therefore, biomass energy generation estimates are 

excluded from the scenarios and instead it is assumed that all UK renewable 

electricity is represented by an even split between solar and wind power.   

3.2.3 Electricity generation GHG emissions 

To examine the impact of a potential UK shale gas supply versus increased 

gas imports on the UK electricity intensity target of 100 g CO2e kWh-1 (and 

UK carbon budgets), the BEIS / DECC projections (see 3.1.1 above) models 

were evaluated and annual grid intensity calculated. This assessment does 

not include microgeneration, systems with less than 50 kilowatts electricity 

generation capacity (Energy Act 2004), and instead focuses on major power 

producers from five main generation types (Renewables, Coal, Oil, Natural 

Gas, and Nuclear).  

BEIS / DECC projects 7 versions of electricity emissions through to 2035, 

their Reference Scenario is here treated as the central estimate. The 

projected electricity generation type (TWh) is multiplied by the corresponding 

‘combustion emissions’. The annual sums of the electricity generation 

emissions are divided by the total electricity delivered in each model for that 

year. This gives the grid factor for each of the 4 fuel mix scenarios from the 

range of generation projected by BEIS / DECC through 2035.  

The associated non-combustion emissions for natural gas power is 

separated from the combustion emissions. These emissions are categorized 

into carbon budget periods for UK emissions and non-UK emissions, to show 

the additional impact of domestic shale gas (scenario 4) on carbon budgets. 
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3.3 Results and discussion  

3.3.1 Gas combustion emissions 

In the calculations, variance in grid emissions, and progress towards 100 g 

CO2e kWh-1, is driven by the DECC / BEIS projections (2017e; 2015b, 

2014b) for total gas-derived electricity. The geographic origin of the gas 

inputs to the NTS affects only the non-combustion associated emissions. For 

all 4 UK gas supply scenarios examined here, it is assumed that equal gas 

‘combustion emissions’ (Stamford and Azapagic, 2014). 

For the central BEIS projections, using the Stamford and Azapagic (2014) 

estimates of natural gas combustion intensity, 420 – 466 Mt CO2e (460) will 

be emitted from natural gas power in the UK from 2018 – 2035, compared to 

280 – 397 Mt CO2e (397) in the 2015 projections (see Figure 3-3). The 

narrow range in the 2016 projections is due to increased proportions of 

renewables in the 2016 projections by BEIS (2017e). Natural gas for 

electricity generation is expected to be increasingly substituted by renewable 

power, yet will still be responsible for more than 460 Mt CO2e over the next 2 

decades from combustion alone. These emissions will require permits for 

trading through the EU ETS during carbon budget periods 3 - 6.  

The use of UK shale gas does not affect the combustion emissions, as they 

are a function of electricity demand and total gas usage. Multiplying the 

DECC / BEIS projections (2017e; 2015b, 2014b)  by grid intensities for 

electricity type suggests that the 100 g CO2e kWh-1 goal will be reached by 

2028 in the Reference Scenario for both 2015 and 2016 projections. 

However, this goal could be jeopardized by lack of progress on establishing 

more ambitious UK GHG reduction policy, illustrated by the Existing Policies 

Scenario. In this scenario, the grid intensity goal is not reached by 2035 (see 

Figure 3-4). 
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Figure 3-3 - CO2e emissions from natural gas combustion for electricity supply in 2015 
and 2016 BEIS / DECC projections (BEIS, 2017e; DECC, 2015b). Despite increased 
renewable capacity, the UK is projected to be reliant on natural gas power for 
electricity supply in all BEIS / DECC projections. It is assumed that combustion of gas 
is 386 g CO2e kWh-1 (Stamford and Azapagic, 2014), and when multiplied by 2016 BEIS 
/ DECC projections, the UK will emit 420 – 466 Mt CO2e from 2018-2035 from natural 
gas electricity generation. 
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Figure 3-4 - Projections of progress toward UK grid intensity target of 100 g CO2e 
kWh-1. Current DECC / BEIS projections (BEIS, 2017e; DECC, 2015b) indicate the grid 
intensity target will be reached by 2028 in the Reference Scenario. However, the target 
may be in jeopardy if no new climate policies are enacted. The top of the range for 
2015 & 2016 indicate that without further progress on climate legislation, the grid 
emissions target will not be met. 

  

3.3.2 Associated gas production emissions 

The associated gas production emissions are separated by carbon budget 

periods (CB3 – CB6) for UK emissions. Non-UK emissions are those from 

fuel production and transportation outside of the UK. In scenarios 1, 2, and 3, 

UK emissions are similar across all carbon budget periods (see Figure 3-5). 

In scenario 4 (domestic shale gas), the UK would emit 28.5 Mt CO2e (25.8 – 

28.8 range) from 2018-2035 (as reported under current guidelines from The 

United Nations Framework Convention on Climate Change - UNFCCC) with 
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an additional 32.0 Mt CO2e (29.0 – 32.4 range) being emitted outside of the 

UK. If UK shale gas was not produced and the UK relied more on Qatari LNG 

(scenario 3), the share of UK-associated emissions (as reported under 

UNFCCC guidelines) would reduce to 8.1 Mt CO2e (7.2 – 8.1), but overall 

emissions to the atmosphere would actually increase to 64.9 Mt CO2e (59.0 – 

65.8), an 11.5 Mt CO2e increase over scenario 4. These sums indicate that 

the shale scenario (4) globally saves 12.5 Mt CO2e over the Qatari LNG 

scenario (3), but shifts emissions to the UK in terms of reporting 

requirements. Scenario 4, globally, leads to higher emissions than scenarios 

1 and 2 (24.4 Mt CO2e higher), and increases UK-reported emissions by 20.4 

Mt CO2e during carbon budget periods 3-6. This 20.4 Mt CO2e of production-

phase emissions is in addition to the 460 Mt CO2e emitted due to combustion 

at UK gas power plants over the same period (see Figure 3-5). 

3.3.3 Peaking gas power and renewable support 

Stamford and Azapagic (2014) assumed 50% load factor for natural gas 

plants in their calculations based on the Ecoinvent database (Ecoinvent 

Centre, 2010; Weidema and Hischier, 2006). This chapter does not adjust for 

lower load factors (power generation divided by capacity) in the future 

scenarios. BEIS data (BEIS, 2017e) project a gas power load factor below 

30% in 2028 and beyond, which are less efficient. Gas plants are more 

efficient when used for baseload power, assumed to be 85% in this thesis. If 

the UK commits to natural gas power for renewable support, higher load 

factors would be advantageous. A gas plant used at baseload power would 

emit more CO2e per plant, but fewer plants would need to be built, and gas 

demand could be reduced and planned. This paradox between gas capacity 

and renewable support disagrees with the motivation for 100% renewable 

power, but would save construction costs and GHGs. This also assumes that 

storage and interconnection will not be able to provide 100% backup for 

renewable electricity. 

If the UK imports power from continental Europe, there is an issue of GHG-

intensity of this imported power. The 2016 Updated Energy and Emissions 
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Projections (BEIS, 2017e) included storage in their calculations for electricity 

delivery the first time. The report also increased the supply of electricity from 

interconnection. These figures are outside of the boundaries of this study, but 

indicate a projected reliance on the EU continental grid for electricity supply.  

 

Figure 3-5 – Associated natural gas power production emissions by carbon budget 
period for 4 models in the central 2016 BEIS projection (BEIS, 2017e). Non-UK and 
total emissions are highest when using Qatari LNG. UK emissions are highest in 
scenario 4, when exploiting a domestic shale gas resource. The UK would be 
responsible for 28.5 These sums indicate that the shale scenario (4) globally saves 
12.5 Mt CO2e over the Qatari LNG scenario (3), but shifts emissions to the UK. 
Scenario 4 is globally worse than the scenarios 1 and 2 by 24.4 Mt CO2e, and 
increases UK emissions by 20.4 Mt CO2e during carbon budget periods 3-6. 

3.3.4 Fugitive CH4 emissions in shale gas production 

A key assumption in the Stamford and Azapagic (2014) data is a low fugitive 

emissions rate in the central case during shale gas production. Stamford and 

Azapagic (2014) do not calculate fugitive emission percentages, rather state 

fugitive emissions as a set volume per meter drilled based on EPA and 

Ecoinvent figures (Ecoinvent Centre, 2010; US EPA National Center for 

Environmental, 2012; Weidema and Hischier, 2006). These values are 0 m3 

gas, 4.1 m3 gas, and 54 m3 gas per meter drilled for the best, central, and 

worse cases respectively. Assuming the well is 5773 m (vertical 2773 m, 

horizontal 3000 m), 0 m3 gas, 23,669 m3 gas, and 312,000 m3 gas leaks in 

each respective case. Dividing these figures by the estimated ultimate 

recovery per well (EUR) of 84.95 Mm3 (3 bcf), 28.32 Mm3 (1 bcf), and 2.832 
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Mm3 (0.1 bcf) respectively, suggests fugitive emissions rates of 0%, 0.08%, 

and 11.0% during well completion.   

The composition of recovered gas is different in each case, shifting from 

sweet in the best case to sour in the worst case. The methane content of the 

gas in the best-case scenario contains 0.61 kg CH4 m-3 compared to 0.555 

kg CH4 m-3 and 0.5 kg CH4 m-3 in the central and worst cases respectively.  

The gas also contains 0.13 kg CO2 m-3, 0.115 kg CO2 m-3, and 0.1 kg CO2 m-

3 respectively. Assuming that 1 t CH4 = 25 t CO2e, each case leaks 0 t CO2e, 

331 t CO2e, and 3,931 t CO2e per well drilled during well completion.  

Emissions from flaring and intentional venting are set as a function of gas 

recovered, therefore the worst-case scenario has the least amount of flared 

and intentionally vented gas. Stamford and Azapagic (2014) assume venting 

and flaring of 11.2 g CO2 m-3 and 0.264 g CH4 m-3 gas produced. It is 

assumed that the remaining CH4 is vented and not flared.  Assuming that 1 t 

CH4 = 25 t CO2e, 1,529 t CO2e per well is vented and flared in the best case 

compared with 510 t CO2e and 50.9 t CO2e in the central and worst cases 

respectively. Considering all emissions in Stamford and Azapagic (2014), the 

shale gas scenarios represent increases of 2.8% (best-case), 15.3% (central-

case), and 175% (worst-case) over the same quantity of UK North Sea gas. 

Westaway et al. (2015a) criticize the high leakage used by Stamford and 

Azapagic (2014) in their worst-case scenario. They claim this is unlikely due 

to more strict UK oil and gas regulations, and the low EUR would make the 

well uneconomical. Stamford and Azapagic (2015) agreed with these 

assessments, but included this high estimate to illustrate the worst-case 

inferred in the USA by the literature at the time (Howarth et al., 2011). 

Howarth et al. (2011) conclude that 2-3% fugitive emissions rate would be 

the break-even point for conventional gas to be equal with coal in electricity 

generation GHG emissions. Experience in the US has shown fugitive 

emission rates as high as 12% in some cases (Howarth, 2015) with both 

systemic and accidental one-off events. These events are difficult to detect, 
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measure, and quantify. Shale gas production practices and regulations will 

be more strict in the UK than the US (UKOOG, 2015).  

The impact of 3% fugitive emissions is calculated. These emissions occur 

during well completion based on the Stamford and Azapagic (2014) central 

case. It is assumed that the EUR (28.32 Mm3) and gas composition (0.555 kg 

CH4 m-3 and 0.115 kg CO2 m-3) are the same, but the leakage rate is 

increased from 0.08% to 3%. This increases fugitive emissions during well 

completion from 331 t CO2e to 11,886 t CO2e while the planned venting and 

flaring is the same (510 t CO2e). Repeating this process for 1% (EPA, 2017, 

2014) and 2% (Howarth et al., 2011) leakage rates during well completion 

gives 4,472 t CO2e and 8,434 t CO2e leaked respectively. An additional 510 t 

CO2e is emitted from flaring and venting. These changes in the leakage rates 

correspond to increases in the production phase emissions for the central 

case (Stamford and Azapagic, 2014) from 65.8 g CO2e kWh-1 to 265 g CO2e 

kWh-1, 500 g CO2e kWh-1, and 735 g CO2e kWh-1 in each case. This does not 

consider emissions for site preparation, or on-site diesel generators which 

are not quantified in Stamford and Azapagic (2014).  

The fugitive emissions rate is adjusted to 1%, 2%, and 3%, and the process 

for calculating scenario 4 is repeated, to illustrate the increase in UK 

associated gas production emissions (see Figure 3-6 & Figure 3-7). When 

the fugitive emissions rate is increased to 1%, an additional 54.2 Mt CO2e 

(49.5 – 55.0 Mt CO2e range) are emitted during carbon budget periods 3 – 6. 

When the rate is increased to 3%, an additional 182.3 Mt CO2e (166.0 – 

184.7 Mt CO2e range) are emitted compared to the low (0.08%) leakage rate 

in scenario 4. Comparing scenario 4 (UK shale gas) with 1% leakage rate to 

scenario 3 (increased Qatari LNG), an additional 74.6 Mt CO2e are emitted in 

the UK carbon budget periods (68.8 – 75.6 Mt CO2e range). This same 

adjustment increases global emissions by 41.7 Mt CO2e (35.1 – 42.7 Mt 

CO2e range) over the same period. This indicates that even a modest 

increase in fugitive emissions makes shale gas worse for carbon budgets, 

and global emissions, compared with increases in LNG imports to the UK. 
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Figure 3-6 – Variance in greenhouse gas emissions from fugitive emissions, vented, 
and flared gas in the UK applied to scenario 4. Stamford and Azapagic (2014) assume 
a 0.08% leakage rate during well completion, which contribute to a small source of 
upstream shale gas emissions. Here leakage rates of 1%, 2%, and 3% are modelled 
and compared with Stamford and Azapagic, and business-as-usual (BAU)  UK gas 
production emissions from DECC / BEIS (2017e). Variance in DECC / BEIS estimates 
of UK gas-derived electricity creates the range of each estimate. These emissions 
would need to be accommodated into UK carbon budget periods 3 – 6.  
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Figure 3-7 - Associated gas production emissions for natural gas power by carbon 
budget period for 4 models in the central 2016 BEIS projection (BEIS, 2017e), adjusted 
for higher fugitive shale gas emissions. Stamford & Azapagic (2014) assume 0.08% 
fugitive leakage in the UK. This chapter increases the leakage rate to 1%, 2%, and 3%, 
and find that up to 210 Mt CO2e are emitted in gas production for natural gas power if 
leakage rates increase to equal observations in the US.  
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3.4 Conclusions 

3.4.1 Impact on carbon targets and budgets 

Under the current reporting regime (IPCC et al., 2006), the source of natural 

gas has no bearing on the UK’s ability to reach the grid intensity target. The 

amount of projected natural gas in the electricity system, compared with 

lower GHG electricity sources, is the main factor in determining the grid 

intensity results. In response to UK Government funding cuts for carbon 

capture and storage (CCS), BEIS has all but eliminated CCS deployment 

from future projections, and increased the dependency on fossil fuel 

electricity to supplement the intermittency of renewables (BEIS, 2017e). This 

places more pressure on gas imports, or a domestic shale gas industry to 

meet the gas power supply gap. Imported gas would have a lower impact on 

UK carbon budgets under current reporting requirements, but UK shale gas 

may have lower overall emissions than imported LNG if shale gas production 

emissions were very low. However, domestic shale gas production with even 

a modest 1% fugitive emissions rate would risk exceedance of UK carbon 

budgets.  

Regardless of these projections, this study indicates that the UK grid intensity 

target can be achieved in the second half of next decade in the BEIS 

Reference Scenario and High Fuel Price Scenario (BEIS, 2017e). If UK shale 

gas production were to go forward in 2018 (scenario 4), the UK would be 

responsible for all emissions industry-wide within carbon budgets under the 

current reporting regime. The BEIS projections (2017e) do not incorporate 

UK shale gas production estimates into their projections, however, using the 

BEIS Existing Policies Scenario gives the high estimates for grid intensity of 

gas electricity. Based on the current GHG accounting practices (see 5.2 

below), current climate policies, and globalized market for LNG, the UK 

would likely use the lowest-priced gas regardless of origin. Without further 
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progress on UK climate policies, cheaper LNG imports would place the grid 

intensity goal in jeopardy (see Figure 3-4).  

3.4.2 Production and consumption-based accounting 

practices 

This study illustrates potential gaps and unintended consequences in 

production-based GHG accounting practices. While production-based 

accounting is in line the UNFCCC reporting (IPCC et al., 2006), it allows for 

potential ‘offshoring’ of GHG emissions in the international trade of fossil 

fuels. As the four scenarios encompass a range of domestic and imported 

gas supplies, a scenario of increased imports could increase the emissions 

burden for the source nations. Even the highest import scenario considered 

here, the amount of gas imported to the UK from these nations is a small 

percentage of their total exports. The UK’s commitment to national carbon 

budgets based on production emission may create a perverse incentive to 

pursue fossil fuel imports and increase industrial emissions overseas that do 

not then appear in UK GHG accounts. Essentially, the UK would export 

responsibility of emissions to meet carbon budgets. Under these reporting 

systems, a domestic shale gas industry would bring some production 

emissions back within the UK budgets. As shown above, 20.1 Mt CO2e in 

total would be emitted in the model with a low fugitive emissions rate 

(0.08%). These emissions would be acceptable in terms of net climate impact 

if they are less than the same quantity of emissions per unit of electricity from 

imported Qatari LNG. And, most importantly, the same quantity of LNG is not 

produced. 

Under a consumption-based emissions accounting system, such offshoring 

of emissions might be avoided. For the UK to maintain a leadership position 

on GHG reduction policies, it is suggested that incentivization of use of the 

lowest GHG-intensity natural gas for power generation could be encouraged 

through such consumption-based accounting.  
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Chapter 4 Greenhouse gas emissions 
intensity of US and UK shale gas 
use for heat: impacts of source, 
distribution, and use 

Summary 

The United States became a net exporter of natural gas at the end of 2017, 

largely due to increased production of shale gas. The United Kingdom is 

pursuing a domestic shale gas industry to meet continued demand as 

traditional gas production decreases. At the same time, the UK is renewing 

gas distribution pipeline systems to decrease leakages. This chapter 

assesses the greenhouse gas emissions intensity of US and UK shale gas as 

determined by source, distribution and end use for heat. It assesses the merit 

order of shale gas imported to the UK from the US versus domestic 

production and use of shale gas in the US or UK, considering distribution 

network renewals and the total emissions intensity of shale gas used. It is 

concluded that the import and use of US-produced shale gas LNG in the UK 

would increase GHG emissions by 14.3 Mt CO2e (19.2%) relative to the 

same quantity of domestic UK shale gas production and use. The chapter 

also find that losses in the distribution phase represent a highly uncertain, but 

potentially important component of shale gas GHG intensity. This chapter 

considers the implications for GHG emissions measurement and reporting, 

climate change mitigation via municipal pipeline renewal, and national carbon 

budgets to 2035.   

Work presented in this chapter is based on a manuscript in review at Science 

of the Total Environment.  
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4.1 Introduction 

In September 2016, the United Kingdom imported its first shipment of shale 

gas products from the United States (Davies, 2016) to Grangemouth, despite 

a Scottish moratorium on domestic shale gas. The shipment of ethane, a 

shale gas by-product, will be used by Ineos for plastics manufacturing. This 

shipment may herald significant imports of US shale gas to the UK in the 

coming years. According to US Energy Secretary, Rick Perry, the US has 

contracts to export 52 billion cubic meters (bm3) yr-1 of US Liquefied Natural 

Gas (LNG) to Europe. The first US shale gas LNG shipments for Northern 

Europe arrived in Poland and The Netherlands in June 2017 (Perry, 2017), 

and LNG shipments arriving in the UK in March (EIA, 2018b) 

In the US, traditional natural gas production growth plateaued in 1970 for 

decades (EIA, 2018c). However, beginning in 2007, the so-called ‘shale gas 

boom’ rejuvenated the industry such that the US became a net exporter of 

natural gas in 2017 (EIA, 2018b). The US Energy Information Agency (EIA) 

forecasts that the US will export over 210 bm3 yr-1 by 2040 (EIA, 2017; Yen, 

2016) in addition to continued domestic consumption. BP currently holds a 

contract in the UK for US shale gas LNG imports, and will begin importing 

this year (Perry, 2017). 

The overall greenhouse gas (GHG) emissions intensity of shale gas use, 

either in the US or the UK, can be affected by a number of different factors 

along the gas supply chain. Much attention has been focused on the fugitive 

emissions of methane (CH4) occurring during extraction of shale gas (e.g. 

Alvarez et al., 2012; Howarth, 2015), with the source of shale gas having a 

potentially very large impact on overall emissions intensity (Turk et al., 

2018a). Likewise, processing, transport, distribution, and the end use of the 

gas, whether for electricity generation, heat or domestic supply, may 

significantly alter life cycle emissions (e.g. Stamford and Azapagic, 2014; 

Weber and Clavin, 2012a).  
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Of these key phases in the gas supply chain, the distribution phase is 

arguably the least understood in terms of its impact on overall emissions 

intensity (e.g. the extent of fugitive losses from municipal gas distribution 

networks, Jackson et al., 2014; Phillips et al., 2013; Zazzeri et al., 2017). The 

National Grid in the UK is in the process of renewing gas pipelines at the city 

level with polyethylene pipelines with 80 year lifespans (Dodds and 

McDowall, 2013; HSE, 2011), while in the US, some city-level CH4 

measurements have indicated high fugitive losses and have highlighted the 

potential mitigation benefits of pipeline renewal (Gallagher et al., 2015; 

Jackson et al., 2014; Phillips et al., 2013).  

This chapter assesses the impact of pipeline renewal for US and UK natural 

gas transmission and distribution. This chapter is unique is extending the 

upstream gate of UK gas to include US shale gas, transported at LNG, and 

compares the entire life cycle emissions with domestically produced UK 

shale gas.  

The multiple phases that determine overall emissions intensity of gas use, 

and the national and local variations in potential fugitive CH4 losses in the US 

and UK shale gas supply chains, raise questions about what the lowest 

emissions actions for gas extraction, distribution methods, and end-use in the 

UK and US might be (see Figure 4-1). This chapter assess the GHG 

emissions intensity of imported US shale LNG to the UK compared to that of 

domestic shale gas production and use in the US and UK, considering 

production practices, transport, and scenarios of gas grid renewal. As such, 

this chapter explores a ‘climate change merit order’ for end-use of UK versus 

US-produced shale gas. 
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Figure 4-1 - Process diagram for shale gas use in the US & UK. Shale gas from the US 
is being imported to the UK via LNG. When the UK shale gas industry begins 
production, the liquefaction, shipping, and regasification processes are avoided. 
Differences in the efficiency of local distribution networks and end use will determine 
the least GHG-intense pathway. 

4.1.1 LCA of shale gas 

Abrahams et al. (2015) assessed life cycle greenhouse gas emissions from 

US LNG exports. They found that exported US shale LNG has mean pre-

combustion emissions of 37 g CO2e MJ-1 (27 – 50, 90% confidence interval - 

CI) when regasified in Europe or Asia. Shipping US LNG accounted for only 

3.5 – 5.5 % of pre-combustion lifecycle emissions, demonstrating that 

shipping distance is not a major factor in total emissions. The bulk of pre-

combustion emissions were found to be in upstream production, at 27.9 g 

CO2e MJ-1 (18.5 – 28.4, 90% confidence interval). The combustion phase 

added a further 43-50 g CO2e MJ-1.  

In a scenario of US shale gas LNG export for electricity generation in Europe, 

Abrahams et al. (2015) estimate that life cycle emissions are 655 g CO2e 

kWh-1 with a confidence interval of 562 – 770, or 87 g CO2e MJ-1. This central 

estimate represents an 11% increase over the use of US-produced shale gas 

in US electricity generation (Abrahams et al., 2015). 

Stamford and Azapagic (2014) estimate that traditional North Sea Gas has 

life cycle emissions of 401 g CO2e kWh-1, compared to UK-produced shale 

gas at 462 g CO2e kWh-1 (with a range of 412 – 1108). Note that this study 

assumes an 11% leakage rate in the worst-case scenario for UK shale gas 
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extraction, compared to the upper-bound of 4% in the Abrahams et al. (2015) 

study of US shale gas extraction (Turk et al., 2018a). 

A criticism of the Stamford and Azapagic (2014) study is the assumed 52.5% 

efficiency for natural gas combined cycle (NGCC) power efficiency 

(Westaway et al., 2015a, 2015b). Westaway et al. (2015a) suggest using 

Stamford and Azapagic’s own assumed efficiency to convert the 462 g CO2e 

kWh-1 upstream to chemical energy to avoid this efficiency assumption. 

Converting the full life-cycle in SI units (where 1 kWh = 3.6 MJ), Stamford 

and Azapagic’s (2014) estimates equate to 67 g CO2e MJ-1 (60 – 161 g CO2e 

MJ-1 range) when UK-produced shale gas is used for domestic electricity 

generation. This central estimate represents a 20 g CO2e MJ-1 saving in 

GHG emissions intensity over the use of US shale gas LNG imports to 

Europe for electricity generation compared to the observations in Abrahams 

et al. (2015). 

As US shale gas production will continue to exceed domestic demand, 

increasing exports to the UK (where domestic gas production is unlikely to 

meet demand) (OGA, 2017; Turk et al., 2018a) are likely. If these US shale 

gas imports represent an increase in GHG emissions intensity relative to UK-

produced shale gas, the question then arises as to whether US shale gas 

leakage rates (i.e. upstream emissions) and supply chain emissions can be 

managed sufficiently to close the estimated 20 g CO2e MJ-1 emissions 

intensity gap. In such a case, US shale gas LNG imports could allow for 

future UK gas demand gaps (OGA, 2017; Turk et al., 2018a) to be met while 

minimising impacts on overall emissions intensity for gas-fired UK electricity 

generation. For example, the Abrahams et al. (2015) study assumes that the 

equivalent of nearly 10 g CO2e MJ-1 are lost due to fugitive emissions in US 

upstream production.  

More recently, Balcombe et al. (2017) surveyed 454 papers on the natural 

gas supply chain largely focused on the US, and selected 250 for analysis. 

They found that natural gas supply chain combined CO2 and CH4 emissions 

ranged from 3.6 to 42.4 g CO2e MJ-1 HHV with a central estimate of 10.5. 
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This is a significant decrease from previous findings by Abrahams et al. 

(2015). Balcombe et al. also found six estimates of fugitive emissions from 

shale gas production above 100 g CO2e MJ-1 HHV (232, 285, 304, 618, 

1910, 5250). These estimates illustrate the “fat tail” of emissions in shale gas 

production, where observations from “super-emitters” skew results upwards 

by 2-3 orders of magnitude during gas extraction and recovery.  

4.1.1.1 Reduced emission completions (RECs) 

A significant proportion of the literature on fugitive CH4 leakages focuses on 

the flowback phase of well completion (Howarth, 2015; O’Sullivan and 

Paltsev, 2012). Flowback is the phase when large quantities of hydraulic 

fracturing fluid return to the surface and can bring with them large volumes of 

natural gas. Balcombe et al. (2017) note that these quantities are equivalent 

to 0-87 g CO2e MJ-1 HHV per well completion. Three key differentiators 

separate the data on flowback emissions: First is whether the data are 

primary source measurements or secondary calculations. Second is whether 

the well is conventional or unconventional, as conventional wells do not 

utilize hydraulic fracturing and thus have no flowback emissions. 

Conventional well emissions equate to less than 0.1 g CO2e MJ-1 HHV per 

well completion. Third is whether Reduced Emission Completions (RECs, 

also known as “green completions”) are utilized in the well completion 

process. RECs are a process where separate equipment are used to 

separate solids from liquids during the flowback period of well completion. 

RECs are used to capture gas during flowback for added production or flaring 

and have been compulsory in the US since 2015, and are required in the UK. 

They can reduce emissions from well completions by 75 – 99%. (Oil and 

Natural Gas Sector: New Source Performance Standards, National Emission 

Standards for Hazardous Air Pollutants, and Control Techniques Guidelines). 

4.1.2 Transmission, storage, and distribution network 

The UK natural gas pipeline distribution network consists of high-pressure 

national transmission network (NTS), medium-pressure distribution network 

(Local Transmission System, LTS), and low-pressure building connections. 
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The NTS was constructed in the 1960s from high-strength steel and is 

expected to stay in service for 80 years, or roughly until 2050 (Dodds and 

Demoullin, 2013; Dodds and McDowall, 2013). The UK is in a 30-year 

process of replacing cast-iron low-pressure distribution pipeline mains with 

polyethylene, the “Iron Mains Replacement Programme” (IMRP). This project 

began in 2002 and will conclude in 2032 (Dodds and McDowall, 2013; HSE, 

2011).  

4.1.3 UK gas demand 

BEIS and OGA estimate that UK gas demand will fluctuate, but not decrease 

below 61.5 bm3 yr-1 primary demand before 2035. Domestic production is 

projected to fall at -5% yr-1 from 2020 onwards (OGA, 2017; Turk et al., 

2018a). Gas used for electricity generation is projected to fall, but still be 

used in large quantities through 2035. Additionally, 463 bm3 gas will be used 

for industrial and domestic heating from 2020 to 2035 (446.7 – 487.7 range, 

see Figure 4-2) (BEIS, 2017e; OGA, 2017).  

Currently the UK imports 45% of gas demand, and will rise steadily to 78% 

by 2035 (OGA, 2017). This means that the UK will depend upon increases in 

imported natural gas and/or new domestic sources of natural gas through 

2035. This chapter examines the impacts of UK and/or US LNG shale gas 

supply meeting the UK gas demand. 
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Figure 4-2 - UK final gas consumption calculated from BEIS (2017e). The UK is 
projected to have continued reliance on natural gas in residential sectors through 
2035. Natural gas usage estimates in electricity generation are excluded in the total 
range. 
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4.2 Methodology 

Table 4-1 – Natural gas phase emissions from Balcombe et al. (2017) 

 Phase Emissions (g 

CO2e MJ-1 HHV) 
Low Median 95th Percentile Max 

Pre-production 0.1356 0.59 1.8 8.48 

Extraction 1.5 1.0 19.8 5465.6 

Processing 0.86 4.1 10.5 13.6 

Transmission, storage, 

and distribution 
0.6 5.0 10.2 12.0 

Estimated total 3.1 10.7 42.4 5499.7 

 

Table 4-2 - Natural gas LNG phase emissions from Balcombe et al. (2017) 

Phase Emissions (g 

CO2e MJ-1 HHV) 

Low Median 95th Percentile Max 

Pre-production 0.158 0.68 2.07 9.83 

Extraction 1.8 1.11 22.8 6282.3 

Processing 0.99 4.7 12.1 15.6 

Transmission, storage, 

and distribution 

0.69 5.7 11.8 13.8 

Estimated sub-total 3.7 12.2 48.7 6321.53 

LNG sub-total 3.9 8.9 15.9 20.3 

Estimated total 7.6 21.1 64.6 6341.8 
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Table 4-3 - LNG phase emissions from Balcombe et al. (2017)  

LNG Phase Emissions 

(g CO2e MJ-1 HHV) 

Low Median 95th Percentile Max 

Liquefaction 2.8 6.4 9.0 10.5 

Transportation 0.86 1.98 4.8 7.3 

Re-gasification 0.3 0.5 2.1 2.5 

LNG sub-total 3.9 8.9 15.9 20.3 

 

4.2.1 Extraction and processing emissions 

The leakage rate is the most impactful figure on the upstream emissions in 

Abrahams et al. (2015). However, the maximum leakage rate is only 4% 

based on Heath et al. (2014) and Weber and Clavin (2012). There is 

discussion in the literature that fugitive emission rates have systemically 

reduced in the US (Schwietzke et al., 2016) since the beginning of the shale 

boom. However, there have been observations of leakage rates of 12% 

(Howarth, 2015; Schneising et al., 2014), and an overall increase in CH4 

emissions from gas production in US inventory data (EPA, 2017). Schneising 

et al. (2014) estimate 9.5% leakage rates at well-completion and an 

additional 2.5% from upstream distribution leakages based on satellite 

observations. 

Heath et al. (2014) harmonized LCA estimates for shale gas and 

conventional gas power according to leakage rates at the time, and cite an 

emissions of intensity for upstream emissions of 21.3 g CO2e MJ-1 (17.6 – 

24.8, 90% CI). Here, we use the same method to derive estimates from more 

recent observations (Howarth, 2015; Schneising et al., 2014). 

A potential UK shale gas industry would, in theory, have a GHG emission 

intensity 20 g CO2e MJ-1 lower than that of imported US shale LNG. Up to 10 

g CO2e MJ-1 of this difference is based on 1.3% of unconventional US shale 

gas released as fugitive emissions (Heath et al., 2014b), compared to near-
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zero UK fugitive emissions assumed by Stamford & Azapagic (2014; Turk et 

al., 2018a). Allen et al. (2014) demonstrated that leakage rates can be kept 

below 1% when best practices are observed in Texas. Systemic leakages 

observed and documented in the literature indicate that this low number is 

unlikely (Howard et al., 2015). 

Considering the multitude of estimates, this chapter uses the data surveyed 

by Balcombe et al. (2017) in the calculations because the recentness of the 

study, and its incorporation of RECs within the analysis (see Tables 4-1,4-2, 

and 4-3). This chapter assumes that the median upstream extraction and 

processing emissions are 5.7 g CO2e MJ-1 (2.5 – 32.1, 95% CI) and are 6.5 g 

CO2e MJ-1 (3.0 – 36.97, 95% CI) when extracted for LNG. These estimates 

decrease the median from Heath et al. (2014), but demonstrate a more 

significate upper-end emissions intensity.  

4.2.2 Liquefaction, shipping, and regasification emissions 

Abrahams et al. (2015) found that liquefaction adds 6.2 g CO2e MJ-1 (2.4 – 

8.8, 90% CI) to natural gas carbon intensity, based on industry studies and 

academic literature (Arteconi et al., 2010; Barnett, 2010; Biswas et al., 2011; 

Cohen, 2013; Hardisty et al., 2012; Heede, 2006; LCFS, 2012; Okamura et 

al., 2007; Skone et al., 2014, 2012; Tamura et al., 2001; Verbeek et al., 2011; 

Yoon and Yamada, 1999; Yost and DiNapoli, 2003). The Monte Carlo 

method chosen by Abrahams et al. (2015) skews the results to the lower end 

of the range in the literature, and is justified by increased efficiency 

demonstrated in later studies. Balcombe et al. (2017) further refine this figure 

to a 6.4 g CO2e MJ-1 median (2.8 - 10.5, 95% CI). Here this chapter uses 

figures from Balcombe et al. (2017) for the liquefaction phase in the overall 

emissions intensity calculations.  

Shipping LNG from the Louisiana coast to UK and Netherlands has mean 

emissions of 1.2 – 1.3 g CO2e MJ-1 according to Abrahams et al. (2015). 

These transport emissions nearly double if LNG originates on the Pacific 

coast in Coos Bay, Oregon. When normalizing for SI unit (where 3.6 kWh = 1 
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MJ), Stamford and Azapagic (2014) found shipping LNG from Algeria and 

Qatar to the UK emits 22.8 and 32.8 g CO2e MJ-1 respectively. Stamford and 

Azapagic (2014) relied on LCA calculations from Ecoinvent (2010; Weidema 

and Hischier, 2006), whereas Abrahams et al. (2015) on more extensive 

literature (Corbett and Winebrake, 2008; Heede, 2006; Mokhatab et al., 

2013; Skone et al., 2014; Tamura et al., 2001). It is unclear what 

assumptions are made in the Ecoinvent database for LNG shipping, including 

electricity loss in conversions. Balcombe et al. (2017) found LNG 

transportation emissions to vary widely depending on route, efficiency of 

tanker, and CO2 combustion. They found total emissions from LNG 

transportation to be 0.9 – 7.3 g CO2e MJ-1 HHV, and broadly in line with 

Abrahams et al. (2015) for similar routes from North American to Europe (2.0 

g CO2e MJ-1 HHV median, 0.9 – 3.1, 95% CI)(Balcombe et al., 2017). We use 

the range reported in Balcombe et al. (2017) in the calculations.  

Regasification emits only 0.5 g CO2e MJ-1 (0.26 – 2.53, 95% CI) mostly from 

CO2 combustion for energy usage (Balcombe et al., 2017). This chapter uses 

this figure for this phase in the calculations. 

4.2.3 Gas distribution and leakage 

In Boston, Phillips et al. (2013) used mobile analysers to measure CH4 

leakages across the entire city distribution network. They found an isotopic 

signature indicating that the leakages were from anthropogenic sources, with 

concentrations as high as 15-times the global mean background level. 

McKain et al. (2015) estimate that 2.7% +/- 0.6% of lifetime natural gas 

production leaks from downstream natural gas components including 

transmissions, distribution, and end use. Emission inventories previously 

estimated 1.1% leakages. In Washington D.C., Jackson et al. (2014) 

measured city-wide methane concentrations 37% above 2012 global 

background concentrations observed at Mauna Loa. They used the same 

methods as Phillips et al. (2013), and confirmed the leaks as having 

anthropogenic sources through isotopic signatures. US cities which have 

undergone improvements in pipeline distribution have measured 90% - 96% 
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lower CH4 concentrations (Gallagher et al., 2015; von Fischer et al., 2017). 

Von Fischer et al. (2017) suggest that the final leaks could be further reduced 

with upgrades to consumer appliances. 

In the UK, data are often older and more scarce. In 1990, Mitchell et al. 

(1990) estimated that the distribution system leaked between 1.9% and 

10.8% (5.3% mean). Lowry et al (2001), and Zazzeri et al. (2017, 2015) 

measured δ13C-CH4 plumes in London, fingerprinting fossil fuel emissions 

within the distribution network. Zazzeri et al (2017) note that their mobile CH4 

measurements show 11 spikes of CH4 density greater than 2.5 ppm above 

the background concentration in 155 miles driven. This is a lower ratio per 

mile compared to Phillips et al (2013) observations of 3356 leakages in 

Boston over 785 miles driven. Boothroyd et al. (2018) found leakage rates 

along the NTS to be of similar magnitude and density to lower end of US 

distribution leaks (Chamberlain et al., 2016; Gallagher et al., 2015), but note 

that local distribution leak rates remains unclear. These studies illustrate the 

need for further review of systemic leakage rates in UK and US cities. This 

chapter does not include these emissions rates in our calculations due to the 

low number of observations, however, as discussed below, quantification of 

these “super emitters” is an important area for future study and potential 

regulation.  

Other studies estimate distribution leakage rates of 0.1 – 1.9% of produced 

CH4 in the UK gas distribution network (Harrison et al., 1996; Lamb et al., 

2015; Mitchell et al., 1990; Moore et al., 2014), equivalent to an emissions 

intensity for this phase of 0.3 – 7.2 g CO2e MJ-1 (Balcombe et al., 2017). 

Here, this chapter assumes these same leakage rates for UK and US, along 

with the 90 – 96% savings potential of interventions described in Gallagher et 

al. (2015) and von Fischer et al. (2017). Chamberlain et al (2016) note that 

the prevalence of cast iron replacement programs significantly reduce CH4 

leakage rates, in agreement with Gallagher et al (2015). They note that these 

results suggest the prevalence of leak-prone pipe is the main driver of CH4 

distribution leakage, regardless of city size. This chapter assumes that the 
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leakage rate for transmission, storage and distribution is 5.0 g CO2e MJ-1 

HHV (0.6 – 10.2 range) (Balcombe et al., 2017). 

4.2.3.1 Pipeline renewal assumptions 

We assume that the UK pipeline renewal project will be completed by 2032 

(HSE, 2011) and will reduce fugitive emissions from distribution by 90 – 96% 

from a 2002 baseline (Balcombe et al., 2017; Chamberlain et al., 2016). For 

simplicity, it is assumed that a linear reduction from a baseline of 5.0 g CO2e 

MJ-1 HHV (0.6 – 10.2 range) to 0.2 - 0.5 g CO2e MJ-1 HHV. For simplicity, the 

improvements to transportation, storage, and distribution rates are applied to 

the total figures. Exact estimates of the portion of leakages (and therefore 

improvements) for only the local low pressure building connections is not 

possible to ascertain. It is possible that the interventions studied could skew 

high (more effective), but will give a view to the entire system being renewed.  

The US does not have a coordinated or nationalize pipeline renewal program 

similar to the IMRP in the UK. Individual states set regulations and timelines 

for gas infrastructure improvement and repair (e.g. (New York State Electric 

and Gas Corporation (NYSEG), 2002; Pennsylvania Public Utility 

Commission (PUC), 2016; Reed, 2017). Engagement with regulations and 

repair programs is up to the individual operators, and can have disparate 

results (Chamberlain et al., 2016). In the US, two separate cases are 

assumed, where some locales have renewed pipeline (e.g. Ithaca, NY), while 

others use leaking cast iron distribution infrastructure of the same baseline 

rates as above (Chamberlain et al., 2016; Gallagher et al., 2015; von Fischer 

et al., 2017).  

4.2.4 UK gas demand 

It is assumed that future UK gas demand fluctuates according to government 

estimates from BEIS (2017e) and OGA (2017). These estimates project UK 

North Sea gas production declining -5% yr-1 from 2022 onwards. This chapter 

uses scenario 4 from Chapter 3, Turk et al. (2018a), to model the quantity of 

shale gas required to meet UK demand. In this scenario, a fixed quantity of 

gas is imported to the UK from Norway (19.6 bm3 yr-1), Qatar (10.1 bm3 yr-1), 
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and Algeria (0.91 bm3 yr-1). Additionally, 277.7 bm3 of natural gas will be 

imported from the US as shale gas LNG or produced domestically as UK 

shale gas from 2020-2035. This gas accounts for 43.5% of demand in 2020 

(11.0 bm3) to 78.4% in 2035 (19.8 bm3). BEIS projects that the UK will use 

463 bm3 natural gas (446.7 – 487.7 range) for residential heating in 2020 – 

2035), compared to a national total final gas consumption of 692.2 bm3 

natural gas (666.6 – 729.9 range) over the same period (BEIS, 2017a).   

It is assumed that this gas contains 39.6 MJ m-3 based on BEIS estimates for 

gas consumption in 2016 (BEIS, 2017a). If this gas were to remain in the US, 

it is assumed the same energy content used in heating and domestic use. 

Abrahams et al. (2015) assume gas combustion for heating emits 57 g CO2e 

MJ-1 (51 – 65, 90% CI) without accounting for leakages in the distribution 

network. The same figures for combustion for heat in the US and UK are 

assumed. 

4.2.5 Cases examined 

This chapter focuses on the GHG intensity of the 277.7 bm3 supply of gas 

required to fill the UK production gap from 2020 - 2035. For simplicity, it is 

assumed that this quantity of gas is sourced either from US shale gas LNG 

imports or from UK domestic shale gas. This chapter first examines the GHG 

intensity of the supply of gas up to the point of combustion for residential 

heating in the following scenarios: 

1. US shale gas used in the US 

2. US shale gas exported to the UK as LNG 

3. UK shale gas used domestically 

For the UK cases, this chapter examines the impact on the progress of the 

IMRP over time (see Error! Reference source not found.). In the US the i

mpact of completed renewals is compared with un-renewed cast iron 

distribution. 
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4.3 Results 

4.3.1 Merit order for shale gas heat 

Prior to interventions of distribution renewals, the GHG footprint of shale gas 

for heat emits 67.7 g CO2e MJ-1 (52.9 – 107.3 range) in the UK compared to 

78.1 g CO2e MJ-1 (58.5 – 129.7 range) when using US shale gas transported 

as LNG (Figure 4-3). With intervention by completing the renewal of the 

pipeline distribution network, the GHG footprint of shale gas for heat emits 

63.2 g CO2e MJ-1 (53.6 – 98.12 range) in the UK compared to 73.6 g CO2e 

MJ-1 (58.7 – 121.2) when using US shale gas transported as LNG (see 

Figure 4-4). If the US shale gas remains in the US for local heat 67.7 g CO2e 

MJ-1 (54.1 – 107.3) are emitted. 

 

Figure 4-3 - Phase emissions for shale gas used for local heat in the UK and US. The 
range is expressed as the minimum observations to the 95th percentile observations 
by Balcombe et al. (2017). USA shale gas exported as LNG to the UK has the highest 
overall GHG profile due to additional emissions in the LNG process. ᵅTransmission, 
Storage, & Distribution 
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When considering the increases in demand for gas for residential heat in the 

UK, and the assumed energy content of gas (57 g CO2e MJ-1, 51 – 65, 90% 

CI), UK shale gas would emit 27.5 MT CO2e (23.3 – 42.7 range) in 2020 

compared to 32.0 (25.5 – 52.8 range) if US shale gas LNG were used in the 

same quantity. More importantly for the UK, 25.3 MT CO2e would be 

released in the UK, and would save 2.2 MT CO2e from carbon budgets in 

year 2020, while adding an additional 4.6 MT CO2e to the atmosphere. 

Although there would be small savings in the UK carbon budget, the overall 

impact to global GHG balances would increase.  

Projecting forward to the year 2035, as the domestic supply of conventional 

gas falls, and more shale gas is used, the same proportions of savings and 

emissions occurs. UK shale gas would emit 49.6 MT CO2e if used for 

domestic heat (42.0 – 77.0 range), compared to 57.7 MT CO2e if US shale 

LNG is imported in the same quantity (46.0 – 95.1 range). However, the UK’s 

share of the LNG emissions would be 45.7 MT CO2e (40.7 – 53.6 range). 

These results suggest that the use of LNG is the least preferable option for 

atmospheric emissions due to the added processes for LNG, which increase 

emissions throughout the supply chain (See Supporting Tables 1, 2, & 3). 

The UK carbon budget would benefit from the imported gas as opposed to a 

new domestic industry, however, the total emissions to the atmosphere 

would increase. 
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Figure 4-4 -GHG phase emissions for shale gas supply with renewed UK pipeline 
infrastructure from IMRP. The range is expressed as the minimum observations to the 
95th percentile observations by Balcombe et al. (2017). ᵅTransmission, Storage, & 
Distribution 

4.3.2 Impacts of interventions 

The impacts of pipeline renewals would save the 220 MT CO2e in in the 

median scenario (see Figure 4-5) over the years 2002-2035 compared to a 

UK “business-as-usual” (BAU) scenario. The effectiveness of pipeline 

renewal is potentially greater than suggested in our results, as we examine 

only a portion of UK total gas demand. For simplicity, equal volumes of 

imported US shale gas LNG are compared with domestically produced UK 

shale gas. These quantities are a portion of the total gas used through the 
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Figure 4-5 - UK gas pipeline distribution leakage rates projections based on emission 
estimates from Balcombe et al. (2017) and OGA (2017) gas demand, pipeline renewal 
estimates HSE (2011), Chamberian et al. (2016), and von Fisher et al. (2017). This 
chapter projects CO2e savings in shale gas scenario with pipeline renewal projects 
across the UK will save 220 MT CO2e (213 – 227 median range) from 2002 – 2035 from 
the BAU scenario compared to the same quantity flows of gas without interventions 
(blue wedge). The blue wedge represents the calculated mean UK national emissions 
saved during the 30 year IMRP. 

When these quantities of gas are normalized for final heat delivery from 2020 

– 2035, supply chain atmospheric emissions are highest when importing US 

shale LNG to the UK, compared to all other cases (see Figure 4-6). There is 

also an increase of 14.3 Mt CO2e in UK emissions over carbon budgets 3-6 

compared to a the same quantity of UK shale gas extracted from 2020 – 

2035. This is due to the median estimates for regasification exceeding the 

median leakage rate for equal quantites of UK shale gas and US shale LNG 
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(see Tables 4-1, 4-2, and 4-3). Importing this quantity of gas increases 

atmospheric emissions by an additional 163.77 Mt CO2e from extraction, 

processing, gasification, and trasportation, during the same carbon budget 

periods. These US emissions would fall outside of UK boundaries, 

suggesting disadvantages for UK carbon budgets and for atmospheric 

emissions. 

 

Figure 4-6 -Supply chain emissions for 277.7 bm3 of gas required to fill the UK 
production gap from 2020 – 2035. When importing US shale LNG to the UK, there is an 
increase in UK emissions (blue) by 12.3 Mt CO2e and total atmospheric emissions for 
the same quantity of gas supplied.  

Super-emitting sites may also skew the effectiveness of the IMRP. As 

suggested by Lowry et al. (2001) and Zazzeri et al. (2015, 2017), a 

significantly large quantity of gas leaks in the London distribution network. 

However, the exact quantity of gas over time is not yet well known. It would 

be unrealistic to assume an exact figure, but the existence of these leaks 

suggests that the UK pipeline system has leaked at rates higher that the 

range used in this chapter. The IMRP would then be even more effective in 
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the mitigation of GHGs in the UK. However, because a baseline has yet to be 

clearly established, the effect on carbon budgets is zero. 

4.4 Discussion 

Abrahams et al. (2015) compare US shale LNG for use in the UK and 

Netherlands to the “most likely” alternatives: Russian natural gas and locally 

produced coal. The UK has climate policies which prohibit the use of coal for 

electricity and heat without CCS (Directive 2010/75/EU of the European 

Parliament and of the Council of 24 November 2010 on industrial emissions 

(integrated pollution prevention and control)). This chapter therefore 

compares US domestic shale gas use with exported US shale LNG to the 

UK, together with estimates for UK domestic shale gas extraction and use 

based on the surveys of Balcombe et al. (2018, 2017) and Abrahams et al. 

(2015).  

Abrahams et al. (2015) estimated pre-combustion emission from US shale 

gas extraction based on observations from Weber and Clavin (2012b), 

however these figures include production emissions prior to the US EPA rule 

change requiring RECs (Oil and Natural Gas Sector: New Source 

Performance Standards, National Emission Standards for Hazardous Air 

Pollutants, and Control Techniques Guidelines). Balcombe et al. (2017) 

reharmonize emissions including effects of RECs after the 2012 rule change.  

There are several key differences between the Balcombe et al. (2018, 2017) 

and Abrahams et al. (2015) studies which should be noted:  

First, Abrahams et al. (2015) use a 100-year GWP of 36 for CH4, whereas 

Balcombe use 34. This small difference will increase the impact of leakages 

observed in Abrahams et al. (2015) calculations and magnify the 

effectiveness of any reduced emission interventions. 

Second, Abrahams et al. (2015) surveyed estimates for each phase of shale 

gas LNG supply and performed a triangular Monte Carlo analysis. They then 

reported the results with a 90% confidence interval in units g CO2e MJ-1
. 



 Compatibility of fossil fuel energy system in the UK for climate targets. 

Chapter 4  92 

Whereas, Balcombe et al. (2018, 2017) reported all emissions figures, 

excluded the top 5% of estimates which skew the mean because of the “fat 

tail” of super emitters, and reported the low, median, and 95th percentile 

estimates in g CO2e MJ-1 HHV. Abrahams et al. is based on methodology of 

Weber and Clavin (2012a) who cite guidance from EIA (2011) which 

recommends reporting HHV rather than net or lower heaving value (LHV). 

Unless otherwise noted, it is assumed that Abrahams et al. and Balcombe et 

al. report results in the same units.  

Third, Abrahams published results in 2015, around the same time the EPA 

rules (Oil and Natural Gas Sector: New Source Performance Standards, 

National Emission Standards for Hazardous Air Pollutants, and Control 

Techniques Guidelines) came into effect, whereas Balcombe captured more 

results after the requirement of RECs in the US. 

4.5 Policy implications and further research analysis 

4.5.1 Implications of leaking US distribution network 

More direct measurements are needed to test the leakage rates across the 

distribution networks in the US and UK. Renewal, repair, or other methods of 

reducing losses in the gas distribution network has the added effect of 

reducing demand on supply. In other words, renewed gas distribution 

pipelines decrease losses and increase efficiency of delivery.  

Balcombe et al. (2017) exclude the super-emitters from their modelling, as 

they skew results too high. The observations of pipeline leakages are 

observations on the super-emitters, and not clearly quantified. This chapter 

uses leakage rates of 0.1 – 1.9% of produced CH4 (Harrison et al., 1996; 

Lamb et al., 2015; Mitchell et al., 1990; Moore et al., 2014), equivalent to 0.5 

– 10.2 g CO2e MJ-1. However, the presence of the super-emitters would 

skew the data higher and make interventions more effective compared to 

abated CO2e.  

Lowry et al (2001) and Zazzeri et al. (2015, 2017) measured δ13C-CH4 

plumes in London, fingerprinting fossil fuel emissions within the distribution 
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network, demonstrating super-emitters in London; agreeing with US studies 

cast-iron mains leakage. However, these leaks are difficult to quantify. This is 

an area that is in need of more study, and would have significant commercial 

implications. Mayfield et al. (2017) analyse policy options to reduce methane 

emissions from super-emitters by 83% for under 1% of annual operating 

costs. They find positive economic benefit from pipeline renewal, even 

without CO2 tax/price.  

4.5.2 Impacts of CH4 GWP adjustments 

Balcombe et al. (2017, 2018) expand upon the shale gas literature analysis 

of Abrahams et al. (2015), and update the GWP 100 of CH4 to 34 from 36. 

This adjustment of the literature increases the impact of observed leakages, 

as well as the effectiveness of mitigation interventions. However, carbon 

markets and international policy count the GWP 100 of CH4 as 25, based on 

IPCC AR4 (IPCC AR4 WG1 and WG1, 2007). For example, the 220 MT 

CO2e (using a GWP of 34) projected to be saved in the IMRP would be 

decreased by 44% to 123 MT CO2e, but would not alter the effectiveness of 

mitigation on the atmosphere.   

4.6 Conclusion 

This chapter finds that the import and use of US-produced shale gas LNG in 

the UK would increase GHG emissions by 14.3 Mt CO2e (19.2%) relative to 

the same quantity of domestic UK shale gas production and use. As 

discussed above, the losses in the distribution phase represent a highly 

uncertain, but important component of shale gas GHG intensity and are in 

need of further study. The author is not aware of any other papers assessing 

a comparison of US shale gas, transported as LNG, with domestically 

produced UK shale gas. Additionally, the impact of the pipeline renewal 

process is quantified and shows a positive implications for GHG emissions 

reduction. This is an early conclusion and the measurement and reporting of 

gas distribution renewal is in need of continued study and monitoring before 

claims can be made national carbon budgets to 2035. 
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Chapter 5 Discussion and conclusions 

The work of this thesis examines the impact of gas usage in three distinct 

usage phases: UK electricity with EOR & CCS, UK electricity with shale gas, 

UK domestic heat production with UK shale gas or US shale LNG (see 

Figure 5-1). The three preceding results chapters find a common theme, that 

the UK is incentivized by its carbon budgets and targets to offshore 

emissions associated with natural gas supply.  

 

Figure 5-1 - Simplified shale gas schematic showing distinct phases in extraction, 
transportation, and end usage. Chapter 2 discusses the usage of gas for electricity 
aided by CCS & EOR. Chapter 3 discuss multiple sources of upstream gas, including 
shale gas in the UK power sector. Chapter 4 discusses the usage of shale gas from 
US and UK in the distribution phases for domestic heat. Figure adapted from (2014). 

There are a multitude of choices for variables and inputs for each of the 

preceding chapters which were made in the review of the academic literature 

and creation of calculations in this thesis. Some were informed by 

government targets, such as the 100 g CO2e kWh-1 electricity 

decarbonization goal (CCC, 2015b, 2014), or diminishing domestic gas 

supply (OGA, 2017, 2016; Turk et al., 2018a, 2018b). This is an area of 

research which is ever-evolving in public policy, industry, and academic 

literature. This chapter addresses some of the assumptions, and 
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contextualizes the findings in policy recommendations, and suggests areas of 

future research. 

5.1 A critical look at model assumptions 

5.1.1 CO2 supply and geographic uncertainty 

One criticism of the assumptions in chapter 2 is the expected consistent CO2 

supply to gas power plants to store 50 Mt CO2 yr-1 by 2030, without setting 

geographic sites or economic constraints. However, the approach of CO2-

EOR LCA carbon accounting is resilient in different scenarios of gas plant 

usages or CCS rollout. It doesn’t actually matter if there are 1 or 11 gas 

plants with CCS, because the economics for 1 plant are strong with a modest 

oil price (EUR 50).  

A second simplification of the modelling is the lack of extra CO2 compression 

in the calculations. The modelling assumes the compressors would be 

needed anyway, for CO2 to be transported to those sites for disposal in CCS. 

There could be a point, if CO2 could be disposed in large tonnages into 

structures beneath the southern North Sea, that would use less input from 

compressors. This article discusses the additional CO2 emissions incurred 

during CO2-EOR operations offshore, which are not dependent on the 

offshore pipe.  

For pipeline distances greater than 1,000 km, 6.5 kWh per tonne CO2 is 

required for recompression (Jaramillo et al. 2009). This equates to 32,500 

MWh per project year (with 5 Mt CO2 yr-1 transported), or additional < 0.3% 

energy costs compared with 14,382,749 MWh. This energy cost would 

decrease with additional CO2 -EOR of projects facilitating a network or 

pipelines (Welkenhuysen et al 2017), reuse of existing offshore pipelines 

(Pershad and Slater, 2007), and likely shorter pipeline distances (Jaramillo et 

al., 2009), further increasing the economic viability and geographic spread. 

The precise geography of the storage sites is less impactful if these are on 

the east coast clustered or not - provided the CO2 can get into a pipe network 

or shipping tanker to cross into the North Sea from Scotland, Teesside, or 
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Humber. Anywhere along the east coast from Hull northwards, the 

economics of CO2-EOR cash and profit generation will be arithmetically 

powerful enough to attract CO2 northwards, rather than paying for disposal in 

the Bunter Sandstone further south and east in the southern North Sea. 

These eastern sites should be given priority if the CO2 originates from the UK 

(as opposed to Norway or Continental EU). As discussed above, the energy 

loss for recompression is minimal for distances less than 1,000 km, and 

would be further minimize with the economies of scale discussed in Chapter 

2. 

5.1.2 Carbon lock in 

There is an inherent risk of carbon lockin and short-term emissions in the 

models presented.  

The key advantage of the EOR-to-CCS model envisaged in Chapter 2 is that 

the EOR-oil helps to pay for CCS infrastructure to have long-term GHG 

savings. However, if produced EOR oil is not sufficient to cover costs for 

infrastructure, or there is disruption in the decades-long model, the 

advantage of CO2 storage during the CCS phase could be lost. In this 

instance, the UK GHG budgets would experience the emissions associated 

with these projects without enjoying the GHG savings during the CCS phase.  

In the shale gas scenarios examined, there is a risk that funding for new gas 

infrastructure would necessitate multiple decades to pay for financing. In this 

case, the short term emissions savings demonstrated the preceding models, 

could lock in long-term GHG emissions and jeopardize carbon budgets. 

All of these scenarios are subject to global gas and oil prices volatility for 

dependable project funding. They also have exposure to reputational risks 

which could depress the price of oil and gas, and prevent the UK or 

operational partner(s) from funding or proceeding with these projects, or 

public opinion will not tolerate a limited gas or oil consumption. 
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5.1.3 Other gas sources 

This thesis considers gas imports to the UK from several sources, however, 

does not consider gas from EU or Russia, as leakages rates are poorly 

characterized and difficult to quantify. In 2006, the IEA reported that 70 Bm3 

CH4 leaked in the Russian gas system in 2004, roughly equivalent to one-

third of their exports at the time (International Energy Agency, 2006). These 

leaks were estimated to be economically preventable for under $10 t CO2e-1 

(Lechtenböhmer et al., 2007). More recently, the IEA reported that Russian 

methane emissions totalled 371.1 Mt CO2e in 2011, 3.3% above 1990 levels 

(International Energy Agency, 2014). A future study on GHG emissions in the 

UK gas system should attempt to characterize the upstream emissions of gas 

from the EU and Russia. 

5.1.4 Load factors and renewable support 

The models in chapters 2 and 3 both assume high load factors for natural 

gas electricity supply. This is a simplistic view of the UK energy system and 

is based on past observations of natural gas power from DECC / BEIS (BEIS, 

2017a, 2016a; DECC, 2015a). As the UK continues progress towards 

renewable energy generation (CCC, 2015b), it is possible that gas power will 

be used less for baseload, and more for renewable support and peaking 

power. The government data used in this thesis (BEIS, 2017e; DECC, 

2015b) is reactive to past events, rather than predictive. Future iterations of 

the data will likely react to the increase in renewables, and update the load 

factors for UK gas power. This type of modelling is outside of this thesis, and 

an area in need of further study.  

5.1.5 Reductions in possible UK shale recovery 

The M4 model in Chapter 2 assumes a pervasive shale gas industry where 

all basins surveyed are exploited for shale gas. The ARI reports (Kuuskraa et 

al., 2013, 2011) represent the most ambitious estimates of recovery factors, 

ranging from 15 – 25% depending on clay content. Some basins are given a 

recovery factor of 10% with severe under pressure, or 30% when established 

performance is strong. Experience in Poland has shown that industry 
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operators are not recovering shale gas with the same success as indicated in 

the ARI estimates (Inman, 2016). Industry-wide recovery rates are 

speculative at best for UK. As PEDL licenses are being sold and exploratory 

wells drilled, the estimates for basin size, recovery resources, and recovery 

rates are being refined (Andrews, 2013; Cuadrilla Resources, 2016; 

Kuuskraa et al., 2013). 

ARI note that their 20% recovery rate is nearly twice as high as Cuadrilla’s 

2011 estimate of 10% recovery rate. However, this figure is incorrectly cited 

in the ARI report based on news releases (Bergin, 2011; Chazan, 2011) and 

preliminary resources estimates (Kuuskraa et al., 2011). The Institute of 

Directors suggested the recovery rate would be closer to 10% (Institute of 

Directors, 2013). 

Regardless of the recovery rate, this thesis demonstrates that there is an 

pathway towards decarbonization which does not eliminate the UK’s reliance 

on usage of natural gas in the next 20 years. However these pathways also 

export production emissions to other gas-producing countries in order to 

meet targets. 

5.2 Mechanism for GHG audit trail in internationally 
traded gas 

There is considerable discussion in the academic literature extolling the 

benefits of consumption-based (CB) accounting over traditional production-

based (PB) accounting (Afionis et al., 2017; Bows and Barrett, 2010; 

Steininger et al., 2014, 2016). Such a mechanism would account for and 

close loopholes in GHG accounting across international borders. 

5.2.1 Benefits of CB accounting 

Afionis et al (2017) describe the threefold benefits of CB accounting 

described in the literature: 

First, CB accounting will cover more global emissions by including the export 

sectors of developing countries of the global economy (Peters and Hertwich, 
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2008). After the Paris Agreement, this is a redundant argument in the 

literature, as all developing countries have already agreed to reduce 

emissions. However, CB accounting would provide an added measure of 

these emissions.   

Second, CB accounting would incorporate aviation emission and bunkering 

of fuels, emissions which are not currently incorporated in PB accounting 

methodology. By assigning the embodied emissions to the consuming nation, 

the full impact of fuel consumption would be measured and accounted for. 

Third, CB accounting would incorporate emissions in trade of most goods 

and off-shoring of production emissions. Traditional off-shoring occurs when 

a manufacturing base is moved to a developing area with less stringent 

environmental controls, while the consumption of the produced good remains 

the same. The net impact on GHG balances is worse, as developed 

countries are increasing their CB emissions faster than decreasing their PB 

emissions. This transfer has been occurring at an annual rate of 17% 

(Fischer, 2011; Peters et al., 2011). 

In the case of shale gas, the US introduced a new sector with limited 

environmental controls (as discussed previously in Chapter 1). If the UK 

consumes US gas in substitute for domestic gas, the net effect is offshoring 

PB emissions from the UK to the US. CB accounting would place more 

emphasis on the impact of this transfer. 

5.2.2 Challenges of CB accounting 

Of course, a change in the GHG accounting system is not without 

challenges. While CB accounting would aid in closing gaps in GHG 

accounting, there are three main barriers which Afionis et al (2017) review in 

the literature: 

First, the efficiency of a CB accounting market may be worse than that of PB 

accounting. Both styles of accounting have the same intention to reduce 

emissions, and provide transparency. PB accounting measures the GHGs in 
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a given state, while CB accounting would require the import & export market 

to be more closely tracked. Jakob et al. (2014) posit that a switch in 

accounting will create a perverse incentive for less regulated states to export 

more goods and GHGs. If, for example, the US had zero intention of 

consuming shale gas, and relying on 100% renewables. The US could export 

as much shale gas as importers will buy and have zero emissions. A less 

severe example is the economic rebound effect which could occur when a 

more efficient system increases total consumption, albeit with lower 

intensities, rather than reducing consumption (Barrett et al., 2013)  

Second, there are practical impediments to deploying a CB accounting 

system on a global scale. As Afionis et al (2017) point out, the PB accounting 

system was given favour by the UNFCCC not only for simplicity, but for the 

ability for countries to institute their own accounting compilations (Jakob et 

al., 2014). A CB system would require more complex modelling, most likely 

multi-regional input-output models (Turner et al., 2007). The UK government 

has tracked this method for some consumer goods and case studies (e.g. 

textiles), however it is not yet comprehensive of the UK economy (Barrett et 

al., 2013). This method would require practically all products to be registered 

with a central database tracking the carbon content. In effect, this would 

repeat the work of all carbon accounting to date. 

Finally, the political incompatibility of CB accounting is perhaps the most 

difficult hurdle. Countries would be attributed with emissions that occur 

outside their borders. In examining the above two challenges, it is clear that 

pervasive data sharing would be needed along with cohesive action by all 

world governments in order to institute a comprehensive CB accounting 

system. This system has the impediment that a country does not have control 

of the emissions of a good it consumes (Afionis et al., 2017), and is beholden 

to the embodied emissions. This could be a political non-starter. However, 

this assumes that there is only one source for a particular good. This also 

has a straightforward solution; setting an appropriate global price on carbon 

with parallel disclosure of CB and PB emissions.  
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If a carbon price were appropriately applied it could have the co-benefit of 

more accurate measuring, reporting, and verification of emissions, although 

industries would need comprehensive regulation to comply. In the case of 

gas extraction and trade, suppliers could be perversely incentivized to hide 

emissions to avoid tax. If suppliers were required to report CB and PB 

emissions in tandem, the tax shelter could be exposed, or at least more 

clearly tracked and verified. There is also a timing issue, similar to the 

perverse incentive for UK coal from The Energy Act 2013 (see Chapter 1), 

that prior to the enacting a price on carbon, a dash for unregulated gas could 

occur. The UK could mitigate this impact by incorporating both CB and PB 

emissions into a cap, similar to a value chain assessment.  

 

5.3 Applications of consumption-based accounting to 
shale gas emissions accounting gaps 

As described in Chapters 2, 3, & 4, the UK will continue to consume natural 

gas through 2035 while relying in greater percentage on imports. And as 

described above, the current accounting systems do not discourage the UK 

from offshoring emissions to the US for gas. However, setting a price on 

GHGs could help create a global cap on emissions, and equitable 

consumption (Boyce, 2018).  

Based on the analysis of each of the preceding results chapters, the GHG 

emissions from chapter 4 are most realistic in the long-term because they do 

not rely upon power generation policy changes, or CCS / EOR funding. 

Instead they are indicative of gas demand for UK residential use for the next 

15 years (2020 – 2035), which will take considerable investment to change 

course (BEIS, 2017d). As discussed previously in chapter 4, this 220 Bm3 

could be produced in a new UK shale gas industry, or imported from the US 

as shale LNG.  
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5.3.1 Social costs of carbon and carbon taxes 

One of the central inefficiencies of the carbon markets and the UNFCCC 

reporting regime is the delay from scientific findings of global warming 

potential until inclusion in carbon markets. For example the AR4 value of CH4 

– CO2e is 25, and was established in 2007 and is still accepted in carbon 

markets, despite an update to 28 in AR5 (IPCC, 2013b; IPCC AR4 WG1 and 

WG1, 2007; IPCC TAR SYR and SYR, 2001). Howarth et al. (2011) 

advocated for 20-year CH4 GWP of 86, due to the urgency of climate change. 

Other studies advocate for AR5 values of 34 or 36 depending on CH4-climate 

feedback loops (Abrahams et al., 2015; Balcombe et al., 2017). Changes in 

these values could cause price shocks in the carbon markets, and delays in 

price updates don’t reflect the true scientific understanding of the GWP of 

GHGs. 

If the UK were to adopt a carbon price during the time when the energy 

system is importing or producing more gas, there would be significant carbon 

price implications. For example, the 220 Bm3 discussed above and in 

Chapter 4 represents the projected supply gap for residential usage from 

2020 – 2035. If it is assumed that this gas is 0.554 kg m-3, it represents 

12,188 t CH4. Assuming that 1% of the gas leaks (and is not combusted to 

CO2), it would emit 33,181 t CO2 and leak and additional 121.9 t CH4. 

Applying a GWP from 21 (AR3) to 86 (20-year GWP) creates a range of 

35741 – 43,663 t CO2e before adding a price. 

The most recent quarterly high for the EU ETS was EUR 28, roughly $24 per 

t CO2e. When applying a range of price from recent EU ETS trades ($23, 

$28), recommendations by Carbon Tracker ($32), up to a social cost of $233 

recommended by Moore and Diaz (2015), the range of carbon costs are 

$822,000,000 – $9,737,000,000 (see Table 5-1) (Carbon Tracker, 2018; 

GmbH, 2018; Moore and Diaz, 2015). This is with just a modest 1% leakage 

rate across the entire gas supply chain. Increasing the leakage rate to 5% 

increases the range to $1,071,000,000 - $18,788,000,000 showing a 
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disparate estimate of potential impacts depending on the GWP when 

including CH4 in a carbon price. 

5.3.2 Science-based GWPs in the market 

While the 20-year CH4 GWP is more closely linked to the short lifespan of 

atmospheric CH4, carbon markets have resisted taking on this approach. 

One reason would be the immediate price shock could collapse the carbon 

markets and jeopardize ambition to decarbonize. As an intermediary solution, 

linking the GWP to the scientific literature on a more frequent basis would 

decrease the gap between market prices of GHGs (Current GWPs), and 

scientific impacts. On the other hand, the short-lived timespan of CH4 in the 

atmosphere causes inherent transparency problems with converting to a 100 

year GWP for carbon markets. The potentially high volatility of CH4 GWP 

conversions (shown below in Table 5-1) illustrates the need for 2 metrics: 

CO2e and a CH4 budget. This transparency would limit the hiding of CH4 

emissions with older GWP values, and show the true budget of remaining 

GHGs to stay under +2°C. 

Table 5-1 -Carbon prices of CH4 combustion with 1% leakage rates for 220 Bm3. Prices 
are based on (Carbon Tracker, 2018; GmbH, 2018; Moore and Diaz, 2015).  

GWP 21 25 34 36 86 

1,000’s$ 

/ t CO2e 

35741.31 t 

CO2e  

36228.83 t 

CO2e  

37325.75 t 

CO2e  

37569.51 t 

CO2e  

43663.51 t 

CO2e  

23 $822,050   $833,263  $858,492  $864,099  $1,004,261 

28 $1,000,757   $1,014,407  $1,045,121  $1,051,946  $1,222,578  

32 $1,143,722   $1,159,323  $1,194,424  $1,202,224  $1,397,232  

83  $2,966,529   $3,006,993   $3,098,037  $3,118,269  $3,624,071  

100  $3,574,131   $3,622,883  $3,732,575  $3,756,951  $4,366,351  

223  $7,970,312   $8,079,029  $8,323,642  $8,378,001  $9,736,963  
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5.4 Key findings 

 20 years of CO2 storage can be subsidized by EOR, can support 

UK carbon targets while supplying up to 11% of projected UK oil 

demand at peak production. The average electrical output could 

supply nearly one-third of domestic electricity supply while lower 

current grid emissions and supporting UK grid decarbonization targets.  

 The UK can support a shale gas regime to decarbonize if the total 

fugitive emissions remains under 1%. If the projected domestic gas 

supply gap for power generation (without CCS) were to be met by UK 

shale gas with low fugitive emissions (0.08%), an additional 20.4 Mt 

CO2e would need to be accommodated during carbon budget periods 

3 – 6. However, the UK carbon budgets would benefit from importing 

Qatari LNG rather than producing the same quantity domestically. 

With a modest increase in fugitive emissions would exceed UK carbon 

budgets. 

 A modest increase in UK fugitive gas emissions would exceed 

UK carbon budgets. The same carbon budgets would not benefit 

from importing UK shale LNG for residential usage, rather than 

producing the same quantity of gas. However, a modest increase in 

UK fugitive emissions rates would also break exceed carbon budgets, 

along with adding significant GHG emissions outside the UK. 

5.5 Recommendations 

To facilitate improvements in emission reporting and compliance with the 

Paris Agreement, the following recommendations should be considered. 

These will allow for improved emissions reporting transparency, impact 

measurements, and expedited monitoring of GHG impacts of international 

gas trade. These recommendations are analogous to the switch to “science-

based targets” (SBTs) in CDP reporting, where intentions and actions are 

directly reported against carbon budget implications. 

As shown in Chapter 1, the phase out of coal created a brief perverse 

incentive to import and burn coal for 2 years prior to the expiration of the 
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exemption of coal. If the UK carbon budgets are entirely focused on UK PB 

emissions, this incentivizes transfers of the emissions offshore where the UK 

has less control. Therefore, report CB emissions alongside PB emissions to 

flag perverse incentives and provide transparency in the origin of GHG 

emissions. 

5.5.1 Report environmental flows alongside GHG accounting 

It is recommended to report CB accounting figures alongside the traditional 

PB accounting figures accepted by UNFCCC. This reporting mechanism 

would inform border carbon adjustments and considering the dwindling global 

GHG budget, acceptance of the Paris agreement -including American 

Fortune 500 companies and cities – there is global consensus to limit 

emissions to +2°C. However, the reliance on PB accounting facilitates 

emissions leakages, transfers, and devaluations of GHG costs. As shown 

previously in Chapters 2 and 3, decarbonization intentions may not perfectly 

align with national interests for energy security. A CB reporting mechanism 

will put greater pressure on gas purchasers to consider lower-GHG fuels. 

This is similar to Scope 3 emissions reporting in product footprinting, where a 

company is not necessarily responsible for a partner’s Scope 1 and 2 

emissions, but can put pressure on that partner to reduce their own GHG 

emissions. 

As discussed above, CB accounting may be too difficult to establish as a 

replacement for PB accounting. However, there is already precedence in the 

UK government for CB accounting in some industries and goods (Barrett et 

al., 2013). This methodology should be extended to the entire UK economy. 

There are political implications of CB accounting which may hinder the ability 

to fully measure environmental flows. The CB system would require the UK 

have regulation over foreign energy systems. A solution for this would be a 

border carbon adjustment (BCA) and an internal price on carbon and energy-

intense goods. This would create the long-term incentive for lower carbon 

products. 
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5.5.2 Intermediary GWP market adjustments  

It is recommended that GWPs are reviewed more frequently, and 

implemented to markets akin to Science-Based Targets (SBTs) advocated by 

CDP to alleviate lag between the reporting of CH4 and N2O, and CO2e 

conversion factors and market acceptance. This delay allows for carbon 

leakages, both intentional and unintentional. 

5.5.3 Report individual GHGs separately 

The short-lived timespan of CH4 in the atmosphere causes inherent 

transparency problems with converting to a 100 year GWP for carbon 

markets. The potentially high volatility of CH4 GWP conversions (shown in 

Table 5-1) illustrates the need for 2 metrics: CO2e and a CH4 budget. This 

transparency would limit the hiding of CH4 (and other GHG) emissions with 

older GWP values, expose organizations utilising unforeseen perverse 

incentives, and show the true budget of remaining GHGs to stay under +2°C. 
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