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Abstract

This thesis considers the domain of acoustic source localisation and tracking in an indoor envi-

ronment. Acoustic tracking has applications in security, human-computer interaction, and the

diarisation of meetings. Source localisation and tracking is typically a computationally expen-

sive task, making it hard to process on-line, especially as the number of speakers to track in-

creases. Much of the literature considers single-source localisation, however a practical system

must be able to cope with multiple speakers, possibly active simultaneously, without knowing

beforehand how many speakers are present. Techniques are explored for reducing the com-

putational requirements of an acoustic localisation system. Techniques to localise and track

multiple active sources are also explored, and developed to be more computationally efficient

than the current state of the art algorithms, whilst being able to track more speakers.

The first contribution is the modification of a recent single-speaker source localisation tech-

nique, which improves the localisation speed. This is achieved by formalising the implicit as-

sumption by the modified algorithm that speaker height is uniformly distributed on the vertical

axis. Estimating height information effectively reduces the search space where speakers have

previously been detected, but who may have moved over the horizontal-plane, and are unlikely

to have significantly changed height. This is developed to allow multiple non-simultaneously

active sources to be located. This is applicable when the system is given information from a

secondary source such as a set of cameras allowing the efficient identification of active speakers

rather than just the locations of people in the environment.

The next contribution of the thesis is the application of a particle swarm technique to signif-

icantly further decrease the computational cost of localising a single source in an indoor en-

vironment, compared the state of the art. Several variants of the particle swarm technique are

explored, including novel variants designed specifically for localising acoustic sources. Each

method is characterised in terms of its computational complexity as well as the average local-

isation error. The techniques’ responses to acoustic noise are also considered, and they are

found to be robust.

A further contribution is made by using multi-optima swarm techniques to localise multiple

simultaneously active sources. This makes use of techniques which extend the single-source

particle swarm techniques to finding multiple optima of the acoustic objective function. Several

techniques are investigated and their performance in terms of localisation accuracy and compu-

tational complexity is characterised. Consideration is also given to how these metrics change

when an increasing number of active speakers are to be localised.

Finally, the application of the multi-optima localisation methods as an input to a multi-target

tracking system is presented. Tracking multiple speakers is a more complex task than tracking

single acoustic source, as observations of audio activity must be associated in some way with

distinct speakers. The tracker used is known to be a relatively efficient technique, and the nature

of the multi-optima output format is modified to allow the application of this technique to the

task of speaker tracking.



Lay Summary

This thesis considers acoustic source localisation and tracking in an indoor environment. Acous-

tic tracking has applications in security, human-computer interaction, and the diarisation of

meetings. Source localisation and tracking is typically a computationally expensive task, par-

ticularly as the number of speakers to track increases. Much of the literature considers single-

source localisation, however a practical system must be able to cope with multiple speakers,

possibly active simultaneously, without knowing beforehand how many speakers are present.

Techniques are explored for reducing the computational requirements of an acoustic localisa-

tion system. Techniques to localise and track multiple active sources are also explored, and

developed to be more computationally efficient than the current state of the art algorithms,

whilst being able to track more speakers.

The thesis considers the modification of a single-speaker source localisation technique, and

improves the localisation speed by considering speaker heights. Estimating height information

effectively reduces the search space where speakers have previously been detected, but who

may have moved across a room. This is developed to allow multiple non-simultaneously active

sources to be located.

This thesis also considers the application of a technique to significantly further decrease the

computational cost of localising a single source in an indoor environment, compared the state

of the art. Several variants of the technique are explored, including novel variants designed

specifically for localising acoustic sources. Each method is characterised in terms of its com-

putational complexity as well as the average localisation error. The techniques’ responses to

acoustic noise are also considered, and they are found to be robust.

The thesis also studies techniques to localise multiple simultaneously active sources by the

extension of the single-source localisation techniques already considered. Several such tech-

niques are investigated, and their performance in terms of localisation accuracy and compu-

tational complexity is characterised. Consideration is also given to how these metrics change

when an increasing number of active speakers are to be localised.

Finally, the application of the multi-target localisation methods as an input to a multi-target

tracking system is presented. Tracking multiple speakers is a more complex task than tracking

a single acoustic source, as observations of audio activity must be associated in some way with

distinct speakers. The tracker used is known to be a relatively efficient technique, and the nature

of the localiser output format is modified to allow the application of this technique to the task

of speaker tracking.
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Chapter 1
Introduction

Speech is a primary natural method of communication between people and, because it is so

intuitive, it is highly desirable to interact in the same way with machines. Evidence of the

trend towards speech interaction with computers can be seen with the recent release of several

commercial products such as Siri and Google Voice. It is also desirable to be able to recall

exactly what somebody has said in many circumstances. Diarisation - the process of recording

who said what, when and where - is the key step to this process. This is especially true in

environments such as meetings, where there may be many speakers, and it would be beneficial

to be able to review the discussion after it has taken place.

These situations require computers capable of processing audio in order to best extract speech

and speaker information, maximising the clarity of the speech and determining speaker po-

sitions and identities. This is a complicated task involving many layers of processing, and a

possible example system block diagram for an audio diarisation system is shown in Figure 1.1.

Hardware is needed to capture the acoustic signals; acoustic sources need to be localised; speak-

ers need to be identified and tracked; their speech signals need to be extracted, possibly inter-

preted (for example, converted to text) and the data needs to be stored in a suitable format.

Signal Acquisition Source Localisation Speaker Tracking

Speech Signal Enhancement
Speech Interpretation

and Extraction
Data Recording

Figure 1.1: An example of an audio diarisation system block diagram.

In addition, audio processing capabilities are useful in a variety of other contexts, for example

surveillance networks. In this situation, one might like to track multiple speakers across an

area, whilst sometimes focussing on what one particular person is saying. This is somewhat

similar to the ‘cocktail party problem’ [1, 2], which refers to the brain’s ability to concentrate

on a single voice within a crowded room full of talking people.
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Acoustic source localisation is an important component of a speech processing system, and is

the primary focus of this thesis, which considers techniques for the localisation and tracking of

both single acoustic sources and multiple concurrent sources. For this to be successful, some

understanding of acoustics is required, as well as methods of tracking moving targets based

on observations of the real world. To this end, the thesis starts off with an introduction to

the acoustic source tracking problem and continues with a discussion of some of the issues

encountered by these systems.

This chapter of the thesis introduces the problem of acoustic speaker localisation and tracking.

A brief review of some of the state of the art methods and approaches to tackling this problem

are described and, finally, the structure of the rest of the thesis will be given as a guide to the

following chapters.

1.1 Motivation

This thesis considers the problem of speaker tracking in a closed, noisy and reverberant envi-

ronment, a scenario which is typical of a meeting room or somebody giving a presentation to

an audience. Tracking speakers in such an environment might allow the automatic creation of

searchable meeting minutes, or allow a security system to identify and track targets by their

acoustic activity.

It is assumed that the area of interest is equipped with suitable hardware - namely a micro-

phone array which surrounds the entire area, along with optional video cameras. This setup is

illustrated in Figure 1.2, which also illustrates some of the problems associated with speaker

localisation.

Note that the use of cameras and microphones together has the potential to make a system

robust to non-simultaneous interference or occlusions from the acoustic and visual domains re-

spectively. Combining the two modalities also allows separation between tracking the locations

of people within an area and the tracking of which of those people are speaking at any given

time.
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Audio interference

Direct Path Speech Reverberation

Second Speaker

Legend: Video Camera Microphone Non-speaker audio source

Figure 1.2: A visual overview of the speaker localisation, showing multiple sources, visual

occlusion and reverberation effects.

The diagram shows that there are multiple concurrent speakers, which poses a problem, as

in order to make any captured audio data intelligible, speech from the target speakers has to

be separated out from that of other speakers, as well as from background noise. In addition,

sounds made within a room are subject to reverberation, which is essentially a large number of

continued reflections of the sound received by an observer after the source has stopped emitting

acoustic energy. These continue to be audible for a short time after the sound is created due to

reverberation [3], which causes problems for speech processing algorithms. Thus, it becomes

useful to be able to infer the location of a speaker from, for example, a microphone array placed

around the edges of a room. This might be done in order to better extract speech to be processed

from an area detected as containing a speaker, for example using beamforming.

The diagram also indicates that cameras can be used to track people too, with similar problems

such as visual occlusion. Note that people can occlude each other or be occluded by other

objects within a room. Camera systems also have to extract 3-dimensional (3D) information
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about the position of people within a room from their 2D view of the world, and don’t generally

identify who is speaking without help from an audio system. Typically, an array of cameras

can detect the positions of people by identifying face, for example using the Viola-Jones face

detector [4].

Such a system cannot typically identify speakers, however, as lip movement would have to be

detected for multiple sources at a large distance. Furthermore, lip movement is no guarantee

of speech being produced, and it is very possible that speakers may not be directly facing a

camera. This means that the tracking of speakers might be considered as tracking the sub-set of

people tracked by a camera who are talking. Fusion of data from both domains is desirable to

achieve this goal, in order to provide a solution robust to occlusion, as well as potentially ruling

out acoustic sources not corresponding to speakers.

As such, speaker tracking systems can be made using joint audio-visual systems, where the

hope is that brief occlusion or noisy and unreliable observations in one domain can be mitigated

by observations from the other. People detected in video moving behind some occluding object

might continue to be tracked by virtue of their association with an audio source. Spurious

audio sources or interference from, for example, a radio might be ignored as there is no person

tracked on camera to associate them with. One such system is briefly considered in this thesis,

in Chapter 4.

1.2 Acoustic Source Localisation

The task of acoustic source localisation (ASL) makes use of an array of microphones with

known locations to determine the position of a sound source. Because the locations of the

microphones are known, the same acoustic signal arriving at these different positions can be

sampled and compared to triangulate an acoustic source. Samples are typically acquired in

frames for processing, usually between tens or a few hundreds of milliseconds long, and the

signals from the microphones are used to estimate the position of one or more speakers within

that time-frame.

Acoustic sensor array behaviour is governed by several factors. Firstly, a distinction is made

between near-field and far-field sources, and assuming that a source is in the far-field of a

pair of microphones can simplify the mathematics and algorithms used [5] because the source

can be assumed as coming from the same direction of arrival (DOA) when considering each
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microphone. However, this assumption is generally untrue for the acoustic source localisation

and tracking (ASLT) task in a small acoustic environment such as a meeting room, as discussed

in Section 2.1.2, and so this thesis assumes that acoustic sources are always in the near-field.

Secondly, the array layout influences the ability of that array to be robust against spatial aliasing.

An aperture is a spatial region which, in this case, receives propagating sound waves and a

microphone array can be thought of as a continuous aperture sampled at discrete points in

space. Similar to the well-known Nyquist minimum sampling frequency for capturing a signal,

microphone arrays have a maximum inter-device spacing dmax which must be adhered to in

order to avoid spatial aliasing [5]. This is given in Equation (1.1), where λmin is the minimum

wavelength of interest. This becomes important in the case of room equipped with an array

for voice capture, as comparing signals from microphones situated across the room from each

other is likely to result in spatial aliasing. Therefore, when processing signals from a smart-

room based microphone array, care must be taken to process data appropriately.

dmax =
λmin

2
(1.1)

As an example, consider that the speed of sound is approximately 330ms−1. If speech sources

are to be located, with an acceptable sampling frequency for speech being 16kHz, and therefore

a maximum speech frequency of 8kHz, then the shortest wavelength to be considered will be,

approximately, λmin = 4.1cm. This leads to a maximum microphone spacing of dmax = 2cm.

1.3 Acoustic Source Tracking

Source localisation stands in contrast to acoustic source tracking, where the positions of acous-

tic sources are estimated over multiple frames and an association made between measurements

which likely correspond to speech from the same source. At each frame, the result of an ASL

step can be used to update an inter-frame estimation of source localisations. This allows mov-

ing sources to be continuously tracked, as well as allowing probabilistic methods to be used to

attempt to minimise the localisation error.

Tracking of acoustic sources is made harder due to the conditions of the room. There may

be sources of acoustic interference or noise, and even without these, sources are likely to be

subject to reverberation, all of which can lead to noisy measurements and spurious sources
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being detected sporadically. Attempting to track multiple speakers is another problem, as the

incoming acoustic wave at each microphone is a mixture of the signals from each source and

must be processed to detect each one individually. In addition, the number of sources is usually

unknown and must be estimated.

When considering tracking multiple speakers, a distinction must be made between tracking

simultaneously speaking sources, and tracking non-concurrent sources. The former problem

might be approached by tracking the single speaker at any time, and attempting to detect when

the speaker changes, for example by a very sudden change in speaker localisation observations.

In contrast, the task of tracking multiple concurrent speakers requires that a localisation algo-

rithm be able to identify multiple source positions concurrently. It also requires that a tracking

algorithm be able to identify the number of sources and estimate multiple independent speaker

states (tracked positions) from those observations.

The challenging task of multiple-source acoustic speaker tracking is logically split to system-

atically deal with these various complicating factors. Firstly, measurements must be extracted

in some form from the microphone array. These can be in the form of direct Cartesian co-

ordinates for multiple sources, or indirect measurements such as a set of time difference of

arrival (TDOA) figures between different microphone pairs.

The measurements are then fed into a tracking algorithm, which can understand how to trans-

late them into absolute positions if necessary. The tracking algorithm deals with associating

measurements with tracked targets and updating the estimate of their positions in a way which

minimises the localisation error. It does this in the presence of noise, interference sources, and

the possibility of an unknown number of multiple speakers. This stage also has to take into

account the possible movement of sources, and so often dynamics modelling is used to help

estimate an updated position of a speaker given their last known position, their trajectory and a

new measurement.

1.4 State of the Art

State of the art ASLT systems employ Bayesian techniques as source tracking algorithms.

These include systems which make use of Kalman filter based approaches as well as more com-

plex particle filter based approaches. Whilst Kalman filters are computationally less complex

than particle filters, particle filters do not require assumptions about the state propagation lin-
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earity or the shape of any noise present in the system. As such, particle filter based approaches

are well placed to deal with the non-linear dynamics models of moving speakers [6].

As well as there being many different approaches to the tracking stage, there are also sev-

eral techniques which can be used for the localisation stage. These measurement extrac-

tion techniques often use the indirect DOA measurements returned by generalised cross cor-

relation (GCC) based algorithms such as generalised cross correlation with phase transform

(GCC-PHAT), which use TDOA information to estimate which direction a sound came from

relative to a microphone pair. By using a number of these DOA measurements together, the po-

sition of the source can be determined. Converting these indirect measurements to true source

positions is a non-linear process, and the tracker used has to take account of this, however

these indirect methods are convenient to use as they are much less computationally expensive

to implement than steered beam-former (SBF) methods [7].

An examples of a recent novel single-source localisation techniques is a method of directly

tracking a source from TDOA measurements using an extended Kalman filter (EKF) [8]. An-

other recent technique attempts to implement low complexity localisation by estimating the

DOA of a source from techniques based on the multiple signal classification (MUSIC) algo-

rithm. This method is extended in [9] by using particle swarm optimisation (PSO) to search

for multiple peaks of the MUSIC spectrum function. Another use of PSO in the context of

localisation is given in [10], which extends the particle filter approach of [11] to decrease the

localisation time for a single source. PSO is also used in combination with a blind source

separation (BSS) method in [12] to extend [11] to track two acoustic sources.

An alternative is to attempt to extract the source position directly using SBF methods, where

the ‘focal point’ of the acoustic array is steered such that the acoustic power picked up is max-

imised. Because the typical ratio of room sizes, measurable in cubic meters, and the resolution

achievable by an acoustic array, measurable in cubic centimetres, is very high, there are very

many possible voxels (the 3D analogue of pixels) which could be evaluated within a room.

As an example, in an 8x5x3m room, with a volume of 120 cubic metres, is equivalent to 120

million cubic centimetres. A typical microphone might only be able to resolve down to, say,

a 3 cubic centimetre voxel, but this is still over 13 million points which could potentially be

interrogated in order to find the globally maximum valued voxel.

As such, it is generally impractical to do an exhaustive search to find the global maximum
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and so, for example, one technique to use SBF methods for localisations samples the search

area randomly and iteratively constricts it until a source is found [13]. The same authors also

improve upon this method by altering their sampling strategy to use a set of increasingly fine

grids [14].

Whilst these methods on their own are applicable to the single-source tracking case, the multiple

source case is more complicated. Measurements made of possible speaker locations must be

associated with the most likely currently tracked speaker, a problem known as multi-target

data association. The traditional approach to this has been to use a multiple hypothesis tracker

(MHT) [15] or a joint probabilistic data association filter (JPDAF) [16].

More recent attempts for multiple source tracking have re-derived Bayesian filtering techniques

in the context of finite set statistics [17,18]. This allows the tracker to deal with an unknown and

time-varying number of sources, along with spurious and missed measurements. Recent studies

have used a random finite set (RFS) based particle filtering approach, however as the number

of sources to be tracked increases, the complexity of the algorithm increases too, limiting its

ability to perform well in scenarios with a large number of concurrent speakers. It has been

suggested that first-order statistical moment approximation of the RFS Bayes filter such as that

presented in [19] may be successful [6] in tracking more people whilst keeping the complexity

of the calculations involved low compared to particle filter based methods.

Particle filter based systems have been the focus of several multi-source localisation studies

recently. Fallon et al. presented a system [20,21] which uses an SBF to evaluate the audio field

and determine if sources are active within an ‘existence grid’. Sources are then tracked using

a particle filter which takes account of whether a source is born (that is, new to the tracker),

surviving or becoming inactive. Another approach by Zhong [6] uses a Rao-Blackwellised

particle filter to first marginalise out source positions, and then perform data association using

the particle filter. A further example of a particle filter based approach is given by Lehmann,

who uses the SBF as a pseudo-likelihood function for importance sampling [11,22,23], however

this is limited to only tracking one source.

Other state of the art localisation for multiple sources include [24], which models multiple

peaks in the TDOA between two microphones as a Gaussian mixture. This allows the regions

of space to be identified which are likely to contain acoustic sources, and these are finally

located within each selected region using numerical optimisation on a restricted subset of the
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TDOAs. This has the disadvantage of the observations acquired being non-linearly related

to the source positions, and this thesis avoids this limitation by the use of SBF methods whose

results correspond directly to source positions. Some state of the art work makes use of only two

microphones and time-frequency masking to perform tracking of two speakers [25], although

the error increases as the number of sources to localise is increased.

Other recent novel approaches to the problem have attempted to use BSS methods to perform

joint audio separation and localisation [26]. Independent component analysis (ICA) can be

used, for example, to perform TDOA estimation [27, 28]. In addition, the degenerate unmix-

ing estimation technique (DUET) BSS method has been used to localise sources [6] and also

perform tracking when combined with a modern RFS based multi-target filter [29]. The dif-

ficulty involved with these is typically the high computational requirements of the filters used

for tracking more than two targets. Zhong [6] has suggested using the Gaussian mixture prob-

ability hypothesis density (GM-PHD) filter to address this problem. There is also a difficulty

in the unknown complexity and ability of these localisation methods to extract the positions

of more than two speakers for filtering. This thesis addresses this issue by presenting a tech-

nique for extracting an arbitrary number of sources with only a linear increase in computational

requirement for each additional speaker.

Finally, recent work has investigated the use of acoustic vector sensors (AVSs) to perform

source localisation [23]. AVSs are special pieces of hardware which measure the acoustic

particle velocity as well as the acoustic pressure, as in a traditional microphone. Whilst this

approach enables more complex localisation frameworks which utilise the extra sensor data

available, these frameworks require special hardware.

1.5 Scope of the work

This work will focus on studying source localisation methods which can efficiently extract

positions of multiple concurrent sources. The work will also study tracking systems which can

make efficient use of these extracted measurements to track multiple acoustic sources in the

presence of noise and reverberation. Such a system would be most useful if it could process

data in real time, and so attention is given to improving the efficiency of ASLT methods without

sacrificing accuracy.

9
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1.5.1 Section Overview

The second chapter of this thesis introduces some of the basic concepts and tools used when

working with acoustic signals. This will cover the basics of some theory about audio, acoustic

environments, microphone arrays and acoustic array signal processing. An overview will be

given of the acoustic environments used in the work done for this thesis, consisting of both a

real room used to make audio recordings and a simulated area used to evaluate the principles

used.

Chapter 3 will introduce the Bayesian filtering paradigm, and go on to develop some of the

standard tracking algorithms relevant to acoustic source tracking. This will start with an intro-

duction to probabilistic Bayes filtering, followed by practical realisations, namely the Kalman

filter and its non-linear extensions. Consideration will then be given to how Bayesian filtering

can be used to track multiple sources, and one such implementation - the Gaussian mixture

probability hypothesis density filter - will be described.

Chapter 4 will concentrate on non-concurrently active acoustic source localisation and tracking.

An existing SBF method of source localisation will be studied and further developed to take

account of the vertical axis in such a way that both extends the search area and reduces the

number of computations required to arrive at a position estimate.

This technique will be used with a simple single-source tracking system and compared with

another, similar, existing technique. The developed technique is found to improve localisation

accuracy when compared to the original method, as well as requiring less computational effort.

Chapter 5 explores the use of particle swarms for acoustic source localisation. Particle swarm

methods hold potential as a multi-target acoustic localisation technique, as the family of par-

ticle swarm algorithms includes multi-target optimisation routines which are all based on the

same concept. As such, investigating the performance of particle swarm techniques on the sin-

gle source scenario is an important first step to building a simultaneous multi-target speaker

localisation and tracking system.

The performance of several different swarm localisation techniques are measured and com-

pared, both to each other and to existing source localisation methods. The methods studied are

found to be robust to noise and to provide a good localisation performance. Importantly, they

also greatly reduce the computational effort required to localise a source.

10
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Chapter 6 expands upon the problem of multiple-source localisation. Inspiration is taken from

existing methods of SBF single-source localisation to apply an optimisation technique to the

problem of finding multiple local maxima of the SBF response. The performance of this tech-

nique in terms of accuracy and complexity is then considered.

Chapter 7 considers the problem of tracking multiple acoustic sources across an area using the

localisation technique developed in the previous chapter. This work investigates how multiple

speakers can be tracked over many audio frames, and consideration is given to whether or not

the number of speakers is known.

Chapter 8 concludes the thesis, providing a summary of the key points of the work undertaken

and the conclusions reached. It also points to some suggestions for interesting further work

which could be undertaken, built on the results of this thesis.

1.5.2 Contributions

The first contribution is the formalisation of an assumption made about where to search for an

acoustic source is on the vertical axis and a method to ensure that all of the vertical space is

explored. This method also allows the localisation method to use information from a previous

frame to inform a subsequent frame of where it doesn’t necessarily have to consider the entire

vertical axis, as a nominal head-height has been determined. This method has been shown to

reduce the number of calculations required to localise a source whilst at the same time preserv-

ing localisation accuracy. The method described is tunable in such a way that if the parameters

are chosen correctly, the algorithm reduces to a search on the original search area.

Furthermore, this novel technique is developed fully, such that it can be used in conjunction with

a video based system which tracks potential speakers (people) across a room. Peoples’ heights

can be extracted, which allows the localisation effort to be minimised even with a change in

speaker.

The second contribution is the development of a single source localisation method which greatly

reduces the computational requirements, when compared to similar steered response power

(SRP) based techniques [13]. This is whilst maintaining an acceptable level of localisation

error. Novel modifications to the method, which try to adapt it to the specific objective function

being used, are made and their effects characterised.

11
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The third contribution is the adaptation of the developed single-source optimisation technique

as a localisation method for multiple acoustic sources. The novel application of several variants

of this multi-optima localisation technique is explored, and some of the intrinsic associated

problems encountered are considered. One of the variants is found to perform very well in

terms of both complexity and multi-target localisation error.

The final contribution is the application of a closed-form RFS multiple-source tracker to the

acoustic tracking problem. These trackers are tested using the low-complexity localisation

techniques previously developed. This result of this is a system which can localise and track

more sources than some recently developed tracking techniques [6, 7], whilst maintaining low

complexity and low localisation error.

12



Chapter 2

Background Knowledge

This chapter provides an overview of some of the basic methods used for acoustic signal pro-

cessing, focusing on techniques relevant to source localisation. Acoustic signal propagation is

considered first, followed by a description of the effects caused by the acoustic environment on

the signal received by a microphone. Descriptions are given of the simulated and real experi-

mental environments used in the course of this work, finally followed by a short discussion of

various useful audio processing techniques such as voice activity detection (VAD).

2.1 Acoustics

A basic understanding of room acoustics and acoustic signal propagation is helpful when for-

mulating the problem of acoustic source localisation and tracking. This section reviews these

principles by discussing wave propagation within a room, and the effects of the environment on

the received signal at the position of a listener.

2.1.1 Acoustic Waves

Sound waves travel through a medium - in the case considered here, air - from an acoustic

source to a listener via multiple paths. The first path to consider is the direct path, which is

the shortest path from the source to the listener. This path takes the least time to arrive at the

position of the listener, and the speed of an acoustic wave is determined by the propagation

medium. Additionally, it is assumed that the medium is homogeneous over the area being

considered, and that the speed of sound doesn’t vary across the room, or with time. Of course,

this is not true as even in an ideal gas, the speed will change with temperature [30], as shown

in Equation (2.1), where c is the speed of sound; γa is the gas-specific adiabatic constant; kb

is the Boltzmann constant; Mg is the mass of single molecule of the gas and Tg is the absolute

temperature in Kelvin. Nevertheless, it is common practice to simplify the model and assume a

constant speed of sound.
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c =

√

γakBTg

Mg
(2.1)

Furthermore, in the context of walking speakers in a room prepared for speech recording, it is

reasonably assumed that the speakers won’t be moving very quickly (typically around 1ms−1,

especially relative to the speed of sound (around 340ms−1). As such, the Doppler effect is

ignored, as the frequency shifts will only be very small.

2.1.2 Near-Field and Far-Field

A source can be assumed to be in the far-field if it is further away than some distance |rf |
from the centre of the aperture formed by an array. |rf | is given in Equation (2.2), where La is

the length of the aperture and λmin is the smallest wavelength measurable given the sampling

rate [6]. This Equation comes from the Fresnel parameter for acoustic signal intensity at a given

distance from a source, which is derived using a signal’s wavelength [31].

|rf | >
L2
a

λmin
(2.2)

As mentioned in Section 1.2, assuming that all sources are in the far-field allows the slight

simplification of the acoustic models to be used. Using this assumption, the signals arriving at

each microphone from a single source are considered to be far enough away that they can be

approximated as plane waves, and therefore they all have the same angle of arrival. Figure 2.1

demonstrates the arrival of sound waves from an acoustic source in the far-field, where the

dotted line represents a wavefront. However, this simplification is not applicable to this thesis,

and the near-field model must be used. Figure 2.2 demonstrates the arrival of sound waves from

a source in the near-field. Note that in Figure 2.2, the wavefronts incident on the microphone

are spherical waves, and that the angle of incidence at each microphone is different.

The acoustic sources in this thesis are assumed to be in locations such that they are always

in the near-field of all microphone pairs. In the formulation of the Steered Response Power

(SRP) later in this thesis, each pair of microphones will be considered as an array, thus the

microphone separation will be considered as the array aperture. The near-field assumption
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Figure 2.1: Acoustic plane waves received from a source in the far-field

Figure 2.2: Acoustic spherical waves received from a source in the near-field
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can be justified by considering a typical sampling frequency of 44.1kHz (maximum received

frequency of 22.05kHz because of Nyquist limit), which leads to a minimum wavelength of

λmin = 0.015m. With a microphone separation of 30cm, this leads to a cut-off of 6.01m. This

violates the far-field assumption in most of the office environment considered (the largest room

considered is (8× 5× 3)m3).

2.1.3 Reverberation

Reverberation is an effect caused by multiple echoes of a sound source arriving at the position

of a listener (or listening device) at multiple short times after the arrival of the sound from

the direct path. The differing time delays are caused by the different lengths of the multiple

different indirect paths that the audio takes, where the speed of sound in air is assumed to be

constant across the environment. To the human ear, echoes arriving around 50ms [32] after

the initial arrival of the direct path sound are indiscernible from each other, and this causes

the multiple echoes in reverberation to be indistinguishable from each other. When attempting

source localisation, these multiple echoes can degrade the performance of many algorithms and

as such, it is important to take them into account when studying these techniques.

The sound waves from a source can be broadly split into three categories:

• The direct path wave - this is the wave which travels directly from the sound source to

the observer.

• The early reflections - these reflections typically arrive at the observer’s position up to

100ms after the direct path wave.

• The late reflections - the arrival of these reflections are separated by very small times and

are indistinguishable from each other, which effectively results in a diffuse sound field. A

diffuse sound field consists of an infinite number of sound waves arriving from uniformly

distributed directions, with random phase relations [33].

The relative arrival times and attenuations are illustrated in Figure 2.3, where the attenuations of

subsequent reflections can be explained by the frequency dependent absorption of sound waves

by air [34].

The pattern of arrival times of the different reflections is highly dependent on the source location
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Figure 2.3: Illustration of the arrival of a sound wave and its echoes

within the room, the location of the observer, and the characteristics of the room itself. This is

especially relevant to acoustic source localisation, as this characterisation, known as the room

impulse response (RIR), changes for each source to be tracked as it moves, as well as when

microphones move or the room characteristic itself changes, such as when a door is opened or

a table is moved. Figures 2.4a and 2.4b show the RIR for a source within a simulated room for

two different microphones.

2.1.4 Room Impulse Response

In order to understand the signal received by a microphone from a source, the effects on the

wave caused by reverberation must be considered. The signal arriving from a source at position

vector x, at the position of a microphone at location vector p, will be the sum of the direct path

signal and all of its reflections.

Firstly, the received direct path signal zd (x, p, t) will be modelled as the convolution of

the emitted signal s (t) with direct path impulse response hd (x, p, t), as shown in Equa-

tion (2.3) [35]. This assumes that delay and attenuation are not frequency dependent, as the

acoustic medium is air in a small indoor environment as opposed to, say, the large distances

and different medium involved with underwater acoustics such as sonar.

17



Background Knowledge

(a) Microphone 1 (b) Microphone 2

Figure 2.4: Simulated room impulse responses (RIRs) of a source position at two different

microphone positions

zd (x, p, t) = s (t) ∗ hd (x, p, t)

= s (t) ∗ a
r
δ (t− τ)

=
a

r
s (t− τ)

(2.3)

This set of equations shows that the direct path impulse response is simply a delayed and scaled

version of the signal emitted by the source. The delay τ is given by Equation (2.4) which is

simply the Euclidean distance between the microphone and the source, r, divided by the speed

of sound, c.

τ =
r

c

τ =
‖ x− p ‖

c

(2.4)

The scaling factor a
r is determined by an acoustic medium dependent constant a and also varies

inversely with r. Note that this is a consequence of the inverse square law for acoustic waves.

The sound intensity is subject to the inverse square law, but the sound pressure, where an

acoustic wave is described as a pressure wave, is subject to an inverse distance law. δ (t− τ) is

the time-delayed standard Dirac-delta function. The Dirac-delta has a value of zero everywhere
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except at t = 0, and an integral of one over x. It is defined mathematically in Equation (2.5).

δ (t) =











+∞, t = 0

0, t 6= 0
(2.5a)

+∞
∫

−∞

δ (t) dt = 1 (2.5b)

The reflected signals are similarly modelled using an impulse response, as shown in Equa-

tion (2.6), where zr (x, p, t) is the signal received at the microphone from reflections, and

hr (x, p, t) is the impulse response of all of the reflecting surfaces for a source at position x

and microphone at position p.

zr (x, p, t) = s (t) ∗ hr (x, p, t) (2.6)

This modelled room impulse response will be similar to the real examples shown in Figures 2.4a

and 2.4b. Typically, an audio model includes reflections from the walls, ceiling and floor. In

reality, there are also reflections from the surface of all objects within a room, but for simplicity

these are not modelled. This is firstly because they are not easily captured by the practical im-

pulse response modelling algorithm described in Section 2.1.6, and also because it is assumed

that their overall contribution to the room impulse response will be small compared to that of

large reflective surfaces such as walls.

In a real room, there will be many objects which reflect sound, each with a different coefficient

of absorption. Finally, Equation (2.7) shows the complete model for the signal received at a

microphone z (x, p, t) due to a sound source.

z (x, p, t) = s (t) ∗ (hd (x, p, t) + hr (x, p, t))

=
a

r
s (t− τ) + s (t) ∗ hr (x, p, t)

(2.7)
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2.1.5 Reverberation Time

The reverberation time of a room is defined by the time taken for the sound pressure level

(SPL) from an acoustic source to decay to some threshold below the original level. The level

used to describe this effect is often -60dB, given the symbol T60. Other levels can be used

however, such as -20dB (T20). Equation (2.8) gives the Eyring expression for T60 [35] in terms

of the room volume Vr; the total reflecting surface area Sr; ma, a constant which takes air

attenuation into account and ᾱ, an absorption coefficient given by Equation (2.9). This equation

allows each reflecting surface to be modelled as having a different absorption coefficient, which

allows different surface materials, such as hard walls or soft carpet, to be taken into account.

In Equation (2.9), the surface area for the ith surface in the room is denoted as Si, and the

absorption coefficient for that area is denoted αi.

T60 =
0.161Vr

−Sr ln (1− ᾱ) + 4maVr
(2.8)

ᾱ =
1

Sr

∑

i

Siαi (2.9)

There are several variations on the reverberation time equation [35,36], for example the Sabine

equation takes account of the absorption coefficients as an expansion of the logarithm term,

ignoring all but the initial term of the expansion. However the variations all have a similar

form and produce similar results, namely that the decay time is increased in the presence of

large reflective surfaces. Finally, Kuttruff notes that the Millington-Sette formula can result in

reverberation time of 0 when a reflecting area has an absorption coefficient of 1, which doesn’t

make sense in real life!

2.1.6 Image Method for Room Impulse Response

With an understanding of reverberation time and the nature of the room impulse response, it can

be seen that modelling acoustic sources within a simulation environment might be complex.

However, approximations of the transfer functions between sources and microphones can be

made, allowing the effects of different reverberation times to be studied.
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For simulation purposes, it is useful to be able to determine the RIR of a given environment

(room size and reverberation time), source and set of microphone locations. These can then

be convolved with the output of an acoustic source model in order to provide a reasonable

approximation of how that output might be observed by a microphone. The RIR changes for

every speaker location relative to a set of microphones, so to simulate a moving speaker, a RIR

must be calculated for every location the speaker visits on their path. It must also be calculated

separately for every microphone at each location along the speakers path, which ultimately

means that a large number of RIRs must be calculated for a realistic simulation of a moving

acoustic source being recorded by a set of microphones.

The image-source model (ISM) method [37] assumes that the room of interest is rectangular

in shape, as this simplifies the model and and still allows the calculation of RIRs for realistic

rooms. Using this technique, a speaker is modelled as a point source within a rectangular area,

emitting a single frequency pressure wave. The boundary condition of a wall is then satisfied

by placing an image of the point source symmetrically on the far side of the wall. This is

repeated for each wall, and extended by repeatedly mirroring each mirror image, as shown in

2D in Figure 2.5 where the white circle represents the original sound source and the black

circles represent image sources. The pressure wave from each wall can be summed with the

wave from the original source to form the wave received at a microphone location. Because this

pressure wave represents the frequency response of the room to the original source, the RIR can

be found via the Fourier transform of this expression [37].

The standard ISM method allows surfaces (walls, the ceiling and the floor) to be modelled

as non-rigid surfaces by allowing each of them to have an associated reflection coefficient, βi,

given in Equation (2.10) where αi is the Sabine energy absorption coefficient for that surface, as

used in Equation (2.9). By taking these into account when considering the frequency response

of a room, the Fourier transform of this frequency response will yield the RIR as before, but

with non-rigid surfaces.

αi = 1− β2i (2.10)

Because the response of a room at an individual microphone to an input signal at a given

position is given by the convolution of that signal with the RIR, the RIR can be conveniently
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Figure 2.5: Illustration of the image method for room impulse response. The source position

is marked by the white circle in the corner of a square representing a room. The other squares

represent mirror images of the room, containing mirror images of the source marked by black

dots.
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implemented using a finite impulse response (FIR) filter. Note that the number of filter taps will

be very large, especially in a highly reverberant environment, and so it is of practical interest to

approximate the RIR using an infinite impulse response (IIR) filter [38]. Furthermore, the RIR

needs to be calculated separately for every combination of source position and each microphone

position, leading to a large number of large filters.

2.1.6.1 Improved Image method

The time delay used in [37] is limited in simulation to being a discrete integer multiple of the

sampling frequency used. This results in a coarse RIR which requires high pass filtering to be

more realistic. It is suggested [39] that the ISM calculations be implemented in the frequency

domain, as shown in Equation (2.11). This would allow these time delays to be represented

as required. The RIR can then be found using the inverse Fourier transform of HR (ω), the

representation of the RIR in the frequency domain. A (u, l) is an amplitude attenuation func-

tion [39], parametrised by an image source indexed by u and a target position for RIR gener-

ation, l. τ (u, l) represents the time delay of the original audio signal from the image source

location u to the target position l. Note that the summation over u is used to represent the sum

over each dimension of the vector u, and the sum over l represents the sum over the dimensions

of l, over each possible mirror position, of which there are in theory infinitely many.

HR (ω) =

1
∑

u=0

∞
∑

l=−∞

A (u, l) e−jωτ(u, l) (2.11)

By using the frequency domain approach, the tail of the RIR decays unrealistically, as the

reflection coefficient β can become negative, where it is assumed to be positive in the orig-

inal algorithm. It is suggested that an alternative definition of β be used as shown in Equa-

tion (2.12) [35, 39], where ψ is the angle of incidence at a boundary, and ζ is a reflection

coefficient for that boundary.

β =
ζcos (ψ)− 1

ζcos (ψ) + 1
(2.12)

The energy decay envelope E (t), given in Equation (2.13), is expressed in decibels (dB) and

can be used to estimate the reverberation time, T20 or T60, using a known RIR in the time
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domain, h (t).

E (t) = 10log10

(

∫∞
t h2 (ξ) dξ
∫∞
0 h2 (ξ) dξ

)

(2.13)

The work in [39] approximates the energy decay curve, which allows for the development of a

fast method for RIR simulation [40]. This method, which is the method used in this thesis for

simulation, models the early reflections using the enhanced ISM method described in [39]. The

late reflections are modelled as decaying random noise, where the rate of decay is calculated

from the energy decay envelope, also described in [39].

2.2 Signal Model

This section covers the modelling of the signals received from a set of sources by a set of micro-

phones. The model will take account of multiple speakers, and the modelling of reverberation

is simplified to aid the development of source localisation algorithms.

2.2.1 Microphone Model

In this thesis, it is assumed that the positions of the microphones within the environments under

consideration are known. This is because the area to be considered is assumed to be a room

equipped specifically for the ASLT task. In a system containing L microphones, the position

of each microphone is denoted by pl, with l being an integer between 1 and L. Within the

room, there are a number of concurrent active speakers whose positions are unknown, and it is

these positions that we would like to find. Audio data from a microphone is typically processed

in frames of a given length of time, typically tens or a few hundreds of milliseconds long. It

is assumed that the movement of an acoustic source within a frame is insignificant and that

therefore, the position of the mth source out of Mt active sources at time t within an audio

frame is a constant within that frame, denoted by the vector xm,t.

By the principle of superposition, the received acoustic signal, zl (t), at microphone l is given

by sum of each signal produced by each source, subject to a reverberant environment, as well as

some independent noise. This is illustrated in Equation (2.14), where ∗ denotes the convolution

operation and h (pl, xm,t) is the RIR between the source at position xm,t and the microphone

24



Background Knowledge

at position pl, as discussed in Section 2.1.3.

zl (t) =

Mt
∑

m=1

sm (t) ∗ h (pl, xm,t) + v̄l (t) (2.14)

In this equation, sm (t) represents the signal produced at acoustic source m, and v̄l (t) rep-

resents the noise term which consists of the sum of two independent components. The first

of these components is the channel noise, denoted by v̄1, l (t), and the second component is

the interference signal created by multiple sound sources which are not directly of interest.

These sources are typically directional sources of unwanted interference such as footsteps or

the noise generated by a computer fan. Similar to Equation (2.14), these sources are subject

to superposition and reverberation, and as such, their contribution to v̄l (t), v̄2, l (t) is given in

Equation (2.15).

v̄2, l (t) =

Jt
∑

j=1

s̄j (t) ∗ h (pl, x̄j,t) (2.15)

This equation assumes that there are J interfering sources, whose signals are represented by

s̄j (t). As in Equation (2.14), these signals are each convoluted by the RIR and summed to-

gether to form the total interference signal at the microphone position pl.

2.2.2 Free-field Model

The free field model, also known as the direct field model, of an acoustic environment takes

account of reverberation by including reverberant signals as noise terms. The received signal at

a microphone is then taken to consist of the direct path signals from the sources to the micro-

phone, with added noise. This effectively means that any TDOA or other position information

is assumed to come from a true source, not from reflection. This assumption breaks down in

highly reverberant environments, as the reflection signals can be at relatively high levels, even

compared to the direct path signal. The number of incorrect time delay estimates in a delay

estimating system has been found to start increasing with (T60 > 0.15s), and to dominate the

results with (T60 > 0.5s [41]. Highly reverberant environments can also invalidate the assump-

tion that the noise term is independent from the direct paths signal, as well as the assumption

that noise term fits a Gaussian normal distribution.
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The free field model is mathematically defined by considering Equation (2.7) in the context

of multiple speakers. Equation (2.16a) shows the multi-source received signal obtained by

considering Equation (2.7) for multiple sources. Equation (2.16b) shows the reverberant part

of the model grouped into a noise variable, vl (t). In these equations, τm, l represents the time

delay of the signal from source m to microphone l.

zl (t) =

Mt
∑

m=1

a

r
sm (t− τm, l) +

Mt
∑

m=1

sm (t) ∗ hr (pl, xm, t) + v̄l (t) (2.16a)

zl (t) =

Mt
∑

m=1

a

r
sm (t− τm, l) + vl (t) (2.16b)

Equation (2.17) shows that as before, the noise at each microphone is the sum of of several

components. In this case, the total noise contains both the channel noise, v̄1, l (t), and the

noise from interference sources, v̄2, l (t), as well as a new term describing the environmentally

dependent reflected signals of the source signal.

vl (t) = v̄l (t) +

Mt
∑

m=1

sm (t) ∗ hr (pl, xm,t) (2.17)

2.3 Audio Localisation Methods

As mentioned in Chapter 1, there are two categories of source localisation methods - those

which return direct measurements of source locations and those which return indirect TDOA

measurements. Direct methods are typically based on steered beamforming methods. The

output of these direct methods can be used directly by a tracker to smooth position estimates

over time. On the other hand, TDOA methods require that a tracker extract the sources’ true

positions from the non-linear relationship between multiple TDOAs and a position in Cartesian

coordinates.

This section will introduce some of the commonly used methods to implement both direct and

indirect localisation. It will start off by introducing the GCC and how it can be used to obtain

TDOA measurements. It will then discuss the steered beamforming using microphone arrays,

which forms the basis for the direct measurement method of localisation.
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2.3.1 Time Difference of Arrival

The TDOA of a signal from an acoustic source at a pair of microphones is related to the angle

of arrival of that signal at the array. This relationship is dependent on the inter-microphone

spacing, as shown in Equation (2.18) (for the far-field), where θ is the angle of arrival, d is the

microphone separation, and t is the TDOA of the signal between the two microphones. In the

near-field, the TDOA doesn’t relate directly to a an angle of arrival, but rather to a set of angles

and associated distances. TDOA can be used for acoustic source localisation by estimating

the time difference of a signal arriving at a pair of microphones using cross-correlation. This

cross-correlation technique can then be developed into a technique (Section 2.3.2.3) which uses

an arbitrary time-difference to interrogate a location in space regardless of whether or not it is

in the near-field or far-field.

cos (θ) =
ct

d
(2.18)

2.3.1.1 Cross Correlation

The cross-correlation of two signals gives a measure of their similarity when one of the signals

is delayed relative to the other, and is defined in Equation (2.19) given a time delay τ and and

two functions of time, f and g.

(f ⋆ g) (τ) =

∞
∫

−∞

f∗ (t) g (t+ τ) dt (2.19)

This can also be expressed in the frequency domain, as shown in Equation (2.20). Here, G (ω)

and F (ω) are the Fourier transforms of g (t) and f (t) respectively.

(f ⋆ g) (τ) =
1

2π

∞
∫

−∞

F ∗ (ω)G (ω) ejωτdω (2.20)

Whilst working in the context of the free-field model, the Fourier transform of the emitted

signal sm (t) can be represented at each microphone as a time delayed version using the shift

property of the Fourier transform. This is shown in Equation (2.21), where Zl (ω) is the Fourier
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transform of the signal received at the microphone, τm, l is the time delay, as before, and Sm (ω)

is the Fourier transform of sm (t). This equation also includes a noise term in the frequency

domain, V (ω), which is the Fourier transform of vl (t).

Zl (ω) = e−jωτm, lSm (ω) + Vl (ω) (2.21)

The cross-correlation of the received signals at two microphones is then denoted by Rl1, l2 (τ)

and is expressed in Equation (2.22), where v1 and v2 are the noise signals at microphones 1 and

2 respectively.

Rl1, l2 ≈
∞
∫

−∞

Sm (ω)S∗
m (ω) e−jω(τm, l1

−τm, l2)ejωτdω

= Rsmsm (τ − (τm, l1 − τm, l2)) +Rv1v2 (t)

(2.22)

Here, Rsmsm is the autocorrelation of the source signal sm (t) and Rv1v2 (t) is the cross cor-

relation of the two noise signals. Because these noise signals are assumed to be independent

and identically distributed (i.i.d), their cross correlation should be 0. Therefore, the cross-

correlation of the signals from the microphones should be maximised at the time delay τ which

is equal to the TDOA, τm, l1 − τm, l2 . The assumption that the noise terms do not contribute

holds only so far as their being i.i.d holds true. In a highly reverberant environment, this as-

sumption breaks down [41], and peaks of the cross-correlation between two microphones no

longer necessarily reflect time delays at which there is a true TDOA.

With this in mind, the TDOA of a source can be estimated as τ̂l1l2 from the cross-correlation of

the signals from two microphones by finding the time delay τ which maximises this function,

as expressed in Equation (2.23).

τ̂l1l2 = argmax
τ

Rl1, l2 τ ∈ [−τmax, τmax] (2.23)

τmax is defined as the maximum delay possible, which occurs when the microphone pair and

the source positions are collinear. It is expressed in Equation (2.24) as the time taken for the

sound wave to travel directly from one microphone to the other.
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τmax =
‖ p1 − p2 ‖

c
(2.24)

In practice, this set of possible time delays is limited by the sampling frequency used, and the

cross-correlation calculation is made on a discrete set of samples, limited in number by the

frame size.

2.3.1.2 Generalised Cross Correlation (GCC)

Because the period of observation is limited - samples are processed in frames - the true cross-

correlation cannot be exactly calculated and must be estimated using the available data. Equa-

tion (2.25) shows the cross correlation, described in the frequency domain in Equation (2.20),

described more simply as the inverse Fourier transform of the cross spectral density Gl1, l2 by

the Wiener-Khinchin theorem.

Rl1, l2 (τ) =

∞
∫

−∞

Gl1, l2 (ω) e
jωτdω (2.25)

The GCC introduces two filters, one applied to each signal, which are applied before the multi-

plication of the signals. When these filters, Hl1 (ω) andHl2 (ω), are equal to one at all frequen-

cies, ω, then the filtering step is effectively removed and the algorithm reduces to the simple

approximation of the cross-correlation.

Equation (2.26) shows the complete general correlation between two input signals in the fre-

quency domain, taking into account the pre-filtering step, with the frequency weighting ψ (ω)

given by these filters expressed in Equation (2.27).

Rl1, l2 (τ) =

∞
∫

−∞

ψ (ω)Gl1, l2 (ω) e
jωτdω (2.26)

ψ (ω) = Hl1 (ω)H
∗
l2 (ω) (2.27)

The weighting ψ (ω) must be chosen as a compromise between the output of sharpness of

peaks at time offsets corresponding to true time delays, and the sensitivity of the output to
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errors caused by the finite observation time. This factor can cause instability in the output,

leading to peaks surrounded by noise.

2.3.1.3 Generalised Cross Correlation Weightings

Several different weightings are examined in [42], and the most prevalent of these in the litera-

ture is the phase transform (PHAT) weighting, defined in Equation (2.28).

ψ (ω) =
1

|Gl1, l2 (ω)|
(2.28)

Developed as an ad-hoc technique to avoid the spreading out of peaks of the cross-correlation,

the PHAT weighting has been shown to be relatively robust to reverberation when estimating

TDOAs, along with a technique based on linear regression [43].

2.3.1.4 Localisation from Generalised Cross Correlation

Given the GCC between signals from two microphones, the TDOA of a single source will

correspond to a peak of the GCC function at that delay. This can be converted to an angle of

arrival as described in Section 2.3.1 for far-field sources.

When multiple microphone pairs are available, the angle of arrival can be calculated for each

pair given that pair’s estimated TDOA. These DOA lines should all intersect at roughly the same

place in space, as shown in Figure 2.6, where the black circle represents the true source location.

Of course, calculated TDOAs are estimations, and so it is unlikely that the intersections between

more than two DOA lines will be at a single point. This can be taken into account by finding a

point that is close to all lines in the least-squares sense using linear intersection [44]. Multiple

TDOAs are used directly in [8] to estimate a source location using a Kalman filter.

2.3.2 Steered Beamforming

The steered beamforming approach to audio source localisation uses the microphone array to

enhance the signal power from a chosen angle of arrival. Beamforming can be thought of as a

spatial filter, where signals not coming from the direction of interest are attenuated according

to the array directivity pattern. Using beamforming techniques, the angle of interest can be
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Figure 2.6: Intersection of DOA lines at a source position

changed without physically moving the microphone array.

2.3.2.1 Microphone Arrays

To perform beamforming, a microphone array can be configured in one of two ways, which de-

termines the beamforming methods which can be used [45]. The broadside array configuration

is constructed with a line of microphones arranged perpendicularly to the expected direction of

arrival of sound waves, as illustrated in Figure 2.7. The frequency response of a broadside array

depends on the angle of arrival of the incident sound wave, with a flat response at 0°and angle

dependent null frequencies introduced for signals incident at other angles [5]. Note that altering

the relative delays between the signals allows these null frequency angles to move, which is the

basis of steered beamforming.
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+

Figure 2.7: Broadside Array Configuration

In contrast, an endfire array- also called a differential array - consists of microphones arranged

in a line parallel to the expected direction of arrival of sound waves, as illustrated in Figure 2.8.

This figure shows an example array set up for second-order differential beamforming [45], and

the important point to note is that the microphones are colinear with the expected direction of a

source, and so a simple delay-and-sum beamformer is not used. Note that broadside arrays are

not generally intended to be able to localise sources which are colinear with the microphones,

and the arrays used in this thesis are broadside arrays, so endfire arrays are not considered

further.

This configuration allows the creation of cardioid pick-up patterns in the direction of the array

line using an inversion and summing operation. Figure 2.8 shows how this might be achieved

for an array of three microphones. An array in this configuration typically has a high pass

frequency response with a notch, or null frequency, dictated by the microphone spacing.

32



Background Knowledge

+

+
+

z-n

z-n

z-n

+

+

+

-

-

-

Figure 2.8: Endfire Array Configuration

The microphone arrays used in this thesis to perform beamforming are used in the broadside

array configuration, as it is simple to use this configuration to create a steerable delay and sum

beamformer.

2.3.2.2 Delay and Sum Beamformer

The delay and sum beamformer is one of the simplest forms of beamformer. By modifying the

broadside array structure shown in Figure 2.7 to include a variable delay on each microphone

line as shown in Figure 2.9, the array directivity pattern can be rotated.
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+

Figure 2.9: Delay and Sum Beamforming Configuration

Figure 2.10 shows the far-field directivity pattern for an example microphone array with three

elements separated by a distance of 7.5cm. Note that the sources in this thesis are assumed

to come from the near-field, so this Figure only serves to illustrate that the delay and sum

configuration can result in a steerable directivity pattern in general. A near-field beamformer

would use different delays for each microphone signal, resulting in a more complex beam-

pattern. The concept of a simple delay and sum beamformer on individual microphone pairs is

used in Section 2.3.2.3.

The diagram shows the response of the array to several frequencies, illustrating the frequency

dependent nature of the directivity pattern. Note that the plot is in polar coordinates and was

created by first considering the response of the array to a sinusoid of a defined frequency coming

from an angle defined in the polar plot. The phase delay for the signal was calculated based on

the TDOA of the signal to each microphone, (and the applied steering delay, zero degrees in this

case). The signals from each microphone were summed, and the magnitude (of the resulting

sinusoid in complex form) calculated and normalised by the number of microphones. This was

then plotted in the log domain for various different frequency sinusoids.
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Figure 2.10: Broadside array example directivity pattern

The output y (k) of a delay and sum beamformer is given in Equation (2.29), where zl (t) is the

signal picked up by microphone l and τl is the steering time delay for microphone l, given by

Equation (2.30). In this equation, the angle θ to which the main lobe of the directivity pattern

should be steered can be related to the steering delay using Equation (2.18). Figure 2.11 shows

the steered directivity plot for a time delay which corresponds to an angle of -30°, which was

generated in the same way as Figure 2.10. The main lobe refers to the directivity pattern where

the angle is such that the sensitivity is maximised over all frequencies considered.

y (t) =
L
∑

l=1

zl (t+ τl) (2.29)

τl =
‖ xm − pl ‖ −dr

c
(2.30)

Note that the distance dr is the distance of the steered position to a reference position, which

is typically the centre of the microphone array, which allows multiple microphones to be used

together by sharing a common reference. This compensates for the microphones’ different

positions within the array.
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Figure 2.11: Steered array example directivity pattern

It should also be noted that there are many other beamforming methods which can be used

with a broadside microphone array, for example, super-directive beamforming [46, 47] aims

to maximise the directivity of the beamformer, minimising the noise coming from all but the

target direction, without adversely affecting the signal from that direction.

2.3.2.3 Steered Response Power

Delay and sum beamforming can be used to perform localisation by steering the beamformer

to a position x and calculating the acoustic energy present in the beamformer output signal.

In theory, the SRP P (x) will be at a maximum when the beamformer is steered to the true

position of a source. Thus, the estimate x̂ of a single source position is formulated as shown in

Equation (2.31), where x′ is the point to which the beamforming array is steered.

x̂ = argmax
x′

P
(

x′
)

(2.31)

Of course, for multiple speakers, the SBF function will be multi-modal across space, and so

multiple peaks must be found in order to locate multiple sources. The SRP is defined [13]

in Equation (2.32), where n represents the nth time frame, T is the length of the frame and
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τx′, l is the time delay required to be applied to the signal from microphone l to steer the array

directivity pattern in the direction of the candidate position x′. Note that this time delay can be

calculated directly from the distances between each microphone and the candidate position x′,

and is thus applicable to sources from both the near-field and the far-field.

P
(

x′
)

=

(n+1)T
∫

nT

(

L
∑

l=1

zl
(

t− τx′, l

)

)2

dt (2.32)

The SRP may also be calculated by summing together the GCCs for each microphone pair in

the array of size L [48]. This is expressed in the frequency domain in Equation (2.33).

P (x) =

L
∑

k=1

L
∑

l=1

∞
∫

−∞

Wk (ω)W
∗
l (ω)Sk (ω)S

∗
l (ω) e

jω(τx, l−τx, k)dω (2.33)

As with the GCC described in Section 2.3.1.2, the weightings Wk (ω) and W ∗
l (ω) represent a

pre-filtering option, and a common choice is the PHAT weighting.

2.3.2.4 Frequency Integration Range

The frequency range over which beamforming is implemented affects the spatial grid density

over which the SBF can be evaluated without encountering aliasing [7]. By varying the range

of integration over frequency in a steered beamformer, it was concluded by the Fallon in [7]

that as the maximum frequency increased, the density of grid points also had to be increased in

order to accurately find the location of the maximum point of acoustic energy.

Choosing maximum frequencies of 2000Hz and 3000Hz resulted in the localisation results

being affected only negligibly when the grid density was increased from a 0.02m spacing to a

0.04m spacing. Because this was true at both frequencies, this suggested that there is no real

benefit to localisation accuracy by using frequency information above 2000Hz. In turn, this

suggests that there is an upper bound to the accuracy of SBF based localisers. Consideration

to frequency limitation in beamforming is also given in [49], where restricting the frequency

range reduced the number of spurious peaks on the beamformer output over the search area.
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2.3.2.5 Localisation from Steered Response Power

Maximisation of the SRP function to estimate a source position can be achieved by evaluat-

ing the function at a number of positions. This search can be exhaustive, whereby all possible

position vectors are evaluated and the maximum value can be extracted with certainty. Unfor-

tunately, this requires a very large number of evaluations of the SRP function, and becomes less

tractable as the room size and number of microphones increases. If an SRP based localiser can

resolve down to 5 cubic centimetre accuracy, then an (10× 10× 3)m3 room would contain

2, 400, 000 points to be evaluated. Instead, a subset of the search space can be interrogated, and

a search for the maximum value carried out iteratively [50].

2.3.3 Other Localisation Methods

Localisation techniques are not limited to GCC or SBF techniques. In addition to these, there

are phase unwrapping techniques [6], which make use of the cross-spectrum between a micro-

phone pair to extract TDOAs. Adaptive Eigenvalue decomposition [51] can also extract TDOA

measurements, and the difference in attenuation caused by different path lengths between each

microphone and the speaker can be used to estimate the range of the speaker. This level dif-

ference information, referred to as interaural level difference (ILD), can be used to generate a

circle of potential source locations, as opposed to the straight line at an angle of arrival created

by TDOA techniques. Similarly though, the point of intersection of these circles in a system

with multiple microphones can be found to estimate a source location. Work has also been un-

dertaken which allows a single microphone pair to perform localisation using the intersection of

the ILD circle and the TDOA line [52]. Other work fuses the measurements within a Bayesian

framework [53], and several other methods have been considered, however these other locali-

sation techniques are not the main focus of this thesis. Instead, this thesis concentrates on SBF

based methods which have been shown to be robust to noise and reverberation, and which also

allow the relatively easy localisation of multiple sources, as will be demonstrated.
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2.4 General Methods used in Acoustic Source Localisation and Track-

ing

This section covers several concepts useful to many implementations of acoustic source local-

isation and tracking (ASLT). Firstly, source dynamics models, which model the way in which

acoustic sources move, will be introduced. The application of VAD methods to ASLT will then

be discussed.

2.4.1 Motion Models

When considering the problem of source tracking, account must be taken of how those sources

might move within an area. This is especially true for probabilistic trackers, which predict how

the state of a target evolves over time, and then corrects that prediction based on observations

made. It is therefore important to have a good model for the source motion over time.

Many different source dynamics models have been developed [54], and these can be broadly

split into two groups: curvilinear (CL) models and coordinate uncoupled (CU) models. CU

models make use of Cartesian coordinates to represent a target state vector, typically including

the state position and velocity, an example of which is given in Equation (2.34). This equation

demonstrates a state which consists of the estimation of both a source’s position and its velocity,

however more complicated models might make use of higher order time derivatives of the

source position.

s = [x, ẋ] (2.34)

At a discrete time step k, the source location can be predicted from the previous source state

simply as shown in Equation (2.35), where ∆T is the time period between step k and step k−1.

xk = xk−1 +∆T ẋk (2.35)

Similarly, the state of source in a CL model is expressed in polar co-ordinates, with the state

update equation taking account of this.

Several promising models are investigated in [55], and the CU method of source modelling
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with Langevin dynamics is popular due to its simplicity and accuracy when applied to acoustic

sources. The velocity of a source can also be modelled as a random walk in both CU and CL

models, along with more complex techniques which also model the source acceleration using,

for example, another random walk model.

The Langevin model [11, 56] assumes that each Cartesian component is independent. For each

component X , the model for that component is given in Equations (2.36a) to (2.36d).

Ẋt = aX Ẋt−1 + bXFX (2.36a)

Xt = Xt−1 +∆T Ẋt (2.36b)

aX = e−βX∆T (2.36c)

bX = vX
√

1− aX 2 (2.36d)

Here, FX is a normally distributed random variable with variance σ2FX
, Ẋ is the speed in the

direction of the X component and vX is the root mean square (RMS) speed in that same direc-

tion.

Some work simplifies the source movement even further [8] by considering only stationary

sources whose only movement is from the influence of process noise, expressed in Equa-

tion (2.37). xt is the source state at time t and v (t) is the process noise. This model has

been found to be good enough to model sources in a recorded environment [8], although it is

known that the choice of motion model can significantly change tracker performance [55].

xt = xt−1 + v (t) (2.37)

With the assumption that the noise in each Cartesian direction is independent, the covariance

matrix Q (t) for the process noise can be written for a 3D system as shown in Equation (2.38),

where σ2v is the process noise power and T is the time since the last update of the source state.

Q (t) = σ2vT
2









1 0 0

0 1 0

0 0 1









(2.38)

40



Background Knowledge

The source dynamics model used in this thesis will mainly be the simple model of movement

under Gaussian noise, which makes it relatively easy to compare algorithms such as the work

by Klee [8].

2.5 Experimental Environments

This section describes the experimental environments used to provide the results for this thesis.

The results are derived from both simulated environments and a real room equipped with a mi-

crophone array. Simulated environments allow experiments to be conducted on a wide variety

of possible input configurations, such as scenarios involving a large and changing number of

concurrent moving speakers, or a diverse set of reverberant conditions. As the ground truth is

known exactly in simulations, localisation methods can be reliably tested to obtain an indication

of their accuracy. They also allow the investigation of tracking methods applied to potentially

difficult situations for both trackers and localisers, such as when two concurrent sources pass

very close to each other.

A real environment is also useful because it allows the testing of algorithms without the mod-

elling limitations of a simulated environment. This includes true reverberation effects and real

background noise from within the room from various sources.

Several simulation environments are considered in this thesis. One such environment is that

shown in Figure 2.12, which was chosen for its similarity to the setup in [13], which allowed

direct comparisons to be made between the results obtained for this thesis and the work carried

out in that paper. This environment was also replicated in the acoustic lab.
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Figure 2.12: First simulated room environment, with numbered speakers marked by green

squares, and microphones marked by red circles.

Figure 2.13 shows the layout of the real lab environment used in this thesis to perform experi-

ments. This room is the same audio lab as described in [6], although the layout of the micro-

phone array is different. As in [6], there are 16 microphones available, and the configuration

of 12 of these are indicated in the diagram by microphones symbols. Exact positions shown in

Figure 2.12, where the positions of the microphones and speakers in the simulated environment

are set to their corresponding real-room positions. The final microphones are placed beneath

the central microphone in each group of three, a ‘T’ arrangement. This provides the ability

to discriminate the height of sources, which is not assumed to be known or constant between

speakers. This is in contrast to [6], which focusses solely on the 2D localisation problem. These

microphones are placed on metal T-bar stands and sampled at 96kHz. A high sampling rate was

used to capture data as this was the default setup of the acoustic equipment, however this was

sub-sampled to 44.1kHz, using the Audacity software package, for processing. The positions

of the speakers used in the real room environment are also shown in Figure 2.12, where the top

right hand side of that figure corresponds to the top right hand side of Figure 2.13.
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Figure 2.13: Real room environment - the Audio Processing Lab

The room is highly reverberant, with a reverberation time of 0.836s, as well as a complex room

shape compared to the simple cuboid of the simulated environment. Multiple simultaneous

speakers were created using recordings made using lapel microphones, to create a relatively

reverberation free source of audio. These recordings were played through multiple loudspeak-

ers placed at the various positions within the room to recreate speech sources with precisely

known positions. In order to allow investigation of changing the number of speakers, the in-

dividual speakers were recorded through the microphone arrays separately, and simultaneous

speech scenarios were created by summation of the corresponding microphone signals from

each recording.

Another simulation environment is shown in Figure 2.14, where the width and length are indi-

cated as being 8m and 5m respectively, and the height of the room is 3m. This relatively simple

environment was chosen to represent the size of a typical office. The simulated room contains

microphones placed around the edges of the room as indicated by the microphone symbols in

the diagram, although some experiments made use of different array configurations. The room

was a chosen to be a simple cuboid, as this is both typical of an office, and it allows rever-

beration to be simulated using the image method technique described in Section 2.1.6.1. The

room does not contain any furniture, which is not typically simulated in the literature, however

it would change the RIR in a real room environment. The value of T60 used for this simulation

environment was 0.2s.
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Figure 2.14: Second simulated room environment, with numbered speakers marked by green

squares, and microphones marked by red circles.

2.6 Summary

This Chapter has introduced the basic framework around which the task of ASLT is based. A

signal model was introduced for signals from acoustic sources. The model considers sources

within a reverberant acoustic environment which affects the signal received by a microphone.

Following on from this, some standard localisation methods were introduced. These make use

of the acoustic model to extract both direct and indirect measurements of a source’s position.

Some of these methods will later be used to develop efficient single and multi-source localisa-

tion techniques.

This was followed by a brief introduction to some more general audio processing techniques.

These techniques, whilst not directly localisation methods, are nonetheless useful when consid-

ering the localisation and tracking techniques used in this thesis. Finally, the environments in

which experiments were carried out in this thesis were described. This introduced the distinc-

tion between simulated room environments which provide experimental flexibility, and a real

acoustic lab, which allows experiments to be carried out on true non-idealised speech signals

in a truly reverberant setting.
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Chapter 3

Bayesian Filtering

3.1 Bayesian Estimation

This chapter introduces techniques which are fundamental to the acoustic source tracking prob-

lem, and underlie the remainder of the thesis. As such, it introduces Bayes’ theorem and the

recursive Bayesian estimator, which allow posterior probabilities to be calculated from a pri-

ori knowledge. This is followed by an introduction to the Kalman filter, the classical, optimal,

closed form solution to the state tracking problem, which deals with linear system models which

have Gaussian noise terms. The EKF is also discussed, which is a standard extension of the

Kalman filter to deal with non-linearities in the system and observation models.

To deal with non-Gaussian noise models along with non-linear system models, the particle

filter is introduced, which is a standard way to deal with these difficult yet common problems.

Finally, because the aim of this thesis is to study multi-source speaker localisation, random

finite sets are introduced, which can be used for multiple source Bayesian filtering.

3.1.1 Bayes Theorem

In tracking applications, there is typically an object to be tracked which has a true target state

that we wish to estimate, given a set of distorted observations of that object’s state. Bayes’ the-

orem is used to relate these observations and their prior probabilities to a posterior probability

of the system state given these observations. Bayes theorem is given in Equation (3.1), where

the state to be estimated is given by x and the observations are represented by z.

p (x | z) = p (x) p (z | x)
p (z)

(3.1)

Here, p (x | z) represents the posterior probability of the state x, given observations z, which

is generally what we would like to know. This is calculated from the prior probability density

function (PDF) of the state, p (x); the likelihood of the observations given the state, p (z | x)
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and finally the evidence term p (z). The evidence term is the marginal likelihood of the obser-

vation over the state space X , given in Equation (3.2), and normalises the posterior probability.

This term is a constant, as it is the marginal probability of the evidence term over the entire state

space, i.e. does not depend on the value of x [57]. Equation (3.1) can therefore be simplified to

the proportionality given in Equation (3.3), with proportionality constant α.

p (z) =

∫

X

p (x) p (z | x) dx (3.2)

p (x | z) ∝ αp (x) p (z | x) (3.3)

3.1.2 Recursive Bayesian Estimation

Recursive Bayesian estimation attempts to calculate estimates of the unknown PDF recursively

over time steps as new observations are available. The true state of a process to be estimated

by recursive Bayesian estimation is assumed to be a Markov process, where the state xt at (dis-

crete) time t is dependent only on the previous state at time t − 1, not on any other previous

states, which is illustrated in Figure 3.1 and written probabilistically in Equation (3.4), where

x0 is the initial system state. Figure 3.1 also shows the observations available, where an obser-

vation zt is dependent only on the state at time t. As the true state is hidden, and only distorted

observations are available, this is a hidden Markov model (HMM) [58].

xt-1

zt-1

xt

zt

Figure 3.1: Illustration of Markov process dynamic Bayesian network, showing the dependence

of states over time, as well as the observations of those states.

p (xt | x0, . . . , xt−1) = p (xt | xt−1) (3.4)
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The variables xt and zt are generated at each time step by some process or measurement func-

tion, respectively, defined in Equations (3.5a) and (3.5b), where vt and wt are independent

random variables representing noise with known PDFs.

xt = ft (xt−1, vt) (3.5a)

zt = ht (xt, wt) (3.5b)

It follows that, similarly to Equation (3.4), an observation at time t is only dependent on the

current state, and not any previous state, expressed in Equation (3.6).

p (zt | x0, . . . , xt) = p (zt | xt) (3.6)

For Bayesian target tracking, the posterior distribution, p (xt | z1:t) is required, and this can

be found using Bayes’ rule and the Chapman-Kolmogorov equation, given in Equation (3.7),

which describes the prediction step of a recursive Bayesian estimator.

p (xt | z1:t−1) =

∫

p (xt | xt−1) p (xt−1 | z1:t−1) dxt−1 (3.7)

This prediction is then updated with observations of the system using Bayes’ rule, as shown

in Equation (3.8), with the normalising constant defined in Equation (3.9), which depends

on the likelihood p (zt | xt), which is defined by the measurement function, Equation (3.5b).

p (x0 | z0) can be initialised as p (x0).

p (xt | z1:t) = p (xt | zt, z1:t−1)

=
p (zt | xt, z1:t−1) p (xt | z1:t−1)

p (zt | z1:t−1)

=
p (zt | xt) p (xt | z1:t−1)

p (zt | z1:t−1)

(3.8)

p (zt | z1:t−1) =

∫

p (zt | xt) p (xt | z1:t−1) dxt (3.9)
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With these recurrence relations and knowledge of the normalising constant p (zt | z1:t−1), op-

timal state estimates can be made based on, for example, the maximum a posteriori (MAP)

criterion of the minimum mean-square error (MMSE) criterion. The MAP estimate is the

maximisation of p (xt | z1:t), as defined in Equation (3.10), and the MMSE estimate is the

conditional expectation of xt, defined in Equation (3.11).

x̂MAP
t | t , argmax

xt

p (xt | z1:t) (3.10)

x̂MMSE
t | t , E [xt | z1:t] =

∫

xt p (xt | z1:t) dxt (3.11)

3.1.3 Kalman Filter

Different estimates can be made using Bayesian inference, in particular, the posterior PDF can

be maximised, as in MAP methods, or an error function can be minimised, for example with

MMSE techniques. All estimates rely heavily on good a priori knowledge, which is assumed

to be available.

Kalman filters, first introduced in 1960 [59], are used to estimate the state of a linear system

from a set of noisy measurements. The filters are recursive, which means that they only need

a current estimate of the state of the system and one set of measurements - no measurement

history is required. The filter is optimal in the MMSE sense, but this is conditional on the

linearity of the system and the noise terms are Gaussian. If the noise is not Gaussian, but

second-order statistics are known, then the Kalman filter is the best linear filter [60], but non-

linear filters such as particle filters can produce lower variance state estimates. This filter is

therefore a constrained closed form solution of the Bayesian estimator, and is derived from the

Bayesian estimator steps using the MMSE criterion.

A Kalman filter attempts to estimate an n-dimensional state at discrete time t, represented by

xt ∈ ℜn, of a process whose difference equation is given in Equation (3.12).

xt = Axt−1 +But−1 +wt−1 (3.12)

The true state is observed via an m-dimensional measurement, zt ∈ ℜm, shown in Equa-
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tion (3.13).

zt = Hxt + vt (3.13)

In these equations, both wt−1 and vt are random variables representing process noise and mea-

surement noise respectively. Importantly, these random variables are taken to be independent

zero-mean white Gaussian noise, with covariance matrices Q and R defined respectively for

each variable. In Equation (3.12), the matrix A is the state transition matrix which relates the

states between time steps. Matrix B converts an (optional) input to the system, ut−1, to a ma-

trix which can be added directly with the state update. Finally, the matrix H converts the true

state of the system to the observation vector zt.

The filtering algorithm can be thought of in two stages - prediction and correction. In the

prediction stage, the filter attempts to estimate the next state based on the current state estimate

and knowledge of system dynamics. It also estimates the next time step state estimation error

covariance matrix from the current one.

During the correction stage, the initial state estimation is updated using the initial error covari-

ance updates and the observations made of the system. Equations (3.14a) and (3.14b) describe

the prediction stage, and Equations (3.14c) to (3.14e) describe the correction stage.

x̂′
t = Ax̂t−1 +But−1 (3.14a)

P′
t = APt−1A

⊺ +Q (3.14b)

Kt = P′
tH

⊺
(

HP′
tH

⊺ +R
)−1

(3.14c)

x̂t = x̂′
t +Kt

(

zt −Hx̂′
t

)

(3.14d)

Pt = (I−KtH)P′
t (3.14e)

Equation (3.14a) simply takes the a priori state estimate from the previous time step, x̂t−1 and

predicts an intermediate estimation of the next state estimation, x̂′
t. Similarly, Equation (3.14b)

creates an intermediate prediction for the next state estimation error covariance, P′
t.

The correction stage begins with Equation (3.14c) calculating Kt, known as the Kalman gain.
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This gain is then used with the observation vector in Equations (3.14d) and (3.14e) to determine

the a posteriori state estimate and estimate error covariance matrix. This process of prediction

and correction can be repeated recursively over multiple time steps.

3.1.4 Extended Kalman Filter

The Kalman filter assumes that the system being filtered is linear with Gaussian noise. These

conditions are often not satisfied and the EKF is one way to deal with the case of Gaussian

noise with a non-linear state transition function and observation function. The idea behind the

EKF is that if these functions are known, then they can be approximated by a linear function

(linearised) around some point - namely the current state estimate - at each time step, allowing

the Kalman filter algorithm to continue in an otherwise standard way.

The Kalman filter was based on Equation (3.12), the state difference function, as well as

Equation (3.13), the observation function, being a linear. These can be redefined as in Equa-

tions (3.15) and (3.16) as general non-linear functions with, as before, independent white Gaus-

sian noise variables. Unfortunately, the distributions of the noise terms are no longer Gaussian

as they are transformed by the non-linear functions, which means that the EKF is not an optimal

estimator [61].

xt = f (xt−1,ut−1,wt−1) (3.15)

zt = h (xt,vt) (3.16)

The state and the measurements can be approximated as in Equations (3.17) and (3.18), which

neglect the noise variables. In Equation (3.17), x̂t−1 is an a posteriori estimate of the system

state from the previous time step.

x̃t = f (x̂t−1,ut−1, 0) (3.17)

z̃t = h (x̃t, 0) (3.18)
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The system state and observations can be linearised as shown in Equations (3.19) and (3.20),

which are truncated Taylor series expansions around the approximations in Equations (3.17)

and (3.18). Here, the notation is as before, with additional Jacobian matrices, At, Wt, Ht and

Vt. Note that At is the Jacobian matrix of partial derivatives of f (xt−1,ut−1, 0) with respect

to xt; Wt is the Jacobian matrix of partial derivatives of f (xt−1,ut−1, 0) with respect to wt;

Ht is the Jacobian matrix of partial derivatives of h (x̃t, 0) with respect to xt, and Vt is the

Jacobian matrix of partial derivatives of h (x̃t, 0) with respect to vt.

xt ≈ x̃t +At (xt−1 − x̂t−1) +Wtwt−1 (3.19)

zt ≈ z̃t +Ht (xt − x̃t) +Vtvt (3.20)

The EKF algorithm structure is the same as the Kalman filter structure, that is, there is a state

prediction phase and an update phase based on observations of the system being filtered. Equa-

tion (3.21a) shows that the state estimate is simply calculated using the non-linear state transi-

tion function with no noise term.

x̂′
t = f (x̂t−1,ut−1, 0) (3.21a)

P′
t = AtPt−1A

⊺
t +WtQt−1W

⊺
t (3.21b)

Kt = P′
tH

⊺
t

(

HtP
′
tH

⊺
t +VtRtV

⊺
t

)−1
(3.21c)

x̂t = x̂′
t +Kt

(

zt − h
(

x̂′
t, 0
))

(3.21d)

Pt = (I−KtHt)P
′
t (3.21e)

Equation (3.21b) changes the state estimate error covariance update to include the Jacobian

matrices, ands similarly, the update equations are modified to take account of the system lin-

earisation and also make use of the defined Jacobian matrices.
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3.1.5 Iterated Extended Kalman Filter

The EKF can be refined using local iterations of a linearised update step [62] to attempt to

better estimate the state of systems with highly non-linear measurement functions. The filter

algorithm is the same as the EKF, but with Equation (3.21d) replaced with a linearised iter-

ation function given by Equation (3.22). This iteration function is a re-linearisation around

the updated state estimate, with η0 set to x̂′
t, meaning that with only one iteration, the iterated

extended Kalman filter (IEKF) reduces to the EKF.

ηl = x̂′
t +Kt,ηl−1

(

zt − h (ηl−1, 0)−Ht,ηl−1

(

x̂′
t − ηl−1

))

(3.22)

The iterations stop at iteration l after the difference between iteration result ηl and ηl−1 is small,

that is, less than some tolerance value. The final state estimation for the Kalman filter iteration

t is then set to ηl and Pt is calculated again. For each iteration, the Kalman gain is recalculated,

as is the observation function h (ηl−1, 0) and the associated Jacobian matrix Ht,ηl−1
.

3.1.6 Numerical Stability

Kalman filters are known to be numerically unstable [63]. This can be demonstrated by con-

sidering Equation (3.14b), also known as the Ricatti equation. If this is propagated by one time

step, as in Equation (3.23), Equation (3.14e) can be substituted in to give Equation (3.24).

P′
t+1 = APtA

⊺ +Q (3.23)

P′
t+1 = AP′

tA
⊺ −AKtHP′

tA
⊺ +Q (3.24)

The Kalman gain, Equation (3.14c), can be re-written as shown in Equation (3.25), and then

Equation (3.24) can be substituted in as shown in Equation (3.26).

(

HP′
tH

⊺ +R
)

K
⊺
t = HP′

t (3.25)
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P′
t+1 = APtA

⊺ −AKt

(

HP′
tH

⊺ +R
)

K
⊺
tA

⊺ +Q (3.26)

Both P′
t+1 and (HP′

tH
⊺ +R) are covariance matrices, and so they must be positive-definite.

If A and Kt are both full-rank matrices, then Equation (3.26) can be thought of as the differ-

ence of two positive-definite matrices. Because these calculations are performed by computers,

which have finite accuracy when it comes to representing numbers, the computed result of

Equation (3.26) (P′
t+1) can become an indefinite matrix, although it should in theory remain

positive-definite.

This problem can cause the Kalman filter state estimate to diverge, which is a problem for prac-

tical implementations of the filter. A common way to deal with this is to update the square-root

of Pt+1 at each time step, which can be found using the Cholesky decomposition. Equa-

tion (3.27) then redefines the covariance matrix of the predicted state error, Kt. Whilst this

method resolves the divergence problem and moreover, effectively increases the numerical pre-

cision of the result [64], there is a computational cost due to the square-root computation and

other methods have been developed with the aim of reducing this cost [65].

Pt+1 , P
1/2
t+1P

⊺/2
t+1 (3.27)

3.2 Bayesian Filtering for Multiple Sources

Multi-target acoustic source tracking is concerned with updating the states of multiple sources,

which is complicated by the appearance and disappearance of sources as they start and stop

talking. Further, tracking systems have to deal with spurious measurements not originating

from any source of interest, as well as missed measurements, where a real speaker isn’t detected

correctly. Thus, multi-target trackers must estimate both the number of targets at a given time

step, as well as their states. Figure 3.2 illustrates this problem.

3.2.1 Random Finite Sets

The RFS formulation is justified [66] by considering the estimation error of a tracking system.

If the multi-target state is represented by an array of individual target state vectors X, as shown
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State Space

Observation Space

Figure 3.2: System model for multi-target tracking, showing spurious and missed measure-

ments as well as a change in the number of speakers

in Equation (3.28), then the estimation error is hard to define, partly because the order in which

to stack them is unknown. In Equation (3.28), n target states are arranged into a matrix with

n rows, each row being one of the target states. Each target state is a row vector with m

components, i.e. xn = [xn, 1 . . . xn,m].

X =

















x1

x2

...

xn

















(3.28)

Figure 3.3 illustrates such a problem, where the state of two targets is defined by the stacking

of their Cartesian coordinates. Despite the estimated state X′ having the correct numbers, they

are in the wrong order, leading to an estimation error of ‖X−X′‖2 = 2. This could be dealt

with by defining the estimation error as the minimum error over all stacking permutations of

the vector, but there are still problems.

Importantly, using a stacked vector representation causes problems with calculating the error

when the cases illustrated in Figure 3.4 are considered: firstly when the estimated number of

targets is different from the true number of targets; and secondly when there are no real targets

at all. The same thing can be argued for measurements data - the number of measurements at a

given time can change, and their order is insignificant.

A RFS is specified by a discrete distribution which characterises the number of points in the

set (its cardinality) and a set of joint distributions which specify the locations of the points
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True State Estimated State

Figure 3.3: Multi-target states represented by a stacked vector of Cartesian coordinates

True State Estimated State

True State Estimated State

Figure 3.4: Estimated number of states differing from the true number of states using a stacked

vector representation
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conditional on that cardinality. In RFS based trackers, the multiple individual states of each

source are treated as a set-valued single state to be tracked [19]. The RFS formulation for

multi-target filtering is set up in [19] as follows.

The number of targets at time t is defined by M(t), and at time t − 1, the individual states of

the targets are x1,t−1, . . . , xM(t−1),t−1. At time t, the sensor array gives N(t) observations

z1,t−1, . . . , zN(t−1),t−1, whose order is unknown because the true source of each measurement

is unknown, as mentioned previously. Some of these measurements will be spurious - not

corresponding to any true source; measurements corresponding to a true source may be missing,

as they simply haven’t been observed. Equations (3.29) and (3.30) represent the target states

and measurements at time t as finite sets, where F(X ) and F(Z) are the power sets of the state

space X and the observation space Z respectively. Note that the power set P (S) of a set S is

defined as the set of all possible subsets of S, including S and the empty set, ∅.

Xt =
{

x1,t, . . . , xM(t),t

}

∈ F (X ) (3.29)

Zt =
{

z1,t, . . . , zN(t),t

}

∈ F (Z) (3.30)

Moving from time step t− 1 to t, each state xt−1 in Xt−1 continues to exist with some proba-

bility, pS,t (xt−1), which leads to the source ‘death’ probability of 1 − pS,t (xt−1). Each state

also has a transition function, f t | t−1 (xt−1). Together, these provide the state behaviour at time

t from time t − 1 as the RFS S t | t−1 (xt−1), which can be either {xt} or ∅. The multi-target

state Xt at time t is expressed in terms of the previous multi-target state Xt by Equation (3.31),

which is a union of the RFS of surviving targets, the RFS of spontaneous target births Γt, and

the RFS of new targets, referred to as ‘spawned’ targets, B t | t−1 (ζ).

Xt =





⋃

ζ=Xt−1

S t | t−1 (ζ)



 ∪





⋃

ζ=Xt−1

B t | t−1 (ζ)



 ∪ Γt (3.31)

The RFS measurement model is then defined by considering the probability of a single state, xt,

being detected, pD,t (xt). The PDF of obtaining a measurement zt from state xt, conditional

on being detected, is defined by ht (zt | xt). Therefore, each state at each time step gener-
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ates an RFS given by Equation (3.32). Note that explicit expressions for both ht (zt | xt) and

f t | t−1 (Xt | Xt−1) must be derived from the dynamics and sensing models of the system being

filtered using finite set statistics (FISST).

Θt (xt) =











{zt} if state detected

∅, otherwise

(3.32)

Similar to S t | t−1, this state is either {zt} if the target is detected, or ∅ if not. The sensors also

receive a set of false measurements, often referred to as clutter, represented by Kt. This leads

to the representation of the multi-target measurement given in Equation (3.33), which is the

union of the set of clutter observations and the set of observations generated by targets.

Zt = Kt ∪
[

⋃

x∈Xt

Θt (x)

]

(3.33)

This leads to a multi-source recursive Bayesian filter, with prediction and update steps ex-

pressed in Equations (3.34) and (3.35) respectively.

p t | t−1 (Xt | Z1:t−1) =

∫

f t | t−1 (Xt | X) pt−1 (X | Z1:t−1)µs dX (3.34)

pt (Xt | Z1:t) =
ht (Zt | Xt) p t | t−1 (Xt | Z1:t−1)

pt (Zt | Z1:t−1)
(3.35)

In these equations, µs is a reference measure [67] on the power set F (X ) and pt (Zt | Z1:t−1)

is the Bayes normalisation factor expressed in Equation (3.36).

pt (Zt | Z1:t−1) =

∫

ht (Zt | X) p t | t−1 (X | Z1:t−1)µs dX (3.36)

The recursion given by this set of equations calls for computationally intractable set integra-

tions. Sequential Monte Carlo (SMC) methods to approximate these integrals have been stud-

ied [68], however the computational cost is still high.
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3.2.2 Probability Hypothesis Density Filter

The probability hypothesis density (PHD) filter attempts to reduce the complexity of the multi-

target tracking problem by propagating through time steps a first-order statistical moment of the

multi-target posterior state, rather than multi-target posterior density. This parallels the Kalman

filter, which propagates the expectation of a single target state.

The intensity, or PHD, of an RFS X with probability distribution P is the first-order moment

of X , and is denoted as the function v (x) in Equation (3.37). In this equation, X is the entire

set state space, and S is a region in X , S ⊆ X .

∫

|X ∩ S| =
∫

S

v (x) dx (3.37)

The interpretation of this is that the integration of the PHD gives the expected number of ele-

ments of the set X - the expected number of targets.

Poisson RFSs are described completely by their PHDs, and can be used to model birth and

clutter RFSs, for example those represented by Γt, B t | t−1 and Kt given in Section 3.2.1. A

Poisson RFS is one which has a Poisson cardinality distribution of X , with some mean N̂ , and

for a finite cardinality, the elements of X are i.i.d.

3.2.3 Linear Gaussian Probability Hypothesis Density Recursion

Similar to the standard Bayes recursion, the PHD recursion requires extra assumptions about

the target model in order to obtain a closed form solution akin to the Kalman filter. The linear

Gaussian assumption for individual target states must still hold for a closed form solution.

Further, it is assumed that the RFS predicted using p t | t−1 is a Poisson RFS; the survival and

detection probabilities defined previously are independent, expressed in Equation (3.38), and

finally that the birth intensity γt(x) and the spawn intensity β t | t−1(x | ζ) are Gaussian mixtures

as described in Equations (3.39) and (3.40) respectively.

pS,t (x) = pS,t

pD,t (x) = pD,t

(3.38)
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γt(x) =

Jγ,t
∑

i=1

w
(i)
γ,t N

(

x;m
(i)
γ,t, P

(i)
γ,t

)

(3.39)

β t | t−1(x | ζ) =
Jβ,t
∑

j=1

w
(j)
β,t N

(

x;F
(j)
β,t−1ζ + d

(j)
β,t−1, Q

β,t−1
(j)

)

(3.40)

The birth parameters are similar to the standard Gaussian mixture model (GMM) parameters

in that the system is a sum of Jγ,t Gaussian distributions, weighted with weights w
(i)
γ,t and

each distribution with mean m
(i)
γ,t and covariance matrix P

(i)
γ,t . Similarly, the spawn parameters

represent a sum of Jβ,t Gaussians, each weighted by w
(j)
β,t, with mean F

(j)
β,t−1ζ + d

(j)
β,t−1 and

covariance matrixQ
β,t−1
(j) . It can be shown [19] that the propagation of these Gaussian mixtures

through the PHD results in Gaussian mixtures at the output, which allows the recursion to be

meaningfully repeated.

The final GM-PHD recursion is given in Equations (3.44) and (3.46), where Equation (3.44)

corresponds to the Bayesian prediction step and Equation (3.46) corresponds to the update

step. In these equations, the linear Gaussian state transition model and measurement model are

represented by Equations (3.41) and (3.42), with a state transition matrix Ft−1ζ; process noise

covariance matrixQt−1; measurement matrixHt and measurement noise covariance matrixRt.

f t | t−1 (x | ζ) = N (x;Ft−1ζ,Qt−1) (3.41)

ht (z | x) = N (z;Htx,Rt) (3.42)

Equation (3.44) assumes that the posterior intensity at time step t− 1 is a Gaussian mixture of

the form given in Equation (3.43). In this Equation, w
(i)
t−1 is the mixture weight for the ith of

Jt−1 mixture components in the model, where Jt−1 represent the number of tracked sources at

time t − 1. Similarly, in Equation (3.44), Jβ,t represents the number of spawned targets at a

time step, each with weight w
(l)
β,t.

vt−1 (x) =

Jt−1
∑

i=1

w
(i)
t−1 N

(

x;m
(i)
t−1, P

(i)
t−1

)

(3.43)
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v t | t−1 (x) = vS, t | t−1 (x) + vβ, t | t−1 (x) + γt (x) (3.44a)

vS, t | t−1 (x) = pS,t

Jt−1
∑

j=1

w
(j)
t−1 N

(

x;m
(j)
S, t | t−1, P

(j)
S, t | t−1

)

(3.44b)

m
(j)
S, t | t−1 = Ft−1m

(j)
t−1 (3.44c)

P
(j)
S, t | t−1 = Qt−1 + Ft−1P

(j)
t−1F

⊺
t−1 (3.44d)

vβ, t | t−1 (x) =

Jt−1
∑

j=1

Jβ,t
∑

l=1

w
(j)
t−1w

(l)
β,t N

(

x;m
(j,l)
β, t | t−1, P

(j,l)
β, t | t−1

)

(3.44e)

m
(j,l)
β, t | t−1 = F

(l)
β,t−1m

(j)
t−1 + d

(l)
β,t−1 (3.44f)

P
(j,l)
β, t | t−1 = Q

(l)
β,t−1 + F

(l)
β,t−1P

(j)
β,t−1

(

F
(l)
β,t−1

)⊺
(3.44g)

Similar to Equation (3.43), the predicted intensity at time t is assumed to be a Gaussian mixture

of the form given in Equation (3.45), where the variables are as defined previously, along with

κt (z), which represents the intensity of Kt, the clutter RFS at time step t.

v t | t−1 (x) =

J t | t−1
∑

i=1

w
(i)
t | t−1 N

(

x;m
(i)
t | t−1, P

(i)
t | t−1

)

(3.45)

vt (x) = (1− pD,t) v t | t−1 (x) +
∑

z∈Zt

vD,t (x; z) (3.46a)

vD,t (x; z) =

J t | t−1
∑

j=1

w
(j)
t N

(

x;m
(j)
t | t, P

(j)
t | t

)

(3.46b)

w
(j)
t (x) =

pD,tw
(j)
t | t−1q

(j)
t (z)

κt (z) + pD,t
∑J t | t−1

l=1 w
(l)
t | t−1q

(l)
t (z)

(3.46c)

q
(j)
t (z) = N

(

z;Htm
(j)
t | t−1, Rt +HtP

(j)
t | t−1H

⊺
t

)

(3.46d)

m
(j)
t | t (z) = m

(j)
t | t−1 +K

(j)
t

(

z −Htm
(j)
t | t−1

)

(3.46e)

P
(j)
t | t =

[

I −K(j)
t Ht

]

P
(j)
t | t−1 (3.46f)
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K
(j)
t = P

(j)
t | t−1H

⊺
t

(

HtP
(j)
t | t−1H

⊺
t +Rt

)−1
(3.46g)

Finally, Equations (3.47) and (3.48) give the expectation of the predicted number of targets and

the expectation of the number of targets after the update step respectively.

N̂ t | t−1 = N̂t−1



pS,k +

Jβ,t
∑

j=1

w
(j)
β,t



+

J
(j)
γ,t
∑

j=1

w
(j)
γ,t (3.47)

N̂t = N̂ t | t−1 (1− pD,t) +
∑

z∈Zt

J t | t−1
∑

j=1

w
(j)
t (z) (3.48)

As time progresses, the number of Gaussians in the mixture model increases so far as to become

computationally hard to deal with. To remedy this, the number of Gaussians propagated from

step t−1 to step t can be reduced in a process called pruning. This process takes into account a

maximum allowable number of Gaussian terms, Jmax; a threshold T for Gaussians with weights

under which should be discarded and a threshold U , which allows similar Gaussian components

to be grouped together and approximated with a single Gaussian component. Algorithm 1 [19]

presents the pruning algorithm, given the sets
{

w
(i)
t ,m

(i)
t , P

(i)
t

}Jt

i=1
.

Finally, state extraction is slightly complicated by the fact that the height of each Gaussian peak

is dependent not only on its covariance, but on its weight as well. Choosing the N̂t highest peaks

as the state estimates might pick Gaussian components with low weights. It is suggested that

when selecting the components, only those components with a weight over a threshold E be

used.

3.2.3.1 Track Continuity

Whilst the GM-PHD filter can extract multiple tracked states at each time frame, Gaussians

corresponding to a single source across time frames aren’t explicitly associated with each other.

To remedy this, a label l
(i)
t can be applied to each Gaussian component. At the prediction step,

surviving Gaussians keep their labels whilst spawned and birthed components are each assigned

a new label. At the updated and pruning stage, components which should have the same label

as in the prediction step need to be identified, as well as deciding which label to keep when
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l = 0
I =

{

i = 1, . . . , Jt | w(i)
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}

repeat
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I = I \ L
until I = ∅
if l > Jmax then

Replace
{

w
(i)
t ,m

(i)
t , P

(i)
t

}l

i=1
by the Jmax Gaussians with the largest weights

end if

return
{

w
(i)
t ,m

(i)
t , P

(i)
t

}l

i=1

Algorithm 1: GM-PHD Gaussian pruning algorithm

components are merged [69].

3.3 Summary

This chapter introduced a Bayesian framework for filtering and tracking which is the basis for

much work in the area of acoustic source localisation. Bayesian estimation was presented, fol-

lowed by the Kalman filter, which is a closed-form solution derived from Bayesian estimation

for linear systems with Gaussian noise. The EKF was then presented, which is an extension of

the Kalman filter to non-linear systems, along with the IEKF, a similar technique.

These techniques are important for the tracking of speakers in the single-source scenario, and

are used in the literature as well as the early chapters of this thesis for that purpose. However,

they cannot deal with tracking multiple simultaneous speakers, which is one of the considera-

tions of this thesis.

For that purpose, RFSs were introduced, which are the basis for multi-target tracking PHD

filter techniques. The GM-PHD was introduced, which provides a powerful tool for tracking

the states of multiple speakers. PHD filters replace multiple target states with a single, RFS

based multi-target state. The Bayesian recursion can be defined for this set-state, leading to
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practical filters. The GM-PHD filter is one such filter which has a closed form given some

assumptions, and avoids computationally expensive sequential Monte Carlo (SMC) methods.
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Chapter 4

Single Source Audio Localisation

This chapter considers the relatively simple case of acoustic source localisation and tracking

for a single speaker at a time. This specific case of the ASLT problem is considered first as

it avoids the problems inherent when considering an unknown number of concurrent speakers.

By assuming that only a single continuous source is active, all location information extracted

can be considered as coming from that source, neglecting reverberation and other noise.

The work in this chapter builds on work which utilises the SRP, which is a useful measure of the

acoustic power from a point in space within a room. The SRP is attractive for source localisation

because it is robust to both noise and reverberation, but also because it has the potential to be

used for the localisation of multiple sources. This is because individual sources create distinct

peaks of the SRP function corresponding to their position in space. The localisation of multiple

peaks of this function will be considered in Chapter 6.

The localisation technique studied in this Chapter, known as stochastic region contraction

(SRC), is a method of evaluating the SRP iteratively, to close in on the location of a source.

This technique will be described, and this will be followed by the introduction of a new tech-

nique, the HE-SRC method. This technique was developed to more efficiently use the SRP for

source localisation by feeding the height of a source detected in previous time steps back in to

the localisation algorithm, in order to improve the localisation speed. Height information might

not be considered particularly useful for a speaker tracker, as speakers can be assumed never

to occupy the same position on the horizontal-plane. Nevertheless, it will be shown that the

use of height information in the localisation algorithm can improve tracker results. Some work

assumes that speaker heights are known to be within some narrow range of the vertical axis.

This chapter makes use of height information to speed up the two dimensional localisation task,

whilst simultaneously allowing the entire vertical axis to be explored.

Finally, it should be remarked that the HE-SRC method is fully developed to be able to take

advantage of potential speaker height information from other sources, such as from a video

processing algorithm. If a set of cameras can be used to locate the positions of people within a

64



Single Source Audio Localisation

room, then their heights can be extracted to allow the current speaker to be identified relatively

quickly. This might be particularly useful in scenarios where the speakers are not situated

in the vertical axis where some algorithms assume them to be, that is, distributed over some

implicitly defined region of the vertical axis. This is acceptable if all of the people within an

area are around the same height, and standing up. However, this assumption might be violated

in scenario where, for example, somebody is standing up and giving a presentation to a seated

audience within a meeting room. In such a scenario, knowing the positions of potential speakers

- and therefore their heights - would allow an audio localisation algorithm to quickly identify

speaker locations as and when the active speaker changed, for example when questions were

asked of and answered by the presenter.

4.1 Steered Response Power

The SRP is a useful measure of the acoustic power originating from a particular location in

space within a room, which has been shown to be relatively robust to reverberation [70, 71].

The GCC-PHAT from a set of microphones is used by the SRP algorithm to build up a 3D map

of this power, as detailed in Section 2.3.2.3.

The GCC-PHAT [42] is a technique used to estimate the TDOA of an audio signal to a set

of microphones. The method is popular as it is relatively simple and can give good results,

even in noisy and reverberant environments [72]. The cross-correlation function is visually

compared to the cross-correlation with PHAT weighting in Figure 4.1, which both show a

peak at a time delay caused by an acoustic source. These plots were generated by a simulated

speaker, subject to a RIR generated by the image method. The peak given by the correlation

with PHAT weighting is much more distinct than that given by correlation with no weighting

applied, with correlation values relatively low everywhere except at the true time offset. This

makes the PHAT weighting useful for reliably extracting a peak corresponding to a TDOA.

4.1.1 Computational Complexity

Since the volume of a room is very large compared to the spatial resolution generally required

by source tracking applications (see Section 2.3.2.5), and because of the computationally ex-

pensive nature of the algorithm [13], the calculation of the SRP across an entire room is infea-

sible. This means that an exhaustive search, where every point in space is interrogated for its
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Figure 4.1: GCC-PHAT weighting comparison

power and the point with the maximum power deemed to be the source location, cannot practi-

cally be implemented. There are various methods [13,70,73] for finding the global maximum of

the 3D array produced by searching over the room volume, however SRP based audio localisa-

tion also has the potential to locate and track multiple speakers more easily than the traditional

maximal GCC TDOA methods [74]. This gives a strong motivation to develop techniques to

efficiently search the SRP energy map across a room, and one such example is the technique

presented in [75]. This method uses an inverse mapping to attempt to limit the spatial search

to areas of maximal power. This reduces the computation time required to localise a source

when compared to an exhaustive search of every possible grid point within the search volume.

However, this comes at the cost of reduced spatial coverage, meaning possible missed sources,

depending on the parameters used in the algorithm.

4.2 Stochastic Region Contraction

SRC [13] is a technique for locating a single audio source within a search space using the

SRP. Instead of exhaustively searching through every possible location to find the peak SRP

value, it speeds up the process by iteratively choosing points in space at which the SRP is to be

evaluated. The search space is then reduced by restricting the next iteration of the algorithm to

a search within an area bounded by a subset of the results of the current iteration. The boundary

is defined as the cuboid volume containing only the locations of a subset of the highest SRP

values. In this context, each SRP calculation is called a functional evaluation (FE).
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Figure 4.2: A 2D example of SRC, showing the search region contracting around the global

maximum at each iteration i

4.2.1 Algorithm Description

The SRC uniformly takes samples of the SRP from across the search space and attempts to

contract that search space to the area given by a set of the highest valued samples [13]. Because

the higher valued SRP samples will generally be centred around a peak, caused by a sound

source, the search area should quickly shrink. If a peak is not detected (the samples drawn

miss the peak or any higher SRP values surrounding it), then in the single-speaker case, the

remainder of the samples should be around the same magnitude.

The best samples will then be uniformly distributed across the search space, and the search

space will not shrink appreciably. This allows the next iteration to sample the space again, and

the source should be detected. Algorithm parameters determining the number of samples to be

drawn have the obvious effect of influencing how little or often peaks are missed. Using very

few samples will miss peaks more often than using many samples, resulting in higher search

times. However, there is a balance to be made between reducing the number of samples to

draw in order to reduce the number of FEs used, and using so few samples that the search area

constricts very slowly and ends up requiring an even larger number of FEs.

By repeating this process, the search space will become an area sufficiently small enough to be

considered the point which is the maximum of the SRP function and therefore the source of the

sound. This is illustrated in Figure 4.2.
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The initial number of random points to evaluate, J0 is estimated in [13] by considering the

probability of one of the uniformly distributed points being within the volume Vpeak, which is

the volume containing points with values higher on average than points in the surrounding area.

Ji is then defined as the number of random points required for evaluation of the next iteration i

of the algorithm. Ni is defined as the number of points needed to define the next search volume,

Vi+1, which is a cuboid sub-volume of the original search volume. The algorithm also defines

Φ, the maximum total number of FEs allowed to be evaluated, along with FEi, which tracks

the total number of FEs calculated. Also defined are Vu, the unit voxel which represents the

smallest volume of space in which a FE can be calculated for, and T1, a parameter normally set

to about 10, which allows the algorithm to stop if Vi+1 never quite gets close enough to Vu to

stop within the specified maximum number of FEs allowed (Φ). The SRC algorithm for finding

the global maximum is then given in Algorithm 2.

Initialise i = 0
Set parameters J0, N0 and V0 = Vroom
Calculate S(x, y, z) for Ji points

Sort to find the highest Ni points

loop

Contract the search volume Vi+1 to only contain these Ni points

if Vi is the unit voxel, or FEi > Φ and Vi+1 < T1Vu then

Stop and keep the result

else if FEi > Φ then

Stop and ignore the result

else

Keep subset Gi of the points that are greater then the mean of the Ni points.

end if

Find Ji+1 new points in Vi+1

Set Ni+1 = Gi ∪Bi, where Bi is the set of the Ni −Gi highest new points from Vi+1

end loop

Algorithm 2: SRC Algorithm

4.2.2 Stochastic Region Contraction Variants

The parameters Ji and Ni can be chosen in several different ways, leading to several different

variants of the SRC algorithm. The authors of [13] found it best to set a fixed value of Ni for

all iterations based on their experimental results. From there, they defined three variants of the

algorithm which each chose Ji using a different method.

The first method, SRC-I, sets Ji to the number of FEs needed to find (Ni −Gi) points greater
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than the average of the current set, µi. It uses a finite value for Φ. SRC-II sets Ji to the number

of FEs needed to find (Ni −Gi) points higher than the minimum of the complete set Ni and it

also uses a finite value for Φ. Finally, for SRC-III, Ji is fixed to some value J and the (Ni−Gi)

highest points are chosen at each iteration. In this case, Φ is set to infinity.

4.3 Height-Estimated Stochastic Region Contraction

In order to reduce the number of FEs required for convergence, the nature of the different

room axes should be considered. Whilst speakers might reasonably be located anywhere on the

horizontal-plane within a room, their position in the vertical axis is normally more restricted.

This is dealt with implicitly in some case, for example by limiting the search range over the

vertical axis [13], centred around a likely head-height. This approach excludes speakers at

unusual places such as up at the ceiling, or on floor. It also limits the general applicability of

the method to scenarios where speakers are at different heights, for example, a speaker on a

stage taking questions from an audience.

To choose head height, existing knowledge of the current positions and heights of people in a

room can be used. In an audio-visual (AV) system, this is easy to initialise as video data can be

used to make an initial estimation of the heights which should be searched in the audio domain.

In addition, existing audio domain search techniques such as the full SRC algorithm can be

used to make the first head height estimation. After they have been found initially, the tracked

locations of people, both speakers and non-speakers, from both audio and visual sources will

allow a good estimate of the height to be used across the room.

From a set of people sparsely distributed across a room, the head height to be used at every x-y

co-ordinate in the SRP map will be defined. If there is only one person within a room, and that

person has been previously localised in the audio domain, then their previously detected height

will be used at their last known positions, under the assumption that a person might have moved

across the horizontal plane, but is unlikely to have changed height.

If the positions of multiple potential speakers in a room are known, possibly from a people-

tracking video system, then their heights can be extracted and used to reduce the acoustic

search complexity for finding active speakers. Estimated height between potential speakers

will be calculated by interpolating between the extracted heights. Interpolation can only be

done between points, and because people are unlikely to be located in the corners of the search
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area, estimated heights need to be defined differently for areas which are not between potential

speakers.

This can be achieved by defining points at the corners of the room being searched, such that they

are included in the set of points to be interpolated. A height needs to be defined for these extra

locations, and this means that an assumption about the outer elements of the set of potential

speakers and how they relate to the height at the edge of the search area must be made. This

work uses the speaker closest to a corner to specify the height at that corner.

4.3.1 Interpolation

In order to define the head-height across an entire room, the height of known speakers can be

used as points for interpolation, leading to a surface representing head-height over the entire

horizontal-plane. When doing interpolation, there is a trade-off between the smoothness of the

curve produced and the size of ripples produced. The interpolation should not contain severe

ripples as they would lead to large errors in the head height estimation across the room. Ideally,

there would be no ripples at all - the surface should be monotonic between all known points

used for the interpolation.

4.3.1.1 Monotonic Interpolation

To guarantee that there are no ripples on the interpolated surface, the interpolating function

should be monotonic between any two points, where a monotonic function maintains the or-

der of the set of points. Figure 4.3 illustrates a monotonically increasing function and a non-

monotonic function. In one dimension, monotonic interpolation can be achieved using linear

interpolation or monotonic cubic interpolation [76].

Unfortunately, the extension of linear interpolation into 2D, bilinear interpolation, doesn’t result

in linear functions of the set of points, which means that monotonicity is not guaranteed. This

is because whilst the interpolant function is linear across each axis x and y, it is the product of

those two linear functions over any other straight line, i.e. quadratic interpolation.
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Figure 4.3: Illustration of a monotonic and a non-monotonic function in one dimension

4.3.1.2 Delaunay Triangulation

The lack of monotonicity in linear interpolation when applied to a set of points in more than one

dimension required that another technique be found. Delaunay triangulation [77] can be used

as an interpolation method which sacrifices the smoothness of the resulting interpolated surface

for a surface which could be used reliably for height estimation, as it is monotonic. Delaunay

triangulation obtains a piecewise linear interpolation of the set of speakers, which is a set of

points in 2D. This creates a surface which can be evaluated at any 2D point within the convex

hull (see Section 4.3.1.3) of the speaker set, which in turn allows an estimate for the head height

to be taken between potential speakers within a room. To enable this ability across an entire

room, the data also needs to be extrapolated from the convex hull of the set of speakers out to

the edges of the room, which is detailed in Section 4.3.2. Figure 4.4 demonstrates an example

surface created using Delaunay triangulation based interpolation.

This is in comparison to a plate-splines method [78] illustrated in Figure 4.5, which demon-

strates the problem of ripples at the edge of the area. Whilst not orders of magnitude larger

than the heights of the sources, indicated by green squares, the ripples produced are still a me-

tre too high in some places. This is a large distance compared to the height of a person, and the

amount of ripple is not generally controllable.

Note that in each diagram, there are four true sources in the centre of the room, two of which

are lower than the others, to simulate a situation where some speakers are sitting down some

are standing up. The green squares which mark the corners of the area - corresponding to
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Figure 4.4: Delaunay triangulation method for estimating head height (hc) as a function of

position (x,y)
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Figure 4.5: Plate-splines method for estimating head height (hc) as a function of position (x,y)
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the corners of the room under consideration, have been extrapolated according the method

described in 4.3.2. The room width and length are represented by the x and y axes and the

interpolated heights hc form the set H across the area of the room. Together, these diagrams

show that the Delaunay method can avoid the problem of ripples, although it leads to a less

smooth interpolation.

The Delaunay triangulation of a 2D set of points is the division of the plane containing those

points into a set of triangles with those points as vertices. The triangulation tries to avoid trian-

gles with small angles, as illustrated in Figure 4.6, which illustrates a set of points highlighted

in red, with lines between the vertices indicating the Delaunay triangulation of these points.

Also shown are the circumcircles of these point. The Delaunay condition (in 2D) requires that

the circumcircle of a triangle not contain any other point from the set. This method can be ex-

tended to higher dimensions, using higher dimensional point sets and equivalents to planes and

triangles. A widely used algorithm to calculate the Delaunay triangulation is Quickhull [79],

which is used within MATLAB via the freely available QHull implementation. Quickhull cal-

culates the Delaunay triangulation of a d-dimensional set of points by converting the problem

into a calculation of the convex hull of the set in (d+ 1) dimensions.

Figure 4.6: 2D Delaunay triangulation showing circumcircles
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4.3.1.3 Convex Hull

The convex hull of a set of points S is the smallest convex subset of those points which contains

that whole set, S. In 2D, this is a convex polygon, which is a polygon which does not intersect

itself, and, for every pair of points on the boundary of the polygon, every point on a straight

line joining that pair is also within the polygon. Figure 4.7 illustrates the difference between

convex and non-convex polygons in 2D space.

(a) Convex Polygon (b) Non-convex Polygon

Figure 4.7: Illustration of convex and non-convex polygons in 2D

Figure 4.8 shows a visualisation of the elastic band analogy, which provides an intuitive view

of the convex hull in 2D. If an elastic band is stretched out to enclose the entire set, it takes the

shape of the convex hull of the set when it is released.
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Figure 4.8: Elastic band analogy for the convex hull of a set of 2D points

Using the concept of convex hull, it is clear that given a set of speakers, the Delaunay trian-

gulation of their positions will only be useful for deriving height information strictly between

them. This means that an alternative has to be found for possible speaker locations outside of

this convex hull.

4.3.2 Extrapolation

To perform the extrapolation task required, the Delaunay triangulation technique is further

utilised by artificially expanding the convex hull of the set of speaker locations to cover the

entire room. Note that in this work only simple cuboid areas of interest are considered for this

task.

In order to extrapolate correctly, room corners must be pre-allocated nodes, which are assigned

heights dynamically based on existing estimated speaker heights within a room. There are

several options for choosing the height hcj at each of these j nodes (where in a rectangular

room, j = 4), such as choosing the height at a corner point to be the same as the height

of the nearest speaker, as shown in Equation (4.1a), where zi is the height component of ri,

the position of known node i and rcj is the position of corner j. An alternative is to use
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Equation (4.1b), the expected height of a speaker from all known node heights zi. If it is

assumed that there are a limited number of speakers then finding the nearest node to a corner

poses no computational problems.

hcj = argmin
zi

[rcj − ri] (4.1a)

hcj = E [zi] (4.1b)

With the heights of the corner nodes chosen, triangulation based interpolation can be used

across the entire room, an example of which is shown in Figure 4.4.

4.3.3 Estimating the Height

Because the head height, H , is only an estimate, its accuracy varies across the room. To com-

pensate, the head height to be used in the SRC algorithm is drawn from a PDF which ensures

that most of the time, samples are taken around head height without being overly restrictive and

a small amount of time from less likely areas, so as not to entirely neglect large portions of the

search space. The interpolated head height from previously detected sources is used to model

the mean of a Gaussian distribution whose variance changes depending on its proximity to a

known source. This Gaussian distribution is then combined with a Uniform distribution across

hr, the entire height of the room, in a mixing model. This allows the search to concentrate on

areas likely to contain people whilst at the same time, not neglecting to check for possible out-

liers. The height hsub to use at each time step for every 2D point p2 = (xp2 , yp2) is drawn from

the mixture model described in Equation (4.2) where T is the set of known speaker locations.

In these equations, ϕ (z | p2) represents the conditional probability of a height given the point

p2, and α0 is the mixing coefficient.

ϕ (z | p2) = α0N
(

µh, σ
2
h

)

+ (1− α0)U (0, hr)

µh = H[p2]

σ2h = q̂(p2, T)

(4.2)

This can be repeated n times to create an array where h[n] = hsub, drawn from the mixture

76



Single Source Audio Localisation

distribution, each time. The resulting SRP value for the point p2 can either be the maximum

value found as in Equation (4.3a) or the expectation (Equation (4.3b)) of the values, in which

case as n increases, SRPp2
tends towards the marginalisation of the SRP over z, the room

height.

SRPp2
= max

z
[S(xp2 , yp2 , h[n])] (4.3a)

SRPp2
= E [S(xp2 , yp2 , h[n])] (4.3b)

Around each person, we can be relatively confident of their height. Further away from them,

the decreasing confidence is modelled by increasing the variance of the sampling PDF. The

variance at a distance l metres from a speaker is chosen to be modelled by a sigmoid function,

q, such as Equation (4.4a), which is a scaled error function, or Equation (4.4b), which is also

sigmoid in shape.

q(l) = α1 erf (α2l) (4.4a)

q(l) = α1(1− e−l/α2) (4.4b)

Both of these equations evaluate to 0 at their origins and asymptotically approach constants as

their arguments tend towards infinity. With an appropriate choice of coefficients, these functions

can be used to limit the search height at a previously estimated speaker location to a narrow

range. Moving away from the source position, the range of heights to be considered can be

smoothly increased up to a predefined limit. It is convenient to choose this limit to match the

original assumption made in the SRC algorithm, such that the sigmoid function limits to the

upper and lower bounds of the original height range to be searched.

Whilst this chapter primarily considers single source localisation, the height estimation method

can be extended to accommodate multiple speakers for integration with multi-source locali-

sation techniques, particularly if video localisation methods are used in conjunction with the

audio data. If two speakers are positioned close together, then the sigmoid functions associated

with each speaker might overlap. As such, a decision needs to be taken about the variance to

be used at points in space which are part of the overlap. The variances are combined to form a
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global variance in Equation (4.5).

Lp,T = {l : (∃q ∈ T)(l = |p− q|)}

q̂(p2, T) = min
l∈Lp,T

q(l)
(4.5)

At any point p in space, the appropriate variance q̂ to use will be the sigmoid function q of the

minimum of the set of all 2D Euclidean distances pq to known sources, where an element of T

is denoted as q. The minimum is chosen to ensure that the change in variance remains smooth

even for overlapping sigmoids from multiple sources.

4.3.4 Algorithm Description

The algorithm for finding the global maximum using the estimated head height is given in

Algorithm 3, where DT denotes the Delaunay Triangulation operation.

Initial search for a speech source

while running do

T̂ = T

for all room corners do ⊲ Add room corners to T̂

n← (xcorner, ycorner, znearest member of T)
T̂← T̂ ∪ {n}

end for

Ĥ← DT(T̂) ⊲ Delaunay Triangulation of the set

for all p2 = (xp2 , yp2) ∈ A do ⊲ Whole search area

Ĥ0 ← hsub ∼ ϕ (z | p2) ⊲ Choose a height

end for

Perform SRC with heights from Ĥ0

T = T ∪ {new speaker positions}
end while

Algorithm 3: HE-SRC Algorithm

4.3.5 Selection of Stochastic Region Contraction Parameters

The variant of SRC used was SRC-I, due to its relatively fast convergence compared to the

other variants. SRC-I fixes the number of points to be evaluated at the first iteration, J0, to a

constant J and then calculates Ji FEs at each iteration i of the algorithm, where Ji is determined

dynamically [13]. In this variant, the parameterN used to contract the search region [13] can be

chosen to adjust the localisation accuracy of the algorithm. The original authors chose a value
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of N = 100, which gave them the lowest computational cost without sacrificing accuracy.

However, because the algorithm has been changed, it is necessary to investigate again the selec-

tion of the parameters used. Figure 4.9 shows the average number of FEs required to localise

a source for different values of N using the Height Estimated variant of SRC-I. Similarly, Fig-

ure 4.10 shows that as N is increased, the average localisation error decreases. As such, in

our experiments using Height Estimated SRC-I (HE-I), we chose N = 35 to keep the total

number of FEs low and provide a reasonably low average error. Note that the experiments to

determine these parameters were performed as a Monte Carlo experiment. The results come

from the average results of the algorithm run over each individual speaker 100 times, resulting

in thousands of HE-SRC trials being run.
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Figure 4.9: FE’s of HE-SRC using SRC-I required to localise a source as a function of N
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Figure 4.10: Localisation error of HE-SRC using SRC-I as a function of N

4.4 Experimental Results

The algorithms were run in the environment shown in Figure 2.12 on recorded data, where the

red circles represent 12 of the microphones used (placed along the edges of the room, similar

to the panels used in [80]. This set up is used to enable a direct comparison, as the HE-SRC is

an extension of the work in [80]). There were 16 microphones in total, where two microphones

were placed under each line of microphones in the diagram, forming two sets of microphones

in ‘T’ configurations. The green squares represent the speaker positions. The data was recorded

in the (4.7x6.5)m room, as described in [80] in order to make a direct comparison. A minute of

data was recorded for each speaker at 96kHz, which was downsampled to 44.1kHz (to reduce

the memory load of the algorithm), which gave each around 160 audio windows based on a

window size of 214 samples (0.37s). As before, these experiments were run as a Monte Carlo

experiment, this time around 200 times over each speaker. This allowed representative averaged

results to be collected.

Speakers did not talk at the same time and the two speakers furthest away from the array were

at the lower height of 1m, rather than 1.6m, in order to show that speaker height can be suc-

cessfully accounted for by algorithm as designed. With no height information available from a

camera system, these experiments simply used the previously tracked speaker height from the

acoustic data to estimate the height data across the room. This meant that the only interpolation
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done was between the speaker and the points at the four corners of the room, defined to be at

the same height as the speaker. This resulted in a plane parallel to the horizontal plane as the

estimated speaker height, and the variance of the Gaussian distribution of the vertical axis was

varied around that position.

α0 (Equation (4.2)) was chosen to be 0.95 in order to concentrate the search within head height,

allowing for the very small possibility that a source might at some point be located, for example,

on the ground. Lower values weight the distribution to uniformly draw from across the height

of the room, making the search similar to the original SRC algorithm, but with fewer assump-

tions and therefore slower searches. α1 was chosen to be 0.5, allowing most of the Gaussian

distribution to concentrate on an area 1m tall, similar to the 1m tall Uniform distribution used

for height in the original SRC algorithm. Finally, α2 was generated by choosing the radius l,

at which the sigmoid function should be 99% of the way towards α1, to be 1m, which assumes

people have some personal space whilst talking.

Data was evaluated using an average location error (ALE) - the mean of the Euclidean dis-

tances of each set of results to their corresponding ground truths. Because the search space

was reduced by the height estimation, the number of samples Ji at each stage was lowered to

improve overall search times, trading off against accuracy. In the first instance, HE-I, only 350

samples were taken at the first iteration with only N = 35 used for region contraction. Ac-

curacy decreased as the sound source was further away from the microphone array, implying

a lower signal to noise ratio (SNR) as in [13], but this may be acceptable in a system whose

tracker accounts for noisy state observations. For HE-II, J0 was set to 1000 andN to 60, which

increased the accuracy across all sources whilst keeping the number of FEs low. In HE-III, J0

was set to 3000 and N to 60, the value as used in [13].

Table 4.1 shows the results of first (SRC-I) variation of the SRC algorithm from [13] on the data

set and compares these configurations with the HE variants. It shows the average number of

FEs used within an audio frame and the ALE, where Source 1 is the closest to the microphone

array and Source 4 is the furthest. Note that there results come from a Monte Carlo simulation,

where the algorithm was run on the same data sets around 200 times. The averages are therefore

across thousands of runs of the localisation algorithm, as each Monte Carlo trial consisted of

hundreds of time-steps, on each of which the algorithm was executed.

The results show that with prior information about head height within a room, the SRC can
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Algorithm Source 1 Source 2 Source 3 Source 4

ALE (m) # FEs ALE (m) # FEs ALE (m) # FEs ALE (m) # FEs

SRC-I 0.26 61,1001 0.31 61,1001 0.45 61,001 0.6 61,001

HE-I 0.32 17,156 0.35 21,939 0.44 31,811 0.58 35,053

HE-II 0.12 34,022 0.22 35,136 0.26 41,228 0.5 39,402

HE-III 0.11 40,721 0.15 40,736 0.23 42,900 0.34 44,111

Table 4.1: Comparison of SRC Methods

Algorithm Source 1 Source 2 Source 3 Source 4

ALE (m) # FEs ALE (m) # FEs ALE (m) # FEs ALE (m) # FEs

HE-I 0.45 20,115 0.49 23,849 0.51 36,253 0.6 37,962

HE-II 0.23 35,117 0.24 36,140 0.41 47,281 0.47 48,294

HE-III 0.22 43,783 0.24 43,548 0.32 55,352 0.46 56,667

Table 4.2: FEs required to find a source with no prior

be sped up whilst maintaining accuracy. Because in HE-III the parameters are similar to the

SRC-I parameters, the algorithms are expected to perform similarly when there is no known

audio source. In this case, the mean of the Gaussian is set to the same offset as that used in the

algorithm and the variance is again set to 0.5.

Table 4.2 shows the average number of FEs required to find a source using the algorithm without

prior information. The results indicate an increased computational load with HE-III, but still

within the tractable range of tens of thousands of FEs and close to the performance of SRC-I, as

expected. For lower values of J0 and N , the results are improved. In particular, HE-II provides

good accuracy and good performance, with or without prior information, so much so that it is

suitable as an audio estimator for the initial height information in this situation.

4.4.1 Visual Height Cues

As previously noted, detecting and tracking speakers in both the audio and visual domains is

made harder by the problems such as visual occlusion and audio silence where a speaker moves

after having been detected previously and then starts speaking again. By fusing the data from

both domains, one might hope that at any one time, a speaker will be locatable using at least

one of these modalities. The work in this chapter has been adapted with a video based tracking

system to provide in a joint effort with Heriot-Watt University [81].

An experiment was set up in which a set of cameras was used to extract the positions of a pair

of speakers having a conversation. This information was fed into a joint audio-visual detection

system, represented in Figure 4.11. As a first step in the process, the height information of
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the people in the room - both potentially speakers, but not concurrent speakers - detected by

the video system was used to cue the initial height information used for interpolation in the

HE-SRC algorithm. This processing step is indicated in the system diagram by the arrow

marked with a ‘1’. In return, the joint detector results were improved over using the original

SRC as the audio processing block, indicated by the arrow marked ‘2’, where both acoustic and

visual information is fused to perform tracking. The output of this step is then used for height

estimation by the acoustic module, and this feedback step is indicated by the arrow marked ‘3’.

SRC Audio Localisation Video Tracking

Joint AV Tracking

Speaker ID

1

2

3
3

4

Figure 4.11: Joint detection system

4.5 Tracking

The HE-SRC method developed returns a location estimate for each frame in Cartesian co-

ordinates. Bayesian filtering methods are commonly used to track a series of localisation

results, allowing the localisation error to be reduced over time by taking account of source

movement models and compensating for noisy, spurious and missed measurements.

This section applies a simple Kalman filter to the data localised by the HE-SRC, similar to

the application of an extended Kalman filter to a contemporary piece of work which localises

sources from raw TDOA measurement. The application of this filter results in reduction in the

localisation error.
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4.5.1 Time-Difference Of Arrival Extended Kalman Filter Tracker

In [8], an EKF is developed to track a speaker directly from a series of TDOA measurements,

and it is to this work that the tracking scheme used in this Chapter is to be compared. For

reference, in their paper they note that for maximum likelihood (ML) based localisation, the

error function ǫ(x), given in Equation (4.6), must be minimised. In this equation, τ̂i is the

TDOA value observed by microphone pair i, and σ2i is the observation error covariance. Ti(x)

is the true TDOA between microphone pair i for a speaker at position x ∈ R3.

ǫ(x) =
N−1
∑

i=0

1

σ2i
[τ̂i − Ti(x)]2 (4.6)

Unfortunately, Ti(x) is non-linear in x and so minimising Equation (4.6) is non-trivial. To

work around this, the partial derivative is taken by Klee et al. in Equation (4.7), and used

in Equation (4.8a) to approximate the TDOA function, Ti(x), with a first-order Taylor series

using the previous estimate of the speaker position, x̂(t − 1). This allows the error criterion

to be minimised over a series of time points, which takes into account that a speaker’s position

cannot change instantaneously.

∇xTi(x) =
1

s

[

x−mi1

di1
− x−mi2

di2

]

(4.7)

Ti(x) ≈ Ti(x̂(t− 1)) + cTi (t) [x− x̂(t− 1)] (4.8a)

cTi (t) = [∇xTi(x)]
T
x=x̂ (t− 1) (4.8b)

The linearisation can be used to approximate the error function (Equation (4.6)), which is shown

in Equation (4.9). τ̄i(t) is defined in Equation (4.10).

ǫ(x; t) ≈
N−1
∑

i=0

1

σ2i

{

τ̂i − Ti(x(t− 1))− cTi (t) [x− x̂(t− 1)]
}2

=
N−1
∑

i=0

1

σ2i

[

τ̄i(t)− cTi (t)x
]2

(4.9)
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τ̄i(t) = τ̂i(t)− Ti(x̂(t− 1)) + cTi (t)x̂(t− 1) (4.10)

With the error function to be minimised now defined, an EKF (Section 3.1.4) or an IEKF

(Section 3.1.5) can be used to facilitate speaker tracking. To do so, a state transition model

which corresponds to the expected movement of a speaker is required. The model used in [8]

is simply to assume that a source is stationary except for slight movement modelled by additive

Gaussian noise. The non-linearity of the TDOA measurements is taken into account using a

non-linear observation function, which precludes the use of a simple linear Kalman filter.

4.5.2 Height Estimated Steered Response Power Kalman Filter Tracker

Because the HE-SRC returns direct position measurements, the formulation of a Kalman fil-

ter based tracker for a single source can be simplified slightly. Because there is no longer a

non-linear relationship between the measurements and the system state and the state transition

function is assumed to be linear by the choice of source dynamics model, the simple Kalman

filter can be used. Similar to Equation (4.6), the error function ǫ(x) defined in Equation (4.11)

must be minimised.

ǫ(x) =
N−1
∑

i=0

1

σ2i
[x̂i − x]2 (4.11)

As before, this is the minimisation of the squared difference between an estimation and the

ground truth. However in this case, it is not the TDOA error which is being minimised, but

the raw source position estimation error. Furthermore, there is only one observation for each

time frame, as the SRC returns a single position estimate using data from all microphones in

the system. As such, the error function ǫ(x, t) at time step t reduces to Equation (4.12).

ǫ(x, t) =
1

σ2
[x̂− x]2 (4.12)

Because the observations are now linear, there is no need to use a non-linear observation func-

tion in the Kalman filter. Instead, the observation matrix H can be used simply as an identity

matrix, leading to the standard Kalman filter equations shown in Equations (4.13a) to (4.13e).
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There is no need for a control input in Equation (4.13a), however the rest of the Kalman filter

equations are simply the regular Kalman equations as presented in Chapter 3.

x̂′
t = Ax̂t−1 (4.13a)

P′
t = APt−1A

⊺ +Q (4.13b)

Kt = P′
tH

⊺
(

HP′
tH

⊺ +R
)−1

(4.13c)

x̂t = x̂′
t +Kt

(

zt −Hx̂′
t

)

(4.13d)

Pt = (I−KtH)P′
t (4.13e)

Because the speakers are only assumed to be moving under process noise, the state vector

doesn’t include a velocity component and the state transition matrix A can be set to an identity

matrix. This source dynamics model is somewhat limited, however its use in this chapter has

allowed for the development of a simple tracker along the same lines as that developed by Klee

et al [8]. When considering a moving source, more complex models of source movement might

be used, and several examples are given in Section 2.4.1.

4.5.3 Tracking Integration and Results

The model of the observation noise covariance matrix R can be obtained by considering the

ALE of the HE-SRC localiser. It is assumed that the estimation noise is independent and also

the same in each dimension, such that there are no cross-correlation terms. R is therefore

expressed as in Equation (4.14), where σR is the localisation standard deviation. Given the

localisation techniques’ typical ALE, it is reasonable to assume this value is around 30cm.

R = σ2R









1 0 0

0 1 0

0 0 1









(4.14)

To integrate the tracking algorithm, the localisation process is run on every audio block as

before, however the final state estimate from an audio frame is obtained by using the Kalman

filter with the localisation observation. Using the same stationary source model as Klee et al.,
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Algorithm Source 1

ALE (m) Filtered ALE (m) # FEs

HE-I 0.32 - 17,156

HE-I + KF 0.199 0.115 20,268

Table 4.3: Comparison of HE-SRC with and without Kalman filtering

and assuming that the ground truth is accurate to within 10cm, the filtered results are used as

input to the height interpolation and extrapolation algorithm.

This simple technique has been used to demonstrate the improved source localisation accuracy

of using a tracking algorithm in conjunction with a raw position estimation algorithm. This

is shown in Table 4.3, where the results for the HE-SRC algorithm for the first speaker in the

recorded audio data are included for comparison. Note that using the Kalman filter decreased

the raw average localisation error, as the technique prevented detections of spurious sources

from significantly affecting the localisation results of subsequent audio frames. This was be-

cause incorrect localisations do not immediately significantly alter the filter state, and therefore

the initialisation of the algorithm is not significantly affected by the occasional spurious mea-

surement.

This shows that as expected, introducing a tracking algorithm can lead to a reduction in the es-

timation error whilst maintaining the computational efficiency. Between two cases, the average

number of functional evaluations is close, but there is a distinct advantage to using a Kalman

filter.

4.6 Conclusions

This work contributes a method of speeding up and increasing the accuracy of the SRC al-

gorithm by estimating the height at which to search from prior information, obtainable either

via a camera based system, or from information from the previous iteration of the algorithm.

The key to this technique is to estimate an average head height across an area by interpolating

and extrapolating heights of known potential speakers and forming a probability distribution of

head height using this data. This allows a single audio source to be localised quickly whilst still

searching across the room to find new source, for example when there is a speaker change. This

localisation technique was combined with a simple Kalman filter, which reduced the average

localisation error for a stationary source.
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The audio data used for these experiments consisted of non-concurrent stationary speakers,

which allowed a simple model to be used within the Kalman filter. Because the work in this

chapter built on previous single source localisation work, only non-concurrent speakers could

be considered. Both of these limitations are unrealistic for a practical ASLT system, and multi-

speaker systems with moving sources will be considered in subsequent chapters.

It should be noted that the individual FEs are parallelisable within each iteration of the algo-

rithm, and with this extension, the significant reduction in the number of FEs required suggests

that the algorithm could be suitable for practical implementation using graphics processing

unit (GPU) programming techniques such as compute unified device architecture (CUDA) to

attempt to provide real time source localisation.
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Chapter 5

Particle Swarm Methods for Audio

Source Localisation

The SRP has potential to be used for multiple source localisation as individual acoustic sources

appear as distinct individual peaks of the function over space. This chapter concentrates on a

novel technique for source localisation, primarily in the case of a single speaker, with a view to

being extensible to the multi-speaker case.

This is in contrast to the work in Chapter 4, which might not be readily extendible to multi-target

localisation. Running the SRC algorithm on multi-target data can cause the contracting cuboid

to become stuck if encapsulates multiple distinct peaks, and so a more flexible scheme would be

preferable. In contrast, the chosen scheme is part of a broad family of search techniques which

include multi-target optimisers. Therefore, it is of interest to show that the chosen optimisation

scheme can be made to work well in the single source case, before examining the use of multi-

target optimisers from the same family.

Neglecting peaks caused by reverberation, which are a problem for any localisation method,

the task of acoustic source localisation can be thought of as the task of finding a set number

of maxima of the SRP function. Particle swarm techniques are investigated in this chapter as a

solution to this problem.

In this chapter, it is firstly assumed that there is only one speaker active at any time. With this

assumption in place, the number of SRP maxima to be found in any time window is fixed, and

a localisation algorithm can finish when it has found a single peak. This approach might be

extended to the case of multiple and an unknown number of speakers by using an estimate of

the number of speakers in each frame to provide an upper bound for the number of peaks to

localise, and using multi-optima detection techniques.

This chapter considers the case of a single speaker to be localised, as in Chapter 4, and applies

PSO to the problem to provide a point estimate of the source location. Several variants of

the particle swarm algorithm are considered, and evaluated on both their accuracy and rate of
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convergence on both recorded and simulated data. The work is then expanded to use height

estimation information in an effort to speed up the search, similar to the work in Chapter 4.

5.1 Particle Swarm Optimisation

Localising a peak of the SRP function can be seen as a numeric optimisation problem. As

described in Chapter 4, the SRC attempts to maximise the SRP by iteratively contracting the

search space around a region which has a high SRP value. This method assumes that the area

of space approaching a peak of the objective function will also be at a relatively high level.

In contrast to many optimisation techniques however, the method does not attempt to make

use of the gradient of the function to direct the search. Such an approach might be considered

inappropriate because the SRP result is generally quite noisy, making gradients across space

potentially misleading.

When considering the optimisation of the SRP, we restrict ourselves to considering metaheuris-

tic techniques which, whilst imperfect, attempt to find solutions without guaranteeing that they

will find a global optimum. A promising alternative to the iterative SRC, known as PSO has

been applied to speaker detection in the context of an extension [10] of a tracking system de-

veloped by Ward et al. [11], which introduces swarm dynamics to a particle filter.

The work in [11] makes use of the SRP as a pseudo-likelihood function for a particle filter

approach to source tracking. The work in [10] extends this by allowing the particles to interact

according to the PSO paradigm, as an integral part of the particle filtering framework. This

speeds up the filter’s convergence of a source.

In contrast, the focus of this Chapter is the application of PSO as a raw localisation routine. This

will provide point estimate results for the single speaker localisation problem, which can then

be filtered as a second stage. This can be done, for example, with a Kalman filter, which is less

computationally intensive than a particle filter. The use of PSO techniques is further justified

as they are found to be computationally efficient. This is important, because even though the

SRC is much more efficient than an exhaustive search, it is still hard to implement in an online

solution. Work has been done to create parallelised implementations [82, 83], in an attempt to

rectify this situation. With the potential to perform multi-target localisation, PSO is attractive

as it is also potentially parallelisable.
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The performance of this method over a range of noise conditions is studied and the relative

performance of several different variants of the algorithm will also be explored. Methods of

adapting the algorithm to the audio localisation problem will be considered, with the fact that

speakers might be spread uniformly across the horizontal-plane, but their distribution is not

uniform over the vertical axis.

5.1.1 Description

Particle swarm optimisation is similar to SRC in that the algorithm makes use of a set (known

as a swarm) of candidate locations which could provide the final solution to the problem. These

candidates, referred to as particles, are moved around the search space in an attempt to converge

on an optimum point. In contrast to SRC, the particle movement is determined by a particle’s

local knowledge of the value of the objective function as well as the swarm’s overall knowledge.

5.1.2 General Particle Swarm Optimisation Algorithm

PSO was developed as a stochastic optimisation method inspired by the behaviour of large

groups of animals such as flocks of birds [84]. Each particle in the swarm moves around the

search space with a dynamically adjusted velocity which is dependent on its own observations

and the overall observations of the entire particle swarm.

At a time step t, the velocity of the ith particle Vi is given by Equation (5.1a) and the position

Xi of that particle is given in Equation (5.1b).

Vi (t+ 1) = Vi (t) + c1r1 [pi (t)−Xi (t)] + c2r2
[

pg (t)−Xi (t)
]

(5.1a)

Xi (t+ 1) = αpXi (t) + βpVi (t+ 1) (5.1b)

The vector pi records the best historical position (that is, the position with the highest value

of the SRP objective function) of that particle and pg records the best historical position found

over the entire swarm. αp and βp are position control parameters, and c1 and c2 are weighting

variables for the two components with a recommended default value of 2. Finally, r1 and r2 are

random variables both with a range of [0, 1].
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The standard procedure for performing a PSO search is detailed in Algorithm 4, where typical

stopping conditions include a maximum number of iterations completed (gbest) or the best value

not changing by an amount over some threshold (gthresh) between estimations.

Initialisation

for i = 1 to Swarm Size do

Set Xi randomly within the search range

Set Vi randomly within the permissible velocity range

Assign the particle’s best position to the current (initial) position

Evaluate the objective function at the particle position

end for

Identify pg, the swarm’s best result

while Stopping Conditions Unmet do

for i = 1 to Swarm Size do

Initialise random variables r1 and r2
Update particle velocity and position

Evaluate the objective function at the new particle position

Update the particle’s best known position

end for

Identify pg, the swarm’s best result

end while

Algorithm 4: PSO Algorithm

5.1.3 Commom Particle Swarm Optimisation Variants

There are several commonly used variants [85, 86] of the PSO algorithm, which are worth

considering when applying the technique to speaker localisation. These versions can all be

applied to and evaluated on an acoustic data set for a performance comparison.

5.1.3.1 Shi

Shi and Eberhart extended Eberhart’s original work by introducing new parameters which con-

trol the velocity update step [87]. The updated particle speed and position formulae are given

in Equations (5.2a) and (5.2b) respectively, which introduce the new variable ωp. Shi et al. also

recommend that the variables c1 and c2 remain set to 2.

Vi (t+ 1) = ωpVi (t) + c1r1 [pi (t)−Xi (t)] + c2r2
[

pg (t)−Xi (t)
]

(5.2a)

Xi (t+ 1) = αpXi (t) + βpVi (t+ 1) (5.2b)
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The coefficient ωp is an inertial weight, where a smaller value favours more local explo-

ration [88]. This factor allows a trade off to be made between an aggressive local search and a

wide-ranging search, which can then be used to optimise the convergence time and number of

steps used in the algorithm.

Furthermore, it is suggested that the inertial factor used can be a function of time, such that

as the search progresses, more effort is made to search a smaller area. Many different inertia

weight strategies exist, and [89] provides an overview of their formulae and compares their

effectiveness given different goals such as minimising the number of iterations or minimising

the average error.

One such inertia weight management scheme is to decrease the weight linearly between a min-

imum and maximum value [90, 91], as shown in Equation (5.3). In this equation, the inertia

weight wt at time step t is simply decreased relative to the current time step, the maximum

allowable number of time steps tmax. The value of wt is constrained between a starting value,

ws and a final value, we.

wt = (ws − we) (tmax − t)
1

tmax
+ we (5.3)

5.1.3.2 Clerc

The PSO extension by Clerc and Kennedy [92] introduced a constriction coefficient, χ, with

several different classes of solution. Clerc’s Type 1′′ has been widely used due to its relative

simplicity, and the updated formulae are indicated in Equations (5.4a) and (5.4b). ϕ is the

sum of two random variables, ϕ1 and ϕ2. ϕ1 and ϕ2 are both uniformly distributed between

0, and ϕmax, 1 and ϕmax, 2 respectively, which are parameters to the algorithm mapping to the

weighting constants, in the regular PSO, c1 and c2.

Vi (t+ 1) = χ (Vi (t) + ϕY (t)) (5.4a)

Yi (t+ 1) = −χVi (t+ 1) + (1− χϕ)Yi (t) (5.4b)

The constriction coefficient χ for the Type 1′′ variant is calculated as shown in Equation (5.5),

with the constriction parameter κwith limits 0 ≤ κ ≤ 1. Note that Clerc’s notation is simplified
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by writing the new attractor as Y (t) = pc −Xi (t), with pc defined in Equation (5.6).

χ =















√

2κ

ϕ−2+
√

ϕ2−4ϕ
for ϕ = ϕ1 + ϕ2 > 4

κ for ϕ = ϕ1 + ϕ2 ≤ 4

(5.5)

In these equations, Clerc simplifies the problem by first expressing the latter half of Equa-

tion (5.2a) as a single expression, given in Equation (5.6).

pc =
ϕ1pi + ϕ2pg

ϕ1 + ϕ2
(5.6)

The particle velocity is then modified by only one attractor, pc, multiplied by the constant

ϕ = ϕ1 + ϕ2.

5.1.3.3 Trelea

Finally, Trelea’s variant [93] of the algorithm is expressed in Equations (5.7a) and (5.7b). This

deterministic version of PSO simply replaces the random variables and their weights with con-

stant weights.

Vi (t+ 1) = aVi (t) + b [pi (t)−Xi (t)] + b
[

pg (t)−Xi (t)
]

(5.7a)

Xi (t+ 1) = αpXi (t) + βpVi (t+ 1) (5.7b)

After some analysis, Trelea recommended two sets of parameters, both with αp and βp set to

1. The first of Trelea’s parameter sets, denoted ‘Trelea 1’, has a = 0.6 and b = 1.7, and the

second set, ‘Trelea 2’, has a = 0.729 and b = 1.494.

5.1.4 Boundary Conditions

When considering the motion of individual particles, care must be taken to ensure that their

new position at each time step is within the allowed solution space - that is, particles should not

be positioned outside the confines of the room or area being considered. If particles were to

be positioned outside of this area, the algorithm would be wasting computationally expensive
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FEs on positions whose values are not strictly useful and which contribute to an increased

convergence time, or even an entirely incorrect result.

This boundary limitation can be classed as a hard boundary condition [94], where the positions

of the particles are strictly prevented from leaving the search domain. The alternative is a soft

boundary condition, where the velocities of the particles are limited such that their magnitudes

never exceed a user defined maximum. This has the effect of largely confining the particles to

the search space, however it is still possible for them to escape these restrictions.

Several strategies exist for dealing with particles which do exceed the system boundaries [95],

and several useful methods are summarised below:

1. Absorbing Walls: Particle velocity in the direction normal to the boundary is set to

zero when the particle comes into contact with the wall, and the particle position can

be clipped to the boundary. The boundary effectively absorbs the particle energy, and

that particle is then set in motion again in further iterations.

2. Reflecting Walls: Particle velocity in the direction normal to the boundary is simply

multiplied by minus one, to ensure that particles fly back into the acceptable search space.

3. Wraparound Method: Particles which exceed the boundaries are wrapped around that

boundary, and appear within the valid search space on the opposite corresponding of that

dimension.

4. Invisible Walls: Particles are allowed to escape the boundary conditions, however if they

do, then the objective function is not evaluated for that particle. It is noted in [95] that the

rationale behind this is to save computation time for problems where the objective func-

tion is a computationally expensive operation. This is the case for speaker localisation,

where we are aiming to localise a speaker using a minimal number of FEs.

These are considered in the context of hard boundary conditions, where the particle positions

are clipped, in [94], and more elaborate techniques are considered in [96].

5.2 Single User Localisation using Particle Swarm Optimisation

PSO can be used for single source localisation by simply setting the objective function as the

SRP. Thus, each particle in the swarm directly explores the received audio power at that point,
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and the swarm attempts to converge on a peak in space. The algorithm parameters can then

be altered to investigate how they affect performance and accuracy. Because evaluating the

SRP over a large number of points is computationally expensive, the number of FEs is used as

a performance metric, as before. Similarly, the ALE is used as a performance metric, and it

should ideally be as small as possible. Finally, because the PSO localisation method returns a

direct estimate of the source position in Cartesian co-ordinates, the result can be tracked using

a simple Kalman filter to reduce the mean square error.

5.2.1 Initial Particle Distribution

Because we are only attempting to localise one acoustic source, which may change locations

gradually, or - in the case of multiple non-simultaneous speakers - very suddenly, we cannot

focus solely on likely updated positions like a particle filter. As we must still search the entire

space for a possible change of speaker, we must initialise the search according to the normal

PSO paradigm, that is, distributed uniformly over the search space. Of particular interest is

how the number of particles used in a swarm affects the average number of FEs used to find a

source. It has been noted that a low number of particles yields good results, and it is of interest

to observe the behaviour on the SRP. As an objective function, the SRP changes between

frames, and is discretised according to the available resolution of the microphone array. Further,

an appropriate number of particles to use might also depend on the size of the room being

considered.

5.2.2 Effect of Signal to Noise Ratio

In order to thoroughly investigate the robustness of the algorithm to SNR, the simulation en-

vironment was used to repeat the experiments using a range of SNR levels, by changing the

amplitude of the noise signal which was combined with the raw speech signal. This allowed

the algorithm to be evaluated using known SNR levels, rather than the unknown and somewhat

variable levels present in the recorded data set.

5.2.3 Height-Estimation Extension

In Chapter 4, prior knowledge of the position of existing speakers was used to reduce the

cost of localisation in successive audio frames. Knowledge of speaker height was used to
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limit the search space, and a similar idea can be applied to the PSO localisation method. The

SRC method drew random samples from within the search space and iteratively contracted that

search region until a source was identified. Because PSO doesn’t draw random samples at each

iteration, another method must be found if height estimation is to be considered.

As described in Section 5.1.3, Shi’s variant of the PSO algorithm offers a parameter which

controls the extent to which a swarm trades off between a thorough exploration of a smaller

local area or a further reaching search of the surrounding area. As such, we seek to restrict the

search to a locally intensive search over head height, particularly in an area where that head

height has previously been estimated. Further, we wish to return to the more wide ranging

configuration in other areas, returning to the more general assumption of searching over most

of the height of a room.

5.2.3.1 Inertia Control

To achieve this goal, the inertia control parameter ωp is modified to affect the different dimen-

sions individually. The scalar ωp can be replaced with a vector ωp, with elements equal to ωp,

as shown in Equation (5.8) for a normal 3D search space.

ωp =









ωp

ωp

ωp









(5.8)

The scalar multiplication of the particle velocity at time step i is replaced with a Hadamard

product, thus Equation (5.1a) can be rewritten as shown in Equation (5.9). This allows the

elements of vector ωp to be updated independently, as shown in Equation (5.10), which effec-

tively means that the inertia control is independent for each dimension of the search. Because

we expect speakers to be spread around a room, but their height to be relatively similar, we can

now favour a more intensive local search in the vertical direction, whilst searching across the

entire length and breadth of a room. This is achieved by using a relatively small value for ωz, p

compared to those used for ωx, p and ωy, p, resulting in a comparatively aggressive local search

over the vertical axis, compared to a wide-ranging search over the horizontal plane.

Vi (t+ 1) = ωp ◦Vi (t) + c1r1 [pi (t)−Xi (t)] + c2r2
[

pg (t)−Xi (t)
]

(5.9)
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ωp =









ωx, p

ωy, p

ωz, p









(5.10)

5.2.3.2 Adaptive Inertia Control

We can further extend the modification of Shi’s PSO algorithm by taking the adaptive inertial

weight strategies into account. Instead of using a single set of maximum and minimum iner-

tial weights, these variables are also split into component vectors for each dimension of the

search. Equation (5.3) (in the linearly decreasing case) can then be modified as shown in Equa-

tion (5.11) to calculate the weight vector ωp, t at each step, where the start weightws is replaced

by the start weight vector ws and the end weight we is similarly replaced with the vector we.

tmax represents the number of iterations over which the inertial weight will be lowered.

ωp, t =









ωx, p

ωy, p

ωz, p









t

= (ws −we) (tmax − t)
1

tmax
+we (5.11)

5.2.3.3 Initial Distribution

We also attempt to speed up the search for a speaker by modifying the initial distribution of par-

ticles in subsequent audio frames. Because we do not need to concern ourselves so much with a

wide-ranging vertical search, we can initialise the particle heights around speakers detected in

a previous frame to be non-uniformly distributed. As in Chapter 4, we choose an initial vertical

distribution as a weighted mixture of a Normal distribution centred around what is assumed to

be head height, and a uniform distribution which encompasses the entirety of the vertical search

space. This distribution is described mathematically in Equation (4.2).

5.2.4 Single Source Results

The PSO algorithm was used to perform speaker localisation for a set of stationary single

sources on both simulated audio data and a recorded data set, and the effects of various pa-

rameter settings were explored. Each variation of the PSO algorithm was run with and without
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Parameter Value

Maximum Iterations 500

c1 0.002

c2 0.02

tmax 50

gthresh 1× 10−55

gepochs 70

ωs, z 0.04

ωs, x, ωs, y 0.09

ωe, x, ωe, y, ωe, z 0.01

Table 5.1: Key PSO Parameters

a modified initial distribution, over a range of swarm sizes. The effect of varying SNR was also

investigated. Note that the data sets used were those same data sets used in Chapter 4, to ensure

a fair comparison on the single speaker ASLT task. Table 5.1 shows the algorithm parameter

settings for the parameters which were not varied.

5.2.4.1 Comparison of Particle Swarm Optimisation Variants

Initially, four PSO variants were compared on the simulated data set of the room setup described

in Section 4.4. The graphs presented refer to the results obtained using the second speaker as

the target, and the lack of difference between results for each speaker on the recorded data

set prompted further investigation using known SNRs on the simulated data set. The results

were expected to differ, as previous work indicated a change in the computational requirements

which varied inversely with the signal SNR. The SNR was designed to be lower for each

successive speaker, as each was positioned progressively further from the microphone array,

with the inverse square law affecting the received signal at each microphone.

For the first experiments, the Trelea types 1 and 2 were used, as well as Clerc’s variant, and

the decreasing inertial weight method. The average accuracy, filtered accuracy, and the number

of FEs required to complete the search on the simulated data set are shown in Figures 5.1 to

5.3 respectively. The experiments were all set up with a maximum number of PSO iterations

of 500, which was found to be more than enough, but meant that there was a reasonable cap

to the amount of processing which could possible be done on each audio frame. These initial

experiments were run using the reflecting walls boundary conditions.

The size of the particle swarm affects the number of FEs used to arrive at a result because for
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Figure 5.1: ALE vs Particle Swarm Size for multiple PSO variants on simulated data, showing

the decrease in average error as the swarm size is increased.

Figure 5.2: Filtered ALE vs Particle Swarm Size on simulated data, showing the decrease in

average error as the swarm size is increased, with overall lower levels of error compared to the

unfiltered case.
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Figure 5.3: FEs vs Particle Swarm Size for multiple PSO variants on simulated data, showing

the approximately linear increase required as the swarm size is increased.

a larger swarm size, more particles must be evaluated before any particle is allowed to change

location. Whilst a larger swarm means more of the FE operations could theoretically be done

in parallel, more work will be done overall. It is therefore of interest to plot the number of PSO

iterations (also referred to as epochs) used as the size of the swarm is increased, and this is

shown in Figure 5.4.

The filtered ALE shown in Figure 5.2 is much lower than the raw ALE, and this is not unrea-

sonable. Despite the lack of interfering sources, the optimisation algorithm can still become

stuck at local optima, even if the value of the objective function isn’t as large as the value at

the true target position. This causes incorrect localisation results, placed anywhere over the

horizontal-plane, to occasionally be returned. This cannot be avoided, as there are occasionally

audio frames where a speaker has paused between speech segments. This results in no peak

at the target location on the objective function, which means that the algorithm converges on

some other maximum of the function unrelated to the target of interest. This problem seems to

be particularly problematic when there are very few particles in the swarm, and the localisation

accuracy increases somewhat when a larger swarm is used. Note however, that the filtering

can still deal with these spurious measurements, and that the filtered accuracy reaches a quite
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Figure 5.4: PSO Epochs vs Particle Swarm Size for multiple PSO variants on simulated data,

showing the differing effect the swarm size has on the number of PSO Epochs required for each

variant.

reasonable average error of around 40cm even for very small swarm sizes, in the worst case.

The level of accuracy achieved with a small swarm size is in line with the general consensus

in particle swarm studies, that conclude that large swarms are not necessary to achieve good

results.

Similarly, the number of epochs required for the swarms to converge was almost constant for

the Inertial PSO and for the Clerc Type 1′′, whereas the two Trelea variants display a decreasing

Epochs requirement as the swarm size is increased on the simulated data set. The number of

FEs are directly related to the swarm size, so whilst there are differences in the number of PSO

iterations required, the number of FEs required is still strongly dependent on the swarm size.

As such, the results suggest that there is no computational advantage to increasing the swarm

size, and only marginal accuracy advantage to be gained.

Finally, it can be seen that the results for each variant of the PSO algorithm are almost identical

in terms of FEs, and this suggests that if this algorithm were to be implemented in an online

and real-time system, then the variant with the least computational complexity should be used,

as there is no advantage to using ever more complex schemes to control the particles. Note
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Figure 5.5: ALE vs Particle Swarm Size for Recorded Data, for multiple PSO variants, showing

the effect of increasing the swarm size on each variant.

however, that the parameters used in each case were adapted so that the algorithms would run

successfully on the data - in particular, numerical constants were scaled such that particles

moved within the target room, rather than fly straight out of it on the first iteration!

The same techniques were also tested on data recorded in a room equipped with microphones

- specifically, the same recorded data as described in the room setup in Section 4.4. Figure 5.5

shows how the localisation error is increased on the real audio data set, which is largely due

to the presence of interfering noise sources at various points throughout the recording. Addi-

tionally, the ground truth is not perfectly known for the recorded data, so errors on that set are

expected to be larger than errors on the simulated set, where the ground truth is known pre-

cisely. The PSO algorithms converge upon optima each frame, and where there are large errors,

the SRP is generally higher than that at the target location - that is, the optimisation routine is

finding a global maximum, but that maximum does not necessarily correspond to the source

that is being targeted. On the recorded data, the decreasing Epochs requirement of the Trelea

variants is not nearly so apparent.

Although there is an overall increase in localisation error when run on recorded data (which was
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Figure 5.6: Filtered ALE vs Particle Swarm Size for Recorded Datafor multiple PSO variants,

showing the effect of increasing the swarm size on each variant, with an overall lower level of

error compared to the unfiltered results.

captured in a highly reverberant environment!), the time taken for the algorithms to converge

did not suffer greatly. As shown in Figure 5.7, the number of PSO epochs required is about the

same as in the simulated data case. On the recorded set, the ALE was at a consistent level for

all of the newly developed PSO variants.

5.2.4.2 Effect of Boundary Strategies

The experiments were repeated to study the effect of changing the boundary conditions of the

search. In particular, this was expected to affect the number of FEs required in each case, as

the different boundary strategies can, for example, avoid FEs when the particle in question

is outside of the target area. Figure 5.8 shows the average number of FEs required for each

PSO variant with different boundary conditions applied. The figure shows the results of the

experiment applied to the Trelea Type 1 variant of the algorithm.

There is no clear advantage to using any one of these boundary conditions over the others, as

neither accuracy nor convergence time is noticeably affected. This is conceivably because the
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Figure 5.7: PSO Epochs vs Particle Swarm Size for Recorded Data, for multiple PSO variations.

Figure 5.8: PSO Iterations vs Particle Swarm Size for a multiple boundary conditions using the

Trelea Type 1 PSO variant, showing the decreasing number of iterations required as the swarm

size is increased, regardless of the boundary condition used.
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sources being studied aren’t close to the boundaries of the room, and therefore the boundary

conditions are rarely evoked by any significant number of particles. It might therefore be sim-

plest to choose the invisible walls boundary conditions, as it might marginally save some effort

when localising a source near a wall. Again, considering sources near walls, the wraparound

approach may be inappropriate, as it might cause a search near convergence to start reinvesti-

gating the opposite side of the room.

5.2.4.3 Exploring Height Estimation

In order to compare the height-estimated extensions competitively with the pre-existing PSO

variants, each test was run with the same parameters as in Section 5.2.4.1. Firstly, the effect

of varying the initial particle distribution was studied against Shi’s linearly decreasing inertial

weight PSO. Secondly, the per-dimension inertial control technique was run on the same data.

For these experiments, the invisible wall boundary condition was used on both recorded and

simulated data.

As before, each variant was considered over a range of particle swarm sizes, and the perfor-

mance in terms of the number of FEs and the ALE recorded. Figures 5.9 and 5.11 graph the

ALE and the number of FEs used, respectively, against the size of the particle swarms.

Simply initialising the swarms with a height biased towards what is approximately head-height,

based on the results from previous frames, has a small negative effect on the localisation ac-

curacy on the simulated data. In contrast, using the Hadamard product has little effect on the

ALE, as expected, and the results are in-line with running the standard Inertial PSO variant.

Both techniques lead to a reduction in the number of number of PSO epochs required for con-

vergence, with the Hadamard product having a less pronounced effect than the other two new

variants. Using a combination of the two methods does not produce the expected combined

effect of better accuracy with lower computational complexity, suggesting that biased initiali-

sation (height-initialised) is the most useful technique.

Finally, the same techniques were used on the recorded data set, with similar results. As shown

in Figure 5.13, the localisation error is consistent with the Inertial PSO variant across all new

variants of the algorithm, rather than being slightly worse, as in the case of the simulated

data. For the number of epochs required, Figure 5.14 shows that both techniques decrease

this number, as on the simulated data. The lack of improvement in the localisation error can be
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Figure 5.9: ALE vs Particle Swarm Size on simulated data, showing modified PSO variants.

Figure 5.10: Filtered ALE vs Particle Swarm Size on simulated data, showing modified PSO

variants.
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Figure 5.11: FEs vs Particle Swarm Size on simulated data, showing modified PSO variants.

attributed to the modifications failing to help the swarms avoid interfering sources which had a

larger SRP value than the desired target. As might be expected, given that neither variant had as

good an improvement on the recorded data as on the simulated data, the combined initialisation

and Hadamard product variant did not provide any further advantage.

5.2.4.4 Robustness to Noise

As in Chapter 4, the algorithm was run over 4 separate speakers in order to gain an insight into

the robustness to increasing SNR as the speech signal comes from a source further and further

away from the microphone array. This yielded no discernible effect, and so the simulated data

was modified to run simulations over a wide range of artificial white noise power levels. The

noise was added to each microphone signal as before, and the performance of the algorithm

measured as the SNR was changed from a negative to a positive value.

Figure 5.15 shows the effect of SNR on the Hadamard variant, for various swarm sizes. Fig-

ure 5.16 shows the related measure, the number of Epochs required. Whilst there is a sharp
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Figure 5.12: PSO Epochs vs Particle Swarm Size on simulated data, showing modified PSO

variants.
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Figure 5.13: Filtered ALE vs Particle Swarm Size on recorded data, showing modified PSO

variants.
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Figure 5.14: PSO Epochs vs Particle Swarm Size on recorded data, showing modified PSO

variants.

111



Particle Swarm Methods for Audio Source Localisation

Figure 5.15: Functional Evaluations vs SNR for the Hadamard PSO variant, also showing the

effect of swarm size.

decline in the required Epochs as the SNR increases, this trend is not so apparent when the

number of FEs is considered. This pattern repeats itself over each of the PSO variants consid-

ered.

Finally, the localisation error is graphed against changing SNR in Figure 5.17. There is a clear

trend in all but the smallest of swarm sizes, of a small increase in localisation error for negative

SNRs, which is to be expected because a peak in the SRP will become less distinct as the SNR

decreases. This suggests that the underlying objective function, the SRP, is itself fairly robust

to acoustic noise, and consistently produces a peak at a speaker location which can be localised

by the PSO technique. Good performance over a range of SNRs is not unreasonable for this

technique, as it was chosen specifically for its ability to cope with noisy, non-smooth objective

functions, on which gradient-based optimisation functions are expected to perform badly.

5.3 Conclusions

Compared to SRC, use of the PSO family of algorithms results in a significant reduction in the

number of FEs required to perform the localisation task. This result is generally scalable by
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Figure 5.16: PSO Epochs vs SNR for the Hadamard PSO variant, also showing the effect of

swarm size.

Figure 5.17: ALE vs SNR for the Hadamard PSO variant, also showing the effect of swarm

size.
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altering the PSO swarm size, such that when more FEs are used, a lower localisation error is

achieved, with diminishing returns. The localisation error itself is generally on par with the SRC

technique for medium sized swarms, and, after filtering with a Kalman filter, still acceptable

even with small swarms consisting of only 5 particles.

As well as proving the suitability of using the SRP as an objective function for optimisation

using PSO, this chapter has characterised the response of such a system over different PSO

algorithm variants, boundary conditions, swarm sizes and SNRs. The general technique is

robust to low SNR environments and provides a consistently low computational load.

Finally, modifications were made to the standard PSO algorithms in an attempt to adapt the

technique to the practicalities of an acoustic search environment. The primary advantage of

these techniques is maintaining an acceptable error level, whilst performing well with a very

small swarm size. This significantly reduces the computational load required to perform the

speaker localisation task. In particular, the number of FEs required can be consistently brought

down to the order of low thousands, as opposed to the high tens or even hundreds of thousands

required by the SRC methods.
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Chapter 6
Multi-source Particle Swarm

Optimisation Localisation

This section will discuss the use of multi-swarm PSO to find multiple peaks of the SRP objec-

tive function, which we expect to correspond to multiple simultaneous speakers. The premise

of this technique is to extend the behaviour of a single swarm of particles to include multiple,

potentially interacting, particle swarms on the same objective function. Note that this is distinct

from multi-objective optimisation, where there are multiple objective functions and a Pareto

optimum must be found.

6.1 Multi-Optima Particle Swarm Optimisation Variants

The lowering of the computational complexity for single source localisation is particularly use-

ful as it provides an opportunity to utilise similar techniques for locating multiple speakers,

with the aim of only performing as many FEs as might previously have been required to locate

a single source. The SRP objective function is already well suited for multiple source local-

isation, and there exist PSO techniques which attempt to find multiple peaks of an objective

function.

There exist many multiple-optima optimising techniques, several of which are studied in this

section. The nature of the fitness/objective function - namely its noisiness and the absence of

a symbolically differentiable formula limit the optimisation methods available. Methods based

on particle swarms are of course of particular interest.

This section presents several swarm-based algorithms which are then applied to the problem

of multiple source localisation. As before, the localisation accuracy of each technique is an

important metric, as is the computational load required to perform the localisation task. The

accuracy metric in particular must be carefully considered in this case, as the comparison is

now between two sets - the set of known speaker locations and the set of observations - rather

than between a single observation and a known lone speaker location.
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6.1.1 Niching Particle Swarm Optimisation

Niching methods are an approach to multiple solution finding in genetic algorithms [97]. These

methods have been applied to PSO [98] to search for multiple solutions on general functions

containing multiple optima, and niching methods can be applied to find multiple solutions

in parallel or sequentially. The Niching PSO makes use of two variant of the general PSO

algorithm; the guaranteed convergence particle swarm optimiser (GCPSO) and the cognition-

only model.

The cognition-only PSO variant [99] simply modifies the velocity update step, as shown in

Equation (6.1), to allow each particle to consider its own best position, with no swarm interac-

tion via the global best. This limits the reach of individual particles across the search space, so

each particle considers only its own local space.

Vi (z + 1) = ωpVi (z) + c1r1 [pi (z)− xi (z)] (6.1)

The GCPSO algorithm [100, 101] modifies the speed update as shown in Equation (6.2), but

only for the globally best particle at each epoch, indexed by τ . These equations represent an

attempt to solve a limitation of PSO in that when two particles both arrive at the current best

position at time step z, their velocity update depends entirely on the inertial term. This is prob-

lematic as it means convergence isn’t guaranteed, as particles can stop moving and converge

on a position which is only the best seen so far, rather than a global optimum. As such, the

search can halt prematurely, and the problem is known as stagnation. The GCPSO provides

guaranteed convergence onto a local optimum.

Vτ (z + 1) = −Xτ (z) + ŷ (z) + ωVτ (z) + ρ (z) (1− 2r2) (6.2)

This update equation makes use of ŷ (z), which is the globally best recorded particle position, to

ensure that at least one particle keeps moving until an optimum has been found. The algorithm

is forced into performing a local search using an area surrounding the global best, and the radius

of this search is controlled by the function ρ (z), defined in Equation (6.3).
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ρ (z + 1) =























2ρ (z) if #successes > sc

1
2ρ (z) if #failures > fc

ρ (z) otherwise

(6.3)

As this is a recurrence relation, an initial value, ρ (0) is required, and this can simply be set to

1 [101]. In this context, a failure is defined as occurring when the value of the objective function

at the global best position ŷ (z) is the same as the objective function value at ŷ (z − 1). The

number of successes denotes the number of consecutive successes, and the number of failures

is the number of consecutive failures. As such, when either of these counters is incremented,

the other must be reset to 0. The parameters sc and fc are threshold parameters to the al-

gorithm, and their values must be set appropriately for the objective function, determined by

experimentation.

The steps of the NichePSO are given in Algorithm 5 [98]. Particles are initialised at random

positions drawn uniformly across the search space, and each sub-swarm Sj , indexed by j is

given a radius Rj as defined in Equation (6.4). In this equation, g is the index of the best

particle in the sub-swarm, and the sub-swarm Sj, i represents each of the particles (indexed by

i) in the set Sj , excluding the particle i = g.

Rj = max {‖ Sj, g − Sj, i ‖} (6.4)

Initialise main swarm

Update main swarm particle positions using one iteration of cognition-only PSO

Evaluate the objective function for each particle in the main swarm

for Each Sub-swarm do

Update sub-swarm particle positions using one iteration of GCPSO

Evaluate the objective function for each particle in the sub-swarm

Update sub-swarm radius

end for

Merge sub-swarms if possible

Allow particles in main swarm to be absorbed into main swarms they move into

Identify particles in main swarm which can be partitioned, and create new sub-swarms based

on those particles and each of their nearest neighbours

Algorithm 5: NichePSO Algorithm

With the sub-swarm radius defined, the conditions required for sub-swarms to merge can be
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given. Swarms that intersect are liable to converge upon the same optima, and therefore inter-

secting swarms can be merged together. Equations (6.5a) and (6.5b) form the two conditions

for sub-swarms Sj1, g and Sj2, g, with radii Rj1 and Rj2 respectively, merging.

‖ Sj1, g − Sj2, g ‖< (Rj1 +Rj2) (6.5a)

‖ Sj1, g − Sj2, g ‖< µs (6.5b)

Equation (6.5b) is required for sub-swarms that have converged on the same optimal solution,

and both have a radius of 0. Thus, if Rj1 = Rj2 = 0, then Equation (6.5b) can still be

used to merge two swarms given some small threshold, µs. Similar to merging sub-swarms,

particles from the main swarm can be merged when, for particle xi, the condition described by

Equation (6.6) is met.

‖ xi − Sj, g ‖< Rj (6.6)

Finally, the niching part of NichePSO is the part of the algorithm where the main swarm of

particles is partitioned, with the creation of new sub-swarms. There are many niching methods

available, such as a sequential niching technique [102] which de-rates the objective function

in areas where the algorithm converges. [97] details many different approaches, however the

method taken by NichePSO is to extend previous work [103], which thresholds the objective

function values. For values over the threshold, the particle at that position is removed from the

swarm and that position is labelled as a solution. The objective function is then, ‘stretched‘ to

stop other particles exploring the area. If the objective function value is less than the threshold,

then more particles are added to explore that area more closely.

NichePSO modifies this method as it recognises that the threshold value, denoted ǫn, is depen-

dent on the objective function used which therefore requires tuning. To avoid this, the change

in the fitness of each particle is monitored such that new sub-swarms are created when there is

very little change over a small number of iterations. The variance σj of particle j’s fitness is

kept over a number eσ of iterations, and this is compared to a threshold ǫt. If the variance is

less than the threshold, then a new sub-swarm is created using the particle in question and its

nearest neighbour in the Euclidean sense from the main swarm.
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6.1.2 Wave of Swarm Particles (WoSP)

The waves of swarm particles (WoSP) [104, 105] extends the standard PSO algorithm to find

multiple optima by allowing the particles to undergo a cycle of behaviour known as, ‘converge

disperse’. This technique allows a single swarm to converge upon an optimum value, and

then disperse away from that area to search for another local optimum position. This ejection

is achieved by means of a strong short range attractive force between particles which causes

particles to fly past each other when they get close, due to the discrete-time updates used. As

this is most likely to occur at optima of the objective function, particles converging at these

points must be made to not return to that optima via the normal particle swarm dynamics.

To achieve this, each particle is assigned a wave number which is incremented when it under-

goes an ejection event, a process which is also referred to as promotion. Further, each particle

only responds to global and local best results from other particles within the same wave. Each

particle keeps a history of locations from where it has been ejected. If a particle comes within

a certain distance - the search scale parameter of the algorithm - then the particle is unable to

‘report’ for that iteration. In this context, being unable to report means that the particle’s veloc-

ity is not allowed to update normally, rather, it obeys the update rule shown in Equation (6.7).

In these equations, P̂c is a unit vector in the direction of the closest previous promotion point,

and P̂t is a unit vector in the direction of the smallest component of Vi (z).

Vi (z + 1) = Vi (z)− c1P̂c − c2P̂t (6.7)

For particles which are allowed to report, the velocity update step is updated as shown in Equa-

tion (6.8), which introduces an extra velocity term, VSRF.

Vi (z + 1) = ωpVi (z) + c1r1 [pi (z)− xi (z)] + c2r2
[

pg (z)− xi (z)
]

+ VSRF (6.8)

Each component of VSRF is calculated as the sum of all the short range forces along that axis

that a particle experiences due to every other particle. Each ith component of this sum is of

the form given in Equation (6.9), where the Sf is a factor which determines the magnitude of

the short range force; SP is a parameter which determines how quickly the force changes with

the distance D between the particle being updated and the ith other particle. Finally, V i is the

distance between the two particles in the dimension of the component of VSRF being calculated.
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SRFi = Sf ∗
V i

DSP
(6.9)

Note that this search scale parameter is particularly relevant to the case of source localisation,

as it might be beneficial to define an area of personal space around a person, where another

source is unlikely to be found. The complete WoSP algorithm is given in Algorithm 6 [104].

Initialise all particles to random positions and speeds

Set all particles to be in wave 0

repeat

for each particle do

Update particle position

Evaluate Objective function, update local and wave bests

Check distance of particle from its promotion points, decide if particle is allowed to

report or not

Update velocity of particle

Mark particle for promotion if necessary

end for

for each particle in descending order of fitness do

if marked for promotion then

Move particle to highest wave, creating new wave if particle is already in the

highest wave.

Add particle’s current position to its list of promotion points

If a wave is left with only one particle, promote that particle too, but do not record

the position as a promotion point for that particle.

end if

end for

for each wave in descending order do

Promote particles from lower numbered waves to this wave if their best position has

a lower fitness than that of this wave. Do not record promotion points

When the last particle leaves a wave, a gradient-based local search is done and the

result reported as one of the optima found

end for

until termination conditions met

Algorithm 6: WoSP Algorithm

Finally, it is noted that the algorithm can be terminated when a maximum number of iterations

have been completed, or when a minimum number of optima have been found.
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6.1.3 Locust Swarms

The Locust Swarm technique is explicitly designed to search for multiple optima, and is derived

from the WoSP algorithm [106]. This technique attempts to find multiple optima by making

use of ‘coarse search, greedy search’ tactic, whereby PSO is used to perform a coarse search of

an area, before a greedy search technique, ‘devours’ local areas to find local optima. As each

small area is devoured, particles are sent out from that area as, ‘scouts’ in order to find nearby

optima.

The Locust Swarm procedure is introduced in Algorithm 7. The method attempts to address a

perceived weakness of the WoSP, in that WoSP sends new particle waves in random directions,

when it would be preferable to launch them towards areas which look like they might contain

an optimum, but which haven’t yet been searched extensively.

Generate R random points

Identify a number S of the best points

Give each point a random velocity

Run PSO for a limited number n of iterations

Optimise using fmincon

for 2 to Number of Swarms, N do

Generate another R points around the previous optimum

Identify a number S of the best points

Give each particle a velocity directed away from the previous optimum

Run PSO for a limited number n of iterations

Optimise using fmincon

end for

Return best optimum

Algorithm 7: Locust Swarms Algorithm

When generating the R new particles around a previous optimum, their distance δl from that

point is decided for each dimension of the objective function according to the formula in Equa-

tion (6.10), where rl is a parameter specifying the allowable range of the dimension in question;

gl is a parameter specifying the minimum gap between the original particle and the new ones.

The spacing parameter, sl is then used with the random variable, ul ∼ N (0, 1) to provide

variations.

δl = ±rl (gl + |ulsl|) (6.10)
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To ensure outward exploration away from the previous optimum, the initial speed of the new

particles along each dimension is set according to Equation (6.11), where vl is a velocity scaling

parameter, and ul ∼ U (0, 1) is a uniformly distributed variable.

Vi (0) = vlδl + 0.05
rl

2
(2ul − 1) (6.11)

By limiting the number of PSO iterations, the PSO algorithm does not converge, but it provides

the standard Matlab ‘fmincon‘ search a local area to start searching. The fmincon function (by

default) uses an interior-point method to solve the optimisation problem. This method assumes

that the function to be optimised is convex, which, importantly, means that a local optimum

is also a global optimum. This is generally not true for acoustic data, as not only are there

optima from target sources and interference sources, the SRP is not generally smooth in the

area between speakers. However, in close proximity to a speaker, the SRP may well be smooth

enough to successfully localise an audio source. If the SRP surface is not smooth, this might

manifest itself as many maxima, and so a multi-optima approach should be able to eventually

find the true maximum, albeit with more spurious localisations than might otherwise have been

recorded.

One final point to note is that the interior-point method used assumes that the function being

optimised is continuous. For sampled data, this is not strictly true, and there is a limit to the

resolution of the SRP surface, which means that when attempting to optimise a point, locations

in space will be so close together that they evaluate on the same grid point. This work inves-

tigates the suitability of this method, as even with this limitation, typical available resolution

is enough to localise a source to within an acceptable distance. Therefore, careful tuning of

the parameters used by fmincon should allow the function to converge upon a point which is

accurate enough, before the non-continuity problems arise.

6.2 Particle Swarm Optimisation for Acoustic Multi-source Local-

isation

It is important that the multi-source localisation schemes described in Section 6 be properly

adapted for the speaker localisation problem. These optimisation techniques are often trialled
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on high-dimensional problems [107]. The source localisation problem has only three dimen-

sions, so this affects constants which, for example, limit the number of iterations used. Where

it might be appropriate to limit to a few thousand iterations of PSO on a 30-dimensional test

function in the Locust Swarms algorithm, a few thousand iterations have been shown in Sec-

tion 5.2.4 to be enough to allow a single-source finding PSO to converge completely. Thus,

limiting this parameter further is part of the tuning process when adapting the algorithm to the

acoustic source problem.

Similarly, practical points can be taken into account regarding the physical location of possible

speakers. It is unlikely (but not impossible) that two sources will be very close, unless they

are, say, whispering to each other. This can be taken into account in the WoSP algorithm by

changing the scale parameter such that optima are afforded some personal space. Furthermore,

as we are not considering the (unusual) situation of one set of microphones attempting to lo-

calise over split levels, it is reasonably fair to exclude maxima which only significantly differ

in position along the vertical axis, i.e., speakers don’t stand on top of each other.

In applying multi-optima techniques to the source localisation problems, we expect to be able

to adapt them to the problem appropriately. Several considerations are discussed in this section.

6.2.1 Known Sources and Initialisation

Because multiple optima are to be found, there is some scope to exploit different particle ini-

tialisation strategies [108] in order to improve the search performance.

In a speaker tracking system where audio is processed on a frame-by-frame basis, it might

make sense to exploit information about sources located in previous audio frames. If these

results truly correspond to audio sources which are continuing to emit sound between frames,

then the SRP objective function should be very similar at these locations between frames. It

might therefore be expected that swarms in subsequent frames should also cluster around these

points. Therefore, a reasonable approach might be to initialise the systems used so that they

naturally find sources which are present between frames very quickly.

For the Niching PSO algorithm, this simply means initialising a subset of the main swarm

particle positions close to previously found optima. The algorithm should then naturally cre-

ate sub-swarms for any continuing audio sources after a few iterations. The rest of the main

swarm should be initialised uniformly across the search space to continue searching for new or
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previously undiscovered sources.

In the context of WoSP and locust swarms, particles can be initialised near only one previously

known source, as these algorithm find new optima sequentially. If the source still exists in a

new audio frame, then it will quickly be found and the algorithms will continue as normal,

searching for other audio sources. This only provides limited benefit however, as it only affects

the first source to be found. Further, if a source is no longer present, the algorithms are put at

some disadvantage.

6.2.2 Avoiding Duplicate Optima

When searching for multiple optima, there is strong chance of swarms reporting the same op-

tima multiple times, especially in sequential techniques where swarms are not aware of each

other. This is handled in WoSP through the use of promotion points and restricting when parti-

cles are allowed to report their values to the rest of the swarm.

The Locust swarm algorithm handles this requirement by assigning outward velocities from the

discovered optimum position to the particles in a subsequent PSO search. This was modelled

in Matlab as a particle at the point of the previous optimum which exerted a repulsive force on

nearby active particles. This was expressed as an extra velocity component to be added to the

standard PSO velocity update equations, the magnitude of which is given in Equation (6.12).

The direction of this force is the direction of the vector from the optimal point to the particle in

question. This is modelled on an inverse-square law repulsive force system, such that nearby

particles are repelled strongly and further away particles feel little effect.

vr =
αr

r2
(6.12)

The additional velocity component, vr is dependent on the distance r between a particle and the

repelling position, scaled by an appropriate factor αr. This factor must be chosen to force the

velocities produced by nearby interacting particles to be around the same order of magnitude as

the velocities used by the swarm for general exploration. Too small a velocity would result in

an ineffective force which does not prevent duplicate results, and too large a resultant velocity

would result in particles being pushed away from previous optima they are nowhere near in the

context of the room being explored.
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Although not explicitly stated in [106], the implementation of Locust swarms for localising

more than two speakers requires that all previously discovered optima are avoided, rather than

simply the most recently found optimum point. This was simply achieved by extending the

repulsive force model to all previously discovered optima, such that particles were forced to

move on from the most recently discovered optimum and not allowed to come near to any of

the others.

This scheme was implemented in MATLAB by calculating the repulsive velocity for each par-

ticle as the sum of all of the repulsive velocities resulting from the interaction of that particle

with each previously discovered optimum position. This is simply expressed in Equation (6.13),

which can then be added to the regular PSO velocity update equation.

vr =

N
∑

n=1

vr, n (6.13)

This scheme was also used in the Niching PSO implementation. The Niching algorithm was

developed with this problem in mind, and it is something which has to be dealt with for general

genetic algorithms, on which the Niching method is partially based. One way of dealing with

the problem is to ‘derate’ the objective function around previously discovered optima, although

this has been thought to be a flawed solution, as it may create new false maxima. In any case,

this was not implemented for the acoustic search, as the repulsive force scheme had already

been implemented for Locust swarms and found to be effective, so it was simply ported across

as the chosen ‘derating’ method.

6.2.3 Vertical Axis Restrictions

Whilst the PSO searches employed operate on 3 dimensions, some of the particle interactions

are more simply expressed and more appropriate to the problem when implemented to deal with

2 dimensions only. This is particularly relevant to the repulsive force calculations. Because it is

assumed that sources cannot be on directly on top of each other, the repulsive force is applied

only on the horizontal plane. Particles are therefore not forced down or up from existing optima,

rather, they are forced to another part of the horizontal plane. The calculation of the distance

between the two points also limits itself to the horizontal plane, such that particles far enough

above or below an optimum point to not otherwise be affected are counted as being close. This
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forces an emphasis on searching for speakers over the horizontal plane, rather than at different

heights when considering one position on the horizontal plane.

Similarly, all swarm management routines - absorbing and merging of sub-swarms - consider

only the horizontal-plane component of particles’ positions. This has the added advantage of

slightly reducing the computational load required when calculating distances.

6.2.4 Limited Resolution

The SRP objective function is fundamentally limited in resolution, and so there comes a point

when trying to further narrow down the position of an optimum value of the function becomes

impossible. Both the WoSP and Locust swarms algorithms specify that the PSO searches are to

be followed by local gradient based searches in the areas of high likelihood for a peak indicated

by the output of the PSO searches.

These parts of the algorithm were not implemented for the acoustic search experiments for

two reasons. Firstly, PSO techniques already find peaks to a suitable degree of resolution,

and a gradient based search would be unable to improve on any true optimum found by PSO.

Secondly, gradient based searches are not well-suited for the noisy environment of the SRP

objective function.

6.2.5 An Unknown Number of Speakers

Similar to the SRC method, the multi-modal PSO method may fail to converge if there are

fewer targets than expected - that is, if the number of sources has been overestimated. Because

real tracking systems must estimate the number of speakers, it seems likely that this will occur

when processing real signals. As such, it is worthwhile considering when to halt the search for

a speaker. If all true sources have been found, and there are no other peaks, then algorithms

will no longer necessarily converge quickly if the termination conditions mandate that a certain

number of sources be found. In this case, the total number of FEs must also be used to terminate

the algorithm.

Spurious localisation results can still occur when the number of speakers has been overesti-

mated, and it is desirable for a localisation algorithm to detect possible spurious results and

eliminate them. This could be achieved by the detection of non-speech acoustic sources at
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search time, although such a method is considered any further in this work. The algorithms

used can also prune the number of results returned by applying a threshold to the SRP at the

optima positions. A threshold can be determined by requiring that an optimum position be a

certain factor greater than the mean SRP value over all interrogated positions. This effectively

filters optima based on the signal to interference plus noise ratio (SINR) levels at their positions,

and the value of this is expected to decrease as the number of sources increases, and therefore

the SINR decreases. As such, it is of interest to determine how well this scheme scales with the

number of speakers.

6.2.6 Iteration Limitation

The total number of FEs available is of course limited by the size of the area being searched

and the spatial resolution of the microphone array. This is an impractical limit however, and

an acceptable maximum will be much lower than this exhaustive search. Consideration might

be given to the number of sources that are expected to be found. The relationship between the

number of sources and the number of FEs required to find them all must be considered, as it

may not be a linear one. With an idea of this scaling, the number of sources to be found could

then also give rise to an expected number of FEs. This could help avoid problems such as early

termination due to exceeding too optimistic a limit.

6.2.7 Performance Metrics

The number of FEs is an important metric when considering multiple sources, just as it is in

the single source case. Similarly, the ALE is still useful for each individual source, but is

complicated by the fact that each optima found must be assigned to a known audio source to

evaluate the methods. In our studies, the ground truth is known, but obviously this luxury is

unavailable in practical online systems. Also of interest is the number of optima found before

matches for real speakers are made. This informs us about the expected number of spurious

results, which is useful when considering tracking schemes such as the PHD family of trackers,

which explicitly cater for optima appearing which don’t correspond to any source.

As before, the number of FEs and algorithm epochs is recorded. In addition, the number of

optima found in each case is recorded, allowing calculation of the number of spurious sources

found or acoustic sources missed. In order to assign a localisation accuracy score, a measure
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known as optimal subpattern assignment (OSPA) is adapted.

6.2.7.1 Optimal Subpattern Assignment (OSPA)

The OSPA metric is designed to be used with multi-optima processes, to detect how close a set

of observed positions is to the set of known source positions [109]. This metric overcomes some

inconsistencies in other metrics, such as the Hausdorff metric and the optimal mass transfer

(OMAT) metric. The Hausdorff metric does not perform well when the cardinalities of the two

sets being compared are different, as is in the case of a missed target, or the case of detection of

spurious sources. The OMAT metric improves upon this, however it is still sensitive to differing

cardinalities, as well as the geometry of the two sets being compared.

There are three practical steps to be taken in order to find the OSPA distance between the two

sets being considered, X and Y :

• Find the optimal subset of Y that is closest to X in terms of the ptho order OMAT metric.

• For each element (j) in Y , assign the variable αj to a cut-off value, cc if there is no point

inX assigned to it, or to the minimum of cc and the distance of the element to its assigned

point in X , if it exists.

• Calculate the ptho order average over all αj

The parameter po determines the averaging ‘order’, and increasing it increases the sensitivity of

the metric to outlier points - points in the measurement set which aren’t easily assigned to point

in the ground-truth set. This effect is tempered somewhat by the cut-off parameter cc, which

assigns a fixed value to points which effectively not assignable, and can be used to trade-off

between the metric more heavily penalizing cardinality errors or localisation distance errors.

The OSPA metric is defined mathematically in Equation (6.14), with parameters cc and po.

Note that m and n are the cardinalities of sets X and Y respectively, and that Equation (6.14)

is only valid for m ≤ n. In the case of m > n, d
(cc)
po (X, Y ) := d

(cc)
po (Y, X).

d(cc)po (X, Y ) =

(

1

n

(

min
π∈Πn

m
∑

i=1

d(cc)
(

xi, yπ(i)
)po + cpoc (n−m)

)) 1
po

(6.14)

d(cc)
(

xi, yπ(i)
)

is defined in Equation (6.15), and the distance d (x, y) can be simply defined
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as the Euclidean distance between the two points in space, x and y.

d(cc)
(

xi, yπ(i)
)

= min (cc, d (x, y)) (6.15)

Finally, note that Πn is the set of all permutations of the set of integers up to n, so that π

represents a permutation on which points in each set are considered.

6.2.7.2 Interpreting Optimal Subpattern Assignment

The OSPA metric on the localisation accuracy is not as simple to interpret as the single source

ALE. Where the ALE is reasonably expressed in metres, the OSPA metric cannot be so simply

thought of as an error in units of difference of Euclidean distance. The metric deals with

differences in distance between nominally associated members of two sets, but it also deals

with differences in the cardinalities of the sets. As such, it is instructive to consider how the

metric changes when an observation set with known errors is compared to a known ground truth.

When using the metric in practice, two parameters must first be chosen; the order parameter

po, and the cut-off parameter cc.

The appropriate choice of these parameters is discussed in [109]. To summarise, the order

parameter determines how harshly outlier estimates (which are not close to any object in the

ground truth) are penalised. The cut-off parameter limits this penalty by defining a point where

an observation is considered, “unassignable” if it is further than the cut-off from any object

within the set of ground-truth elements. By altering cc, the relative weighting between cardi-

nality errors and localisation errors is controlled. In the special case of po = 1, the cut-off is

the error assigned to a point estimate which is considered to not be associated with any of the

elements of the ground-truth set. The case of po = 2 is also noted as a practical choice, as

second order metrics are common [109] and the curves produced are reasonably smooth as the

localisation error increases. OSPA metrics with both po = 1 and po = 2 are calculated in this

thesis.

A value for cc must be chosen depending on the problem being considered. Values of cc are

roughly categorised as either being small, moderate, or large, and the boundaries depend on the

typical localisation errors encountered as well as typical expected distances between the objects

being tracked. Broadly, small values of cc which are close to or less than typical localisation
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Figure 6.1: Example Data for OSPA Metric - Black Circles are true source positions, arrows

show observation positions as they are moved along to their final positions, marked by red

crosses.

errors are classified as being small and have the effect of emphasising localisation errors over

cardinality errors. Values of cc corresponding to the maximum distance between observable

objects are considered large, and emphasise cardinality errors.

Values of cc between the typical localisation error distance and the maximal object distance are

classed as moderate, and represent a trade-off between penalising either error type too heavily.

In this thesis, a value of cc = 0.7 (metres) is used. This is slightly larger than a typical single-

source localisation error, but smaller than the maximum distance between sources, which is

limited by the size of the room under consideration.

To aid in the interpretation of OSPA results, the metric is calculated for a range of known

localisation errors and the chosen parametrisation (cc = 0.7 with po = 1 and po = 2) shown

in the following Figures. In Figure 6.1, the two elements of the ground truth set are the 2D

Cartesian points (1, 1) and (1, 3), marked by black circles. A set of observation are generated,

such that the observation of each element is moved progressively further away from their true

positions. These are shown in the Figure as arrow, indicating the change in observation up to

the final observations marked by red crosses.
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Figure 6.2: OSPA metric for two source observations as the localisation error increases at the

same rate for each source.

The OSPA metric is calculated between the ground truth and the observations as the observa-

tions move away from the true positions at the same speed. Figure 6.2 shows the difference

between the two OSPA parametrisations used, and demonstrates how the metric peaks when

the cut-off is reached on the x-axis. Note that in these tests, there is no cardinality error, and

that the functions are labelled with their parametrisations as OSPA(cc, po).

Figure 6.3 demonstrates a slightly different situation, where there localisation error of the dif-

ferent sources is not the same. Whilst the observations are the same as in the previous case, one

of the ground truth elements has been offset, such that the localisation error for the observation

of that source is a constant 0.2m greater than the other localisation error. Figure 6.4 shows how

the OSPA metrics change as the localisation error increases, where the x-axis corresponds to

the smaller of the two errors. The larger error is a constant 0.2 greater than x at all points along

the axis.

6.3 Multiple Source Results

Each of the algorithms was implemented in MATLAB and run on several data sets involving

multiple simultaneous speakers. The recorded data set was limited in the number of speakers
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Figure 6.3: Example Data for OSPA Metric - Black Circles are true source positions, arrows

show observation positions as they are moved along to their final positions, marked by red

crosses.

Figure 6.4: OSPA metric for two source observations where the localisation error is different

for each source.
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available, and only stationary speakers were considered. This data set was the same data used

in Chapter 5, except that the source signals were combined to create signals containing multiple

speakers in combinations of 2, 3 and 4 simultaneous speakers. All experiments were performed

as Monte Carlo simulations, allowing average performance figures to be presented.

The multi-source localisation methods described in Section 6.1 are all capable of being di-

rected to produce a set number of outputs by simply declaring that a completion criteria is to

have found a set number of optima. This is simply an extension of the single source localisation

case, where the algorithm finishes after finding a single optimum position, and is used to evalu-

ate the multi-optima algorithms’ response to various environmental conditions and parameters

when dealing with a known number of speakers. In each test performed, the number of speak-

ers is known and the algorithms are tested for their ability to find these known sources, with

measurements made of the computational effort involved and the localisation error incurred.

Thus, the cardinality error contribution for the OSPA metric is ideally zero for these tests. Note

however, that for a tracking framework, the number of sources is not known, and only esti-

mated. Furthermore, a tracking framework must make extra effort to detect new sources, so has

to search for more optima than the number of sources which it has tracked. Further considera-

tion of this problem is given in Chapter 7, and this section focusses only on the capabilities of

localisation methods.

One of the initial results which came from this work was that the boundary conditions on the

PSO searches are much more important in the multiple source case than in the single source

case. The invisible walls boundary condition was used initially as it was used successfully with

the single source PSO experiments. This occasionally resulted in particles being forced out of

the search region when they interacted with the repulsive forces generated by previously dis-

covered optima. Once these particles were ejected, they typically could not re-enter the valid

search space due to continued interaction with the repulsive forces. For searches involving mul-

tiple optima this situation became more common, often resulting in entire swarms being forced

out of the search space. The solution to this problem was to revert to using the wraparound

boundary condition, which encouraged further exploration away from known optima. Whilst

this may seem counter-intuitive for the single source case, it was previously shown that the

choice of boundary condition makes very little difference. As such, allowing the wraparound

condition to be used should only have the positive effect of ensuring ejected particles are not

permanently excluded in the multiple source case.
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6.3.1 Simulated Data Set

Seven simulated speakers were created, and sets of data created with combinations of two up

to seven speakers by superimposing the microphone signals. The speakers were simulated in

the simple simulation environment described in Section 2.5, with the original speech signals

around 30 seconds long. Their positions are shown in Figure 2.14, marked by green squares.

Eash speaker is numbered, such that in a set with a given number of active concurrent speakers,

the speakers from 1 up to that number are the ones which are active. In addition, two of the

speakers (speakers 1 and 3 were simulated moving towards each other at the (slightly high!)

constant speed of around 5ms−1, which was determined by requiring that the speakers crossed

the room in the 30 second time period. The source signals were clean speech sampled at

44.1kHz, and the audio frame size used was the same as used in Chapters 4 and 5.

6.3.2 Wave of Swarm Particles

The WoSP algorithm proved to be hard to tune for the acoustic data, and a tuning which gen-

erated consistent results, even across audio frames in a single data set, was not achieved. This

was largely due to the noisy nature of the objective function. The algorithm performance was

dependent on the small noisy peaks of the objective function, which could cause new waves to

be created very regularly, resulting in many optimal positions being reported, most of which

were nowhere near the target optima. Furthermore, it was unclear when to stop the algorithm,

as peaks were found sequentially, but in no particular order.

This behaviour was inconsistent, however, with some data frames producing optimal estimates

very slowly, requiring a large number of FEs without any gain in the localisation accuracy

achieved. The difference in behaviour can be tuned somewhat by changing the conditions

required for a new wave to be created - the promote factor. However, changing this does not

lead to a tuning which is useful over a range different input vectors.

The difficulty encountered in tuning the WoSP algorithm, along with the trouble encountered

trying to implement it correctly in MATLAB, meant that it was not considered any further past

the initial testing stage. Whilst the algorithm may be suited to the speaker localisation task, the

problems encountered in getting it to run consistently mean that this variant is not considered

further in this thesis.
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6.3.3 Niching Particle Swarm Optimisation

The Niching PSO algorithm encountered much the same issue with the SRP as the objective

function as the WoSP algorithm did. The fundamental problem is made quite clear in the

context of the Niching algorithm - it is not trivial to decide which positions are suitable for

more local (niched) exploration based on the criterion of a local area looking promising as a

potential peak of the objective function.

There are several advantages and disadvantages of the Niching technique over the WoSP algo-

rithm. In addition to generating a large amount of clutter in the results, the Niching algorithm

has a tendency to either quickly settle on a set of optima, or to return with only one optimum

point. By stepping through the code as it progressed, this was found to be caused by the ten-

dency of sub-swarms to balloon in size, merging with other sub-swarms and having an eventual

single sub-swarm covering the search area. This problem is particularly prominent when a

small number of initial particles are used. When a single particle is marked for the creation of

a new sub-swarm, that particle takes with it its nearest neighbour from the main swarm. With a

low density of particles across the search area, this can lead to new sub-swarms having a large

radius, enveloping many optima caused by both noise and genuine acoustic sources. Because

sub-swarms concentrate on a local search, they move comparatively slowly towards local op-

tima, particularly when they encompass multiple peaks. This means that larger sub-swarms do

not quickly constrict in size.

This problem is exacerbated by sub-swarms absorbing main swarm particles. Further, even

small sub-swarms suffer when they are close to each other, as when they merge, they suddenly

encompass multiple optima. Thus, the swarm radius is increased, with the ability to only find

one of the local optima. These slightly larger sub-swarms then tend to quickly merge with other

sub-swarms until all sub-swarms are merged.

To the Niching algorithm’s advantage however, is the consistent computational and timing be-

haviour. A large main swarm population can be used, resulting in many optima returned ef-

fectively in parallel. This allows the search space to be explored uniformly and, importantly,

optima found across the search area within a constant time. This is in contrast to the WoSP

algorithm, which finds optima sequentially, and is an advantage because it in theory allows

the algorithm to be trivially parallelised to a large degree. For example, with a swarm size of

100 particles, which achieves a reasonable particle density for the room sizes considered, each
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iteration of the algorithm could be parallelised and most of the sub-swarms would converge

(assuming they don’t balloon into one sub-swarm) after around the same number of iterations.

Because the algorithm operates a parallel search for multiple optima, parallelising the individual

FEs for the large swarm means that the algorithm might be kept computationally competitive

when compared to a sequential search using the same number, or even significantly fewer parti-

cles. The number of algorithm iterations is dependent on the convergence criteria specified for

the local-search PSO part of the algorithm, and because noisy peaks are smaller in magnitude

than peaks caused by acoustic sources, convergence can take many iterations, resulting in a

high computational cost. Lowering the conditions for a convergence allows peaks to be found

quickly, but with a high amount of clutter.

Whilst both the Niching algorithm and the WoSP algorithms suffer from optima clutter, the

WoSP method suffers from unpredictable computational burden which is somewhat dependent

on the noise environment. The Niching algorithm has problems with swarms merging and

taking over the entire search space, however this is not insurmountable. Consideration is given

in 7 to how this can be overcome to produce a method which very quickly localises optima on

the objective function, and whose main problem is the large level of clutter compared to the

number of optima created by acoustic sources. This is generally a poor localisation function,

however, it is feasible on the context of a filtering system which accounts for and even expects

such clutter.

6.3.4 Locust Swarms

The performance of the locust swarms algorithm is in stark contrast to the Niching PSO and the

WoSP algorithm. Locust swarms effectively deal with the niching problem by defining niches

as the result of a fully completed PSO search. The, ‘devour and move on’ paradigm means that

the locust swarm implementation is effectively repeating PSO searches on the objective func-

tion, with previous optima ruled out as potential results. This means that the niching condition

is as good as it can be - desirable maxima corresponding to previously discovered global max-

ima are used, rather than speculatively marked potential solutions, as is the case with WoSP

and Niching PSO. Note that, the swarm size used for the particle swarm experiments was

15 particles, as this represented a good trade off between localisation speed and accuracy, as

demonstrated by the experiments in Chapter 5. The PSO variant used as the underlying search

routine was the standard inertial PSO, with the remainder of the PSO parameters used set to the
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same values used in Chapter 5, initially using the invisible walls boundary condition.

The result of this is that the algorithm generally returns the desired optima. If the number of

optima required is known, then exactly that many can be returned. Depending on the objective

function at the time window being considered, these generally correspond to the global max-

ima, rather than just peaks in the noise floor. This allows the algorithm to be considered with

no cardinality error, which allows the assessment of its ability to localise a given number of

acoustic sources. Further consideration of how this must be adapted for an unknown number of

sources is given in Chapter 7.

6.3.4.1 Repelling Force

The first experiment run was to investigate the effect of varying the strength of the repulsive

force applied from positions of previously discovered optima. The initial value given to the

forces was to ensure that the maximum particle velocity was applied when a particle was within

half a meter (on the horizontal-plane) of a historical optimum position. With the maximum per-

dimension particle velocity set to 0.1m per iteration, the target repulsive force coefficient was

determined to be 0.025 by simple manipulation of Equation (6.12), as shown in Equation (6.16).

0.1 =
αr

0.52
(6.16)

To study the effect of changing this value, it was varied around this ideal value as shown in

Figure 6.5. This figure shows that the average number of FEs required to find two sources

doesn’t change when the strength of the repulsive force changes around this desired value. This

can be explained when considering the clustering behaviour of the particles. When particles

are ejected from the site of a previous optimum value, they move at the maximum permissible

speed out of that site’s region of significant influence. Because the magnitude of the force is

inversely proportional to distance between the two positions, the contribution of a repelling

position to a particle’s velocity is insignificant for most of that particle’s life.

Similarly, Figure 6.6 shows that if the repulsive force coefficient is kept within a sensible range,

it has no effect on the localisation performance of the algorithm other than ensuring that the

same optimum is not found twice.
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Figure 6.5: Functional Evaluations required to localise 2 sources using the Locust Swarms

algorithm, against the size of the repulsive force coefficient applied.

Figure 6.6: OSPA metric against the size of the repulsive force coefficient applied for localisa-

tion using the Locust Swarms algorithm, with two OSPA parametrisations shown.
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Figure 6.7: Functional Evaluations required to localise a given number of sources on simulated

data, using the Locust Swarms algorithm

6.3.4.2 Variable Number of Sources

Figure 6.7 shows how the total number of FEs required to localise a number of sources scales as

the number required is increased when the algorithm is run on the simulated data set. The graph

shows that the number of FEs increases linearly with the number of optima to be found, and this

corresponds to an extra PSO search per additional source required. Because the algorithm is a

repeated PSO search, this result is not unprecedented - subsequent searches are kept away from

previous optima and the algorithm continues as normal. A foreseeable caveat to this is that a

sufficiently dense population of sources might cause particles to become trapped, however this

scenario was not encountered, and so was not considered any further than as a potential pitfall.

Figure 6.8 demonstrates how the OSPA score average stays constant regardless of how many

sources are searched for. These scores appear to compare well with the general level of error

encountered for single sources, and this is not unwarranted given that in practice, the algorithm

is a repeated single-source search. Figures 6.9 and 6.10 show the same algorithm run on the

recorded data set. Whilst there were fewer available sources to deal with, the trends are the

same. There is a linear increase in the number of FEs required to localise every additional

source, and the average OSPA metric is unaffected by the number of sources to be found. The
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Figure 6.8: Average OSPA score versus number of sources localised on simulated data, using

the Locust Swarms algorithm.

main difference is the slight increase in both FEs required and localisation error when compared

to the results for the simulated data set. This is likely due to the highly reverberant nature of

the acoustic lab, and mirrors the results of the single-source PSO experiments. Nevertheless,

the results are still within usable ranges - the number of FEs per speaker is still in the order of

thousands rather than tens or hundreds of thousands, and the localisation error is in the same

order of magnitude as that obtained on the simulated data set.

6.3.4.3 Robustness to Noise

Finally, as was the case with the single-source PSO localisation, it was of interest to study the

algorithm’s robustness to acoustic noise. As before, the level of artificial acoustic noise added

to the simulated data set microphone signals was varied to achieve different SNR levels. The

algorithm was then re-run over a wide range of these levels.

Given the single-source PSO localisation algorithm’s good performance in the face of low SNR

it was expected that the Locust swarm algorithm would perform similarly. As Figure 6.11

shows, much the same effect was observed on the number of FEs required. For high SNR

conditions, the algorithm was unaffected, and only in very low SNR conditions was there a
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Figure 6.9: FEs required to localise a given number of sources on recorded data, using the

Locust Swarms algorithm.

Figure 6.10: Average OSPA score versus number of sources localised on recorded data, using

the Locust Swarms algorithm.
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Figure 6.11: Functional Evaluations required to localise sources versus SNR, on the simulated

data set using the Locust Swarms algorithm. A range of number of concurrent speakers are

shown, showing robustness to noise level and a consistent increase in the number of FEs re-

quired for each additional speaker.
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Figure 6.12: Average OSPA score versus SNR for the Locust Swarms algorithm, showing

localisation robustness to noise level across a range of different numbers of concurrent speakers.

small but noticeable detrimental effect. This can be readily explained in terms of the peaks

caused by acoustic sources being closer in magnitude to the noisy peaks of the SRP objective

function in low SNR conditions. Although the algorithm is suitable for operating in noise, less

distinct peaks compared to the noisy peaks generally take more effort to find.

Despite the additional effort required, Figure 6.12 demonstrates that if the peaks are still dis-

tinct, they will continue to be found with the same level of localisation error regardless of

acoustic noise. The only caveat to this is that the noise level which causes peaks to no longer

be distinct from noisy peaks is likely to be system dependent. Generally, a system with fewer

microphones than used in these experiment might not do so well, and the placement of those

microphones should be such that they surround and can cover the entire search area.

6.4 Conclusions

The work in this Chapter has established the suitability of multi-optima PSO algorithms as the

basis for multi-speaker acoustic localisation. This was a logical extension of the work carried

143



Multi-source Particle Swarm Optimisation Localisation

out in Chapter 5.

The Chapter compared three different multi-optima approaches, and lead to some interesting

conclusions on what is required of a multi-optima algorithm for use with acoustic data. The

key observation is that niching - the process of identifying areas of space which might contain

an optimum value - is non-trivial on the non-smooth SRP objective function. For sequential

niching algorithms, this generally leads to a large amount of optima recorded which are simply

peaks in the noise-floor of the function. The sequential nature means that the time taken to

reach a peak of interest is unpredictable, and the particular sequential niching method used -

the WoSP algorithm - was sensitive to the different characteristics of the SRP over time. This

made it hard to tune and unreliable, which marked it as being unsuitable for the purpose of

acoustic source localisation.

In contrast, the parallel niching algorithm investigated - Niching PSO - allowed a set of optimal

positions to be obtained within a predictable timeframe, albeit with a large amount of clutter not

corresponding to true targets. The Niching PSO does have problems with swarm management,

meaning the number of results returned was not predictable. This also meant the algorithm was

not reliable, however this problem is not insurmountable. As is, the algorithm is unsuitable for

reliable localisation because it returns a lot of clutter, but often produces only a very few results

corresponding to sources. However, if the algorithm were to be modified, as will be explored

in Chapter 7, to return a consistent level of clutter, this has potential use within the context of a

tracking system so long as the acoustic targets were found amongst the clutter.

The third multi-optima search technique, the Locust swarms algorithm, was far more successful

than the other two. This method effectively set the niching criteria as the successful localisation

of a globally optimum value, and then carried on searching whilst excluding any previously

discovered optimal positions. This led to a reliable number of outputs - noisy peaks were

largely ignored, although because the PSO does not guarantee that the search result will be the

global optimum, repeated PSO does not guarantee that all results found will not correspond to

peaks from noise. Nevertheless, missed observations and spurious results are to be expected,

and the Locust algorithm can locate many sources so long as enough iterations to the algorithm

are used.

Because the relationship between sources to be found and the number of FEs required is linear,

and dependent on the swarm size, the results of Chapter 5 have been extended to conclude that
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the computational effort required in contemporary techniques to localise a single source can

now be better utilised to find a large number of sources. Because the computational require-

ments of single source localisation were improved in Chapter 5 by approximately an order of

magnitude, an order of magnitude more sources can be localised than was previously possible

with the same computational budget. This has been achieved in the context of minimising the

localisation error as much as possible, where the OSPA metric has been used to measure this

multi-source localisation error.

To conclude, multi-optima PSO techniques have been successfully applied to acoustic data to

localise multiple speakers. This has been achieved whilst keeping computational costs low

and accuracy to a good level. The experimentation has highlighted some of the difficulties in

adapting multi-optima techniques to the acoustic source localisation problem, and has indicated

how these techniques might be put to use in a full ASLT system.
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Acoustic Multi-Source Tracking

This Chapter of the thesis sets out to explore how the output of the multi-speaker localisation

methods developed in Chapter 6 can be used to perform speaker tracking. The tracking stage of

an ASLT system is important as it attempts to take a series of localisation results over time and

identify any continuous sources. This means pruning out any clutter - unwanted observations

not corresponding to acoustic sources - thereby decreasing the localisation error of true sources

over time.

This Chapter recognises that the direct observations of optima of the SRP function across a

room are a good fit for filtering using RFS based filters. Furthermore, because the observa-

tions map linearly to source positions, the GM-PHD filter is explored as a potential tracking

mechanism. The GM-PHD filter is of particular interest because of its low computational com-

plexity compared to SMC (particle filter) based RFS methods, particularly when dealing with

an increasing number of speakers. Because the number of speakers which can be found by the

previously developed PSO localisation techniques is arbitrary, it lends itself to environments

containing a large number of speakers. Previous work has found that tracking can become

computationally intractable above 3 speakers, and so the GM-PHD filter is explored as a poten-

tial solution to this in conjunction with the localisation power of multi-optima PSO methods.

The localisation methods developed are modified to produce some clutter in order to deal with

a potentially increasing number of speakers. The level of clutter expected is then passed to the

GM-PHD filter. The filter is then tuned to account for the details of the localisation methods

used - this largely means that an idea of noise levels in the observations and the detection prob-

abilities must be known. The ability of the filter to extract targets from the PSO observations is

then demonstrated and explored.

146



Acoustic Multi-Source Tracking

7.1 Tracking Multiple Sources

When tracking a single acoustic source, it has been demonstrated that a Bayesian filter such as

a Kalman filter (or a non-linear extension thereof) or a particle filter is sufficient to track that

source so long as observations can be assigned as being produced by that source. This filtering

allows the position of a source in observational noise to be located and subsequent localisations

associated over time such that they can be said to have originated from the same source. In

the case of multiple sources, it is not necessarily clear which of multiple observations even

correspond to a source. The number of sources must be estimated, and observations used to

extract multiple source positions.

The problem is not simple, however it has been addressed in the literature. Recently, RFS statis-

tics have been used to produce multi-target tracking algorithms. In particular, the GM-PHD

filter - introduced in Section 3.2.3 - is a relatively low complexity system, which gives it the

potential to track a large number of sources. Note that some contemporary techniques have non-

polynomial complexities given a number of observations [110], and the Cardinalised GM-PHD

filter (a modified version of the GM-PHD filter) is cubic in complexity. Whilst cubic complexity

is not ideal, it is a great deal more desirable than an NP-hard tracker.

This algorithm has been applied to multiple source tracking using TDOA measurements [111,

112] and shown to be practical. This work is expanded in this Chapter by using the SRP to

provide a set of observations which correspond linearly to speaker positions. This removes

some complexity - observations directly correspond to source positions and so the unscented

transform used in [111] is unnecessary. The SRP is also considered to be a measure which

is relatively robust to noise and reverberation, providing extra motivation to use it in place of

TDOA measurements.

Given the previously demonstrated ability of PSO based multi-optima search techniques to re-

liably return sets of observations which correspond well to known source positions, these meth-

ods are a natural fit for providing the observations required by a GM-PHD tracker. However,

in the previous experiments, the number of sources to be localised was known. To deal with

an unknown number of speakers, the tracker must be given information about any new sources

which appear. In the case of the Locust Swarms algorithm, without knowing any source po-

sitions initially, the algorithm might search for 0 sources and return an empty set of optima,

which will lead to no sources ever being tracked.
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The Niching PSO algorithm can return a large number of results, most of which counts as

clutter. However, it does not do so reliably. Whilst unsuitable as a localisation method which

returns peaks with very little clutter, Locust Swarms can be modified to consistently return

cluttered results which, importantly, are likely to include the positions of the sources of interest.

Because the GM-PHD filter specifically accounts for clutter, Niching PSO is also potentially a

good fit for the filtering algorithm.

7.2 Modified Particle Swarm Optimisation Algorithms

Two of the previously studied localisation routines are considered for use with the GM-PHD

filter. The Locust Swarms algorithm and the Niching PSO both require slight modifications be-

fore their output can be applied to the filtering system. This section details how each algorithm

is to be modified.

7.2.1 Locust Swarms

The Locust Swarms algorithm returns only a set number of optimum positions. Therefore,

for a tracker to find known sources on subsequent frames, it must request the Locust Swarms

localiser to return that many new optimum positions, albeit on the understanding that those

new positions might not correspond to the sources already tracked. In order to discover new

sources, the tracker must force the localisation routine to identify more sources than are cur-

rently tracked. This is particularly true when no speakers have yet been identified, as requesting

0 optimal positions stands no chance of finding any new sources.

For the experiments run for use with the tracker, this was simply achieved by forcing the num-

ber of optimal positions to be returned to be 3 greater than the number of sources in the set.

Whilst this doesn’t use the estimate of the number of sources at each tracker stage, it does

ensure that on the set with the smallest number of simultaneous active sources (2 speakers), 5

localised positions were returned by the localiser. This could easily be extended to cope with

the situation where the number of targets was truly unknown by requesting a number of obser-

vations some constant over the current estimated number, subject to a minimum being returned.

For experimental purposes, this was not considered further - the target number of speakers was

simply used to generate a constant level of clutter for each combination of speakers.
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7.2.2 Niching Particle Swarm Optimisation

Several problems have been identified with using Niching PSO as a localisation method for

acoustic sources. The major problem is the tendency for sub-swarms to merge and form larger

sub-swarms which cover a high proportion of the search space. This effect frequently results

in the method only returning one optimal position, particularly if small swarm sizes are used.

The other main problem is the large and varying number of positions returned which do not

necessarily correspond to a true acoustic source.

The first problem is tackled by forcing sub-swarms to remain small in terms of radius. This

effectively stops the ballooning of the set of sub-swarms into one giant sub-swarm. The second

problem is approached by accepting clutter as something that the tracker has to deal with, and

altering the convergence criteria so that a large number of observations are returned after a

reasonable number of iterations.

7.2.2.1 Sub-swarm Limiting

In order to prevent sub-swarms merging into one giant sub-swarm, the merge step of the Nich-

ing PSO algorithm is modified. The change made is simple - two sub-swarms are only al-

lowed to merge if both of their radii are less than a threshold, denoted mt. In the context of

Equation (6.5a), this means that both (Rj1 < mt) and (Rj2 < mt) must be true before Equa-

tion (6.5a) can be used as a condition for merging.

In the experiments on multi-speaker tracking, the threshold was set tomt = 0.3. This threshold

is measured in meters, so sub-swarms are effectively made to search areas limited to 30cm

around their best encountered position. Sub-swarms are allowed to be larger than this however,

as the initial creation of a sub-swarm might pull in a nearest neighbour particle from over 30cm

away, particularly if there are very few particles left in the main swarm. The result of this change

does indeed prevent the giant sub-swarm problem. However, because most of the sub-swarms

are typically not located around a speaker position, they can encounter many noisy peaks. This

has the desired effect of producing measurements with clutter, however if the noise floor of the

SRP contains many similarly sized peaks, convergence will be very slow for sub-swarms.
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7.2.2.2 Niching Criteria

In order to ensure a large number of sub-swarms were created quickly, the niching conditions

of the algorithm had to be modified to create sub-swarms relatively easily. This aspect of the

algorithm behaviour is controlled by the particle variance threshold, ǫt. This threshold was

empirically lowered to 0.05 in the multiple-source tracking experiments. This value was found

to allow sub-swarms to be created after four or five iterations of the main algorithm loop.

7.2.2.3 Convergence Criteria

Convergence of sub-swarms was found to be slow, taking many iterations of the overall algo-

rithm. This was largely due to swarms which weren’t centred over the distinct peaks caused

by acoustic sources. The noisy peaks examined by most sub-swarms were all similar in mag-

nitude, and the original implementation of the algorithm is purposefully robust to such noise.

Sub-swarms examining these areas would typically encounter a local maximum value, but that

location would have many similar peaks locally. This caused regular resetting of the counter

used to keep track of how long a sub-swarm’s best value had remained unbeaten, resulting in a

large number of epochs before a peak was settled on.

This computational cost was made worse by the use of large sub-swarms - necessary in order to

keep radii down. Each algorithm iteration therefore required a large number of FEs compared to

the single-source case PSO algorithm, where each iteration could easily make do with 10 FEs.

With each sub-swarm requiring more algorithm iterations than the equivalent single-source

PSO, but with many more particles, the overall number of FEs quickly became uncompetitive

when compared to the Locust Swarms method. In the multi-source experiments, the initial main

swarm size used was 100 particles, allowing for up to 50 two-particle sub-swarms, assuming

no merging. This pushed the number of FEs required for the algorithm to complete into the

high tens of thousands, with many swarms not converging and the algorithm completing after

reaching a maximum allowed number of iterations.

To counter this issue, the requirements for sub-swarms to converge were significantly relaxed.

The number of consecutive unchanged global maximum positions required for each sub-swarm

to converge (gepochs) was reduced from 70 to 3. This had the immediate effect of allowing

sub-swarms over noisy areas to quickly settle on an arbitrary optimal point in their vicinity. It

also continued to allow sub-swarms investigating areas containing peaks caused by sources to
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discover and report those peaks, although the peaks reported were likely to be subject to more

observational noise, caused by settling on a lesser peak in the vicinity of a true peak before that

true peak could be discovered.

7.2.2.4 Computational Cost

The potential advantage of the Niching algorithm over the Locust Swarms algorithm is that

peaks are discovered in parallel. By relaxing the sub-swarm convergence criteria, the number

of FE to discover a number of optima including clutter was tunable, but in practice was set so

that only in the order of thousands were required. Note that because, in the case of using 100

particles, this only requires in the order of tens of algorithm iterations. Whilst parallelisation

of the Locust Swarms algorithm with a typical swarm size in the order of tens might yield an

order of magnitude practical speed-up, doing the same with the Niching PSO has the potential

to yield a 100 times speed up of the localisation.

To add to this, the Niching PSO returns optimal positions without being made aware of how

many sources it is required to localise. This gives it a clearly desirable advantage over the

Locust Swarms algorithm, which requires a linear increase in the number of FEs required for

every potential source to be found. By keeping the number of Niching PSO iterations required

for convergence in the order of tens, the algorithm might conceivably be able to localise an

almost arbitrary number of sources in the same number of FEs as the Locust Swarms requires

to localise one source.

The caveat to this speed advantage in terms of FEs is that when implemented and run under

MATLAB, the Niching PSO takes a lot more raw processing time to complete than the Locust

Swarms implementation does on the same data set. This was found to be due to the part of

the algorithm loop which dealt with swarm management. The MATLAB code used was not

particularly well optimised, making repeated use of nested ‘for’ loops and arrays which were

not pre-allocated. The task of swarm management is expected to be much more efficient when

rewritten to be optimised in MATLAB, or perhaps in a more practical language for online signal

processing such as C.
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7.3 Gaussian Mixture Probability Hypothesis Density (GM-PHD)

Tuning

In the single-source tracking problem, the Kalman filter can be used to filter observations,

however it has to be provided with some knowledge of the problem environment. This means

that the state update matrix and the observation matrix must be known. The process noise and

observation noise covariance matrices must also be known, or at least estimated. Similarly, the

successful operation of the GM-PHD filter requires that various parameters be known.

Just like the Kalman filter, the GM-PHD tracker requires (linear) state update equations and

process and observation noise covariance estimates. It also requires information concerning the

probability that the localisation function will return, amongst the clutter, the true location of a

source obscured by some observation noise. This is because it is entirely possible that a true

source might be missed, and only clutter found.

The algorithm also requires that the clutter density be known (or at least estimated). This simply

means that given the area of a search space, the expected number of clutter observations per unit

area must be known. A maximum target velocity must also be provided, which can be readily

estimated by considering the maximum speed of a moving speaker (5ms−1), and dividing by

the number of audio frames processed per second (2.7). In the experiments run, this parameter

was set to 1.8 metres per iteration.

Finally, the algorithm requires the tuning of several threshold values which are not readily

derived from the problem environment. These include the weight threshold, which determines

when weighted observations are to be considered targets; the merging threshold, which controls

when nearby tracked targets are deemed to be observing the same true target; and the extraction

threshold, which determines the point where tracked targets are considered to be true targets

which should be reported as a final result. In the multi-source experiments, these values were

tuned manually to attempt to get the best results from the system. Table 7.1 shows the values

of these parameters used in the experiments. The probability of source survival was set to 0.99,

that is, it was assumed that active speakers were talking almost continuously.
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weight threshold (T ) 1× 10−7

merging threshold (U ) 60

extraction threshold (E) 0.7

Table 7.1: GM-PHD tuning parameters

7.3.1 Problem Model

The movement model is an important factor for acoustic source tracking [55]. In previous work,

it was assumed that sources only moved slowly under process noise. Indeed, in the previous

Chapter, no movement model was used at all. This was sufficient for testing the localisation

power of the multi-optima PSO methods, which did not have to be aware of source movement in

order to find peaks of the objective function. However, the model used for speaker movement

for the multi-speaker tracking experiments was the simple linear Gaussian model developed

in [67].

This model keeps track of a sources’ positions and speed, whilst only observing their posi-

tions. The state update model specifies that the targets move at a constant velocity (which is

a limitation in practice). That velocity is determined when a tracked source is ‘birthed’ after

two observations. It is simply the change that candidate tracked location’s position from the

previous time step, divided by the time in seconds of that time step. The state is stored as a

four element vector, [x, y, ẋ, ẏ]T. In the context of Equation (3.41), the state transition matrix

Ftζ and the process noise covariance Qt are given in Equations (7.1) and (7.2) respectively,

from [19].

Ftζ =





I2 ∆I2

02 I2



 (7.1)

Qt = σ2ν





∆4

4 I2
∆3

2 I2

∆3

2 I2 ∆2I2



 (7.2)

In these equations, ∆ is the tracker update period (the length of an audio frame in seconds)

and I2 and 02 are the two by two identity and zero matrices respectively. σν is the standard

deviation of the process noise.

Note that for these experiments, only the two-dimensional position over the horizontal-plane is

153



Acoustic Multi-Source Tracking

tracked for simplicity. This is despite height information being localised, however as before, we

assume that speakers cannot be on top of one another, and therefore whilst height is important

to localisation, it is not necessarily so important for the final tracked result.

The measurement matrix,Ht is simply a two by two identity matrix, because the measurements

obtained by the localisation functions are simply Cartesian positions within the search area.

7.3.2 Birth Model

The target birth model used in [19] uses a Gaussian mixture, with two Gaussian distributions

centred over the known source starting positions. This model is not appropriate to the multi-

speaker experiments, as the starting positions of the sources are assumed to be unknown. In-

stead, a mixture model of thirty low variance Gaussian distributions are used to approximate a

Uniform distribution over the search space, as described in [113]. This is not an ideal model,

however it must suffice for a simple implementation of the algorithm, as this is the form (a

Gaussian mixture) required by the initial authors [19].

Future work should consider using a modified GM-PHD which allows the use of a true Uni-

formly distributed birth model [113], allowing sources to be created from anywhere within the

search space with equal probability. It might also be a good idea to model the birth intensities

as Gaussian distributions centred over the positions of potential speakers (people) whose posi-

tions are estimated from a camera based system. This might allow the improvement of results

from both the audio and the video domains by the fusion of sensor information. Importantly, it

would also allow a separation to be made between tracking people within a room, and tracking

who is speaking.

7.3.3 Clutter Density

The clutter density κt (z), referred to in Equation (3.46c), is modelled as a Poisson RFS with

intensity given by Equation (7.3) [19].

κt (z) = λcV U (z) (7.3)

In this equation, V represents the search volume, and U (z) is a Uniform distribution over that
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volume. λc is the expected number of clutter results per unit volume, and must be changed for

each of the different localisation methods used.

For the Locust Swarms algorithm, the clutter was expected to consist of three element every

audio block. This was simply divided by the search area to calculate λc, and this value was used

for all speaker combinations, as 3 extra localisations were demanded in each case, as described

in Section 7.2.1. With the simulated room environment having a volume of 120 cubic meters,

this led to a value of λc =
3

120 = 0.025

For the Niching PSO algorithm, tests, 100 particles were used. This implied a maximum of 50

sub-swarms available, each able to return a result. The output was limited to 40 elements as, in

practice, 50 elements were never returned as sub-swarms merged together. Because the number

of sources was not considered by the localisation routine, the average number of clutter results

was taken as approximately (40 − r̄, where r̄ was the average number of speakers considered

rounded to the nearest integer. Cases were tested with between 2 and 7 speakers, leading to an

estimate of λc =
36
120 = 0.3.

7.3.4 Probability of Detection

The probability of the localisation methods successfully detecting any single source had to be

determined from the data output by the localisation methods before filtering. What actually

counted as a detection was defined as a source being within a 2D radius ds of the known source

locations. This was determined for each source in each set of speakers, and averaged over each

of the Monte Carlo trials run, for each algorithm. This test covered around two hundred Monte

Carlo trials for each case, each case consisting of around 100 acoustic frames and between 2

and 7 stationary speakers, depending on the experimental run considered. This resulted in the

localisation algorithm output being averaged over around 20, 000 trials.

Note that the simulated data sets were used to derive these empirical probabilities, and these

data sets consist of continuous speech. This allows the ground truth to be known exactly, and

therefore the process noise covariance to be assumed to be 0. However, natural pauses in speech

result in no visible peak of the SRP function, and so these probabilities of detection count there

being no particle close to the known speaker position as a missed source. Furthermore, the

speech signals used were of slightly different lengths, so a large number of frames will have

been marked as not detecting a known source, even though that source had finished talking,
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Figure 7.1: Average probability of detecting a source versus source detection radius threshold,

ds.

slightly before the end of the largest speech segment.

Figure 7.1 shows how this probability changes when ds is varied for both the Locust Swarms

algorithm and for the Niching PSO algorithm with parameters.

This graph indicates that the Locust Swarms algorithm detection probability plateaus, and this

is largely due to the aforementioned effect of time frames being marked with missed detections

when there was no signal to actually detect. In contrast, the Niching PSO algorithm starts of

with a lower probability of detection, but does not plateau so quickly. This is due to elements

of the clutter returned occasionally being in the vicinity of a known source, even when it is not

active, and that clutter element being marked as a detected source.

Whilst these probabilities have problems, they indicate that the Niching PSO generally appears

to have a slightly lower probability of source detection than the Locust Swarms algorithm.

Furthermore, they do not necessarily reflect on the capability of the algorithms to reliably detect

peaks of the objective function. Rather, because speakers are not truly continuously active,

these probabilities give an indication to a tracker of how likely it is that a speaker who doesn’t

stop talking will be detected, despite natural pauses in speech.
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Using this graph, the both tracking algorithms can be fed a probability of detection based em-

pirically on how close a detected position has to to the ground truth in order to count as a

successful detection. For both algorithms, a value of 0.65 was chosen for this parameter. This

corresponds to a detection threshold which is in the middle of the range, and where the Locust

Swarms algorithm probability begins to plateau.

7.3.5 Noise Parameters

In order to derive figures for the observational noise covariance, the study of probability of

detection was extended to record every (2D) error vector for every observation considered as a

detection. The sample covariance of these arrays were then calculated using MATLAB. These

covariances were considered to represent the observational covariance in each case, because the

simulated data set was used, and so the process noise covariance could be assumed to be zero.

In the GM-PHD model, the expected observation noise is of the form shown in Equation (7.4).

This form is simply a diagonal covariance matrix - no cross-covariance terms - whose scale is

determined by a single factor, σ2r , meaning that the variance in both x and y axes is the same.

Because the sample covariance was calculated from a large yet finite set of measurements, the

form of the values could not be expected to be a truly diagonal matrix, however the results

were close to the expected form. The diagonal components of the calculated matrices in each

case were almost the same, and the off-diagonal components were always orders of magnitude

smaller.

Rt = σ2rI2 (7.4)

Figure 7.2 shows the estimated observation noise variance (σ2r ) graphed against the detection

threshold, ds, used for the Locust Swarms algorithm. This was calculated by taking the mean

of the two diagonal components of the calculated covariance matrices. As these values were

always almost the same, this provided a simple way of extracting a value which could be used

for the diagonal covariance matrix model given of equation (7.4). The results of the same

process on the Niching PSO output are shown in Figure 7.3.

Because the off-diagonal components were calculated numerically, they were not truly zero as

expected. The eigenvalue decomposition was taken of each covariance matrix to generate a
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Figure 7.2: Estimated observation noise variance versus detection threshold, for the Locust

Swarms algorithm.

truly diagonal matrix, a form of covariance diagonalisation [114]. The mean of the diagonals

of these matrices were also calculated, and are plotted alongside the un-diagonalised matrix

means in both Figures 7.2 and 7.3.

The purpose of this was simply to show that the simple averaging of the diagonal components

of the calculated covariance matrixes was valid, because they do not change appreciably after

diagonalisation as they are already approximately of the correct form. Note that these plots

are hard to distinguish from each other as they lie directly on top of one another, showing that

the measured covariance matrices are not noticeably affected by the diagonalisation process, as

expected.

The result of this step simply shows that the sample covariances measured correspond well to

the model assumption of a diagonal matrix. Forcing the off-diagonal matrix elements to zero

and taking the mean of the resulting diagonal elements created the same variance results as the

raw sample variance estimate. This was simply because the difference between the eigenvalue

matrix and the original covariance matrix was almost negligible in each case. This also justifies

the observation noise model, where there was no particular reason to believe that observational

noise should be correlated across axes.
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Figure 7.3: Estimated observation noise variance versus detection threshold, for the Niching

PSO algorithm.

Finally, it is of interest to note that the standard deviation,
√

σ2r in each case is calculated, the

result expressed in metres gives an idea of how well the localisation methods perform when

their results are considered to correspond to known sources. Figure 7.4 shows the estimated

standard deviation achieved for successful localisations for each algorithm.

These figures lie neatly in the order of tens of centimetres for practical detection thresholds

of around 30 centimetres, which corresponds to a reasonable radius to consider for a person’s

personal space. Note that the behaviour is very similar for the two algorithms, up until the point

where the Locust Swarms probability of detection starts to plateau. This corresponds to clutter

readings in the same area as a known source being counted as part of the variance calculation.

These sources are largely unrelated to the source, so they are not restricted by the variance of a

Gaussian centred at the source location. As such, they increase the apparent standard deviation

of that Gaussian distribution.

7.4 Experimental Results

This section discusses the results obtained when the GM-PHD filter was applied to the obser-

vations captured by both the Locust Swarms algorithm and the Niching PSO algorithm. The
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Figure 7.4: Estimated observation standard deviation versus detection threshold, for Locust

Swarms and Niching PSO algorithms.

algorithms were run against the observations generated in each Monte Carlo trial of the local-

isation algorithm, such that the tracker performance metrics could then be averaged out. Each

localisation algorithm demanded a slightly different tuning of the filter, due to the different

clutter and noise profiles as described.

7.4.1 Experimental Conditions

The localisation algorithms were each run in their modified forms, outputting a set of optima

including clutter at each time step of each experimental trial. The data used was the same

simulated set of data used in Chapter 6, and the objective was to evaluate how good a fit for the

GM-PHD filter the output of each localisation algorithm was. Also included was a set of data

consisting of two concurrently active moving speakers. These sources moved past each other at

a constant speed (5ms−1, which is actually unrealistically high for a walking person), moving

from one corner of the simulated room to another.

Note also that the acoustic noise added to the microphone signals resulted in an SNR of 15dB

and that the probability of source detection was set to 0.65, based on the results obtained from

the characterisation in Section 7.3.5. Similarly, the observation noise was set to 0.15, and
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the process noise standard deviation was set to 0.01, as the ground truth was known exactly,

although this might not be appropriate for tracking recorded acoustic sources.

The low clutter data from the Locust Swarms output was expected to perform better than the

Niching PSO, due to its good localisation capability coupled with only a small amount of clutter

necessary to enable the localisation of new sources. On the other hand, there is high motivation

to analyse the performance of the high clutter Niching PSO, as it can be made to generate

results with relatively little computational effort.

Both algorithms were run on the previously generated data consisting of between 2 and 7 sta-

tionary sources. The filtered output was saved as a set of tracked optimum positions - arrays

of 2D position vectors - where each saved position should correspond to an acoustic source,

because the filter should have removed spurious localisations. The general ability of the tracker

to discern individual sources was of interest, as was the average OSPA metric on the tracker

output against the known speaker positions. Note however, that the data sets containing 6 and

7 speakers were too short for the tracker to produce any meaningful output with, and so these

results are ignored.

Finally, it was found that the boundary conditions played an important role in the multi-source

experiments. In the single-source case, the invisible-walls condition was noted to be well suited

to the speaker localisation task, as it minimises unnecessary computations. However, it was

found that with multiple speakers, particles were continually being pushed out of bounds. Be-

cause they were divided into sub-swarms, this often led to large number of particles becoming

trapped outside the search space, resulting in slow convergence and even failure to converge.

As such, the wraparound method was used, to ensure that particles were always kept within the

search space.

7.4.2 Locust Swarm Results

7.4.2.1 Stationary Targets

The Locust Swarms algorithm output was found to be a highly effective input to the GM-PHD

filter for both the relatively simple 2 speaker case and the 5 speaker case. Figure 7.5 shows the

graphical output of the filter at the final time step of one of the Monte Carlo trials. Note that

the swarm size used for these experiments was 15.
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Figure 7.5: Horizontal-plane filter output for 2 speakers from the Locust Swarms algorithm

input to the tracker.
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This figure displays the input to the filter at that time step as black crosses, and note that

they are clustered round a speaker location. These readings represent the output where one

of the sources had finished talking, and so the clutter was in the area of the final active source.

This trend occurred across all of the trials and time steps, indicating that the clutter output of

this algorithm was not distributed uniformly over the search area, as expected by the tracking

algorithm. This is fairly intuitive, as the clutter has been purposefully generated by searching

for extra optima where none are expected, leading to the swarms best results remaining near its

starting position of a previously localised source.

Speaker locations which have been extracted and are believed to have truly originated from a

speaker are marked by a small blue triangle surrounded by an ellipse representing the trackers

confidence in a location’s correctness. True source positions are marked by a black circle, but

are obscured by the representation of the algorithm’s tracked set of locations from previous

time steps, marked as pink circles.

Figure 7.6 shows the evolution of these internally tracked source locations over time for both

of the horizontal-plane axes, again in pink circles. As in Figure 7.5, the observations at each

time step are marked as black crosses. The relevant dimensions of the true speaker locations

are marked as black circles and are more clearly visible than in Figure 7.5. This diagram shows

how the tracker takes a number of frames to identify sources.

The algorithm also performed well under the 5 speaker case. Tracking more than 3 speakers

was one of the motivations for using the GM-PHD filter, and the ability of the Locust Swarms

algorithm to provide good results justifies this choice. Figure 7.7 duplicates Figure 7.5, but for

the 5 speaker case. As before, previously tracked locations are highlighted in pink, and cluster

round each of the known source locations. Extracted targets at the final time step are again

marked with a triangle surrounded by an ellipse.

Figure 7.8 shows the same evolution of tracker state over time for 5 speakers as Figure 7.6 does

for 2 speakers, showing the successful detection and tracking of 5 simultaneous speakers.

The performance of the system based on the OSPA metric is of interest, as ultimately the filter

should provide an improvement in terms of localisation error. Figure 7.9 shows how the OSPA

metric can change over time for an example Monte Carlo trail of the system. The graph shows

that at the first time step, both of the OSPA measures start at their maximum of 0.7. As tracks

are detected and sources identified, the metric quickly decreases. Note that the move up and
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Figure 7.6: Measurements and tracks over time for 2 speakers from the Locust Swarms algo-

rithm input to the tracker.
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Figure 7.7: Horizontal-plane filter output for 5 speakers from the Locust Swarms algorithm

input to the tracker.
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Figure 7.8: Measurements and tracks over time for 5 speakers from the Locust Swarms algo-

rithm input to the tracker.
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Figure 7.9: OSPA over time for 5 speakers from the Locust Swarms algorithm input to the

tracker.

down as different sources change from being considered as true sources and noisy observations.

This corresponds in part to gaps between speech sections, but also to the nature of the algorithm,

as it discards individual tracked sources which it has less confidence in over time.

The more general effect of filtering on the OSPA metrics is shown in Figure 7.10. This graph

shows both OSPA metrics considered after being averaged across each time step of each Monte

Carlo trial. This is plotted against the number of speakers in each case, and the result is similar

to that shown in Figure 6.8. Note that the trend is roughly the same, but the filtered results

consistently score lower than their unfiltered counterparts, as might be expected.

7.4.2.2 Moving Targets

Part of the two-speaker test set included a set of two speakers moving past each other, as de-

scribed in Section 7.4.1. Figures 7.11 and 7.12 are examples of the tracker output for these

trials, which primarily demonstrates the ability of the filter to deal with moving sources, rather

than the ability of the localisation technique to return usable results. Figure 7.11 shows the

tracker history of the moving sources having followed each speaker as they walk past each

other, with the estimates of their positions at the final frame shown.
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Figure 7.10: Mean OSPA vs number of speakers from the Locust Swarms algorithm inputs to

the tracker.

Figure 7.11: Horizontal-plane filter output for 2 moving speakers from the Locust Swarms

algorithm input to the tracker.
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Figure 7.12: Measurements and tracks over time for 2 moving speakers from the Locust

Swarms algorithm input to the tracker.

Similarly, Figure 7.12 shows how the tracked positions evolved over time for the trial run. As

in the stationary speaker case, there is a delay before the tracker registers the sources. The

tracked positions do not line up quite so well as in the stationary speaker case, and there is also

a length of time when the trackers meet where the tracked position of one of the speakers is lost.

This is not too surprising - because the data used is simulated, it briefly breaks the requirement

that speakers cannot overlap each other. When they meet, the tracked states merge, and a new

second speaker is born some time later, after they have moved apart.

This experiment shows the importance of the filter set up. Whilst the localisation method

detected and returned maxima in exactly the same way as in the stationary speakers case, the

adherence of the tracked positions to the known speaker path is visually less strong than that of

the non-moving tracked speakers.

Ultimately, this means that for a working system, the filter needs to be carefully tuned. Altering

the target spawning parameters of the filter might be one way to do this, as it would quickly
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allow merged paths to split again, removing the loss of one of the speaker tracks as they pass

each other. This might also result in more spurious detections of speakers, however. Similarly,

the target dynamics model used is known to be an important factor for target tracking [55],

and the simple linear Gaussian movement model used could be replaced with a more detailed

model, such as the Langevin model, in order to (potentially) improve results.

7.4.3 Niching Particle Swarm Optimisation Results

The Niching algorithm combined the GM-PHD filter yielded mixed results. Whilst the 2

speaker performance generally looked good, as shown in Figure 7.13, they were inconsistent

across trials and performed worse with a higher number of speakers.

Figure 7.13 presents the filter output over the horizontal-plane after the final acoustic frame has

been processed. Note that the clutter is much more uniformly distributed over the horizontal-

plane than in the Locust Swarms case. This effectively shows that the Niching PSO algorithm,

despite its intentional clutter and weak convergence criteria, can be used to successfully extract

speaker positions.

As for the Locust Swarms algorithm, the plot over time of the tracker measurements and de-

tected tracks is shown in Figure 7.14. This shows a similar delay in picking up sources, but also

shows incorrect tracks being picked up over time, not corresponding to any true source.

These spurious tracks occur frequently, affecting every Monte Carlo trail to a greater or lesser

degree. Coupled with missed sources, this prevents the algorithm from ever scoring well on

the OSPA metric, and Figure 7.15 shows how this score changes with the number of speakers.

These per-speaker averages are calculated over the results of each audio segment over each

Monte Carlo trial, as in Figure 7.10. Note that both scores are consistently barely below the

maximum error of 0.7, so whilst the method can extract speakers, it doesn’t do so reliably,

resulting in a poor average localisation score.

The nature of this relatively poor performance is demonstrated in Figures 7.16 and 7.17. These

figures show the tracker output at the final audio frame for the 4 simultaneous speaker scenario.

Note that in Figure 7.16, the tracker has detected 6 sources when there are only four speakers,

and that whilst some of the tracked positions correspond well to the known speaker locations,

many of the ovals surrounding the tracked points are large, indicating a low confidence in

their accuracy. Also, whilst some of the tracked sources are approximately centred on known
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Figure 7.13: Horizontal-plane filter output for 2 speakers from the Niching PSO algorithm input

to the tracker.
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Figure 7.14: Measurements and tracks over time for 2 speakers from the Niching PSO algorithm

input to the tracker.

Figure 7.15: Mean OSPA vs number of speakers from the Niching PSO algorithm inputs to the

tracker.
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Figure 7.16: Horizontal-plane filter output for 4 speakers from the Niching PSO algorithm input

to the tracker.

sources, others are only close to targets, giving a large localisation error even if they do truly

correspond to known sources.

Finally, Figure 7.17 tracks the same example of the 4 speaker tracker output over time. It can

be seen that some sources are correctly picked up, however there are many spurious tracks

detected too.

Whilst these results are disappointing, there is unused information in the system, of which a

modified filter might make use. It is suggested that future research investigate the possibility of

using the SRP output at the localised optima to modify the trackers internal weightings in some

way. This is envisaged to be conceptually similar to the use of the SRP as a pseudo-likelihood

function for a particle filter approach as described by Lehmann and Williamson [22].

Note, however, that the complexity of the tracking algorithm will be larger in the case of the

Niching PSO input than in the case of the Locust Swarms input, due to the increased amount

of clutter. Investigation will have to be made into whether or not this increase in complexity
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Figure 7.17: Measurements and tracks over time for 4 speakers from the Niching PSO algorithm

input to the tracker.
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offsets the potential complexity improvements gained by using the Niching PSO algorithm as

a localiser compared to the Locust Swarms algorithm.

7.5 Conclusions

This Chapter has contributed the novel combination of computationally efficient multi-optima

PSO techniques with the computationally tractable GM-PHD filter to create a system which

can track a relatively large number of acoustic sources efficiently. This is in contrast to contem-

porary techniques, which struggle with both the extraction of an arbitrary number of sources as

well as rapidly increasing computational cost for each additional target considered [6, 7].

Two separate multi-optima techniques were modified to fit the requirements of the filter, and

tested for their ability to produce output which the tracking algorithm could use to success-

fully extract target states. The algorithms differed in the number of FEs required to localise

a number of sources as well as the amount of clutter observations they produced. The more

computationally expensive Locust Swarms algorithm produced a very low level of clutter, and

the tracker could use this data to localise many sources. This led to a consistent improvement

of the localisation error as measured by the OSPA metric.

In contrast, the lower complexity and high clutter algorithm, Niching PSO, was found to pro-

duce usable results in the case of two stationary source. However, the tracker generally de-

tected spurious tracks when used with this localisation algorithm, consistently lowering the

OSPA metric and making this method unsuitable for general use. However, the technique still

holds potential, and further research directions have been identified which could result in a very

efficient tracker for a large number of speakers.
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Chapter 8

Conclusions

This Chapter summarises the main findings and contributions of the thesis. Consideration is

also given to further research which could be undertaken following on from this work. The

primary contributions consist of improved single-source localisation techniques in terms of

computational performance; a novel approach to multiple speaker localisation by the use of

the SRP as the objective function for a family of existing multi-optima search techniques; and

finally the novel application of the GM-PHD multi-target filter to the output of the developed

localisation techniques.

8.1 Conclusions

8.1.1 Improved Stochastic Region Contraction

The SRC single-source audio localisation technique was developed to provide an improvement

in both localisation accuracy and computational requirements. This was achieved by taking

account of the nature of the search space. Specifically, speaker height information was used to

speed up the search by effectively limiting the search dimensions in the space around speak-

ers detected in a previous audio frame. This was in contrast to a typical speaker localisation

assumption, which forced the search over the vertical axis to evaluate the objective function

uniformly over height. This was altered by modelling the likely height of a speaker at any point

within a room as a mixture model, consisting of a uniform distribution over the entire vertical

axis and a Gaussian distribution centred on an estimated head-height.

The variance of the Gaussian distribution for an area of space within the search volume was

increased the further away from a previously detected speaker that space was. This allowed the

algorithm to approximate the uniform vertical distribution used by the original SRC algorithm

when there was no information available about any potential nearby sources.

This section of work also addressed the problem of non-concurrent multiple speakers, by allow-

ing the head height to be estimated over the entire horizontal-plane by interpolating between
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previously detected speakers. This also allowed a video system to be used to help speed up

the acoustic search, which was achieved by the same interpolation process. Instead of using

a single previously detected height however, the heights of potential speakers within a room

extracted from a camera system were used.

8.1.2 Particle Swarm Optimisation for Single Source Localisation

Further computational efficiency gains for the localisation of a single acoustic source by the

application of PSO techniques to the SRP objective function. This simple search algorithm was

used to provide a localisation routine which was robust to noise. The SRP function generally

contains many small peaks simply generated by slight differences in the sums of the underlying

correlation measure, as well as larger peaks corresponding to acoustic sources. These small

peaks mean that more common gradient based optimisation techniques are not suitable for the

task of speaker localisation. The PSO technique was used specifically because it did not use

the gradient of the objective function, allowing it to move past these noisy peaks. This pro-

vided a system with low localisation error and a significant drop in computational requirements

compared to the state of the art.

8.1.3 Multi-Optima Localisation

The PSO search strategy on the SRP objective function was expanded to perform a multi-optima

search. The SRP was identified as an excellent candidate for use as a multi-speaker search

space, because peaks of the function correspond directly to speaker locations, and multiple

speakers produce multiple distinct peaks. Several variants of multi-optima PSO search tech-

niques were explored, resulting in the identification of a localisation technique which could

extract an arbitrary number of source positions with a linear increase in the number of FEs

required for each additional speaker to be localised.

Also identified were some of the general problems which face a multi-optima localisation tech-

nique using the SRP objective function. For searches attempting to identify sources in parallel,

the process of niching is made problematic by the presence of noisy optima, which are eas-

ily identified by the niching process, but are not relevant as useful localisation results. When

niche areas have been identified, it can take a long time for the local searches in those areas to

converge, because whilst they do contain small local peaks, those peaks are not very large in
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magnitude and swarms regularly find slightly better local peaks in their local search areas.

8.1.4 Multi-Optima Tracking

Two of the localisation techniques developed to find multiple speakers were modified to pro-

duce output which could be used by the GM-PHD multi-target filter. This filtering technique

and localisation method combination was identified as good match because the direct obser-

vations of potential source locations matched the required linear observation framework of the

filter. Additionally, the filter is a relatively efficient solution for multi-target tracking, so should

be able to cope with tracking a relatively large number of speakers.

One of the localisation techniques combined with the filter produced a consistently reduced

localisation error, as measured by the OSPA metric. The other localisation technique was found

to be capable of identify speaker locations in conjunction with the filter, despite a necessarily

high level of clutter in the array of observations. However, potential research has been identified

which could be undertaken to improve these results and produce a highly efficient tracking

system.

8.2 Limitations

There are, of course, a number of limitations in this thesis. One of the major limitations is

the inability to properly test the ability of the tracker to cope with more than five simultaneous

speakers. This was due to the very short speech signals used for the sixth and seventh input

signals. Whilst the localisation algorithms produced reasonable output on these signals, they

were not long enough for the tracker to pick up on the sources which they represented. Whilst

the tracker remains untested with a larger number of speakers, the tests on up to five simul-

taneous speakers don’t suggest that the tracker will suddenly stop working. Further research

might aim to identify the limits of both the localisation algorithms and their combination with

the GM-PHD filter in terms of number of speakers which can be identified and tracked.

Another major limitation is the limited use of recorded acoustic data. Speakers in four separate

positions were recorded and used to create sets of simultaneous speakers. Recordings of further

speakers in different positions would have allowed further useful evaluation, especially as the

acoustic lab is a highly reverberant environment, making for a challenging test set. Furthermore,
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no recordings were made of moving sources. Note however, that moving sources for evaluation

purposes have their own difficulty, in that it is hard to know the position of a real moving source

at any given time, and therefore audio frame.

Another limitation is that height information was not used in the multiple target localisation

algorithms. Whilst height information could have been used to influence the Locust Swarms

algorithm, this would only have affected the first iteration of the algorithm, as subsequent it-

erations do not re-initialise the particle swarm randomly. Height information might be more

applicable to the Niching PSO algorithm as it would affect the whole swarm, thereby influenc-

ing all of the created sub-swarms which localise peaks of the objective function in parallel.

8.3 Suggestions for Future Work

Future improvements could be made to the systems developed to produce more efficient acous-

tic source localisation and tracking techniques. Of particular interest is further investigation into

the most challenging task considered in this thesis, the case of localising and tracking multiple

concurrent speakers. This section details further work which could be undertaken following on

from the results of this thesis.

8.3.1 Niching Particle Swarm Optimisation Development

The Niching PSO developed has been shown to be capable of producing results which can be

used by a tracking algorithm to extract source locations. However, whilst the computational

performance of this algorithm is good, the localisation results are poor. It would be interest-

ing to investigate the modification of the tracking algorithm to take into account the objective

function values at the positions returned by the Niching PSO localiser. These might be used to

influence the weight of the observations internal to the tracker, similar to the use of the SRP

as a pseudo-likelihood function in [11], in the hopes of making source observations easier to

identify amongst clutter observations.

8.3.2 Exploitation of Parallelism

Whilst SBF based localisations are costly to evaluate, FEs are largely independent, as each

PSO algorithm updates the positions of the whole swarm every iteration. In this case, the
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individual FEs at each iteration could easily be performed in parallel. Modern GPUs are capable

of performing parallel processing using a large number of simple cores. An example of such a

system is the Nvidia CUDA framework.

Parallelisation would be particularly useful for a multi-speaker tracking system, especially for

the parallel Niching PSO search, which uses large swarm sizes. Whilst some work [82, 83] has

already been done on a GPU based SRP source localisation algorithm, it is suggested that fur-

ther research focus on implementing the multi-optima PSO localisation techniques on a GPU.

This has the potential to provide an online acoustic tracking system which might run comfort-

ably on a suitably equipped modern desktop computer.

8.3.3 Multi-source Tracking Techniques

Investigation should also be made into alternative tracking techniques. For example, the Car-

dinalised GM-PHD filter is a modified version of the GM-PHD filter which might be eval-

uated against the standard GM-PHD filter using the localisation algorithms developed. The

GM-PHD filter itself could also be evaluated with the use of a uniform birth prior over the

search space [113], as opposed to the Gaussian-mixture approximation used in this thesis. Fi-

nally, investigation should be made into using a camera system to seed a Gaussian-mixture birth

prior based on the position of potential speakers within a room, which could be found using the

localisation of people in the visual domain.
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ABSTRACT

The stochastic region contraction (SRC) algorithm has been

proposed in the literature as a method for acoustic localisa-

tion using a microphone array in a noisy and reverberant en-

vironment. This technique makes use of the steered response

power (SRP), a costly but robust technique for source lo-

calisation, and finds the global maximum vastly more effi-

ciently than using a grid search method. We discuss combin-

ing this technique with prior information (e.g. in future work

we will use a video tracker) to speed up the algorithm by,

in some cases, an order of magnitude by limiting the heights

to be searched. This gain is derived from simulations and is

achieved whilst at the same time not neglecting large search

volumes, continuing to allow a change of audio sources to be

detected.

Index Terms— Microphones, Acoustic measurements,

Optimization methods, Sampling methods

1. INTRODUCTION

Acoustic source localisation has been studied extensively in

the literature [1–3]. Systems make use of an array of micro-

phones to sample audio data and commonly use time differ-

ence of arrival (TDOA) techniques to estimate the angle of ar-

rival of a sound wave relative to a pair of microphones. These

angles can then be used to triangulate the location of an acous-

tic source [4]. The steered response power (SRP) is a slower

method which also has potential for use in multi-speaker de-

tection. This paper relates to previous work by building on

a successful technique which uses the SRP to find an audio

source quickly by reducing the number of calculations needed

to localise a source. The work presented reduces this number

further, making the algorithm useful even in relatively low

signal to noise ratio (SNR) environments.

The SRP is a useful measure of the acoustic power origi-

nating from a particular location in space within a room. It has

been shown to be relatively robust to reverberation. The gen-

eralised cross correlation with phase transform (GCC-PHAT)

The authors would like to give thanks for Scholarships from the James

Clerk Maxwell Foundation and from the Maxwell Advanced Technology

Fund at the University of Edinburgh.

[5] from a set of microphones is used by the SRP algorithm to

build up a 3-dimensional (3D) map of this power. Since the

volume of a room is very large compared to the spatial reso-

lution generally required by source tracking applications and

because of the slow nature of the algorithm, the calculation

of the SRP across an entire room is computationally expen-

sive. The output is also a 3D array, which makes it costly,

although not intractable, to search through. There are various

methods [6–8] for finding global maxima of the array, how-

ever SRP based audio localisation also has the potential to

locate and track multiple speakers more easily than the tra-

ditional maximal generalised cross correlation (GCC) TDOA

methods [9].

Existing work reduces the time taken to find a maximum

within an area by sampling from the search space randomly

and then recursively shrinking the search space using the best

subset of the results, a technique called stochastic region con-

traction (SRC) [7]. Rather than assuming the search volume

is the whole room, the SRC algorithm [10] assumes that the

height of the search volume is restricted to being one metre

high and is also offset from the ground [7]. The contribution

of this work is a method to extend the implicit assumptions

of head height made when using the SRC by assuming that

prior information of the expected head height at some posi-

tions is available. For example, this information can be esti-

mated from a camera system using Viola-Jones face detection

[11, 12]. The contribution in 3 then interpolates and extrap-

olates to estimate head height across the 2-dimensional (2D)

search area, A, and from that, a sampling distribution over

height is formed across the room. This allows the number of

functional evaluations (FEs) required to find a maximum to

be reduced. Because interpolation is used to estimate head

height across an area, people missed in the visual domain due

to occlusion are still quickly locatable in the audio domain.

This paper describes the SRP, which is the functional of

the SRC algorithm, and then goes on to describe the interpo-

lation and probability density function (PDF) used in the pro-

posed height estimation (HE) SRC algorithm. This algorithm

is then tested on a recorded data set which had the room set

up, for comparison, to be similar to the conditions described

in [7]. The paper also proposes a novel approach to multi-

source audio localisation. By sampling across every 2D point
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within a room at a height drawn from this distribution, a 2D

SRP map can be made of the search area at relatively low

computational cost. This may prove itself to be useful for al-

gorithms to find multiple maxima, corresponding to multiple

audio sources, for robust multi-speaker localisation. By in-

creasing the number of samples at each height and averaging,

this tends towards the marginalisation of the SRP over height.

2. STOCHASTIC REGION CONTRACTION

A popular method of audio source tracking is extracting

and triangulating TDOA values from the maxima of the

GCC-PHAT of signals from pairs of microphones in the

frequency domain, given by Equation (1)

R̂xmxn
(τ) =

∞
∫

−∞

Ĝxmxn
(f)

|Ĝxmxn
(f)|

e2πfıτ df (1)

which is an inverse Fourier transform where Ĝxmxn
is the

product of the signals xm and xn in the frequency domain.

The SRP makes use of the GCC-PHAT to build an energy

map for each point (x, y, z) in a search area A using Equa-

tion (2)

S(x, y, z) =

M
∑

n=1

M
∑

m=n+1

R̂xn xm
[τnm(x, y, z)] (2)

in a system with M microphones. This is the sum over all

pairs (m, n) of microphones of the corresponding value of

the GCC-PHAT for the TDOA τ . The TDOA is defined by

Equation (3)

τnm(p) = (|m− p| − |n− p|) / c (3)

where p is the vector (x, y, z) of the point under investiga-

tion, c is the speed of sound, and m and n are the positions of

microphones m and n respectively.

SRC takes samples of the SRP from across the search

space and attempts to contract it by using the area given by

a set of the highest valued samples [7]. Because these will

generally be centred around a peak, caused by a sound source,

the search area should quickly shrink. By repeating this, the

search space will become an area sufficiently small enough

to be considered the point which is the maximum of the SRP

function and therefore the source of the sound.

3. INTERPOLATION

To choose head height, existing knowledge of the current po-

sitions and heights of people in a room can be used. In an

audio-visual (AV) system, this is easy to initialise as video

data can be used to make an initial estimation of the heights

which should be searched in the audio domain. In addition,

existing audio domain search techniques such as the full SRC

algorithm can be used to make the first head height estima-

tion. After they have been found initially, the tracked loca-

tions of people, both speakers and non-speakers, from both

audio and visual sources will allow a good estimate of the

height to be used across the room. From a sparse set of peo-

ple, the head height to be used at every x-y co-ordinate in the

SRP map needs to be defined. This means that an assumption

about the outer elements of the set and how they relate to the

height at the edge of the search area must be made. This work

uses the speaker closest to a corner to specify the height at

that corner.

When doing interpolation, there is a trade-off between the

smoothness of the curve produced and the size of ripples pro-

duced. The interpolation should not contain severe ripples as

they would lead to large errors in the head height estimation

across the room. Ideally, it should be monotonic and one way

to achieve this is to use Delaunay triangulation [13] on the

set of speakers, which creates a surface which can be evalu-

ated at any 2D point. Figure 1 compares Delaunay triangula-

tion based interpolation to a plate-splines method [14], where

the room dimensions are along the x and y axes and the in-

terpolated heights hc form the set H across the area of the

room. These show that the Delaunay method solves the prob-

lem of large ripples, although it leads to a less smooth inter-

polation. In order to extrapolate correctly, room corners must

be pre-allocated nodes. There are several options for choos-
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ing the height hcj at each of these j nodes (in a rectangular

room, j = 4), such as choosing the height to be the same as

the height of the nearest speaker, as shown in Equation (4a),

where zi is the height component of ri, the position of known

node i and rcj is the position of corner j. An alternative is

to use Equation (4b), the expected height of a speaker from

all known node heights zi. If it is assumed that there are a

limited number of speakers then finding the nearest node to a

corner poses no computational problems.

hcj = argmin
zi

[rcj − ri] (4a)

hcj = E [zi] (4b)

Because the head height, H, is only an estimate, its accu-

racy varies across the room. To compensate, the head height

to be used in the SRC algorithm is drawn from a PDF which

ensures that most of the time, samples are taken around head

height without being overly restrictive and a small amount of

time from less likely areas, so as not to entirely neglect large

portions of the search space. The interpolated head height

is taken as the mean of a Gaussian distribution whose vari-

ance changes depending on its proximity to a known source.

This allows the search to concentrate on areas likely to con-

tain people whilst at the same time, not neglecting to check

for possible outliers. The height hsub to use at each time step

for every 2D point p2 = (xp2
, yp2

) is then drawn from (5)

where T is the set of known speaker locations.

ϕ (z | p2) = α0N
(

µh, σ
2
h

)

+ (1− α0)U (0, hr)

µh = H[p2]

σ2
h = q̂(p2, T)

(5)

which mixes the Gaussian with a Uniform distribution across

hr, the entire height of the room.

This can be repeated n times to create an array where

h[n] = hsub each time. The resulting SRP value for the point

p2 can either be the maximum value found as in Equation (6a)

or the expectation (Equation (6b))

SRPp2
= max

z
[S(xp2

, yp2
, h[n])] (6a)

SRPp2
= E [S(xp2

, yp2
, h[n])] (6b)

of the values, in which case as n increases, SRPp2
tends to-

wards the marginalisation of the SRP over z, the room height.

Around each person, we can be relatively confident of

their height. Further away from them, the decreasing confi-

dence is modelled by increasing the variance of the sampling

PDF. The variance at a distance l metres from a speaker is

chosen to be modelled by a sigmoid function, q, such as Equa-

tion (7a), which is a scaled error function, or Equation (7b).

q(l) = α1 erf (α2l) (7a)

q(l) = α1(1− e−l/α2) (7b)

These are both 0 at the origin and asymptotically approach

constants as their arguments tend towards infinity.

These are combined to form a global variance in Equa-

tion (8).

Lp,T = {l : (∃q ∈ T)(l = |p− q|)}
q̂(p2, T) = min

l∈Lp,T

q(l) (8)

At any point p in space, the appropriate variance q̂ to use will

be the sigmoid function q of the minimum of the set of all 2D

Euclidian distances pq to known sources, where an element

of T is denoted as q. The minimum is chosen to ensure that

the change in variance remains smooth even for overlapping

sigmoids from multiple sources.

4. ALGORITHM

The algorithm for finding the global maximum using the es-

timated head height is given in Algorithm 1, where DT is the

Delaunay Triangulation operation.

Initial search for a speech source

while running do

T̂ = T

for all room corners do ⊲ Add room corners to T̂

n← (xcorner, ycorner, znearest member of T)

T̂← T̂ ∪ {n}
end for

Ĥ← DT(T̂) ⊲ Delaunay Triangulation of the set

for all p2 = (xp2
, yp2

) ∈ A do ⊲ Whole search area

Ĥ0 ← hsub ∼ ϕ (z | p2) ⊲ Choose a height

end for

Perform SRC with heights from Ĥ0

T = T ∪ {new speaker positions}
end while

Algorithm 1: HE-SRC Algorithm

5. EXPERIMENTAL RESULTS

The algorithms were run in the environment shown in Fig-

ure 2, where the red circles represent each of the 12 mi-

crophones (placed along the edges of the room, similar to

the panels used in [15]) and the green squares represent the

speaker positions. This was a (4.7x6.5)m room, as described

in [15] in order to make a direct comparison. A minute of data

was recorded for each speaker at 96,000kHz, which gave each

around 300 audio windows based on a window size of 160ms.

Speakers did not talk at the same time and the two speakers

furthest away from the array were at the lower height of 1m,

rather than 1.6m, in order to show that this doesn’t affect the

algorithm. The variant of SRC used was SRC-I, which fixes

J0 - the number of points to be evaluated at the first iteration
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- to a constant J and then calculates Ji FEs at each iteration

of the algorithm, which is decided dynamically [7]. In this

variant, a number N of the highest valued samples are used

to contract the search region [7]. α0 was chosen to be 0.95

in order to concentrate the search within head height. Lower

values weight the distribution to uniformly draw from across

the height of the room, making the search similar to the origi-

nal SRC algorithm, but with fewer assumptions and therefore

slower searches. α1 was chosen to be 0.5, allowing most of

the Gaussian distribution to concentrate on an area 1m tall,

similar to the 1m tall Uniform distribution used for height

in the original SRC algorithm. Finally, α2 was generated by

choosing the radius l, at which the sigmoid function should

be 99% of the way towards α1, to be 1m, which assumes

people have some personal space whilst talking.

Data was evaluated using an Average Location Error

(ALE) - the mean of the Euclidian distances of each set of

results to their corresponding ground truths. Because the

search space was reduced by the height estimation, the num-

ber of samples Ji at each stage was lowered to improve

overall search times, trading off against accuracy. In the first

instance, HE-I, only 350 samples were taken at the first iter-

ation with only the top N = 30 used for region contraction.

Accuracy decreased as the sound source was further away

from the microphone array, implying a lower SNR as in [7],

but this may be acceptable in a system whose tracker accounts

for noisy state observations and exploiting this may warrant

further investigation. For HE-II, J0 was set to 1000 and N to

60, which brought the accuracy across all sources up whilst

keeping the number of FEs low. In HE-III, J0 was set to 3000

and N to 60, the value as used in [7]. Table 1 shows the re-

sults of first (SRC-I) variation of the SRC algorithm from [7]

on the data set and compares these configurations with the

HE variants. It shows the average number of FEs used within

an audio frame and the ALE, where Source 1 is the closest to

the microphone array and Source 4 is the furthest.

The results show that with prior information about head

height within a room, the SRC can be sped up whilst main-

taining accuracy. Because in HE-III the parameters are sim-

ilar to the SRC-I parameters, the algorithms are expected to

Algorithm Source 1 Source 2 Source 3 Source 4

ALE (m) # FEs ALE (m) # FEs ALE (m) # FEs ALE (m) # FEs

SRC-I 0.26 61,1001 0.31 61,1001 0.45 61,001 0.6 61,001

HE-I 0.32 17,156 0.35 21,939 0.44 31,811 0.58 35,053

HE-II 0.12 34,022 0.22 35,136 0.26 41,228 0.5 39,402

HE-III 0.11 40,721 0.15 40,736 0.23 42,900 0.34 44,111

Table 1. Comparison of SRC Methods

Algorithm Source 1 Source 2 Source 3 Source 4

ALE (m) # FEs ALE (m) # FEs ALE (m) # FEs ALE (m) # FEs

HE-I 0.45 20,115 0.49 23,849 0.51 36,253 0.6 37,962

HE-II 0.23 35,117 0.24 36,140 0.41 47,281 0.47 48,294

HE-III 0.22 43,783 0.24 43,548 0.32 55,352 0.46 56,667

Table 2. FEs required to find a source with no prior

perform similarly when there is no known audio source. In

this case, the mean of the Gaussian is set to the same offset as

that used in the algorithm and the variance is again set to 0.5.

Table 2 shows the average number of FEs required to find

a source using the algorithm without prior information. The

results indicate a reduced performance with HE-III, but still

within the tractable range of tens of thousands of FEs and

close to the performance of SRC-I, as expected. For lower

values of J0 and N , results are improved. In particular, HE-II

provides good accuracy and good performance, with or with-

out prior information, so much so that it is suitable as an audio

estimator for the initial height information in this situation.

6. CONCLUSIONS

This work contributes a method of speeding up and increasing

the accuracy of the SRC algorithm by estimating the height at

which to search from prior information, obtainable via stan-

dard methods and information from a previous iteration of the

algorithm. The key to this technique is to estimate an average

head height across an area by interpolating and extrapolating

heights of known speakers and forming a probability distribu-

tion of head height using this data. This allows a single audio

source to be localised quickly whilst still searching across the

room to find new source, for example when there is a speaker

change. Further work will investigate using the height esti-

mated SRP to locate multiple maxima simultaneously.
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ABSTRACT

In this paper we present a novel audio-visual speaker detec-

tion and localisation algorithm. Audio source position es-

timates are computed by a novel stochastic region contrac-

tion (SRC) audio search algorithm for accurate speaker lo-

calisation. This audio search algorithm is aided by available

video information (stochastic region contraction with height

estimation (SRC-HE)) which estimates head heights over the

whole scene and gives a speed improvement of 56% over

SRC. We finally combine audio and video data in a Kalman

filter (KF) which fuses person-position likelihoods and tracks

the speaker. Our system is composed of a single video camera

and 16 microphones. We validate the approach on the prob-

lem of video occlusion i.e. two people having a conversation

have to be detected and localised at a distance (as in surveil-

lance scenarios vs. enclosed meeting rooms). We show video

occlusion can be resolved and speakers can be correctly de-

tected/localised in real data. Moreover, SRC-HE based joint

audio-video (AV) speaker tracking outperforms the one based

on the original SRC by 16% and 4% in terms of multi object

tracking precision (MOTP) and multi object tracking accu-

racy (MOTA). Speaker change detection improves by 11%
over SRC.

Index Terms— Video Tracking, Speaker Tracking, Mul-

timodal tracking, Optimization methods, Sampling Methods

1. INTRODUCTION

Solving visual tracking occlusion is inherently challenging

when only video information is available. Many existing pa-

pers solve the problem by using sophisticated multi-camera

3-dimensional (3D) systems [1] which are still prone to occlu-

sions when the camera fields-of-view do not overlap. More-

over, they are computationally expensive, often requiring

GPU/FPGA implementations to function at frame-rate. Thus,

supporting tracking with non-visual information, i.e. audio,

may compensate for noisy, missing and erroneous video data

via speaker detection info, reducing the number of cameras

NR and JH are supported by EC FP7 LOCOBOT (Grant EC/260101).

AH is supported by scholarships from the James Clerk Maxwell Foundation

and the Maxwell Advanced Technology Fund.

Audio Video Speaker 

Tracking

SRC

Localisation and 

Tracking

Particle Filter Video 

Tracking

Speaker ID

“WHO is the speaker and WHERE they are”

“WHERE is the speaker” “WHO are the targets

and WHERE they are ”

(2)(2) (2)(2)

(1)(1)

(4)(4)

(3)(3) (3)(3)

Fig. 1: A schematic of the system presented in this paper. Constituent parts

of this diagram are referred to explicitly in the text (e.g. “arrow 1”).

and the computational resources required at the expense of

a few microphones. Video and audio “fusion” (or combina-

tion) can be achieved in several ways mostly using variations

of sampling techniques [2–4]. Existing system architectures

work well in very sanitised scenarios e.g. meeting analysis

and diarisation [5–9]. They use large sensor networks com-

posed at least of 4 cameras and 16 microphones [3, 4, 6, 8].

Little attention has been focussed on uncontrolled (and larger)

areas of interest using smaller and less “invasive” sensor net-

works. Attention in the literature is principally focussed on

general event detection [10–12], rather than on people inter-

actions and behaviour analysis [13, 14]. The novel system

we present can localise and recognise a speaker among two

people in an ample, reverberant and noisy environment when

large video occlusion occur using a small sensor network. To

the best of our knowledge this work is similar to the ones

from [4, 15]. In contrast, we improve on the state-of-the-art

via: a) new, high accuracy, fast audio localisation algorithm;

b) real-time video localisation and tracking using particle

filter (PF) [1]; c) improved precision and accuracy metrics for

multi object tracking (2006 and 2007 CLEAR dataset [16]).

2. THEORY

A schematic diagram of our system is shown in Figure 1. In

the following sections we describe it in detail.

2660978-1-4799-2341-0/13/$31.00 ©2013 IEEE ICIP 2013
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Fig. 2: Video detected height data are novelly used to reduce the search of

space for audio source localisation SRC.

2.1. Height detection and video tracking

Full details of the video tracker based on a GPU-accelerated

particle filter with ellipsoid models for people can be found

in [1]. It is worth noting that we hereby use the video data

coming from only 1 camera view. Height measurement is

also extracted (Figure 2) to cue the audio localisation algo-

rithm, since it directly corresponds to a good estimate of the

speaker’s head position.

2.2. Audio source localisation

A popular method of audio source tracking is extracting max-

imal time difference of arrival (TDOA) values from the gen-

eralised cross correlation with phase transform (GCC-PHAT)

[17] of signals from a pair of microphones in the frequency

domain, given by Equation (1), which is an inverse Fourier

transform where Ĝxmxn
is the product of the signals xm and

xn in the frequency domain.

R̂xmxn
(τ) =

∫

∞

−∞

Ĝxmxn
(f)

|Gxmxn
(f)|e

2πfıτ df (1)

A method more robust to reverberation, the steered response

power (SRP), makes use of the GCC-PHAT to build an energy

map using Equation (2) in a system with M microphones.

This is the sum over all pairs (m, n) of microphones of the

corresponding value of the GCC-PHAT for the TDOA τ .

S(x, y, z) =

M
∑

n=1

M
∑

m=n+1

R̂xn xm
[τnm(x, y, z)] (2)

The TDOA is defined by Equation (3), where p is the vec-

tor x, y, z of the point under investigation, c is the speed of

sound, and m and n are the positions of microphones m and

n respectively.

τnm(p) = (|m− p| − |n− p|) / c (3)

Evaluating the SRP across an entire room is computa-

tionally costly. In this work we use an enhanced version of

the SRC [18] algorithm to localise quicker and better an au-

dio source. This works by sampling the SRP randomly and

choosing a subset of the largest samples to form a new re-

gion to sample within. This is repeated until the process has

discovered a maximum. In order to further improve upon the

SRC, instead of sampling uniformly over height, a different

sampling distribution is used, centred around a head height.

To choose head height, existing knowledge of the current po-

sitions and heights of people in a room which is obtained from

the camera (Figure 2), is novelly used (SRC-HE). In particu-

lar, the height data is updated on each iteration to the height

of the last SRP peak found. This reduction of the search space

decreases its effective dimensionality, thereby decreasing the

computational complexity of SRC.

From a sparse set of people, the head height at every x-

y co-ordinate in the SRP map needs to be defined. This is

achieved using interpolation and extrapolation. When doing

the interpolation, there is a trade-off between the smoothness

of the curve produced and the size of ripples produced. The

interpolation should not contain severe ripples as they would

lead to large errors in the head height estimation across the

room. Ideally, it should be monotonic and one way to achieve

this is to use Delaunay triangulation [19] on the set of speak-

ers, which creates a surface which can be evaluated at any

2-dimensional (2D) point.

The height hsub to use at each time step for every point

p = (x, y) is then drawn from 4, which mixes a Gaussian

with a Uniform distribution across hr, the entire height of the

room.

p (z | p) = α0N
(

µh, σ
2
h

)

+ (1− α0)U (0, hr)

µh = H[p]

σ2
h = q̂(p, T)

(4)

Around each person, we can be relatively confident of

their height. Further away from them, the decreasing confi-

dence is modelled by increasing the variance of the sampling

probability density function (PDF). The variance at a distance

l metres from a speaker is chosen to be modelled by a sigmoid

function, q, such as Equation (5), which is a scaled error func-

tion. This is 0 at the origin and asymptotically approaches a

constant as its argument tends towards infinity.

q(l) = α1 erf (α2l) (5)

These need to be combined to form a global variance. At

any point p in space, the appropriate variance q̂ to use will be

the sigmoid function q of the minimum of the set of all 2D

Euclidian distances pq to known sources, where the set of

known source locations is denoted as T and an element from

the set of know sources is denoted as q. This is expressed

in Equation (6). The minimum is chosen to ensure that the

change in variance remains smooth even for overlapping sig-

moids from multiple sources.
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Lp,T = {l : (∃q ∈ T)(l = pq)}
q̂p,T = min

l∈Lp,T

q(l) (6)

2.3. Joint Audio-Video Speaker Tracking

SRC-HE algorithm allows for direct speaker position calcula-

tion, x. Nevertheless, speaker position estimations are char-

acterised by missing and false detections. This is mostly due

to speech pauses and room reverberation respectively. Thus,

we filter SRC estimated positions xa by a KF. We said al-

ready that, to speed up SRC searching time, speaker’s height

computed by the video PF, is input into the audio unit to drive

height sampling (arrow 1, Figure 1). Then, after the audio and

video data have been aligned, the posteriors of the KF audio

tracker and of the PF xa and xv are fused in a common KF

node (arrow 2, Figure 1). As data are gathered simultaneously

and used all at once in a centralised fashion, we assume the

audio and video pdfs to be independent of one another thus, on

the basis of the a priori local estimates for the state xa(t|t−1)
and xv(t|t − 1) predicted by the single-modality trackers at

each time step t, we evaluate the joint state estimate xav as

follows (where time dependency has been omitted for clar-

ity):

p(zav | x) = p(za | x)p(zv | x); (7)

this means the joint likelihood is still a Gaussian probability,

although no longer normalised, and the a posteriori state es-

timate is given by:

xav = Pav

{

P−1
a xa +P−1

v xv}, (8)

where

Pav = (P−1
a +P−1

v )−1. (9)

P−1
a and P−1

v are the inverse of the audio and video a poste-

riori covariance estimation matrices. Pav is the joint a pos-

teriori covariance estimation matrix. Finally, the last joint

AV output xav = Paxa + Pvxv is fed back into the indi-

vidual audio and video trackers as the best estimate of the

previous time step to improve the single modality estimation

(arrow 3, Figure 1). It is important to notice that, as we make

the assumption that people speak alternatively, like in a nor-

mal conversational mode, to a single audio signal za, cor-

respond several video measurements zvi
at a time, one for

each of the N detected targets. By basing the audio-to-video

data association step on spatial proximity, i.e. nearest neigh-

bour (NN), speaker segmentation and recognition can also be

obtained as long as people are resolved by the AV tracker and

its measurements can be considered robust with respect to the

speaker motion model. In particular, the speaker identity in-

ferred by the joint tracker is equal to the one of the i-th target

if Sav = argmaxi

{

p(za, zvi | x)
}

, i = 1 , ...,N (arrow 4,

Figure 1). Saying that, once an identity i has been assigned

(a) (b)

(c) (d)

Fig. 3: SRC and SRC-HE raw speaker position detections. Interesting is the

number of FEs which on average is reduced by 56% (FEs 56, 281 vs 24, 797)

for the SRC-HE implementation. (a) and (b) show respectively audio source

SRC and SRC-HE detections for the ‘Formal’ experiment. While (c) and (d)

show them for the ‘Informal’ one.

Experiment System SSL Accuracy (%) FEs

‘Formal’
SRC 62.50 56742

SRC-HE 69.07 23601

‘Informal’
SRC 47.30 55821

SRC-HE 51.22 25992

Table 1: SRC vs SRC-HE performance comparison for the two set of data

(’Formal’ and ’Informal’). Results are shown for 2 off-line runnings of the

two algorithms. SSL accuracy changes by 4% when adding up extracted

video height info. More interesting is the 56% change in the number of FEs

which has to be calculated, meaning that narrowing down the space of search

effectively results in speeding up the localisation task.

to every target in an image frame, the speaker change detec-

tion output by the audio unit is used in order to recover iden-

tity (ID) tracking when occlusions occur. In particular, in case

audio and video inference about the detected number of tar-

gets in the scene is conflicting, or when audio and video data

do not both fall within a certain region (‖xa − xv‖ ≤ A),

audio source position is considered to be correct and it is also

sent back to the video tracking unit to indirectly re-assign the

correct appearance models to the targets, successfully resolv-

ing occlusions (arrow 3, Figure 1).

3. EXPERIMENTATION AND RESULTS

In this section we show that SRC-HE outperforms original

SRC using video data and that our global AV system can

maintain and recover speaker ID. We used 1 camera and

4− by − 4 T-shape microphone arrays to record AV data in a

typical open office room, whose size is 111.44m2, where the

area considered of interest is 12 m2 (as seen in Figure 4(a)).

Ground-truth data was hand labelled to 5 cm of accuracy, on

a ground plane common to camera and microphones. Audio
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Fig. 4: Real experiments layout (a) and ‘Formal’ and ‘Informal’ visual re-

sults. In (b) a formal conversation between two people is shown. Video

tracker, as well as multimodal tracker, can detect and recognise there are two

targets speaking alternatively and their output is the same. (c) shows an in-

formal conversation between two people. They are so close the video tracker

on its own cannot detect there are two different targets. In (d) instead, the

AV multimodal tracker is shown to detect the two speakers and successfully

recognise their identity.

signals were sampled by the audio interface with a 24-bit pre-

cision resolution at 44.1 kHz, whereas the camera recorded

the 640× 480 RGB video frames at a 7.5Hz rate. Moreover,

each audio signal was filtered using a ≈ 20 ms long Gaus-

sian window to ensure signal stationarity [20]. We made no

attempt to reduce normal background noise (desk fans, foot-

steps, talking etc.) and a large reverberation time (T60 ≈ 0.5
s) was measured. Synchrony of data was insured by pro-

cessing audio and video streams accordingly to the camera

frame rate. Filters were initialised using the video detected

position of their correspondent targets and static matrices Q

and R [21], whose values were chosen on the basis of an op-

timisation step. We describe the results in terms of MOTP

and MOTA [16]. We also calculate the diarisation error rate

(DER), which measures the ability of detecting a change in

speaker ID, expressing the speaker error only [22].

Experiments meant to simulate a personal (formal) and in-

timate (informal) conversation between two people, resulting

in an occlusion in the case of informal conversation. Specifi-

cally:

‘Formal Conversation’, considers two people having a 60 s

conversation. Throughout all the experiment they are sepa-

rated by a distance of approximately 104 cm. Results as pre-

sented in Figure 4 (b).

‘Informal Conversation’, considers two people having a 56
s conversation. Throughout all the experiment they are sep-

arated by a distance of approximately 40 cm. Results are

shown in Figure 4 (c) and (d) .

Figure 3 demonstrates SRC vs SRC-HE raw speaker po-

sition detections for the two set of data (’Formal’ and ’In-

formal’). In Table 1 we enumerate their performance com-

Experiment System MOTP (m) MOTA (%) DER (%)

‘Formal’
SRC 0.35 85 21

SRC-HE 0.34 90 7

‘Informal’
SRC 0.20 97 20

SRC-HE 0.12 100 11.80

Table 2: Experiment results. SRC AV tracker does not incorporate prior

video height information while SRC-HE does.

Fig. 5: SRC vs SRC-HE AV tracking averaged over both the experiments

and 100 montecarlo runs performance comparison. SRC-HE detection ac-

curacy improvement results in an AV tracker which outperforms SRC based

AV tracker precision (MOTP) by 16% and accuracy by 4%. Of interest here,

is that DER is also improved by 11%, which make this solution 11% better

than SRC in handling large video occlusions. Note that the video tracker on

its own instead can not resolve occlusion at all.

parison. Results are shown in terms of SSL accuracy and

number of FE calculations. In both cases, the results show

a significant decrease in the number of FEs as well as an im-

provement in accuracy. Moreover, video only and SRC-HE

based AV tracker outputs are shown in Figures 4 (c) and (d)

for a comparison. Furthermore, in Table 2 we present MOTP,

MOTA and detection error rate (DER) of the joint AV track-

ers based on SRC only and on SRC-HE. At last, their per-

formance comparison is shown in Figure 5. Please note that,

when we talk about SRC results we refer to an AV system as

in Figure 1 where arrow 1 does not exist (no video cueing).

4. CONCLUSION AND FUTURE WORK

In this paper integrating height information coming from a

video PF with a SRC SSL algorithm (SRC-HE), has been

proved to speed up by 56% speaker detection based on the

original SRC algorithm. Moreover, it has been shown that

augmenting video tracking with audio data does solve large

occlusion which otherwise would not be solved by the video

tracker only. Furthermore, using audio data detected with

SRC-HE improves by 16% and 4% AV speaker MOTP and

MOTA tracking and by 11% AV speaker change detection, if

compared to an AV tracker which uses the original SRC im-

plementation. In future, we would like to carry out a tighter

integration between audio and video using updated height in-

formation from every frame to investigate further improve-

ments on SRC-HE. Furthermore, we would like to record

datasets similar to other existing works to carry out a thor-

ough comparison against state-of-the art joint AV systems in

non-meeting rooms.
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ABSTRACT

In this paper, the particle swarm optimisation (PSO) algo-

rithm is evaluated as a method for acoustic source localisa-

tion, using the steered response power (SRP) as the objective

function. We evaluate both the accuracy and the computa-

tional cost of using several variants of the method on both

simulated and recorded data. We also introduce our own mod-

ifications of the algorithm, which take into account the nature

of the problem, namely that between audio frames, a speaker

is not likely to change height significantly. We also impose

different constraints on the height axis than those imposed on

the ground-plane axes. This forces the search to concentrate

on a relatively narrow range of heights, as opposed to the ini-

tial broad search of the ground-plane axes of the room. These

modifications of the search algorithm are then used to demon-

strate an improvement in the localisation speed, which is an

order of magnitude smaller than previously studied stochastic

region contraction (SRC) methods, without sacrificing locali-

sation accuracy.

Index Terms— Microphones, Acoustic measurements,

Optimization methods, Sampling methods

1. INTRODUCTION

The steered response power (SRP) has been shown to be a

useful measure of the acoustic energy within a room, which

can be used for the localisation of acoustic sources within

an area suitably equipped with a microphone array. Particle

swarm optimisation (PSO) has been used in conjunction with

a particle swarm tracker [1, 2] to improve the performance of

the tracker in localising audio sources based on the position-

dependant audio power. This work further explores the use of

PSO to optimise the SRP, evaluating the effectiveness of dif-

ferent swarm control techniques, and introducing new strate-

gies which take the nature of the problem into account.

Whilst SRP based methods of source localisation are rela-

tively robust to reverberation, evaluating the SRP at a point in

The authors would like to give thanks for Scholarships from the James

Clerk Maxwell Foundation and from the Maxwell Advanced Technology

Fund at the University of Edinburgh.

space is computationally costly, and evaluating every possi-

ble region of space up to the available resolution of a system

in order to find the maximum SRP value is generally infea-

sible. Search techniques such as stochastic region contrac-

tion (SRC) [3] and its extensions [4] are used to attempt to re-

duce the number of SRP functional evaluations (FEs), whilst

minimising the localisation error.

In this work, PSO is used as an optimisation technique

over more general mathematical optimisers, as the SRP sur-

face is typically noisy, which implies many local optima,

which must be ignored in the search for the global best

value. Whilst swarm dynamics have been used before in the

context of a particle filter, this paper uses the technique to

provide a single direct estimate of the source position within

an audio frame. The localisation results from consecutive

frames can then be filtered, for example, using a Kalman

filter [5]. This highlights another advantage of SRP based

localisation methods over many traditional generalised cross

correlation (GCC) methods, which provide a set of arrival an-

gles [6]. These can then can be used to triangulate a source,

for example, using linear intersection [7] of the lines which

can be drawn between microphone pairs at the angle of ar-

rival determined between those microphones. These angles

of arrival vary non-linearly with the source position, and, as

such, any filtering used to estimate the position from the set

of localisation results must take this into account. This is the

approach taken by Klee et al., who make use of an extended

Kalman filter (EKF) to track an acoustic source [8]. More

complex filtering is possible, such as an combined EKF and

particle filter approach [9] which can reduce localisation error

in highly reverberant environments. With the direct measure-

ments of source position given by SRP based methods, the

linear Kalman filter can be used instead of the EKF. Kalman

filters are used in this work due to the direct relationship of

the observations to the source position, although this means

that observation covariance must be measured a priori and

the model used must assume a small process noise. Because

we seek to evaluate the performance of a source localisation

algorithm, rather than a tracker, we make use of audio sources

which only move under process noise, allowing us to make

use of the relatively simple Kalman filter to show how an

improvement in localisation error can be achieved.
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The remainder of this paper first presents the experimental

environments used to evaluate the source localisation methods

studied. The SRP is then defined, followed by a description

of the PSO algorithm and some of its variants. New variants

which are particular to the properties of the acoustic source

localisation problem are then introduced, and the framework

under which they are evaluated is discussed. Finally, results

will be presented which demonstrate the effectiveness and

suitability of PSO to the problem.

2. EXPERIMENTAL ENVIRONMENT

The experiments undertaken made use of both a simulated en-

vironment and recorded data. In line with previous work [4],

the recorded data was made in an audio lab with a microphone

setup in the corner, with room dimensions (8.1 x 5.3 x 3)m.

The microphones were spaced evenly along the walls, with a

minimum separation of 30cm. This layout allows direct com-

parison with our own previous work, as well as with others’

work using SRC [3]. The audio lab used was a highly rever-

berant environment with concrete walls and ceilings, but with

a carpeted floor windows covered by hard cardboard. The

room has a measured T60 of 0.836s [10].

Furthermore, this environment is replicated using simu-

lated data, which allows experimentation using, for example,

different source positions and room impulse response (RIR)

parameters. The audio data used for simulation, a set of

recordings of speech taken from a microphone close to the

speaker, was subjected to simulated reverberation using the

image-source model (ISM) [11], where the T60 used was set

to 0.2, in order to simulate a less harshly reverberant envi-

ronment than the audio lab. The simulated room dimensions

are shown in Figure 1, where the room height was 3m. These

simulated audio signals were also combined with a low level

of white Gaussian noise after the reverberation simulation had

been applied to the source signals. This noise was applied to

the signal for every microphone used.

The microphones were sampled at 96kHz and processed

in audio frames of 160ms, leading to frame sizes of 15360

samples. In both simulation and the recorded environment,

there were four speakers taking turns to speak, such that there

was one known speaker position per audio frame, and the ob-

jective was to perform speaker localisation for a single source.

The sources were spaced such that they gradually moved fur-

ther away from the microphone array. This meant that for

a constant level of speaker volume, the signal to noise ra-

tio (SNR) of the sources would decrease the further away

from the microphones, according to the inverse square law

for acoustic intensity.

3. AUXILIARY METHODS

The SRP is defined in Equation (1) as the function of a posi-

tion in space, (x, y, z) given a set on M microphones, each

0 1 2 3 4 5 6 6.5

1
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4

4.7

y

x

Microphones

Fig. 1. Room Layout

with a known position. This function uses the generalised

cross correlation with phase transform (GCC-PHAT) of sig-

nals xn and xm, denoted by R̂xn xm
, indexed at a target time

difference of arrival (TDOA), denoted by τnm.

S(x, y, z) =

M
∑

n=1

M
∑

m=n+1

R̂xn xm
[τnm(x, y, z)] (1)

For each microphone pair used, the appropriate value of

τnm to use is given by Equation (2), where c is the speed

of sound; m and n are vectors representing the known posi-

tions of microphones m and n respectively, and p is vector

notation for the target location, (x, y, z). By evaluating the

SRP at different positions, a map can be built up of the acous-

tic power originating from different areas of the room under

consideration.

τnm(p) = (|m− p| − |n− p|) / c (2)

The Kalman filter [12] is a minimum mean-square error

(MMSE) method used for a tracking the source location given

a series of noisy observations of that location. It is important

to note that the noise is assumed to be Gaussian and that the

state observation and state update functions are assumed to

be linear. In this work, we only consider acoustic sources

which move under process noise, as in [8], which ensures that

the state update function is linear. However, it is possible to

change the state update function to take account of moving

speakers by changing this assumption, and several methods

are explored in [13]. By extracting the coordinates in space

which correspond to the maximal SRP value, we also ensure

that the observation function is linear, and this allows us to

apply the linear Kalman filter.

x̂
′

t = Ax̂t−1 (3a)
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P′

t = APt−1A
⊺ +Q (3b)

Kt = P′

tH
⊺
(

HP′

tH
⊺ +R

)−1
(3c)

x̂t = x̂
′

t +Kt

(

zt −Hx̂
′

t

)

(3d)

Pt = (I−KtH)P′

t (3e)

The Kalman filter update steps are given in Equations (3a)

to (3e). The new state estimate x̂t is derived in two steps,

starting with a state estimation expressed in Equations (3a)

and (3b), where the state is updated via the state transition

matrix A and the previous state x̂t−1. The state covariance

P′

t is predicted. Then the state estimate is altered based on

a noisy observation of the state in the remaining three equa-

tions. This makes use of the observation at time t, zt, which

is transformed to the state estimate format by the observation

matrix H. The final step is to update the state covariance ma-

trix, Pt.

4. PARTICLE SWARM OPTIMISATION

PSO makes use of a set of particles at positions within the

search space which evaluate an objective function and use the

results to move the particle locations [14]. At each iteration of

the algorithm, both the particles’ positions and their velocities

are updated based on the global best (in our case, maximal)

observed value of the objective function and each particles’

own best observed position. Particles move towards these po-

sitions, and the algorithm tends to, but is not guaranteed to,

converge on the global optimum value of the objective func-

tion. The PSO algorithm is detailed in Algorithm 1. The

algorithm stops either when a specified maximum number of

iterations have been evaluated, or when the global best value

changes by less than a specified threshold value gthresh for a

specified number of continuous iterations gepochs.

The particle speed and position update rules for the iner-

tial PSO [15] are given in Equations (4a) and (4b). At each

time step z, the velocity of the ith particle, given by Vi, is up-

dated using that particle’s historical position pi and the global

best position, pg . That particle’s position, Xi, is then updated

using its new velocity.

Vi (z + 1) = ωpVi (z) + c1r1 [pi (z)−Xi (z)]

+ c2r2
[

pg (z)−Xi (z)
] (4a)

Xi (z + 1) = αpXi (z) + βpVi (z + 1) (4b)

αp and βp are position control parameters; r1 and r2 are

random variables with a range of [0, 1]; c1 and c2 are vari-

ables which represent the weights applied to the personal best

and global best parts of the sum. Increasing c1 relative to

c2 will force individual particles to move slowly towards the

globally best seen position, and concentrate on exploring the

area around their own locally seen best objective function

evaluation result. ωt represents an inertia, such that particles

Initialisation

for i = 1 to Swarm Size do

Set Xi randomly within the search range

Set Vi randomly within the permissible velocity range

Assign the particle’s best historical position pi to the

current (initial) position

Evaluate the objective function at the particle position

end for

Identify pg , the swarm’s best result

while Stopping Conditions Unmet do

for i = 1 to Swarm Size do

Initialise random variables r1 and r2
Update particle velocity and position

Evaluate the objective function at the new particle

position

Update the particle’s best known position, pi, if the

objective function at the current position is higher than that

at pi

end for

Identify pg , the swarm’s best result

end while

Algorithm 1: PSO Algorithm

can resist the pull of their local and global attractors. This

variable can alter the swarm behaviour, allowing it to perform

an aggressive local search if there is very little inertia, or a

more wide-ranging search with a larger inertia. The inertial

variables can be altered as the algorithm progresses, and there

are many strategies [16] for moving from a larger value at the

start of the algorithm to a smaller value at the end. The object

of this is to allow a wider ranging search over a larger area,

and then decreasing the mobility of the particles to perform a

more thorough local search as the algorithm starts to converge

upon an optimum. In this work, we varied the inertia values

linearly between desired starting and end points of cs and ce
respectively, over a set number of algorithm iterations tmax.

The inertia ωt at time step t is shown in Equation (5).

ωt = (ωs − ωe) (tmax − t)
1

tmax

+ ωe (5)

5. ALGORITHMS

Many variants of the PSO algorithm have been developed, and

several popular variants are applied to the acoustic source lo-

calisation problem by using the SRP as the objective function.

In this study, we make use of the inertial weight PSO [15];

Trelea’s Type 1 and Type 2 PSO [17], and Clerc’s Type 1′′

PSO [18].

In addition to the standard variants used, we propose two

strategies which attempt to adapt the method to acoustic data.

As sampling the SRP function around about head height has

proven beneficial to localisation [4], we adopt a similar strat-
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height

egy here. When the particles are first initialised, they are

spread uniformly across the ground-plane and non-uniformly

in the height axis. The heights used to initialise the par-

ticles are drawn from a mixture of a Gaussian distribution

centred around a height where an acoustic source has been

found in a previous audio frame, and a uniform distribution

over the entire height of the room. This probability density

function (PDF) is shown visually in Figure 2, and the mix-

ture model is defined mathematically in Equation (6). In this

model, the parameter α0 is the mixing parameter, which in

our experiments was set to 0.95, which favours the Gaussian

at head-height.

Head height is represented by µh; the height of the room

by hr and the variance of the Normal distribution by σ2
h. The

uniform distribution covers the whole range of the height of

the room, and the variance of the Gaussian is dependant on

the position of the particle on the ground-plane, p2, thus, the

entire PDF is conditional on this parameter. The value for the

variance is chosen such that, as the particle gets closer to, p1,

the previous discovered position of a source on the ground-

plane, the variance approaches 0.

ϕ (z | p2) = α0N
(

µh, σ
2
h

)

+ (1− α0)U (0, hr)

σ2
h = q (|p2 − p1|)

(6)

As a particle’s position on the ground-plane becomes fur-

ther away from the discovered position, we can be less confi-

dent that there will still be a speaker at that height, and so we

use a sigmoid function to gradually increase the variance as

the distance l between the particle and the previous speaker

position increases, as shown in Equation (7). This equation

is a scaled error function, with coefficient α2 which deter-

mines how quickly the variance changes with l. Coefficient

α1 determines the maximal value of the function, and is cho-

sen such that 99% of the Normal PDF lies over a range half

a meter below and half a meter above head height. As such,

over most of the room, the proposed PDF approximates a typ-

ical implicit assumption made by source localisation strate-

gies that only a subset of the possible heights in a room need

be explored [3], as speakers are rarely to be found on the

floor. Nevertheless, the mixture model ensures that particles

can start exploring these unlikely areas, as it is not impossi-

ble that they occur. The parameter α2 is chosen such that at

l = 0.5m, the function reaches its maximum, which gives a

speaker in the same position between audio frames a radius of

personal space, such that under normal circumstances, they

are the only person within their own personal space. This

means that only their approximate height should be explored

first, and as the boundary of personal space is approached, it

is more likely that another speaker could be present, and so

the algorithm should aim to return to a less biased and more

thorough search.

q(l) = α1 erf (α2l) (7)

With this strategy, we hope to largely ignore spurious in-

terference sources at different heights, whilst at the same time

allowing the search to cover the vertical range of the search

space to allow for speakers at different heights. In contrast

to [4], where particle heights are chosen from the distribution

at each algorithm iteration, this scheme only chooses heights

from the proposed distribution at the initialisation of the al-

gorithm on each audio frame. The effect of this is to allow

a source present in two consecutive audio frames to be dis-

covered relatively quickly in the second frame because one

dimension of the search requires less exploration, whilst still

allowing a potential change of speaker to be detected.

Secondly, we also recognise that the search dimensions of

a room’s length and breadth are generally larger than the verti-

cal dimension, and the search over height can conceivably be

made faster by quickly moving towards a more intensive local

search over height from an initial broad search of the entire

vertical range of a room. In contrast, it is desirable to spend

a relatively long time exploring the ground-plane broadly, be-

fore allowing the inertial components to let the search fo-

cus more closely on an increasingly small area. To this end,

the inertial coefficients are modified in Equation (4a) to act

differently on each dimension of the problem. The scalar

ωt is replaced by a vector as shown in Equation (8), where

each search dimension is given its own inertia value. The

Hadamard product is used to apply a separate inertia weight

to each of the x, y, and z axes, as shown in Equation (9).

The height axis is given a lower starting inertial weight than

the other two, and in this way, particles should be kept at an

appropriate height, and it is hoped that this should lead to a

faster convergence. In our experiments, ωt continues to de-

crease linearly according to Equation (5), where the scalar ωt
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is replaced by the vector ωt. Each component is given its

own start and end value, and we choose ωs, x = ωs, y = 0.09;

ωs, z = 0.04 and ωe, x = ωe, y = ωe, z = 0.01, all over

tmax = 50. Note that the absolute scale of the PSO variables

is determined by the scale of the problem at hand - assigning

particles too high a speed means that they will jump from one

end of the room to the other, but this is complicated by the

time scale being in sub-second discrete steps. Importantly,

the relative initial inertia for the vertical direction is set much

lower than that of the two ground-plane axes, allowing the

search to become more local over height in fewer iterations.

ωt =









ωx, t

ωy, t

ωz, t









(8)

Vi (z + 1) = ωp ◦ Vi (z) + c1r1 [pi (z)−Xi (z)]

+ c2r2
[

pg (z)−Xi (z)
] (9)

To evaluate the effectiveness of the algorithms studied,

the performance in terms of computational complexity and

localisation error were studied over a range of different swarm

sizes. The localisation results were filtered using a Kalman

filter, with parameters chosen to represent a very small pro-

cess noise covariance, and relatively large observation noise

covariance. A relatively large observation noise covariance

was chosen primarily to deal with spurious observations not

corresponding to a speaker, which typically (although not

exclusively) occur frames containing pauses between speech

segments. The number of iterations (epochs) of the PSO

algorithm was measured for each variant, as was the aver-

age location error (ALE), which is simple the root mean

square (RMS) error, given the localisation results and the

known source locations. The total number of FEs required

by each algorithm was directly related to the number of

epochs used. Because the swarm size did not change between

epochs in an audio frame, the number of FEs required is

approximately the number of epochs required for the frame,

multiplied by the swarm size used. This must be corrected by

subtracting the number of FEs not evaluated each epoch due

to the boundary conditions imposed.

6. BOUNDARY CONDITIONS

In optimisation tasks such as the speaker localisation prob-

lem, it doesn’t make sense to try and evaluate the objective

function beyond some bounds on the function range. In the

localisation case, this simply means that there should be hard

limits on the particle positions, which correspond to the walls

of the room being studied. There exist several strategies for

dealing with particles whose speeds would otherwise take

them out of these bounds [19, 20], and we investigate some

of these to determine if any is particularly appropriate to the

problem.

A likely candidate strategy is to simply not evaluate the

objective function for any particle which escapes the bound-

aries of the room, with the hope that they will quickly be

pulled back in to the room. This has the advantage of poten-

tially reducing the number of FEs used overall. Other strate-

gies include simply saturating the positions of any escaping

particles at the boundary locations; making particles wrap

around the bounds along any dimension which they attempt

to escape from, and bouncing particles against the boundaries

such that their speed is conserved, but the direction of their

velocity is reversed along the dimension of the bound encoun-

tered.

7. SNR

The algorithms must be usable over a wide range of SNR con-

ditions, and as such, must be robust to fairly high levels of

acoustic noise. To evaluate this, the recorded data set consists

of speakers who are each progressively further away from the

microphone array. This is intended to effectively decrease the

SNR with each successive speaker, due to the inverse square

law. This effect of SNR change is more robustly tested us-

ing the simulated data set, as the acoustic power of the noise

signal added to the microphone signals of the simulated data

set can be varied to consider a wide range of precisely known

SNRs.

8. EXPERIMENTAL RESULTS

Table 1 summarises the important PSO parameters used in

our experimental work. Each algorithm was tested on both

the recorded and simulated data sets over several minutes of

audio consisting of speech with natural pauses, for example

between paragraphs. Note that in these frames, the target po-

sition is not acoustically active and so the result of the op-

timisation algorithm within these frames is effectively noise.

Each algorithm was trialled over the same data 100 times, re-

sulting in thousands of audio frames processed per algorithm.

Each algorithm therefore underwent a Monte Carlo simula-

tion, so that average values for the metrics for each algorithm

variation can then be taken as indicative of the performance

of that variant.

Figure 3 shows that the number of PSO epochs does not

vary significantly with swarm size when the modified algo-

rithm variants are run under the simulated environment. In

contrast, there is a decrease in the required number of epochs

for two of the original PSO algorithms - both of the Trealea

variants. Figure 5 shows a similar trend for the recorded data,

although the decreasing epochs requirement is much less pro-

nounced. Figure 4 shows the linear scaling of FEs required

against swarm size, which gives an indication of the compu-

tational complexity of acPSO based techniques in in terms
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Parameter Value

Maximum Iterations 500

c1 0.002

c2 0.02

tmax 50

gthresh 1× 10−55

gepochs 70

ωs, z 0.04

ωs, x, ωs, y 0.09

ωe, x, ωe, y, ωe, z 0.01

Table 1. Key PSO Parameters

Fig. 3. PSO Epochs vs. Swarm Size, Simulated Environment

which can be compared directly to, for example, SRC, which

uses between tens and hundreds of FEs [3].

In both cases, the Hadamard product inertial weight

shows a decrease in the number of epochs required for conver-

gence, although this effect is less pronounced on the recorded

data set. When the two new variants are used together, there

is a further reduction in epochs, however this is no more sig-

nificant than simply using the height-initialised variant on its

own.

Figure 6 shows that adjusting the initial height of the par-

ticles leads to a slight increase in the localisation error on the

simulated data set, however, the localisation error achieved

on the recorded data set shows no significant deviation from

that of the original Inertial PSO. As with the epochs metric,

the combination of the new PSO strategies shows no improve-

ment over using the height-initialised variant on its own. This

suggests that using them together represents a trade-off be-

tween any potential advantages of the height-initialised vari-

ant and the Hadamard variant. Rather than a cumulative effect

of increasingly improved computational performance, there is

Fig. 4. FEs vs. Swarm Size, Simulated Environment

Fig. 5. PSO Epochs vs. Swarm Size, Recorded Environment
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Fig. 6. Filtered ALE vs. Swarm Size, Simulated Environment

Fig. 7. Filtered ALE vs. Swarm Size, Recorded Environment

a limit to what can be achieved.

These experiments were repeated for each speaker in each

data set, allowing the effect of different source positions and

a rough change in SNRs to be investigated. The results were

consistent across speakers, in that continuously increasing the

swarm size has diminishing returns in both accuracy and time

to converge. The lack of significant change across sources at

different SNRs in the recorded data set prompted the more

thorough investigation into the robustness of the algorithm to

acoustic noise using a noise power sweep on the simulated

data.

Figure 8 shows the effect of SNR on the epochs required

for the Hadamard variant of the algorithm at various swarm

sizes. Whilst there is a sharp decline in the required Epochs

as the SNR increases, this trend only represents a small de-

cline of the number of FEs required, as shown in Figure 9.

This pattern repeats itself over each of the PSO variants con-

sidered.

Fig. 8. PSO Epochs vs SNR

Fig. 9. Functional Evaluations vs SNR
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Fig. 10. ALE vs SNR

Similarly, the raw localisation error is graphed against

changing SNR in Figure 10. Note that this metric is pre-

sented as calculated without the application of the Kalman

filter, to demonstrate how the raw observations change with

SNR, rather than a filter’s ability to deal with increasingly

noisy observations. There is a clear trend in all but the small-

est of swarm sizes, of an increase in localisation error for

negative SNRs, which is to be expected. This suggests that

the underlying objective function, the SRP, is itself robust to

acoustic noise, and consistently produces a peak at a speaker

location which can be localised by the PSO technique. So

long as such a peak is consistently created by the objective

function, then PSO techniques should generally be able to

find them. This is not unreasonable, as the technique was cho-

sen based on it’s ability to work with non-smooth objective

functions which would otherwise be hard to optimise using

gradient based methods.

9. CONCLUSIONS

The performance of PSO techniques was investigated when

applied to the audio source localisation problem, and it was

found that the method produces results which have an accept-

able margin of error and converge using a low number of al-

gorithm epochs. The number of FEs used in each case was

also recorded for direct comparison with existing techniques,

and it was found that this metric varied approximately linearly

with the swarm size used. We also found that an improvement

in the computational complexity metric can be obtained by

adapting the methods to the specifics of the problem. These

methods allow an acceptable level of localisation error to be

maintained whilst minimising the swarm size required, and

therefore bringing the required number of FE down to the or-

der of several thousand.

Our results are in agreement with the general rule for par-

ticle swarms that large swarm sizes are unnecessary, as there

is no large gain in speed or accuracy. The number of FEs

is directly proportional to the swarm size, and for small to

medium sized swarms the number of FEs is in the order of

thousands, which is a significant improvement over the SRC

method. SRC methods, particularly the height-estimated ver-

sion, can achieve similar accuracy using in the order of tens of

thousands of FEs, and this work represents an order of mag-

nitude improvement in the search speed without sacrificing

accuracy.
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