
Compilers that Learn to Optimise:
A Probabilistic Machine Learning Approach

Edwin V. Bonilla

Doctor of Philosophy
Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh
2008

Abstract

Compiler optimisation is the process of making a compiler produce better code, i.e. code that,
for example, runs faster on a target architecture. Although numerous program transformations
for optimisation have been proposed in the literature, these transformations are not always ben¬
eficial and they can interact in very complex ways. Traditional approaches adopted by compiler
writers fix the order of the transformations and decide when and how these transformations

should be applied to a program by using hard-coded heuristics. However, these heuristics re¬

quire a lot of time and effort to construct and may sacrifice performance on programs they have
not been tuned for.

This thesis proposes a probabilistic machine learning solution to the compiler optimisa¬
tion problem that automatically determines "good" optimisation strategies for programs. This

approach uses predictive modelling in order to search the space of compiler transformations.
Unlike most previous work that learns when/how to apply a single transformation in isolation or
a fixed-order set of transformations, the techniques proposed in this thesis are capable of tack¬

ling the general problem of predicting "good" sequences of compiler transformations. This is
achieved by exploiting transference across programs with two different techniques: Predictive
Search Distributions (PSD) and multi-task Gaussian process prediction (multi-task GP). While
the former directly addresses the problem of predicting "good" transformation sequences, the
latter learns regression models (or proxies) of the performance of the programs in order to

rapidly scan the space of transformation sequences.

Both methods, PSD and multi-task GP, are formulated as general machine learning tech¬

niques. In particular, the PSD method is proposed in order to speed up search in combinatorial

optimisation problems by learning a distribution over good solutions on a set of problem in¬
stances and using that distribution to search the optimisation space of a problem that has not

been seen before. Likewise, multi-task GP is proposed as a general method for multi-task learn¬

ing that directly models the correlation between several machine learning tasks, exploiting the
shared information across the tasks.

Additionally, this thesis presents an extension to the well-known analysis of variance

(ANOVA) methodology in order to deal with sequence data. This extension is used to ad¬
dress the problem of optimisation space characterisation by identifying and quantifying the
main effects of program transformations and their interactions.

Finally, the machine learning methods proposed are successfully applied to a data set that
has been generated as a result of the application of source-to-source transformations to 12 C

programs from the UTDSP benchmark suite.

i

Acknowledgements

First of all I would like to thank my principal Supervisor Prof. Chris Williams for his invaluable

guidance throughout my PhD studies. I have greatly benefited from his extensive knowledge
and expertise in machine learning. I also thank Prof. Michael O'Boyle and Dr. Amos Storkey
for their assistance and feedback as members of my PhD research committee.

I am grateful to all members of the COLO and MilePost projects, especially to Prof. Michael

O'Boyle who has led numerous discussions in the compiler optimisation area and to Felix

Agakov for helpful and extensive discussions in various interesting machine learning topics.
Thanks to Bjorn Franke who developed the software tool that has been the basis for the gen¬

eration of the data used in this project and to John Cavazos and Christophe Dubach for their
active work on this tool and for providing the code features that have been used for the re¬

sults presented in Chapter 7 and Chapter 8. I also thank John Thomson for contributing to the
maintenance and development of such software and for the generation of the data for the AMD
architecture.

In addition to my principal supervisor, I would like to thank those that have provided me

feedback on specific drafts of this thesis: Prof. Michael O'Boyle (Chapter 2), Adrian Haith

(Chapters 4, 5 and 6) and Catalina Voroneanu (Chapters 3, 7 and 8).
This work has been supported under EPSRC grant GR/S71118/01 (Compilers that Learn

to Optimize) and EU FP6 STREP MILEPOST IST-035307.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted
for any other degree or professional qualification except as specified.

{Edwin V. Bonilla)

iii

To my mother Maria Ines Pabon.

iv

Table of Contents

1 Introduction 1

1.1 Motivation 1

1.2 Compiler Optimisation and Machine Learning 2
1.3 Contributions 5

1.4 Impact: Publications During PhD Studies 6
1.5 Declaration of Collaborations 7

1.6 Organisation 7

2 The Compiler Optimisation Problem 10
2.1 Basic Concepts in Compilers 10
2.2 The General Structure of a Compiler 11
2.3 Goals of a Modern Compiler 13
2.4 Compiler Optimisation 13
2.5 Program Transformations 14

2.5.1 Legality, Improvement and Interactions 14
2.5.2 Scope 15
2.5.3 Classification 15

2.5.4 Examples of Program Transformations 15
2.6 Iterative Compilation 18
2.7 Performance Measure: Speed-up 18
2.8 Summary 19

3 A Machine Learning Approach to Compiler Optimisation 20
3.1 The General Framework for an Optimising Compiler 21
3.2 Global Optimisation 22
3.3 Predictive Modelling 23

3.3.1 Sequence Prediction 23
3.3.2 Performance Prediction 24

3.4 Learning across Programs: Transfer Learning 24

v

3.5 Summary and Discussion 25

4 Related Work 26

4.1 Global Optimisation 26
4.1.1 Using Uniform Random Search 27
4.1.2 Using Biased Random Search 27
4.1.3 Using Statistical Techniques 31
4.1.4 Other Approaches 35

4.2 Predictive Modelling 37
4.2.1 Predicting a Single Transformation 37
4.2.2 Predicting a Set of Transformations 43

4.3 Performance Prediction 45

4.4 Optimisation Space Characterisation 47
4.5 Unsupervised Learning 48
4.6 Summary and Discussion 49

5 Experimental Set-Up 52
5.1 The SUIF Data Set 53

5.2 Benchmarks 53

5.3 Optimisations 54
5.3.1 Large Space 55
5.3.2 Small Space 56

5.4 Architectures 57

5.5 Instrumentation 57

5.6 Summary and Discussion 57

6 Characterisation of the Optimisation Space 59
6.1 Exploratory Data Analysis 59
6.2 Speed-ups Achieved 60
6.3 Analysis of the Optimisation Space 61

6.3.1 Difficulty of the Search Spaces 62
6.3.2 Important Transformations 66

6.4 Analysis of Variance (ANOVA) of Sequence Data 67
6.4.1 Standard ANOVA 67

6.4.2 From ANOVA Models to Regression Models 69
6.4.3 Sequence ANOVA 72

6.5 Sequence ANOVA for Compiler Optimisation 74
6.5.1 Results on The Small Space of the SUIF Data Set 74

vi

6.5.2 Analysis of Main Effects and Two-Factor Interactions 76
6.5.3 Related Work on the Effect of Compiler Transformations 79
6.5.4 Optimisation with the Sequence ANOVA Model 80

6.6 Summary 80

7 Predictive Search Distributions 86

7.1 Motivation: Combinatorial Optimisation 86
7.2 Estimation of Distribution Algorithms: EDAs 87

7.2.1 General Algorithm 88
7.2.2 Defining the Empirical Distribution on Good Solutions 89
7.2.3 Families of EDA search Distributions 89

7.2.4 Learning an EDA Search Distribution 91
7.2.5 Improving the Performance of EDAs 94

7.3 Predictive Search Distributions: PSD 94

7.3.1 From Multiple EDAs to a Single Predictive Distribution 95
7.3.2 Learning PSD 96
7.3.3 Predictions with PSD 97

7.3.4 Choosing a Family of PSD: Model Selection 97
7.4 Related Work 98

7.5 Compiler Optimisation with PSD 99
7.5.1 Formulation of the Problem 100

7.5.2 Evaluation Function 100

7.5.3 Distributions Used 101

7.5.4 Program Features 101
7.5.5 Learning Methods and Evaluation Set Up 102
7.5.6 Evaluation on the Small Space of the SUIF Data Set 103
7.5.7 Evaluation on the Large Space of the SUIF Data Set 107
7.5.8 Comparison to Other Baselines 109
7.5.9 Analysis of Learned Distributions 114
7.5.10 Effect of the Number of Training Samples 114

7.6 Summary and Discussion 116

8 Multi-task Gaussian Process Prediction 121

8.1 Regression with Gaussian Processes (GPs) 122
8.1.1 Gaussian Process 123

8.1.2 The Covariance Function 123

8.1.3 Gaussian Process Prediction 124

8.1.4 Learning Hyperparameters 125

vii

8.1.5 Approximation Methods for Large Data Sets 127
8.2 Single-task Learning 127
8.3 Multi-task Learning 127
8.4 Multi-task GP with Task-descriptor Features 128

8.4.1 The Combined Method 129

8.4.2 The Gating Network Method 129
8.5 Multi-task GP without Task-descriptor Features 130

8.5.1 The Model 131

8.5.2 Predictions 131

8.5.3 Learning Flyperparameters 132
8.5.4 Noiseless Observations and the Cancellation of Transfer 133

8.5.5 Constraining the Number of Parameters and Approximations 133
8.6 Quantifying Inter-task Transfer 134
8.7 Related Work 134

8.8 Compiler Optimisation as a Performance Prediction Problem 136
8.8.1 Formulation: The Performance Prediction Problem 136

8.8.2 Input Features 137
8.8.3 Task-descriptor Features 138
8.8.4 Evaluation Set Up 138
8.8.5 Methods Used 140

8.8.6 Results 141

8.9 Summary and Discussion 149

9 Conclusions and Future Work 152

9.1 Contributions 153

9.2 Future Work 155

9.2.1 Analysis of Other Benchmarks and Transformation Spaces 155
9.2.2 Optimisation at Finer Levels of Granularity 156
9.2.3 Learning across Different Input Data and Architectures 157
9.2.4 Multi-Objective Optimisation 158
9.2.5 Predictive Search Distributions 158

9.2.6 Multi-task Gaussian Process Performance Prediction 158

9.2.7 A Search-tree Formulation of Compiler Optimisation 160
9.2.8 Learning in Structured Spaces 161

A Transformations Used on the Large Space of the SUIF Data Set 163

Bibliography 166

viii

List of Figures

1.1 The general framework for an adaptive optimising compiler based on machine
learning 4

2.1 The General structure of a compiler. 12
2.2 An example of a code fragment transformed by common subexpression elimi¬

nation 17

2.3 An example of a loop unrolled twice 18

6.1 The cumulative distribution function of performance speed-ups for the small

space of the kernel benchmarks of the SUIF data set on the TI board 63
6.2 The cumulative distribution function of performance speed-ups for the small

space of the application benchmarks of the SUIF data set on the TI board. ... 64
6.3 The cumulative distribution function of performance speed-ups for the small

space of the kernel benchmarks of the SUIF data set on the AMD architecture. 65
6.4 The cumulative distribution function of performance speed-ups for the small

space of the application benchmarks of the SUIF data set on the AMD archi¬
tecture 66

6.5 Significant main effects and two-factor interactions between program transfor¬
mations for the small space of the kernel benchmarks of the SUIF data set on

the TI board 82

6.6 Significant main effects and two-factor interactions between program transfor¬
mations for the small space of the application benchmarks of the SUIF data set

on the TI board 83

6.7 Significant main effects and two-factor interactions between program transfor¬
mations for the small space of the kernel benchmarks of the SUIF data set on

the AMD architecture 84

6.8 Significant main effects and two-factor interactions between program transfor¬
mations for the small space of the application benchmarks of the SUIF data set

on the AMD architecture 85

ix

7.1 A schematic illustration of an Estimation of Distribution Algorithm (EDA). . . 89
7.2 Survival function of performance speed-ups for uniform distribution and Markov-

oracle distribution for the benchmark adpcm on the TI architecture for the small

space of the SUIF data set of 145 sequences 103
7.3 Performance curves for the benchmark mult on the AMD architecture on the

large space of the SUIF data set when using uniform search, search guided by
the iid distribution and search guided by the Markov distribution 109

7.4 Areas under the performance curve (AUC) for TI (top) and AMD (bottom) on
the large space of the SUIF data set 110

7.5 The oracle iid distributions and the predictive iid distributions on the TI (top)
and on the AMD (bottom) on the small space of the SUIF data set 115

7.6 The search improvement factors of the predictive distributions on the small

space of 4 programs of the SUIF data set for the TI board as a function of the
number of samples per training benchmark 116

7.7 The search improvement factors of the predictive distributions on the small

space of the remaining 4 programs of the SUIF data set for the TI board as a

function of the number of samples per training benchmark 117
7.8 The search improvement factors of the predictive distributions on the small

space of the kernel benchmarks of the SUIF data set for the AMD architecture
as a function of the number of samples per training benchmark 119

7.9 The search improvement factors of the predictive distributions on the small

space of the application benchmarks of the SUIF data set for the AMD archi¬
tecture as a function of the number of samples per training benchmark 120

8.1 A schematic illustration of drawing sample functions in joint x and t space
where the sample functions for different values of t are correlated 129

8.2 The multi-task scenario for the task-descriptor method 140
8.3 Mean absolute error (MAE) on each of the programs and the average on the

small space of the SUIF data set on the TI board, for the 4 methods T-combined,
C-combined, T-gating and C-gating and the two baselines median (canonical)
and median (of all test data) 142

8.4 The performance of the T-combined (multi-task GP with task-descriptor fea¬
tures) and T-no-transfer methods and median (canonicals) as a function of nte
on the small space of 6 programs of the SUIF data set on the TI board 143

8.5 The performance of the T-combined (multi-task GP with task-descriptor fea¬

tures) and T-no-transfer methods and median (canonicals) as a function of nte
on the small space of the remaining 5 programs of the SUIF data set on the TI
board. The bottom right panel shows the average performances 144

x

8.6 The performance of the transfer methods using multi-task GP with task-descriptor
features (TASK-DESCRIPTOR); multi-task GP without task-descriptor fea¬
tures (FREE-FORM) and the no transfer method as a function of N on the
small space of 6 programs of the SUIF data set on the TI board 146

8.7 The performance of the transfer methods using multi-task GP with task-descriptor
features (TASK-DESCRIPTOR); multi-task GP without task-descriptor fea¬
tures (FREE-FORM) and the no transfer method as a function of N on the
small space of the remaining 5 programs of the SUIF data set on the TI board. 147

8.8 The performance of the multi-task GP methods when used for optimisation for
10 different replications on the small space of the SUIF data set on the TI board
for those benchmarks for which some improvement can be achieved 148

8.9 Hinton diagram indicating the r values for each task (program) on the small

space of the SUIF data set on the TI board in order to illustrate inter-task trans¬
fer. 149

xi

List of Tables

2.1 Examples of common program transformations 16

5.1 UTDSP benchmarks used for the experiments that generated the SUIF data set. 55
5.2 Transformations used for the small space of the SUIF data set 56

6.1 Maximum speed-ups obtained with the experiments on the SUIF data set. ... 61
6.2 Percentage of effective sequences and the shortest best sequence for each bench¬

mark on the small space of the SUIF data set 62
6.3 The ANOVA models considered for the analysis of the small space of the SUIF

data set 75

6.4 Explained variance for the different ANOVA models fitted to the small space
of the SUIF data set on the TI board 76

6.5 Explained variance for different ANOVA models fitted to the small space of
the SUIF data set on the AMD architecture 77

6.6 The performance of the sequence ANOVA model when used for optimisation
on the small space of the SUIF data set 81

7.1 Examples of Estimation of Distribution Algorithms 91
7.2 Program features used on the application of Predictive Search Distributions to

the compiler optimisation problem 102
7.3 Expected number of samples for uniform distribution and search improvement

factors for oracle distributions to obtain 95% ofmaximum performance on the
small space of the SUIF data set 105

7.4 Expected number of samples for uniform distribution and search improvement
factors for predictive distributions to obtain 95% of maximum performance on

the small space of the SUIF data set 106
7.5 The performance of the predictive distributions as a fraction of the best search

improvement factor (SIF/SIFhest) on the small space of the SUIF data set. . . 108
7.6 Search improvement factors achieved on the small space of the SUIF data set

when using the average training distributions Ill

xii

7.7 Search improvement factors achieved on the small space of the SUIF data set

when using the best training distributions 112
7.8 Search improvement factors achieved on the small space of the SUIF data set

when using the full table of speed-ups of each program's nearest neighbour. . . 113

A.l Transformations used on the large space of the SUIF data set 165

xiii

Notation and Abbreviations

General Statistical and Mathematical Notation

Matrices are denoted by capital letters (e.g. A), vectors by lower case bold letters (e.g. x) and
sets by upper case calligraphic letters (e.g. SA).

Symbol Meaning
Distributed as

iA£(jU,£) Normal distribution with mean p and covariance Z

\J%\ The cardinality of set A
dcf
= An equality that acts as a definition
w7' The transpose of vector w

(A)ij The (/, y)th entry of matrix A
||w|| The Euclidean length of vector w

||w||oo The infinity norm of vector w
iid Independent and identically distributed
cdf Cumulative distribution function

KL(p, q) The Kullback-Leibler divergence of distributions p and q

(•)x Expectation over x

log(0) The natural logarithm of 0

QT Gaussian process: /(x) ~ Q¥(p(x),k(x,x')), the function /(x) is distributed as

a Gaussian process with mean function p(x) and covariance function k(x,x')
k(x,x') Covariance function evaluated at x and x'
diag(^) A diagonal matrix containing the elements of vector £
hpq Kronecker delta: hpq = 1 if p = q and <V/ = 0 otherwise
E Expectation

|A| The determinant of matrix A
tr (A) The trace of matrix A
• The Hadamard product
°c Proportional to

vec(K) The vector obtained by stacking the columns of matrix Y

xiv

Symbol Meaning
« Approximately equal to
<g> The Kronecker product

Notation Used for Multi-task Learning (and Compiler Optimisation)

Symbol Meaning
x A representation for an input point (or a compiler transformation sequence) X
t A representation for task (or program) T

y The target value (or performance speed-up)
M The number of training tasks (or programs)
N The number of training inputs (or transformation sequences) per task

xv

Chapter 1

Introduction

This chapter presents an introduction to the compiler optimisation problem and an overview of
the machine learning approach to compiler optimisation proposed in this thesis. The motivation
for using machine learning in order to tackle the compiler optimisation problem is presented
in section 1.1. The general approach to compiler optimisation with machine learning proposed
in this thesis is given in section 1.2. The contributions and the impact of the research carried
out in this thesis, and the declaration of collaborations with other researchers are described in

sections 1.3, 1.4 and 1.5. Finally, the general structure of the remainder of this document is

presented in section 1.6.

1.1 Motivation

The rapid advance of microprocessor architectures with the construction of highly integrated

systems has made possible the effective delivery ofMoore's law. However, there is a tendency
for current applications to soak up this extra speed with additional software complexity. This,
in some sense, has overshadowed the invaluable effort of hardware designers and has forced
the scientific community to start looking for alternatives that can satisfy current technological

requirements.
Nonetheless, even the most powerful machines can be underexploited and prevented from

running at maximum speed. The reason for this lies on an application responsible for the trans¬

lation of a code written in a high level programming language into a code that a machine can

directly understand: the compiler. In fact, unlike hardware components that have continuously

changed in order to satisfy user requirements, most compilers have remained with static struc¬

tures based on designs proposed many years ago. Thus, compilers have become the bottleneck
in the development of new applications for the 21st century.

The compiler community has been aware of this problem and has proposed numerous pro¬

gram transformations that allow a compiler to create better code. The problem of making a

1

Chapter 1. Introduction 2

compiler produce better code, that for example runs faster, is known as compiler optimisa¬
tion. However, it is widely accepted that such program transformations for compiler optimi¬
sation are not always beneficial and that they can interact in very complex ways. Therefore,
determining when and how these transformations should be applied to a program has become
the new problem to be solved'.

Traditional approaches adopted by compiler writers fix the order of the transformations
and decide when and how these transformations should be applied to a program by using hard-
coded heuristics. However, these heuristics require a lot of time and effort to construct and may
sacrifice performance on programs they have not been tuned for.

Searching for good sequences of compiler transformations yields indeed significant im¬

provements over baseline compiler optimisations and over fixed-ordered sets of transforma¬
tions. For example, Cooper et al. (1999) showed that such an approach leads to improvements
in execution time of 14 different programs from 20% to 83% and Franke et al. (2005) obtained
an average speed-up of 1.71 across three different platforms and 13 benchmarks.

Consequently, what the compiler optimisation problem requires is a solution that automati¬

cally generates these heuristics and discovers optimisation opportunities even for programs that
have never been seen before. Thus, an ideal compiler should be able to maximally exploit the

physical resources of a target architecture, to adapt to different environments such as operating

systems and target architectures and, more importantly, it should be able to tune itself in order
to optimise programs.

1.2 Compiler Optimisation and Machine Learning

Considering the general goals of an ideal compiler, a natural solution to the problem can be
formulated with machine learning techniques. The general idea of machine learning is that
of learning from past experience. Thus, given a database containing examples of good sets of
transformations for different programs, a model can be constructed with the hope of capturing
the knowledge that features of the programs provide about "good" code transformations. Ad¬

ditionally, given a new program that has not been seen before, such a model should be able to

generalise across programs and predict a set of transformations that lead to an improvement in

performance of its execution time.
This thesis is about compiler optimisation using machine learning. Therefore, the general

goal is to investigate the application of machine learning techniques to compiler optimi¬
sation. However, the work presented in this thesis does not adopt a "black-box" approach to

'Note that although in this thesis the problem of compiler optimisation is focused on finding good sequences
of transformations that improve the performance of a program, there is also a lot of effort and research in devel¬
oping new compiler transformations and in providing better analyses so as to enable the application of program
transformations.

Chapter 1. Introduction 3

the problem, where standard machine learning techniques are used in order to evaluate their

suitability to this specific application. On the contrary, it considers the characteristics of the
problem and the state-of-the-art methods in machine learning in order to push the boundaries
on both fields: compiler optimisation and machine learning. Thus, the techniques proposed in
this thesis do not only attempt to solve the compiler optimisation problem but they also develop
novel machine learning approaches that can be used in other applications.

A general framework for compiler optimisation based upon machine learning techniques
identifies two different targets: global optimisation and predictive modelling. Global optimisa¬
tion is the task of finding the best or at least a good set of transformations for a given program.

Predictive modelling uses the output of global optimisation and a set of features that describe
the programs in order to predict a suitable set of transformations for a new program. Unlike
previous approaches that consider these problems independently, this thesis proposes a unified
framework that uses predictive modelling in order to search the space of compiler transforma¬
tions (i.e. global optimisation). Furthermore, unlike most previous approaches that deal with
a fixed-order set of transformations, the techniques proposed in this thesis are formulated in a

general way so that they are capable of tackling the problem of predicting "good" sequences of
compiler transformations.

Two different approaches are proposed herein in order to address the compiler optimisation

problem. The main goal of both approaches is that of achieving transference across programs.

In other words, exploiting the shared information about "good" compiler transformation se¬

quences and their performances across different programs.
In the first approach, "good" compiler transformation sequences are modelled directly by

learning a Predictive Search Distribution (PSD, Chapter 7) on a set of training programs. Given
a new program, the predictive distribution is used in order to focus search.

In the second approach to compiler optimisation proposed in this thesis, the performance
of a program obtained by the application of transformation sequences is modelled by learn¬

ing regression functions across multiple benchmarks (multi-task Gaussian process prediction,

Chapter 8). These predictors are used as proxies of the performance of a new program in order
to search for "good" compiler transformation sequences.

Both approaches, are formulated in order to deal with general machine learning problems.
While the predictive search distribution technique is proposed as a method to tackle combi¬
natorial optimisation problems that can be described by a set of features, multi-task Gaussian

process prediction is proposed as a technique for effectively exploiting transference across dif¬
ferent but related machine learning tasks. Figure 1.1 illustrates the general idea of an adaptive

optimising compiler based on machine learning. See section 3.1 for more details.
In addition to predicting "good" compiler transformations for programs, there is a general

interest in the compiler community in the characterisation of the search space in compiler opti-

Chapter 1. Introduction 4

ADAPTIVE COMPILER

| BASE COMPILER !

| Transformation sequences
ML PREDICTOR tZ

I

| Program features
: FEATURE EXTRACTOR !

Transformed
code

MACHINE
ARCHITECTURE

Execution times (y)
i

Transformation sequences (x)

Program features (t)

DATABASE

Predictive model

MODEL BUILDER

PSD

(Chapter 7)
MTGP

(Chapter <

Figure 1.1: The general framework for an adaptive optimising compiler. A machine learning

(ML) approach builds predictive models based on transformation sequences x, their execution
times (or speed-ups) y and program features t. The key idea is that the constructed models are

used to drive optimisations on unseen programs. For simplicity in the notation it is assumed that
there are M training programs, for which N transformation sequences are evaluated in order to
build the models. Two different approaches to building these models are proposed in this thesis:
Predictive Search Distributions (PSD) and multi-task Gaussian process (MTGP) prediction.

misation (see section 6.5.3 for details). In particular, this interest is focused on the problem of
identifying and quantifying the effects of program transformations and their interactions. This
thesis proposes a solution to this problem by extending the well-known analysis of variance
(ANOVA) methodology in order to deal with sequence data (Chapter 6).

A data set useful for the analysis and application of machine learning techniques to com¬

piler optimisation has been generated. This data set is based upon the application of source-to-
source transformations to 12 C programs from the UTDSP suite (Lee, 1997) and will be called

throughout this thesis as the SUIF data set. Most results presented in this thesis are based upon
a subset of this data that is a complete enumeration of sequences of up to length 5 drawn from
14 code transformations. This will be referred to as the small space of the SUIF data set. (See

Chapter 5 for more details.)

Chapter 1. Introduction 5

1.3 Contributions

The specific contributions made on this thesis are the following:

1. A general framework for compiler optimisation based upon machine learning techniques
is proposed. This framework tackles the problems of global optimisation and predictive
modelling in a unified manner by using a transfer learning approach. Thus, transference
is exploited across different programs by learning predictive models on these programs

in order to search the optimisation space of programs that have not been seen before,
or programs for which very little data is available. Within this framework, a direct or
an indirect approach can be adopted. In the direct approach, the problem is formulated
as a sequential prediction task, i.e. predicting "good" transformation sequences. In the
indirect approach, the optimisation task is formulated as a regression problem where

proxy models of the performance of the programs under the application of compiler
transformation sequences are constructed, which are then used in order to search the

optimisation space of new programs or programs for which very little data is available

(Chapter 3).

2. The direct approach to compiler optimisation (i.e. the sequential prediction task) is ad¬
dressed with the technique of Predictive Search Distributions (PSD), which is proposed
as a general method for speeding up search on combinatorial optimisation problems. The
main idea is to learn a distribution over good solutions on a collection of optimisation

problems that can be characterised by a set of features and use this distribution to focus
search on a problem that has not been seen before.

Thus, the method of Predictive Search Distributions (PSD) is used to leam a distribution

over "good" compiler transformation sequences across different programs, and this dis¬
tribution is utilised to focus the search of transformation sequences when a new program

is presented. Significant improvements in performance are achieved by this method on

the SUIF data set (Chapter 7).

3. The indirect approach to compiler optimisation (i.e. the use of performance models for

optimisation) is formulated with the Multi-task Gaussian process prediction technique,
which is proposed as a general method for achieving transference across different ma¬
chine learning tasks. The general idea is that of exploiting the shared information across

the different tasks by directly modelling the correlations between them. This method
can be used when task-features are available (multi-task GP with task-specific features)
or when these features are unavailable or are difficult to define correctly (multi-task GP
without task-specific features). An important characteristic of the technique is that ob¬
servations on one task affect the predictions on the others.

Chapter 1. Introduction 6

Thus, Multi-task GP is used to exploit the shared information across different programs
and their performances in order to predict the performance speed-up of a program when

being applied a sequence of code transformations. This method is shown, in general, to

outperform the "no transfer" scenario (i.e. learning each performance prediction task on

a single benchmark basis without using data from the other programs). Additionally, the

predictions obtained with Multi-task GP are used to search the optimisation spaces of
the (small) SUIF data set, and significant speed-ups are obtained (Chapter 8).

4. The problem of identifying and quantifying the main effects of program transformations
and their interactions is approached by extending the well-known statistical technique of

analysis of variance (ANOVA) to deal with sequence data. Results are reported on the
small space of the SUIF data set (Chapter 6, sections 6.4 and 6.5).

5. An extensive review and characterisation of the related work on compiler optimisation
with machine learning or/and artificial intelligence is presented. This review is focused
on the problems of global optimisation, predictive modelling, performance prediction
and optimisation space characterisation (Chapter 4).

1.4 Impact: Publications During PhD Studies

The work presented in this thesis has had a theoretical and practical impact on both areas of
research: compiler optimisation and machine learning. This is reflected on the publication of
the following papers that contain or are based on some of the ideas developed in this thesis:

• Predictive search distributions (in Proceedings of the 23rd International Conference on

Machine Learning, Bonilla et ah, 2006).

• Kernel multi-task learning using task-specific features (in Proceedings of the 11th Inter¬
national Conference on Artificial Intelligence and Statistics, Bonilla et ah, 2007).

• Multi-task Gaussian process prediction (to appear in Advances in Neural Information

Processing Systems, Bonilla et ah, 2008).

• Using machine learning to focus iterative optimization (in Proceedings of the Interna¬
tional Symposium on Code Generation and Optimization, Agakov et ah, 2006).

• Automaticperformance model constructionfor thefast software exploration ofnew hard¬
ware designs (in Proceedings of the International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, Cavazos et ah, 2006).

Chapter 1. Introduction 7

• Rapidly selecting good compiler optimizations using performance counters (in Proceed¬

ings of the International Symposium on Code Generation and Optimization, Cavazos
et al., 2007).

1.5 Declaration of Collaborations

As mentioned in section 1.4, parts of the material presented herein have been done in collab¬
oration with other researchers and have been previously published. In particular, Chapter 7
is mostly based on Bonilla et al. (2006) and some of the analysis has also been published in

Agakov et al. (2006). Chapter 8 is mostly based on Bonilla et al. (2007, 2008) and some of
the ideas regarding performance prediction have also been presented in Cavazos et al. (2006)

although with different methods. Bjorn Franke developed the original tool that has been used
for the generation of the data used throughout this thesis. John Cavazos and John Thomson

significantly contributed to the improvement of this tool and John Thomson generated the data

corresponding to the AMD architecture.
The idea of Predictive Search Distributions (Chapter 7) was originated in one of the COLO

meetings based on a proposal by John Thomson of doing clustering on the program feature

space. Marc Toussaint's expertise on Estimation of Distribution Algorithms (EDAs) proved
crucial on my interest in this area and Figure 7.1 is based upon a figure included in one of his

presentations at a COLO meeting. I also thank Felix V. Agakov for pointing out the relevant
work regarding the improvement of the performance of EDAs (section 7.2.5) and for his col¬
laboration on the description of an EDA algorithm (section 7.2.1). The program features used
for the results presented in this chapter were provided by John Cavazos.

My interest in multi-task learning was originally motivated by some collaboration with
Felix V. Agakov who proposed the gating network method (section 8.4.2). The idea of the
canonical responses was originated as a result of several discussions with Felix V. Agakov and
John Cavazos. I have also benefited from multiple discussions with Kian Ming A. Chai who

pointed out the work in Zhang (2007) and contributed to the review of the relevant literature re¬

garding Gaussian process approximations (section 8.5.5) and some of the related work (section

8.7). He and I jointly worked out the result of cancellation of inter-task transfer for noiseless
observations and a grid design (section 8.5.4). Finally, Christophe Dubach provided the code
features used for the results in Figure 8.3.

1.6 Organisation

Before describing how this thesis is structured, it is important to emphasise that the reader
is not expected to have a background on compilers. However, some familiarity with basic

Chapter 1. Introduction 8

concepts in machine learning and statistics is expected. In particular, the following is a (non-

exhaustive) list of topics that can prove helpful to understand most concepts explained in this
thesis: learning from past examples, generalisation, overfitting, supervised learning, unsuper¬
vised learning, feature selection, feature extraction, regression, classification, basic probability
theory, the Gaussian distribution, maximum likelihood estimation and parameter optimisation.
A suitable reference for an introduction to machine learning is given e.g. by Bishop (2006,

chapters 1 to 3). The structure of the remainder of this thesis is given below.

Chapter 2 introduces the compiler optimisation problem by explaining basic concepts in
compilation and compiler optimisation. The definition of a program transformation is presented
and some examples of transformations are given. The chapter ends with the description of a
popular approach in compiler optimisation called iterative compilation and a description of the
measure of performance (i.e. the speed-up) of a program when being applied a sequence of
transformations.

Chapter 3 presents the general framework for compiler optimisation with machine learn¬

ing proposed in this thesis. The problems of global optimisation and predictive modelling are

described and a transfer learning approach is proposed in order to tackle these problems. Ad¬

ditionally, compiler optimisation is formulated from two different perspectives: as a sequence

prediction problem and as a performance prediction task.
Afterwards, the most relevant work related to compiler optimisation with machine

learning and/or artificial intelligence techniques is reviewed in Chapter 4. Previous work is

categorised in five different areas: global optimisation, predictive modelling, performance pre¬

diction, optimisation space characterisation and unsupervised learning. The related literature is
described and their contributions, caveats and differences with the techniques proposed in this
thesis are presented.

The experimental set-up underlying the generation of the data set that is used for the

application of the models and techniques proposed in thesis is presented in Chapter 5. Thus,
the benchmarks, transformations, compiler infrastructure and target architectures involved in
the experiments are described in this chapter. The results presented throughout this thesis are

mostly based on an exhaustively enumerated space (described in Chapter 5) of sequences of up
to length 5 drawn from 14 code transformations and applied to 12 different benchmarks. This

space is called the small space of the SUIF data set.

This data set is analysed in Chapter 6 by providing a description of the performances
achieved with the experiments and a discussion of the difficulty of the search spaces of the
benchmarks used. Additionally, the ANOVA for sequence data technique is proposed and

applied to the small space of the SUIF data set with the goal of identifying and quantifying the
effects of program transformations and their interactions.

The technique of Predictive Search Distributions is proposed in Chapter 7 as a method

Chapter 1. Introduction 9

for tackling combinatorial optimisation problems that can be characterised by a set of features.
This method is based on learning a distribution over "good" solutions to these optimisation
problems and using such distribution in order to focus search on a problem that has not been
seen before. Learning and predictions with this method are explained and the results of apply¬

ing this method to the created data set are also presented and evaluated.
Multi-task Gaussian process (GP) prediction is proposed in Chapter 8 as a general

method for achieving transference across different (but related) machine learning tasks. The
focus is on regression problems for which there may be or there may not be a set of features
that characterise each problem. Additionally, the task of predicting the performance speed-up
of a program when applying a sequence of code transformations is formulated with this tech¬

nique and the results on the small space of the SUIF data set are given. The predictions of the
regression models constructed are used in order to find "good" compiler transformations for
the programs on such data set and the results on this task are also presented.

Finally, Chapter 9 concludes with a summary and a discussion, and describes specific
areas of future research in compiler optimisation with machine learning in order to continue
the work presented in this thesis.

Chapter 2

The Compiler Optimisation Problem

Chapter 1 (section 1.1) has emphasised that achieving peak performance in current architec¬
tures is highly dependent on a particular application responsible for the translation of a program
written in a high-level language into a code that a machine can actually understand: a compiler.

Compilers are, in general, very large and complex software applications that map high-level

languages into low-level languages effectively. Understanding how compilers work and the

underlying issues of constructing a compiler requires at least a complete course at undergrad¬
uate level and in fact, entire books are dedicated to the study of these particular applications.
Nevertheless, this chapter aims at describing the most important concepts in compilation and

compiler optimisation, which may be required in order to understand the following chapters.
Most ideas explained in this chapter are based on Cooper and Torczon (2004, chapters 1, 8
and 10), Bonilla (2004, Chapter 2) and Bacon et al. (1994). The interested reader is referred
to e.g. Cooper and Torczon (2004) for a deeper description and explanation of the main tasks

performed by a compiler and the key issues involved in compiler construction and compiler

optimisation. Additionally, a classic text book in compilers is Aho et al. (2006).
The organisation of this chapter is as follows. The main concepts in compilation, the gen¬

eral structure of a compiler and the goals of a modern compiler are explained in sections 2.1,
2.2 and 2.3 respectively. The problem of compiler optimisation is described in section 2.4.
Afterwards, the concept of program transformations, their scope, classification, and some ex¬

amples of transformations are given in section 2.5. Subsequently, the popular approach of
iterative compilation to compiler optimisation is presented in section 2.6. Finally, the speed-up
measure is defined in section 2.7 and a summary of the chapter is given in section 2.8.

2.1 Basic Concepts in Compilers

In general, a compiler can be thought as a large piece of software that takes a representation of a

program (e.g. in a high-level programming language such as C or Fortran) and outputs a version

10

Chapter 2. The Compiler Optimisation Problem 11

of this program into another representation. This latter representation can be, for example, a

language that a specific architecture can actually understand, and therefore the ultimate code
generated by a compiler can be executed in such architecture. The crucial guarantee that a
compiler must provide is that the meaning of the original program must be preserved. Indeed,
it would make no sense to transform a program if its meaning was not maintained. This is
known in the literature as correctness and it is the most important principle of compilation.

Thus, in short, we can define compilation as the process of transforming or translating a

program from one version to another while maintaining the meaning of the original program.
Commonly, the original version of the program is written in a high-level programming language
such as C or Fortran and the ultimate code generated by the compiler is an object code that can
be executed on a specific architecture.

A compiler may also want to transform a program in a given representation into a version
of this program in the same representation. For example, a compiler can receive as its input
a program written in C and produce as its output another C version of this program. In this
case the goal may well be, for example, to produce a program that runs faster or that occupies
less space than the original one. In any case, such a compiler would generate a code that can
be portable from architecture to architecture as, for example, there are C compilers for most

platforms. An example of such "source-to-source" translator is the SUIF compiler (Hall et ah,
1996), which is in fact the software infrastructure used for the experiments reported in this
thesis (Chapter 5).

As we shall see in section 2.3, modern compilers are focused on the two goals described
above: code generation and optimisation. In the following section we will explain the general
structure of a modern compiler. We will refer henceforth to a compiler as the application
that processes a program written in a high-level language and produces executable machine-
dependent code.

2.2 The General Structure of a Compiler

In general, a compiler is composed of three main structures: the. front-end, the optimiser and
the back-end. The front-end is responsible for taking the source code of a program, analysing
it syntactically and semantically and producing an intermediate representation (IR). This IR is
taken by the optimiser which attempts to improve the code for a specific objective such as exe¬

cution time. The output of the optimiser is also an intermediate representation, which is taken

by the back-end in order to produce the final object code to be executed on a specific architec¬
ture. Figure 2.1 illustrates the general structure of a compiler. These three main components of
a compiler are described in more detail in the paragraphs below.

Chapter 2. The Compiler Optimisation Problem 12

Figure 2.1: The General structure of a compiler.

The Front-End

The front-end of a compiler checks the syntax and the semantics of a program and transforms
the program into an intermediate representation (IR). The syntax analysis (done by scanning
and parsing) is concerned with the validity of the program in terms of well-formed sentences.
For example, one task that afront-end may execute is checking that a variable used in a compu¬

tation has been declared before. The semantic analysis (also called context sensitive analysis)
is concerned with the validity of the program in terms of the language specification. In other
words, the semantic analysis validates that the sentences of the program are indeed specific
instances of the language grammar in which the input program is written.

The Optimiser

The optimiser takes the IR of the program output by the front-end and attempts to improve the
code by applying several transformations. The optimiser carries out tasks such as dependency
analysis and data-flow analysis in order to ensure that the changes to be introduced are correct

so that the transformed code maintains the meaning of the original code. The output of the

optimiser is an IR of the program, for which the final code generated is expected to have

"good" performance in terms of a specific objective such as execution time. Since compiler

optimisation is the focus of this thesis, this topic will be discussed in more detail in section 2.4.

The Back-End

The back-end of a compiler is responsible for the translation of the IR of the program output

by the optimiser into a machine-dependent code that can actually be executed on a specific
architecture. In order to achieve this the back-end carries out several tasks. Three of the most

significant include: instruction selection, register allocation and instruction scheduling.
Instruction selection is the task of selecting the machine instructions (or operations) that

implement the intermediate representation given by the optimiser. It is assumed during this
task that there is an unlimited number of resources and, therefore, no restrictions on the use of

registers are imposed.

Subsequently, the register allocator needs to assign the set of values produced by the
instruction selector to the actual registers of the architecture. The problem of allocating a

bounded number of registers in order to minimise the number of loads and stores is, in general,

Chapter 2. The Compiler Optimisation Problem 13

NP-complete.

Finally, instruction scheduling is the problem of re-ordering the instructions so that they are

executed as fast as possible on the target architecture. This step is required because, in general,
different operations take different times to execute and also because modern processors can

start executing a new operation while others are being executed, as long as the operators of the
new instruction are readily available. The minimisation of the latencies (or stalls) introduced

by the sequential execution of instructions is, in general, an NP-complete problem.
It is necessary to remark that although the tasks performed by a compiler have been de¬

scribed as separate processes, there are strong interactions between these tasks. For example,
the scheduling of instructions may increase the demand for registers (i.e. register pressure).
Thus, in addition to dealing with NP-complete problems, a compiler is forced to take deci¬
sions that are only an approximate solution to the problem of generating "optimal" code for a

particular architecture.

2.3 Goals of a Modern Compiler

There has been a lot of work for many years at the front-end of the compiler on tasks such
as scanning and parsing. Thus, the focus of modern compilers has been transferred to the

problem of producing code that can maximally exploit the resources of a target architecture.
In other words, modern compilers are mostly focused on the problems of optimisation and
code generation. Obviously, when focusing on these tasks, a compiler must ensure that the
main principle of compilation is not violated, i.e. that the meaning of the original program is

preserved.
In this thesis we focus on the optimisation stage of a compiler and we approach this prob¬

lem with machine learning techniques. However, we emphasise that tasks that are performed

during code generation, such as register allocation and instruction scheduling, are also crucial
in achieving good performance on current architectures.

2.4 Compiler Optimisation

In this section we describe the problem of compiler optimisation seen as the task of finding a

version of a program that improves the ultimate code generated by the compiler with respect to

some specific objective such as execution time, energy consumption or code size. Although in
some scenarios one should consider a trade-off between these three different objectives, in this
thesis we will tackle the problem of optimising a program for speed (i.e. execution time).

One can obtain different versions of a program by applying several code transformations.
As we shall see below, a program transformation can be beneficial for some code and detri-

Chapter 2. The Compiler Optimisation Problem 14

mental for others. Furthermore, code transformations interact with each other in very complex

ways. Therefore, in this thesis we approach the problem of compiler optimisation by focusing
on the task offinding a "good" sequence ofprogram transformations that improve the ultimate
code generated by the compiler. However, the reader should bear in mind that, as pointed out

in section 1.1, the compiler optimisation problem does not correspond solely to the task of de¬

termining good sequences of transformations for programs but also to the development of new
code transformations and analyses that enable the applicability of program transformations.

2.5 Program Transformations

The key issue in compiler optimisation is the concept of a program transformation. We can

think of a program transformation as a process that changes the code of a program with the

hope that the resulting code is in some way better than the original one. As mentioned above,
in our specific case, better means that the ultimate code generated by the compiler runs faster
than the original one. We will refer sometimes to a program transformation as a program

optimisation or simply as an optimisation.

2.5.1 Legality, Improvement and Interactions

A program transformation must always preserve the meaning of the original code. If this is not
the case, a transformation must not be applied. This is commonly known as the safety or legality
of a program transformation. As described in Cooper et al. (2002, Chapter 8), a lot of effort

during the optimisation phase of a compiler is devoted to the analysis of a transformation's

legality. A suitable definition for legality is given in Bacon et al. (1994):

"A transformation is legal if the original and transformed programs produce ex¬

actly the same output for identical executions."

A transformation is applied to a code with the hope of improving its run-time behaviour.
For example, some transformations are designed to enhance instruction level parallelism (i.e.

executing different instructions at the same time). Other transformations are expected to im¬

prove memory accesses or to eliminate redundant computations. However, a program trans¬

formation does not always provide an improvement in performance. Indeed, the effect of a
transformation on the run-time behaviour of a program depends upon the code being trans¬

formed and the target architecture. In general, it is very difficult to ascertain when a program

transformation should be applied. Additionally, many program transformations can be param-

eterised and setting the right values for their parameters is also a hurdle.
The problem of deciding when and how to apply a sequence of transformations is made

even harder by realising that these transformations can enable or disable the applicability of

Chapter 2. The Compiler Optimisation Problem 15

other transformations. Furthermore, a program transformation can make another transforma¬
tion more or less effective. This is known in the compiler literature as the problem of interac¬
tions. As pointed out by Kulkarni et al. (2006), most interactions are very difficult to predict
since they depend on "the program being compiled, the underlying architecture and the specific

implementation of the compiler".
Thus, determining a good set of transformations, their parameters and the order in which

they should be applied to a program is an interesting challenge for compiler writers and re¬

searchers.

2.5.2 Scope

The scope of a program transformation is the level of granularity at which it can be applied.
For example, a transformation can be applied to statements, basic blocks, innermost loops,

loops, functions (or procedures) or to the whole program. Flowever, we will normally refer
to the optimisation scope as the level of granularity at which a sequence of transformations
is applied. In other words, the optimisation scope is the level of granularity for which one

considers different optimisation strategies. For example, a program-level of granularity means

that a different optimisation strategy (i.e. a different sequence of transformations) is used for
different programs but the same strategy is used within the whole program. In this thesis we

only consider a program-level optimisation strategy. However, as will be discussed in section
9.2.2, transformations applied at a program level may lead to inferior performance compared to
the case when these transformations are applied at finer levels of granularity such as functions
or loops. See section 9.2.2 for more details on the advantages and difficulties of approaches

using finer levels of granularity.

2.5.3 Classification

A general classification of program transformations distinguishes those transformations that are
machine dependent from those that are machine independent. Unlike machine-dependent trans¬
formations that consider the details of the target architecture, a machine-independent transfor¬
mation neglects these details. Examples of machine-dependent transformations are instruction

scheduling and register allocation. Examples of machine-independent transformations are loop

unrolling, constant propagation and common subexpression elimination.

2.5.4 Examples of Program Transformations

Numerous transformations have been proposed in the literature with the aim of improving some

characteristics of the code. For example, while some program transformations are expected to

reduce the loop overhead, others aim at increasing instruction level parallelism, enhancing data

Chapter 2. The Compiler Optimisation Problem 16

Type Transformation

Induction variable elimination

Data-flow loop transformations Loop-invariant code motion

Loop unswitching

Loop interchange

Loop reordering Loop tiling

Loop fusion

Loop unrolling

Loop restructuring Loop normalisation

Loop peeling

Array padding
Scalar expansion

Memory access transformations
Array contraction
Scalar replacement
Constant propagation

Partial evaluation Copy propagation

Strength reduction
Common subexpression elimination

Redundancy elimination Useless code elimination

Dead variable elimination

Procedure inlining
Procedure call transformations Procedure cloning

Loop pushing

Table 2.1: Examples of common program transformations (from Bacon et al., 1994).

cache locality, reducing redundancy in the computations or improving memory access. Table
2.1 presents a classification of some common program transformations as proposed in Bacon
et al. (1994).

Common Subexpression Elimination

In order to illustrate the effect of a program transformation let us take for example common

subexpression elimination (cse). This transformation detects identical subexpressions at dif¬
ferent locations, computes the value of the sub-expression once, stores it and reuses the stored
value. An example of a code fragment written in C and transformed by common expression
elimination is given in Figure 2.2.

It is clear that common subexpression elimination avoids redundant computations and,

Chapter 2. The Compiler Optimisation Problem 17

a = i * 4 * j ;

b = i*4*k;

c = a+b;

(a) Original code.

tmp = i*4;

a = tmp*j;

b = tmp*k;

c = a+b;

(b) Transformed code.

Figure 2.2: An example of a code fragment transformed by common subexpression elimination.

therefore, one could speculate that it should always be applied to a program. However, the
effect of this transformation can be detrimental if the cost of storing the temporary variables is

greater than the benefits obtained by reducing the computations, for example when additional
spills to memory occur.

Loop Unrolling

Another classic example of the effect of a program transformation is the application of loop

unrolling. Loop unrolling is a very simple transformation that replicates the loop body a certain
number of times u, usually called the unroll factor. The iteration step of the loop is then
modified accordingly and a prologue or an epilogue may be added before or after the loop in
order to deal with the left-over operations (when the actual number of iterations is unknown).
An example of a loop transformed by unrolling is given in Figure 2.3. We note that a prologue
or an epilogue has not been added given that there are not left-over operations.

Unrolling a loop has the potential of increasing instruction level parallelism (ILP), reduc¬

ing the overhead due to loop control and enabling the applicability of other transformations.
However, loop unrolling can be detrimental due to a potential degradation of the instruction
cache because of the increase in the size of the loop body.

As common subexpression elimination and loop unrolling, there are many other code trans¬

formations that can be applied to a program with the goal of improving the performance of the
ultimate code generated by the compiler. However, it is difficult to ascertain when and how
these transformations should be applied. Additionally, as mentioned in section 2.5.1, the inter¬
actions between program transformations make the problem of finding a "good" transformation

sequence for a given program even harder.
The compiler community has been aware of this problem and several approaches have been

proposed in the literature in order to find "good" compiler transformations for programs (see

Chapter 4 for an overview of the related literature). A popular approach that has received a

special interest in the embedded systems community is iterative compilation.

Chapter 2. The Compiler Optimisation Problem 18

for (i=0; i<100; i++) for (i=0; i<100; i+=2){
a[i] = b[i] + c [i]; a[i] = b[i] + c[i];

a[i+l] = b[i+l] + c[i+l];

}
(a) Original loop. (b) Transformed loop.

Figure 2.3: An example of a loop unrolled twice.

2.6 Iterative Compilation

In this thesis we will refer to iterative compilation as the general process of searching for

"good" compiler transformations (or transformation sequences) using an iterative approach
such as uniform search. This simple technique has been shown to provide significant improve¬
ments in performance, for example, over static heuristics that aim at determining a good set of
transformations for a program (see for example Kisuki et al., 2000; Knijnenburg et al., 2002;
Fursin et al., 2002; Fursin, 2004). However, the improvements obtained are usually at the

expense of a large number of evaluations. Thus, even in an embedded systems scenario, tech¬

niques such as the ones proposed in Chapters 7 and 8 are required in order to make iterative

compilation useful in practice.
So far we have described the problem of compiler optimisation as the task of finding a

transformation sequence that improves the performance of a program. However, we have yet

to define a measure of the improvement of a program under the application of a sequence

of code transformations. In this thesis we will use a measure of performance known in the

compiler literature as the speed-up.

2.7 Performance Measure: Speed-up

In order to evaluate the quality of a transformation sequence we will use the speed-up (y) as a

measure of performance:

y=mrr\- <21)time(r, x)
where time(7.0) is the execution time of program T when no transformations are applied (the
baseline) and time(7,x) is the execution time of the program when a transformation sequence x

is applied. Note that this measure of performance ranges in the interval (0, °°), where a number
between zero and one means that a transformation sequence slows down the execution of the

program and a speed-up greater than one indicates an improvement in performance. In practice,
however, we can consider speed-ups greater than 1.05 as significant improvements and speed-

ups close to 2 as excellent improvements since this means that the execution time has been
reduced to half of the original program's. In order to illustrate this point, we can highlight some

Chapter 2. The Compiler Optimisation Problem 19

of the improvements obtained in the compiler optimisation literature, for example Franke et al.
(2005) obtain an average speed-up of 1.71 across three different platforms and 13 benchmarks;
Almagor et al. (2004) report speed-ups between 1.17 and 1.33 across 10 programs at the cost of
200 to 4550 program evaluations in a optimisation space of 1610 transformation sequences; and
Triantafyllis et al. (2005) report speed-ups between 1.05 and 1.4 on 16 SPEC 2000 benchmarks
when using their optimisation space exploration (OSE) framework.

2.8 Summary

This chapter has presented a background in compilation and compiler optimisation that may
be required in order to understand subsequent chapters. In particular, the basic notion of com¬
pilation as the process of translating a source program written in a high-level programming

language into an object code that can be executed on a target architecture has been given. Ad¬

ditionally, the general structure of a modern compiler composed of a front-end, an optimiser
and a back-end has been explained. The problem of compiler optimisation as the task of finding
a sequence of code transformations has been described and the key role of a code transforma¬
tion in optimisation has been emphasised.

Several examples of program transformations have been provided. In particular, it has
been explained that common transformations such as common subexpression elimination and

loop unrolling may be beneficial or detrimental depending upon the characteristics of the code
and the target architecture. The difficulty of determining when a program transformation is
beneficial and the interactions between different program transformations make compiler opti¬
misation a very interesting problem for compiler writers and researchers.

This chapter has also described the popular approach of iteratively searching the space of
code transformations in order to optimise a program, which is known as iterative compilation.

Finally, the performance speed-up of a program has been defined. This measure will be
used throughout this thesis in order to evaluate the performance of a program under the appli¬
cation of a transformation sequence.

Chapter 3 will present a machine learning approach to the compiler optimisation problem,
which will be the basis for the techniques proposed in chapters 7 and 8.

Chapter 3

A Machine Learning Approach to

Compiler Optimisation

We have seen in Chapter 2 that the compiler optimisation problem can be considered as the
task of making a compiler produce better code\ which can be achieved with the application
of sequences of program transformations. One can think of a program transformation as a

process that changes (or transforms) the code of a program (commonly at an intermediate rep¬

resentation) with the hope that the resulting code, for example, runs faster than (and maintains
the meaning of) the original version of the program.

Although numerous program transformations have been proposed with the aim of helping

compilers to produce better code, selecting the right transformations that should be applied to

a program, tweaking their parameters and finding the best order in which these transformations
should be applied are usually hand-crafted tasks performed by compiler writers. In fact, for

many years compilers have been hand-tuned on a limited number of benchmarks for specific
architectures. This approach is difficult to generalise over programs and architectures, requires
a lot of time and effort to develop and may sacrifice performance on programs that have not

been included in the tuning process.

Therefore, it is necessary to develop new techniques that:

• automatically generate heuristics that indicate when and how code transformations should
be applied;

• can be based on a great variety of programs while requiring very little human interven¬
tion;

• are able to perform well on programs for which they have not been tuned before; and

'Although in this thesis we focus on the problem of optimising a compiler to generate code that runs fast, we
remind the reader that one may be interested in other objective functions such as code size or energy consumption
or even in a trade-off between these different objectives.

20

Chapter 3. A Machine Learning Approach to Compiler Optimisation 21

• are easily implemented on different platforms.

In summary, it is necessary to develop techniques that maximally exploit the physical resources
of an architecture while keeping enough flexibility in order to adapt to different environments.

As mentioned in Chapter 1, the concepts of generalisation, adaptation, and tuning based
on previous examples lead to a "natural" solution based on machine learning techniques. This
chapter explains in detail how machine learning techniques can be used in order to address the
compiler optimisation problem. More specifically, this chapter describes two main areas of
research where machine learning can be used within an optimising compiler: global optimisa¬
tion and predictive modelling. Furthermore, it is explained how these two different areas can

be tackled in a unified framework based upon a transfer learning approach.
We start by describing the general framework for an optimising compiler that is driven by

machine learning in section 3.1. The problems of global optimisation and predictive modelling
are described in sections 3.2 and 3.3 respectively. A transfer learning approach to compiler

optimisation that relates global optimisation and predictive modelling is presented in section
3.4. Finally, the chapter is summarised in section 3.5.

3.1 The General Framework for an Optimising Compiler

A machine learning approach to compiler optimisation aims at modelling the relationship be¬
tween programs and good sequences of transformations as illustrated in Figure 1.1. Given a

set ofM programs and a set of code transformations = {<3i,rz2,... ,a^} that can be com¬
bined into different sequences x of 'arbitrary' length L, it is possible to execute two different

processes: feature extraction and global optimisation.
The output of feature extraction is a set of features t that characterise each program. As

in any machine learning application, selecting the right features to represent the input is a

crucial step given that these features must provide predictive power on the performance of the

programs.

The second process, global optimisation, executes a search algorithm over the space of
transformation sequences X. Thus, after a certain number of evaluations of a specific pro¬

gram, the optimiser outputs N sequences of transformations (x) along with their corresponding
execution times (or speed-ups y)2.

Afterwards, the features extracted from the programs, the sequences of transformations and
their execution times (output by the global optimisation process) are associated and stored in
a database. Finally, a model !M(t,x,y) that aims to capture the knowledge that the features
of a program (t) provide about transformation sequences (x) and their performances (y) is

2In general, the optimiser can output a different number of transformation sequences per program. Here, for
simplicity in the notation, we assume the same number of sequences for all programs.

Chapter 3. A Machine Learning Approach to Compiler Optimisation 22

built. This model must be able to generalise over new programs and can be used to drive the
optimisation of programs that have not been seen before.

In the following sections we will focus on the main tasks that can be performed within a

machine-learning based optimising compiler: global optimisation and predictive modelling.

3.2 Global Optimisation

Given an alphabet LA = {ai,a2, ■ ■ ■ ,<2|j?|} of compiler transformations that can be combined
into sequences of arbitrary length, global optimisation aims at finding "good" transformations
sequences x, i.e. transformation sequences that improve performance, for a specific program.

Thus, global compiler optimisation is a sequential combinatorial optimisation problem, where
search must be performed on a discrete and unsmooth space (X) of transformation sequences.

Clearly, continuous optimisation techniques such as gradient descent cannot be directly ap¬

plied. Thus, as we will see in section 4.1, popular approaches to the global optimisation prob¬
lem have been e.g. genetic algorithms and hill climbing methods. An alternative approach,
and in fact the one that has motivated the technique described in Chapter 7, is Estimation of
Distribution Algorithms, where one "evolves" probability distributions over good solutions.

Additionally, if we restrict ourselves to search for "good" settings of a fixed-order set of opti¬
misation flags, statistical techniques such as fractional factorial designs can also be useful (see
section 4.1).

It is necessary to emphasise that the problem of effectively sampling the space of trans¬
formation sequences in order to achieve "good" performance is very difficult. This is mainly
due to the large number of transformations available within a compiler, which may be parame-

terised and can interact with each other in very complex ways. As an example, neglecting the

sequential nature of the problem, let us consider a compiler such as GCC where more than 50
transformations are available. Assuming that there are 50 binary transformations that need to

be turned on/off, there are 250 different settings. Clearly, exhaustive enumeration of this space

is prohibitive. Additionally, even for smaller spaces such as the one described in section 5.3.2,
with a potential number of 145 transformation sequences, exhaustive search is impractical and
automatic techniques that intelligently search for good optimisation sequences are required.

The importance of global optimisation within a machine learning framework is that it is the
source of (training) data required by predictive modelling. Additionally, despite being a hard
and expensive task, global optimisation is mainly an off-line process and therefore, a machine

learning approach to compiler optimisation is not limited to iterative compilation (see section
2.6) but it can also be applied to general purpose compilation.

Chapter 3. A Machine Learning Approach to Compiler Optimisation 23

3.3 Predictive Modelling

Given a database of program features t, sequences of transformations x and their corresponding
speed-ups y, the aim of predictive modelling is to build a model 9v[(t, x,y) that is able to predict
"good" transformation sequences when a new program is presented.

One of the major difficulties in predictive modelling, is the determination of a suitable set
of features for learning. Although previous approaches have made important contributions to

this area (Monsifrot and Bodin, 2001; Monsifrot et ah, 2002; Stephenson and Amarasinghe,

2005), there has not been substantial evidence that static features are informative enough about

good transformation sequences and/or their performances. As we shall see in chapters 7 and
8, we have relied on the knowledge of compiler experts for the extraction of these features.
However, as will be pointed out in section 8.8.3, static features may be insufficient for predic¬
tive modelling and features that rely on the dynamic behaviour of the baseline program may be

required.

3.3.1 Sequence Prediction

The most straightforward formulation of the predictive modelling problem is as a classification
task where the input is a set of features that represent a program and the output is the sequence

of transformations for which the program experience the best (or a "good") improvement in

performance. However, the problem of predicting sequences (that are in general of variable

length) is hard and not commonly approached in the machine learning literature. Indeed, most
common classification problems involve a well-defined number of classes where the order in
which these classes are predicted is irrelevant. Additionally, large amounts of training data may
be needed in order to learn such a mapping, especially if long sequences are considered along
with a good variety of code transformations.

Other variations to the classification task are possible. For example, the prediction of a

probability distribution over "good" transformation sequences (e.g. a Hidden Markov Model).
Thus, given set of program features it is possible to predict those sequences that are more likely
to improve performance. In fact, this approach is adopted by the technique described in Chapter
7 and referred to as Predictive Search Distributions, where a distribution over good solutions
across different optimisation problems is learnt. This distribution is then used in order to focus
search on a problem that has not been seen before. This approach can be seen as a smoother
formulation of the sequential classification task and it may well be easier to learn a distribution
over good solutions than a single best transformation sequence, as the former makes more

effective use of the data available for training.

Chapter 3. A Machine Learning Approach to Compiler Optimisation 24

3.3.2 Performance Prediction

Alternatively to modelling "good" transformation sequences directly, an indirect approach can

be followed by learning a model of the performance of transformation sequences. In other
words, one can adopt a regression approach to the optimisation problem (as in the methods

proposed in Chapter 8). Optimisation with this approach is performed in two stages. The first

stage is the learning stage, where one learns a performance predictor, so called proxy, that
is able to provide an estimation of the performance of a program under the application of a

sequence of transformations. The second stage is the use of such predictors in order to find
a good set of transformation sequences. One possible way to achieve this is to optimise the

regression function itself by using, for example, gradient-based methods. However, given that
the regression function may be rather complicated and that the optimisation space is discrete
by definition, optimising the regression function may be very hard.

An alternative way of using proxies for optimisation, and indeed the one followed in this

project (see Chapter 8), is to use their predictions in order to rapidly scan a vast number of
points in the search space. From these large number of transformation sequences one can

select say k data points that are expected to provide best performance as predicted by the

proxy. Obviously, making predictions with the proxy must be significantly faster than the
actual evaluation of a data point in the search space for this approach to be useful.

Although this is an indirect method, it may be advantageous over the sequence prediction

approach as it effectively uses all the data available for learning (i.e. the transformation se¬

quences and their performances). Additionally, the construction of performance predictors is

important not only in compiler optimisation but also in architecture simulation, where very

slow simulators are used in order to evaluate the performance of a program in a new architec¬
ture (see e.g. ipek et al., 2006, as a recent reference).

3.4 Learning across Programs: Transfer Learning

The problems of global optimisation and performance prediction can be addressed within a

single-benchmark framework. For example, one can search the optimisation space of a given

program by using solely a feedback directed optimisation approach, where a set of transforma¬
tion sequences are evaluated and used in order to drive optimisation towards "good" regions
of the space (see e.g. Cooper et al., 1999, 2002; Almagor et al., 2003, 2004; Kulkarni et al.,
2003; Triantafyllis et al., 2003, 2005). Similarly, performance estimators can be built on a

per-benchmark basis by training regression models on a set of samples that are specific to a

program (see e.g. ipek et al., 2006).
However, these approaches do not make use of previously solved problems and searching

(or learning) must be started from scratch each time a new program is presented. In this the-

Chapter 3. A Machine Learning Approach to Compiler Optimisation 25

sis we follow a rather different approach by assuming that there is shared information across

different programs in terms of the relationship between transformation sequences and their per¬
formances. In other words, we follow a transfer learning approach where we want to exploit
task-relatedness by learning across different programs and using this knowledge in order to
drive optimisation on new programs that have not been seen before. The methods proposed
in this thesis (and discussed in Chapter 7 and Chapter 8) rely on this assumption and they
are shown to provide greater benefits compared to the single-task optimisation (or single-task

learning) scenario.

3.5 Summary and Discussion

This chapter has described a machine learning approach to the compiler optimisation prob¬
lem. In particular, it has presented two different (but related) areas where machine learning
can be used in compiler optimisation: global optimisation and predictive modelling. Global

optimisation is the problem of effectively searching for "good" compiler transformation se¬

quences. Predictive modelling aims at building models that capture the correlations between

program characteristics, transformation sequences and their performances. Furthermore, pre¬
dictive modelling can be formulated as a sequence prediction problem or as a performance

prediction task. In the former, the goal is to model directly "good" transformation sequences.

In the latter, one first builds a regression model of the performance of programs under the

application of transformation sequences and uses this model in order to find transformation

sequences that are expected to improve performance.
This thesis puts together the ideas of global optimisation and predictive modelling by using

a transfer learning approach. In other words, in the methods proposed in this thesis, predictive
models are learnt on a set of programs and used in order to search the optimisation space of
a program that has not been seen before. Thus, transference is achieved by exploiting the
information shared across different programs.

It is necessary to remark that for many applications achieving transference across different
tasks is hard and that assuming relatedness in a set of tasks can be detrimental (see e.g. Baxter,
2000; Caruana, 1997). However, for the compiler problems investigated in this thesis, the

techniques proposed in Chapter 7 and Chapter 8, which exploit transference across different

optimisation problems, yielded (in general) significant improvements in the performance of the

programs.

Chapter 4

Related Work

This chapter presents the most relevant work that has used artificial intelligence and/or machine

learning techniques in the field of compiler optimisation. Although a comprehensive review of

previous work is infeasible, some of the most important approaches that relate to the objectives
of this thesis are briefly described and analysed.

As seen in Chapter 3, there are two main topics underlying the problem of compiler op¬

timisation with machine learning: global optimisation and predictive modelling. While the
former focuses on searching the space of compiler transformations the latter uses supervised

learning to predict good compiler transformations for programs. The literature related to these
two topics is reviewed in section 4.1 and section 4.2. Two additional topics of interest that
will be addressed in Chapter 8 and Chapter 6 are: performance prediction and optimisation

space characterisation. The related work on these areas is presented in sections 4.3 and 4.4

respectively. Finally, some previous work on using unsupervised learning methods in compiler

optimisation is described in section 4.5.
It is important to highlight that this chapter only describes the previous work on compiler

optimisation with machine learning. The (machine learning) literature related to the methods

proposed in Chapter 7 and Chapter 8 as general machine learning techniques is analysed within
each corresponding chapter.

4.1 Global Optimisation

Previous work on finding an optimal sequence of compiler transformations for a specific pro¬

gram has been based upon different techniques such as iterative compilation (or uniform search);
biased sampling methods including genetic algorithms and hill climbers; statistical methods in¬

cluding orthogonal arrays and fractional factorial designs; and static models of performance.
These approaches reveal not only that compiler optimisation is an area of active research

but also that searching the optimisation space of compiler transformations can lead to signifi-

26

Chapter 4. Related Work 27

cant improvements in the performance of a program. This is surprising considering that most
benchmarks reported in the literature have been extensively used for tuning a specific compiler.

The main difference from previous approaches (to the global optimisation problem) with
the techniques proposed in this thesis is that the latter exploit transference across programs.

Indeed, previous work has focused on searching the optimisation space of a single benchmark
without using the knowledge gained from the optimisation of previous programs.

The related work on searching the optimisation space that is described below has been
divided into two main approaches: those that have used biased random search and those that
have used statistical techniques. However, it is necessary to explain first the simplest baseline
of uniform random search.

4.1.1 Using Uniform Random Search

The simplest approach to global optimisation is to use iterative compilation (see section 2.6)
based upon uniform random search. In this method the search is fully exploratory and there
is no bias towards specific regions of the optimisation space in order to exploit the knowledge

gained during the search process. This simple technique has been shown to provide significant
improvements in performance, for example, over static heuristics that aim at determining a

good set of transformations for a program (see for example Kisuki et al., 2000; Knijnenburg
et al., 2002; Fursin et al., 2002; Fursin, 2004). However, the improvements obtained are usually
at the expense of a large number of evaluations. More critically, this method does not exploit
any existing structure in the space that can bias the search towards better optimisation regions.

4.1.2 Using Biased Random Search

One of the earliest contributions to this area has been given by Cooper et al. (1999), who used

genetic algorithms (GAs) in order to optimise the size of the code produced by a compiler.
This task is particularly important in the field of embedded systems, where one can afford long

compilation times with the aim of producing small enough programs that, for example, fit into
a read-only memory (ROM).

They implemented a GA that searched the space of compiler transformation sequences in
order to produce the smallest version of a program. They worked with 10 program transforma¬
tions that could be combined into sequences of length 12. These transformations were applied
at an 'ILOC' level, which is an intermediate representation (IR) of a program. The GA gen¬

erated different populations of transformation sequences (chromosomes) of length 12, which
were evaluated according to the number of static ILOC operations (fitness value) of the trans¬

formed program. Ties were resolved by using the number of dynamic ILOC operations, which
is a very crude measure of run-time performance.

Chapter 4. Related Work 28

The results reported on 8 Fortran programs and 6 C benchmarks showed code-size improve¬
ments of 20% to 75% and run-time improvements of 20% to 83%. Sometimes the resulting
optimised programs were faster than a hand-tuned sequence and the GA was shown to con¬

verge to good solutions faster than uniform search. This latter result is important as it shows
that there was some structure in the space of the transformation sequences considered. Inter¬

estingly, much shorter sequences than those obtained by the GA were found to have similar

performance.
It is necessary to remark that this work was one of the earliest attempts to use artificial

intelligence techniques in order to search the space of compiler transformations. However,

given that GAs can take very long time to converge to a solution, it is unclear whether this

approach can be applied to other scenarios besides embedded systems. Unfortunately, the

experiments were not executed on an actual embedded architecture but only on a simulator.
Furthermore, since different operations take different times to execute, the number of dynamic

operations used as the secondary fitness function (for breaking ties) is not really a suitable
measure of performance as it does not necessarily correlate with the actual execution time of a

program.

The technique proposed in Cooper et al. (1999) is used as the basis of a prototype of an

adaptive optimising compiler (Cooper et al., 2002). This prototype utilises biased random
search algorithms such as GAs or hill climbing methods in order to find compilation sequences

that optimise an objective function. This objective function can be for example, run time,
code size or even power consumption. Thus, given a program, a target architecture, a set

of transformations and an objective function, the compiler selects transformation sequences

to be applied to the program and evaluates the objective function on the target architecture.
These function values are then input to the so-called "steering algorithm", which selects new

sequences (by using e.g. GAs) and applies them to the program. The process is repeated until
some desired level of performance is achieved or until some constraints are satisfied.

Based upon this prototype of an adaptive compiler, Almagor et al. (2003, 2004) carried
out a set of experiments that aimed at providing a better understanding of the search space

and at assessing the performance of different search algorithms on the global optimisation

problem. Two sets of experiments were performed: exhaustive experiments and exploratory

experiments. The exhaustive experiments involved a set of 5 transformations combined into

sequences of length 10, which were applied to two small benchmarks. The exploratory ex¬

periments included 16 different transformations forming sequences of length 10, which were

applied to 10 programs. Their customised compiler was used as the base infrastructure for the

experiments and the programs were executed on a simulated RISC architecture.
As a result of their analysis of the exhaustive experiments, two main conclusions were

highlighted: firstly, that the space was not smooth nor continuous; and secondly, that there

Chapter 4. Related Work 29

were many local optima1 in the space that were close to any randomly chosen point. The first
conclusion does not bring any new information about the optimisation space. Furthermore,

questions about the smoothness or continuity of the space are non-sensical given the discrete
nature of the space. The second conclusion is interesting as it provides an indication that ran¬
dom biased sampling methods such as hill climbing with different starting points may perform
well, given that most local optima in one of the spaces analysed were within 5% of the global
optimum. Unfortunately, these results are very dependent on the definition of a local optimum
and also on the very simple programs used for the experiments. The results for the exploratory

experiments showed that GAs can perform slightly better than other techniques such as hill
climbing or greedy search but at a very high cost in terms of the number of program evalua¬
tions.

There are several caveats about this work. In the first place, the programs were executed
on a simulated RISC architecture instead of on a real embedded processor, which was the
main motivation for such an approach. Additionally, as we shall see in Chapter 6, the effect
of interactions among program transformations is a key issue in the characterisation of the

compiler optimisation space. However, no analysis of these interactions was given. Finally,
as in Cooper et al. (1999), the number of instructions executed was used as the measure of

performance. As explained above, there is no direct correlation between this measure and the
execution time, as different instructions may take different times to execute.

With a slightly different purpose but also based on the use of genetic algorithms, Kulka-
rni et al. (2003) developed additional modules for the VISTA framework. This framework
is an interactive compilation software that allows the user to find good compiler transforma¬
tion sequences for programs. The system asks the user to provide the optimisation phases2 that
should be tried on a program and it returns feedback with static and dynamic information about
its performance. Therefore, in an interactive and iterative process involving expert-knowledge
the user can find an effective optimisation sequence for a program. The software supports

low-level transformations and the user can specify his own transformations. Additionally, the
framework can automatically perform an exhaustive search for the best sequence in a small

space; find the best permutation of transformations; and use GAs to search a bigger space. The

system can optimise a program for code size and run time.
Unlike Cooper et al. (1999), the search for good transformation sequences in Kulkarni et al.

(2003) is performed at a function level instead of at a program level. As expected, it is found
that good sequences differ considerably within the same program. Besides this fact, it is not

clear whether this approach really outperforms the work in Cooper et al. (1999, 2002) since

'They define a local optimum as a data point where all sequences that differ from it in one position have equal
or worse performance.

2In general, an optimisation phase may involve the application of several program transformations. However,
we will usually refer to phases as if they were single transformations.

Chapter 4. Related Work 30

their results are not comparable due to different optimisation specifics. As in Cooper et al.
(1999, 2002), the experiments were not executed on a real embedded system and a systematic
approach to tune the different parameters of the GA was not followed.

Triantafyllis et al. (2003, 2005) propose compiler "Optimization-Space Exploration" (OSE)
as a technique to improve iterative compilation. This technique includes the pruning of con¬
figurations and the use of performance estimators.

A compiler configuration is simply a full assignment of parameters to compiler options.
Pruning can be performed by using predictive heuristics that indicate for example, when a

transformation is likely to be effective after others have been effective, and more importantly,

by selecting a good set of k configurations.
The algorithm proposed starts with a seed of configurations and generates new configura¬

tions differing from one of the seeds in only one parameter. This is called the "expansion step".
Afterwards, it determines the best k-element subset in the "selection step" and uses it as the
new seed for the next iteration. The process is repeated until no improvement is observed or

until some constraints (e.g. time) have been satisfied. Not surprisingly, the algorithm is very

sensitive to different initialisations. An additional form of pruning is applied by organising the

configurations in a tree-structure, which allows the selection of what should be tried next and
what should be discarded.

The performance estimator of Triantafyllis et al. (2003, 2005) is specific to the Itanium
architecture. Such estimator scores segments of code based on an analytical expression that
involves indicators for ideal cycle counts, data cache performance, instruction cache perfor¬
mance and branch misprediction. Their results show a 5.3% of improvement on the training
set (SPEC2000 benchmarks) and a 10% of overall improvement on the test set (SPEC95 and
MediaBench benchmarks).

It is necessary to remark that the search method proposed in Triantafyllis et al. (2003, 2005)
is simply a hill-climber (or local search algorithm) where the neighbourhood of a configura¬
tion is defined as all the configurations that differ from it in only one parameter. However,
the idea of clustering in the transformation space is interesting. Additionally, as mentioned
above, the performance estimator is very specific and therefore difficult to generalise to other
architectures.

In a more restrictive approach, Stephenson et al. (2003) searched the space of priority

functions. A priority function evaluates the importance of different parameters within a specific

compiler heuristic and directly affects the efficacy of the heuristic. Their experiments included
three different heuristics: hyper-block formation, register allocation and data prefetching; 20
benchmarks drawn from SPECfp, SPECint, MediaBench and other suites; Trimaran and the
ORC compiler. Genetic programming was used to search the space of priority functions

corresponding to each heuristic in order to find a solution on a specific program and a solution

Chapter 4. Related Work 31

on a set of different programs. The maximum average speed-up reported was 23% obtained
with hyperblock formation on the training set and 9% when using cross-validation.

The greatest limitation of this work is the very long time taken by genetic programming
to come up with a good priority function. Indeed, there is no clear evidence that the method

outperforms random guessing for this specific problem. Furthermore, the performance obtained
in a different set of programs demonstrates that overfitting is indeed an issue for this technique.

4.1.3 Using Statistical Techniques

A rather different approach to the global optimisation problem in compilers can be followed by

using statistical techniques. An early work on this area was done by Chow and Wu (1999), who
used fractional factorial designs (FFD), a technique from the Design ofExperiments (DOE),
in order to trim down the search space of different compiler options.

Their main goal was to determine the best setting for a set of binary compiler options
while using a reduced number of evaluations from a potentially large search space. These
evaluations (or runs) where obtained by the FFD methodology. In addition to "efficiently"

searching the space, the FFD technique allows the identification of interactions between the
variables involved in the design, which in this case were the compiler transformation flags.

Starting with a small number of runs and iteratively adding more experiments in order to
break ambiguities (or aliases) between different factors3, they studied 9 different optimisation

flags for the IA-64 micro-architecture simulator on one SPecInt95 benchmark: compress. The

complete process involves the identification of interesting compiler switches, the generation
of an initial design, the creation of different program versions corresponding to the settings of
the design, the measurement of the performance of these settings, the analysis of the results
and the resolution of ambiguities by adding more experiments. This is repeated until certain

improvement has been achieved. Finally, the setting with the best performance throughout is
selected.

The results suggested that from the 9 transformations used, only 6 flags should be turned
on. Additionally, if a full factorial design (considering all the runs) had been applied to the
final 6 factors, the performance obtained would have been similar. Finally, if no interactions
had been considered, a decrease of 2% in the performance achieved would have occurred.

The adoption of a principled way to search the compiler optimisation space is worth high¬

lighting as well as the analysis of these techniques in order to address a relevant compiler

problem such as the identification of interactions between program transformations. However,

although the factors under the constructed model were analysed in terms of their significance,
the assumptions of the model itself were not validated. Indeed, as expressed in the original

3In fact, the generators and the aliasing structure used show that the initial design was a FFD of resolution
IV (see e.g. Montgomery, 1997, pages 420-421). This means that aliasing between main factors and 3-factor
interactions was allowed as well as aliasing between some 2-factor interactions and 2-factor interactions.

Chapter 4. Related Work 32

paper, the model fitted to the data is a linear-in-the-parameters model (see section 6.4 for an
explanation of these models). There are several ways to evaluate the departures from this
model. For example, a simple coefficient of determination that indicates how much variance is
explained by the model could have been used. Additional weaknesses of this work are (from
a compiler perspective): the relatively small search space investigated, the specificity of the
results to only one benchmark and the marginal performance improvements obtained.

Using a similar technique, namely orthogonal arrays4 (also from from the Design of Ex¬

periments (DOE)), Pinkers et al. (2004a,b) developed an iterative procedure to set up different

compiler options. The process starts with a specific orthogonal array for which all the rows

(settings) are executed. The relative effect of each option is evaluated according to its con¬

tribution to improvement in performance. If this contribution is over a certain threshold the

corresponding option is turned on, otherwise the option is turned off. With the remaining op¬

tions (discarding those already selected) a new orthogonal array is constructed and the process

is repeated until all the final options are chosen.
The experiments were performed using GCC on a SimpleScalar simulator, 6 SPEC bench¬

marks and 19 compiler options grouped into 14 factors. The main difference with Chow and
Wu (1999) is that Pinkers et al. (2004a,b) only consider the main-effect factors and neglect the
interaction effects. Additionally, although the best improvements obtained outperform all the

optimisation levels of the compiler, such improvements seem to be only marginal.
In an extension of the work in Pinkers et al. (2004a,b), Haneda et al. (2005b) address the

slightly different problem of finding the best compiler setting for a collection of applications.
This problem arises in supercomputing centres that continuously deal with a set of applications

belonging to a specific domain.
In this approach, orthogonal arrays are used to find a good "representative" subset of the op¬

timisation space. Subsequently, the execution times of this subspace are measured and utilised
to approximate the effect of future compiler settings. More specifically, the search algorithm is
divided into three steps: the first step takes the representative subset of the space given by an

orthogonal array and determines those compiler options that have a large effect as well as those

pairs that constructively interact; the second step greedily adds single optimisations to the pre¬

viously formed sets while keeping those optimisations that do not have a negative interaction;

finally, a small number of settings are tested (those with the largest number of options turned

on) and the one with the best performance is selected.
Their experimental set-up included 50 optimisations from the GCC compiler, 7 benchmarks

from SPECint95, and a Pentium IV architecture running at 2.8GHz. The orthogonal array used
was given by a 400 x 50 matrix, where the columns correspond to the 50 compiler options

4An orthogonal array is an array in which all the possible patterns found by selecting k columns appear equally
often (see e.g. Hedayat et al., 1999, page 2, for a formal definition). The parameter k is commonly known as the
strength of the orthogonal array.

Chapter 4. Related Work 33

(flags) used and the rows correspond to the different settings of these options.
Unlike Pinkers et al. (2004a,b), Haneda et al. (2005b) aimed at modelling the effect of inter¬

actions between program transformations. However, it is unclear how effectively an orthogonal

array involving 400 runs samples a space of 250 (n 1015 possible settings. Indeed, in addition
to the fact that the strength of the orthogonal array used was not mentioned, a linear model
that included main factors and 2-factor interactions would need to estimate 1275 parameters,

which is much greater than the number of rows of the orthogonal array used. Additionally,
there is a lot of criticism against using this methodology in the Design of Experiments litera¬
ture (see for example Montgomery, 1997, pages 630-634). For example, the aliasing structure
in orthogonal arrays may be quite complex and there may be cleaner and more effective alter¬
native designs based on fractional factorial designs. A final drawback of this approach is the

sensitivity of the method to several thresholds, which need to be specified beforehand.
In an additional extension to the work by Pinkers et al. (2004a,b) and Haneda et al. (2005b),

Haneda et al. (2005a) use the Mann-Whitney statistical test in order to find a good set of

compiler optimisation options by evaluating their positive or negative effect on the performance
of a program. More specifically, their greedy algorithm takes an initial sample drawn from an

orthogonal array and iteratively turns on/off optimisation flags by determining if their effect is

significant (using the Mann-Whitney test) and by assessing if such effect is positive or negative.
Their experiments were executed using the GCC compiler, 10 programs from the SPEC2000

benchmark suite and a Pentium IV architecture. Their results show that, in general, their tech¬

nique outperforms the standard -Ox GCC flags. As in Haneda et al. (2005b), the efficacy of
their method relies upon several threshold parameters, which are set up heuristically. Addition¬

ally, as each option is evaluated independently, the technique ignores the effect of interactions

among optimisation flags.
Unlike Chow and Wu (1999); Pinkers et al. (2004a,b); Haneda et al. (2005b), Vuduc et al.

(2004) propose a statistical-based approach to the global compiler optimisation problem that
does not rely on the use of a Design-of-Experiments methodology. In particular, they develop
a method that stops a potentially prohibitive exhaustive compilation search early. Additionally,

they propose a technique that automatically selects a version (or implementation) of a program

given a specific input data. The first problem is known as the early stopping problem and
the second task is referred as the run-time implementation problem. The experiments are

focused on a dense matrix multiplication kernel using the space of register and instruction-
level optimisations.

Their analysis of the data shows that the search space changes from architecture to archi¬
tecture and more importantly, that finding the best implementation of a program (even in the
case of a simple kernel) is a "needle-in-a-haystack" problem.

The early stopping problem is the task of finding when to stop the search of a particular

Chapter 4. Related Work 34

implementation of a program (due to specific compiler settings) so that the performance ob¬
tained lies within some fraction of the optimal solution. This task is formulated as the problem
of finding the probability of the maximum performance achieved at time t being over a certain
threshold. If this probability is sufficiently high the search process can be stopped.

More formally, using the same notation as Vuduc et al. (2004), we wish to determine the
value of:

P(Mt > 1 —e) > 1-a, (4.1)

where Mt is the random variable corresponding to the maximum performance obtained until
time t, £ is a certain fraction of the optimal solution and a is a degree of uncertainty. Note
that the probability statement in equation (4.1) is with respect to the performances obtained in
the space of all possible implementations of a specific program (given a set of transformations)
and that the performance measure is normalised with respect to the current best performance
at time t.

Vuduc et al. (2004) argue that equation (4.1) can be estimated by using the empirical
cumulative distribution function (cdf) of performances observed until time t. Thus, one can

specify an £ fraction of the optimal solution, a degree of uncertainty a, and the algorithm will

stop the search when these requirements are satisfied.
It is necessary to emphasise that this approach is essentially different from Almagor et al.

(2004, 2003); Cooper et al. (2002) since there is no biased sampling involved in this technique.
Therefore, as stated in Vuduc et al. (2004), their algorithm may serve as a complementary
method to other search approaches. However, one should be particularly careful with the use

of the empirical cdf for determining when to stop searching early as the empirical cdf may not
be a good estimate of the actual cdf. This is an issue especially for needle-in-a-haystack type

problems, where the goodness of the solutions at time t can be overestimated and therefore, the
search will be stopped prematurely.

The run-time implementation problem has not been very much studied in the literature from
a statistical or machine learning perspective. Vuduc et al. (2004) formulate this problem as a

classification task, where one has to select the best implementation of a program given a specific

input data. Thus, given input data that is described by some set of features, for example the
matrix sizes in a matrix multiplication algorithm, one can try to predict the best implementation
of the program (e.g. of matrix multiplication) so that the maximum performance is achieved.
This is done by using a set of previously solved problems. Vuduc et al. (2004) built a training
data set with three different implementations of dense matrix multiplication varying the sizes of
the matrices between 1 and 800. They determined the best (out of 3) implementations for 1936
different inputs. The results were evaluated using 1436 training points and 500 test points. The
best performance was obtained by using support vector machines and it was reported to have
a 12% misclassification rate. This was one of the earliest attempts to learn across different

Chapter 4. Related Work 35

input data. However, in general, characterising more complex input data with a set of features
can be a hurdle.

4.1.4 Other Approaches

Based upon the work in Cooper et al. (1999) and Chow and Wu (1999), Wu et al. (2006a)

propose a methodology for "automatic exploration of compiler options". This methodology
uses Genetic algorithms (GAs) and fractional factorial designs (FFDs) to trim down a po¬

tentially large space of compiler optimisations on a set of training benchmarks, which are

different for each application domain. An application domain is a category which a particular
benchmark belongs to, for example multimedia applications, network applications, etc. After
applying GAs or FFDs one obtains a reduced space of optimisation settings which must be

exhaustively enumerated and executed on the target architecture. The results are then stored in
their corresponding database. Finally, given a new program, a user specification consisting of

priority weights on the optimisation objective (which determine the priorities for optimisation
on execution time, power consumption and code size) and an application domain, the compiler
searches the stored databases to find the best set of optimisations to be applied.

Wu et al. (2006b) present a practical implementation of the above methodology on an Intel
XScale 80200EVB architecture using 4 training programs and 4 test programs from a DSP test

suite. Their results show very little improvement on execution time and power consumption,
but significant improvements on the code size of the programs.

Their idea of clustering benchmarks in order to customise compiler optimisations is worth
highlighting. However, this is done in an ad hoc manner. This differs from the approach

adopted in the present thesis where features of a program are correlated with "good" compiler

optimisations in an automatic and principled way. Additionally, we note that the approach
followed by Wu et al. (2006a) makes predictions on a new program based upon a reduced

optimisation space, which has been obtained by exploring a larger search space on a set of

training programs. This may lead to very sub-optimal solutions.
Pan and Eigenmann (2006) propose the combined elimination (CE) algorithm with the

goal of determining a "good" set of binary compiler options for a program while requiring a

low number of evaluations. The algorithm initially evaluates the baseline setting corresponding
to all the compiler optimisations being turned on, and it iteratively removes, i.e. turns off, one

optimisation at a time so that the performance of the program is increased.

They investigate 38 GCC compiler options on 23 SPEC CPU2000 benchmarks and a Pen¬
tium IV and a SPARC II architectures. It is shown that the CE algorithm outperforms other

techniques such as the ones presented in Pinkers et al. (2004a) and Triantafyllis et al. (2005) as
it achieves solutions of comparable performance while requiring a significantly lower number
of program evaluations.

Chapter 4. Related Work 36

An obvious limitation of the approach in Pan and Eigenmann (2006) is that it only ad¬
dresses the problem of tuning a fixed-order set of transformations, i.e. it does not deal with
the sequential (or phase-ordering) problem. Additionally, in a very recent approach which
was based upon the work presented in Chapter 7, Cavazos et al. (2007) showed that the CE
algorithm is outperformed by their technique and also by random uniform search.

Kulkarni et al. (2006) propose an alternative approach to efficiently search for optimisation

phase orders of arbitrary length (or optimisation sequences). Rather than directly searching the

space of phase orderings, their technique prunes the space of all possible code versions that
can be obtained with such orderings. This pruning process is based upon two practical facts.

Firstly, that there are compiler phases that do not change the code given some current state,

i.e. there are idempotent phases (they refer to these phases as dormant phases). Secondly, that
several different phase orders can lead to identical code versions even when all the phases are

effective (they refer to effective phases as active phases). Thus, pruning can be performed by

identifying idempotent transformations and by identifying identical versions of the code.

Clearly, their pruning methods can be used as a way of speeding up the data generation

process for the application of techniques such as the ones presented in Chapter 7 and Chapter
8. Indeed, the first type of pruning has been applied during the generation of the small space
of the SUIF data set described in section 5.3.2. Additionally, in general, the task of identifying
identical code versions is hard. However, Kulkarni et al. (2006) suggest an efficient way of

doing this without comparing the complete code generated by the compiler.
Kulkarni et al. (2006)'s experiments are performed at a function level with 15 optimisation

phases, sequences of length 12 (on average), on 111 functions belonging to 6 benchmarks from
the MiBench suite (Guthaus et al., 2001), using the very portable optimiser (VPO, Benitez and
Davidson, 1988) and a StrongARM SA-100 processor running Linux as its operating system.

Their exhaustive experiments, which were performed on 98% of all the functions by using
the pruning techniques described above, showed an average potential reduction in code size of
37.8%.

Fursin et al. (2005) propose a practical method for fast evaluation ofprogram optimisa¬
tions that, instead of searching the space of optimisations in smarter ways, scans more points
within the same amount of time. Their method is based on the fact that code sections (e.g.

loops) exhibit periods of time where performance is stable. Thus, several optimisations can

be evaluated during the same execution of the program every time a specific section is called.
Such an approach is implemented by using code instrumentation and code versioning in a

production compiler. For their experiments, five SpecFP2000 benchmarks were selected; the
PathScale EKOPath compiler (PathScale, 2005) was used; and the programs were executed on

an Intel Pentium IV architecture. Although their results show speed-up factors of 32 to 962,
these speed-ups are very dependent on the behaviour of a particular application. Thus, there

Chapter 4. Related Work 37

is not much intuition on how this approach will scale to very large search spaces of program

optimisations. Chapter 7 describes Predictive Search Distributions as a method that learns a

distribution over good solutions across different benchmarks in order to speed up search on

unseen problems. This has the advantage over Fursin et al. (2005)'s method in that when a new

program is presented, it does not start search from scratch but it uses the knowledge gained
from previously solved problems (programs). However, the method presented in Fursin et al.

(2005) can be used as a complementary technique to machine learning methods in order to

speed-up the data generation process.

In summary, most statistical methods proposed in the literature that attempt to intelligently
search the compiler optimisation space have been limited to searching the space of compiler

optimisation flags, where the order of the transformations has been fixed beforehand. This is
a major limitation in comparison to biased-search algorithms as the order of transformations
can play an important role in achieving maximum performance in compiler optimisation. The

following section describes some previous work on using supervised learning in order to predict
when and how to apply a single compiler transformation and also when/how to apply a set of

program transformations.

4.2 Predictive Modelling

Most supervised learning approaches to compiler optimisation have focused on predicting
when and how to apply a particular program transformation such as loop unrolling or instruc¬
tion scheduling. This seems reasonable given the limited knowledge of informative program

features for the predictive modelling task. However, this ignores the results from global opti¬
misation indicating that the application of several transformations yields significant improve¬
ments in performance. Furthermore, it ignores the fact that the improvement provided by the

application of a particular transformation when applied in isolation can be diminished when

interacting with other transformations.
This section presents the related work on predictive modelling by dividing it into two ap¬

proaches: those that attempted to predict a single transformation and those whose aim was to

predict a set of transformations.

4.2.1 Predicting a Single Transformation

This section presents the work related to the use of supervised learning in order to predict
the effect of a single compiler transformation (or optimisation). As we shall see below, given
the importance of loop unrolling in compiler optimisation, there has been an active interest in

predicting the effect of this transformation.

Chapter 4. Related Work 38

Branch Prediction

One of the earliest and successful attempts of using supervised learning in compiler optimisa¬
tion was pursued by Calder et al. (1997). They addressed the problem of branch prediction,
i.e. predicting whether a branch within a program is taken. Branch prediction is believed to be
of great relevance to optimising compilers as well as to computer architectures. Calder et al.
(1997) focused on static branch prediction, which (unlike dynamic branch prediction) does
not require profiling information and is based solely on program structure information. In other
words, the goal in static branch prediction is to foretell when a particular branch is taken before
it is actually executed.

Their technique was called Evidence-based static branch prediction (ESP), which aimed
at predicting the direction of a branch given a set of features that identify the branch. The

process starts by determining a set of static features that characterise branches. These features
are associated with two dynamic measurements: the execution frequency (normalised branch
weight) and the percentage of times the branch is taken (branch probability). Once data has
been collected over a sufficiently representative number of branches one could use any super¬

vised learning algorithm for this task. Calder et al. (1997) use artificial neural networks and
decision trees. The former was utilised with batch mode training in order to minimise the
number of missed branches and the number of branches incorrectly taken. The latter method
(decision trees) was employed to solve the binary classification problem of deciding whether a
branch is taken.

The experiments were executed on 43 C and Fortran programs from SPEC92 and other
suites. The programs were compiled with standard optimisation -O level on a DEC 3000 — 400

using the Alpha AXP-21064 processor. The results reported indicate an overall miss rate of
20%, a significant improvement compared to the best existing heuristic at that time which
had a 25% overall miss rate. This work can be considered as pioneering in the application of
machine learning techniques to compiler optimisation. Indeed, as claimed in the original paper,
the method is independent of the language, compiler or target architecture.

Since the publication of ESP (Calder et al., 1997), there has been a lot of interest in the

application of machine learning techniques to the branch prediction problem, see e.g. Jimenez
(2005); Singer et al. (2007) as recent references. However, branch prediction is a congested
area of research and it is unclear if it is possible to outperform the highly tuned current state-

of-the-art methods.

Instruction Scheduling

Contemporaneously to the work by Calder et al. (1997), Moss et al. (1998) proposed a machine

learning approach to learning to schedule straight-line code. Unlike previous methods that
used heuristics to schedule code, they formulated the problem of instruction scheduling as a

Chapter 4. Related Work 39

learning task. Their focus was on scheduling instructions within a basic block, i.e. straight-
line code. An additional constraint to make the learning process feasible was to consider only

greedy schedulers, in other words, those that from the beginning to the end of the basic block
select the apparent best instruction from a set of possible instructions to be scheduled next.

The learning task was defined on the relation over triples (P,hjj), where P is a partial
scheduling, 7, and Ij are instructions considered for scheduling and I is the set of candidate in¬
structions to be scheduled next. A triple was said to belong to the relation if the first instruction
is better to be scheduled than the second one. Otherwise, the triple was considered not to be a

member of the relation. The search was additionally constrained to good schedules for blocks
of 10 or less instructions. Although this may be seen as a very strong assumption, it is shown
that the average number of instructions per basic block in their data is 4.9.

Their experiments involved the Digital Alpha 21064, 18 benchmarks from SPEC95 com¬

piled with the vendor's tools and with the highest optimisation level. A total of 447,127 basic
blocks with 2,205,466 instructions were collected. Five features characterising the instructions
and the partial scheduling were selected and four different learning algorithms were used. Their
results used cross-validation and targeted two different measures of performance: the number
of times the learned scheduler made an optimal decision and the improvement in execution
time as a result of the scheduling process.

Although their algorithm is found to provide better improvements than two production

compilers' fixed strategies, it is outperformed by a heuristic greedy scheduler algorithm. Ad¬

ditionally, three possible weaknesses of this work are worth mentioning: the use of a simulator
instead of a real processor; the difficulty of generalising this solution to global scheduling, and
the considerably long time taken by the learned scheduler to execute. However, from a machine

learning perspective, this work represents a great contribution to the field in the sense that it
formulates a novel approach to a long-standing compiler optimisation problem.

Cavazos et al. (2004) followed a rather different approach to instruction scheduling with
machine learning. Instead of developing an algorithm that can learn how to schedule straight
line code, they raised the question if learning machinery can be used to decide whether to
schedule or not. Their motivation arises from the fact that scheduling does not always provide

improvements in performance. Furthermore, they experimentally showed that the improvement
obtained from instruction scheduling can be very small compared to the overhead due to the

application of the technique.
The formulation of the problem was straightforward: building a classifier able to predict

when a basic block benefits from scheduling (which was called by the authors as a "filtering"

technique). This is an important issue when dealing with just-in-time (JIT) compilers as an

improvement in execution time may be diminished by an increase in the compilation time.
The data generation process involved seven benchmarks from SPECjvm98, list scheduling

Chapter 4. Related Work 40

as the algorithm of choice, and 14 "inexpensive" static features along with an estimate of cost
for each basic block given by a simplified machine simulator. The labelling of the data relied
on a threshold t% above which a block was considered to have benefited from the optimisation;
blocks for which no improvement was achieved were labelled that they should not be sched¬
uled, and those with an improvement above 0 but less than t% were discarded. The code was

generated using the highest level of optimisation targeting an Apple Macintosh with two 533
MHz G4 processors model 7410.

The efficiency (in compilation time) and effectiveness (in execution time) of the technique
when using a rule set induction classifier were evaluated across the benchmarks for different
values of t. The method was shown to keep 90% of improvement while reducing the scheduling
effort to 25% or less.

A major criticism to this work is that a systematic approach for setting the threshold t was
not presented. Indeed, considering the sensitivity of the results to this parameter, a very sim¬
ple methodology such as nested cross-validation could have proved practical for this purpose.

Additionally, considering that the heuristic of "always scheduling" gave only 2.3% of overall

improvement, the results seem to be practically insignificant. Due to this last difficulty, other
benchmarks for which a greater improvement was found were included in the study. Neverthe¬
less, as before, the threshold t was not systematically tuned.

Register Allocation

In Cavazos (2005) the use of classifier systems for instruction scheduling was extended to the
construction of heuristics for register allocation. In this case, the task was to select a register
allocator from two algorithms: linear scan and graph colouring. The method was called hybrid

register allocator. This approach is very similar to the one presented by Cavazos et al. (2004)
and indeed, both solutions were grouped into a more general methodology called 'LOCO'

standing for "Learning for Optimizing Compilers". As in Cavazos et al. (2004), deciding the
best setting for the thresholds involved in the technique was still an issue.

Loop Unrolling

In addition to instruction scheduling and register allocation, there has been a common inter¬
est in studying a particular compiler transformation such as loop unrolling. This interest is

reasonably motivated by the fact that this transformation has a great impact on the execution
time of programs. Additionally, it is an easy-to-apply and always-legal transformation. Indeed,

loop unrolling is a very simple but powerful transformation that replicates the body of a loop
several times. Although it has been studied for many years (see for example Dongarra and
Hinds, 1979), deciding when and how much a loop should be unrolled remains a challenge
for compiler writers and researchers. A reason for this is that loop unrolling may provide an

Chapter 4. Related Work 41

improvement or degradation in performance depending upon different circumstances. For ex¬
ample, it can enhance instruction level parallelism (ILP) but it can also degrade the cache due
to an increase in the size of the loop body.

Monsifrot et al. (2002) proposed one of the earliest approaches to the development of auto¬
matic techniques to predict the applicability of loop unrolling. Their methodology was similar
to previous approaches where a set of features characterising an instance, in this case a loop,
were utilised to predict a goal: when to unroll. However, unlike Calder et al. (1997); Cavazos
et al. (2004); Cavazos (2005), the transformation was applied at the source-code level (using
the tool set for Fortran programs TSF, Bodin et al., 1998) instead of at the back-end of the
compiler.

The set of features used to characterise a loop included memory accesses, arithmetic op¬

erations count, the size of the loop body, the presence of control operations and the number
of iterations of the loop. Their experiments involved 1036 loops drawn from 20 benchmarks

belonging to the SPEC95 suite and some computational kernels; the GNU Fortran Compiler;
and two different architectures: an UltraSPARC and an IA-64. Each loop was executed twice
on these platforms and categorised into four different groups. Thus, a loop was considered

insignificant if its execution time was too small and therefore it was discarded; a loop was not

improved if its benefit from unrolling was less than 10%; a loop was said to be improved if
it experienced a benefit greater than 10%; and a loop was said to be degraded if its execution
time under unrolling was greater than its baseline's. Finally, a feature vector representing a

loop was labelled unroll/not unroll by computing a weighted sum of the number of loops that,

being represented by such a vector, were degraded, unimproved or improved with unrolling.

Oblique decision trees were used for learning and the results reported an overall classi¬
fication accuracy of 85%. However, the classification rate of positive examples (those loops

improved by unrolling) was only 62.4% (on the UltraSPARC). There may be at least two rea¬

sons for this low performance. Firstly, their data was noisy by construction as loops with the
same representation could belong to different classes. In other words, there were data points
that, having the same representation, were labelled as improved by unrolling (positive) but also
as degraded by the transformation (negative). Secondly, the generated data set was clearly im-
balanced and very little was done to overcome this issue. Finally, the task of deciding whether
a loop should be unrolled is unrealistic. Indeed, the performance achieved with loop unrolling
is strongly dependent on the unroll factor used and transferring this decision to the built-in

compiler heuristics leads to very suboptimal solutions.
This latter drawback was to be overcome by Stephenson and Amarasinghe (2004, 2005),

who used supervised learning not only to investigate whether unrolling a loop could be bene¬
ficial but also to predict how much a loop should be unrolled, i.e. they aimed at predicting the
best unroll factor for loops. Thus, the binary classification task proposed in Monsifrot et al.

Chapter 4. Related Work 42

(2002) was generalised to a multi-class problem where the goal was to determine the unroll
factor for which a loop experienced its minimum execution time.

The experimental set-up included more than 2,500 loops from 72 benchmarks, the Open
Research Compiler (ORC) with -03 optimisation flag and an Itanium® 2 architecture. Unlike
Monsifrot et al. (2002), loop unrolling was applied at the back-end of the compiler; a richer set
of 38 features was used; and unroll factors from 1 to 8 were considered.

Nearest neighbours and support vector machines were used for learning and their per¬
formance was evaluated with a cross-validation procedure. A maximum of 65% of accuracy
was obtained and a final overall speed-up of 5% was achieved over the ORC heuristic on the
SPEC2000 benchmark suite. This speed-up decreased to 1% when software pipelining was

enabled in the compiler.

Despite having a greater number of loops, a more numerous set of features and a more gen¬

eral approach to learning in loop unrolling, their results (as in Monsifrot et al., 2002) were not

very encouraging. Certainly, although i) a lot of effort was invested in instrumenting the code;
ii) loops with low execution time were discarded; and iii) the variability of the measurements

was taken into consideration by calculating the median after 30 runs, very low accuracy was

obtained and little improvement was observed with respect to the ORC heuristic.
This raised the question of whether a classification solution to the problem of predicting

when and how unrolling should be applied is sufficient to capture the knowledge of the be¬
haviour of loops under this transformation. Certainly, despite having measured the execution
times for each loop, neither of these two previous approaches effectively used them. There is a

lot to be gained by exploiting as much as possible all the data collected in a machine learning
task. Consequently, Bonilla (2004) proposed a more general and smoother solution to learning
in loop unrolling by using a regression approach.

A regression formulation of the problem aimed at predicting the improvement in perfor¬
mance that a loop could experience under different unroll factors. Therefore, a model /(x, u)
was constructed by Bonilla (2004) in order to predict the speed-up or slow-down of a loop x

when using unroll factor u. Given a new loop, the predicted unroll factor can be determined by

by evaluating this function on the different unroll factors considered and selecting the one with
the best predicted improvement.

A total of 248 loops drawn from eight benchmarks from the SPECfp95 suite and other

variety of vectorial routines were collected. The GNU Fortran compiler with -02 optimisation
level and a dual Intel® XEON™ running at 2.00GHz with 512 KB in cache (level 2) and 4GB
in RAM were used. Unroll factors from 1 to 8 were considered.

For learning, 11 static features describing the loops were used and two regression methods
were utilised: multiple linear regression and classification and regression trees (CART),
which were evaluated under a cross-validation methodology. The results reported showed that

Chapter 4. Related Work 43

for some benchmarks the predictions were relatively accurate but for others the performance
was poor. When determining the best factor for loops it was shown that the technique predicted
the optimal or near-optimal solution most of the time resulting in a maximum of 18% of re-
substitution improvement in performance and 2.5% of overall improvement.

Two major criticisms of this work should be pointed out. Firstly, it seems that 248 loops
cannot be representative of a great variety of loops that can be characterised with 11 features.
Secondly, and more importantly, the performance measure used to evaluate the technique was

the so-called "re-substitution" improvement as real speed-ups obtained when using the pre¬

dicted unroll factors were not evaluated. In other words, the improvements in performance
obtained were computed by using the (original) collected data that ignored the interactions be¬
tween loops and the effect of the instrumentation. Therefore, the speed-ups reported may well
be an upper bound of the real improvements that could be achieved.

With three different and not very successful approaches to learning in loop unrolling it is
not clear if the research community should continue focusing on predicting when this trans¬

formation should be applied in isolation. Since interactions among transformations do take

place, predicting when a set of transformations should be applied seems a more interesting and
realistic approach to using predictive modelling in compiler optimisation.

4.2.2 Predicting a Set of Transformations

With the aim of constructing an interactive tool in order to assist a user with finding a good set

of optimisations for programs, Monsifrot and Bodin (2001) developed ComputerAided Hand

Tuning (CAHT). Their goal was to "learn expert knowledge associated with optimisation and

parallelisation techniques". For this purpose, they used case based reasoning, an instance-
based learning technique very similar to nearest neighbours. By adapting this method to the

compiler optimisation problem, the following process was proposed. It starts by identifying
those fragments of code candidates to be optimised, i.e. loops with significant execution times;
afterwards, cases are retrieved according to some features of the loop, also called "indices".
Once the cases are available, the solution can be reused when a new loop is presented. Finally,
if new optimisations were applied to a specific loop the user should retain this new case. Thus,
the cases were pairs composed by a loop represented by its features and a solution specifying
the optimisations or parallelisation technique applied.

The experiments were performed on two benchmarks: one loop benchmark consisting of
64 loops and a more realistic Fortran program for Gaussian density computation. The programs
were compiled using the -03 optimisation level and executed on two different architectures: a

4-processor Sun Enterprise 450 and a 4-processor SGI Onyx.
Given the specificity of their results to a very small set of examples and the bias towards

good performance implicit in their evaluation, it is unlikely that their results could generalise

Chapter 4. Related Work 44

to other experimental scenarios. However, it is necessary to highlight their endeavour in pre¬

senting a rich set of 31 features involving loop structure, arithmetic expressions, array accesses

and data dependencies that can be used by other researchers. Finally, due to the fact that most
cases were taken from tuning guides and that there is a lot of intervention from the user in
the solution proposed, for example when checking for legality, the ultimate goal of generating
automatic heuristics for compiler optimisation is not achieved.

In a very similar approach, Long and O'Boyle (2004) used nearest neighbour methods in
order to predict good transformations for Java programs. Selecting 14 features from Monsifrot
and Bodin (2001) and using the Unified Transformation Framework (UTF, Kelly and Pugh,
1993), programs were classified into categories, a set of transformations was applied to these

programs and their performances were recorded.
Their experiments involved 16 programs that were executed on two different platforms

running Windows and Linux. The speed-up obtained on Linux was 1.10 compared to 1.14
when applying uniform search with 1000 evaluations. The speed-up obtained on Windows was
1.09 compared to 1.10 when using uniform search. However, an analysis of the performance
of the learning algorithm was not presented and therefore, the results may be only an indication
that the set of benchmarks used, which was composed mostly by very simple kernels, was very

easy to improve.
With the same goal of optimising Java programs, Cavazos and O'Boyle (2006) use logistic

regression in order to predict good settings for compiler options on program methods (i.e.
at function level). More specifically, their method learns a logistic regression function for
each optimisation option independently, and it uses such functions to make predictions on new

methods that have not been seen before.

Their experiments were executed using the Jikes RVM framework (Burke et al., 1999), 7

SPECjvm98 benchmarks and 7 additional benchmarks from other suites, and a Pentium IV
architecture. The results were compared with the default baseline of all optimisations being
turned on at different optimisation levels 00, Ol and 02. While marginal improvements were

achieved at 00 and 01 optimisation levels, the reduction in total time (compilation time plus
execution time) was 29%. However, when considering the adaptive scenario, which is the stan¬

dard model used by the Java JIT compiler, total time reductions of only 1 % for the SPECjvm98
and 4% for the rest of the benchmarks were obtained.

A method-specific approach such as the one followed by Cavazos and O'Boyle (2006)
seems to be a flexible way of tackling predictive modelling in compiler optimisation. Indeed,
rather than predicting the same set of transformations for a complete program, different pre¬
dictions can be made for different methods. However, this neglects the effect of interactions
between different parts of the program. Additionally, Cavazos and O'Boyle (2006)'s approach

ignores the effect of interactions between different program transformations as a logistic regres-

Chapter 4. Related Work 45

sion function is learnt independently for each optimisation flag. Finally, as the experiments
were executed on a Pentium IV architecture and the instrumentation was done at a function

level, one may expect to observe some variability in the measured execution times. However,
this variability was not reported, which makes difficult the assessment of the statistical signifi¬
cance of their results.

Similar to Cavazos and O'Boyle (2006), Wu et al. (2007) follow a hne-level-of-granularity
approach with the goal of determining a good set of optimisations for program segments, e.g.

loops. Their idea is to create a database of program segments that can be characterised by a

set of static features (i.e. "syntax structure") and dynamic features (i.e. "architecture-dependent
behaviour"), which are stored with their corresponding set of good compiler transformations.
When a new program is presented, it is processed and divided into segments which are matched
with the previously stored segments and their corresponding optimisation sets are utilised, i.e.
a nearest-neighbour-like algorithm is adopted.

Their experiments considered a set of 20 training programs containing a large number of

loops, 30 test programs from embedded suites such as MediaBench and DSP kernel, the GCC

compiler and an Intel embedded XScale PXA255 architecture. Their results show that from
the 30 test programs considered, only 9 benchmarks achieved an improvement over the -03
default optimisation level. As in Cavazos and O'Boyle (2006), the approach in Wu et al. (2007)

neglects the effect of interactions between different code segments, which could be the reason

for the modest improvements achieved.
In this section we have described the related work on using supervised learning in compiler

optimisation focused on the formulation of the problem as a classification task (although this
is not the case for the work presented in Bonilla, 2004). As explained in section 3.3.2, the

compiler optimisation problem can be formulated as a performance prediction task by adopting
a regression approach. The related work on this area is presented in the following section.

4.3 Performance Prediction

Several authors have addressed the problem of building performance estimators. For example,
Karkhanis and Smith (2004) use data dependency information, cache miss rates and branch

misprediction rates in order to formulate a Superscalar Processor Model. In principle, this
model could be utilised to evaluate different program optimisations. However, the process of

constructing the model is extremely complex and made in an ad hoc manner, which makes it
difficult to implement and impractical for the purpose of driving compiler optimisation.

In a simpler approach, Triantafyllis et al. (2003, 2005) develop a static performance es¬

timator for the Itanium architecture within their compiler Optimisation-Space Exploration
(OSE) framework. This estimator provides a relative performance predictor between two code

Chapter 4. Related Work 46

segments. Their main goal is to be able to discriminate between two code segments by de¬

termining which one runs faster. Hence, the accuracy of the predictor is not as relevant as its
(relative) discriminatory power.

Such a performance predictor is based on estimators of the ideal cycle count, data cache
performance, instruction cache performance and branch misprediction. The general idea of
making predictions of relative performance is somewhat similar to the approach presented in

Chapter 8, where regression models are learnt in order to predict the performance speed-up of
a program relative to its baseline's execution time. Clearly, if our ultimate goal is to find good
transformation sequences for programs, there is no need to develop very accurate predictive
models as long as these models correctly determine when a version of a program or a code seg¬

ment executes faster than another one. However, Triantafyllis et al. (2003, 2005) do not make
use of the information provided by other programs' behaviour, i.e. there is no notion of learning

(or transference) across different programs. In fact, the models proposed in Triantafyllis et al.

(2003, 2005) are based upon analytic expressions that are architecture-specific and therefore
difficult to generalise to new and more complex architectures.

Zhao et al. (2003) also propose an analytical approach to predicting program perfor¬
mance. Their general framework combines optimisation models, code models and resource

models in order to predict the impact on cache performance for embedded processors, which
is measured as an estimate of the number of cache misses. Loop optimisations for data locality
were used. The optimisation model includes the characteristics of an optimisation (code trans¬

formation) and their impact on a specific objective (e.g. execution time); the resource model
characterises the target machine configuration, i.e. the cache; and the code model is an ab¬
straction of the application code. These models are integrated in order to predict a so-called
"benefit" value, i.e. the benefit of applying an optimisation. As in Triantafyllis et al. (2003,
2005), this approach is architecture-specific and it relies on a specific cache configuration,
which diminishes its generalisation power.

ipek et al. (2006) proposed a rather different approach to modelling performance. Their

goal is to speed-up architecture simulation times by "efficiently exploring the architectural de¬

sign spaces". They used artificial neural networks (ANN) in order to predict the performance
of a target architecture based on several hardware parameters such as cache size and memory

latency. Their results show that by training on less than 2% of a design space, their predictions
achieve less than 2% error. One of the major differences between the work in ipek et al. (2006)
and the technique proposed in Chapter 8 is that the former builds a different model for each
benchmark, i.e. no transference across benchmarks occurs. Additionally, such an approach is
not suitable to model the space of compiler transformations due to its specificity to a program

binary, as a modification resulting from the application of a program transformation would

require a re-training of the model on a new set of simulation samples.

Chapter 4. Related Work 47

4.4 Optimisation Space Characterisation

It has been claimed in the compiler literature for many years that the effect of interactions be¬
tween program transformations represents one of the major issues in compiler optimisation.
However, very little work has been done in order to provide a qualitative and quantitative
characterisation of such interactions. Indeed, although Pinkers et al. (2004a,b) make use of
statistical models such as orthogonal arrays in order to trim down the search space of compiler

optimisations, an analysis of the interactions between transformations is not presented. Addi¬

tionally, as we have described in section 4.1.3, Chow and Wu (1999) present a quantification
of the interactions between some program transformations for a fixed set of optimisation flags.
However, the goodness of fit of their model is not evaluated.

From a rather different perspective, Lee et al. (2004, 2006) present an empirical study of the
impact of different optimisations when they are applied in isolation and when they are applied
in conjunction with other subsets of optimisations. Their experiments were executed within
the Jikes RVM framework (Burke et al., 1999) using 20 Java optimisations and 9 benchmarks
(from SPECjvm98, SPECjbb2000 and an XML database) on an IA32 platform and a PowerPC
architecture.

It is shown in Lee et al. (2004, 2006) that there was very little interaction between the pro¬

gram optimisations used. However, the experiments underlying this study were very restric¬
tive as only interactions of transformations with fixed subsets (e.g.-03) of optimisations were

considered. Furthermore, unlike Chow and Wu (1999), there is no statistical analysis or math¬
ematical quantification of such interactions. Finally, it is clear that their results are strongly
affected by the fact that (in most cases) a single transformation, namely inlining, dominated
the performance obtained in the experiments.

Based upon exhaustive data generated from 15 optimisation phases and sequences of length
12 (on average) on 111 functions belonging to 6 benchmarks from the MiBench suite (Guthaus
et al., 2001), Kulkarni et al. (2006) provide an analysis of interactions between optimisation

phases within the very portable optimizer (VPO, Benitez and Davidson, 1988). Their focus is
on enabling/disabling interactions and order dependencies. While the former occurs when an

optimisation phase is enabled or disabled by the prior application of another optimisation phase,
the latter relates to the production of identical or different code when applying two optimisation

phases in distinct orders. The details of their experimental set-up have been described in section
4.1.4.

A quantification of the enabling interactions is provided by using the so-called enabling

probabilities. The probability of transformation a being enabled by transformation b was es¬

timated by computing the ratio of the number of times transformation a became active (i.e.

effective) to the number of times a became active plus the number of times a remained dormant
(i.e. inactive or ineffective), given that a was dormant and b had been applied before. Likewise,

Chapter 4. Related Work 48

disabling interactions were provided by estimating disabling probabilities. The probability
of transformation a being disabled by transformation b was estimated by computing the ratio
of the number of times transformation a became dormant to the number of times a became

dormant plus the number of times a remained active, given that a was active and b had been
applied before.

It is shown that many optimisations have a very low probability of being enabled by other

optimisations. Additionally, and not surprisingly, it is shown that a transformation is disabled

mainly due to the application of the same transformation. The order-dependency between

optimisation phases is determined by estimating the probability of two consecutively active

phases producing different code. It is shown that most optimisation phases are independent of
the order in which they are applied.

The estimated probabilities are then used to reduce the compilation time during the explo¬
ration of the optimisation space of the benchmarks under study5. This is achieved by selecting
the phase that should be applied next to be that with the highest probability of being active.
It is shown that the compilation times can be considerably reduced compared to the case of
the interaction results being ignored. However, it is found that there was a slight degradation
in performance in terms of execution time since the constructed distributions do not take the

performance of the sequences into consideration.
We note that the major difference from Kulkarni et al. (2006)'s approach to the technique

presented in section 6.5 is that we consider the performance of the transformation sequences.

Indeed, when two transformations are applicable, there may or may not be interactions that
affect the run-time behaviour of a program. Furthermore, if our aim is to use such character¬
isation of interactions for optimisation then our models are more effective than the approach

proposed in Kulkarni et al. (2006), as the latter ignores the effect of interactions and order-

dependencies on the speed-up of the program (or function).
Sections 4.1 to 4.4 have described previous work that is related to the main objectives of

this thesis. Although the use of unsupervised learning methods in compiler optimisation is not
addressed in this project, for completeness, the following section presents some related work
on this area.

4.5 Unsupervised Learning

Eeckhout et al. (2002) address the problem of benchmark selection and input data selection

during the design phase of a microprocessor. This problem also known as workload compo¬

sition is relevant to the computer architecture community given that selecting a representative
set of benchmark-input pairs from a larger set can significantly reduce simulation times.

5Note that by using a heuristic based on the probabilities of interactions or dependencies between transforma¬
tions, one may well ignore relevant regions of the optimisation space.

Chapter 4. Related Work 49

They apply standard hierarchical clustering on 79 program-input pairs selected from
SPECint95 and an additional database workload. In order to characterise each program, a set of
20 microarchitecture-dependent and microarchitecture-independent features are used and their

dimensionality is reduced to 4 features by using Principal Components Analysis (PCA) while
retaining 93.1% of the variance. It is shown (for three benchmarks) that program-input pairs
that are close in the feature space have similar behaviour.

The approach in Eeckhout et al. (2002) is interesting as it proposes a set of program features
that can be considered for program characterisation. Furthermore, it is shown experimentally
that a subset of benchmarks can be selected as representative of a larger set, which can signif¬

icantly reduce the number of training examples needed for predictive modelling. However, it
is possible to replace heuristic-based clustering (such as hierarchical clustering) by other tech¬

niques such as Gaussian Mixture Models (GMM). Additionally, it is also possible to utilise
other methods that allow clustering without requiring the direct specification of the number of
clusters beforehand, such as the Chinese Restaurant Process Mixture (see e.g. Aldous, 1985,

pages 90-91).
Eeckhout et al. (2005a) extend the work in Eeckhout et al. (2002) by increasing the num¬

ber of benchmark-input pairs to 63 (taken from SPEC CPU2000 integer benchmarks) and ap¬

plying k-means clustering. PCA and Independent Component Analysis (ICA) are used as

dimensionality-reduction techniques. This approach was evaluated on the task of predicting
the average number of cycles per instruction (CPI). However, as recognised by the authors in a

later correction note (Eeckhout et al., 2005b) and contrarily to the results shown in the paper,

these two dimensionality-reduction techniques should perform similarly given that the specific
ICA algorithm used for the results did apply PCA as a pre-processing stage.

4.6 Summary and Discussion

This chapter has described the related work on applying machine learning or artificial intel¬

ligence techniques to compiler optimisation. The review has been focused on global optimi¬
sation, predictive modelling, performance prediction and characterisation of the optimisation

space.

The global optimisation problem, i.e. the task of searching for a "good" sequence or a

good set of program transformations, has been addressed in the literature from two different

perspectives: using biased random search methods and using statistical techniques. Biased
random search methods such as genetic algorithms have been used in previous approaches to
tackle the general problem of searching for "good" transformation sequences (see e.g. Cooper
et al., 1999; Almagor et al., 2004; Kulkarni et al., 2003). However, the major caveats of these

approaches are the very long time needed to achieve a good solution and the dependency of

Chapter 4. Related Work 50

the methods on specific parameters that are tuned in a heuristic manner. Statistical techniques
such as fractional factorial designs or orthogonal arrays can be seen as a more principled way

of dealing with the global optimisation problem. Nevertheless, previous approaches (such as

Chow and Wu, 1999; Pinkers et al., 2004a; Haneda et ah, 2005a) have been limited to dealing
with fixed binary sets of optimisation flags.

Most previous work that has addressed the predictive modelling problem, i.e. the use of
supervised learning to learn good compiler transformations for programs, has been limited
to predicting when/how a single program transformation such as loop unrolling or instruction

scheduling (e.g. Monsifrot et al., 2002; Stephenson and Amarasinghe, 2005; Cavazos et ah,
2004) should be applied. Clearly, such an approach is unrealistic as it ignores the fact that
the effect of a particular transformation strongly depends upon the application of other trans¬
formations. Although some other approaches have proposed techniques to predict a set of
transformations (e.g. Cavazos and O'Boyle, 2006), they have not dealt with the more general

sequential prediction problem.
The techniques proposed in chapters 7 and 8 can be seen as more general and efficient

approaches to the compiler optimisation problem. They are more general as, in principle, they
can deal with the sequential problem. They are more efficient, as they use the knowledge
from previously solved problems in order to improve search. Indeed, these techniques do not

consider the global optimisation problem and the predictive modelling problem as unrelated
tasks but they rather exploit transference across programs (i.e. predictive modelling) in order
to speed up search on a new problem that has not been seen before (i.e. global optimisation).

The performance prediction problem, i.e. the task of predicting the performance (e.g. exe¬
cution time) of a program when applying a set of transformations has also been addressed in
the literature. This problem can bee seen as a separate (but related) area of research as it can
be applied not only to compiler optimisation (as in Chapter 8) but also to computer architec¬
ture design. Most previous work has approached this problem by proposing models which are

built in an ad hoc manner using architecture-specific characteristics (e.g. Karkhanis and Smith,
2004; Zhao et al., 2003). These approaches are difficult to generalise and to scale to com¬

plex architectures. Unlike previous work, the methods proposed in Chapter 8 do not rely upon

expert-knowledge and they can be learnt entirely from data. As stated above, these techniques
learn across different programs and can be used to tackle the general compiler optimisation

problem. Furthermore, these methods can be easily generalised to learn across different archi¬
tectures by using a higher level of transference (or multi-task learning).

Finally, we are not aware ofmuch previous work on the characterisation of the optimisation

space. The identification of interactions between program transformations has been tackled by

previous approaches but they have been limited to fixed sets of transformations (see e.g. Chow
and Wu, 1999; Pinkers et al., 2004a; Haneda et al., 2005a; Lee et al., 2006). Furthermore, a

Chapter 4. Related Work 51

quantification of such interactions has not been previously investigated (with the exception of
Chow andWu, 1999). Although Kulkarni et al. (2006) do present such quantification, they only
consider interactions at compilation time, neglecting the ultimate effect of the transformations
on the speed-up of programs. The technique proposed in section 6.5 not only deals with trans¬

formation sequences but it also takes the dynamic behaviour of a program into consideration.

Chapter 5

Experimental Set-Up

Chapter 3 described a machine learning approach to the compiler optimisation problem. The
main goal of this approach is to improve search on the optimisation space of a new program by

achieving transference across programs, i.e. by exploiting the knowledge that has been gained
from previously solved problems (or optimised programs).

This machine learning approach is based upon a supervised learning scenario, where a

set of features that characterise programs is required along with a set of targets to be learnt
from these features. For the compiler optimisation problem, the features can be (for example)
characteristics of the code of a program believed to be informative about the targets. In general,
these features may well be different for different machine learning techniques used. This is
indeed the case for the methods proposed in this thesis and, therefore, we will postpone the

description of the features to Chapter 7 and Chapter 8.

Recalling that our ultimate goal is to find a good set of compiler transformations (or a

transformation sequence) that makes a program run fastest, the targets for the compiler optimi¬
sation application are "good" transformation sequences. The "goodness" of a transformation

sequence is evaluated according to a measure of performance based on the execution time of
the program after the application of such a transformation sequence. As we shall see in chap¬
ters 6, 7 and 8, one can use a transformed version of the execution times, e.g. the performance

speed-ups, in order to make the targets more suitable for learning.
This chapter explains the details of the experiments that gave rise to the target values that

can be used for learning. This chapter is important not only because it shows that the exper¬

imental design underlying the generation of the data is sound, but also because it allows the

reproducibility of the results by other researchers. We start by looking at the general character¬
istics of the created data set in section 5.1. Afterwards, the benchmarks, the optimisations and
the architectures used are described in sections 5.2, 5.3 and 5.4 respectively. Finally, the details
of the instrumentation of the programs, i.e. how the execution times have been measured, are

given in section 5.5 and the chapter is summarised in section 5.6.

52

Chapter 5. Experimental Set-Up 53

5.1 The SUIF Data Set

In many applications of machine learning and data mining most of the time is spent on data

generation, data cleaning1 and data pre-processing. The compiler optimisation task is not an

exception to this rule and, as pointed out in Bonilla (2004), the process of generating clean and
reliable data for this particular application is a very time-consuming activity. Therefore, we
have spent a lot of effort in generating clean data that represents opportunities for learning.

The data generated for this project is based on the application of source-to-source trans¬
formations to C programs by using the restructuring compiler framework SUIF 1 (Hall et al.,
1996). Henceforth this data set will be called the SUIF data set, and it will be used for the

application of the techniques proposed in chapters 6, 7 and 8.
We have selected source-to-source transformations motivated by recent work on iterative

compilation in the area of embedded systems. It has been shown that searching the optimisa¬
tion space of source-to-source transformation sequences can lead to significant improvements
on the performance of embedded processors. However, this comes at the cost of a large number
of evaluations of a program (see e.g. Franke et al., 2005, as a recent reference). Therefore, our
aim is to use machine learning techniques in order to improve iterative compilation on embed¬
ded systems. Thus, the setting under which the experiments have been carried out includes
benchmarks that target embedded systems as well as embedded architectures.

Throughout this thesis we will make use of data that has been generated by the application
of length-5 sequences (drawn from 14 code transformations) to 12 different benchmarks. This

space of transformation sequences has been exhaustively enumerated and it will be referred to

as the small space of the SUIF data set. We have generated this data with the purpose of facil¬

itating the analysis of the results from applying machine learning to the compiler optimisation

problem. Indeed, by having an exhaustively enumerated space of transformation sequences one

can always determine the global maximum improvement achieved on each benchmark in order
to assess the performance of a search algorithm. Moreover, one can make further analyses by

using the complete data without relying on samples of an unknown population.
In addition to the small space, a large space has been studied within the context of predictive

search distributions (see Chapter 7 for details). The details of this data set, which we call the

large space of the SUIF data set, are also presented in this chapter.

5.2 Benchmarks

The UTDSP benchmark suite (Lee, 1997) was created to "evaluate the quality of code gen¬

erated by a high-level language (such as C) compiler targeting a programmable digital signal
1 In data mining, the term data cleaning refers to the process of detecting and removing errors, inaccuracies and

inconsistencies from the data.

Chapter 5. Experimental Set-Up 54

processor (DSP)" (Lee, 1997). Twelve different benchmarks from this suite have been used for
the experiments. This set of C programs contains small kernels as well as larger applications.
As described in Lee (1997), kernels are small fragments of code that do crucial calculations
within digital signal processing applications. The applications are complete programs that
would execute on a DSP in a commercial product.

The code size of these programs ranges from 20 lines to 500 lines. However, these bench¬
marks are regarded as compute-intensive programs by the DSP community and they are con¬

tinuously used in stream-processing applications.
The UTDSP benchmarks are written in different versions according to their "coding style".

This coding style corresponds to the use of pointers, array notation and software pipelining.
Of the four coding styles that are available in UTDSP, we have selected the non-software-

pipelined array-based coding wherever applicable. This style can be considered as the most

"natural" implementation of these benchmarks and, in general, it is free of specific heuristics
that attempt to hand-craft optimisations, which may turn into misleading results on certain
architectures. Table 5.1 presents a brief description of the benchmarks used for the experiments.

5.3 Optimisations

We have considered source-to-source transformations applicable to C programs by using the

restructuring compiler framework SUIF 1 (Hall et al., 1996). However, many of these trans¬

formations are also implemented within the optimisation phases of a native compiler (see for

example Almagor et al., 2004).
These transformations have been applied at a program level, i.e. at a global-level of granu¬

larity. This has the advantage over finer levels of granularity such as function-level or loop-level
in that it makes the effect of the instrumentation negligible. Additionally, it facilitates the im¬

plementation of transformations that are not included in SUIF and it reduces the variability (if

any) of the measurements. However, it assumes the same optimisation strategy for all code

fragments within a program and, therefore, it misses potential optimisation opportunities with

respect to the scenario that considers transformations applied at a local level of granularity.
This is not much of a problem for the benchmarks in the UTDSP suite since these programs

are relatively small. See section 9.2.2 for a discussion of global optimisation versus local opti¬
misation.

Using these transformations, we have investigated two different spaces of transformation

sequences: a large space with 90 code transformations forming sequences of length 20 and
a small space composed of 14 transformations (selected by compiler experts) combined into

sequences of up to length 5. These spaces are briefly described below.

Chapter 5. Experimental Set-Up 55

Kernels

Benchmark Description

fft_256 256-point complex FFT (Fast Fourier Transform).
fir_256_64 256-tap FIR (Finite Impulse Response) filter processing 64 points.
iir_4_64 4-cascaded IIR (Infinite Impulse Response) biquad filter process¬

ing 64 points.
latnrm_32_64 32nd-order Normalised Lattice filter processing 64 points.
lmsfir_32_64 32-tap LMS (Least-mean-squared) adaptive FIR filter processing

64 points.
mult_10_10 [10 x 10] x [10 x 10] matrix multiplication.

Applications

Benchmark Description

adpcm An Adaptive Differential Pulse-Coded Modulation encoder.

compress Compress a 128 x 128 pixel image using the Discrete Cosine
Transform.

edge^detect Detects the edges in a 256 gray-level 128 x 128 pixel image using
2D convolution and Sobel Operators.

histogram Enhances a 128 x 128 pixel image by applying global histogram

equalisation.

lpc Implements a Linear Predictive Coding (LPC) encoder.

spectraLestimation Calculates the power spectral estimate of an input sample of

speech using periodogram averaging.

Table 5.1: UTDSP benchmarks used for the experiments that generated the SUIF data set.

5.3.1 Large Space

The large space of the SUIF data set has been generated within the context of predictive search
distributions (see Chapter 7 for more details). It is composed by 90 code transformations form¬

ing sequences of length 20, which represents a space of 9020 sequences. This space has been

sampled by using a PBIL-like algorithm (Baluja, 1994; Baluja and Caruana, 1995), obtain¬

ing around 2000 samples per program. The transformations used for this space are listed in

Appendix A, Table A. 1.

Chapter 5. Experimental Set-Up 56

Symbol Name Transformation

'1' unroi Loop unrolling with unroll factor 1
'2' unro2 Loop unrolling with unroll factor 2
'3' unro3 Loop unrolling with unroll factor 3
'4' UNRCU Loop unrolling with unroll factor 4
t FLAT Loop flattening
'n' NORM Loop normalisation
't' TURN Turn imperfectly nested loop conversion
'k' BREAK Break load constant instructions

V CSE Common subexpression elimination
'd' DEAD Dead code elimination

'h' HOIST Hoisting of loop invariants
v IFH If hoisting
'm' MOVE Move loop-invariant conditionals
'c' COPY Copy propagation

Table 5.2: Transformations used for the small space of the SUIF data set.

5.3.2 Small Space

Most of the results presented in this thesis are based on the small space of the SUIF data
set. This space is composed by 14 transformations combined into sequences of up to length
5. These transformations are a subset of the transformations used for the large space and
their selection was based upon two criteria: i) evidence of their impact on the performance of
the programs and ii) compiler experts' knowledge on what transformations were expected to

affect the code of the programs under study. For the former, exploratory experiments of the
90 transformations used in the large space were executed and their frequency of ocurrance in

sequences that improved the code was taken into consideration. The transformations used for
this space are listed in Table 5.2.

The small space of the SUIF data set represents a space of 145 sequences. However, We
have not considered sequences that include repeated transformations or sequences that include

loop unrolling more than once, which has reduced the number of sequences to 149584. We
have exhaustively evaluated the performance of all the 149584 sequences. Collecting the data
for this task is a time-consuming activity as every sample corresponds to a compilation and an

execution of a program. It takes around 3 days to run one benchmark over all the sequences.

It is necessary to remark that all program versions generated by the application of a trans¬

formation sequence have been checked for correctness. Therefore, the ultimate code generated

Chapter 5. Experimental Set-Up 57

by the compiler after applying such transformation sequences did maintain the meaning of the
original programs.

5.4 Architectures

The experiments have been executed on a Texas Instruments C6713 board, a high end floating

point DSP running at 225MHz with 256kB of internal memory. The programs were compiled
using the Texas Instruments' Code Composer Studio Tools Version 2.21 with the highest -03
optimisation level. We will refer to this platform henceforth as the TI board.

Additional experiments were executed on an AMD Alchemy Aul500 processor running
at 500MHz with 16KB instruction cache and 16kB data cache. The programs were compiled

using GCC 3.2.1 with -03 flag, which according to the manufacturer provided the best per¬
formance. This platform will be called henceforth the AMD architecture. The data on this
architecture will be mainly used for the analysis of the the performance of predictive search
distributions (see chapter 7 for more details) and for the characterisation of the optimisation

space (Chapter 6).

5.5 Instrumentation

As in the application of the code transformations, the instrumentation of the code in order
to measure the execution times has also been implemented at a program level. On the TI

board, this has been done using the API to the on-chip timer of the board with the function
TIMER_RGET (Texas Instruments, 2003). This is included in the Code Composer Studio Tools
Version 2.21. On the AMD architecture, this has been implemented using the clock_gettime
function. On both architectures, it has been found experimentally that the variability of the
measurements was negligible (less than 1%). This is important as it was not necessary to

replicate the experiments several times.

5.6 Summary and Discussion

This chapter has presented the details of the experimental set-up that has given rise to the data
used for the application of machine learning techniques to compiler optimisation. Motivated by
recent work on iterative compilation (see e.g. Franke and O'Boyle, 2001; Franke et al., 2005),
we have considered source-to-source transformations implemented in the SUIF infrastructure
(Hall et ah, 1996), which have been applied to 12 different benchmarks from the UTDSP suite

(Lee, 1997).
The experiments targeted an exhaustively enumerated space of transformation sequences

drawn from 14 code transformations combined into sequences of up to length 5. The pro-

Chapter 5. Experimental Set-Up 58

grams have been executed on a Texas Instruments board (TI). Additional experiments within
the context of predictive search distributions (Chapter 7) have been executed. These exper¬

iments include a larger optimisation space of transformation sequences drawn from 90 code
transformations combined into sequences of length 20 and an AMD architecture.

It should be noted that the source-to-source transformations were applied on top of native

compiler-specific transformations. As we shall see in Chapter 6, this approach led to significant

improvements in performance on most benchmarks. However, the interpretability of the effect
of the transformations is made difficult. Indeed, there may be a direct effect on the ultimate
code generated by the compiler or an indirect effect due to the fact that some source-to-source

transformations may just enable optimisations that are applied at the low level (by the native

compiler).

Chapter 6

Characterisation of the Optimisation

Space

This chapter presents a characterisation of the optimisation space of the SUIF data set. The

goal here is not only to provide a summary of the data but also to analyse the effect of the
transformation sequences used on the execution time of the programs under study. With this

purpose, this chapter proposes an extension of the well-known analysis of variance (ANOVA)

methodology to deal with sequence data. This technique is used to explain the main effect of
the program transformations (on the small space of the SUIF data set) and their interactions
when they are applied to a program in a sequential manner.

The organisation of this chapter is as follows. Section 6.1 presents the general issues in¬
volved in the exploratory analysis of a compiler optimisation space. Section 6.2 describes the

performance speed-ups achieved with the experiments. Section 6.3 gives a preliminary analy¬
sis of the optimisation spaces under study by discussing the difficulty of searching these spaces

and by providing the most important transformations belonging to the best sequences found.

Finally, section 6.4 describes an extension of the analysis of variance methodology (ANOVA)
that deals with sequence data and section 6.5 presents the results of applying such a technique
to the small space of the SUIF data set in order to understand the effect of single transforma¬
tions and their interactions.

6.1 Exploratory Data Analysis

The types of problems we address in this thesis are essentially search (or optimisation) prob¬
lems. Therefore, we are interested in analysing the performance speed-ups achieved for each

program, the relevance of the different compiler transformations used and the effect of these
transformations on the execution time of the programs. In particular, we will attempt to tackle
the following issues regarding the optimisation space of the SUIF data set:

59

Chapter 6. Characterisation of the Optimisation Space 60

1. Is the search problem a 'needle in a haystack'?

2. What are the most relevant transformations?

3. Does the order of the transformations really matter?

4. Do long sequences produce better results than short sequences?

5. Are the effects of the transformations linearly added?

6. Do the transformations interact? If so, which transformations interact with each other

and up to what extent?.

Addressing question 1 to 4 aims at understanding the optimisation space of the problems
that will be used for the application of the methods explained in chapters 7 and 8. Address¬
ing questions 5 to 6 aims at tackling the problem of identifying and quantifying interactions
between program transformations.

6.2 Speed-ups Achieved

Let us start with a preliminary analysis of the maximum performance obtained for each bench¬
mark. Certainly, if no significant improvements were found for any of the benchmarks used
there would be no reason to continue with the analysis.

Table 6.1 shows the best speed-ups (as defined in section 2.7) obtained for the small and

large spaces on both architectures: the TI and the AMD. We see that significant speed-ups have
been obtained on average for both platforms and that most benchmarks could be improved with
the experiments. On the small space of the TI, although benchmarks such as latnrm, Imsfir, mult
and histogram did not experience any reduction in their execution times, other benchmarks
such as fir, adpcm, compress and edge were dramatically improved. On the small space of the
AMD, all but one benchmark {adpcm) experienced some improvement in performance. The
maximum speed-ups achieved on the small space were 1.84 on the TI board and 2.0 on the
AMD architecture. In summary, eight (out of twelve benchmarks) on the TI and eleven (out
of twelve benchmarks) on the AMD were improved by some transformation sequence in the
small space.

We also see that the speed-ups obtained for the AMD are greater than those obtained for the
TI, showing that the compiler in the former (GCC) is easier to improve than the commercial

compiler in the latter. Nevertheless, the speed-ups obtained on the TI board are more than

encouraging in the compiler community, as the compiler used on this board is believed to

produce high quality code for these types of applications.

Finally, these results show that searching a large space such as the one considered in our

experiments yields further improvements. These results are important as they show that good

Chapter 6. Characterisation of the Optimisation Space 61

Speed-up TI Speed-up AMD

Program Small Large Small Large

FFT 1.04 1.84 1.05 1.08

FIR 1.84 1.86 1.36 1.61

IIR 1.19 1.19 1.42 1.42

LATNRM 1.00 1.02 1.37 1.54

LMSFIR 1.00 1.00 1.43 1.43

MULT 1.00 1.06 1.81 2.00

ADPCM 1.32 1.33 1.01 1.01

COMPRESS 1.64 1.65 1.79 1.89

EDGE 1.30 1.52 1.45 1.39

HISTOGRAM 1.00 1.01 1.33 1.41

LPC 1.12 1.16 1.06 1.07

SPECTRAL 1.08 1.19 1.09 1.36

Average 1.21 1.32 1.35 1.43

Table 6.1: Maximum speed-ups obtained with the experiments on the SUIF data set.

improvements can be obtained with iterative compilation and that the data generated presents

opportunities for learning. Thus, it makes sense to use machine learning techniques such as

the ones presented in Chapter 7 and Chapter 8 in order to focus search over good subspaces of
transformation sequences.

6.3 Analysis of the Optimisation Space

In this section we provide an analysis of the small (optimisation) space of the SUIF data set

(which is described in section 5.3.2). In particular, we are interested in addressing questions 1
to 4 raised in Section 6.1. Let us start by looking at how difficult it is to search the optimisation

space of the benchmarks under study. The second column of Table 6.2 shows the percentage

of effective sequences for each benchmark. We define an effective sequence as a sequence

for which all the transformations do change the code. In other words, an effective sequence

does not contain idempotent transformations1. Note that the number of effective sequences is
1 We define an idempotent transformation as a transformation that does not change the code.

Chapter 6. Characterisation of the Optimisation Space 62

Best Sequence

Program Effective (%) TI AMD

FFT 3.71 {3nm} {4hns}

FIR 0.69 {h4m} {3}

IIR 1.80 {3f} {h4}

LATNRM 2.88 {} {4mndc}

LMSFIR 0.97 0 {s3}

MULT 0.48 {} {4mf}

ADPCM 10.82 {lish} {}

COMPRESS 0.85 {4s} {3mshf}

EDGE 4.56 {f2h} {fhms4}

HISTOGRAM 0.11 {} {4}

LPC 7.96 {sn2} {fcmd4}

SPECTRAL 10.19 {scf} {3nmdc}

Table 6.2: Percentage of effective sequences and the shortest best sequence for each bench¬
mark on the small space of the SUIF data set. Empty sequences {} mean that there is no

transformation sequence that improves performance over the baseline program. (See Table 5.2
for the list of transformations used and their corresponding symbols.)

architecture-independent given that the transformations have been applied at the source level.
We see that, in general, a very small portion of the sequences are effective. Therefore, if a

search algorithm does not have a strategy to detect ineffective transformations it could spend a

considerable amount of time sampling sequences that have already been executed before, i.e.

sequences that include idempotent transformations. Indeed, although for benchmarks such as

adpcm and spectral the number of effective sequences is greater than 10% of the total number
of sequences, for benchmarks such as fir, iir, Imsfir, compress and histogram the number of
effective sequences is less than 2%.

6.3.1 Difficulty of the Search Spaces

Only knowing the percentage of effective sequences is not sufficient to ascertain how difficult
it is to search the optimisation space of a particular benchmark. Henceforth we will associate
the difficulty of a search space to the number of samples needed to obtain "good" performance

Chapter 6. Characterisation of the Optimisation Space 63

1 -

0.9-

0.8-

0.7-

^ 0.6 -

^ 0.5 -
L
0.4 -

0.3-

0.2-

0.1 -

1 -

0.9-

0.8-

0.7-

^ 0.6 -

^0.5 -
L0.4-
0.3-

0.2-

0.1 -

1.01 1.02
y (speed-up)

1 1.2 1.4 1.(
y (speed-up)

1

0.9

0.

0.7

.0.6
^0.5
L0.4
0.3

0.2

0.1

0,

1

0.9

0.8

0.7

^ 0.6

|o.s
0.4

0.3

0.2

0.1

1.1
y (speed-up)

0.9 0.95
y (speed-up)

1

0.9

0.8

0.7

.0.6

^ 0.5
L
0.4

0.3

0.2

0.1

0, 0.5 1 1.5 2
y (speed-up)

Figure 6.1: The cumulative distribution function of performance speed-ups for the small space
of the kernel benchmarks of the SUIF data set on the Tl board.

when, for example, using uniform search. Therefore, if we define a good transformation se¬

quence as that providing at least 95% of the maximum possible improvement in performance,
then those spaces for which the proportion of good sequences is very small will be more dif¬
ficult to search than those for which there is a larger amount of transformations sequences

that achieve good performance. Hence, we are also interested in analysing the distribution of
the performance speed-ups (or the distribution of the execution times). Figures 6.1 and 6.2
show the empirical cumulative distribution function (cdf) of performance speed-ups on the TI
board for the kernel benchmarks and application benchmarks respectively. Similarly, Figures
6.3 and 6.4 show the cdfs for the kernels and applications on the AMD architecture. Note the
differences on the scale of the horizontal axis (speed-up) for distinct benchmarks.

We see that the difficulty of searching the space of transformation sequences is program-

Chapter 6. Characterisation of the Optimisation Space 64

1

0.9

0.8

0.7

.0.6

^ 0.5
*"0.4
0.3

0.2

0.1

1 ...

0.9-

0.8-

0.7-

_0.6-

go.5-
°"0.4-
0.3

0.2-

0.1 -

1 1.1
y (speed-up)

1.2 1.4
y (speed-up)

1

0.9

0.8

0.7

0.6

|o.s
°"0.4
0.3

0.2

0.1

0

1

0.9

0.8

0.7

.0.6

[0.5
L0.4
0.3

0.2

0.1

1.15 1.2
y (speed-up)

1

0.9

0.8

0.7

_ 0.6

^0.5
°"0.4
0.3

0.2

0.1

j:

1

0.9

08

0.7

.0.6

^ 0.5
X
0.4

0.3

0.2

0.1

0.8 0.9 1
y (speed-up)

SPECTRAL

1 1.05
y (speed-up) y (speed-up)

Figure 6.2: The cumulative distribution function of performance speed-ups for the small space
of the application benchmarks of the SUIF data set on the Tl board.

dependent and architecture-dependent. For example, let us consider relatively easy search

spaces such as those corresponding to the benchmarks iir and edge on the TI board. In the case

of iir (middle left of Figure 6.1), almost 40% of the sequences yield a performance speed-up
that is very close to the maximum speed-up of 1.19. A similar case occurs for edge (middle
left of Figure 6.2), where almost 40% of the sequences achieve an improvement that is at least
95% of the maximum speed-up available. Interestingly, there is no transformation sequence

that slows down these programs.

On the TI, more difficult-to-search spaces are found (for example) for adpcm and Ipc. For

adpcm (top left of Figure 6.2), roughly 20% of the sequences cause a detriment in performace;
about 35% of the sequences yield no improvement or degrade performance; almost 88% of
the sequences achieve a suboptimal speed-up of 1.2 and less than 2% of the sequences have a

speed-up of at least 95% of the maximum improvement. For Ipc (bottom left of Figure 6.2),

Chapter 6. Characterisation of the Optimisation Space 65

1

0.9

0.8

0.7

_0.6
J 0.5

°"0.4
0.3

0.2

0.1

1

0.9

0.8

0.7

.0.6

^0.5
L0.4
0.3

0.2

0.1

0,

0.4 0.6 0.8
y (speed-up)

1 1.2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
y (speed-up)

1

0.9

0.8

0.7

.0.6

^ 0.5
0.4

0.3

0.2

0.1

0,

r-1
I

A
1

1.05 1.1 1.15 1.2 1.25 1.3 1.35
y (speed-up)

LATNRM

0 0.2 0.4 0.6 0.8 1 1.2 1.4
y (speed-up)

1

0.9

0.8

0.7

.0.6

^ 0.5
L0.4
0.3

0.2

0.1

0,

P. P ' . rJ

p..

1

0.9

0.8

0.7

.0.6

^ 0.5
X
0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.(
y (speed-up)

1.2 1.4 1.6 1.8
y (speed-up)

Figure 6.3: The cumulative distribution function of performance speed-ups for the small space
of the kernel benchmarks of the SUIF data set on the AMD architecture.

70% of the sequences degrade performance. There are also many sequences that achieve a

(very poor) suboptimal performance, i.e. about 25% of the sequences have a speed-up greater

than 1 but less than 1.02. Additionally, less than 2% of the sequences have a speed-up of at
least 95% of the maximum improvement.

We also see that the easy-to-search spaces found on the TI board, namely iir and edge are

difficult spaces to search on the AMD architecture. On this latter architecture, a very interesting
benchmark is edge (middle left of Figure 6.4). We note that for this benchmark only a very

few number of sequences achieve at least 95% of the maximum speed-up available. Indeed,
the search space of this benchmark on the AMD can be considered as a "needle in a haystack".

Chapter 6. Characterisation of the Optimisation Space 66

ADPCM
1

0.9

0.8

0.7

.0.6

^ 0.5
L0.4
0.3

0.2

0.1

0

1

0.9

0.8

0.7

.0.6

^0.5
*"0.4
0.3

0.2

0.1

0,

0.6 0.7 0.8
y (speed-up)

0.6 0.8 1
y (speed-up)

• J

i

0 0.2 0.4 0.6 0.8 1 1.2
y (speed-up)

1

0.9

0.

0.7

.0-6

^0.5
L
0.4

0.3

0.2

0.1

0,

0.

0.

0.

_0.

I°-
°"0.

0.

0.

0.

1

0.9

0.8

0.7

.0.6
^ 0.5
£0.4
0.3

0.2

0.1

1.3 1.4 1.5
y (speed-up)

0.6 0.8 1
y (speed-up)

J

0.6 0.8
y (speed-up)

1 1.2

Figure 6.4: The cumulative distribution function of performance speed-ups for the small space
of the application benchmarks of the SUIF data set on the AMD architecture.

6.3.2 Important Transformations

From the third column and fourth column of Table 6.2 it is possible to deal (partially) with

question 2 and question 4 raised in section 6.1. These questions enquire about the relevant
transformations and the minimum length of good sequences respectively.

Here we highlight the transformations that appear in the best sequence found for each
benchmark. A deeper analysis of the impact of the transformations on the performance of the

programs is presented in section 6.5.
It is evident that unrolling (T,'2\'3', or '4') does have an impact on these benchmarks as it

always appears in the best sequence (except for the benchmark spectral on the TI). This might
seem rather obvious for a compiler expert who already knows that loop unrolling is a very

important transformation. However, it is surprising that the compilers, which have probably

Chapter 6. Characterisation of the Optimisation Space 67

been tuned for these types of benchmarks, do not have a more aggressive strategy for unrolling
and still can be improved by this transformation applied at the source-code level.

Other important transformations are, for example, common sub-expression elimination
('s') that appear four times in the best sequences of improved benchmarks on both architec¬
tures, loop flattening ('f'), move loop-invariant conditionals ('m') (especially on the AMD),
and hoisting of loop invariants ('h').

It is also possible to note that two transformations, namely turn imperfectly nested loops
into perfectly nested loops ('t') and break load constant instructions ('k') do not appear in

any of the best sequences. We also see in Table 6.2 that the best speed-ups can be achieved
with short and longer sequences on both architectures. In principle, one could design search

algorithms that would prefer shorter sequences in order to reduce the compilation time of a

program. However, as we have seen in Table 6.1, exploring longer sequences on larger spaces
can lead to significantly greater improvements.

We have presented so far an analysis of the optimisation spaces of the SUIF data set with
a focus on the characterisation of the speed-ups achieved and the difficulty of searching such

spaces. The following sections describe how the standard statistical ANOVA technique can be
extended to deal with sequence data and used to analyse the effect of code transformations and
their interactions on the execution time of programs.

6.4 Analysis of Variance (ANOVA) of Sequence Data

Analysis of variance (ANOVA) models are widespread in the analysis of experiments and in

modelling real-life applications. The main reason for this is their simplicity and easy inter-

pretability. Here we aim to extend the standard ANOVA methodology to deal with sequence

data. Our main goal is to construct linear models that are a good fit to sequence data and that
allow us to understand how this data is related to some target measure y. Note that, unlike the

general machine learning problem, here we are not concerned about generalisation but we are

rather interested in having an explanatory model of the data. We start this section by explaining
the standard ANOVA model. Afterwards, we extend this model to deal with sequence data and

propose different model classes that can be suitable for fitting this data. Such models are then

applied to the small space of the SUIF data set in order to characterise the effect of program
transformations, their interactions and the relevance of the transformation order in the compiler

optimisation problem.

6.4.1 Standard ANOVA

ANOVA-type models are statistical techniques useful to investigate the relationship between a

response variable and a set of predictor variables (see e.g. Neter et al., 1996). One advantage

Chapter 6. Characterisation of the Optimisation Space 68

of ANOVA models over regression models is that the predictor variables are not necessarily
restricted to quantitative values. However, as we shall see in section 6.4.2, when working with
qualitative predictor variables an ANOVA model is equivalent to a linear (in the parameters)
regression model, where these variables are represented with indicator variables. Nonetheless,
it is useful to look at the ANOVA view of these models in order to understand the effect of the

predictor variables on the response values.
The terminology in ANOVA models refers to the predictor variables as factors and the

possible values these factors can take as factor levels. For simplicity, let us explain an ANOVA
model that includes only two factors as the generalisation to more factors is straightforward.

The main equation for a two-factor ANOVA model is given by:

Pij = p.. + cq + |37 + (aP),y, (6.1)

where is the value of the response variable when factor A takes on factor level i and factor B
takes on factor level j\ p.. is the overall (or common) mean; a, is the main effect of factor A at

level i\ |3, is the main effect of factor B at level j; and (otJ3);y is the interaction effect between
factors A and B at levels i and j respectively. The factor levels for A vary as i = 1,..., a and for

Basj = 1
The parameters of the model in equation (6.1) are defined as follows:

P" = (6-2)

cq = pi.-p.., (6.3)

P; = P-i~P~, (6-4)

(aP)// = Pij ~~ (P- + + PO (6.5)
= p.. +pij- pi.- p.j, (6.6)

where: pi. = j HjPij an<3 Pj = £ HiPij- We see in equations (6.3) and (6.4) that the main effects
are a measure of how much a factor level mean deviates from the overall mean (Neter et al.,

1996, page 801). Equation (6.5) states that there is an interaction between two factor levels
if the corresponding mean (pij) cannot be explained as an additive effect of the overall mean
(p..) plus the mean for each factor level independently (oq + p;). Two factors do not interact if
all the interaction values are zero. In this case the factors are said to be additive. Additionally,
it is clear that £, cq = £7 (3, = £,(a[3),7 = L/(a[3);7 = 0.

Estimation of ANOVA parameters

Given some noisy observations y,-^, and assuming that:

yijk = Pij + £-ijk (6.7)
= p.. + oq + (3/+ (a(3),7 + e,yfc, (6.8)

Chapter 6. Characterisation of the Optimisation Space 69

where is the kth observed value of the response variable and £,•_,& is the noise level, we wish
to estimate the parameters of the model p.., a,, P;- and (a(3),y for i = 1,..., a and j = 1,..., b.

If we further assume that the noise values are independent and distributed according to a

normal distribution with zero mean and variance a2, i.e. a2) then, given equation
(6.8), the response values are also independent and distributed according to: y,7£ ~ N(p.. +
ai + (3; + (aP);7-,a2). Thus, we can use maximum likelihood estimation in order to find these
parameters. This is equivalent to minimising:

£ = LL- A*- - a/ - P; - (ap);7)2,
(6.9)

subject to: £a, = ^P, = £(ap)y = £(aP)y = 0.
' j i j

Solving (6.9) is straightforward and it leads to the following (least-squares) estimates:

p.. = y... (6.10)

a, = y,-.. — y... (6.11)

Pj = y.j.-y... (6-12)
(ap)y = y...+yij.-yi..-y.j., (6.13)

where the • notation, as before, means that the average has been taken over the corresponding
factor levels and/or replications. Thus, we see the correspondence between equations (6.10) to
(6.13) and equations (6.2) to (6.6).

6.4.2 From ANOVA Models to Regression Models

It is clear from equation (6.8) that an ANOVA model can be seen as a linear (in the parameters)
regression model (see also e.g. Neter et al., 1996, sections 16.11 and 19.7). A linear (in the

parameters) regression model is given by:

/(x) = wr<|>(x), (6.14)

y = /(x) + e, £~tA£(0,cr), (6.15)

where <(>(x) = ((pi (x),<p2(x),...,(}>/>(x))T is the design function corresponding to indicator vari¬
ables that represent the factors (and their levels) and possibly the interactions between these
factors to be included in the design. For convenience in the notation we will assume that the
first component of <|>(x) is 1 so that a bias term is included in equation (6.14). The factor effects
(i.e. the main effects and the interaction effects) are given by the vector of parameters w.

As an example, let us take an experiment with two factors x\ and x-i and 2 levels per factor,

e.g. low and high. A suitable design function for a 2-factor interaction model is <|)(xi,X2) =
(1,/[xi],/[x2],/[xi]/[x2])t, where /[x,] is an indicator variable such that /[xz] = 1 if factor x,-

takes on the level high and 7[x,] = 0 otherwise.

Chapter 6. Characterisation of the Optimisation Space 70

Given a complete set of observations (i.e. a factorial design) {x,}^ (which include re¬

peated measurements at the same location x) and their corresponding response (or target) val¬
ues yi, the parameter vector w can be estimated from the observed data in order to minimise an

objective function such as the mean square error (MSE). In fact, the least squares solution to

equation (6.14) is given by:
w = (<M>T + A,I)_14>y, (6.16)

where <I> = (<Kxl),.. .<|>(xw)) is the design matrix, y = (yi,... ,y/v)T is the vector of responses,
I is the identity matrix and X is a regularisation parameter. The solution given by equation
(6.16) is known in the statistics literature as "ridge regression" (Hoerl and Kennard, 1970).
We note that for a full factorial design, i.e. when we have a complete set of observations, the
matrix <&<I>T has full rank and therefore (<f>d>T)_1 exists. In this case we can use X = 0 for the
computation of equation (6.16). However, for an incomplete set of observations, or a fractional
factorial design, regularisation is required (X > 0) if all the parameters of the model need to be
estimated as d>d>T would be rank-deficient.

Additionally, an unbiased estimator2 of a2 is given by:

s2 =)^X>-£)2< (6-17)
where N is the total number of observations (or data-points); D is the number of parameters
of the model; y, is the observed value of the response variable for data-point x,-; and yi is the

response value predicted by the model, i.e. yi = w1 <|>(x,-).
It can also be shown (see e.g. Montgomery, 1997, pages 542 and 561) that:

w ~ 5A£(w,cr(<M>T + 7i)-1). (6.18)

Thus, in order to measure the variability of the regression coefficients we can use the standard
error ^(w,) of each regression coefficient w,-, which is defined as follows:

4(w,) = ^/a2(<M>T + XI) 71, (6.19)
where + 7,1) jj1 is the ;th element on the diagonal of (<4><Tt + Al)-1.

Goodness-of-fit of the Model

The goodness-of-fit of the model can be determined by using the so-called coefficient of de¬
termination:

^=i-rrr (6.20)„2 , EjliCft-yi)2
Hito-y)2'

where N is the total number of observations (or data-points); y,- is the observed value of the

response variable for data-point x,-; yi is the response value predicted by the model; and y is the

2Note that the maximum likelihood estimator ojqL = (y; — yi)2 is not an unbiased estimator of a2.

Chapter 6. Characterisation of the Optimisation Space 71

mean response value throughout all the data-points. Note that, for simplicity in the notation,
we have omitted the dependency of y on the kth observation at the same representation x.

As the coefficient of determination measures the predictive power of the model with respect
to the case of always predicting the mean, and the mean is the best least-squares fit when no

predictor variables are present, the coefficient of determination measures the predictive power

of the features. Additionally, the coefficient of determination can be directly understood as the
amount of variance explained by the model. Therefore, numbers closer to one are preferred.

Understanding the Regression Parameters

In order to understand the meaning of the parameter vector w in equation (6.14) let us take the

particular example (described above) of an experiment with two factors xi and X2, 2 levels per

factor (e.g. low and high) and the response variable y. As above, a suitable design function for
a 2-factor interaction model is <|>(jci,JC2) = (1,/[xi],/[x2],/[xi]/[x2])t, where 7[x,] is an indicator
variable such that I[xi\ = 1 if factor xt takes on the level high and I[xt] = 0 otherwise. Thus, the
two-factor interaction regression model is given by:

f(x) = wo +W\l[x\\ + w2/[x2] +Wi2l[x\\l[x2\. (6.21)

Using equations (6.10) to (6.13) and equation (6.8) we see that the expected value of y^
is ytj.. In other words, y)j = f{x\ = i,x2 = j) = E\ytjk] = Jij.- Replacing this value in equation
(6.21) for the 4 possible settings of x\ and x2 we have that:

wo = y0o- (6.22)

wi = y\o-~yoo- (6-23)

w2 = yoi.-yoo. (6-24)

W12 = yoo.+yu--yw--y<n-> (6-25)

where y00. is the mean of the response variable of those examples in which both factors are

at the low level (or level zero); y10. is the mean of the response variable of those examples
in which the factor x\ is at the high level (or level one) and the factor x2 is at the low level;

y01. is the mean of the response variable of those examples in which the factor x\ is at the low
level and the factor X2 is at the high level; and yn. is the mean of the response variable of
those examples in which both factors are at the high level. These parameter estimates provide
a measure of the main effects and interaction effects of the factors x\ and x2.

The advantage of the regression view of ANOVA models is that we can extend this tech¬

nique in order to deal with sequence data. We are particularly interested in extracting a set of
informative features from sequences that allow us to analyse e.g. the main effects of different
literals within a sequence and their pairwise interactions.

Chapter 6. Characterisation of the Optimisation Space 72

Thus, we aim at evaluating "good" representations for sequences by looking at the coef¬
ficients of determination obtained when applying different models corresponding to distinct
representations. Furthermore, we will analyse the strength of the effects of such features and
their interactions by looking at the parameter vector w.

6.4.3 Sequence ANOVA

Let us define the alphabet A = {xi,.. .x,^ }, from which we can draw sequences of arbitrary
length L, i.e. x — (x;i,x,-2,... ,xiL) with ij £ {1,..., |J3|}. For each of these sequences we mea¬
sure a target value y so that our observed data is given by CD = {(x',/)}^, where N is the
number of observations.

Given the data CD, we want to analyse the effects of each element (or literal) of the alphabet
A on the target values y. We are also interested in the effect of pairwise interactions and (if any)
in the effect of higher order interactions. The model classes we will consider for this purpose

are presented below.

Bag-of-characters Model

In this model class we only account for the presence or absence of a particular literal within
a sequence, ignoring any positional or order information. For example, a bag-of-characters
model that includes main effects and pairwise interactions is given by:

/(x) = wo +£Wil[xi] + Y,WijI[xi]I[x, (6.26)
' 'J

where 7[x,-] is an indicator variable such that 7[x,-] = 1 if the literal x, appears within a sequence

and 7[x,] = 0 otherwise.

Positional Model

In this model class we consider not only the presence or absence of a literal within a sequence

but also the position where that literal appears. For example, a positional model that includes
second order interactions is given by:

/(x) = w0 +£Wijl[xj] +£Ewyt/7[xf]7[xj], (6.27)
ij Uj k,l

where 7[x^] is an indicator function so that 7[xf] = 1 if the literal x, appears in position k and
7[xf] =0 otherwise.

Order-based Model

In this model class we include a main-effect model as given by the bag-of-characters model

along with higher order interactions that depend on the order of the literals applied within a

Chapter 6. Characterisation of the Optimisation Space 73

sequence. In other words, the positional information is neglected and only the order informa¬
tion is considered. For example, an order-based model that considers three-factor interactions
is given by:

/(x) = wo +Y^Willxil+Y^Wijlfaxj] + £ wijkI[xi,Xj,xk\, (6.28)
i ij i,j,k

where 7[x,], I[xi,Xj] and I[xj,Xj,Xk] are indicator functions so that /[x,] = 1 if the literal x,- appears
within the sequence x and 7[x,-] = 0 otherwise; I[xt,Xj\ = 1 if the literal xj appears after the literal
xi and I[xi,Xj\ = 0 otherwise; and 7[x,-,xy,xfc] = 1 if the literal x^ appears after the literal Xj,
which also appears after the literal x, and /[x/,x7,x^] = 0 otherwise. It is important to emphasise
that in the definition of 7[x,-,Xy] and I[xj,Xj,Xjt] the literals are not necessarily contiguous.

Note that the order-based model can be seen as a general ANOVA model class for se¬

quences in the sense that the sequences under study are not required to have the same length
and the positional information is not specifically encoded. As we shall see in section 6.5, this
latter characteristic of the model may be very useful for the analysis of interactions between

program transformations in the compiler optimisation problem. We also note that the features
extracted in the bag-of-characters model and the order-basedmodel are related to string kernels
(see e.g. Rasmussen and Williams, 2006, section 4.4.1 and references therein).

Understanding the Regression Parameters in the Sequence Model

The parameters of this model have similar definitions to those provided in equations (6.22) to
(6.25). The only difference here is that the order of the transformations is taken into consid¬
eration. In particular, let us take an example of an order-based model for sequences with two

literals x\ and X2 and pairwise interactions so that:

/(x) = W0 +Wi/[xi]+W2/[x2]+Wl2/[xi,X2] +W2l/[x2,X1], (6.29)

where /[x,-] and /[x;.x7] are defined as above. The least-squares estimates of the model parame¬
ters can be obtained by using:

Wo = y^
JX\,X2 (6.30)

W\ = y -• — y-. -
X\ ,X2 JX\,X2 (6.31)

VV2 = y-. —y-. -
x\ ,x2 Jx\xi (6.32)

VV12 = y^+VxUX2
— yJX\,X2 ^X\ ,x2 (6.33)

VV21 ■^Xl ,X2 ~^~yX2,X\ — yyXlX2 (6.34)

where y- ^ is the mean of the response variable for those sequences in which neither x\ or x2
appear; y - is the mean of the response variable for those sequences in which only x\ appears;A"1 y*2

y- is the mean of the response variable for those sequences in which only x2 appears; yx xX\ ,X2 '

Chapter 6. Characterisation of the Optimisation Space 74

is the mean of the response variable for those sequences in which X2 appears after x i; and yX2M
is the mean of the response variable for those sequences in which x\ appears after xi-

The above expressions for the regression parameters hold for the ord-two model only if it
is fitted to all sequences of up to length 2. If one uses longer sequences then the parameters
need to be estimated using the general equation (6.16).

6.5 Sequence ANOVA for Compiler Optimisation

In order to understand the effect of compiler transformations and their interactions on the small

space of the SUIF data set, we can readily fit the model classes described in section 6.4.3
with different levels of interactions. We identify a transformation sequence as a sequence of

singleton transformations x,- drawn from our alphabet of 14 transformations (given in Table

5.2).
The models that will be applied to all (149584) sequences of up to length 5 in the small

space of the SUIF data set are given in Table 6.3. We see that (as explained in section 6.4.2)

given the complete data for the small space of the SUIF data set, the matrix 4><FT has full rank
for the models that use a bag-of-characters representation or an order-based representation.
Thus, we have used X = 0 for the computation of equation (6.16) on these models. However,
we note that, by definition, the matrix <F<FT is rank-deficient on the models that are based on

a positional representation. Thus, for these models we have used regularisation (i.e. X > 0) so
that equation (6.16) can be computed numerically. It has been found that the results reported
for these models are insensitive to a wide range of values of the regularisation parameter, i.e.
10"8 < X< 1.

6.5.1 Results on The Small Space of the SUIF Data Set

Table 6.4 shows the explained variance for the different models (described above) on the small

space of the SUIF data set for the TI board. We see that for some benchmarks (fir, latnrm,

Imsfir, edge, histogram, spectral) a simple main effects model with a bag-of-characters rep¬

resentation seems to be sufficient to explain most of the variance of the data. Additionally,

considering 2-factor interactions with a bag-of-characters representation provides a better fit,

especially for program iir, which is an indication that interactions between program transfor¬
mations do take place. This is seen more clearly in the results obtained by the ord:two model,
where for all the programs but adpcm almost all the data variance is explained. This reveals
that the ordering information, i.e. considering interactions of transformations depending on

when they have been applied (after/before other transformation) is important, in particular for

benchmarks^, iir and Ipc. Positional information does not seem to provide any improvement
over the equivalent order-based model in terms of variance explained. We also see that a three-

Chapter 6. Characterisation of the Optimisation Space 75

Model Description D rank(<M>T)
bag:main Main effects model using a bag-of-characters repre¬

sentation. It only considers the presence/absence of
a particular transformation within a sequence.

15 Full

bag:two Main effects and 2-factor interactions using a bag-

of-characters representation.

100 Full

pos:main Main effects using a positional representation. 71 70

pos:two Main effects and 2-factor interactions using a posi¬
tional representation.

1771 1630

ord:two Main effects and 2-factor interactions using an

order-based representation.

185 Full

ord:three Main effects, 2-factor interactions and 3-factor in¬
teractions using an order-based representation.

1985 Full

Table 6.3: The ANOVA models considered for the analysis of the small space of the SUIF data
set. From left to right we have the name of the model, the description, the number of parameters
of the model (D) and the rank of the matrix resulting from multiplying the design matrix times its

transpose.

factor interaction model provides a slight improvement on benchmarks iir and adpcm. This
latter program seems to be a complex benchmark in the sense that interactions involving more

that three transformations are required to explain most of the data variance.
Table 6.5 shows the explained variance for the ANOVA models considered on the small

space of the SUIF data set for the AMD board. We see that, unlike on the TI board, on this
architecture the main-effect model with a bag-of-characters representation only explains most

of the data variance on two benchmarks: mult and histogram. Having a two-factor interaction
model with a bag-of-characters representation does not provide significant improvements and
it is necessary to model two-factor interactions with an order-based representation in order
to explain most of the variance on most benchmarks. We also see, as on the TI, that the

positional model does not provide significant improvements over the equivalent order-based
model. However, even the order-based model that includes two-factor interactions is a poor fit
for benchmarks such as adpcm, Ipc and spectral. Finally, we see that (on the AMD architecture)
the benchmarks adpcm and spectral are not well explained by a three-factor interaction model
and they require the modelling of higher order interactions.

Chapter 6. Characterisation of the Optimisation Space 76

Benchmark r2
bag:main

r2
bag:two

r2
pos:main

r2
pos:two

r2ord:two r2ord:three
FFT 0.44 0.61 0.56 0.99 0.99 0.99

FIR 0.88 0.92 0.89 0.97 0.96 0.99

IIR 0.33 0.78 0.35 0.85 0.83 0.98

LATNRM 0.93 0.96 0.94 0.99 0.99 0.99

LMSFIR 0.94 0.96 0.94 0.99 0.98 0.99

MULT - - - - - -

ADPCM 0.04 0.16 0.06 0.32 0.23 0.52

COMPRESS 0.82 0.86 0.88 0.99 0.99 0.99

EDGE 0.92 0.95 0.93 0.99 0.99 0.99

HISTOGRAM 0.99 0.99 0.99 1.00 1.00 1.00

LPC 0.39 0.51 0.54 0.98 0.97 0.99

SPECTRAL 0.89 0.94 0.90 0.99 0.99 0.99

Table 6.4: Explained variance for different ANOVA models fitted to the small space of the SUIF
data set on the Tl board. The models differ in their coding representation and the order of
interactions modelled: "bag", "pos" and "ord" stand for bag-of-characters, positional and order-
based representation respectively, "main", "two" and "three" stand for main effects, two-factor
interactions and three-factor interactions respectively.

6.5.2 Analysis of Main Effects and Two-Factor Interactions

In order to analyse the main effects of the program transformations and their pairwise inter¬
actions we report the values Wj/||w||oo and vv/y/1|w||oo, in the ord:two model, where w,- and wi;-
are the values of the coefficients of the main factors and pairwise factors as given by equa¬

tion (6.28) and |[w||oo is the infinity norm of the whole vector of coefficients, i.e. ||w||oo =
max(|wi |,... |w|^||, |vt>n |,... |wpi|ia||) with |JT| being the total number of transformations. Note
that we could report the p-values resulting from assessing the hypothesis that these coefficients
are different from zero. However, even if such coefficients are statistically significantly differ¬
ent from zero, they may well be irrelevant in practice.

Nonetheless, only those coefficients that are statistically significant are reported. Given the
test statistic x(w,) = w;/^(w;), where ^(w,) is the standard error of the ith regression coefficient
w;, as defined in equation (6.19), the coefficient vv, (orWjj) is said to be statistically significantly
different from zero at the 0.05 significance level if |x(tv,)| > ?o.05/2,w-d-i> where ?o.05/2,w-d-i
is the 1 —0.05/2 percentile of the t-student distribution with N — D— 1 degrees of freedom,
N is the total number of sequences and D is the number of parameters in the model (see e.g.

Montgomery, 1997, pages 557 and 558).

Figures 6.5 to 6.8 show the main effects of the program transformations and their inter-

Chapter 6. Characterisation of the Optimisation Space 77

Benchmark r2
bag:main

r2
bag:two r2

pos:main
r21 pos:two r2ord:two r2ord:three

FFT 0.13 0.23 0.23 0.56 0.44 0.78

FIR 0.43 0.51 0.54 0.78 0.62 0.92

IIR 0.28 0.38 0.48 0.75 0.69 0.93

LATNRM 0.30 0.35 0.60 0.82 0.71 0.89

LMSFIR 0.41 0.58 0.51 0.87 0.85 0.99

MULT 0.91 0.93 0.93 0.99 0.99 0.99

ADPCM 0.02 0.05 0.08 0.23 0.13 0.38

COMPRESS 0.72 0.79 0.79 0.99 0.99 1.00

EDGE 0.15 0.33 0.21 0.48 0.44 0.77

HISTOGRAM 0.99 0.99 0.99 0.99 0.99 0.99

LPC 0.07 0.12 0.11 0.28 0.20 0.44

SPECTRAL 0.06 0.12 0.15 0.37 0.31 0.67

Table 6.5: Explained variance for different ANOVA models fitted to the small space of the SUIF
data set on the AMD architecture. The models differ in their coding representation and the
order of interactions modelled: "bag", "pos" and "ord" stand for bag-of-characters, positional
and order-based representation respectively, "main", "two" and "three" stand for main effects,
two-factor interactions and three-factor interactions respectively.

actions on each benchmark for the small space of the SUIF data set for the TI board and the
AMD architecture using the ord:two model. The first column of each plot corresponds to the
main effects and the other columns correspond to the two-factor interaction effects of applying
a program transformation on the vertical axis followed by a program transformation on the
horizontal axis. The results for the benchmarks on which the model explains less than 60% of
the variance are not shown given that higher-order interactions are needed to provide a good fit
for these programs.

One common feature across all the graphs is the absence of values for the interactions
between a program transformation that is followed by the same transformation. This is due to

the experimental design adopted which did not include repeated transformations (see section

5.3.2).

Main Effects

On the TI board (figures 6.5 and 6.6) we see that unrolling (with factors 2,3,4) has a signif¬
icant impact on most benchmarks with the exception of fft. Similarly, loop flattening has an

important main effect especially on benchmarks iir, edge and spectral. Other transformations
with significant main effects are cse, hoist and copy. Transformations such as turn, break and

Chapter 6. Characterisation of the Optimisation Space 78

dead do not have a significant main effect on this architecture.

Similarly, on the AMD architecture (figures 6.7 and 6.8) we see that unrolling has a signif¬
icant and consistent main effect across benchmarks. Other transformations worth mentioning
are flattening, cse, hoist, and copy. As on the TI, break, turn and dead do not have a significant
main effect on the benchmarks used.

Interactions

A word of caution: Before describing the pairwise interactions between program transfor¬
mations on the small space of the SUIF data set, it is important to recall the meaning of these
interactions. As explained throughout section 6.4 and exemplified in equations (6.30) to (6.34),
there is an interaction between two factors if their joint effect on the response variable cannot

be explained as an additive effect of both factors when they are applied independently. In the

compiler optimisation problem the identification and quantification of these interactions with
the ordttwo model helps to identify enabling/disabling transformations and to recognise when
the order of these transformations has an impact on the speed-up of a program. However,
caution must be exercised when interpreting the sign of the interaction effect. In particular,
a negative interaction value for two transformations does not necessarily mean that the joint

application of the transformations has a negative impact on the speed-up of the program, as it

only indicates that the expected speed-up of the program when both transformations are jointly

applied is less than the sum of the individual expected speed-ups when such transformations
are applied in isolation.

Figures 6.5 and 6.6 show the two-factor interaction effects of applying a program transfor¬
mation on the vertical axis followed by a program transformation on the horizontal axis for the
TI board. In general, unrolling has a big impact when interacting with other transformations,

especially when interacting with norm, flattening and cse. Interestingly, norm has very little

impact when applied in isolation. Additionally, such interactions can be positive as in the case

of the benchmark Imsfir (Figure 6.5) when unrolling interacts with cse, or they can be negative
as in the case of the benchmark fir (Figure 6.5) when unrolling interacts with norm. Other
interactions worth mentioning are norm-move and cse-hoist (on jft)\ hoist-cse (on iir)\ and
move-cse (on Imsfir).

The interactions between transformations can be order-dependent or order-independent,
which can be seen in the symmetric/asymmetric properties of the plots in figures 6.5 and 6.6.
For example, we see that for the benchmark iir there are significant interactions unroll-flat
or unroll-cse, which do not rely on the order these transformations have been applied. A
similar case occurs on the benchmark Imsfir for the interaction unroll-cse. Contrarily, on the
benchmark Ipc there are significant interactions that rely on applying unrolling (e.g. with unroll
factor 4) after norm but the reverse interaction unroll-norm (with unroll factor 4) is rather weak.

Chapter 6. Characterisation of the Optimisation Space 79

A closer analysis of the data shows that while the mean speed-ups of those sequences where
unro4 appears or where norm appears are 0.9737 and 1.0099 respectively, the mean speed-up
of those sequences where unro^ appears (not necessarily contiguously) after norm is 1.0557.
However, the reverse interaction leads to a slow down of the program as shown by the average

speed-up of those sequences where norm appears after unro\ being 0.9476. Furthermore, the
sequence {n4} yields a speed-up of 1.0774, which is over 96% of the maximum speed-up
available for the program Ipc (shown in Table 6.1).

As a final observation regarding the main effects and interactions of the program transfor¬
mations on the TI, we can conclude from Table 6.4 and Figure 6.6 that the benchmark histogram
is completely dominated by the effect of unrolling and normalisation.

Figures 6.7 and 6.8 show the two-factor interaction effects of applying the program trans¬

formations on the vertical axis followed by the program transformation on the horizontal axis
for the AMD architecture. As in the case of the TI board, we see that unrolling has a significant

impact when interacting with other transformations such as norm, cse, hoist, flat and copy.

Other interactions worth mentioning are cse-hoist and hoist—cse on fir, iir, latnrm and imsfir,
cse-norm, cse-copy, copy-cse, hoist-norm, hoist-copy, copy-hoist and copy-norm on latnrm',
and flat-cse and cse-flat on iir.

From Table 6.5 and Figure 6.8 we can conclude that the benchmark histogram is almost

completely dominated by the effect of unrolling, and the benchmark mult is almost completely
dominated by the effects of unrolling nndflattening. Additionally, we note that for some bench¬
marks such as iir and Imsfir, unrolling has a positive main effect when applied in isolation but a

negative impact when applied in conjunction with other transformations such as cse and hoist.

6.5.3 Related Work on the Effect of Compiler Transformations

A final remark regarding the main effects of program transformations and their interactions
within transformation sequences is that the impact of these sequences on the execution time
of a program is crucial for modelling such effects. We note this by looking at the different

patterns of main effects and interactions for the same program on the two architectures (see

e.g. the benchmark latnrm on figures 6.5 and 6.7). Indeed, approaches such as the one adopted
in Kulkarni et al. (2006, see section 4.4 of this thesis for details) that neglect the effect of a
transformation sequence on the final execution time of the program, would fail at effectively

characterising the main effects of program transformations and their interactions.
Other authors have used statistical techniques from the design of experiments in compiler

optimisation (see e.g. Chow andWu, 1999; Pinkers et ah, 2004a,b). The main difference of the
technique presented in section 6.5 with respect to previous approaches is that it deals with the

general problem of analysing sequence data rather than a fixed set of compiler transformations.
For example, Pinkers et al. (2004a,b) use orthogonal arrays in order to effectively sample

Chapter 6. Characterisation of the Optimisation Space 80

a large set of compiler optimisation flags. However, their approach only considers the main
effects of compiler options neglecting their interaction effects. Chow and Wu (1999) present a
quantification of the main effects of a fixed set of optimisation flags and their interactions using
fractional factorial designs. Although their analysis considers the uncertainty of such effects,
the goodness of fit of the final model used is not reported. The reader is referred to section 4.4
for more details on the work related to this area.

6.5.4 Optimisation with the Sequence ANOVA Model

The regression view of the sequence ANOVA model as given by the ordttwo model (i.e. the
two factor interaction model with an order-based representation) allows us to use such a model
for optimisation. The following analysis relies upon fitting this model to the complete data
of each benchmark corresponding to the small space of the SUIF data set. Thus, for each
benchmark, the predictions given by the ord:two model on all the sequences can be used in
order to ascertain the sequence that is expected to provide the best performance3.

Let us call the actual speed-up achieved by such a sequence yanova and the maximum speed¬

up that can be obtained ybest. Table 6.6 shows the ratios yanova/ybest obtained on the small space
of the SUIF data set. We see that the model achieves almost the best possible performance on

most benchmarks on both architectures (with the exception of latnrm on the AMD). In fact, for

edge on the TI andfir and histogram on the AMD, the sequence predicted by using the sequence
ANOVA model yields the best possible performance that can be obtained in the transformation

space considered.

6.6 Summary

This chapter has presented a characterisation of the optimisation space of the SUIF data set.
In particular, the speed-ups achieved with the experiments have been analysed and have been
shown to be relevant for the application of machine learning techniques to the different opti¬
misation problems. Additionally, the difficulty of the search spaces has been studied by us¬

ing the cumulative distribution function of performance speed-ups on each benchmark. It has
been shown that this difficulty is program-dependent and architecture-dependent and that some
benchmarks are more interesting than others in terms of their optimisation space.

With the goal of providing an understanding of the effect of interactions between program

transformations, the technique of analysis of variance has been extended in order to deal with

sequence data. This extension has been applied to the data generated for the small space of
the SUIF data set. It has been shown that although some benchmarks are well explained by

3Obviously, if there was exhaustive data for a specific benchmark it would not be necessary to search for a
"good" optimisation sequence and, in practice, such models must be fitted to a (non-exhaustive) sample of transfor¬
mations sequences.

Chapter 6. Characterisation of the Optimisation Space 81

yanovai ^ybest

Benchmark TI AMD

FFT 0.99 0.99

FIR 0.99 1.00

IIR 0.99 0.98

LATNRM - 0.79

LMSFIR - 0.99

MULT - 0.99

COMPRESS 0.99 0.99

EDGE 1.00 -

HISTOGRAM - 1.00

LPC 0.97 -

SPECTRAL 0.99 -

Table 6.6: The performance of the sequence ANOVA model {two-factor interaction model with an
order-based representation) when used for optimisation on the small space of the SUIF data set
for the Tl and the AMD. The ratio between the speed-up obtained with the sequence predicted

by the model (yanova) and the maximum speed-up (ybest) on each benchmark is shown. The
results are reported only on those benchmarks on which some improvement can be achieved

(i.e. ybest > 1) and on which the model explains at least 60% of the data variance.

a main effects model, other benchmarks require the inclusion of two-factor interactions, and

higher-order interactions in order to explain most of the data variance. An important finding of
applying the technique proposed is that the information provided by the position of a program
transformation within a sequence is irrelevant and, therefore, one can rely on models that only
take the order information into account. This observation can be used, for example, to drive

optimisation algorithms without the need for expensive representations of a transformation

sequence.

Chapter 6. Characterisation of the Optimisation Space 82

UNRO_1 -

UNRO_2 ■

UNRO_3 -

UNRO_4 -

FLAT-

NORM -

TURN -

BREAK■

CSE -

DEAD -

HOIST -|
IFH -

MOVE ■

COPY -

□

□

UNRO_1

UNRO_2

UNRO_3

UNRO_4

FLAT

NORM

TURN

BREAK

CSE

DEAD

HOIST

IFH

MOVE

COPY

□

□

□ □

UNRO_1 • □ - ■ ■ UNRO_1

UNRO_2□ ■ • ■ ■ ° ■ UNRO_2 -
UNRO_3r ■ ■ ■ ■ ■ UNRO_3^|
UNRO_4□ ■ UNRO_4 m

FLAT□ ■ ■■■ ■ •
- ■ ■ • • FLAT

NORM - ■ NORM

TURN ■ . . . " TURN

BREAK ■ . . . ■ BREAK

CSE □ • ■ ■ ■ ■ • ■
■ " * CSE

DEAD ■ • ■ ■ ■ DEAD

HOIST ■ □ □ □ D ■ HOIST

IFH ■ . . . - IFH

MOVE ■ . . . - MOVE

COPY ■ COPY

o o o o

UNRO_1

UNRO_2

UNRO_3

UNRO_4

FLAT

NORM

TURN

BREAK

CSE

DEAD

HOIST

IFH

MOVE

COPY

i
□

□

□

□

□ □

o o o o
o Q

Figure 6.5: Significant main effects (first column of each graph) and two-factor interactions
between transformations on the vertical axis followed by the transformations on the horizontal
axis for the small space of the kernel benchmarks of the SUIF data set on the Tl board. The area
of each region in the Hinton diagrams is proportional to its corresponding normalised coefficient

(w//||w||oo or w,;/||w|jo°) in the two-factor interaction model with an order-based representation.
Black regions correspond to negative values and white regions correspond to positive values.
The program mult is not reported as there is not variability on its speed-ups.

Chapter 6. Characterisation of the Optimisation Space 83

COMPRESS

UNRO_1 -

UNRO_2 ■

UNRO_3 ■

UNRO_4

FLAT

NORM -

TURN -

BREAK -

CSE ■

DEAD ■

HOIST ■

IFH -

MOVE -

COPY -

o Q cc cc cc

HISTOGRAM

UNRO_1 ■ UNRO_1 O .

UNRO_2 UNRO_2 • □ □ O - . o o .

UNRO_3■ • □ UNRO_3 □ ■ .

UNRO_4 |flfl ■ UNRO_4 □ • -

FLAT FLAT ■ ■□□□

NORM NORM ■ °□□□D ■.■ ...
TURN TURN

BREAK BREAK

CSE CSE ■ □ □ □■■■> a

DEAD DEAD

HOIST HOIST

IFH IFH

MOVE MOVE ■ ' ■

COPY COPY

UNRO_1

UNRO_2 -■ ■ °

UNRO_3 ■ ■ ■ ■

UNRO_4 - ■ ■ °

FLAT

NORM

TURN

■

■

■

■ ■ ■ -

BREAK

CSE . - -

DEAD

HOIST

IFH

MOVE °

COPY

Figure 6.6: Significant main effects (first column of each graph) and two-factor interactions be¬
tween transformations on the vertical axis followed by the transformations on the horizontal axis
for the small space of the application benchmarks of the SUIF data set on the Tl board. The area
of each region in the Hinton diagrams is proportional to its corresponding normalised coefficient

(W;/||w||oo or w;;-/||w||oo) in the two-factor interaction model with an order-based representation.
Black regions correspond to negative values and white regions correspond to positive values.
Benchmarks for which the model explains less than 60% of the variance are not reported.

Chapter 6. Characterisation of the Optimisation Space 84

UNRO_1 -□ - ■ ■ UNRO_1 -□ ■ ■ ■

UNRO_2 ■ - - ■ ■ n UNRO_2□ ■ • ■ ■ ■ ■ ■

UNRO_3
=

■ ' • - ■ UNRO_3□ ■ ■ - ■ • ■ -

UNRO_4□ ■ ■ ■ ■ UNRO_4 ■ • - ■ ' ■ ■

FLAT ■ ■ ■ ■ ° □ □ FLAT -□ ■ ■ ■ ■ • ■ ■

NORM □ □ □ ■ ■ NORM °

TURN ■ ■ ■ TURN ■ •

BREAK ■ • - BREAK ■ • •

CSE □ ■ ■ ■ ■ □ CSE -□ ■ ■ ■ ■ ■ □

DEAD ■ ■ - DEAD ■ ■

HOIST o ■ ■ ■ ■ □ o HOIST □ ■ ■ ■ ■ □ ■ a

IFH ■ ■ - IFH ■ •

MOVE ■ ■ ■ MOVE

COPY ■ ■ " COPY ■

UNRO_1 ■ □ ■ O O D UNRO_1 o ■ ■

UNRO_2a - ■ - • ■ - ■ - ■ UNRO_2C • • ■ ■ '

UNRO_3□ ■ - • ■ - ■ - ■ UNRO_3 ■ • ■ ■ '
UNRO_4 - ■ - ■ ■ - ■ - ■ UNRO_4 -□ ■ • ■ '

FLAT □ □ □ □ ■ ■ " FLAT ■ •

NORM ■ ■ ■ ■ □ □ NORM ■ ■ -

TURN • ■ ■ ■ TURN ■ ■

BREAK • ■ - ■ BREAK ■ ■

CSE -■ □ □ □ □ □ □ □ CSE - ■ - ■ ■ - □ ■

DEAD ■ ■ DEAD ■

HOIST -■ □ □ □ □ ° □ □ □ □ HOIST ■ □ • □ ■ □

IFH ■ ■ ■ IFH • ■

MOVE ° ■ » - MOVE •

COPY ■ ■ □ □ □ □ □ □ □ COPY ■

o o o o < 1 ^
tr cc cc cc r-1 o 3
-z.-z.-z.-z. 9 p!
3 3 3 3 ^

MULT

UNRO_1

UNRO_2□ □ • ■

UNRO_3 □ ■ ■

UNRO_4 □ •
FLAT

NORM

TURN

BREAK

CSE

DEAD

HOIST

IFH

MOVE

COPY

o o o o
o - 9

Figure 6.7: Significant main effects (first column of each graph) and two-factor interactions
between transformations on the vertical axis followed by the transformations on the horizontal
axis for the small space of the kernel benchmarks of the SUIF data set on the AMD. The area

of each region in the Hinton diagrams is proportional to its corresponding normalised coefficient

(wj/||w||oo or wlj/\\w\\ao) in the two-factor interaction model with an order-based representation.
Black regions correspond to negative values and white regions correspond to positive values.
Benchmarks for which the model explains less than 60% of the variance are not reported.

Chapter 6. Characterisation of the Optimisation Space 85

COMPRESS

UNRO_1

UNRO_2

UNRO_3

UNRO_4□
FLAT

NORM

TURN

BREAK

CSE

DEAD

HOIST

IFH

MOVE

COPY

n
□
□

HISTOGRAM

UNRO_1

UNRO_2

UNRO_3

UNRO_4

FLAT

NORM

TURN

BREAK

CSE

DEAD

HOIST

IFH

MOVE

COPY

□

Figure 6.8: Significant main effects (first column of each graph) and two-factor interactions be¬
tween transformations on the vertical axis followed by the transformations on the horizontal axis
for the small space of the application benchmarks of the SUIF data set on the AMD. The area

of each region in the Hinton diagrams is proportional to its corresponding normalised coefficient

(w//||w||oo or w;_//||w||oo) in the two-factor interaction model with an order-based representation.
Black regions correspond to negative values and white regions correspond to positive values.
Benchmarks for which the model explains less than 60% of the variance are not reported.

Chapter 7

Predictive Search Distributions

Estimation of Distribution Algorithms (EDAs) are a popular approach to learn a probability dis¬
tribution over the "good" solutions to a combinatorial optimisation problem. Here we consider
the case where there is a collection of such optimisation problems with learned distributions,
and where each problem can be characterised by some vector of features. Now we can define a

machine learning problem to predict the distribution of good solutions <?(x|t) for a new problem
with features t, where x denotes a solution. This predictive distribution is then used to focus
the search.

The utility of this method is demonstrated on the compiler optimisation task where the

goal is to find a sequence of code transformations to make the code run fastest. Results on the
SUIF data set of 12 different benchmarks on two distinct architectures show that this approach

consistently leads to significant improvements in performance.
This chapter is organised as follows. In section 7.1, the general formulation of a combina¬

torial optimisation problem is presented. In section 7.2, Estimation of Distribution Algorithms
are explained as a common approach for solving combinatorial optimisation problems. In sec¬

tion 7.3, inspired by the general EDA idea, the technique of Predictive Search Distributions is

proposed and described as a method for speeding up search by exploiting transference across

different optimisation tasks. Work related to predictive search distributions is briefly reviewed
in section 7.4. The application of predictive search distributions to the compiler optimisation

problem and its results on the SUIF data set are presented in section 7.5. Finally, a summary
and a discussion on the use of predictive search distributions are given in section 7.6.

7.1 Motivation: Combinatorial Optimisation

In this chapter we consider optimisation problems and their solution. As input we are given a

description T of the optimisation problem, for example the edge weights between all vertices

86

Chapter 7. Predictive Search Distributions 87

of a graph for a minimum balanced cut (MBC) problem (see e.g. Andreev and Racke, 2004)1.
For any input T there is a set X(T) of valid solutions; for MBC this is the set of bisections
that are balanced. We also require an evaluation function / which takes as input a problem

description T and a valid solution x € X(T), and outputs the quality of the solution. For the
MBC problem / is the negative sum of the edge weights in the cut. Our goal is then to find the

optimal solution xopt(T) such that

xopt(r) = argmaxxeX(r)/(r,x). (7.1)

Another example of an optimisation problem, indeed the one that motivated this work, is in

compiler optimisation. For a given benchmark T we can apply a sequence of transformations
to the code so as to produce the same input-output behaviour but different run times. As seen

in section 2.5, examples of transformations are loop unrolling and common sub-expression
elimination. Our goal is to find the sequence of transformations that makes the code run fastest.
See section 2.4 for more details on this problem.

7.2 Estimation of Distribution Algorithms: EDAs

Many combinatorial optimisation problems are NP-hard and for such problems it is common

to use heuristic optimisation methods, for example those based on population search. Such
methods include genetic algorithms which explore the search space by evolving populations of
candidate solutions. Estimation of distribution algorithms (EDAs) may be viewed as a way of

evolving a probabilistic graphical model g(x) E Q describing a distribution of good candidates,
rather than evolving a specific population (Pelikan et al., 1999). These methods are particularly

popular for addressing combinatorial optimisation problems, although they have also been ap¬

plied in continuous domains typically, in situations when numerical optimisation was difficult.
In the rest of this chapter we will focus specifically on the case when {x} is a space of strings
of up to length L defined over finite alphabets.

EDAs are a relatively new idea and one of the first algorithms known as population-based
incremental learning (PBIL) was proposed by Baluja (1994) as a technique that combined

genetic algorithms with competitive learning. This gave rise to different approaches that at¬

tempted to model the probability distribution of a search space iteratively within a population-
based framework. The concrete concept of estimation of distribution algorithm as a unified
framework is presented in Miihlenbein and Paass (1996).

1 The minimum cut of a graph can be found in polynomial time using network flow methods. However, this
algorithm does not guarantee that the two halves are balanced, i.e. that there are equal numbers of nodes in each
half. The MBC problem is NP-hard.

Chapter 7. Predictive Search Distributions 88

7.2.1 General Algorithm

In an EDA, the initial population of size N of the candidate strings X^ = {xz-|^_j} is gen¬
erated according to some prior distribution (which is usually a uniform distribution). Then
at each jth iteration, the algorithm performs the evaluation step by computing the objectives

/(x;) Vx,- € X(j>. At the selection step, the EDA generates an intermediate subset C Xiji
of the improved candidate strings, so that candidates x, G Xlj! with higher values of /(x,-) are

more likely to be members of X^K At the learning step, the algorithm uses density estimation
methods for fitting a distribution g G Q to the selected set of candidates Xij\ which gives rise
to a new distribution g^+li■ This is followed by sampling of the new population X^+x> from
the learned graphical model (typically it is assumed that the population size is fixed, so that

|A*^'+1) | = \X^ | = N), and the procedure is repeated until a termination criterion is met. After
termination, the optimal solution xopt is approximated as the argmaxs6X!») /(x), whereX^ is
the final population.

The algorithm for a typical EDA is summarised below. Here N is the size of the population,
assumed to be the same at each iteration, and U denotes the uniform distribution.

1. initialisation: constrain the family of the EDA search distributions Q\ set j = 0, N, etc.

2. generate initial population: X'' [y'! = {«Ci ~ «};
3. evaluation: Vx,- G X^1 compute /(x,);

4. selection: choose a subsetX^' C X^J) biased towards better-performing solutions; define
the empirical distribution p^ on the subset;

5. learning: learn by optimising a discrepancy measure D(p^\g G Q) (e.g. KL-
divergence);

6. sampling: generate X^+^ = {x,|^j ~ g^+1^};
7. iterate steps 3-6 until a termination criterion is met.

After termination, the optimal solution xopt is approximated as the argmaxx£Xn/(x), where
XH is the final population. We note that the specific EDA that uses the KL-divergence as

the discrepancy measure D{p^\g e Q) (in step 5) has been referred in the literature as the
cross-entropy method (Rubinstein and Kroese, 2004).

Usually the models g G Q are constrained to lie in tractable parametric families and there
are a large number of EDAs which are based on specific parameterisations. For example,
the population-based incremental learning (PBIL) algorithm assumes that Cj is a family of
factorised distributions; mutual information-maximizing input clustering (MIMIC) methods
constrain Q to be a family of Markov chains, etc. See section 7.2.3 for an overview of specific
algorithms. Figure 7.1 illustrates the general idea of an EDA.

Chapter 7. Predictive Search Distributions 89

Search distribution
g (sequences)

V
• • •

Sample
• •
• • Evaluate

• •

{(x»Pi)}
Samples {x^} P New distribution

g' = argmin D(p : g)
g eg

Figure 7.1: A schematic illustration of an Estimation of Distribution Algorithm (EDA).

7.2.2 Defining the Empirical Distribution on Good Solutions

As explained above, an EDA requires the construction of the empirical distribution p(\), which
can be obtained for example by placing a uniform distribution over the subset IC1 This
subset can be selected (for instance) by thresholding the minimum performance of the ob¬
served solutions. For example, one can select those solutions that provide at least 95% of the
maximum performance achieved, as given by the maximum observed value of the evaluation
function f(X).

Alternatively, We can construct an empirical distribution on good solutions by using a

Boltzmann distribution:
eMxk)

wk = p(xk) =— , (7.2)
yW eP/(x")^U= 1

where (3 is the inverse temperature (P = 1 /x) and /(x) is our evaluation function (e.g. the speed¬
up measure in the compiler optimisation problem). This way of constructing the empirical
distribution has the feature that the good solutions are weighted according to their evaluation
function values.

7.2.3 Families of EDA search Distributions

A key issue in an EDA is the selection of the model distribution g(x\X). Obviously, the family
of distributions Q to be considered will depend on the complexity of the optimisation problem.
Several choices for such distribution have been proposed in the literature depending on the
order of interactions that are modelled. Some of these approaches are briefly explained below.
The reader is referred to Larranaga and Lozano (2001, Chapter 2) and Pelikan et al. (1999)
for a more comprehensive review of EDAs. For simplicity in the notation we will omit the

dependency of the model distribution on the selected subset of solutions X by simply writing
J?(x).

Chapter 7. Predictive Search Distributions 90

Identically Factorised Distributions

One of the simplest choices of the model distribution for an EDA is a factorised distribution

g(x) = Ui8(xi). Fitting such distribution is straightforward (by using counts). This has been
proposed in Miihlenbein (1997) under the name of the Univariate Marginal Distribution Algo¬
rithm (UMDA).

Similar in spirit to the UMDA, the well-known Population-Based Incremental Learning

algorithm (PBIL; Baluja, 1994; Baluja and Caruana, 1995) characterises the solution of an

optimisation problem with a set of binary strings and the population of solutions is represented
with a probability vector g(x) = (g(xi),... ,g(xL)). Initially, g(x,-) = 0.5,/ = 1,...,L and the
probability vector is updated according to the rule g7+1(x) = (1 — a)g;(x) + OC-^T yxi,\Ji | i vl-A.
where a is the learning rate and \X\ is the number of solutions selected.

Markov-chain Distributions

Identically factorised distributions may be a very limited approach to modelling the distribu¬
tion of good solutions on an optimisation problem as they assume that the variables that char¬
acterise these solutions are statistically independent. Therefore, one can also consider pairwise
interactions as proposed by de Bonet et al. (1997) in their Mutual-Information-Maximizing

Input Clustering (MIMIC) algorithm. Here the model distribution is a Markov chain: g(x) =
g(x\) nf=2<?U |x,_i), which is learnt in order to minimise the KL-divergence between the chain
and the empirical distribution of the selected points. In order to find the optimal variable permu¬
tation to construct the chain, de Bouet et al. (1997) propose a greedy search algorithm that adds
one variable at a time so as to maximise the conditional entropy with respect to the previously
selected variables.

More Complex Distributions

Baluja and Davies (1997) propose the use of dependency trees in order to characterise higher-
order interactions in the model distribution of an EDA. Their approach is based upon the algo¬
rithm proposed by Chow and Liu (1968), which is used to find the optimal model within this
class of distributions. The work in Baluja and Davies (1997) is extended in Baluja and Davies
(1998), where the COMIT (Combining Optimizers with Mutual Information Trees) algorithm
is proposed as a way of combining the tree-based EDA approach with multiple local optimisers.

A different approach to modelling high-order dependencies is given in the Factorized Dis¬
tribution Algorithm (FDA) proposed by Miihlenbein and Mahnig (1999). Here the model dis¬
tribution factorises as the product of k multivariate conditional distributions. A major caveat
of this approach is that such factorisation must be provided by an expert requiring knowledge
of the structure of the problem. This latter drawback is overcome by Pelikan et al. (2000),

Chapter 7. Predictive Search Distributions 91

Algorithm Structure Author(s)

UMDA iid variables Miihlenbein (1997)
PBIL iid variables Baluja (1994)
MIMIC Markov chain de Bonet et al. (1997)
COMIT Trees Baluja and Davies (1997)
FDA Product of distributions Miihlenbein and Mahnig (1999)
BOA Bayesian Network (BN) Pelikan et al. (2000)
hBOA hierarchical BN Pelikan and Goldberg (2001)

Table 7.1: Examples of Estimation of Distribution Algorithms.

who propose their Bayesian Optimization Algorithm (BOA) in which the model distribution
is a Bayesian network. In order to measure the quality of the networks they use the Bayesian
Dirichlet (BD) metric (Heckerman et al., 1995). The work in Pelikan et al. (2000) is further
extended to handle local structures in the Bayesian network, more specifically decision trees.

Such algorithm has been called the hierarchical BOA (Pelikan and Goldberg, 2001). For a real-
life application of this algorithm see e.g. Pelikan and Goldberg (2003). Table 7.1 summarises
some of the EDAs proposed in the literature according to the model distribution used.

7.2.4 Learning an EDA Search Distribution

Here we want to learn a distribution g(x) E Q that is as close as possible to the empirical
distribution p(x). We can achieve this for example by minimising the KL-divergence:

KL(p(x),g(x)) = (log®) (7.3)\ .?(X) / fi(x)
= LF(x")logp(xi')-£p(x")logg(x") (7.4)

U U

= -H(p(x))+H(p(x),g(x)), (7.5)

where H(p(x)) is the entropy of p(x) and H(p(x),g(x)) is the cross-entropy of p(x) and g(x).
Clearly, in order to minimise the above equation we focus on minimising the cross-entropy

term since H(p(x)) is a constant.

By minimising the cross-entropy term (which is equivalent to maximising the log-likelihood)
we have:

£= ~H{p(x),g(x)) = £p(x")logg(x"). (7.6)

Chapter 7. Predictive Search Distributions 92

An iid Distribution

For the iid distribution g(x) = nf=i g(xi), equation (7.6) can be written as:

L = Y/P(,xu)t logg^), (7.7)
U 1=1

with g(xi) being a multinomial distribution: g(x{) = (0-)/^,_ai'(0?)/'J:'_a2'...
where 0/ = p(xl = aj)\ I[xt = aj\ is an indicator function that is 1 when x, = cij and zero

otherwise; |PL\ is the total number of possible states; and £,■ 0/ = 1.
Hence, we have that:

l W
-^ = Lf(x")£ =aj]]°gQJi- (7-8)

u 1=17=1

Maximising equation (7.8) with respect to some parameter 0£ subject to the constraints £;- 0/ =
1 is straightforward (by using Lagrange multipliers). Thus, we obtain:

= ai\ = £f(x")7K = an], (7.9)
u j u

where it is clear that £//[*£ = aj\ = 1 and consequently L„p(x") £;/[x£ = aj\ = 1. Therefore:

0nk = ^P(xu)I[4 = an]. (7.10)
U

This result, known as the maximum likelihood estimator, is intuitive and the particular case
of the empirical distribution p(x) being the uniform distribution yields the estimation of the
parameters of the iid distribution 0" as the number of (selected) solutions in which xk = an over

the total number of (selected) solutions.

However, in order to provide smoother estimates and avoid the zero frequency problem,
i.e. obtaining a zero value for g(x) when the pattern x/t = an does not appear in the data, it is
customary to add pseudocounts an to the number of data-points that have been actually seen.

These pseudocounts can be seen as the (hyper-)parameters of a Dirichlet prior when following
a Bayesian approach.

If we consider a stationary iid distribution g(x) for which the same set of parameters is
used across all the positions of the sequence, i.e. g(x{) = flyi'i (QJ)^x'=a^ for i = 1,... ,L, we
have that the parameters 0" = p(xj = an) for i = 1,..., L can be estimated by using:

en = EaP(x")i:f=i4tf = a„] (711)
LuP(.xu)LliL%lW = aj\

= 7LF(X")£/[< =an\. (7.12)L
u 1=1

As above, this result is intuitive when p(x) is the uniform distribution since such estimator

corresponds to the proportion of times the literal an appears in the selected solutions.

Chapter 7. Predictive Search Distributions 93

A Markov Distribution

For a Markov chain distribution g(x) = g(x\) fl[=2 8(xi\xi-l) we have that

L = X P (x") logSW) +£ P (*") £1<og g (*? |x?_ i), (7.13)

-L -62

with gfo) =nil (6i)/[*1_Cyl and^(jc,-|xr,-!) = nJ5i Ill=i (6/V'*"' ^ °k\ with parameters
0{ = p(x\ = cij) and 0/ = p(x, = ajt|x,-_i = a/). As above, 7[x,- = aj\ is an indicator function that
is 1 when x, = a} and zero otherwise and \7L\ is the total number of possible states. Additionally,
E;0{ = landLt0/* =1.

Maximising equation (7.13) with respect to the parameters 0" and 0™' can be done by
independently maximising L\ with respect to 0" and maximising £2 with respect to Qfn. By
following the same procedure as the one adopted for the iid distribution, the parameters that
maximise L\ are given by:

0? = £p(x")/[x? = an\- n = 1,...\A\. (7.14)
U

Now we want to maximise:

L l-^l \%\
4* = !>(*•)EE E 7[x"_, = aj\I[x" = ak] log 0/*, (7.15)

u i=27=1k=l

ik
with respect to some parameter 0™ subject to the constraints Y.k 0; = 1 • Thus, (by using

Lagrange multipliers) we obtain:

0f!£p(x") ^/[x"_j = am]7[x" = a*] = £p(x")/[x£_t = <am]/[x" = a„], (7.16)
u k »

Rearranging terms and considering that L^/[x" = = 1, we finally obtain:

nmn
= LuP(^W-1 = = an] ? ~' E«P(X")7[4-1 =am\

By considering the particular case of p(x) being the uniform distribution we obtain the intuitive
result that the parameters of the Markov chain distribution 0™ = p(xf = an |x^_i = am) can be
estimated by dividing the number of solutions for which x^_i = am and X(_ = an over the number
of solutions for which X£-\ = am. As on the iid case, one can add pseudocounts to the number
of solutions in which such patterns have been observed.

If we consider a stationary Markov chain for which the same transition probabilities are

used across all the positions of the sequence, i.e. g(x/|x,_i) = n^i'i Y]^^x{Q^k)I^Xi-x=a'^Xi=ak\
we can estimate the parameters Bm" = p(xt = an |x,_i = am) for i = 2,... ,L by using:

Qmn = E.P(X")Lf=2 7[<_i = ClmW! = a»] (? jg)
Zup(x«)Zl2I[xli =<*m]l!£lI\# = ak]

Qmn = LuP^)^ a>nW; = On]
LuP(*U) lf=27[<_i =«m]

Chapter 7. Predictive Search Distributions 94

We note that we estimate 0" using equation (7.14). As above, the estimation of the transition

probabilities, i.e. 9mn, is intuitive as it relies upon counting the number of transitions am —> an

in the selected solutions over the number of times that am appears on the first L — 1 positions.

7.2.5 Improving the Performance of EDAs

While there is some empirical evidence that more complex EDAs outperform simpler EDAs for
some tasks, there are studies reporting no improvements in other situations (see e.g. Johnson
and Shapiro, 2001). Guiding search with more complex distribution families may be justified
in cases where such families provide an exact match to the search problems. (However, the
fact that good solutions may be well explained by some distribution g e Q does not necessarily
mean that such distributions will be easy to find, especially for very large search problems.)
Nevertheless, in practice it is rarely the case that we know exact characterisations of good
distributions, i.e. formally arguing for a specific choice of the search distribution G for a specific
task may in general be very difficult.

In addition to increasing the representational complexity of the distributions, it is important
to address other ways of improving the performance of EDA methods. Shapiro (2003, 2005)

suggests that a fundamental flaw of EDAs is the lack of ergodicity, which biases the search
towards previously seen parts of the search space even when there is no fitness-supported evi¬
dence that this could help to generate better solutions. Intuitively, this happens because EDAs
do not typically compensate for the finite sampling effects. Indeed, if there were no selection,
the sample variance would eventually decay to zero (this is analogous to the drift effects in

population genetics). Without selection, any changes in the resulting candidates throughout the
iterations of the algorithm will essentially be caused by random fluctuations, independently of
the specifics of a search problem. In a real EDA (when selection does take place), there will be
a trade-off between the random drift and the bias towards better solutions, which will depend
on a specific task and optimisation heuristics.

7.3 Predictive Search Distributions: PSD

We have seen how EDAs can be used to solve a single combinatorial optimisation problem.

Imagine now that we have a collection of examples of the same kind of problem, but with
different descriptions T drawn from a space T. In this case if we have solved the optimisa¬
tion problems we will have a set of solutions (7j,xopt(7j)),(72,xopt(r2)),..., (Tm,xop1(Tm))-
Here xopt(7j) could be an approximate solution to the problem rather than the true global opti¬
mum. One idea to apply machine learning to this optimisation problem is to learn the mapping
between T and xopt (T) based on examples. However, this may be a very difficult mapping to

learn; one problem is that small changes to the input T of a combinatorial optimisation problem

Chapter 7. Predictive Search Distributions 95

may lead to very different solutions.
We will take a rather different approach, mapping from a problem description T to a prob¬

ability distribution q{x\T) over good solutions. Our motivation is that it may be very hard to

predict the optimal solution xopl(T) for an instance T, but that it may well be easier to define a

search distribution which gives high probability to xopl(T).
An inspiration for this idea is recent work on EDAs where for a given problem T a search

over solutions is conducted by repeatedly re-estimating a probability distribution over good
solutions (see section 7.2 for more details on EDAs). However, note that EDAs are concerned
with finding an optimal solution xopt(r) for a given problem T, while our goal is to make use

ofwhat has been learned from previous problems in predicting the search distribution for a new
instance.

Our goal of mapping from T to a predictive distribution q(x\T) is actually similar to the
standard probabilistic machine learning set up where the output is a predictive distribution, e.g.
a Bernoulli probability or a univariate Gaussian distribution. However, we note two special

aspects of modelling search distributions:

• The distribution g(x|T) is meant to focus our search. Thus we might well make multiple
draws from it in the hope of finding better solutions.

• The predictive distribution <?(x|r) might be complicated (e.g. it might be a graphical
model); this kind of complexity is not commonly used in standard machine learning
situations, although it does arise, e.g. in conditional random fields (Lafferty et al., 2001).

The use of multiple EDA runs in order to learn a single search distribution across different
optimisation problems is explained in Section 7.3.1. Learning and predictions with PSD are

explained in sections 7.3.2 and 7.3.3 respectively. Finally, a brief discussion on model selection
in PSD is given in section 7.3.4.

7.3.1 From Multiple EDAs to a Single Predictive Distribution

As explained in section 7.2.1, at the end of the EDA run on problem 7]- we have p(°°\x\Ti),
which is the empirical distribution over solutions. Additionally, we have g(ca>(x|7)), which is
the model (output) distribution. We can use either of these distributions in order to learn a

single distribution across a set of optimisation problems 7),..., Tm-

The Need for a Common Representation

The key issue that we now address is how to make predictions on a new problem instance T

given a training set of problems and their corresponding search (or empirical) distributions.
We assume that for any problem description 16 7 we can extract a number of features t

Chapter 7. Predictive Search Distributions 96

that (partially) characterise the problem. Extracting a common representation for different
optimisation problem instances can be a hurdle since there may be a lot of variation within
an optimisation problem class. However, for tasks such as the compiler optimisation problem
these features can appear naturally (e.g. code features of a program). Additionally, there is
some evidence that even for common and challenging problems in optimisation, it is possible
to extract a set of meaningful features across different instances, for example by computing
statistics of different characteristics of the problems, see e.g. Zhang and Dietterich (1995).

7.3.2 Learning PSD

In PSD we seek to learn a predictive distribution g(x|t, 0) that outputs a distribution over solu¬
tions x given an input t and parameters 0. We give two approaches to learning the predictive
distribution based on (a) memory-based methods and (b) maximisation of the conditional like¬
lihood.

Memory-Based Methods

A possible approach to learning PSD is to use memory-based methods such as k nearest-

neighbours (k-NN). For example, using 1-NN we can set the predictive search distribution
to be the EDA distribution of the training problem whose features are the closest to the new

problem. For k > 1 we could use a mixture of distributions from the k closest neighbours. This
method may be particularly useful if the number of training problems M is small. In our exper¬

iments on the compiler optimisation problem, given the limited amount of training programs

in the SUIF data set, we have learned PSD using a 1-NN approach (see section 7.5.5 for more

details).

Maximisation of the Conditional Likelihood

The conditional likelihood of the parameters 0 given the data can be expressed as:

M

Ac| r = ££pW(x|7})log4(x|t;-,0), (7.20)
i= 1 x

where p(°°)(x|7}) is the empirical distribution over solutions output at the end of the EDA run

on problem 7j. An alternative objective function would be
M

(^\Ti)logq(x\ti,Q). (7.21)
i= 1 x

This is similar to (7.20) but uses the output EDA distribution (x|7j) for each problem rather
than the empirical distribution. However, in cases where the family of distributions Q in the
EDA has hidden variables (e.g. a HMM) then (7.20) should be easy to evaluate while (7.21)

may not be.

Chapter 7. Predictive Search Distributions 97

In practice we can consider a number of parametric and/or structural constraints on the

family of predictive distributions g(x|t,0). Since in our case the distribution is defined over

strings, choices for g(x|t, 0) include logistic regression and conditional random field models
(Lafferty et al., 2001).

7.3.3 Predictions with PSD

Having learnt the distribution over good solutions g(x|t,0) across different optimisation prob¬
lems, making predictions on a new problem T is straightforward as we will be using <?(x|t,0)
to guide search on this problem. In other words, we can make multiple draws from this dis¬
tribution with the hope of finding better solutions. Additionally, note that as we see more data

points on the new problem T we can gradually update our model towards these solutions in an

EDA-based fashion.

It is also worth remarking that the predictive search distribution methodology may not al¬

ways lead to speed-ups, and could in principle degrade performance relative to uniform search.
This would be the case if the features extracted did not provide useful information about the
search distribution, or if g(x\T) varies very rapidly with changes in the input T so that a very
large amount of training data would be needed to characterise the problem class. However, for
the compiler optimisation problems studied, we have found that the technique leads to signifi¬
cant improvements over uniform search. See section 7.5 for more details.

7.3.4 Choosing a Family of PSD: Model Selection

Learning predictive search distributions can be seen as a standard machine learning problem
where we aim to learn a distribution over distributions on good solutions to different instances
of an optimisation task. Therefore, choosing a family of PSD to which #(x|t,0) should be con¬

strained is a model selection problem. Several approaches have been proposed in the machine

learning and statistics literatures for model selection or model comparison. Given two models

5Wo and 9/[\, we want to select one model on the basis of some previously seen data D. Fur¬

thermore, we wish our selected model to perform well not only on the training data T> but also
on data that we have not seen before.

One possible solution to the model selection problem is to use cross-validation. However,
this may be a very time-consuming activity as we may require a lot of runs (e.g. in leave-one-
out cross-validation or in k-fold cross-validation) and our models can be quite expensive to

evaluate. Other frequentist approaches such as the AIC criterion (Akaike, 1974), the Bayesian
information criterion (BIC, Schwarz, 1978) and the likelihood ratio test (see e.g. Lindgren,

1993, section 10.2) can be used. These approaches select a model based upon the maximisation
of the conditional likelihood and they may penalise (e.g. AIC or BIC) overly complex models .

Chapter 7. Predictive Search Distributions 98

Alternatively, one can adopt a fully Bayesian approach such as the Bayes factors (Jeffreys,
1966; Kass and Raftery, 1995), in which one marginalises out (or average over) the parameters
of the model instead of using their maximum likelihood estimates as in the AIC or BIC crite¬
ria. This can be seen as a way of avoiding overfitting. A possible drawback of the Bayesian
approach is that one often needs to compute intractable integrals and therefore numerical ap¬

proximations are required. Additionally, a key issue in Bayesian model selection is the choice
of the prior distribution over the parameters As the marginal likelihood (or ev¬

idence) is sensitive to such prior, one should be careful with its selection in order to avoid

misleading results.
The reader is referred to e.g. Bishop (2006, section 3.4) for an overview of model selection

criteria in machine learning.

7.4 Related Work

We are not aware of much previous work in this area. One common way to help speed up

search problems is through memoization, i.e. remembering the answers to previous problems

(or partial problems) so as to eliminate search if they are encountered again. The proposed
method goes beyond this in that it affords inductive generalisation to new search problems
rather than simply storing earlier results.

There has also been a lot of work on learning search-control knowledge, see e.g. Langley

(1996, chapter 10) for an overview. This work focuses on planning in sequential decision

problems (SDPs), i.e. the task of reaching a goal state from a start state; this general area is
addressed by reinforcement learning. There has also been work on speeding up search using

explanation-based learning (EBL) using solution traces and a domain theory. However, the
search problems we are addressing are not SDPs and so this work does not apply.

One possible alternative approach is to learn a regression function / that approximates

f(T,x) from data samples over the T x X input space. Such an approach will be described
in chapter 8 when using Gaussian process predictors. However, if the space of solutions X
is very large then even if this proxy function can be learned accurately it would be very time

consuming to find the string x that optimises f(T,x); thus in many situation we may prefer an
approach that directly outputs a distribution of "good" solutions.

Over the past few years, there has been a lot of interest in the topic of inductive transfer,
see e.g. Thrun and O'Sullivan (1996) and Caruana (1997) as some of the earlier references. In
these (and later) papers a common set up is that there are multiple, related supervised learning

problems and that the goal is to avoid tabula rasa learning for a new problem by extracting
information from the problems seen before. Thus the learning is at a higher level, e.g. by using
the previously seen problems to define priors on parameters for the new problem. Our sugges-

Chapter 7. Predictive Search Distributions 99

tion for learning search distributions is actually more like the standard probabilistic machine

learning set up at the lower level, where the prediction is a probability distribution.
In a general framework for dealing with combinatorial optimisation problems, Horvitz et al.

(3001) propose a Bayesian approach to tackling hard combinatorial optimization problems.
They employ Bayesian learning procedures to build probabilistic models that capture the de¬
pendencies between the observations in a given problem and their probability distributions
over run time. In other words, they build models that can predict the run time of problem
solvers. More specifically, features that can capture patterns and dynamics of the state of prob¬
lem solvers are formulated. These features are used in a Bayesian-structure learning framework
in order to infer predictive models able to forecast whether the run time to reach a solution on

a problem instance will be "short" or "long". This labelling is performed with respect to the
median of all the training run times.

Based upon this latter work, Kautz et al. (2002) formulate Dynamic Restart Policies as a

solution for speeding-up backtracking search. They tackle the problem of deciding whether
a search algorithm should stop a particular run and restart the execution after some randomi¬
sation. They show the benefits of their approach on a set of hard combinatorial optimisation

problems. In general, it seems appealing to apply such an idea to combinatorial optimisation

problems. However, for applications where the evaluation function is very costly to execute

such as the compiler optimisation problem, directly modelling distributions over good solu¬
tions seems to be a more practical way of speeding up search.

Zhang and Dietterich (1995) apply reinforcement learning to the Job-shop Scheduling

problem. In this work, a value function is learnt over a set of problems and it is then used
in a "one-step look ahead search procedure" to find solutions on new scheduling problems.
This is closer in spirit to our idea of achieving transference in search. However, in general, re¬
inforcement learning is concerned with maximising the expected reward on the long run. This
is not the case for many optimisation problems such as the compiler optimisation problem,
where given a search path on states (or problem description) which is obtained by a sequential

application of actions, one aims at finding the maximum possible value along such path.

7.5 Compiler Optimisation with PSD

This section describes the application of predictive search distributions (PSD) to the problem
of compiler optimisation and presents the experiments that were carried out with the goal of

improving iterative compiler optimisation. The results presented in this section are obtained on

the SUIF data set. See chapter 5 for details on the experimental set up under which this data
set has been generated.

Sections 7.5.1 to 7.5.5 explain how the problem of compiler optimisation is addressed

Chapter 7. Predictive Search Distributions 100

with predictive search distributions and provide details of the evaluation function, distributions,
features and evaluation set-up used. Sections 7.5.6 and 7.5.7 give the results for the small space
and the large space of the SUIF data set respectively, when evaluating the PSD technique with
respect to uniform search. Section 7.5.8 presents the results for other baselines and shows that
the PSD method outperforms these baselines. Finally, Section 7.5.9 analyses the distributions
learned for each program and section 7.5.10 shows the performance of the PSD technique for
different values of training samples.

7.5.1 Formulation of the Problem

As described in section 2.4, Compiler optimisation deals with the problem of making a com¬

piler produce better code, i.e. code that runs fast. Numerous program transformations have
been proposed in the literature and implemented in commercial and research compilers for this

purpose. However, it is difficult to know when or how a compiler should apply these trans¬

formations to a specific program. Additionally, the effect of interactions between program

transformations makes the problem of producing optimal code even harder.
An interesting scenario in compiler optimisation is iterative compilation, where one can

afford several program executions in order to determine a set of program transformations that

significantly increase performance. This task can be formulated as a combinatorial optimisation

problem where a set of transformations can be combined into sequences of arbitrary length.
This approach of searching the space of transformation sequences has been shown to provide
excellent performance at the cost of a large number of evaluations of a program (Franke et al.,

2005).

Considering that similar programs may have similar behaviour under the application of
several code transformations, we propose Predictive Search Distributions for improving iter¬
ative optimisation. Making explicit the notation used throughout this chapter, x represents a

sequence of code transformations; t is a set of features extracted from a program; and <?(x|t) is
the predictive distribution over good transformation sequences given some program features.
Thus, our goal is to learn g(x|t) based on distributions over good solutions on training pro¬

grams and use the predictive distribution to guide search on a new program that has
not been seen before.

7.5.2 Evaluation Function

In order to evaluate the quality of a transformation sequence we use the speed-up (see section
2.7) as a measure of performance. As shown in Table 6.1, significant speed-ups have been
obtained on average for both platforms and most benchmarks can be improved with the experi¬
ments. These results are important as they show that good improvements can be obtained with
iterative compilation and that the data generated presents opportunities for learning. Thus, it

Chapter 7. Predictive Search Distributions 101

makes sense to use techniques such as Predictive Search Distributions in order to focus search
over good subspaces of transformation sequences.

7.5.3 Distributions Used

Two classes of distributions have been fitted to the set of good transformation sequences on

each program. For the results presented in this section we have defined a good transforma¬
tion sequence as a sequence that has an improvement in performance of at least 95% of the
maximum improvement achieved.

The first distribution class that has been used is an iid distribution, where the transforma¬

tions within a sequence are considered independent, so that

L

g(xi,x2,...,xL) = (7-22>
;=i

where L is the length of the sequence. This iid model neglects the effect of interactions among

transformations, which can be very restrictive as some transformations enable the applicability
of others, and there are transformations that yield good performance only when others have
been previously applied.

Bearing in mind that more complex models can involve a much greater number of param¬
eters, a stationary Markov chain has been used as the second model to focus search. In this
model, the probability of a transformation being applied in a specific position of a sequence

depends on the transformation that has been previously applied, so that

L

g(xi,x2,...,xL) =g(xi) J'Jgfol*/-!). (7.23)
i=2

Note that searching with this Markov distribution differs from the MIMIC algorithm (de Bonet
et ah, 1997), which uses a non-stationary Markov chain.

Both distributions have been fitted by maximum likelihood estimation when the param¬

eters are shared across the different positions of the sequence (i.e. we have used stationary
distributions) as explained in section 7.2.4 and as shown in equation (7.12) for the iid distribu¬
tion and equations (7.14) and (7.19) for the Markov distribution. Additionally, we have used

pseudocounts of 0.0012.

7.5.4 Program Features

As in any other machine learning task, a significant difficulty for applying PSD to the compiler

optimisation problem is to extract relevant features for learning. For this purpose we have
relied on the knowledge of compiler experts who have identified thirty-four program features

2In our experiments we have noticed that the results presented for the small space are insensitive to pseudocounts
between 10 and 1.

Chapter 7. Predictive Search Distributions 102

Program Features

IntegerBinary

All loop indices are constants?

Array is accessed in a non-linear manner?
Both int and floats used in loop?

Loop strides on leading array dimensions only?
For loop has constant lower bound?
For loop has constant stride?
For loop has constant upper bound?
For loop has unit stride?
For loop is nested?
For loop is perfectly nested?
For loop is simple?

Loop contains an if statement in for-construct?

Loop contains an if-construct?

Loop has branches?

Loop has calls?

Loop has regular control flow?

Loop iterator is an array index?

Loop nest depth

Loop step within for loop
No. of other instructions in loop
No. of store instructions in loop
No. of array instructions in loop
No. of branch instructions in loop
No. of call instructions in loop
No. of array references within loop
No. of compare instructions in loop
No. of divide instructions in loop
No. of float variables in loop
No. of generic instructions in loop
No. of instructions in loop
No. of integer variables in loop
No. of iterations in for loop
No. of load instructions in loop
No. of memory copy instructions in loop

Table 7.2: Program features used on the application of Predictive Search Distributions to the

compiler optimisation problem. For each program, binary features are counted (added) and

integer features are averaged across loops.

believed to describe the characteristics of a program well and to be relevant for our specific
task. The number of instructions in loops and the number of array references in loops are

examples of such features. A complete list of the features is shown in Table 7.2. These features
have been aggregated (added or averaged) across loops.

7.5.5 Learning Methods and Evaluation Set Up

Given the high-dimensional search space and the limited amount of training data (only twelve

benchmarks), it seems rather difficult to learn search distributions for our set of programs.

Therefore, we have reduced the dimensionality of the input to five features by using PCA

(while retaining 99% of the data variance) and tested our approach with 1-nearest neighbour

predictor in a Leave-One-Out Cross-Validation (LOOCV) procedure. Thus, we have predicted
the search distribution for a program by simply using the distribution of its nearest neighbour.

Chapter 7. Predictive Search Distributions 103

Figure 7.2: Survival function of performance speed-ups for uniform distribution and Markov-
oracle distribution for the benchmark adpcm on the Tl architecture for the small space of the
SUIF data set of 145 sequences.

7.5.6 Evaluation on the Small Space of the SUIF Data Set

Before presenting the results for the predictive search distributions we want to evaluate the

potential of the method by fitting the IID and the Markov models to the true distribution of
"good" solutions. Let us call these distributions the HD-oracle and the Markov-oracle. They
are oracles in the sense that they provide an upper bound on our expectations of speeding up

search by our learned models. Therefore, our first experiment aims to show that these oracles
do improve search. Clearly, if this is not the case, it is not worth expending effort trying to

learn these distributions.

Let V(y) = 1 — F(y) be the survival function (or complementary cumulative distribution
function) of performance speed-ups y achieved with a given search distribution, where F(y) is
the cumulative distribution function of speed-ups y. By definition, V(y) is the probability of a
speed-up being greater than y, i.e. P(Y > y). Therefore, greater values of V(y) for near-optimal
speed-ups translate into higher probabilities of finding good transformation sequences. Indeed,
the ideal case would occur if all the density mass was concentrated on the maximum speed-up

yopt = maxy€<y(y) so V (y) would be one for all y < yopt but zero for y = yopt.
Given a set of target values (e.g. speed-ups) {y'}^! corresponding to the sequences

each associated with a probability of being sampled p' (with p' = 1), the cumulative distri¬
bution function F(y) can be computed by sorting the target values {y'}^! in ascending order
and calculating the cumulative sum of the probabilities corresponding to such order. In other

Chapter 7. Predictive Search Distributions 104

words, for each (sorted) speed-up y' one has a corresponding value F(y') = Y!j=i PJ■ For a gen¬
eral search distribution g(x) we use p' = g(x')/^=1 g(x-/). For the uniform search distribution
g(x') = 1 /N. For the iid and Markov distributions g(x') is computed by using equations (7.22)
and (7.23) respectively.

Figure 7.2 shows an example of a survival function for the speed-ups y achieved by uniform
search, and search guided by the Markov-oracle distribution. This has been obtained for the
benchmark adpcm on the TI board. We can see that the Markov-oracle V (y) outperforms the
uniform V(y) for all speed-ups greater than one. This means that if we use the Markov-oracle
distribution to guide search we will have a greater chance of obtaining a good transformation
sequence, and that the expected number of samples needed to achieve good performance will be
reduced. This behaviour was consistent for all the benchmarks using both oracle distributions
on both architectures.

The Search Improvement Factor

It is possible to compute the expected number of samples E[n] needed to reach a good data-
point (first success) when assuming random sampling. If we define a good data-point in the

performance space as the one for which the speed-up is greater than certain value y+, the ex¬

pected number of samples needed to achieve this performance is E[n} = \/V{y+). In order to
evaluate the benefits of using a distribution for guiding search let us define the Search Improve¬
ment Factor as:

SIF = ^M (7.24)Ex[n\
where E<u[n] is the expected number of samples needed to achieve good performance when

using the uniform distribution and E^[n] is the expected number of samples needed to achieve
good performance when using algorithm Ft. In the PSD framework such algorithm is imple¬
mented by sampling the optimisation space using a specific search distribution (such as the

IID-oracle). Thus, we will prefer SIF values greater than one as they indicate that our method

speeds up (uniform) search.

Oracle Distributions

Table 7.3 shows the expected number of samples E<u[n\ needed to achieve good performance
for uniform search and the search improvement factors SIFs for the oracle distributions, where
a good solution has been defined to be a sequence that yields at least 95% of the maximum

performance achieved for each benchmark.
The first column corresponds to the benchmarks used and the columns / andM correspond

to iid and Markov distributions respectively. Note that those benchmarks for which no speed-up
was obtained during the exhaustive experiments are marked with indicating that their spaces

Chapter 7. Predictive Search Distributions 105

TI AMD

SIF SIF

Program E<zi[n] I M E<u[n] I M

FFT 11.3 2.7 5.4 1.4 1.1 1.2

FIR 20.6 12.2 14.2 OO
|

OO 3.6 5.1

IIR 1.8 1.1 1.2 17.7 7.2 10.6

LATNRM - - - 21.8 7.1 11.7

LMSFIR - - - 15.2 6.9 9.5

MULT - - - 82.6 17.5 39.8

ADPCM 66.3 3.6 13.8 - - -

COMPRESS 13.8 7.2 9.2 55.9 12.0 25.9

EDGE 96.4 18.1 45.4 29760 457 26720

HISTOGRAM - - - 9.5 6.3 7.0

LPC 83.6 15.7 36.7 13.6 3.6 6.2

SPECTRAL 2.6 1.5 1.8 14.3 3.3 5.2

Average 37.0 5.0 OOOO 2727 8.1 17.4

Table 7.3: Expected number of samples for uniform distribution and search improvement factors
for oracle distributions to obtain 95% of maximum performance on the small space of the SUIF
data set.

are not worth searching. It can be seen that both oracle distributions consistently improved
search on both architectures. Furthermore, although in some easy-to-search spaces such as

iir and spectral for the TI or fft for the AMD only marginal benefits are obtained, in difficult

spaces such as adpcm, edge and Ipc for the TI or mult, compress and edge for the AMD, the
oracles speeded up search by an order of magnitude or more3.

It is also possible to conclude that modelling interactions by using a Markov chain distri¬
bution does lead to greater improvements compared to an iid distribution. On average4, the iid
distribution and the Markov model improved search by factors of 5.0 and 8.8 for the TI and 8.1
and 17.4 for the AMD respectively.

3As pointed out in section 6.3.1, The benchmark edge is a needle-in-a-haystack problem (on the AMD) and the
oracle distributions dramatically improved search.

4We have used the arithmetic mean for computing the average of E<u[n] and the geometric mean for averaging
SIFs.

Chapter 7. Predictive Search Distributions 106

TI AMD

SIF SIF

Program Eu[n] I M Eu[n] I M

FFT 11.3 0.8 0.8 1.4 1.1 1.1

FIR 20.6 6.5 7.8 OO00 1.4 1.5

IIR 1.8 1.0 1.0 17.7 6.3 6.9

LATNRM - - - 21.8 6.3 6.8

LMSFIR - - - 15.2 3.3 4.4

MULT - - - 82.6 12.7 24.2

ADPCM 66.3 1.4 1.4 - - -

COMPRESS 13.8 6.8 7.9 55.9 13.4 27.4

EDGE 96.4 2.2 2.3 29760 6.8 0.2

HISTOGRAM - - - 9.5 6.3 7.0

LPC 83.6 2.2 2.3 13.6 3.3 4.7

SPECTRAL 2.6 0.9 0.9 14.3 3.3 4.8

Average 37.0 2.0 2.1 2727 4.5 4.1

Table 7.4: Expected number of samples for uniform distribution and search improvement factors
for predictive distributions to obtain 95% of maximum performance on the small space of the
SUIF data set.

Predictive Distributions

Having shown that using oracle distributions leads to an improvement in the search, the next

step is to evaluate the predictive distributions when using 1 -nearest neighbour. These results
are shown in Table 7.4, where (as before) the benchmarks marked with indicate that their

spaces are uninteresting to search.
Not surprisingly, the search improvement factors of the predictive distributions are upper-

bounded by the search improvement factors of the oracle distributions (with the exception
of compress on the AMD). However, for most benchmarks the predictive distributions did

improve search by focusing on regions of the space where good performance was obtained.
Indeed, only for two benchmarks on the TI board (fft and spectral) and one benchmark on

the AMD (edge when using the Markov distribution) did the predictive distributions harm

performance. This latter case suggests overfitting, as the iid model speeded up search and has
fewer parameters than the Markov model. It also confirms that transfer of knowledge to a

needle-in-a-haystack problem can be very difficult, especially when having a small number of

Chapter 7. Predictive Search Distributions 107

training points. However, one can alleviate this effect by mixing the fitted distributions with
the uniform distribution using weight factors of a and (1 — a) respectively5.

Best Search Improvement Factor: A Performance Upper Bound

It is interesting to analyse the performance of the predictive distributions compared to the best
search improvement factor that can be achieved with the set of benchmarks available. Given a

benchmark, this can be computed by finding the distribution on good solutions (on the rest of
the benchmarks) that yields the maximum search improvement factor. Clearly, this is an upper

bound on the SIF that can be achieved with a predictive distribution when using 1-nearest

neighbour.
Table 7.5 shows the performance of the predictive distributions as a fraction of the best

SIF. On the TI, We see that both predictive distributions achieve the best possible SIF on four
benchmarks, namely fir, adpcm, compress and edge. On average, on the TI, the predictive
distributions obtain 86% and 85% of the best possible SIF. On the AMD, we see that the iid

predictive distribution achieves the best SIF or almost the best SIF on six benchmarks (iir,

Imsfir, mult, compress, edge and spectral). The Markov distribution on the AMD, achieves the
best SIF or almost the best SIF on Imsfir, mult, compress and spectral. However, the Markov
distribution (on the AMD) obtains very suboptimal solutions for benchmarks fir and edge. On

average, on the AMD, the predictive distributions obtain 86% and 62% of the best possible SIF.

7.5.7 Evaluation on the Large Space of the SUIF Data Set

In this section we aim to evaluate the performance of the PSD method on the large space of 9020
transformation sequences (see section 5.3.1 for details). In contrast with the small space, we do
not have exhaustive data for the large space and thus we cannot compute the expected number
of samples to achieve good performance Eu[n] in order to evaluate the benefits of our approach.
Therefore, we have considered a different measure of comparison inspired by the concept of
the area under the ROC (receiver operating characteristic) curve, which is commonly used in
machine learning for the evaluation of classification methods.

The Area Under the Performance Curve (AUC)

A performance curve describes the best speed-up achieved so far by a search algorithm as a

function of the number of iterations. Figure 7.3 shows an example of performance curves for
the benchmark mult on the AMD architecture. Note that we have used the speed-up minus one

5Using a = 0.8 the SIF for edge on the AMD with the Markov model increased to 0.7 while the average SIF for
all the other benchmarks decreased from 5.7 to 4.9.

Chapter 7. Predictive Search Distributions 108

TI AMD

Program I m I M

FFT 0.56 0.55 0.83 0.77

FIR 1.00 1.00 0.40 0.32

IIR 0.76 0.75 0.97 0.77

LATNRM - - 0.74 0.74

LMSFIR - - 0.96 0.98

MULT - - 1.00 1.00

ADPCM 1.00 1.00 - -

COMPRESS 1.00 1.00 1.00 1.00

EDGE 1.00 1.00 1.00 0.05

HISTOGRAM - - 0.93 0.93

LPC 0.91 0.95 0.88 0.81

SPECTRAL 0.80 0.70 0.97 1.00

Average 0.86 0.85 0.86 0.62

Table 7.5: The performance of the predictive distributions as a fraction of the best search im¬

provement factor (SIF/SIFbest) on the small space of the SUIF data set.

on the y-axis (so that the baseline performance corresponds to zero)6 and a log-scale for the
x-axis. It is clear that the area under the performance curve (AUC) will reward those methods
that reach better performance and those that achieve good speed-ups in fewer iterations.

The AUCs have been computed for each benchmark when searching the optimisation space

using uniform search, the iid predictive distribution and the Markov predictive distribution.
Such AUC values have been averaged throughout 10 replications.

The AUCs for the TI and AMD are shown in Figure 7.4, where the computations have
been done using performance curves for each benchmark like the one illustrated in Figure 7.3
after fifty iterations. Note that the results are shown only for those benchmarks for which an

improvement was obtained with these experiments.
On the TI board, the iid distribution provides the best performance for most benchmarks,

with a dramatic improvement achieved for fft. The Markov distribution improves performance
over uniform in some cases but decreases it in others. On the AMD, both predictive distribu¬
tions improve performance on most benchmarks; of the 10, the best AUC performance is given

by iid on 5 (fft, compress, mult, edge and fir), and by Markov on the other 5 (latnrm, Imsfir, iir,

6By running the baseline program first, the minimum value of the best speed-up (so far) minus one is at least
zero.

Chapter 7. Predictive Search Distributions 109

0.9

/

/
V) 0.4

0.3

0.2 Uniform
— IID-learned
— Markov-learned

0.1

0
5 10

Iterations

50

Figure 7.3: Performance curves for the benchmark mult on the AMD architecture on the large

space of the SUIF data set of 9020 transformation sequences when using uniform search, search

guided by the iid distribution and search guided by the Markov distribution.

spectral and histogram).
With these empirical results we conclude that having a predictive distribution generally

improved search on the large space. A detailed analysis of the results shows that the improve¬
ments achieved by the predictive distribution after five iterations are at least as good as the ones

obtained by uniform search after fifty iterations, which translates into an speed-up of iterative

optimisation of an order of magnitude. For the small space the Markov distribution provided
the best performance for most benchmarks. On the large space the choice between iid and
Markov was less clear cut, but both predictive distributions give improvements over uniform
search.

7.5.8 Comparison to Other Baselines

It has been shown so far that Predictive Search Distributions provide significant improvements
in the compiler optimisation problems studied over iterative compilation (i.e. over search when

using the uniform distribution). Nonetheless, comparisons to other baselines are necessary

in order to demonstrate that this approach represents a significant advantage with respect to

several simple heuristics that can be used for optimisation. In this section we provide the
results of some possible heuristics on the compiler optimisation problems studied and show
that such heuristics are outperformed by the PSD technique. Here we will focus on the analysis
of the small space of the SUIF data set given the existence of exhaustive data for this space.

Chapter 7. Predictive Search Distributions 110

Figure 7.4: Areas under the performance curve (AUC) for Tl (top) and AMD (bottom) on the large

space of the SUIF data set of 9020 sequences. The error bars denote one standard deviation of
the mean. The x symbol for fft and spectral on AMD means that uniform search did not provide

any improvement in performance for the number of iterations considered. Results shown only
for those benchmarks on which some improvement can be achieved.

Average Distribution

Predictive search distributions allows inductive generalisation to new optimisation problems by

learning distributions on good solutions on previously (related) solved problems. Such gener¬

alisation relies on the assumption that there is a set of common features across these problems
and that these features are informative about regions of the space where good solutions can be
found. One possible way of empirically assessing the informativeness of the features on the

compiler optimisation problem is to predict (on a new benchmark) the average distribution of
the training data, which ignores the knowledge given by the code features. This distribution is
obtained by uniformly mixing the distributions on good solutions of the training benchmarks.
If the average distribution yields improvements that are similar to or greater than the ones ob-

Chapter 7. Predictive Search Distributions 111

TI AMD

SIF SIF

Program E«[n] I M E<zi[n] I M

FFT 11.3 0.8 0.9 1.4 1.1 1.2

FIR 20.6 1.2 1.3 OO OO 0.9 1.1

IIR 1.8 1.0 1.0 17.7 3.1 3.9

LATNRM - - - 21.8 3.5 4.1

LMSFIR - - - 15.2 1.5 1.5

MULT - - - 82.6 3.8 3.8

ADPCM 66.3 0.7 0.7 - - -

COMPRESS 13.8 1.2 1.3 55.9 3.7 3.4

EDGE 96.4 1.1 1.0 29760.0 2.4 2.4

HISTOGRAM - - - 9.5 3.3 3.7

LPC 83.6 1.1 1.0 13.6 2.8 3.2

SPECTRAL 2.6 0.8 0.9 14.3 2.7 3.2

Average 37.0 1.0 1.0 2727.3 2.4 2.6

Table 7.6: Search improvement factors achieved on the small space of the SUIF data set when

using the average training distributions.

tained with PSD, one can conclude that perhaps there is a set of common transformations that
are beneficial for all or most benchmarks, which would overshadow the predictive power of the
code features used.

Table 7.6 shows the search improvement factors when making predictions with the average

training distribution. We see that using this distribution does not bring any improvement on

average over uniform search on the TI architecture. Additionally, although the average distri¬
bution outperforms uniform search on the AMD architecture, we see that such speed-ups are

significantly lower than the ones achieved with PSD (see Table 7.4). Indeed, the PSD technique

outperforms the average distribution on most benchmarks on both architectures.

Best Training Distribution

In addition to comparing against a simple average distribution it is also possible to ascertain the
best distribution on the training data. This can be found by selecting the distribution on good
solutions of the training benchmark that achieves the maximum geometric mean of the search

improvement factors (SIFs) on the rest of training benchmarks. In other words, if there are M

training benchmarks, the best training distribution is the one that achieves the best average SIF

Chapter 7. Predictive Search Distributions 112

TI AMD

SIF SIF

Program E<y[n] I M Eii[n] I M

FFT 11.3 0.8 0.7 1.4 1.2 1.2

FIR 20.6 1.8 1.9 8.8 1.3 2.3

11R 1.8 0.9 1.1 17.7 1.5 4.5

LATNRM - - - 21.8 2.8 4.3

LMSFIR - - - 15.2 2.8 4.4

MULT - - - 82.6 6.7 2.1

ADPCM 66.3 0.7 1.0 - - -

COMPRESS 13.8 1.6 2.0 55.9 12.9 1.8

EDGE 96.4 0.4 0.0 29760.0 6.8 3.2

HISTOGRAM - - - 9.5 3.7 3.5

LPC 83.6 1.3 0.0 13.6 2.4 4.7

SPECTRAL 2.6 0.9 0.0 14.3 3.4 4.8

Average 37.0 1.0 0.0 2727.3 3.2 3.1

Table 7.7: Search improvement factors achieved on the small space of the SUIF data set when

using the best training distributions.

on theM — 1 training programs. As before, if similar (or better) improvements are obtained with
this approach, the informativeness of the features used for predictions would be questioned.

Table 7.7 shows the SIFs obtained when using the best training distribution. We see that
the best training distribution not only does not outperform uniform search on the TI architec¬
ture when using the iid distribution but also considerably harms performance when using the
Markov distribution. Note that SIFs with value zero are only a numerical approximation and

they indicate that such factors are very small. On the AMD, as in the case of the average distri¬
bution, the best training distribution improves over uniform search but such improvements are

lower than the ones achieved with PSD.

Best Sequences of Nearest Neighbour

In this method, given a new program one predicts the best performing sequences of its nearest

neighbour. Unlike the two previous baseline heuristics where the features were not used, here
the features are used to compute a program's nearest neighbour. However, rather than using the

predictive distribution one simply predicts the best transformation sequences as given by the
full table of speed-ups of the program's nearest neighbour.

Chapter 7. Predictive Search Distributions 113

SIFTable

Program TI AMD

fft 0.03 1.39

fir 0.01 0.00

iir 1.82 0.05

latnrm - 10.89

lmsfir - 15.24

mult - 0.20

adpcm 0.24 -

compress 13.8 3.73

edge 0.00 1.64

histogram - 9.54

lpc 0.00 13.56

spectral 2.59 14.26

Average 0.13 1.58

Table 7.8: Search improvement factors achieved on the small space of the SUIF data set when

using the full table of speed-ups of each program's nearest neighbour.

Clearly, this is a particular instance of the PSD technique using a sum of delta functions
as predictive distributions. However, it is interesting to analyse if having proper distributions
over good solutions instead of recording the best transformation sequences does yield better

improvements.
In order to compute the search improvement factors obtained with this heuristic, it is nec¬

essary to calculate the expected number of samples to achieve good performance (£"[«]) when
using the full table of speed-ups of the program's nearest neighbour. This can be computed
as follows. The complete set of speed-ups of the program's nearest neighbour are sorted in

descending order. Each of the corresponding sequences is then evaluated on the new program

according to such order until 95% of the maximum speed-up is achieved.
Table 7.8 shows the search improvement factors obtained with this method. By comparing

these results with the ones on Table 7.4 we see that the PSD method outperforms this baseline
heuristic on average on both architectures. Indeed, although this simple method outperforms
PSD on some benchmarks such as compress on the TI or spectral on the AMD, in general,

greater benefits are obtained by building a smooth distribution over good solutions instead of

simply using the stored solutions to previously solved problems. Furthermore, it can be seen

on Table 7.8 that the "full-table" method significantly harms performance over uniform search

Chapter 7. Predictive Search Distributions 114

on the TI architecture. Additionally, this simple technique requires the storage of a large (if not
all) number of solutions on previous problems, which is not the case for the PSD framework
(see section 7.5.10 for more details).

7.5.9 Analysis of Learned Distributions

Given the effectiveness of the PSD technique, it is interesting to understand the distributions
that have been fitted to each benchmark (i.e. the oracle distributions) and also the distributions
that have been learnt and used for searching the optimisation space of a "new" benchmark (i.e.
the predictive distribution).

Figure 7.5 shows the iid distributions on the TI (top) and on the AMD (bottom) architec¬
tures for the small space of the SUIF data set. By looking at the LHS of Figure 7.5 we notice
that (as described in chapter 6), several transformations have a significant impact on the per¬

formance of each benchmark and they vary across the different programs. In particular, we
can see that unrolling, flattening, normalisation, common subexpression elimination, if hoist¬

ing and move loop-invariant conditionals are very important transformations when modelling

good transformations sequences for this set of benchmarks on the TI architecture. Similarly,
we can highlight unrolling, flattening, cse, hoisting of loop invariants and move loop invariant
conditionals on the AMD architecture.

When comparing the LHS with the RHS of Figure 7.5, one particular case worth men¬

tioning is the one obtained by analysing the rows corresponding to the benchmarks fir and

compress on the TI, which seem to be very close in the parameter space of the iid distribution.
When predicting on each of these benchmarks, they have been found to be each other's nearest

neighbour. Moreover, this correspondence in similarity in code-feature space to similarity in

parameter-space of the iid search distribution led to the maximum improvements obtained on

the TI architecture when using the iid search distribution as seen in Table 7.4. However, this is
less clear cut on the AMD architecture as there is less variability on the parameters of the iid
distribution across benchmarks.

7.5.10 Effect of the Number of Training Samples

The results for the small space of the SUIF data set presented so far have been obtained when
the training (model) distributions g(x) have been learnt on each benchmark using the complete
data. However, even for the small space, it would be impractical for the PSD technique to

rely upon exhaustive data. Therefore, it is necessary to investigate the effect of the number of

training samples on the effectiveness of the PSD technique.
The search improvement factors achieved with the predictive distributions on each bench¬

mark as a function of different values of training samples N are shown on Figures 7.6 and 7.7
for the TI and on Figures 7.8 and 7.9 for the AMD. Note the differences in scales of the SIFs

Chapter 7. Predictive Search Distributions 115

Oracle Predictive

FFT □ □ □ □ □□ n n n D Q[I]D FFT □ □ □ □ □ □ □ □ □ □ □ □ □ □
FIR □ □ n□□ □□□□□ FIR □□□□□□ □ □ □ □ □
IIR □ □ □□□□□□□□□□□ IIR □ □ □ □ □ □ □ □ □ □ □ □ □
LAT-□ □□□□□□□□□□ LAT □ □ □ □ □ □ □ □ □ □ □ □
LMS□ □□□□□□□□□□ LMS □ □ □ □ □ □ □ □ □□□
MUL -□ □ □ □ □□□□□□□□□□ MUL □ □ □□□□□□ □ □ □□□
ADP □ □□□□□□□□□□ ADPD □ □ □ □ □ □ □ □□□
COM □ □ □ □□□□□□□□ COM □ □ □ □□ □ □ □□□
EDG □ □ □□□□□□□□ EDG □ □ □ □ □ □ □ □ □ □ □
HIS □ □ □□□□□□□□□□ HIS -□ □ □ □□□□□□ □ □ □ □ □
LPC □ ■□□□□□□□□□ LPC □ □ □ □ □ □ □ □ □ □ □ □
SPE □ □□□□□□□□□□□ SPE □ □ □□□□□□ □ □ □ □ □

o"
cr
z
3

o"
gc
z
3

on
r
z
3 UNRO4 FLAT NORM TURN BREAK CSE DEAD HOIST IFH MOVE COPY O'

DC
z
3

ow
cr
z
3

o"
cr
z
3 unro4 FLAT NORM TURN BREAK CSE

o
<
lu
o HOIST IFH MOVE COPY

FFT

FIR

MR

LAT

LMS

MUL

ADP

COM

EDG

HIS

LPC

SPE

□ □□□□□
□ □ □ □

□ □ □
□ □ □

□ □ □
□□

□□□□□□
° □□

•■□□□■
□ □ □

• □ □ □ □

□ □ □ □

□ □ □ □
□ □ □ □
□ □ □ □
□ □ □ □
□ □ □ □
□ □ □ □
□ □ □ □
□ □ □ □

□ □ n □
□ □ □ □
□ □ □ □

□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □

□ •

□ □
□ □
□ □

n □
□ □
□ □
□ □
□ □
□ □
□ □
□ □

n°
□ n
□ □
□ □

FFT

FIR

MR

LAT

LMS

MUL

ADP

COM

EDG

HIS

LPC

SPE

□
□

□ □

□ □

□ □
□ □
□ □
□ □

□ □ □
□□
□ □ □
I I ? □

□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □

on

□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □
n □
□ □
□ □

□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □

an

□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □
□ □

o o o o o o o o > q.
o o
s o

Figure 7.5: The oracle iid distributions and the predictive iid distributions on the Tl (top) and on

the AMD (bottom) on the small space of the SUIF data set. For each benchmark on the vertical
axis and each transformation on the horizontal axis, the probability of applying a transformation

p(xi) = a.j is proportional to the area of the corresponding region in a Hinton diagram.

across benchmarks. We have preferred to report the absolute values of the SIFs instead of a
normalised measure to highlight the fact that the technique performs significantly better on
some benchmarks than on others.

Although one may expect a non-decreasing behaviour of these curves as a function of N,
as in the ones presented for spectral or Ipc on the AMD (Figure 7.9), in general this is not the
case. This may be simply due to sampling artefacts, especially when the number of samples
is very small, i.e. N < 500.

The general trend is that, on average, there is not much sensitivity of the technique to the
number of training samples used. However, when the number of training examples is very low,

e.g. when N = 100 the SIFs are quite variable. For benchmarks such as fir and compress on the
TI or iir, mult and histogram on the AMD, using N = 500 samples leads to similar SIFs to the

Chapter 7. Predictive Search Distributions 116

0.95

0.9

0.85

0.8

55 0-75

0.7

0.65

0.6

0.55

1.1

1.08

1.06

1.04

c/5
1.02

1

0.98

0.96

Figure 7.6: The search improvement factors of the predictive distributions on the small space of
the SUIF data set for the Tl board as a function of the number of samples per training bench¬
mark. Results shown as averages over 10 replications with one standard deviation error bars
on four benchmarks for which an improvement in performance can be achieved.

ones obtained when using the exhaustive data. For more difficult-to-search programs such as

adpcm and Ipc on the TI, one may require a few thousand examples in order to achieve good

performance.
We can also highlight the fact that the results obtained with the Markov distribution are

not significantly different from the iid distribution's on the TI board. Although on compress

and fir the Markov distribution leads to greater SIFs, on the rest of benchmarks they provide

roughly the same performance. This is not the case on the AMD, where the Markov distribution

consistently outperforms the iid distribution on all but the benchmark edge, where the results
are quite poor. These results are similar to the ones obtained when using the complete data for

training.

7.6 Summary and Discussion

In this chapter we have presented predictive search distributions (PSD) as a general method
for speeding up search on combinatorial optimisation problems. The general idea is to learn

Chapter 7. Predictive Search Distributions 117

10.5

10

9.5

9

8.5

8

7.5

7

6.5

6

- IID
- MARKOV

-B~, ■i ■ - —

o o o o o

lo cm m
S *

N

LPC

IID
MARKOV

o o 'o "o

lO CM lO

N

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

IID
MARKOV

4-4^

o o o o o

1$ c3 m

IID
MARKOV

o no *0 °o *o

m cm m
I 3

Figure 7.7: The search improvement factors of the predictive distributions on the small space of
the SUIF data set for the Tl board as a function of the number of samples per training bench¬
mark. Results shown as averages over 10 replications with one standard deviation error bars
on the remaining four benchmarks for which an improvement in performance can be achieved.

a distribution g(x|t) over good solutions x on a collection of optimisation problems, each of
which can be characterised by a set of features t. When a new problem is presented, the

predictive distribution g(x|t) is used to focus search.
The PSD technique is inspired by recent work on Estimation of Distribution Algorithms

(EDAs), where a probability distribution on good solutions is iteratively learned (or evolved)
in order to solve a single optimisation problem. PSD aims to achieve transference across

different optimisation problems by learning a distribution over EDA-search distributions on

these problems, given a common representation (or feature vector) t.
PSD can be learnt by maximisation of the conditional likelihood or by using memory-based

methods. The latter are specially suitable when the number of problems (or tasks) is limited.
It is straightforward to make predictions with PSD. Given a new problem described by a set

of features t, one simply uses the distribution g(x|t) to guide search on the optimisation space

of this new problem.
Given a set of optimisation problems standard model selection criteria such as the AIC,

the BIC or Bayes factors can be used in order to select a suitable family of distributions Qto

Chapter 7. Predictive Search Distributions 118

which the distribution q will be constrained.
The PSD technique has been applied to the compiler optimisation problem on the SUIF

data set and has been shown to yield significant improvements on both the small space and the
large space on the TI board and the AMD architecture.

One of the crucial requirements of the PSD technique is the existence of a common rep¬

resentation given by a set of features across different optimisation problems. Although in the

compiler optimisation task these features appear naturally (e.g. code features of a program), in
other problems such representation may become a hurdle. Furthermore, even if it is possible to
extract a meaningful representation for a set of optimisation problems, learning a distribution
over good solutions g(x|T) may require a large amount of training data when such distribution
varies very rapidly with changes in the input T.

Other examples of domains where there are families of optimisation problems include find¬
ing the ground state of a spin glass (Pelikan and Goldberg, 2001), or the minimum balanced cut

graph partitioning problem (Andreev and Racke, 2004). Here families are induced by varying
the edge weights in the input graph.

We have described in this chapter the direct approach to the problem of finding good trans¬

formation sequences for programs, where these sequences are modelled directly using search
distributions. As explained in section 3.3, we can also adopt an indirect approach by building

performance models of a program when being applied a sequence of transformations. This is
addressed in the next chapter with multi-task Gaussian process regression models, which are

used to exploit transference across programs by modelling the correlations between their per¬
formances directly. These models are then utilised as fast predictors of the performance of a
new program (or a program for which very little data is available) in order to search for good

compiler transformation sequences.

Chapter 7. Predictive Search Distributions 119

Figure 7.8: The search improvement factors of the predictive distributions on the small space of
the SUIF data set for the AMD architecture as a function of the number of samples per training
benchmark. Results shown as averages over 10 replications with one standard deviation error

bars on six benchmarks for which an improvement in performance can be achieved.

Chapter 7. Predictive Search Distributions 120

IID
MARKOV

IID
MARKOV

IID
MARKOV

-fF I I

IID

MARKOV

Figure 7.9: The search improvement factors of the predictive distributions on the small space
of the SUIF data set for the AMD architecture as a function of the number of samples per train¬

ing benchmark. Results shown as averages over 10 replications with one standard deviation
error bars on the remaining five benchmarks for which an improvement in performance can be
achieved.

Chapter 8

Multi-task Gaussian Process

Prediction

Chapter 7 has described Predictive Search Distributions as a technique to tackle combinatorial

optimisation problems. In this method a probability distribution over good solutions is learnt
on a set of optimisation problems and used to guide search on a problem that has not been seen

before.

In this chapter, we follow a rather different approach. Here, we build predictors of the
evaluation function on the set of feasible solutions over different optimisation problems. These

performance predictors (or proxies) are then used to approximate the evaluation function on a

new problem. Clearly, if the search space is very large evaluating all feasible solutions may

be prohibitive. In such cases, the learned performance predictor can be used within search (or

sampling) algorithms avoiding the execution of the actual evaluation function. As in the case

of the compiler optimisation problem, this evaluation function can be very costly and clear
benefits can be obtained by following this approach.

As in Chapter 7, the focus here is on learning predictors over different tasks (problems)
and exploiting the shared information across these tasks. Hence, this chapter analyses the
construction of regression models in a multi-task learning scenario. In particular, it investigates
multi-task regression in the context of Gaussian processes. As stated above, these regression
models can be used in order to tackle optimisation problems where the evaluation function
is expensive to execute. However, the models presented here can also be used in (general)

regression problems where transference can be achieved.
The organisation of this chapter is as follows. Gaussian process (GP) regression is briefly

described in section 8.1. Sections 8.2 and 8.3 explain single-task learning and multi-task learn¬

ing. Sections 8.4 and 8.5 describe multi-task Gaussian process prediction with task-descriptor
features and without task-descriptor features. Section 8.6 proposes a measure for quantifying
inter-task transfer in multi-task GP regression. Section 8.8 explains how to apply multi-task

121

Chapter 8. Multi-task Gaussian Process Prediction 122

GP to the compiler optimisation problem and section 8.9 presents a summary and a discussion.

8.1 Regression with Gaussian Processes (GPs)

The standard supervised learning problem is the following. Given a data set of N (input-
output) observations © = {(x,-,y,)|z = 1,... ,7V; x € Rd}, and denoting X by the set of all input
observations and y = (yi,... ,y;v)T> we want to make predictions at a new point x* that is not
included in the training set ©. In other words, our aim is to learn the mapping x —»y (based
on the set ©) so that it provides us with inductive power, i.e. it allows us to generalise to new

points that have not been seen before. In the case of regression, the target values y are (in

general) real values.
One possible solution to this problem is to consider a parametric approach, for example

y = /(w>x) +T where / : x —> M is a regression function that approximates the target values
y corresponding to inputs x, and r| is additive noise. A possible choice for /(w,x) is a linear
model /(w, x) = wTx. This is a simple and well known model commonly used in statistics due
to its easy interpretability (see e.g. Neter et al., 1996, Chapter 6).

However, such model lacks enough flexibility to fit complex data sets and predictions at

new points x* may be rather poor. One can augment the flexibility of the model by considering
more complex parameterisations of the regression function /(w,x), for example by including
nonlinearities (as in e.g. neural networks). However, it is difficult to ascertain beforehand the
level of flexibility of such functions as one can easily overfit the data. In order to avoid this, it
is customary to make use of regularisation procedures that penalise highly complex models.

A rather more elegant approach is to consider a nonparametric Bayesian view of the re¬

gression problem on the function space J. Here, we place a prior (probability distribution)
over functions reflecting our initial beliefs of what functions are more likely than others. We
can then update our beliefs on these functions after seeing some data ©.

There are several advantages of following this approach. Firstly, we do not have to worry

about how well we can fit our data since our function is not constrained to have a parametric
form. In principle, by being nonparametric we have enough flexibility to model complex data.

Secondly, by being Bayesian we consider our prior beliefs on the functions / and use this
information along with the observed data in order to obtain a distribution p(f*|x*, ©) that we
use for making predictions on a new data point x*. Clearly, this is much more informative than
a single point prediction. In contrast to the frequentist approach where a hypothesis is assumed
to be fixed and the probability distribution of the (observed or unobserved) data is considered,
in the Bayesian approach a probability distribution over the hypotheses is considered and in¬
ference is done by conditioning on the observed data (evidence). In other words, in Bayesian
inference one has a probability distribution over unknown parameters and uses the rules of

Chapter 8. Multi-task Gaussian Process Prediction 123

probability in order to make predictions. This contrasts with the frequentist view where the
unknown parameters are assumed to be fixed. The reader is referred to O'Hagan and Forster
(1994); Jeffreys (1966) for a comprehensive description of Bayesian statistics.

A final advantage of having a nonparametric Bayesian approach to the regression problem
and more specifically Gaussian processes is that most commonly used regression methods such
as linear regression, splines or neural networks (when the number of hidden units tends to

infinity) can be seen as instances of this approach.
One possible reason for concern is that naively one would have to consider the function val¬

ues at infinitely many points, which obviously is intractable. Fortunately, as we shall see later,
in the Gaussian process framework one only cares about those points at which observations are

made.

In the following paragraphs a brief overview of Gaussian processes is provided. This fol¬
lows the description given by Rasmussen and Williams (2006, Chapter 1).

8.1.1 Gaussian Process

A Gaussian process (GP) is a stochastic process where every subset of random variables have
a joint Gaussian distribution. It is therefore a generalisation of the Gaussian (probability) dis¬
tribution. The probability distribution of a function /(x) is a Gaussian process if for any finite
subset of points Xi,..., x/v, the function values f(x\),..., /(x;v) follow a Gaussian distribution.
We can denote a Gaussian process with:

where p(x) and k(x, x') are the mean function an the covariance function of the GP respec¬

tively. As in the case of a Gaussian distribution, a Gaussian process is completely determined

by its mean function and its covariance function. Here we consider GPs with zero mean func¬
tion.

8.1.2 The Covariance Function

It is clear from equation 8.1 that a critical component in GPs is the definition of a covariance (or
kernel) function k(x,x'). Intuitively, we can think of the covariance function as a definition of

similarity in input space. Ideally, under the supervised learning setting, points that are nearby
in input space should have similar values in output space. Therefore, predictions at a new data

point x* should be strongly influenced by the target values of those data points in CD that are
closer to x*.

/(x) - gtP(p(x),k(x,x')),
p(x) = E[/(x)],

k(x,x') = E[(/(x) —p(x))(f(x') —/r(x'))],

(8.1)

(8.2)

(8.3)

Chapter 8. Multi-task Gaussian Process Prediction 124

The matrix K resulting from evaluating the covariance function at all pairwise input points
in tD such that K,j = k(x.j,Xj) is known as the covariance matrix. In the sequel we will some¬
times also refer to this matrix as the Gram matrix.

The only constraint on the covariance function is that it must generate a positive semi-
definite (PSD) matrix at any subset of points in X. In other words, a (real PSD) covariance
matrix must satisfy brAHb > 0 for all b € M.N.

A covariance function is said to be stationary if it is translation-invariant in input space,
i.e. it is a function of x — x'. If further, the covariance function is a function of the magnitude

||x — x'|| then it is said to be isotropic.
Further literature on covariance (or kernel) functions can be found in Rasmussen and

Williams (2006, chapter 4), MacKay (1998) and Scholkopf and Smola (2001, chapters 4 and
13).

The Squared Exponential Covariance Function

One possible choice of covariance function is the squared exponential (SE) (or Gaussian) ker¬
nel:

where as is the signal variance and C is a symmetric matrix that can have different parame-
terisations. For example, having C = £~2I we obtain the isotropic squared exponential kernel.

Alternatively, having C = diag(T)~2 with £ = (£\,... ,£j) we effectively implement automatic
relevance determination (ARD) as in Neal (1996). Each £j is known as the characteristic length-
scale of the corresponding dimension and it characterises the distance along that particular
direction for which the function values are expected to vary significantly.

The parameters of the covariance function are known in the GP literature as the hyperpa-
rameters of the GP. In the case of the SE covariance function the hyperparameters are ov and
the parameters of C.

8.1.3 Gaussian Process Prediction

Recall that our supervised learning problem described at the beginning of this section is to learn
the mapping x —»y based on the observations (D. We can approach this problem by having the

following model:

(8.4)

y = /(x)+ri,

/(x) ~ £tP(0,k(x,x')), T| ~ 1^(0,a2),
(8.5)

(8.6)

where k(x,x') is given for example by equation 8.4, and we assume noisy observations with
noise variance c2. Clearly, the function values at the training data points distribute according

Chapter 8. Multi-task Gaussian Process Prediction 125

tof~ fA£(0, K(X,X)) and the target values y ~ f\£(0, K(X,X) + o%I), withX being the set of all
input observations xi,..., x^. For simplicity, let us denote the covariance matrix at the training
data points by K and the vector of covariances between a test point x* and the training points
X by k*. Hence, by computing the conditional distribution of two jointly Gaussian random
vectors (see e.g. Rasmussen and Williams, 2006, appendix A.2) we can obtain the posterior
distribution:

Note that if the mean prediction is used at a new data point (which in this case minimises the
mean square error and the mean absolute error), such prediction is a linear combination of the

training targets y. Therefore, Gaussian process prediction is a linear prediction model. How¬
ever, one of the most interesting features of GPs is that most common parametric models can

be seen as an instance of a GP model. In particular, one can obtain the GP prediction equations

by placing a Gaussian prior over the weights of a linear regression model, see for example Ras¬
mussen and Williams (2006, section 2.1) or MacKay (1998). Additionally, it has been shown

by Neal (1996) and Williams (1997) that under certain assumptions a neural network with an

infinite number of hidden units tends to a Gaussian process. Further relationships of GPs to

other methods such as splines or Support Vector Regression have also been established in the
literature, see e.g. Rasmussen and Williams (2006, chapter 6) or MacKay (2003, chapter 45).

8.1.4 Learning Hyperparameters

We have described above how to make predictions with Gaussian processes when the hyper¬

parameters of the covariance function are fixed. However, in general, given a data set we do
not know a good setting for these hyperparameters beforehand. Therefore, we can attempt to

learn them from our set of observations 2). Let us include the noise variance from the model in

equations (8.5) and (8.6) into the set of hyperparameters of our GP. We can do this by noting
that cov(yp,yq) — k(xp,xq) + o^8w, with bpq = 1 if p = q and 5pq = 0 otherwise. Let us also
denote this set of hyperparameters by 0. One possible approach to learning 0 from D is to find
those 0 that maximise the marginal likelihood (or evidence):

/*|x*,X,y ~ 2\£(E [/*],¥[/*]),

E[/*] = kKK + afjy'y,
V[/*] = &(x*,x*) — k^(AT + a^/)-1k*.

(8.7)

(8.8)

(8.9)

p(y|X) = Jp(y\f,X)p(f\X)df, (8.10)

Chapter 8. Multi-task Gaussian Process Prediction 126

with y|f,X ~ fA^(f,a~7) and f|X ~ 9\fc(0,K). We can solve this integral analytically as follows:

p(y|X) = J%(WnrmO,K)d{ (8.11)
= J*&(y,o2nI)%(0,K)df (8.12)
= Z"1 f7\fc(pf,Cf) df (8.13)
= %(0,K+ o2nI), (8.14)

where we have applied the property of the product of two Gaussians: 9\Q(a,A)9^(b,B) =
Z~x8\h(Px,Cx) with Z"1 = 5\4(b,A + fi). In order to avoid stability problems and consider¬
ing that the logarithm function is monotonically increasing, it is customary to maximise the
(marginal) log-likelihood instead:

L = log/?(y|X) = —^yT{K+ o2I)~xy — ^ log |A"+ <?(;/1 - "log 271. (8.15)
The partial derivatives of the marginal likelihood with respect to a parameter Qj of the covari-
ance function can be obtained as follows:

(8,6)

= t tr((aaT(8.17)

with KG = K + o2I and a = K~1 y.
We see that the gradients need the computation of dKG/dQj, which depends on the form of

the covariance function used. In the case of the SE covariance function with ARD let us denote

0 = (logav, logf],..., log£4, loga„)T, where we have taken the log of the parameters in order
to avoid numerical problems during optimisation. Hence we have that:

JKa = 2K, = -^(X»D(f)), JK° = 2a2nI, (8.18)dlogcty aiog £f 1} aioga„

with • being the Hadamard product and D^\j,k) = (xj — xf)2, i.e. a matrix with pairwise
distances on dimension i.

Thus, we can make use of equations (8.15), (8.16), and (8.18) (for the case of the SE
covariance function) with any gradient-based optimisation method in order to learn the hyper-

parameters of the GP given some data fD.
We have seen that for making predictions (equations (8.8) and (8.9)) as well as for learning

hyperparameters (equations (8.15) and (8.16)) one needs to compute the inverse of the Gram
matrix Ka with time complexity 0(N3). As the number of training points increases (e.g. N >

10000) this becomes prohibitive and it can be a limitation for applying GPs to real problems.

Fortunately, there has been a lot of work in recent years in order to make GPs scalable to large
data sets.

Chapter 8. Multi-task Gaussian Process Prediction 127

8.1.5 Approximation Methods for Large Data Sets

The problem of dealing with large data sets in Gaussian processes has been very much stud¬
ied in the GP literature, see e.g. Rasmussen and Williams (2006, chapter 8) and Quinonero-
Candela et al. (2007) for an overview. Most of these approximation methods rely on the
use of sparse approximations of the Gram matrix where only Q out of N points are selected
as inducing inputs. For example, in the the Nystrom approximation of K in the marginal
likelihood we make K « K = K.i(Ku)~xKi., where I indexes Q rows/columns of K. As
explained in Rasmussen and Williams (2006, chapter 8), this result is also obtained from
both the subset of regressors (SoR) and projected process (PP) approximations for the pos¬

terior at the training points. We can then make use of the Woodbury's identity to obtain

(.K+oiir1 <5n 2 - <3n 2K.i (<52Kii + Ki.K.i) 1 K[., where we note that we need the inversion
of a Q x Q matrix instead of an N x N matrix.

In practice, selecting Q depends upon time constraints, computing resources and the quality
of the solution found for each problem. For example, Rasmussen and Williams (2006, section
8.3.7) obtain good results when using Q = 4096 out ofN = 44484 data-points on a robot arm
inverse dynamics problem. Moreover, as pointed out in Rasmussen and Williams (2006, page
183), it is useful to start learning the hyperparameters of a GP with a low number of selected

samples Q and to systematically increase this number to see if there is any performance to be

gained at the cost of additional computation.

8.2 Single-task Learning

Single-task learning is the standard machine learning set up where given a set of input-output

training points CD = {(x,-,y,)\i = 1.... ,7V; x <E Mrf}, we wish to learn a regression function /(x)
in order to make predictions on unseen data-points x*. Let us refer to this task as the test task,
since this is the problem for which we wish to make predictions. Although there may be data
from other problems available, we simply do not make use of this data as this may reduce the

flexibility of our model.

8.3 Multi-task Learning

Multi-task learning is an area of active research in machine learning and has received a lot
of attention over the past few years, see e.g. Thrun and O'Sullivan (1996); Caruana (1997)
as some of the earlier references. It also goes under the names of inductive transfer, transfer

learning and lifelong learning (Thrun and Pratt, 1998). In addition, it is very prevalent in the
statistics literature where it is known under the names of multi-level modelling or hierarchical

modelling (see e.g. Goldstein, 2003). A common set up is that there are multiple related tasks

Chapter 8. Multi-task Gaussian Process Prediction 128

for which we want to avoid tabula rasa learning by sharing information across the different
tasks. The hope is that by learning these tasks simultaneously one can improve performance
over the single-task (or "no transfer") case, i.e. when each task is learnt in isolation.

However, as pointed out in Baxter (2000) and supported empirically by Caruana (1997),
assuming relatedness in a set of tasks and simply learning them together can be detrimental.
It is therefore important to have models that will generally benefit related tasks and will not
hurt performance when these tasks are unrelated. This is investigated below in the context of
Gaussian process (GP) prediction.

The setting is a generalisation of the single-task scenario. Here we have M tasks and a

(possibly) different set of input-output pairs 2F|j = 1,.. -,M. The goal is to learn regression
functions fj : x —> y across all the tasks so that we can make predictions at unseen tasks or at
unseen points of the training problems.

8.4 Multi-task GP with Task-descriptor Features

Let us consider M tasks for each we wish to learn the mapping fj(x) for j — 1,... ,M, where
x is a vector of input features. Additionally, for each task j we have task-descriptor features
(or task-specific feature vector) t;. Thus we can also write fj(x) = /(t;-,x) for some function
/. This problem was considered by Bakker and Heskes (2003) using neural network predic¬
tors. Here we discuss how to address this problem using kernel machines, more specifically,
Gaussian process predictors.

As explained above (section 8.1), there are several advantages for considering Gaussian

processes instead of other (parametric) regression methods. In the specific case of neural net¬
works, it is necessary to emphasise that they are quite tricky to train, due to local optima in

weight space, the selection of the number of hidden units, hidden layers, etc. In contrast, Gaus¬
sian process regression (and many other kernel prediction methods) are underpinned by convex

optimisation problems (given the kernel). This is the main motivation to produce a kernel-based
solution to this problem.

The main idea here is that given a set of tasks for which input features x and task-descriptor
features t are available, it is possible to exploit the shared information across these tasks by

directly modelling correlations between them. For example, as illustrated in Figure 8.1, where
x and t are shown schematically as one-dimensional variables, for fixed values of t we obtain

sample functions (bold lines) as functions of x. These sample functions for different values of
t are correlated, which contrast to independent draws over sample functions if the t-dimension
is omitted.

This contrasts with some previous work on multi-task learning with Gaussian processes,

where the set of related tasks share a set of hyperparameters (Minka and Picard, 1999; Yu

Chapter 8. Multi-task Gaussian Process Prediction 129

Figure 8.1: A schematic illustration of drawing sample functions in joint x and t space. For fixed
values of t we obtain sample functions (bold lines) as functions of x. Note that these sample
functions for different values of t are correlated; this is in contrast to independent draws over

sample functions if the t-dimension is omitted.

et al., 2005), and the tasks are conditionally independent given the kernel.

8.4.1 The Combined Method

In this method the input features x and the tasks-descriptor features are simply concatenated
into a single vector z so that zT = (xT,tT). All the training data from the individual tasks is
then combined into one large training set, and hyperparameter learning as well as predictions
with Gaussian processes are performed on this large data set as explained in sections 8.1.3 and
8.1.4.

An interesting situation occurs when the kernel function k(z,z') decomposes as k(z,z') =
kf (t,t')kA:(x,x/). Therefore, there is a decomposition of the problem into learning task simi¬
larity (as measured by k?) and input similarity (as measured by kx). An example where such
a decomposition occurs is the commonly used squared exponential (or Gaussian) covariance
function (see section 8.1.2). This combined approach is very similar to co-kriging, a well
known regression technique in the geostatistics literature (see e.g. Cressie, 1993, section. 3.2.3).
Here we use task-specific features in order to define a kernel which incorporates correlations
between tasks.

8.4.2 The Gating Network Method

An alternative approach to the combined method is to consider different kernel predictors for
each task. Such kernel predictors can be trained independently and then combined using a

gating network, similar in spirit to the work by Jacobs et al. (1991).

Chapter 8. Multi-task Gaussian Process Prediction 130

Let us denote the prediction of expert j (i.e. on task j) for input x by Pj(y\x), with j =
1,... ,M. When given a new task with task-descriptor features t such predictors can be com¬

bined by using:
M

p(yM) = Lp(./M)pj(yW> (8-19)
7=1

where p(j|t,x) is a gating network outputting mixing proportions that sum to 1. One possible
parameterisation of the gating network is given by:

/7(;'|t,x) ocexp{-((3x||u; -x||2 + p,||t-tj||2)}, (8.20)

where u; e M|x|, (3* > 0 and P/ > 0 are parameters, and tj is the task-specific feature vector
for task j. Normalisation is obtained by summing over all reference tasks. Alternatively, one
could use a softmax network with input vector z. The gating network can be trained so as to

maximise the conditional likelihood of the training data (equation (8.19)) using gradient-based
methods.

In contrast to the conditional likelihood training of mixture-of-experts models (Jacobs et al.,
1991; Rasmussen and Ghahramani, 2002), our assumption is that the experts pj(y|x) have
been trained separately from the gating network p(j|t,x). The intuition is that by learning
the parameters of the gating network we can utilise the information about previously solved
related problems for solving new tasks, even when the training data for the new task might
be quite limited. This approach is also attractive computationally, as it allows us to quickly
mix heterogeneous experts without a need of expensive approximations. Note however that
this method is a rather constrained mixture of experts, as the parameters of the experts and the
network are not jointly optimised in order to maximise the conditional likelihood.

8.5 Multi-task GP without Task-descriptor Features

Section 8.4 has described multi-task Gaussian process prediction when task-descriptor features
t are used in a parametric covariance function over different tasks. Such a function may be too

constrained by both its parametric form and the task descriptors to model task similarities effec¬

tively. In addition, for many real-life scenarios task-descriptor features are either unavailable
or difficult to define correctly.

This section describes a model that attempts to learn inter-task dependencies based solely
on the task identities and the observed data for each task. Such model learns a "free-form"

task-similarity matrix, which is used in conjunction with a parameterized covariance function
over the input features x. This contrasts with the model described in section 8.4 where task
relationships are learnt based on a set of task-descriptor features t.

Chapter 8. Multi-task Gaussian Process Prediction 131

8.5.1 The Model

Let us redefine X as the set ofN distinct inputs xi,...,x# and y as the complete set of responses
for M tasks such that y = (yn,...,yNi,...,yi2,---,yw2,---,yiM,---,yA'M)T , where yie is the
response for the fth task on the 1th input x,. Let us also denote the N x M matrix Y such that

y = vec(y). Given a set of observations y0, which is a subset of y, we want to predict some of
the unobserved response-values yu at some input locations for certain tasks.

Let us place a GP prior over the latent functions {/)} so that we directly model the corre¬

lations between the tasks. Assuming that the GPs have zero mean we set

</^(x)/m(x')) = K{mkx(x,x') yit~AC(fe(xi),Ot), (8-21)

where Kf is a positive semi-definite (PSD) matrix that specifies the inter-task similarities, Id is
a covariance function over inputs, and oj is the noise variance for the f:th task. Below we focus
on stationary covariance functions Id', hence, to avoid redundancy in the parameterisation, we
further let Id be only a correlation function (i.e. it is constrained to have unit variance), since
the variance can be explained fully by K.f.

The important property of this model is that the joint Gaussian distribution over y is not

block-diagonal with respect to the tasks, so that observations of one task can affect the pre¬

dictions on another task. In Yu et al. (2007); Bonilla et al. (2007) this property also holds, but
instead of specifying a general PSD matrix K?, these authors set K[m = kf (t(, tm), where
is a covariance function over the task-descriptor features t.

One popular setup for multi-task learning is to assume that tasks can be clustered, and that
there are inter-task correlations between tasks in the same cluster. This can be easily modelled
with a general task-similarity K? matrix: if we assume that the tasks are ordered with respect to

the clusters, then K2 will have a block diagonal structure. Of course, as we are learning a "free
form" Kf the ordering of the tasks is irrelevant in practice (and is only useful for explanatory

purposes).
For scenarios where the number of input observations is small, multi-task learning aug¬

ments the data set with a number of different tasks, so that model parameters can be estimated
more confidently; this helps to minimise over-fitting. In the model presented here, this is
achieved by having a common covariance function over the features x of the input observa¬
tions. This contrasts with the semiparametric latent factor model (SLFM) of Teh et al. (2005),
where with the same set of input observations, one has to estimate the parameters of several
covariance functions belonging to different latent processes (see section 8.7 for details).

8.5.2 Predictions

Predictions in this model can be done by using the standard GP formulae for the mean and
variance of the predictive distribution as given in equations (8.8) and (8.9) with the covariance

Chapter 8. Multi-task Gaussian Process Prediction 132

function given in equation (8.21). Thus, the mean and variance of the predictive distribution
on a new data-point x* for task £ are given by:

E[/Kx*)] = (kf®kJ)rE-1y, (8.22)

V[/Kx*)] =4^(x„x,)-(k{®k:)rI-1(k{®k^), (8.23)
with Z = Kf ®KX +D <8>7, (8.24)

where ® denotes the Kronecker product, k^ selects the 7 th column of K.f, k(is the vector of
covariances between the test point x* and the training points, Kx is the matrix of covariances
between all pairs of training points, D is anM xM diagonal matrix in which the (7,7)th element
is a3, and £ is an MN x MN matrix.

8.5.3 Learning Hyperparameters

Given the set of observations y0, we wish to learn the parameters 0V of kx and the matrix K?
to maximise the marginal likelihood p(y0\X,Qx,K^) (equation (8.15)). One way to achieve
this is to use the fact that y|X ~ 7\£(0,£). Therefore, gradient-based methods can be readily
applied to maximise the marginal likelihood. In order to guarantee positive-semidefiniteness
of K?, one possible parameterisation is to use the Cholesky decomposition Kf = LLT where
L is lower triangular. Computing the derivatives of the marginal likelihood with respect to L
and 0V is straightforward. A drawback of this approach is its computational cost as it requires
the inversion of a matrix of potential size MN x MN (or solving an MN x MN linear system)
at each optimisation step. Note, however, that one only needs to actually compute the Gram
matrix and its inverse at the visible locations corresponding to y0.

Alternatively, it is possible to exploit the Kronecker product structure of the full covariance
matrix as in Zhang (2007), where an Expectation-Maximisation (EM, Dempster et al., 1977)
algorithm1 is proposed such that learning of 0V and in the M-step is decoupled. This has the

advantage that closed-form updates for K? and D can be obtained and that K? is guaranteed to

be positive-semidefinite.
We have seen that £ needs to be inverted (in time 0(M31V3)) for both making predictions

and learning the hyperparameters (when considering noisy observations). This can lead to

computational problems ifMN is large. In section 8.5.5 we give some approximations that can

help speed up these computations.

'An Expectation-Maximisation algorithm attempts to find the maximum likelihood estimates of the parameters
of a probabilistic model that contain latent variables by iteratively performing two steps: (E-step) computing the
expected complete data log-likelihood and (M-step) estimating the parameters that maximise this expected data
log-likelihood.

Chapter 8. Multi-task Gaussian Process Prediction 133

8.5.4 Noiseless Observations and the Cancellation of Inter-task Transfer

One particularly interesting case to consider is noise-free observations at the same locations
for all tasks (i.e. a block-design) so that y|X ~ 5\£(0,K? <8)KX). In this case maximising the
marginal likelihood p(y\X) with respect to the parameters 0A of kx reduces to maximising
—M log |XA'| — AHog \ YT (Kx)~lY\, an expression that does not depend on K?. After convergence
we can obtain Kf as K.f = j^YT(KX)~]Y. The intuition behind is this: the responses Y are
correlated via Kf and Kx. We can learn K? by decorrelating Y with (XA)_1 first so that only
correlation with respect to K.f is left. Then is simply the sample covariance of the de-
correlated Y.

Unfortunately, in this case there is effectively no transfer between the tasks (given the
kernels). To see this, consider making predictions at a new location x* for all tasks. We have

(using the mixed-product property of Kronecker products) that

and similarly for the covariances. Thus, in the noiseless case with a block design, the predic¬
tions for task £ depend only on the targets y.£. In other words, there is a cancellation of transfer.
One can in fact generalise this result to show that the cancellation of transfer for task £ does
still hold even if the observations are only sparsely observed at locations X = (xi,... ,Xn) on
the other tasks. This result is known as autokrigeability in the geostatistics literature (Wack-

ernagel, 1998), and is also related to the symmetric Markov property of covariance functions
that is discussed in O'Hagan (1998). It is necessary to emphasise that if the observations are

noisy, or if there is not a block design, then this result on cancellation of transfer will not hold.
This result can also be generalised to multidimensional tensor product covariance functions
and grids (Williams et al., 2007).

8.5.5 Constraining the Number of Parameters and Approximations

Specifying a full rank K? requires M(M+ l)/2 parameters, and for large M this would be a

lot of parameters to estimate. One parameterisation of K.f that reduces this problem is to use

a PPCA model (Tipping and Bishop, 1999) Kf « K.f = UAUt + s2Im, where U is an M x P
matrix of the P principal eigenvectors of K.1, A is a P x P diagonal matrix of the corresponding

eigenvalues, and s2 can be determined analytically from the eigenvalues of K? (see Tipping

(8.25)

(8.26)

(8.27)

((jf/)T®(kj)T)((jrV®m-1)y

((kA)T(Xx)"1y-i \
(8.28)

V (k£)TCKVy.Af J

Chapter 8. Multi-task Gaussian Process Prediction 134

and Bishop, 1999, and references therein). For numerical stability, we may further use the

incomplete-Cholesky decomposition setting UAUT = LU, where L is a M x P matrix. In
section 8.8.6 we will consider the case 5 = 0, i.e. rank-P approximation to KK

Additionally, if the number of input points N is large, we can make use of GP approxima¬
tions to Kx in order to speed up computations (as explained in section 8.1.5). Here we propose

the use of the Nystrom approximation of Kx in the marginal likelihood, so that Kx « Kx =

Kxi(Kxn)~:Kx,,, where I indexes Q rows/columns of Kx. In fact for the posterior at the training
points this result is obtained from both the subset of regressors (SoR) and projected process

(PP) approximations described in Rasmussen and Williams (2006, chapter 8).

Applying both approximations to get Z ^ Z = K? ® Kx +D® In, we have, after using the

Woodbury identity, Z_1 = A-1 — A~]B [l®Kxjj + RtA_1B] 1 RTA_1 where B = (.L®Kxj), and
A = D <S> In is a diagonal matrix. As K? ® Kx has rank PQ, we have that the computation of

Z_1y takes 0(MNP1Q2).

8.6 Quantifying Inter-task Transfer

It is possible to quantify the amount of inter-task transfer that is taking place when making

predictions with multi-task GP. Consider the mean prediction given in equation (8.8), which
can be rewritten as:

E[/*(z',x*)] = hr(z, x*)y, (8.29)

where h(z,x*) is the weight function (see e.g. Rasmussen and Williams, 2006, section 2.6).
Note that in the case of multi-task GP with task-specific features /z(z*) = h(i,x*). If we order
the training points according to the task they belong to, then h can be partitioned as hT(z,x*) =
(h\,...,hlf,. . .,/ijy) and similarly for y, where the superscript identifies the task. We
can now measure the contribution of task j when making prediction on test point x* belonging
to task i by computing:

= (8.30)
||h(z,x*)||

Averaging ry(z,x*) over test points gives a summary measure rJ for the contribution of task
j to the test problem. We prefer this measure as compared to looking directly at as the

interpretation of KJ is complicated by the inversion of the kernel matrix in GP prediction.

8.7 Related Work

There has been a lot of work in recent years on multi-task learning (or inductive transfer) using
methods such as Neural Networks, Gaussian Processes, Dirichlet Processes and Support Vector

Machines, see e.g. Caruana (1997); Thrun (1996) for early references. The key issue concerns

what properties or aspects should be shared across tasks.

Chapter 8. Multi-task Gaussian Process Prediction 135

As mentioned in section 8.4, multi-task learning with task-specific features is discussed in
Bakker and Heskes (2003), but using neural network predictors. They propose two ways to use

the task-specific features: One is to define a task-specific prior in weight space (section 4.1 in
their paper). The second is to use a gating network (although in their case this only depended
on t and not on x). Note that neither of these methods introduces inter-task correlations in the

prior. Yu et al. (2007) have recently investigated the combined method discussed above under
the assumption of factorisation of the kernel with respect to x and t features. In their case
the setup was as a relational model, e.g. for predicting movie ratings based on user and movie
features.

There is also a lot of work on multi-task learning when there are no task-specific features.
In this case one can make various assumptions about how to induce transfer between tasks.
For example Minka and Picard (1999) assumed that a number of related tasks shared the same

kernel parameters, and these were optimised on the set of tasks available. In a similar vein, Yu
et al. (2005) induced transfer between tasks by assuming a common covariance for the tasks,
with a Normal-Inverse-Wishart prior. However, note that in these cases the different tasks
are conditionally independent given the kernel; in contrast our methods discussed above are

stronger in that they directly model correlations between the tasks.
Within the GP literature, Minka and Picard (1999); Lawrence and Piatt (2004); Yu et al.

(2005); Schwaighofer et al. (2005); Yu et al. (2006) give models where the covariance matrix
of the full (noiseless) system is block diagonal, and each of the M blocks is induced from the
same kernel function. Under these models each y., is conditionally independent, but inter-task

tying takes place by sharing the kernel function across tasks. In contrast, in our models and in
Teh et al. (2005); Yu et al. (2007) the covariance is not block diagonal.

The semiparametric latent factor model (SLFM, Teh et al., 2005) involves having P latent

processes (where P < M) and each of these latent processes has its own covariance function.
The noiseless outputs are obtained by linear mixing of these processes with a M x P matrix
<F. The covariance matrix of the system under this model has rank at most PN, so that when
P <M the system corresponds to a degenerate GP. Our model is similar to Teh et al. (2005) but

simpler, in that all of the P latent processes share the same covariance function; this reduces the
number of free parameters to be fitted and should help to minimise overfitting. With a common

covariance function kx, it turns out that is equal to <M>T, so a K1 that is strictly positive
definite corresponds to using P = M latent processes. Note that if P > M one can always find
an M x M matrix T>' such that <E>'cF,T = <£><£>T. We note also that the approximation methods
used in Teh et al. (2005) are different to ours, and were based on the subset of data (SoD)
method using the informative vector machine (IVM) selection heuristic.

In the geostatistics literature, the prior model for /. given in equation (8.21) is known as

the intrinsic correlation model (Wackernagel, 1998), a specific case of co-kriging. A sum of

Chapter 8. Multi-task Gaussian Process Prediction 136

such processes is known as the linear coregionalization model (LCM, Wackernagel, 1998) for
which Zhang (2007) gives an EM-based algorithm for parameter estimation. Our model for
the observations corresponds to an LCM model with two processes: the process for /. and the
noise process. Note that SLFM can also be seen as an instance of the LCM model. To see

this, let Epp be aPx P diagonal matrix with 1 at (p,p) and zero elsewhere. Then we can write
the covariance in SLFM as (<S>0/)(£^=I Epp 0 AT*)(<I>0/)t = Y*p=\ (<&Epp<&r) 0 Kxp, where
chCppT1' is of rank 1.

There are also other assumptions one can make about ways to share information between
tasks; for example, one can consider mixture models for task clustering (Bakker and Heskes,
2003). Evgeniou et al. (2005) consider methods for inducing correlations between tasks based
on a correlated prior over linear regression parameters; In fact this corresponds to a GP prior
using the kernel k(x,x') = xrA\' for some positive definite matrix A. In their experiments
they use a restricted form of K? with K.{m — (1 — V) + EM8em (their equation 25), i.e. a convex
combination of a rank-1 matrix of ones and a multiple of the identity. Notice the similarity to

the PPCA form of K? given in section 8.5.5.

8.8 Compiler Optimisation as a Performance Prediction Problem

As mentioned at the beginning of this chapter, one possible approach to combinatorial opti¬
misation is to use a regression function fj(x) in order to approximate the evaluation function
of optimisation problem j. Thus, such a regression function can be used as a proxy for the
actual evaluation function. Clearly, this is particularly useful when the evaluation function
is very expensive to execute. For example, in the case of the compiler optimisation problem
each function evaluation requires the compilation and execution of a program. However, if the

space of solutions X is very large then even if this regression function can be learnt accurately
it would be very time consuming to find the x that optimises fj(x). Thus, in cases where the
search space is very large it will be necessary to use the learned performance predictor as a

proxy for the evaluation function within search or sampling methods.

8.8.1 Formulation: The Performance Prediction Problem

As stated above, we are interested in learning the mapping x —»y for problem j with a regres¬

sion function fj (x) that can be used to make predictions on unseen inputs x*. For the compiler
optimisation problem x € X is a representation of a transformation sequence and y is the per¬

formance speed-up of a program j under the application of the given sequence of compiler
transformations. Therefore, our regression task is to predict the speed-up of a given program

under transformation x. Let us refer to this task as the performance prediction problem.
Since we are interested in the Multi-task learning setting we will consider a collection of

Chapter 8. Multi-task Gaussian Process Prediction 137

optimisation problems (or tasks) in order to build a regression function on all these problems
as described in sections 8.4 and 8.5. We identify each task as a specific program (i.e. the
performance prediction problem on a specific program) and the input for each task is given by
sequences of transformations x. Below, we provide details of the set up for both models (multi¬
task GP with task-descriptor features and multi-task GP without task-descriptor features) and
an empirical evaluation on the small space of the SUIF data set on the TI architecture. See

chapter 5 for details on the experimental set up under which this data set has been generated.

8.8.2 Input Features

Two different codings of the sequence of transformations into the x-vector of features have
been used: a code-features representation (C) and a transformation-based representation (T).

The code-features representation (C) is obtained by computing features believed by com¬

piler experts to be informative about program performance. These features are extracted from
the transformed version of the program after applying a transformation sequence so that they
encode the result of each sequence.

As mentioned at the beginning of Chapter 5, the input features used for distinct machine

learning techniques may well be very different. We have found experimentally that the fea¬
tures used for the Predictive Search Distribution approach (see Table 7.2) were not sufficiently
informative about the effect of the transformations used on the performance of the programs.

Therefore, another set of features has been used for the regression approach to compiler opti¬
misation. These code features are based on three distinct metrics: code size, the total number of

instructions executed and the parallelism existing among those instructions. For each of these
metrics, a vector of high-level machine-independent instructions is derived by using the SUIF

compiler infrastructure (Hall et al., 1996). Our high-level instructions correspond to the ones

used by the SUIF Intermediate Representation (IR). A total of 83 features were extracted per

program. These were reduced to 18 features using PCA, retaining 95% of the variance. One

advantage of the code-features representation is that these features can be extracted even if new
code transformations that have not been seen before are applied.

The transformation-based representation (T) used considers a bag-of-characters repre¬

sentation where the presence or absence of the transformations within a sequence is recorded
in a binary vector. Clearly, this throws away the ordering information within a sequence and
one might lose predictive performance due to this loss of information. However, using more

complex representations that, for example include the order information or the positional in¬
formation, would require larger amounts of data for training.

Chapter 8. Multi-task Gaussian Process Prediction 138

8.8.3 Task-descriptor Features

For multi-task GP with task-descriptor features it is necessary to define the task descriptors (or
task-specific feature vector) t used to describe a program. A response-based approach in order
to extract useful descriptors for a program is presented below.

The Canonical Responses

Task-descriptor features are defined by selecting a small number of sequences and recording the

corresponding speed-ups on the given task. We will refer to this set of sequences as canonical
sequences and to their corresponding speed-ups as canonical responses. We select the set

of canonical transformation sequences using the technique of principal variables (McCabe,
1984).

Here (as in PCA) the dimensionality reduction problem is formulated as the linear mapping
from a high-dimensional vector (the speedups for all sequences) to a lower dimensional one.
However, in this case the linear mapping simply copies some of the variables and discards the
rest, hence the term "principal variables". McCabe considers a number of different criteria
for selecting a subset of variables. Here we choose the set of included variables Sm so as to

maximise the determinant of the covariance matrix of these variables, i.e. |£s{1) |. This may be
interpreted as maximisation of a Gaussian approximation to the mutual information I(S^y,T)
which the retained variables contain about the identity of the task T. (An alternative
criterion is to minimise the trace of the conditional covariance matrix of the discarded variables

given the selected variables, i.e. tr(Z5(2)|s(1)) where S(2) denotes the set of variables discarded.)
As searching for the optimal partition is computationally expensive, the suggestion in McCabe
(1984) is followed and a greedy forward selection strategy to select the subset is used.

As specified above, the canonical responses would be extracted using all the sequences

on each of the training problems. However, it has been found that using canonical responses
extracted from only 2048 randomly selected sequences yields almost as good performance as

extraction from the larger set. In the experiments, 8 canonical variables are used.
The response-based approach is not the only one that we can consider for defining task-

specific features. For instance we might describe each untransformed program with code fea¬
tures (see section 8.8.2). Notice that in contrast to section 8.8.2, this would be characterising a

program, not a sequence of transformations. However, experimentally, it has been found that
the response-based method is superior.

8.8.4 Evaluation Set Up

In the sequel, let us refer to multi-task GP with task-descriptor features as the task-descriptor
method and to multi-task GP without task-descriptor features as the free-form method.

Chapter 8. Multi-task Gaussian Process Prediction 139

Task-descriptor method

Leave-one-out cross-validation (LOO-CV) has been used for evaluating the performance of the
models, so for each LOO-CV experiment there are M = 11 — 1 = 10 reference tasks2. Obvi¬
ously, it would be impractical to have a system that relies on exhaustive training data for making
predictions. Therefore, we have sampled the space of each benchmark and investigated differ¬
ent sample sizes; below the results for nr = 256 training points per benchmark are reported.
Note also that in this set up the canonical sequences were obtained in the LOO-CV framework,
so that for a given test task the canonicals were extracted from only the 10 reference tasks.

In addition to the data from the reference problems, access to varying amounts of data from
the test problem has also been considered. These points are chosen according to the ordered
list of the canonical sequences. A minimum of 8 canonicals are required so as to define the

task-specific features, but more can also be used as described in section 8.8.5 below.
For this particular application, in a real-life scenario it is critical to achieve good perfor¬

mance with a low number of data-points from the test task, given that the inclusion of this

requires the compilation and execution of a (potentially) different version of a program. There¬
fore, sizes of nte = 8, 16, 32, 64 and 128 points from the test problem have been investigated.

As one of our goals is to evaluate inter-task transfer, we must also consider what perfor¬
mance can be obtained using only these small amounts of test data (i.e. the "no transfer" case).
To do this we use GP regression, and also consider a simple baseline predictor based on the
median3 of the speed-ups on the nte canonical sequences. However, as the choice of canonical

sequences depends on the reference problems, we also compare with the median speed-up of
all the sequences on each test problem. The measure of performance used is the mean abso¬
lute error (MAE) computed over all the (n*) sequences excluding the examples from the test

problem used for training. Figure 8.2 illustrates the multi-task setting for this method.

Free-form method

For this scenario only N = 16,32,64 and 128 transformation sequences per program have been
used for training as N = 8 would clearly be insufficient to estimate the parameters in the model.
All the M — 11 programs (tasks) have been used for training, and predictions have been done
at the (unobserved) remaining inputs, i.e. at all the sequences excluding the N examples from
the test problem used for training. Due to the variability of the results depending on training
set selection, 10 different replications have been done.

2The benchmark mult has not been included given that there is no variability in its speed-up values.
3The median is the optimal value to minimise mean absolute error; the mean is optimal for mean squared error.

Chapter 8. Multi-task Gaussian Process Prediction 140

Input points

Tx

T2

Tm

to$ S8
H J

<>3
03
—

03
O

03
f-H

<-t—i
03

PCj

nr

nr

nr

nr

^te n*

Figure 8.2: The multi-task scenario for the task-descriptor method. Training is done by including

nr data-points from each reference task and nte data-points from the test task. The goal is to

make predictions on the unseen n* data-points on the test task.

8.8.5 Methods Used

For the task-descriptor method, multi-task Gaussian process regression has been used as ex¬

plained in section 8.4. A squared exponential covariance function with automatic relevance
determination (ARD) has been used as explained in section 8.1.2. Prediction with linear re¬

gression models was also tried, but this gave inferior performance to the GPs. For example, the

average mean absolute errors (MAE) across programs for the combined method when using
GPs and linear regression were 0.0576 and 0.1207 respectively. Hyperparameter learning has
been performed by maximising the marginal log-likelihood (equation 8.15) of the data from
the reference problems and the nte test points.

For the "no transfer" case using only nte points from the test problem there is a danger that
the full ARD model would involve too many parameters and thus be in danger of overfitting.
In this case for nte < 64, an isotropic covariance function (with all £,'s tied) was used instead
of the ARD model. Experiments showed that the performance of the isotropic-no-transfer GP

predictor was better than or equal to the ARD-no-transfer model.
For the gating network the setting given by equation (8.20) has been used. The gating

network has been trained to maximise the conditional likelihood of the training data (equation

(8.19)) using gradient-based methods. In addition to the data from the M reference data sets,

the speed-ups obtained on the canonical sequences of the new task have also been included
to train this network; here the new task has been given equal weight to the other tasks, even

though there is less training data, so as to emphasise the importance of the task-specific data.
For the free-form method a squared-exponential (or Gaussian) covariance function kx with

ARD has been used and a free-form for K? has been adopted. In order to constrain the number
of parameters in Kf a Cholesky decomposition — LLr has been used. As in the feature-
based case, hyperparameters of the models QX,L,D have been learnt so as to maximise the

marginal likelihood p(y0\X,K^,QX) using gradient-based search in MATLAB with Carl Ras-

Chapter 8. Multi-task Gaussian Process Prediction 141

mussen's minimize .m4. In the experiments this method usually outperformed EM in the qual¬
ity of the solutions found and in the speed of convergence.

Where relevant the hyperparameters were initialised as follows: all the length scales were
initialised to 1, the signal variance was initialised to 1, and the noise variance to 0.01 (and
for the free-form method all cj were constrained to be equal). Additionally, for the free-form
method Kf was initialised (given £*(•, •)) by using the noise-free expression K? = j^Y7 (KX)~XY
given in section 8.5.4 .

8.8.6 Results

Below we first present results for multi-task learning with task-descriptor features with both
the combined and gating methods, using either code features (C) or transformations (T) as the

representation for x. Afterwards, the results of multi-task GP without using task-descriptor
features are compared with the feature-based method.

Predictions with the task-descriptor method

Figure 8.3 shows results for the case when n,e = 8, i.e. we use a very small amount of data
from the test problem. The four methods T-combined, C-combined, T-gating and C-gating are

shown along with the two baselines: median (of the 8 canonical responses) and median (of
all test data). Note that there are error bars on the four transfer methods due to the random

selection of the nr = 256 training points from each of the reference problems; 10 repetitions
were used to assess this variability. The median of the test data gives the best possible MAE
for a given test problem without looking at the x data; it defines a reference point but requires
all speed-ups from the test problem to compute it, rather than the 8 which are available to the
transfer methods (and median canonicals).

In Figure 8.3 we see the trend that those problems with higher variability (as seen in Figures
6.1 and 6.2) generally have a larger error. T-gating generally performs worse than T-combined.
For the code features representation, we observe that C-gating generally performs better than
C-combined. The best performing transfer method on average is T-combined. This gives some

significant improvements over the median predictors, particularly on problems compress, fir,

histogram, latnrm, and Imsfir, and gives similar performance to the medians for the other prob¬
lems. Its average MAE performance is 0.0576 compared to 0.1162 for the average of the me¬

dian canonicals. Note that Bakker and Heskes (2003) only present results which are aggregated
over all tasks, rather than a more detailed decomposition like the one given here.

One reason why the gating network approach may be limited is that as the component

predictors are trained on the individual reference tasks, it may not be expected to generalise
well if the pattern of speed-ups on the test problem is very different from those of the reference

4This can be downloaded from http: //www.gaussianprocess.org/gpml/code/gpml-matlab. zip.

Chapter 8. Multi-task Gaussian Process Prediction 142

Figure 8.3: Mean absolute error (MAE) on each of the problems (programs) and the average

on the small space of the SUIF data set on the Tl board, for the 4 methods T-combined, C-

combined, T-gating and C-gating and the two baselines median (canonical) and median (of all
test data). The error bars denote one standard deviation. The error bars for the averages are

computed as the average of the standard deviations over all problems. [C] denotes the code-
features representation and [T] the transformations representation. For C-combined on LMS the
MAE is 0.54, with standard deviation of 0.007. The results on the program mult are not reported
as there is no variability on the speed-ups of this benchmark.

problems. This might be overcome by joint training of the component predictors and the gating
network, as in the mixture of experts architecture (Jacobs et ah, 1991).

Figures 8.4 and 8.5 show in more detail the performance of various methods as a function
of n,e. They show the performance of the T-combined and two T-no-transfer methods, along
with the median (canonicals) baseline for each of the 11 problems; the bottom right-hand panel
in Figure 8.5 shows the averages. Note that, as in Figure 8.3, the results on the benchmark mult
have not been reported as there is no variability in the speed-ups of this program.

The T-no-transfer-canonicals method uses a GP predictor trained on only the nte canonical

sequences; consequently there are no error bars for these curves. In contrast, T-no-transfer-
random is trained on a set randomly selected data points of size nte. Generally the performance
of T-no-transfer-canonicals is superior to T-no-transfer-random.

The plots in Figures 8.4 and 8.5 reinforce the message of Figure 8.3. They also show
that for those problems where transfer is significant, this advantage tends to disappear when
nte reaches higher values of around 128. However, note that for the compilers application it
is desirable to make as few runs as possible on the test problem, so it is definitely the small
nte values that are most relevant in this case. Thus we can conclude that for the T-combined

method transfer learning generally either improves performance or leaves it about the same in

comparison to the T-no-transfer-canonicals method.

Chapter 8. Multi-task Gaussian Process Prediction 143

0.16

0.14

0.12

0.1

UJ
< 0.08

0.06

0.04

0.02

0

ADPCM

[T] COMBINED
[7] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
TEST SAMPLES INCLUDED FOR TRAINING

0.35

0.3

0.25

0.2

[T] COMBINED
■ - - [T] NO TRANSFER RANDOM
- - • [T] NO TRANSFER CANONICALS

MEDIAN CANONICALS

8 16 32 64 128
TEST SAMPLES INCLUDED FOR TRAINING

EDGE_DETECT
0.14

0.12

0.1

0.08
j

0.06

0.04

0.02

0

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
TEST SAMPLES INCLUDED FOR TRAINING

-[T] COMBINED
- [T] NO TRANSFER RANDOM

• [T] NO TRANSFER CANONICALS
• MEDIAN CANONICALS

8 16 32 64 128
TEST SAMPLES INCLUDED FOR TRAINING

0.4

0.35

0.3

0.25

I
; o.2

0 15

0.1

0.05

0

[T] COMBINED
[T] NO TRANSFER RANDOM

- ■ - • [T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

B 16 32 64 128
TEST SAMPLES INCLUDED FOR TRAINING

0.4

0.35

0.3

0.25

ID
< 0.2

0.15

0.1

0.05

0

[T] COMBINED
[T| NO TRANSFER RANDOM

- -• [T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

fv.-i.
\ 1 "s

'Ok
8 16 32 64 128
TEST SAMPLES INCLUDED FOR TRAINING

Figure 8.4: The performance of the T-combined (multi-task GP with task-descriptor features)
and T-no-transfer methods and median (canonicals) as a function of nte on the small space of 6

problems (programs) of the SUIF data set on the Tl board. The error bars denote one standard
deviation.

Chapter 8. Multi-task Gaussian Process Prediction 144

IIR_4_64 LATNRM_32_64
0.16

0.14

0.12

0.1

J
; o.o8

0.06

0.04

0.02

0

[7] COMBINED
[T] NO TRANSFER RANDOM

- • - ■ [T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

F—

8 16 32 64 128
TEST SAMPLES INCLUDED FOR TRAINING

[T] COMBINED
P] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

1-...

8 1 6 32 64 128
TEST SAMPLES INCLUDED FOR TRAINING

LMSFIR_32_64 LPC

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
TEST SAMPLES INCLUDED FOR TRAINING

[T] COMBINED
[T] NO TRANSFER RANDOM

- - ■ [T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

k

Frrrrt-

8 16 32 64 128
TEST SAMPLES INCLUDED FOR TRAINING

SPECTRAL_ESTIMATION ALL BENCHMARKS

[T] COMBINED
[T] NO TRANSFER RANDOM
[7] NO TRANSFER CANONICALS
MEDIAN CANONICALS

u

8 16 32 64 128
TEST SAMPLES INCLUDED FOR TRAINING

0.18

0.16

0.14

0.12

I °"1
1
0.08

0.06

0.04

0.02

0

k
[T] COMBINED
[7] NO TRANSFER RANDOM
[7] NO TRANSFER CANONICALS
MEDIAN CANONICALS

:L
■ -k.

8 16 32 64 128
TEST SAMPLES INCLUDED FOR TRAINING

Figure 8.5: The performance of the T-combined (multi-task GP with task-descriptor features)
and T-no-transfer methods and median (canonicals) as a function of nte on the small space of
the remaining 5 problems (programs) of the SUIF data set on the Tl board. The bottom right

panel shows the average performances. The error bars denote one standard deviation.

Chapter 8. Multi-task Gaussian Process Prediction 145

Predictions with the free-form method

Figures 8.6 and 8.7 show the mean absolute errors obtained on the compiler data for every task
and on average all the tasks (Figure 8.7 bottom right). As before, the results on the benchmark
mult are not reported due to the lack of variability in the speed-ups of this program.

Let us take for example histogram (bottom right of Figure 8.6) where learning the tasks

simultaneously brings major benefits over the no transfer case. Here, the free-form multi-task
GP method provides a reduction on the mean absolute error of up to 6 times. Additionally,
it is consistently (although only marginally) superior to the task-descriptor approach. For fir
(bottom left of figure 8.6), the free-form method not only significantly outperforms the no

transfer case but also provides greater benefits over the task-descriptor method (which for N =

64 and 128 is worse than no transfer). The benchmark adpcm (top left of figure 8.6) is the

only case out of all 11 tasks where the free-form method degrades performance, although it
should be noted that all the methods perform similarly. Further analysis of the data indicates
that learning on this task is hard as there is a lot of variability that cannot be explained by
the bag-of-characters representation used for the input features. Finally, for all tasks (Figure
8.7 bottom right) on average the free-form method brings significant improvements over single
task learning and consistently outperforms the task-descriptor method. For all tasks except

one the model provides better or roughly equal performance than the non-transfer case and the

task-descriptor model.

Using the Predictions for Optimisation

It has been shown so far that multi-task GP brings further benefits over the no transfer scenario
on the compiler performance prediction problem. Here we aim to evaluate the performance of
these models on the compiler optimisation problem, i.e. when using such performance predic¬
tors in order to find a good set of transformation sequences.

As shown in equation (8.8), predictions with Gaussian processes require the inversion of
the Gram matrix once, which can be stored and used in conjunction with the test covariances
in order to compute a linear combination of the training targets. Therefore, this prediction

procedure can be used in order to estimate the expected performance of a potentially large
set of transformation sequences. Those transformation sequences that are expected to provide

high speed-ups are then evaluated on the actual architecture5. Hence, the regression models

proposed in this chapter can be used as proxies of the evaluation function, which in the compiler

optimisation problem corresponds to the compilation and execution of a program on the actual
architecture.

For comparative purposes a similar evaluation to the one presented in chapter 7 is given

5Obviously, since we have exhaustive data, this evaluation is performed by looking at the table of complete
speed-ups corresponding to each program.

Chapter 8. Multi-task Gaussian Process Prediction 146

NO TRANSFER
TASK-DESCRIPTOR
FREE-FORM

NO TRANSFER
TASK-DESCRIPTOR
FREE-FORM

±i

EDGE_DETECT

NO TRANSFER
■--TASK-DESCRIPTOR

FREE-FORM

"I,

'"I

'"•1

0.07

0.06

0.05

0.04
|

0.03

0.02

0.01

0

NO TRANSFER
TASK-DESCRIPTOR
FREE-FORM

NO TRANSFER
TASK-DESCRIPTOR
FREE-FORM

4,-4^

32 64
N

0.2

0.18

0.16

0.14

0.12

I

i °-1

0.08

0.06

0.04

0.02

0

NO TRANSFER
TASK-DESCRIPTOR
FREE-FORM

32 64
N

Figure 8.6: The performance of the transfer methods using multi-task GP with task-descriptor
features (TASK-DESCRIPTOR); multi-task GP without task-descriptor features (FREE-FORM)
and the no transfer method as a function of N on the small space of 6 problems (programs) of
the SUIF data set on the Tl board. The error bars denote one standard deviation.

Chapter 8. Multi-task Gaussian Process Prediction 147

LATNRM_32_64

NO TRANSFER
TASK-DESCRIPTOR
FREE-FORM

LMSFIR_32_64

NO TRANSFER
TASK-DESCRIPTOR
FREE-FORM

SPECTRAL_ESTIMATION

NO TRANSFER
TASK-DESCRIPTOR
FREE-FORM

0.08

0.07

0.06

0.05

; o.o4

0.03

0.02

0.01

0

0.03

0.02

0.01

0

0.08
!

0.06

0.04

0.02

NO TRANSFER
TASK-DESCRIPTOR
FREE-FORM

N

LPC

NO TRANSFER
TASK-DESCRIPTOR
FREE-FORM

L 1
[r : 1

32
N

ALL TASKS

NO TRANSFER
TASK-DESCRIPTOR
FREE-FORM

—F

Figure 8.7: The performance of the transfer methods using multi-task GP with task-descriptor
features (TASK-DESCRIPTOR); multi-task GP without task-descriptor features (FREE-FORM)
and the no transfer method as a function of N on the small space of the remaining 5 problems

(programs) of the SUIF data set on the Tl board. The bottom right panel shows the average

performances. The error bars denote one standard deviation.

Chapter 8. Multi-task Gaussian Process Prediction 148

Figure 8.8: The performance of the multi-task GP methods when used for optimisation for 10
different replications on the small space of the SUIF data set on the Tl board for those bench¬
marks for which some improvement can be achieved. On the LHS the task-descriptor method
and on the RHS the free-form method. The number of test samples used for training in both
methods is 8, which have been included for the computation of the SIFs.

here. Recall from section 7.5.6 that we defined En as the expected number of samples under
uniform search necessary to achieve a performance value that is at most within £% of the

global maximum. Similary, E& is the the expected number of samples under search algorithm
Ft necessary to achieve a performance value that is at most within £% of the global maximum.
The search improvement factor is then defined as SIF = En/E&, so that SIF values greater
than 1 correspond to an improvement over uniform search.

Here we will compute E%_ as the number of samples needed to achieve good performance
(as defined above) empirically determined by evaluating those sequences that are expected to

have the greatest speed-ups as predicted by the regression models. As in section 7.5.6 we use

£ = 5%.

Figure 8.8 shows the SIFs when using the task-descriptor method (left) and the free-form
method (right) for those benchmarks where some improvement over the baseline version of the

program is available. We see that unlike the performance prediction problem where the free-
form method provided the best results, for the optimisation task both methods have roughly the
same performance. We also see that for six out of eight benchmarks the methods give some

improvement over uniform search with the best SIFs obtained for edge, Ipc and cidpcm. Note
however, that for those benchmarks where the methods degrade performance over uniform
search (iir and spectral), the En is very low (1.8 and 2.6 respectively as shown in Table 7.3),
so the methods still require a low number of samples to achieve good performance.

Chapter 8. Multi-task Gaussian Process Prediction 149

Figure 8.9: Hinton diagram indicating the r values for each task (program) on the small space of
the SUIF data set on the Tl board in order to illustrate inter-task transfer. The r values measure

the relative contribution of the coefficients of a specific task with respect the contribution of all
the tasks when making predictions. Each row corresponds to the r values for the test tasks
labelled on the left. The order of the tasks is adpcm, compress, edge, fft, fir, histogram, iir,

latnrm, Imsfir, Ipc and spectral.

Analysing Inter-Program Similarity

It has been shown in section 8.6 that one way of quantifying inter-task transfer is to look
at statistics of the r values, which are the coefficients of the training targets when making

predictions. The r values measure the relative contribution of the coefficients of a specific task
with respect the contribution of all the tasks when making predictions. Figure 8.9 shows the
r values for each of the test tasks for the task-descriptor method with 256 training points per

task and including nte = 8 points from the test task. We see that the contribution from the test

benchmarks is, in general, significant for making predictions, considering that only nte = 8
test points have been used. However, predictions are also helped by the contribution of other
tasks. For example, predictions on fir rely heavily on training data from benchmark compress.
Similarly, predictions on all benchmarks except histogram are only weakly related to training
data from benchmark Imsfir.

8.9 Summary and Discussion

This chapter has described an alternative machine learning approach to the problem of com¬
binatorial optimisation. It contrasts with the standard sequential prediction formulation of the

Chapter 8. Multi-task Gaussian Process Prediction 150

problem in that it attempts to build an estimator of the evaluation function instead of a predictor
of good points in the optimisation space. Such an approach is particularly convenient for those
optimisation problems where the evaluation function is very costly. For example, in the com¬

piler optimisation problem each function evaluation requires the compilation and execution of
a program.

The main idea is that having an estimator for the evaluation function of an optimisation

problem allows us to rapidly search the optimisation space without actually executing the eval¬
uation function. Therefore, a performance predictor acts as a proxy for the evaluation function.
In order to use such performance predictors in practice, one can evaluate a potentially large
set of points in the optimisation space and then execute the actual evaluation function on those

points that are expected to provide high performance. If the search space is very large so that
it cannot be exhaustively enumerated, the proxy predictors can be used in conjunction with
search (or sampling) methods.

One of the fundamental features of the regression methods proposed in this chapter is that

they aim to achieve transference across tasks by exploiting the shared information between
them. Indeed, multi-task Gaussian process prediction achieves this by directly modelling cor¬

relations between tasks. For the case when tasks-descriptor features are available, the com¬

bined method uses a joint covariance function over tasks-descriptor features and input features.
When such a covariance function decomposes (as in the case of the square exponential covari¬
ance function), one effectively learns task similarity and input similarity as given by kf and kx.
When task-descriptor features are not available or when they are difficult to define correctly,
a "free-form" task similarity matrix K? can be learnt. This can provide greater flexibility for
modelling task relationships. Additionally, it has been shown that for the case of noise-free
observations and block-design experiments a cancellation of inter-transfer occurs.

Multi-task Gaussian process prediction has been applied to the compiler performance pre¬

diction problem and has been shown to achieve better performance or roughly the same per¬

formance than the no transfer case. When using such predictors for optimisation, it has been
shown that significant speed-ups can be achieved on the small space of the SUIF data set on

the TI board.

It has also been shown that when using multi-task GP it is possible to quantify the amount

of inter-task transfer that is taking place when making predictions. This has been applied to the

compiler problem and some program similarities have been established.
As it has been emphasised in this chapter, following the indirect approach of learning per¬

formance predictors in order to tackle optimisation problems is best suited to those problems
where the evaluation function is costly. Standard sequential prediction methods such as the

technique of Predictive Search Distributions (PSD) should be preferred when this is not the
case. However, if there are strong constraints on the number of samples that can be taken

Chapter 8. Multi-task Gaussian Process Prediction 151

from a new optimisation problem, performance predictors can be used as complementary tech¬
niques for sampling or search methods or even for PSD, when instead of actually executing the
evaluation function the estimations given by the predictors are used.

Chapter 9

Conclusions and Future Work

This thesis has presented a machine learning approach to the problem of compiler optimisa¬
tion. Compiler optimisation is the task of making a compiler produce better code, i.e. code that
runs faster, occupies less memory or consumes less energy. The focus has been on optimising
a compiler for speed, i.e. making a compiler generate code that runs faster. Although numer¬

ous program transformations for compiler optimisation have been proposed in the literature,
it is difficult to ascertain when and how a particular code transformation should be applied
to a program, as many of these transformations can be beneficial or detrimental depending

(e.g.) on the code being compiled. Furthermore, some transformations can enable/disable or

increase/decrease the applicability or effectiveness of other transformations, which is known as

the problem of interactions between program transformations. Traditional approaches adopted

by compiler writers use hand-crafted heuristics that dictate when and how a particular code
transformation should be applied to a program. However, these heuristics require a lot of time
and effort to construct and may sacrifice performance on programs they have not been tuned
for.

The machine learning approach proposed in this thesis provides a solution to the problem of

compiler optimisation that automatically generates optimisation strategies and that allows the

generalisation of these strategies to programs that have not been seen before. In other words, it
allows a compiler to tune itself in order to optimise programs while requiring very little human
intervention. This approach is based upon the construction of models that capture the informa¬
tion that features of the programs provide about "good" sequences of code transformations and
their performances.

Two different but related areas of research in compiler optimisation have been identified:

global optimisation and predictive modelling. Unlike most previous work (see Chapter 4) that
have addressed these problems independently, this thesis has presented a unified framework
for compiler optimisation that uses predictive modelling in order to search the optimisation

space of sequences of code transformations. This is achieved by exploiting transference across

152

Chapter 9. Conclusions and Future Work 153

programs based upon two different formulations of the problem: as a sequential prediction
task and as a performance prediction problem. While the former (i.e. the sequential prediction
task) is tackled with the Predictive Search Distributions technique (proposed in Chapter 7), the
latter (i.e. the performance prediction problem) is addressed with multi-task Gaussian process

prediction (see Chapter 8).
Both approaches, Predictive Search Distributions (PSD) and multi-task Gaussian process

prediction, are formulated as general machine learning techniques. In particular, the PSD
method is proposed in order to speed up search in combinatorial optimisation problems by

learning a distribution over good solutions on a set of problem instances and using that distri¬
bution to search the optimisation space of a problem that has not been seen before. Likewise,
multi-task Gaussian process prediction is proposed as a general method for multi-task learning
that directly models the correlation between several machine learning tasks and thus it exploits
the shared information across the tasks.

Unlike most previous approaches to compiler optimisation with machine learning that learn
when/how to apply a single transformation in isolation or a fixed-order set of binary optimi¬
sation flags available within a compiler, the techniques proposed in this thesis are capable of

dealing with the general problem of predicting good sequences of compiler transformations.

9.1 Contributions

The following are the specific contributions of this thesis:

1. A general framework for compiler optimisation based upon machine learning techniques
has been proposed. This framework tackles the problems of global optimisation and pre¬

dictive modelling in a unified manner by using a transfer learning approach. Thus, trans¬
ference is exploited across different programs by learning predictive models on these

programs in order to search the optimisation space of programs that have not been seen

before, or programs for which very little data is available. Within this framework, a

direct or an indirect approach can be adopted. In the direct approach, the problem is for¬
mulated as a sequential prediction task, i.e. predicting "good" transformation sequences.

In the indirect approach, the optimisation task is formulated as a regression problem
where proxy models of the performance of the programs under the application of com¬

piler transformation sequences are constructed, which are then used in order to search the

optimisation space of new programs or programs for which very little data is available

(Chapter 3).

2. The direct approach to compiler optimisation (i.e. the sequential prediction task) has
been addressed with the technique of Predictive Search Distributions (PSD), which has
been proposed as a general method for speeding up search on combinatorial optimisation

Chapter 9. Conclusions and Future Work 154

problems. The main idea is to learn a distribution over good solutions on a collection of
optimisation problems that can be characterised by a set of features and use this distri¬
bution to focus search on a problem that has not been seen before.

Thus, the method of Predictive Search Distributions (PSD) has been used to learn a

distribution over "good" compiler transformation sequences across different programs,
and this distribution has been utilised to focus the search of transformation sequences

when a new program is presented. Significant improvements in performance have been
achieved by this method on the SUIF data set (Chapter 7).

3. The indirect approach to compiler optimisation (i.e. the use of performance models for

optimisation) has been formulated with the Multi-task Gaussian process prediction tech¬

nique, which has been proposed as a general method for achieving transference across

different machine learning tasks. The general idea is that of exploiting the shared infor¬
mation across the different tasks by directly modelling the correlations between them.
This method can be used when task-features are available (multi-task GP with task-

specific features) or when these features are unavailable or are difficult to define cor¬

rectly (multi-task GP without task-specific features). An important characteristic of the

technique is that observations on one task affect the predictions on the others.

Thus, Multi-task GP has been used to exploit the shared information across different pro¬

grams and their performances in order to predict the performance speed-up of a program
when being applied a sequence of code transformations. This method has been shown,
in general, to outperform the "no transfer" scenario (i.e. learning each performance pre¬

diction task on a single benchmark basis without using data from the other programs).

Additionally, the predictions obtained with Multi-task GP have been used to search the

optimisation spaces of the (small) SUIF data set, and significant speed-ups have been
obtained (Chapter 8).

4. The problem of identifying and quantifying the main effects of program transformations
and their interactions has been approached by extending the well-known statistical tech¬

nique of analysis of variance (ANOVA) to deal with sequence data. Results have been

reported on the small space of the SUIF data set (Chapter 6, sections 6.4 and 6.5).

5. An extensive review and characterisation of the related work on compiler optimisation
with machine learning or/and artificial intelligence has been presented. This review has
been focused on the problems of global optimisation, predictive modelling, performance
prediction and optimisation space characterisation (Chapter 4).

Chapter 9. Conclusions and Future Work 155

9.2 Future Work

This thesis has presented a probabilistic machine learning approach to the problem of compiler

optimisation. Although significant contributions have been made to the compiler optimisation
area and to the machine learning field, there are several challenges yet to be addressed in the
future. This section describes specific areas that can be tackled by future research in order
to improve and extend the work presented in this thesis. In particular, section 9.2.1 proposes

the analysis of the techniques described in this thesis on other benchmarks and transformation

spaces. Section 9.2.2 discusses the advantages and disadvantages of optimising programs at

finer levels of granularity such as functions or loops when using machine learning. Addition¬

ally, while sections 9.2.3 and 9.2.4 describe opportunities and challenges for learning across

different input data, architectures and several objective functions, sections 9.2.5 and 9.2.6 ex¬

plain future extensions to the techniques of predictive search distributions and multi-task Gaus¬
sian process prediction. Finally, section 9.2.7 proposes the use of search-tree methods for com¬

piler optimisation and section 9.2.8 explains how the general problem of learning a mapping
from an arbitrary program representation to a transformation sequence can be investigated with
machine learning techniques.

9.2.1 Analysis of Other Benchmarks and Transformation Spaces

The methods proposed in section 6.4, Chapter 7 and Chapter 8 have been applied to the SUIF
data set (described in section 5.1), which is based on the application of source-to-source trans¬

formations to 12 programs from the UTDSP benchmark suite (Lee, 1997). These methods can

be readily used in order to investigate other benchmarks, transformation spaces and compiler
infrastructures.

The MediaBench suite (Lee et al., 1997) and the MiBench suite (Guthaus et ah, 2001)
are examples of programs of interest to the embedded systems community. Other important
transformations that were not included in the experimental set up of this thesis are, for example,

loop tiling and loop fusion. Thus, future work can investigate the effect of a richer set of

program transformations on a larger set of benchmarks by using the methods proposed in this
thesis.

Going beyond program transformations applied at the source level, other environments (e.g.

compilers and architectures) can be considered. For example, new experiments can be executed
on the PathScale compiler (PathScale, 2005) for C, C++ and Fortran programs, and/or on the
Jikes framework (Burke et ah, 1999) for Java programs. This will help to demonstrate the

applicability and portability of the different approaches proposed in this thesis for learning in

compiler optimisation. Additionally, it will provide a direct understanding of the benefits of
the transformations, which is made difficult by the application of source-level transformations

Chapter 9. Conclusions and Future Work 156

on top of the optimisations applied by the base compiler.

9.2.2 Optimisation at Finer Levels of Granularity

The approach to compiler optimisation adopted in this thesis has relied upon the application
of transformation sequences at a program level. It has been shown that, when using the tech¬
niques proposed in this thesis, this approach has achieved significant improvements in the

performance of the programs used. However, as pointed out in section 5.3, transformations

applied at a program level may lead to inferior performance compared to the case when these
transformations are applied at finer levels of granularity such as functions or loops. Indeed,
different transformation sequences can be required for distinct sections of a program and op¬

timisation opportunities may be missed when assuming a single best transformation sequence

for a complete program. The advantages of a local optimisation approach are the following:

• The use of transformations applied at finer levels of granularity represents a more flexible

approach to compiler optimisation since different parts of a program may benefit from
different optimisation sequences.

• Applying transformations at finer levels of granularity, such as function-level or loop-
level, can provide a more efficient way of obtaining training data to be used by machine

learning techniques. Indeed, by focusing on learning at finer levels of granularity and

ignoring the effect of interactions between different code segments, it is possible to gen¬

erate several training data points per program.

However, there are at least two obstacles for this approach to be successful. Firstly, the
instrumentation of the code (i.e. the introduction of external code in order to measure execution

times) at finer levels of granularity is more invasive than the instrumentation at a program

level and inevitably the former yields noisier measurements. Therefore, a very cautious pre¬

processing stage should be followed when including the data that will be used for learning.

Secondly, for this approach to be feasible, it will be necessary to assume that the effect of
interactions between optimisations applied to different parts of the code is negligible. However,

independent optimisation of code segments such as functions or loops may not lead to an

improvement in performance of the complete program.

Thus, immediate future work on investigating the effect of local-level optimisation com¬

pared to program-level optimisation can be focused on addressing the following questions:

• Do local transformations provide better speed-ups?: experiments that allow a systematic

comparison of local optimisation strategies versus global optimisation strategies must be
carried out in order to analyse if indeed locally-applied transformations provide further
benefits over globally-applied transformations.

Chapter 9. Conclusions and Future Work 157

• Do code segments within a program interact?: as explained above, optimising (local)
parts of the code independently may not lead to (global) optimisation of the complete

program. Here we are interested in evaluating if the effect of optimisations on different
code segments within a program is additive. If this is not the case, quantifying the effect
of these interactions will be of great relevance to the compiler community. Readily
available techniques such as ANOVA can prove useful for this purpose.

Having investigated the issues above, machine learning can be used in order to predict good
compiler transformations for code segments such as functions or loops.

9.2.3 Learning across Different Input Data and Architectures

This thesis has addressed the problem of compiler optimisation by learning "good" transfor¬
mation sequences or the effect of transformation sequences across different benchmarks when
their corresponding input data has been fixed. However, in practice, the behaviour of a program

may change when different input data is presented, for example when having different matrix
sizes in a matrix multiplication algorithm.

Although there is some empirical evidence that a fixed set of compiler optimisations may

be a good compromise across different data sets (see e.g. Fursin et al., 2007), in general, it will
be necessary to learn a different optimisation strategy for distinct input data. Thus, future work
must involve the analysis of the effect of input data on program behaviour and the evaluation
of techniques that account for different input data sets when learning an optimising compiler.

A simple approach to learning across different input data is to characterise this input by a

set of features. For example, Vuduc et al. (2004) formulate the problem of selecting the best

implementation of a matrix multiplication algorithm for a given input as a classification task
where the input is characterised by a vector containing the matrices' sizes.

Alternatively, the problem of learning across different input data can be tackled by consid¬

ering programs with different inputs as different instances. In this case, it would be necessary

to extract dynamic features that characterise the run-time behaviour of a program (see e.g.

Cavazos et al., 2007, as a recent reference). A potential disadvantage of this approach is that

collecting such dynamic information would require at least one execution of the test program.

In addition to learning across input data, it will be interesting to investigate if it is possible
to transfer the knowledge on good compiler transformation sequences across different archi¬
tectures. As in the case of transference across programs, learning optimisation strategies across

architectures requires the extraction of informative (architecture) features. Nonetheless, even
if these features are difficult to define correctly, it is possible to use techniques such as the ones

described in Chapter 8 as long as some samples can be drawn from the test architecture and
test program.

Chapter 9. Conclusions and Future Work 158

9.2.4 Multi-Objective Optimisation

This thesis has focused on the problem of optimising a compiler in order to make programs run

faster. However, in practical scenarios such as embedded architectures it is important to con¬

sider other objectives besides execution time. For example, minimising the size of a program
and reducing the power consumed during its execution are important goals to be achieved by
an optimising compiler that generates code for an embedded system.

Nevertheless, the machine learning techniques proposed in this thesis are not restricted
to optimising a program for execution time. Indeed, if measurements of the execution time,
code size and power consumption are available, the application of the techniques proposed in
this thesis is straightforward as the only modification needed is the formulation of an objec¬
tive function that considers a trade-off between these three different objectives. However, the

general problem of optimising such a potentially complex objective function can be very hard.

9.2.5 Predictive Search Distributions

Given the limited amount of training data available for the application of predictive search
distributions (PSD), we have used in this thesis very simple distributions in order to model

"good" transformation sequences (i.e. an iid distribution and a Markov chain distribution) and
a very simple method to learn PSD (i.e. nearest neighbours). As described in section 7.3.2,
more complex distributions can be used and learning methods based on the maximisation of
the conditional likelihood can be adopted. Thus, future work can investigate more complex

parametrised distributions if enough data is available. Suitable choices of distributions can be,
for example, hidden Markov models (HMMs) and conditional random fields (CRFs, Lafferty
et ah, 2001).

From a machine learning perspective, the PSD technique can be seen as a general method to
tackle combinatorial optimisation problems. It will be interesting to investigate other domains
where this technique can be applied. As mentioned in section 7.6, families of optimisation
tasks can be induced, for example, by varying the edge weights in the input graph of problems
such as the ground state of a spin glass (Pelikan and Goldberg, 2001), or the minimum balanced
cut graph partitioning problem (Andreev and Racke, 2004).

9.2.6 Multi-task Gaussian Process Performance Prediction

Building regression models to predict the performance of programs under the effect of com¬
piler optimisations is a difficult task. Indeed, although the methods presented in Chapter 8
achieved good results compared to other approaches such as linear regression, median predic¬
tors and single-task learning, there is still room for improving the accuracy of the predictors1.

1 Note, however, that the ultimate goal of finding transformation sequences that provide significant speed-ups
can be achieved without requiring very accurate models.

Chapter 9. Conclusions and Future Work 159

Several directions can be considered in the future in order to enhance the effectiveness of these

regression models. For example, the investigation of more suitable program features for pre¬
dicting speed-up performances, the use of active data selection and the choice or design of
more elaborate covariance functions. These directions for future research are briefly described
below.

Program Features

Unquestionably, one of the most important directions for future work on building regression
models for predicting performance speed-ups is the investigation of suitable features that char¬
acterise the behaviour of programs. Note that this is also relevant to Predictive Search Distri¬
butions but its effect is seen more directly in performance models if they are assessed based on

the accuracy of their predictions.

Reasonably accurate regression models based on code features can be built on a single
benchmark scenario, i.e. without considering transference across benchmarks. However, this
scenario is not very interesting as it requires a large number of evaluations for a new program.

In a multiple-benchmark scenario (or multi-task learning scenario) the use of code features
for regression has been shown to underperform other approaches that are based on dynamic
information such as the canonical responses.

This motivates further research on the extraction of code features and on how they can be
used in order to facilitate transference across programs. It is important to emphasise that the

representation of a program is not restricted to a flat vector of features but structured represen¬

tations such as trees can also be considered. As we shall see in section 9.2.8, learning with
structured data is also a very interesting area for future research.

As shown in Chapter 8 and in Cavazos et al. (2007), dynamic information such as the
canonical responses or performance counter information proves useful when predicting per¬

formance speed-ups or good compiler transformations for programs. Thus, future work can

include the study of the informativeness of such descriptors and should consider models that
are based on both static and dynamic information.

Active Learning

An alternative way of improving the accuracy of the performance predictors is the use of
smarter techniques for the selection of the samples on which the regression models are con¬

structed. Indeed, a careful selection of the transformation sequences to be included in the

training data can provide further benefits over the case when the data-points are selected at

random.

The problem of sequentially selecting these data-points in order to improve the perfor¬
mance of the models can be seen as an active data selection (or experimental design) problem.

Chapter 9. Conclusions and Future Work 160

Useful references for approaching this problem are for example MacKay (1992) and Cohn et al.
(1995).

Covariance Functions

A rather different way to improve the performance of the regression models is to consider a

careful selection/design of a covariance function for Gaussian processes. Several examples of

commonly used covariance functions for Gaussian processes can be found in Rasmussen and
Williams (2006, Chapter 4). However, there is not much work in the literature regarding suit¬
able covariance functions for heterogeneous input spaces as the one investigated in Chapter 8
that considers a program-dependent representation and a transformation-dependent representa¬
tion.

Finally, as we shall see in the next section, it is possible to formulate the problem of finding

good optimisation sequences with a search-tree approach, where each program version corre¬

sponds to a node (in a search tree), which is obtained by applying a compiler transformation.
An interesting application of the regression models proposed in Chapter 8 is the use of these
models in order to estimate the value function and the reward function in this approach.

9.2.7 A Search-tree Formulation of Compiler Optimisation

As described in the MSc thesis of Gupta (2007, pages 7-8 and 35-36)2, the compiler optimi¬
sation problem can be formulated using a search-tree approach. Here each node of the tree is

represented with a set of features t that describe a version of the program, with the root node

being the baseline program. The children of a node are obtained by applying a compiler trans¬
formation and each node has associated with it a reward r(t) value that can be, for example,
the speed-up of the corresponding transformed program. The goal is to find the node with
maximum reward in the tree and the transitions (i.e. the sequence of transformations) that lead
to that node. The key issue is that the reward value is known only at a limited number of nodes

(given the very large number of possible states) and, therefore, a performance model (or proxy)
is needed to approximate the reward value at the unknown locations. In order to find the node
with maximum reward in the tree the value function V(t) is defined as the optimal reward in
the sub tree rooted at node t and is computed using the Bellman's equation:

V(t) = max(r(t),maxV(t')), (9.1)

where t' is a successor of t, r(t) is the reward function and V(t) is the value function. Note
the similarity of this approach with reinforcement learning (RL), see for example Kaelbling
et al. (1996) for a concise survey of RL methods, and Sutton and Barto (1998) for a more

comprehensive description. The main difference here is that we are interested in finding the

Supervised by Chris Williams with input from Peter Dayan.

Chapter 9. Conclusions and Future Work 161

maximum reward in the search tree rather than in maximising the expected reward in the long
run. In order to achieve this, Gupta (2007) proposes an algorithm that approximates the reward
function and the value function with linear-in-the-parameters models. Although it is shown
that such a formulation places several difficulties in search problems (see Gupta, 2007, pages
60-65), it will be interesting to investigate the results in real compiler data as the one used
in this thesis. Furthermore, as emphasised throughout this thesis, a very interesting goal is
that of achieving transference across programs. Thus, search-tree methods based on multi-task
Gaussian process predictors (Chapter 8) can also be investigated.

9.2.8 Learning in Structured Spaces

Predicting good compiler transformations for programs can be seen as the problem of learning
in structured spaces where the goal is to model the mapping t —»x, where t is a representation
of a program and x is a transformation sequence that is expected to achieve best performance.
Note that in general, for any given program t, x can have an arbitrary length Z. Additionally, t
is not necessarily a vector of features but it can be a more general representation of a program
as given by, for example, an Abstract Syntax Tree (AST) or a Control Flow Graph (CFG).

The structured prediction problem can be addressed with Predictive Search Distributions

(Chapter 7) by considering complex parametrised distributions, e.g. second order Markov mod¬
els, Hidden Markov Models (HMMs) or Conditional Random Fields (CRFs, Lafferty et ah,

2001). If practical constraints are placed on the number of samples that can be drawn from
such distributions, it is possible to make single-point predictions by considering the argmax

of the predicted distributions. In other words, given a new program t* we predict x* such
x* = argmaxxGXp(x|t*). Additionally, it is possible to deal with variable-length sequences by
learning a length-conditional model on good solutions p(x\t,£) and a posterior over lengths on

these solutions p{Z|t).
Multi-task Gaussian process prediction (Chapter 8) can exploit the structured nature of the

problem by using (structured) covariance functions on both the transformation sequence space

and the program representation space. There has been a lot of work in recent years on kernels
for non-vectorial data as described in Rasmussen and Williams (2006, section 4.4), Scholkopf
and Smola (2001, Chapter 13) and Shawe-Taylor and Cristianini (2004, Chapter 11). However,
the regression approach to compiler optimisation has the disadvantage that it can be very slow
if the transformation-sequence space is very large as the learned regression function would
need to scan as many sequences as possible on a test program.

Alternatively, the recent advances in kernels for structured data can be used by directly

considering the problem of learning the general mapping from a structured representation of
a program to a transformation sequence. One possible approach to learning with structured
data is Kernel Dependency Estimation (Weston et al., 2003). Here the authors consider the

Chapter 9. Conclusions and Future Work 162

general problem of finding a mapping between a general class of objects to another (possibly
different) class of objects. To achieve this, inputs and outputs are mapped to kernel spaces by

using (generally) different appropriate kernel functions ^(t) and 4>m(x) respectively. Their
solution is based on the following steps:

1. Decompose <bm(x) into p orthogonal directions by using kernel PCA (see e.g. Scholkopf
and Smola, 2001, Chapter 14).

2. Learn the mapping from T\.(t) to each of the above directions independently using e.g.

standard kernel regression methods.

3. Solve the pre-image problem, i.e. map the solution found in the M space to the original
X space.

The final step above is, in general, very hard and it may be necessary to search the space of
candidate solutions instead. Additionally, the solution above is strongly dependent upon having
"good" kernel functions. The art of designing appropriate kernel functions for structured ob¬

jects is similar the the task of designing suitable covariance functions in Gaussian processes. In
the case of the compiler optimisation problem we are mainly interested in finding good string

representations for sequences of transformations and tree-based representations for programs.
Therefore, string kernels and tree kernels (see e.g. Lodhi et ah, 2002; Yishwanathan and Smola,
2003) can be readily applied.

In summary, this thesis has extensively reviewed the previous literature on compiler opti¬
misation with machine learning and has proposed novel methods on the areas of performance

prediction, predictive modelling and characterisation of the optimisation space that are signif¬
icant contributions not only to the compiler optimisation field but also to machine learning
research. Additionally, based upon the research carried out during the development of this the¬
sis, directions for future work have been proposed not only to improve what has been achieved
in this thesis but also to pursue the ultimate goal of constructing a machine-learning-based

adaptive optimising compiler.

Appendix A

Transformations Used on the Large

Space of the SUIF Data Set

Id

1

2

3

4-6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Transformation

Aggressively scalarise constant array references
Annotate array forms

Array Delinearisation

Array Padding with parameters 0, 2, 4

Array Scalarisation
Bit Packing
Bounds Comparison Substitution
Break load constant instructions

Chain multiple array references
Common Subexpression Elimination
Common Subexpression Elimination (no pointers)
Constant Folding
Constant Propagation
Control Simplification

Copy Propagation
Dead Code Elimination

Dismantle abs instructions

Dismantle array instructions
Dismantle composite float and integer instructions
Dismantle composite float instructions
Dismantle divceil instructions

Dismantle divfloor instructions

163

Appendix A. Transformations Used on the Large Space of the SUIF Data Set 164

Id

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46-50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Transformation

Dismantle divmod instructions

Dismantle empty TREEJFORs
Dismantle integer abs instructions
Dismantle integer max instructions
Dismantle integer min instructions
Dismantle max instructions

Dismantle memcpy instructions
Dismantle min instructions

Dismantle multi-way branches
Dismantle non-constant FORs

Dismantle TREE_BLOCKs

Dismantle TREEJBLOCKs with empty symbol table
Dismantle TREEJFORs

Dismantle TREE_FORs with modified index variable

Dismantle TREEJFORs with spilled index variable
Dismantle TREE_LOOPs

Eliminate enumeration types

Eliminate struct copies
Eliminate sub-variables

Elimination of unused symbols
Elimination of unused types

Expression Tree Breakup with parameters 0, 1, 2, 3, 4
Extract array upper bounds
Find FOR loops
Fix address taken

Fix bad nodes

FOR Loop Normalisation
Form Arrays
Forward Propagation
Global variable privatisation
Globalise local static variables

Guard FORs

Hoisting of loop invariants
IF Hoisting

Improve array bound information
Induction Variable Detection

Appendix A. Transformations Used on the Large Space of the SUIF Data Set 165

Id Transformation

65 Kill redundant line marks

66 Lift call expressions
67 Loop flattening
68-71 Loop Unrolling with parameters 1, 2, 3, 4
72 Mark constant variables

73 MOD/REF Annotations

74 Move loop-invariant conditionals
75 Privatisation

76 Put in explicit load/stores for non-local variables
77 Reassociation

78 Reconstruct explicit array references
79 Reduction Detection

80 Replace call-by-reference
81 Replace constant variables
82 Scalarisation

83 Scalarise constant array references
84-87 Splitting of deep FOR loops with parameters 1, 2, 3, 4
88 Strictly fix bad nodes
89 Turn imperfectly nested loops into perfectly nested loops
90 Unstructured control flow optimisation

Table A.1: Transformations used on the large space of the SUIF data set.

Bibliography

Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O'Boyle, M., Thomson, J., Tous-
saint, M., and Williams, C. (2006). Using machine learning to focus iterative optimization.
In Proceedings of the International Symposium on Code Generation and Optimization, pages
295-305, Washington, DC, USA. IEEE Computer Society.

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles, Techniques,
and Tools. Addison Wesley, 2nd edition.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19(6):716—723.

Aldous, D. J. (1985). Exchangeability and related topics. In Ecole d'ete de probabilites
de Saint-Flour, XIII—1983, volume 1117 of Lecture Notes in Mathematics, pages 1-198.

Springer, Berlin.

Almagor, L., Cooper, K. D., Grosul, A., Harvey, T. J., Reeves, S. W., Subramanian, D., Torc-
zon, L., and Waterman, T. (2003). Compilation order matters: Exploring the structure of the

space of compilation sequences using randomized search algorithms. Technical report, Los
Alamos Computer Science Institute.

Almagor, L., Cooper, K. D., Grosul, A., Harvey, T. J., Reeves, S. W., Subramanian, D., Torc-
zon, L., and Waterman, T. (2004). Finding effective compilation sequences. In Proceedings

of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em¬
bedded Systems, pages 231-239, Washington, DC, USA. ACM Press.

Andreev, K. and Racke, H. (2004). Balanced graph partitioning. In Proceedings of the 16th
Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages 120-124,
New York, NY, USA. ACM Press.

Bacon, D. F., Graham, S. L., and Sharp, O. J. (1994). Compiler transformations for high-

performance computing. ACM Computing Surveys, 26(4):345^420.

Bakker, B. and Heskes, T. (2003). Task clustering and gating for Bayesian multitask learning.
Journal ofMachine Learning Research, 4:83-99.

166

Bibliography 167

Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Technical Report CMU-CS-
94-163, Carnegie Mellon University, Pittsburgh, PA, USA.

Baluja, S. and Caruana, R. (1995). Removing the genetics from the standard genetic algorithm.
In Proceedings of the 12th International Conference on Machine Learning, pages 38-46.

Baluja, S. and Davies, S. (1997). Using optimal dependency-trees for combinatorial optimiza¬
tion: Learning the structure of the search space. In Proceedings of the 14th International

Conference on Machine Learning, pages 30-38. Morgan Kaufmann.

Baluja, S. and Davies, S. (1998). Fast probabilistic modeling for combinatorial optimization.
In Proceedings of the 15th National Conference on Artificial Intelligence, pages 469-476,
Menlo Park, CA, USA. American Association for Artificial Intelligence.

Baxter, J. (2000). A model of inductive bias learning. Journal ofArtificial Intelligence Re¬

search, 12:149-198.

Benitez, M. E. and Davidson, J. W. (1988). A portable global optimizer and linker. In Pro¬

ceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple¬
mentation, pages 329-338, New York, NY, USA. ACM Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bodin, F., Mevel, Y., and Quiniou, R. (1998). A user level program transformation tool. In

Proceedings of the 12th International Conference on Supercomputing, pages 180-187, New
York, NY, USA. ACM Press.

Bonilla, E. V. (Oct. 2004). Predicting good compiler transformations using machine learning.
Master's thesis, School of Informatics, University of Edinburgh, UK.

Bonilla, E. V., Agakov, F. V., and Williams, C. K. I. (2007). Kernel multi-task learning using

task-specific features. In Proceedings of the 11th International Conference on Artificial

Intelligence and Statistics. Omnipress.

Bonilla, E. V., Chai, K. M. A., and Williams, C. K. I. (2008). Multi-task Gaussian process

prediction. In Piatt, J., Koller, D., Singer, Y., and Roweis, S., editors, To appear in Advances
in Neural Information Processing Systems 20. MIT Press, Cambridge, MA.

Bonilla, E. V.,Williams, C. K. I., Agakov, F. V., Cavazos, J., Thomson, J., and O'Boyle, M. F. P.

(2006). Predictive search distributions. In Cohen, W. W. and Moore, A., editors, Proceedings

of the 23rd International Conference on Machine learning, pages 121-128, New York, NY,
USA. ACM.

Bibliography 168

Burke, M. G., Choi, J.-D., Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano, M. J., Sreedhar,
V. C., Srinivasan, H., and Whaley, J. (1999). The jalapeno dynamic optimizing compiler for
Java. In Proceedings of the ACM Conference on Java Grande, pages 129-141, New York,
NY, USA. ACM Press.

Calder, B., Grunwald, D., Jones, M., Lindsay, D., Martin, J., Mozer, M., and Zorn, B. (1997).
Evidence-based static branch prediction using machine learning. ACM Transactions on Pro¬

gramming Languages and Systems, 19(1): 188-222.

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41—75.

Cavazos, J. (2005). Automatically constructing compiler optimization heuristics using super¬

vised learning. PhD thesis, Department of Computer Science, University of Massachusetts
Amherst, USA.

Cavazos, J., Dubach, C., Agakov, F., Bonilla, E., O'Boyle, M. F. P., Fursin, G., and Temam,
O. (2006). Automatic performance model construction for the fast software exploration
of new hardware designs. In Proceedings of the International Conference on Compilers,
Architecture and SynthesisforEmbedded Systems, pages 24—34, New York, NY, USA. ACM.

Cavazos, J., Eliot, J., and Moss, B. (2004). Inducing heuristics to decide whether to schedule.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 183-194, New York, NY, USA. ACM Press.

Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O'Boyle, M. F. P., and Temam, O. (2007).

Rapidly selecting good compiler optimizations using performance counters. In Proceed¬

ings of the International Symposium on Code Generation and Optimization, pages 185-197,

Washington, DC, USA. IEEE Computer Society.

Cavazos, J. and O'Boyle, M. F. P. (2006). Method-specific dynamic compilation using logis¬
tic regression. In Proceedings of the 21st Annual ACM SIGPLAN Conference on Object
oriented Programming Systems, Languages, and Applications, pages 229-240, New York,
NY, USA. ACM Press.

Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with dependence
trees. IEEE Transactions on Information Theory, 14(3):462^167.

Chow, K. and Wu, Y. (1999). Feedback-directed selection and characterization of compiler

optimizations. In Proceedings of the 2nd Workshop on Feedback-Directed Optimization.

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1995). Active learning with statistical mod¬
els. In Tesauro, G., Touretzky, D., and Leen, T., editors, Advances in Neural Information

Processing Systems 7, pages 705-712. The MIT Press.

Bibliography 169

Cooper, K. D., Schielke, P. J., and Subramanian, D. (1999). Optimizing for reduced code

space using genetic algorithms. SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems, 34(7): 1-9.

Cooper, K. D., Subramanian, D., and Torczon, L. (2002). Adaptive optimizing compilers for
the 21st century. The Journal ofSupercomputing, 23(l):7-22.

Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Morgan Kaufmann.

Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York.

de Bonet, J., Isbell, C., and Viola, P. (1997). MIMIC: Finding optima by estimating probability
densities. In Mozer, M. C., Jordan, M. I., and Petsche, T., editors, Advances in Neural

Information Processing Systems 9. The MIT Press.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Scries B (Methodologi¬
cal), 39(1): 1—38.

Dongarra, J. and Hinds, A. (1979). Unrolling loops in FORTRAN. Software: Practice and

Experience, 9:219-226.

Eeckhout, L., Sundareswara, R., Yi, J. J., Lilja, D. J., and Schrater, P. (2005a). Accurate
statistical approaches for generating representative workload compositions. In Proceedings

of the IEEE International Symposium on Workload Characterization, pages 56-66, Austin,

Texas, USA. IEEE.

Eeckhout, L., Sundareswara, R., Yi, J. J., Lilja, D. J., and Schrater, P. (2005b). Correction
to "Accurate statistical approaches for generating representative workload compositions".
http://www.elis.ugent.be/"leeckhou/papers/correction.pdf.

Eeckhout, L., Vandierendonck, H., and Bosschere, K. D. (2002). Workload design: Selecting

representative program-input pairs. In Proceedings of the International Conference on Par¬
allel Architectures and Compilation Techniques, pages 83-94, Washington, DC, USA. IEEE

Computer Society.

Evgeniou, T., Micchelli, C. A., and Pontil, M. (2005). Learning multiple tasks with kernel
methods. Journal ofMachine Learning Research, 6:615-537.

Franke, B. and O'Boyle, M. (2001). An empirical evaluation of high level transformations
for embedded processors Tn Proceedings of the International Conference on Compilers,
Architecture, and Synthesisfor Embedded Systems, pages 59-66, New York, NY, USA. ACM
Press.

Bibliography 170

Franke, B., O'Boyle, M., Thomson, J., and Fursin, G. (2005). Probabilistic source-level optimi¬
sation of embedded programs. In Proceedings of the ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems, pages 78-86, New York, NY,
USA. ACM Press.

Fursin, G., Cavazos, J., O'Boyle, M. F., and Temam, O. (2007). MiDataSets: Creating the
conditions for a more realistic evaluation of iterative optimization. In Proceedings of the In¬
ternational Conference on High Performance Embedded Architectures & Compilers, Ghent,

Belgium.

Fursin, G., Cohen, A., O'Boyle, M., and Temam, O. (2005). A practical method for quickly
evaluating program optimizations. In High Performance Embedded Architectures and Com

pilers, volume 3793 of Lecture Notes in Computer Science, pages 29-46. Springer, Berlin.

Fursin, G. G. (2004). Iterative Compilation and Performance Prediction for Numerical Appli¬
cations. PhD thesis, School of Informatics, University of Edinburgh, UK.

Fursin, G. G., O'Boyle, M., and Knijnenburg, P. (2002). Evaluating iterative compilation. In

Proceedings of the 15th International Workshop on Languages and Compilers for Parallel

Computers, pages 305-315.

Goldstein, H. (2003). Multilevel Statistical Models. Hodder Arnold.

Gupta, A. (2007). Approximating search using reinforcement learning methods. Master's

thesis, School of Informatics, University of Edinburgh, UK.

Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., and Brown, R. B.

(2001). MiBench: A free, commercially representative embedded benchmark suite. In

Proceedings of the 4th Annual Workshop on Workload Characterization, pages 3-14, Wash¬

ington, DC, USA. IEEE Computer Society.

Hall, M. W., Anderson, J.-A. M., Amarasinghe, S. P., Murphy, B. R., Liao, S.-W., Bugnion, E.,
and Lam, M. S. (1996). Maximizing multiprocessor performance with the SUIF compiler.
IEEE Computer, 29(12):84—89.

Haneda, M., Knijnenburg, P. M. W., and Wijshoff, H. A. G. (2005a). Automatic selection
of compiler options using non-parametric inferential statistics. In Proceedings of the 14th
International Conference on ParallelArchitectures and Compilation Techniques, pages 123-
132, Washington, DC, USA. IEEE Computer Society.

Haneda, M., Knijnenburg, P. M. W., and Wijshoff, H. A. G. (2005b). Optimizing general pur¬
pose compiler optimization. In Proceedings of the 2nd Conference on Computing Frontiers,

pages 180-188, New York, NY, USA. ACM Press.

Bibliography 171

Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20(3): 197-243.

Hedayat, A., Sloane, N. J. A., and Stufken, J. (1999). Orthogonal Arrays: Theory and Appli¬
cations. Springer Series in Statistics. Springer, first edition.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogo-
nal problems. Technometrics, 12(1):55—67.

Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B., and Chickering, D. M. (2001). A

Bayesian approach to tackling hard computational problems. In Proceedings of the 17th
Annual Conference on Uncertainty in Artificial Intelligence, pages 235-244, San Francisco,
CA. Morgan Kaufmann.

ipek, E., McKee, S. A., de Supinski, B. R., Schulz, M., and Caruana, R. (2006). Efficiently

exploring architectural design spaces via predictive modeling. In Proceedings of the 12th
International Conference on Architectural Support for Programming Languages and Oper¬

ating Systems. ACM.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures of
local experts. Neural Computation, 3(1):79—87.

Jeffreys, H. (1966). Theory ofProbability. Oxford University Press.

Jimenez, D. A. (2005). Piecewise linear branch prediction. In Proceedings of the 32nd Annual
International Conference on Computer Architecture, pages 382-393.

Johnson, A. and Shapiro, J. L. (2001). The importance of selection mechanisms in distribu¬
tion estimation algorithms. In Proceedings of the 5th International Conference on Artificial
Evolution, pages 91-103, London, UK. Springer-Verlag.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A survey.

Journal ofArtificial Intelligence Research, 4:237-285.

Karkhanis, T. S. and Smith, J. E. (2004). A first-order superscalar processor model. In Proceed¬

ings of the 31stAnnual International Symposium on ComputerArchitecture, pages 338-349,

Washington, DC, USA. IEEE Computer Society.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical
Association, 90(430):773 - 795.

Kautz, H. A., Horvitz, E., Ruan, Y., Gomes, C. P., and Selman, B. (2002). Dynamic restart

policies. In Proceedings of the 18th National Conference on Artificial Intelligence and 14th

Bibliography 172

Conference on Innovative Applications ofArtificial Intelligence, pages 674-681, Edmonton,
Alberta, Canada. AAAI Press.

Kelly, W. and Pugh, W. (1993). A framework for unifying reordering transformations. Techni¬
cal Report CS-TR-3193, University of Maryland.

Kisuki, T., Knijnenburg, P. M. W., and O'Boyle, M. F. P. (2000). Combined selection of tile
sizes and unroll factors using iterative compilation. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, page 237, Washington,
DC, USA. IEEE Computer Society.

Knijnenburg, P. M. W., Kisuki, T., and O'Boyle, M. F. P. (2002). Iterative compilation. In De-

prettere, F., Teich, J., and Vassiliadis, S., editors, Embedded Processor Design Challenges:

Systems, Architectures, Modeling, and Simulation, number 2268 in Lecture Notes in Com¬

puter Science, pages 171-187. Springer-Verlag New York, Inc.

Kulkarni, P., Zhao, W., Moon, H., Cho, K., Whalley, D., Davidson, J., Bailey, M., Paek, Y.,
and Gallivan, K. (2003). Finding effective optimization phase sequences. In Proceedings of
the ACM SIGPIAN Conference on Language, Compiler, and Tools for Embedded Systems,

pages 12-23, New York, NY, USA. ACM Press.

Kulkarni, P. A., Whalley, D. B., Tyson, G. S., and Davidson, J. W. (2006). Exhaustive opti¬
mization phase order space exploration. In Proceedings of the International Symposium on

Code Generation and Optimization, pages 306-318, Washington, DC, USA. IEEE Computer

Society.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the 18th International

Conference on Machine Learning, pages 282-289. Morgan Kaufmann, San Francisco, CA.

Langley, P. (1996). Elements ofMachine Learning. Morgan Kaufmann, San Francisco, USA.

Larranaga, P. and Eozano, J. A. (2001). Estimation ofDistribution Algorithms: A New Toolfor

Evolutionary Computation. Kluwer Academic Publishers, Norwell, MA, USA.

Lawrence, N. D. and Piatt, J. C. (2004). Learning to learn with the informative vector machine.
In Proceedings of the 21st International Conference on Machine Learning, New York, NY,
USA. ACM.

Lee, C. (1997). UTDSP benchmark suite, http: //www. eecg. toronto. edu/~corinna/.

Lee, C., Potkonjak, M., and Mangione-Smith, W. H. (1997). MediaBench: A tool for eval¬

uating and synthesizing multimedia and communicatons systems. In Proceedings of the
International Symposium on Microarchitecture, pages 330-335.

Bibliography 173

Lee, H., von Dincklage, D., Diwan, A., and Moss, J. E. B. (2004). Understanding the behav¬
ior of compiler optimizations. Technical Report CU-CS-972-04, University of Colorado at

Boulder.

Lee, H., von Dincklage, D., Diwan, A., and Moss, J. E. B. (2006). Understanding the behavior
of compiler optimizations. Software: Practice and Experience, 36(8):835-844.

Lindgren, B. W. (1993). Statistical Theory. Chapman & Hall, fourth edition.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. J. C. H. (2002). Text
classification using string kernels. Journal ofMachine Learning Research, 2:419-444.

Long, S. and O'Boyle, M. (2004). Adaptive Java optimisation using instance-based learning.
In Proceedings ofthe 18th Annual International Conference on Supcrcomputing, pages 237
246, New York, NY, USA. ACM Press.

MacKay, D. J. C. (1992). Information-based objective functions for active data selection. Neu¬
ral Computation, 4(4):590-604.

MacKay, D. J. C. (1998). Introduction to Gaussian processes. In Bishop, C. M„ editor, Neural
Networks and Machine Learning, NATO ASI Series, pages 133-166. Kluwer.

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge

University Press.

McCabe, G. P. (1984). Principal variables. Technometrics, 26(2): 137-144.

Minka, T. P. and Picard, R. W. (1999). Learning how to learn is learning with point sets.

http://research.microsoft.com/"minka/papers/point-sets.html.

Monsifrot, A. and Bodin, F. (2001). Computer aided hand tuning (CAHT): "applying case-

based reasoning to performance tuning". In Proceedings of the 15th International Confer¬
ence on Supercomputing, pages 196-203, New York, NY, USA. ACM Press.

Monsifrot, A., Bodin, F., and Quiniou, R. (2002). A machine learning approach to automatic

production of compiler heuristics. In Proceedings of the 10th International Conference
on Artificial Intelligence: Methodology, Systems, and Applications, pages 41-50. Springer-

Verlag.

Montgomery, D. C. (1997). Design and Analysis ofExperiments. John Wiley and Sons, forth
edition.

Moss, E., Utgoff, P., Cavazos, J., Brodley, C., Scheeff, D., Precup, D., and Stefanovic, D.
(1998). Learning to schedule straight-line code. In Advances in Neural Information Pro¬

cessing Systems 10, pages 929-935, Cambridge, MA, USA. MIT Press.

Bibliography 174

Miihlenbein, H. (1997). The equation for response to selection and its use for prediction.

Evolutionary Computation, 5(3):303-346.

Miihlenbein, H. and Mahnig, T. (1999). The factorized distribution algorithm for additively

decompressed functions. In Proceedings of the Congress on Evolutionary Computation,

pages 752-759, Piscataway, NJ. IEEE Service Center.

Miihlenbein, H. and Paass, G. (1996). From recombination of genes to the estimation of distri¬
butions I. Binary parameters. In Proceedings of the 4th International Conference on Parallel
Problem Solving from Nature, pages 178-187, London, UK. Springer-Verlag.

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Number 118 in Lecture Notes in
Statistics. Springer, New York.

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996). Applied Linear Statis¬
tical Models. Irwin Publishing, fourth edition.

O'Hagan, A. (1998). A Markov property for covariance structures. Statistics Research Report
98-13, Nottingham University.

O'Hagan, A. and Forster, J. (1994). Bayesian Inference, volume 2B of Kendall's Advanced

Theory ofStatistics. Arnold, London.

Pan, Z. and Eigenmann, R. (2006). Fast and effective orchestration of compiler optimizations
for automatic performance tuning. In Proceedings of the 4th International Symposium on

Code Generation and Optimization, pages 319-332, Washington, DC, USA. IEEE Computer

Society.

PathScale (2005). Pathscale EKOPath compilers, http: //www.pathscale. com.

Pelikan, M. and Goldberg, D. E. (2001). Escaping hierarchical traps with competent genetic

algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
511-518, San Francisco, California, USA. Morgan Kaufmann.

Pelikan, M. and Goldberg, D. E. (2003). Hierarchical BOA solves ising spin glasses and
MAXSAT. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
1271-1282. Springer.

Pelikan, M., Goldberg, D. E., and Cantu-paz, E. E. (2000). Linkage problem, distribution
estimation, and Bayesian networks. Evolutionary Computation, 8(3):311—340.

Pelikan, M., Goldberg, D. E., and Lobo, F. (1999). A survey of optimization by building and

using probabilistic models. Technical Report IlliGAL-99018, Illinois Genetic Algorithms
Laboratory.

Bibliography 175

Pinkers, R., Knijnenburg, P., Haneda, M., and Wijshoff, H. (2004a). Analysis of compiler
options using orthogonal arrays. In Proceedings of the 11th International Workshop on

Compilers for Parallel Computers, pages 137-148.

Pinkers, R. P. J., Knijnenburg, P. M. W., Haneda, M., and Wijshoff, H. A. G. (2004b). Sta¬
tistical selection of compiler options. In Proceedings of the The IEEE Computer Society's
12th Annual International Symposium on Modeling, Analysis, and Simulation ofComputer
and Telecommunications Systems, pages 494-501, Washington, DC, USA. IEEE Computer

Society.

Quinonero-Candela, J., Rasmussen, C. E., and Williams, C. K. I. (2007). Approximation meth¬
ods for Gaussian process regression. In Large Scale Kernel Machines. MIT Press.

Rasmussen, C. E. and Ghahramani, Z. (2002). Infinite mixtures of Gaussian process experts.

In Diettrich, T. G., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information

Processing Systems 14. MIT Press.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning.
MIT Press, Cambridge, Massachusetts.

Rubinstein, R. Y. and Kroese, D. P. (2004). The Cross-EntropyMethod: A Unified Approach to

Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning. Information
Science and Statistics. Springer-Verlag New York, Inc., New York, USA.

Scholkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA.

Schwaighofer, A., Tresp, V., and Yu, K. (2005). Learning Gaussian process kernels via hierar¬
chical Bayes. In Advances in Neural Information Processing Systems 17, Cambridge, MA.
MIT Press.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals ofStatistics, 6(2):461 —

464.

Shapiro, J. L. (2003). Scaling of probability-based optimization algorithms. In S. Becker, S. T.
and Obermayer, K., editors, Advances in Neural Information Processing Systems 15, pages
383-390. MIT Press, Cambridge, MA.

Shapiro, J. L. (2005). Drift and scaling in estimation of distribution algorithms. Evolutionary

Computation, 13(1):99—125.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge

University Press.

Bibliography 176

Singer, J., Brown, G., and Watson, I. (2007). Branch prediction with Bayesian networks. In

Proceedings of the. First Workshop on Statistical andMachine Learning Approaches Applied
to Architectures and Compilation, pages 96-112.

Stephenson, M. and Amarasinghe, S. (2004). Predicting unroll factors using nearest neighbors.
Technical Report MIT-TM-938, Massachusetts Institute of Technology.

Stephenson, M., Amarasinghe, S., Martin, M., and O'Reilly, U.-M. (2003). Meta optimization:

Improving compiler heuristics with machine learning. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pages 77-90,
New York, NY, USA. ACM Press.

Stephenson, M. and Amarasinghe, S. P. (2005). Predicting unroll factors using supervised
classification. In 3rd IEEE/ACM International Symposium on Code Generation and Opti¬
mization, 20-23 March 2005, San Jose, CA, USA, pages 123-134. IEEE Computer Society.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. The MIT
Press, Cambridge, MA, USA.

Teh, Y. W., Seeger, M., and Jordan, M. I. (2005). Semiparametric latent factor models. In
Cowell, R. G. and Ghahramani, Z., editors, Proceedings ofthe IOth International Conference
on Artificial Intelligence and Statistics, pages 333-340. Society for Artificial Intelligence
and Statistics.

Texas Instruments (2003). TMS320C6000 chip support library API user's guide.

Thrun, S. (1996). Is learning the n-th thing any easier than learning the first? In Touret-

zky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Advances in Neural Information

Processing Systems 8, pages 640-646. The MIT Press.

Thrun, S. and O'Sullivan, J. (1996). Discovering structure in multiple learning tasks: The TC

algorithm. In Proceedings of the 13th International Conference on Machine Learning, pages
489-497. Morgan Kaufmann.

Thrun, S. and Pratt, L., editors (1998). Learning to Learn. Kluwer Academic Publishers.

Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal component analysis. Journal

of the Royal Statistical Society, Series B, 61 (3):611-622.

Triantafyllis, S., Vachharajani, M., and August, D. I. (January 2005). Compiler optimization-

space exploration. The Journal ofInstruction-Level Parallelism, 7:1-25.

Triantafyllis, S., Vachharajani, M., Vachharajani, N„ and August, D. I. (2003). Compiler
optimization-space exploration. In Proceedings of the International Symposium on Code

Bibliography 177

Generation and Optimization, pages 204-215, Washington, DC, USA. IEEE Computer So¬

ciety.

Vishwanathan, S. V. N. and Smola, A. J. (2003). Fast kernels for string and tree matching. In
Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information Process¬

ing Systems 15, pages 569-576, Cambridge, MA, USA. MIT Press.

Vuduc, R., Demmel, J., and Bilmes, J. (2004). Statistical models for empirical search-based
performance tuning. International Journal ofHigh Performance Computing Applications,
18(1):65—94.

Wackernagel, H. (1998). Multivariate Geostatistics: An Introduction with Applications.

Springer-Verlag, Berlin, 2nd edition.

Weston, J., Chapelle, O., Elisseeff, A., Scholkopf, B., and Vapnik, V. (2003). Kernel depen¬

dency estimation. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural

Information Processing Systems 15, pages 873-880, Cambridge, MA, USA. MIT Press.

Williams, C. K. I. (1997). Computing with infinite networks. In Mozer, M. C., Jordan, M. I.,
and Petsche, T., editors, Advances in Neural Information Processing Systems 9, pages 295-
301. The MIT Press.

Williams, C. K. I., Chai, K. M. A., and Bonilla, E. V. (2007). A note on noise-free Gaussian

process prediction with separable covariance functions and grid designs. Technical Report
EDI-INF-RR-1228, University of Edinburgh.

Wu, H., Chen, L., Manzano, J., and Gao, G. R. (2006a). A user-friendly methodology for
automatic exploration of compiler options. In Proceedings of the International Conference
on Programming Languages and Compilers. CSREA Press.

Wu, H., Park, E., Chen, L., del Cuvillo, J., and Gao, G. R. (2006b). User-friendly methodology
for automatic exploration of compiler options: A case study on the Intel XScale microar¬
chitecture. In Proceedings of the International Conference on Programming Languages and

Compilers. CSREA Press.

Wu, El., Park, E., Kaplarevic, M., Zhang, Y., Bolat, M., Li, X., and Gao, G. R. (2007). Auto¬
matic program segment similarity detection in targeted program performance improvement.
In Parallel and Distributed Processing Symposium, pages 1-8. IEEE International.

Yu, K., Chu, W., Yu, S., Tresp, V., and Xu, Z. (2007). Stochastic relational models for discrim¬
inative link prediction. In Advances in Neural Information Processing Systems 19, Cam¬

bridge, MA. MIT Press.

Bibliography 178

Yu, K., Tresp, V., and Schwaighofer, A. (2005). Learning Gaussian processes from multiple
tasks. In Proceedings of the 22nd International Conference on Machine Learning, pages
1012-1019, New York, NY, USA. ACM Press.

Yu, S., Yu, K., Tresp, V., and Kriegel, H.-P. (2006). Collaborative ordinal regression. In Cohen,
W. W. and Moore, A., editors, Proceedings of the 23rd International Conference on Machine

Learning, pages 121-128, New York, NY, USA. ACM.

Zhang, H. (2007). Maximum-likelihood estimation for multivariate spatial linear coregional-
ization models. Environmetrics, 18(2): 125-139.

Zhang, W. and Dietterich, T. G. (1995). A reinforcement learning approach to job-shop
scheduling. In Proceedings of the 14th International Joint Conference on Artificial Intel¬

ligence, pages 1114-1120. Morgan Kaufmann.

Zhao, M., Childers, B. R., and Soffa, M. L. (2003). Predicting the impact of optimizations
for embedded systems. In Proceedings of the ACM SICPL\N Conference on Language,

Compiler, and Tool Supportfor Embedded Systems, pages 1-11. ACM Press.

