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Abstract 
Background 

Colorectal cancer (CRC) was the second commonest cancer and the third leading 

cause of cancer-related deaths worldwide in 2018. In the UK, the overall 5-year 

survival rate of CRC patients is approximately 60%.  Colorectal cancer patients are 

staged based on the staging system recommended by the American Joint Committee 

on Cancer (AJCC). The 5-year survival rates vary from approximately 90% for stage 

I to 10% for stage IV CRC patients. Although the AJCC stage is the main indicator of 

patients’ prognosis, there is still substantial variation in terms of the survival outcomes 

of CRC patients within each stage. This merits further examination of other prognostic 

factors to improve prediction of CRC survival. Previous evidence revealed that 

germline genetic background plays an important role in determining survival 

outcomes of CRC patients. However, the human germline genome consists of millions 

of genetic variants and no specific genetic loci have been robustly mapped in relation 

to prognosis of CRC patients to date. Firstly, this thesis seeks to systematically review 

existing literature and explore whether germline genetic variants have been adopted 

in published multivariable models in attempts to predict CRC survival. Secondly, 

multiple CRC patient cohorts were leveraged to investigate associations between 

germline genetic variants and survival outcomes of CRC patients after diagnosis.  

Methods  

A systematic literature search was conducted in MEDLINE and Embase databases to 

retrieve published multivariable prediction models that were developed to forecast 

survival outcomes of CRC. Risk of bias for included models was assessed using 

published evaluation tools and metrics evaluating model performance were extracted 

and quantitatively assessed using meta-analysis.  

Multiple study cohorts were used in this thesis including the Study of Colorectal 

Cancer in Scotland (SOCCS), incident CRC cases from the UK Biobank cohort and 

datasets from three previously published clinical trials (QUASAR2, SCOT and 

VICTOR). Firstly, germline genetic variants associated with CRC survival that were 

reported by published genome-wide association studies (GWAS) were identified by 

searching the NHGRI-EBI GWAS catalogue.  Associations between these variants 

and overall and CRC-specific survival were investigated as a replication study using 
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the SOCCS cohort. Then I explored the potential predictive value of these previously 

reported variants in the UK Biobank study by developing a genetic predictor 

combining these variants, and evaluated the predictive performance of the predictor 

along with other variables (age at diagnosis, sex, AJCC stage and tumour grade) 

using the SOCCS as an external validation cohort. The model performance was 

assessed in terms of the discriminative ability and model calibration. The next step 

was to conduct two candidate genetic association studies to test the potential effects 

of two groups of genetic variants—variants associated with CRC risk and variants 

associated with prognosis of other cancers—on survival outcomes of CRC patients 

from the SOCCS study. These two groups of variants were identified from two large 

GWAS meta-analyses and the GWAS catalogue. Stratified analyses were performed 

by sex, AJCC stage (stage II/III and IV) and tumour site (colon and rectum). Cox 

regression models were used to estimate effects—hazard ratios (HRs)--of genetic 

variants on survival outcomes with age at diagnosis, sex and AJCC stage as 

covariates. The false discovery rate (FDR) approach was used to correct for multiple 

testing. Genetic effects were tested under both the additive and recessive genetic 

models.   

Finally, I performed a GWAS on both overall and CRC-specific survival by 

investigating a total of overall eight million autosomal genetic variants throughout the 

genome using the SOCCS study. The effect estimates for each variant were obtained 

using a Martingale-residual based approach.  Discoveries of the GWAS were then 

replicated by performing meta-analysis combining effect estimates from the UK 

Biobank cohort and the three clinical trials. Stratified GWASs were also conducted in 

SOCCS for stage II/III and stage IV CRC patients separately.  Enrichment analyses 

were employed to detect potential genomic signals enriched in possible genes and 

gene-sets that are involved in relevant biological pathways.   

Results  

The systematic literature review identified 83 original prediction models and 52 

separate external validation studies. Five models (Basingstoke score, Fong score, 

Nordinger score, Peritoneal Surface Disease Severity Score and Valentini nomogram) 

were validated in at least two external datasets and showed positive discriminative 

ability in terms of model performance. No germline genetic variants had been used 

as prognostic predictors in published prediction models.  
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A total of 5,675 CRC patients from the SOCCS cohort, 2,474 incident CRC cases 

from the UK Biobank cohort and 4,771 CRC patients from the three clinical trials were 

included in the main analysis.  By searching the GWAS catalogue, I identified 43 

independent genetic variants (r2<0.2) that were previously linked with CRC survival 

outcomes. After correcting for FDR, none of these 43 variants, under the additive 

genetic model, were significantly associated with either overall or CRC-specific 

survival of CRC patients from the SOCCS cohort. Only three variants (rs17026425, 

rs17057166 and rs6854845) at nominal significance (unadjusted p<0.05) showed 

concordant direction of effects with previously published GWASs, whereas one 

variant with uncorrected p<0.05 showed opposite direction of effect (rs11138220). 

The polygenic risk score (PRS) combining the 43 variants was not associated with 

CRC survival outcomes. No significant associations after adjusting for FDR were 

found in the stratified analysis. Although four variants (rs17280262, rs16867335, 

rs6854845 and rs17057166) showed potential effects when the recessive model of 

inheritance was used in SOCCS, I failed to replicate these effects using data from the 

UK Biobank cohort.   

With respect to the predictive performance of the 43 variants in the UK Biobank cohort, 

the genetic predictor combining the 43 variants did not show statistically significant C 

statistics after internal validation, with the 95% confidence intervals (CIs) including the 

null (overall survival: C=0.510, 95%CI=0.498-0.521; CRC-specific survival: C=0.518, 

95%CI=0.498-0.530).  Similarly, non-significant C statistics were observed for the 43-

variant predictor in the external validation analysis using the SOCCS cohort.  

Moreover, the prediction model composed of the 43 variants was poorly calibrated in 

both the UK Biobank and the SOCCS cohorts.  The model performance remained 

nearly unchanged when combining the genetic predictor with other variables including 

age at diagnosis, sex, AJCC stage and tumour grade in the SOCCS cohort, 

suggesting no incremental predictive value had been introduced by the addition of 

genetic variants.   

Regarding the other two groups of candidate genetic variants, a total of 128 

independent variants (r2<0.2) associated with CRC risk and 82 independent variants 

(r2<0.2) associated with survival outcomes of other cancers were included. Overall, 

none of the variants were observed in statistically significant associations (after FDR 

correction) with CRC survival under the additive model using the SOCCS cohort. The 

CRC-risk PRS was not significantly associated with either overall or CRC-specific 
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survival.  Stratified analysis did not identify any significant associations after 

correcting for FDR. Three CRC-risk variants (rs10161980, rs9537521 and rs7495132) 

showed significant genetic effects (recessive model after FDR correction) on survival 

outcomes of CRC patients from the SOCCS, and a significant association between 

the TT genotype of the variant rs7495132 and CRC-specific survival was also 

observed in the UK Biobank cohort (HR=1.69, 95%CI=1.03-2.79, p=0.038).    

In relation to the results of the GWAS, I identified one variant in chromosome 6 

(rs143664541) that was significantly associated with both overall and CRC-specific 

survival (overall survival: HR=1.92, 95%CI=1.52-2.42, p=4.24x10-8; CRC-specific 

survival: HR=2.17, 95%CI=1.69-2.78, p=1.14x10-9).  Another variant in chromosome 

9 (rs75809467) was observed to be significantly associated with CRC-specific 

survival (HR=1.80, 95%CI=1.48-2.20, p=7.07x10-9) of patients from the SOCCS study.  

However, meta-analysis combining the UK Biobank and the three clinical trials failed 

to replicate significant associations between the two GWAS-identified variants and 

overall survival of CRC patients. CRC-specific survival was not investigated in the 

replication analysis due to lack of available data. In stratified GWASs by AJCC stage, 

I identified a variant on chromosome 5 (rs323694) that was significantly associated 

with CRC-specific survival of stage II/III patients from the SOCCS cohort (HR=1.33, 

95%CI=1.20-1.47, p=2.92x10-8).  Genome-wide gene based analysis revealed 

significant enrichment of genetic signals in the CCDC135 gene in relation to CRC-

specific survival (p=9.92x10-7).  For the gene-set based analysis, significant 

enrichment of signals was detected in genes involved in the biosynthetic process of 

galactolipids for overall survival (p=2.09x10-6) and genes associated with up-

regulating the differentiation of adipocytes for CRC-specific survival (p=2.52x10-7).             

Conclusions 

Although the systematic literature review identified no germline genetic variants used 

as predictors for CRC survival in published prediction models. Five prediction models 

(Basingstoke score, Fong score, Nordinger score, Peritoneal Surface Disease 

Severity Score and Valentini nomogram) that include clinic-pathological predictors 

can potentially be applied to assist clinical decision-making.  

This thesis also presents a comprehensive investigation of potential effects of 

germline genetic variants on survival outcomes of CRC patients.  For genetic variants 

previously linked with CRC survival, the results of the thesis suggest poor 
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reproducibility of these variants given that none of these associations were 

successfully replicated in the SOCCS cohort. In addition, the combined effect of the 

43 variants, represented by a PRS, on CRC survival is also negligible. There is also 

very limited predictive value of these variants as a group in predicting survival 

outcomes of CRC. Although small effects cannot be confidently excluded, major 

effects of these variants on CRC survival are unlikely.     

For genetic variants associated with CRC risk, the lack of association between the 

CRC-risk PRS and survival outcomes of CRC indicates that the overall genetic 

susceptibility to CRC has no significant subsequent influence on survival outcomes. 

For each individual CRC-risk variant, their effects on CRC survival under the additive 

genetic model are unlikely to be clinically relevant. However, potential genetic effects 

under recessive model were detected for three CRC-risk variants (rs10161980, 

rs9537521 and rs7495132) in the SOCCS cohort, especially for the variant rs7495132 

whose association with CRC-specific survival was successfully replicated in the UK 

Biobank cohort. These findings merit further investigation in future large-scaled 

studies. With respect to genetic variants associated with prognosis of other cancers, 

the results of this thesis do not support any significant effects of these variants on 

survival outcomes of CRC patients, indicating that there is a limited shared genetic 

basis across different types of cancers in terms of survival outcomes.    

Although the GWAS-identified variant rs143664541 was not successfully replicated in 

meta-analysis of results from the UK Biobank and the three clinical trials, effects with 

concordant direction were observed across all the datasets on overall survival. 

Therefore, future large-scale investigation of this variant in association with CRC 

survival outcomes, especially for CRC-specific survival, are warranted. As to the other 

GWAS-identified variant rs75809467, further investigation in terms of its effect on 

CRC-specific survival is still needed, although no significant association was found 

between this variant and overall survival in the replication analysis. A potential variant 

rs323694 was identified from the GWAS of stage II/III patients. This variant, if 

replicated in the future, could be of clinical relevance in stratifying stage II/III CRC 

patients of varied prognostic profiles so as to assist informing tailored treatment 

strategies. The results of gene and gene-set based analysis provide preliminary 

evidence favouring future exploration of the biological roles of the CCDC135 gene 

and pathways associated with the biosynthetic process of galactolipids and the 

differentiation of adipocytes in CRC progression. 
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Lay Summary 
Colorectal cancer (CRC) is a group of malignancies located along the human large 

bowel. It is the second most common cancer and the third leading cause of cancer-

related death worldwide. On average, approximately 60% of CRC patients live longer 

than five years after they are confirmed to have developed CRC. For each individual, 

however, survival time can vary substantially from less than a year to more than ten 

years. There has been a growing interest in investigating factors that may explain this 

patient-to-patient variation in terms of their survival time. Identification of such factors 

can help clinicians evaluate risk of death and predict how long a patient may survive. 

A better-informed decision can then be made by clinicians regarding how intensive 

the treatment strategy should be for the patient.    

Researchers investigated families with parents and children both diagnosed with CRC. 

They found that the children tend to live a shorter life if their parents did not live long 

after their CRC diagnosis. This indicates that factors that can influence survival time 

of CRC patients could be inherited from their parents. Genetic information passed 

from parents to children is recorded in the human DNA sequence. The human DNA 

is constituted by billions of ‘small units’, known as nucleotides [which form genes], 

that are inherited from parents, the vast majority of which are consistent across all 

human beings. However, there are still millions of such units that are different among 

individuals, and these units are known as genetic variants.  Genetic variants are 

present at varying frequencies in the population and they confer varied effects on a 

wide range of common human traits such as height, hair colour and susceptibility to 

different diseases. The thesis employs the survival outcomes of CRC patients as the 

trait of interest, and investigates associations between this trait and common genetic 

variants in the DNA sequence of CRC patients by using multiple large-scale human 

studies in the UK.   

Firstly, the thesis comprehensively searched previously published literature to identify 

studies aiming to forecast survival outcomes of CRC patients. After reviewing 139 

relevant publications in depth, no genetic variants had been used to help successfully 

predict survival outcomes of CRC. Then I searched for candidate variants that could 

potentially influence survival outcomes of CRC, including genetic variants that had 

previously been linked to CRC susceptibility or survival outcomes of other cancers. 

Associations between these variants and CRC survival were then examined. Three 
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genetic variants, which had been linked to CRC susceptibility, also showed possible 

effects on survival outcomes of CRC.  In addition to previously known variants, I also 

scanned the entire human DNA including millions of genetic variants in order to 

identify possible novel variants associated with CRC survival. This resulted in 

identification of two new variants with possible effects. Although the thesis provides 

suggestive evidence on associations between several genetic variants and CRC 

survival, further validation of these variants in other populations of CRC patients can 

still be beneficial before they are ready to be used as valid predictors in clinical 

practice. Moreover, investigations in the biological implications of these genetic 

variants will also be helpful to illuminate their possible roles in the progression of CRC, 

which will ultimately lead to improved clinical outcomes of CRC patients.   
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1.1 Introduction 
 

Colorectal cancer (CRC), also known as bowel cancer, includes any malignancies 

located along the large intestine (from the cecum to the anorectal ring). It arises from 

the inner wall of the intestine. According to the anatomic site, CRC can be generally 

divided into colon and rectal cancer. In this chapter, background knowledge regarding 

CRC risk, diagnosis and prognosis will be introduced, so as to lay the foundation on 

which the research aims of this thesis will be proposed. Currently, CRC is the second 

commonest cancer worldwide (Bray et al, 2018), and this chapter will start by 

presenting the disease burden of CRC using the latest population-based statistics 

regarding both the prevalence and incidence rates of CRC. The metric of prevalence 

measures the number (or the proportion) of cases in a specific population at a given 

time point, whereas the incidence—the number of newly diagnosed CRC cases per 

population at risk—conveys probability of developing CRC during a given time period. 

Common risk and protective factors which can potentially affect CRC risk will then be 

introduced. In addition to epidemiological observations, biological evidence will also 

be reviewed to introduce the genetic and molecular pathogenesis of CRC. The second 

section features the diagnosis of CRC. In lieu of discussing the routine process and 

technologies employed in making CRC diagnosis, the focus of this section will be on 

diagnostic features that can inform treatment strategies and long-term prognosis, 

including tumour stage, histological type and grade. The last section will describe 

prognosis of CRC. In particular, population-based estimates on mortality and survival 

will be presented. Mortality is defined by the number of cases (or the proportion) in 

the general population who died of CRC within a specific time span. As opposed to 

mortality which is measured in the general population, survival rates are defined by 

the probability of being alive, or free of specific events such as postoperative 

recurrence, for CRC patients within a given time after their diagnosis. Common 

prognostic factors will then be presented with the main focus on genetic factors.  
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1.2 Colorectal cancer risk  
 

1.2.1 Prevalence 
 

According to the newly-released prevalence estimates from the International Agency 

for Research on Cancer (IARC) and the World Health Organisation (WHO), there are 

a total of 4.8 million people worldwide, as of 2018, living with colorectal cancer (CRC) 

within five years since the initial diagnosis (Cancer Fact Sheets 2018, IARC/WHO, 

URL1-1). Geographically, the highest prevalence is observed in Asia, accounting for 

49.2% of the total number of cases. Europe ranks 2nd, accountable for 29.3% of the 

global number of CRC cases. A pie chart of geographic distribution of global CRC 

prevalence is shown in Figure 1-1.  

 

 

Figure 1-1 Geographic distribution of 5-year global prevalence (2013-2018) of colorectal 
cancer. Reprinted from Cancer Fact Sheets, colorectum and anus (C-18-21), Copyright 
(2018) (URL1-1) with written permission from IARC/WHO.  
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In the UK, there was an estimate of 0.24 million individuals living with CRC in 2010 

ever since their initial diagnoses. This number is projected to increase to 0.34 million 

by 2020 (approximately 1,021 survivors per 100,000 population)(Maddams et al, 
2012). In Scotland, the latest estimates by Scottish Cancer Registry in 2017 reported 

an aggregated number of 24,174 survivors with their CRC diagnosed up to 20 years 

ago, resulting in a prevalence of 0.45% in the Scottish population (Scottish Cancer 

Registry, URL1-2). 

           

1.2.2 Incidence  
 

Based on the latest GLOBOCAN estimates in 2018, there was an estimate of 1.84 

million newly diagnosed CRC cases worldwide in 2018 (Cancer Fact Sheets 2018, 

IARC/WHO, URL1-1). Moreover, the crude global CRC incidence is projected to reach 

more than 2.2 million newly-diagnosed CRC cases per year by 2030 (Arnold et al, 
2017). Amongst all cancer types, CRC is the second most commonly diagnosed 

cancer, accounting for 10.2% of the 18.1 million newly-diagnosed cancer cases 

worldwide (Bray et al, 2018).  

Given that the age structure of a certain population significantly affects the CRC 

incidence rate, the incidence rate is often standardised by taking the weighted mean 

of crude rates in each age groups to derive the age-standardised rate when 

comparing incidence rates across different populations. Presented in Figure 1-2 is 

the age-standardised CRC incidence rate worldwide (Torre et al, 2015). As the figure 

indicates, higher incidence rates are widely observed in well-developed areas 

including Europe, North America and Oceania. Taking UK as an example, there were 

approximately 42,000 new CRC cases per year from 2014 to 2016, accounting for 

around 12% of all new cancer cases according to the data from Cancer Research UK 

(CRUK) (Bowel Cancer Statistics, CRUK, URL1-3). The age-standardised incidence 

rate in the UK was 69.3 per 100,000 population in 2016. In Scotland, there were 3,776 

newly diagnosed CRC cases in 2017 with an age-standardised incidence rate of 73.7 

per 100,000 population (Scottish Cancer Registry, URL1-2). In the USA, there was an 

average of 145,600 new CRC cases diagnosed per year from 2014 to 2016, with an 

age-standardised incidence rate of 38.6 per 100,000 population (Marley & Nan, 2016). 

Whilst absolute incidence rates remain highest in these well-developed countries, 
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there has been a stable or declining trend of CRC incidence (Arnold et al, 2017) 

(URL1-1). The age-standardised CRC incidence rates in Scotland from 1993 to 2017 

are plotted in Figure 1-3 (Scottish Cancer Registry, URL1-2). 

 

 

 

Figure 1-2 Worldwide colorectal cancer incidence rates (age adjusted according to the 
world standard population, per 100 000) in 2012. Adapted from (Arnold et al, 2017) with 
permission. 
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Figure 1-3 Colorectal cancer incidence trend in Scotland from 1993 to 2017.Created using 
data from the Scottish Cancer Registry (Scottish Cancer Registry, URL 1-2).  

 

However, there are widening disparities in CRC incidence patterns, primarily between 

well-and less-developed countries. For less-developed areas where historically there 

had been lower CRC incidence rates, the number of newly diagnosed CRC cases has 

kept rising over recent decades. For instance, in China, the age-standardised 

incidence rate of CRC has increased from 14.3 to 25.3 per 100,000 population from 

1990 to 2016 (Zhang et al, 2019). Similarly, in Thailand, this number is projected to 

increase by 42% from 2000 to 2025 (Virani et al, 2017). This increase could be 

attributed to the changing diet patterns, obesity and other lifestyle risk factors that can 

potentially increase CRC risk (Bray et al, 2018).  

Stratified by sex, CRC is the third commonest cancer in men (10.9% in all men with 

CRC) following lung and prostate cancer. For women, it ranks fourth (9.5%) among 

all cancer types (Bray et al, 2018). The 2018 GLOBOCAN estimates indicate that men 

are subject to slightly higher CRC risk than women (23.6 vs. 16.3 per 100,000 

population) (Bray et al, 2018). Although the magnitude varies, this sex difference in 

CRC incidence is consistent over the globe (Cancer Fact Sheets 2018, IARC/WHO, 

URL1-1). Colorectal cancer incidence rate increases with age. In the UK, 
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approximately 44% of new CRC cases were diagnosed at the age of 75 or older in 

2018 (Bowel Cancer Statistics, CRUK, URL1-3). Figure 1-4 presents the distribution 

of age at diagnosis separated by sex in the UK from 2014 to 2016. The CRC incidence 

rates for both men and women peak at individuals between 85 to 89 years of age. 

    

 

 
Figure 1-4  Distribution of age at colorectal cancer diagnosis in the UK from 2014 to 
2016.Reproduced with permission from the graph created by Cancer Research UK (Bowel 
Cancer Statistics, CRUK, URL1-3). 

  

 Common risk and protective factors   
 
Colorectal cancer can be categorised into familial and sporadic disease. The heritable 

components of CRC will be introduced in the next section. Sporadic CRC accounts 

for up to 60% of existing CRC cases, in which no family history has been reported at 

diagnosis. Aside from aforementioned demographic factors such as gender and age, 

epidemiological studies have identified a wide range of other factors associated with 

CRC risk. According to recommendations from the World Cancer Research Fund 

(WCRF) (Bowel Cancer, WCRF, URL1-4) and a systematic literature review by 

Johnson and colleagues (Johnson et al, 2013), commonly known risk and protective 

factors that are categorised as strong evidence are summarised as follows:  
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Risk factors: 

—red and processed meat intake (Chao et al, 2005) 

—cigarette smoking (Botteri et al, 2008)  

—obesity (Edge et al, 2010)  

—alcohol consumption (Fedirko et al, 2011) 

—personal history of polyps and inflammatory bowel diseases (Munkholm, 2003)  

Protective factors:  

— physical activity (Wolin et al, 2009)  

—dietary intake of fibre (Negri et al, 1998) 

—Dairy products (Aune et al, 2012)  

—Calcium supplements (Huncharek et al, 2009) 

It is worth noting that the CRC screening strategy varies across the world and it per 

se can also influence the observed CRC incidence rate due to more cases detected. 

Colorectal cancer screening in the UK includes three tests: faecal immunochemical 

test, faecal occult blood test, and colonoscopy. Individuals over 60 years of age (50 

for Scotland) are invited to participate the screening.  

There are other factors identified by the systematic review that are associated with 

CRC risk. For example, individual studies reported that aspirin intake (Rothwell et al, 
2010) and hormone replacement therapy in women (Johnson et al, 2009) were 

associated with lower risk of CRC. However, no significant associations were 

identified in meta-analyses of all published studies (Johnson et al, 2013). Therefore, 

more evidence is needed before any recommendations can be made.  

These aforementioned modifiable risk and protective factors can have potentially far-

reaching implications for CRC prevention provided that causal effects in these 

observed associations are established by randomised clinical trials (e.g. calcium 

intake) or other approaches like Mendelian randomisation studies (e.g. obesity) if 

clinical trials are not feasible.           
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1.2.4 Genetic and molecular pathogenesis   
 

Genetic models of tumorigenesis 

Colorectal cancer occurrence follows a well-understood transformation pattern—it 

starts from normal colorectal epithelium to benign adenomas and eventually 

progresses to invasive and metastatic CRC. This process is accompanied by stepwise 

accumulation of both germline and somatic genetic alterations.   

As with other malignancies, CRC is in fact a group of heterogeneous conditions that 

encompasses a number of subtypes characterised by distinct genetic patterns. In 

particular, CRC can be classified into sporadic (50-60%), familial (30-40%) and 

hereditary (4-6%) CRC (American Society of Colon and Rectal Surgeons, ASCRS, 

URL 1-5). Sporadic cases, with no family history, are more likely to be diagnosed after 

the age of 50. Recently, an increased incidence of sporadic CRCs has been observed 

among young adults (<50 years of age) from high-income countries (Araghi et al, 
2019). The formation of sporadic CRC features sequential acquisition of somatic 

mutations. In contrast, hereditary CRCs tend to occur at an earlier age with an 

identifiable high-penetrance germline predisposition. These hereditary cases can be 

further divided into groups of syndromes: one group manifests colonic polyposis, 

including familial adenomatous polyposis (FAP), MUTYH-associated polyposis (MAP) 

and other less commonly observed syndromes; the other group manifests without 

polyposis—namely hereditary nonpolyposis CRC (HNPCC, also known as Lynch 

syndrome).  

A comparison between genetic patterns of sporadic and hereditary CRC from normal 

epithelium to invasive cancer is presented in Figure 1-5. For sporadic CRCs, multiple 

somatic mutations are sequentially accumulated to trigger formation of neoplastic 

lesion as well as to expedite progression to invasive cancer. Whereas in the case of 

hereditary CRCs, germline genetic alterations play an essential role in tumorigenesis. 

The distinction between polyposis and nonpolyposis hereditary CRC lies in the 

specific phase when germline genetic alterations take effect. For individuals with 

polyposis syndromes like the FAP, germline alterations mainly accelerate the 

formation of adenomas, but for nonpolyposis CRC, such as the Lynch syndrome, 
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germline alterations primarily affect the progression rate from adenomas to invasive 

cancers (Figure 1-5).    

The third type is familial CRC. The genetic mechanisms of this type of CRC have 

been less clearly understood. These cases present inconsistent patterns compared 

with the aforementioned inherited syndromes. A family history is reported in these 

individuals who are at significantly higher risk of developing CRC. It is estimated that 

having a single first-degree relative diagnosed with CRC imposes a twice as high risk 

onto an individual compared with the general population (Tuohy et al, 2014).  

 

 

Figure 1-5 Comparison of genetic models between sporadic and hereditary colorectal 
cancer.  Recreated based on (Fearon, 2011).   

 

Genetic mutations  

Germline mutations  

These mutations occur within germ cells and can be passed on to off-spring. 

Mutations in potential pathogenic genes of the CRC tumorigenesis can exert large 

effects on increased CRC risk (also known as high penetrance), although these 

mutations are usually rare (<1%) in the general population.  
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With regard to pathogenic genes responsible for CRC development, the 

Adenomatous polyposis coli (APC) gene is a tumour suppressor gene that has been 

extensively studied and plays a critical role in formation of colorectal adenomas. The 

APC protein, encoded by the APC gene, is able to assist in maintaining cell division, 

adhesion, and chromosome stability, thus can serve as a key suppressor that 

prevents uncontrolled cell proliferation (Fodde, 2002). Germline mutations in the APC 

gene can lead to premature truncation of the APC protein, rendering it unable to 

effectively control overgrowth of cells that eventually develop into adenomas (Fodde, 

2002). An estimate of 90% individuals affected by FAP carry germline defects in the 

APC gene (Fearon, 2011). Besides FAP, inactivation of the APC gene is also involved 

in other hereditary CRC syndromes with polyposis such as Gardner syndrome and 

attenuated adenomatous polyposis coli.  

The MUTYH gene is another common gene that harbours mutations causing another 

type of hereditary polyposis CRC syndrome, namely the MAP. The MUTYH gene 

encodes the MUTYH glycosylase which is engaged in the base excision repair 

pathway. In particular, this enzyme can excise adenine bases when nucleotide bases 

are incorrectly paired mostly due to oxidative DNA damage (Sampson et al, 2005). 

Homozygous germline mutations in the MUTYH gene can cause failure of DNA 

damage repair and subsequently provoke somatic mutations in relevant oncogenes—

genes that can potentially cause cancer growth. 

Pertaining to HNPCC, the genetic basis is constituted of germline mutations in a single 

copy of allele in one of the DNA mismatch repair (MMR) genes, for example the MSH2 
or MLH1 gene, while the other allele is somatically silenced via mechanisms including 

loss of heterozygosity and promoter hypermethylation (Peltomaki, 2001). Loss of 

heterozygosity refers to a common genetic event in carcinogenesis where a 

heterozygous locus in the germline turns into homozygous in the tumour DNA. 

Promoter hypermethylation is an epigenetic change (inheritable alteration not 

involving the DNA sequence) in the promoter region featuring enrichment of CpG 

islands (A cytosine base followed immediately by a guanine base). Impaired DNA 

mismatch repair can subsequently lead to microsatellite instability (MSI)—changes in 

the number of repeats of short sequence in the tumour DNA— which is widely-

accepted as one of the key activators of CRC tumorigenesis.  
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Somatic mutations  

In addition to germline genetic defects, the role of acquisition of somatic mutations is 

also indispensable throughout CRC pathogenesis, particularly for the most common 

type of sporadic CRCs. Common somatic mutations in both oncogenes and tumour 

suppressor genes involved in the CRC tumorigenesis are listed in Table 1-1.  

Table 1-1 Reported mutation frequencies of selected common somatic mutations observed 
in colorectal cancer tumour tissues   

Gene Mutation frequency*  

Oncogenes  

KRAS 35-45% 

PIK3CA 15-25% 

BRAF 4-18% 

EGFR 5-15% 

CDK8 10-15% 

CMYC 5-10% 

NRAS 3-5% 

  

Tumour suppressor genes 

APC 70-80% 

p53 40-70% 

FBXW7 14-20% 

PTEN 10-20% 

SMAD4 10-15% 

SMAD2 5-10% 

 *Frequency estimates are based on references (Fearon, 2011) (Kudryavtseva et al, 2016; 
Li et al, 2015; Molinari & Frattini, 2013; Nguyen & Duong, 2018; Yeh et al, 2018). 

 

As a well-established gatekeeper of tumorigenesis, the APC gene can also mutate 

somatically to initiate the formation of colorectal adenomas. An estimate of 80% of 

colorectal adenomas (hereditary and sporadic combined) are driven by defects in the 
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APC gene which initiate a whole chain of genetic alterations (Fearon, 2011). 

Approximately 80 somatic mutations are expected to be detected in a given CRC 

sample, among which an average of 15 are predicted to be potential driver mutations 

throughout CRC tumorigenesis (Wood et al, 2007).  

A major group of oncogenes is the RAS family which consists of KRAS, NRAS and 

HRAS genes. Proteins encoded by these genes, namely K-RAS4A, K-RAS4B, H-RAS 

and N-RAS, are guanosine triphosphate (GTP) binding proteins that participate in 

transforming extracellular signals to intracellular regulatory factors, such as cell cycle 

proteins, so as to mediate cell differentiation, proliferation and apoptosis (Jinesh et al, 
2018). The RAS family is among the most frequently observed genes with mutations 

associated with tumorigenesis of many human malignancies. With respect to CRC, 

approximately 40% of CRC cases carry KRAS mutations and less than 5% carry 

NRAS mutations (Fearon, 2011). Mutations in the KRAS gene occur in a relatively 

early stage of the CRC tumorigenesis, and can provoke the mitogen-activated protein 

kinase (MAPK) pathway, rendering uncontrolled cell growth (Jinesh et al, 2018).  

Around 10% of CRCs are identified with mutations in another important oncogene 

known as the BRAF gene (Barras, 2015). The BRAF protein is a serine/threonine 

protein kinase that plays a vital role in key regulatory pathways related to 

carcinogenesis such as the Hippo signalling pathway which regulates cell proliferation 

and apoptosis. Hence, mutations in the BRAF gene exert profound effects in the CRC 

tumorigenesis (Barras, 2015).  

In addition to these oncogenes above, there are also tumour suppressor genes 

harbouring somatic mutations engaged in CRC tumorigenesis. For instance, the p53 

gene is among the most well-known tumour suppressor genes and mutations in this 

gene are commonly observed in up to 70% of CRC cases (Fearon, 2011). The p53 

tumour suppressor protein can bind to DNA sequences and regulate the expression 

of many vital genes that can maintain cell cycle, and apoptosis, particularly under 

circumstances with stimuli like DNA damage and hypoxia (Ozaki & Nakagawara, 

2011). Mutations in the p53 gene are frequently clustered in the p53 DNA binding 

domain, and they can impair normal p53 function by hindering it binding to relevant 

DNA sequences (Li et al, 2015). This effect is thought to be active in the 

transformation from adenoma to invasive CRC (Lopez et al, 2012). 
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Molecular pathways    

On the basis of molecular events that have been partially discussed above, CRC 

tumorigenesis is generally classified into three molecular pathways: (a) the 

chromosomal instability (CIN) pathway, (b) the microsatellite instability (MSI) pathway 

and (c) the CpG island methylator phenotype (CIMP) pathway. Of note, these three 

pathways are not mutually exclusive, thus can be observed simultaneously in the 

same CRC sample.  

The CIN pathway can be triggered both in sporadic and hereditary CRCs. Primarily, 

it is characterised by chromosomal abnormalities such as insertions, deletions or loss 

of heterozygosity. These abnormalities are frequently paired with inherited or acquired 

mutations that can potentially activate relevant pathways of CRC tumorigenesis (Pino 

& Chung, 2010). The second pathway that features MSI is typically identified in 

HNPCC. Germline mutations in MMR genes lead to dysfunction of MMR enzymes 

and, as a consequence, failures to repair mismatches are accumulated throughout 

the genome. Colorectal cancers that develop through this pathway can be typically 

identified with high level of MSI (noted as MSI-high tumours). With respect to the 

CIMP pathway, epigenetic alterations such as DNA methylations can suppress the 

level of the relevant oncogene and tumour suppressor gene expression, including but 

not limited to MMR genes. In particular, CRCs characterising the CIMP pathway are 

enriched with methylated CpG islands (Weisenberger et al, 2006). For instance, 

methylation of the CpG islands in the promoter region of the MGMT gene, which 

encodes the O6-methylguanine DNA methyltransferase (MGMT), can inhibit the 

corresponding gene expression, leading to aberrant genomic alterations (Inno et al, 
2014). Common molecular events of the three pathways are summarised in Table 1-2 
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Table 1-2 Genetic characteristics of molecular pathways of colorectal cancer tumorigenesis 

  CIN pathway MSI pathway CIMP pathway 

Prevalence 60-70% ~15% 15-20% 

Heredity  Hereditary/sporadic Hereditary Hereditary/sporadic 

Genetic markers 

MSI status MSS MSI-high MSI-high/low 

CIN + - - 

KRAS mutation + +/- - 

BRAF mutation  - - + 

MLH1 status Normal  Mutated Methylated 

MGMT 
methylation  

- - + 

CIN, chromosomal instability; MSI, microsatellite instability; MSS, microsatellite stability; 
CIMP, CpG island methylator phenotype. This table is created based on references (Al-
Sohaily et al, 2012) and (Noffsinger, 2009). 

 

Common germline genetic variations  

Unlike hereditary CRC cases where major pathogenic germline mutations can often 

be ascertained, the mass of sporadic as well as familial CRC cases remains to be 

investigated in the sense of their genetic components related to higher CRC risk. 

There has been a growing awareness that the development of these types of CRC is 

attributed to complex interactive effects of the patients’ genetic background and 

environmental risk factors.      

Human genomes differ from each other at an estimated 4 to 5 million sites, of which 

more than 99.9% are single nucleotide polymorphisms (SNP) and short indels 

(Genomes Project et al, 2015). SNPs are substitutions of single nucleotides that occur 

at specific genetic loci with a relatively common frequency (>1%) in a given population. 
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Other variations include copy number variations and chromosomal translocations. 

These common genetic variations have been widely linked with a wide spectrum of 

phenotypes and can modify the susceptibility to diseases such as CRC, although the 

penetration is comparatively lower than that of rare germline mutations. Since early 

2000s, the emergence of genome-wide association studies (GWAS) has successfully 

mapped numerous genetic risk loci to complex phenotypes including human 

malignancies. Additional details regarding study design and analysis of GWASs will 

be introduced at length in later chapters.  

As to CRC, the two most recent (to date) meta-analyses of large GWASs identified 

over 100 independent risk loci throughout the human genome (Huyghe et al, 2019; 

Law et al, 2019). Among these hits, most of them are mapped to non-coding regions 

in the genome—DNA sequences that do not encode proteins. Although this indicates 

mostly regulatory effects of these genetic variants, some of them are enriched in or 

near genes involved in several known cancer related pathways such as the 

transforming growth factor beta (TGF-β) pathway and the Wnt-pathway, as well as 

other pathways responsible for immune response, cell apoptosis and differentiation 

(Law et al, 2019). Other variants may assist in revealing novel pathways related to 

CRC tumorigenesis that are not understood extensively. A list of basic characteristics 

of common genetic variations identified by GWASs that are associated with CRC risk 

are presented in Chapter 5 (Table 5-19). Notably, these CRC-risk variants were 

identified mostly in the European population, with a small number of variants that were 

uniquely identified in the Eastern Asian population. It is estimated that the common 

variants identified to date in European populations can explain approximately 11% of 

the 2.2 fold familial relative risk for CRC (Law et al, 2019). 

Besides GWASs, a large number of hypothesis-driven studies of smaller scale have 

been conducted in order to explore associations between specific candidate genetic 

variants and CRC risk. Field synopsis is a systematic approach using meta-analysis 

and established criteria to summarise and appraise published candidate genetic 

association studies. The latest field synopsis by our group highlighted credible 

associations between 18 common genetic variants and CRC risk (Montazeri et al, 
2019). These findings are highly concordant with previous GWASs.  

It should be noted that these common genetic variants identified by association 

studies could either be or near the potential driver variant that needs to be determined 
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by functional characterisation. Although evidence for the biological function of these 

genetic variants is still sparse, observed associations between these variants and 

CRC risk can be harnessed to improve risk prediction and stratification in the general 

population.    

                  

1.3 Diagnosis of colorectal cancer—staging, typing 
and grading   

 

In clinical practice, a diagnosis of CRC is accompanied by information on the 

characteristics of the tumour, so as to assist clinicians in evaluating how serious the 

cancer is, predicting prognosis and determining potential treatment strategies. These 

characteristics mainly include the stage, type and grade of the tumour.  

Staging  

Staging is the process during which clinicians assess how much the tumour has grown 

and spread. In particular, the depth of tumour invasion into the bowel wall, the 

involvement of local lymph nodes and distant organs are evaluated. Staging assesses 

the extent of tumour progression for CRC patients and, therefore, it is currently 

considered as the principal prognostic indicator. Patients diagnosed with more 

advanced stage manifest poorer prognosis, thus are subject to more aggressive 

therapy. There have been two widely-used staging systems, namely the American 

Joint Committee on Cancer (AJCC) TNM system and the Dukes’ system. 

The Dukes’ system—a specific classification system for CRC— was first proposed in 

1932 by the British pathologist Cuthbert Dukes (1890-1977). It categorises CRC 

based on whether the tumour is local, regional (local lymph nodes involved) or 

metastatic. Although followed by several modified versions (Kyriakos, 1985), this 

system now serves mainly historical purposes and is rarely applied in today’s practice.  

The TNM staging system, however, is used more widely in recent clinical practice as 

it is also generally applicable to other cancers with the exception of leukaemia and 

tumours of the central nervous system. As suggested, this system evaluates three 

aspects of the bowel tumour: T (tumour) measures the extent of tumour growing into 

the bowel wall which is composed of an inner layer (mucosa), a middle layer 
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(submucosa and muscle), and an outer layer (subserosa and serosa); N (nodes) 

represents any involvement of nearby lymph nodes; M (metastasis) shows whether 

the tumour has spread to any distant lymph nodes or organs such as the liver and 

lung. Figure 1-6 depicts CRCs at different stages in relation to the basic anatomy.        

 

Figure 1-6 Anatomic diagram of colorectal cancer at different stages. A: stage I (Dukes’ A); 
B: stage II (Dukes’ B); C: stage III (Dukes’ C); D: stage IV (Dukes’ D). Adapted with 
permission based on graphs created by Cancer Research UK (Bowel Cancer Stages, Types 
and Grades, CRUK, URL1-6).  

 

According to combinations of different measures in these three aspects, Roman 

numbers of 0 to IV are assigned to group CRC into five stages (the AJCC stage). 

Table 1.3 presents the basic classification rules of stage 0 to IV based on the 8 h 

edition TNM staging system of CRC (Colorectal Cancer Stages, American Cancer 
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Society, URL1-7). Each stage can be further divided into sub-stages according to 

detailed TNM measures (details can be found in URL1-7).   

Table 1-3 Basic classification rules for the TNM and the Dukes’ staging systems 

AJCC 
stage 

Dukes' 
stage 

Stage 
grouping 

Description 

0 None 

  

  

Tis Also known as carcinoma in situ (Tis). It has not 

grown beyond the inner layer (mucosa) of the 

bowel wall. N0 

M0 

I A 

  

  

T1-2 The tumour has grown through the mucosa into 

the submucosa (T1), or into the muscularis 

propria (T2), but has not spread to nearby lymph 

nodes (N0) or to distant sites (M0). 

N0 

M0 

II B T3-4 The tumour has grown into the outer layers 

(subserosa and serosa) but has not gone 

through them (T3). T4 refers to the tumour that 

has grown through the bowel wall with or without 

attachment to nearby tissues or organs. It has 

not spread to nearby lymph nodes (N0) or to 

distant sites (M0). 

N0 

M0 

  

III C T1-4 The tumour has spread to 1 to 3 (N1) or more 

than 3 nearby lymph nodes. It has not spread to 

distant sites (M0). N1-2 

M0 

  

IV D Any T The tumour has spread to distant parts of the 

peritoneum, distant set of lymph nodes or distant 

organs (M1). Any N 

M1 

 

 

By default, the staging system above refers to the pathological stage (noted as pTNM) 

which is ascertained by examining the tumour tissue removed from surgery. There is 
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also clinical staging (noted as cTNM) which occurs prior to surgery, and is ascertained 

by evaluating results of physical examination, biopsies and imaging. Although not as 

accurate as pathological staging, clinical staging can inform necessary neoadjuvant 

therapy (chemotherapy or radiotherapy applied prior to surgery) and decision on the 

most appropriate surgical approach. Given the fact that neoadjuvant therapy can 

potentially downgrade the tumour stage, a prefix ‘y’ symbol is added to indicate 

staging after neoadjuvant treatment (noted as ypTNM).        

Typing  

The World Health Organisation first introduced a histological typing system in 1970 

(Morson & Sobin, 1976). Up to 96% of the CRCs are classified as adenocarcinomas 

(URL1-6) which stem from the gland cells in the lining of the bowel wall. In addition to 

classical colorectal adenocarcinomas, there are two less frequent subtypes: 

mucinous and signet ring carcinomas. Not only do these subtypes morphologically 

differ under the microscope, they are related to distinct tumour biology, thus indicative 

of varied prognostic outcomes. There has been evidence reporting that patients with 

mucinous and signet ring carcinomas tend to be diagnosed with more advanced stage, 

and can be predisposed to worse survival (Nitsche et al, 2013). Other types of CRC 

such as squamous cell carcinoma, stromal tumours and carcinoid tumours are too 

rare to have been extensively investigated.  

Grading  

Analogous to the staging, a grading system has been introduced to provide an overall 

description on the amount of abnormality of tumour cells under the microscope in an 

attempt to quantify how fast the tumour is likely to grow and spread (also described 

as cancer differentiation). Pathologists assign grades from G1 to G4 to the CRC by 

examining the tumour tissue. Grade 1 (well-differentiated) represents a tumour that 

looks most like normal cells; grade 2 (moderately-differentiated) denotes a tumour 

with cells that fall between normal and abnormal; grade 3 (poorly-differentiated) refers 

to a tumour with abnormal cells; grade 4 (undifferentiated) tumours, are those tumours 

that look completely different from the tissue from which they originate. At times, G3 

and G4 tumours are jointly presented as G3. Tumours of higher grades exhibit more 

invasiveness than ones of lower grades. Depicted in Figure 1.7 are microscopic views 

of CRCs from grade 1 to grade 3 (4).  
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Figure 1-7 Grade 1 to 3 (4) colorectal cancer tissue under a microscope.  Reproduced from 
the Atlas of Genetics and Cytogenetics in Oncology and Haematology with permission 
(Huret et al, 2013) (URL1-8).      

 

1.4 Colorectal cancer prognosis      
 

1.4.1 Mortality      
 

In 2018, there was an aggregate number of 0.88 million deaths caused by CRC 

globally. By 2030, this number is estimated to increase to 1.1 million per year (Arnold 
et al, 2017). Similar to the global distribution of CRC prevalence, roughly 80% of CRC-

related deaths occurred in Asia or Europe (ULR1-1). Presented here in Figure 1-8 is 

the geographic distribution of CRC-related deaths in 2018. The latest statistics from 

the IARC indicate that CRC was the second leading cause of cancer-related death in 

2018, with 9.2% of all cancer deaths attributed to CRC (Bray et al, 2018). With regard 

to sex-stratified mortality, CRC was the third highest cause of cancer related deaths 

in females and fourth in males (9.5% of female cases and 9% of male cases) (Bray et 
al, 2018). As shown in Figure 1-9, high CRC mortality (age-standardised) is mainly 

observed in specific areas such as east Europe and South America.  
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Figure 1-8 Geographic distribution of colorectal cancer related deaths in 2018. Reprinted 
from Cancer Fact Sheets, Colorectum and anus (C-18-21), Copyright (2018) (URL1-1) with 
written permission from IARC/WHO. 

 

 

Figure 1-9 Worldwide colorectal cancer mortality rates (age adjusted according to the world 
standard population, per 100 000) in 2012. Adapted from (Arnold et al, 2017) with 
permission. 
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In contrast to incidence where substantial variation exists between developing and 

developed countries, the difference of CRC mortality, however, lies primarily in the 

changing pattern with time where decreasing age-standardised CRC mortality rates 

have been observed mainly in many developed countries such as the USA, UK and 

Singapore (Arnold et al, 2017; Bray et al, 2018). In the UK, there were on average 

approximately 16,000 CRC deaths every year (44 per day) from 2014 to 2016. Over 

the past decade, however, the age-standardised CRC mortality rate in the UK has 

declined by 14% (Bowel Cancer Statistics, CRUK, URL1-3). In Scotland, the CRC 

mortality rate has been reduced from 47.4 per 100,000 person-years in 1992 to 31.1 

in 2017 (detailed numbers for each year plotted in Figure 1-10) (Scottish Cancer 

Registry, URL1-2). Improved patient care along with advancing multi-disciplinary 

treatment strategies could be behind this. However, relatively stable CRC mortality 

rates have been observed in developing countries. For example, the CRC mortality 

rate in China was 11.65 per 100,000 population in 1990 and 11.34 in 2016 (Zhang et 
al, 2019). The stable trend of CRC mortality rates may point to the balance between 

improvement of treatment strategies and rapid growth of CRC incidence in these 

areas.     
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Figure 1-10 Colorectal cancer mortality trend in Scotland from 1992 to 2017. Created with 
data from Scottish Cancer Registry.  

 

1.4.2 Survival  
 

Given the fact that survival estimates reflect directly the clinical outcome of CRC 

patients after diagnosis, they are widely used both in evaluating the population 

disease burden and in the context of clinical research. This metric will therefore be 

adopted as the study outcome of the thesis.  

Based on the cause of death, survival metrics can be divided into overall survival (OS) 

and CRC-specific survival (CSS)—the probability of surviving in the absence of other 

causes such as cardiovascular events or car accidents. Deaths of other causes were 

considered as censored when presenting the CSS. Both the OS and the CSS 

estimates absolute survival rates in a certain population.  

However, in order to compare survival rates of CRC patients across different 

populations, net survival rates (also known relative survival rates) are widely adopted 
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by taking the ratio of the proportion of survivors in the CRC patient cohort (absolute 

overall survival rate) to that in a reference cancer-free cohort with comparable 

common characteristics like age, sex, ethnicity and residence. Therefore, the net 

survival rate provides a useful measurement for comparison of survival estimates 

amongst different populations by peeling off the potential varying effects of death risk 

from other causes.  

The CONCORD programme, a global surveillance programme of cancer survival 

including data from population-based cancer registries from 71 countries and 

territories, published separate age-standardised 5-year net survival estimates for 

colon and rectal cancer in 2018 (Allemani et al, 2018). Based on these estimates, 

survival rates of colon and rectal cancer vary widely across the word. From 2010 to 

2014, the highest survival rates were observed in Australia (colon cancer: 70.7%, 

rectal cancer: 71.0%). However, in countries such as South Africa, these estimates 

were as low as 12.3% for colon cancer and 9.1% for rectal cancer (Allemani et al, 
2018).  

This substantial variation may reflect to a certain extent differences in CRC screening 

programmes, treatment strategies, as well as surveillance across these countries. For 

instance, loss to follow-up rates greater than 15% were more common in African 

countries than in Europe and North America, making the survival estimates less 

reliable (Allemani et al, 2018). Other than that, distinct distributions of CRC patient 

characteristics across these areas may also be an essential attribute to this variation 

of survival estimates.  

Tumour stage is currently the most commonly known determinant of patients’ survival. 

Stratified survival estimates of individuals of different stage at diagnosis are provided 

by some large cancer registries or surveillance programmes. The Surveillance, 

Epidemiology, and End Results Programme (SEER), operated by the National Cancer 

Institute of the USA, is the largest cancer surveillance programme in the world (NCI, 

2018). According to the latest SEER estimates, the 5-year (2009-2015) net survival 

rate of CRC patients in the USA is 64.4%. In lieu of AJCC stage, the latest SEER 

statistics reported the stage-specific survival estimates by grouping CRC into 

localised (stage I, IIA and IIB cancer), regional (stage IIC and stage III) and distant 

(stage IV) tumours. As shown in Figure 1-11, the 5-year relative survival drops 
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drastically as the tumour stage progresses (from 89.9% for localised to 14.2% for 

distant CRC) (NCI, 2018). 

 

Figure 1-11 5-year relative survival estimates (2009-2015) by stage from the SEER 
programme of the USA. Reproduced from the NCI public data with permission.   

  

In the UK, the 5-year net survival (2002-2006) of CRC patients (England and Wales) 

is approximately 60% based on the statistics from CRUK (URL1-6). In Scotland, the 

5-year (2007-2011) net survival rate is 59.8% based on the latest estimates provided 

by the Scottish Cancer Registry (Scottish Cancer Registry, URL1-2). CRUK provides 

stage-specific relative survival estimates separately by gender. Figure 1-12 

demonstrates a clear trend of decreased survival rates with more advanced stage. 

Females show slightly favourable survival in each stage compared with males, 

although none of these differences are statistically significant (Bowel Cancer Statistics, 

CRUK, URL1-3).                          
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Figure 1-12 5-year relative survival rates (2002 to 2006) by stage for colorectal cancer 
patients in the UK.  Reproduced with permission from the graph created by Cancer 
Research UK. 

 

As described in section 1.3, the AJCC staging system is derived primarily on anatomic 

basis rather than empirical data regarding CRC prognosis. Therefore, the wide 

variation with respect to survival probabilities cannot be fully explained by cancer 

stage. There is still large heterogeneity in terms of individualised survival even within 

each specific stage, where the AJCC staging system (sub-stages such as IIA and IIB) 

may not be able to reliably further distinguish patients of varied prognosis. To take the 

SEER data as an example, the absolute survival estimates for each AJCC stage are 

plotted in Figure 1-13 for colon and Figure 1-14 for rectal cancer cases. As shown 

by the graphs, the 5-year overall survival rates for stage II and III CRC can vary from 

28% to as high as 74%. Even within stage II, the differential of survival rates between 

IIC and IIA can be approximately 40%. Graphically, survival curves of stage II/III are 

heavily intertwined, indicating imperfect performance of the stratification by AJCC 

sub-stages.  
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Figure 1-13 Absolute survival rates of 28,491 colon cancer patients stratified by stage from 
the SEER programme (1973-2005). The original source of this graph is the AJCC Cancer 
Staging Manual, seventh edition (2010)(Edge et al, 2010). Reproduced with written 
permission. 
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Figure 1-14 Absolute survival rates of 9,860 rectal cancer patients stratified by stage from 
the SEER programme (1973-2005).  The original source of this graph is the AJCC Cancer 
Staging Manual, seventh edition (2010)(Edge et al, 2010). Reproduced with written 
permission. 

   

Beyond these aforementioned metrics in which deaths are used as the primary event 

of outcome, other alternative metrics, including disease-free survival (DFS), 

recurrence (relapse)-free survival (RFS), and progression-free survival (PFS), are 

also commonly adopted especially in the context of clinical trials. Whilst the OS or 

CSS is often deemed as the ‘gold standard’ endpoint of survival outcomes given that 

they are immune from measurement bias, the median survival time for CRC patients 

(all stages combined) can be as long as roughly 40 months (Laohavinij et al, 2010), 

hence increasing potential risk for cohort attrition as well as cost for long-time follow-

up. These alternative endpoints can be accurately measured in clinical trials with more 

intense surveillance in a shorter observation time-window. Since events like CRC 

recurrence or progression usually occur prior to death, trials with such alternative 

endpoints as the primary outcome often require a smaller sample size to reach a pre-

specified statistical power. In addition, there has been evidence supporting these 

endpoints as good surrogates with satisfied approximation to the OS (Oba et al, 2013). 

Definitions and common usage of some frequently used endpoints are summarised 

in the following Table 1-4.  
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Table 1-4 Summary of common endpoints of survival outcomes in clinical research. 

Endpoint Definition  Common clinical 
settings  

Overall survival The length of time from initial 

diagnosis (or primary treatment) to 

death from any cause. 

Population statistics or 

clinical trials  

CRC-specific survival  The length of time from initial 

diagnosis (or primary treatment) to 

death from CRC related causes. 

Deaths from other causes are 

often considered as censored. 

Population statistics or 

clinical trials  

Disease-free survival 
(Recurrence/Relapse-
free survival) 

The length of time from primary 

treatment (usually curative 

surgery) to disease recurrence. 

Trials for adjuvant 

(postoperative) therapy  

Progression-free 
survival  

The length of time from primary 

treatment (non-curative) to disease 

progression. 

Trials for metastatic 

(non-resectable) CRC 

 

 

Of note, all the metrics discussed above are probability estimates measuring the 

proportion of survivors (free from pre-specified events) within a given time period. The 

other approach to evaluate survival is to estimate the time length from initial diagnosis 

of CRC (or primary treatment) to the endpoint of interest. In this case, an order 

statistic—the median of all the observed survival time, is often used as an estimate. 

The median survival time provides an intuitive estimate on how long an average 

individual can potentially survive.     

   

1.4.3 Prognostic factors  
 

As discussed in the previous section 1.3, diagnostic features of CRC, such as TNM 

measures, tumour site and grade, are important indicators for CRC prognosis. 
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However, even these factors combined cannot accurately predict survival outcomes 

of CRC patients. The survival estimates from Figure 1-13 and Figure 1-14 reveal 

substantial residual variation of prognosis for CRC-affected individuals, which merits 

incorporating more prognostic factors. Moreover, such factors, if modifiable, can lead 

to novel interventions to prolong survival time. For unmodifiable predictors like genetic 

variations, accurate prediction can inform decisions about more enhanced 

surveillance and more intensive treatment.  

In concordance with the topic of this thesis, genetic factors, with a focus on germline 

genetic factors, will be introduced in this section. Thus far, most of the widely known 

clinical guidelines as well as organisation, except for the Canadian Cancer Society 

(Canadian Cancer Society, URL1-9), have not officially listed and recommended 

prognostic factors of CRC patients. Therefore, factors associated with CRC prognosis 

will be selected and introduced in this section mainly based on the recommendations 

from the Canadian Cancer Society.  

 

Germline genetic variations  

Empirical evidence has demonstrated an effect of inheritable genetic background on 

survival outcomes of CRC patients. A Swedish population-based study first revealed 

a familial concordance of cancer-specific survival by investigating over 4,800 pairs of 

parents and children diagnosed with the same type of primary cancer (Lindstrom et 
al, 2007). For CRC, in particular, children with a parent who died within 10 years of 

CRC diagnosis tended to have significantly poorer CRC-specific survival compared 

with those whose parent lived longer than 10 years since diagnosis (Lindstrom et al, 
2007). Notably, this concordance was not identified among parents and children 

diagnosed with different types of primary cancers, indicating that this effect is most 

likely attributed to shared genetic basis rather than common environmental factors or 

similar behaviours. Current evidence suggests that the impact of germline variations 

on survival outcomes of CRC patients could possibly be mediated by their effects on 

tumour progression and response to treatment. 
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Germline genetics and cancer progression—As indicated previously, cancer 

progression and metastasis are the most lethal aspects of tumour behaviour that 

largely determines the survival outcomes of CRC patients. In the late 1990s, animal 

breeding studies developed the metastatic tumour mouse model by transferring a 

specific oncogene—the polyoma middle-T antigen transgene (Lifsted et al, 1998), and 

found that mice of different genetic origins exhibit varying tendencies of the primary 

mammary tumour to disseminate to the lung (Lifsted et al, 1998). This observed 

variation in metastatic potential is most likely attributed to the germline genome, 

considering the same initial oncogene was introduced in all the mice under study. In 

the following study, Hunter and colleagues successfully mapped this varied metastatic 

potential of primary mammary tumours in the mouse model to the genetic locus of 

Mtes1 on the chromosome 19 of the mice (Hunter et al, 2001). Another source of 

evidence comes from gene expression data. Ramaswamy et al. identified a distinct 

gene expression signature of 17 genes that is significantly associated with the 

metastatic potential of multiple types of human solid tumour including CRC 

(Ramaswamy et al, 2003). The pattern of the differential expression of these genes 

between tumours of high and low metastatic tendency was subsequently replicated 

in the mouse model by Hunter et al. with a fixed driver oncogene (Hunter et al, 2003), 

which further underscored the role of germline genetics in cancer metastasis. Despite 

shared genetic basis for metastasis of different types of cancers, currently there is a 

dearth of such evidence from animal models specifically developed to study CRC 

metastasis.                 

Impact on treatment response—Drug metabolism entails complex networks inside the 

human body engaging a very large number of biological molecules including 

transporters, enzymes and receptors. Genetic variations can modulate key steps of 

drug metabolism, and as a consequence cause varied responses to drugs. In terms 

of CRC, major drugs involved in chemotherapy include cytotoxins such as 

fluoropyrimidines (5-fluorouracil, capecitabine, S1 and tegafur), irinotecan and 

oxaliplatin. Targeted agents such as cetuximab and bevacizumab are also commonly 

used. Taking 5-fluorouracil as an example, it is a fluoropyrimidine analogue that can 

inhibit thymidylate synthase (TS)—an enzyme encoded by the TYMS gene catalysing 

the conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine 

monophosphate (dTMP). Inhibiting TS supresses the formation of thymidine which is 

an indispensable part of DNA replication. Therefore, 5-fluorouracil can efficiently 

restrain proliferation of cancer cells. A germline variation in the number of tandem 
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repeats (repetitions of single or multiple nucleotides adjacent to each other) in the 

promoter region of the TYMS gene has been identified to be associated with the 

TYMS gene expression, leading to varied responses to the 5-fluorouracil (Iacopetta 
et al, 2001). A patient’s response to the treatment is measured by the extent to which 

the tumour has shrunk after chemotherapy. The inhibitory effect of 5-fluorouacil also 

applies to normal cells, which incurs toxic effects, such as myelosuppression and 

hand-foot syndrome, on CRC patients. The 5-fluorouracil is catabolised by an 

enzyme—the dihydropyrimidine dehydrogenase (DPD)—encoded by the DYPD gene. 

Evidence suggests that the DPD function is regulated by germline variations within 

the DYPD gene; individuals carrying the DYPD risk variant show deficient DPD 

function, and therefore are prone to higher risk of toxic effects (Amstutz et al, 2011). 

Other genes, such as the MTHFR and ABCB1 gene, harbouring variations linked with 

treatment response of CRC patients to various drugs have been summarised by 

previous systematic reviews (Ab Mutalib et al, 2017). In addition to chemotherapy, 

emerging evidence also supports an important role of germline genetics in regulating 

the patients’ sensitivity to radiotherapy (Kerns et al, 2014). Albeit proven efficacy of 

these drugs in improving clinical outcomes, robust associations between germline 

variations affecting the treatment response and CRC survival have not been 

established. This could be due to restricted data availability regarding treatment in 

large cohorts.  

As previously mentioned, hereditary CRC cases such as HNPCC exhibit strong 

genetic predisposition driven by high-penetrance germline mutations. These cases 

only account for 4-6% of all CRC cases and the mutation profiles vary remarkably 

among patients, rendering each single pathogenic mutation too rare to be investigated 

individually in prognostic studies. Hence, previous efforts tended to aggregate these 

cases together and compared them to sporadic cases to explore overall effects of 

germline alterations as a whole on survival outcomes. For example, HNPCC patients 

had once been linked with better survival than sporadic cases (Sankila et al, 1996) 

before subsequent evidence found no significant difference in survival after adjusting 

for a variety of clinic-pathological factors that were largely discrepant between the two 

types of CRCs (Bertario et al, 1999). Results of a large cohort from our group also 

found lack of association between germline mutations in DNA mismatch repair genes 

(MLH1, MSH2 and MSH6) and survival outcomes (Barnetson et al, 2006). Current 

evidence suggests limited value of adding these rare germline mutations in predicting 

survival outcomes of CRC patients.     
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With respect to common germline genetic variants with lower penetrance, thus far 

there has been no published meta-analysis of GWASs on survival outcomes of CRC. 

According to the NHGRI-EBI GWAS Catalogue (URL1-10)—an online portal with all 

published GWASs indexed, three individual GWASs have been conducted investing 

CRC survival outcomes including the OS, CSS (Phipps et al, 2016; Xu et al, 2015) 

and time to distant metastasis (Penney et al, 2019); two of them were based on CRC 

patients from the same cohort (Penney et al, 2019; Xu et al, 2015). The largest GWAS 

by Phipps et al. identified no genetic variants significantly associated with either the 

OS or CSS among 3,494 CRC patients (Phipps et al, 2016). Although the other 

smaller cohort with 431 CRC patients reported several potential signals associated 

with time to metastasis, these findings were prone to false positivity or overestimated 

associations due to the limited sample size and lack of replication. These common 

germline variants reported by previous GWASs will be presented and discussed at 

length in Chapter 5. There have also been a number of published candidate genetic 

association studies focusing on specific sets of genetic variants. However, these 

variants were mostly investigated by single small studies. Therefore, hitherto 

accumulated evidence is insufficient to conduct a field synopsis and meta-analysis to 

summarise and further appraise potential prognostic roles of these variants.    

In summary, the overall effect of germline genetic background on survival outcomes 

of CRC patients has been well supported by previous evidence. However, this effect 

is yet to be further dissected in order to identify specific loci that can potentially be 

employed as predictors to better inform patients’ prognosis.    

            

Somatic alterations and molecular subtypes   

There has been extensive discussion of the prognostic role of somatic events 

acquired during CRC development. The Canadian Cancer Society recommends three 

somatic alterations that can potentially be used to predict survival: MSI, KRAS and 

BRAF mutations (Canadian Cancer Society, URL1-9).      

As mentioned in section 1.2.4, deficiency of mismatch repair (MMR) genes can result 

in high level of MSI (instability of more than 30% of microsatellite loci) which is one of 

the genetic signatures enriched mainly in localised CRCs instead of metastatic ones. 

There has been evidence from meta-analyses supporting an association between 
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MSI-high tumours and improved survival compared with MSI-low or MSS tumours 

(Guastadisegni et al, 2010). However, this association is less prominent in metastatic 

CRCs possibly due to the low frequency of MSI-high tumours and the presence of a 

rich set of other somatic mutations observed in metastatic CRCs (Venderbosch et al, 
2014).  

A large meta-analysis found that KRAS mutation carriers manifest worse survival 

outcomes in comparison to wild type CRC patients (Petrelli et al, 2015). Given the fact 

that KRAS mutations are actually a group of mutations that occur at different positions 

of the gene, prognostic effects vary among these mutations. For example, Andreyev 

et al. looked into the prognostic effects of a spectrum of KRAS mutations and found 

that only one mutation in codon 12 was independently associated with CRC survival 

(Andreyev et al, 2001).  

The BRAF mutations are mostly observed in codon 600 (also known as mutation 

V600E). Evidence from meta-analysis revealed a significant detrimental effect of the 

V600E mutation on overall survival of CRC patients (Ardekani et al, 2012). This effect, 

however, disappears in MSI-high CRCs, indicating possible interactions between this 

mutation and the MMR deficiency (Taieb et al, 2017).  

There has been growing interest in devising molecular classification systems to better 

inform prognosis in addition to the current TNM staging system. These systems adopt 

somatic events including mutation profiles, molecular pathways and other 

characteristics discussed in section 1.1.2. Listed in Table 1-5 is currently the most 

widely accepted classification system, known as the consensus molecular subtypes 

(CMS) (Guinney et al, 2015). The CMS harmonised six previous systems using 

clustering algorithms based on the relatedness of genetic and molecular 

characteristics.  
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Table 1-5 Summary of consensus molecular subtypes of colorectal cancer 

Classification Genetic features Median survival 
months* (95% CI) 

CMS1(Immune type) High MSI and CIMP, high 

BRAF mutations, immune 

infilatration and activation  

11.7(10.9-18.0) 

CMS2(Canonical type) High SCNA, Wnt and MYC 

activation  

42.0(39.3-54.4) 

CMS3(Metabolic type) Mixed MSI status, low 

SCNA and CMIP, high 

KRAS mutations, metabolic 

deregulation  

26.0(20.9-36.0) 

CMS4(Mesenchymal 
type) 

High SCNA, stromal 

infiltration, TGF-beta 

activation, angiogenesis  

30.8(24.4-43.5) 

*Median survival estimates were based on (Lenz et al, 2019). CMS, consensus molecular 
subtypes; SCNA, somatic copy number alterations; TGF, transforming growth factor. MSI, 
microsatellite instability; CMIP, CpG island methylator phenotype; CI, confidence interval.       

        

As shown in the table above, CMS1 tumours are characterised by high burden of MSI, 

CIMP and BRAF mutations and highly expressed genes involved in immune function 

(Guinney et al, 2015). CMS2 CRCs can be distinguished by activation of the Wnt and 

MYC pathway, whereas CMS3 CRCs mainly entail impaired metabolic pathways 

(Guinney et al, 2015). As for the CMS4 subtype, markers of lymphocytes as well as 

monocytes are expressed in these CRCs, which points to the epithelial-to-

mesenchymal transition of the tumour cells (De Sousa et al, 2013). The prognostic 

significance of the CMS was validated by an external cohort of 581 CRC patients 

(Lenz et al, 2019). The study found that the CMS as a risk factor was significantly 

associated with the OS and PFS of CRC patients. However, as indicated by the 

median survival estimates in Table 1-5, the predictive performance of the CMS is still 

suboptimal particularly for CMS3 and CMS4 patients who manifested similar survival 

outcomes (Lenz et al, 2019).      
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Other genetic factors 

With biotechnology advancing rapidly, more and more novel genetic markers have 

been detected and linked with prognosis of CRC. A review by Compton published in 

the UpToDate® systematically summarised factors associated with CRC prognosis 

(Compton, 2019) (URL1-11). According to Compton’s review, other genetic factors 

that have not been introduced in section 1.4.3 mainly include: gene expression 

profiles of oncogenes and tumour suppressor genes (Munro et al, 2005) (Ellis et al, 
2000), epigenetic changes such as methylation levels (Jiang et al, 2014), microRNA 

levels (Gao et al, 2018), and circulating tumour cells and tumour DNA (Garlan et al, 
2017) (Chou et al, 2018). A full list of these markers can be found in the review 

(Compton, 2019). Although a wide range of genetic factors have been identified, these 

markers were mostly reported by small studies with inconsistent findings or by studies 

without replication (Compton, 2019). Therefore, their exact effects on CRC prognosis 

still remain to be investigated.       

 

Non-genetic factors 

Pathological factors  

Based on the recommendations of Canadian Cancer Society (URL1-9), main 

pathological factors associated with CRC prognosis include: tumour stage, 

histological type and grade, lymphovascular invasion, and surgical margin.   

As described in section 1.3, the TNM stage that encompasses information on how far 

the tumour has advanced is instrumental in predicting survival outcomes of CRC 

patients. The numeric stage (I to IV), however, causes inevitable information loss from 

the original T, N and M measurements. In addition to accounting for the T, N and M 

stages separately, other modified measurements such as the lymph node ratio (the 

number of positive lymph nodes divided by the number of nodes examined) (Rausei 
et al, 2013), as well as other advanced data technologies such as machine learning 

(Hueman et al, 2019) have also been devised in an attempt to optimise prediction on 

CRC survival. However, the trade-off between stratification performance and 

attainability for clinicians ought to be balanced.  
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The histological type of CRC, for example the presence of signet ring cells, and 

tumour grade of differentiation harbour indications on biological behaviour related to 

tumour aggressiveness and therefore can serve as common prognostic factors of 

CRC. These effects have been well supported by large registry data (NCI, 2018).  

Lymphovascular invasion, defined by identification of tumour cells within veins or 

lymphatic vessels, can also inform poor prognosis (Yuan et al, 2017). Of note, 

lymphovascular invasion is listed in recommendations from both the American Society 

of Clinical Oncology (ASCO) and the European Society of Medical Oncology (ESMO) 

as one of the risk factors for postoperative recurrence of stage II patients (Benson et 
al, 2004; Schmoll et al, 2012), which justifies more intensive therapy for these patients. 

Additional recommended pathological factors that increase the risk of postoperative 

recurrence include pathological T4 stage (pT4), grade 3 or 4 tumour and perineural 

invasion (Benson et al, 2004; Schmoll et al, 2012). Similar to lymphovascular invasion, 

perineural invasion has been associated with poor prognosis of CRC patients as 

identified by a previous meta-analysis (Knijn et al, 2016).  

Surgery with curative intent is instrumental in the management of CRC patients. A 

surgical margin refers to the unaffected normal tissue surrounding the removed 

tumour. Inferior survival outcomes of CRC have been associated with narrow margins, 

which indicates that the resected tumour is close to the surgical edge (Bernstein et al, 
2009).   

 

Clinical factors 

Bowel obstruction with or without perforation is generally reported to be associated 

with adverse survival outcomes of CRC (Chen & Sheen-Chen, 2000). Current 

guidelines also consider obstruction and perforation as risk factors that may warrant 

adjuvant chemotherapy for stage II CRC patients (Schmoll et al, 2012). It is worth 

noting that CRC cases with bowel obstruction and perforation tend to exhibit more 

invasive histopathological features that can potentially confound the observed 

association between these clinical manifestations and survival outcomes (Ghazi et al, 
2013).  



Chapter 1 Background 

38 

The other prognostic factor listed by the Canadian Cancer Society is the circulating 

level of carcinoembryonic antigen (CEA). It is commonly used in clinical practice to 

monitor potential risk of postoperative recurrence of CRC. This association is 

independent from tumour stage (Thirunavukarasu et al, 2011). However, there is still 

a heated dispute over the best cut-off value for CEA level.  

 

Lifestyle factors 

Lifestyle after CRC diagnosis may also influence patients’ survival outcomes, 

although these factors were not officially recommended by either the Canadian 

Cancer Society (URL1-9) or the systematic review by Compton (Compton, 2019). A 

meta-analysis of prospective cohort studies found that increased physical activity after 

CRC diagnosis was associated with improved survival outcomes (Schmid & 

Leitzmann, 2014).  With respect to dietary factors after diagnosis, Meer et al. 

systematically reviewed published literature, and found no consistent findings 

regarding associations between dietary factors, such as overall dietary patterns, meat 

intake and alcohol intake, and survival outcomes of CRC patients (van Meer et al, 
2013). Future investigations are still needed to provide more solid evidence regarding 

the effects of lifestyle factors on CRC survival.    

 

Treatment 

It is well established that the treatment CRC patients receive can greatly influence 

their survival outcomes. Prognostic effects of certain treatment are estimated mostly 

via prospective studies, particularly randomised controlled trials (RCT), and thus are 

generally deemed credible evidence. In reality, however, the treatment variable itself 

is often not included in multivariable models, because of the challenges in obtaining 

detailed information in a large cohort regarding treatment regimens - such as number 

of completed cycles and presence of discontinuation of chemo- or radiotherapy. The 

flow of CRC management varies across different regions. In view of the scope of this 

thesis, only over-arching principles of patient management will be introduced here, 

according to the guidelines from the National Institute for Health and Care Excellence 

(NICE) (URL1-12).  
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In general, curative surgery is the centrepiece for all localised and regional CRCs. For 

stage I and part of stage II patients without any risk factors mentioned previously, no 

additional chemotherapy is needed following the surgery. Adjuvant chemotherapy is 

usually given to stage II (with one or more aforementioned risk factors) and stage III 

patients after surgery in order to reduce recurrence risk. Therapeutic agents for 

chemotherapy mainly include 5-fluorouracil/capecitabine alone or combined with 

oxaliplatin as the first-line regimen. Irinotecan is usually used as the second-line agent 

when the first-line does not work or incurs severe side effects.  

Regarding metastatic CRCs, a multidisciplinary team (MDT) effort is recommended. 

A curative surgery may be considered if both the primary and metastatic tumours are 

deemed potentially resectable. Chemotherapy, radiotherapy or targeted therapy 

(monoclonal antibody) may be applied to alleviate symptoms and shrink tumours. 

Notably, for rectal cancer that has grown into nearby tissues, preoperative (also 

known as neoadjuvant) short course radiotherapy or chemoradiotherapy may be 

considered to increase the chance of a tumour-free surgical margin.   

 

Other non-genetic factors 

Based on the systematic review by Compton (Compton, 2019), a wide range of factors 

have been reported to be associated with CRC prognosis, yet have not been officially 

recommended. These factors mainly include:  

●tumour budding (TB, defined as a single or cluster of tumour cells at the invasive 

margin of the cancer) (Rogers et al, 2016)  

●host immune function (e.g. density of tumour-infiltrating lymphocytes in the tumour 

tissue)(Pages et al, 2005) 

●intra-tumour microvessel density (Des Guetz et al, 2006)  

●tumour location(Petrelli et al, 2017) 

Further validation is needed before these factors can be officially recommended to 

guide CRC management.  
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1.5 Summary  
 

Colorectal cancer is the second most common and third most lethal cancer around 

the world. As of 2018, approximately 4.8 million people were living with CRC. In terms 

of incidence, an estimate of 1.84 million newly-diagnosed CRC cases was observed 

worldwide in 2018, and there will be an estimate of 2.2 million newly-diagnosed CRC 

patients per year by 2030.  Both inheritable genetic components and environmental 

factors can contribute to CRC susceptibility. Somatic genetic alterations in oncogenes 

(e.g. KRAS) and tumour suppressor genes (e.g. p53) are sequentially acquired during 

the development of CRC. Based on the incidence pattern, CRC can be categorised 

into hereditary (4-6%), familial (30-40%) and sporadic (50-60%) cases. Hereditary 

CRC s are mostly driven by rare germline mutations with high penetrance, such as 

mutations in the APC and MUTYH genes, whereas common germline variations with 

low penetrance have been found to be associated with increased risk of familial and 

sporadic CRC cases. In addition to genetic markers, environmental factors such as 

red or processed meat intake, cigarette smoking and alcohol consumption have also 

been linked to increased CRC susceptibility.  

There was a total of 0.88 million CRC-related deaths worldwide in 2018, and this 

number is projected to be 1.1 million per year by 2030.  The 5-year overall survival 

rate of CRC patients is approximately 60%. Colorectal cancer patients can be grouped 

into different stages (0 to IV) based on the extent of tumour invasion and 

dissemination at diagnosis. Patients diagnosed with more advanced stages show 

significantly worse survival outcomes.  Although tumour stage serves as a main 

indicator of CRC prognosis, a substantial amount of variation in terms of survival 

outcomes has been observed for patients diagnosed with the same stage. For 

example, the 5-year overall survival rates for stage II CRC patients can vary from 36% 

to 67%. Other known factors that may influence patients’ survival mainly include 

pathological features such as tumour grade and lymphovascular invasion, clinical 

manifestations such as bowel obstruction and treatment strategies for patients.  For 

genetic markers, somatic mutations involved in CRC carcinogenesis (e.g. KRAS and 

BRAF mutations) could have subsequent effects on survival outcomes of CRC. 

Previous evidence found familiar concordance of CRC patients in terms of their 

survival outcomes, indicating possible prognostic effects of germline genetic 
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variations. However, there is lack of solid evidence supporting associations between 

specific germline genetic loci and survival outcomes of CRC.   
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Chapter 2 Study aims and objectives  
 

As introduced in Chapter 1, there has been both epidemiological and biological 

evidence supporting the overall effect of germline genetic background on survival 

outcomes of CRC. However, the genetic architecture of CRC survival still remains 

poorly understood, due to the paucity of hitherto identified genetic risk loci robustly 

associated with CRC survival. Although previous GWASs with small sample sizes 

reported possible associations between a few genetic variants and CRC survival, 

these associations have not been replicated and are subject to risk of false positive 

findings.  Moreover, it is also unknown whether incorporating these germline genetic 

variants into established prediction models of other prognostic factors can further 

improve predicting survival outcomes of CRC. Given this large knowledge gap, the 

overarching aim of this thesis is to examine associations between germline common 

variations and survival outcomes of CRC patients after diagnosis, to identify genetic 

variants that may be predictive, and to develop prediction models on CRC survival by 

integrating genetic predictors. The overall study design of the thesis is presented in 

Figure 2-1.  
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Objective 2: To validate previously reported associations between germline 
genetic variants and CRC survival (presented in Chapters 4-6)  

Overall, there has been a paucity of solid evidence supporting associations between 

specific genetic risk loci and CRC survival. Currently, study designs for investigating 

population-based genetic associations include: candidate genetic association studies 

and genome-wide association studies (GWAS). Ioannidis et al. reported that ~99% of 

disease risk loci identified in candidate genetic association studies were unable to be 

validated due to flawed study design and various sources of biases (Ioannidis et al, 
2011); thus critical appraisal on the credibility of these claimed associations is crucial 

before efforts of replicating them in large cohorts. Given the lack of a field synopsis 

that could systematically summarise and appraise previous candidate genetic 

association studies, the main focus of this objective will be on validating genetic 

variants reported by GWASs that investigated survival outcomes of CRC. Findings of 

GWASs are also subject to risk of false positive findings due to millions of markers 

being tested in one study. Although procedures like multiple-testing correction can to 

some extent reduce this risk, it is still essential to validate GWAS-identified signals in 

large well-conducted cohorts. As discussed in Chapter 1, only three GWASs have 

been published and only a few variants, identified in a small cohort of 431 CRC 

patients, survived the stringent criteria of genome-wide significance (p<5x10-8). This 

further underpins the need of replication. For the second objective of the thesis, 

germline genetic variants that have been linked to CRC survival by GWASs will be 

retrieved by searching the GWAS catalogue (URL1-10). Associations between these 

variants and overall and CRC-specific survival will be validated in a Scottish cohort 

(details about the cohort will be presented in Chapter 4).  

 

Objective 3: To develop a multi-variable prediction model combining previous 
GWAS-identified genetic variants and other non-genetic prognostic factors 
(presented in Chapters 4-6)   

As opposed to the second objective where the focus is on the individual association 

between each variant and CRC survival, I aim to look into the predictive value of these 

previously identified variants as a group in predicting survival outcomes of CRC, 
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combined with common non-genetic predictors such as AJCC stage.  Efforts of 

identifying prognostic factors serve the ultimate goal of informing clinical decision-

making towards improved clinical outcomes for patients at various levels of risk. This 

relies on accurate prediction on prognosis for each patient.  Over the past decade, 

there has been an increasing interest in genomic prediction with the genetic 

underpinnings of disease outcomes progressively unravelled by large GWASs.  In the 

context of CRC, incorporation of GWAS-identified genetic variants has led to 

improved prediction on CRC risk compared with models with phenotypic variables 

only, although the incremental margin of performance is moderate (McGeoch et al, 
2019). However, similar predictions on prognostic outcomes have not been reported 

thus far. In this phase, genetic variants identified by previous GWASs on CRC survival 

will be used to develop a genetic predictor in CRC cases from the UK Biobank cohort 

(details in Chapter 4). Then the performance of this genetic predictor together with 

other non-genetic factors will be tested in the Scottish cohort.   

 

Objective 4: To investigate associations between CRC survival outcomes and 
candidate genetic variants using a hypothesis-driven approach (presented in 
Chapters 4-6)   

This objective is to explore the impact of two groups of genetic variants of interest on 

survival outcomes of CRC. Genetic variants used in this section will be identified from 

previously published GWAS meta-analyses and the GWAS catalogue (URL1-10) 

based on two prior hypotheses. Associations of these variants with overall and CRC-

specific survival will be tested in the Scottish cohort. Any statistically significant 

associations will be further validated in CRC cases from the UK Biobank cohort.   

Hypothesis 1: Genetic variants associated with CRC risk can subsequently affect 

tumour progression and metastasis, and therefore may be associated with CRC 

survival.  As introduced in the background, genetic events of CRC tumorigenesis, 

such as the KRAS and BRAF mutations, have also been shown to be associated with 

CRC prognosis, indicating possible continuing effects of these pathogenic genetic 

alterations on CRC progression and metastasis. Although survival difference between 

CRC patients carrying inherited predisposition, for example HNPCC, and sporadic 

cases is yet inconclusive, there has been interest in exploring the impact of genetically 

determined CRC susceptibility on subsequent survival outcomes. Recent large 
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GWAS meta-analysis expanded the spectrum of known common germline variants 

associated with CRC risk, allowing for further investigation in the prognostic 

significance of these CRC-risk variants.       

Hypothesis 2:  In relation to prognosis, there is possibly shared genetic basis across 

different cancer types. Hence, genetic variants associated with survival outcomes of 

other cancers may also influence CRC survival.  Early evidence of family-based large 

observational studies found that family history of a specific cancer also increased risk 

for other cancers, indicating common genetic basis of risk for multiple cancers 

(Amundadottir et al, 2004). This finding was further strengthened by later combined 

analysis of GWAS data on risk for multiple cancers.  Jiang and colleagues quantified 

genetic correlation among six cancers (head and neck, breast, lung, ovarian and 

colorectal cancer), and revealed shared genetic components contributing to risk for 

these cancers (Jiang et al, 2019). Although genetic correlations among prognostic 

outcomes of multiple cancers have not been explored due to the dearth of 

accumulated data, there has been other evidence suggesting these shared genetic 

components. For instance, several regulators in key pathways, such as the Notch 

signalling pathway, can modulate the invasion-metastasis cascade of multiple 

cancers by governing critical processes like epithelial-mesenchymal transition and 

tumour angiogenesis(Hu et al, 2012).  Beyond CRC, there have been GWASs 

investigating survival outcomes of a few types of other cancers; genetic variants 

identified in these studies will be tested as the second part of this objective.    

 

Objective 5: To discover potential novel genetic variants associated with CRC 
survival by performing a genome-wide association study (presented in 
Chapters 4-6)    

In general, the genetic architecture of CRC survival remains unclear. Under 

circumstances with limited prior knowledge, GWAS is a powerful approach for 

discoveries on disease related genetic risk loci, given large well-characterised cohorts 

of CRC patients being aggregated. In contrast to candidate gene approach, in a 

GWAS, the whole human genome is scanned, and thus novel genetic variants located 

in specific genomic regions involved in the prognosis of CRC can be found. The final 

objective of the thesis is to conduct a GWAS on CRC survival using the Scottish 

cohort. Any discoveries will be validated by a pooled analysis of CRC cases from the 
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UK Biobank cohort and three previously published CRC clinical trials (additional 

details in Chapter 4).   
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Chapter 3 Systematic literature review 
 
3.1 Introduction  
 

In Chapter 1, I presented a summary of background epidemiological evidence 

regarding both genetic and non-genetic factors that can potentially affect survival 

outcomes of CRC.  These factors are also known as ‘predictors’ when used to 

estimate the probability of a future event of interest, for example death within five 

years after diagnosis for CRC patients. This estimation process leverages information 

from a spectrum of predictors, and is widely recognised as risk prediction which can 

be realised by developing statistical prediction models. In clinical practice, prediction 

models can assist clinicians in their decision-making based on the specific risk profile 

of candidate predictors for a given patient.  Subsequent to Chapter 1 where prognostic 

factors are summarised, this chapter aims to further look at the real-world clinical utility 

of CRC prognostic factors in the setting of risk prediction by systematically reviewing 

published prediction models on CRC survival and conducting evidence synthesis to 

quantitatively evaluate the predictive performance of these models.  

This chapter presents a published paper in Surgical Oncology entitled ‘Performance 
of prediction models on survival outcomes of colorectal cancer with surgical 
resection: A systematic review and meta-analysis’ (He et al, 2019a). As 

introduced in Chapter 1, clinical and pathological factors, such as AJCC stage and 

tumour grade, are most commonly accepted as prognostic predictors for CRC, and 

these factors rely on assessment of tumour specimens retrieved from surgical 

resections. Therefore, the systematic review focuses on published studies including 

CRC patients who underwent surgical resections. Based on current clinical guidelines 

(see Chapter 1 page 38), this resulted in inclusion of all prediction models for stage I 

to III CRC patients and part of models for stage IV patients whose primary and 

metastatic tumours are considered resectable. Following the structure of the 

publication, this chapter is composed of introduction, methods, results, discussion and 

conclusion. As the main investigator of this published work, I conducted the literature 

search, study selection, data extraction and statistical analysis. A parallel review was 

conducted independently to screen for eligible studies by a medical student (Ong Y. 
from the Western General Hospital, Edinburgh). Another investigator—Wang Z. (West 
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China Hospital, Chengdu) helped check the extracted data, and Li X. (Usher Institute, 

Edinburgh) independently appraised the quality of a randomly selected subset of 

included studies. I drafted the manuscript and revised it based on the comments from 

the editor and peer reviewers of the journal.  Other authors (Theodoratou E, 
Farrington S, Campbell H, Dunlop M, Timofeeva M, Din F, and Brown E) critically 

reviewed and edited the manuscript.       
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3.2.1 Abstract  
 

Prediction models allow accurate estimate of individualized prognosis. Increasing 

numbers of models on survival of CRC patients with surgical resection are being 

published. However, their performance and potential clinical utility have been unclear. 

A systematic search in MEDLINE and Embase databases (until 9th April 2018) was 

performed. Original model development studies and external validation studies 

predicting any survival outcomes from CRC (follow-up ≥1 year after surgery) were 

included. We conducted random-effects meta-analyses in external validation studies 

to estimate the performance of each model.  A total of 83 original prediction models 

and 52 separate external validation studies were identified. We identified five models 

(Basingstoke score, Fong score, Nordinger score, Peritoneal Surface Disease 

Severity Score and Valentini nomogram) that were validated in at least two external 

datasets with a median summarized C-statistic of 0.67 (range: 0.57-0.74). These 

models can potentially assist clinical decision-making. There is a pressing need for 

more external validation studies so as to evaluate the performance of other abundant 

published prediction models that have not been adequately validated. Future research 

should also focus on investigating the real-word impact and cost-effectiveness of 

existing prediction models for CRC prognosis in clinical practice.   
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3.2.2 Introduction  
 

Colorectal cancer (CRC) is responsible for 8.5% of deaths attributed to cancer 

worldwide(Ferlay et al, 2015). The overall 5-year survival of CRC varies from 50% to 

81% even within stage II CRC patients. This within-stage variation can be explained 

to some extent by a wide range of other established prognostic factors such as 

carcinoembryonic antigen (CEA)(Spindler et al, 2017). Although surgery is the 

mainstay treatment modality, prognostic modelling integrating these factors may help 

optimize individualized clinical decision-making on targeting adjuvant treatment to 

those at most risk of relapsing and who may respond better to certain treatment 

modalities(Vickers, 2011), so as to minimize the potential harms of overtreatment. 

Over the past decades, numerous statistical prediction models have been developed, 

incorporating various variables such as demographic(Bowles et al, 2013), 

genetic(Goossens-Beumer et al, 2015a) and clinic-pathological(Bowles et al, 2013) 

factors. However, their performance, reliability and clinical validity have been unclear.  

This systematic review aims to provide a comprehensive overview of current 

prognostication models for CRC patients undergoing surgical resection, to perform 

meta-analysis for models that have been validated in multiple datasets, as well as to 

evaluate the quality and performance of these model development and validation 

studies.  

 

3.2.3 Methods 
 

Literature search and study selection   

This study was conducted in accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) statement(Moher et al, 2009). A 

systematic search (limited to English and human studies) was performed in MEDLINE 

and Embase from inception to April 9th 2018 to identify all relevant studies. Three sets 

of search terms, “Colorectal cancer”, “Prognosis” and “Prediction model”, were 

applied.  The search strategy was formulated based on the search filter for identifying 

clinical prediction studies(Ingui & Rogers, 2001) and previous publications(Brush et 
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al, 2011) (detailed search syntax presented in Table 3-1). The reference list of each 

eligible article was also cross-checked.  
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Table 3-1 Search strategy for the systematic review   

Database: MEDLINE (limit to English language and human studies; not 
review or editorial or letter or comment) 

exp Colorectal Neoplasms/ or ((rectal or rectum or colonic or colon or colorectal) 

adj2 (cancer* or carcinoma* or neoplas* or tumor* or tumour* or malignan* or 

adenocarcinoma* )).mp.  

AND 

exp Prognosis/ or prognos*.mp. or Survival Analysis/ or Survival/ or surviv*.mp. 

or mortality.mp. or exp Mortality/ or metastas*.mp. or Neoplasm Metastasis/ or 

recurren*.mp. or Neoplasm Recurrence, Local/ 

AND 

exp Models, Statistical/ or predict*. ab,ti. or validat* .ab,ti. or Validation Studies/ 

 

 Database: Embase (limit to English language and humans; not review or 
editorial or letter or comment, excluding MEDLINE journals) 

exp colorectal cancer/ or rectum tumor/ or colon tumor/ or ((rectal or rectum or 

colonic or colon or colorectal) adj2 (cancer* or carcinoma* or neoplas* or tumor* 

or tumour* or malignan* or adenocarcinoma* )).mp.   

AND   

prognos*.mp. or cancer prognosis/or exp survival or surviv*.mp. or metastasis/ 

or metastas* .mp. or cancer recurrence/ or recurren*.mp. or mortality/ or cancer 

mortality/ 

AND   

exp prediction/or predict*.ab,ti. or  exp statistical model/or validat*.ab,ti. 
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We applied the following inclusion criteria: 1) studies developing or validating 

statistical model(s) based on time-to-event data to predict survival outcome (≥ 1 year) 

in CRC patients with surgical resection; 2) studies with at least two predictors; 3) 

studies that reported a quantitative measure of any aspect of model performance, 

such as metrics evaluating overall performance, discriminative ability and calibration. 

Conference abstracts, editorials and commentaries were excluded. Studies were also 

excluded if the prediction rule of the model was unavailable.       

Two reviewers (YH and YO) screened the titles and abstracts independently. 

Potentially relevant articles were reviewed in full. Any disagreement was resolved by 

discussion, and a senior author (ET) was consulted if necessary.           

 

Data extraction and critical appraisal   

One reviewer (YH) extracted all relevant data following the guidelines of conducting 

systematic reviews of prediction model studies(Debray et al, 2017). A second 

reviewer (ZW) verified the accuracy of the extracted data. Model performance metrics 

that evaluated discriminative ability (Harrell’s C statistic, also known as the area under 

the receiver operating characteristic curve (AUC)), calibration (e.g. calibration plot), 

and other metrics (e.g. R2) were extracted. If a paper reported multiple models with 

different predictors or prediction rules, data were extracted separately for each model.   

We appraised each model using the CHecklist for critical Appraisal and data 

extraction or systematic Reviews of prediction Modelling Studies (CHARMS)(Moons 
et al, 2014). Based on this checklist, the risk of bias for each model was assessed 

following the criteria described in previous publications (Lamain–de Ruiter et al, 2017; 

Smit et al, 2015) which included six domains: 1) Participant selection; 2) Measurement 

and reporting of predictors; 3) Definition and measurement of the outcome; 4) Events 

per variable (EPV); 5) Attrition (loss to follow-up); 6) Data analysis. Details for the 

assessment rules are summarised in Appendix Table S1. One reviewer (YH) 

appraised all included studies. A second blinded reviewer (XL) evaluated a 25% 

random sample of all studies and cross-checked for any discrepancies.     
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Statistical analysis  

Based on data availability, we performed meta-analyses of C statistics across external 

validation studies that evaluated the same prediction model to estimate the overall 

discriminative performance for each model. The original dataset used to construct the 

model was not included in the meta-analysis to avoid inflated estimates (Debray et al, 
2017). We rescaled the C statistic by applying a logit transformation (Debray et al, 
2017). The extracted 95% CI of a C statistic was used to estimate its variance, and if 

this was not reported, the formula proposed by Debray et. al was used to approximate 

the 95% CI(Debray et al, 2017). The C statistic was considered statistically significant 

if the 95% CI excluded 0.5(Hosmer & Lemeshow, 2000).  Given the relatively small 

number of validation studies for each model and the inherent heterogeneity across 

external datasets with diverse populations and clinical settings, we adopted the 

restricted maximum likelihood (REML) estimation along with the Hartung-Knapp-

Sidik-Jonkman (HKSJ) method under a random-effects model to estimate the pooled 

C-statistic and 95% CI {IntHout, 2014 #850}. We also calculated the 95% prediction 

interval (PI) integrating the heterogeneity for the summarised C statistic to indicate a 

possible range where a C statistic of a future validation study may be located (Higgins 
et al, 2009; IntHout et al, 2016).  Due unavailable data, we were unable to perform 

quantitative synthesis for other metrics evaluating model performance.  

 

3.2.4 Results 
 

Overview of eligible models     

We obtained 15,465 unique records from the initial search. An additional validation 

study was identified from cross-checking the reference of eligible studies(Takakura et 
al, 2011).  In total, 83 articles comprising 83 original model development studies and 

52 separate external validation studies (Appendix Table S2-S3) were included in this 

systematic review. The detailed study selection is summarised in Figure 3-1.    

 



Chapter 3 Systematic literature review 
 

58 

 

 

Figure 3-1 Flow diagram of study selection 

 

Among the 83 model development studies, forty-five (54%) of these original models 

were based on early to locally advanced CRC (stage I-III) patients, and 24% (N=20) 

focused on metastatic CRC. As for the predictors, these models included a median of 

5 predictors (range 2 to 18).  Age was the commonest predictor (N=56, 67%). Other 

common predictors included CEA (N=26, 31%), tumour grade or differentiation (N=23, 

28%), sex (N=19, 23%), T stage (n=16, 19%) and N stage (N=16, 19%). Surgery type 

was adopted as a predictor in 13% (N=11) of all models. The majority of the models 

(N=73, 88%) were developed using Cox proportional hazards regression. Other 
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methods included Weibull regression(Peng et al, 2018) and tree-based 

models(Arostegui et al, 2018).  The main outcome to be predicted was overall survival 

(OS) (N=47, 57%), disease-free survival (DFS) (N=17, 20%) and CRC specific 

survival (N=13, 16%). The prediction time horizon varied from 1 year to 10 years, with 

80% (N=66) of the models reporting a 5-year prediction horizon.  To adjust for 

potential overfitting, 44 (53%) models were internally validated using split-sample, 

bootstrapping or cross-validation. Twenty-eight (34%) models were validated in an 

external dataset by the same group of investigators. Only 11 (13%) models were 

externally validated by independent investigators. For model presentation, 55 of the 

83 models (66%) were presented as nomograms, and the remainder as formulae, 

prediction rules, or web-based calculators.  Detailed characteristics for each model 

development study are presented in Appendix Table S2.  

Among the 52 separate external validation studies (detailed characteristics in 

Appendix Table S2), 22 (42%) of them validated original models identified in our 

systematic review. For the other 30 studies validating pre-existing models where the 

model performance was not evaluated in the initial model development reports, we 

evaluated their performance in these external validation studies. The study cohorts of 

external validation studies had significantly smaller sample size than model 

development studies (median 277 vs. 814, Mann-Whitney-Wilcoxon test: P<0.001). 

The comparison of basic characteristics between model development and external 

validation studies are summarised in Table 3-2.  

 

Table 3-2 Summarised basic characteristics of included model development studies and 
external validations 

Variables Model Development(N=83) External validation(N=52) 

   

Participants (CRC patients)   

Cohort origin    

Europe  16(19%) 23(44%) 

Asia  52(63%) 19(36%) 

America    15(18%) 5(10%) 
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Variables Model Development(N=83) External validation(N=52) 

Other 0 5(10%) 

   

CRC Stage    

I-III 45(54%) 8(15%) 

IV 20(24%) 44(85%) 

Any 18(22%) 0 

   

Tumour location    

Colon  15(18%) 3(6%) 

Rectum  16(19%) 3(6%) 

Any 52(63%) 46(88%) 

   

Sample size   

<500 28(34%) 9(17%) 

>=500 55(66%) 43(83%) 

   

No. predictors    

<5 30(36%) 16(31%) 

 5-10 50(60%) 36(69%) 

>10 3(4%) 0 

   

Outcome   

Overall survival  47(57%) 24(46%) 
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Variables Model Development(N=83) External validation(N=52) 

CRC-specific survival  13(16%) 16(31%) 

Disease-free survival  17(20%) 11(21%) 

Recurrence-free survival  7(8%) 15(29%) 

Other 10(12%) 3(6%) 

   

Model discrmination    

C statistic/AUC 76(92%) 50(96%) 

Other† 4(5%) 5(10%) 

   

Model calibration    

Calibration plot 47(57%) 7(13%) 

Hosmer-Lemeshow test 6(7%) 0 

   

Internal validation    

Split sample  14(17%) NA 

Bootstrapping  13(16%) NA 

Cross validation  18(22%) NA 

Not reported 39(47%) NA 

   

Model presentation    

Nomogram  55(66%) NA 

Formula  21(25%) NA 

Other** 7(8%) NA 
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*including D-statistic, sensitivity and specificity.    
**including score rule and decision tree.    
CRC, colorectal cancer; AUC, area under receiver’s operating characteristic curve. 

 

 Critical appraisal    

Risk of bias distribution of each domain for all included studies is summarised in 

Figure 3-2. Overall, only two models reported by one article were classified as low 

risk of bias for all domains (Rees et al, 2008a). The majority of the models were 

classified as ‘low’ risk for participant selection (N=97, 72%), predictors (N=104, 77%), 

outcome (N=122, 90%), and EPV (N=74, 89%).  However, for dataset attrition, 71 

studies (53%) were classified as ‘high’ risk, and with regard to data analysis, most 

studies (N=104, 77%) were classified as ‘moderate’ risk of bias.  The detailed scores 

of risk of bias for each domain are presented in Appendix Table S4 (model 

development studies) and Appendix Table S5 (external validation studies).    



Chapter 3 Systematic literature review 

63 
 

 

Figure 3-2 Risk of bias assessment for six predefined domains for each included study. For 
participant selection, studies were rated as ‘moderate’ risk of bias if participants were 
possibly selected in a non-consecutive manner as this allowed for potential selection bias. 
We categorized studies to be high risk of bias if their selection criteria were inadequately 
described. With respect to the predictors, we assigned ‘moderate’ risk to studies where it 
was unclear whether the predictors were measured after the outcome was revealed, and 
‘high’ risk to studies where the measurement of predictors was not clearly described.  For 
the outcome domain, studies were assigned with ‘moderate’ risk when the measurement of 
CRC recurrence or progression was not clearly stated and ‘high’ risk if the whole follow-up 
procedure was not adequately described. For EPV, studies were scored as ‘moderate’ risk 
with an EPV between six and ten, and ‘high’ risk if their EPVs could not be calculated or 
were less than six. Studies were assigned with ‘high’ risk of attrition bias if insufficient 
information on loss to follow-up, and ‘moderate’ risk due to less than 20% of loss to follow-
up. In relation to data analysis, studies were classified as ‘moderate’ risk given that either 
internal validation or missing data handling was not performed, and as ‘high’ risk if they 
neglected to report on either. The detailed classification rules are summarized in Appendix 
Table S1. 

 

Model performance   

Of all studies, 126 (93%) reported a C statistic to assess the discriminative ability of 

the model. The reported C statistic for model development studies was significantly 

larger than external validation studies (median 0.73 vs. 0.66, Mann-Whitney-Wilcoxon 

test: P<0.001).   

We performed 15 meta-analysis for including eight models (each single model can be 

applied to predict multiple survival outcomes) that had been externally validated at 

least twice: Basingstoke preoperative score, Fong score, Iwatsuki score, Memorial 

Sloan Katherine Cancer Centre (MSKCC) nomogram, Nordinger score, Peritoneal 
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Surface Disease Severity Score (PSDSS), Kanemitsu nomogram and Valentini 

nomogram. Their basic characteristics and estimate C statistics from meta-analysis 

are presented in Figure 3-3. We found significant discriminative ability for five models 

predicting six outcomes: the Basingstoke score (preoperative) predicting recurrence-

free survival (RFS), the Fong score predicting RFS; the Nordinger score predicting 

RFS; the PSDSS score predicting OS; the Valentini nomogram predicting distant 

metastasis and OS. The pooled C-statistic of these six meta-analyses ranged from 

0.57 to 0.74 (median 0.67). We were able to calculate the 95% PI for five meta-

analyses (Figure 3-3). The 95% PI of all the five models crossed 0.5, suggesting that 

a future validation study could possibly found a negative discriminative performance 

of that model. 
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Figure 3-3 Summarised C statistics of prediction models included in meta-analysis. Adapted from the original publication with permission 
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The Fong score was the most commonly validated model. It utilized seven predictors 

(positive resection margin, extrahepatic lesion, lesion of regional lymph nodes for 

primary tumour, metastases-free period, number of metastases, the largest size of 

metastasis and CEA) to predict the RFS and OS of CRC patients with liver metastasis 

after curative resection. The meta-analysis found a significant C-statistic of 0.62 (95% 

CI: 0.55-0.68) for RFS prediction, but non-significant for OS 0.60 (C-statistic=0.60 95% 

CI: 0.45-0.74). The strongest discriminative performance in relation to point estimates 

of C statistics was observed for the Basingstoke preoperative score (C statistic: 0.74, 

95% CI: 0.52-0.88) and the Valentini nomogram (C statistic: 0.74, 95% CI: 0.60-0.85). 

For model calibration, 54 (40%) of all studies presented a calibration plot. Six studies 

employed the Hosmer-Lemeshow test to explore the overall goodness of model fit, 

and none of them reported a statistically significant departure of predicted outcomes 

from observed (Table S4). We were unable to quantitatively synthesize the model 

calibration because none of the studies reported the slope of the calibration plot or 

observed-to-expected events ratio.    

 

3.2.5 Discussion  
 

Interpretation and clinical application  

To the best of our knowledge, this is the first systematic review and meta-analysis 

evaluating the performance of prediction models for survival outcomes of CRC 

patients with surgical resection. Prediction models can assist in estimating 

individualised prognosis, therefore guiding more precise treatment for CRC patients. 

In this study, we reviewed 83 original prediction models along with 52 external 

validation studies, and identified eight models that had been externally validated at 

least twice demonstrating significant discriminative performance.  

With regard to predictors, most of the included models were based on common 

demographic and clinic-pathological factors. Genetic markers such as RAS, BRAF 
mutations and microsatellite instability (MSI) have already been recommended to 

guide treatment for metastatic CRC. However, their predictive performance has barely 

been investigated in existing prediction models. Other strong prognostic factors for 

CRC such as chemo- or radiotherapy were only adopted in a small proportion of 
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included models (13/83) due to limited data accessibility. For the CRC community, 

therefore, these variables should be routinely recorded in the future to develop 

stronger prediction models. Exploring the potential incremental predictive value of 

these prognostic predictors and other novel markers such as circulating tumor cells 

(CTC) (Rahbari et al, 2010) and immune-scores(Mlecnik et al, 2018), is still of merit.    

In relation to model performance, the Fong score is the most commonly studied model 

and it has been externally validated four times. The European Society for Medical 

Oncology (ESMO) consensus guidelines has discussed possible application of this 

score to guide adjuvant treatment for CRC with liver metastasis after 

hepatectomy(Van Cutsem et al, 2016), but no formal recommendations have been 

made. Our study identified statistically significant but modest discriminative ability for 

this score (C statistic: 0.62 for RFS) as well as other models (range 0.55 to 0.74), 

which merits further improvement. Additionally, the relatively small number of external 

validations for each model and inherent heterogeneity across different clinical settings 

resulted in C statistics with wide PIs crossing the null. The estimate discriminative 

performance of these models should therefore be interpreted with caution. Whilst 

most models adopted the C statistic to evaluate the discriminative ability, its limitations 

have been widely discussed. For instance, it is hard to interpret the variation among 

C statistics to compare the performance of different models derived from the same 

sample (Diouf et al, 2014; Kawai et al, 2015). Novel metrics, such as the expected 

information for discrimination(McKeigue, 2018), may be adopted in future research. 

Our review also found that model calibration was poorly reported, which made it even 

more challenging to evaluate the model accuracy.  

 Risk of bias evaluation 

The main sources for risk of bias for the current models stemmed from potential cohort 

attrition and methodological flaws in data analysis. The vast majority of included 

studies did not specify the presence and extent of loss to follow-up in the study cohort, 

which could bias the results and affect their validity(Dettori, 2011).  With regard to 

data analysis, none of the external validation studies in our review reported how the 

missing data were dealt with, and only 22% of the model development studies 

employed missing data imputation. In addition, according to the CHARMS checklist 

and the proposed checklist of Transparent Reporting of a multivariable prediction 

model for Individual Prognosis Or Diagnosis (TRIPOD) (Moons et al, 2015), future 
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model development studies should also present more detailed prediction rules 

including the intercept or baseline survival to allow for individualized risk prediction 

rather than simply stratify CRC patients into risk groups. As for validation studies, our 

review identified a paucity of external validation studies that compared the validation 

dataset with the original model development dataset in terms of characteristics of 

participants and distribution of predictors.  Model updating, if necessary, is also 

expected to be conducted and clearly presented in future validation studies.  It should 

be noted that the CHARMS checklist is less sensitive to some sources of bias specific 

to survival analysis. For example, some predictors that can vary with time such as 

chemotherapy dosage, BMI and other biomarkers are mostly assessed as a fixed 

baseline measurement, and other predictors such as second-line therapy are 

immeasurable at the baseline, resulting in possible time-dependent bias(van 

Walraven et al, 2004).                    

 Model validation and impact studies 

Model performance can be artificially inflated if the metrics are simply estimated based 

on the original sample that was used to develop the model(Harrell et al, 1996). This 

‘over-optimism’ could be attenuated with internal validation. However, only half of the 

model development studies identified in our systematic review reported internal 

validation metrics. Fourteen (32%) of these models adopted split-sample approach 

despite this method being less favored due to its inefficiency (Steyerberg et al, 2001). 

Future studies should consider more sophisticated internal validation methods such 

cross-validation and bootstrapping(Steyerberg et al, 2001).  External validation can, 

but is not limited to, quantify the potential overfitting of the original model and explore 

the generalizability of a model in diverse clinical settings (Collins et al, 2014). It is 

ideally performed by independent investigators to avoid over-interpretation(Collins et 
al, 2014), but of note, only 13% of the new models in our review have been externally 

validated by independent investigators. Furthermore, all the external validation 

studies reported by independent investigators evaluated models constructed and 

published prior to 2011, and therefore, future work on validating newer CRC 

prognostic models is required.    

It is also noteworthy that we failed to identify any impact studies, which are critical in 

defining the models’ real-world impact by head-to-head comparisons(Moons et al, 
2009). Aside from that, cost-effectiveness should also be evaluated by health 
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economic modelling, which is scarce in current CRC prognostic models(van Giessen 
et al, 2017). Finally, few studies have explored how prediction models can be 

integrated into the clinical workflow(Vickers, 2011), which will also have ramifications 

on their clinical utility.   

Limitations 

Our study has several limitations. Firstly, the majority of the included models were 

constructed and validated in developed countries. The performance of these models 

remains unclear, and therefore, needs to be validated and updated in other 

epidemiological settings. It is also imperative to develop and validate models in those 

less-studied areas especially where increasing CRC mortality rates have been 

observed (such as Eastern Europe and South America)(Arnold et al, 2017). Secondly, 

our literature search was restricted to English-language publications, inadvertently 

omitting models developed or validated in some other populations. Thirdly, the 

relatively small number of included validation studies (<5) for each meta-analysis and 

between-study heterogeneity led to wide confidence intervals. Therefore, the results 

of each meta-analysis ought to be interpreted with caution, and need to be updated 

as more validation studies for these models become available. In addition, our meta-

analysis was based on reported face value of model performance metrics such as C 

statistics. Multiple adaptations that enable the calculation of the C statistic from time-

to-event data have been proposed (Austin et al, 2017; Blanche et al, 2013). However, 

most included models did not report this information, which made it challenging to 

harmonize the extracted statistics and could compromise the accuracy of the meta-

analysis. Fourthly, this study aimed to comprehensively review the performance of 

existing prediction models for CRC prognosis. Potentially useful models that did not 

report a quantitative measure of model performance were excluded, although this has 

been mitigated to some extent by the inclusion and evaluation of any available 

external validation studies of these models. Lastly, studies without a clear prediction 

rule, such as models derived from genomic data using neural network, were also 

excluded. It is impractical for these exploratory models to be validated by independent 

investigators, and so they are beyond the scope of this systematic review.                      

 Conclusion  

Although there exist abundant prediction models on survival outcomes of CRC 

patients with surgical resection, only five of them (Basingstoke score, Fong score, 
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Nordinger score, Peritoneal Surface Disease Severity Score and Valentini nomogram) 

have been externally validated in at least two datasets. Most of these scores 

demonstrate significant discriminative ability, which may potentially assist clinical 

decision-making. However, other aspects of these five models such as model 

calibration, their impact in real-word and cost-effectiveness should be further 

investigated before formal recommendation can be made for use in clinical practice. 

As for other models that have not been validated in independent datasets and are 

subject to risk of bias, current evidence is insufficient to evaluate their performance 

externally, which does not support for these models to be routinely applied. Future 

research should focus not only on constructing new models with novel predictors, but 

also on validating and investigating the impact of existing prediction models to 

improve prediction for CRC prognosis. 

 

3.3 Summary 
 

This chapter presents a published systematic literature review regarding prediction 

models on survival outcomes of CRC patients. I reviewed 83 original model 

development studies and 52 external validation studies.  This review found that the 

majority of published prediction models had not been validated by external datasets, 

and their performance could potentially be overestimated in the original report. As for 

models that had been validated in at least two datasets, five models were identified 

by meta-analysis with significant discriminative ability to predict survival outcomes of 

CRC. No cost-effectiveness analyses or model impact studies were identified in this 

review, indicating that future efforts are still warranted before these prediction models 

can be applied in routine practice to guide more accurate patient management.  In 

this review, I also summarised the predictors employed in published prediction models.  

However, none of the included prediction models adopted germline genetic variations 

as predictors to develop their models, indicating the paucity of solid evidence on 

associations between any germline variants and survival outcomes of CRC.  The 

following chapters of the thesis will leverage multiple patient cohorts and explore 

potential effects of germline genetic variations on CRC survival.
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Chapter 4 Materials and methods 
 
4.1 Introduction  
 

This chapter mainly describes materials and methods used in this thesis. It consists 

of two sections. In the first section, datasets including the Study of Colorectal Cancer 

in Scotland (SOCCS), CRC cases from UK Biobank and three previously published 

clinical trials will be introduced. The second section describes at length the study 

design and the main steps of data analysis for genetic association studies, prediction 

modelling and the GWAS. 

 

4.2 Data sources   
 

4.2.1 The Study of Colorectal Cancer in Scotland   
 

The Study of Colorectal Cancer in Scotland (SOCCS) is a population-based case 

control study which has been actively recruiting CRC patients and matched healthy 

controls (age, sex and health board) from all areas of Scotland since February 1999. 

It should be noted that controls were only used for other research purposes such as 

investigating risk factors for CRC susceptibility. For analysis in this thesis, only CRC 

cases from the SOCCS were used as a case cohort to explore survival outcomes of 

patients. The main aim of the SOCCS study is to investigate genetic and 

environmental factors contributing to CRC risk and survival outcomes. This study was 

funded by CRUK, Medical Research Council (MRC) and Chief Scientist Office of the 

Scottish Executive (CSO).   

 

Research Ethics approval  

The SOCCS study was approved by the MultiCentre Research Ethics committee for 

Scotland (MREC; approval number MREC/ 01/0/0), 18 Local Research Ethics 
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committees, 18 Caldicott guardians and 16 NHS Trust management committees 

(Theodoratou et al, 2008). Informed consents were signed by participants regarding 

their DNA samples and other relevant clinical and lifestyle data being stored and used 

by the research team based in the University of Edinburgh as well as collaborators 

from other research groups. Each participant was assigned a unique identification 

number and all data were entered into an anonymised Access database (except the 

genotype data which are also anonymised and stored separately).    

Inclusion and exclusion criteria for CRC cases   

The SOCCS study consists of two phases.  Participants recruited from February 1999 

to 2006 formed the first phase of the study.  For this phase, all incidental CRC cases 

throughout Scotland were included in the study if they were:  

1) histologically diagnosed with CRC  

2) were 16 to 84 years of age 

3) permanently resident in Scotland   

The diagnosis of CRC was confirmed histologically by referring to patients’ 

pathological reports.   

Patients were excluded if they were:  

1) recurrent colorectal cancer cases;    

2) unable to provide informed consent, for example if they were too ill or had mental 

health disorders.  

The second phase of the SOCCS study consists of incident CRC patients recruited 

from 2007 onwards at the Western General Hospital, Edinburgh.  In this phase, UK 

residents of 16 years or older with a diagnosis of CRC at any time were included. 

Other inclusion and exclusion criteria remained the same.    

Genotype data   

Blood samples were collected at recruitment and leucocyte DNA was extracted 

following standard protocols. DNA samples were genotyped using the Illumina® 
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HumanHap300, HumanHap240S and OmniExpressExome BeadChip 8v1 arrays. 

Detailed specifications of these genotyping arrays can be found at the Illumina® 

Support Centre (URL4-1). As of December 2018, a total of 6,366 CRC cases and 

14,692 controls were genotyped in the SOCCS study.  

Quality control 

Dr Maria Timofeeva, a statistical geneticist in the Colon Cancer Genetics Group, 

performed the quality control and imputation for the genotype data of the SOCCS 

cohort. Detailed technical information can be found in previous publications (He et al, 
2018b; Law et al, 2019). In particular, the quality control was conducted in 

concordance with the protocol proposed by Anderson and colleagues (Anderson et 
al, 2010). Participants were excluded based on the following criteria, and detailed 

numbers of individuals excluded in each step are presented in Chapter 5.       

1) High missing rate of genotyping (>5%). This is an indicator of possible low quality 

of the DNA sample, which can potentially impair the genotyping accuracy.  

2) Abnormal heterozygosity (>3 standard deviations from the mean). Extreme 

heterozygosity rates indicate possible contamination of the DNA sample or inbreeding.    

3) Discordant sex classification.   

4) Individuals recruited twice or who had first-degree relatedness to other included 

participants.  

5) Evidence of non-white European ancestry. This was evaluated by principal 

component analysis (PCA) in conjunction with samples of European ancestry from 

the 1000 Genome Project (URL4-2).  PCA is a method that evaluates the 

resemblance among samples under study by clustering them based on a range of 

their features. For example, samples in the SOCCS study were clustered according 

to a few hundred thousand of genetic variants arrayed. This method incorporates 

common genetic variants (minor allele frequency>1%) throughout the germline 

genome into a restricted number of independent principal components (PCs) that are 

numbered by a descending order of importance--that is, PC1 accounts for the largest 

amount of genetic difference across all included individuals.  Principal components 1 

and 2 are plotted in Figure 4-1 and Figure 4-2 to show the clusters of individuals in 

the SOCCS and the 1000 Genome Project.   
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Figure 4-1 Principal components clustering of individuals in the SOCCS study with 
European (EUR), Asian (ASN) and African (AFR) populations from the 1000 Genome 
Project.  Created by Dr. Maria Timofeeva (Institute of Genetics and Molecular Medicine, 
Edinburgh) and used with permission. 

 

 
 
Figure 4-2 Principal components clustering of individuals in the SOCCS study with 
European populations of the Northern and Western European Ancestry (CEU), Toscani in 
Italia (TSI), Finnish in Finland (FIN), British in England and Scotland (GBR) and Iberian in 
Spain (IBS) from the 1000 Genome Project. Created by Dr. Maria Timofeeva (Institute of 
Genetics and Molecular Medicine, Edinburgh) and used with permission. 
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As shown in these two figures, all SOCCS samples clustered tightly with the five 

European populations sequenced as part of the 1000 Genome project (Figure 4-2)—
Northern and Western European Ancestry (CEU), Toscani in Italia (TSI), Finnish in 

Finland (FIN), British in England and Scotland (GBR), and Iberian Population in Spain 

(IBS), yet no clustering with Asian and African populations was detected (Figure 4-1). 

The closely clustered samples from the SOCCS cohort indicate that population 

structure is unified and therefore relatively unlikely to affect observed associations 

between genetic markers and phenotypes.  

Imputation 

Genotyping arrays are normally designed to detect a limited number of genetic 

variants (usually 250,000 to 500,000 variants) instead of the entire set of common 

genetic variants throughout the human genome. Especially for large-scale genetic 

association studies with thousands of samples included, it is often too costly to 

sequence the whole genome for each individual. Nonetheless, genetic variants 

genotyped by arrays, also known as tag variants, are still informative given the 

ubiquitous linkage disequilibrium (LD) throughout the genome. Linkage disequilibrium 

reflects the fact that alleles at nearby genetic loci tend to be inherited together, leading 

to non-random associations among these alleles.  In an attempt to leverage these 

associations among correlated genetic loci, a range of imputation methods have been 

proposed to infer undetected genotypes that can be used to map genetic risk loci for 

specific disease outcomes. Imputation increases the density of genetic variants and 

hence adds extra statistical power to discover potential genetic loci. The imputation 

process for the SOCCS study is briefly introduced here.    

After an extensive procedure of quality control, the genotype data of the SOCCS study 

were phased using the SHAPEIT (v2.r837) software (Delaneau et al, 2011). Phasing, 

also known as haplotype estimation, refers to the statistical method used to infer the 

haplotypes—combinations of genotypes that are inherited together— based on 

arrayed genotypes. For instance, the genotypes of two loci are detected as ‘AB’ and 

‘AB’ (A and B refer to different alleles); then the haplotypes in theory can be ‘AB/AB’ 

or ‘AA/BB’. A variety of probabilities models have been developed to estimate the 

most likely haplotypes—that is, to reconstruct the chromosome origin for each allele. 

The SHAPEIT software adopts a linear complexity method to estimate haplotypes and 

additional details regarding the estimation process are presented elsewhere 
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(Delaneau et al, 2011). There has been evidence showing that inferring haplotypes 

prior to imputing genotypes can improve accuracy and efficiency of imputation, and 

therefore has been recommended by the operating manual of the IMPUTE2 software 

(URL4-3).    

The inferred haplotypes were then passed to the IMPUTE2 software for the imputation 

of untyped genotypes (URL4-3). The IMPUTE2 module operates based on the 

imputation method proposed by Howie et al (Howie et al, 2009). Figure 4-3 depicts 

the conceptual framework of imputation. The basic idea is to compare the genotyped 

sample with a reference panel from the same ancestry that has been more densely 

genotyped or sequenced, so as to infer unknown genotypes of the sample leveraging 

the genomic LD structure.   

  

Figure 4-3 Conceptual framework for genotype imputation.  Horizontal boxes denote 
haplotypes of the reference panel. Reproduced from (Howie et al, 2009) with permission. 
The original source is covered by a Creative Commons Attribution License.   

 
 

The reference panels we used for imputation were the UK10k release (ALSPAC and 

TWINSUK studies, April 2014 release), and the 1000 Genome V3 (December 2013 

release). All variants were coded and mapped to their chromosome positions based 

on the Genome Reference Consortium Human Build 37 (GRCh37)—a digital 

database of DNA sequences which was derived from a number of volunteers recruited 

from the USA and released in February 2009 (URL4-4).  We excluded variants that 

have discrepancies in strand (5’ end to 3’ end or 3’ end to 5’ end) and chromosome 
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position information across the two reference panels (<1% of variants). The two 

reference panels were merged in IMPUTE2, and the imputation was conducted in 

5Mbp chunks. Monomorphic variants [only one allele present in the dataset, rare 

variants with minor allele counts <20 and poorly imputed variants] were excluded from 

the analysis. Poor quality of imputation for a specific variant was defined as an 

information score less than 0.80. The information score estimates the ratio between 

the effective sample size accounting for imputation uncertainty and the real sample 

size (Marchini & Howie, 2010). For example, an information score of 0.5 indicates that 

the imputed genotype data are equal to half of the sample size of accurately 

genotyped data in terms of estimating a pre-defined genetic effect. A total of 

8,328,632 autosomal genetic variants were included in the analysis.  

 

Phenotype data   

Covariates 

As introduced in Chapter 1 (page 36), prognostic factors that are officially listed by 

the Canadian Cancer Society include: AJCC stage, surgical margins, lympho-

vascular invasion, CEA levels, bowel obstruction or perforation, tumour grade, 

histological type, microsatellite instability (MSI0, KRAS gene mutation, BRAF gene 

mutation). Among these factors, the AJCC and tumour grade were available in our 

SOCCS datasets and therefore were extracted with other basic demographic 

variables. These variables were used as covariates and are summarised in the 

following Table 4-1. 
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Table 4-1 Summary of non-genetic variables extracted from the database of the SOCCS 
study 

Variables Descriptions 

Age at diagnosis Collected from clinical records  

 

Sex Biological sex ascertained from genetic data  

AJCC stage Derived from the TNM stage based on the 6th 

edition AJCC staging manual  

Tumour grade Collected from pathological reports  

 

 

Survival outcomes 

Overall and CRC-specific survival were both employed as outcomes for analysis. The 

death status and date for each CRC patient in the SOCCS study were retrieved by 

linking the database to the Scottish Cancer Registry on January 1st 2018. Notably, it 

takes up to six months for the Scottish Cancer Registry to enter all updates of death 

records received from the National Death Registry. Hence, deaths occurred between 

July 2017 to January 2018 could possibly be missed in our dataset. In order to 

minimise this bias, we set the endpoint of follow-up at July 1st 2017—that is, deaths 

between July 1st 2017 and January 1st 2018 were treated as censored. The survival 

time for each patient was defined as the time span from the date of definitive treatment 

(starting date of surgery or chemo/radiotherapy for patients without surgery) and the 

date of death or July 1st 2017 whichever happened first. I assigned the cause of death 

based on information provided by death certificates. Rules for assigning the cause of 

death for each case are summarised below:  

1) All deaths with the primary diagnosis of CRC reported in death certificates were 

noted as CRC-related deaths (N=1,212).    

2) If the death certificate mentioned the presence of ‘metastasis’ or ‘carcinomatosis’, 

then the cause of death was presumed to be CRC (N=92).  
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3) If the case was reported with unknown primary tumour, then the death was 

assigned as CRC unless the certificate clearly stated otherwise (N=37).   

4) If the death certificate stated that either the primary or metastatic tumour site had 

been unresectable, then the cause of death was noted as CRC (N=8).  

5) If the certificate stated that the cause of death was due to a visceral or intra-

abdominal complication which could be directly related to CRC or the treatment of the 

disease, the cause of death was attributed to CRC (N=9).   

6) If no clear diagnosis was reported by the death certificate, then the death was 

deemed as non-CRC related.  

A randomly selected sample of 200 death records were evaluated independently by 

a colorectal surgeon, Dr Peter Vaughan-Shaw, and the concordance of results were 

checked. Only two cases (1%) were identified with discordant results upon which 

agreement was reached after discussion.   

 

4.2.2 UK Biobank  
 

UK Biobank is a large, population-based prospective cohort study designed to 

investigate genetic and environmental determinants of a wide spectrum of human 

complex traits and disorders.  From 2006 to 2010, the study recruited over 500,000 

participants aged 40-69 years throughout the UK.  More details regarding participant 

recruitment for the UK Biobank can be found in the online study protocol (URL4-5).   

Research Ethics approval  

The UK Biobank study was approved by North West Multicentre Research Ethics 

Committee (Reference 11/NW/0382). Each participant signed an electronic consent 

form at one of the 22 assessment centres across the UK. The dataset of CRC cases 

used in this thesis was based on a study proposal approved by the UK Biobank 

(Project No. 7441: ‘Investigation of genetic, environmental and gene x environmental 

interaction in colorectal cancer risk and survival’, Principal investigator: Professor 

Evropi Theodoratou).  The Project 7441 adopted a case-control design including all 

the prevalent and incident CRC cases along with healthy controls (cases vs controls: 
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1:4) matched by age, gender, date of blood sampling, ethnicity and region of 

residence. Similar to the SOCCS study, only CRC cases from the Project 7441 were 

used as a case cohort to explore survival outcomes of patients.      

 

Identification of CRC cases  

UK Biobank retrieves diagnoses of medical conditions by linking participants to the 

Hospital Episode Statistics (HES) and the cancer registry.  Diagnoses are coded using 

both the 9th and 10th version of the International Classification of Diseases (ICD). 

Classification codes corresponding to CRC are summarised in the Table 4-2. The 

project (7441) includes individuals from the UK Biobank cohort with diagnoses of ICD9 

codes 153.0-154.1 and ICD10 codes C18.0-C20.  It is worth mentioning that UK 

Biobank also documented self-reported conditions at recruitment. Self-reported CRC 

cases were excluded from the analysis unless they were confirmed by ICD9 or ICD10 

codes.  

Table 4-2 ICD9 and ICD10 codes for colorectal cancer  

Sites ICD9 ICD10 

Colon   

Hepatic flexure  153.0 C18.3 

Transverse colon  153.1 C18.4 

Descending colon  153.2 C18.6 

Sigmoid colon  153.3 C18.7 

Cecum 153.4 C18.0 

Appendix 153.5 C18.1 

Ascending colon 153.6 C18.2 

Splenic flexure 153.7 C18.5 
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Sites ICD9 ICD10 

Overlapping lesion of colon*  153.8 C18.8 

Colon, unspecified sites 153.9 C18.9 

Rectum    

Rectosigmoid junction  154.0 C19 

Rectum (includes rectal ampulla) 154.1 C20 

*Subcategory 153.8 and C18.8 denotes malignancies that overlap two or more continuous 
sites or the point of origin cannot be determined.   

 

Genotype data  

Peripheral blood samples for each participant in UK Biobank were taken at 

recruitment and the DNA was extracted following a standard protocol described 

elsewhere (URL4-6). Genotyping was conducted using the Affymetrix UK BiLEVE 

Axiom array for the initial 50,000 participants; a customised array—the Affymetrix UK 

Biobank Axiom®—was used to genotype the remaining 450,000 participants. These 

two arrays tagged over 95% of overlapped genetic variants.  Additional details 

regarding the genotyping arrays can be found online (ULR 4.6).    

Quality control 

Two rounds of marker-based quality control were performed by the Affymetrix 

laboratory and the Wellcome Trust Centre for Human Genetics (WTCHG) respectively.  

In brief, the Affymetrix laboratory applied a cluster-based method which contained a 

range of metrics to identify variants that were genotyped with poor accuracy. More 

technical details can be found elsewhere (URL4-7).  Based on the filtered variants 

from the initial round, the WTCHG designed a panel of six statistical tests to further 

detect poorly genotyped variants by examining the consistency across various 

experimental factors such as array difference and batch effect.  Descriptions on the 

panel of statistical tests can be found in the previous publication (Bycroft et al, 2018).  

An aggregate of 805,426 genetic variants passed these two rounds of marker-based 

quality control.   
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The UK Biobank cohort consists of participants of diverse ancestral origins across the 

UK.  The WTCHG conducted PCA to dissect the population structure of the whole 

cohort, although self-reported ethnic background was also documented in the study.  

The first four principal components were plotted in the Figure 4-4 below with self-

reported ethnic background marked by different colours and signs.   

 

Figure 4-4 Principal components of genetic background of participants in UK Biobank. 
Reproduced with permission. The original source is covered by a Creative Commons 
Attribution License. 

  

Given the dispersed distribution of genetic background of UK Biobank participants 

(Figure 4-4), further sample-based quality control procedures were conducted within 

the cases-control study (Project 7441). In particular, firstly participants with self-

reported non-white origin were excluded; then individuals with evidence of non-

European ancestry were identified and excluded by applying the same procedure as 

in the SOCCS study (described in section 4.2.1).  Accordingly, individuals with 

discordant sex information, duplication or first-degree relatedness, high missing rate 

(>5%) and abnormal heterozygosity were also excluded.    

Imputation 

Genotype imputation for the UK Biobank cohort was conducted by the WTCHG. 

Similar to the imputation procedure of the SOCCS study, genotype data that passed 
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quality control were first phased using the SHAPEIT (v3) software. With regard to 

genotype imputation, the WTCHG employed an updated version of the IMPUTE2 

module—known as IMPUTE4 (URL4-8)—that applied the same statistical model but 

with improved computational efficiency.  In line with the SOCCS study, genetic 

markers in UK Biobank were also coded based on the Genome Reference 

Consortium Human Reference 37 (GRCh37). Based on the imputed dataset, we 

excluded genetic variants with an information score less than 0.8. Eventually, a total 

of 9,067,367 autosomal genetic variants were included in the genotype dataset of the 

UK Biobank.   

Phenotype data  

Covariates 

Extensive phenotyping of the UK Biobank cohort has been underway as of this writing.  

For instance, disease characteristics for patients diagnosed with certain disorders 

such as cancer have not been available for researchers.  With regard to our study, 

clinic-pathological data including cancer stage and grade for CRC patients have not 

yet been released in November 2019.  Other relevant variables available in UK 

Biobank are summarised in the Table 4-3. The variable ‘Age when attended 

assessment centre’ was used to differentiate incident and prevalent CRC cases. In 

particular, cases who were diagnosed with CRC within six months since attendance 

or before attendance were categorised as prevalent cases.  

 

Table 4-3 Summary of non-genetic variables extracted from the UK Biobank cohort study  

Variable  UK 
Biobank ID 

Descriptions 

Age at diagnosis  40008 Collected from the clinical records 

Sex 31 Biological sex ascertained from genetic 

data 

Age when attended 
assessment centre 

21003 Documented at recruitment  
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Survival outcomes 

UK Biobank retrieves death records based on the linkage to the National Death 

Registry; death records are updated quarterly. Since the records were directly 

synchronised with the National Death Registry, here we assumed no delay of data 

entry that could cause potential bias. The death status and date for our study (Project 

7441) was last updated in February 2018. Therefore, the survival time for each 

individual was defined as the time span between the date of CRC diagnosis (UK 

Biobank variable ID: 40005, acquired from the Central Registry) to the date of death 

(UK Biobank variable ID: 40000) or February 1st 2018 for cases that were alive.  As 

for the cause of death, UK Biobank assigned putative primary (UK Biobank variable 

ID:40001) and secondary causes of death (UK Biobank variable ID:40002) to each 

individual based on the death certificate. The causes of death were coded using 

ICD10 codes. In our study, death records were treated as CRC-related deaths in the 

analysis of CRC-specific survival if either primary or secondary causes of death 

contained ICD10 codes of CRC (Table 4-2) or any indications of conditions listed in 

the criteria applied to the SOCCS study.   

 

4.2.3 Clinical trials datasets  
 

I obtained summary-level data from three previously published clinical trials in order 

to validate potential discoveries from the genome-wide association study of 

associations between genetic variants and overall survival of CRC patients. The 

summary-level results were extracted and provided by Dr Claire Palles from the 

Institute of Cancer and Genomic Sciences, the University of Birmingham. More 

descriptions on the summary-level results will be presented in Chapter 5, and here 

basic characteristics of these three clinical trials will be briefly introduced.   

The QUASAR2 trial 

This trial explored potential added survival benefits of bevacizumab in addition to 

capecitabine in adjuvant chemotherapy of stage II and III CRC patients (Kerr et al, 
2016). Bevacizumab is an antiangiogenic agent commonly used in the treatment of 

metastatic CRC.  The study was approved by the West Midlands Research Ethics 

Committee (Edgbaston, Birmingham, UK; REC reference: 04/MRE/11/18).  From April 
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25, 2005 to October 12, 2010, a total of 1,952 patients were recruited from 170 

hospitals in seven countries with the central trial office based in Oxford, UK. Separate 

informed consent was obtained from all patients whose blood samples were to be 

taken for further genotyping.  

The SCOT trial 

This trial was an international collaborative effort aiming to establish the non-inferiority 

of a 3-month versus 6-month duration of adjuvant oxaliplatin plus fluoropyrimidine 

chemotherapy in stage II and III CRC patients (Iveson et al, 2018). The ethical 

approval for the trial was granted by the West Glasgow Research Ethics Committee 

and equivalent committees in participating countries (244 centres in six countries). 

Between March 27, 2008, and November 29, 2013, the SCOT trial eventually enrolled 

a total of 6,088 CRC patients, of which 5,244 patients were recruited in the UK. All 

participants provided informed consent including the use of blood samples for further 

research.   

The VICTOR trial 

This was a phase III randomised controlled trial investigating the efficacy of Rofecoxib 

in adjuvant chemotherapy of stage II and III CRC patients (Midgley et al, 2010).  

Rofecoxib is an inhibitor of Cyclooxygenase-2 (COX-2) which plays a key role in CRC 

tumourigenesis.  In 2004, however, Rofecoxib was withdrawn globally due to growing 

concerns on increased risk of cardiovascular events. Therefore, the VICTOR trial was 

terminated after 2,434 patients had been entered between April 2002 and September 

2004. This trial was approved by the Cancer Research Campaign, the Multicentre 

Research Ethics Committee, and committees at each participating centres in the UK 

(details presented in the original publication (Midgley et al, 2010)). Participants also 

provided informed consent for use of their blood samples.    

As with the SOCCS and UK Biobank, participants with European ancestry from these 

three trials were genotyped and included in the latest GWAS meta-analysis on CRC 

risk by Law and colleagues (Law et al, 2019).  Colorectal cancer cases in the SCOT 

trial were genotyped using the Illumina® Global Screening Array, whereas cases in 

the QUASAR2 and VICTOR trials were arrayed using the Illumina® Hap300 and 

Hap370. Quality control and genotype imputation for these genotyped samples were 

harmonised with the SOCCS and UK Biobank studies by Law et al. (Law et al, 2019). 
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In particular, the same reference panel as in the SOCCS study—the UK10k release 

(ALSPAC and TWINSUK studies, April 2014 release), and the 1000 Genome V3 

(December 2013 release)—was used for genotype imputation of these three datasets, 

and all genetic variants were coded based on the GRCh37. Additional details of 

genotyping, quality control and imputation can be found in the published GWAS meta-

analysis (Law et al, 2019).  

 

4.3 Study design and data analysis   
 

4.3.1 Candidate genetic association study    
 

Study design  

The two main study designs for investigating population-based genetic associations 

are candidate genetic association studies and genome-wide association studies. 

Candidate genetic association studies use a hypothesis-driven approach to test a 

prior hypothesis that a single or a group of genetic variants of interest are associated 

with certain disease outcomes.  Hypotheses are made based on previous evidence, 

for example biological plausibility that can potentially link a genetic variant in a specific 

gene with the disease outcome under study. In this thesis, I conducted three 

candidate genetic association studies investigating three groups of common genetic 

variants: a) genetic variants previously reported to be associated with survival 

outcomes of CRC, b) genetic variants associated with CRC risk, c) genetic variants 

previously linked with survival outcomes of other cancers. The flow chart of study 

design for these three studies is presented in Figure 4-5.  
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The catalogue assigns subject headings to all indexed traits, allowing search for 

genetic variants by trait of interest.  As of December 10 h 2018, there were three 

subject headings corresponding to prognosis-related traits: ‘Survival time’, ‘Mortality’ 

and ‘Disease prognosis measurement’.  The traits ‘Disease prognosis measurement’ 

and ‘Mortality’ contained no prognostic outcomes of cancer, and therefore were 

excluded from the search. The trait ‘Survival time’ encompassed six secondary traits 

that included all outcomes related to cancer prognosis: ‘disease free survival’, ‘distant 

metastasis free survival’, ‘event free survival time’, ‘metastasis free survival’, ‘overall 

survival’, and ‘progression free survival’.  I retrieved all variant-trait associations under 

the subject heading ‘Survival time’ including the secondary traits. Associations 

between genetic variants and survival outcomes of non-cancer diseases were 

excluded. Leukaemia was also excluded considering its distinct pattern of progression 

compared with solid tumours.       

CRC risk GWAS meta-analyses 

Led by the Colon Cancer Genetics Group here in Edinburgh, the latest GWAS meta-

analysis on CRC risk revealed 31 new CRC risk loci, bringing the total number of 

identified CRC risk variants  to ~130 (Law et al, 2019). In this study, Law et al. 

summarised all previously reported CRC risk loci. Therefore, we extracted CRC-risk 

variants from this study directly, before it got indexed by the GWAS catalogue. 

Variants reported by another independent newly-published large GWAS meta-

analysis (Huyghe et al, 2019) that had not been indexed in the catalogue were also 

extracted and merged with the variant list extracted from Law’s study. In addition, we 

also searched the GWAS catalogue under the subject heading of ‘Colorectal Cancer’ 

to check if any previously reported risk loci were missed.   

Accounting for linkage disequilibrium 

Linkage disequilibrium (LD) reflects the fact that alleles at different positions 

(haplotypes) of the chromosome occur in a non-random manner—that is they are 

correlated to each other. The structure of LD is mainly determined by the population 

origin and genetic distance between two alleles. On the contrary, alleles are in linkage 

equilibrium if they are inherited independently. There have been two widely used 

metrics in genetic association studies to quantify the LD between two variants: D’ and 

r2. Assuming there are two biallelic genetic loci with alleles A1A2 and B1B2; the 
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frequencies of these two loci are noted as p and q. The deviation (D) of the observed 

haplotype frequency (f) from the expected frequency can be calculated as: 

D = 𝑓(𝐴1𝐵1) − 𝑝1𝑞1  

D’ is defined as the normalised D (D’= D/Dmax), where Dmax denotes the theoretical 

maximum of D (detailed formula can be found elsewhere (Lewontin, 1964)). Whilst D’ 

is easy to be calculated, it has been shown to be sensitive to alleles of extreme 

frequencies (Ranganathan et al, 2018). Therefore, an alternative measure, r2, is more 

frequently adopted in genetic association studies where risk loci of interest are often 

of low minor allele frequencies. The r2 is expressed as:  

𝑟2 ==
𝐷2

𝑝1 × 𝑝2 × 𝑞1 × 𝑞2
 

and it ranges from 0 to 1, where 0 means completely independent alleles and 1 means 

being perfect proxy for each other. In this thesis, the r2 was used to measure the LD 

between two variants, and I calculated it in the British population by using the 1000 

Genomes phase 3 GBR data from the Ensembl portal (URL4-9).  I chose an r2 of 0.2 

as the threshold, and any pairs of variants with an r2>0.2 were considered as being in 

LD.  When LD was detected, the variant associated with the trait of interest (CRC risk 

or cancer survival) with the smaller p-value was retained.    

 

Statistical analysis  

Genetic model 

Based on the assumed pattern of inheritance, each genetic variant can be coded in 

different ways, also known as genetic models. There are three main genetic models 

that are widely used in genetic association studies: dominant model, recessive model 

and co-dominant model.  For a biallelic genetic variant with alleles A and a, the 

dominant model assumes that it takes only one risk allele (A) to exert the effect. That 

is, the model compares individuals with the genotype AA or Aa versus individuals with 

aa. The recessive model, however, assumes that an individual must have two copies 

of risk alleles (AA) to show the effect, and therefore it compares AA versus Aa + aa.  
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As for the co-dominant model, it assumes that the genetic risk conferred by Aa lies 

somewhere between AA and aa. The co-dominant model can be further divided into 

additive and multiplicative models according to the pattern of relative risk among these 

three genotypes. The conceptual framework of different genetic models is depicted in 

Figure 4-6.   

 

Figure 4-6 Conceptual framework of different genetic models       

 

Among these genetic models, the additive model has been most widely adopted as 

the assumed model in both candidate and genome-wide association analyses. This 

model assumes a linear increase in risk for each allele copy. Evidence based on 

simulation studies indicated that the additive model also has acceptable statistical 

power to detect possible dominant effects in addition to additive effects of a certain 

genetic variant (Lettre et al, 2007). Moreover, the number of risk alleles of imputed 

genetic variants are presented as expected values in a continuous order (range from 

0 to 2), and can be naturally modelled in an additive pattern. Therefore, I chose the 

additive genetic model as the primary model of analysis of genetic associations. 

However, simulation analysis suggests that the additive model has limited statistical 

power to identify a possible recessive effect (Lettre et al, 2007); thus I also rounded 

the imputed allele dosage to integers—that is, any imputed allele dosage that is 

greater than 1.5 was coded as 1, otherwise coded as 0—so as to fit a recessive model 

and investigated their associations with CRC survival. Notably, there has been no 
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previous evidence indicating the mode of inheritance being recessive for any of these 

included candidate genetic variants in this thesis. Therefore, investigation using 

recessive model should be considered as sensitivity analysis.      

 

Polygenic risk score 

The previous section introduced genetic models used to code each single variant 

before analysing the genetic association with CRC survival. In addition, I also 

investigated the combined effect of a set of genetic variants, for example CRC-risk 

variants as a group, on survival outcomes by constructing a polygenic risk score (PRS) 

for each patient.  I calculated the PRS using a naive unweighted approach due to lack 

of prior knowledge on the potential distribution of effects on survival for these 

candidate variants. This approach assumes equivalent effect sizes for all the variants 

included in the PRS. To create the PRS for each patient, I added the number of risk 

alleles of all the candidate variants in a group. To take variants associated with CRC 

risk as an example, I first harmonised their direction of effects on CRC risk, and 

identified genetic alleles responsible for increased CRC risk. Then the exact number 

or imputed dosage of risk-increasing alleles for each variant was summed up.  

Time-to-event outcome 

In contrast to common outcomes that are either categorical or continuous, survival 

outcomes have a special nature; that is, the outcome for each individual under study 

consists of two elements: event status (D) and survival time (T).  In this thesis, the 

events of interest were defined as death of any cause for overall survival and CRC-

related death for CRC-specific survival. The status of patients with event occurrence 

was coded as ‘1’ and patients who were alive until the last time of updating the death 

records (also known as right censored observations) were coded as ‘0’. As mentioned 

previously, the other element—survival time—was defined as the time span from the 

date of definitive treatment (SOCCS) or CRC diagnosis (UK Biobank) to the date of 

event or censoring; the time period was measured by years of follow-up. Finally, the 

survival outcome for each CRC patient was expressed as a combined measure: (T, 

D).      
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Kaplan-Meier estimator and log-rank test 

In order to estimate the probability of surviving a certain amount of time (denoted as 

t) after CRC diagnosis, a few statistical concepts need to be introduced. At first, I 

define two random variables Ts for the survival time, and Tc for the censoring time in 

response to the aforementioned time element for the survival outcome of each patient. 

An assumption here is that Ts and Tc are independent of each other. Then, the 

cumulative distribution function (CDF) for Ts and Tc can be expressed as:  

𝐹𝑠 = P(𝑇𝑠 ≤ t) 

and  

𝐹𝑐 = P(𝑇𝑐 ≤ t) 

In the context of survival analysis, however, the complementary function of the CDF 

of Ts is commonly used as we are often more interested in the probability of patients 

surviving at least a certain time span. Hence, the survival and censoring function are 

defined as:   

S(t) = P(𝑇𝑠 > t) = 1 − 𝐹𝑠(𝑡) 

and  

C(t) = P(𝑇𝑐 > t) = 1 − 𝐹𝑐(𝑡) 

Since we are only interested in evaluating future risk of death for each patient, the 

primary focus of this section is concerning estimating the S(t).     

Amongst many methods proposed to estimate the S(t), the Kaplan-Meier estimator 

has been the most widely-used statistic, especially in epidemiological and clinical 

research settings. The estimator was named after Kaplan and Meier who first 

proposed it in 1958 (Kaplan & Meier, 1958). The Kaplan-Meier estimator is defined 

by the following expression:     
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S(t) = ∏ (1 −
𝑑𝑖

𝑛𝑖
)

𝑖:𝑡1≤𝑡

 

Here, ti refers to a certain time point when at least one death occurs; di denotes the 

number of deaths that occur at ti; and ni refers to the size of risk set which is measured 

by the number of individuals that are still alive entering the time ti. Given the fact that 

each ti is a time point actually observed from the sample dataset, the distribution of 

estimated S(t) will not be continuous. Instead, there are ‘jumps’ at time points where 

events occur.  

In this thesis, I calculated the Kaplan-Meier estimates for CRC patients and plotted 

the estimates against the follow-up time to make survival curves. Patients were 

grouped and their survival curves were stratified by prognostic factors such as AJCC 

stage for descriptive purposes and potential genetic variants as a graphic display for 

the study results. The Kaplan-Meier estimates were calculated using the packages 

‘survival’ (URL4-10) and ‘survminer’ (URL4-11) in the R software (version 3.5.1, 

URL4-12).  

In addition, a log-rank test was conducted to test the difference across multiple 

survival curves (Peto & Peto, 1972). Assuming a two-group comparison, I first used 

i=0 or 1 to denote the two groups, and j to define each time point for observed events. 

Let N be the number of individuals at risk and O be the number of observed events at 

the same time point. The null hypothesis assumes that the two groups have an 

identical hazard function h(t). Under this hypothesis, the expected number of events 

occurring at each time point can be calculated, and a test statistic Z is defined as 

follows:   

𝑍𝑖 =
∑ (𝑂𝑖,𝑗 − 𝐸𝑖,𝑗)𝐽

𝑗=1

√∑ 𝑉𝑎𝑟𝑖,𝑗
𝑗
𝑗=1

 

It has been demonstrated that the statistic is asymptotically normal as j increases; a 

p-value can then be derived from a standard normal distribution (Peto & Peto, 1972).  

I conducted the log-rank test using the ‘survival’ (URL4-10) package.   
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Proportional hazards model 

To estimate effects of prognostic factors, such as genetic variants and other non-

genetic factors, on survival outcomes of CRC, regression techniques are needed to 

accommodate single or multiple variables simultaneously in a model. The proportional 

hazards model, also known as Cox regression model, is the most widely applied 

method to quantify the association between prognostic factors and survival outcomes. 

The basic ideas and principles of the Cox regression model will be briefly introduced 

here.   

Proposed by Cox (Cox, 1972), this method is based on the proportional hazards 

assumption—the effect of a certain factor on the survival outcome remains constant 

over time.  A few statistical concepts need to be defined to explain the method.  Firstly, 

based on the survival function described in the previous section, the hazard (h) can 

be interpreted as the derivative of the survival function, or intuitively as the 

instantaneous risk of death for those individuals who are at risk.  The hazard function 

is expressed as:      

h(t)𝑑𝑡 = P(T < t + 𝑑𝑡|T ≥ t) 

 

The left side of the of equation refers to the risk of death during a short time period dt, 

and it is related to the survival function by the right side which denotes the probability 

of death within dt given that the individual has survived up to the time point t.  The Cox 

regression model relates potential prognostic factors under study to the hazard 

function by the following equation:   

h(t) = ℎ0(t)exp(𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛) 

It should be noted that in this expression, the hazard function h(t) is the expected (or 

predicted) hazard at the time point t instead of the observed hazard derived from the 

survival estimates. On the right side, coefficients b1 to bp are effects on the hazard at 

t per single unit change of each factor X (also known as covariates).  The h0(t) is the 

baseline hazard—the hazard function of individuals with all the factors at baseline 

level (all Xs equal to zero). In order to clearly explain the coefficients, or the prognostic 

effects estimated from the Cox model, we consider a simple univariable Cox model:  
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h(t) = ℎ0(t)exp(𝑏1𝑋1) 

Assuming the covariate X is a binary variable, such as sex, coded with values 0 or 1, 

the ratio of hazards between the two groups of patients with X=1 or X=0 is defined as 

the hazard ratio (HR) which can be expressed as:   

HR =
ℎ0(t)exp(𝑏1𝑋𝑥=1)
ℎ0(t)exp(𝑏1𝑋𝑥=0)

 

namely:  

HR = exp(𝑏1) 

Notably, the exp(b1) is a constant that does not depend on the time t, pointing to the 

proportional hazard assumption of the Cox regression model.  

In this thesis, the Cox regression model was fitted using the ‘coxph’ function from the 

R package ‘survival’. Estimation of the regression coefficients when applying the 

‘coxph’ function to fit a Cox model relies on a method called partial likelihood; a Wald 

statistic is calculated to generate a two-sided p-value for the inference of the statistical 

significance of the estimated coefficient (HR). Additional technical details about this 

method can be found in the original paper by Cox (Cox, 1972).  As presented in the 

flow chart of study design, I investigated associations between three sets of candidate 

genetic variants and overall and CRC-specific survival outcomes using the SOCCS 

study. Age at diagnosis, sex and AJCC tumour stage at presentation for each patient 

were fitted in the Cox regression as covariates in addition to the genetic variant. For 

possible validation analysis using the UK Biobank cohort, covariates only included 

sex and age at CRC diagnosis due to unavailable data of AJCC stage. I also 

conducted Cox regression analysis in different strata of CRC patients stratified by sex 

(male and female), AJCC stage (stage II-III and stage IV) and tumour site (colon and 

rectum cancer).   
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Adjusting for multiple testing 

I conducted three candidate genetic association studies with each study including a 

set of variants whose associations with CRC survival were tested simultaneously. If a 

normal threshold of p<0.05 was applied for each test, it would have caused 

remarkably higher false positive rates (or type I error) when considering a set of tests 

together. There are two approaches that have been widely used to adjust for this 

problem: the Bonferroni correction and the false discovery rate (FDR), also known as 

the Benjamini-Hochberg approach. The Bonferroni correction adjusts the significance 

threshold to α /n where the n denotes the number of tests to be conducted. The α 

here refers to the familywise error rate (FWER) which measures the probability of 

making at least one type I error (false positive) in the whole family of tests. Similar to 

a single statistical test, this threshold of the FWER is often set to be α=0.05. Given 

that the Bonferroni correction directly adjusts the α level, it can be readily applied to 

estimate the statistical power using an adjusted α.  Power calculation will be described 

in the following section.  

Although effective in controlling type I error, the Bonferroni correction could lead to 

increased non-rejection of a false null hypothesis (type II error). Therefore, in addition 

to the Bonferroni correction, we also adopted a less conservative approach--the FDR 

approach (Benjamini & Hochberg, 1995)--to evaluate the significance of results and 

to screen for potential signals from the candidate genetic association studies that 

merited further validation. This approach is designed to control the expected 

proportion of false positive findings. To be specific, instead of adjusting for the α 

threshold to assess significance, the FDR approach adjusts all the p-values generated 

from the set of tests. It first sorts the n p-values in an ascending order, with p1 the 

smallest and pn the largest. With the largest pn remains the same, the adjusted ith p-

value (i<n) is expressed as:  

𝑝𝑖 = Min(adjusted 𝑝𝑖+1, 𝑝𝑖(
𝑛
𝑖

)) 

Then a pre-specified α threshold (<0.05 for example) is used to evaluate the adjusted 

p-values.  
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Power estimation 

Statistical power of a genetic association test estimates the probability of detecting 

significant association of a given variant with CRC survival when a genetic effect truly 

exists. Owzar et al. provided a widely-used approach to estimate the statistical power 

of a genetic association study on survival outcomes (Owzar et al, 2012). Some basic 

metrics used in this approach to calculate the power are introduced here. Firstly, the 

minor allele frequency (MAF) is the observed frequency of the second commonest 

allele of a given genetic variant (assuming the variant is biallelic) in a specific 

population.  Another important metric is the effect size which in survival analysis is 

presented as the hazard ratio. The event rate, namely the proportion of overall or 

CRC-specific deaths in the study sample, is also needed for the power estimation. 

Combined with the sample size and the α level, these metrics were integrated into the 

formula provided in Owzar’s paper to estimate the power (Owzar et al, 2012). Notably, 

the method developed by Owzar et al relies on a score statistic to make statistical 

inference which is different from the Wald statistic used in the ‘coxph’ function that we 

adopted to test the genetic associations. Nonetheless, these two statistics have been 

shown to be asymptotically identical as the sample size increases (Owzar et al, 2012).  

In order to adjust for multiple testing, we specified the α level as 0.05/n where n was 

the number of variants in each candidate genetic association study. We also chose 

the additive genetic model to calculate the power in response to our main association 

analyses. Power estimation was conducted using the ‘survSNP’ package (URL4-13).  

Additional technical details regarding the method can be found in the original 

publication (Owzar et al, 2012).    

 

4.3.2 Predictive modelling 
 

Study design 

Following the previous section where I validated individual association between each 

genetic variant that had been linked to CRC prognosis and survival outcomes of CRC 

patients in the SOCCS study, here in this section, I focused on exploring the predictive 

value of variants that had been previously linked with CRC survival as a group in 

forecasting survival outcomes of CRC. As discussed in Chapter 3, a multivariable 
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prediction model is an algorithm that provides an average estimate of the probability 

by combining all predictors together. In this study, I fitted Cox regression models to 

develop a genetic predictor and then evaluated its performance in predicting the 

survival rates of CRC patients.   

In order to establish and validate a genetic predictor combining these variants 

together, two datasets—UK Biobank and the SOCCS study—were leveraged. As 

introduced in Chapter 1, a substantial amount of within-stage variation has been 

observed in relation to survival outcomes of CRC patients.  From a clinical perspective, 

it has been of great interest to develop novel predictors to further improve prediction 

on the basis of tumour stage. Clinical interest also lies in predicting survival outcomes 

within specific stage, for example CRC patients at stage II-III, where the optimal 

treatment strategies for patients with varied prognostic profiles are still to be decided. 

Given that tumour stage is unavailable in UK Biobank, this dataset was used as the 

training set to develop the genetic predictor; external validation of the genetic predictor 

derived from the UK Biobank and within-stage prediction were then conducted in the 

SOCCS study. The flow chart of the study design is shown in the Figure 4-7 below:  
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Figure 4-7 Flow chart of study design for prediction modelling 

 

Developing the genetic predictor  

Full model 

In order to apply the predictor across different datasets, I first harmonised the 

reference allele of each genetic variant across the published GWASs and our two 

study cohorts--the SOCCS and UK Biobank study. In contrast to the analysis 

approach used in the preceding section where a single variant was fitted along with 

age, sex and AJCC stage, here I added all the 43 variants that were reportedly 

associated with CRC survival into one Cox regression model in the UK Biobank cohort 

to estimate the coefficient for each variant. All variants were coded under an additive 

Full model fitting 
all predictors 

Investigating extra 
predictive value on the 
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Model performance 
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genetic model. The linear predictor (LP) combining the 43 genetic variants is 

expressed as:     

LP = ∑ β𝑖X𝑖

𝑛

𝑖=1

 

Here βi denotes the coefficient of the ith variant extracted from the fitted Cox model, 

and Xi is the allele count.   

Feature selection 

As discussed in Chapter 3, it has been widely accepted that an increased number of 

predictors leads to higher events per variable (EPV) which further results in increased  

risk for over-optimism, where the developed model is over-fitted to the data under 

study and therefore incurs poor generalisability when applied to external data.  

Therefore, feature selection techniques have been developed and widely employed 

to reduce the model dimension.   

In this study, I first used a least absolute shrinkage and selection operator (LASSO) 

for feature selection.  This method reduces over-fitting by penalising the Cox 

regression coefficients towards zero. In particular, the LASSO regression seeks to 

minimise the following expression: 

∑(y𝑖 − ∑ X𝑖,𝑗β𝑗
𝑗

)2
𝑛

𝑖=1

+ 𝜆 ∑ |𝛽𝑗|
𝑗=1

 

The former part of the expression refers to the sum of squared errors in general linear 

models. The later part is the penalty term with the 𝜆 as the tuning factor that controls 

the strength of penalisation. The addition of the penalty term shrinks the coefficients 

and some of them can be reduced to zero, and therefore are excluded from the final 

model. In practice, a range of lambdas can be used to generate different models. 

Breiman et al. suggested an ‘one-standard-error’ approach utilising cross-validation 

to assist selection of the tuning factor (Breiman et al). Cross-validation is a resampling 

technique that randomly splits the study sample into k groups (also called k-fold cross-

validation). Each time, the model takes out one group as a test dataset and uses the 
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remaining groups as a training dataset. Then the statistical model is fitted repeatedly 

and the parameters of interest are summarised afterwards. Following this method, we 

used a 10-fold cross-validation to identify the lambda in response to the most 

parsimonious model where the cross-validation prediction error is within one standard 

error of the minimum. Technical details of the method can be found in the original 

publication (Breiman et al). The LASSO regression was conducted using the ‘glmnet’ 

R package (URL4-14). 

In addition to the LASSO approach, I also conducted backward selection to screen 

for potential useful variants in predicting CRC survival. This method starts with a full 

model with all the candidate variables included. The model then removes the least 

significant variable (evaluated by its p-value) and iterates this process until the all the 

remaining variables are below the pre-defined p-value threshold. Here in this thesis, 

I set the p-value threshold at 0.15 based on recommendations from a previous 

publication which conducted optimisation analysis to determine this threshold (Heinze 
et al, 2018). The backward variable selection was conducted using the ‘validate’ 

function in the ‘rms’ R package (URL4-15).     

 

Model performance assessment   

Evaluating the performance of a given prediction model is to quantify how concordant 

the predictions made from the model are with the observed outcomes. As opposed to 

the previous section where I focused on the relative risk effect (hazard ratio) of a 

single genetic variant, here the absolute probabilities of survival were used in the 

setting of risk prediction. To quantitatively evaluate the concordance, both the 

observed and predicted survival estimates are needed. The method used to generate 

Kaplan-Meier estimates for the observed survival rates has been introduced in the 

previous section. I obtained the predicted survival estimates by one minus predicted 

death risk which had been generated in the Cox regression. There are two major 

properties relevant to the model performance: discrimination and calibration.  In this 

thesis, I adopted multiple metrics to quantify the model performance based on these 

two aspects.  

The discriminative ability of a given prediction model reflects how good the model is 

to distinguish between individuals with and without the outcome of interest. In the case 
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of the time-to-event outcome, the Harrell’s C statistic is the mostly commonly used 

measure of the discriminative ability (Harrell et al, 1996). The C statistic calculates 

the proportion of randomly selected pairs of subjects in which an individual with longer 

observed survival time also exhibits higher predicted probability of survival. A C 

statistic of 0.5 suggests random predictions with null predictive value. Notably, pairs 

with an individual who has a shorter censoring time than the survival time of the other 

individual are not counted when calculating the C statistic. I calculated the C statistic 

using the “rcorr.cens” function in the ‘rms’ package (URL4-15).  It is worth mentioning 

that the “rccor.cens” function derives the C statistic along with its standard error from 

another measure called Somers’ D statistic. This statistic is defined as: 

𝐷𝑥𝑦 = E(sign(X1 − X2)sign(Y1 − Y2))  

Where (X1,Y1) and (X2,Y2) are two randomly selected pairs of random variables 

denoting the predicted and observed survival probability respectively. Ranging from -

1 to 1, the Somers’ D is related to the C statistic by: 

D = 2 × (C − 0.5) 

In order to identify the added predictive value of genetic variants on the basis of other 

variables, I compared the C statistics along with their confidence intervals derived 

from the model with and without genetic predictors. Moreover, I conducted a U-

statistic based test to determine whether the predicted probabilities from one model 

were more concordant with the observed estimates than the other model (Harrell Jr, 

2015). This test quantifies the proportion of subject pairs where there is less difference 

between predicted and observed estimates in one model than the other. I performed 

the U-statistic based test using the ‘rcorrp.cens’ function in the ‘Hmisc’ R package 

(URL4-16).  A p-value <0.05, which means there is 95% of chance that one model is 

more concordant than the other, was considered as statistically significant 

improvement.    

The other important property to evaluate the model performance is calibration—the 

overall agreement between predicted and observed probability. In the context of 

survival analysis where both the predicted and observed survival probabilities vary by 

time, the calibration of the model is therefore usually evaluated at a fixed time point. 

From a clinical point of view, I employed the 5-year survival as the observation time 
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to compare the agreement of predicted and actual survival outcomes.  I first grouped 

the individuals using the quartiles of the linear predictor of the prediction model under 

study. For each group, the observed Kaplan-Meier survival estimates were derived 

and contrasted with the mean predicted survival estimates. The calibration plot was 

constructed by plotting the predicted probabilities against the observed estimates for 

each risk group of patients. This plot allowed a visual assessment of the departure 

from the ideal calibration line with a slope of 1 and intercept of 0.  

In addition to evaluating the model calibration graphically, I also performed a Hosmer–

Lemeshow (HL) test to assist determining whether the model was well-calibrated 

(Hosmer Jr et al, 2013). The HL test statistic (H) is given by the following equation:  

H = ∑( 
(𝑂1𝑔 − 𝐸1𝑔)2

𝐸1𝑔
+

(𝑂0𝑔 − 𝐸0𝑔)2

𝐸0𝑔
 )

𝐺

𝑔=1

 

where G refers to the number of groups categorised by the linear predictor, O1 and 

O0 denote the number of observed events and non-events, and E1 and E0 represent 

the expected number assuming that the proportion of observed and predicted events 

are the same across all the risk groups (G).  It has been shown that the test statistic 

asymptotically follows a chi square distribution from which the p-value is generated.  

I employed the ‘hoslem.test’ function in the ‘ResourceSelection’ R package (URL4-

17) to conduct the HL test and examine the model calibration at the 5th year after 

diagnosis. A p-value<0.05 was deemed as significant departure from calibration.   

 

 

Adjusting for over-optimism 

Adjusting the model performance 

Model performance metrics, such as the C statistic, are commonly too optimistic if 

they were estimated from the dataset used to develop the model. This often leads to 

poorer prediction accuracy when applying the model to new patients.  Hence, 

methods have been proposed to adjust this over-optimism; this procedure is also 

commonly known as internal validation of the developed model. In this case, since I 
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developed the genetic predictor in the UK Biobank cohort, over-optimism was 

expected in the C statistic derived from the same cohort. With regard to the SOCCS 

cohort, the first step of validating the genetic predictor was immune to over-fitting as 

the model was fixed, and the SOCCS cohort was used as an external source. 

However, over-optimism arose in the second step when the genetic predictor was 

combined with other variables and the model was re-fitted. Therefore, internal 

validation was also performed for the new model established in the SOCCS study.  

I adopted a bootstrapping approach in this thesis to correct for potential over-optimism 

of the C statistic. In contrast to cross-validation which divides the sample into equally 

sized groups, bootstrapping is a re-sampling technique that draws samples from the 

dataset under study and therefore it allows replacement.  I generated 200 bootstrap 

samples and repeatedly calculated 200 C statistics following the procedure described 

above. Then the corrected C statistic along with its confidence interval was derived 

from the bootstrap sample distribution. Bootstrapping was conducted using the 

‘validate’ function in the ‘rms’ R package (ULR 4.15).   

 

Adjusting the model presentation 

As stated in the previous sections, I re-fitted the Cox model by combining the genetic 

predictor and other variables, which again introduced over-optimism into the model. 

Although the C statistic was adjusted to evaluate the model performance, the 

coefficients estimated from the newly-fitted model still remained inflated and therefore 

needed to be corrected before the model being presented. This was done by 

calculating and applying a metric called ‘shrinkage factor’ (Harrell Jr, 2015; 

Steyerberg, 2019). In particular, I first took a bootstrap sample, fitted the same Cox 

model, and obtained a new set of coefficients.  Then the new coefficients were utilised 

to create a new linear predictor for each individual in the cohort.  I re-fitted the Cox 

model using the new linear predictor as the covariate and extracted the coefficient of 

the predictor. This process was repeated in 200 bootstrap samples and the average 

of these coefficients was retrieved as the shrinkage factor (SF). I then applied this 

factor to shrink the original coefficients. Based on the expression of Cox regression 

model introduced previously, the ultimate model predicting the probability of surviving 

time t was presented as:  



Chapter 4 Materials and methods 

105 
 

S(t) = 𝑆0(t)exp ((𝑆𝐹×(𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛)) 

S0 refers to the baseline survival probability which can be derived from the baseline 

hazard estimated from the Cox regression. Betas are the regression coefficients from 

the original fitted model. Further details regarding the model shrinkage can be found 

in references of (Harrell Jr, 2015; Steyerberg, 2019).   

 

4.3.3 Genome-wide association study  
 
Study design  

As described in Chapter 2, the final part of the thesis is a GWAS investigating the 

whole genome to identify potential novel variants associated with CRC survival. 

Overall, we employed a two-step approach for this section. Firstly, the SOCCS cohort 

was used as the discovery dataset to perform the main GWA analysis. Secondly, any 

genetic variants identified at GWAS significance (p<5x10-8) were further validated by 

a meta-analysis combining datasets of summary statistics from the UK Biobank cohort, 

the QUASAR2 trial, and the pooled dataset of the VICTOR and SCOT trial. With 

respect to covariates, age at diagnosis, sex and AJCC stage were adjusted for the 

SOCCS cohort and the three clinical trial datasets. For the UK Biobank cohort, only 

age at diagnosis and sex were adjusted as AJCC stage was unavailable. For the 

outcome of CRC-specific survival, the validation analysis was only conducted in the 

UK Biobank cohort due to data availability.  In addition, the summary statistics derived 

from the GWAS in the SOCCS were utilised for gene and gene-set based enrichment 

analysis to explore putative genes and biological pathways associated with CRC 

survival. I also performed GWA analysis separately within stage II/III and stage IV 

CRC patients in the SOCCS study. Figure 4-8 presents the overall study design for 

this section.  
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ith individual in the cohort (either 0 or 1) and the expected number of events for the 

same individual at time t (Therneau et al, 1990). Mathematically it is expressed as:   

𝑀�̂� = 𝛿𝑖 − Λ̂0(𝜏𝑖)𝑒Υ̂1𝑍1+⋯+Υ̂𝑘𝑍𝑘  

where Λ0 refers to the baseline cumulative hazard at time point τi, and δi denotes the 

observation event (0 or 1). Z1 to Zk are covariates excluding the genetic variant of 

interest. In this study, Martingale residuals were calculated by fitting a standard Cox 

regression model with age at diagnosis, sex and AJCC as covariates using the ‘coxph’ 

function. It has been demonstrated that the Martingale residual is linearly related to 

the potential effect of the remaining variable, that is, the genetic variant under analysis 

(Therneau et al, 1990). In concordance with previous studies (Joshi et al, 2017; 

Therneau et al, 1990), the calculated Martingale residuals were then scaled up by 

1/(the proportion of events) to generate a 1:1 correspondence with the regression 

coefficients of genetic variants to be analysed.  Finally, we regressed the scaled 

residuals on the genetic variant (coded under the additive model) by fitting a 

univariable linear regression model as follows: 

𝑃 = 𝛽𝑋 + 𝑒 

Where β is the estimated genetic effect—approximated log-transformed hazard ratio 

of each variant. A Ward test was performed to obtain the two-sided p-value to examine 

if the β was significantly different from the null. I repeated the linear regression model 

for each of the eight million variants throughout the genome using the SNPtest (v2.50) 

software (URL4-18). Although it has been widely-accepted that the Martingale 

residual approach is a reasonable approximation to the standard Cox model with 

considerably reduced computational load, simulation studies found that there is a 2%-

4% loss of statistical power for the residual approach (Reynisson, 2018). Therefore, I 

re-fitted the standard Cox regression models for genetic variants identified from the 

Martingale residual based approach at a relatively lenient threshold p<5x10-7, and 

variants at GWAS significance (p<5x10-8) from the re-fitted Cox models were 

considered as significant GWAS signals and were passed on for replication.   

Considering that metastatic CRCs (stage IV) may have different genetic components 

in contrast with locally advanced CRCs (stage II and III), stratified GWA analyses 

were conducted following the same procedure above in stage II/III and stage IV CRC 

patients separately.   
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To visualise potential signals of genetic effects across the genome, I created 

Manhattan plots on a genomic scale by stacking the log-base-10 of the p-values for 

associations of all genetic variants grouped by chromosomes in genomic order. 

Genetic variants with strong associations, for example with p< 5x10-8, tend to rise up 

high in the plot. Manhattan plots were generated using the ‘Manhattan’ function in the 

‘qqman’ R package (URL4-19). In addition to Manhattan plots, I also constructed 

quantile-quantile (QQ) plots to visualise the genetic effect of all tested variants. The 

quantiles of log-base-10 of observed p-values obtained from the GWAS was plotted 

against the quantiles of log-base-10 of p-values sampled from a theoretical uniform 

distribution ranging from 0 to 1. A straight line with a slope of 1 is expected if overall 

there is no genetic effect on the outcome or if the study is underpowered. Due to the 

LD among variants, a real genetic effect manifests as an upward tail in a QQ plot. I 

created QQ plots using the ‘qqPlot’ function in the ‘GWASTools’ R package (URL4-

20).   

Unadjusted confounding can lead to systematic inflation in GWAS results—that is, a 

global excess of higher observed p-values than the theoretical distribution. This is 

often caused by unaccounted population structure and can be visualised by a 

systematic upward deviation from the diagonal of the QQ plot. In addition to the graph, 

I also quantified the extent of possible inflation by calculating the inflation factor 

denoted by lambda (λ). According to the method proposed by Aulchenko et al. 

(Aulchenko et al, 2007), I calculated the genome-wide inflation factor by regressing 

the observed p-values on the theoretical distribution using the ‘estlambda’ function in 

the ‘GenABEL’ R package (URL4-21). A lambda value>1.1 was considered as 

presence of inflation (Yang et al, 2011).         

I adopted the same method as in previous candidate genetic association studies to 

estimate the statistical power of this GWAS (Owzar et al, 2012). An α level at GWAS 

significance (5x10-8) was employed along with the same set of other metrics including 

the sample size, proportion of events, effect sizes and minor allele frequencies.   

Replication analysis  

Associations of genetic variants with CRC survival that reached GWAS significance 

(p<5x10-8) were validated by meta-analysis combining three datasets. Standard Cox 

regression models adjusted for age at diagnosis, sex and AJCC stage were 
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conducted in the QUASAR2, VICTOR and SCOT trials to investigate associations 

between variants discovered in the SOCCS and overall survival of CRC patients.  

Both overall and CRC-specific survival were included as outcomes in the UK Biobank 

cohort without adjusting for AJCC stage due to unavailable data. I then extracted the 

summary statistics from the regression models fitted in these datasets including the 

regression coefficients along with their standard errors of the genetic variants. Given 

the concordant ethnicity across all included study cohorts, I implemented a fixed-

effect model meta-analysis, which has been widely used in GWAS meta-analyses, to 

obtain pooled estimates of genetic effects of these variants.  In contrast with the 

random-effects model used in the meta-analysis in Chapter 3, the fixed-effect model 

assumes a constant effect of the factor under study across all included datasets.  I 

employed an inverse-variance weighted (IVW) estimator to combine effect estimates 

extracted from each validation study. To be specific, let Xi be the ith effect estimate, 

namely the regression coefficient of the ith study. The IVW approach defines the weight 

of each included study as:  

W𝑖 =
1
𝑉𝑖

 

Where Vi is the variance of Xi. Weighted by Wi, the IVW estimator of the pooled effect 

size XFE is then expressed as: 

X𝐹𝐸 =
∑ 𝑊𝑖𝑋𝑖

∑ 𝑊𝑖
 

With the variance as:  

V𝐹𝐸 =
1

∑ 𝑊𝑖
 

 

Xi is normally distributed with a sufficiently large sample size, so is the XFE. Therefore, 

a Z score can be generated to infer the significance of XFE.  In addition, I used the I2 

statistic to evaluate potential heterogeneity of effect sizes from each included study 

(Higgins et al, 2003). A two-sided p-value<0.05 was considered as a statistically 
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significant association that was successfully replicated in the three independent 

datasets. I carried out the meta-analyses and created forest plots displaying the 

individual and pooled effect estimates using the ‘metagen’ function in the ‘meta’ R 

package (URL4-22).  

 

Gene and Gene-set based enrichment analysis   

By performing a GWAS, I interrogated individual effects of approximately eight million 

genetic variants on CRC survival outcomes. However, survival of CRC patients is a 

complex trait resulting from polygenic effects of variations in multiple genomic regions. 

Each genetic variant may contribute only a very small fraction of the effect which can 

be undetectable by a GWAS with limited statistical power. Therefore, gene and gene-

set based pathway analysis has been proposed to group millions of genetic variants 

based on their known biological function, and then to test the joint effect of these 

variants as a group on the outcome of interest (de Leeuw et al, 2015). This type of 

analysis can not only indicate functional implications by identifying significant signals 

enriched in genes or sets of genes involved in key biological pathways, but also 

provide higher statistical power due to the reduced number of statistical tests.  

Here I employed the Multi-marker Analysis of GenoMic Annotation (MAGMA) 

approach to conduct gene and gene-set based pathway analyses (de Leeuw et al, 
2015) using the summary statistics of the main GWAS including all SOCCS patients. 

The MAGMA analysis was implemented using the online portal of Functional Mapping 

and Annotation of Genome-Wide Association Studies (FUMA, URL4-23) (Watanabe 
et al, 2017). For the gene based test, genetic variants included in the preceding 

GWAS were first annotated and mapped to a total of 35,808 genes curated in the 

Ensembl genome database (build 85) (URL4-9). Then the genetic effects on CRC 

survival outcomes of variants within the same gene were aggregated. To be specific, 

the MAGMA approach proposed a SNP-wise model leveraging the summary statistics 

of the GWAS results. In particular, the summary statistics including the effect 

estimates, standard errors and p-values for all genetic variants mapped in a specific 

gene were used to re-construct their test statistics (MAGMA uses Chi-square statistic). 

Then the mean statistic of these variants in the gene was estimated to infer the 

statistical significance of the gene-wise effect. It is worth noting that the linkage 
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disequilibrium needs to be adjusted in order to model the distribution of the variants’ 

test statistics. In this study, the 1000 Genomes Project phase 3 was adopted as the 

reference panel to create an LD matrix and account for the LD structure among the 

variants. Similar to the GWAS, I created Manhattan plots to show the gene based 

signals.              

Results of gene based tests were utilised in subsequent gene-set based pathway 

analysis. Mapped genes were aggregated and assigned to ~ 4,728 gene-sets 

involved in different biological pathways curated in The Molecular Signatures 

Database (MSigDB v5.3)(Liberzon et al, 2015; Watanabe et al, 2017).  Leeuw et al. 

proposed a competitive model to analyse the gene-set based effect. This test 

examines whether associations of genes encompassed in the set with CRC survival 

outcomes are generally stronger than genes outside the set by harnessing p-values 

from the gene based tests above (de Leeuw et al, 2015). To be specific, the method 

first creates a statistic Z from the gene based p-values by:  

 Z = Φ−1(1 − 𝑝) 

Where it takes the inverse cumulative standard normal distribution of 1-p. Then a 

linear regression model is fitted as:   

Z = 𝛽0𝑠𝐿 + 𝑆𝑠𝛽𝑠 + 𝜖 

Where β0L is the intercept, and Ss denotes whether the gene is included in the set s 

(Ss=1 or 0). A one-sided test is then conducted to determine if βs is significantly larger 

than 0. In order to adjust for gene-gene correlations, the competitive model derives a 

gene-gene correlation matrix from correlations of genetic variants in each pairs of 

genes (de Leeuw et al, 2015).  With respect to evaluating statistical significance, the 

FUMA implements a Bonferroni correction to adjust the α level to 0.05/n where n 

denotes the number genes and gene sets.    
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4.4 Summary  
 

This chapter describes the study cohorts and presents details of the study design and 

statistical methods implemented in the thesis.  The SOCCS cohort was used as the 

main discovery dataset for the genetic association studies and the GWAS, whilst the 

UK Biobank cohort along with three clinical trial datasets were employed to replicate 

possible discoveries. The Cox regression model was used to estimate effect of each 

genetic variant on overall and CRC-specific survival outcomes of CRC patients. For 

the predictive modelling, I used the UK Biobank cohort to develop the genetic 

predictor and tested its predictive performance as well as added predictive value of 

the genetic predictor on the bases of other non-genetic factors using the SOCCS 

cohort. The model performance was evaluated by examining the discriminative ability 

and the model calibration. The results of each part of analyses are presented in 

Chapter 5.     
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Chapter 5 Results 
 
5.1 Introduction  

 
This chapter presents the results of the analysis in response to the objectives listed 

in Chapter 2. The first section summarises the basic characteristics of the included 

variables and survival outcomes of patients from the SOCCS and UK Biobank cohorts. 

Descriptive analysis of the associations between these variables and survival 

outcomes is also presented. In the second section, the main results of the validation 

study on previously reported genetic variants associated with CRC survival are 

described. Next in the third section, I present the prediction models combining these 

previously reported variants and other variables. Results of model performance in 

predicting CRC survival are also presented. The fourth section features the results 

from candidate association studies testing two groups of genetic variants—variants 

associated with CRC risk and variants reportedly linked with survival outcomes of 

other types of cancers. Finally, the fifth section presents the results of the genome-

wide association study using the SOCCS cohort and replication analysis based on a 

meta-analysis of the summary statistics from the UK Biobank and the clinical trial 

datasets.  

 

5.2 Descriptive analysis of the study cohorts 
 

This section presents basic characteristics of the participants included in the analysis. 

Detailed information regarding the definition and obtainment of study variables can be 

found in Chapter 4. To be specific, the results of patient selection are presented firstly. 

Then characteristics of covariates including missing data are reported. Genetic 

association analyses in this thesis were conducted on the basis of complete case 

analysis; therefore, no missing data were present in covariates used in these analyses 

including age at diagnosis, sex and AJCC stage. Missing values were only identified 

in other variables (tumour grade and site). Finally, descriptive analysis of survival 

outcomes of the study cohorts and associations between the covariates and survival 

outcomes are presented in this section.  
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5.2.1 Patient selection  
 
Study of Colorectal Cancer in Scotland 

As mentioned previously, the survival time of each CRC patient was calculated from 

the date of definitive treatment to the date of death (or alive until January 1st 2018). 

Therefore, I was unable to construct the survival time if the date of definitive treatment 

was missing; these patients were excluded from the analysis (N=46). I also excluded 

527 patients with missing covariates including age at diagnosis, sex and AJCC stage. 

In addition, ten patients with stage 0 designation were also excluded because they 

could be a mixture of patients with polyps or with pathologic complete response (no 

residual tumour identified) to neoadjuvant therapy. I further excluded 94 cases 

diagnosed with appendix and endocrine tumour. Presented in Figure 5-1 is the 

diagram of patient selection for the SOCCS study.  A total of 5,675 CRC patients were 

eligible for the final analysis.  
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Figure 5-1 Diagram of patient selection for the Study of Colorectal Cancer in Scotland. 
Adapted from the previous publication (He et al, 2019b) with permission. The original source 
is an open access article under the terms of the Creative Commons Attribution License. 

*controls were only used for QC, not included in analysis of this thesis   

 

  
 

UK Biobank  

Given that disease characteristics such as AJCC stage were still unavailable in the 

UK Biobank cohort, no disease-based quality control, for example exclusion of stage 

0 patients, was conducted. Therefore, I included all CRC cases with genotype data 

that passed genotyping quality control from the case-control study (Project 7411).  

Twelve patients with missing information on age at diagnosis were excluded. Figure 
5-2 shows the diagram of patient selection for the UK Biobank study dataset.  Finally, 

a total of 4,887 CRC patients were included.  

Individuals excluded during 
genotyping quality control: 
High missing rate (N=147) 
Non-European ethnicity (N=77) 
Relatedness or duplicates (N=2,525)  
Sex discrepancy (N=55) 
Extreme heterozygosity (N=50)  
Controls with cancer history (N=931) 
Sample issue (N=54) 

Cases excluded:  
Appendix, endocrine tumour 
or unavailable diagnostic 
status (N=94)  
Missing age at diagnosis, 
date of definitive treatment or 
AJCC stage (N=517) 
Stage 0 cases (N=10) 

  

Individuals genotyped in the 
SOCCS study:  
CRC cases: N=6,821 
controls*: N=14,692  

CRC cases not matched 
in the phenotype 
database (N=346) 

CRC cases included for 
analysis:  
N=5,675 
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Figure 5-2 Patient selection procedure from the UK Biobank study 

*controls were only used for QC, not included in analysis of this thesis   
 

5.2.2 Covariates   
 

As described in Chapter 4, the SOCCS cohort included a total of 5,675 patients 

diagnosed with CRC and the UK Biobank cohort included 4,887 patients (incident and 

prevalent CRC cases). Based on the recommendations from the Canadian Cancer 

Society on prognostic factors of CRC (introduced in Chapter 1), the AJCC stage and 

the tumour grade were available in the SOCCS cohort and therefore they were 

extracted along with other basic characteristics including age at CRC diagnosis, sex 

and tumour site (colon or rectum). Given that enhanced cancer data had not been 

released by the UK Biobank, only age at diagnosis and sex were included as 

covariates for the study cohort in this thesis. Descriptive statistics along with the 

Individuals excluded during genotyping quality 
control: 
High missing rate (N=698) 
Non-European ethnicity (N=44) 
Self-defined non-white ethnicity (N=966) 
Relatedness or duplicates (N=211)  
Sex discrepancy (N=56) 
Extreme heterozygosity (N=21)  
Controls with cancer history (N=4,615) 

Individuals genotyped in the UK Biobank study (Project 7441):  
CRC cases: N=6,360 
controls*: N=25,440  

CRC cases included for analysis:  
N=4,887 
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number of missing values of these variables are summarised in Table 5-1. Categorical 

or binary variables are presented as exact numbers and percentages; continuous 

variables are presented as median and interquartile range (IQR). 

Table 5-1 Basic characteristics and descriptive statistics of eligible non-genetic variables from 
the SOCCS (n=5,675) and UK Biobank study (n=4,887) 

Variables* SOCCS Missing UK Biobank  Missing 

Age at diagnosis 
(years) 64.5(54.6-71.6) 0 62.2(55.8-67.2) 0 

Sex  0  0 

Male  3,235(57%)  2,063(42%)  

Female 2,440(43%)  2,824(58%)  

AJCC stage  0  NA 

I 1,005(17.7%)  NA  

II 1,891(33.3%)    

III 1,995(35.2%)    

IV 784(13.8%)    

Tumour grade  839(14.8%)  NA 

1 (well) 185(3.3%)  NA  

2 (moderate) 3,954(69.7%)    

3 (poor/undifferentiated) 697(12.3%)    

Tumour site  66(1.2%)  NA 

Colon  3,392(59.8%)  NA  

Rectum 2,201(38.8)    

Colon and rectum 16(0.3%)     

*Continuous variables are presented with median and interquartile range.   
AJCC, the American Joint Committee on Cancer; NA, not available. 

 

5.2.3 Survival outcomes   
 

Kaplan-Meier estimates—probabilities of CRC patients in SOCCS and UK Biobank 

cohorts surviving over 1, 3, 5 and 10 years—were calculated and listed in Table 5-2. 
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The survival rates of the UK Biobank cohort (N=4,887) were mostly higher than rates 

of the SOCCS cohort (N=5,675) at each observation time. Results of log-rank test 

also suggested a statistically significant difference in terms of the survival estimates 

between the two study cohorts (p<0.001 for both overall and CRC-specific survival).  

 

Table 5-2 Kaplan-Meier estimates for overall and CRC-specific survival of patients in the 
SOCCS and UK Biobank cohort 

  Kaplan-Meier estimates (95%CI) 

Time (years) SOCCS UK Biobank 

Overall survival   

1 0.958(0.953-0.963) 0.957(0.951-0.962) 

3 0.824(0.814-0.834) 0.886(0.877-0.895) 

5 0.738(0.726-0.751) 0.838(0.828-0.849) 

10 0.610(0.595-0.625) 0.766(0.754-0.780) 

CRC-specific 
survival 

  

1 0.963(0.958-0.968) 0.964(0.958-0.969) 

3 0.845(0.835-0.855) 0.908(0.900-0.916) 

5 0.775(0.763-0.787) 0.872(0.863-0.882) 

10 0.705(0.691-0.719) 0.828(0.817-0.840) 

 CI, confidence interval; CRC, colorectal cancer 

 

Notably, the UK Biobank cohort consisted of 2,474 incident and 2,080 prevalent CRC 

cases. It is widely accepted that prevalent cases suffer from potential selection bias—

patients with less severe disease are more likely to be selected into the study, leading 

to the appearance of higher observed survival rates than expected. Therefore, I 

plotted survival curves of Kaplan-Meier estimates of the incident and prevalent CRC 

cases in the UK Biobank separately along with survival estimates of patients in the 

SOCCS cohort to visualise this potential difference caused by the inclusion of 
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of prevalent CRC cases and incident cases in the UK Biobank hinted to selection bias 

present amongst the prevalent CRC cases. In order to eliminate this bias, subsequent 

survival analysis of the UK Biobank was only conducted using incident CRC cases.  

After excluding prevalent cases, the median follow-up time of the UK Biobank cohort 

was 5.3 years (quartiles: 3.5-7.5). There had been 765 deaths (30.9%) of any causes 

until the censoring time; among them, 587 patients (76.7% of all deaths) died from 

CRC-related causes. With regard to the SOCCS study, the median follow-up time of 

the SOCCS cohort was 5.1 years (IQR: 2.4-11.4). During the follow-up time, an 

aggregate of 1,918(33.8%) patients died, and 1,358 (70.8% of all deaths) of them died 

from CRC-related causes. 

 

5.2.4 Associations between covariates and CRC survival  
 

Associations between these aforementioned variables and survival outcomes of CRC 

in both cohorts were examined by fitting univariable Cox models. Table 5-3 presents 

detailed effect estimates and p-values for each association analysis. No stringent 

correction for multiple testing was applied to evaluate statistical significance at this 

point. In particular, male CRC patients showed significantly favoured overall and 

CRC-specific survival outcomes, and this association was consistent across the two 

study cohorts. With respect to age at diagnosis, significant association between 

increased age and poorer survival was only observed for overall survival of the 

SOCCS cohort. However, younger age at diagnosis was significantly associated with 

inferior CRC-specific survival for both cohorts.  

Table 5-3 Summary of associations between covariates and survival outcomes of CRC using 
univariable Cox regression 

 SOCCS(n=5,675)  UK Biobank 
(n=2,474) 

 

Variables HR(95%CI) p  HR(95%CI) p  

Overall survival      

Age at diagnosis 1.015(1.011-1.019) 5.33E-12 0.995(0.984-1.006) 0.342 

Sex (Male vs 
Female) 

0.864(0.788-0.946) 0.002 0.733(0.632-0.850) 4.0E-5 
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 SOCCS(n=5,675)  UK Biobank 
(n=2,474) 

 

AJCC stage  2.194(2.075-2.320) 3.3E-168 NA  

Tumour grade 1.334(1.186-1.502) 1.74E-6 NA  

Tumour site(rectum 
vs. colon) 

1.009(0.920-1.106) 0.850 NA  

     

CRC-specific 
survival  

    

Age at diagnosis  0.992(0.988-0.997) 0.002 0.984(0.972-0.996) 0.009 

Sex (Male vs 
Female) 

0.894(0.802-0.997) 0.043 0.807(0.682-0.953) 0.012 

AJCC stage  3.240(3.018-3.477) 1.60E-232 NA  

Tumour grade 1.630(1.421-1.870) 3.11E-12 NA  

Tumour 
site(Rectum vs. 
Colon) 

1.026(0.920-1.144) 0.647 NA  

HR, hazard ratio; CI, confidence interval; BMI, body mass index; CRP, C-reaction protein; 
AJCC, the American Joint Committee on Cancer; NA, not available.  

 

As for the pathological variables (tumour stage and grade), analysis was only 

conducted in the SOCCS cohort due to data availability. In concordance with previous 

evidence, more advanced tumour stage and grade were both strongly associated with 

inferior survival outcomes of CRC patients (p<0.001) in the SOCCS dataset. Kaplan-

Meier survival curves stratified by AJCC stage and tumour grade are plotted in Figure 
5-5 and Figure 5-6 respectively. As shown in Figure 5-5, the 5-year overall survival 

rates for stage I to IV CRC patients in the SOCCS study were 93%, 84%, 72% and 

27%. The 5-year CRC-specific survival rates were 97%, 89%, 75% and 28% for stage 

I to IV patients respectively. In respect to tumour grade, patients diagnosed with grade 

1 to 3 tumours had 5-year overall survival rates of 81%, 76% and 67%. The 5-year 

CRC-specific survival rates were 88% for grade 1, 80% for grade 2 and 70% for grade 

3 patients.
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Figure 5-5 Stage-stratified Kaplan-Meier estimates of CRC patients in the SOCCS study. 
(A for overall survival and B for CRC-specific survival). 
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Figure 5-6 Grade-stratified Kaplan-Meier estimates of CRC patients in the SOCCS study. 
(A for overall survival and B for CRC-specific survival). 
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5.3 Candidate association studies  
 

5.3.1 Validation of genetic variants previously linked with CRC 
survival  

 

Eligible variants  

The initial search in the GWAS catalogue yielded three GWASs reporting significant 

associations (p<10-5) between 51 autosomal genetic variants and CRC survival 

outcomes (Pander et al, 2015; Phipps et al, 2016; Xu et al, 2015). Eight variants were 

excluded due to linkage disequilibrium with other identified variants (r2>0.2). 

Eventually, a total of 43 variants were included in the analysis, and their basic 

characteristics are listed in Table 5-4. Among the included 43 variants, two variants—

rs209489 and rs885036—were reported to be associated with CRC survival at GWAS 

significance level (p<5x10-8) (Pander et al, 2015) (Phipps et al, 2016). These two 

variants were identified in a subgroup of metastatic CRC patients. The variant 

rs209489 was associated with disease-free survival whereas rs885036 was 

associated with progression-free survival. With respect to different survival outcomes 

of CRC patients, 24 out of the 43 variants were reported to be associated with 

disease-free survival; 15 variants with overall survival; and the remaining three 

variants with progression-free survival of CRC patients. Xu et al. conducted stratified 

GWAS analysis by tumour site (Xu et al, 2015), 10 variants were identified specifically 

in colon cancer patients, and 17 variants were associated with survival outcomes of 

rectal cancer patients (Table 5-4). Additional details of the effect estimates for each 

listed variant can be found in the GWAS catalogue. 

 

Table 5-4 Summary details of the included genetic variants previously associated with CRC 
survival 

Variant locus MA MAF Gene Reported outcomes Reference 

rs10921219 1q31.2 A 0.46 AL390957.1 Colon cancer(OS) Xu,2015 

rs6720296 2p21 C 0.48 LINC01121 Colorectal cancer (MSI-L/S) (DFS) Xu,2015 

rs885036 2q11.2 A 0.45 MGAT4A Colorectal cancer(metastatic)(PFS) Pander,2015 

rs17048372 2q14.1 T 0.15 DPP10 Colon cancer(OS) Xu,2015 

rs4377367 2q21.1 C 0.19 ARHGEF4 Colorectal cancer(metastatic)(PFS) Pander,2015 
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Variant locus MA MAF Gene Reported outcomes Reference 

rs16867335 2q31.3 T 0.2 AC009478.1 Rectal cancer(OS) Xu,2015 

rs6854845 4q13.3 T 0.12 Intergenic Rectal cancer(OS) Xu,2015 

rs17026425 4q31.23 A 0.08 IQCM Rectal cancer(OS) Xu,2015 

rs13180087 5p12 C 0.18 HCN1 Colon cancer(OS) Xu,2015 

rs10040610 5p15.31 C 0.21 Intergenic Colorectal cancer (MSI-L/S) (OS) Xu,2015 

rs157411 5q13.1 G 0.33 Intergenic Rectal cancer(OS) Xu,2015 

rs1493383 5q33.2 T 0.1 GRIA1 Colorectal cancer (MSI-L/S) (OS) Xu,2015 

rs17057166 5q33.3 T 0.09 LINC01847 Rectal cancer(DFS) Xu,2015 

rs12187751 5q34 G 0.09 AC113414.1 Colorectal cancer (MSI-L/S) (OS) Xu,2015 

rs4868304 5q35.2 T 0.14 LINC01484 Rectal cancer(DFS) Xu,2015 

rs209489 6p12.1 C 0.08 ELOVL5 Colorectal cancer (metastastic) (DFS) Phipps,2016 

rs2073016 6p21.1 C 0.18 APOBEC2 Colorectal cancer(metastatic)(PFS) Pander,2015 

rs1573948 6p25.1 C 0.1 Intergenic Rectal cancer(OS) Xu,2015 

rs4959799 6p25.2 C 0.14 SLC22A23 Rectal cancer(DFS) Xu,2015 

rs17087282 6q25.3 A 0.11 Intergenic Colorectal cancer (MSI-L/S) (OS) Xu,2015 

rs10275272 7p21.1 T 0.28 TWIST1 Rectal cancer(DFS) Xu,2015 

rs2936519 8p23.1 A 0.27 Intergenic Colorectal cancer(metastatic)(PFS) Pander,2015 

rs7004484 8q24.22 C 0.3 EFR3A Rectal cancer(OS) Xu,2015 

rs1998584 9p23 T 0.41 Intergenic Colorectal cancer (MSI-L/S) (OS) Xu,2015 

rs11138220 9q21.31 G 0.13 Intergenic Rectal cancer(DFS) Xu,2015 

rs1407508 9q22.33 C 0.02 AL136084.1 Colorectal cancer (MSI-L/S) (DFS) Xu,2015 

rs1555895 10p15.3 A 0.5 Intergenic Rectal cancer(OS) Xu,2015 

rs1570271 10q25.3 A 0.14 Intergenic Rectal cancer(DFS) Xu,2015 

rs9419702 10q26.3 C 0.26 Intergenic Rectal cancer(DFS) Xu,2015 

rs12224794 11p12 A 0.42 LRRC4C Colorectal cancer(OS) Phipps,2016 

rs3781663 11q13.3 G 0.31 ANO1 Rectal cancer(DFS) Xu,2015 

rs912294 13q12.3 A 0.47 Intergenic Colorectal cancer (MSI-L/S) (DFS) Xu,2015 

rs17280262 14q32.2 T 0.04 Intergenic Colon cancer(DFS) Xu,2015 

rs1075232 15q13.3 A 0.1 AC104759.1 Colorectal cancer (non-metastatic)(OS) Phipps,2016 

rs8035094 15q13.3 C 0.1 Intergenic Colon cancer(DFS) Xu,2015 

rs10152207 15q14 A 0.09 Intergenic Rectal cancer(OS) Xu,2015 

rs338389 15q23 G 0.49 Intergenic Rectal cancer(OS) Xu,2015 

rs3794924 18q12.1 A 0.1 DSG3 Colon cancer(OS) Xu,2015 

rs1372474 18q21.2 G 0.07 LINC01919 Colorectal cancer(metastatic)(OS) Phipps,2016 

rs6105057 20p12.1 G 0.28 ISM1 Colon cancer(OS) Xu,2015 

rs658495 20p13 G 0.04 C20orf27 Colon cancer(DFS) Xu,2015 

rs4812219 20q13.33 T 0.14 Intergenic Colon cancer(OS) Xu,2015 
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Variant locus MA MAF Gene Reported outcomes Reference 
rs139156 22q13.31 A 0.26 PARVG Colon cancer(OS) Xu,2015 

CRC, colorectal cancer; CC, colon cancer; RC, rectal cancer; mCRC, metastatic colorectal 
cancer; OS, overall survival; DFS, disease-free survival; PFS, progression-free survival. MSI-
L/S, microsatellite instability-low/stable 

 

Statistical power  

Given that there were 43 independent candidate variants to be investigated, a 

Bonferroni corrected α level of 0.001 was employed to estimate the statistical power 

for this study. As shown in Table 5-4, the minor allele frequency (MAF) of included 

genetic variants ranged from 0.02 to 0.50; therefore, a range of MAFs starting from 

0.01 to 0.50 was used for power estimation. In combination with the sample size 

(n=5,675) and the number of events in the SOCCS cohort—34% for overall survival 

and 24% for CRC-specific survival, statistical power was estimated based on a range 

of potential genetic effect sizes (hazard ratio) from 1.05 to 1.60 under the additive 

genetic model. Using the formula provided by Owzar et al. (Owzar et al, 2012), this 

study had a power of 85% to detect a hazard ratio of 1.25 on overall survival for 72% 

(31/43) of included variants (MAF> 0.15), and the power for CRC-specific survival 

was 66%. Power curves at different levels of hazard ratios and MAFs are plotted in 

Figure 5-7. As shown, this study had limited power (<0.5) to detect an effect as large 

as 1.6 for the variant with the lowest MAF of 0.01. 
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Figure 5-7 Power curves for the SOCCS validation study of genetic variants previously 
linked with CRC survival 

 

Main results  
 
I fitted Cox regression models adjusting for age at diagnosis, sex and AJCC stage to 

investigate associations between each of the 43 variants and survival outcomes of 

CRC. After correcting for multiple testing using the FDR approach, no genetic variants 

were statistically significantly associated with overall survival (FDR corrected p-

value<0.05). With regard to results not corrected for multiple testing, four variants 

(rs11138220, rs17026425, rs6854845, rs17057166) were associated with overall 

survival at p<0.05. In particular, three variants (rs17026425, rs6854845, rs17057166) 

showed the same direction of effects as the previous GWAS—the minor alleles of 

these three variants conferred higher overall death hazard. However, an opposite 

effect for the variant rs11138220 was found when compared to the original GWAS (Xu 

et al, 2015). Our results suggested a favourable overall survival for the minor allele 

(G) (HR=0.88, 95%CI=0.79-0.98, uncorrected p=0.016), whereas Xu et al. reported 

that the G allele was associated with worse disease-free survival for rectal cancer 

patients (HR=2.76, 95%CI=1.77-4.31, p=8.0x10-6). The effect estimates (HR) along 

with both uncorrected and FDR-corrected p-values of these 43 variants on overall 

survival are presented in Table 5-5.  
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Table 5-5 Summary of associations between 43 variants previously linked with CRC survival 
and overall survival of CRC patients in the SOCCS study (N=5,675).  

Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs11138220 G 0.13  Intergenic 0.88(0.79-0.98) 0.016  0.462  

rs17026425 A 0.08  IQCM 1.16(1.01-1.33) 0.039  0.462  

rs6854845 T 0.12  Intergenic 1.14(1.01-1.29) 0.040  0.462  

rs17057166 T 0.09  LINC01847 1.14(1.00-1.29) 0.042  0.462  

rs17087282 A 0.11  Intergenic 1.14(1.00-1.29) 0.054  0.467  

rs17280262 T 0.04  Intergenic 0.86(0.74-1.01) 0.064  0.467  

rs6720296 C 0.48  LINC01121 1.05(0.99-1.12) 0.122  0.689  

rs912294 A 0.47  Intergenic 0.95(0.89-1.01) 0.127  0.689  

rs1570271 A 0.14  Intergenic 1.08(0.97-1.21) 0.172  0.689  

rs139156 A 0.26  PARVG 0.92(0.82-1.04) 0.176  0.689  

rs16867335 T 0.20  AC009478.1 0.95(0.87-1.03) 0.183  0.689  

rs2073016 C 0.18  APOBEC2 1.05(0.97-1.14) 0.189  0.689  

rs1372474 G 0.07  LINC01919 1.08(0.96-1.21) 0.212  0.689  

rs3794924 A 0.10  DSG3 0.94(0.85-1.04) 0.219  0.689  

rs13180087 C 0.18  HCN1 1.06(0.96-1.16) 0.271  0.751  

rs1407508 C 0.02  AL136084.1 0.93(0.82-1.07) 0.313  0.751  

rs10040610 C 0.21  Intergenic 1.05(0.95-1.16) 0.347  0.751  

rs3781663 G 0.31  ANO1 1.03(0.96-1.11) 0.365  0.751  

rs4377367 C 0.19  ARHGEF4 0.96(0.89-1.05) 0.373  0.751  

rs2936519 A 0.27  Intergenic 0.95(0.86-1.06) 0.381  0.751  

rs12224794 A 0.42  LRRC4C 0.97(0.91-1.04) 0.387  0.751  

rs4959799 C 0.14  SLC22A23 0.94(0.82-1.08) 0.395  0.751  

rs17048372 T 0.15  DPP10 0.97(0.89-1.05) 0.422  0.751  

rs10152207 A 0.09  Intergenic 1.04(0.94-1.14) 0.428  0.751  

rs1573948 C 0.10  Intergenic 1.04(0.94-1.15) 0.441  0.751  

rs885036 A 0.45  MGAT4A 0.98(0.91-1.04) 0.444  0.751  

rs4812219 T 0.14  Intergenic 1.04(0.92-1.17) 0.554  0.899  

rs1075232 A 0.10  AC104759.1 1.04(0.90-1.20) 0.572  0.899  

rs6105057 G 0.28  ISM1 0.98(0.91-1.06) 0.602  0.913  

rs10921219 A 0.46  AL390957.1 0.98(0.92-1.05) 0.637  0.925  

rs338389 G 0.49  Intergenic 0.99(0.93-1.05) 0.682  0.925  

rs1493383 T 0.10  GRIA1 0.98(0.90-1.07) 0.689  0.925  

rs658495 G 0.04  C20orf27 1.03(0.87-1.22) 0.714  0.925  

rs1555895 A 0.50  Intergenic 1.01(0.95-1.08) 0.715  0.925  

rs9419702 C 0.26  Intergenic 1.01(0.94-1.09) 0.759  0.945  

rs209489 C 0.08  ELOVL5 0.98(0.87-1.11) 0.773  0.945  

rs12187751 G 0.09  AC113414.1 1.01(0.90-1.14) 0.826  0.956  

rs4868304 T 0.14  LINC01484 1.01(0.92-1.10) 0.866  0.968  
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs10275272 T 0.28  TWIST1 1.01(0.91-1.12) 0.880  0.968  

rs7004484 C 0.30  EFR3A 1.00(0.93-1.09) 0.942  0.979  

rs157411 G 0.33  Intergenic 1.00(0.93-1.07) 0.944  0.979  

rs1998584 T 0.41  Intergenic 1.00(0.94-1.07) 0.960  0.979  

rs8035094 C 0.10  Intergenic 1.00(0.88-1.13) 0.979  0.979  

MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values corrected using the false positive rate approach. 
 

With respect to results of CRC-specific survival, again no statistically significant 

associations between any of the 43 variants and CRC-specific survival were identified 

in the SOCCS cohort after correcting for multiple testing using the FDR approach. The 

only variant with a p-value<0.05 prior to FDR-correction was rs11138220. Similar to 

its effect on overall survival, a potential favourable effect on CRC-specific survival was 

identified to be linked with the minor allele G (HR=0.85, 95%CI=0.75-0.97, 

uncorrected p=0.016), which was discordant with the original finding. Detailed effect 

estimates and p-values can be found in Table 5-6:  

 
Table 5-6 Summary of associations between 43 variants previously linked with CRC survival 
and CRC-specific survival of CRC patients in the SOCCS study (N=5,675).  

Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs11138220 G 0.13  Intergenic 0.85(0.75-0.97) 0.016  0.700  

rs17280262 T 0.04  Intergenic 0.84(0.70-1.01) 0.069  0.767  

rs1372474 G 0.07  LINC01919 1.13(0.99-1.29) 0.078  0.767  

rs139156 A 0.26  PARVG 0.89(0.77-1.02) 0.087  0.767  

rs2073016 C 0.18  APOBEC2 1.09(0.99-1.19) 0.087  0.767  

rs16867335 T 0.20  AC009478.1 0.92(0.84-1.02) 0.112  0.771  

rs6720296 C 0.48  LINC01121 1.05(0.98-1.14) 0.187  0.771  

rs3781663 G 0.31  ANO1 1.05(0.96-1.14) 0.276  0.771  

rs12187751 G 0.09  AC113414.1 1.08(0.94-1.23) 0.289  0.771  

rs17087282 A 0.11  Intergenic 1.09(0.93-1.27) 0.290  0.771  

rs912294 A 0.47  Intergenic 0.96(0.89-1.04) 0.299  0.771  

rs6854845 T 0.12  Intergenic 1.08(0.93-1.26) 0.303  0.771  

rs12224794 A 0.42  LRRC4C 0.96(0.89-1.04) 0.308  0.771  
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs1570271 A 0.14  Intergenic 1.06(0.93-1.21) 0.347  0.771  

rs10040610 C 0.21  Intergenic 1.06(0.94-1.19) 0.349  0.771  

rs6105057 G 0.28  ISM1 0.96(0.87-1.05) 0.379  0.771  

rs885036 A 0.45  MGAT4A 0.97(0.90-1.04) 0.384  0.771  

rs1407508 C 0.02  AL136084.1 0.93(0.79-1.09) 0.389  0.771  

rs10275272 T 0.28  TWIST1 1.05(0.93-1.19) 0.393  0.771  

rs1573948 C 0.10  Intergenic 1.05(0.94-1.18) 0.394  0.771  

rs17057166 T 0.09  LINC01847 1.07(0.92-1.24) 0.395  0.771  

rs17048372 T 0.15  DPP10 0.96(0.88-1.06) 0.469  0.771  

rs209489 C 0.08  ELOVL5 0.95(0.83-1.09) 0.491  0.771  

rs2936519 A 0.27  Intergenic 0.96(0.84-1.09) 0.494  0.771  

rs10152207 A 0.09  Intergenic 1.04(0.93-1.16) 0.494  0.771  

rs157411 G 0.33  Intergenic 0.97(0.90-1.05) 0.494  0.771  

rs338389 G 0.49  Intergenic 0.97(0.90-1.05) 0.495  0.771  

rs13180087 C 0.18  HCN1 1.04(0.93-1.17) 0.502  0.771  

rs4377367 C 0.19  ARHGEF4 0.97(0.88-1.07) 0.508  0.771  

rs4959799 C 0.14  SLC22A23 0.95(0.81-1.12) 0.540  0.772  

rs10921219 A 0.46  AL390957.1 0.98(0.90-1.06) 0.544  0.772  

rs8035094 C 0.10  Intergenic 0.97(0.84-1.11) 0.634  0.849  

rs1493383 T 0.10  GRIA1 0.98(0.88-1.08) 0.640  0.849  

rs4812219 T 0.14  Intergenic 1.03(0.90-1.18) 0.656  0.849  

rs1555895 A 0.50  Intergenic 1.01(0.94-1.09) 0.776  0.947  

rs3794924 A 0.10  DSG3 0.99(0.87-1.11) 0.808  0.947  

rs658495 G 0.04  C20orf27 0.98(0.81-1.18) 0.808  0.947  

rs9419702 C 0.26  Intergenic 0.99(0.91-1.08) 0.818  0.947  

rs7004484 C 0.30  EFR3A 0.99(0.90-1.09) 0.897  0.964  

rs1075232 A 0.10  AC104759.1 0.99(0.83-1.17) 0.898  0.964  

rs1998584 T 0.41  Intergenic 1.00(0.92-1.07) 0.898  0.964  
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs17026425 A 0.08  IQCM 1.00(0.83-1.19) 0.956  0.984  

rs4868304 T 0.14  LINC01484 1.00(0.90-1.11) 0.984  0.984  

MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values corrected using the false positive rate approach. 

 

Then I extracted the reported effect estimates from the original studies and compared 

them with our results using the SOCCS cohort; the comparison of the four variants 

that were associated with CRC survival (uncorrected p<0.05) in our study is 

summarised in Table 5-7. Compared with the original reports, our results tended to 

show smaller effect sizes although different survival outcomes were used. According 

to the results of power estimation (Figure 5-7), this study would have a power of 100% 

to detect associations of these variants with survival outcomes in the SOCCS cohort 

assuming the same effect sizes with previous findings. 

 
Table 5-7 Comparison of estimates in original reports and the SOCCS of variants associated 
with CRC survival (p<0.05 in the SOCCS) (N=5,675)  

   Effect estimate   
Variant Gene Reported 

outcomes 
Reported HRs HRs in SOCCS 

rs17026425 IQCM OS(RC) 5.06(2.67-9.60) 1.16(1.01-1.33) 

rs17057166 LINC01847 DFS(RC) 5.56(2.91-10.64) 1.14(1.00-1.29) 

rs6854845 Intergenic DFS(RC) 4.12(2.34-7.26) 1.14(1.01-1.29) 

rs11138220 Intergenic DFS(RC) 2.76(1.77-4.31) 0.88(0.79-0.98) 

    0.85(0.75-0.97)* 

*CRC-specific survival in the SOCCS. Other estimates are for overall survival.  
HR, hazard ratio, DFS, disease-free survival; RC, rectal cancer   
 

In addition to testing individual effects of included variants, I also created a polygenic 

risk score (PRS) by counting the total number of risk alleles of the 43 variants for each 

patient in the SOCCS study. The risk allele of each variant that was detrimental for 

CRC survival was ascertained from the original GWASs. Colorectal cancer patients 

in the SOCCS study carried an average of 17.1 risk alleles (standard deviation=3.3). 

The distribution of the number of risk alleles carried by individuals from the SOCCS 

is plotted in Figure 5-8. As shown, the PRS of variants previously linked with CRC 

survival were approximately normally distributed. A Cox regression model with the 

same group of covariates was performed, and the result indicated no significant effect 
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on either overall (HR=1.00, 95% CI=0.99-1.02, p=0.775) or CRC-specific survival 

(HR=1.00, 95% CI=0.98-1.01, p=0.91) of the PRS.  

 

 
Figure 5-8 Distribution of polygenic risk score of variants associated with CRC survival in 
the SOCCS study 

 

Stratified analysis  

  

I also conducted genetic association analyses stratified by sex, stage (II/III and IV) 

and tumour site (colon and rectum) under the additive genetic model. Overall, none 

of these 43 genetic variants showed significant association with either overall or CRC-

specific survival after correction for multiple testing within any strata. Nonetheless, a 

number of variants were identified to be associated with survival outcomes of CRC at 

nominal significance (uncorrected p<0.05).  

 

To be specific, in male CRC patients (N=3,225), two variants were associated with 

overall survival (rs6854845: HR=1.26, 95%CI=1.08-1.48, uncorrected p=0.004, 

Pfdr=0.086; rs3794924: HR=0.87, 95%CI=0.76-0.99, uncorrected p=0.038, 

Pfdr=0.497), whereas another variant rs1573948 was observed to be associated with 

CRC-specific survival in male CRC patients (HR=1.16, 95%CI=1.00-1.33, 

uncorrected p=0.043, Pfdr=0.710). With respect to female patients (N=2,440) in the 

SOCCS study, five variants were identified to be associated with CRC survival at 

p<0.05, and among them, I found associations of the variant rs17280262 with both 
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overall and CRC-specific survival. Effect estimates of these aforementioned variants 

(p<0.05) are summarised in Table 5-8. A full list of 43 variants along with the 

summarised effects are presented in Appendix Table S6. 

 
Table 5-8 Summary of associations (p<0.05) between variants previously linked with CRC 
survival and outcomes of CRC patients in the SOCCS study stratified by sex  

 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

Female (N=3,225)      

OS rs17280262 T 0.04 0.69(0.53-0.89) 0.005 0.237 

 rs1998584 T 0.41 0.90(0.81-1.00) 0.044 0.559 

 rs1407508 C 0.02 0.80(0.64-1.00) 0.048 0.559 

       

CSS rs17280262 T 0.04 0.65(0.47-0.89) 0.008 0.309 

 rs11138220 G 0.13 0.76(0.61-0.95) 0.014 0.309 

 rs3781663 A 0.31 1.14(1.00-1.30) 0.048 0.584 

Male (N=2,440)      

OS rs6854845 T 0.12 1.26(1.08-1.48) 0.004 0.086 

 rs3794924 A 0.10 0.87(0.76-0.99) 0.038 0.497 

       

CSS rs1573948 C 0.10 1.16(1.00-1.33) 0.043 0.710 

MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values adjusted using the false positive rate approach. OS, overall survival, CSS, CRC-
specific survival 

 

With respect to analyses stratified by stage, a total of 3,886 stage II/III and 784 stage 

IV CRC patients were included. For stage II/III patients, the A allele of the variant 

rs17087282 was associated with inferior overall survival (HR=1.18, 95% CI=1.01-1.39, 

uncorrected p=0.038, Pfdr=0.645). As for CRC-specific survival, a copy of G allele of 

the variant rs1372474 was associated with 19% higher hazards of death of any 

causes (HR=1.19, 95% CI=1.01-1.42, uncorrected p=0.041, Pfdr=0.938). However, 

for stage IV patients, I did not identify any associations with either overall or CRC-
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specific survival with p-values less than 0.05. The full list of results is presented in 

Appendix Table 7.  

In relation to tumour site, a total of 3,392 patients with colon cancer and 2,201 patients 

with rectal cancer were included in analysis. For colon cancer patients, I found five 

variants associated with survival outcomes with uncorrected p<0.05 (presented in 

Table 5-9); among them, the variants rs11138220 and rs3794924 were detected in 

associations with both overall and CRC-specific survival. Regarding rectal cancer 

patients, six variants were associated with overall survival whereas no variants were 

related to CRC-specific survival at p<0.05 (Table 5-9). Detailed information of all 

results can be found in Appendix Table 8.   

 

Table 5-9 Summary of associations (p<0.05) between variants previously linked with CRC 
survival and outcomes of CRC patients in the SOCCS study stratified by tumour site. 

 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

Colon (N=3,392)      

OS rs3794924 A 0.10 0.82(0.71-0.94) 0.006 0.266 

 rs17087282 A 0.11 1.24(1.05-1.46) 0.012 0.266 

 rs11138220 G 0.13 0.85(0.74-0.97) 0.018 0.266 

 rs16867335 T 0.20 0.90(0.80-1.00) 0.050 0.547 

       

CSS rs1372474 G 0.07 1.22(1.02-1.45) 0.029 0.531 

 rs3794924 A 0.10 0.84(0.71-1.00) 0.046 0.531 

 rs11138220 G 0.13 0.84(0.71-1.00) 0.046 0.531 

Rectum (N=2,201)      

OS rs12224794 A 0.42 0.88(0.79-0.97) 0.010 0.339 

 rs6854845 T 0.12 1.24(1.02-1.50) 0.027 0.339 

 rs13180087 C 0.18 1.18(1.02-1.37) 0.029 0.339 

 rs139156 C 0.26 0.82(0.69-0.98) 0.031 0.339 

 rs17026425 A 0.08 1.25(1.01-1.56) 0.044 0.339 
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 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

 rs1570271 G 0.14 1.19(1.00-1.41) 0.046 0.339 

MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values adjusted using the false positive rate approach. OS, overall survival, CSS, CRC-
specific survival 

 

Sensitivity analysis  

In order to test potential genetic effects of recessive pattern, I examined the 

associations of these 43 variants with CRC survival by comparing individuals carrying 

two copies of risk alleles versus those with zero or one risk allele. In total, four genetic 

variants (rs16867335, rs17057166, rs17280262, rs6854845) were identified to be 

associated with both overall and CRC-specific survival with p<0.05. Three out of these 

four variants (rs17057166, rs17280262, rs6854845) remained significantly associated 

both survival outcomes after correction for multiple testing using the FDR approach. I 

summarise the effect estimates of these four variants in Table 5-10. Additional details 

regarding the results of other 39 variants can be found in Appendix Table 9. 

Table 5-10 Summary of associations (p<0.05) between variants previously linked with CRC 
survival and outcomes of CRC patients in the SOCCS study under recessive model (N=5,675)   

 Variant MG MGF HR(95%CI) P(uncorrected) Pfdr 

OS rs17280262 TT 0.01 0.55(0.42-0.70) 1.98E-6 8.71E-5 

 rs17057166 TT 0.01 0.60(0.47-0.75) 1.58E-5 3.48E-4 

 rs6854845 TT 0.02 0.63(0.50-0.79) 8.42E-5 0.001 

 rs16867335 TT 0.05 0.66(0.49-0.89) 0.007 0.072 

       

CSS rs17280262 TT 0.01 0.54(0.41-0.71) 8.48E-6 3.73E-4 

 rs17057166 TT 0.01 0.57(0.43-0.74) 2.19E-5 4.55E-4 

 rs6854845 TT 0.02 0.57(0.44-0.74) 3.50E-5 4.55E-4 

 rs16867335 TT 0.05 0.58(0.40-0.83) 0.003 0.038 

MG, minor genotype; MGF, minor genotype frequency; HR, hazard ratio; CI, confidence 
interval; Pfdr, p-values adjusted using the false positive rate approach. OS, overall survival, 
CSS, CRC-specific survival.  
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For the three significant associations that survived the FDR correction, I further 

validated the associations between these variants and CRC survival in the UK 

Biobank cohort (N=2,474) under the recessive model. Overall, I failed to observe any 

significant effects (p<0.05) of these four variants on either overall or CRC-specific 

survival (presented in Table 5-11). Notably, for the variant rs17057166, I was unable 

to estimate its effect on CRC-specific survival in the UK Biobank cohort due to the 

absence of CRC-related deaths observed in CRC patients carrying the effect 

genotype. Although no variants were successfully replicated with statistical 

significance, after harmonising the reference genotype for each variant, concordant 

direction of effects were observed for all of the four variants (Table 5-11). 

 

Table 5-11 Summarised associations in the UK Biobank cohort between variants identified 
from the SOCCS study under recessive model (N=2,474)  

 Variant MG MGF HR(95%CI) P 

OS  rs16867335 TT 0.05 0.85(0.56-1.27) 0.420 

 rs17057166 TT 0.01 0.79(0.20-3.17) 0.739 

 rs17280262 TT 0.01 0.93(0.23-3.75) 0.924 

 rs6854845 TT 0.02 0.92(0.43-1.93) 0.816 

      

CSS      

 rs16867335 TT 0.05 0.69(0.41-1.16) 0.160 

 rs6854845 TT 0.02 0.68(0.25-1.82) 0.442 

 rs17280262 TT 0.01 0.58(0.08-4.12) 0.584 

 rs17057166 TT 0.01 NA NA 

MG, minor genotype; MGF, minor genotype frequency; HR, hazard ratio; CI, confidence 
interval; Pfdr, p-values adjusted using the false positive rate approach. OS, overall survival, 
CSS, CRC-specific survival.  
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5.3.2 Predictive modelling of CRC-survival variants 
 

Genetic predictor development in the UK Biobank dataset  

Full model with 43 genetic variants  

I included the same set of 43 variants used in the preceding validation study and fitted 

a multi-variable Cox regression model on overall and CRC-specific survival using 

incident CRC cases (N=2,474) in the UK Biobank cohort. The estimated coefficients 

are presented in Table 5-12. We observed 18 (42%) variants with effect alleles that 

were associated with favourable overall survival (regression coefficient<0) and 

another group of 18 variants associated with favourable CRC-specific survival (Table 
5-12). These variants were therefore modelled with opposite direction of effects 

compared to the original published GWASs, given that the effect allele for each 

candidate variant had been harmonised. I then created a genetic linear predictor (GP) 

by summing up the number of effect alleles multiplied by their corresponding 

regression coefficients. Notably, the genetic predictor was developed in a similar 

approach compared to the polygenic risk score except that effect alleles were 

weighted by coefficients derived from the fitted Cox model to form the genetic 

predictor.    

 
Table 5-12 Regression coefficients for the 43 genetic variants reportedly associated with CRC 
survival in the UK Biobank (N=5,675)  

Variant MA MAF Gene Regression coefficients  

    OS CSS 

rs10040610 C 0.21  Intergenic 0.0587 0.0819 

rs10152207 A 0.09  Intergenic -0.0997 -0.1187 

rs10275272 T 0.28  TWIST1 0.0118 0.1203 

rs1075232 A 0.10  AC104759.1 0.1076 0.1044 

rs10921219 A 0.46  AL390957.1 -0.0199 -0.0742 

rs11138220 G 0.13  Intergenic 0.0027 0.0050 

rs12187751 G 0.09  AC113414.1 -0.0221 0.1233 

rs12224794 A 0.42  LRRC4C -0.0121 0.0104 
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Variant MA MAF Gene Regression coefficients  

rs13180087 C 0.18  HCN1 -0.1610 -0.0768 

rs1372474 G 0.07  LINC01919 0.1244 0.1367 

rs139156 A 0.26  PARVG -0.1112 -0.0804 

rs1407508 C 0.02  AL136084.1 -0.2627 -0.2622 

rs1493383 T 0.10  GRIA1 0.0052 0.0868 

rs1555895 A 0.50  Intergenic 0.0281 0.0117 

rs1570271 A 0.14  Intergenic 0.0411 0.0586 

rs1573948 C 0.10  Intergenic 0.0724 0.0950 

rs157411 G 0.33  Intergenic -0.0044 0.0068 

rs16867335 T 0.20  AC009478.1 0.0276 -0.0538 

rs17026425 A 0.08  IQCM 0.0783 0.0365 

rs17048372 T 0.15  DPP10 -0.0251 -0.0082 

rs17057166 T 0.09  LINC01847 -0.0296 -0.1161 

rs17087282 A 0.11  Intergenic 0.0318 -0.0254 

rs17280262 T 0.04  Intergenic 0.1019 0.0410 

rs1998584 T 0.41  Intergenic 0.0024 0.0147 

rs2073016 C 0.18  APOBEC2 -0.0033 -0.0398 

rs209489 C 0.08  ELOVL5 0.1335 0.1211 

rs2936519 A 0.27  Intergenic 0.0735 0.0835 

rs338389 G 0.49  Intergenic -0.0056 -0.0095 

rs3781663 G 0.31  ANO1 0.0869 0.1069 

rs3794924 A 0.10  DSG3 0.1082 0.0927 

rs4377367 C 0.19  ARHGEF4 0.0968 0.0976 

rs4812219 T 0.14  Intergenic 0.0596 0.1114 

rs4868304 T 0.14  LINC01484 0.1214 0.1178 

rs4959799 C 0.14  SLC22A23 0.0845 0.0669 

rs6105057 G 0.28  ISM1 0.0004 -0.0070 

rs658495 G 0.04  C20orf27 -0.0934 -0.1347 
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Variant MA MAF Gene Regression coefficients  

rs6720296 C 0.48  LINC01121 -0.0770 -0.1284 

rs6854845 T 0.12  Intergenic -0.1194 -0.1932 

rs7004484 C 0.30  EFR3A 0.0495 0.0667 

rs8035094 C 0.10  Intergenic 0.0142 0.0342 

rs885036 A 0.45  MGAT4A -0.0022 -0.0516 

rs912294 A 0.47  Intergenic -0.0490 -0.0127 

rs9419702 C 0.26  Intergenic -0.1049 -0.1049 

MA, minor allele; MAF, minor allele frequency; OS, overall survival, CSS, CRC-specific 
survival 

 

Feature selection  

A LASSO regression model was fitted so as to select variants with potential predictive 

value from these 43 candidates. After applying a 10-fold cross-validation, the tuning 

factor lambda was identified at 0.0461 for overall survival and 0.0249 for CRC-specific 

survival corresponding to the most parsimonious model with the cross-validation 

prediction error within one standard error (SE) of the minimum. However, no variants 

were selected into the ultimate model. Similarly, I identified no variants remaining in 

the final model after performing backward selection (p<0.15). Given the absence of 

any variants that survived feature selection, only the full model with all variants was 

further evaluated. 

 

Predictive performance of the genetic predictor after internal validation  

The Harrell’s concordance index (C statistic) was used to evaluate the discriminative 

performance of the genetic predictor developed from the UK Biobank cohort. Both the 

observed and predicted survival estimates were obtained in order to derive the C 

statistic. The observed survival estimates were extracted directly from the Kaplan-

Meier estimates, whilst the predicted survival rates were derived from the LP of the 

43 genetic variants and the baseline hazard function estimated from the fitted Cox 

model. Based on the observed and predicted survival estimates in the UK Biobank 

cohort, the genetic predictor yielded an apparent C statistic (without internal validation) 
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of 0.558 (95%CI=0.502-0.595) for overall survival and 0.570 (95%CI= 0.502-0.613) 

for CRC-specific survival. 

As introduced in Chapter 4, over-optimism could be generated if the performance is 

estimated directly from the same dataset in which the predictor is developed. 

Therefore, I conducted internal validation by re-evaluating and summarising the C 

statistics in 200 bootstrap samples. The results showed that the C statistic was 

reduced to 0.510 (95% CI=0.498-0.521) for overall survival and 0.518 (95% CI=0.498-

0.530) for CRC-specific survival after bootstrapping. The fact that the confidence 

intervals of C statistic after bootstrapping included the null value (0.5) indicated a 

statistically non-significant discriminative ability for the full model of 43 variants after 

internal validation. The decreased C statistics for both outcomes supported the 

presence of over-fitting for the genetic predictor. As described in section 4.3.2, over-

fitting could be quantified by the shrinkage factor (SF) and the model could be 

adjusted by applying the SF. From the bootstrap samples, I obtained a shrinkage 

factor (SF) of 0.4729 for overall survival and 0.4868 for CRC-specific survival. Then 

the regression coefficients listed in Table 5-12 were multiplied with the SF to generate 

two new sets of coefficients to calculate the shrunken LP and corresponding predicted 

survival estimates for each individual. The observed survival rates and the updated 

predicted survival rates are presented in Table 5-13. I then performed the Hosmer-

Lemeshow test to assess the accordance of the observed and predicted estimates 

derived from the adjusted model. The results of the test showed significant departure 

of the predicted rates from the observed estimates (p<0.001). Additionally, to visualise 

the relationship between the observed and predicted estimates, calibration curves are 

plotted in Figure 5-9. As depicted, the adjusted model after internal validation showed 

inaccurate model calibration for both overall and CRC-specific survival.  

 
Table 5-13 Comparison between observed and predicted 5-year survival estimates stratified 
by the quartiles of the shrunken 43-variant genetic predictor in the UK Biobank (N=2,474) 

 5-year Survival estimates 

Quartiles (GP)    

Overall survival Observed Predicted  HL-p 

Q1 0.835 0.748 1.8E-8 

Q2 0.810 0.723  



Chapter 5 Results 
 

142 

 5-year Survival estimates 

Q3 0.799 0.706  

Q4 0.719 0.681  

CRC-specific 
survival 

   

Q1 0.833 0.828 3.2E-6 

Q2 0.813 0.807  

Q3 0.809 0.791  

Q4 0.709 0.768  

Q, quartile; CRC, colorectal cancer; HL-p, p-value of the Hosmer-Lemeshow test; GP, genetic 
predictor.  
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Figure 5-9 Calibration plots of the adjusted model of 43-variant genetic predictor predicting 
5-year overall (A) and CRC-specific survival (B). 

 

I regressed the observed survival estimates on the predictive value in a linear 

regression model to obtain the coefficient along with the intercept that were used to 

recalibrate the predictive survival rates (overall survival: β=1.9010, intercept=-0.6172; 

CRC-specific survival: β=2.1757, intercept=-0.9459). Based on the shrunken model, 

a 5-year baseline survival rate of 0.7156 for overall survival and 0.7997 for CRC-

specific survival was derived. Combining the baseline survival and the shrunken 

regression coefficients, the predicted 5-year survival rates are expressed as follows:  
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Predicted 5-year overall survival:  

1.9010 × (0.7156exp(0.4729×𝐺𝑃)) − 0.6172 

Predicted 5-year CRC-specific survival:  

2.1757 × (0.7997exp(0.4868×𝐺𝑃)) − 0.9459 

 

Following the formula above, the genetic predictor was then externally validated in 

the SOCCS dataset.   

 

 

Predictive modelling in the SOCCS study 

External validation of the genetic predictor  

I first investigated the association between the genetic predictor created for each 

patient in the SOCCS and survival outcomes in a univariable Cox model. However, 

no significant association was found for either overall (HR=0.93, 95%CI=0.76-1.13, 

p=0.457) or CRC-specific survival (HR=1.05, 95%CI=0.86-1.28, p=0.622). The 

stratified overall and CRC-specific survival curves by quartiles of the genetic predictor 

are plotted in Figure 5-10. As shown by the figure, the genetic predictor was unable 

to efficiently differentiate CRC patients in the SOCCS of varied observed survival 

outcomes. With respect to the discriminative performance, a positive yet insignificant 

C statistic was observed when applying the genetic predictor to predict overall survival 

(C=0.512, 95%CI=0.480-0.544) of CRC patients in the SOCCS study. However, for 

CRC-specific survival, a negative point estimate of C statistic (0.499) was obtained 

with the 95% confidence interval also including the null (95%CI=0.464-0.534).  
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Figure 5-10 Kaplan-Meier estimates of overall (A) and CRC-specific (B) survival stratified 
by the 43-variant genetic predictor in SOCCS  

 

To evaluate the model calibration, I extracted the predicted and observed 5-year 

survival rates for each quartile of the genetic predictor. These estimates are listed in 

Table 5-14. Although the predicted survival rates decreased in sequence, the 

corresponding observed rates almost remained unchanged, indicating poor prediction 

accuracy of the genetic predictor. This could also be seen from the calibration plots 

of overall and CRC-specific survival (Figure 5-11).  
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Table 5-14 Comparison between observed and predicted 5-year survival estimates stratified 
by the quartiles of the 43-variant genetic predictor in the SOCCS (N=5,675)  

 5-year survival 
estimates 

 

Quartiles (GP)    

Overall survival Observed Predicted  HL-p 

Q1 0.747 0.809 4.1E-13 

Q2 0.721 0.764  

Q3 0.736 0.733  

Q4 0.748 0.682  

CRC-specific 
survival 

   

Q1 0.771 0.871 1.9E-13 

Q2 0.751 0.829  

Q3 0.778 0.795  

Q4 0.770 0.744  

Q, quartile; CRC, colorectal cancer; HL-p, p-value of the Hosmer-Lemeshow test; Gp, genetic 
predictor 
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Figure 5-11 Calibration plots of the 43-variant genetic predictor predicting 5-year overall (A) 
and CRC-specific survival (B) in the SOCCS 

 

Combining the genetic predictor with other variables  

I further assessed the potential added predictive value of the 43-variant genetic 

predictor on the basis of a baseline model including other non-genetic predictors. 

Given that tumour site was not significantly associated with either overall or CRC-

specific survival (Table 5-3), two Cox regression models were fitted—the baseline 

model (Model 1) included non-genetic predictors of age at diagnosis, sex, AJCC stage 
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and tumour grade, and the Model 2 added the genetic predictor to the baseline model. 

The regression coefficients of these two models are summarised in Table 5-15. In the 

multivariable model, age and AJCC stage were significantly associated with overall 

survival (p<0.05), whereas AJCC stage and tumour grade were associated with CRC-

specific survival. 

 
Table 5-15 Summarised coefficients of Cox regression models with or without the genetic 
predictor in SOCCS (N=4,836) 

 Model 1*  Model 2**  

Variables HR(95%CI) P HR(95%CI) P 

Overall survival    

Age  1.023(1.018-1.028) 5.9E-20 1.023(1.018-1.028) 1.1E-19 

Sex (Male) 1.174(1.059-1.302) 0.002 1.176(1.060-1.304) 0.002 

Stage 2.113(1.891-2.253) 3.5E-119 2.111(1.980-2.251) 2.0E-115 

Grade 1.064(0.941-1.204) 0.322 1.067(0.944-1.207) 0.300 

GP NA  0.849(0.684-1.054) 0.138 

     

CRC-specific survival    

Age 1.003(0.997-1.008) 0.345 1.003(0.997-1.008) 0.347 

Sex (Male) 1.102(0.972-1.249) 0.128 1.102(0.973-1.249) 0.128 

Stage 3.100(2.855-3.366) 4.7E-163 3.100(2.855-3.366) 1.3E-159 

Grade 1.231(1.065-1.423) 0.005 1.231(1.065-1.424) 0.005 

GP NA  0.992(0.793-1.240) 0.941 

*Model 1 includes non-genetic predictors of age at diagnosis, sex, AJCC stage and tumour 
grade   
**Model 2 includes the genetic predictor and predictors in Model 1   
HR, hazard ratio; CI, confidence interval; GP, genetic predictor; NA, not available  

 

The potential added discriminative performance of the genetic predictor was 

evaluated by comparing the C statistics of the two models after internal validation 

using the same bootstrapping procedure in UK Biobank. I first calculated the apparent 

C statistic using the same SOCCS cohort from which the two models had been 
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derived. For the outcome of overall survival, the baseline model with age, sex, AJCC 

stage and tumour grade showed a significant C statistic of 0.703(95%CI=0.675-0.734) 

after bootstrapping. The addition of the genetic predictor led to an almost equivalent 

point estimate of C statistic (0.704) along with a confidence interval (95%CI=0.677-

0.731). The U-statistic based test found no significant increase of model concordance 

with the addition of the genetic predictor (p=0.46). Pertaining to the other outcome of 

CRC-specific survival, the baseline model yielded a C statistic of 0.761 

(95%CI=0.732-0.790) after internal validation. A slightly reduced point estimate of C 

statistic was identified in the model 2 after adding the genetic predictor (C=0.760, 

95%CI=0.729-0.789). Similarly, the U-statistic based test did not detect a significant 

change in the discriminative ability with the addition of the genetic predictor (p=0.50). 

I then applied the same procedure and re-estimated the shrinkage factors in 200 

bootstrap samples to quantify the potential over-optimism. For the baseline model 1, 

a shrinkage factor was identified showing only slight optimism for both overall 

(SF=0.994) and CRC-specific survival (SF=0.998). Similarly, shrinkage factors of the 

model 2 with the genetic predictor were also close to 1 (overall survival: SF=0.996, 

CRC-specific survival: SF=0.991). The shrinkage factors were applied to adjust and 

re-fit the models. Both the observed and predicted 5-year survival estimates were 

calculated to evaluate the model calibration. Results of the Hosmer-Lemeshow test 

found no significant deviation of predicted 5-year overall (Model 1: p=0.110; Model 2: 

p=0.251) and CRC-specific survival (Model 1: p=0.132, Model 2: p=0.290) from the 

observed estimates for the two models. The calibration plots of the baseline Model 1 

and Model 2 for both the 5-year overall and CRC-specific survival in the SOCCS are 

presented in Figure 5-12 and Figure 5-13 respectively. As shown, prediction models 

in SOCCS of non-genetic prognostic factors with or without the genetic predictor were 

generally well-calibrated except for patients with moderate 5-year survival rates (50%-

70%) where the predicted survival rates tended to be lower than the observed survival 

rates. 
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Figure 5-12 Calibration plots of the prediction model of non-genetic factors (age, sex, AJCC 
stage and tumour grade) predicting 5-year overall (A) and CRC-specific survival (B) in the 
SOCCS cohort 
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Figure 5-13 Calibration plots of the prediction model combining the genetic and non-genetic 
factors (age, sex, AJCC stage and tumour grade) predicting 5-year overall (A) and CRC-
specific survival (B) in the SOCCS cohort. 

 

Predictive modelling in locally advanced (stage II/III) CRC  

Although I failed to detect significant increase of model performance by adding the 

genetic predictor into the model, the genetic predictor was still retained to develop 

prediction models in stage II/III (N=3,886) CRC patients in the SOCCS cohort.  
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Firstly, I fitted a Cox regression model including the genetic predictor, age at diagnosis, 

sex, AJCC stage (II or III) and tumour grade as covariates. The effect estimates of 

covariates are summarised in Table 5-16. I observed that age, sex and stage were 

significantly associated with overall survival (p<0.05), whilst sex, stage and tumour 

grade were significant prognostic factors for CRC-specific survival (p<0.05) in the 

multivariable model.  

Table 5-16 Summarised coefficients of Cox regression models for stage II/III CRC patients in 
SOCCS (N=3,886) 

Variables HR(95%CI) P HR(95%CI) P 

Overall survival  CRC-specific survival 

Age  1.028(1.022-1.035) 3.83E-19 1.005(0.998-1.012) 0.177 

Sex  

(Male vs Female) 

1.248(1.098-1.419) 7.27E-4 1.189(1.014-1.394) 0.034 

Stage  

(III vs II) 

1.625(1.429-1.847) 1.18E-13 2.320(1.960-2.747) 1.52E-22 

Grade 1.148(0.989-1.334) 0.070 1.355(1.132-1.622) 9.49E-4 

GP 0.895(0.683-1.173) 0.422 1.045(0.788-1.387) 0.760 

HR, hazard ratio; CI, confidence interval; GP, genetic predictor; NA, not available  

A linear predictor combining these factors weighted by their regression coefficients 

was created for each individual, and the Kaplan-Meier estimates of each quartile of 

the linear predictor are plotted in Figure 5-14 to display the survival outcomes of stage 

II/III patients stratified by the multivariable model. The summarised C statistic derived 

from the model after bootstrapping was 0.604(95%CI=0.563-0.643) for overall 

survival and 0.636(95%CI=0.592-0.680) for CRC-specific survival. 
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Figure 5-14 Kaplan-Meier estimates of stage II/III patients in the SOCCS stratified by the 
linear predictor (A: overall survival; B: CRC-specific survival) 

 

The shrinkage factor was 0.969 for overall survival and 0.978 for CRC-specific 

survival respectively. Then the regression coefficients listed in Table 5-16 were 

multiplied with the shrinkage factor to adjust the model and obtained updated 

coefficients to predict 5-year survival probabilities. The predicted 5-year survival rates 

estimated from the developed model and observed 5-year survival estimates 

extracted from the Kaplan-Meier curves grouped by quartiles of the linear predictor 

are presented in the Table 5-17. The result of Hosmer-Lemeshow test did not suggest 
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significant departure of the predicted 5-year survival rates from the observed 

estimates for both overall and CRC-specific survival (Table 5-17). Calibration plots 

(Figure 5-15) also showed that these two adjusted models were generally well-

calibrated, except that the model might be less sensitive in predicting CRC-specific 

survival for patients of relatively good survival outcome with an observed survival rate 

of approximately 90% (Figure 5-15B).   

Table 5-17 Comparison between observed and predicted 5-year survival estimates in stage 
II/III patients of the SOCCS study stratified by the quartiles of the linear predictor (N=3,886) 

 5-year survival estimates  

Quartiles (LP)    

Overall survival  Observed Predicted  HL-p 

Q1 0.845 0.854 0.280 

Q2 0.807 0.792  

Q3 0.760 0.737  

Q4 0.663 0.640  

CRC-specific survival    

Q1 0.904 0.890 0.188 

Q2 0.886 0.859  

Q3 0.748 0.759  

Q4 0.713 0.701  

Q, quartile; CRC, colorectal cancer; HL-p, p-value of the Hosmer-Lemeshow test; LP, linear 
predictor of genetic and non-genetic factors 
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Figure 5-15 Calibration plots of the prediction models predicting 5-year overall (A) and 
CRC-specific survival (B) of stage II/III patients in the SOCCS cohort. 

 

Similar to the previous procedure, I regressed the observed 5-year survival estimates 

on the predicted values in a univariable linear regression model and obtain the 

coefficient along with the intercept to further re-calibrate the model (overall survival: 

β=0.8593, intercept=0.1192; CRC-specific survival: β=0.9014, intercept=0.1344). The 

5-year baseline survival was also retrieved from the adjusted model (0.7680 for overall 
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survival and 0.8165 for CRC-specific survival). The re-calibrated 5-year survival 

probability for a given stage II/III CRC patient is then expressed as:   

Predicted 5-year overall survival:  

0.8593 × (0.7680exp(0.969×(0.028×𝐴𝑔𝑒+0.2215×𝑆𝑒𝑥(1 𝑓𝑜𝑟 𝑀𝑎𝑙𝑒)+0.4845×𝐴𝐽𝐶𝐶 𝑠𝑡𝑎𝑔𝑒+0.1382×𝑡𝑢𝑚𝑜𝑢𝑟 𝑔𝑟𝑎𝑑𝑒−0.1107×𝐺𝑃)))

+ 0.1192 

Predicted 5-year CRC-specific survival:   
 

0.9014 × (0.8165exp(0.978×(0.005×𝐴𝑔𝑒+0.1728×𝑠𝑒𝑥(1 𝑓𝑜𝑟 𝑀𝑎𝑙𝑒)+0.8417×𝐴𝐽𝐶𝐶 𝑠𝑡𝑎𝑔𝑒+0.3038×𝑡𝑢𝑚𝑜𝑢𝑟 𝑔𝑟𝑎𝑑𝑒+0.044×𝐺𝑃)))

+ 0.1344 

 

 

In clinical practice, there has been interest in identifying high/low risk stage II/III CRC 

patients for tailored treatment strategy. Therefore, in addition to predicting the 

absolute survival probability, I further explored potential performance of these factors 

to characterise patients of different risk profiles within the stage II and stage III strata 

separately. Cox regression models were fitted in stage II and stage III patients with 

age, sex, tumour grade and the genetic predictor as covariates. Then I assigned the 

patients into high- and low-risk groups by the median of the linear predictor derived 

from the fitted model. The linear predictors along with the cut-off median values 

obtained from the models are summarised in the Table 5-18 below. I then plotted the 

Kaplan-Meier survival curves for stage II and III patients with high and low risk of 

deaths in Figure 5-16. As shown in the plots, the risk score combining age, sex, 

tumour grade and the genetic predictor might be less sensitive in stratifying stage III 

CRC patients. However, once externally validated, it might be useful to assist in 

identifying low risk stage II patients with potential favoured overall survival (not for 

CRC-specific survival) as candidates who might be exempt from intensive treatment 

strategies.   
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Table 5-18 Summarised score rules of characterising stage II/III patients with high/low risk 
profiles  

 Risk profiling score Cut-off median of the 
score  

Stage II   

Overall survival 0.046*Age+0.219*Sex+0.025*grade-
0.309*GP 

0.0565 

CRC-specific 
survival 

0.017*Age+0.241*Sex+0.369*grade-
0.261*GP 

0.0152 

   

Stage III   

Overall survival 0.017*Age+0.227*Sex+0.196*grade-
0.019*GP 

0.0198 

CRC-specific 
survival 

0.00016*Age+0.143*Sex+0.281*grade
+0.159*GP 

-0.0063 

GP, genetic predictor, CRC, colorectal cancer 
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Figure 5-16 Kaplan-Meier estimates of low and high-risk stage II/III patients stratified by the 
linear predictor (A: overall survival; B: CRC-specific survival) 

 

 

5.3.3 Variants associated with CRC risk  
 

Eligible variants 

As stated in section 4.3.1, genetic variants associated with CRC risk were extracted 

directly from the two latest meta-analysis of GWASs (to date) that also include all 
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previously known CRC-risk variants (Huyghe et al, 2019; Law et al, 2019). Initially, a 

total of 141 autosomal genetic variants associated with CRC risk at p<5x10-8 were 

extracted from these two meta-analyses. No additional independent variants were 

retrieved after searching the GWAS catalogue. After excluding variants in linkage 

disequilibrium with other variants, a total of 128 genetic variants were eligible for this 

candidate genetic association study at last. These 128 variants were originally 

discovered and reported in 24 GWASs (Al-Tassan et al, 2015; Dunlop et al, 2012; 

Huyghe et al, 2019; Jia et al, 2013; Jiang et al, 2015; Law et al, 2019; Peters et al, 
2013; Real et al, 2014; Schmit et al, 2018; Schmit et al, 2014; Study et al, 2008; 

Tanikawa et al, 2018; Tenesa et al, 2008; Tomlinson et al, 2007; Tomlinson et al, 
2011; Tomlinson et al, 2008; Wang et al, 2014; Wang et al, 2016; Whiffin et al, 2014; 

Zeng et al, 2016; Zhang et al, 2014). Included genetic variants were located in 

chromosomes 1 to 20 (details presented in Table 5-19).  

Table 5-19 Summary details of the included genetic variants previously associated with CRC 
risk  

Variant Locus MA MAF Gene Reference 
rs12143541 1p32.3 G 0.07 TTC22 Law, 2019 

rs61776719 1p34.3 C 0.38 FHL3 Law, 2019 

rs72647484 1p36.12 T 0.03 Intergenic Law, 2019 

rs10911251 1q25.3 A 0.37 LAMC1 Law, 2019 

rs6658977 1q41 T 0.21 LINC02257 Law, 2019 

rs11692435 2q11.2 G 0.02 ACTR1B Law, 2019 

rs448513 2q24.2 C 0.50 TANC1 Huyghe, 2019 

rs11903757 2q32.3 C 0.12 Intergenic Law, 2019 

rs11893063 2q33.1 A 0.30 AC019330.1 Law, 2019 

rs7593422 2q33.1 T 0.35 SATB2 Law, 2019 

rs13020391 2q35 C 0.30 PNKD Law, 2019 

rs2279290 3p14.1 G 0.11 LRIG1 Law, 2019 

rs9831861 3p21.1 G 0.43 AC096887.1 Law, 2019 

rs35360328 3p22.1 A 0.08 Intergenic Law, 2019 

rs12635946 3q13.2 C 0.29 Intergenic Law, 2019 

rs72942485 3q13.2 G 0.05 BOC Huyghe, 2019 

rs10049390 3q22.2 A 0.43 SLCO2A1 Huyghe, 2019 

rs10936599 3q26.2 C 0.27 MYNN Law, 2019 

rs1370821 4q22.2 T 0.26 Intergenic Law, 2019 

rs1391441 4q24 A 0.34 TET2 Huyghe, 2019 
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Variant Locus MA MAF Gene Reference 
rs17035289 4q24 T 0.25 Intergenic Law, 2019 

rs3987 4q26 G 0.39 LINC02264 Law, 2019 

rs75686861 4q31.21 A 0.03 HHIP Law, 2019 

rs186722897 4q32.2 T 0.10 Intergenic Law, 2019 

rs35509282 4q32.2 A 0.23 Intergenic Law, 2019 

rs1445011 5p13.1 C 0.13 Intergenic Law, 2019 

rs7708610 5p13.1 A 0.32 Intergenic Huyghe, 2019 

rs2735940 5p15.33 A 0.47 TERT Law, 2019 

rs77776598 5p15.33 C 0.03 SLC6A18 Law, 2019 

rs12522693 5q23.3 G 0.11 Intergenic Law, 2019 

rs639933 5q31.1 C 0.31 C5orf66 Law, 2019 

rs647161 5q31.1 A 0.46 C5orf66 Law, 2019 

rs62404966 6p12.1 C 0.13 BMP5 Law, 2019 

rs4711689 6p21.1 A 0.23 TFEB Law, 2019 

rs6933790 6p21.1 T 0.20 TFEB Law, 2019 

rs1321310 6p21.2 C 0.28 Intergenic Law, 2019 

rs16878812 6p21.31 A 0.13 FKBP5 Law, 2019 

rs2516420 6p21.32 C 0.06 HCP5 Huyghe, 2019 

rs9271770 6p21.32 A 0.29 HLA-DQA1 Law, 2019 

rs3131043 6p21.33 G 0.49 HCG20 Law, 2019 

rs2070699 6p24.1 T 0.36 EDN1 Law, 2019 

rs6928864 6q21 C 0.29 Intergenic Law, 2019 

rs10951878 7p12.3 C 0.45 AC004870.4 Law, 2019 

rs3801081 7p12.3 G 0.25 TNS3 Law, 2019 

rs12672022 7p13 T 0.13 TBRG4 Huyghe, 2019 

rs16892766 8q23.3 C 0.08 Intergenic Law, 2019 

rs4313119 8q24.21 G 0.28 Intergenic Huyghe, 2019 

rs6983267 8q24.21 G 0.39 CASC8 Law, 2019 

rs1412834 9p21.3 T 0.31 CDKN2B-AS1 Law, 2019 

rs34405347 9q22.33 T 0.17 Intergenic Huyghe, 2019 

rs10980628 9q31.3 C 0.16 LPAR1 Huyghe, 2019 

rs10795668 10p14 G 0.23 RNA5SP299 Law, 2019 

rs10994860 10q11.23 C 0.16 A1CF Law, 2019 

rs704017 10q22.3 G 0.45 ZMIZ1-AS1 Law, 2019 

rs1035209 10q24.2 T 0.12 Intergenic Law, 2019 

rs4919687 10q24.32 G 0.19 CYP17A1 Law, 2019 

rs11196171 10q25.2 G 0.5 TCF7L2 Law, 2019 
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Variant Locus MA MAF Gene Reference 
rs12241008 10q25.2 C 0.19 VTI1A Law, 2019 

rs4450168 11p15.4 C 0.08 SBF2 Law, 2019 

rs174537 11q12.2 G 0.3 MYRF Law, 2019 

rs3824999 11q13.4 G 0.33 POLD3 Law, 2019 

rs4944940 11q13.4 G 0.03 CHRDL2 Law, 2019 

rs2186607 11q22.1 T 0.37 TRPC6 Huyghe, 2019 

rs3087967 11q23.1 T 0.27 C11orf53 Law, 2019 

rs2238126 12p13.2 G 0.23 ETV6 Law, 2019 

rs10849432 12p13.31 T 0.17 Intergenic Law, 2019 

rs10849438 12p13.31 G 0.17 Intergenic Law, 2019 

rs11064437 12p13.31 C 0.16 TPI1/RPL13P5 Law, 2019 

rs10774214 12p13.32 T 0.45 CCND2-AS1 Law, 2019 

rs3217810 12p13.32 T 0.05 CCND2 Law, 2019 

rs3217874 12p13.32 T 0.42 CCND2 Huyghe, 2019 

rs11610543 12q12 G 0.48 Intergenic Huyghe, 2019 

rs11169552 12q13.13 C 0.25 ATF1 Law, 2019 

rs4759277 12q13.3 A 0.37 LRP1 Huyghe, 2019 

rs7398375 12q13.3 C 0.32 LRP1 Law, 2019 

rs3184504 12q24.12 C 0.15 SH2B3 Law, 2019 

rs72013726 12q24.21 C 0.48 Intergenic Law, 2019 

rs73208120 12q24.22 G 0.05 NOS1 Law, 2019 

rs10161980 13q13.2 C 0.35 AL139383.1 Law, 2019 

rs9537521 13q13.2 G 0.18 AL139383.1 Law, 2019 

rs12427600 13q13.3 C 0.20 SMAD9 Law, 2019 

rs45597035 13q22.1 A 0.20 KLF5 Law, 2019 

rs78341008 13q22.1 C 0.02 Intergenic Huyghe, 2019 

rs1330889 13q22.3 C 0.13 LINC00446 Law, 2019 

rs7993934 13q34 T 0.42 COL4A2 Law, 2019 

rs1570405 14q22.2 G 0.50 Intergenic Law, 2019 

rs35107139 14q22.2 C 0.48 BMP4 Law, 2019 

rs17094983 14q23.1 G 0.10 LINC01500 Huyghe, 2019 

rs11632715 15q13.3 A 0.45 Intergenic Law, 2019 

rs16959063 15q13.3 A 0.01 FMN1 Law, 2019 

rs16969681 15q13.3 T 0.20 SCG5 Law, 2019 

rs17816465 15q13.3 A 0.12 FMN1 Law, 2019 

rs73376930 15q13.3 G 0.32 GREM1 Law, 2019 
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Variant Locus MA MAF Gene Reference 
rs4776316 15q22.31 A 0.22 SMAD6 Law, 2019 

rs56324967 15q22.33 C 0.39 SMAD3 Huyghe, 2019 

rs10152518 15q23 G 0.37 Intergenic Law, 2019 

rs7495132 15q26.1 T 0.15 CRTC3 Law, 2019 

rs9929218 16q22.1 G 0.26 CDH1 Law, 2019 

rs61336918 16q23.2 A 0.39 Intergenic Law, 2019 

rs2696839 16q24.1 G 0.34 Intergenic Law, 2019 

rs847208 16q24.1 A 0.33 LINC01081 Law, 2019 

rs899244 16q24.1 T 0.21 AC009154.1 Law, 2019 

rs1078643 17p12 A 0.45 TMEM238L Law, 2019 

rs12603526 17p13.3 C 0.05 NXN Law, 2019 

rs73975588 17p13.3 A 0.07 NXN Law, 2019 

rs17836917 17q12 G 0.05 ASIC2 Law, 2019 

rs983318 17q24.3 A 0.12 LINC00511 Huyghe, 2019 

rs75954926 17q25.3 G 0.47 AC144831.1 Huyghe, 2019 

rs4939827 18q21.1 T 0.35 SMAD7 Law, 2019 

rs285245 19p13.11 T 0.12 AC020911.2 Law, 2019 

rs10411210 19q13.11 C 0.26 RHPN2 Law, 2019 

rs1800469 19q13.2 G 0.37 TMEM91 Law, 2019 

rs12979278 19q13.33 T 0.24 MAMSTR Law, 2019 

rs73068325 19q13.43 T 0.16 MZF1-AS1 Huyghe, 2019 

rs2423279 20p12.3 C 0.36 AL031679.1 Law, 2019 

rs28488 20p12.3 T 0.29 BMP2 Huyghe, 2019 

rs6085661 20p12.3 T 0.30 Intergenic Law, 2019 

rs961253 20p12.3 A 0.29 Intergenic Law, 2019 

rs994308 20p12.3 C 0.50 Intergenic Huyghe, 2019 

rs2295444 20q11.22 C 0.39 PIGU Law, 2019 

rs2179593 20q13.12 A 0.32 TOX2 Law, 2019 

rs6065668 20q13.12 C 0.28 Intergenic Law, 2019 

rs1810502 20q13.13 C 0.46 Intergenic Law, 2019 

rs4811050 20q13.13 A 0.19 Intergenic Law, 2019 

rs6066825 20q13.13 A 0.49 PREX1 Law, 2019 

rs6091213 20q13.13 C 0.35 Intergenic Law, 2019 

rs1741640 20q13.33 C 0.33 LAMA5 Law, 2019 

rs3787089 20q13.33 C 0.38 RTEL1 Law, 2019 

MA, minor allele; MAF, minor allele frequency 
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Statistical power 

This study included 128 CRC-risk variants. An approximated Bonferroni corrected α 

level of 5x10-4 was adopted for this study. Similar to the power estimation for the 

validation study described in section 5.3.1, I used the same group of parameters 

including a sample size of 5,675 for the SOCCS cohort, the proportion of events (34% 

for deaths of any causes and 24% for CRC-related deaths) and a range of MAFs (from 

0.01 to 0.50) to estimate the power for this study. This had a power of 81% and 60% 

for overall and CRC-specific survival in the SOCCS cohort in order to detect an effect 

of 1.25 for 80% (108/128) of the CRC-risk variants. The power curves for this study 

are plotted in Figure 5-17. As suggested by the curves, this study was underpowered 

(<50%) to identify a small to moderate effect for any rare variants (MAF<0.01).  

 

Figure 5-17 Power curves for the two candidate genetic association studies of genetic 
variants previously linked with CRC risk in the SOCCS cohort  
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Main analysis  

Similar to the procedure mentioned in section 5.3.1, I estimated effect estimates of 

the 128 genetic variants on CRC survival by fitting Cox regression models adjusting 

for age at diagnosis, sex and AJCC stage in the SOCCS cohort. Overall, after 

correcting for multiple testing, none of the 128 variants were significantly associated 

with either overall or CRC-specific survival (Pfdr<0.05). The effect estimates of the 

128 variants on overall survival are summarised in Table 5-20. Fifteen genetic 

variants were found to be associated with overall survival at p<0.05 prior to FDR 

correction; among them, I identified eight variants of which the CRC-risk increasing 

alleles showed detrimental effects on overall survival (rs12143541, rs3087967, 

rs3217810, rs3217874, rs34405347, rs4759277, rs6065668, rs9929218).  

 

Table 5-20 Summary of associations between 128 CRC-risk variants and overall survival of 
CRC patients in the SOCCS study (N=5,675).  

Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs6065668 T 0.28  Intergenic 0.90(0.83-0.96) 0.003  0.250  

rs12143541 G 0.07  TTC22 1.13(1.04-1.24) 0.006  0.250  

rs34405347 G 0.17  Intergenic 0.84(0.74-0.95) 0.007  0.250  

rs9537521 A 0.18  AL139383.1 1.10(1.02-1.17) 0.008  0.250  

rs10994860 T 0.16  A1CF 1.11(1.02-1.20) 0.016  0.250  

rs3217810 T 0.05  CCND2 1.13(1.02-1.25) 0.016  0.250  

rs11196171 G 0.50  TCF7L2 0.91(0.83-0.98) 0.017  0.250  

rs3087967 C 0.27  C11orf53 0.92(0.86-0.99) 0.017  0.250  

rs10161980 G 0.35  AL139383.1 1.08(1.01-1.15) 0.019  0.250  

rs174537 T 0.30  MYRF 1.08(1.01-1.16) 0.019  0.250  

rs16959063 A 0.01  FMN1 0.72(0.53-0.97) 0.034  0.378  

rs9929218 A 0.26  CDH1 0.93(0.86-0.99) 0.035  0.378  

rs847208 A 0.33  LINC01081 0.93(0.88-1.00) 0.042  0.417  

rs3217874 T 0.42  CCND2 1.07(1.00-1.14) 0.049  0.437  



Chapter 5 Results 

165 
 

Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs4759277 A 0.37  LRP1 1.07(1.00-1.14) 0.050  0.437  

rs10951878 T 0.45  AC004870.4 0.94(0.88-1.00) 0.054  0.438  

rs3184504 C 0.15  SH2B3 0.94(0.88-1.00) 0.058  0.438  

rs73208120 G 0.05  NOS1 1.10(1.00-1.22) 0.061  0.438  

rs9831861 G 0.43  AC096887.1 1.06(1.00-1.14) 0.065  0.442  

rs4919687 A 0.19  CYP17A1 1.06(0.99-1.14) 0.076  0.491  

rs7398375 G 0.32  LRP1 0.93(0.86-1.01) 0.079  0.491  

rs4776316 G 0.22  SMAD6 0.94(0.87-1.01) 0.110  0.637  

rs7593422 T 0.35  SATB2 0.95(0.89-1.01) 0.113  0.637  

rs35107139 C 0.48  BMP4 1.05(0.98-1.13) 0.133  0.641  

rs73376930 G 0.32  GREM1 1.06(0.98-1.14) 0.136  0.641  

rs1570405 A 0.50  Intergenic 1.05(0.98-1.13) 0.137  0.641  

rs2279290 G 0.11  LRIG1 0.94(0.87-1.02) 0.143  0.641  

rs2696839 C 0.34  Intergenic 0.95(0.90-1.02) 0.143  0.641  

rs6066825 G 0.49  PREX1 1.05(0.98-1.12) 0.149  0.646  

rs2238126 G 0.23  ETV6 0.94(0.86-1.03) 0.167  0.702  

rs1800469 G 0.37  TMEM91 1.05(0.98-1.13) 0.184  0.749  

rs6983267 T 0.39  CASC8 1.04(0.98-1.11) 0.196  0.749  

rs1391441 A 0.34  TET2 0.96(0.89-1.02) 0.200  0.749  

rs11064437 T 0.16  TPI1/RPL13P5 0.48(0.15-1.51) 0.208  0.749  

rs3824999 G 0.33  POLD3 0.96(0.90-1.02) 0.210  0.749  

rs3131043 G 0.49  HCG20 1.04(0.98-1.11) 0.220  0.749  

rs13020391 T 0.30  PNKD 1.04(0.97-1.11) 0.226  0.749  

rs17836917 A 0.05  ASIC2 1.16(0.91-1.47) 0.226  0.749  

rs10936599 T 0.27  MYNN 1.05(0.97-1.13) 0.230  0.749  

rs983318 A 0.12  LINC00511 1.05(0.97-1.13) 0.238  0.754  
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs647161 A 0.46  C5orf66 1.04(0.97-1.11) 0.251  0.772  

rs35509282 A 0.23  Intergenic 0.94(0.86-1.04) 0.256  0.772  

rs10152518 A 0.37  Intergenic 0.96(0.88-1.03) 0.261  0.772  

rs12603526 C 0.05  NXN 1.13(0.91-1.40) 0.282  0.786  

rs61776719 A 0.38  FHL3 1.04(0.97-1.10) 0.283  0.786  

rs3801081 G 0.25  TNS3 0.96(0.90-1.03) 0.284  0.786  

rs2186607 A 0.37  TRPC6 0.97(0.91-1.03) 0.300  0.800  

rs961253 A 0.29  Intergenic 0.97(0.91-1.03) 0.315  0.800  

rs6085661 T 0.30  Intergenic 0.97(0.91-1.03) 0.319  0.800  

rs10849438 G 0.17  Intergenic 0.95(0.87-1.05) 0.324  0.800  

rs78341008 C 0.02  Intergenic 0.94(0.83-1.06) 0.332  0.800  

rs4313119 T 0.28  Intergenic 1.04(0.96-1.12) 0.336  0.800  

rs1741640 C 0.33  LAMA5 1.04(0.96-1.12) 0.349  0.800  

rs62404966 T 0.13  BMP5 0.97(0.90-1.04) 0.352  0.800  

rs285245 T 0.12  AC020911.2 0.95(0.86-1.06) 0.360  0.800  

rs12427600 C 0.20  SMAD9 1.03(0.96-1.11) 0.361  0.800  

rs639933 A 0.31  C5orf66 0.97(0.91-1.04) 0.365  0.800  

rs72647484 C 0.03  Intergenic 0.95(0.85-1.06) 0.372  0.800  

rs10849432 T 0.17  Intergenic 0.95(0.86-1.06) 0.381  0.800  

rs2516420 T 0.06  HCP5 0.95(0.83-1.07) 0.387  0.800  

rs4944940 A 0.03  CHRDL2 0.93(0.78-1.10) 0.388  0.800  

rs16892766 C 0.08  Intergenic 0.96(0.86-1.06) 0.397  0.806  

rs11893063 A 0.30  AC019330.1 0.97(0.92-1.04) 0.417  0.828  

rs1321310 C 0.28  Intergenic 0.97(0.90-1.04) 0.420  0.828  

rs10411210 T 0.26  RHPN2 1.05(0.93-1.18) 0.435  0.834  

rs45597035 G 0.20  KLF5 1.03(0.96-1.10) 0.436  0.834  



Chapter 5 Results 

167 
 

Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs17816465 A 0.12  FMN1 1.03(0.95-1.12) 0.456  0.847  

rs56324967 C 0.39  SMAD3 0.97(0.91-1.05) 0.459  0.847  

rs1412834 C 0.31  CDKN2B-AS1 0.98(0.92-1.04) 0.463  0.847  

rs10774214 C 0.45  CCND2-AS1 0.98(0.91-1.04) 0.470  0.849  

rs10980628 C 0.16  LPAR1 1.03(0.95-1.11) 0.480  0.850  

rs73975588 C 0.07  NXN 0.97(0.88-1.07) 0.492  0.850  

rs4811050 A 0.19  Intergenic 1.03(0.95-1.12) 0.501  0.850  

rs11903757 C 0.12  Intergenic 0.97(0.89-1.06) 0.502  0.850  

rs1078643 A 0.45  TMEM238L 1.03(0.95-1.11) 0.503  0.850  

rs11610543 G 0.48  Intergenic 1.02(0.96-1.09) 0.515  0.858  

rs2735940 G 0.47  TERT 1.02(0.96-1.09) 0.534  0.860  

rs16878812 G 0.13  FKBP5 0.97(0.88-1.07) 0.539  0.860  

rs186722897 T 0.10  Intergenic 0.96(0.83-1.10) 0.544  0.860  

rs6933790 C 0.20  TFEB 1.03(0.94-1.13) 0.546  0.860  

rs75686861 A 0.03  HHIP 1.03(0.93-1.14) 0.549  0.860  

rs17035289 C 0.25  Intergenic 1.03(0.94-1.12) 0.557  0.862  

rs12241008 C 0.19  VTI1A 0.97(0.88-1.08) 0.579  0.886  

rs7495132 T 0.15  CRTC3 1.03(0.93-1.13) 0.602  0.887  

rs4711689 A 0.23  TFEB 0.98(0.92-1.05) 0.605  0.887  

rs12635946 T 0.29  Intergenic 1.02(0.95-1.09) 0.608  0.887  

rs1035209 T 0.12  Intergenic 0.98(0.91-1.06) 0.639  0.887  

rs6928864 A 0.29  Intergenic 0.97(0.86-1.10) 0.650  0.887  

rs2295444 T 0.39  PIGU 1.01(0.95-1.08) 0.652  0.887  

rs6091213 C 0.35  Intergenic 0.98(0.91-1.06) 0.657  0.887  

rs73068325 T 0.16  MZF1-AS1 1.02(0.94-1.11) 0.665  0.887  

rs994308 T 0.50  Intergenic 1.01(0.95-1.08) 0.666  0.887  
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs7708610 A 0.32  Intergenic 0.99(0.92-1.05) 0.673  0.887  

rs11632715 A 0.45  Intergenic 0.99(0.93-1.05) 0.677  0.887  

rs72013726 C 0.48  Intergenic 0.99(0.92-1.05) 0.677  0.887  

rs77776598 C 0.03  SLC6A18 0.97(0.85-1.11) 0.678  0.887  

rs12522693 A 0.11  Intergenic 0.98(0.89-1.08) 0.679  0.887  

rs12979278 T 0.24  MAMSTR 1.01(0.95-1.09) 0.684  0.887  

rs10795668 A 0.23  RNA5SP299 1.01(0.95-1.08) 0.689  0.887  

rs704017 G 0.45  ZMIZ1-AS1 0.99(0.92-1.06) 0.714  0.911  

rs1445011 C 0.13  Intergenic 0.99(0.92-1.06) 0.726  0.917  

rs75954926 G 0.47  AC144831.1 0.99(0.92-1.07) 0.745  0.922  

rs16969681 T 0.20  SCG5 0.98(0.88-1.10) 0.761  0.922  

rs61336918 T 0.39  Intergenic 1.01(0.94-1.08) 0.765  0.922  

rs2423279 C 0.36  AL031679.1 0.99(0.92-1.07) 0.771  0.922  

rs72942485 A 0.05  BOC 0.96(0.73-1.27) 0.773  0.922  

rs1370821 T 0.26  Intergenic 1.01(0.95-1.08) 0.775  0.922  

rs448513 C 0.50  TANC1 0.99(0.93-1.06) 0.781  0.922  

rs2179593 A 0.32  TOX2 0.99(0.92-1.06) 0.795  0.929  

rs3787089 T 0.38  RTEL1 1.01(0.94-1.08) 0.818  0.929  

rs2070699 T 0.36  EDN1 0.99(0.93-1.06) 0.822  0.929  

rs1330889 C 0.13  LINC00446 1.01(0.92-1.11) 0.824  0.929  

rs12672022 C 0.13  TBRG4 1.01(0.93-1.10) 0.826  0.929  

rs4450168 C 0.08  SBF2 0.99(0.91-1.08) 0.829  0.929  

rs9271770 A 0.29  HLA-DQA1 0.99(0.91-1.08) 0.859  0.954  

rs6658977 T 0.21  LINC02257 0.99(0.93-1.06) 0.875  0.960  

rs10049390 A 0.43  SLCO2A1 1.01(0.93-1.09) 0.888  0.960  

rs11692435 A 0.02  ACTR1B 0.99(0.88-1.12) 0.888  0.960  
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs899244 T 0.21  AC009154.1 0.99(0.92-1.07) 0.896  0.960  

rs28488 T 0.29  BMP2 1.00(0.93-1.07) 0.913  0.960  

rs1810502 T 0.46  Intergenic 1.00(0.94-1.07) 0.914  0.960  

rs7993934 T 0.42  COL4A2 1.00(0.93-1.07) 0.917  0.960  

rs10911251 C 0.37  LAMC1 1.00(0.94-1.07) 0.928  0.960  

rs17094983 A 0.10  LINC01500 1.00(0.91-1.11) 0.935  0.960  

rs4939827 C 0.35  SMAD7 1.00(0.94-1.06) 0.938  0.960  

rs11169552 T 0.25  ATF1 1.00(0.93-1.07) 0.958  0.973  

rs35360328 A 0.08  Intergenic 1.00(0.91-1.09) 0.966  0.973  

rs3987 G 0.39  LINC02264 1.00(0.94-1.07) 0.989  0.989  

MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values corrected using the false positive rate approach. 

 

In relation to CRC-specific survival, details of effect estimates of other variants on 

CRC-specific survival can be found in Table 5-20. Ten variants were identified with 

an uncorrected p<0.05 (Table 5-20). Among these 10 variants, the CRC-risk 

increasing alleles of seven variants were observed to be associated with inferior CRC-

specific survival (rs12143541, rs2696839, rs3217810, rs34405347, rs4759277, 

rs6065668, rs7495132). 

 
Table 5-20 Summary of associations between 128 CRC-risk variants and CRC-specific 
survival of CRC patients in the SOCCS study (N=5,675).  

Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs6065668 T 0.28  Intergenic 0.89(0.82-0.97) 0.011  0.880  

rs10994860 T 0.16  A1CF 1.13(1.02-1.24) 0.018  0.836  

rs12143541 G 0.07  TTC22 1.13(1.02-1.25) 0.023  0.832  

rs847208 A 0.33  LINC01081 0.92(0.85-0.99) 0.027  0.836  

rs4759277 A 0.37  LRP1 1.09(1.01-1.18) 0.028  0.836  

rs7495132 T 0.15  CRTC3 1.13(1.01-1.26) 0.032  0.836  
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs35509282 A 0.23  Intergenic 0.88(0.78-0.99) 0.033  0.926  

rs34405347 G 0.17  Intergenic 0.85(0.73-0.99) 0.042  0.836  

rs3217810 T 0.05  CCND2 1.13(1.00-1.27) 0.044  0.880  

rs2696839 C 0.34  Intergenic 0.93(0.86-1.00) 0.048  0.832  

rs2238126 G 0.23  ETV6 0.90(0.82-1.00) 0.053  0.836  

rs7398375 G 0.32  LRP1 0.91(0.83-1.00) 0.056  0.836  

rs3087967 C 0.27  C11orf53 0.93(0.86-1.00) 0.062  0.676  

rs10951878 T 0.45  AC004870.4 0.93(0.87-1.01) 0.073  0.836  

rs72647484 C 0.03  Intergenic 0.89(0.78-1.01) 0.079  0.603  

rs4811050 A 0.19  Intergenic 1.09(0.99-1.20) 0.085  0.836  

rs12427600 C 0.20  SMAD9 1.07(0.98-1.17) 0.123  0.912  

rs4776316 G 0.22  SMAD6 0.93(0.85-1.02) 0.124  0.832  

rs35107139 C 0.48  BMP4 1.07(0.98-1.16) 0.131  0.836  

rs73376930 G 0.32  GREM1 1.07(0.98-1.17) 0.137  0.962  

rs3217874 T 0.42  CCND2 1.06(0.98-1.14) 0.139  0.836  

rs9537521 A 0.18  AL139383.1 1.06(0.98-1.15) 0.153  0.836  

rs10161980 G 0.35  AL139383.1 1.06(0.98-1.14) 0.160  0.836  

rs11196171 G 0.50  TCF7L2 0.93(0.85-1.03) 0.161  0.603  

rs6066825 G 0.49  PREX1 1.06(0.98-1.15) 0.176  0.836  

rs7593422 T 0.35  SATB2 0.95(0.88-1.02) 0.181  0.823  

rs12979278 T 0.24  MAMSTR 1.06(0.97-1.15) 0.182  0.955  

rs2279290 G 0.11  LRIG1 0.94(0.85-1.03) 0.200  0.836  

rs2186607 A 0.37  TRPC6 0.95(0.89-1.03) 0.214  0.836  

rs6658977 T 0.21  LINC02257 1.05(0.97-1.14) 0.215  0.933  

rs1800469 G 0.37  TMEM91 1.06(0.97-1.15) 0.217  0.832  

rs174537 T 0.30  MYRF 1.05(0.97-1.14) 0.218  0.832  



Chapter 5 Results 

171 
 

Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs17836917 A 0.05  ASIC2 1.19(0.90-1.59) 0.222  0.836  

rs3131043 G 0.49  HCG20 1.05(0.97-1.13) 0.231  0.955  

rs647161 A 0.46  C5orf66 1.05(0.97-1.14) 0.237  0.836  

rs13020391 T 0.30  PNKD 1.05(0.97-1.14) 0.243  0.967  

rs45597035 G 0.20  KLF5 1.05(0.97-1.14) 0.256  0.836  

rs75686861 A 0.03  HHIP 1.07(0.95-1.21) 0.267  0.997  

rs3824999 G 0.33  POLD3 0.96(0.89-1.03) 0.269  0.832  

rs1570405 A 0.50  Intergenic 1.05(0.96-1.14) 0.272  0.836  

rs16959063 A 0.01  FMN1 0.83(0.59-1.16) 0.273  0.836  

rs3987 G 0.39  LINC02264 1.04(0.97-1.13) 0.280  0.832  

rs10849438 G 0.17  Intergenic 0.94(0.84-1.05) 0.282  0.836  

rs9929218 A 0.26  CDH1 0.96(0.88-1.04) 0.294  0.836  

rs10152518 A 0.37  Intergenic 0.95(0.87-1.05) 0.320  0.836  

rs11903757 C 0.12  Intergenic 0.95(0.86-1.05) 0.322  0.836  

rs899244 T 0.21  AC009154.1 0.95(0.87-1.05) 0.322  0.832  

rs72942485 A 0.05  BOC 1.17(0.85-1.61) 0.331  0.836  

rs73208120 G 0.05  NOS1 1.06(0.94-1.20) 0.336  0.832  

rs2516420 T 0.06  HCP5 0.93(0.80-1.08) 0.343  0.832  

rs1412834 C 0.31  CDKN2B-AS1 0.97(0.89-1.04) 0.354  0.955  

rs3801081 G 0.25  TNS3 0.96(0.89-1.04) 0.355  0.836  

rs1035209 T 0.12  Intergenic 0.96(0.87-1.05) 0.359  0.961  

rs1741640 C 0.33  LAMA5 1.04(0.95-1.15) 0.377  0.836  

rs17094983 A 0.10  LINC01500 1.05(0.93-1.19) 0.409  0.832  

rs6983267 T 0.39  CASC8 1.03(0.96-1.11) 0.409  0.603  

rs10936599 T 0.27  MYNN 1.04(0.95-1.13) 0.411  0.832  

rs35360328 A 0.08  Intergenic 1.05(0.94-1.16) 0.415  0.836  
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs994308 T 0.50  Intergenic 1.03(0.96-1.11) 0.416  0.875  

rs12635946 T 0.29  Intergenic 1.03(0.95-1.12) 0.419  0.836  

rs186722897 T 0.10  Intergenic 0.93(0.79-1.10) 0.420  0.603  

rs16878812 G 0.13  FKBP5 0.95(0.85-1.07) 0.433  0.955  

rs10795668 A 0.23  RNA5SP299 0.97(0.89-1.05) 0.446  0.836  

rs73068325 T 0.16  MZF1-AS1 1.04(0.94-1.14) 0.446  0.836  

rs9831861 G 0.43  AC096887.1 1.03(0.95-1.11) 0.453  0.616  

rs6085661 T 0.30  Intergenic 0.97(0.90-1.05) 0.456  0.832  

rs961253 A 0.29  Intergenic 0.97(0.90-1.05) 0.475  0.836  

rs11692435 A 0.02  ACTR1B 0.95(0.82-1.10) 0.476  0.603  

rs17816465 A 0.12  FMN1 1.03(0.94-1.14) 0.483  0.823  

rs4450168 C 0.08  SBF2 0.96(0.87-1.07) 0.489  0.603  

rs285245 T 0.12  AC020911.2 0.96(0.85-1.08) 0.498  0.823  

rs6933790 C 0.20  TFEB 1.04(0.93-1.16) 0.504  0.836  

rs7993934 T 0.42  COL4A2 0.97(0.90-1.05) 0.504  0.603  

rs10774214 C 0.45  CCND2-AS1 0.97(0.90-1.06) 0.505  0.836  

rs12603526 C 0.05  NXN 0.91(0.68-1.21) 0.505  0.836  

rs28488 T 0.29  BMP2 0.97(0.90-1.06) 0.522  0.832  

rs12241008 C 0.19  VTI1A 0.96(0.85-1.09) 0.533  0.832  

rs11064437 T 0.16  TPI1/RPL13P5 0.70(0.22-2.19) 0.535  0.997  

rs4939827 C 0.35  SMAD7 1.02(0.95-1.11) 0.536  0.836  

rs11893063 A 0.30  AC019330.1 0.98(0.91-1.05) 0.542  0.961  

rs2179593 A 0.32  TOX2 0.97(0.90-1.06) 0.553  0.832  

rs11610543 G 0.48  Intergenic 1.02(0.95-1.10) 0.557  0.997  

rs4919687 A 0.19  CYP17A1 1.02(0.94-1.11) 0.561  0.603  

rs17035289 C 0.25  Intergenic 0.97(0.87-1.08) 0.570  0.823  
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs10980628 C 0.16  LPAR1 1.03(0.94-1.12) 0.577  0.692  

rs1370821 T 0.26  Intergenic 0.98(0.91-1.06) 0.582  0.836  

rs4944940 A 0.03  CHRDL2 0.94(0.77-1.16) 0.583  0.836  

rs77776598 C 0.03  SLC6A18 0.96(0.82-1.12) 0.596  0.836  

rs61336918 T 0.39  Intergenic 1.02(0.94-1.11) 0.604  0.836  

rs639933 A 0.31  C5orf66 0.98(0.91-1.06) 0.612  0.603  

rs3787089 T 0.38  RTEL1 1.02(0.94-1.11) 0.615  0.832  

rs10411210 T 0.26  RHPN2 1.04(0.90-1.20) 0.617  0.836  

rs6091213 C 0.35  Intergenic 0.98(0.90-1.07) 0.621  0.836  

rs1321310 C 0.28  Intergenic 0.98(0.90-1.07) 0.639  0.836  

rs16892766 C 0.08  Intergenic 1.03(0.91-1.16) 0.643  0.955  

rs3184504 C 0.15  SH2B3 0.98(0.91-1.06) 0.644  0.871  

rs56324967 C 0.39  SMAD3 0.98(0.90-1.07) 0.649  0.836  

rs16969681 T 0.20  SCG5 1.03(0.91-1.17) 0.650  0.832  

rs6928864 A 0.29  Intergenic 0.97(0.83-1.12) 0.655  0.832  

rs10911251 C 0.37  LAMC1 1.02(0.94-1.10) 0.656  0.836  

rs2295444 T 0.39  PIGU 1.02(0.94-1.10) 0.663  0.836  

rs983318 A 0.12  LINC00511 1.02(0.93-1.11) 0.675  0.836  

rs62404966 T 0.13  BMP5 0.98(0.90-1.07) 0.704  0.935  

rs7708610 A 0.32  Intergenic 0.99(0.91-1.07) 0.710  0.880  

rs2423279 C 0.36  AL031679.1 0.98(0.90-1.08) 0.720  0.683  

rs10849432 T 0.17  Intergenic 1.02(0.90-1.16) 0.736  0.836  

rs10049390 A 0.43  SLCO2A1 1.02(0.93-1.11) 0.741  0.836  

rs72013726 C 0.48  Intergenic 1.01(0.94-1.09) 0.745  0.836  

rs75954926 G 0.47  AC144831.1 0.99(0.90-1.08) 0.769  0.823  

rs11169552 T 0.25  ATF1 1.01(0.93-1.10) 0.786  0.961  



Chapter 5 Results 
 

174 

Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs1078643 A 0.45  TMEM238L 0.99(0.90-1.08) 0.805  0.603  

rs12672022 C 0.13  TBRG4 1.01(0.91-1.12) 0.818  0.603  

rs704017 G 0.45  ZMIZ1-AS1 0.99(0.92-1.07) 0.827  0.832  

rs78341008 C 0.02  Intergenic 0.99(0.85-1.14) 0.836  0.832  

rs12522693 A 0.11  Intergenic 0.99(0.89-1.10) 0.864  0.900  

rs2735940 G 0.47  TERT 1.01(0.93-1.09) 0.868  0.871  

rs61776719 A 0.38  FHL3 1.01(0.93-1.09) 0.881  0.836  

rs1330889 C 0.13  LINC00446 0.99(0.88-1.11) 0.883  0.937  

rs1810502 T 0.46  Intergenic 0.99(0.92-1.07) 0.888  0.836  

rs448513 C 0.50  TANC1 1.00(0.92-1.08) 0.907  0.603  

rs73975588 C 0.07  NXN 1.01(0.90-1.13) 0.912  0.836  

rs2070699 T 0.36  EDN1 1.00(0.92-1.08) 0.917  0.997  

rs11632715 A 0.45  Intergenic 1.00(0.93-1.08) 0.925  0.832  

rs1391441 A 0.34  TET2 1.00(0.92-1.09) 0.937  0.836  

rs1445011 C 0.13  Intergenic 1.00(0.92-1.09) 0.981  0.836  

rs4313119 T 0.28  Intergenic 1.00(0.91-1.10) 0.986  0.844  

rs4711689 A 0.23  TFEB 1.00(0.93-1.08) 0.991  0.836  

rs9271770 A 0.29  HLA-DQA1 1.00(0.91-1.10) 0.997  0.836  

MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values corrected using the false positive rate approach. 
 

 

I also created a polygenic risk score (PRS) for each individual in the SOCCS cohort 

by adding up the number of CRC-risk increasing alleles of the 128 genetic variants. 

Here an assumption was made that each CRC-risk increasing allele carried the same 

detrimental prognostic effect on CRC survival. On average, each CRC patient in the 

cohort carries 34.9 (standard deviation=6.7) CRC-risk increasing alleles. As shown in 

Figure 5-18, the distribution of the PRS of CRC-risk variants is approximately normal. 

I then fitted a Cox regression model with age, sex and AJCC as covariates to 
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investigate the association between the CRC-risk PRS and survival outcomes. The 

results suggested neither overall (HR=1.00, 95%CI=0.95-1.04, p=0.864) nor CRC-

specific survival (HR=1.03, 95%CI=0.97-1.08, p=0.340) was significantly associated 

with the CRC-risk PRS. 

 

 

Figure 5-18 Distribution of polygenic risk score of variants associated with CRC risk in the 
SOCCS study 

 

Stratified analysis 

I investigated additive genetic effects of the 128 CRC-risk variants stratified by sex, 

AJCC stage and tumour site. Multiple testing was corrected separately using the FDR 

approach within each stratum. Stratified by sex, no significant associations were 

observed between any of the 128 variants and survival outcomes of CRC after FDR 

correction, although a number of suggestive associations with uncorrected p<0.05 

were found. To be specific, I detected eight associations between genetic variants 

and overall survival in male patients and six variants were associated with CRC-

specific survival (uncorrected p<0.05). In female patients, nine genetic CRC-risk 

variants were associated with overall survival and 12 variants associated with CRC-

specific survival. I summarised the effect estimates along with the uncorrected and 
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 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

 rs3217810 T 0.05 1.21(1.04-1.40) 0.016 0.459 

 rs3131043 G 0.49 1.13(1.02-1.26) 0.018 0.459 

 rs6065668 T 0.28 0.88(0.78-0.98) 0.024 0.519 

 rs3217874 T 0.42 1.12(1.01-1.24) 0.036 0.569 

 rs9929218 A 0.26 0.89(0.79-0.99) 0.038 0.569 

 rs28488 T 0.29 0.89(0.80-1.00) 0.047 0.569 

CSS       

 rs3131043 G 0.49 1.18(1.04-1.33) 0.008 0.397 

 rs6065668 T 0.28 0.84(0.73-0.96) 0.011 0.397 

 rs13020391 T 0.3 1.17(1.04-1.33) 0.012 0.397 

 rs3087967 C 0.27 0.86(0.76-0.97) 0.018 0.397 

 rs847208 A 0.33 0.86(0.77-0.98) 0.018 0.397 

 rs10161980 G 0.35 1.16(1.02-1.31) 0.019 0.397 

 rs28488 T 0.29 0.86(0.76-0.98) 0.021 0.397 

 rs9537521 A 0.18 1.16(1.02-1.31) 0.026 0.423 

 rs10980628 C 0.16 1.16(1.01-1.33) 0.037 0.519 

 rs72647484 C 0.03 0.80(0.64-0.99) 0.041 0.519 

 rs35107139 C 0.48 1.14(1.00-1.30) 0.044 0.519 

 rs4759277 A 0.37 1.13(1.00-1.28) 0.048 0.520 

MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values adjusted using the false positive rate approach. OS, overall survival, CSS, CRC-
specific survival 

 

As for stage-stratified analysis, no statistically significant associations survived FDR 

correction. Nevertheless, I observed 12 CRC-risk variants associated with overall 

survival with uncorrected p-values<0.05, and seven variants for CRC-specific survival 

for stage II/III. With respect to stage IV patients, seven CRC-risk variants were related 

to overall survival and six variants were observed to be associated with CRC-specific 

survival. Summarised results of associations with uncorrected p<0.05 in stage II/III 
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and stage IV patients are presented in Table 5-22. A full list of results of the 128 CRC 

variants can be found in Appendix Table 11. 

 

 

Table 5-22 Summary of associations (p<0.05) between CRC-risk variants and survival of CRC 
patients in the SOCCS study stratified by stage 

 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

Stage II/III (N=3,886)      

OS       

 rs9537521 A 0.18 1.13(1.04-1.23) 0.005 0.236 

 rs10161980 G 0.35 1.13(1.03-1.22) 0.006 0.236 

 rs6065668 T 0.28 0.88(0.80-0.96) 0.006 0.236 

 rs847208 A 0.33 0.89(0.82-0.97) 0.008 0.236 

 rs1800469 G 0.37 1.13(1.03-1.24) 0.009 0.236 

 rs3087967 C 0.27 0.90(0.83-0.98) 0.021 0.452 

 rs983318 A 0.12 1.11(1.01-1.22) 0.036 0.516 

 rs1570405 A 0.50 1.09(1.00-1.19) 0.040 0.516 

 rs10951878 T 0.45 0.92(0.85-1.00) 0.047 0.516 

 rs3131043 G 0.49 1.09(1.00-1.19) 0.047 0.516 

 rs11196171 G 0.50 0.90(0.81-1.00) 0.048 0.516 

 rs17816465 A 0.12 1.11(1.00-1.22) 0.048 0.516 

CSS       

 rs3087967 C 0.27 0.86(0.78-0.96) 0.005 0.520 

 rs847208 A 0.33 0.87(0.79-0.97) 0.010 0.520 

 rs6065668 T 0.28 0.86(0.77-0.97) 0.013 0.520 

 rs1800469 G 0.37 1.15(1.02-1.29) 0.019 0.520 

 rs1570405 A 0.50 1.14(1.02-1.27) 0.020 0.520 
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.  

Table 5-23 Summary of associations (p<0.05) between CRC-risk variants and survival of 
colon cancer patients (N=3,392) in the SOCCS study  

 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

OS       

 rs10994860 T 0.16 1.16(1.05-1.29) 0.005 0.120 

 rs2696839 C 0.34 0.89(0.82-0.96) 0.005 0.120 

 rs34405347 G 0.17 0.77(0.65-0.92) 0.005 0.120 

 rs6065668 T 0.28 0.87(0.79-0.96) 0.005 0.120 

 rs11196171 G 0.5 0.86(0.77-0.96) 0.006 0.120 

 rs174537 T 0.3 1.13(1.04-1.24) 0.006 0.120 

 rs3087967 C 0.27 0.88(0.81-0.97) 0.006 0.120 

 rs3217874 T 0.42 1.12(1.03-1.22) 0.008 0.125 

 rs16959063 A 0.01 0.55(0.35-0.87) 0.010 0.125 

 rs3801081 G 0.25 0.89(0.81-0.97) 0.011 0.125 

 rs847208 A 0.33 0.89(0.82-0.97) 0.011 0.125 

 rs3217810 T 0.05 1.18(1.04-1.35) 0.012 0.125 

 rs35107139 C 0.48 1.12(1.02-1.23) 0.015 0.153 

 rs9929218 A 0.26 0.90(0.82-0.99) 0.024 0.222 

 rs12143541 G 0.07 1.14(1.02-1.28) 0.027 0.231 

 rs9537521 A 0.18 1.10(1.01-1.21) 0.031 0.252 

 rs4759277 A 0.37 1.10(1.01-1.19) 0.034 0.259 

 rs4919687 A 0.19 1.10(1.00-1.21) 0.040 0.288 

 rs3184504 C 0.15 0.92(0.84-1.00) 0.045 0.306 

 rs11610543 G 0.48 1.09(1.00-1.18) 0.048 0.31 

CSS       

 rs10849438 G 0.17  0.82(0.70-0.97) 0.018  0.301  
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 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

 rs10994860 T 0.16  1.20(1.06-1.37) 0.004  0.225  

 rs11196171 G 0.50  0.88(0.77-1.00) 0.048  0.371  

 rs11893063 A 0.30  0.90(0.81-0.99) 0.030  0.348  

 rs12143541 G 0.07  1.15(1.00-1.31) 0.045  0.371  

 rs16959063 A 0.01  0.54(0.32-0.93) 0.025  0.328  

 rs2696839 C 0.34  0.87(0.79-0.96) 0.006  0.225  

 rs3087967 C 0.27  0.86(0.78-0.96) 0.006  0.225  

 rs3217810 T 0.05  1.20(1.03-1.41) 0.020  0.301  

 rs3217874 T 0.42  1.11(1.01-1.23) 0.034  0.348  

 rs35509282 A 0.23  0.84(0.72-0.99) 0.038  0.348  

 rs3801081 G 0.25  0.88(0.79-0.97) 0.015  0.301  

 rs4759277 A 0.37  1.15(1.04-1.27) 0.007  0.225  

 rs6065668 T 0.28  0.88(0.78-0.98) 0.021  0.301  

 rs6066825 G 0.49  1.12(1.01-1.24) 0.036  0.348  

 rs7495132 T 0.15  1.16(1.00-1.33) 0.048  0.371  

 rs847208 A 0.33  0.88(0.79-0.97) 0.011  0.285  

MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values adjusted using the false positive rate approach. OS, overall survival, CSS, CRC-
specific survival 

 

Pertaining to analysis in rectal cancer patients (N=2,201), none of the 128 variants 

remained statistically significant after FDR correction. Five variants were identified 

with uncorrected p-values<0.05. In particular, the G allele of two variants (rs2238126 

and rs2279290) exhibited potential protective effects on overall survival (rs2238126: 

HR=0.85, 95%CI=0.74-0.98, uncorrected p=0.026, Pfdr=0.868; rs2279290: HR=0.84, 

95%CI=0.74-0.96, uncorrected p=0.008, Pfdr=0.834) as well as CRC-specific survival 

(rs2238126: HR=0.82, 95%CI=0.69-0.97, uncorrected p=0.020, Pfdr=0.994; 

rs2279290: HR=0.81, 95%CI=0.69-0.95, uncorrected p=0.009, Pfdr=0.994). In 

addition, the T allele of variant rs7593422 was associated with better overall survival 
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of rectal cancer patients (HR=0.88, 95%CI=0.80-0.97, uncorrected p=0.013, 

Pfdr=0.834), and I also observed an association between variant rs7993934 (T allele) 

and improved CRC-specific survival (HR=0.87, 95%CI=0.77-0.99, uncorrected 

p=0.031, Pfdr=0.994). An additional variant (rs16969681, effect allele: T) was found 

to be associated with inferior CRC-specific survival (HR=1.22, 95%CI=1.02-1.47, 

uncorrected p=0.034, Pfdr=0.994). The full list of results of site-stratified analysis is 

presented in Appendix Table 12. 

 

Sensitivity analysis 

I examined associations between CRC-risk variants and survival outcomes under a 

recessive model as a sensitivity analysis. Three associations were statistically 

significant after FDR correction. In particular, the GG genotype of the variant 

rs10161980 was significantly associated with inferior overall survival (Table 5-24). A 

similar detrimental effect was observed for the AA genotype of the variant rs9537521 

on overall survival. It is worth mentioning that the GG and AA genotypes of these two 

variants were previously linked with reduced CRC risk. With respect to CRC-specific 

survival, patients carrying the TT genotype of rs7495132 had significantly worse 

survival compared with ones with TC or CC genotypes. The TT genotype of this 

variant was associated with increased CRC risk in the previous GWAS. Other variants 

associated with CRC survival outcomes under recessive pattern at nominal 

significance (p<0.05) are summarised in Table 5-24. The full set of results of all the 

128 variants under a recessive model is presented in Appendix Table 13. 

 

Table 5-24 Summary of associations (p<0.05) between CRC-risk variants and survival 
outcomes of CRC patients in the SOCCS study under a recessive model (N=5,675) 

 Variant MG MGF HR(95%CI) P(uncorrected) Pfdr 

OS       

 rs9537521 AA 0.03  1.25(1.11-1.41) 2.50E-04 0.022 

 rs10161980 GG 0.12  1.24(1.10-1.39) 3.40E-04 0.022 

 rs174537 TT 0.09  1.23(1.07-1.41) 0.003 0.091 
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the GG genotype of rs10161980 and CRC-specific survival in the UK Biobank 

(HR=1.26, 95%CI=1.01-1.56, p=0.040). As for the other variant rs7495132, I 

replicated the observed association between the TT genotype and CRC-specific 

survival in the UK Biobank (HR=1.69, 95%CI=1.03-2.79, p=0.038), although no 

significant effect was detected of this variant on overall survival (HR=1.39, 

95%CI=0.86-2.25, p=0.179). I was unable to map the variant rs9537521 or a proxy in 

the UK Biobank cohort as this variant had not been arrayed by the UK Biobank and 

not included in the 1000 Genome Reference Panel. 

 

5.3.4 Variants associated with survival outcomes of other 
cancers 

 

Eligible variants 

I obtained 18 studies with a total of 113 autosomal genetic variants associated at p< 

5x10-5 with other solid tumour survival from the initial search in the GWAS catalogue 

(Azad et al, 2016; Ghesquieres et al, 2015; Guo et al, 2015; Khan et al, 2018; Khan 
et al, 2015; Koster et al, 2018; Moore et al, 2017; Rafiq et al, 2014; Sato et al, 2011; 

Shu et al, 2012; Song et al, 2015; Szulkin et al, 2015; Tang et al, 2017; Tang et al, 
2015; Wu et al, 2013; Wu et al, 2010; Yoon et al, 2014; Ziv et al, 2015). Among them, 

31 variants with larger p-values were excluded as they were in linkage disequilibrium 

with other included variants (r2<0.2). Finally, a total of 82 genetic variants were 

included for this study. These variants were reportedly associated with survival 

outcomes of eleven types of cancer—breast cancer (number of variants n=13), 

prostate cancer (n=2), non-small cell lung cancer (n=7), small cell lung cancer (n=1), 

ovarian cancer (n=10), diffuse large B-cell lymphoma (n=2), oesophageal squamous 

cell cancer (n=1), head and neck cancer (n=1), multiple myeloma (n=1), pancreatic 

cancer (n=35) and osteosarcoma (n=9). The RSIDs of the variants for each cancer 

type are summarised in Table 5-25. Among these included variants, seven variants 

(rs2059614, rs72773978, rs148760487, rs2314686, rs7701292, rs763780, 

rs1050631) were identified to be associated with cancer survival at the level of GWAS 

significance (p<5x10-8). With regard to the reported survival outcomes, four variants 

were linked to disease-free survival of cancers; 66 variants were identified to be 

associated with overall survival and six variants were reported using cancer-specific 
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survival as the primary outcome (Table 5-25). Notably, the time-to-recurrence was 

adopted as the primary outcome for one variant associated with non-small cell lung 

cancer survival. Ghesquieres et al. defined a new outcome of event-free survival—

primary events included disease progression, relapse, re-treatment, or death from any 

cause—in their GWAS investigating survival outcomes of diffuse large B-cell 

lymphoma (Ghesquieres et al, 2015).  

Table 5-25 Summary details of the included genetic variants previously associated survival 
outcomes of other cancers 

Variant  locus M
A 

MA
F 

Gene Reported outcomes Reference 

rs10736390 1p32.3 A 0.46 MROH7 Pancreatic cancer(OS) Tang,2017 

rs1391315 1p34.2 G 0.1 SMAP2 Pancreatic cancer(OS) Tang,2017 

rs16861827 1p36.13 T 0.14 IGSF21 Pancreatic cancer(OS) Tang,2017 

rs1567532 2p12 T 0.14 CTNNA2 Pancreatic cancer(OS) Tang,2017 

rs11398812
0 

2p13.3 A 0.01 PAIP2B Pancreatic cancer(OS) Tang,2017 

rs12620038 2p21 G 0.45 EPCAM-
DT 

Pancreatic cancer(OS) Tang,2017 

rs11499785
5 

2p23.1 A 0.03 Intergenic Prostate cancer(CSS) Szulkin,2015 

rs14876048
7 

2q24.3 G 0.01 Intergenic Breast cancer(CSS) Guo Q,2015 

rs1656402 2q37.1 T 0.33 EIF4E2 Non-small cell lung cancer(OS) Sato,2011 

rs76010824 3p14.1 A 0.06 SUCLG2 Prostate cancer(CSS) Szulkin,2015 

rs4955138 3p22.3 G 0.31 Intergenic Osteosarcoma(OS) Koster,2018 

rs361052 3p25.2 A 0.27 IQSEC1 Pancreatic cancer(OS) Tang,2017 

rs770996 3p26.2 T 0.35 AC034195.
1 

Pancreatic cancer(OS) Tang,2017 

rs4568126 3q13.32 A 0.33 B4GALT4 Pancreatic cancer(OS) Tang,2017 

rs295315 3q23 G 0.37 Intergenic Serous epithelial ovarian cancer(OS) Moore,2017 

rs6797464 3q26.2 A 0.12 MECOM Osteosarcoma(OS) Koster,2018 

rs17248137 4q13.3 G 0.05 Intergenic Osteosarcoma(OS) Koster,2018 

rs11733008 4q22.1 T 0.36 Intergenic Non-small cell lung cancer(OS) Tang,2015 

rs10023113 4q26 G 0.17 CAMK2D Non-small cell lung cancer(OS) Tang,2015 

rs17305086 4q34.3 T 0.11 TENM3-
AS1 

Non-small cell lung cancer(OS) Tang,2015 

rs1454694 4q34.3 C 0.17 Intergenic Non-small cell lung 
cancer(recurrence) 

Yoon,2014 

rs421379 5q14.3 T 0.28 Intergenic Breast cancer(OS) Rafiq,2014 

rs7701292 5q21.3 C 0.08 Intergenic Breast cancer (ER+) (DFS) Khan,2018 

rs7712513 5q23.2 G 0.26 Intergenic Diffuse large B-cell lymphoma(EFS) Ghesquieres,20
15 

rs4285214 5q23.2 T 0.39 ZNF608 Pancreatic cancer(OS) Tang,2017 

rs763780 6p12.2 C 0.09 IL17F Pancreatic cancer(OS) Tang,2017 

rs12209785 6p21.1 G 0.15 RUNX2 Pancreatic cancer(OS) Tang,2017 
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Variant  locus M
A 

MA
F 

Gene Reported outcomes Reference 

rs4618572 6p25.3 T 0.1 Intergenic Serous epithelial ovarian cancer(OS) Moore,2017 

rs7765004 6q21 C 0.32 Intergenic Diffuse large B-cell lymphoma(EFS) Ghesquieres,20
15 

rs7777171 7p21.2 C 0.47 AGMO Osteosarcoma(OS) Koster,2018 

rs2299187 7q21.11 T 0.07 CACNA2D
1 

Head and neck cancer(OS) Azad,2016 

rs2314686 8p21.2 A 0.13 SLC25A37 Breast cancer (ER+) (DFS) Khan,2018 

rs4382459 8q13.2 T 0.08 PREX2 Pancreatic cancer(OS) Tang,2017 

rs202280 8q21.13 G 0.04 Intergenic Serous epithelial ovarian cancer(OS) Moore,2017 

rs6986444 8q24.12 T 0.33 SNTB1 Osteosarcoma(OS) Koster,2018 

rs55933544 9p24.1 T 0.2 GLDC Osteosarcoma(OS) Koster,2018 

rs823920 9q31.1 G 0.12 Intergenic Pancreatic cancer(OS) Tang,2017 

rs10817611 9q32 C 0.23 WHRN Pancreatic cancer(OS) Tang,2017 

rs10983614 9q33.1 C 0.28 ASTN2 Pancreatic cancer(OS) Tang,2017 

rs1414153 9q33.1 C 0.23 Dec-01 Pancreatic cancer(OS) Tang,2017 

rs1564271 10p12.1 A 0.23 PDSS1 Serous epithelial ovarian cancer(OS) Moore,2017 

rs12358475 10p14 A 0.11 Intergenic Breast cancer(OS) Rafiq,2014 

rs10825036 10q21.1 G 0.19 Intergenic Breast cancer(DFS) Song,2015 

rs17465450 10q22.3 C 0.03 LRMDA Osteosarcoma(OS) Koster,2018 

rs17693104 10q23.1 T 0.35 SH2D4B Serous epithelial ovarian cancer(OS) Moore,2017 

rs1408536 10q26.3 A 0.12 Intergenic Pancreatic cancer(OS) Tang,2017 

rs10767646 11p14.1 T 0.33 BDNF-AS Pancreatic cancer(OS) Tang,2017 

rs10835188 11p14.1 G 0.36 LIN7C Pancreatic cancer(OS) Tang,2017 

rs4150579 11p15.1 A 0.33 GTF2H1 Pancreatic cancer(OS) Tang,2017 

rs10500780 11p15.3 A 0.14 BTBD10 Serous epithelial ovarian 
cancer(PFS) 

Moore,2017 

rs12362504 11p15.4 C 0.38 SBF2 Pancreatic cancer(OS) Tang,2017 

rs10899426 11q14.1 C 0.02 Intergenic Serous epithelial ovarian 
cancer(PFS) 

Moore,2017 

rs1944782 11q21 G 0.21 Intergenic Pancreatic cancer(OS) Tang,2017 

rs716274 11q22.3 G 0.44 Intergenic Small cell lung cancer(OS) Wu,2010 

rs2059614 11q24.2 G 0.04 PKNOX2 Breast cancer(CSS) Guo Q,2015 

rs2900174 12p13.2 G 0.16 PRB2 Pancreatic cancer(OS) Tang,2017 

rs11062040 12p13.3
3 

C 0.46 DCP1B Pancreatic cancer(OS) Tang,2017 

rs17548007 12q23.2 T 0.04 Intergenic Serous epithelial ovarian cancer(OS) Moore,2017 

rs12146774 12q24.2
3 

T 0.18 AC084880.
2 

Osteosarcoma(OS) Koster,2018 

rs1352757 13q21.3
1 

A 0.43 Intergenic Pancreatic cancer(OS) Tang,2017 

rs9593831 13q31.1 T 0.22 Intergenic Pancreatic cancer(OS) Tang,2017 

rs9517906 13q32.3 A 0.42 CLYBL Pancreatic cancer(OS) Tang,2017 

rs7149859 14q24.1 T 0.35 PIGH Breast cancer(CSS) Guo Q,2015 
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Variant  locus M
A 

MA
F 

Gene Reported outcomes Reference 

rs3784099 14q24.1 A 0.4 RAD51B Breast cancer(OS) Shu,2012 

rs17124276 14q31.3 T 0.33 KCNK10 Pancreatic cancer(OS) Tang,2017 

rs11621975 14q32.3
1 

G 0.08 LINC02320 Serous epithelial ovarian cancer(OS) Moore,2017 

rs166870 15q25.1 T 0.24 Intergenic Breast cancer(DFS) Song,2015 

rs12101726 15q26.2 C 0.24 LINC01579 Pancreatic cancer(OS) Tang,2017 

rs72773978 16p13.1
1 

T 0.11 FOPNL Multiple myeloma(OS) Ziv,2015 

rs4780973 16p13.2 T 0.3 Intergenic Pancreatic cancer(OS) Tang,2017 

rs11639759 16p13.3 T 0.16 RBFOX1 Pancreatic cancer(OS) Tang,2017 

rs9934948 16q22.3 T 0.38 ZFHX3 Breast cancer(OS) Shu,2012 

rs1728400 16q24.1 A 0.33 Intergenic Breast cancer(OS) Rafiq,2014 

rs3795244 17q11.2 T 0.05 ZNF207 Pancreatic cancer(OS) Tang,2017 

rs981621 18p11.2
1 

G 0.45 LDLRAD4 Pancreatic cancer(OS) Tang,2017 

rs1050631 18q12.2 A 0.26 SLC39A6 Esophageal squamous cell cancer 
(CSS) 

Wu,2013 

rs8113308 19q13.4
1 

C 0.27 ZNF613 Breast cancer(ER+)(OS) Khan,2015 

rs6662005 1q42.3 A 0.22 ERO1B Pancreatic cancer(OS) Tang,2017 

rs2050203 20p11.2
1 

T 0.16 GAPDHP5
3 

Serous epithelial ovarian cancer(OS) Moore,2017 

rs1209950 21q22.2 T 0.18 ETS2 Non-small cell lung cancer(OS) Sato,2011 

rs9981861 21q22.2 C 0.33 DSCAM Non-small cell lung cancer(OS) Sato,2011 

rs9332377 22q11.2
1 

T 0.17 COMT Osteosarcoma(OS) Koster,2018 

OS, overall survival; EFS, event-free survival; PFS, progression-free survival; CSS, cancer-
specific survival; DFS, disease-free survival.  

 

Statistical power 

In this analysis I included 82 variants associated with survival outcomes of other 

cancers. An approximated Bonferroni corrected α level of 5x10-4 was also adopted for 

this study. Similar to the power estimation described in section 5.3.3, this study had a 

power of 81% and 60% for overall and CRC-specific survival in the SOCCS cohort in 

order to detect an effect of 1.25 for 79% (65/82) of the variants previously related to 

survival outcomes of other cancers. As the same set of parameters was used, the 

power curves for this study can also be read from Figure 5-17. 
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Main analysis  

With respect to the 82 genetic variants previously linked with survival outcomes of 

other cancers, I obtained the hazard ratios along with their confidence intervals by 

fitting Cox regression models adjusted for age, sex and AJCC stage. After FDR 

correction, none of these 82 variants were significantly associated with overall or 

CRC-specific survival of patients in the SOCCS cohort. The detailed effect estimates 

of the 82 included variants can be found in Table 5-26. In terms of uncorrected p-

values, I observed three genetic variants (rs1728400, rs17693104 and rs202280) 

associated with overall survival at p<0.05. As for CRC-specific survival, another set 

of three variants (rs17693104, rs6797464 and rs823920) were identified with p<0.05. 

Full lists with detailed results of the associations between the 82 variants and CRC 

survival in SOCCS are presented in the Table 5-27. Among these six variants, the G 

allele of the variant rs6797464 was reportedly associated with favourable overall 

survival of osteosarcoma (Koster et al, 2018); our study found concordant direction of 

effect of the G allele related to better CRC-specific survival of CRC patients. The G 

allele of rs823920 was originally identified to be associated with inferior overall 

survival of pancreatic cancer (Tang et al, 2017). Our result also found the detrimental 

effect of the G allele of this variant on CRC-specific survival. I was unable to compare 

the direction of effects of the remaining four variants with previous findings because 

the effect allele information was unavailable in the original GWASs (Moore et al, 2017; 

Rafiq et al, 2014). Among the 82 candidate variants, a total of 51(62%) variants were 

originally reported without providing information about the effect alleles. Therefore, I 

was unable to construct a PRS for each individual and did not investigate the 

combined effect of these 82 variants as a group on CRC survival outcomes. 

Table 5-26 Summary of associations between 82 genetic variants previously with survival of 
other cancers and overall survival of CRC patients in the SOCCS study (N=5,675) 

Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs202280 G 0.04 Intergenic 1.14(1.02-1.26) 0.018  0.722  

rs17693104 T 0.35 SH2D4B 0.93(0.87-0.99) 0.021  0.722  

rs1728400 A 0.33 Intergenic 0.93(0.87-0.99) 0.026  0.722  

rs2059614 G 0.04 PKNOX2 1.13(0.99-1.28) 0.060  0.793  
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs10023113 G 0.17 CAMK2D 1.09(1.00-1.20) 0.062  0.793  

rs17465450 C 0.03 LRMDA 0.88(0.77-1.01) 0.064  0.793  

rs17124276 T 0.33 KCNK10 1.07(1.00-1.16) 0.066  0.793  

rs1408536 A 0.12 Intergenic 1.16(0.98-1.37) 0.089  0.867  

rs1567532 T 0.14 CTNNA2 1.06(0.99-1.14) 0.119  0.867  

rs114997855 A 0.03 Intergenic 1.20(0.94-1.52) 0.137  0.867  

rs7149859 T 0.35 PIGH 0.95(0.89-1.02) 0.161  0.867  

rs6797464 A 0.12 MECOM 0.91(0.80-1.04) 0.163  0.867  

rs166870 T 0.24 Intergenic 1.05(0.98-1.13) 0.169  0.867  

rs2900174 G 0.16 PRB2 1.14(0.94-1.38) 0.172  0.867  

rs12620038 G 0.45 EPCAM-DT 1.05(0.98-1.12) 0.174  0.867  

rs295315 G 0.37 Intergenic 1.05(0.97-1.14) 0.191  0.867  

rs1050631 A 0.26 SLC39A6 1.04(0.98-1.12) 0.207  0.867  

rs9517906 A 0.42 CLYBL 0.96(0.90-1.02) 0.213  0.867  

rs2314686 A 0.13 SLC25A37 0.91(0.78-1.06) 0.226  0.867  

rs4382459 T 0.08 PREX2 0.94(0.84-1.04) 0.231  0.867  

rs9332377 T 0.17 COMT 1.05(0.97-1.15) 0.244  0.867  

rs7765004 C 0.32 Intergenic 1.04(0.97-1.11) 0.251  0.867  

rs823920 G 0.12 Intergenic 1.05(0.96-1.15) 0.256  0.867  

rs12209785 G 0.15 RUNX2 0.96(0.89-1.03) 0.275  0.867  

rs1944782 G 0.21 Intergenic 0.96(0.90-1.03) 0.277  0.867  

rs3795244 T 0.05 ZNF207 0.93(0.81-1.07) 0.306  0.867  

rs1656402 T 0.33 EIF4E2 0.96(0.89-1.04) 0.307  0.867  

rs17305086 T 0.11 TENM3-AS1 0.96(0.89-1.04) 0.326  0.867  

rs76010824 A 0.06 SUCLG2 1.06(0.94-1.19) 0.334  0.867  

rs72773978 T 0.11 FOPNL 1.06(0.94-1.20) 0.356  0.867  
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs11733008 T 0.36 Intergenic 1.03(0.97-1.10) 0.357  0.867  

rs113988120 A 0.01 PAIP2B 0.90(0.71-1.14) 0.371  0.867  

rs1352757 A 0.43 Intergenic 1.03(0.97-1.10) 0.375  0.867  

rs1414153 C 0.23 1-Dec 1.04(0.96-1.12) 0.385  0.867  

rs7712513 G 0.26 Intergenic 0.97(0.91-1.04) 0.388  0.867  

rs4568126 A 0.33 B4GALT4 1.03(0.96-1.10) 0.390  0.867  

rs11639759 T 0.16 RBFOX1 0.95(0.84-1.07) 0.405  0.867  

rs10835188 G 0.36 LIN7C 1.03(0.96-1.11) 0.419  0.867  

rs7701292 C 0.08 Intergenic 1.04(0.95-1.13) 0.430  0.867  

rs1564271 A 0.23 PDSS1 1.03(0.96-1.10) 0.434  0.867  

rs148760487 G 0.01 Intergenic 0.90(0.68-1.18) 0.435  0.867  

rs2050203 T 0.16 GAPDHP53 0.97(0.88-1.06) 0.456  0.867  

rs16861827 T 0.14 IGSF21 0.96(0.87-1.06) 0.473  0.867  

rs10767646 T 0.33 BDNF-AS 1.03(0.95-1.11) 0.476  0.867  

rs10500780 A 0.14 BTBD10 1.03(0.94-1.13) 0.497  0.867  

rs4618572 T 0.1 Intergenic 0.97(0.89-1.06) 0.509  0.867  

rs770996 T 0.35 AC034195.1 1.02(0.96-1.09) 0.511  0.867  

rs2299187 T 0.07 CACNA2D1 1.11(0.81-1.53) 0.518  0.867  

rs17248137 G 0.05 Intergenic 1.04(0.92-1.18) 0.523  0.867  

rs1209950 T 0.18 ETS2 0.98(0.92-1.04) 0.526  0.867  

rs716274 G 0.44 Intergenic 0.98(0.92-1.04) 0.526  0.867  

rs9593831 T 0.22 Intergenic 0.97(0.88-1.07) 0.546  0.871  

rs3784099 A 0.4 RAD51B 1.02(0.95-1.10) 0.556  0.871  

rs4150579 A 0.33 GTF2H1 1.02(0.95-1.10) 0.567  0.871  

rs6662005 A 0.22 ERO1B 0.97(0.86-1.09) 0.590  0.871  

rs10817611 C 0.23 WHRN 0.98(0.90-1.07) 0.645  0.871  
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs1391315 G 0.1 SMAP2 1.03(0.90-1.18) 0.646  0.871  

rs17548007 T 0.04 Intergenic 1.03(0.92-1.14) 0.646  0.871  

rs55933544 T 0.2 GLDC 0.98(0.91-1.06) 0.650  0.871  

rs7777171 C 0.47 AGMO 0.98(0.92-1.06) 0.654  0.871  

rs421379 T 0.28 Intergenic 0.97(0.84-1.12) 0.664  0.871  

rs4955138 G 0.31 Intergenic 0.98(0.90-1.07) 0.666  0.871  

rs361052 A 0.27 IQSEC1 1.02(0.94-1.10) 0.671  0.871  

rs4285214 T 0.39 ZNF608 0.99(0.93-1.05) 0.674  0.871  

rs1454694 C 0.17 Intergenic 1.02(0.94-1.09) 0.692  0.871  

rs12362504 C 0.38 SBF2 0.99(0.92-1.06) 0.696  0.871  

rs8113308 C 0.27 ZNF613 0.98(0.89-1.08) 0.699  0.871  

rs981621 G 0.45 LDLRAD4 0.99(0.92-1.06) 0.705  0.871  

rs763780 C 0.09 IL17F 0.98(0.84-1.13) 0.748  0.894  

rs9934948 T 0.38 ZFHX3 1.01(0.93-1.11) 0.756  0.894  

rs4780973 T 0.3 Intergenic 1.01(0.94-1.08) 0.804  0.925  

rs6986444 T 0.33 SNTB1 1.01(0.91-1.13) 0.836  0.949  

rs12101726 C 0.24 LINC01579 1.01(0.87-1.17) 0.886  0.982  

rs11062040 C 0.46 DCP1B 1.00(0.93-1.06) 0.900  0.982  

rs9981861 C 0.33 DSCAM 1.00(0.94-1.07) 0.900  0.982  

rs11621975 G 0.08 LINC02320 0.99(0.89-1.11) 0.921  0.992  

rs10983614 C 0.28 ASTN2 1.00(0.94-1.06) 0.946  0.997  

rs10825036 G 0.19 Intergenic 1.00(0.93-1.07) 0.965  0.997  

rs12146774 T 0.18 AC084880.2 1.00(0.91-1.10) 0.973  0.997  

rs10899426 C 0.02 Intergenic 1.00(0.85-1.17) 0.976  0.997  

rs12358475 A 0.11 Intergenic 1.00(0.93-1.07) 0.992  0.997  

rs10736390 A 0.46 MROH7 1.00(0.93-1.07) 0.997  0.997  
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MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values corrected using the false positive rate approach. 

Table 5-27 Summary of associations between 82 genetic variants previously with survival of 
other cancers and CRC-specific survival of CRC patients in the SOCCS study (N=5,675) 

Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs6797464 A 0.12 MECOM 0.85(0.73-0.98) 0.030 0.594 

rs17693104 T 0.35 SH2D4B 0.92(0.85-0.99) 0.031 0.594 

rs823920 G 0.12 Intergenic 1.11(1.00-1.23) 0.042 0.594 

rs202280 G 0.04 Intergenic 1.13(1.00-1.29) 0.051 0.594 

rs17465450 C 0.03 LRMDA 0.85(0.72-1.00) 0.053 0.594 

rs1728400 A 0.33 Intergenic 0.93(0.86-1.00) 0.060 0.594 

rs17124276 T 0.33 KCNK10 1.09(1.00-1.19) 0.060 0.594 

rs10023113 G 0.17 CAMK2D 1.11(0.99-1.23) 0.063 0.594 

rs1408536 A 0.12 Intergenic 1.22(0.99-1.50) 0.064 0.594 

rs1050631 A 0.26 SLC39A6 1.07(0.99-1.16) 0.096 0.631 

rs76010824 A 0.06 SUCLG2 1.11(0.98-1.27) 0.110 0.631 

rs7712513 G 0.26 Intergenic 0.94(0.86-1.01) 0.110 0.631 

rs2299187 T 0.07 CACNA2D1 1.32(0.93-1.87) 0.117 0.631 

rs10736390 A 0.46 MROH7 1.07(0.98-1.15) 0.118 0.631 

rs7765004 C 0.32 Intergenic 1.06(0.98-1.15) 0.131 0.631 

rs12209785 G 0.15 RUNX2 0.94(0.86-1.02) 0.136 0.631 

rs1567532 T 0.14 CTNNA2 1.07(0.98-1.17) 0.142 0.631 

rs1656402 T 0.33 EIF4E2 0.94(0.86-1.02) 0.157 0.631 

rs2314686 A 0.13 SLC25A37 0.87(0.72-1.06) 0.160 0.631 

rs2900174 G 0.16 PRB2 1.17(0.94-1.47) 0.162 0.631 

rs12620038 G 0.45 EPCAM-DT 1.06(0.98-1.15) 0.165 0.631 

rs1352757 A 0.43 Intergenic 1.05(0.98-1.13) 0.191 0.697 

rs1414153 C 0.23 01-Dec 1.06(0.97-1.17) 0.202 0.704 

rs9517906 A 0.42 CLYBL 0.95(0.88-1.03) 0.210 0.704 
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs4780973 T 0.3 Intergenic 1.05(0.97-1.14) 0.238 0.720 

rs114997855 A 0.03 Intergenic 1.19(0.89-1.58) 0.239 0.720 

rs763780 C 0.09 IL17F 0.90(0.75-1.07) 0.240 0.720 

rs4568126 A 0.33 B4GALT4 1.05(0.97-1.13) 0.256 0.740 

rs17248137 G 0.05 Intergenic 1.08(0.94-1.25) 0.284 0.794 

rs4618572 T 0.1 Intergenic 0.95(0.85-1.06) 0.337 0.884 

rs716274 G 0.44 Intergenic 0.96(0.90-1.04) 0.349 0.884 

rs9332377 T 0.17 COMT 1.05(0.95-1.17) 0.360 0.884 

rs1944782 G 0.21 Intergenic 0.96(0.89-1.04) 0.371 0.884 

rs72773978 T 0.11 FOPNL 0.93(0.79-1.09) 0.375 0.884 

rs1209950 T 0.18 ETS2 0.97(0.90-1.04) 0.390 0.884 

rs7149859 T 0.35 PIGH 0.97(0.89-1.04) 0.392 0.884 

rs11733008 T 0.36 Intergenic 1.03(0.96-1.12) 0.412 0.884 

rs4150579 A 0.33 GTF2H1 1.04(0.95-1.13) 0.419 0.884 

rs1454694 C 0.17 Intergenic 1.04(0.95-1.13) 0.440 0.884 

rs9593831 T 0.22 Intergenic 0.96(0.86-1.07) 0.453 0.884 

rs2050203 T 0.16 GAPDHP53 0.96(0.86-1.07) 0.473 0.884 

rs12362504 C 0.38 SBF2 0.97(0.89-1.06) 0.491 0.884 

rs981621 G 0.45 LDLRAD4 0.97(0.89-1.06) 0.496 0.884 

rs2059614 G 0.04 PKNOX2 1.06(0.90-1.23) 0.501 0.884 

rs1564271 A 0.23 PDSS1 1.03(0.95-1.12) 0.513 0.884 

rs295315 G 0.37 Intergenic 1.03(0.94-1.13) 0.514 0.884 

rs10817611 C 0.23 WHRN 1.03(0.93-1.14) 0.516 0.884 

rs4285214 T 0.39 ZNF608 0.98(0.91-1.05) 0.549 0.922 

rs9981861 C 0.33 DSCAM 0.98(0.91-1.06) 0.579 0.954 

rs3795244 T 0.05 ZNF207 0.96(0.81-1.13) 0.597 0.964 

rs55933544 T 0.2 GLDC 0.98(0.89-1.07) 0.627 0.980 
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs12146774 T 0.18 AC084880.2 1.03(0.92-1.15) 0.639 0.980 

rs1391315 G 0.1 SMAP2 1.04(0.89-1.21) 0.653 0.980 

rs16861827 T 0.14 IGSF21 0.98(0.87-1.10) 0.673 0.980 

rs10500780 A 0.14 BTBD10 1.02(0.92-1.14) 0.675 0.980 

rs4955138 G 0.31 Intergenic 1.02(0.92-1.13) 0.677 0.980 

rs11639759 T 0.16 RBFOX1 1.03(0.89-1.19) 0.696 0.982 

rs8113308 C 0.27 ZNF613 1.02(0.91-1.14) 0.724 0.982 

rs148760487 G 0.01 Intergenic 0.95(0.69-1.30) 0.756 0.982 

rs7701292 C 0.08 Intergenic 1.02(0.92-1.13) 0.764 0.982 

rs17548007 T 0.04 Intergenic 1.02(0.90-1.16) 0.784 0.982 

rs12358475 A 0.11 Intergenic 1.01(0.93-1.10) 0.792 0.982 

rs4382459 T 0.08 PREX2 0.98(0.87-1.11) 0.807 0.982 

rs10899426 C 0.02 Intergenic 1.02(0.85-1.23) 0.815 0.982 

rs166870 T 0.24 Intergenic 1.01(0.93-1.10) 0.822 0.982 

rs9934948 T 0.38 ZFHX3 0.99(0.89-1.10) 0.837 0.982 

rs770996 T 0.35 AC034195.1 0.99(0.92-1.07) 0.866 0.982 

rs10983614 C 0.28 ASTN2 1.01(0.93-1.09) 0.868 0.982 

rs361052 A 0.27 IQSEC1 1.01(0.91-1.11) 0.873 0.982 

rs11062040 C 0.46 DCP1B 0.99(0.92-1.07) 0.876 0.982 

rs11621975 G 0.08 LINC02320 1.01(0.89-1.14) 0.877 0.982 

rs421379 T 0.28 Intergenic 0.99(0.83-1.17) 0.882 0.982 

rs17305086 T 0.11 TENM3-AS1 0.99(0.90-1.09) 0.899 0.982 

rs10767646 T 0.33 BDNF-AS 1.00(0.92-1.10) 0.917 0.982 

rs113988120 A 0.01 PAIP2B 0.99(0.75-1.30) 0.925 0.982 

rs3784099 A 0.4 RAD51B 1.00(0.91-1.09) 0.933 0.982 

rs10835188 G 0.36 LIN7C 1.00(0.91-1.09) 0.942 0.982 

rs6986444 T 0.33 SNTB1 1.00(0.88-1.13) 0.945 0.982 
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Variant MA MAF Gene HR(95%CI) P(uncorrected) Pfdr 

rs7777171 C 0.47 AGMO 1.00(0.92-1.08) 0.956 0.982 

rs12101726 C 0.24 LINC01579 1.00(0.85-1.19) 0.959 0.982 

rs6662005 A 0.22 ERO1B 1.00(0.87-1.15) 0.987 0.997 

rs10825036 G 0.19 Intergenic 1.00(0.92-1.09) 0.997 0.997 

 MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values corrected using the false positive rate approach. 

 

Stratified analysis 

I conducted survival analysis stratified by sex, stage and tumour site investigating the 

effects on CRC survival of the 82 genetic variants previously linked with survival 

outcomes of other cancers. Overall, no statistically significant associations that 

survived correction for multiple testing were identified in any strata of patients. With 

respect to sex-stratified analysis, five variants were found to be associated with overall 

survival in male CRC patients (N=3,235); eight variants were related to CRC-specific 

survival in the presence of nominal statistical significance (p<0.05) (Table 5-28). 

Amongst female CRC patients in SOCCS, we found two variants (rs10500780 and 

rs12362504) associated with both overall and CRC-specific survival. Genetic variant 

rs202280 was associated with overall survival of female patients, whereas the variant 

rs10736390 was correlated with CRC-specific survival (Table 5-28). Detailed results 

of all the 82 variants are presented in Appendix Table 14. 

 

Table 5-28 Summary of associations (p<0.05) stratified by sex between CRC survival in the 
SOCCS cohort and genetic variants associated with survival outcomes of other cancers  

 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

Male (N=3,235) 

OS       

 rs2059614 G 0.04 1.25(1.06-1.48) 0.008 0.522 

 rs10023113 G 0.17 1.15(1.03-1.30) 0.017 0.522 

 rs12209785 G 0.15 0.89(0.81-0.98) 0.019 0.522 
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 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

 rs1408536 A 0.12 1.24(1.00-1.54) 0.048 0.755 

 rs1728400 A 0.33 0.92(0.85-1.00) 0.049 0.755 

CSS       

 rs823920 G 0.12 1.17(1.03-1.33) 0.016 0.480 

 rs12209785 G 0.15 0.88(0.79-0.98) 0.022 0.480 

 rs7712513 G 0.26 0.89(0.80-0.99) 0.026 0.480 

 rs10023113 G 0.17 1.17(1.02-1.35) 0.028 0.480 

 rs17693104 T 0.35 0.90(0.82-0.99) 0.034 0.480 

 rs72773978 T 0.11 0.79(0.63-0.99) 0.043 0.480 

 rs1050631 A 0.26 1.11(1.00-1.23) 0.048 0.480 

 rs1408536 A 0.12 1.30(1.00-1.69) 0.050 0.480 

Female 
(N=2,440) 

      

OS       

 rs202280 G 0.04 1.28(1.09-1.51) 0.003 0.234 

 rs12362504 C 0.38 0.87(0.77-0.98) 0.018 0.665 

 rs10500780 A 0.14 1.15(1.01-1.32) 0.042 0.665 

CSS       

 rs10736390 A 0.46 1.20(1.06-1.36) 0.004 0.317 

 rs12362504 C 0.38 0.84(0.73-0.97) 0.016 0.506 

 rs10500780 A 0.14 1.21(1.03-1.42) 0.018 0.506 

MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values adjusted using the false positive rate approach. OS, overall survival, CSS, CRC-
specific survival 

 

I identified a total of 22 associations at nominal significance (p<0.05) between 15 

unique genetic variants and survival outcomes of CRC in stage II/III or stage IV CRC 

patients in SOCCS, although none of them retained statistical significance after FDR 

correction. The summarised effect estimates of these 22 associations are presented 
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in Table 5-29 and all non-significant results (p>0.05) are summarised in Appendix 
Table 15. 

Table 5-29 Summary of associations (p<0.05) stratified by stage between CRC survival in the 
SOCCS cohort and genetic variants associated with survival outcomes of other cancers  

 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

Stage II/III (N=3,886)      

OS       

 rs1728400 A 0.33 0.90(0.83-0.98) 0.014 0.543 

 rs9517906 A 0.42 0.90(0.83-0.98) 0.014 0.543 

 rs1408536 A 0.12 1.28(1.03-1.60) 0.026 0.543 

 rs4382459 T 0.08 0.85(0.73-0.98) 0.027 0.543 

 rs10835188 G 0.36 1.11(1.00-1.22) 0.041 0.543 

 rs2900174 G 0.16 1.27(1.01-1.60) 0.043 0.543 

 rs17305086 T 0.11 0.90(0.80-1.00) 0.045 0.543 

CSS       

 rs1408536 A 0.12 1.59(1.17-2.15) 0.003 0.160 

 rs9517906 A 0.42 0.86(0.77-0.95) 0.004 0.160 

 rs1728400 A 0.33 0.88(0.80-0.98) 0.016 0.461 

 rs2900174 G 0.16 1.33(1.01-1.77) 0.045 0.679 

 rs361052 A 0.27 1.14(1.00-1.31) 0.047 0.679 

Stage IV (N=784)      

OS       

 rs1050631 A 0.26 1.17(1.04-1.32) 0.010 0.468 

 rs17693104 T 0.35 0.86(0.76-0.97) 0.012 0.468 

 rs1414153 C 0.23 1.20(1.03-1.40) 0.022 0.468 

 rs1454694 C 0.17 1.18(1.02-1.36) 0.022 0.468 

 rs1567532 T 0.14 1.16(1.01-1.33) 0.038 0.579 

CSS       
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 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

 rs1050631 A 0.26 1.18(1.04-1.33) 0.008 0.633 

 rs17693104 T 0.35 0.86(0.77-0.98) 0.019 0.633 

 rs1454694 C 0.17 1.18(1.02-1.36) 0.031 0.633 

 rs202280 G 0.04 1.24(1.02-1.52) 0.035 0.633 

 rs4150579 A 0.33 1.16(1.00-1.33) 0.042 0.633 

MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values adjusted using the false positive rate approach. OS, overall survival, CSS, CRC-
specific survival 

 

Regarding tumour site, I detected no significant associations after FDR correction in 

either colon or rectal cancer patients. Seven associations at nominal significance 

(p<0.05) including six unique genetic variants were found in colon cancer patients 

(details in Table 5-30). For rectal cancer patients, however, I did not identify any 

variants associated with overall survival with uncorrected p<0.05. Three variants were 

correlated with CRC-specific survival of rectal cancer patients in SOCCS in the 

presence of nominal significance (p<0.05). I summarise the detailed results of the 82 

variants in relation to survival outcomes stratified by tumour site in Appendix Table 
16.   

 

Table 5-30 Summary of associations (p<0.05) stratified by tumour site between CRC survival 
in the SOCCS cohort and genetic variants associated with survival outcomes of other cancers 

 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

Colon (N=3,392)      

OS       

 rs2059614 G 0.04 1.24(1.05-1.46) 0.009 0.669 

 rs17124276 T 0.33 1.13(1.02-1.24) 0.019 0.669 

 rs17693104 T 0.35 0.91(0.84-0.99) 0.026 0.669 

 rs1567532 T 0.14 1.11(1.01-1.22) 0.032 0.669 

CSS       
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 Variant MA MAF HR(95%CI) P(uncorrected) Pfdr 

 rs823920 G 0.12 1.18(1.04-1.35) 0.010 0.775 

 rs17124276 T 0.33 1.15(1.02-1.29) 0.022 0.775 

 rs8113308 C 0.27 1.15(1.00-1.32) 0.050 0.775 

Rectal (N=2,201)      

CSS       

 rs6797464 A 0.12 0.76(0.60-0.96) 0.024 0.996 

 rs10023113 G 0.17 1.21(1.02-1.43) 0.033 0.996 

 rs17465450 C 0.03 0.76(0.58-1.00) 0.047 0.996 

MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, confidence interval; Pfdr, 
p-values adjusted using the false positive rate approach. OS, overall survival, CSS, CRC-
specific survival 

 

Sensitivity analysis 

I analysed associations between the 82 genetic variants previously linked with 

survival outcomes of other cancers and CRC survival under a recessive model in the 

SOCCS study. Colorectal cancer patients carrying the TT genotype of the variant 

rs2299187 had significantly favourable overall (HR=0.54, 95%CI=0.42-0.70, 

uncorrected p=2.6x10-6, Pfdr=1.8x10-4) and CRC-specific survival (HR=0.52, 

95%CI=0.39-0.69, uncorrected=6.1x10-6, Pfdr=2.6x10-4) compared with ones with AA 

or AT genotypes. This effect showed concordant direction with the original report 

where the TT genotype was linked with improved overall survival of head and neck 

cancer (Azad et al, 2016). I also observed three variants associated with CRC survival 

at nominal significance (p<0.05) although they did not survive FDR correction (Table 
5-31). Additional details on the results of other remaining candidate variants can be 

found in Appendix Table 17. 

Table 5-31 Summary of associations (p<0.05) between survival outcomes of CRC patients in 
the SOCCS study and genetic variants previously linked with survival outcomes of other 
cancers under a recessive model (N=5,675)  

 Variant MG MGF HR(95%CI) P(uncorrected) Pfdr 

OS       
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 Variant MG MGF HR(95%CI) P(uncorrected) Pfdr 

 rs2299187 TT 0.01 0.54(0.42-0.70) 2.6E-06 1.8E-04 

 rs72773978 TT 0.02 0.29(0.09-0.89) 0.03 0.84 

CSS       

 rs2299187 TT 0.01 0.52(0.39-0.69) 6.1E-06 2.6E-04 

 rs17124276 TT 0.02 1.32(1.05-1.65) 0.015 0.424 

 rs6797464 GG 0.02 0.84(0.72-0.99) 0.036 0.555 

 rs10736390 GG 0.21 1.16(1.00-1.35) 0.048 0.555 

MG, minor genotype; MGF, minor genotype frequency; HR, hazard ratio; CI, confidence 
interval; Pfdr, p-values adjusted using the false positive rate approach. OS, overall survival, 
CSS, CRC-specific survival. 

 

I failed to replicate the association between the variant rs2299187 and CRC survival 

in the UK Biobank due to the fact that this variant had a low minor allele frequency (T 

allele: 0.02) and there were no homozygous individuals (TT) present in the UK 

Biobank cohort.  

 

5.4 Genome-wide association analysis  
 

5.4.1 Statistical power   
 

Following similar procedures as in previous sections, I estimated the statistical power 

of the GWA study. The α level of GWAS significance (5x10-8) was used in combination 

with other metrics including the sample size (N=5,675), the minor allele frequency 

(0.01 to 0.50), proportions of events (34% for overall survival and 24% for CRC-

specific survival) and various effect sizes (HR from 1.2 to 2.0). According to the 

method proposed by Owzar et al.(Owzar et al, 2012), the GWA study had a power of 

75% to detect an effect of 1.30 (HR) on overall survival for a genetic variant with a 

minor allele frequency of 0.15. For CRC-specific survival, however, a statistical power 

of 76% was expected to observe an effect of 1.30 for a variant with a minor allele 
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frequency of 0.25. I plotted power curves for variants of varied minor allele frequencies 

in relation to a range of effect sizes in Figure 5-19. As suggested by the power curves, 

the GWA study had limited statistical power (<30%) to identify small or moderate 

survival effects (HR<1.3) for genetic variants with low minor allele frequencies (<0.05) 

especially on CRC-specific survival. Notably, there could be slight overestimation of 

the statistical power (2-4%) as here the power was estimated assuming a Cox 

regression approach whereas the main GWAS analysis was conducted using a 

Martingale residual-based approach (details in page 104).  

 

Figure 5-19 Power curves for the genome-wide association study in the SOCCS cohort 

 

5.4.2 Main results   
 

As described in Chapter 4, I included a total of 8,328,632 autosomal genetic variants 

and investigated their associations with survival outcomes in 5,675 CRC patients of 

the SOCCS cohort using the Martingale residual-based approach. Similar to previous 

candidate association studies, I adjusted for covariates including age at CRC 

diagnosis, sex and AJCC stage to estimate the effect of a certain variant on overall 

and CRC-specific survival. 

For overall survival, I identified 415,724 (4.99%) at p<0.05. Associations between 

these variants (p<0.05) and the survival outcome (measured by the Martingale 
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residual) are presented in the Manhattan plot (Figure 5-20). As shown in the plot, no 

genetic variants were identified to be associated with overall survival with GWAS 

significance (p<5x10-8). The strongest signal was for rs143664541 in chromosome 6 

(Martingale residual coefficient =0.769, SE=0.154, p=5.89x10-7). 

 

 

Figure 5-20 Manhattan plot of GWAS results on overall survival of all CRC patients in the 
SOCCS cohort (blue line: p=10-5, red line=5x10-8) 

 

I also plotted all the eight million observed p-values from the GWA analysis against a 

theoretical null distribution in a QQ plot (Figure 5-21). The QQ plot indicated no 

systematic inflation of statistical significance in the GWAS results on overall survival, 

which was underpinned by an inflation factor (lambda) of 0.9991 (<1.1). 
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Figure 5-21 QQ plot of GWAS results on overall survival of all CRC patients in the SOCCS 
cohort 

 

By implementing a less stringent p-value threshold (p<5x10-6), I found a total of 38 

correlated genetic variants associated with overall survival. Pairs of genetic variants 

in linkage disequilibrium (LD) were investigated by calculating the r2 and for pairs with 

r2>0.2, I kept the variant with the smaller p-values in the association with survival 

outcomes in SOCCS. After controlling for LD, I obtained 10 independent genetic 

variants with p-values less than 5x10-6; basic characteristics along with regression 

coefficients of these variants are summarised in Table 5-32.  

Table 5-32 Genetic variants identified from the genome-wide association analysis associated 
with overall survival of CRC patients in the SOCCS cohort (p<5x10-6) using the Martingale-
residual based approach (N=5,675)  

Variant Chr MA MAF Beta SE P 

rs143664541 6 A 0.014 0.769 0.154 5.89E-07 

rs6869766 5 A 0.139 0.248 0.050 7.00E-07 

rs185673294 4 G 0.126 -0.256 0.053 1.23E-06 

rs75809467 9 T 0.034 0.490 0.101 1.32E-06 

rs4484717 8 C 0.429 -0.164 0.034 1.34E-06 
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Variant Chr MA MAF Beta SE P 

rs138959556 16 T 0.037 -0.461 0.096 1.74E-06 

rs4441183 14 A 0.128 0.239 0.050 1.95E-06 

rs34858830 14 A 0.332 0.166 0.036 3.68E-06 

rs141093197 13 T 0.485 0.158 0.034 4.09E-06 

rs60676294 3 G 0.139 0.237 0.052 4.46E-06 

Chr, chromosome; MA, minor allele; MAF, minor allele frequency; Beta, regression coefficients; 
SE, standard error. 

 

I then re-fitted Cox regression models to obtain exact effect estimates and p-values 

of these 10 genetic variants. The summarised results of Cox regression models are 

presented in Table 5-33. Notably, I identified one variant rs143664541 in 

chromosome 6 that reached GWAS statistical significance (HR=1.92, 95%CI=1.52-

2.42, p=4.24x10-8). Given the low minor allele frequency (0.014), I plotted Kaplan-

Meier estimates of this variant in Figure 5-22 under a dominant genetic model 

(GA+AA vs GG). 

 

Table 5-33 Summary of effect estimates from Cox models of GWAS-identified variants 
associated with overall survival in the SOCCS cohort (p<5x10-6)  

Variant Chr MA MAF HR(95%CI) P 

rs143664541 6 A 0.014 1.92(1.52-2.42) 4.24E-08 

rs75809467 9 T 0.034 1.58(1.33-1.87) 1.55E-07 

rs4441183 14 A 0.128 1.26(1.15-1.38) 5.26E-07 

rs6869766 5 A 0.139 1.30(1.17-1.44) 6.02E-07 

rs4484717 8 C 0.429 0.85(0.80-0.91) 7.81E-07 

rs185673294 4 G 0.126 0.77(0.69-0.86) 1.43E-06 

rs60676294 3 G 0.139 1.25(1.14-1.37) 1.82E-06 

rs141093197 13 T 0.485 1.17(1.10-1.25) 2.34E-06 

rs34858830 14 A 0.332 1.18(1.10-1.26) 3.26E-06 
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Variant Chr MA MAF HR(95%CI) P 

rs138959556 16 T 0.037 0.61(0.50-0.76) 4.85E-06 

Chr, chromosome; MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, 
confidence interval.  

 

 

Figure 5-22 Kaplan-Meier estimates of overall survival in the SOCCS stratified by the 
genetic variant rs143664541 

 

With respect to the GWAS on CRC-specific survival, in total, I found 414,706 (4.98%) 

genetic variants associated with CRC-specific survival in the SOCCS cohort. The 

Manhattan plot displaying all the 414,706 signals throughout the genome is presented 

in Figure 5-23. As indicated by the plot, the strongest signal was detected at the same 

variant rs143664541 in chromosome 6 (Martingale residual coefficient=1.04, 

SE=0.182, p=9.10x10-9).  
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Figure 5-23 Manhattan plot of GWAS results on CRC-specific survival of all CRC patients 
in the SOCCS cohort (blue line: p=10-5, red line: 5x10-8) 

 
 

Similar to the results of overall survival, the QQ plot of CRC-specific survival 

(presented in Figure 5-24) aggregating p-values from all the eight million variants 

showed no systematic inflation of statistical significance. I also observed an inflation 

factor (lambda) of 1.004 (<1.1) verifying the absence of systematic inflation. 
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Figure 5-24 QQ plot of GWAS results on CRC-specific survival of all CRC patients in the 
SOCCS cohort 

 

I then extracted a total of 52 genetic variants associated with CRC-specific survival 

with p<5x10-6. After addressing LD among these variants, 19 independent variants 

were retained (presented in Table 5-34). In addition to rs143664541, I identified 

another variant rs75809467 in chromosome 9 in association with CRC-specific 

survival at p<5x10-7 (Martingale residual coefficient=0.621, standard error=0.119, 

p=2.11x10-7) 

Table 5-34 Genetic variants identified from the genome-wide association analysis associated 
with CRC-specific survival of CRC patients in the SOCCS cohort (p<5x10-6) using the 
Martingale-residual based approach 

Variant  Chr MA MAF Beta SE P 
rs143664541 6 A 0.014 1.045 0.182 9.10E-09 

rs75809467 9 T 0.034 0.621 0.119 2.11E-07 

rs75796335 7 C 0.111 0.317 0.065 1.23E-06 

rs12648214 4 C 0.157 -0.263 0.055 1.44E-06 

rs117363837 7 G 0.213 0.234 0.049 1.86E-06 

rs76941929 11 A 0.022 0.645 0.138 2.86E-06 
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rs72767774 1 A 0.053 0.423 0.09 2.92E-06 

rs17105163 10 A 0.029 0.55 0.118 2.93E-06 

rs79014181 22 A 0.06 0.41 0.088 3.01E-06 

rs1207145 2 G 0.017 -0.731 0.157 3.15E-06 

rs6799780 3 G 0.107 0.266 0.057 3.48E-06 

rs12113115 7 T 0.139 0.265 0.057 3.49E-06 

rs4441183 14 A 0.128 0.274 0.059 3.89E-06 

rs7724103 5 G 0.034 0.516 0.112 4.32E-06 

rs17808098 14 A 0.474 -0.181 0.039 4.36E-06 

rs185274835 8 C 0.011 0.914 0.199 4.37E-06 

rs111411038 8 G 0.019 0.684 0.149 4.74E-06 

rs72803621 10 G 0.044 0.454 0.099 4.78E-06 

rs147529871 6 T 0.02 -0.682 0.149 4.92E-06 

Chr, chromosome; MA, minor allele; MAF, minor allele frequency; Beta, regression coefficients; 
SE, standard error.   

 

The effect estimates on CRC-specific survival of these 19 variants were re-estimated 

in Cox regression models (Table 5-35). I observed two variants (rs143664541 and 

rs75809467) that reached GWAS significance in association with CRC-specific 

survival. In particular, the A allele of the variant rs143664541 conferred significantly 

higher hazard of CRC-related death (HR=1.92, 95%CI=1.52-2.42, p=4.24x10-8). The 

other variant rs75809467, with the T allele as the risk allele, was significantly 

associated with inferior CRC-specific survival (HR=1.81, 95%CI=1.48-2.20, 

p=7.07x10-9). Survival curves of these two variants are plotted in Figure 5-25 and 

Figure 5-26 with the variants coded under a dominant genetic model.  

Table 5-35 Summary of effect estimates from Cox models of GWAS-identified variants 
associated with CRC-specific survival in the SOCCS cohort (p<5x10-6) 

Variant  Chr EA MAF HR(95%CI) P 
rs143664541 6 A 0.014 2.17(1.69-2.78) 1.14E-09 

rs75809467 9 T 0.034 1.80(1.48-2.20) 7.07E-09 

rs76941929 11 A 0.022 1.84(1.47-2.30) 8.37E-08 

rs185274835 8 C 0.011 2.18(1.63-2.90) 1.17E-07 

rs75796335 7 C 0.111 1.36(1.21-1.53) 2.45E-07 

rs17105163 10 A 0.029 1.64(1.36-1.98) 2.86E-07 
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Variant  Chr EA MAF HR(95%CI) P 
rs7724103 5 G 0.034 1.61(1.34-1.94) 5.59E-07 

rs117363837 7 G 0.213 1.26(1.15-1.38) 6.70E-07 

rs72803621 10 G 0.044 1.53(1.29-1.81) 8.65E-07 

rs79014181 22 A 0.06 1.45(1.25-1.68) 9.53E-07 

rs72767774 1 A 0.053 1.45(1.25-1.69) 1.01E-06 

rs12113115 7 T 0.139 1.29(1.16-1.43) 1.28E-06 

rs6799780 3 G 0.107 1.28(1.16-1.42) 1.30E-06 

rs111411038 8 G 0.019 1.76(1.40-2.22) 1.32E-06 

rs4441183 14 A 0.128 1.29(1.16-1.43) 1.89E-06 

rs12648214 4 C 0.157 0.77(0.69-0.86) 2.22E-06 

rs17808098 14 A 0.474 0.84(0.78-0.90) 2.98E-06 

rs1207145 2 G 0.017 0.37(0.24-0.58) 1.63E-05 

rs147529871 6 T 0.02 0.44(0.30-0.64) 2.19E-05 

 Chr, chromosome; MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, 
confidence interval. 

  

 

Figure 5-25 Kaplan-Meier estimates of CRC-specific survival in the SOCCS stratified by 
the genetic variant rs143664541 
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Figure 5-26 Kaplan-Meier estimates of CRC-specific survival in the SOCCS stratified by 
the genetic variant rs75809467 

 

To sum up, I identified two genetic variants (rs143664541 and rs75809467) 

associated with survival outcomes at GWAS significance (p<5x10-8) of CRC patients 

in the SOCCS study. I created locus-zoom plots to provide visualisation of the 

genomic region near these two variants. Both of these two variants locate in non-

coding regions of the genome. Figure 5-27 (rs143664541) and Figure 5-28 

(rs75809467) annotate flanking genes as well as the LD structure surrounding the two 

variants. As shown by the Figure 5-27, the variant rs143664541 locates in an 

intergenic region near the FRK gene in chromosome 6, whereas rs75809467 locates 

between the GDA and the C9orf57 gene in chromosome  9 (Figure 5-28). The plots 

also suggest lack of variants in strong linkage disequilibrium (r2>0.8) with these two 

variants. 
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Figure 5-27 Locus-zoom plot for variant rs143664541 

 

 

Figure 5-28 Locus-zoom plot for variant rs75809467 
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5.4.3 Replication of discoveries    
 

The discoveries of two genetic variants (rs143664541 and rs75809467) were 

validated in the UK Biobank cohort and datasets from three published clinical trials 

including the VICTOR, the SCOT and the QUASAR2 trial. As described in preceding 

sections, the UK Biobank study cohort include 2,474 incident CRC patients. With 

respect to the trial datasets, in collaboration with Dr. Claire Palles (Institute of Cancer 

and Genomic Sciences, the University of Birmingham), we were able to collect 4,768 

stage II/III patients from a pooled dataset of the VICTOR, SCOT and QUASAR2 trials 

for rs143664541. Eventually, the association of rs143664541 with overall survival was 

validated in an aggregate sample of 7,242 CRC patients. I obtained the final effect 

estimates by combining hazard ratios along with their standard errors from these 

datasets in a fixed-effect meta-analysis. Overall, I did not observe a significant 

association (HR=1.32, 95%CI=0.90-1.93, p=0.152). The forest plot of the meta-

analysis is presented in Figure 5-29. It is worth noting that although no significant 

association was detected, the direction of effects observed in the three replication 

datasets was concordant with the direction from the SOCCS study—The A allele was 

related to worse survival outcomes. No significant heterogeneity was detected among 

these three datasets (I2=0%, Phet=0.61).  

 

Figure 5-29 Forest plot of meta-analysis of replication datasets on the variant rs143664541 

 

The outcome of CRC-specific survival was available only in the UK Biobank study. 

Similarly, I identified a point estimate of effect with concordant direction yet 

insignificant association between the variant rs143664541 and CRC-specific survival 

(HR=1.32, 95%CI=0.73-2.40, p=0.361).  
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Pertaining to the other variant rs75809467, we managed to include a total of 4,771 

stage II/III CRC patients from the three trials along with the 2,474 patients from the 

UK Biobank to conduct the replication analysis. Meta-analysis found no significant 

effect of this variant on overall survival (HR=0.90, 95%CI=0.72-1.14, p=0.394). The 

point estimates of effect of this variant observed from replication datasets were 

inconsistent with estimates from the SOCCS. I present the forest plot of the fixed-

effect meta-analysis in Figure 5-30. This variant was not significantly associated with 

CRC-specific survival in the UK Biobank cohort either (HR=0.91, 95% CI=0.66-1.25, 

p=0.557). No significant heterogeneity was detected among these three datasets 

(I2=0%, Phet=0.59). 

 

 

Figure 5-30 Forest plot of meta-analysis of replication datasets on the variant rs75809467 

 

5.4.4 Gene and Gene-set based enrichment analysis   
 

All included genetic variants were mapped to 18,420 protein coding genes by the 

FUMA platform (Watanabe et al, 2017). The mapped genes were further grouped into 

15,480 gene-sets curated in the MSigDB database (Liberzon et al, 2015). According 

to the number of genes and gene-sets tested in this part of analysis, a Bonferroni 

corrected α level was applied to evaluate the statistical significance of the results 

(gene based analysis: α=2.71x10-6; gene-set based analysis: α=3.23x10-6). 
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Overall survival   

Gene based analysis  

For the outcome of overall survival, I did not observe any significant signals among 

the mapped 18,420 genes (p<2.71x10-6). The Manhattan plot aggregating all these 

test results is presented in Figure 5-31.  

 

 

Figure 5-31 Manhattan plot of genome-wide gene based analysis on overall survival of 
CRC patients in the SOCCS cohort (red line: p=2.71x10-6) 

 

Similar to the preceding variant-based GWA analysis, I plotted all the p-values 

obtained from all the gene based tests against the theoretical null distribution to 

examine systematic excess of statistical significance. The QQ plot is shown in Figure 
5-32. Based on these p-values, I observed a genome-wide inflation factor of 1.017, 

indicating the absence of systematic inflation of the observed results (λ<1.1).  
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Figure 5-32 QQ plot of genome-wide gene based analysis on overall survival of CRC 
patients in the SOCCS cohort 

 

Although no significant signals were detected after correcting for multiple testing, I 

observed one gene (ECHDC1) with the strongest signal associated with overall 

survival (p=1.58x10-5). This gene locates in the chromosome 6 and encodes the 

protein Ethylmalonyl-CoA decarboxylase 1. A total of 122 genetic variants in this gene 

were included in the gene based analysis (the detailed list of variants can be found at 

URL4-23).   

 

Gene-set based analysis  

In relation to the gene-set based analysis, after Bonferroni correction, I identified 

significant enrichment of gene signals in one set of genes involved in the biosynthetic 

process of galactolipid (MSigDB ID: go_galactolipid_biosynthetic_process) 

associated with overall survival of CRC patients (p=2.09x10-6). This set included six 

genes whose basic characteristics as well as test statistics obtained from the gene 

based analysis are presented in 

Table 5-36. 
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Table 5-36 Genes involved in the biosynthetic process of galactolipid  

Gene Gene ID Chr No. 
variants 

P* 

GAL3ST1 ENSG00000128242 22 55 0.002 

B3GALT1 ENSG00000172318 2 89 0.031 

FA2H ENSG00000103089 16 206 0.058 

B4GALT3 ENSG00000158850 1 8 0.101 

B3GALT2 ENSG00000162630 1 14 0.149 

UGT8 ENSG00000174607 4 137 0.289 

*P-values of gene based tests for each gene  
Chr, chromosome  

 

CRC-specific survival  

Gene based analysis  

The Manhattan plot of genome-wide gene based analysis on CRC-specific survival 

presented in Figure 5-33. As shown by the plot, I detected one statistically significant 

association after Bonferroni correction between the CCDC135 gene and CRC-specific 

survival of patients in SOCCS. This gene locates in the chromosome 16 and encodes 

the Coiled-coil domain-containing protein 135. A total of 76 genetic variants in this 

gene were included to test the potential overall effect.   
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Figure 5-33 Manhattan plot of genome-wide gene based analysis on CRC-specific survival 
of CRC patients in the SOCCS cohort 

 

Regarding the distribution of statistical significance, the QQ plot (Figure 5.34) 

provided moderate evidence of the presence of enriched signals. I obtained an 

inflation factor of 1.042 for the results of gene based analysis on CRC-specific survival.     

 

Figure 5-34 QQ plot of genome-wide gene-set based analysis on overall survival of CRC 
patients in the SOCCS cohort 
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When implementing a relatively lenient significance threshold, six genes were 

associated with CRC-specific survival with p<5x10-5. Their basic characteristics along 

with the test statistic are presented in Table 5-37.  

 

Table 5-37 Summary of genes associated with CRC-specific survival identified from the 
genome-wide gene based analysis (p<5x10-5)  

Gene Gene ID Chr No. variants P 

CCDC135 ENSG00000159625 16 76 9.92E-07 

BBS9 ENSG00000122507 7 1387 8.28E-06 

HSPH1 ENSG00000120694 13 22 1.19E-05 

ADAMTS5 ENSG00000154736 21 143 2.49E-05 

SIGLECL1 ENSG00000179213 19 64 2.64E-05 

UVRAG ENSG00000198382 11 516 4.62E-05 

Chr, chromosome  

 

Gene-set based analysis  

With respect to gene-set based analysis on CRC-specific survival, I identified a 

statistically significant enrichment of signals in the set of genes associated with up-

regulating the differentiation of adipocyte (MSigDB ID: 

urs_adipocyte_differentiation_up) (p=2.52x10-7). This gene set includes 65 mapped 

genes and additional information about these genes can be found in Table 5-38.   

 

Table 5-38 Genes involved in the up-regulating the differentiation of adipocyte 

Gene Gene ID CHR No. 
variants 

P* 

PLEK ENSG00000115956 2 177 0.012 

LYPLA1 ENSG00000120992 8 103 0.019 



Chapter 5 Results 

219 
 

Gene Gene ID CHR No. 
variants 

P* 

MASP1 ENSG00000127241 3 220 0.020 

COL7A1 ENSG00000114270 3 22 0.022 

LIPC ENSG00000166035 15 472 0.022 

DGAT1 ENSG00000185000 8 12 0.025 

PCDH7 ENSG00000169851 4 1095 0.067 

ECM2 ENSG00000106823 9 101 0.069 

ADIPOQ ENSG00000181092 3 48 0.079 

PLIN2 ENSG00000147872 9 115 0.082 

CHST1 ENSG00000175264 11 43 0.087 

ALDH1A2 ENSG00000128918 15 1832 0.110 

LRP8 ENSG00000157193 1 181 0.113 

FXYD1 ENSG00000266964 19 4 0.118 

SLC24A2 ENSG00000155886 9 760 0.130 

IGFBP2 ENSG00000115457 2 23 0.152 

C1orf61 ENSG00000125462 1 24 0.153 

TNFAIP2 ENSG00000185215 14 27 0.188 

GPD1 ENSG00000167588 12 5 0.189 

VTN ENSG00000109072 17 24 0.201 

DPT ENSG00000143196 1 147 0.203 

PFKFB3 ENSG00000170525 10 312 0.231 

AGT ENSG00000135744 1 51 0.236 
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Gene Gene ID CHR No. 
variants 

P* 

SKAP1 ENSG00000141293 17 697 0.238 

PTPN21 ENSG00000070778 14 196 0.249 

CAP2 ENSG00000112186 6 400 0.272 

ATP2B2 ENSG00000157087 3 1349 0.278 

ALDH6A1 ENSG00000119711 14 92 0.284 

PTPRS ENSG00000105426 19 645 0.294 

LBP ENSG00000129988 20 110 0.302 

FABP4 ENSG00000170323 8 18 0.327 

MTUS1 ENSG00000129422 8 836 0.377 

STAT5B ENSG00000173757 17 70 0.379 

PPARG ENSG00000132170 3 362 0.415 

MMP7 ENSG00000137673 11 28 0.440 

ATP8A2 ENSG00000132932 13 1925 0.497 

ABCE1 ENSG00000164163 4 19 0.506 

CIR1 ENSG00000138433 2 94 0.507 

FABP5 ENSG00000164687 8 1 0.515 

KCNH2 ENSG00000055118 7 74 0.524 

CTSG ENSG00000100448 14 7 0.524 

DPF2 ENSG00000133884 11 23 0.541 

AMT ENSG00000145020 3 7 0.541 

C8orf59 ENSG00000176731 8 10 0.559 
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Gene Gene ID CHR No. 
variants 

P* 

APOB ENSG00000084674 2 61 0.577 

ACOX3 ENSG00000087008 4 307 0.607 

ADORA2B ENSG00000170425 17 49 0.613 

HSD11B2 ENSG00000176387 16 10 0.613 

E2F1 ENSG00000101412 20 13 0.621 

FABP7 ENSG00000164434 6 11 0.623 

GLUL ENSG00000135821 1 26 0.639 

MTMR12 ENSG00000150712 5 242 0.661 

PLCD1 ENSG00000187091 3 73 0.669 

MAP4K3 ENSG00000011566 2 427 0.670 

INSR ENSG00000171105 19 631 0.746 

PTPRZ1 ENSG00000106278 7 443 0.769 

ACSL1 ENSG00000151726 4 211 0.771 

TFCP2 ENSG00000135457 12 219 0.795 

CRYAB ENSG00000109846 11 12 0.809 

SMARCB1 ENSG00000099956 22 262 0.817 

USP8 ENSG00000138592 15 259 0.838 

LPL ENSG00000175445 8 277 0.840 

RXRA ENSG00000186350 9 364 0.868 

DGKG ENSG00000058866 3 497 0.884 

APLNR ENSG00000134817 11 9 0.958 
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*P-values of gene based tests for each gene  
Chr, chromosome  

 

5.4.5 Stage-stratified GWAS 
 

GWAS in stage II/III patients   

Based on the same procedure described in aforementioned GWASs, I also performed 

GWAS in patients diagnosed with locally advanced (stage II/III) CRC. A total of 3,886 

CRC patients in the SOCCS study with 8,328,632 autosomal genetic variants were 

included in this analysis. Among all included variants, I detected 402,488 (4.83%) 

variants associated with overall survival and 407,825 (4.90%) variants associated with 

CRC-specific survival respectively using the Martingale-residual based approach. The 

Manhattan plots displaying all variants with p<0.05 from the two GWASs on overall 

and CRC specific survival are presented in Figure 5-35.  
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Figure 5-35 Manhattan plot of GWAS results on survival outcomes of stage II/III CRC 
patients in the SOCCS cohort (A for overall survival and B for CRC-specific survival; blue 
line: p=10-5, red line: 5x10-8) 
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As depicted by the Manhattan plots, I identified one genetic locus in chromosome 5 

that showed aggregated signals of correlated variants associated with overall and 

CRC-specific survival in stage II/III CRC patients. The top hit in this locus reached 

GWAS significance in the association with CRC-specific survival (rs323694: 

Martingale residual coefficient=0.287, SD=0.052, p=3.25x10-8) 

With respect to the distribution of all genetic variants, I created QQ plots for the two 

outcomes and present them in Figure 5-36. 
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Figure 5-36 QQ plot of GWAS results on survival outcomes of stage II/III CRC patients in 
the SOCCS cohort (A for overall survival and B for CRC-specific survival) 

 

The QQ plots indicate good concordance between the observed and theoretical 

distribution of p-values, and the inflation factors also suggest no systematic inflation 

of the GWAS results (overall survival: λ=0.988; CRC-specific survival: λ= 0.992).  

I extracted genetic variants in association with overall or CRC-specific survival 

outcomes at p<5x10-6. Initially, the GWAS on overall survival identified 24 variants 
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 rs10735490 1 A 0.18 -0.31 0.067 4.37E-06 

 rs7253608 19 T 0.306 0.274 0.06 4.78E-06 

Chr, chromosome; MA, minor allele; MAF, minor allele frequency; Beta, regression coefficients; 
Se, standard error; Indel, insertion-deletion variant; OS, overall survival; CRC-specific survival   

 

Then, I re-estimated the effects of these above genetic variants on overall and CRC-

specific survival in the context of Cox regression models. Notably, the variant 

rs323694 in chromosome 5 retained GWAS significance with an effect on CRC-

specific survival (HR=1.33, 95% CI=1.20-1.47, p=2.92x10-8). Detailed results of other 

variants are presented in Table 5-40.  

 

Table 5-40 Summary of effect estimates from Cox models of GWAS-identified variants 
associated with survival outcomes of stage II/III patients in the SOCCS cohort (p<5x10-6)  

 Variant Chr MA MAF HR(95%CI) P 

OS       

 rs144559033 20 T 0.011 2.20(1.62-3.00) 6.16E-07 

 rs568921 5 C 0.446 1.22(1.13-1.33) 1.06E-06 

 rs62184746 2 G 0.491 0.81(0.74-0.88) 3.03E-06 

 rs117392919 17 A 0.026 1.72(1.37-2.17) 3.80E-06 

 rs233176 16 T 0.308 1.23(1.12-1.34) 5.17E-06 

 rs6806922 3 C 0.162 0.76(0.67-0.86) 7.28E-06 

 rs7191260 16 G 0.077 0.67(0.56-0.80) 7.49E-06 

 rs6962371 7 C 0.046 0.57(0.44-0.73) 1.40E-05 

 rs4444042 11 G 0.043 0.81(0.67-0.98) 3.07E-02 

       

CSS       

 rs323694 5 G 0.424 1.33(1.20-1.47) 2.92E-08 

 rs143664541 6 A 0.014 2.42(1.75-3.34) 9.90E-08 

 rs72832931 17 C 0.022 2.09(1.57-2.78) 3.48E-07 
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 Variant Chr MA MAF HR(95%CI) P 

 rs79014181 22 A 0.059 1.59(1.32-1.91) 1.20E-06 

 rs75796335 7 C 0.113 1.44(1.24-1.67) 1.88E-06 

 rs10735490 1 A 0.18 0.75(0.67-0.85) 3.90E-06 

 rs7253608 19 T 0.306 1.30(1.16-1.46) 4.16E-06 

 rs55698139 8 G 0.402 0.78(0.70-0.87) 4.37E-06 

 rs6445392 3 C 0.4 0.78(0.70-0.87) 4.53E-06 

 rs66494751 7 G 0.258 1.29(1.16-1.44) 4.57E-06 

 rs201806734 11 T(Indel) 0.04 1.33(1.05-1.67) 1.57E-02 

Chr, chromosome; MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, 
confidence interval; OS, overall survival; CSS, CRC-specific survival 

 

The GWAS-identified variant rs323694 is an intergenic variant located between the 

IRX2 and the LOC100506858 gene. I created a locus-zoom plot to show the LD 

structure and annotated genes near the variant in Figure 5-37. There are a number 

of flanking variants in moderate to strong LD (r2>0.6) with the top variant. 

 

Figure 5-37 Locus-zoom plot for variant rs323694 
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Given that the minor allele (G) of the variant rs323694 is relatively common 

(MAF=0.42 in SOCCS), I plotted the Kaplan-Meier survival estimates of carriers of 

three genotypes separately (Figure 5-38). The survival curves in the figure indicate a 

possible recessive genetic effect of this variant on CRC-specific survival. I 

investigated the association between this variant and CRC-specific survival under a 

recessive model, but failed to detect an effect at GWAS significance (HR=1.56, 

95%CI=1.33-1.84, p=1.07x10-7). 

 

 

Figure 5-38 Kaplan-Meier estimates of CRC-specific survival in stage II/III CRC patients in 
SOCCS stratified by the genetic variant rs323694 
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GWAS in stage IV patients  

I investigated effects of eight million autosomal genetic variants on survival outcomes 

of 784 stage IV patients. Using the Martingale residual-based approach, a total of 

410,207(4.92%) and 413,833 (4.97%) genetic variants were associated with overall 

and CRC-specific survival of stage IV CRC patients (p<0.05) respectively. I presented 

these associations based on their statistical significance in Manhattan plots (Figure 
5-39. No significant signals with p<5x10-8 were identified in these two GWASs.  
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Figure 5-39 Manhattan plot of GWAS results on survival outcomes of stage IV CRC patients 
in the SOCCS cohort (A for overall survival and B for CRC-specific survival; blue line: p=10-

5, red line: 5x10-8) 
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Regarding the overall distribution of all associations of the eight million genetic 

variants, I estimated the inflation factors of the two GWASs on overall and CRC-

specific survival of stage IV patients. A lambda value of 0.998 was observed for the 

GWAS on overall survival and 0.997 for CRC-specific survival. The QQ plots, 

presented in Figure 5-40, also suggested the absence of systematic inflation of 

statistical significance. 

 

Figure 5-40 QQ plot of GWAS results on survival outcomes of stage IV CRC patients in the 
SOCCS cohort (A for overall survival and B for CRC-specific survival) 

 

I also screened for associations between genetic variants and survival outcomes with 

p<5x10-6. In total, the GWASs identified variants for overall survival and for CRC-
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specific survival. After controlling for LD, 13 independent variants (r2<0.2) remained 

in association with overall survival and 11 variants were associated with CRC-specific 

survival. The original regression coefficients along with standard errors of these 

variants are summarised in Table 5-41. 

 

Table 5-41 Genetic variants identified from the genome-wide association analysis associated 
with survival outcomes of stage IV CRC patients in the SOCCS cohort (p<5x10-6) using the 
Martingale-residual based approach  

 Variant Chr MA MAF Beta SE P 

OS        

 rs76804061 7 C 0.019 -1.168 0.217 1.01E-07 

 rs13061928 3 G 0.177 -0.39 0.077 5.79E-07 

 rs78621268 5 C 0.111 0.494 0.098 6.45E-07 

 rs117432600 13 A 0.011 -1.547 0.311 7.76E-07 

 rs142605534 6 G 0.306 -0.312 0.064 1.57E-06 

 rs111935424 18 C 0.014 -1.306 0.271 1.66E-06 

 rs190425907 12 T 0.009 -1.664 0.347 1.97E-06 

 rs4856722 3 C 0.014 -1.324 0.278 2.18E-06 

 rs145764000 15 A 0.021 -0.986 0.208 2.44E-06 

 rs79151344 2 G 0.072 -0.556 0.118 2.84E-06 

 rs186078581 1 C 0.014 -1.233 0.262 2.93E-06 

 rs144281883 14 A 0.104 -0.486 0.103 3.05E-06 

 rs140179875 11 C 0.016 -1.26 0.273 4.70E-06 

CSS        

 rs183168900 7 C 0.020 -1.128 0.227 7.81E-07 

 rs35582295 22 G 0.029 -0.996 0.201 8.99E-07 

 rs13061928 3 G 0.177 -0.386 0.079 1.32E-06 

 rs192825132 13 A 0.011 -1.562 0.322 1.48E-06 
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 Variant Chr MA MAF Beta SE P 

 rs142605534 6 G 0.306 -0.317 0.066 1.77E-06 

 rs117505118 8 A 0.010 -1.569 0.332 2.70E-06 

 rs144281883 14 A 0.104 -0.499 0.106 2.78E-06 

 rs12928306 16 A 0.176 -0.373 0.079 3.15E-06 

 rs75731204 12 T 0.364 -0.312 0.067 3.63E-06 

 rs13045825 20 G 0.020 -1.07 0.23 3.94E-06 

 rs74588306 4 G 0.036 -0.766 0.165 4.12E-06 

Chr, chromosome; MA, minor allele; MAF, minor allele frequency; Beta, regression coefficients; 
Se, standard error; Indel, insertion-deletion variant; OS, overall survival; CRC-specific survival    

 

I then re-estimated the hazard ratios of these genetic variants in Cox regression 

models. However, none of the variants reached GWAS significance; the detailed 

results of effect estimates obtained from Cox models are presented in the following 

Table 5-42. 

Table 5-42 Summary of effect estimates from Cox models of GWAS-identified variants 
associated with survival outcomes of stage IV patients in the SOCCS cohort (p<5x10-6)  

  Variant  Chr MA MAF HR(95%CI) P 

OS             

  rs78621268 5 C 0.111 1.59(1.34-1.89) 1.31E-07 

  rs142605534 6 G 0.306 0.72(0.63-0.83) 2.24E-06 

  rs13061928 3 G 0.177 0.67(0.57-0.79) 3.09E-06 

  rs144281883 14 A 0.104 0.62(0.50-0.78) 2.88E-05 

  rs79151344 2 G 0.072 0.59(0.45-0.76) 5.05E-05 

  rs76804061 7 C 0.019 0.31(0.17-0.57) 1.41E-04 

  rs186078581 1 C 0.014 0.22(0.10-0.51) 4.55E-04 

  rs111935424 18 C 0.014 0.24(0.11-0.54) 4.68E-04 

  rs117432600 13 A 0.011 0.20(0.08-0.50) 5.82E-04 

  rs4856722 3 C 0.014 0.29(0.14-0.58) 5.83E-04 

  rs145764000 15 A 0.021 0.41(0.24-0.68) 5.96E-04 
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  rs190425907 12 T 0.009 0.21(0.08-0.57) 2.15E-03 

  rs140179875 11 C 0.016 0.73(0.43-1.26) 2.57E-01 

CSS             

  rs142605534 6 G 0.306 0.72(0.62-0.82) 2.65E-06 

  rs75731204 12 T 0.364 0.72(0.63-0.83) 3.95E-06 

  rs13061928 3 G 0.177 0.67(0.57-0.80) 6.21E-06 

  rs12928306 16 A 0.176 0.68(0.57-0.81) 1.09E-05 

  rs144281883 14 A 0.104 0.61(0.48-0.77) 2.62E-05 

  rs35582295 22 G 0.029 0.32(0.19-0.56) 4.57E-05 

  rs74588306 4 G 0.036 0.46(0.31-0.69) 1.63E-04 

  rs183168900 7 C 0.02 0.34(0.19-0.60) 2.68E-04 

  rs13045825 20 G 0.02 0.34(0.19-0.62) 3.54E-04 

  rs192825132 13 A 0.011 0.12(0.04-0.44) 1.15E-03 

  rs117505118 8 A 0.01 0.16(0.05-0.50) 1.56E-03 

Chr, chromosome; MA, minor allele; MAF, minor allele frequency; HR, hazard ratio; CI, 
confidence interval; OS, overall survival; CSS, CRC-specific survival 
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5.5 Summary 
 

In this chapter, I presented my results grouped in four analytic sections. Firstly, in the 

descriptive analysis, survival outcomes of prevalent cases in the UK Biobank were 

found to be significantly better than incident cases, therefore the prevalent cases were 

excluded from subsequent analysis due to potential selection bias. The first part of 

the thesis is a replication study of 43 genetic variants reportedly associated with CRC 

survival. None of these previously identified associations were successfully replicated 

after adjusting for multiple testing in the SOCCS cohort. In the second part, a genetic 

predictor combining these 43 known genetic variants was developed in the UK 

Biobank, and it showed weak predictive value on 5-year survival outcomes of patients 

in the UK Biobank. The external validation found no meaningful predictive 

performance of the developed genetic predictor in the SOCCS cohort. In addition, the 

genetic predictor did not appear to add extra predictive value to other non-genetic 

variables in SOCCS. In the third part, 128 genetic variants associated with CRC risk 

and 82 variants previously linked with survival outcomes of other cancers were tested 

in terms of their potential effects on CRC survival. None of these variants showed 

significant effect on either overall or CRC-specific survival of CRC patients in the 

SOCCS under an additive genetic model. A possible recessive genetic effect on 

survival outcomes was identified for two CRC-risk variants (rs10161980 and 

rs7495132) in both the SOCCS and UK Biobank cohorts. In the last part of the thesis 

which features a genome-wide association study on CRC survival, the variant 

rs143664541 was identified to be significantly associated with both overall and CRC-

specific survival; another variant rs75809467 showed a significant effect on CRC-

specific survival in the SOCCS cohort. However, neither of them remained significant 

in the replication analysis based on meta-analyses combining the UK Biobank cohort 

and three clinical trial datasets. By conducting gene and gene-set based analysis 

using the SOCCS cohort, I observed potential enrichment of genetic signals in the 

CCDC135 gene for overall survival, and in two gene sets involved in biosynthetic 

process of galactolipid (overall survival) and up-regulating the differentiation of 

adipocyte (CRC-specific survival) respectively.  
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Chapter 6 Discussion  
 

6.1 Introduction  
 

This chapter is divided into two parts: discussion of the methodological perspectives 

and interpretation of the main findings. Firstly, strengths and limitations of the study 

design, data sources and statistical analysis will be discussed. In the second part, 

main results derived from Chapters 3 and 5 will be summarised, and the interpretation 

of these results will be discussed in relation to the strength of evidence and potential 

biological implications. Genetic variants, genes and gene sets identified from this 

thesis that may be associated with survival outcomes of CRC will be discussed 

separately. Finally, conclusions and recommendations for future research will be 

summarised.  

 

6.2 Methodological perspectives  
 

6.2.1 Study design   
 

Systematic literature review and meta-analysis  

The main strengths and limitations of the published systematic literature review have 

been presented in the discussion section of Chapter 3 (page 66). In this section, main 

points in relation to the study design of the systematic review will be summarised and 

aspects that have not been extensively discussed in the published paper will also be 

described. 

 

Study selection  

I searched for published literature using the MEDLINE and Embase databases. The 

literature search was restricted to articles in English and, therefore, prediction models 

published in other languages were not reviewed. With respect to the inclusion and 
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exclusion criteria, only multivariable prediction models with no less than two predictors 

were included. This resulted in the exclusion of studies investigating the predictive 

value of a single factor. In order to distinguish prediction models from simple 

association studies, only published papers that reported quantitative measures of 

model performance were deemed as eligible in this review. Moreover, I also excluded 

studies in which specific prediction rules were not reported or the prediction tools such 

as an online calculator were unavailable because a prediction model could not be 

independently validated and updated unless the prediction rules were explicitly 

presented.   

 

Critical appraisal  

In this review I used the CHARMS checklist to appraise the methodological quality of 

included prediction models (Moons et al, 2014). This checklist evaluates each model 

for six domains: participants, predictors, outcome, events per variable (EPV), cohort 

attrition and data analysis (see details in Appendix Table 1). This checklist is not 

specifically designed for studies on time-to-event outcomes and, therefore, survival 

related biases such as ‘health volunteer’ bias (further explained in the section 

‘Selection bias’, page 236) cannot be assessed using this checklist. Given that critical 

appraisal of prediction models is based on personal judgment and can be inevitably 

subjective, a second reviewer, Dr Xue Li from the Usher Institute, conducted a parallel 

evaluation in a random sample of 25% of included models. Three models (9%) were 

identified with discrepant assignments of risk of bias, but agreement was reached 

after discussion. Based on the CHARMS checklist the same research team proposed 

an updated tool named ‘PROBAST’ to appraise prediction models (Moons et al, 2019). 

The new tool integrates two previous domains (EPV and cohort attrition) into the data 

analysis domain and thus only four domains are used to assess each model. More 

importantly, the new tool suggests assigning an overall risk of bias to each model. In 

particular, only models with low risk of bias for all domains can be assigned with low 

risk, which will not change the main finding of the systematic review where only two 

models reported by Rees at al. were classified as overall low risk of bias(Rees et al, 
2008b). 
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Meta-analysis  

I performed a random-effects meta-analysis to combine metrics evaluating model 

performance considering potential heterogeneity across multiple studies under varied 

clinical settings. A strength of this review is that the meta-analysis was conducted 

using only external validation studies and the initial model development study was 

excluded to avoid overestimation on the model performance. In this study, I was only 

able to conduct meta-analysis for reported C statistics based on data availability. 

Currently, there have been multiple methods to estimate the C statistic for time-to-

event data (Blanche et al, 2013). For example, it can be calculated as the area under 

the receiver operating characteristic curve (ROC) at a specific observation point. In 

addition, it can be derived from the definition—the proportion of randomly selected 

pairs of individuals in which an individual with longer observed survival time shows 

higher predicted survival probability. Other methods such as time-dependent ROC 

can also be applied to calculate the C statistic (Blanche et al, 2013). However, detailed 

methods used to derive the C statistics were mostly not reported among included 

prediction models. Hence, I was unable to harmonise the reported C statistics and the 

pooled estimates could be inaccurate. Another limitation for the meta-analyses of 

prediction models is that quantitative methods to detect potential risk of bias have not 

been well developed. In a previously published umbrella review, we appraised the 

meta-analysis by applying a range of metrics including heterogeneity, small study 

effects, excess significance, prediction interval and credibility ceilings (He et al, 
2018a). However, currently, only the prediction interval, which indicates possible 

range for the performance of a future validation study, has been recommended when 

conducting meta-analysis of prediction models (Debray et al, 2017). In the systematic 

review of this thesis, I calculated the 95% prediction intervals of C statistics when 

more than three validation studies were available. None of the models were identified 

with prediction intervals excluding the null (0.50), indicating the presence of 

substantial amount of uncertainty regarding the discriminative performance of future 

validation studies. Whether other metrics can be used to evaluate evidence strength 

of prediction models, still remain unclear. Future efforts should explore possible 

integration of multiple quantitative methods to appraise meta-analyses of prediction 

models. 
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Data sources for genetic association studies   

Study cohorts 

In this thesis, multiple CRC patient cohorts were employed. Of them, the SOCCS 

study is used as the main discovery cohort of genetic association studies. SOCCS is 

a prospectively collected population-based cohort that recruits patients from Scotland 

after their CRC diagnosis and then follows them up. The fact that they are already 

diagnosed with CRC may influence levels of specific biomarkers and the way they 

respond to questions. However, this should not affect the genotypic, demographic 

(age and sex) and pathological (AJCC stage, tumour site and tumour grade) variables 

included in the analysis. The other study cohort used in this thesis is comprised of 

incident CRC cases from the UK Biobank, which is also a prospectively collected 

population-based cohort in UK. As opposed to SOCCS, participants developed CRC 

after they entered the study. Prospective cohorts are considered as a preferable study 

design compared to retrospective cohorts, which are prone to more potential sources 

of biases, especially in the setting of investigating prognostic effects.  

 
Selection bias 

Notably, the prevalent CRC cases from the UK Biobank were excluded from analysis. 

As shown in Figure 5.1 and 5.2, prevalent CRC cases showed significantly better 

survival outcomes compared to incident cases from the UK Biobank as well as the 

SOCCS study. This is known as ‘left truncation’ or ‘survival bias’ in survival analysis. 

Left truncation happens when participants conditioning upon them not having 

experienced the event of interest are included. In this case, prevalent CRC cases from 

the UK Biobank were only included given they were alive at recruitment. This causes 

exclusion of prevalent cases who had inferior survival outcomes (died before 

recruitment) and therefore can introduce bias especially when comparing the results 

to general population. The SOCCS study is not severely affected by survival bias 

because all CRC patients were enrolled upon diagnosis, and similar survival 

estimates were found for SOCCS patients compared with incident cases in UK 

Biobank (Figure 5.1 and 5.2). There have been statistical models developed to 

accommodate left-truncated data. For example, the PROC PHREG module (URL6-1) 

can provide adjusted survival estimates accounting for the truncation time—in this 
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case, the time from CRC diagnosis to enrolment of the prevalent cases. However, the 

methodology of dealing with left truncation in predictive modelling and large-scale 

analysis such as GWAS has not been well developed. Therefore, prevalent UK 

Biobank cases were excluded prior to analysis so as to derive unbiased estimates. 

After excluding prevalent cases in UK Biobank, a 5-year overall survival rate of 75% 

and 74% was observed for the UK Biobank and SOCCS study respectively. These 

survival rates are higher than the 5-year survival rates provided by Scottish Cancer 

Registry (61%) (URL1-2), CRUK (60%) (URL1-3) and NCI (65%) (NCI, 2018) under 

the same follow-up scheme (from CRC diagnosis to death). By investigating the 

stage-specific 5-year survival estimates, I observed comparable survival rates for 

stage I (93%) and stage II (83%) patients in SOCCS compared with estimates 

provided by CRUK (95%-100% for stage I and 80%-90% for stage II patients). 

However, higher 5-year overall survival rates were found for stage III (72%) and stage 

IV (27%) patients in SOCCS than the registry data from CRUK (65% for stage III and 

5%-10% for stage IV patients). It should be noted that survival rates provided by 

cancer registry are relative rates which take into account the expected death rates of 

the general population with similar age but without the disease. This makes the 

relative survival rates slightly higher than the actual overall survival, which does not 

change the fact that survival rates estimated from the SOCCS and UK Biobank 

cohorts are higher than registry data, especially for patients with stage III and IV CRC. 

These observed discrepancies may be explained by the ‘healthy volunteer’ selection 

bias—individuals with worse health status are less likely to participate in such cohort 

studies (Fry et al, 2017). This bias can also be reflected by the observed percentage 

of stage IV patients in SOCCS (13.8%) which is evidently lower than the population 

percentage (20%) provided by CRUK (URL1-3). 

In addition to the SOCCS and UK Biobank cohorts, three published clinical trials were 

used in this thesis as part of the validation analysis. As described in section 4.2.3, the 

three trials included stage II and III CRC patients with varied chemotherapy strategies. 

Although, a total of 4,768 patients were provided by these trials, these datasets may 

not be fully representative of the CRC patient population. Firstly, these trials targeted 

stage II/III CRC patients, which only represent a subpopulation of all CRC patients 

compared to the SOCCS and UK Biobank cohorts. Secondly, included CRC patients 

were highly selected based on predefined inclusion criteria, rendering these datasets 

prone to selection bias. For instance, all the trials included CRC patients with 
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performance status scores of 0 or 1 (Iveson et al, 2018; Kerr et al, 2016; Midgley et 
al, 2010), meaning that sick patients who needed extra assistance (scores of 2, 3 and 

4) were excluded. Thus, these datasets could be severely influenced by the ‘healthy 

volunteer’ bias. Another issue is that patients allocated to the treatment arm received 

exploratory treatment strategies, which could also lead to varied survival rates 

compared to the patients with standard treatment. Therefore, findings derived from 

these three datasets merit further validation in future large population-based cohorts. 

Although the observed survival rates of the study cohorts included in the thesis may 

not be fully representative of the CRC patient population, the relative effect estimates 

(HRs) of genetic and non-genetic factors should still be generalizable (Fry et al, 2017). 

However, in terms of prediction models reported in the thesis, one should be vigilant 

given the presence of the aforementioned selection bias. As introduced in Chapter 5 

(page 141), baseline survival rates and relative effect estimates for candidate 

predictors are both required to obtain the predictive survival probability for a given 

individual. Although the relative effect estimates reported in Chapter 5 can be directly 

applied to make predictions, the baseline survival rates could be biased due to the 

study cohorts being unrepresentative. Therefore, one should update the baseline 

survival rates according to the target population before applying these prediction 

models. 

 
Main variables  

Genetic variables---Standard genotyping arrays along with rigorous quality control 

and imputation processes were used for both cohorts (details presented in page 70 

and 79, Chapter 4). The genotype data of these two cohorts have been included in 

multiple published GWASs (Dunlop et al, 2012; Law et al, 2019). In this thesis, 

germline genetic variations were tagged by single nucleotide polymorphisms (SNPs) 

detected by SNP arrays. The main strengths of SNP arrays include their high 

resolution to assay millions of SNPs throughout the genome in one experiment and 

lower cost compared to other high throughput technologies such as sequencing. 

However, there are also limitations for SNPs arrays. For example, these arrays are 

unable to efficiently recognise chromosomal anomalies such as balanced 

translocations (with no missing or extra chromosomal materials) and inversions which 

are also possible germline genetic markers for disease outcomes (Mao et al, 2007). 
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Analytical tools have been developed to identify some chromosomal changes such 

as aneuploidies (abnormal chromosome copy number) (Ting et al, 2006). However, 

genetic data prepared for GWASs were used in this thesis; therefore, other germline 

genetic markers such as chromosomal changes were not employed. Future 

exploration may consider investigating germline markers other than SNPs in relation 

to their prognostic effects on CRC survival. Genotype imputation was performed for 

all the study cohorts used in this thesis in order to expand the coverage and improve 

statistical power of GWASs. In particular, the SHAPEIT-IMPUTE2 method (technical 

details are presented in page 73, Chapter 4) was adopted to impute the un-genotyped 

loci. Roshyara et al. compared performance of different imputation methods in a 

cohort of 2,500 individuals (Roshyara et al, 2016). Their results showed that the 

SHAPEIT-IMPUTE2 method might overestimate the certainty of genotype 

distributions, but this effect diminished as the sample size increased (Roshyara et al, 
2016). Given the relatively large sample size for both the SOCCS (~20K) and UK 

Biobank (~500K) cohorts used for imputation, this effect should not be problematic for 

the imputed genotype data of this thesis. As genotypes are estimated based on the 

LD structure rather than measured genotypes, imputation error is therefore inevitable. 

Imputation error leads to increased uncertainty and causes loss of statistical power 

for an imputed SNP compared to the same SNP if genotyped (Huang et al, 2009). 

However, previous evidence found that imputation error rates are generally low (2%-

6%) for widely used methods including the SHAPEIT-IMPUTE2 approach (Pei et al, 
2008). 

Non-genetic variables---The SOCCS cohort included age at diagnosis, sex, AJCC 

stage, tumour grade and tumour site, whereas only age at diagnosis and sex were 

available in the UK Biobank cohort. Demographic variables such as age and sex can 

be generally considered to be accurately measured. Tumour site and grade for 

patients from SOCCS were extracted from pathology reports and therefore, 

measurement error should also be rare. 

   

As the strongest predictor of survival outcomes, the AJCC stage was assigned 

according to pathology reports for patients who underwent surgical resection, 

whereas patients without surgery were staged based on imaging prior to treatment. 

As described in page 114 Chapter 5, ten stage 0 rectal cancer patients were identified 

and excluded from analysis as they might have received neoadjuvant radiotherapy 
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(applied before surgery) which could shrink the tumour and result in a downgraded 

stage in the pathology report. However, the remaining rectal cancer patients (N=2,201) 

in SOCCS were not manually checked to identify candidates with shrunken tumour 

after neoadjuvant radiotherapy. This led to inclusion of rectal cancer patients with 

possible underestimated stage, which could potentially bias the analysis. In addition, 

the AJCC stage is in fact a combination of three different measures (T, N and M). 

There has been evidence showing that modelling the TNM measures separately may 

improve prediction performance compared to the numeric AJCC stage (Li et al, 2014). 

Given that the focus of this thesis is to examine the potential added predictive value 

by germline genetic variants, the numeric AJCC stage was, therefore, directly used to 

predict CRC survival. 

  

There have been other factors associated with CRC survival. For example, the 

Canadian Cancer Society recommends lympho-vascular invasion, histological type of 

CRC, CEA, MSI, bowel obstruction or perforation and somatic mutations including 

KRAS and BRAF mutations as prognostic indicators for CRC (URL1-9). These factors 

are not collected in SOCCS and have not been released in UK Biobank. Future efforts 

are expected to aggregate patient cohorts with more of these prognostic factors 

recorded to improve prediction of CRC survival. Another important factor that can 

significantly influence survival outcomes is the treatment that patients received. 

Adding details of the treatment into the model can not only improve predictive 

performance, but also can assist accurately estimating effects of genetic variants. 

There are ongoing efforts in our group in linking the SOCCS data to external 

databases maintained by oncologists to obtain treatment data for patients in SOCCS. 

Treatment effects will be properly modelled in future investigations.  

 

Genetic association studies 

Variant selection for candidate association studies  

The first step of the thesis was a systematic literature review aiming to summarise all 

published prediction models used to predict CRC survival and to identify potential 

germline genetic markers employed as predictors. No germline genetic variants were 

used in the identified published prediction models. Given that only prediction models 
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with quantitative assessment of model performance were included in the review, 

genetic variants investigated in genetic association studies were not reviewed in this 

step. In the second step, I validated previously reported variants that were associated 

with CRC survival outcomes using the SOCCS cohort. Variants were retrieved from 

the GWAS catalogue. By searching the GWAS catalogue, the eligible variants were 

restricted to ones identified by published GWASs. Therefore, genetic variants 

reported by candidate association studies were not considered. These variants were 

often selected based on established or putative biological mechanisms hence they 

may truly influence CRC prognosis. However, candidate association studies are 

hypothesis-driven and previously published studies could be subjected to multiple 

sources of biases (Ioannidis et al, 2001). For example, it has been reported that 

published candidate genetic association studies showed prominent excess of 

statistical significance which could possibly be attributed to publication bias (Kavvoura 
et al, 2008). Moreover, approximately 90% of previous candidate association studies 

did not control for multiple testing in a random sample of studies from 2001 to 2003, 

indicating pervasive false positive findings (Yesupriya et al, 2008). A field synopsis 

can systematically summarise and critically appraise published candidate association 

studies. A latest field synopsis on CRC risk, conducted by our group, identified 18 

variants with high credibility, 72% of which were validated by subsequent GWASs 

(Montazeri et al, 2019). Hence, a field synopsis on survival outcomes is needed as 

more candidate association studies are published before further validation analysis 

can be planned. As for the variants retrieved from the GWAS catalogue, a relatively 

lenient threshold (p<10-5) was used to screen for variants, which potentially raised the 

probability of type I error. In order to control for LD among eligible variants, an r2<0.2 

was used to exclude variants in LD. This could potentially cause exclusion of variants 

with larger effects on CRC survival in SOCCS. The aforementioned caveats about 

variant selection also apply to the other two candidate association studies in this 

thesis based on two hypotheses. The first hypothesis is that genetic variants known 

to be associated with CRC risk have subsequent effect on CRC progression and 

therefore serve as a potential prognostic indicator. The second hypothesis is that 

there exists a shared genetic basis of tumour progression across multiple cancer 

types, and variants associated with survival outcomes of other cancers also influence 

CRC survival. The rationale of these two hypotheses is described in Chapter 2. Due 

to a small number of variants being tested at a time, hypothesis-driven association 

studies are advantageous over GWAS in terms of statistical power when a relatively 
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small sample size is available. In addition to the variants selected in this thesis, there 

are other candidate variants possibly associated with CRC survival. For example, 

genetic variants may impact survival outcomes of CRC through modifying patients’ 

response to therapeutic agents such as 5-fluorouracil which has been widely used in 

chemotherapy for CRC patients. Previously published GWASs have identified a 

number of genetic variants to be associated with response to 5-fluorouracil (Chung et 
al, 2013; Low et al, 2013). These variants could be tested in a separate hypothesis-

driven association study to further examine their impact on survival outcomes of CRC.  

GWAS 
Under no prior hypothesis, GWAS has been widely considered as a more 

comprehensive and unbiased approach compared with candidate association studies 

(Eberle et al, 2007). It facilitates identification of novel genetic risk loci that have not 

been linked to the outcome of interest, revealing possible new biological mechanisms 

involved in the disease. One of the main strengths of GWAS is the high reproducibility 

of its findings. Marigorta et al. reported that an estimate of 40% to 94% of GWAS-

identified variants have been successfully replicated by later GWAS meta-analyses 

(Marigorta et al, 2018). In addition, GWAS can also shed light on the overall genetic 

architecture of a given trait by displaying the distribution of statistical significance of 

genetic signals throughout the genome. Despite clear advantages of GWAS, there 

are also limitations for this study design. For example, GWAS is conducted in a limited 

number of populations—some ethic groups are therefore not represented. Although 

germline genetic variations are generally not influenced by environmental factors, 

population stratification can confound the observed genetic associations through 

varying genetic allele frequencies (Hellwege et al, 2017). However, results of the PCA 

analysis indicated that population stratification was unlikely to have major impact on 

studies in this thesis (see Chapter 4, page 71). In addition, GWASs are penalised by 

multiple testing with millions of genetic variants being examined. A GWAS based on 

limited sample size can result in elevated rates of type II error (false negative findings), 

especially for variants of low MAF with small effects on the outcome. As shown in 

Chapter 5 (page 198), the GWAS based on 5,675 CRC cases in SOCCS is 

underpowered to detect small to moderate genetic effects (HR<1.4) for variants with 

MAF<0.05. This limitation can be overcome by future collaborative efforts aggregating 

multiple CRC cohorts to achieve improved statistical power. Another strategy is to 

reduce the number of tests; this includes approaches adopted in this thesis such as 
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aforementioned candidate association analyses and gene or gene-set based analysis. 

An additional limitation for GWASs based on SNP arrays is that effects of rare genetic 

variants cannot be effectively detected (Tam et al, 2019). Although a huge number of 

un-genotyped variants are recovered through imputation, such rare variants are hard 

to be accurately imputed. Ongoing efforts of whole genome or whole exome 

sequencing are expected to unravel possible rare variants that influence CRC survival. 

Validation analysis 

In this thesis, a two-stage study design was employed for both candidate association 

studies and the GWAS. To be specific, the SOCCS study was used as the primary 

discovery dataset, whereas the UK Biobank cohort was used for replication of findings 

from candidate association studies and meta-analysis of UK Biobank and three 

clinical trials were used to validate GWAS-identified variants. Replication in an 

independent dataset is crucial in genetic association studies in terms of avoiding false 

positive findings. In addition to statistical significance by chance, possible non-random 

biases in the discovery set can also be detected by independent replication. For 

example, if the SNP array consistently generates incorrect genotypes for a specific 

variant, this cannot be corrected by accumulating more samples. However, an 

independent dataset genotyped by a different array can effectively detect these errors. 

Biased measurement may also occur at the outcome level. In this case, follow-up of 

CRC patients for each cohort was conducted by different teams, and therefore 

spurious findings driven by possible biased survival outcomes are unlikely to be 

validated in an independent cohort. Although combining all available cohorts into a 

discovery set would markedly increase the sample size, the two-stage approach was 

adopted in this thesis given that diverse clinical settings and different structure of 

available covariates could introduce substantial amount of heterogeneity into meta-

analysis. 

 

Study outcomes 

Overall survival and CRC-specific survival were employed as study outcomes in this 

thesis. The definitions along with the strengths and limitations of different endpoint 

such as overall survival and disease-free survival are introduced in Chapter 1 (page 

29). Currently, overall survival is still widely accepted as the gold standard endpoint 
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in prognostic studies of oncology (Sargent et al, 2005). It is worth mentioning that the 

survival time for patients in SOCCS was defined as the time span from the date of 

definitive treatment (surgery or chemo/radiotherapy) to the date of death. Whilst the 

UK Biobank cohort used the date of diagnosis obtained from the Cancer Registry as 

the starting point as the date of definitive treatment was unavailable, and the endpoint 

(date of death) was retrieved from National Death Registry. Cancer Registry in UK 

defines the date of cancer diagnosis following the algorithm provided by the European 

Network of Cancer Registries (see details in the previous publication (Tyczynski et al, 
2003)). The date of CRC diagnosis contains a mixture of following event dates in a 

declining order of priority: date of first histological confirmation, date documented in 

pathology report and date of first admission to hospital due to CRC. Given the fact 

that the date of CRC diagnosis should be no later than the start of treatment, the 

survival rate estimates would have been lower if the date of definitive treatment was 

used as the starting point. As discussed in the previous section (page 244), this should 

not bias the relative effect estimates (HR) if the time interval between diagnosis and 

treatment is independent from the genetic variant (Fry et al, 2017). However, future 

efforts are still expected, if possible, to re-calibrate the prediction model derived from 

the UK Biobank after harmonising the starting point of follow-up. As with the SOCCS 

study, the other three trials used in this thesis defined the follow-up time as from the 

date of randomisation (or the date treatment started) to the date of death. Date of 

definitive treatment is widely used in clinical settings as the starting point to evaluate 

the effect of certain treatment. The length of the delay is highly variable depending on 

the status of the disease and different medical systems over the world. Using the date 

of definitive treatment instead of diagnosis as the starting point will result in lower 

absolute survival estimates. There has been evidence showing that this effect of 

treatment delay on survival outcomes could be attenuated as the observation time 

period increases, especially when the follow-up time is longer than 3 years from the 

date of diagnosis (Roder et al, 2019). Hence, treatment delay should be less 

problematic given the relatively long median follow-up time (≥3 years) for all the study 

cohorts used in the thesis.  

It should be noted that assigning the specific cause of death can be subjective, 

although a parallel independent evaluation was performed by a colorectal surgeon 

and a low percentage of discrepancies was found between the two reviewers (1%). 

For example, a patient who died from myocardial infarction would be considered as a 
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non-CRC related death based on our criteria (page 76, Chapter 4). However, the 

myocardial infarction could possibly be induced by chemotherapy, which could not be 

reflected in the death certificate. Different criteria of assigning cause of death can lead 

to varied observed survival estimates for CRC-specific survival. The primary cause of 

death for participants from UK Biobank was assigned by the UK Biobank and was 

retrieved directly for analysis. 

 

Summary of strengths & limitations for study design  

Strengths:  

Systematic literature review: 

*A comprehensive systematic literature and meta-analysis was conducted to identify 

potential genetic variants that had been used in published prediction models, and to 

quantitively evaluate performance of published models.  

*Meta-analyses of C statistics reported in published prediction models were only 

conducted using external validation studies, which avoided inflated estimation of 

model performance.  

Genetic association studies:  

*The main study cohorts including the SOCCS and UK Biobank cohorts are 

population-based and prospectively collected.  

*Rigorous quality control was conducted for genotyping and imputation of the 

genotype data for the SOCCS and UK Biobank cohorts. 

*Both hypothesis-driven (candidate association studies) and hypothesis-free (GWAS) 

approaches were adopted to identify genetic variants associated with CRC survival. 

*A two-stage study design was adopted which consists of a discovery set and 

independent validation sets for genetic variants identified by the candidate association 

studies and the GWAS.   
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Limitations: 

Systematic literature review: 

*The systematic literature review only included published prediction models, which 

reported quantitative measures of model performance. Therefore, predictors used by 

studies that did not report model performance might have been missed.    

*Meta-analyses on metrics other than C statistics were not conducted due to data 

availability reported by published models. 

Genetic association studies:  

*Exclusion of prevalent CRC cases from the UK Biobank cohorts caused loss of 

statistical power.  

*All the datasets including the SOCCS, UK Biobank and three published clinical trials 

were subjected to ‘healthy volunteer’ bias. 

*The AJCC tumour stage for part of rectal cancer patients from SOCCS was possibly 

underestimated due to neoadjuvant therapy.  

*Clinical and pathological variables were unavailable in the UK Biobank cohorts. 

*Key prognostic factors such as somatic mutations and treatment were not collected 

for the SOCCS and UK Biobank cohorts.  

*Analysis was based on imputed GWAS data assayed by SNP chips, thus germline 

variations such as chromosomal anomalies were not investigated. 

*A comprehensive field synopsis to identify genetic variants reported by published 

candidate genetic association studies was not conducted. 

* Candidate genetic variants other than the three groups of variants included in the 

thesis were not investigated. 

* For validation analysis, only the UK Biobank cohort was used to validate variants 

identified from candidate association studies, whereas for GWAS, CRC-specific 

survival was not investigated due to data availability.  
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*Definitions of survival outcomes including the starting and end points were not 

harmonised, which led to varied observed survival estimates. However, relative 

effects (HRs) derived from this thesis should be generalizable.  

* Due to limited sample size of included cohorts, analysis in this thesis is 

underpowered to detect small prognostic effects on survival outcomes, especially for 

variants with low minor allele frequency.  

*Assignment of cause of death can be subjective, which could impact observed 

estimates of CRC-specific survival. 

*For predictive modelling, due to limited data availability, prediction models including 

clinic-pathological variables were not externally validated.  

 

6.2.2 Statistical analysis  
 

Survival analysis 

All analyses were performed using the Cox regression model which is the most widely 

used model to analyse time-to-event outcomes. The key assumption for this model is 

that the effect of a certain factor remains constant with time, namely the proportional 

hazard assumption. Although the Cox model has been widely adopted in various 

studies including clinical trials, prediction models and large-scale omics analysis such 

as GWAS, the proportional hazard assumption has seldom been examined in 

published literature(Guyot et al, 2011). Thus far, there have been different methods 

proposed to check this assumption, among which graphic examination is the most 

straightforward method. If the assumption holds, survival curves stratified by different 

values of a certain factor should be generally parallel to one another over the 

observation time window. Kaplan-Meier curves listed in Chapter 5 present generally 

parallel curves for non-genetic factors including the AJCC stage (Figure 5-5), tumour 

grade (Figure 5-6) and genetic variants identified from the GWAS of this thesis 

(Figure 5-25 Kaplan-Meier estimates of CRC-specific survival in the SOCCS stratified 

by the genetic variant rs143664541, Figure 5-26 for rs75809467 and Figure 5-38 for 

rs323694), indicating no visible departure from the proportional hazard assumption. 

Besides graphical examination, statistical tests have also been proposed to detect 
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potential violated proportional hazards assumption. One of the most commonly used 

tests is based on the Schoenfeld residual, which is defined as the difference between 

the covariate value for a certain individual and the weighted average of the covariate 

for all individuals under risk. The test examines the correlation between the scaled 

Schoenfeld residual and observation time (Schoenfeld, 1980). It is unrealistic to 

examine millions of genetic variants included in the GWAS, thus I performed the test 

using the SOCCS cohort for genetic variants identified in this thesis (rs143664541, 

rs75809467, rs323694 and rs7495132), and identified no evidence of significant 

violation to the proportional hazards assumption for these four variants (p>0.05). 

However, this test has been questioned due to possible spurious findings based on 

arbitrarily scaled time variable (Park & Hendry, 2015), and the results of the test 

should be interpreted with caution. 

  

In order to improve the computational efficiency for the GWAS, I used a Martingale 

residual-based approach to estimate effects of eight million genetic variants on CRC 

survival. Technical details of this approach are described in Chapter 4 (page 104). 

Transformed from the standard Cox model this method, therefore, also relies on the 

same proportional hazard assumption. The main strength of this method is that the 

Cox model only needs to be fitted once including all the non-genetic covariates and 

the Martingale residuals generated from the fitted Cox model can be used as a new 

‘phenotype’ and be tested using linear regression models which lead to remarkably 

increased computational efficiency. Reynisson et al. conducted simulation studies to 

compare different methods for GWAS using time-to-event data and found that the 

Martingale residual-based method showed slightly lower statistical power compared 

to standard Cox regression (Reynisson, 2018). However, they also identified a lower 

false discovery rate (type I error rate) for this method than standard Cox regression 

(Reynisson, 2018). Therefore, the Martingale residual-based approach adopted in the 

GWAS of this thesis is expected to provide more conservative results. In order to 

identify possible false negative findings from the Martingale residual-based approach, 

I also re-estimated the effects of variants with p<5x10-6 using standard Cox regression.    

Notably, there are other models available that do not necessarily rely on the 

proportional hazards assumption, such as the parametric Weibull model (Carroll, 

2003). As opposed to the semiparametric Cox model, parametric methods pre-specify 

the survival function and are dependent on a distributional assumption, which is hard 
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to test. Some argue that hazard ratios estimated from the Cox model may still be 

useful if the proportional hazard assumption is violated (Boyd et al, 2012), although 

loss of statistical power could be expected (Syed et al, 2016). The hazard ratios under 

this circumstance could to some extend be interpreted as ‘time-averaged’ effects. 

Future investigations may be considered to model the genetic effect using other 

methods such as the Weibull model.   

With respect to the multivariable Cox model used to estimate genetic effects, I 

included age at diagnosis, sex and AJCC stage as covariates using the SOCCS 

cohort, and for UK Biobank, only age and sex were added in the model as stage was 

unavailable. Inclusion or exclusion of specific covariates has long been a dilemma. 

Mefford et al. summarised different situations of covariates and provided 

recommendations (Mefford & Witte, 2012). Common demographic factors such as 

age and sex can be deemed to be independent from autosomal genetic determinants 

and they are preferable to be included if they are associated with the outcome under 

study as increased statistical power is expected after adding them into the model 

(Mefford & Witte, 2012). This also applies for time-to-event outcomes according to 

previous simulation studies (Karrison & Kocherginsky, 2018). The situation for 

inclusion of the AJCC stage as a covariate is less easily perceived. As mentioned 

previously, AJCC stage is one of the strongest predictors of survival outcomes of CRC. 

Therefore, including AJCC stage in the model would increase statistical power to 

detect genetic effect provided that the stage is independent from the genetic variant. 

However, the relationships between genetic variants and stage at diagnosis remain 

largely unknown. It is possible that a genetic variant that determines tumour 

invasiveness results in more advanced stage of CRC at diagnosis, and then more 

advanced stage leads to worse survival outcome. In this case, the stage works as an 

effect mediator between the genetic variant and the outcome. Inclusion of an effect 

mediator could cause over-adjustment and lead to possibly diluted estimates of the 

genetic effects (Schisterman et al, 2009). I checked the genetic variants identified 

from this thesis (rs143664541, rs75809467, rs323694 and rs7495132) and found that 

none of them was significantly correlated with AJCC stage (p<0.05) in SOCCS. Thus, 

the effect estimates of these variants are relatively unlikely to have been affected by 

over-adjustment.  

Patients who died from non-CRC related causes were considered as censored when 

analysing CRC-specific survival in this thesis. In fact, cases who died from non-CRC 
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related causes are different from those who were alive until the end of observation 

since the occurrence of non-CRC related death precluded the patient from CRC-

related death. This is also known as ‘competing risks’. Previous research has 

demonstrated that the Kaplan-Meier method tend to provide higher estimated event 

rates than the true cause-specific event rates in the presence of competing risks 

(Andersen et al, 2012; Feakins et al, 2018). Statistical methods, such as the Fine-

Gray model (Fine & Gray, 1999) and the Lunn-McNeil model (Lunn & McNeil, 1995), 

have been proposed to address the competing risks by modelling the competing 

events separately. However, adding these models will drastically increase 

computational burden, and statistical tools that integrate these models in the setting 

of large-scale omics analysis as well as predictive modelling have not been well 

developed. Thus, competing risks were not modelled in the analysis. Previous 

evidence showed that the presence of competing risks can influence the observed 

survival rates, but it tends not to bias the relative effect estimates (HRs) derived from 

the Cox model (Feakins et al, 2018). In addition, the Cox model is also advantageous 

in terms of interpretation of the cause-specific hazard ratios which directly reflect how 

the variable of interest, such as genetic variants, are linked to survival rates, whilst 

interpretation of relative effect estimates derived from competing risk models is not 

straightforward (Andersen et al, 2012).  

 

Statistical power and multiple testing 

The statistical power for the genetic association studies was calculated based on the 

method provided by Owzar et al. (Owzar et al, 2012). Parameters which need to be 

specified to estimate power using this approach include: α level, sample size, 

proportion of events, assumed genetic model and effect size. The main strength of 

this method is that it does not rely on the contiguous alternative assumption which 

applies to most existing power estimation methods (Hsieh & Lavori, 2000). Under this 

assumption, the effect size should converge to zero at a constant rate. Owzar et al. 

argued that methods developed under this assumption may only be accurate when 

the expected effect size is reasonably small, and, therefore, these methods may not 

be suitable for designing GWAS (Owzar et al, 2012). Given the limited sample size of 

the SOCCS and UK Biobank cohorts, relatively large genetic effects could be detected 

after correcting for multiple testing. Thus, the method proposed by Owzar et al. was 
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employed to estimate the power in this thesis. However, some caveats still need to 

be noted for the power estimation. Firstly, this method was developed based on the 

Cox model; hence the limitations of the Cox model which have been discussed also 

apply to the power estimation. Secondly, inclusion of covariates could alter the 

statistical power, but the covariate structure is not accounted for by this method. 

Thirdly, as described in Chapter 4, I conducted the GWAS using a Martingale residual 

based approach which has been shown to have slightly lower statistical power than 

the standard Cox model (Reynisson, 2018). Fourthly, the statistical power was 

estimated under the additive genetic model, which was used as the main analysis of 

this thesis, and hence the estimated power should not be applied to the sensitivity 

analysis under the recessive genetic model. In summary, the estimated statistical 

power should be only considered as an approximation rather than an accurate value. 

In order to derive the statistical power after controlling for multiple testing, the α level 

was corrected by applying the Bonferroni correction. This is a rather stringent 

approach, which aims to control the familywise type I error—that is the probability of 

at least one test being false positive. As a trade-off, it leads to elevated type II error 

(false negative rate). Therefore, I also adopted another less stringent approach, 

namely the FDR correction, to evaluate the statistical significance of the results from 

the validation study of variants previously linked with CRC survival and the other two 

hypothesis-driven association studies. In fact, variants that remained significant after 

FDR correction also survived the Bonferroni correction. It is worth mentioning that in 

these genetic association studies, I only included independent variants by controlling 

the r2. Under this circumstance, the FDR approach could be advantageous because 

it is less likely to exclude true associations compared to the Bonferroni correction, 

although both approaches produced the same results in this thesis. However, in the 

setting of GWAS where there exists intrinsic LD throughout the genome, the FDR 

approach could suffer from loss of statistical power by not accounting for the LD 

structure (Kaler & Purcell, 2019). Previous efforts have been made to estimate the 

burden of multiple testing for GWAS in the presence of LD, and the results 

demonstrated a million independent tests in Europeans (Pe'er et al, 2008). Since then 

a Bonferroni corrected threshold (p< 5x10-8) has become the standard of evaluating 

statistical significance in GWAS. This threshold was therefore used in this thesis to 

report discoveries. Recently, more flexible methods of determining the significance 

threshold have been proposed using variant-based heritability for different traits of 
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interest with an attempt to further reduce false negative rates (Kaler & Purcell, 2019). 

However, these methods have not been widely used and should be further validated. 

Predictive modelling 

The Cox regression model was used to obtain effect estimates for each included 

predictor. Strengths and limitations of the Cox model have been discussed in previous 

sections. Recently, other methods have gradually been applied in published literature 

to develop prognostic prediction models. For example, some studies showed that the 

Weibull model might outperform the Cox model in some aspects such as goodness-

of-fit (Baghestani et al, 2015). Given that the main focus of this section of the thesis 

is to test the potential added predictive value of genetic variants, the performance of 

models developed using other methods such as the Weibull model was not evaluated. 

Once genetic variants that can robustly predict CRC survival are identified, efforts 

should set out to explore methods such as the parametric Weibull model or more 

advanced approaches like neural networks to develop models with better 

performance.  

As for model performance, Harrell’s C statistic was employed as the main metric to 

evaluate the discriminative performance of developed models. One advantage of the 

C statistic is that it has a natural interpretation—the proportion of randomly selected 

pairs with correct predictions, and the statistic is well defined for continuous, binary 

and censored outcomes. Currently it has become one of the most widely used 

measure of model performance. However, the interpretation of C statistic becomes 

less straightforward when comparing the performance of different models. The 

incremental value of C statistic is not additive and has no direct interpretation 

(McKeigue, 2019; Pencina et al, 2012). Moreover, it has been shown that the 

incremental value of C statistic is highly dependent on the performance of the baseline 

model (McKeigue, 2019). Although a U statistic-based test can be employedto assist 

inference on the incremental predictive value by examining if one model is more 

concordant than the other, it is still hard to interpret and quantify the magnitude of the 

potential gain of prediction performance after adding a new predictor. Novel metrics 

such as the expected information for discrimination have been proposed recently as 

potential alternatives of the C statistic (McKeigue, 2019). However, how these metrics 

can be applied in censored data remains unclear. Nonetheless, there might be limited 
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implications in terms of the interpretation of the results of this thesis, as the C statistic 

remained approximately unchanged after including the genetic variants. 

With respect to model calibration, the Hosmer-Lemeshow test along with visual 

examination of the calibration plot were used. One general caveat for these two 

methods is that they evaluate the model calibration at a specific time point and survival 

outcomes are dichotomised. I chose the 5th year since diagnosis as the cut-off time to 

evaluate model calibration, as the 5-year survival outcomes are generally used in 

clinical practice to assess prognosis of cancer patients. However, it should be noted 

that model calibration may vary at different observation times. The Hosmer-Lemshow 

test examines the hypothesis that the predicted and observed number of events are 

the same across all risk groups (details in Chapter 4 page 100). Although widely 

adopted in published literature, this test has been criticised as categorisation of risk 

groups is largely arbitrary and the test tends to generate unstable results (Bertolini et 
al, 2000). Moreover, this test is also sensitive to sample size. Kramer et al. conducted 

a simulation study and found that as the sample size reached 50,000, the Hosmer-

Lemshow test would almost certainly provide significant findings (p<0.05) for 

simulated models with only slight departure from perfect fit (Kramer & Zimmerman, 

2007). In this case, a significant finding from the Hosmer-Lemshow test does not 

necessarily mean the model is poorly calibrated. Therefore, other measures are 

needed to assist evaluating the model calibration. I used calibration plots as a visual 

presentation of the overall agreement of the observed and predicted survival rates. 

Recently, other metrics such as the calibration slope and the observed/expected ratio 

have been proposed (Crowson et al, 2016). These metrics should be investigated 

exhaustively once a compelling genetic predictor has been identified to be integrated 

into future models. 

 

Missing data  

Missing data are prevalent in medical research. Common reasons for this problem 

include, but are not limited to: participants did not report relevant information; 

investigators failed to collect it; or the information was simply unavailable. Regression 

analysis built in most statistical platforms is performed only in observations with 

complete information, also known as complete case analysis (CCA). Missing data 

mainly take three different patterns—missing completely at random (MCAR), missing 
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at random (MAR), and missing not at random (MNAR) (Robins & Wang, 2000). The 

MCAR means that the probability of a missing value is independent from any other 

patients’ characteristic and is only determined by chance. Under this circumstance, 

unbiased results will be obtained from CCA as the completed observations can be 

seen as a random sample from the original population. Missing at random (MAR) is 

based on the assumption that missing values are solely dependent on observed 

information, which makes it possible to re-construct the incomplete records with 

certain amount of uncertainty using methods such as multiple imputation. As for the 

third form, the MNAR means that missing data are dependent on unobserved 

information. Currently, there has been no general approaches to address MNAR.   

In this thesis, missing data are present primarily in the SOCCS study. With respect to 

genotype data of SOCCS, approximately 10% of the participants were excluded 

during quality control. Nonetheless, distribution of principle components of genotyped 

individuals is tightly clustered with the UK population (Figure 4-1). Therefore, it is less 

likely that exclusion of these individuals systematically biased the genotype 

distribution of the cohort. As for non-genetic variables, the proportion of missing 

values for these variables are: age at diagnosis (1%), date of definitive treatment 

(0.7%), AJCC stage (6.5%), tumour grade (14.8%) and tumour site (1.2%). Given that 

only a small number of variables were included, it could be unsafe to assume the 

missing patterns of these variables are solely dependent on observed information, 

and it is highly possible that other uncollected variables can impact on the 

missingness (MNAR). Under such circumstances, methods such as multiple 

imputation that only leverage observed information to impute missing values can, by 

contrast, introduce bias (Hughes et al, 2019). It should be noted that analysis in the 

thesis was conducted following the CCA which could also generate biased estimates 

if the missing data were MAR or MNAR (Altman & Bland, 2007).  Future efforts are 

needed to collect more variables for each study cohort and extensively investigate 

possible mechanism behind the missing pattern, and address this issue before 

subsequent analysis. Another challenge lies in the prohibitive computational burden 

especially in the setting of large-scale omics analysis such as GWAS with millions of 

tests being conducted and predictive modelling where hundreds of equally-sized 

bootstrap samples are generated. There is a pressing need to develop analytical tools 

with high computational efficiency to combine methods such as multiple imputation 

where multiple imputed samples were generated with analyses like GWAS and 

bootstrapping. 
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Summary of strengths & limitations for statistical analysis 

Strengths: 

* Effect estimates derived from Cox regression models had clear interpretation. 

* Covariates included in the multivariable analysis (age at diagnosis, sex and AJCC 

stage) increased statistical power.   

*A Martingale residual-based approach, transformed from the Cox model, was used 

in the GWAS to estimate effects of genetic variants on CRC survival. This approach 

provides more conservative results with lower type I error rates and can improve 

computational efficiency.  

*The method used to estimate statistical power does not rely on the contiguous 

alternative assumption, and it can potentially provide more accurate estimates for 

expected large effects.  

Limitations: 

*The proportional hazards assumption might not be valid for some genetic variants. 

Future efforts may consider estimating effects of genetic variants using other methods, 

such as the Weibull model, and comparing the findings with estimates from the Cox 

model. Potential time-varying genetic effects should be further explored if this 

assumption is violated.  

*Potential competing risk effects for non-CRC related death were not modelled, 

leading to possible overestimated CRC-specific survival rates using the Kaplan-Meier 

approach.   

*Results of power estimation should not be considered as accurate values given that 

the structure of included covariates was not considered.  

*For predictive modelling, only the C statistics, the Hosmer-Lemeshow test and 

calibration plots were adopted to evaluate model performance. These metrics have 

their own limitations. The C statistics has no clear interpretation when assessing the 

incremental value after adding a new predictor. Spurious findings could be generated 
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from the Hosmer-Lemeshow test due to arbitrary categorisation of risk groups, 

especially when the sample size is large. The calibration plot cannot provide 

quantitative assessment of model calibration. Thus, more novel metrics should be 

employed to extensively evaluate prediction models developed in this thesis. 

    

*Possible mechanisms of missing data were not investigated due to limited data. 

Complete case analysis was used to deal with missing data, which could lead to 

potential bias. 

 

 

6.3 Interpretation of main findings  
 

6.3.1 Systematic literature review 
 

Main findings 

The systematic literature review included a total of 83 primary model development 

studies and 52 external validation studies that investigated the predictive value of 

candidate prognostic factors of CRC. The main predictors used in these published 

prediction models included age at diagnosis, sex, AJCC stage, TNM stage, tumour 

grade and biomarkers such as CEA. Somatic genetic alterations, for example BRAF 
mutation and microRNA markers, were only investigated in 3 published prediction 

models (Goossens-Beumer et al, 2015b; Manceau et al, 2014; Zhang et al, 2013). No 

prediction models used germline genetic markers in predicting CRC survival. This 

finding could be due to the limited evidence supporting associations between specific 

germline genetic variants and survival outcomes of CRC, which points to the main 

focus of this thesis.  

As for the predictive performance of published models identified in this review, I found 

that most models showed low to modest discriminative performance (evaluated by C 

statistics). In addition, the majority of included models were subject to potential risk of 
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bias. The main sources of risk of bias stemmed from loss to follow-up of the study 

cohort and methodological flaws in data analysis, for example the lack of internal 

validation when reporting the model performance. I identified eight models 

(Basingstoke preoperative score, Fong score, Iwatsuki score, Memorial Sloan 

Katherine Cancer Center nomogram, Nordinger score, Peritoneal Surface Disease 

Severity Score, Kanemistu nomogram and Valentini nomogram) that had been 

validated in at least two external datasets and conducted meta-analyses to evaluate 

the pooled external performance of these models. Meta-analyses found significant 

discriminative ability (the 95% CI of the C statistic excluding the null) for five out of 

eight models (Basingstoke score, Fong score, Nordinger score, Peritoneal Surface 

Disease Severity Score and Valentini nomogram) in predicting six survival outcomes 

of CRC patients (details in Chapter 2). Among these five models, the Fong score was 

externally validated four times. It used seven predictors (positive resection margin, 

extrahepatic lesion, metastases-free period, number of metastases, the largest size 

of metastasis, CEA and lesion of regional lymph nodes for primary tumour), and the 

meta-analysis found significant discriminative ability for the score to predict 

recurrence-free and overall survival of CRC patients with liver metastasis after 

curative resection. All the five models used clinic-pathological predictors that were not 

available in the SOCCS or the UK Biobank cohorts; therefore, I was unable to further 

validate these models. 

 

6.3.2 Candidate association studies   
 

 

Validation and predictive modelling of published genetic variants associated 
with CRC survival  

 
Main findings  

A total of 43 genetic variants previously reported to be associated with CRC survival 

were identified by searching the GWAS catalogue and their associations with overall 

and CRC-specific survival were validated in the SOCCS study. However, no 

significant associations between any individual variant or the polygenic risk score that 

combined all 43 variants and survival outcomes of CRC were observed after 
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correcting for multiple testing. Although small effects cannot be confidently excluded 

due to limited sample size, these findings indicated no major effects of these 

previously identified variants on prognosis of CRC patients.  

The results of this section suggested poor reproducibility of previous GWASs. This 

could be due to different characteristics of the study cohort. For example, the previous 

GWAS by Pander et al. focused on only stage IV patients who had received certain 

treatment strategies (Pander et al, 2015). Different study outcomes could also 

potentially explain these inconsistent findings. Although different outcomes such as 

DFS and RFS show generally good concordance with OS (Sargent et al, 2005), 

statistical power varies across these outcomes due to different number of events. It is 

worth mentioning that 41 of the 43 (95%) variants (except for rs209489 and rs885036) 

did not reach GWAS significance (p<5x10-8) in the original report. Moreover, 39 out 

of the 43 variants (91%) were identified by GWASs with relatively small sample sizes 

(N<1,000), pointing to possible false positive findings or overestimation of the genetic 

effects in the published GWASs. With respect to associations not corrected for 

multiple testing, three genetic variants (rs17026425, rs6854845 and rs17057166) 

were identified to be associated with overall survival of CRC patients from the SOCCS 

study at p<0.05 and showed the same direction of effects compared to the original 

GWAS reports. These variants are discussed in the sections below. 

 
Rs17026425  
Xu et al. reported a significant association between the A allele of the variant 

rs17026425 and inferior overall survival of rectal cancer patients in a Canadian cohort 

(Xu et al, 2015). In addition to a similar effect on overall survival of all CRC patients 

from SOCCS, I also observed a suggestive association (uncorrected p<0.05) between 

this variant and overall survival of rectal cancer patients based on the results of a 

stratified analysis. Interestingly, neither the analysis in this thesis nor in the original 

GWAS by Xu et al. found a significant association of this variant among colon cancer 

patients, indicating that this effect may be more prominent in rectal cancer. This 

variant is an intron variant in the IQ motif containing M (IQCM) gene located in 

chromosome 6. According to the Human Protein Atlas (URL6-2), this gene is highly 

expressed only in testis tissue. Intriguingly, our results found a significant association 

between this variant and overall survival of male CRC patients from the SOCCS study. 

It is worth noting that this variant is located in the binding region of the JUN/JUND 
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transcription factors which are highly expressed in human CRC tissue (Wang et al, 
2000). The results of this section therefore merit further investigation in the potential 

biological function of this locus. 

 
Rs6854845  

This is an intergenic variant located in the super-enhancer—a cluster of cis-regulatory 

elements with high density of transcriptional factors—closest to the BTC gene which 

encodes the Betacellulin protein. This protein is a member of the Epidermal Growth 

Factors (EGF) and serves as a ligand for the EGF receptor. Nagaoka et al. found that 

the BTC gene is highly expressed in human CRC tissue (Nagaoka et al, 2016). 

Additionally, this gene showed significantly higher level of expression in wild-type 
KRAS CRC cases compared to KRAS mutated cases (Nagaoka et al, 2016), 

indicating potential different roles of the BTC gene in carcinogenesis and progression 

of the two types of CRC. However, currently there has been a paucity of evidence 

supporting a direct association between the variant rs6854845 and expression of the 

BTC gene. Cong et al. conducted an in vitro investigation by generating G>T mutation 

(T as mutated allele) for rs6854845 in colon cells using the Crispr/Cas9 technique 

(Cong et al, 2019). They observed that colon cells with this mutation showed 

significantly altered chromosomal structure of the super-enhancer compared with 

those without the mutation. In addition, significantly higher expression of several key 

genes near this variant, including the CXCL2, 3, 5, 6, 8, EREG and EPGN genes, was 

found in colon cells with the mutated rs6854845 than in cells of wild-type (Cong et al, 
2019). However, no significant difference was found for the expression of the BTC 

gene (Cong et al, 2019). Among these genes with altered expression, previous 

evidence found potential associations between highly expressed CXCL 2 and 3 genes 

in CRC tumour tissue and improved overall survival of patients (Lv & Li, 2019). As for 

the EREG gene, Qu et al. reported that highly expressed EREG gene mediated 

through promoter demethylation can activate the Epidermal Growth Factor Receptor 

(EGFR) pathway in CRC carcinogenesis (Qu et al, 2016). Thus far, there has been 

limited evidence showing the roles of CXCL 5, 6, 8 genes and the EPGN gene in CRC 

carcinogenesis or progression. Our findings along with the original GWAS by Xu et al. 

justify further investigation in the biological role of rs6854845 in CRC development 

and progression. 
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Rs17057166  

This variant was originally related to disease-free survival of rectal cancer patients in 

the GWAS by Xu et al (Xu et al, 2015). In this thesis, I observed suggestive 

association between this variant and overall survival for all CRC patients from the 

SOCCS study. However, no association was detected in the stratified analysis among 

rectal cancer patients. Although a possible recessive effect was found for this variant 

in SOCCS, I failed to validate it using the UK Biobank cohort. This variant is an intron 

variant located in the LINC01847 gene. Thus far, there has been a dearth of evidence 

regarding the biological function of this variant or the gene.  

 

Combined effect and predictive value  

In addition to investigating individual effect of each variant, I also explored the 

combined predictive value of the 43 variants. Multivariable regression found that 

approximately half (42%) of the variants showed opposite direction of effects 

compared to the original GWASs, which is close to what is expected by chance 

(p=0.34 of a Chi2 test). Moreover, none of the 43 variants remained in the model after 

applying feature selection using both the LASSO and backward selection methods. 

This underpins the absence of meaningful predictive value for any of the included 

variants. The predictive performance of the 43 variants was evaluated using both the 

UK Biobank cohort from which the prediction model was derived and the SOCCS 

study as an external validation dataset. In the UK Biobank cohort, although positive 

point estimates of C statistics (>0.5) were observed, the 95% confidence intervals 

included the null (0.5) after internal validation using bootstrapping. This means that a 

model with significantly positive discriminative ability cannot be trained and derived 

using the 43 genetic variants to predict survival outcomes of CRC. External validation 

was then conducted using the fitted 43-variant model in the SOCCS study. The model 

showed no predictive value in SOCCS given that the observed survival estimates 

remained approximately unchanged as the predicted survival estimates increased. 

Moreover, a negative point estimate of C statistic (0.499) was observed when using 

the model to predict CRC-specific survival in SOCCS. In addition, the 43 variants 

showed no added predictive value on the basis of other known prognostic factors 

including age at diagnosis, AJCC stage and tumour grade. 
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In summary, analysis of this section found that genetic variants identified by previous 

GWASs to be associated with CRC survival are unable to efficiently predict survival 

outcomes of CRC patients in two external patient cohorts. This agrees with findings 

from the previous replication analyses that none of the 43 genetic variants remained 

significantly associated with CRC survival in SOCCS. It also points to the findings 

from the systematic literature review that no genetic variants have been employed by 

published prediction models. Given possible false positive or over-estimated genetic 

effects identified from previous small-scale GWASs, future larger GWASs and meta-

analyses combining previous GWASs are needed to identify genetic variants that are 

robustly associated with CRC survival and can potentially be applied to improve 

predicting survival outcomes of CRC.   

 

CRC-risk variants  

Main findings  

In this section, I investigated potential subsequent effects of 128 common CRC-risk 

variants identified from previous meta-analyses of GWAS studies (Huyghe et al, 2019; 

Law et al, 2019), on survival outcomes using the SOCCS study. Under an additive 

genetic model, none of the CRC-risk variants showed a significant association with 

survival outcomes after correcting for multiple testing. The polygenic risk score 

representing the overall genetic susceptibility to CRC was not associated with survival 

outcomes either. No signals were detected in stratified analyses after correcting for 

multiple testing. These findings indicate that currently known CRC-risk variants as a 

group have limited influence on subsequent survival outcomes after diagnosis. The 

heritable components of the observed variation of survival outcomes may have 

distinct genetic architecture that warrants separate GWASs to identify survival-related 

genetic loci. However, individual small effects of each CRC-risk variant cannot be 

excluded due to the limited sample size. As mentioned in Chapter 4 (page 88), the 

additive genetic model has limited statistical power to detect potential recessive 

genetic effects (Pereira et al, 2009). Sensitivity analysis using a recessive genetic 

model was conducted for the 128 genetic variants. Two variants (rs7495132 and 

rs10161980) remained significantly associated with CRC survival in SOCCS after 

correcting for multiple testing and their recessive effects were also observed in UK 
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Biobank. Given that these two variants failed to reach statistical significance in the 

additive analysis, they are more likely to follow a recessive mode of inheritance. 

 

Rs7495132  

I found that patients from the SOCCS study with the TT genotype of rs7495132 had 

significantly worse CRC-specific survival. However, no significant recessive effect 

was found for this variant on overall survival in either SOCCS or UK Biobank. The T 

allele of this variant was identified as a CRC-risk increasing allele in the original 

GWAS meta-analysis. Located in chromosome 15, rs7495132 is an intron variant of 

the CRTC3 gene which encodes the protein CREB regulated transcription co-

activator 3 (CRTC3). Previous evidence shows that the CRTC3 protein can regulate 

energy balance and is associated with weight gain in a mouse model (Song et al, 
2010). According to the results of Genotype-Tissue Expression (GTEx) project 

(URL6-3), the T allele of rs7495132 is associated with lower expression of the CRTC3 

gene in human musculoskeletal tissue and subcutaneous adipose tissue. However, 

no significant association is present in colonic tissue based on the GTEx results. Thus 

far, the impact of adiposity on prognosis of CRC patients is still controversial (Silva et 
al, 2019). Some studies reported that the adiposity is a potential protective factor for 

CRC survival (Asghari-Jafarabadi et al, 2009), whereas other studies support a 

detrimental prognostic effect of adiposity (Haydon et al, 2006). Various factors such 

as different treatment strategies, varied definition of adiposity and methodological 

biases could be behind these inconsistent findings. There is a pressing need for future 

research to further reveal the biological function of rs7495132 in the adiposity-

mediated pathway involved in CRC progression. 

Rs10161980  

In addition to rs7495132, I identified another variant, rs10161980, associated with 

overall survival in SOCCS and CRC-specific survival in UK Biobank. This variant, 

located in chromosome 13, is an intron variant of the AL139383.1 gene. There has 

been a paucity of evidence revealing associations between this variant and 

expression of any genes. The biological function of the AL139383.1 gene also 

remains to be understood. 
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Comparison to previous studies  

There have been two studies with similar study design that investigated prognostic 

effect of smaller numbers of CRC-risk variants (Abuli et al, 2013; Smith et al, 2015). 

Smith et al. included 2,083 CRC patients as a discovery dataset and 5,552 patients 

as a validation dataset (Smith et al, 2015). They identified only one variant rs9929218 

in chromosome 16 that was significantly associated with CRC survival in both cohorts. 

This variant is an intron variant that lies in the CDH1 gene which encodes the protein 

E-cadherin. E-cadherin is a widely known tumour suppressor that plays an essential 

role in cell-cell adhesion. Evidence has shown that loss of function of E-cadherin can 

cause tumour progression and metastasis (Takeichi, 1991). Rs9929218 is in strong 

LD with rs16260 that affects CDH1 expression (Li et al, 2000). Therefore, rs9929218 

may influence CRC progression by mediating the CDH1 expression. In this thesis, 

however, a nominally significant (p<0.05) yet opposite effect of this variant was 

observed on overall survival of patients in SOCCS under the additive genetic model. 

Smith et al. reported that patients with AA genotype had significantly inferior overall 

survival, but in this thesis, I observed a potential protective effect of the A allele on 

overall survival of patients from SOCCS. No significant recessive genetic effect was 

found on either overall or CRC-specific survival in my analysis. A few possible 

explanations could be behind these inconsistent findings. Firstly, Smith et al. used a 

discovery cohort of stage IV CRC patients. Colorectal cancer with stronger metastatic 

potential may have different genetic determinants compared to CRCs diagnosed at 

early stages. Notably, in stratified analysis of 784 stage IV CRC patients from SOCCS, 

I failed to observe a significant association between this variant and CRC survival 

either. Secondly, Smith et al. found that rs9929218 was significantly correlated with 

treatment response of chemotherapy and therefore they adjusted for treatment 

strategy in their survival analysis. However, this thesis is limited by treatment data 

being unavailable and therefore this effect could not be further explored using our 

study cohorts. Investigation of this variant using well-documented large cohorts 

should still be considered. With respect to the other study by Abuli et al. (Abuli et al, 
2013), a total of 16 CRC-risk variants were investigated in 1,235 CRC patients. 

However, no significant associations were found after correcting for multiple testing. 
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Variants previously linked with survival outcomes of other cancers 

Main findings  
The second hypothesis is that genetic variants associated with survival outcomes of 

other cancers may also affect prognosis of CRC. I included 82 variants reported by 

previous GWASs and tested their associations with overall and CRC-specific survival 

of patients from the SOCCS study. Overall, none of the variants remained statistically 

significant after correcting for multiple testing, although four variants (rs1728400, 

rs17693104, rs6797464 and rs823920) were found to be associated with CRC 

survival at nominal significance (uncorrected p<0.05). These findings indicated that 

major effects of these genetic variants on CRC survival are unlikely. Different cancer 

types may have distinct genetic determinants in terms of survival outcomes after 

diagnosis.  

Rs17693104  

This is an intron variant of the SHD4B gene in chromosome 10, was initially reported 

to be associated with overall survival of serous epithelial ovarian cancer. In this thesis, 

I found a concordant effect of the T allele on inferior overall and CRC-specific survival 

of CRC patients in SOCCS. Notably, earlier evidence has suggested that this variant 

was associated with sensitivity of Capecitabin--an agent that has been regularly 

administrated to CRC patients (O'Donnell et al, 2012). Therefore, our results indicate 

that rs17693104 could potentially influence CRC survival by modifying treatment 

response of patients who have been taking Capecitabin. The possible metabolic 

pathways and mechanisms should be further explored in the future. According to the 

results of GTEx, the T allele of rs17693104 is associated with higher expression of 

the RP11-137H2.4 gene in multiple types of human tissue. This gene encodes the 

long non-coding RNA (LncRNA) RP11-137H2.4. Ouimet et al. conducted in vitro 
investigations to characterise biological function of the RP11-137H2.4 using human 

acute lymphoblastic leukaemia (ALL) cell lines (Ouimet et al, 2017). They found that 

silencing RP11-137H2.4 led to significantly increased cell apoptosis (Ouimet et al, 
2017). Thus far, there has been limited evidence concerning the function of RP11-

137H2.4 in CRC carcinogenesis or progression. These findings provided perspectives 

for future research to explore the possible role of rs17693104 in CRC progression by 

regulating the level of LncRNA RP11-137H2.4.  
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Rs6797464  

Koster et al. identified an intron variant rs6797464 in the MECOM gene, which minor 

allele (A) was associated with worse overall survival of osteosarcoma (Koster et al, 
2018). A concordant effect of the A allele of rs6797464 was found on CRC-specific 

survival in SOCCS, although this effect did not survive correction for multiple testing. 

The MECOM gene encodes the MDS1 (Myelodysplastic Syndrome 1) and EVI1 

(Ecotropic Viral Integration Site 1) complex locus protein which is widely accepted as 

an oncoprotein. It was initially linked with the pathogenesis of leukaemia. Evidence 

has shown that this protein is involved in aberrant cell development in the bone 

marrow (Morishita et al, 1988; White et al, 2013). Recently, higher expression of the 

MDS1 and EVI1 complex locus protein has been identified in colon cancer 

(Shackelford et al, 2006). Studies also found that this oncoprotein could increase the 

resistance of tumour cells to treatment agents such as taxol (Liu et al, 2006). Makondi 

et al. conducted gene enrichment analysis, and identified the highly expressed 

MECOM gene as a potential biomarker of irinotecan resistance (Makondi et al, 2017). 

They also found that the expression of MECOM gene was associated with disease-

free survival of CRC patients (Makondi et al, 2017). However, there has been a dearth 

of evidence supporting the direct link between the germline variant rs6797464 and 

the MECOM gene expression, which merits further exploration.  

Rs1728400 and rs823920  

With respect to the other two variants with suggestive associations with CRC survival, 

rs1728400 was initially identified to be linked with overall survival of breast cancer 

patients (Rafiq et al, 2014). In this thesis, I found a protective effect of the minor allele 

A on overall survival of CRC patients in SOCCS. However, the effect allele was not 

reported in the original GWAS by Rafiq et al. This variant, located in chromosome 16, 

is an intergenic variant near the LINC00917 and the AC092327.1 genes, whose 

biological function has not been well characterised. Rs823920 was initially reported 

to be associated with overall survival of pancreatic cancer patients (Tang et al, 2017). 

I observed a concordant detrimental effect of the minor allele G on CRC-specific 

survival. This variant is an intergenic variant close to the ARL2BPP7 and the 
MTND3P4 gene. There has been a lack of evidence concerning the biological function 

of this variant too. Given the fact that these suggestive associations did not survive 

FDR correction and could be chance findings, further replication is needed. 
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6.3.3 Genome-wide association study 
 
Main findings  

In this section, a total of 8,328,632 autosomal genetic variants were investigated to 

identify potential novel genetic determinants on survival outcomes of CRC. As shown 

in the QQ plots, the overall genetic effect of the whole genome on CRC survival 

appears to be small. This may be attributed to possible low heritability of the survival 

outcome as a trait that is influenced by a large number of environmental factors. Low 

statistical power could also be behind the observed lack of genetic signals. Given the 

large number of imputed variants and the relatively small sample size (N=5,675), the 

variant-based heritability was not estimated as recommended by previous studies 

(Yang et al, 2015). Hence, there is compelling rationale for future efforts to combining 

multiple GWAS datasets on CRC survival by meta-analysis to reach sufficient 

statistical power. 

In the analysis combining CRC patients of all stages, I identified one variant 

rs143664541 in chromosome 6 associated with overall survival of CRC patients in 

SOCCS at the threshold of GWAS significance (p<5x10-8). Although effects of 

concordant direction were found in external validation datasets including the UK 

Biobank and other three published clinical trials, no significant association was 

observed in a meta-analysis. As for CRC-specific survival, two variants (rs143664541 

and rs75809467) were identified at GWAS significance. Rs75809467 was not 

associated with overall survival in external datasets. Due to limited data availability, 

external validation was only conducted for overall survival. I also performed stratified 

GWASs in locally advanced (stage II/III) and metastatic (stage IV) CRC patients 

separately. For stage II/III patients, I observed a variant rs323694 in chromosome 5 

that was significantly associated with CRC-specific survival (p<5x10-8). No significant 

signals were detected in the analysis within stage IV patients. In terms of the gene 

based analysis, I observed significant enrichment of signals in the CCDC135 gene 

associated with CRC-specific survival after correcting for multiple testing. Genes 

involved in the biosynthetic process of galactolipids and up-regulating the 

differentiation of adipocytes were found to harbour enriched genetic signals 

associated with CRC survival. 

Rs143664541  

This is an intergenic variant located near the FRK gene. According to the National 
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Center for Biotechnology Information (NCBI) gene database (URL6-4), the FRK gene 

encodes the Fyn-related kinase which may suppress cell growth by intervening in the 

G1 and S phase of the cell cycle (URL6-4). Currently, there is no evidence that shows 

that rs143664541 can influence the FRK gene expression. The exact biological 

implication of this variant remains unclear. According to the results from the 

PhenoScanner (Staley et al, 2016) (URL6-5) where genotype-phenotype associations 

from the UK Biobank full cohort are indexed, the minor allele (A) of this variant is 

significantly correlated with higher risk of death from oesophagogastric diseases 

(p=9.4x10-6). By searching the FRK gene using the PhenoScanncer, I identified 360 

associations (p<5x10-8) between genetic variants within the gene and different traits 

among which 80 (22%) traits were deaths due to different causes. However, I failed 

to observe significant enrichment of genetic signals in this gene on CRC survival 

outcomes using the gene based analysis. Future research is expected to uncover 

biological function of this gene. In respect to the variant rs143664541, although 

statistically significant associations were found between the variant and overall and 

CRC-specific survival in SOCCS, these associations failed to replicate in external 

datasets. However, a concordant direction of effects was found across multiple 

external datasets. These findings indicate possible over-estimation of the genetic 

effect of this variant in SOCCS. It is worth mentioning that this variant is imputed in 

SOCCS instead of directly genotyped. Moreover, this variant has a low minor allele 

frequency in SOCCS (1.4%) and even lower in general European population (0.3% in 

the 1000 Genome Project). Although an info score greater than 0.80 across all the 

datasets for this variant suggests acceptable imputation accuracy, imputation error 

could still bias the observed genetic effect. As shown in the locus zoom plot (Figure 

5.25), there is poor LD structure near this variant which restrains selection of any 

proxies of this variant. Future efforts are needed to re-estimate the effect of this variant 

on CRC survival based on genotyped or sequence data.  

Rs75809467  

As to the other variant I identified from combined analysis of all CRC patients, 

rs75809467 is located in the non-coding transcript exon of the BTF3P4 gene which is 

a pseudogene with unclear biological function. This variant was significantly 

associated with CRC-specific survival in SOCCS. Although validation analysis on the 

same outcome was not performed due to data availability, an opposite direction of 

effect was observed from the UK Biobank and the three clinical trials overall survival 

(see Figure 5.25). Given the general concordance of direction of effects for these two 
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outcomes, it is likely that the genetic effect of the minor allele (T) on CRC-specific 

survival in SOCCS is not real. Future well-designed studies with large sample sizes 

are still expected to investigate this variant.   

Rs323694  

With respect to stratified GWAS in stage II/III CRC patients, the variant rs323694 was 

identified to be significantly associated with CRC-specific survival (p<5x10-8). Given 

that the stage data have not been released in UK Biobank and cause of death for 

each patient was unavailable in the three clinical trials, I was unable to conduct 

validation analysis for this variant. There is a pressing need for the observed effect of 

this variant to be validated in independent cohorts of stage II/III CRC patients before 

it can be used to assist predicting survival outcomes. Rs323694 is an intergenic 

variant near the IRX2 and LOC100506858 gene. Currently, the biological implication 

of this variant has been poorly understood. It is worth noting that no significant 

association was found between this variant and CRC survival among stage IV patients. 

I conducted stratified GWASs in stage II/III and stage IV patients separately based on 

the assumption that the genetic background could be different for CRC patients with 

varied metastatic potential. A recent analysis based on exome-sequencing data of 

metastatic CRC patients showed that most CRCs metastasise before the primary 

tumour is clinically detectable (Hu et al, 2019). This finding provides further evidence 

that CRCs with high metastatic potential could be a distinct disease subtype 

compared with ones with lower metastatic potential. Therefore, GWASs stratified by 

stage should be considered in future investigations.      

Gene based analysis  

By conducting gene based analysis, I identified significant enrichment of genetic 

signals in the CCDC135 gene associated with CRC-specific survival. This gene is 

located in chromosome 16 and encodes the Coiled-coil domain-containing protein 

135 (CCDC135). According to the gene database provided by NCBI (URL6-4), the 

CCDC135 protein can regulate germ cells differentiation during spermatogenesis. 

Thus far there has been no evidence showing any roles of CCDC135 in CRC 

carcinogenesis and progression. Based on the data from the Human Protein Atlas 

(URL6-6), the CCDC135 gene is highly expressed only in testis. The Human Protein 

Atlas also incorporates the data from The Cancer Genome Atlas (TCGA), and 

analysis using different cancer tissues found that the CCDC135 expression is 

enriched in endometrial cancer. Survival analysis suggested that higher expression 
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of CCDC135 in endometrial cancer tissue was associated with significantly favourable 

survival outcome. As for CRC, the CCDC135 gene was highly expressed in 143/454 

tumour samples, but higher expression of this gene had no significant effect on overall 

survival of CRC patients from the TCGA project (URL6-6). Future research is needed 

to investigate whether the CCDC135 gene can serve as a prognostic indicator for 

CRC patients.  

Gene-set based analysis  

With regard to the results of gene-set based analysis, significant enrichment of genetic 

signals was found in two sets of genes. The first set of genes are involved in the 

biosynthetic process of galactolipids. Galactolipids are a subtype of glycolipid with 

galactose as the sugar group. Hou et al. revealed that galactolipids can suppress 

inflammatory mediators and serve as a potential anti-cancer agent for melanoma 

using a mouse model (Hou et al, 2007). Another study conducted by Yang et al. also 

leveraged mice with implanted melanoma (Hou et al, 2007), and they found that plant 

galactolipid can suppress lung metastasis of melanoma by decreasing tumour 

necrosis factor (TNF) α mediated pulmonary vascular permeability (Hou et al, 2007). 

Currently there has been limited research evidence supporting possible anti-cancer 

roles of galactolipids in CRC. The second gene-set identified, is involved in up-

regulating the differentiation of adipocytes. There has been an abundance of evidence 

supporting the role of adipocytes in carcinogenesis and metastasis of multiple human 

malignancies. Firstly, studies have shown that dysfunctional adipocytes can directly 

down-regulate the inflammatory-immune-angiogenic response system and hence 

promote cancer cell proliferation and metastasis (Nieman et al, 2013). Secondly, 

adipocytes can secrete factors such as TNF α and interleukin-6 that participate in key 

pathways in CRC carcinogenesis and progression (Hodge et al, 2005; Pikarsky et al, 
2004). Thirdly, adipocytes can regulate the tumour microenvironment of CRC and 

subsequently contribute to CRC invasion (Tabuso et al, 2017). Although the molecular 

mechanisms of adipocytes affecting CRC progression have been underpinned by 

cumulated evidence, epidemiological studies have yielded inconsistent results 

regarding the prognostic effect of adiposity on CRC survival, as described in the 

previous section discussing CRC-risk variants. Future research is still needed to 

clearly explain the role of adiposity in CRC progression. It should be noted that 

findings of enriched genetic signals in genes and gene-sets in this thesis have not 

been verified in external datasets. Therefore, validation studies are needed to confirm 

these results before further characterisation of detailed molecular mechanisms. 
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6.4 Conclusions and recommendations  
 

This thesis sets out to explore impact of germline genetic variations on survival 

outcomes of CRC patients using multiple patient cohorts including SOCCS, UK 

Biobank and three published clinical trials. Overall, the inheritable genetic 

components, represented by germline genetic variants throughout the genome, may 

contribute to only a relatively small part of variance in survival outcomes of CRC 

patients. However, several genetic variants were identified to be possibly associated 

with CRC survival and merit future investigation. Outlined below are main conclusions 

and recommendations derived from each part of the thesis. 

  

6.4.1 Systematic literature review 
 

In the first part of the thesis, I systematically reviewed published prediction models on 

survival outcomes of CRC including 83 model development studies and 52 external 

validation studies. None of the reviewed models included germline genetic variants 

as predictors. Somatic mutations such as the KRAS and BRAF mutations were used 

by a few models. Most published prediction models have not been validated in 

external datasets and are subject to potential sources of bias which mainly include 

cohort attrition and methodological flaws. There have been eight models (Basingstoke 

preoperative score, Fong score, Iwatsuki score, Memorial Sloan Katherine Cancer 

Center nomogram, Nordinger score, Peritoneal Surface Disease Severity Score, 

Kanemistu nomogram and Valentini nomogram) that had been validated in multiple 

external datasets. Meta-analyses of the model performance metrics (C statistics) 

showed low to modest discriminative performance. 

In order to further improve prediction, future investigations should explore the added 

predictive value of germline genetic variants that are associated with CRC survival 

such as genetic variants identified from this thesis and other studies once the reported 

associations have been confirmed by independent studies. Other novel predictors 

such as microRNAs should also be integrated. Besides developing new models, 

published prediction models should be validated by more independent efforts. The 

real-world impact and cost-effectiveness of published models are also expected to be 

studied before they can be routinely applied in clinical practice. Careful consideration 
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of factors used to predict survival outcomes of CRC is necessary and this systematic 

review can guide the selection of prognostic predictors in the future. 

 

6.4.2  Candidate association studies   
 

Validation of genetic variants previously reported to be associated with CRC 
survival  

In this section, I investigated 43 genetic variants identified by previous GWASs that 

were associated with survival outcomes of CRC. Overall, no genetic variants were 

found to be significantly associated with either overall or CRC-specific survival after 

correction for multiple testing. As for the combined effect of the 43 variants, I did not 

observed significant association between a polygenic risk score and CRC survival of 

patients from the SOCCS cohort. In addition, the 43 variants combined showed no 

predictive value either used alone or together with other known non-genetic factors. 

Our results suggested poor reproducibility of previously identified variants. Previous 

findings of genetic effects may be false positive. Given the sample size of the SOCCS 

cohort, I concluded that previously identified variants associated with CRC have no 

major effect on survival outcomes of CRC patients, although small effects for each 

individual variant cannot be confidently excluded.  

Although none of the 43 variants survived multiple testing, three genetic variants 

(rs17026425, rs6854845 and rs17057166) were identified with concordant direction 

of effects compared to the original GWASs at a nominal significance level (p<0.05). 

Validation studies of large sample size may be considered in the future. Large GWASs 

with sufficient statistical power are needed to identify genetic variants robustly 

associated with CRC survival. 

I also tested another two groups of genetic variants in this section based on two 

distinct hypotheses. Firstly, I examined associations between 128 CRC-risk variants 

and survival outcomes in SOCCS. Using an additive genetic model, no genetic 

variants were significantly associated with CRC survival after correcting for multiple 

testing. Similarly, the CRC-risk polygenic score was not associated with survival 

outcomes in SOCCS either. However, potential recessive effects were observed for 

two CRC-risk variants (rs7495132 in the CRTC3 gene and rs10161980 in the 
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AL139383.1 gene) using the SOCCS study and significant recessive effects were also 

detected in the UK Biobank. The second hypothesis was to test whether genetic 

variants associated with survival outcomes of other cancers may also affect prognosis 

of CRC. However, no significant signals were found among the 82 included variants 

and survival outcomes of CRC in SOCCS.  

Future studies should focus on further validating the potential recessive effects of the 

two CRC-risk variants, especially in other populations. Given the fact that little is 

known regarding the biological function of these two variants, our results also merit 

characterisation of possible molecular mechanisms and biological pathways in which 

these two variants are involved. As for genetic variants associated survival outcomes 

of other cancers, our findings indicated limited effects of them on CRC survival, and 

therefore pointed to the presence of possible distinct genetic architectures of survival 

outcomes across different cancers which should be investigated by separate GWASs 

in the future.  

 

6.4.3 Genome-wide association study   
 

In this section, more than eight million autosomal genetic variants were scanned to 

identify novel genetic loci associated with survival outcomes of CRC. The overall 

distribution of statistical significance revealed possible low heritability for survival 

outcomes of CRC. However, lack of statistical power could also explain this finding. 

Using the SOCCS cohort as the discovery set, two variants (rs143664541 near the 
FRK gene and rs75809467 in the BTF3P4 gene) were found to be significantly 

associated with survival outcomes of CRC (p<5x10-8). Meta-analysis combining effect 

estimates from the UK Biobank cohort and three clinical trials was used to validate 

these two findings. However, no significant associations were detected for either of 

the two variants (p<0.05), although concordant effect estimates of rs143664541 were 

found across the validation datasets compared to findings in SOCCS. By conducting 

stratified GWAS in locally advanced CRC patients (stage II/III), another variant 

(rs323694 near the IRX2 gene) was observed to be significantly associated with 

survival outcomes of CRC (p<5x10-8). In terms of the results of gene based analysis, 

I observed significant enrichment of genetic signals in the CCDC135 gene, and for 

gene-set based analysis, two sets of genes involved in biosynthetic process of 
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galactolipids and up-regulating the differentiation of adipocytes respectively were 

found to harbour significant enrichment of genetic signals in relation to survival 

outcomes of CRC patients.   

Considering that CRC-specific survival was not investigated in the validation datasets 

and that heterogeneous study designs and variable structures were adopted by these 

datasets, findings from the GWAS using the SOCCS cohort should be further 

validated by large well-documented cohorts in the future. These genetic variants, 

genes and gene sets, once confirmed by future validation, should then be explored in 

terms of their biological implications in CRC progression and metastasis. The results 

of this section also call for collaborative efforts of aggregating large study cohorts and 

performing meta-analysis combining multiple cohorts to obtain sufficient statistical 

power for more discoveries of genetic variants that can potentially affect survival 

outcomes of CRC patients.  

 

6.5 Implications for clinical practice and future policy 
  

Thus far, genetic determinants of long-term survival outcomes of CRC patients remain 

poorly understood. The systematic review in this thesis identified a dearth of prediction 

models that used germline genetic markers as predictors. Published prediction 

models mainly adopted well-established clinic-pathological factors associated with 

CRC survival, mainly including tumour stage and histological features. In the meta-

analysis the eight models that had been validated in at least two external datasets 

were found to have significantly positive discriminative performance. These models 

could potentially assist in selecting CRC patients with expected worse prognosis and 

informing possibly more intensive treatment strategy. However, these identified 

models should be further investigated in terms of their real-word impact and cost-

effectiveness by conducting model impact studies and health-economic modelling. 

Current clinical guidelines have not recommended any of these prediction models to 

be routinely applied, and our systematic review supports no change to current 

recommendations. 

Currently, there have been no germline genetic markers listed as prognostic factors 

for CRC in clinical guidelines or recommendations of official organisations such as 
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the Canadian Cancer Society. This is due to lack of robust evidence supporting 

associations between any genetic variants and CRC survival. In candidate genetic 

association studies of this thesis, I identified two variants (rs7495132 and rs10161980) 

with possible recessive genetic effects on CRC survival, but further validation on these 

associations and exploration in their potential predictive value are needed before any 

recommendations can be made. Genome-wide association analysis also revealed 

suggestive evidence on two variants (rs143664541 and rs323694) which merit further 

validation in other datasets. Findings in this thesis provide possible candidates for 

future investigation in terms of both biological function and clinical utility. However, it 

is still premature to integrate any of these germline genetic variants into management 

of CRC patients. 
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