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Abstract 

The methods of Bailey, Eastwood and Graham for the parabolic invariant theory 

of conformal geometry are adapted to study the conformal polynomial invariants in 

the jets of differential forms, with analogous results being obtained. The methods 

of Bailey and Gover are then used to give the 'exceptional invariants'. These 

methods are extended to a different problem---that of the polynomial invariants 

in the jets of curves at a point, yielding complete results for a particular class of 

invariants. 

A construction was given by Graham, Jenne, Mason and Sparling of a set of 

conformally invariant, linear differential operators with leading term a power of 

the Laplacian, on general conformal manifolds. Their method involves the use of 

the 'ambient metric' construction. We give an alternative construction of most of 

these operators, using an invariant operator on the 'tractor bundle,' and describe 

the relationship between the tractor bundle and the ambient construction. We also 

relate these ideas to methods used by Wünsch to find some conformally invariant 

powers of the Laplacian. 

We introduce another parabolic geometry, not appearing previously in the liter-

ature, which we call contact-projective geometry. The flat model is Sp(2n + 2, T1) 

acting on p2n+1  The invariants of positively homogeneous functions on the flat 

model are studied, using methods similar to those of the conformal case. We sug-

gest a curved version of this geometry and describe the form of a tractor bundle—a 

vector bundle with connection and a skew-symmetric bilinear form; and an ambi-

ent space—an affine manifold of one higher dimension equipped with a symplectic 

form. 
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Chapter 1 

Introduction 

1.1 Invariants in Geometry 

In this thesis, we will be looking at the following kinds of invariant theory problems: 

• Looking for all G-equivariant differential operators between sections of ho-

mogeneous bundles on a homogeneous space G/H, where C is a Lie group 

and H is a closed Lie subgroup. 

• Finding polynomial maps in the jets of curves on G/H which either simply 

rescale or are invariant under the G-action. 

• Looking for all local scalar invariants of a geometric structure whose flat 

model is such a homogeneous space. 

• Looking for "curved analogues" of the invariant differential operators men-

tioned above i.e. invariant operators on a curved geometric structure with 

the same leading terms as the invariant operators on the homogeneous space 

and which reduce to the same operator in the flat case. 

The flat models of the geometries we will be looking at all have G a semi-simple 

Lie group and H a parabolic Lie subgroup. However, to illustrate each of these 

invariant theory problems, we will show how they can be solved in the simpler case 

of Euclidean space, which is the flat model for Riemannian geometry. In this case, 

we have R'2  = G/H where G is the group of Euclidean motions and H = 0(m). 

4 
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1.1.1 Invariant Differential Operators 

Consider the problem of finding all Euclidean invariant differential operators (not 

necessarily linear) from functions to functions. 

Proposition 1.1 A G-invariant differential operator on functions on R7 is equiv-

alent to an H-invariant polynomial in the jets of functions at the origin. 

Proof. First, note that an invariant differential operator is equivalent to a C-

invariant polynomial on the total space of the jet bundle. Clearly, such a G-

invariant polynomial defines, by restriction, an H-invariant polynomial in jets at 

the origin. To complete the proof, we need to show that an H-invariant polynomial 

on jets at the origin defines a C-invariant polynomial on the total space of the jet 

bundle. 

Suppose f is a genuine function on JR, rather than just a jet. Since G is 

transitive, for any point, x E 1R, there exists g e C such that x = g 0. Then for 

an H-invariant I we may define an operator I by setting if (x) = I(g' . f). If 

0, then g'E H, so 

I( 	. f) = I((g')'g' f) = 	. I(g1 . f) = I(g . f), 

thus If is well-defined. Similarly, one can check that I is invariant under the 

C-action. 	 o 

We find these H-invariant polynomials as follows. Taking the jet of a function, 

f, at the origin gives us a list of symmetric tensors, 

(f, Vf, V(2)f, 	. 	

v(c)f 

r 

where V(r)f  denotes ô. . . 0k f, and we write c9i  for. The group H = 0(n), acts axi  

upon each tensor in this list in the usual way. Our problem is therefore reduced 

to that of finding the 0(n) invariant polynomials on the module whose elements 

are such lists of tensors. 

The solution to this problem is then given by Weyl's theory for the orthogonal 

group (see §3.1 and [We])—every invariant polynomial in the jet of a function, f, 
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is a linear combination of complete contractions of derivatives of f with the metric 

tensor (for the notion of complete contractions, see chapter 3). In particular, we 

see that every invariant linear differential operator from functions to functions is 

a linear combination of powers of the Laplacian. 

1.1.2 Invariants of Curves 

We look for all Euclidean invariant polynomials in the jets of curves in R'. Again, 

the transitivity of G allows us to consider only H-invariants at the origin. We can 

assume that a curve, x(t), is parametrised such that x(0) = 0. Then taking the 

jet of such a curve gives a list of vectors, 

(x 1 ,x2 ,x3 , ... ), 

where x - 	The group 0(n) acts on each vector in this list in the usual r - dt It=o 

way, and so Weyl's theory tells us that every invariant is a polynomial in the dot 

products {Xr  x3 }. 

1.1.3 Riemannian Invariants 

We look for the local invariants of a Riemannian structure i.e. polynomials in the 

components of the metric tensor, together with its inverse and derivatives which 

are invariant under a change of coordinates. The first step in solving this problem 

is to reduce to an algebraic problem in the invariant theory of 0(n). We do this 

as follows: 

As we are only working locally and as we have translation invariance, we need 

only look at invariants in the jets of metrics and their inverses at the origin 

in R', under the action of jets of origin preserving changes of coordinates. 

By using normal coordinates, the problem is reduced to that of the invariants 

of jets at the origin of metrics in normal coordinates and their inverses, under 

the (non-linear) action of the orthogonal group. 
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3. The final stage is non-trivial, and involves finding a one to one (non-linear) 

correspondence between the jets of metrics in normal coordinates and the 

Riemann curvature tensor and its covariant derivatives. 

One thereby obtains the usual action of 0(n) on each term of a list of tensors, 

(R, VR, V (2) R, V (3) R,...) 

where V(r)R  denotes the r-th covariant derivative of the Riemann curvature tensor, 

evaluated at the origin. The invariants of the module of such lists of tensors are 

then given by Weyl's theory—all such invariants are linear combinations of com-

plete contractions of the Riemann curvature tensor and its covariant derivatives 

with the metric tensor. 

1.1.4 Some Invariant Operators in Riemannian Geometry 

Given one of the differential operators of §1.1.1, we look for an invariant differential 

operator on a Riemannian manifold with the same leading order term, which 

reduces to our original operator in the flat case. Here, we can construct such 

operators simply by replacing the coordinate derivatives in the original expression 

with the Levi-Civita connection. For example, the Laplacian constructed from 

the Levi-Civita connection is a curved analogue of the usual Laplacian on Rz. 

Note that these curved analogues are not unique—adding any scalar Riemannian 

structural invariant yields another curved analogue. 

1.2 Parabolic Geometries 

A parabolic geometry is one for which the flat model is a homogeneous space, 

GIP, where G is a semi-simple Lie group and P is a parabolic subgroup. For the 

definition of a parabolic subgroup, see for example, [FHJ. In this thesis, we will 

only be looking at the following examples of parabolic geometries: 
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• A conformal structure on a manifold, M', is an equivalence class of Rie-

mannian metrics, [gjj ], where Yij "- .3 if §ij  = 2gij, for some nowhere 

vanishing smooth function ft Let C denote the identity connected compo-

nent of 0 (n + 1, 1), which preserves a symmetric bilinear form, , 

and let P be the subgroup of G preserving a chosen null vector, e0  e Rn+2  up 

to positive scale. Then S = GIP is the flat model for conformal geometry. 

(See chapter 2). 

• A projective structure on a manifold is an equivalence class of torsion free 

affine connections, where two connections are equivalent if they have the 

same geodesics, considered as unparametrised curves. Let G denote the 

group PSL(n + 1, R), which acts on R' in the usual way, and let P be the 

subgroup preserving some point e0  E R1 \ {O} up to scale. Then IF GIP 

is the flat model for projective structures. (See chapter 6). 

• A (strictly pseudoconvex) CR structure is the structure that arises as the 

natural geometry of the boundary of a smooth strictly pseudoconvex domain 

in Ctm. (See, e.g. [F] for more details). The flat model is S2 ' = GIP where 

C = SU(n + 1, 1)c SL(n + 2,C) and P is the subgroup of G preserving 

some null vector in C' 2  up to complex scale. 

• A contact-projective structure on a manifold, M2n+l,  is a projective struc-

ture, together with a "compatible" contact structure (see definition 7.3). 

The flat model is p2n+1 = GIP, where C = Sp(2n + 2, R) preserves a non-

degenerate skew-symmetric form on jj2n+2,  and P is the subgroup preserving 

some e0  0 0 in JR2n+2  up to scale. 

In the examples for the Euclidean/Riemannian case, we were led to problems in 

the invariant theory of the orthogonal group. Similarly, in the case of parabolic 

geometries, one is led to a problem in the invariant theory of the parabolic, P. The 

first difficulty one encounters, in this case, is that it is not usually obvious how to 

construct any invariants. Even when one is able to construct some invariants, it 

is not easy to prove that one has all the invariants. The reason for the increase 
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in the level of difficulty is that we no longer have complete reducibility of finite 

dimensional representations. 

1.3 History 

There is a long history associated to the study of differential invariants—see, for 

example, [T], for projective and conformal invariants. The branch of developments 

to which this thesis belongs originates in Fefferman's paper, [F], of 1979. Fefferman 

showed that the coefficients of the asymptotic expansion of the Bergman kernel of 

a strictly pseudoconvex domain in C are invariants of the CR structure on the 

boundary, and was therefore led to trying to list these invariants. 

In order to construct CR invariants, Fefferman proceeded as follows. To a CR 

structure, he was able to associate a manifold of 1 higher dimension, with a for-

mally defined Kähler-Lorentz metric. (This is analogous to the Fefferman-Graham 

ambient metric construction which we will describe in §2.3). This construction is 

obstructed at finite order in all dimensions. The problem of finding invariants 

was reduced, non-trivially, to the problem of finding the invariant polynomials 

on a space of lists of tensors under the action of the parabolic subgroup, P, of 

SU(n + 1, 1); these tensors being the derivatives at e0  of a homogeneous function 

on C?2+2.  (See §7.6 for the description of an analogous module). Since the P action 

on each tensor is the restriction of the G action, one can construct invariants as 

linear combinations of complete contractions of these tensors with the preserved 

Hermitian form. The problem is to find whether all invariants arise in this way. 

Fefferman was able to make some progress in solving this problem. 

Fefferman studied the invariant theory of a similar module under the action of 

a parabolic subgroup of O(m+ 1, 1) as a model problem, and obtained nearly com-

plete results. Eastwood and Graham study this problem in [EGm] and show that 

it has applications in the conformally invariant differential operators on sections of 

certain homogeneous bundles on S' 1  (see also §3.3). However, although they made 

some progress, complete results in the invariant theory remained unforthcoming. 
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A breakthrough came when Gover ([Gol]) introduced new methods to com-

pletely solve the invariant theory of an analogous module under the action of a 

parabolic subgroup of SL(ri, R). Using Gover's methods, together with some new 

techniques, Bailey, Eastwood and Graham ([BEGm]) were able to solve the above 

model problem and Fefferman's original CR problem. 

These methods can also be applied to the study the structural invariants of 

conformal and projective structures. A construction of invariants of conformal 

structures is given by Fefferman and Graham in [FGm1]. This is achieved by 

associating to a manifold, M with conformal structure, an n + 2-dimensional 

manifold with a formally defined pseudo-Riemannian metric (see also §2.3). This 

construction is obstructed at finite order in even dimensions. The invariants of 

this Riemannian structure then yield invariants of the conformal structure. It 

was conjectured in [FGm1] that all invariants (in even dimensions, those below 

the order of obstruction) can be constructed in this way. The reduction of this 

problem to a problem in the invariant theory of a parabolic subgroup of O(n+ 1, 1) 

is carried out in [FGrn2]. This invariant theory problem is solved in [BEGm]. 

A complete account of the structural invariants problem in the projective case 

is given in [Go3]. 

1.4 Conformal Invariants 

In chapter 2, we give a proof of the relationship between two constructions as-

sociated to conformal structures. In addition to the Fefferman-Graham ambient 

metric construction described above, there is another construction which enables 

one to find invariants of conformal structures, due essentially to T.Y.Thomas [T]. 

The tractor bundle on Mn is an n + 2-dimensional vector bundle, equipped with 

a metric and connection, along with a D-operator--an invariant extension of the 

connection to the bundle (see §2.2 and [BEGo]). In even dimensions, although the 

ambient construction is obstructed at finite order, the tractor bundle remains well 

defined. 
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It has been observed by Graham (as mentioned in [BEGo]) that the conformal 

tractor bundle is essentially the tangent bundle of the ambient metric construction 

and that the tractor D-operator is closely related to the Levi-Civita connection on 

the ambient construction. Since no proof appears in the literature, we provide a 

proof of this fact in chapter 2. Also in this chapter, we describe some relationship 

(see §2.5.2) between the D-operator and methods used by Wiinsch ([Wü]) for 

constructing conformally invariant differential operators. 

1.4.1 Invariants of Curves 

In chapter 4, we look at the problem of finding all polynomials in the jets of 

curves on S, the flat model for conformal geometry, which simply rescale under 

the G-action. This is a type of invariant theory problem that has not, to our 

knowledge, previously been studied in the case of parabolic geometries. As in 

§1.1.2, we need only consider polynomials in the jets of curves at [eo ] under the 

action of P. We assume any curve, x(t), has x(0) = [eo]. Let 0q  denote the one 

dimensional representation of P, where an element, p E P such that pe0  = Ae0 , 

acts by We are thus looking for P-equivariant polynomial maps from the 

space of jets of curves at [eo ] to some clq . 

Our method of constructing invariants is as follows. To any regular curve, x(t), 

in S', we associate a unique lifting, X(t), to the preserved null cone in R1+2  with 

unit tangent. The jet of X(t) at t = 0 is a list of vectors, 

()(, X1 , -2, . . .) 

where Xr  =E R7 +2 . The group, P, acts on each vector in this list in the dtr 

usual way and so any complete contraction formed from the X r  with the preserved 

metric tensor, j, and volume form, F, will be invariant under the P-action. Such a 

contraction will not, in general, be polynomial in the components of the derivatives 

of x(t) and hence, not an invariant. However, linear combinations of complete 

contractions of the forms 

(1.1) 

and 	u.contr(®.®...®.®Xr j ®...(gXrd ), 	(1.2) 
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where u = (±(0) ±(0)), will be polynomial, for large enough q, and hence invari-

ants. We say a function, f, on the space of jets is time homogeneous of degree k if 

f(x(At)) = Akf(x(t)) for ) E R. Since every invariant is the sum of invariant time 

homogeneous parts, we need consider only time homogeneous invariants. We also 

decompose invariants into odd and even parts, depending on the behaviour under 

orientation reversal. Our main result is the following: 

Theorem 1.2 

• A spanning set for the vector space of even invariants, time homogeneous 

of degree k, taking values in Uq  with 3q ~: 2k is given by those complete 

contractions of the form (1.1) with the appropriate homogeneity degree, with 

q even. 

• A spanning set for the vector space of odd invariants, time homogeneous of 

degree k, taking values in Uq , with 3q ~: 2k - n(n - 2) is given by those 

complete contractions of the form (1.2) with the appropriate homogeneity 

degree, with q + n even. 

1.4.2 Differential Invariants of Curves 

In §4.4, we consider the case of (not necessarily polynomial) differential invariants 

of generic curves in S. Green, [Gn], shows how one can use Cartan's method of 

moving frames to give a set of generators for the algebra of these invariants. In 

R3 , the Serret-Frenet formulae give the speed, curvature and torsion as invariants, 

and the algebra of invariants is generated by these invariants and their derivatives. 

We give an analogue of the Serret-Frenet formulae for flat conformal geometry, 

which gives a direct method for the computation of these moving frames, and 

hence, invariants. Using the method introduced in [BEGo] of associating a list 

of sections of the tractor bundle to a regular curve on a conformal manifold, we 

describe the construction of curved analogues of both these invariants and the 

polynomial invariants above. 
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1.4.3 Invariants of Differential Forms 

In chapter 5, we use the methods of [BEGm] to study conformally invariant differ-

ential operators on closed k-forms on S". We consider the case 1 < k <n - 1—the 

case k = 0 is covered in [BEGm]. Since P fixes [eoJ and since d is an invariant 

operator on k-forms of weight 0, we can define the P-modules, 

Jk = { jets at [eo ] of closed k-forms on S,  of conformal weight 0 }. 

Rather than studying this module directly, we will study the invariant theory of 

the P-module, 

f jets at e0  of functions on W taking values in Ac W* ,  homogeneous Sj 
Jk = s 	 1, 

of degree —k, satisfying df = 0, Xi f = 0 and L.f = 0. 	 J 
where X denotes the position vector and W denotes the standard representation, 

lR1+2, of G, with other notation as defined in §5.1. The reason that this is of 

interest is the following: 

Theorem 1.3 For 1 < k < n - 1 and n odd, Jk 	as P-modules. 

An invariant of Jk  is a P-equivariant polynomial map, I: Jk - aq . Any complete 

contraction of the derivatives in 1n+2  of an element, f, of Jk  at e0  with j and 

will be an invariant. We define a Weyl invariant to be a linear combination of such 

contractions each taking values in the same cxq . An invariant which can not be 

written as a Weyl invariant is said to be an exceptional invariant. Any invariant 

is the sum of invariant homogeneous parts, so we need only consider homogeneous 

invariants. The total homogeneity degree will be denoted by d. We are able to 

find a complete set of generators for the invariants of Jk: 

Theorem 1.4 

• Every even invariant of Jk  is a Weyl invariant. 

• There are no odd invariants of 1k  of degree d < n/k 

Every invariant of degree n/k is exceptional—up to scale, there is at most 

one such invariant. 

Every odd invariant of degree d > ! is a Weyl invariant. 
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1.4.4 Conformally Invariant Powers of the Laplacian 

In section 2.6, we give explicit formulae for some curved analogues of powers of the 

Laplacian in conformal geometry, in terms of the tractor D-operator. Using the 

ambient metric construction, [GmJMS] gives an algorithmic method of construct-

ing conformally invariant linear differential operators with the m-th power of the 

Laplacian as the leading term, acting on functions of conformal weight m - 

providing either n is odd or ri > 2m. This result seems likely to be sharp—it is 

shown in [Gm] that if n = 4 there is no such curved analogue of the cube of the 

Laplacian. In theorem 2.22, we give a formula for a curved analogue of the m-th 

power of the Laplacian for n odd or n > 2m, using the tractor D-operator. 

1.5 Contact-Projective Structures 

There are a number of other parabolic geometries which have been studied, in 

addition to those already described, such as the "almost Hermitian symmetric" 

structures which appear in [Ba]. In chapter 7, we introduce a further example, 

that of contact-projective structures, which, to our knowledge, has not previously 

been studied. The flat model is as described in §1.2. 

We describe some features of the curved geometry and show that the tractor 

bundle and ambient construction can be described in terms of extra structure on 

the corresponding constructions from the projective case. 

We then go on to study the invariant theory of the following module, using the 

methods of [BEGm]: let 

Tk 	I Jets at e0  of functions, f, on }2I2+2  which are positively 

homogeneous of degree k and which vanish to order k + 1 at e0 . 

In this case, Weyl invariants are linear combinations of complete contractions of 

the derivatives of f at e0  with the .preserved symplectic form, each transforming 

by the same character of P. 

Theorem 1.5 Every invariant of degree d < 2n or d> 2n+1 is a Weyl invariant. 
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The cases of degree d = 2n, 2ri +1 remain open—although it is clear that non-zero 

Weyl invariants do exist in these degrees, we are able to give an example of an 

exceptional invariant. 

The module, .Fk, is the module of jets of sections of a homogeneous line bun-

dle on p2fl+1  modulo the kernel of an invariant differential operator. Thus an 

invariant of .Fk is an Sp(2n + 2, R)-invariant differential operator depending only 

on derivatives of such sections lying in the complement to this kernel. The above 

theorem gives a construction for almost all of these operators. 



Chapter 2 

Conformal Geometry 

A conformal manifold is a smooth manifold M, with an equivalence class of 

Riemannian metrics [g3],  (the conformal structure), where gjj 	 if and only if 

= 	where l is a smooth positive valued function. We will assume that 

the dimension n > 3. (Note that we use the abstract index notation, as in [PR], 

throughout). 

We start off with the flat model for conformal geometry, i.e. a model for those 

conformal structures which have a Euclidean metric in the conformal class. We 

then introduce some notation for curved conformal structures, and give a brief 

introduction to two structures associated to curved conformal structures: the con-

formal tractor bundle—an n + 2-dimensional vector bundle with metric and con-

nection (see [BEG0]); and the Fefferman- Graham ambient metric construction—a 

formal power series construction of an n + 2-dimensional pseudo-Riemannian man-

ifold (see [FGm1]) - and explain the relationship between the two. 

We then introduce the methods of Wflnsch and Gunther (see [GüWii]) for the 

study of conformally invariant differential operators, and show some relationship 

with the tractor calculus. Finally, in §2.6, we give a formula using the tractor 

D-operator for a curved analogue of the k-th power of the Laplacian for n odd or 

1 < k < n/2. 

16 
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2.1 The Flat Model 

We describe the flat model for conformal geometry (see, for example, [PR]). Take 

R 2  with coordinates 

xo 

X'= 	Xi 	i=1,...,n. 	 (2.1) 

xoo 

For any fixed, positive definite, bilinear form, (gjj ), on R,  we define the metric, 

jj on R7 +2  with signature (m + 1, 1), as having the matrix given in block form by 

001 

OIA 	0 gjj  0 

100 

The null cone of jjr is Q = {X' : j,jX,Xj  = 0} (we use the summation conven- 

tion throughout). S' is the space of generators of Q, and we use as coordinates 

R -* Sn, 

1 

12 

where x2  denotes 	To tie this in with the conformal class of g23 , notice that, 

if we use as coordinates for Q, away from the origin, 

1 

(t, X i ) i-+ t 	Xi , 	 ( 2.2) 

12 

the restriction of §IjdX'dX j  is t2 g3dx2dx3. 

Let G denote the identity connected component of O(). From the above 

discussion, we see that the usual action of C on preserves Q and  [gjj]  and 

thus acts on Sn  by conformal automorphisms. In fact, C acts transitively, and is 

the full group of conformal motions of S (see, e.g. [E]). Fix a point, e0 , with 
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1 

coordinates e = 0 E Q, and let P be the parabolic subgroup of G given by 

0 

P = {p E G : pe0  = Ae 0 , A > 0}. Explicitly, 

A r3 	t 

P = 	0 m S i 	: A > 0, m' E 80(9), t = 	 ? = _- m z3 rj  

0 0 A - ' 

can be identified with GIP. P acts on Sz  as the group of all orientation 

preserving conformal transformations of Q fixing [eo ] E S's. 

2.1.1 Notation for Curved Conformal Structures 

For curved conformal structures, we fix a metric, g23 , and denote its Levi-Civita 

connection by V. We define the Riemann curvature tensor, 	by 

(VZV3 - VV)Uk = RU 1  

We define the Ricci tensor, 	by R31  = Rk', and the scalar curvature, R = Rk c. 

The rho-tensor, P, is a trace adjusted multiple of the Ricci tensor, and is given 

by 
(R.j 	R 

The trace free part of the Riemann curvature tensor is the conformally invariant 

Weyl tensor, which can be expressed (see [Eu], [BEGo] etc.) as 

Wk1 = Ri3ki - 29k[P3]1 - 2g1 [jP]k . 

Two other tensors which will be of interest are the Cotton-York tensor, Ciik,  and 

the Bach tensor, B13 , which are given (see, e.g., [FGm1]) by 

Ck1 = VIP3k - VkP3j 

and 	B3k = V1 Ckj - Pi'Wijkl  

When n = 3, the Weyl tensor vanishes, and the Cotton-York tensor is conformally 

invariant. When n = 4, the Bach tensor is conformally invariant. 



Chapter 2. Conformal Geometry 	 19 

2.2 The Conformal Tractor Bundle 

One construction which will be of use to us is the conformal tractor bundle. This is 

based on the work of T.Y.Thomas (see, for example, [T]) which was developed in a 

modern form in [BEGo], whose presentation we will follow. The idea is to associate 

to an n-dimensional conformal manifold an (n+2)-dimensional vector bundle, with 

metric and connection. This bundle is related to another construction—one can 

construct a principal P-bundle as a sub-bundle of the bundle of 2-frames, and 

define the Cartan conformal connection by means of a naturally defined form 

taking values in the Lie algebra of C (see [Ko] for further details). The tractor 

bundle is an associated vector bundle of this principal bundle, but we will define 

it directly. 

Let M be an n-dimensional manifold with conformal structure, and let S 

denote the tangent bundle. We can describe a conformal structure by a global 

tensor field, g23 , taking values in a line bundle, which we denote S[2]. We choose a 

square root, £[1], for this bundle, and we say functions and tensors taking values 

in E[w] and S[w] = E ® S[w] etc. have conformal weight w. 

A conformal scale is a nowhere vanishing local section, 'r, of S[1]. This defines 

a metric 'r 2gjj in the conformal class. We choose a conformal scale, and work with 

the Levi-Civita connection, V, of this chosen metric. If we choose a new scale, 

ft'T, where Q is a nowhere vanishing smooth function, the metric is rescaled by 

2,  and the Levi-Civita connection, V, of this new metric is given (see, e.g., [PR]), 

by 

'if 	V 2f+wT 1f 

= V 2 U + (w + 1)T 2U - U2 T + U'Tk8 3 	(2.3) 

= V 2w3  + (w - 1)Tw3 - T3 w2  + Wk9ij  

where T1  = 	'VQ, and f, Ui and wi  are sections of e[w], E[w] and £2 [w] 

respectively. We will also need to know how the rho-tensor transforms under this 

rescaling 

Pij = - V 2T + TT - Tk Tgj. 	 (2.4) 
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We will use "hats" in this manner throughout to denote transformed quantities. 

2.2.1 The Tractor Bundle 

The tractor bundle, i",  for any given choice of conformal scale is identified with 

the direct sum 

= e[1] 	e[-1J, 

and under change of scale, this identification transforms according to 

U0  

U' 	= 	Ui+TiU00 	 (2.5) 

Uoo 	 U00  

where U° , U' and U00  are sections of E[-1], '[l] and [1] respectively. One can 

easily check that such transformations obey a group law, so that V is well defined. 

For an alternative definition of the tractor bundle in terms of jets, see [BEGo]. 

2.2.2 The Tractor Metric 

The tractor bundle 5' has a natural, non-degenerate, symmetric form, gjj which 

is defined invariantly by 

fUo\ 	fvo\ 

g,jU'V = 	+ U° V°° + U°°V ° , where U' 	U  J, V' 
= 

V 

U00 
	 v00) 

2.2.3 Projecting Parts 

We adopt the notation suggested by Buchdahl whereby the existence of a short 

exact sequence 

is indicated by writing A = B+C. This "+" is not commutative, but is associative, 

and so we can write, for example, A = B + C + D without ambiguity. 
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From the above transformation law, U is conformally invariant. If U°° is 

zero, then U' is conformally invariant, and so on. Thus, we can write 

ei = E[1} + Ei[l] + .E[—I], 

and similarly for tensor powers of V. For example, 

Si 	 E[-2] 

V J  = E[2] + 	+ .0[_2] + 
	

E) 	+ E[-2]. 

Ej 
	

E'[-2] 

e 

For U° , Ui and U as above, we call U the primary part, U the secondary part 

and so on, similarly for tensor powers. The first non-zero part of a given 'tractor'  

is referred to as the projecting part. 

There is a preferred section, X', of V[1], which in any choice of conformal scale 

is given by X1  = (0 0 1). Clearly, X'X 1  = 0. As U = U'X1 , this section gives, 

by contraction, a map, EI  E[1], which maps a section, U', of E' to its primary 

part. This section also supplies us with the invariant injection, E[-1J -+ E', given 

by U°  i-p U°X'. 

2.2.4 The Tractor Connection 

The tractor bundle has a connection, which in any choice of conformal scale is 

defined by 

U0 	 V jUo  — P Z Uj  

V3 	u 	= VUi+832LJo+FyUoo . 	 (2.6) 

U00 	 V j Uoo — Uj  

We use Vi  to denote the tractor connection on S' and the induced connection on 

tensor powers of E  as well as the Levi-Civita connection on conformally weighted 

tensor fields. One can check, from equations (2.3) and (2.4), that the tractor con-

nection is conformally invariant on unweighted tensor powers of El  and preserves 

the tractor metric i.e. VgJK = 0. 
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2.2.5 Tractor curvature 

The tractor curvature, 	is defined by (VZV, - VV)UK = QIUL .  In a 

given scale, Q K can be written in block matrix form as ii L 

	

( 0 Clij 	0 

0 W i
k _rik 

) 

	

ji 	'-I ii 

00 	0 

It is pointed out in [BEGo] that a conformal manifold is locally equivalent to the 

flat model if and only if the tractor curvature vanishes. 

2.2.6 The D-operator 

Let A denote the Laplacian, VV 2 . The operator D1  .6 [w] -* £1[w - 1] is defined 

by 

—(L+wP)f 

D'f = (n + 2w - 2)Vzf 	 (2.7) 

w(n +2w - 2)f 

and is conformally invariant. This operator can be applied to conformally weighted 

sections of any tensor power of I,  by using the tractor connection and Li formed 

from the tractor connection, and remains invariant in this case. 

2.3 The Ambient Metric Construction 

In this section, we outline, briefly, the Fefferman-Graham ambient metric con-

struction, which is a useful tool in the study of conformal invariants (see [FGm1]). 

Versions of this construction also appear in the work of Thomas ([T]) and Schouten 

and Haantjes ([SH]). The idea is to associate to an n-dimensional conformal mani-

fold, an n+2-dimensional pseudo-Riemannian manifold, defined in terms of formal 

power series. It is useful to bear in mind the flat model for conformal geometry, 

which is the result of the construction in the flat case. 



Chapter 2. Conformal Geometry 
	

23 

2.3.1 The Ambient Space 

Let M be an n-dimensional manifold with conformal structure gij  taking values 

in the line bundle £ [2]. 

Definition 2.1 We denote the total space of the line bundle, [-1], by Q , with 

projection ir : Q -p M. The ambient space, M, on which we will define the 

ambient metric, is given by M = Q x I, where I = (-1, 1) C lit We identify Q 

with its image under the inclusion map p i—+  (p, 0), where p e Q. 

We fix a local section, 'r, of E[-1] or, equivalently, a metric, gij = -r 2 j , for M. Any 

other local section is of the form tr, where t E C°°(M). We use coordinates (t, 

for Q, where 	i = 1. . . n, is a coordinate system for M. On Q, we can define 

a tautological, symmetric 2-tensor go, defined for (x, t) e Q and X, Y E T(t) Q by 

_go  (X,Y) = t2g(7rX,7rY). 

Note that, since the vertical vector is orthogonal to everything, g0 is degenerate. 

On Q, for s > 0, we have dilations c5 : Q - Q, defined by J, (x, t) = (x, st), 

which gives us a notion of homogeneity. For example, as 6 * go  = S2go, we see that 

g0 is homogeneous of degree 2. The dilations 6 can be extended in a natural way 

to M, thus giving a notion of homogeneity on this space. 

2.3.2 The Ambient Metric 

The aim is to find a metric, , defined as a formal power series on M with signature 

(n + 1, 1), which is homogeneous of degree 2, has g0 as its restriction to Q, and 

is Ricci fiat. We expect this to be unique only up to formal diffeomorphisms of 

M which fix Q and commute with dilations. This is done locally, on a coordinate 

patch in M, and on a small neighbourhood of Q in M. The result of the analysis 

is the following theorem from [FGm1] 

Theorem 2.2 If n is odd, one can find such a metric § defined as a formal power 

series, unique up to diffeomorphisms as above. If g1 has a real analytic represen-

tative, this series converges and j actually exists in a neighbourhood of Q. 
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If n is even, there exist conformal structures for which no such solution exists. 

However, there exists a metric, defined as a formal power series solution, which is 

unique up to addition of order n/2 terms, and up to diffeomorphisms as above, for 

which all components of the Ricci tensor along Q vanish to order (n - 4)/2 and 

all components tangential to Q vanish to order (n - 2)/2. 	 D 

We have local coordinates (t, 	for Q such that g0 = t2g(x)dxdx'. As shown 

in [FGm1], we can choose a function, p, on M, homogeneous of degree 0, which 

vanishes on Q and we can extend to coordinates, (t, X2, p), for M, such that 

has the form 

tg 3 (x, p)dxdx + 2pdt 2  + 2tdtdp, 	 (2.8) 

where gjj (x, p) is defined as a formal power series with gjj (x, 0) = gjj (x). Of 

course, in even dimensions, the above holds only up to finite order. In terms of 

these coordinates, the vanishing of the Ricci curvature of j is given by 

1 kI 	(2—n) , 	1 kI 
Pgij - p9klglg!1 + P9 k1ij + 	2 	- g gklgij  + Ric(g) 3  = 0 	(2.9) 

where the prime denotes differentiation with respect to p, and Ric(g) 12  denotes the 

Ricci curvature operator in the x variables alone acting on gjj  (x, p) for fixed p. 

2.3.3 The Curvature of the Ambient Metric 

Let x0  = t and x = p. Fefferman and Graham found that the Riemann curvature 

tensor, ., of j has as components on Q, at (x, t) e Q 

• RIJKO = 0 

• Rikz = t 2 l4T2jkj 

• 1L
D  ijk, - b '-'kij 

.R 	------ 002300 - (n-4) B for n 4 

where W, C and B are calculated at x E M in terms of the representative, gjj , of 

the conformal structure, and other components are given by the usual symmetries 
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of the curvature tensor. When n = 4, the components 	are undetermined. 

Note that RiJKL = t2 ijKL, where Q is the tractor curvature. 

Let V denote the Levi-Civita connection on M. Note that, as a consequence 

of the Bianchi identity V[IRJK]LM and Ricci flatness, we have 

V'RIJKL = 0. 	 (2.10) 

Definition 2.3 We denote by X the vector field on M which is the infinitesimal 

generator of the dilation, 5, so 

Xf(p) = _f RP) 	for p e M, f E C°°(M) 
ds 	I (s=O) 

In the coordinates (t , xi,  p), X = t. For future use, we note that 

= .I.J, 	 (2.11) 

RIJKLX = 0, 	 (2.12) 

and that X'X 1  = 2t2p vanishes on Q. 

2.4 The Tractor Bundle and the Tangent Bundle 

of The Ambient Space 

It has been pointed out by Graham (see, for example, [BEGo]) that tractors are 

essentially tangent vectors to the ambient space, M, and that D1  is related to its 

Levi-Civita connection. We prove these facts here, as the proofs do not appear in 

the literature. 

Definition 2.4 Denote by MP(k) the sheaf of vector fields on M which are ho-

mogeneous of degree k, with tensor powers denoted by, for example, )4'(k). 

Proposition 2.5 There is a canonical isomorphism, 

k 

eIJ ... K[w + k] 	jIJ...K(w )I 
IQ 



Chapter 2. Conformal Geometry 	 26 

Proof. Firstly, we note that sections of £ [k] are equivalent to k-homogeneous 

functions on Q—if u(x) is a section of E[k], then tku(x)  is a homogeneous function 

on Q and vice versa. 

As seen earlier, given a metric, gij,  in the conformal class, one can take coor-

dinates (t, x, p) such that the ambient metric has the form (2.8). If, however, we 

take a conformally related metric 

jj = 

as our starting point, we calculate that the corresponding coordinates,  

are given by 	
= 11 1 t (1 - T2 p) +0(p2 ) 

= xz+pTz 	+0(p2 ) 	 (2.13) 

	

= fp 	 +0(p2 ) 

where T 2  = 1 VZft As a basis for TM, we use 

	

(eo , e, e) 	t 
 a a 	a

-) . 
	 (2.14) 

From the change of coordinates, (2.13), we see that 

tI = 	 +0(p) 

= '5F- 	 +0(p) 

	

'9 = Q2 a + 	- T2iI +o(). 

For U a vector field, homogeneous of degree 0, we see that the components of U 

with respect to the bases (eo , e2 , e (  .. ) and (e0 , e, ë) are homogeneous of degree 0 

and are related by 

U0 	Uo_TUi_T 2 U00 

= 	U'+TU°° 

(700 

Comparing this with our definition of the tractor bundle, we have shown that there 

is a canonical isomorphism 

M'(o)H 

The result follows by taking tensor products, together with the equivalence be- 

tween k-homogeneous functions on Q and sections of S [k]. 	 D 
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k 

Proposition 2.6 Let 	be a section of M j.K  (w - k). Using the coordinates, 

(t, 	p), for M and basis, (2.14), for TM, we have fJ .. . 1Q = tw_kfJ . .. , where 
fJ ... K is a section of LJ ... K[w] Then 

{(n + 2w - 2)V JJ...K - XIJ7J ... K} = D1f' 

Proof. Given § as in (2.8), one can calculate that the Levi-Civita connection has 

Christoffel symbols, F, given by 

	

100 	 0 	0 	0 
fK = 	5k 0 , 	F j 	0 	l 

	

29 	 (2.15)0 	(2.15) 

	

001 	 1 	0 	0 

0 o 
1 = ( 8 	F(x,p) 	1 gkI , 
I, 	 (2.16) 

	

0 pg — g3 	0 ) 

where 1T(x, p) denotes the Christoffel symbols of gjj (X, p) for fixed p. 

Define the tensor T1 '"" by 

rn J ... K. 	IJ ... K - 	J...K 	fJ jL...K 	fK jJ ... L 
Ij 	._ VIJ 	UIJ 	+IILJ 	+...+LILJ 

Since (X1 ) = t2 (2p 0 1) and fJ .. . K is a section of £L [w ], we see from (2.7) that 

we need to show 

{TQ ... 
'}IQ = w tw_cf" K 	 (2.18) 

{TJ ... K }I 	= 	
(2.19) 

	

{ (n + 2w - 2)T" - 	 = _tw_Jc( + wP)f 1 "' 	(2.20) 

where Vi  is the tractor connection, and A is the Laplacian formed from the tractor 

connection. To prove (2.18), from (2.15) we have 

{TJx}l = {4(JJ ... 
K )  + 	+... + KJJ ... L} 

= (w - k)tw_kfJ ... + tw_kfJ . ..  I + ... + t_kfJI 

k 
= 
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From (2.9) one finds that 

9 3 (x,0) = 2P, (z). 	 (2.21) 

Substituting in (2.16) we get 

o — Pij  0 
fK 	8k 1'k pk 

o —g 23  0 

which, by comparing with (2.6), proves (2.19). 

Finally, by calculating Lf, one finds that 

tc_ J alJ...K_(n +2w _2)TJ...K} 

is ( + wP)f" .. . ', thus completing the proof. 	 0 

2.5 Invariant Differential Operators 

2.5.1 The Methods of Wünsch and Gunther 

In this subsection, we introduce some notation, following the presentation of [Wu], 

along with some propositions on the behaviour of differential operators. The reader 

is referred to [Wu] and [GüWü] for further information and for the proofs of these 

propositions. 

Definition 2.7 Let D be the set of linear differential operators acting on some 

space of tensor fields of a certain type, T, whose coefficients are polynomials in 

gjj, g23  and the partial derivatives of gjj . 

Definition 2.8 We say an operator D(g) E D has conformal weight w if under 

the change of metric, 

= A2 g13 , 	A constant, 

D transforms according to 

D() = A°D(g). 
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Let (w) denote the subset of D consisting of those operators of conformal weight 

W. 

Definition 2.9 We say D(g) E '(w) is conformally invariant on 'T if there exists 

some w0  such that under a rescaling of the metric 

= 	 (2.22) 

for Q a smooth positive function, D transforms according to 

D()[1Zwo u] = w+woD(g)[u] , 	for all U E T. 

Proposition 2.10 Let D(g) e (w), then under the rescaling 

D()[°°u] = w+wo {D() + 	P(w, g, T)} [u], 	u e Y, 

where each Pk(wo, g, T) is homogeneous of degree k in T 2  and its derivatives, and 

T j  = l'Vft 

Wflnsch shows that to show conformal invariance, it is sufficient to consider in-

variance under infinitesimal transformations, giving the following: 

Proposition 2.11 D(g) E (w) is conformally invariant, for a particular w0 , if 

and only if 

Pi (wo ,g,T)[u] = 0, 	u E Y. 

Definition 2.12 Let 0 (w) denote those elements of 0 (w) for which Pk(wo, g, T), 

k = 1, .. . m, contain no derivatives of T i , and let D = U(w). 

Proposition 2.13 D(g) e D if and only if Pi (w o , g, T) has the form 

Pi (wo ,g,T) = TQ 1, 0 (g) 

Definition 2.14 From the above, we can define the operator, X 1. 0 , acting on 

operators in Z, by 

Pi (wo ,g,T) = TZ0D(g). 
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Example 2.15 Under change of scale, i7- i f = Vf+woTf, for functions of weight 

W O . Thus we have Pi (w o , g, T) = w 0 T, and so X,0  V2  = 

We will usually omit the dependence on wo  from the notation. Note that D(g) E 

(w) is conformally invariant if and only if D E t and VD = 0. 

Definition 2.16 Define the conformal covariant derivative, V, acting on elements 

of i' by 

V i D := V1D + PX3 D. 

Example 2.17 As 3 2 f = 0, we find Vc f = Vf. From example 2.15, we have 

XIJOZ = w 08, so that 	 = ( i + woP)f. 

Proposition 2.18 The operators defined above have the following properties 

T, V
C  

: tJ(w) -* tJ(w) 

X and Vc  i  are linear, obey a Leibniz rule and commute with contractions. 

Several other useful properties are given in [Wü]. The conformal covariant deriva-

tive is essentially a form of derivative which gives a simpler transformation law, 

enabling one to find conformally invariant differential operators. For example, on 

functions of weight w0 , 	= (n + 2w0 - 2)li, and so & is conformally invariant 

on functions of weight 1 - in. Also using these methods, Wünsch finds that 

	

(A) 
- 16 

Bi'&I 	 (2.23) 
n-4 

defines, for n =A 4, a conformally invariant differential operator on functions of 

conformal weight 3— in, with leading term &. See corollary 2.21 for an alternative 

proof. 

2.5.2 The Tractor D1-Operator and the Conformal Covari-

ant Derivative. 

From examples 2.15 and 2.17, we see that, when acting on conformally weighted 

functions, the operators '1 and I& occur as components of the D' operator, (2.7), 
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and that the forms of X follow from the change of scale formula, (2.5). More 

generally, we have the following: 

Proposition 2.19 Let f be a function of conformal weight w. Then 

k 

(_i)k()kf  is the 00.. .0-component of D'D. . 

7p ••  . & kf 	is a multiple of the ij... k-component of D'D. . . DKf up to 

addition of trace terms. 

One can prove this by induction. The result is true for k - 1, as noted above. The 

inductive step is simply a matter of following the definitions through. For example, 

one finds X 1  ()k by looking at the transformation of D'D. . . DKf under change 

of scale. It is then easy to see that (_l)k1(i)1cf  is the 0. . .0-component of 

V 1 D'D. . . DKI ,  where V 1  is the tractor connection. 	 D 

2.6 Powers of the Laplacian and the Tractor D-

operator 

In 3.13, we will outline the method of [EGm] for finding, for fiat conformal geome-

try, a conformally invariant differential operator on functions of conformal weight 

- n + k with the k-th power of the Laplacian as the leading order term. 

In [GmJMS], it is shown that one find curved analogues of powers of the 

Laplacian by applying similar methods on the ambient metric construction. As 

the ambient metric is only defined up to finite order in even dimensions, this 

gives a curved analogue of & for k e 11, 2,. . .} in odd dimensions, but only for 

1 < k < in in even dimensions. This result seems likely to be sharp—it is shown 

in [Gm] that that, for n = 4, there is no conformally invariant linear differential 

operator with leading term &. 
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The main result of this section is theorem 2.22, in which we give a simple 

formula in terms of the tractor D-operator for curved analogues of z with k E 

11,2 ... .} for n odd, and 1 < k< in - 1 for n even. 

2.6.1 The Flat Case 

Recall that, for a particular choice of conformal scale, the D-operator, D' : e[w] -+ 
e'[w - 1], is given by 

—(A - wP)f 

D'f = (n + 2w - 2)Vf 	 (2.24) 

w(n+2w— 2)f 

and similarly for tensor powers of £'[w], by replacing the Levi-Civita connection 

with the tractor connection. 

If w = —n + 1, then D'f = —X'(z + wP)f, and (i + wP)f, being the 

projecting part, must be conformally invariant. 

k-i 

If  has weight w = —n+k, then, as DJ .. .  

we see that 

D'D. . . DKf = -X' (L + (1- n) F) D. . . DKf .  

It is easy to show that, in the flat case, D'D. . . DKf is symmetric over all indices 

(see also proposition 2.20), and so DI D . . . DKI takes the form x'x. . . X'b 

for some 0 which, being the projecting part, must be conformally invariant. From 

the formulae (2.24) and (2.6), one can see that has leading term (_l)/cLf,  and 

hence we have recovered the conformally invariant powers of the Laplacian. In 

terms of a flat metric, is clearly just (_l)kLf. 

2.6.2 Curved Case 

As is noted in [BEGo], one can obtain curved analogues of A and i 2  in the same 

way. 
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For f of weight —n + 1, the projecting part of D'f is —(i. + (1 - n)P)f, 

which gives us the conformally invariant Laplacian. Again, D'Df is symmetric, 

and so for f of weight —n+2, the projecting part of D'Df is the 00-component, 

which turns out to be a curved analogue of the square of the Laplacian. 

However, DIDJDKI  is not symmetric, and so one cannot simply set w 

—n + 3 and read off the projecting part as the analogue of L 3 . In fact, we have 

the following: 

Proposition 2.20 For TABG'  a section of eAB ... 9w ] and n 4, 

(DID - DjDj)TC - 

rr' KB...0 (n +2w - 4)(n +2w - 2)(f?IJA K1 	+ + f?jjc  T AB ... K) 

+2X1 (f?JKALDKTLB...0  + ... +RJKLDT) 

—2X (f? ,K 
 A 
LD  K  T  LB ... C +... + RIKLDT) 

where R is the tractor form of the restriction to Q of the curvature tensor of the 

ambient metric (see 2.3.3). 

Proof. Either by direct calculation, or one can use the correspondence given in 

proposition 2.6, as follows. We abuse notation by omitting the restrictions to Q, 

and omit the powers of t which should appear. Using equation (2.11) we obtain 

= ((n +2w - 4)V1 - x1 ) ((n +2w - 2)V - xz) TAB 

= (n +2w - 4)(n +2w - 2) Vj V 1T" + X1X 2T" 

-x1  ((n +2w - 2)VT ... " - 2V JLTA 13 c) 

—(n + 2w - 4)XjV1T 	- (n + 2w - 4)ijTC (2.25) 

From equation (2.10), and since RIJKL is trace free, we find 

= iKJ1KTAB ... C  + KJALTLB ... C  + ... + RKJ LT 	, (2.26) 

Vj TC = VKVJVT 	+ RJKLT 	+... + IJK C 
L T 	. (2.27) 
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From equations (2.25), (2.26) and (2.27), we see that 

(D1D - DjDj)T 9 c = 

(n +2w - 4)(n +2w - 2) (f?IJAK 
 T 

 KB ... C + ... + IJcKTAB ... K) 

+2(n +2w - 2)Xj (& K  KTLB ... C + .. . + RJKLVT) 

—2(n +2w - 2)X (f?IKA L KTLB...0  +... + RIKLVT) 

and the result follows, from equation (2.12) and proposition 2.6. 	 0 

Corollary 2.21 For f weight —n + 3, and n 54 4, one sees that 

DIDJDKI + 2X IRJLMI DLDMf 

is totally symmetric. Thus the only non-zero component is the 000-component, 

which gives a curved analogue of L 3 . By proposition 2.19, we see that this is the 

operator (2.23) of Wünsch. 

There is another way in which the tractor calculus can be used to calculate curved 

analogues of the Laplacian: 

Theorem 2.22 Let f be a section of E[— in+ k]. Then 

Dc. . . DB(LI - (n - 2)P)D... DCf = (k - 1)!(n - 4)(n - 6) ... (n - 2k) /.f 
k—i 

+lower order terms, 	 (2.28) 

where the Laplacian on the left hand side is formed from the tractor connection. 

Hence for n V 14, 6,. . . , 2k}, we have a formula for a curved analogue of the k-th 

power of the Laplacian. 

Proof. As D ID' ... DCI = _XA(, - (n - 2)P)DB... DCI) ,  we can define a 

section, TB.',  of eB ... C[_n - 1] by 

TB = ( - (n - 2)P) DB ...  DCI.  

Now TB.  has as components 

' 	q 	r 

T°° c ... doo...00 	p+q+r=k-1. 	 (2.29) 
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It is easy to see from (2.7), that the maximum number of derivatives off occurring 

in the expression for such a component is 2p + q + 2. 

However, we know that in the flat case, the only non-zero component is the 

0. . . 0-component, and thus for q + ,r 0 0, the highest derivative occurring in such 

a component of T" .0  involves a curvature term, which implies that number of 

derivatives is strictly less than 2p + q + 2, unless q + r = 0. 

For a section, UK = (a ILA ;  p), of EK[tiiJ,  one can calculate 

DK UK 	 1)Pp 

From this, we see that the maximum number of derivatives acting on the compo-

nent (2.29) in the expression for D. . . DBTB ... C  is q + 2r. The only term with 2k 

derivatives of f therefore comes from the T°" °  component and soA k  f appears in 

the expression Dc.. . DB(/.X - (n - 2)P)DB . Dcf with coefficient 

-n/2-k+1 

fJ (n+2zl)(n+th-1) 
i=-n/2-1 

and no higher order terms appear. 	 D 



Chapter 3 

Parabolic Invariant Theory for Conformal 

Geometry 

The first section of this chapter reviews Weyl's invariant theory for the orthogonal 

groups (see [We]), together with some extensions of this, from [BEGm]. The 

second section gives a rough idea of the plan for attacking an invariant theory 

problem in the conformal case. The final section describes two invariant theory 

problems which were studied in [BEGm]. 

First, some notation. Suppose we have a vector space, V and its dual V*  There 

is an invariant pairing of vectors and covectors given by contraction—if u i e V and 

V3  E V, we can form the scalar u2v.  Similarly, if we have, for example, tensors 

U and Vijk1,  we can form tensors such as 

U23  VjkL 	and 	u ivijk 

Such contractions may, of course, involve more than two tensors. If the result 

of such a contraction is a scalar, as in the last case above, then we call this a 

complete contraction otherwise, a partial contraction. We will denote, for example, 

a complete contraction formed from the tensors u and v, by 

contr(u (9 v), 

Note that there may be many such contractions. 

36 
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3.1 Weyl's Orthogonal Invariant Theory 

Let g be a positive-definite, symmetric quadratic form on R', and let 0(g) and 

S0(g) denote the corresponding orthogonal and special orthogonal groups, respec- 

tively. Let € EA' R7 denote the volume form on Rn corresponding to g, and let 

denote the dual volume form. We denote the m-th symmetric tensor product 

of a vector space, V, by 0m  V and we denote by O V the subspace consisting 

of symmetric tensors which are trace-free with respect to g. 

3.1.1 Invariants of Vectors 

Let (u('), 	, u(" ) ) be a collection of vectors in W. We denote by 	. u(s )  the 

inner product given by g, and denote by U(Z 2 ) . . . u()  I a complete contraction 

of c with u(ui),. .. , u(" )  in the obvious way. The groups SO (g) and 0(g) act on 

vectors in 1W in the usual way. 

Definition 3.1 An S0(g)-invariant is a polynomial in the components of the 

which is invariant under the 80(g)-action. Similarly for 0(g)-invariants. 

As 0(g) and 80(g) act linearly, any invariant is the sum of invariant homogeneous 

parts, so we need only consider homogeneous polynomials. We use d to denote 

the total homogeneity degree. 

3.1.2 Weyl's First Main Theorem 

We would like a list of generators for the algebra of invariants. This is given by 

'Weyl's first main theorem' (see [We]) 

Theorem 3.2 A set of generators for the 0(g)-invariants is given by 

(2) . 	1 <i<j <m. 
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Any S0(g) invariant, I, can be expressed uniquely inform I = ' odd + 'even, where 

'odd changes sign under change of orientation while 'even  is invariant. The gener-

ators for the 80(g) invariants are given by 

and 	u') U 2)  . . .u 	L 
1<i<j<m 

1<i1 <i2 < ... < i<m. 

Generators of the first type are even invariants, while those of the second type are 

odd. 	 D 

Any complete contraction containing two occurrences of e can always be rewritten 

in terms of g's, as 

((') . 	 (3 ' ) ) 	. . . 	((21) . 

u" 	uU) . . . u(i) I = 	 (3.1) 

(u()  . u(3 ')) 	. . . 	(v ()  . 

Thus we can assume e appears only in odd invariants, with exactly one appearance 

in each term in this case. 

3.1.3 Weyl's Second Main Theorem 

Weyl's second main theorem ( theorem 3.3) tells us the relationships between the 

invariants. Here, we only consider the 0(g)-invariants. We need to distinguish 

between a polynomial as a formal expression in the variables (() • ()) and as a 

polynomial on components of vectors in Rz  obtained on substitution of the 0. 

For example, an expression such as (u(') . u(1))(u(2) . u(s)) - (u(1) . u(2)) 2  does not 

vanish identically, i.e. is not the zero polynomial in the u u 's, but, for n = 1, 

vanishes on substitution of any vectors (') and 

Theorem 3.3 Those polynomials in the (() . (3) ) which vanish on substitution 

form an ideal, generated by polynomials of the form 

I (U(ul) . 	. • • 	(U(ul) . u(jn+i)) 	I 
1<i1 <i2 < ... <i 1 <m 

(u( '+ )  U(i' ) ) . • . (u(+') . 
	 1j1 <j2< ... <j 1 m 

U 
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Corollary 3.4 

• If m < n, then any polynomial in the (U() (3)) which vanishes on substitu-

tion vanishes identically. 

• If m = n + 1, then any polynomial in the (u(') . (3) ) which vanishes on 

	

substitution and has degree 1 in at least one of the 	vanishes identically. 

Proof. If rn < n, then there are no generators of the above form. If m = n + 1, 

the only generator of the relations is of degree 2 in each 	 0 

3.1.4 Invariants of Tensors 

The above results can be generalized to a list, (u('),.. . , U() ), where each () e 
®k1 lRn* for some k2 . Invariants are defined in the same way and Weyl's theory 

gives us the following: 

Theorem 3.5 Even and odd SO(g) invariants can be written as linear combina-

tions of complete contractions of the forms 

contr (g' ® . . . ® g 1  ® U1) ® ... ® u(id)) 	 (3.2) 

and 	contr (E ® g' ® ... ® g' ® 1) ® 	(& U(id) 
) 	(3.3) 

respectively. Any O(g) invariant can be written as a linear combination of complete 

contractions of the form (3.2) 	 0 

For more details of the following, including a proof of theorem 3.6, see appendices 

A and B of [BEGm]. We now suppose that each 	has symmetry given by a 

Young tableaux with si  rows, and that, for some K, the tensors 	. . , u(' )  are 

completely trace-free. We say that a linear combination of partial contractions is 

allowable if it contains no internal contractions of a completely trace free tensor, 

and vanishes formally if it vanishes identically or is forced to vanish by the Young 

symmetries of the (for a precise statement of this last definition, see [BEGm], 

pp.543-545). For example, if 	is a rank-1 tensor and 	is anti-symmetric, 

rank-2, then uuu jg°g' vanishes formally. 
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Theorem 3.6 Let ((1) ,..  . , U) be a list of tensors as above. Let I be a linear 

combination of allowable formal partial contractions of g and the 	of degree d2  

in 	and formally taking values in the space of symmetric rn-tensors. Then if I 

vanishes on substitution in dimension n and 

>djsj<n-1  

then I vanishes formally. 

3.2 Parabolic Invariant Theory 

3.2.1 Preliminaries 

Let W = R 2  with coordinates (2.1), let F EA n+2 
  
W denote the standard volume 

form on W, and define e0 , G, P and Q as in section 2.1. We define 

E(k) := {jets at e0  of functions homogeneous of degree k on W}, 

.'F(k) := {jets at e0  of functions homogeneous of degree k on Q}. 

Similarly, we denote, for example, by E' the space of jets at e0  of functions homo-

geneous of degree 0 on W taking values in W. C acts on the space of homogeneous 

functions by (h. f)(x) = f(h'x), for f a homogeneous function and h e G. Since 

P preserves Q and the ray through e0 , there is an induced action of P on E(k) 

and .F(k). The P-action is however, somewhat complicated. We define 0k  to be 

the one dimensional representation of P where the element, 

). 	r3 	t 

0 	s 	eP, 

0 0 )-' 

acts by )k  There is a P-module homomorphism Eval: 6(k) - a, given by 

evaluation at e0 . Regarding the coordinate functions X' as an element of 6'(1), 

we define e e W 0 ai by the evaluation at e0  of X', which we write e =Eval(X'). 

By regarding differential operators as acting on formal power series, we can apply 

them to spaces of jets. 
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3.2.2 Invariant Theory 

Let 'T be a P-module given by the space of jets of some class of functions taking 

values in W* ,  which vanish on any contraction with X'. For example, these 

functions may have Young symmetry, and be in the kernel of some conformally 

invariant differential operators. The P-action on a scalar valued function, f is 

given by (p . f)(x) = f(p 1 x), for p E P, with the obvious extension of this to 

tensor valued functions. 

Definition 3.7 An invariant of Y is a P-equivariant, polynomial map I : T -4 aq  

for some q. 

Since P acts by linear transformations, any invariant is the sum of invariant ho-

mogeneous parts, thus it suffices to consider only homogeneous invariants. We will 

denote by d the homogeneity degree of any invariant under consideration. 

The first step in analysing the invariants of the module, Y, is to obtain a 

suitable algebraic description of the modules. Given a function, Iii K, we can 

define a list of tensors, TM, for I = 0, 1, 2,..., by 

T 'jK AB...0 = Eval (ÔA0B... ôcfIJ ... K), 
k 	I 

where we use the comma to seperate off the first k indices. We thus hope to obtain 

= { (T ° , T",...) such that the T 1  satisfy some set of conditions. } 

Among these conditions, we suppose that, for I = 1, 2,..., any contraction of e 

with T 1  can be expressed in terms of T 1- ', and any contraction of e with T °  

vanishes (the linking conditions). 

As the P-action on elements of Y is given by the usual action of P on tensors, 

one can construct invariants by taking complete contractions involving the tensors 

, ', e, e*  and the TM. (We use, for example, e*  to denote the covector with 

coordinates e = jje'). Any two occurrences of F can be rewritten in terms of 

's and any e contracted into one of the T's can be removed using the linking 

conditions, so we need only consider contractions containing at most one F or 
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Fo  := e*J E and no other occurrences of e's, so we are left with complete contractions 

of the form 
contr (T( 1 1) 0 

. . . T() ® -' 0 ... 0 

contr( (9 T (1)  ® . . . 
	 ® 	® 	(& 

_1) 	 (3.4) 

contr( o  ® T( 11 ) ® . . . T(') ® 	® 

Definition 3.8 A Weyl invariant is an invariant which can be written as the linear 

combination of complete contractions of the above form, where each contraction 

takes values in the same aq . Any invariant which is not Weyl, is said to be an 

exceptional invariant. 

The aim is to find the extent to which all invariants are Weyl invariants. In 

[BEGm], two methods are given by which we can express an invariant as a Weyl 

invariant, one which can be used for invariants of high homogeneity degree, and 

one for invariants of low degree. In either case, we first need to describe our 

invariant in an intermediate form. 

Definition 3.9 We say that an invariant, I, of 'T is a weak Weyl invariant if there 

exists m E N and a map 

C: Y -+ QW®am+q , 

which can be written as a linear combination of partial contractions of the tensors 

e, 	and ZO , such that 

~M'  ~~ 
For high degree invariants, (see, by way of illustration, subsection 5.3.1), one 

constructs P-equivariant maps, C : Y -+ F'"q + m) and I : Y -+ F(q) with 

Eval(C) = C, Eval(I) = I and 

IJ ... K = 	. x'I. 

Then one hopes to constrain 'in so that, for large enough d, one can apply a version 

of the tractor D-operator to both sides of the above equation and evaluate at e0  

to realise I as a Weyl invariant. 
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For low degree invariants, (see, for example, theorem 5.20), one hopes to be 

able to use theorem 3.6 to "cancel" e's from C to leave I as a Weyl invariant. 

3.3 The modules 71k and IC 

In this section, we describe the modules, Wk  and K, for which the invariant theory 

is studied in [BEGm] and state the results. 

3.3.1 Wk 

Let k E Z, with k> 0. Define 

7-1(k) := If E(k) : Lf = 01. 

Since P preserves the metric, there is an induced P-action on 7-1(k). We say that 

a function satisfying If = 0 is harmonic. We regard Q W' as the homogeneous 

degree k, harmonic polynomials on W, giving an inclusion O Wt -* 7-1(k). We 

define the P-module Wk,  for k > 0, by 

9-Ik 	7t(k)/OW*, 

i.e. the space of those elements of 7-1(k) which vanish to order k + 1. As P-

modules, 9-1(k) 7-1, O W. It is shown in [EGm] that the invariant theory of 

this module is related to the invariant theory of homogeneous functions on Q, or 

equivalently, conformally weighted functions on S 

Theorem 3.10 If n is odd then F(k) 7-1(k) as P-modules. 

There is a family of conformally invariant linear differential operators acting on 

£[k] (see p.  19), which, in the coordinates above, are just the trace-free parts of 

iterated gradients. For a function, u, on ]l, denote by V 1 u the tensor with 

components given by 19a. . . ad u, and denote the trace free part (with respect to 

g13 ) by Vu. Then 	is the formula for a conformally invariant differential 
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operator on .6 [k], and thus on F(k). (In another conformal scale, the formula will 

also contain lower order terms.) 

For k > 0, it turns out that the sub-module kerV' of F(k) is isomorphic 

(as a P-module) to O W*, thus, in odd dimensions, 

F(k)/kerV (k+1)  
0  

Proof of theorem 3.10. We reproduce the proof of [EGm], as this contains several 

ideas which we will need later. 

Let f be a function, homogeneous of degree k on Q, and let fo  be an arbitrary 

homogeneous extension to W. The general extension of f to W is of the form 

I = fo + Qh0 , where Q = X'X 1  is the defining function of the null cone, Q, and 

h0  is homogeneous of degree k - 2. The aim is to find a unique extension, f, of  f, 

which satisfies Af = 0. 

Let E = X'51  denote the Euler field, so that for a homogeneous degree k 

function, f, we have Ef = kf. It is a simple calculation to show that [, Q] = 

2(n+2E+2). Now 

Af = zf 0 +AQh0 ) 

= 2fo +2(n+2E+2)ho +Qtho . 

We see that, as h0  is homogeneous, degree k-2, for (n+2k-2) $ 0, h0  is uniquely 

defined on Q, by 
- 	-Lfo 

hoIQ— 2(n+2k-2) 

However, if (ii + 2k - 2) = 0, there is an obstruction given by 2f0 . 

We continue the proof by induction. Suppose we have found an extension fm_i 

of f such that fm-i = 0 mod Qmi.  The general such extension is of the form 

fm = fm-i + Qmh m_ i , where hm_i is homogeneous of degree k - 2m. Using the 

formula [ii, Qm] = 2mQm (n + 2E + 2m), (see corollary 5.3), we find 

Af m  = Lfm_i + 2mQm(n  + 2E + 2m)hm i + QmL1hm1. 
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So for (n + 2k - 2m) 0, hm _i is uniquely determined on Q by 

hm
- 

11Q 	
fm-i 

 2m(n +2k - 2m)Qm-] 

In this way, for n odd, we can find a unique extension, 1, of  f to W, defined as a 

formal power series off Q, for which Lf = 0. As the Taylor expansion of f at e0  

is determined by that of f, we have an induced map, F(k) -~ 

This map is injective, since if f vanishes to infinite order at e0 , then by restric-

tion to Q, so does f. The map is also surjective, since any such f is the extension 

of its restriction to Q, as the extension is unique. Finally, since the P-action 

clearly commutes with taking the extension, this map is a P-module isomorphism. 

U 

Remark 3.11 Note that the bulk of this proof can be written in terms of the lie 

algebra sL(2). If we write 

h=E+ 2 , 

then we find that x, y and h satisfy 

[x,y]=h, 	[h,x]=2x, 	[h,yJ=-2y 

i.e. they satisfy the commutator relations of the standard generators of s1(2), and 

the argument can be written in terms of these commutators. 

Remark 3.12 In the first step of the proof, we found an extension of f, unique 

up to addition of second order terms, given by 

fi=fo— 	
QLfo 

2(n+2k-2) 
mod Q2. 

We define the operator D1  : F(s) -  F, (s - 1) by 

D1f = (n+2s-2)8Jfl IQ 

=  ((n +2s - 2),9Ifo - XIAf.) J,'  

Clearly, this definition is independent of the choice of extension, fo.  The defi-

nition can also be extended to tensor valued functions to give an operator D1  
,PAB 	F4BE(s 

- 1). This operator is the action on jets of the tractor D1  

operator for the flat model. 
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Remark 3.13 As in [EGm], we can recover the conformally invariant powers of 

the Laplacian as the obstruction to finding the harmonic extension as follows. If 

we change to coordinates 

xz 	 Q 
X 0 	 2(XO)2 1  tX 0 , 

so that 	

(  x 

	

=o, 	t 

\ 	

( 1

Xi 

X 2 
 

xoo 	 p --- 

(cf. the coordinates of (2.2)) we can again write a homogeneous degree k function, 

f, on Q as f = tcu (x ), where u represents a function of conformal weight k in 

a given conformal scale. A general extension of f is of the form fo = tku0(x, p), 

where u0 (x, 0) = u(x). As before, we look at the problem of finding a harmonic 

extension for f. In terms of these coordinates, 

= tk_2 {(n + 2k - 2)u - 2pug + u0 } 	 (3.5) 

where prirhe denotes differentiation with respect to p. Let fi = tJcui (x, p) denote 

our first approximation. Then, using equation (2.21), we see that the condition 

LflIQ 0, for (n+ 2k —2) 0 0, uniquely determines u(x,p) on Q by 

u(x,p)I Q  = 	
—Lu 

(n+2k— 2)' 

but if k = 1 - , the obstruction is t-1-22 u. When k rn— , by differentiating 

equation (3.5) m - 1 times with respect to p, and restricting to Q, the obstruction 

is found, inductively, to be t_'— A m u. Clearly, this construction gives conformally 

invariant differential operators from e[m - to £[—m - ] which, in terms of 

our chosen conformal scale, are simply the powers of the Laplacian. If we change 

conformal scale, lower order terms appear in the formulae. 0 

3.3.2 K: 

We define an invariant, I, of a conformal structure, [g],  of weight w, to be a 

polynomial in the variables V 1 g13  and (detg) 1  such that I is a Riemannian 
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invariant (i.e. does not depend on the choice of coordinate system used to represent 

and differentiate g) which satisfies I(cZ 2 g) = cZ 1(g) , for smooth positive functions, 

Q. 

We can construct such invariants using the ambient metric construction. De-

note by ,(1)u  the tensor with components given by VA.. . VD u, where V denotes 

the Levi-Civita connection of the ambient metric, . To every contraction of the 

form 

contr(V 1 ' ® . . . ® 

(up to the order of obstruction) is associated an invariant of the conformal struc-

ture obtained by restricting to the metric bundle Q and pulling back to M by 

some choice of representative, g, of the conformal structure. In [FGm1], Feffer-

man and Graham conjecture that every invariant below the order of obstruction 

is a linear combination of invariants of this type. 

In [FGm2], it is shown, using a "conformal normal form", that any invariant 

can be expressed as a polynomial in the components of R and its derivatives. One 

can Taylor expand a representative of the conformal structure in Riemann normal 

coordinates at some fixed point, and normalise by demanding that to all orders of 

covariant derivative, V( a . . . V bRj3 ) = 0. There is a P-action on the space of such 

infinite order conformal structures, and the conformally equivalent normal forms 

are the orbits of this action. 

The map from such normalised structures to components of covariant deriva-

tives of R turns out to be a bijection with polynomial inverse. The P-action on 

the covariant derivatives of R is then a rescaling of the usual action of P on tensor 

powers of jn+2,  and the problem is reduced to studying the invariant polynomials 

on this space. 

The invariant theory for this problem follows from that for the following lin-

earised problem: in terms of the flat model, we define K to be the space of jets at 

e0  of functions, f, homogeneous of degree -2 on W, taking values in W* such 
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that f is trace free with respect to , and 

IIJKL = f(IJJ[KL], 

f[IJK]L = 0, 	
(3.6) 

X'fIJKL = 01  

'9[IIJK]LM = 0. 

One can easily show that a function satisfying the above conditions also satisfies 

ô'IIJKL = 0 	and 	&fIJKL = 0. 	 (3.7) 

3.3.3 Results for Wk  and K 

	

Denote by 	for 1 > 0, the submodule of (&1+4 W* consisting of totally trace- 

free tensors with the symmetries 

TIJKL,AB ... D = T[IJ][KL},(AB ... D), 

T[IJKJL,AB ... D = 0, 

TIJ[KL,A}B ... D = 0, 

where the comma is used to separate the first four indices. W 1  is the irreducible 

representation of G with the Young diagram 

....----. 

In [BEGm] it is shown that, as P-modules, 

?1k 

- I (T 1) , T( 2),...) : T 1  E Q Wt ® ak..z, 	

} 
- 	eiT 1 ' = (k - 1)T( 1), for I > k, eJT' = 0 

and that 

	

K 	
(1) 

L (0) = 
and for 1 > 0, e 1 	 = —(I + 1)T IJKL,AB...D 	 K (A  B D) } 

	

= { 

(T( 0) , TM 	: T 1  E 	0 a 12 , e TJJKL  0, 
Lrri(L+l) 

For the module, K, it follows that we also have the linking condition 

e AT 	 - (l+l) 	—(I + 2)T(') for I > 0. IJKL,AB ... D - 	 IJKL,B ... D 

The result of the invariant theory for Wk  and K is the following theorem from 

[BEGm]. 



Chapter 3. Parabolic Invariant Theory for Conformal Geometry 	 49 

Theorem 3.14 Let dT denote n for 71k and n/2 for IC. Then 

• Every invariant is a weak Weyl invariant. 

• Every even invariant is a Weyl invariant. 

• There are no odd invariants of degree d < d-r. 

Every odd invariant of degree dT is exceptional. 

Every odd invariant of degree d> dT is a Weyl invariant. 	 El 

In [BGo], a set of generators for the exceptional invariants of Wk and IC are given. 

For an illustration of the methods used, see 5.3.3. 



Chapter 4 

Conformal invariants of curves 

Let x(t) be a curve in S.  For fixed c, one can consider the jet of x(t) at t = c. 

In this chapter we attempt to list the polynomials (with real coefficients) in the 

components of such a jet which are conformally invariant. Since no such invari-

ant polynomial can involve components of the 0-jet, we need only consider those 

conformal transformations fixing x(c). We will use the flat model for conformal 

geometry and the notation of section 2.1. We can, without loss of generality, con-

sider x(t) in Stm such that x(0) = [eo], under the action of the subgroup P of G 

which fixes [c o] and we look for the polynomials in the jet of x(t) at t = 0 which 

simply rescale under the P-action. 

4.1 Preliminaries 

Let x(t) be a curve in S', with x(0) = [eo]. Using coordinates 1R' -* S, 

1 

12 

the set of jets of such curves is isomorphic to 

J= {(x 1 ,x2  .... ) : Xr E 1R7} 	 (4.1) 

the isomorphism being given by x i =f.x(t)Ito 

50 
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The P-action on S is induced from the usual P-action on 	as follows 
A r3 	c 

Let p = 0 mt 3  S 1 	E P. Then 

0. 0 	)c' 

[LA

rj c 

 ) 

(1 	11 	1 
m' 	? 

	

x-x2 	I I 

	

0 MS 	

= I 	A+rjxJ_cx2 	I I 
Il 

[ 0 	0 	A' 	1x2 	
x 2 

 2A(A+rjxi_cx2) J j 

So we see that 
m 1  .x - 1x2 s' 

(p.x)2 =  

A+ rjvj 	cx 

when this exists. The P-action on the jet at t = 0 is obviously quite complicated, 

being non-linear in the components of the Xr (one sees that this action is, in fact, 

polynomial in the components of the Xr), but the action of the Levi factor, L, is 

reasonably straightforward, and is given by 

A0 0 

	

o m 	0 	(x,,x2  .... ) = C'mx,,A'mx2,. . 

o 0 A' 

Due to the complicated nature of the P-action on J, the only invariants that 

we can easily find are polynomials in x 1  x 1 . Various powers of this invariant turn 

up regularly in what follows, so we define u = (x1 X1)112  The next section gives 

us an alternative description of J which will make the construction of invariants 

easier. 

4.2 Isomorphism Theorem 

Definition 4.1 Let x(t) be a curve in S. A lifting of x(t) is a curve X(t) in Q 

such that [X(t)] = x(t). 

Proposition 4.2 Let x(t) be a curve in S' with x(0) = [e oJ, defined on some 

neighbourhood of 0. If ±(t) 0 then there exists a unique lifting, X(t), satisfying 
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X(t) X(t) = 1. It is given in coordinates by 

1 

XI(t) = (±(t) ±(t))1/2 	X i ( t) 	 (4.2) 

1x 2 (t) 

We will refer to this lifting as the preferred lifting. 	 U 

We can regard the jet of this preferred lifting as being an element of the set, 

{(X0 , XI , X2  .... ) : X3  E 1Rfl 2 }, by setting Xr' = X'(t)It=o. One can easily 

check that, for such a jet, the following hold: 

X0  = ue0 , X 0  . Xi  = 0, X0  . X2  = — 1, X0  . X3  = 0, 
(4.3) 

xi .x1 =1, x1 .x2 =0 

for some u> 0, and for k = 1,2,3,... 

k (k— 	
. X + _ = 0 and 

k (k 1)
= 0 	(4.4) 

Definition 4.3 Let J0  = {(x 1 ,x 2) x 3 , ... ) e J: x, = 0}, let 

J = {(X0 ,X1 ,X2  .... ) : X,. e R712, and equations (4.3) and (4.4) are satisfied}, 

and let q: J \ J0  -+ J be the map on jets induced by the construction above. 

Note that J \ Jo  and J  are not P-modules, as they are not vector spaces. The 

main result of this section is the following 

Theorem 4.4 The map 

0: J \ Jo  -4 J 

is a bijection and the induced P-action on J  is given by 

p. (X0 , Xi,.. 
.) 

= (p X0 ,p. Xi ,.. 

where p E P, (X0 , X1 ,...) E J and the action on the right hand side is the usual 

action of P on R2. 
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Proof. We prove the last part first. For a curve, x(t), with lifting X(t), it is clear 

that, for p E P acting on n+2  in the usual way, p . X) (t) is a lifting of (p . x) (t). 

Since this lifting has the required properties, it must be the preferred lifting of 

(p x) (t), and the action on .7  follows. 

Suppose we have a curve, x(t), such that x(0) = [e0 ] and ±(0) 	0. In coor- 

dinates, let a4 = f . x(t)I 0  for r = 1,2,..., and let f(t) 	(±(t) i(t))'/ 2 . We 

define X'(t) as before and let Xr' ='(t)f_0. From the definition, we see that 

Xr° - --f(t)I 0  and from this we get - dtr 

d' X = _(f xi)  l 
t=o 

dtr I  
r 

 8  d  = 	(r (_i) 
(dr-s 

dtr- s f) 
s1 	 L=0 s) 

r-1 
= u1x i+ 	xX° 	for r = 1,2 	 (4.5) S r—s 

S=1 (r) 

Or alternatively, we can turn this around, so that if we are given (o  X 1 ,...) EJ, 

we have 

X T  = f,(i 
- 	(:)_) 	

(4.6) 
:  

for r = 1, 2,..., and where ü = 

We have already seen that ImqS C J. From (4.6) one sees that 0 is injective, so 

to prove that Imq5 = .7 it is sufficient to prove that q5: J \ J0  —* .7 is a surjection. 

Now suppose we are given (o  X1 ,...) E J. Since equations (4.3) are satisfied, 

fCol  = ü for some ü > 0, so we can use equation (4.6) to define (x 1 , x2  .... ). Let 

0(x1) x 2 ,...) = (X0 , X 1 ,...) e 7. We use equations (4.3), (4.4), (4.5) and (4.6) to 

show that (X0 , X1 ,...) = (X0 , X1 ,...) and hence that 0 is surjective. 

Our proof of this is by induction. We will only prove the general step, although 

we list the features of the start of the induction, some of which will be needed for 

the general argument. When we refer to one of equations (4.3) in the following 

list, we will mean that the result on the right hand side follows from the fact that 
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both (X0 , X1 ,...) and (go, X1,...) satisfy this equation. 

X0  = u 1 e0  

xo .x1 =o 	 = 
X1  X1  = 1 with (4.6), (4.5) = 

xo .x2 =-1 	 = 

X1  X2  = 0 with (4.6), (4.5) = 

xo .x3 =0 	 = 

Yi 
0 

_iY00 00 - 	0' 	0 
_ - 	0 

x ,o =x?°=o 

XOO  =8=u' 

and X =X 
Yoo 

-"-2 
- 	- 

-'-2 	U 

X0 =x 

and X X21  

Yoo - j:;- oo - I3 	- 

The proof of these is very similar to the general step. As our inductive hypothesis, 

we assume that for k > 3 we have the following: 

X,O =X,° for r=1,2,...,k-2, 

XIZ =X for r=1,2,...,k-1, 

and X,?° =X'° for r=1,2,...,k. 

Under this hypothesis, it follows from equations (4.5) and (4.6), together with the 

above results, that 

X = X + ukX(X°_1 - 	 (4.7) 

Then from (4.7), the above results and our inductive hypothesis, one finds that 

X 1  Xk 	= X1  X, + ku(X_1 - 

X2  . Xk_1 = 	Xkl - u(Xk°_l - 
and 	XS•Xk_S+1 =XS Xk_ s f1 	 for s=3,...,k-2. 

When we substitute these into 	()X 5  . Xk_ 8+1 = 0 we find that this gives 

: ( I 
2) 	

Xks+l + u(X1 - 	) 
=0. 

So we have X_ 1  = X 1  from which, with (4.7),. we see that X = X. The 

result, X 1 	X 1 , 1 , follows immediately from Xo  . Xk+1 = u'X 1  and the 

second equation of (4.4). 	 0 
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4.3 Invariant Theory 

In this section we show that the construction given in the previous section can be 

used to give a set of generators for a particular class of invariants. 

Definition 4.5 An invariant is a P-equivariant map I : J + Uq  which is a 

polynomial with real coefficients in the components of the Xr. 

Recall that the P-action on 3 is polynomial, so that this definition makes sense. 

Any P-invariant is, by restriction, also an invariant of the reductive subgroup L. 

According to Weyl's theory, odd and even invariants can be written respectively 

as linear combinations of complete contractions of the form 

contr(g® ... ®g®xr1®...®xr) 	
(4.8) 

and 	contr(€®g® ... ®g®x, ® ... ®Xrd). 

The first tool we need is the following lemma, which tells us that although 3 

is not isomorphic to the whole of J, we retain enough information to construct 

invariants. 

Lemma 4.6 If I: J —+ 0q  is a polynomial map and the restriction of I to J \ J0  

is P-equivariant, then I : J 	a is an invariant. 

Proof. Let jk  C J denote the set of k—jets, and Jok  denote the corresponding 

subset of J0 . For each p E P, the maps I and p I are polynomials, and are 

therefore, by restriction, maps I: jC --~ or  and p. I: jk —+ cry , for some k. Hence 

)CI_ p .I : 	or 
q  is a polynomial map, which is zero on JIC\J.  By continuity, 

it must be zero on the whole of j',  and hence on J. 	 0 

To use the set 3 to find invariants, it is helpful to know what some of the X r  

look like in terms of the elements of J. One can calculate, for example, that 

* ( u_i 	(_(x1.x2) 

) 

,2 	( 1x2_4(xi . x2)xi) — 	0 

 ,J,X1= 	

xi 

0 	 0 -u 
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where * denotes a term of the form u 5  multiplied by a linear combination of 

terms of the first type in (4.8). 

Since P preserves j and , it is clear from the P-action on 3 that any linear 

combination of complete contractions of the forms 

contr( 0 ... 0 0 X,. 1  ® ... (& X) 
(4.9) 

and contr(E 0 § 0 ... 0 § 0 X I  0 ... 0 X rj ) 

is invariant under the P-action, but one sees from the the form of the X r , that 

such a contraction will only be polynomial in the components of J, and hence 

(by lemma 4.6) an invariant, when multiplied by a sufficiently large power of u. 

Clearly, an invariant arising from a contraction of the first type will be even, and 

an invariant arising from a contraction of the second type will be odd. We now 

show that every invariant can be expressed as I = for some q E Z+,  where I' 

is a linear combination of complete contractions of the above type, before returning 

to the problem of finding which of the 	are polynomial and hence invariants. 

Theorem 4.7 If I: J -+ crq  is an invariant, then I = 	where q e Z and I' 

is a linear combination of complete contractions of the form (4.9). 

Proof. We start by proving the theorem for even invariants, with the following 

lemmata: 

Lemma 4.8 Any even invariant I: J —* a. can be written as a linear combination 

of complete contractions in the quantities 

U, 	Xf 	and 	X. 

Proof. We know already that any even invariant can be written as a linear combi-

nation of complete contractions of the first type in (4.8). We can use equation (4.6) 

to rewrite I in terms of u, g, Xri and X8° 

Since gjjX,Xj = 	— X°X8°° — Xr00X3O , we can rewrite I in terms of u, 

, X r', X r°  and X'°. Finally, replacing X by UXr  X o , we have written I in the 

desired form. 	 U 
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Lemma 4.9 Let I: J -p a, be an even invariant. Then there exists m E N and a 

map 

C: J -  (D-R-+2 0 

given by a linear combination of partial contractions of the quantities X,  

and u such that the component 

Co ...  0  = I, 

with all the other components being zero. 

Proof. We first express I as in lemma 4.8. Let m be the maximum number of 

uncontracted Xr°  components that appear in any term. Since X8 = c', we can, 

by multiplying through by an appropriate number of uX8's, write I so that each 

term has this number of (uncontracted) Xr°  components. (By considering the L-

action on I, u, X . X. and X, it is also easy to see that the power of u occurring 

in each term is q + m.) If we now replace each uncontracted X r°  in this expression 

by Xr  with a free upper case index, we obtain an expression which has I as its 

0. . . 0 component. We obtain an expression for C by taking the symmetric,trace 

free part of this expression, which leaves the 0. . . 0 component unaffected (see also 

[BEGm], proof of lemma 2.3). We now have a map C: J —~ R-2 ®0m+q  with 

C°" °  = I invariant, and we define a P-equivariant map 9: J -+ O Rni-- 0 °•q by 

O:=umC—XoO ... ®XoI 

which has the property that its 0. . .0 component vanishes. We need to prove that 

0 actually vanishes identically. 

For some vector space, V, we have the L-direct sum decomposition 

(01 2  0 Cq ) 0 C = (aqm  EDL V) 0 C 

and it is clear that ImO C V. But Q 	-- Rn2 0 C is an irreducible module for the 

complexified Lie algebra, gc,  and a m  0 C c O" R 2  0 C is its highest weight 

space. Since Pc  contains all the raising operators of gc,  any  pc-submodule  of an 

irreducible gc-module  not containing the highest weight space must be trivial, 
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since otherwise, any non-zero vector could be raised by elements of Pc  to a non-

zero highest weight vector. The P-module obtained by taking the linear span of 

elements of ImO, (1m9) ® C, is seen to be such a submodule of (O R 2  ® o) 0 C 

and so 0 must vanish.  El 

To complete the proof of theorem 4.7 for even invariants, we find that given C 

as in lemma 4.9, since X°° = —u, and since the expression for each term in C 

contains Uql, ,  

imjmC11 mu 
. . 

is an expression for I of the required form. 

Proof of theorem 4. 7 for odd invariants. The proof is analogous to that for even 

invariants. We start with our invariant expressed in terms of contractions of the 

second type in (4.8). Let (o)J ... K = UX O'€IJ ... K. Then (o)J ... K is zero if any 

of J. .. K takes the value 0 or oo, and agrees with C j ... k otherwise. So we can 

replace any occurrence of e by E0  and continue as in the case of even invariants, 

but including an Zo in each term. The concluding highest weight argument is 

unchanged. o 

We now return to the problem of finding which of the I = UqP are polynomial, 

where I' is a linear combination of complete contractions of the form 4.9. The 

first step is the following: 

Lemma 4.10 

U2"Xr  X 3  is polynomial whenever p ~! (r+s+2) and is therefore an invariant 

for such p. 

C=I

+2  

U2IXrj . . . X~ 2  is polynomial whenever p ~ 	 ri) - 2 - n(n + 1) 

and is therefore an invariant for such p. 

Proof. One simply looks at the most negative powers of u occurring in the expres-

sion for Xr  and follow this through the expressions for Xr  X and IXri . . . Xr+2  I 
to find the maximum number of u's that might be needed. 	 0 
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To get a better grip on the power of u that is needed, we introduce the notion of 

time homogeneity. 

Definition 4.11 Treating an element of J as though it were an actual curve, we 

say a function, f, on J is time homogeneous of degree k if for x(t) E J, A e R, we 

have 

f(x(At)) = Akf(x(t)) 

In terms of jets, this is f((Ax i , A2x2 , A3x3  .. .. )) 

= )tICf((xi, x2, x3,.. .)). The degree, 

k, is the total number of time derivatives occurring in the expression for f. For 

example, u' is time homogeneous of degree n. 

Lemma 4.12 Any invariant is the sum of time homogeneous parts, each of which 

is separately invariant. 

Proof. Since the P-action commutes with such a reparametrisation, if q(x) is a 

time homogeneous polynomial of degree k, then q(p . x) is also time homogeneous 

of degree k, so the time homogeneous parts of an invariant must be invariant. El 

Thus we need only consider time homogeneous invariants. Henceforth, invariants 

under consideration will be assumed to be time homogeneous. We can now give a 

list of all time homogeneous invariants satisfying certain conditions. 

Theorem 4.13 

Let I = UqF be time homogeneous of degree k, where I' is a linear combi-

nation of complete contractions of the first type in 4.9.  If 3q ~! 2k and q 

is even, then I is polynomial and hence an even invariant. Such invariants 

span the vector space of even invariants satisfying these conditions. 

Let I = UqF be time homogeneous of degree k, where I' is a linear combina-

tion of complete contractions of the second type in 4.9.  If 3q ~: 2k —n(n— 2) 

and q+n is even, then I is an odd invariant. Such invariants span the vector 

space of odd invariants satisfying  these conditions. 
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Proof. These results follow from theorem 4.7 and lemma 4.12, together with the 

fact that each component of X r  is time homogeneous of degree T - 1. 	0 

Example 4.14 The following are invariants: 

u4X 2  X 2  = 2u2  (x i  x 3 ) + 3U2 (X2 x) - 6(x i  

and, when n=2, 	u4IXo X1  X2 X31 = u2 jx3  xii + 3(xi x2)Ixi x21. 

We have proved that we can list every time homogeneous odd or even invariant 

satisfying certain inequalities. However, there are invariants that do not satisfy 

these inequalities. There are two obvious ways to find examples of such invariants. 

Firstly, suppose n> 3, so that n(n - 2) > 0. Then we can find odd invariants 

I: J o, which are time homogeneous of degree k, with 3q < 2k. Multiplying 

any two such invariants together will give an even invariant which does not satisfy 

the above inequality. 

Example 4.15 Let n = 3. Then u7  IX o  Xi  X2  X3  X 4 1 is an odd invariant with 

q = 7 and k =12,  and 

(X0 .X0) •.. (X0 .X4 ) 

u14 1X0X1X2X3X41 2 =I 
(X 4 .X 0 ) ... (X 4 .X 4 ) 

(from equation (3.1) ) is an even invariant with q = 14 and k = 24, so 3q 2k. 

Secondly, suppose we have two independent even invariants 11,12 : J 

which are time homogeneous of degree k, and 3q = 2k. it is easy to see that the 

terms in each invariant containing no powers of u2  must be the same up to scalar 

multiple. By taking a suitable linear combination of I and 12, then, we get an 

invariant with each term containing u2 . Dividing by u2  gives an invariant that is 

not on our list. 

Example 4.16 

u4 (4X 3  . X3  - 3(X2  . X2 ) 2 ) = 

4u2 (x 3  . x 3 ) - 24(x i  x2 )(x2  . x3 ) + 12(x2  . x2 )(x i  . x 3 ) + 9(x2  x2)2 
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is an invariant with k = 8 and q = 4. 

We do not know how to list these other invariants. 

4.4 Conformal Differential Invariants of Curves 

The idea of an invariant as given above is distinct from, although related to, the 

usual idea of a conformal differential invariant of a curve, the difference being 

that we have only been interested in those invariants which are polynomial. We 

will again use the flat model for conformal geometry, but we will assume that the 

preserved metric on R 2  has the form 

001 

g= 	0 I 0 

100 

Definition 4.17 Let Jm denote the set of rn-jets at t = 0 of curves, x(t), in 

Stm such that x(0) = [60]. A differential invariant is a P-invariant smooth map 

D : Jm_~ R for some  m. 

In [Gn], it is shown that on a dense subset of suitably non-degenerate curves in 

S there are n fundamentally independent conformal differential invariants. The 

algebra of differential invariants is the algebra generated by these n invariants and 

their derivatives. 

These invariants can be found using Cartan's method of moving frames. For 

any lifting of the curve, h say, to G, the pullback of the Maurer-Cartan form 

on G, h'dh, is an element of the Lie algebra g of G. To each suitable map to 

Sn = GIP, one associates a canonical lifting, h, to G such that h'dh takes values 

in a particular subspace of g. The components of h'dh are the independent 

differential invariants. See [Gn] for more details of this method in general. 

We will show how to find such a lifting to C by using the lifting of the curve tO 

Rn+2  as in equation (4.2) and then using an analogue of the Serret-Frenet formulae. 
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4.4.1 The Serret-Frenet Formulae 

Before we study the conformal case, we see how this method works in the familiar 

case of invariants of curves in R under Euclidean transformations, by using the 

Serret-Frenet formulae. 

Recall that for a curve, y o  (t) in R3 , one can find y1  (t), Y2  (t) and Y3 (t) (the unit 

tangent, unit normal and unit binormal) such that Yi, Y2 and y3  are orthonormal 

with respect to the standard inner product, by setting 

VYi = 	10, where v = 1 y0  I, 
Icy2 = where ic = I?iI, 
73 = 	Y2 + Icyi, where T = I Y2 + IcYi I• 

Euclidean space, W, is the homogeneous space, E/H, where E is the group of 

Euclidean motions and H is the stabiliser of the origin. We regard E as being the 

matrix group with elements of the form 

- (Ab\ 
A=I 	I 	where AE0(3),bER 3 , 

t\ 0 1) 

acting by A . x = Ax + b, for x E 1R3 . The subgroup, H, consists of those elements 

with b = 0. Let 'in be the matrix with columns Yi, 112 and y3. As y1  y3 = Ji j for 

i,j = 1,2,3, we have mtrn = 13 , so that in e 0(3), and 

M= ( m  110 

 1 

gives a canonical lifting of Yo  to E. As 	= —ry2 , the pull-back of the Maurer- 

Cartan form has the form 

0 	—ic 	0 	v 

IC 	0 	—T 	0 
M 1 dM= dt. 

0 	'r 	00 

00 	00 

The components of this matrix, v, ic and r (the velocity, curvature and torsion), 

are the required invariants. 
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4.4.2 Conformal Analogue of the Serret-Frenet formulae 

Proposition 4.18 Let x(t) be a curve in Sn  and let X(t) be the preferred lifting 

to Q. If X(t) together with its first m + 1 derivatives (regarded as vectors in 

Tx(t)R 2 ) form a basis for Tx(t)R 2  in some neighbourhood of t = 0, then we 

can define 

Yo  = 	X(t), 

Y, y0' 

= 	—(+rYo ), 

tc 1 Y3  = 	—1'2 +rY1 , 

— ,clYO, 

= 	+ 

where 

where 	Ic1 = 	— 

where 	Ic2 = I 	— ic1 Y0  I, 
where 	ic3 = 1 Y4  + r12 Y3 1 , 

= Y + 'c2Y1, 	where 	= IY + Icfl_2Yfl_1I. 

Then 	= 1 and Y2 Y2  = 1, for  = 1,3,4,...n+1, with the remaining dot 

products vanishing, so {Y 0 ,.. . , Y 1 } is an orthonormal basis for Tx(t)R 2 , with 

respect to . 

Corollary 4.19 Let h be the matrix with columns l'o, Y 1 , Y3 , Y4 ,..., 	Y2 , i.e. 

h= (Yo  Y1 Y3 Y4 ...Y 1 Y2 ). 

Then h satisfies hth = so that h E C. The pullback of the Maurer-Cartan form, 

h'dh, is 

0 —r ic 1  0 	... 0 0 0 

100 0... 0 0 T 

00 0—,c2  0 0 —ic1  

0 0 Ic2 0 0 0 0 

0 0 	0 0 •.. 	0 —ic_ 1 	0 

0 0 	0 0 ... 	ic 1  0 	0 

0-10 0 ... 	0 0 	0 

and by evaluating ,ic1,. . .,1ci at t = 0 we obtain our differential invariants. 

dt, 
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4.5 Curves in Curved Conformal Geometry 

In curved conformal geometries, by using the conformal tractor bundle, we can 

carry out analogous constructions to those given earlier to yield curved analogues of 

the invariants discussed earlier in this chapter. We begin by giving the description 

of conformal circles from the point of view of [BEGo], which introduces the idea 

of associating tractors to a curve. 

Let M be a manifold with a conformal structure, and let z(t) be a curve in 

M, parametrised such that V 2t 0 0 along x(t). Choose a tangent vector ± along 

x(t) such that ±1 V2t = 1, and let v = (±ri). We denote ±V 2  by A and is 

denoted P. 

4.5.1 Conformal Circles 

Conformal circles are the analogue for conformal geometry of geodesics in Rie-

mannian geometry (see e.g. [BE], [E] and [BEGo]). A curve, x(t), is a projectively 

parametrised conformal circle if 

d3x - 	- .3 + 2ipi - 2Pkz±!c±l±3. 
± 	2±2  

An alternative description is given in [BEGo]: in the notation of section 2.2, the 

velocity tractor and acceleration tractor are defined by 

U' = -- (v 1 X') 	and 	A' = 
dt 	 dt 

respectively. (Here, A denotes ±V 2 , where V 1  is the tractor connection). As v and dt 

X' both have conformal weight 1, v'X' has conformal weight 0, and so U' and A' 

are conformally invariant. The condition A'A, = 0 can be regarded as a condition 

on the parametrisation and, as such, gives a preferred family of parametrisations 

for any curve. A curve for which A'A, = 0 is said to be projectively parametrised. 

In [BEGo], it is shown that a curve is a projectively parametrised conformal circle 

if and only if 
dA' 

A'A,=O 	and 
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4.5.2 Curved Analogues 

In order to construct invariants, we associate a list of tractors to each regular 

curve. Define for r=O,1,2,..., 

d' 
Z = - (v 1X') I dtr " 

As above, Zr'  is conformally invariant for each r. We can construct polynomial 

invariants by taking a linear combination of complete contractions of the form 

(4.9) satisfying the conditions of theorem 4.13 and then replacing the X I 's by 

the Z's and using the tractor metric etc. It is easy to check that in the fiat 

case, (Z, Z 11 )  Z2',...) is the element of J given by the lifting of the curve, x(t), 

as in section 4.2. In this case, the above construction gives the same invariants as 

previously. 

Similarly, one can construct analogues of the invariants of the previous section, 

by letting Y0 = v 1 X 1 , and continuing as before, using the same formulae for 

Y1 ,. . . and r, t,. . . , ,c, 1 , but using the d/dt given as above. This again gives 

the same invariants in the fiat case. Note that r = 0 for projectively parametrised 

curves. 



Chapter 5 

Conformal Invariants of Differential 

Forms 

In this chapter we will be considering jets of closed differential k-forms at [e o] in 

Sn, (1 < k <n), and looking for the polynomials in the components of such a jet 

which are invariant under the action of P. Such polynomials define scalar valued 

G-equivariant differential operators on k-forms. 

In the first section, we introduce the operators we will be using in the second 

section, and list the commutators of these which we will need. Secondly, we find 

a P-module isomorphism between the set, Jk,  of such jets, and the set of jets of 

tensor valued functions on R7 +2  satisfying certain conditions. The proof is related 

to the isomorphism theorem 3.10, and in a similar way, we are only partially 

successful, obtaining an isomorphism only in odd dimensions. 

In the third section, the methods of [BEGm] and [Go2] are applied to the 

modules so obtained, to find which invariants of these modules are Weyl invariants. 

Finally, we complete the picture by describing the exceptional invariants, using the 

methods of [B Go]. 

In this chapter, we take W = R7+2  as the standard representation of P etc., and 

where square brackets are used to denote skew symmetrisation, the normalization 

will be slightly different from the usual notation. For an element, T' -- -', of Ac W, 

we normalize by = Similarly for symmetrisation. 
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5.1 Operators and Commutators 

Recall that the operators used in the proof of theorem 3.10 could be thought of as 

the standard generators of the Lie algebra, In this section, we will introduce 

the operators which appear in the proof of our isomorphism theorem and present 

the table of commutators/anti-commutators which we will need. 

Let JJK ... L be a tensor valued function on W taking values in A' W* ,  which is 

homogeneous of degree w. We define the operators Q, E, V, 8, d, Xi, XA and 

as follows: 

J)JK ... L 
'v.I

A
'v. 	: = 	" 	IJJK...L 

(Ef) JK  ... L  = 	X'0IfJK  ... L  = WIJKL 

(Vf)JK ... L = 	kfJK ... L 

(8f)K ... L = 	afJK ... L 

(df) IJ  ... L  = 	O[IIJK ... L] 

(Xif) K  ... L  = 	XfJK ... L 

(X A f)IJ ... L = X[IfJK ... L] 

( 1 f)JK ... L = a'aIfJK ... L 

E = X 18j  is the Euler field, and we regard Q = X'X 1  as the defining function of 

the null cone Q. We set 

h1  = 	 = —(E+V), 

=X2 = d, 	 = XA, 

Yi = L, 	Y2 = 	Xi, Y3 = 6. 

Notice that h1 , x 1  and Yi  are the generators of s12 , as in theorem 3.10. One can 

calculate the following table of commutators and anti-commutators 
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Table 5.1 

Mll IU 
Ifl- 

Lemma 5.2 Let x, y and h be the standard generators 015(2.  The following hold: 

(i) 	Xml = _mxm_l(h + m 1). 

[pf] = > 1(_1)i(7)2j!xm_iym_i(h+j - 1)(h+j —2)... (h). 

Corollary 5.3 By substituting x = -Q, y = i2 and h = E + 	we find: 

[& Qm] = 2mQm(n + 2E + 2771), 

[AM, 
Qrn] = 

- 	12)2Qm_m_n + 2E + 2j)(n+ 2E + 2j —2) ... (n + 2E + 2). 

} 

} 
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5.2 Isomorphism Theorem 

Let u be a given k-form on S', for 0 < k < n. By pulling this back to Q and 

choosing an arbitrary homogeneous formal power series extension off Q, we define 

a function, f, homogeneous of degree —k, on W taking values in Ac W* such that 

fIJ ... KdX A dX j  A ... A dX K I T . Q  = 7rU, 

(Xif)IT*Q = 0 	and 	(df)IT.Q = 0. 	 (5.1) 

By, for example hIJ ... KIT*Q where h is a skew tensor valued function, we mean 

that the domain of the function is restricted to Q and also that the corresponding 

k-form, hIJ ... K dX' A dX j  A ... A dXK ,  is restricted to T*Q .  

Of course, there will be many such functions for a particular k-form, u. Our 

aim is to find, by choosing a suitable formal power series extension off Q, a function 

f satisfying 

(X_JJ)=O, 	(dJ)= 0 	and 	(o/)=0 	 (5.2) 

to all orders, in addition to the first condition in (5.1). 

Remark 5.4 For a function, f, satisfying (df) = 0 and (Xi J) = 0, the condition, 

(6f) = 0, is equivalent to /.f = 0, since 6 = 	[, Xi] and L 	dS + 6d. 

Definition 5.5 We say that two functions taking values in A8 W are equal 

mod Q', if g = h+Qm_1 X Aa+Qmb where a and b are suitable (skew-symmetric) 

tensor valued functions. 

Then, since X 1Y' = 0 on Q, for any vector Y e TQ, f = 0 mod Q is equivalent 

to f IT*Q = 0. The above discussion motivates the following: 

Definition 5.6 For a closed k-form, u, on S,  and m > 2, we say that a function, 

on W is a good extension (of u) of order m, if f is homogeneous of degree —k 

and takes values in Ac Wt such that 
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fIJ ... KdX' A dX j  A ... A dXKIT.Q = iru, 

Xi f = 0 mod Qm, 

df = 0 mod Qm, 

8f = 0 mod Qm' 

We regard a function satisfying (5.1) as being a good extension of order 1. 

Proposition 5.7 Suppose u is a closed k-form on S, f is a good extension of u 

of order m, for in e N, and suppose that (n - 2k - 2m + 6), (n - 2k - 2m + 4), 

• . . , (n - 2k - 4m) are non-zero. Then there exist tensor valued functions a and b 

such that f + Q'- 'X A a + Qmb is a good extension of order m +1. This extension 

is unique (mod Qm+l). 

Proof. We will consider the case k > 1 and m > 1, the cases k = 1 and m = 1 

being slight simplifications of this. Since f is a good extension of order m, there 

exist skew, tensor valued functions, c, e, r, s, v and w such that 

XJf=Qm_ 1 XA r +Qms , 

df = Q - 'X A c + Qtme, 

6f = Q-2 X A v + Qmlw. 

Before we find a and b, we give a lemma listing some relationships between c, e, 

r, s, v and w. The proof of this lemma can be found in appendix A 

Lemma 5.8 For (n-2k-2m+6), (n-2k-2m+4), ...,(n-2k-4m)$0, 

we have 

XAr+XA(Xis)=0, 	 (5.3) 

(n -  2k + 2)X A v + 2(m - 1)X A (Xi w) = 0 mod Q2 , 	(5.4) 

dc = 2me mod Q, 	 (5.5) 
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2(m -  1)X A r = X A v mod Q 2 , 	 (5.6) 

2ms=dr+Xlc mod Q. 	 (5.7) 

. 

We continue, now, with the proof of proposition 5.7. If f is a good extension of 

order m, then the general good extension of order m is of the form 

f=f+Qm_lxA a +Qmb. 

We see then that 

Xi f = Q--'(X A r - X A (Xi a)) + Qm(s + a + Xi b) 

df =Qm_l(XA c _XA(d a)+2mXAb)+Qm(db+ e) 

if = Qm-2 (XA v _2(m _1)XA(Xi a))+Qm(w +(n _2k_2) a+2mXi b) 

mod Qm 

We see that if f is to be a good extension of order m + 1, we need the following: 

XAT=XA(Xia) mod Q 2  

s+a+Xib=OmodQ 

XAc—XA(da)+2mXAb=O mod Q 2  

db+e=OmodQ 

XAv-2(m-1)XA(Xia)=OmodQ 2  

w+(ri+2k-2)a+2mXib=OmodQ 

In particular, from 2 and 6, we need w + (n - 2k - 2m + 2)a - 2ms = 0, so for 

(ri - 2k - 2m + 2) 0, a is uniquely determined ( mod Q) by 

2ms - w 
2k2+2 	

(5.8) 
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From 3 we see that b is uniquely determined (mod Q) by 

b = 
1

-(da - c). 
2m 

(5.9) 

To complete the proof, we need to show that a and b satisfy 1,2,4 and 5. Since 1 

and (5.6) imply 5, we need only show that 1,2 and 4 are satisfied. 

To see that 4 is satisfied, we deduce from (5.9) that db = -dc mod Q, and 

4 follows from (5.5). 

For 1, we see from (5.8) that 

1 
XA(Xia) = 

n - 2k - 2m + 
2 (2mX A (Xi s) - X A (Xi w)) mod Q2  

1 2mXAr+(Th_22)XAv) modQ2, 
n-2k-2m+2 (_  2(m-1) 
(by (5.3) and (5.4)) 

	

= XAr mod Q2 , 	by (5.6). 

For 2, we see from (5.9) that 

	

1 	 1 
s+a+XJb = s+a+—Xi(da)--XicmodQ 

2m 	2m 

= s + a + _(E + V)a - _d(Xi a) - -Xi c mod Q 
2m 	 2m 	2m 

Applying lemma A.1 to 1, we get d(Xi a) = dr mod Q2  for (n - 2k - 2m + 6) 54 0. 

Also we have (E + V)a = -2ma, and so we have 

s+a+Xib = 
1

-(2ms - Xic- dr) mod Q 
2m 

= 0 mod Q 	from (5.7). 

Definition 5.9 Let 

Jk = {jets at [eo]  closed k-forms on S, of conformal weight 0 }, 

jets at c0  of functions on W taking values in Ak W*, homogeneous 
Jk = c 

( of degree -k, satisfying df = 0, Xi f = 0 and Lf = 0. 
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The group, P, acts on a tensor valued function, u, on S'2  by (p.u)(x) = ui(p' .x), 

where x e S' 2 , and ü is obtained from u by the usual action of P on tensors on 

51• P acts on a tensor valued function, f, on W by (p. f)(X) = f(p '  X), for 

X e W, where f is obtained similarly. From the definitions of the P-actions on 

tensors on S' 2  and W, it is clear that the P-action on a k-form, u, and a good 

extension, f, must be compatible. These P-actions give induced actions on jk  and 

3k. 

Theorem 5.10 There is a P-module isomorphism 

T (J 

= Jk 

for 1 <k <n-1 ifn is odd, or for n+2 <k <n—i ifn is even. 

Proof Given any closed k-form, u, on S,  of conformal weight 0, we can choose 

a good extension of order 1. By repeatedly applying proposition 5.7, we see that 

we can find an extension of order m if 

0Ø{n-2k-4m+4,n-2k-4rn+6,...,n-2k+4}. 

If n is even and k < n +2, then we can, in general, find a good extension of order 

rn only form < (n-2k+4). However, if  is odd or ifn-2k+4 <0, then 

we are able to obtain a unique function, f, satisfying (5.2) to all orders. As the 

Taylor expansion of f at e0  is determined by that of u, we have an induced map 

Jk Jk. 

This map is injective, since if I vanishes to infinite order at e0 , then by restric-

tion to Q, so does u. The map is also surjective, since any such / is the extension 

of its restriction to Q, as the extension is unique. Finally, since the P-action 

commutes with taking the extension, this map is a P-module isomorphism. 11 
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5.3 Invariant Theory 

In this section we study the module Jk  using the methods of [BEGm]. 

For I > 0 and 1 <k < n - 1, we denote by wt the G-submodule of (&' W 

consisting of totally trace free tensors with symmetries given by 

T[IJ ...  K],AB  ... D = k TIJ ... K,AB ... D, 

TIJ ... K,(AB ... D) = 1 TIJ ... K,AB ... D, 

and 	T[IJ ... K,A]B ... D = 0, 

where we use the comma to separate the first k indices. Notice that 	is the 

irreducible representation of G with the Young diagram 

k{ 

Proposition 5.11 As P-modules, 

L (1+1) 
	—T (l) 

 

for I ~ 0, and eL T KL = 0 	
} 

{ 	 ) : 	E 	® 	e TJJ  KLAB  ... D = 1 1J...K(A,B...D) 
Jk 	

(T( °), T ( ') ,... 
= 

Such a list of tensors also satisfies,  for 1 > 0, 

Arrt(i+1) 	- 	 (1 	1 \rp(1) e 1 1J...KL,AB...D - 	 .& + )'IJ...KL,B...D 

Proof. Given a function, f, which is homogeneous of degree —k, taking values in 

satisfying equations (5.2), we define 

TIJ ... K,AB ... D = Eval(OA8B . . . ÔDfIJ ... K). 	 (5.11) 

Recall that equations (5.2) also imply that /f = 0, so that equations (5.2) give 

the T 1  the required symmetries and the trace free conditions. 
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The evaluation of X'fJJ ... K = 0 at e0  gives eL T(0) 
JJ  KL = 0, and differentiating 

the former equation (1 + 1)-times gives the linking condition, e (1+') 
1

Lm
1J...KL,AB...D = 

—T 1 	Conversely, given such a set of T's, equation (5.11) defines a IJ ... K(A,B ... D) 

homogeneous jet satisfying equations (5.2), so we have a (P-module) isomorphism. 

The last statement of the proposition then follows immediately from Euler's 

equation for homogeneous functions. 	 - 	 D 

We define invariants of Jk,  Weyl invariants and exceptional invariants as in 

definitions 3.7 and 3.8. For the first two contractions of (3.4), q= - > +1(l + k), 

and for the third, q = 1 - + k). 

Proposition 5.12 The tensors 	for 1 > 0, defined by 

(1) 	- Ui ... j,a  ... d - (5.12) 

form a complete set of components for elements of Jk.  They have the symmetries 

U[i ... j],ab  ... d 	= 	kuj ... j,ab ... d, 

Ui ... j,(ab ... d) 	= lUi ... j,ab  ... d 	 (5.13) 

and 	U[i ... j,a]b  ... d = 0 

but are otherwise unrestricted. 

Proof. A general tensor T € w' has as components 

	

p'+q'+r'=k and p+q+r=l. 	(5.14) 
' 	

g1 	? 	 P 	Q 

(We can assume that p' = 0 or 1 and that r' = 0 or 1, for components not forced 

to vanish by the skew symmetry of the first k indices.) In the following, Ci ,. . . C5  

are unimportant, non-zero constants, depending on p, q, r, p' , q'  and T I . 

Using the linking condition, (5.10), we find that 

T 0 	a b cc cc = C1T0 0 i j cc cc 0 A a b cc cc 

P' 	q' 	r' 	P 	Q 	' 	 p1 	g' 	 r 	q 	r 

= 
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since T is trace free, and since for '' E Ø W, 

=
gijoij + 'cl'000 + 1'000 . 	 ( 5.15) 

Then using Lm(1+) 	
- — T 	 we find that e 11J...KL,AB...D - 	IJ ... K(A,B ... D)' 

rp 	 c d - 	rn 	
i 	

c d 
100 00 2 	0 a b c d - 31 00 oo 1a b' c d 

iI q1 	q 	2r 	 r1 	(q'-Fl) q—i 	2r 

Finally, from (5.10), 

T j  oo_a...d = C4T i  ... j oo,0a ... d 0 

k—i 	q—i 	 k—i 	q—i 

= C4(_T.._O,cxia...d 0 	T1 	ea...d) 

k—i 	q—i 	 k—i 	q—i 

- çyri 	 a _r1r 
- 	'-'5-'- i ... j 0_a.d a 	'-'4 	i...j e, a ... d 

k-i 	q-i 	 k-i 	q-i 

- - J5Lj (a b d i c 	c 
e 	4 	el 

e
a d 

q-2 	 k—i 	q—i 

So we see that such a component as in (5.14) can be written as the sum of terms 

of the form trr+r' ((+2r+n'  P')), where trm  (u) denotes a tensor obtained from u by 

taking m traces. 	 0 

A P-invariant is, by restriction, an invariant of the reductive subgroup L. A 

)¼0 	0 

typical element of L, h = 	0 m 0 	, acts on each 	by hu1 = Akm.u(l) 

0 0 )c' 
where m acts by the usual action of SO (g) on covariant tensors. 

By Weyl's theory, any L-invariant, I, can be uniquely written as I = 'even +Iodd 

where 'even  and 'odd  are linear combinations of complete contractions of the forms 

(3.2) and (3.3) respectively. A P-invariant is said to be odd or even if it is so 

considered as an L-invariant. We consider odd and even invariants separately. 

Theorem 5.13 There are no non-zero odd invariants of degree d < n/k. Any 

odd invariants of degree d = n/k are exceptional. 

Proof. Any odd invariant is a linear combination of complete contractions of the 

form (3.3), but at most k indices of e can be contracted into each u if the result is 

to be non-zero, so if kd < n, such a contraction vanishes. 
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Similarly, since odd Weyl invariants are given by linear combinations of com-

plete contractions of the second and third types in (3.4), there are no non-zero 

odd Weyl invariants of degree d < . D 

Proposition 5.14 Every invariant, I : Jk —+ crq , is a weak Weyl invariant. i.e. 

there exists m e N and a map 

C: Jk - 0 1'W0am +q  

given by a linear combination of partial contractions of the quantities TI ... K,A  ... B, 

e, and for odd invariants, ZO , such that the only non-zero component is 

C° "°  =1. 

The proof will follow after two lemmata (cf. proof of proposition 2.1 of [BEGm]).. 

Lemma 5.15 Let I : Jk —4 0q  be an even invariant. Then we can express I as a 

linear combination of complete contractions of the quantities 

	

TI ... JOO,A  ... DOO ... OO 	and 	TI ... K,A  ... DOO  ... OO 

Proof. First, express I as a linear combination of terms of the form (3.2). We can 

replace the u's with the corresponding T's using (5.12). The g contractions can 

then be replaced by § contractions using (5.15). The invariant, I, can be written 

in the desired form by eliminating the uncontracted 0-components of the T's using 

(5.16) and (5.10). E 

Lemma 5.16 Let I : Jk —* o be an odd invariant. Then we can express I as a 

linear combination of complete contractions of the quantities 

	

P
-IJ 	(\IJ...K 	 -7 	rn 

	

, 	oj 	, 	' I ... Joo,A ... Doo ... oo 	and 	I ... K,A ... Doo ... oo 

Proof. We substitute ().1c  for 	in a contraction of the form (3.3), as in 
00 

the proof of theorem 4.7 for odd invariants, then continue as in the proof for even 

invariants, but including EO  in each term. 	 0 
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Proof of proposition 5.14. We have an expression for I from 5.15 or 5.16 with only 

the oo-components of the T's uncontracted. Let m be the maximum number of 

free oo-components that occur in any term. Since e = 1, with other components 

zero, we can put enough e's into each term so that each term has m free 00-

components. We now replace each oo by a free, upper case index, to give a 

function taking values in ®m W* 0 cYm+q whose oo... 00-component is I. Since 

= 0, the expression obtained by symmetrising and removing traces has the 

same oo... oo-component. By raising the indices of this expression, we obtain 

a function C1 ' ---' taking values in O W 0 0q+m, with C° "°  = I. The highest 

weight argument of 4.9 gives us that the remaining components are zero. 0 

Lemma 5.17 We can take the value of in in proposition 5.14 to satisfy m < 

—kd - q for even invariants and in < 1 - kd - q for odd invariants. 

Proof. Let C be as in proposition 5.14. If C1 " can be expressed as 

for some 0 , then we cancel e. We assume we have cancelled as much as possible. 

Suppose I is an even invariant. We can assume that C contains a term involving 

only §IJ  and the As each T' takes values in w' ® , where j < —k and 

since C has degree d in the T's, we see that C must take values in O W ® a3  

with j < —kd. Since C takes values in W 0 7q+,,,, we have q + in < —kd. 

If I is an odd invariant, each term contains E 0 , which takes values in A7 WO 

a, weakening the above inequality by 1. 	 El 

5.3.1 Invariants of Degree d > n/k 

We revert to regarding an element of Jk  as the jet of an homogeneous function on 

W satisfying equations (5.2), rather than using our algebraic description. For any 

invariant, I, we can construct C as in 5.14. In the expression for C, we can replace 

e1  by X', TIJ ... K,AB ... D by 19A 09B . . . 8DfIJ ... K, and, since jjj, E and X' define jets, 

this gives a P-equivariant map 

C: Jk  -4 £1'" '< (q + m) 
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such that Eval(0) = C. Let C: Jk 	
IJ ... K(q + m) be the map induced by the 

restriction of this map to Q. 

Proposition 5.18 Let I: Jk  —4 aq  be an invariant, with C constructed as above. 

There exists a unique P-equivariant map, I: Jk -+ F(q), such that Eval(I) = I 

and 

OIJ ... K = x'x. . . x"i. 	 (5.17) 

Proof. Suppose f is an actual homogeneous function defined on some neighbour-

hood in Q of e0 . For x near e0, we can write x = he0  for some h E G. If a function, 

I, satisfying EvalI = I is to respect the G-action, i.e. h (If) = I(h. f) for h E C, 

then 

(if) Ix = (hf) e  = h' (f)I eo  = I(7' f)II(I_1 . f)   o 	(5.18) 

so that I is uniquely defined by our requirements. One can check with a similar 

calculation that I defined by (5.18) is well defined and homogeneous. This defines 

I as a P-equivariant mapping on Jk by taking jets at e0. 

ãIJ ... K and x'x. . . X"I both define P-equivariant mappings into FTJK(q+m), 

which give e®. . .®e®I when evaluated at e0, and so must be equal, by uniqueness. 

U 

Theorem 5.19 Every even invariant of degree d > n/k and every odd invariant 

of degree d >n+1  is a Weyl invariant. 

Proof. For any invariant I, define C as in proposition 5.14, and C and I as in 

5.18. We show that repeatedly applying the D-operator of remark 3.12 to both 

sides of (5.17) gives I as a Weyl invariant. Recall that for n + 2s 2, 

.7:.i  J...K(s — 1) is given by 

D1f= ((n + 2s — 2) af — Xj,&f) Q  

where an arbitrary homogeneous extension off Q of f is used. One can calculate 

that for (X 1f') E FIJ ... K(r), 

D1(X'f' ... ") = (n + 2r)(n + r — 1)fJ ... K 	 (5.19) 
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We assume that m satisfies the inequality of lemma 5.17, which, together with our 

assumption about the degree, gives m + q < —n. We apply D repeatedly to both 

sides of (5.17). Since we are applying D1  to ajet of homogeneity s < m + q :!~ —n, 

so that (n + 2s) and (n+ s - 1) are non-zero, it follows from (5.19) that 

D1. . .DK(X'.. .x"I) 

gives a (non-zero) multiple of I, which when evaluated at e0  gives a multiple of I. 

Eval(Dj . .. DC1 ') thus realises I as a Weyl invariant. 

5.3.2 Invariants of Degree d < n/k 

Theorem 5.20 Every even invariant of degree d < n/k is a Weyl invariant. If 

the invariant is a polynomial in the components of 	 then it may be 

written as a linear combination of complete contractions using only 	. 

Proof. (cf. proof of theorem 6.1 of [BEGm]) Given an invariant, I, we can find C 

as in proposition 5.14, where C is a linear combination of partial contractions of 

, e, 	. 

Using the linking conditions, we can eliminate any e's contracted with any 

hence we may assume that each e in the expression for C has a free index. As 

in lemma 5.17, we may cancel any e's which appear in each term. If m = 0 after 

cancellation, then we are done. If m> 0, we show that we can cancel another e 

to reduce m inductively to 0. 

Suppose m > 0. Then there are, terms containing no e's. Let F1 "' be the 

sum of all such terms. We need only show that F vanishes on substitution of the 

T(k). Since  e2 = 0, we see that Fuj 
 ..

. c vanishes upon substitution of any choice of 

tensors . ,T (1 . In particular, we can construct such a list of tensors from a 

list of tensors 	, 	 with lower case indices, which have symmetries as in 

(5.13) and are trace free with respect to g, as follows. 

We set Tjj ... k,a...b = ij ... k,a ... b, set the oo-components of each T to zero, and 

determine the 0-components of the T's according to the linking conditions. 
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Then Fi...k  is a linear combination of partial contractions of 	,u()  which 

as a formal expression is identical to FLL  if we replace lower case indices by 

upper case indices, u's by T's and g by . 

We can assume F' .K  is allowable in the sense that there are no internal con-

tractions of the T's, as each T(c)  is trace free. We deduce that FLC  is an allowable 

contraction of the u's, which vanishes on substitution of any choice of 	. , 00 . 

Theorem 3.6 with s2  = k then gives that 	vanishes formally for d < n/k. Thus 

F1 " vanishes formally, and, in particular, vanishes on substitution of the T's. 0 

5.3.3 Exceptional Invariants 

It is shown in theorem 5.13, theorem 5.19 and theorem 5.20 that all odd invariants 

of degree n/k are exceptional and that these are the only exceptional invariants. 

So we only consider odd invariants of degree n/k, where n/k is an integer. We use 

the methods of [BGo} and we revert to the standard normalisation when denoting 

skew-symmetrisation of indices by square brackets etc. 

Choose a point B E W, such that B(e o ) 7~ 0, and set 6 = so that 

(X) = 1. We define a jet of homogeneity 0, taking values in K W by 

where we use ë0  to denote the jet X*-J  F . Although we also use o  to denote e*J 

context should prevent any confusion. One can show that 

OIQ = (X A i)IQ. 	 (5.20) 

Choosing a different point, B E W*, will lead to a different jet, . One can show 

that there exists a jet p taking values in A1 W such that 

IQ =(7)+XAp)IQ 	 (5.21) 

Let =Eval(ij). 

Proposition 5.21 The map I: Jk - a...n  defined by 

n/k 

I = contr( 0 	... 0 T°) 
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is an invariant. We call this the basic exceptional invariant. 

Proof. Follows immediately from (5.21), since Xi T °  = 0 	 0 

Lemma 5.22 If k is odd, then I = 0. 

Proof. Follows trivially from permuting the indices of ij. For example, if n = 2 

and k=1, then 

I = T(0) P(0)  ~ J 1 K ) 

= - contr (KJT(0) T) 

and so I must vanish. 

Theorem 5.23 

• If n 	0 mod k, or if k is odd (and hence if n is odd), then Jk  has no 

exceptional invariants. 

• If n 0 mod k, and n is even, then every exceptional invariant is a scalar 

multiple of the basic exceptional invariant. 

The proof appears after the following lemma: 

Lemma 5.24 Let I be a non-zero exceptional invariant and let C: Jk —p Q W® 

5q+m be as in proposition 5.14. Then m satisfies m = 1 - n - q. 

Proof. We have that m < 1 - n - q. If m < 1 - ii - q, then we could express I as 

a Weyl invariant, as in the proof of theorem 5.19, but we have shown that there 

is no non-zero odd Weyl invariant of degree n/k. 

Proof of theorem 5.23. Let a be as in proposition 5.18, and we assume that any 

X's contracted into f and its derivatives have been eliminated using Xi f = 0 

and Euler's equation. 
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We write 0 as a = 	+ , where G0  is the sum of the terms containing 

no free X's, and assume that 00  and ã are both separately symmetric, by sym-

metrising as necessary. Since a has homogeneity 1 - n, ko has homogeneity 1, f 

has homogeneity —k and as a has degree n/k, 00  must contain io  with all but one 

index contracted into n/k lots of f, with no derivatives occurring. Notice that m 

must equal 1. 

Let C be obtained by replacing 	by X['ij" .. . '] in the expression for 

Co . From equation (5.20), we see that, on Q, CO  = a. Since Xi f = 0, the X 

must contribute a free index in each non zero term, hence 

C = 	177 

where E,7  is a contraction of the form contr(ij ® f 0. . . (9f). Since ax  has an X in 

each term, C = XE X , for some E. Taking equation (5.17) and cancelling X's 

we get 

I=E,+Ex . 

Evaluation at e0  gives I as the sum of two terms, the first of which is of the form 

we require, and the second of which is a Weyl invariant and hence zero. 



Chapter 6 

Projective Structures 

We begin this chapter by reviewing the geometry of projective structures follow-

ing [Ei2]. As in the conformal case, we then describe the flat model and go on to 

look at the projective tractor bundle, following the presentation of [BEGo]. Fi-

nally, we describe the ambient construction of [B]—associated to an n-dimensional 

projective manifold is a Ricci flat affine manifold of dimension n + 1. The rea-

son for studying projective structures is the generalisation to contact-projective 

structures, which follows in chapter 7. 

6.1 Projective Structures 

Definition 6.1 Let Mn be an n-dimensional manifold (we will assume n > 2). A 

projective structure on M is an equivalence class of torsion free, affine connections 

which have the same geodesics, considered as unparametrised curves. 

If Vi  and V2  are two connections in such an equivalence class, then the two are 

related by a transformation of the form 

V iUj = V 1 U + TU + Uk T Oij 
	

(6.1) 
V1w3  = V1w - T2w3  - T3 w2  

for some field T i . We will again use "hats" to denote corresponding quantities 

following a transformation of the above form. 
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Locally, we choose a line bundle e(1) whose (-ii - I) -It  power, E(—n - 1), 

is identified with the canonical bundle of M. Sections of, for example, E(w) 

E ® £(w) are said to have projective weight w. The line bundles E(w) have an 

induced connection, which under change of scale transforms according to 

jf= Vj+wTj. 

A nowhere vanishing section of £(1) is known as a projective scale, and associated 

to such a section, 'r, is a connection V, in the equivalence class, such that V 2 'r = 0. 

The induced connection on e(w) is fiat for connections defined on this way. Hence-

forth, we will consider only such connections. Choosing another projctive scale, 

= l'r generates a transformation of the form (6.1), where T i  = 

For a choice of projective scale as above, we define the curvature tensor, ii 17 

by 

(Vi V - 	= Rij 

The curvature can be expressed uniquely in the form 

= 	+ 5IC p1 - 	 (6.2) 

where the Weyl tensor, is trace free and (n - 1)P23  =Rj. The Bianchi 

identities, R k
=  0 and 	 0 give us that [ij 11 

P[2 ] = 0, 

and = 2(n - 2)V1Pj1 1 	 (6.3) 

Under a transformation of the form (6.1), W k  is invariant, while for P j , we have 

pij =pij - vj + T•T3. 
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6.2 The Flat Model 

Consider 1R' equipped with the standard volume form, €. The flat model for 

projective geometry is simply the projective space P', which is (]R'+1 \ { O})/r..', 

where X r'  X' if X = AX' for some A =A 0. The geodesics are the straight lines in 

r. To check that we have a projective structure, we need only check that these 

are the geodesics of an equivalence class of torsion-free affine connections. We see 

this as follows. As coordinates for ]Rn+l  we use 

(xo\ 
I for i=1,...,n. 

X i )  

We use as a coordinate chart, R —* IF', 

1 
X

i 

The straight lines in Pn are the geodesics of the standard connection on this 

embedded R. This connection is torsion-free, so the equivalence class of torsion-

free connections with these geodesics is a projective structure. 

Let G denote the group PSL(n + 1, R). (Recall that for n odd, PSL(n + 

1, R) =SL(n + 1, R)/ ± I, and for n even, PSL(ri + 1, 1I) =SL(n + 1, R).) G acts 

simply and transitively on Pn in the obvious way. Fix a point, e0  E R'' with 

coordinates 
(1 

eo=I 
\0 

Let P = {p e G : peo  = Ae0 , for some A 01, so that r is the homogeneous space 

GIP. Explicitly, for n even, P is the subgroup of G consisting of elements of the 

form 
(A rj '\ 

0 mij 

and for n odd, P is isomorphic to the group of elements of this form with A > 0. 
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6.3 The Projective Tractor Bundle 

Definition 6.2 The co-tractor bundle, Er  is J'E(l), the first jet bundle of 6(1). 

6 has composition series 6 = 6(1) +e(i), with the transformation under change 

of scale given by 

	

(U0  (A) = (U0  U + T2 LT0 ) 	 (6.4) 

where U2  and (J0  are sections of 6(i) and 6(1) respectively. The tractor bundle, 

the dual of the co-tractor bundle, is 6' = 6i(_i) + £(-1), with transformation 

under change of scale given by 

= vo_ -rvi 
i) 	

( 
	vi 

We define primary and secondary parts in the same way as in the conformal case. 

The preferred sections in this case are the sections X' of E'(1) and 1'7 of £(-1). 

X' defines the projection 6 -+ 6(1) and the injection £(-1) —* 6 1 , while Y/ 

defines the projection 6' —* 6i(_1) and the injection 6(1) —+ 6, in the obvious 

way. In a chosen scale, Y/ is represented by (0 and X' is represented by 

(1 
x I =I 

• 0 

One easily sees that X'Y/ = 0. The tractor connection on Li  is given by 

V 2 (U0 (J) = (V 1 U0 — U, V2 U3  + P2 U0 ) 	 (6.5) 

and that on 6' is given by 

( v 0 ) =  ( v i vo — PikVk ) 
(6.6) 

Vi 	vvi + v O o i  

The tractor curvature, IZi)KL UL , defined by (V 1 V3  — VV2)U' — — 	K UL ij L , in 

block matrix form, is 

( 0 —2V[P3 ]L 

\ 0 wç 
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Again, the tractor curvature vanishes if and only if M is locally equivalent to the 

flat model. From (6.3), one sees that, for n > 3, the tractor curvature vanishes if 

and only if = 0. 

The operator D1  : S(w) - Ej (w - 1) is defined by 

D1f = (wf V2 f). 

This definition is invariant, even if f has tractor indices. 

6.4 The Ambient Construction 

The ambient construction in the projective case is essentially due to T.Y.Thomas, 

(e.g. [T]), and has been described in a modern form by T.N.Bailey, [B], whose 

presentation we follow. 

Definition 6.3 A special affine manifold is a manifold with a volume form, €j... 

and a torsion-free connection, ,  V,, with VICJ ... L = 0. 

Definition 6.4 A Killing vector on a special affine manifold is a vector field, V' 

satisfying 

Lv(V1U) = V1.Cv(U) 	 (6.7) 

for all vector fields, u, where L v  denotes the Lie derivative. 

Lemma 6.5 A vector field, V', is a Killing vector if and only if V'R IJ'L  + 

V JV L V K  = 0, where j J  K  JL  denotes the curvature of V1. 

Proof. Expanding the left hand side of (6.7), we obtain 

 - (j 1I L v (i~jui ) 	K i~IUJ
UK ) ( i 'KVJ) + (/Ku) (i1v'), 

while the right hand side gives 

= /I 
(

VK i~KUJ  - UK1KVJ) 

= 

 

(tjIVK) (/Ku) + VKVIVKUJ - 

( j 7IUK) (
i /KV J) - UKVIVKVJ 
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Comparing these, we see that V' is a killing vector if and only if 

V IRIJKL UL  + ULV JV L VK =0 

for each vector field, U', from which the result follows. 	 D 

Definition 6.6 An Euler field, is a vector field, X', which, in addition to being 

a Killing vector, satisfies 
VIx j = M .  

Thus X' is an Euler field if and only if VIX J  = ö/ and X'R IJ"L  = 0. Note that an 

Euler field could have zeros. We will, henceforth, work locally, on neighbourhoods 

containing no zeros of the Euler field. 

Proposition 6.7 Let M be a special affine manifold with an Euler field, X'. 

Then the quotient of M by X' has a natural projective structure. 

Proof. Assuming X' has no zeros since we are working locally, let M denote 

the n-manifold of integral curves of X'. Then a vector field U on M can be 

represented by a vector U' on M such that LU' = 0, modulo terms of the form 

fX' such that X'V,f = 0. Note that the condition £U' = 0 is equivalent to 

x J JUI  = UI . 

Similarly, we represent a covector field U on M by a field U1 such that 

XVU1 = —U, and X'U1  =0. 

The line bundles e(w) are defined by representing their sections by functions on 

M such that X'V 1f = wf. Let U 1) ,. . . , U be n vector fields on M represented 

Then 

f = CIJ ... LX I  U(i)  . . . U 

satisfies X'V,f = ( n + 1)f and so E(—n - 1) is canonically isomorphic to the 

canonical bundle of M. 

We can choose a vector field, wj , on M satisfying 

X'w j  = 1 	and 	V[IWJ] = 0, 



Chapter 6. Projective Structures 	 90 

and define a connection V i  where VU-', VV and Vf are represented by 

V 1 U - w1U - UKWK8I.J 

1IvJ +WIvJ +WJvI 

Vjf - wfw j  

respectively, where f is a section of £ (w). One can easily check that this is 

consistent. 

Since V[IWJ] = 0, the connection V i  is fiat on e(w) and so must be defined 

by a projective scale. Any other such w 1  is of the form Co, = - T 1 , where 

X'T1  = 0 and V[ 1TJ] = 0. The covector Ti  represented by T 1  thus gives the 

change in connection generated by a change of projective scale. El 

Theorem 6.8 Let MI be a manifold with a projective structure and let M be the 

total space of E(-1) (with the zero section deleted). Then M carries a natural 

special affine structure with Euler field and is Ricci flat (i.e. the curvature of V 1  

satisfies &/L:---0)- =0). 

Proof. Let x 1 ,. . . , Xn be coordinates on M. A choice of projective scale is a 

nowhere vanishing section, 'r, of e(1), and any nowhere vanishing section of E(-1) 

can be written as t(x)r'. We use t as a coordinate on M. Let ô0  denote and at 

ai  denote 	. If the connection on M associated to T is V1 U-' = au + ik 

then one can check that in terms of the basis (5,  ô2 ), the invariant connection on 

M is given by 

tjIUJ = 0JU + F U IK 

where 

IK 
= ( 0 0 ) 

	

and 	j;i 

= ( 

0  
1K 	;7; ) 	

(6.8) 
0 —tP1k 	 ti 	ikj 

The curvature, RJJ, of V has 	K  JL  = 0 and 

/ 0 —2tV1P3 1 1  

	

wij 	) 
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Then it is easy to check that V 2  is Ricci flat, the Euler field, X, is tt90  and the 

preserved volume form is e = t'dt A dx 1  A ... A dx. 	 U 

It is noted in [BEGo] that the projective tractor bundle is the tangent space of 

M and that the D-operator is the connection on this space. Using the above, one 

can check this in a similar manner to the corresponding result in the conformal 

case. 

Proposition 6.9 Manifolds with projective structures are equivalent to Ricci flat 

special affine manifolds with Euler fields in the following sense: 

• Given a projective structure, the quotient of the ambient construction by the 

Euler field can be canonically identified with the original projective structure. 

• A Ricci flat special affine manifold with Euler field can be canonically iden-

tified with a subset of the manifold obtained by performing the ambient con-

struction on the quotient projective structure. 

Proof. Calculation. 	 D 



Chapter 7 

Contact- Proj ective Structures 

After recalling some facts about contact structures, we define a contact-projective 

structure as being a projective structure with a 'compatible' contact structure 

and describe some features of the geometry. The flat model for such a structure 

is Sp(2n, R) modulo a parabolic subgroup. After checking that the definition is 

not so strong as to prevent curved contact-projective structures, we describe the 

tractor bundle and ambient construction, which are inherited from the projective 

case. We shall see that the projective tractor bundle is given a further splitting 

and acquires a skew bilinear form. Similarly, the affine structure associated to a 

projective structure acquires a covariantly constant symplectic form. 

The remainder of the chapter studies an invariant theory problem, using meth-

ods similar to those of both [BEGo] for conformal geometry and [Go2] for projec-

tive geometry. 

Our motivation for studying contact-projective structures is as follows. Firstly, 

they are closely analogous to conformal structures and projective structures, which 

both appear widely in geometry. Indeed, we would suggest that contact-projective 

geometry is associated with the symplectic group in the same way that conformal 

and projective geometry are associated with the pseudo-orthogonal groups and 

special linear groups, respectively. In view of these relationships, we expect that 

contact-projective structures may appear in applications, although we have as yet 

been unable to find any. Finally, we see that the invariant theory methods of 

[BEGm] and [Go2] etc. can be adapted to study problems in the invariant theory 

92 
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of a parabolic subgroup of Sp(2n + 2, R), with applications in finding invariant 

differential operators under the action of Sp(2n + 2, R) on 

7.1 Contact Structures 

Definition 7.1 A contact form on a 2n+1 dimensional manifold, M, is a 1-form, 

9, non-degenerate in the sense that, at each point, 

GA (dO)tm :A 0, 

where (dO)n denotes the n-th exterior power. 

Notice that if 6 is a contact form and 1 is a nowhere vanishing function on 

then QO is also a contact form. 

Definition 7.2 A contact structure is an equivalence class of contact forms, [9], 

where 9 .-' 0 if 0 = 2O for some nowhere vanishing function, ft We will often 

regard a contact structure as being a line bundle valued 1-form. 

7.1.1 The Contact Distribution 

A contact structure defines a 2n-dimensional distribution, given for any 6 in the 

contact structure by 

V={UeTM : 

known as the contact distribution. A consequence of the non-degeneracy of the 

contact form is that dO provides an isomorphism between V and its dual. 

In addition, each contact form, 0 defines a unique vector field, Y E TM, known 

as the characteristic vector field, by insisting that 0(Y) = 1 and Y_i dO = 0. 
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7.2 The Flat Model 

xO  
Let W denote R2n+2  with coordinates, X' = 	, i = 1,.. . , 2n, and let 

xoo 

f1\ 	 / 

('0 	

0 	1\ = 
° J, 	= ( 

0  
e 	 (Q ) 	 and (j) = 	0 (Q) 0 

—1 0 0) 
0 

where I,, denotes the identity on R. We write Sp(2n,IR) for the group preserving 

Q and Sp(2n + 2, R) for the group preserving Q. Let G =Sp(2n + 2, R)/ ± 12n+2. 

Define P {p e C : pe0  = Ae0  for some A zA 01. Explicitly, P is isomorphic to 

A r 3 	t 

0 Mi Si 	: A >0, mE Sp(2n,R), r3  = AsQ km 

0 0 A -' 

Define a 1-form a on W by a = Q1 X'dX. On p2n-Fl = GIP, the restriction of 

a is a contact structure, while on W, dä is a symplectic form. 

7.3 Curved Contact-Projective Structures 

Suppose we have a projective structure, [V'], on M2?1,  where indices of the 

form i', j', k' and so on, run through 1,. . . , 2n, oo, while indices such as i, j, Ic etc. 

will run through 1,. .. , 2n. We will sometimes write e.g. Oi  for the corresponding 

components of O. We will again assume that we are only using connections which 

are defined by nowhere vanishing sections of S(1), where £(-2n - 2) is identified 

locally with the canonical bundle, ic. Now suppose we also have a contact structure 

on M, which we regard as a 1-form, e, taking values in some line bundle, L. Then 

e A (dO)n gives a trivialisation of L' ® ic, and so we have L = £(2). Thus a 

nowhere vanishing section, T, of 6(1) also defines a contact form, Oi = 7--2e11. 
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Definition 7.3 A contact-projective structure is a contact structure, e1, together 

with a projective structure, [V 2 ], which are compatible in the sense that, for each 

choice of scale, we have 

V(i9F) = 0 	and 	W,.,k,9k, 	0. 	 (7.1) 

Suppose that we have a geodesic for which the tangent at some point lies in the 

distribution, V. Then the first of these equations is sufficient (although not nec-

essary) to ensure that the tangent remains in V—if W' is a tangent to a geodesic, 

so that U2'V 2' U' oc U' and if U2'02, = 0 at some point, then V(iO3 i) = 0 ensures 

that u'v1(U'e') = 0. 

Lemma 7.4 Given that V (2101 )  = 0, the condition W 2ll"l9k' = 0 is equivalent to 

	

V'V'9k' = Oj'Pk'i' - °k'Pj'i'. 	 (7.2) 

Proof. It follows easily from V(,9,) = 0 and the Bianchi identity R [ l 1 F ]  = 0, that 

Vil V3 'Ok' = RFkI1 F 01'. 

	

Then the result follows upon substituting for R from (6.2). 	 0 

7.3.1 Existence of Curved Structures 

A priori, it is, of course, possible that the equations, (7.1), for the compatibility 

of a contact structure and a projective structure, force any contact-projective 

structure to be locally isomorphic to the flat model. We prove the following 

Theorem 7.5 Given a contact form, 0', there exists, locally, a connection V 2 1 

satsifying (7.1) for which the Weyl curvature has non-zero components. Then it 

follows (see §6.3) that the contact-projective structure defined by 0il  and V 11 can 

not be locally isomorphic to the flat model. 

Suppose we have a contact form, 0'  on M. It follows from a classical theorem of 

Darboux (see e.g. [Bl] and references therein) that, about every point of M, there 
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exist coordinates (x',. . . , x 2 )  x°°) such that 

9 = dx°° - 
	

dxi. 

Then a basis (e l .... , e, )  e+i,... , e2n, e) for TM can be taken to be 

ía + 	a 	a  + x a 	a 	a a 

	

x+ 	 n 
'9X 1 a°''' a-v 	0x00 ' 3xfl+1'"' 19x2' axoo ) - 

Note that the non-zero commutators of these vectors are 

[e, e+1] = —e, 	i= 1,... ,. 	 (7.3) 

Then we write the connection V 2' as 

V1' U' = (Ui') + "k' 
Uv'. 

The condition V(1103 1) = 0 is that r(ill) = 0, while, the condition that V 2' be 

torsion-free is easily seen to be that 

lei, , e3 i] = 2r, 1  eJ'. 

Together with (7.3) this gives 

( 0 —In  
1 rk 'A = 0 	and 	(F.1) = 	I 	0 0 1il 

0 0 o) 

Since the components 	are forced on us, to prove theorem 7.5 we only need to 

show the following: 

Proposition 7.6 Let 	be as above. If we choose the components of I,, to be 

zero apart from 

=r, 
= 2n± 2' 	

= I = 	and F = - 
00 	fiOO 

where we write ñ for 2n, then W1lsOk' = 	= 0 but W has non-zero 

components. 
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Proof. The curvature of V 2 ' is given by 

k' 	 m' 	 m' 	2 m' rk' = e1 	- e3  F11  + 	I'jij - 'm' 	- 

from which it is a straightforward but tedious task to calculate that 

1 
Pnn • 	= 	4(n+1) 

1 
- 4(n+1) 

= 2n, j' = 00, 1' = 2n 

= oo, j' = 2n, 1' = 2n 

with all other components of P2  and R1 3 P° 1 1 being zero. Then together with (6.2) 

this gives W,°° 1, = 0. 

To complete the proof we simply need to exhibit a non-zero component of 

T14T,•,k, It is easy to check that for n 	1, 

1 wn _Dn --  
ñl n+1 - 1 ñ1 n+1 - ii+1 

and for ri = 1, 

Vr72002  = R2001 2  = 1- 
4 

.. 

7.3.2 The Splittings of TM and T*M 

Let (e i ,. . . , e) be a basis for V. We use (e l , . . . , e 21 , eoo  = Y) as a basis for TM. 

Let (e',. . . ,e, el = 9) be the dual basis for T*M. 

Since V(jl O3i = 0, dO has components V1 O3 . In terms of this basis, we have 

( 	

( 0 )Y il  
1

Y) \ 

and 	

V'O3 = (Qij 

0 

0 0) 

where Q j  is skew, and provides the isomorphism between V and its dual. Let Qii 

be the inverse of Q j , defined by Q'Qjk = 82• Unprimed lower case indices are 

raised and lowered according to 

V = V 2 QI3 	and V = QiJV 
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Under change of scale, f = 	we have the change of connection as in (6.1) 

and O' = ci2 o1, so 

ci2  (v93 1 + TiA, - 

We can write this as 

W Qi _T3 ) 

Ti 	0 

from which it is easy to see that 

1 ) 

If we now change to the basis (e i ,. . . , e2 , fl for TM with the corresponding 

dual basis for T*M,  we find that the components of vectors and co-vectors are 

transformed according to 

ç,ri

( 

	

)

(vi_Tiv00 
and 	(U U) = (U 	2 (U + 

  

 
~100

(7.4) 

In other words, for each choice of projective scale, we have the splittings 

= 6(2) S 	and 	S' = S(-2) ED S, 	 (7.5) 

with the transformation under change of scale following from (7.4). 

7.3.3 The Connections on V and TM 

One can represent a vector field , U, in V by a field U' on TM satisfying Oi, U' = 

0. Similarly, one can represent a co-vector field, U, in V*  by U' modulo 9. We 

define a connection, V/ on V by representing V - Ui and VV  3  respectively by 

v i, Uj,  + yi'uk'(v.,Oki) 	

(7.6) 
v iluil - 

One can check that this is consistent. Note that Qjk  is represented by V' V'Ok' 

and so it follows from (7.2) that 

VQjk =0. 
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Under change of projective scale ? = 	we have 

V 2 U3  = V, U3  + T2U' - UT3  + ulcrko2, 

and 	V..Uj = 

where T i  = 

Theorem 7.7 The connection V 1' can be expressed in terms of V2 , R 2 'and 

where 	k  denotes the curvature of V. and V denotes the vector field, Y. 

The proof consists of lemmata 7.8 and 7.9 and propositions 7.10,7.11 and 7.12. 

Lemma 7.8 V'Y' takes the form 

•, 	/ _Pj.  _pi 
(V'Y3)=I 	

2 	00 

0 

Proof. Firstly, from the definition of Ye', we have 

= vi, (e31Y) - 	= 0. 

Secondly, since 0 = Vk' (Y'VO 3 ) = Y'Rl 11k lO1' + (V j'9ji)(VwY'), it follows 

that 

(V'O')(Vk'Y') = Fj'k' + O 3'Y ' P'k'. 

The 'jk"-component of this is QVk'Y' = — P3k', from which the result follows. 

* 

Lemma 7.9 The traces of RjkL  are as follows: 

R 21  = (2n - 1)P31 , 	RizkI = 2PkL, =  0 	and 	R12 = 

Proof. Applying V' to V 3 'Vk'Oz' = 20[k'Pl']j', skewing over i' and j' and projecting 

onto V gives 

Rik1 - R.jflk = QkPz 3  - QizPkj - Q 3 kPzi + QjlPk2 . 

This, together with the Bianchi identity (projected onto V), R [jJc L]  = 0, easily 

gives the result. 	 n 
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Proposition 7.10 Letdenote the curvature of V, and let 	= 	Then 

vi,U3 
= KU-7  •1 	 V ( .0 — P'. U°° IVU J + (R3k Rk)U - Piuoo) 

v_i Uoo +Uz . 	 V U-   

and 

= ( 	vu3  + 	 V j Uc,, + PUk " 

3 	 00 

Proof. We need prove only the first of these, as the second then follows. Note that, 

for a function, f, on M, V2 3 f is represented by V'V3'f - yW(v k,f)(v j,oj ,) 

then, since V 2 ' is torsion-free, it follows that 

(vz - z) f = — 2Q(f). 	 (7.7) 

By using the representation of (7.6) and applying lemma 7.8, we find that V73  U 

is given in terms of the components of V 2' V2  Uk'  by 

= VVU/C + P kU - 

Taking the skew part, bearing (7.7) in mind, we obtain 

RZJ'U1 - 2QjjVU/C - 	k - p kQ.1 + .FQ 1 ) U1 - 2Qij  - ii 1 

Contracting over the indices i and k, using the first statement of lemma 7.9, then 

multiplying by Q' and rearranging gives 

VU = 	+ (Rk - R)U 
	

(7.8) 

From O31V 21Ui' = V1(91U 3') - U"(V1O1) together with (7.8) and the definition 

of V2  we see that 

( Ui \ = ( vui V Tn  + (R3/C - k)1T) I-I 

o) 	u2 	 0 

Finally, it follows from lemma 7.8 that 

( 0 \ (_PJ U 	P cc U00  
Vu 1 	1=1 

rT00 , t V.Uoo 'VU- 

701 

 
-4 	 -00 
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Proposition 7.11 

= 2n± 
.PZ. 	and 	P = - 	+ 

2n-F 
vvii)

2n ( 	
i 

Proof. By calculating the 'ijk' components of V,VyYIc',  using 7.8 and 7.10, and 

skewing over i and j, one finds 

= 2V P' 
-00 

Contracting over the i and k indices leads to the first result. The second result 

	

follows from a similar calculation. 	 o 

Proposition 7.12 The curvature Rijkl  of V/ can be expressed as 

ijk1 = Wi 3 kz + Q(&1 - Rkz) - 2Qk[iF]1 - 2Qz[P3]k 

and Wk1  is totally trace-free with respect to Q. It follows, by representation 

theory, that Wk1 necessarily vanishes if n = 1. 

Proof. The form of Rijkl  is given by a simple calculation, using proposition 7.10, 

so we just need to check that W 3 k1 is trace-free. It follows from (6.2) that Wkz = 

Rikz - QkP3z + Q3 kPil, from which it is easy to check using lemma 7.9 that Wk1 

is trace-free. 0 

7.4 The Contact-Projective Tractor Bundle 

Since we have a projective structure, we have a tractor bundle and connection as 

in the previous chapter. The splitting (7.5) of £ means that, for any projective 

scale, we can identify the tractor bundle with the direct sum 

= £(1) ED 0 '(-  1) 

with the transformation under change of scale given by 

V0 	V0_TVi_TV00 

	

= 	V - TiVOO 	, 	 (7.9) 

j7oo 	 V 00 
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where V ° , V and VOO are sections of S(-1), S(—l) and 5(1) respectively. Simi-

larly, the splitting of E' gives the identification, for any projective scale 

91 = 5(1) 

with the transformation law 

((JO Oi Uoo)=(Uo U+TU0  Uoo +TUi+Too Uo), 	(7.10) 

with U0 , U and U being sections of S(-1), S(1) and 5(1) respectively. 

7.4.1 The Skew Form on 

The contact structure e1 defines a section of E(1), which in any projective scale 

is given by 

0i =(0 eu), 

and DI Oj  gives a section Qij  of 	of the form 

- 	 0 	9.' ( 

Qjj := D10 = 
" _ei' 

It follows from (7.1) and (7.2) that VuIQJK = 0. 

In terms of our splitting, 

0 	01 

01 = (0 0 1) 	and 	Qij = 	0 Q 0 

—1 0 0 

It is easy to check, using (7.9) and (7.10), that Qjj provides a canonical isomor-

phism between 5' and S. Note that 9, = X 1 Q1j . 

7.4.2 The Tractor Connection 

From proposition 7.10 we see that the tractor connection on 5I  given in (6.5) and 

(6.6) can be written in the form 

V 0 V O _PkV !c _PV00  

Vi 	V' = 	V O JIj 
 

V 00 	 v_ivoo+Vi 
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and 

	

V° 	 VV0 - POokVk - POØOO  V°° 

	

V00  Vi 	= 	Vi+(R2 k _R3 k )V 1c _PV 0o  

	

V00 
	 V 

00 v00±vo 

The connection on £ follows using the isomorphism given by Q. 

7.4.3 Tractor Curvature 

The tractor curvature is inherited from the projective case and therefore vanishes 

if and only if W2,3ic', = 0. Since V'QJK = 0, it follows that 1 i'j'KL = Zj''LK, and 

so the curvature, 1iIj/'L, is given in block form by 

( 0 —2V[lP3 l]j  —2V[lP3 F]00  

pkl 

	

irk 	—2V[2, 

	

0 	0 	0 	) 

7.4.4 The Characterisation of a Contact-Projective Struc-

ture by its Tractor Bundle 

We have shown that a contact-projective structure gives rise to a tractor bundle 

with connection and a Qij.  Conversely, suppose we are given a manifold, M, with 

a projective tractor bundle and connection along with Qij,  a flat, non-degenerate 

section of Ejjj. In a given projective scale, we can write Qij in the form 

- 	(0 	e. '\ 

	

IJ =  I 	 I, 
oil  A23 ) 

for some 9y  and some skew tensor A i ty . Then 

	

-( 	0 	 - A'k' 
V!QJK = I 	 = 0, 

\ —V 1'03 ' - 	V'A 3'k' + PililOki - Pi'k'Oj' ) 

so that VO3  = Aity, V(101) = 0 and then WlI'FOkl = 0, from (7.2). Since we 

have a projective tractor bundle with connection, we have a projective structure on 

M, and for any projective scale, O, the projecting part of X 1 Q1j  is a compatible 

contact form. Thus the existence of a bundle of the above type is equivalent to 

having a contact-projective structure. 
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7.5 The Ambient Construction 

Theorem 7.13 Let Mnbe a manifold with a contact-projective structure and let 

M be the total space of ((-1) (with the zero section deleted). Then lvi carries a 

natural special affine structure with an Euler field and covariantly constant sym-

plectic form and is Ricci fiat. 

Proof. Given a projective structure, we define M to be the affine manifold given by 

theorem 6.8 and use the coordinates given therein, determined by some choice of 

projective scale. Such a choice of scale also determines a contact form, 0 = Odx'. 

Let e denote the 1-form on M defined by 

O(V) = t2 9(7rV), 	for V e T*Jv1 

where 7r : M -+ M is the natural projection. In terms of the standard basis, 

= (0 t20). Then Q := dtB is a symplectic form on M. In fact, from (6.8) and 

(7. 1), we see that 

IJ = Vi 6i =  
0 	toil 

—to il 	t2 VilO3 l 

Again using (6.8) and (7.1), one can check that VIQJK = 0. 	 U 

Theorem 7.14 Let M be a Ricci fiat affine manifold with an Euler field, X', 

and a covariantly constant symplectic form, Qjj. Then the quotient of M by X' 

has a natural contact-projective structure. 

Proof. Applying proposition 6.7 gives us a projective structure on the quotient, 

M. Now define 6 1  = X'Qjj . It is easy to check that vA)i  = Qjj. Then, since 

X J E)i  = 0 and x'v 1 e = e, we see that e1  represents a covector field on M of 

weight 2. Note that e A (d) is given by Xi (Q)n+l,  which is nowhere vanishing 

since Q is a symplectic form and we are working in a neighbourhood where X' 

has no zeros, and so e1  represents a contact structure. One can check as in §7.4.4 

that VJQJK = 0 imposes the compatibility conditions. 	 0 
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Proposition 7.15 A manifold with a contact-projective structure is equivalent to 

a Ricci fiat affine manifold with Euler field and covariantly constant symplectic 

form (in the sense of proposition 6.9). 

Proof. Follows essentially from proposition 6.9. In addition, one has to check only 

that on performing the construction of theorem 7.14 and then that of theorem 7.13 

one ends up with the same symplectic form. This is easily seen from the proofs of 

theorems 7.13 and 7.14. 0 

7.6 Parabolic Invariant Theory 

Let W, G, Q, e0  and the parabolic subgroup, P, of G be as in §7.2. We denote by 

a the 1-dimensional representation of P where the element 

A r 	t 

0 m s 

0 0 A' 

acts by A". A Levi factor, L, of P is given by elements of the above form with 

82 = 0 (hence r3  = 0) and t = 0. Let 

= {jets at e0  of functions on W, positively homogeneous of degree k}, 

with, for example, .F'(k) defined in the obvious way. G acts on the space of pos-

itively homogeneous functions by (g f)(x) = f(g'x) where g e G. Since P 

preserves the ray through e0 , we have an induced action of P on (k). Paralleling 

the conformal case, we have a P-module isomorphism given by evaluation at e0 , 

and a preferred element e e WO a1  given by the evaluation of the coordinate func-

tions, X', at e0 , which we write e=Eval(X'). The coordinate derivative ô/ÔX' 

defines a P-equivariant map 

FJK ... M(k) 	JK ... M(/c - 1). 

For k e 10,1,2 ... 0" W* may be regarded as the polynomials on W which 

are homogeneous of degree k. This gives us an inclusion Q' W* - .F(k). As will 
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become apparent from the following algebraic description of .F(k), there exists a 

natural complement, Fk,  so that as P-modules, 

(k)Fk Ok W* 

Proposition 7.16 As P-modules, 

{ (T(°), TM . . .) : 	E 	T/V 0 Uk_I, } 
(k) = 
	el T 11  = (k - 1)T (1) , 1 = 0,1,2,... 

and ifke {0,1,2,...},then 

= 	

(T 1) , T(' 2) ,...) : T 1  E O' W* 0 Uk_I, eJ T'' = 0 } 
-Fk

and for I > k, eJ 	= (k - l)T('). 

Proof. Given f e .F(k), one can define T 1  E O W 0 Uk_I by 

Eval(OjOj . . . aKf). 1 1J...K 

Then it follows from Euler's equation for homogeneous functions that 

	

eiT'' = (k - l)T 1 . 	 (7.11) 

For f E .Fk, T °  = ... = T(k) = 0. Conversely, such a list of tensors is easily seen 

to give an element of .F(k). 	 U 

The definition of an invariant of the module Fk parallels the conformal case in 

the obvious way. Again, we consider only homogeneous invariants, denoting the 

total homogeneity degree by d. 

It follows from Weyl's theory (see appendix B) that we can construct invariants 

from complete contractions of e, Q_ 1 and the TM. From the linking conditions, 

we see that we can write such an invariant without any occurrences of e. 

Definition 7.17 A Weyl invariant is a linear combination of complete contrac-

tions of the form 

contr (Q' 0 . . . 0 	0 T" ® ... 0 	 (7.12) 

all taking values in the same a. An invariant which can not be written in this 

form is an exceptional invariant. 
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Definition 7.18 We say an invariant, I : .Fk —+ ciq , is a weak Weyl invariant if 

there exists m e N and a map 

C : k - Omw ® Umq, 

given by a linear combination of partial contractions of the tensors 	e and Q_ 1 

such that 

Proposition 7.19 Every invariant I: .Fk —+ a is a weak Weyl invariant. 

The proof of proposition 7.19 appears after the following lemma. 

Lemma 7.20 An invariant, I, can be expressed as a linear combination of com-

plete contractions of the quantities 

QJJ 	and 	TI...K...,  where r+s>k+1. 
r 	a 

Proof. Applying Weyl's theory for L and removing 0' indices using (7.11), we see 

that any invariant can be written as a linear combination of complete contractions 

over the lower case indices of 

Qi) 	and 	T...k 	where r + s > k + 1. 
1• 	 S 

Then since 	= Q'b1j  — O000  + 0000 , for b E ®2  W, we can rewrite Q 

contractions as Q contractions then eliminate '0'-indices using (7.11). 	0 

Proof of proposition 7.19. Let m be the maximum number of oo's in the expression 

for I given by lemma 7.20. Replace the oo's by free upper case indices and add 

e* 's if necessary to bring the number of free indices in each term to m. C is then 

obtained by symmetrisation. Clearly, = I. One can view C as a map into 

C)m W ® clq+m by raising indices. It is sufficient to show that 

C—e® ... ®eI:J k — m W®o qm  

vanishes. This follows by the highest weight argument of lemma 4.9, since (Dm W® 

C is an irreducible representation of gc,  the complexification of the Lie algebra of 

G. 	 11 
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7.6.1 Invariants of Degree d> 2n + 1 

Lemma 7.21 We can take the integer, m, which occurs in the proof of proposi-

tion 7.19 to satisfy m < —d - q 

Proof. Since each T 1  takes values in 01  W ®a3  with j <0 and C is a contraction 

of d such tensors and takes values in 0m  w 0 we must have q + m < —d. 

10 

Tn 

Proposition 7.22 There exists a map C : F, —4FIJ  9q+m) with the property 

that Eval(C) = C and a P-equivariant map I: :Fk —+ F(q) with Eval(I) = I such 

that 
M 

OTJ ... K = x'x. . . X'1. 	 (7.13) 

Proof. The proof is analogous to that of proposition 5.18. 	 0 

Lemma 7.23 Let f E F(r). Then 

01 (X'f) = (2n+2+r)f, 

with the result also holding for homogeneous tensor valued functions. 

Proof. Simple calculation. 

Theorem 7.24 Let I : Fk -+ cx, be an invariant of degree d> 2n + 1. Then I is 

a Weyl invariant. 

Proof. Take a : 	FL...K(q + m) as given by proposition 7.22 and apply 

ôi 9. . . ôj  to both sides of equation (7.13). On evaluation at e0, the left hand 

side gives a Weyl invariant. From lemma 7.23, the right hand side, on evaluation 

at e0, gives a non-zero multiple of I, providing (2n+ 2 + r) 54 0, where r runs from 

q to q + rn - 1. From lemma 7.21, we see that this can be achieved if d> 2m + 1. 

11 
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7.6.2 Invariants of Degree d < 2n 

Theorem 7.25 Let I: Fk 	orq  be an invariant of degree d < 2n, polynomial in 

the components of 	. . , T(L). Then I is a Weyl invariant and can be written 

as a linear combination of complete contractions using only 	. . . , T( 1 ) 

Proof. Define F1 ..K  and construct 	. ,T(') from a list of symmetric tensors 

. . . , u with lower case indices, as in the proof of theorem 5.20. Then F'-.-k  

vanishes on substitution and is a linear combination of partial contractions of 

• ,u 1)  which as a formal expression is identical to FJK  if we replace lower 

case indices by upper case indices, u's by T's and Q by  Q. Applying theorem B.8 

gives that Fuj .. . c vanishes formally and the result follows in an identical manner 

to that of theorem 5.20. El 

7.6.3 Invariants of Degree d = 2n, 2n + 1 

It is clear that non-zero Weyl invariants do exist in degrees 2n and 2n + 1. One 

might, however, expect exceptional invariants to arise analogously to the conformal 

case in degree d = 2n and to the projective case in degree d = 2n + 1 (see [BGo] 

and [Go2]). We give an example of a degree 2n + 1 invariant which, at least for 

n = 1, is exceptional. For k = 1, 

TijTi oo  

is easily seen to be an invariant with d = 2n + 1 and q = —2n - 3. In the case 

n = 1, the independent, non-zero Weyl invariants for k = 1, q = —5 and d = 3 are 

1
T 	ri-i 'T' rpfJKL

1 - IJJIKL.L 

and 

i- 	 Irr,KLJ 
- 1 

ri-i 

 IJ
1q, 

 KL ' 

Expanding these two Weyl invariants shows that for n = 1, the above invariant is 

not a linear combination of Weyl invariants and is therefore exceptional. 
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7.6.4 Applications 

An invariant of .T(k) defines a scalar valued (non-linear) differential operator on 

functions of projective weight k which is invariant under the action of Sp(2n+2, R) 

on p2n+1  The sub-module (j W*  of F(k) corresponds to the kernel of an invariant 

differential operator. Thus the invariants found above define invariant differential 

operators on functions of projective weight k, depending only on derivatives of 

the function lying in a space complementary to this kernel in the space of jets. 

Theorems 7.24 and 7.25 say how all of these invariants can be constructed, with 

the exception of those in degrees 2n and 2n + 1. (See also [BEGm] §12). 

The ambient construction and the tractor bundle both supply ways of finding 

invariants of curved contact-projective structures. The problem is to find whether 

all invariants arise in this way. It should be possible to apply techniques similar 

to those used in the conformal, projective and CR cases ([FGm2], [Go3] and [F], 

respectively) to reduce this problem to that of a problem in the invariant theory 

of the subgroup, F, of Sp(2n + 2, R), which could then be studied using methods 

used in the above invariant theory. 



Appendix A 

Calculations 

A.1 Proof of Lemma 5.8 

We break lemma 5.8 into several lemmata, and give brief sketches of the proofs. 

Lemma A.1 Let ' be a skew tensor, with Eb = w"b and V'b = k'b, and suppose 

XA=O mod Q 2 . If(n+k'—w'+2)O, then db=O mod Q. 

Proof. X A b = 0 mod Q2 = 6(X A ') = 0 mod Q. Since 8X A +X A 6 = 

(n+E—V+2), we have 

(n+k'—w'+2)b—XA(6'cb)O mod Q. 

Since dXA = 0, the result follows by taking d of the above equation. 	U 

Lemma A.2 If (n - 2k - 2m + 4) 54 0, r and s satisfy 

XAr+XA(XJs) = 0 

and 	dr + d(Xi s) = 0 mod Q. 

Proof. As f is skew, Xi (Xi f) = 0. By applying Xi to equation (i), taking XA 

of the result and cancelling some Q's we obtain the first result. The second follows 

from the first upon application of lemma A.1. 	 U 

111 
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Lemma A.3 v and w satisfy 

(n -  2k + 2)X A v + 2(m - 1)X A (XJ w) = 0 mod Q2  

Proof. As in the previous lemma, 8(8!) = 0, so we apply 8 to equation (iii), take 

XA of the result and cancel some Q's. 

Lemma A.4 If (n - 2k - 2mn), (n - 2k - 2m - 2),. . .,(n - 2k - 4m) 0, then c 

and e satisfy 

dc = 2me mod Q. 

Proof. We take Lm_l  of equation (ii), and use the second part of corollary 5.3 to 

obtain 

d(m_hf) = Cm,n,ic{2(fl - 2k - 2m)X A c 

+Q(2m(n - 2k - 4m + 2)e + 2(m - 1)dc)} mod Q2 , 

where Cm,n,k = _2m_ 2 (m _1)!(n _2k_2 m _2)(n_2k_2 m _4) . . . (n-2k-4m+4). 

Now suppose we have f', c' and e' such that c' and e' have the same eigenvalues 

under E and V as c and e, satisfying 

df' = X A c'+ Qe' mod Q2 . 	
(A.1) 

Applying A to (A.1) gives 

dLf' = 2dc' + 2(n - 2k - 4m)e' mod Q 

(from which we see that de' = 0 mod Q if (n - 2k - 4m) 0 0). 

But applying dö to (A.1) and using de' = 0 mod Q gives 

d1f' = (ii - 2k - 2m + 2)dc' - 4me' mod Q. 

From these last two equations, we deduce that (n-2k-2rn)dc' = 2(n-2k-2m)e'. 

Substituting c' = 2Cm,n,k(fl - 2k - 2m)c and e' = 2mCm,n,k(n - 2k - 4m + 2)e + 

2(m - 1)dc gives, for Cm,fl,k 0, 

(n - 2k - 2m)(n - 2k - 4m + 2)dc = 2m(n - 2k - 2m)(n - 2k - 4m + 2)e mod Q 

and the result follows. 	 11 
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Lemma A.5 If (n - 2k - 2m + 4) :~4 0, then r and v satisfy 

2(m— 1)XAr =XAv mod Q2  

Proof. As 8XJ + Xi 6 = 0, we take 8 of (i) and add this to Xi of (iii) which, 

after cancelling some Q's gives 

X A (Xi v) - Q((n - 2k - 2m + 6)r + 2Xi s + v + Xi w) = 0 mod Q2 . 

If we take XA of this equation and apply lemmata A.2 and A.3 we obtain 

2(m - 1)(n -  2k - 2m + 4)X Ar = (n -  2k -  2m + 4)X A v mod Q2  

and the result follows. 

Lemma A.6 If (ri - 2k - 2m + 2) and (n - 2k - 2m + 4) 0, then r, s and c 

satisfy 

2ms = dr + Xi c mod Q. 

Proof. We have dxi f+Xi df = (E+V)f = 0. So we apply d to equation (i) and 

add this to Xi of equation (ii). Taking 8 of the resulting equation and applying 

the second part of lemma A.2, we get 

(n-2k-2m+2)(2ms—dr—Xic)=O mod Q 

and the result follows. 	 Cl 
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Symplectic Invariant Theory 

B.1 Weyl's Theory for the Symplectic Groups 

We first recall Weyl's invariant theory for the symplectic group (see [We]). We 

again have a first main theorem (theorem B.2)—giving a list of generators for the 

invariants; and a second main theorem (theorem B.3)—giving a list of relations. 

We then give some extensions to this which we need in §7.6, in the manner of 

appendices A and B of [BEGm]. 

Let (v(1), 	. , v(M)) be a collection of vectors in R2  and define Q j  and 

Sp(2n, T1) be as before. We denote by ['v(s), (2) ] the skew product given by Q. 

Sp(2n, R) acts on vectors in V 1  in the usual way. Note that the irreducible 

representations of Sp(2n, C) are the spaces of tensors with Young symmetry which 

are trace-free with respect to Q (see e.g. [FH]). 

Definition B.1 An Sp(2n, 1l)-invariant is a polynomial in the components of the 

0) which is invariant under the Sp(2n, R) action. 

Theorem B.2 The generators for the algebra of invariants are given by 

1<i<j<M. 

D 
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Theorem B.3 Those invariants which vanish on substitution form an ideal, gen-

erated by polynomials of the form 

E +[x(°) , y (°) ][x(1) , x (2) ] . . . [ (21) , (2) ] 

> 	, y(°)] [x('), y (')] [x(2),  y(2)]  [x(3), x( 4)] ... [x (2 ' 1) , x (2 ' ) ] 

>2 ±[x(°) , y( °)] [x('), (l)] ... [(2n) , y (2fl)} 

where (x (°) ,. . . ,x () ) and (y (°) ,.  .. , y(7Z)) are arbitrary 2n + 1 element subsets of 

(u( 1 ) , 	, u(' ) ), and the sum runs over all permutations of (x(°),... , 

0 

Corollary B.4 If M < 2n + 1, then any polynomial in the [u(2),  v (s ) ] which van- 

ishes on substitution vanishes identically. 	 U 

Following from theorem B.2, we have 

Theorem B.5 Let (UM.... , U(M) ) be a collection of tensors in R2n*.  Then any 

Sp(2n, R) invariant can be written as a linear combination of complete contractions 

of the form 

contr (Q 1  ® . . . ® Q' ® u''® . . . (& U(id) ) . 	 (B.1) 

0 

Now suppose that each u is symmetric. We say that a linear combination of 

partial or complete contractions is allowable if it contains no internal contractions 

and vanishes formally if it vanishes identically or if it necessarily vanishes because 

of the skew-symmetry of Q. In particular, an allowable linear combination of 

contractions vanishes formally if the linear combination of contractions obtained 

by replacing each occurrence of Qjj  by Q23 — Qjj  vanishes identically. 

Proposition B.6 Let (u ( ') ,. . . , u(d)) be a collection of d symmetric tensors on Vn 

of ranks r1 ,. . . , rd and let I be a linear combination of formal complete contractions 

of the u and Q, of degree 1 in each u. If I vanishes on substitution and d < 2n 

then I vanishes formally. 
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Proof. Let (v ( ') ,.. . , v(d)) be a collection of d vectors on 1R2 . By substituting 

U1 = ®r (l) 

we construct a polynomial, J, in the [v('), v(k)].  Clearly, J vanishes formally if and 

only if I vanishes formally. If I vanishes on substitution, so must J, then from 

corollary B.4, if d < 2n, then J and hence I must vanish formally. 	 0 

Proposition B.7 Let (u( 1 ) ,..  . , u() ) be a collection of symmetric tensors and 

let I be a linear combination of formal complete contractions of the with Q of 

degree d. If I vanishes on substitution in dimension n and d < 2n then I vanishes 

formally. 

Proof. Let I be of degree d1  in each u. Taking the complete polarization (see, 

for example, [We]) gives a linear combination of formal complete contractions of 

a collection of d symmetric tensors 

: I = 1,. ..,IV[ ; k = 1,.. .,d1 ) 

which is of degree 1 in each u(l,c),  which vanishes formally if and only if I vanishes 

formally. Since this linear combination vanishes on substitution if I vanishes on 

substitution, the result follows from applying proposition B.6. 	 0 

Theorem B.8 Let (u (1) ,. . . u( ) ) be a list of tensors as above. Let I be a linear 

combination of allowable formal partial contractions of Q and the of degree d 

and formally taking values in the space of symmetric rn-tensors. Then if I vanishes 

on substitution in dimension n and d < 2n - 1, then I vanishes formally. 0 

Proof. Suppose we have a linear combination, I, of formal partial contractions 

of degree d in a collection (u( 1 ) ,.  . . , UM) of symmetric tensors, taking values in 

the space of symmetric rn-tensors. We add a symmetric rn-tensor u(M+l)  to our 

- 	 collection and form a linear combination of formal complete contractions of the 

and Q by contracting I with u(M+1).  Applying proposition B.7, we find that this 

linear combination vanishes formally if I vanishes on substitution and d < 2n - 1. 

It follows that I vanishes formally. 	 0 
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