
An ATMS-Based Architecture for Stylistics-Aware
Text Generation

Hasan Kamal

Ph.D.
Institute for Communicating and Collaborative Systems

Division of Informatics

University of Edinburgh
2001

Abstract

This thesis is concerned with the effect of surface stylistic constraints (SSC) on syntactic
and lexical choice within a unified generation architecture. Despite the fact that these
issues have been investigated by researchers in the field, little work has been done with
regard to system architectures that allow surface form constraints to influence earlier
linguistic or even semantic decisions made throughout the NLG process. By SSC we
mean those stylistic requirements that are known beforehand but cannot be tested
until after the utterance or — in some lucky cases — until a proper linearised part
of it has been generated. These include collocational constraints, text size limits, and
poetic aspects such as rhyme and metre to name a few.

This thesis introduces a new NLG architecture that can be sensitive to surface stylistic
requirements. It brings together a well-founded linguistic theory that has been used
in many successful NLG systems (Systemic Functional Linguistics, SFL) and an exist¬
ing AI search mechanism (the Assumption-based Truth Maintenance System, ATMS)
which caches important search information and avoids work duplication.

To this end, the thesis explores the logical relation between the grammar formalism and
the search technique. It designs, based on that logical connection, an algorithm for the
automatic translation of systemic grammar networks to ATMS dependency networks.
The generator then uses the translated networks to generate natural language texts
with a high paraphrasing power as a direct result of its ability to pursue multiple paths
simultaneously. The thesis approaches the crucial notion of choice differently to previ¬
ous systems using SFL. It relaxes the choice process in that choosers are not obliged to
deterministically choose a single alternative allowing SSC to influence the final lexical
and syntactic decisions. The thesis also develops a situation-action framework for the
specification of stylistic requirements independently of the micro-semantic input. The
user or application can state what surface requirements they wish to impose and the
ATMS-based generator then attempts to satisfy these constraints.

Finally, a prototype ATMS-based generation system embodying the ideas presented in
this thesis is implemented and evaluated. We examine the system's stylistic sensitivity
by testing it on three different sets of stylistic requirements, namely: collocational,
size, and poetic constraints.

ii

Acknowledgements

I acknowledge with gratitude the support, help and encouragement I received from
many individuals in conducting my research at the University of Edinburgh and com¬

pleting this thesis.

First and foremost, my sincerest thanks are due to my supervisor Dr. Chris Mellish
for providing individualised and patient supervision. His countless questions and com¬
ments helped me convey my ideas in a more coherent way. I have been privileged to
have had him as my first supervisor.

I would also like to thank Dr. Mick O'Donnell who had been my second supervisor at
some stage before he left Edinburgh. Even away, he continued to provide an abundant
source of help.

I also owe many thanks to my thesis external examiner Dr. Richard Power and internal
examiner Dr. Graeme Ritchie. They were extremely thorough and constructive in their
comments. The final version of this thesis owes much to their careful reading.

During the years I spent at UoE I had the opportunity to learn from many excel¬
lent teachers. In particular, I benefited from Henry Thompson, Chris Brew, Geraint
Wiggins, and Roberto Zamparelli.

My thanks to all friends and colleagues at Room E17 in South Bridge: those who al¬
ready left and those who are still there, working hard. In particular, I thank Hua Cheng,
Daqing He, Virginia Biris-Brilhante, Yannis Kalfoglou, Daniela Carbogim, Chris Lin,
Joao Cavalcanti, Sonia Schulenburg, John Atkinson and Siu Wai Leung.

During the research time, I and my family were sponsored by the University of Bahrain,
State of Bahrain.

Finally, my thanks must go to my family here and back home. They have always
believed in me and encouraged me to pursue my studies. I am greatly indebted to my
wife Sahar and my children Yousif, Maryam, and Salman. They have been a source of
love, joy, and comfort during difficult times.

iii

Declaration

I hereby declare that I composed this thesis entirely myself and that it describes my
own research.

H Y Kamal

Edinburgh
April 30, 2001

iv

Acronyms

Term Meaning
ATMS Assumption-based Truth Maintenance System
CNF Conjunctive Normal Form

A logical formula is in CNF if it is a conjunction of disjunctions of literals.
DNF Disjunctive Normal Form

A formula is in DNF if it is a disjunction of conjunctions of literals.
GF Generation Fault
IE Inference Engine
LC Lexical Choice
NLG Natural Language Generation
RMS Reason (ing) Maintenance System
SAS Situation-Action Specification
SFG Systemic Functional Grammars
SFL Systemic Functional Linguistics
SNAC System Network to ATMS Converter
ssc Surface Stylistic Constraints
SSF Surface Stylistic Fault
SSR Surface Stylistic Requirements
STAGE STylistics-Aware GEnerator
TMS Truth Maintenance System
WAG Workbench for Analysis and Generation

A system for the analysis and generation of sentences using Systemic
Grammars (developed by Michael O'Donnell).

V

Contents

Abstract ii

Acknowledgements iii

Declaration iv

Acronyms v

List of Figures xiv

1 Introduction 1

1.1 Natural Language Generation 1

1.2 Motivation for this Research 3

1.3 Solution Proposed and Contributions 5

1.4 Organisation of the Thesis 7

1.5 Thesis Scope and Key Assumptions 9

1.6 Summary and Outlook 10

2 Lexical and Linguistic Choice in NLG 11

2.1 What is Lexical Choice? 12

2.2 When does it Take Place? 13

2.3 Different Models of Lexical Choice 14

2.3.1 Trivial Model 14

2.3.2 Structure-Mapping 15

2.3.3 Classification 15

2.3.4 Complex Models 16

vi

2.3.5 Statistical Model 17

2.4 Factors Influencing Lexical Choice 18

2.4.1 Denotational and Connotational Constraints 18

2.4.2 Grammatical Constraints 19

2.4.3 Communicative Goal Constraints 20

2.4.4 User Model Constraints 20

2.4.5 Salience/Perspective Constraints 20

2.4.6 Deep Stylistic Constraints 21

2.4.7 Surface Stylistic Constraints 22

2.5 Lexical Choice and Other NLG Decisions 25

2.6 Flexible NLG Architectures 27

2.6.1 Integrated Architecture 27

2.6.2 Feedback Architecture 28

2.6.3 Blackboard Architecture 28

2.6.4 Revision-Based Architecture 29

2.6.5 Summary 30

2.7 Stylistics-aware Generation: Promising Directions 31

2.8 Summary and Outlook 32

3 Systemic Functional NLG 33

3.1 Introduction 33

3.2 Systemic Functional Linguistics SFL 34

3.3 Systemic Functional Grammars SFG 35

3.3.1 The System 35

3.3.2 Realisation 39

3.3.3 Rank and Constituency 42

3.4 How the Lexico-grammatical Resource is Used 44

3.5 The Semantic and Lexico-grammatical Interface 44

3.5.1 Preselection-based Approach 46

3.5.2 System-based Approach 47

3.5.3 Feature-based Approach 48

vii

3.6 Systemic Sentence Generation 49

3.7 Lexical Choice in Systemic NLG 51

3.8 Limitations of Current Generation Algorithms 53

3.9 Discussion: Choosing not to Choose 55

3.10 Summary and Outlook 57

4 The ATMS Framework 58

4.1 Introduction 58

4.2 Truth Maintenance Systems (TMS) 59

4.3 Families of TMS 61

4.4 The ATMS: Basic Concepts 63

4.4.1 Nodes 64

4.4.2 Justifications 64

4.4.3 Dependency Networks 64

4.4.4 Labels 65

4.5 ATMS Algorithms for Label Maintenance 68

4.6 How the ATMS Works 70

4.7 The Encoding Problem 71

4.8 Solution Construction 72

4.9 Efficiency Considerations 74

4.9.1 ATMS Complexity 75

4.9.2 Implementation Optimisations 75

4.9.3 The IE Duty 76

4.10 ATMS for NLG: why? 78

4.10.1 Backtracking Generation 79

4.10.2 Chart Generation 81

4.11 Summary and Outlook 82

5 From SFG to ATMS 84

5.1 Introduction 84

5.2 The Need to Find Multiple Selection Expressions 85

vm

5.3 The Organisation of the Rest of the Chapter 88

5.4 Logical Interpretation of System Networks 89

5.5 Logical Specification of the ATMS 92

5.6 From Systemic Grammars to ATMS Representation 92

5.6.1 Simple System Representation 94

5.6.2 Simultaneous Systems Representation 96

5.6.3 Disjunctively Entered Systems 97

5.6.4 Conjunctively Entered Systems 98

5.7 Dealing with Conjunctively Entered Systems 100

5.7.1 Logical Formula for the Whole Network 101

5.7.2 Factorising the DNF Formula 104

5.7.3 Pros and Cons of the Factorisation Algorithm 109

5.8 Creating System Networks without Conjunctive Gates 110

5.8.1 Implications of Conjunctive Gates 110

5.8.2 The meaning of system simultaneity Ill

5.8.3 Networks without right-facing braces 112

5.9 Compilation of Complete Grammatical Resources 115

5.10 Summary and Outlook 119

6 ATMS-Based NLG 122

6.1 Introduction 122

6.2 ATMS-Based Generation 123

6.2.1 Tailoring System Network Snapshots 124

6.2.2 Creating Instances of a Network 127

6.2.3 Concept-Function Association 130

6.2.4 Lexicalisation of Function Bundles 131

6.2.5 Interfacing Expansion Triangles 133

6.3 The Overall System Architecture 134

6.4 Plain vs. Stylistics-aware Generation 136

6.5 Complete Example 136

6.5.1 Compilation of the Grammar 138

ix

6.5.2 The Generation Procedure 142

6.6 Summary and Outlook 145

7 Stylistics-Aware Generation 146

7.1 The Other Dimension of the Process 147

7.2 Surface Stylistic Constraints 150

7.3 Hard vs. Soft Stylistic Constraints 152

7.4 How to Capture Surface Stylistic Properties 153

7.5 Using Functional Constituency 153

7.5.1 Function Bundle Lexicalisation 154

7.5.2 Border Meta-Functions 155

7.5.3 Order Rules 156

7.5.4 Complete Sequences 157

7.5.5 Constituency Level 157

7.6 Situation-Action Framework 158

7.7 Situation-Action Specification (SAS) 159

7.8 Accommodating the Stylistics-Aware Mode 161

7.9 Examples of SSCs 161

7.9.1 Word Adjacency Constraints 162

7.9.2 Poetry Metre Constraints 166

7.9.3 Text Size Constraints 168

7.10 How the Situation-Action Approach Works 170

7.11 Summary and Outlook 175

8 System Implementation and Evaluation 177

8.1 Implementation Notes 177

8.1.1 SNAC Input/Output 178

8.1.2 STAGE Input/Output 179

8.1.3 The ATMS Component 180

8.2 System Evaluation 181

8.2.1 Translation Phase 181

x

8.2.2 Generation Phase: Empirical Results 183

8.3 Discussion 194

8.4 Limitations 196

8.5 Summary and Outlook 198

9 Conclusions 199

9.1 Contributions of this Thesis 199

9.2 Future Directions 202

9.3 Concluding Remarks 205

Bibliography 206

A The Lexico-grammatical Resources 218

A.l The Systemic Grammar Networks 218

A. 1.1 Clause Network 218

A.1.2 Group Network 224

A.2 SNAC Translations of the Grammar 227

A.2.1 The Format of a Network Snapshot 227

A.2.2 The Clause Network Snapshot 229

A.2.3 The Group Network Snapshot 229

A.3 The Lexicon 231

B Generation Examples 233

B.l Micro-Semantic Input 233

B.2 Example Choosers 235

B.2.1 Clause Network Choosers 235

B.2.2 Group Network Choosers 236

B.3 Generation Trace 236

C Situation-Action Specifications 251

C.l Word Adjacency Constraints 251

C.2 Poetry Metre Constraints 252

C.3 Text Size Constraints 254

xi

List of Figures

1.1 Natural language generation phases 3

2.1 Flexible NLG architectures (reproduced from [De Smedt et al. 96]) . . . 27

3.1 The English GENDER system and the POLARITY system 36

3.2 Related English clause systems 36

3.3 Different system types and their semantics 38

3.4 The English pronoun network 39

3.5 A clause network fragment with realisation rules in boxes 41

3.6 The rank and constituency relationship 43

3.7 The steps of realising a constituent 45

3.8 The steps of generating a sentence 46

3.9 Inter-stratal mapping (from [Teich 99]) 47

3.10 The MOOD TYPE system and its chooser 48

3.11 A decision tree for the chooser of a typical Number system (from [Mann 82]) 49

3.12 Different domains using the UM's taxonomy (from [Bateman et al. 90]) 51

4.1 Problem solving systems 60

4.2 The graphical convention for dependency networks 65

4.3 An example dependency network 65

4.4 A fragment of the English clause network 66

4.5 The dependency network of figure 4.3 with computed node labels 67

4.6 ATMS incremental label update for some node n 68

4.7 Graphical representation of a dependency network 70

4.8 Solution construction exploiting the nature of ATMS 73

xii

4.9 The search space for the simple generation task 79

4.10 The branches of the search space visited by ATMS-based search 80

5.1 A simple system network 85

5.2 A tailored version of the system network of figure 5.1 88

5.3 An exhaustively labelled system 89

5.4 Different systemic configurations and their logical interpretations 90

5.5 An exhaustively labelled network with several connected systems 91

5.6 An example dependency network 93

5.7 An example simple system 93

5.8 Dependency network representations of simple systems 95

5.9 The meaning of disjunctive entry conditions 97

5.10 A typical conjunctively entered system 98

5.11 An impermissible form of ATMS justifications 98

5.12 A simple clause network 99

5.13 The corresponding dependency network of the clause network 100

5.14 A flattened representation of the system network of figure 5.1 103

5.15 A staged dependency network with exactly the same NETWORK label
of that of figure 5.14 103

5.16 A network with simple systems only 105

5.17 A network with a conjunctively entered system 107

5.18 A dependency network corresponding to the network of figure 5.17 . . . 108

5.19 The English pronoun network (from [Winograd 83]) 108

5.20 The dependency network of the pronoun network 109

5.21 A conjunctive gate Ill

5.22 A network with two simultaneous systems 112

5.23 System networks equivalent to that of figure 5.22 112

5.24 A system network and its corresponding braces-free version 113

5.25 A braces-free version of the English pronoun network 114

5.26 A system network with nested AND gates 115

5.27 A braces-free version of the network of figure 5.26 115

xiii

5.28 A simplified clause network 119

5.29 A snapshot compilation of the simplified clause network 120

5.30 A possible instantiation of the simplified clause network 121

6.1 The generation algorithm 124

6.2 An inter-stratal preselection resulting in multiple selection expressions . 126

6.3 A solution triangle for a tailored network 129

6.4 Interfacing of realisation triangles 133

6.5 An overview of the ATMS-based NLG system 135

6.6 An example semantic input representation 135

6.7 Clause and Group network fragments 137

6.8 A snapshot of the clause network of figure 6.7 139

6.9 A snapshot of the group network of figure 6.7 140

6.10 The dependency network constructed from the clause snapshot 141

6.11 Sample sentences with different lexical and syntactic choices 145

7.1 The stylistic dimension of the generation process 148

7.2 The functional constituency of a surface form 153

7.3 The process of promoting and demoting surface stylistic properties . . . 159

7.4 Plain-mode interfacing of realisation triangles 171

7.5 Interfacing of realisation triangles in the stylistics-aware mode 176

8.1 An overview of the ATMS-based NLG system 178

8.2 Effect of nondeterminism on generation time 188

xiv

Chapter 1

Introduction

This chapter gives an overview of the thesis. It starts by describing the
context and motivation for this work. Then it briefly describes our solution

and summarises the contributions made in this project. It also presents

the structure of the rest of the thesis by briefly describing the content and

purpose ofeach chapter. Finally, it states what is and what is not addressed
and what assumptions we make in this work.

This thesis is concerned with the effect of surface stylistic constraints (SSC) on syntactic
and lexical choice within a unified generation architecture. Despite the fact that these

issues have been investigated by researchers in the field, little work has been done with

regard to system architectures that allow the surface form constraints to influence

earlier linguistic or even semantic decisions made throughout the NLG process.

1.1 Natural Language Generation

Natural Language Generation (NLG) is a relatively new field compared to Natural

Language Understanding (NLU) which analyses human-produced texts and puts the

meaning in computer-internal representation. NLG works in the other direction: from

computer-internal representation to natural language. The aim of the NLG process

is to produce high-quality comprehensible texts from some computer representation

of data using language grammars and lexicons. This form of NLG which is known

as "generation from first principles" is a complex process compared to other simpler

1

CHAPTER 1. INTRODUCTION 2

methods such as template-based techniques which in essence fill in blanks of predefined
structures.

Examples of successful NLG applications include the automatic production of tech¬

nical documentation from product specifications [Rosner &: Stede 94], generation of
weather reports from collected readings [Bourbeau et al. 90], summarisation based on

the contents of relational databases [O'Donnell et al. 00], and preparation of medical
documents from patient records [Binsted et al. 95]. As the NLG technology matures,
more and more applications that require computer-human interaction will have text

generation components of some sort. This means that generators will not only have to

produce understandable texts but they will also have to be stylistically appealing.

Natural language generation is a complex process which is usually decomposed into

manageable modules. Generally speaking, the NLG process is divided into two levels:
the strategic level (deciding 'what to say') and the tactical level (deciding 'how to say

it') [Thompson 77]. More recently, applied NLG systems tend to break the process

into four smaller modules as shown in figure 1.1. According to [Mellish 95, Reiter 94],
the task of each module can be more or less summarised as follows:

1. Content Determination: This concerns determining what meaning is to be

conveyed. The result of content determination is a representation in terms of non-

linguistic concepts. No decision is made at this stage about the sequence of events,

words, or phrases to use to express the details.

2. Sentence Planning: This involves chunking the meaning into sentence-sized units,

deciding what will be embodied in nouns and what in verbs, and deciding on the global

syntactic structure of the text (e.g. thematisation, tense).

3. Surface Realisation: This is concerned with determining the syntactic structure

and word order based upon the grammar rules of the target language. At this stage, it

is possible to represent individual words in terms of a root, together with grammatical

information preparing them to be inflected correctly at a later stage.

4. Morphology and Post-Processing: This is concerned with the production of

the actual inflected words (for the output) using the rules of word formation of the

target language. Other context-dependent processing of the words might take place at

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Natural language generation phases

this stage (e.g. capitalising the first letters of certain words).

The above breakdown of the generation process is seen from a processing perspective.

Others look at the NLG process from a functional perspective where the whole process

is divided into smaller linguistic operations. Cahill and Reape identify seven such tasks
in their attempt to locate where different systems tend to perform these linguistic tasks

during generation [Cahill Reape 99]. They give the following non-exhaustive list of

component tasks: lexicalisation, aggregation, rhetorical structuring, referring expres¬

sion generation, ordering, segmentation, and salience/theme processing. Although not

every NLG system incorporates all these tasks, they give an idea of what it is like to

go from a conceptual representation to a natural language text.

A generation system is characterised by what modules it has and how these mod¬
ules are allowed to interact with each other. The interaction constraints, or their

absence, define the system architecture. For example, the flow of control shown above

is known as the standard pipeline architecture. Most NLG systems are based on this

consensus architecture as was first pointed out by [Reiter 94]. This claim is recently
validated by the RAGS group in their search for a reference architecture for NLG sys¬

tems [Cahill et al. 99]. There are, however, other possibilities as we will discuss later
on in Chapter 2 (Section 2.6).

1.2 Motivation for this Research

At the end of the day, texts generated by machines are for humans to read. Therefore,
it is always desirable to have natural, interesting and appealing texts; just the way

we would like them to be. No matter how sophisticated the underlying modules and

intermediate representations are, the quality of an utterance is judged by the surface

CHAPTER 1. INTRODUCTION 4

form (i.e. how it stands as a whole). Moreover, human writers sometimes revise an

utterance just because its surface form has stylistic faults although it is otherwise

perfect (i.e. grammatical and comprehensible). Stylistic constraints on generation can

be divided into deep constraints such as the formality, euphemism, and force of an

utterance, and surface constraints such as the length, collocational restrictions, and

poetic aspects (e.g. rhyme and metre) of an utterance. As one can see, the surface

stylistic characteristics of an utterance are directly affected by the lexical choices and

syntactic decisions made earlier on.

Surface stylistic requirements constrain the surface forms and render them either good
or bad. Generally speaking, it is not until the final utterance has been fully generated
that we come to know what surface problems it has or hasn't. Lexical choice interacts

highly with the syntactic distribution and morphological shape of words. For example,

the French masculine pronoun le and feminine pronoun la are abbreviated to I' when

they are followed by a word that starts with e. To avoid ambiguity, the choice between
la and Sarah for example depends on the next word; something that might not be

known until after the surface form is actually linearised.

Moreover, revision of individual words is not totally a surface matter as might first ap¬

pear. It may lead to necessary revision of other parts because of syntactic and semantic

constraints. For example, suppose that for some stylistic reasons (e.g. informal text)
the verb "own" is to be replaced with "have" in "the house owned by Tom is beautiful".

The resulting sentence "the house had by Tom is beautiful" is either grammatically

imperfect or sounds more formal. Other alternatives like "Tom has a beautiful house"

disturb other semantic issues such as the theme of the sentence.

Little work has been done to incorporate surface constraints in the overall genera¬

tion process. In Section 2.4.7, we will discuss why this has been the case so far.

[Evelyne &: Pierette 94] characterise the NLG research effort in the past and explain

why lexical choice has not received enough attention:

"Lexical choice has often been side-stepped, not because it is a daunting

issue, but rather because the interest in natural language generation first
focused on syntactic, morphological and discourse aspects of language."

CHAPTER 1. INTRODUCTION 5

Among the work on lexical choice, most of it is dedicated to the paradigmatic side of
lexical choice. We think it is time to incorporate both paradigmatic and syntagmatic

aspects in lexical choice. Roughly speaking, by paradigmatic lexical choice we mean

choosing a lexical entry that best realises the semantic piece; and by syntagmatic we

mean choosing a lexeme — among the applicable ones — that with the surrounding
lexical items satisfy the surface stylistic requirements.

Moreover, lexical choice is intimately related to architectural constraints in addition to

other linguistic and stylistic constraints. The style of text to be generated influences

our choice of a system architecture and vice versa [Paiva 99]. No wonder then that
researchers dealing with surface constraints have started questioning the appropriate¬

ness of the pipeline architecture. [Reiter 00] argues for an alternative architecture in
order to satisfy the text size constraint in the STOP project. Other applications that
have strict surface constraints such as poetry generation required the abandonment
of the pipeline, in spite of its advantages, in favour of the non-modular integrated
architecture [Manurung et al. 00]. Others prefer to make a compromise by keeping
the pipeline and providing a feedback mechanism between text planning and linguistic
realisation [Rubinoff 00].

Our work in this thesis is an attempt in this direction. We are motivated by the

influence that the surface constraints have on earlier stages such as lexical choice,

syntactic choice, and — even though not within the scope of our current work —

content selection. Because the surface stylistic characteristics of a text do not start

to appear until after most of the syntactic and lexical choices have been made, our

aim in this thesis is an NLG architecture that facilitates the efficient revision of just

what is necessary as well as preventing the generation of structures that will give rise

to unstylistic utterances.

1.3 Solution Proposed and Contributions

Lexical choice — like other generation tasks — is not an autonomous module within

the NLG process. It interacts highly with the syntactic and semantic decisions made

during the process. We propose a new NLG architecture that handles this interaction

CHAPTER 1. INTRODUCTION 6

between different NLG tasks. In particular, it accounts for the effect of surface stylistic

constraints on earlier lexical and syntactic decisions.

We do this by bringing together a well-founded linguistic theory (Systemic Functional

Linguistics, SFL) that has been used in many successful NLG systems and an existing
AI search mechanism (the Assumption-based Truth Maintenance System, ATMS). The

linguistic theory is chosen because of the way it handles lexical, syntactic, and seman¬

tic knowledge in one formalism using the same representation language. The search
mechanism is chosen because it caches important search information and avoids work

duplication. Moreover, it can pursue multiple solution paths simultaneously without

explicit backtracking. We establish the logical relationship between the two formalisms.

Fortunately, the two representations turned out to be logically similar which makes the

ATMS a natural way to go.

The outcome of this work is an ATMS-based architecture for systemic natural language

generation that is sensitive to the surface stylistic requirements specified at the outset

of the generation process. We list below the contributions this thesis makes:

• The thesis identifies the limitations of current generation architectures with re¬

gard to the interaction between SSC and earlier linguistic tasks such as syntactic

and lexical choice. In particular, systemic generators are studied to see why they

do not account for SSC although it is claimed that their underlying linguistic

formalism can be used for representation at all levels: ideational, grammatical,
and lexical.

• The logical relationship between systemic grammar networks and ATMS depen¬

dency networks is established. Inspired by the works of [Mellish 88], [Brew 91],
and [Calder 99] which interpret systemic grammar networks in logic, we take
the idea further. We explore the logical connection between the two representa¬

tions (i.e. SFG and ATMS) in an attempt to represent system networks using

dependency (or causal) networks.

• An algorithm for the automatic translation of system networks to ATMS de¬

pendency networks is designed. The translation algorithm takes conventional

systemic grammars (i.e. system networks and realisation statements) and maps

CHAPTER 1. INTRODUCTION 7

them to an equivalent ATMS representation. The translation algorithm can be

used in applications other than text generation, since there is no reason which
makes the system networks' framework specific to linguistic applications [Mellish 88].

System networks simply specify how combinations of features may imply or be
inconsistent with other combinations.

• A new ATMS-based generation architecture is developed that uses translated
networks to generate natural language texts with a high paraphrasing power as

a direct result of its ability to pursue multiple paths simultaneously.

• A framework for user-specified stylistic requirements is developed enabling the

generation system to work in one of two modes: plain or stylistics-aware mode.
In the latter mode, the user can use the framework's vocabulary to write his own

surface stylistic requirements which the generator then attempts to satisfy.

• A prototype ATMS-based generation system embodying the ideas presented in
this thesis is implemented and evaluated. From the NLG side, this attempt can

be seen as a new system architecture to experiment with; and from the ATMS

side, it represents yet another application showing the versatility of the ATMS
as a reasoning component.

In the remainder of this thesis, and in particular in Chapters 5, 6, 7, and 8, we present

our ideas and implementations of them to support the above claims. In Chapter 9, we

revisit the claims and justify the contributions made.

1.4 Organisation of the Thesis

In this section we provide an overview of the structure of this thesis. We briefly describe
the content and purpose of each chapter.

• Chapter 1: Introduction. In the introduction we have given an overview of the
thesis. We have described the context and motivation for this work as well as

the main contributions in this thesis.

CHAPTER 1. INTRODUCTION 8

• Chapter 2: Lexical and Linguistic Choice in NLG. In this chapter, we take a

tour of the body of related literature in order to show how various aspects of

the lexical choice problem have been addressed in the NLG field. We also focus

on literature related to choice of system architecture and then to linguistic and

stylistic choice within a given architecture.

• Chapter 3: Systemic Functional NLG. Systemic natural language generation is

discussed in Chapter 3. We first introduce the linguistic foundation: Systemic
Functional Linguistics (SFL). Then, we show how the linguistic theory is used to

generate natural language texts. We characterise the generation algorithms of the

existing systemic generation systems. This chapter concludes by discussing why it

would be expensive for existing systems to generate texts that have certain surface

stylistic requirements and what plausible alternatives there are to overcome this

problem.

• Chapter 4: The ATMS Framework. In this chapter we introduce the Assumption-

based Truth Maintenance System (ATMS): what it is and how it works. In

particular we focus on label updating and propagation of information between

nodes. Some efficiency considerations are mentioned. We also give explanatory

examples and discuss the problem of encoding. We present different techniques
for using the ATMS to construct solutions.

• Chapter 5: From SFG to ATMS. In Chapter 5 we establish the logical relation¬

ship between the systemic functional grammar (SFG) networks and the ATMS

dependency networks. This relationship helps us solve the problem of encod¬

ing; an essential question that needs to be answered in any application trying
to use the ATMS as its reasoning engine. We then design — based on the logi¬
cal connection between the two representations — a translation algorithm that
takes general systemic grammar networks and transforms them into dependency

networks, a representation that the ATMS can reason with.

• Chapter 6: ATMS-Based NLG. In this chapter we present our ATMS-based

NLG architecture. We show how the systemic grammars and semantic input are

presented to the generation system which then uses them to generate text relying

heavily on the ATMS as its search mechanism.

CHAPTER 1. INTRODUCTION 9

• Chapter 7: Stylistics-aware Generation. In Chapter 7 we state what we mean

by stylistics-aware generation. We design a framework for user-defined stylistic

requirements which can be used to parameterise the generation process described
in Chapter 6. We experiment with some sets of surface stylistic requirements,

namely: word adjacency constraints, poetry metre specification and text size

limitation.

• Chapter 8: System Implementation and Evaluation. In this chapter we present

the implementation details of a prototype generation system that demonstrates

the ideas discussed in the previous three chapters. Also, we evaluate the system's

two main phases: translation and generation. We evaluate the translation stage

in terms of the grammar size and the outcome of the translation process. Then,
different modes of generation are compared and the effect of the particular set of

stylistic constraints on the performance of the generator is discussed.

• Chapter 9: Conclusions. Finally in Chapter 9 we conclude the thesis by revisiting

the contributions made in this work. We also point towards future work on the

framework by suggesting possible extensions to our work in this thesis.

1.5 Thesis Scope and Key Assumptions

• The linguistic theory that this work is based upon is Systemic Functional Lin¬

guistics SFL. The generation system depends on the ATMS to do the reasoning.

The idea is to combine a well-established linguistic theory with an existing AI
search technique in a new NLG architecture that takes into consideration the

effect of surface stylistic constraints on syntactic and lexical choices. No attempt

was made to improve on any one of them.

• The work in this thesis focuses on techniques for sentence generation. Hence, the

input to the generation process reflects this fact in that no history of previous

utterances is provided, although this can obviously affect the stylistic appearance

of a longer span of text.

• The types of surface stylistic requirements we consider here are for exposition

purposes only. The aim is to show how stylistic constraints, such as poetry metre

CHAPTER 1. INTRODUCTION 10

and sentence length restrictions, can seamlessly be incorporated in the generation

process using the same ATMS representation language. These examples should

guide the user to write his own stylistic preferences.

1.6 Summary and Outlook

This chapter has given an overview of this work. We started with a brief introduction
to the natural language generation process, its modules, and how they are standardly
related in the consensus pipeline architecture. Generating text that has required sur¬

face properties, being our motivation in this project, we then discussed how this is

directly related to lexical choice and indirectly to deeper generation decisions. The
theme of the next chapter is, therefore, lexical choice. We see how this problem has

been approached in the literature, its relation to the generation architecture, and how
it interacts with other NLG tasks.

Chapter 2

Lexical and Linguistic Choice in
NLG

As the introductory chapter has made clear, we are interested in the

interaction between lexical choice, syntax, and surface stylistic constraints

(SSC) and in system architectures that allow SSC to influence earlier lin¬

guistic decisions. In this chapter we take a tour of the body of related
literature in order to show how various aspects of the lexical choice prob¬

lem have been addressed in the NLG Held. Regarding the lexical choice

problem per se, we discuss its deHnition, when and how it is carried out,

and what factors inHuence this task. We then discuss the interaction be¬

tween lexical choice and the other NLG tasks as well as the relationship

between it and the architectural paradigm. We then discuss why we think

little work has been done with regard to the problem at hand and what

needs to be done.

NLG is a process of choice at many levels. At the heart of the process is lexical choice,

as the chosen words will shape the final utterance. At the surface, they stand on behalf

of the deeper syntactic and semantic decisions made during the generation process, and
surface stylistic judgements will have to be based on that linearised lexical evidence.

In case there is a stylistic fault in the utterance, caused by a particular choice of

words in a particular syntactic structure, fixing (or maybe avoiding) it depends on the
architecture of the generation system.

11

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 12

Although the theme of this chapter is lexical choice, we find it inevitable to discuss
other closely related issues such as syntactic choice, surface stylistic requirements, and

architectural constraints. After presenting the lexical choice task, we discuss how it

influences and is influenced by these NLG decisions.

2.1 What is Lexical Choice?

Given a communicative intention, a language generator must select information from
a set of non-linguistically represented concepts, order this information, and linearly
realise the representation in the form of sentences under the guidance of the language

grammar. The process of selecting words that will represent the concepts is termed
lexical choice.

To give a more specific definition of lexical choice we need to make a distinction between

open-class words and closed-class words. Open-class words such as nouns, verbs, ad¬

jectives, and adverbs are also called content words; whereas closed-class words such as

articles, pronouns, and conjunctions are called function words. Open classes are large

and constantly expanding while closed classes are small and stable. The application

of grammar rules entirely dictates the choice of most closed-class words. However, the

choice of open-class words cannot be dictated by the grammar rules but only restricted

by them. Having said that, lexical choice is, therefore, the choice of open-class words.

[Reiter k Dale 00] distinguish between CONCEPTUAL LEXICALISATION and EXPRES¬

SIVE LEXICALISATION. They refer to the process of converting raw data or information
into linguistically-expressible concepts as conceptual lexicalisation. Expressive lexicali-

sation, on the other hand, is concerned with realising a given conceptual representation

using the words of the target language. [Cahill et al. 99] use the term "lexicalisation"
to refer to the CONCEPTUAL LEXICALISATION and "lexical choice" to refer to EXPRES¬

SIVE LEXICALISATION. According to this distinction, we will be concerned with ex¬

pressive lexicalisation or simply lexical choice which we take to mean deciding between
lexical alternatives. In particular, we will be concerned with stylistic lexical choice (i.e.
lexical choice under surface stylistic constraints).

Related to the notion of lexical choice is the distinction between paradigmatic and

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 13

syntagmatic relations. Two open-class words are said to be paradigmatically related
if they can appear in place of each other in correct phrases; they are syntagmatically
related if they appear close to each other in correct phrases [Robin 90]. As we will
see later on, most systems perform paradigmatic lexical choice. This is selecting one

word among a number of open-class words where the syntactic structure has already

been specified. Choosing between old and elderly in the phrase: "The old/elderly
man ..." is paradigmatic lexical choice. It is worth mentioning here that most of the
research effort has focused on techniques for paradigmatic lexical choice as we will see
in Section 2.3.

Lexical choice, however, is not as simple as it may first sound [Nirenburg & Nirenburg 88]
One-to-one mappings between domain concepts and language words are both undesir¬

able and not always possible. They are undesirable because a domain concept may

be expressed by multiple words and, conversely, a single word may express many

concepts [Elliadad et al. 97]. In multi-lingual generation, a one-to-one mapping is
sometimes not possible as there is not always a direct translation of a word from one

language to another [Stede 96a].

2.2 When does it Take Place?

The place of lexical choice within a complete generation system is controversial. For

instance, [Reiter 91] considers lexical choice a content determination task. Some work,
in systemic functional grammar, views lexical choice as just a very detailed part of

syntactic choice which is carried out during surface realisation.

[Elhadad et al. 97] review previous generation systems with regard to the position of
lexical choice in generation based on a two-stage architecture: content planning and

syntactic realisation. They identify the following options:

1. Within the syntactic realisation stage.

2. After content planning and before syntactic realisation (i.e. in between).

3. Divided between the two stages (i.e. some at each stage).

4. Within the content planning stage.

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 14

As a matter of fact, these are all the reasonable possibilities for placing the lexical

choice component in a two-stage architecture. Table 2.1 summarises their findings as

to where different systems perform lexical choice.

option 1 option 2 option 3 option 4

Example Systems
ANA

PHRED
PAULINE

COMET
SPOKESMAN
EPICURE

PENMAN
FN (Reiter's)
Danlos System

Table 2.1: Where different generation systems perform lexical choice

In a RAGS' survey of nineteen applied NLG systems, [Cahill &; Reape 99] concluded
that systems vary in where they perform lexical choice, although there seems to be a

tendency towards lexical choice being the last or one of the last tasks to take place.

Form the above discussion, we can see that lexical choice is a controversial NLG task

which can take place almost anywhere in the process: within the planning components

or within the realisation components. Even worse, some researchers believe that lexical

choice "does not constitute an autonomous module within the process of generation ...

[and that it] can influence a conceptual choice and vice versa" [Evelyne & Pierette 94].
Therefore, the effect and presence of lexical choice extend throughout the generation

process.

2.3 Different Models of Lexical Choice

2.3.1 Trivial Model

Early approaches to lexical choice assumed a one-to-one mapping between words and

concepts. For example, if the input to the lexicaliser has the logical form predicate

ANIMAL, it outputs "animal" as a realisation of the concept ANIMAL. Although this

is worthwhile from an engineering point of view, it simplifies the task to the extent of

eliminating it from any theoretical interest [Reiter 91].

The one-to-one mapping between words (or phrases) and concepts does not solve the

choice problem; it only avoids it. While, in principle, one could have a grain-size for

concepts so that each word gets mapped to a concept, this only shifts the choice task to

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 15

the module that loads the knowledge base with concepts. This is clearly not the best

solution since lexical choice is obviously a linguistic matter. Moreover, the one-to-one

mapping is both undesirable and not always possible as mentioned in Section 2.1.

2.3.2 Structure-Mapping

Structure-mapping systems take, as input, a semantic structure that needs to be com¬

municated to the user and they search for pieces of the input structure that are equiv¬

alent to a concept with an associated word. These pieces are then removed from the

input and the word is added to the output. The matching and substitution process is

repeated until the input is completely reformulated as a set of lexical units. For exam¬

ple, the structure {human, sex:male, age-status:adult, wealth:high} might be
reduced to {wealth:high} after matching {human, age-status : adult, sex:male}
with the surface unit "man". The remaining input structure is further substituted

with "rich" and we finally get the surface realisation "rich man". Examples of sys¬
tems that use this model can be found in [Nogier & Zock 91, Sondheimer et al. 89,

Iordanskaja et al. 88].

The problem with this model is that an item cannot be missed out even if it is implied

by others, e.g. {dangerous, human-eating}. Also, nothing can be added even if it
is true and gives a shorter description. For example, {unmarried, human} cannot be
realised as "bachelor" unless sex:male is also in the input. Moreover, this model does

not account for the user model. For instance, if the hearer has a lexical gap then it is

not possible to have a set of words to correspond to a single item of the input, {human,
male, unmarried}, for example, is lexicalised as "bachelor" even if this word is not in
the user's lexicon.

2.3.3 Classification

Classification systems map a concept to one of the near-synonymous words that rep¬

resent a possible realisation of that concept. The first classification systems for lexical
choice were discrimination nets [Goldman 75, Pustejovsky k Nirenburg 87]. They per¬

form lexical choice by providing for each semantic primitive a decision tree with possible

words attached to its leaves. Every word sense has associated with it a set of value

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 16

restrictions that have to be satisfied by the input conceptual representation. If a con¬

ceptual unit satisfies the restrictions of a word sense then that concept will be rendered

using that word. For example, the discrimination net for the primitive concept INGEST

can be related to different verbs such as eat, drink, and inhale. When trying to map a

concept to one of these words, the discrimination net is traversed based on a sequence

of queries regarding the object being ingested. Eventually, the concept will be realised
as eat if the object is solid, drink if it is liquid, and inhale if it is gaseous.

Recently, new models have been developed based on the basic classification approach
such as Edmonds' clustered model. This model claims to be more efficient in represent¬

ing near synonyms by having measures that cut off the ontology at a coarse grain which
"alleviates an awkward proliferation of language-dependent concepts on the fringes of
the ontology" [Edmonds 99].

Classification systems only provide one word as a realisation of a given conceptual

input. They offer no solution when the most specific lexical concept conveys hardly

any information. Also, they can never generate a word more specific than the input even

though one more specific word would be shorter than an exact description providing
several words.

2.3.4 Complex Models

In a complex model, the lexical choice task is not restricted to picking the words from
the lexicon only. Instead, in this model, lexical choice is an involved process that goes

through several stages before it decides on the lexemes to be selected.

For example, in [Elhadad et al. 97], the lexical choice process involves two steps: syn-

t.agmatic decisions and paradigmatic decisions. The syntagmatic decision step first
carries out phrase planning to set the scene for the second stage which they call lex-
icalisation proper. They consider phrase planning part of the lexical chooser because
it can merge two content units in a single linguistic unit which can then be served by

the lexicalisation proper which does a paradigmatic choice of words.

[Stede 96b]'s model of lexical choice can also be considered a complex one since the lex¬
ical choice process also involves several steps: a matching process, application of alter-

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 17

nation rules, and selection of preferred choices based on salience and connotations. The

lexicon he uses is rich and is purpose-built for the task of generating many paraphrases

describing an event. The lexical entries consist of several additional components in
addition to the conventional morphosyntactic features of a word. In particular, verb

entries contain pointers to alternations and extension rules. These alternation rules

simply mean to systematically derive more complex verb configurations from simpler
ones. This means that lexical choice first gets some initial words during the matching

process. This set of words is then enriched by applying the alternation rules. Finally,
the options are ranked based on salience and connotational criteria with the top ones

being preferred.

2.3.5 Statistical Model

A statistical model for lexical choice is usually used in connection with another model.

The 'other' model's job is to arrive at a small set of near-synonyms for a concept.

Statistical methods are then used to choose the most typical or natural candidate in a

given context.

The limitation of this approach, however, is that it only solves part of the lexical

choice problem. That is why it has to be coupled with another model. [Edmonds 97]

experimented with this model at some stage and he admits that it is only part of the

original problem:

"while this lexical problem is weaker than the general lexical choice prob¬

lem, it can be thought of as an important sub-problem, because it would
enable a system to determine the effects of choosing a non-typical word in

place of the typical word." [Edmonds 99]

Unlike the other models which only consider the paradigmatic aspect of lexical choice1,
this approach does have some syntagmatic lexical choice. Therefore, the advantage of

this approach is that it treats lexical choice in the context of other words already

appearing in the surface form.
1 Although [Elhadad et al. 97]'s lexical chooser makes syntagmatic decisions in its initial stage, the
kind of syntagmatic decisions it considers have to do more with planning unlexicalised, lexeme-size
semantic entities than with inter-lexical constraints of surface words.

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG

2.4 Factors Influencing Lexical Choice

18

Constraints influencing lexical choice come from a wide variety of linguistic and non-

linguistic sources. These include, but are not restricted to, syntax, semantics, pragmat¬

ics, and the lexicon. In this section, we review the range of lexical choice constraints

available in the literature of NLG. This does not mean that NLG systems take all of

these constraints into account. Different systems will consider different subsets of these

constraints. Still, some constraints are only acknowledged to influence lexical choice,

but are never incorporated in implemented systems. For each type of constraint, we try

to state a definition, give examples, and show how it affects the way a generator chooses
its words. We also classify each factor according to the paradigmatic/syntagmatic re¬

lations. In fact, we will notice that most of the research effort is directed towards the

paradigmatic constraints on lexical choice. This supports our claim that little work
has been done regarding the syntagmatic constraints that the surface form imposes on

lexical choice.

2.4.1 Denotational and Connotational Constraints

By denotation we mean the relation between the lexical unit and whatever object or

concept it is used to refer to [Matthews 97]. Simply put, denotation refers to the
core meaning of a word. This is the most obvious factor that influences our choice of
words because the last thing we want is to pick a word that is totally inappropriate.
If all factors are reduced to preferences, the denotational factor remains the only and

most important constraint that cannot be overlooked. Denotational constraints are

not usually listed with other factors on lexical choice, only because they are there by
default. However, denotational constraints alone are not enough to push the lexical
choice process forward; words are selected based on other additional factors. When

trying to express a concept, we sometimes look at the thesaurus for a more appropriate
candidate although we have one word at hand. As a matter of fact, the task of lexical
choice arises when the generator has a number of lexical units for expressing a concept

at its disposal. Needless to say, all of these lexical units have the same core meaning:

"So, lexical choice—genuine lexical choice—is about making choices be-

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 19

tween options, rather than merely finding the words for concepts, as is the
case in many past text generation systems" ([Edmonds 99], pg. 135)

On the other hand, connotation is used variously to refer to differences in meaning that
cannot be reduced to differences in denotation [Matthews 97]. [DiMarco &: Stede 93]
characterise the difference between denotation and connotation in terms of truth con¬

ditions: "if two words differ semantically ... then substituting one for the other in a

sentence or discourse will not necessarily preserve truth conditions; the denotations are

not identical. If two words differ (solely) in stylistic features ..., then inter-substitution
does preserve truth conditions, but the connotation — stylistic and interpersonal effect
of the sentence — is changed".

[Stede 96b, Stede 96a] follows this broad definition of connotation. Actually, conno-
tational and stylistic constraints are used interchangeably in Stede's work. Other re¬

searchers in the field, however, take the stance that restricts the meaning of connotation
to that of social implications. As an example of this viewpoint, [Busemann 93] gives
two German words Putzfrau and Raumpflegerin which both mean cleaning woman but

only the latter is used officially as the former carries a depreciatory connotation with

it.

Both denotational and connotational constraints are paradigmatic constraints that

influence the system's choice of one word from alternatives without worrying much

about the surrounding lexemes.

2.4.2 Grammatical Constraints

If the grammatical form of an utterance has already been determined, then the choice

of words expressing a given concept is restricted to those that can appear in such

a grammatical form. The predetermination of the syntactic form is not uncommon

since, under some stylistic conditions, one might prefer to use parallel structures with

surrounding sentences [Iordanskaja et al. 91]. On the other hand, many words have

idiosyncratic grammatical properties. If the generator has decided to choose a specific

word then the potential syntactic structures are restricted to those that can accommo¬

date the pre-selected word. For instance, the word has in the context of TOM HAVING

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 20

THE CAR cannot be passivised. This means that the choice of the syntactic form is

restricted to the active voice yielding something like "Tom has the car". So, syntax
influences lexical choice and vice-versa.

2.4.3 Communicative Goal Constraints

The communicative goal of a system might simply be: inform the hearer. However,

systems that generate text under pragmatic constraints might have richer communica¬
tive goals such as: inform the hearer, warn, encourage, discourage, and/or confuse
him.

It is obvious how these communicative goals influence the choice of words that a genera¬

tor can make in order to realise a given concept. [Hovy 88] in PAULINE and [Elhadad 92]
in ADVISOR II consider these type of constraints and their choices of lexical items differ

depending on the communicative goal(s) that they are trying to satisfy.

2.4.4 User Model Constraints

The output of an NLG system is for humans to read and understand. Therefore, it helps

if a generator has a representation of a user model and it chooses the lexical units based
on what the user knows about the domain, his lexicon, and interests. A text generated

for expert readers in a certain field would be drastically different from another text

directed towards a general audience even though the underlying conceptual knowledge
base is identical. For example, [McKeown et al. 93] use "different strategies in COMET
for selecting words with which the user is familiar." By the same token, text generated

for native speakers of a language is different from text that is generated with non-

native speakers in mind. Different people have different lexicons and different mental

categories. Hence, choosing the right words according to the user's lexicon and mental
classification prevents false implications being communicated [Reiter 91].

2.4.5 Salience/Perspective Constraints

The choice of words is usually dictated by the way we look at things or how much

salience we assign to different participants. Whether we choose to say 'I sold my car to

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 21

him' or 'he bought my car' depends on which participant is in focus [Jacobs 87]. The
same applies to all transfer events that can be reported from different points of views

such as take/give, borrow/lend, and send/receive.

2.4.6 Deep Stylistic Constraints

Style is generally defined as the choice between the various ways of expressing the
same message. [Stede 93] lists the following stylistic features that influence our choice
of words in the process of realising some concept(s): formality, slant, euphemism, ar¬

chaic/trendy, floridity, abstractness and force. We call these deep stylistic constraints
as we differentiate between them and surface stylistic constraints. Deep stylistic con¬

straints are those that can be checked early in the generation process while surface
constraints do not arise until after surface realisation takes place - as will be shown

next. Deep constraints influence the paradigmatic lexical choice and, in general, no

consideration is paid to the surrounding lexemes of the surface form. Below we de¬
fine and give examples of different deep stylistic features, most of them are based on

[Stede 93].

1. Formality: Linguists have thoroughly investigated the formality dimension of
words. It is common for dictionaries to rate words as formal or colloquial. Ex¬

amples of formal/informal pairs are: father/dad, and motion picture/movie.

2. Slant: The choice of words depends on the attitude of the speaker towards the

subject. The speaker may manifest his opinion through the use of slanted words.

Although {human, male, adult} is usually realised as man, one may choose
instead gentleman or jerk for example.

3. Euphemism: Euphemism is used in order to avoid some emotional words in

certain social situations (e.g. pass away instead of die).

4. Trendy/Archaic: If the text is to be trendy then not only should obsolete
and archaic words be avoided but also fashionable trendy words should be used

instead.

5. Floridity: Flowery words are used when the speaker wants to make some kind of

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 22

impression on the hearer. [Hovy 88] gives entertain the thought as a more flowery

expression for consider. In PAULINE, Hovy attempts to enhance the quality of
the generated text in order to achieve various effects.

6. Abstractness: How abstract/concrete one wants to be determines one's choice
of words. An example would be unemployed person (abstract) and out of work

(concrete).

7. Force: Some words are more forceful than others. Consider destroy vs. annihi¬

late or big vs. monstrous .

2.4.7 Surface Stylistic Constraints

Surface stylistic constraints on lexical choice are those that cannot be tested until or

after surface realisation [Reiter 00]. Some may even be delayed until morphology and

post processing. There are cases when one would choose other words after one has

already written a complete sentence because of some syntagmatic factors constraining

the words that can collectively appear in the surface form. Reasons for this may be

the adjacency of words that share the same root, or other rhythmical reasons such as

the ease of reading the text due to adjacent words that sound similar. The following
are examples showing the kind of surface stylistic constraints we mean.

1. Inter-lexical Constraints: Due to unfortunate lexical choices, the utterance

may be awkward or ambiguous when words are linearised although each word is

good in isolation. For example, the French pronouns le, la cannot precede words

starting with e. When that happens, both are abbreviated to V. So that, if

we want to generate (in French) an unambiguous utterance, the choice between

the feminine pronoun la and Sarah depends on the next word [Reiter & Dale 00].

Although simple, this example shows that there are cases where generators cannot

make a final decision on lexical choice until after the surface form has been

linearised and its words inflected.

2. Collocational Constraints: A well known phenomenon of inter-lexical con¬

straints in natural languages is collocations. Collocational constraints require

that certain words co-occur in a sentence while others do not. [Stede 93] gives

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 23

the example of three adjectives which mean very much the same thing but the
occurrence of any one of them depends on whatever comes next. We find rancid

butter, putrid fish, and addled eggs but no alternative combination. As a result,

the choice of word x for concept a can enforce the choice of word y for concept b.

Models that are based on Meaning Text Theory (MTT) have, in the lexicon,

linguistic knowledge governing the usage of words in texts. Among other infor¬

mation, an MTT lexicon includes Lexical Functions (LFs) which are pointers to

other words that are semantically or collocationally related to the entry word. For

example, the functions Syn-,, Sync, and Synn are LFs that designate, respec¬
tively, synonyms with broader, narrower, and intersecting meanings [Mel'cuk 88].
Hence, SynD(assistl) = help.

Collocational constraints are a kind of syntagmatic constraint on lexical choice

since words are chosen partly based on other words being also chosen. However,

collocational constraints represent only a subset of the syntagmatic constraints.

3. Variousness: We define variousness as using different words for the same con¬

cept in a short span of text. Granville's system (paul) was an attempt to pro¬

duce interesting texts by varying the lexical items chosen for a specific con¬

cept. His idea of lexical substitution is to classify synonyms and near-synonyms

into distinct sets based on their connotative qualities. For instance, paul parti¬

tions the synonyms of odour into three sets: positive: {aroma, emanation,

fragrance}, negative: {foulness, stench, stink}, and neutral: {odour,
scent, smell}. Once the decision has been made on a particular connota¬

tion,paul then selects randomly from within the proper set of synonyms making

sure it does not "repeat itself unless every item on the list has already been

used" [Granville 84].

4. Consistency: Although variousness is a positive stylistic feature that makes

the generated text more interesting, too much of it might distract the reader's
attention and turn the text into a piece of agony. Referring to person x in a span

of text as boss, foreman, superintendant, head, master and chief is surely not

helping much in producing less awkward text. So, consistency obviously restricts
the system's choice of words.

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 24

5. Text Size Constraint: In some generation applications there may be some

size constraints on the text that can be generated. For example, [O'Donnell 97]
describes a system for variable length on-line document generation "whereby the
user specifies how long the document should be". Such a requirement influences
lexical choice as some words result in longer utterances because of the way each
word packages information. The accumulative effect of such verbose choices can

result in longer texts. However, the exact length of text is not known until after
the text is generated and compared to the size limit that it is allowed to occupy.

In the STOP project, Reiter discusses how even marginal things like punctuation,

inflection, and font type can play a role in keeping the text within the allowed

limit [Reiter 00]. Also, [Bouayad-Agha et al. 91], in their patient information
leaflets generation project, regard text length and lexical choice, for example,
as matters of style which "require rewording of the text". These constraints
are imposed by the user (the patients in this case): the "patients might object
that the sentences are too long, or that technical words [...] are used instead of
familiar ones". The length of a sentence's constituents is sometimes related to the
structural complexity of it, so more complex sentences tend to be longer [Lin 96].
In general, complex sentences are more difficult for humans to process.

6. Poetic Constraints: In poetic writings, issues like metre, rhyme, and alliter¬
ation all restrict the words that an NLG system can select in relation to what

has already been chosen. Applications that require this kind of text are starting

to appear in the NLG literature such as poetry [Manurung et al. 00], punning rid¬
dles [Binsted h Ritchie 94], and story generation [Bailey 99, Binsted & Ritchie 96]

Researchers acknowledge that considering the interaction between the constraints on

lexical choice is something that is deemed to improve the quality of the generated
texts. For instance, Busemann urges for a new approach to lexical choice which he
calls 'a holistic view of lexical choice' [Busemann 93]. So, why is it that the kind of
surface stylistic constraints we are interested in here have not received enough attention

although they are acknowledged by the researchers in the field? We think that some

of the reasons might be:

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 25

• The inflexibility of the widely used pipeline architecture especially given that we

do not come to know all surface stylistic problems until after the utterance has

been generated.

• For some generators, this is simply not an issue, even if they have an architecture

different from the pipeline, since their applications do not have predefined surface

requirements.

• There are also historical reasons why lexical choice has not received enough at¬

tention:

"Lexical choice has often been side-stepped, not because it is a daunt¬

ing issue, but rather because the interest in natural language genera¬

tion first focused on syntactic, morphological and discourse aspects of

language." [Evelyne & Pierette 94]

2.5 Lexical Choice and Other NLG Decisions

In this section, we discuss the interaction between lexical choice and syntax and argue

that the widely used pipeline architecture cannot handle such interaction. In the next

section, we explore other architectural options which we collectively refer to as flexible
NLG architectures.

Lexical choice interacts significantly with other NLG tasks such as syntactic choice and

even content selection. A generation gap, due to the unavailability of a lexical item

to realise a concept in a semantic input, might require that the syntactic choice made

to realise it is abandoned. It may even require the semantic input to be chunked in a

different way. This brings up the issue of system architecture and whether it permits

any choices to be redone.

Revision of individual words is not totally a surface matter as might first appear. It may
lead to necessary revision of other parts because of syntactic and semantic constraints.

For example, suppose that for some stylistic reasons (e.g. informal tone) the verb

"possess" is to be replaced with "have" in "the house possessed by Tom is green". The

resulting sentence "the house had by Tom is green" is either grammatically imperfect

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 26

or sounds as formal as the original utterance. Other alternatives like "Tom has a

green house" disturb other semantic issues such as the theme of the sentence and may

clash with other stylistic constraints (e.g. rhyme constraints). It also brings with it

ambiguity: is it really a greenhouse, or a house that is green? To avoid ambiguity, one

might say "Tom has a house whose colour is green", "Tom has a house that is green",
or "Tom has a green-coloured house" which are all verbose utterances. Eventually, we

might need to relax the informality requirement a bit. The sentence "The house owned

by Tom is green" although more formal than the have-verb-option is still less formal
than the possess-verb-option. Moreover, it keeps the theme and rhyme of the sentence

intact. This by no means means that the problem is solved; the own-verb-option might

bring with it a new set of problems and we might find ourselves in the same cycle of

trying to satisfy involved constraints.

There is a relationship between lexical choice and system architecture because lexical
choice is one aspect of stylistic variation [DiMarco &; Hirst 93] and style has been shown
to influence and be influenced by our choice of a system architecture [Paiva 99]. The

pipeline — the only architecture introduced so far — is a common architecture used

in many generation systems (hence called the consensus architecture). Information in
a sequential architecture flows in one way through the pipeline. In a rigid sequential

architecture there is no direct feedback between the subtasks of the generation process.

This architecture has the disadvantage of inflexibility. Each module has to reflect
its assumptions on the intermediate representation, hoping that things will go well

eventually. Sometimes, however, the local decisions made at each stage do not add

up to a good overall outcome [De Smedt et al. 96]. We saw in the previous examples
how generating an utterance that is stylistically unacceptable requires undoing previous

decisions. The pipeline, being a one-way architecture, cannot allow for this interaction.

It only allows an early decision to constrain other modules that come afterwards but

does not account for the influence of later choices' constraints.

Next, we present some flexible generation architectures. We discuss the problems they

try to solve by having such flexibility and what the pros and cons of each architecture

are. After this discussion, we restate our problem and point towards promising direc¬

tions as to which linguistic theory and generation architecture are appropriate for our

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG

needs.

27

2.6 Flexible NLG Architectures

Despite the simplicity of the pipeline architecture, it is a rigid framework. NLG appli¬
cations that have special needs opt for other architectures that allow for some flexibility

and/or revision. Moreover, experimenting with new system architectures has always
been a good thing. As a matter of fact, "continued development of grammars and gen¬

eration methods" is considered a longer-term goal by researchers in the field [Hovy 96].

[De Smedt et al. 96] identify five architectures of natural language generators: the

sequential (pipeline), integrated, interactive (feedback), blackboard, and the revision-
based architecture. They are depicted in figure 2.1 except for the pipeline architecture
which was shown earlier (see Section 1.1).

Integrated

Interactive(feedback)

Blackboard

Revision-based

Figure 2.1: Flexible NLG architectures (reproduced from [De Smedt et al. 96])

2.6.1 Integrated Architecture

The integrated architecture differs from the others in that it does not decompose the

generation process into clear-cut subtasks although decomposition is favoured both

from a psychological and an engineering point of view [De Smedt et al. 96]. As a

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 28

result, it has the advantage of flexibility but it lacks the modularity feature. In general,
this architecture supports "generation of pragmatic effects more efficiently than other

systems" [Kantrowitz & Bates 92],

Sometimes it is the only way to go if later stages are allowed to influence the decisions
of early stages. For example, [Manurung et al. 00]'s poetry generator has to give up

modularity for flexibility. Their poetry generation system uses an integrated NLG
architecture. [Kantrowitz Ik Bates 92] in the GLINDA system, also opted for the inte¬

grated architecture for a similar generation task: generation of poetic utterances in a

virtual reality environment.

2.6.2 Feedback Architecture

The interactive architecture allows feedback between consecutive stages. For example,
in [Rubinoff 92, Rubinoff 00] 's IGEN system, interaction between the strategic and the
tactical component is handled via annotations that provide feedback from the linguistic

component to the content planner. Each lexical unit is enriched with annotations

about what extra information it carries, what it makes explicit/implicit, and whether
it is a concise construction or not. For example, if the plan is to inform the user

of something and to make him happy at the same time, IGEN would generate "it is

drizzling" instead of "it is raining". Assuming that the linguistic component cannot

choose between raining and drizzling, it gets back to the planner providing it with the

annotations for each linguistic choice. The planner then prefers drizzling because it
thinks that it can make the user happy by downplaying the unpleasant information.

The drawback of this approach is that it considers each lexical unit in isolation. It does

not consider the context in which this word might appear nor the interaction between
it and the surrounding words. Furthermore, it does not account for the yet-to-come

syntactic and morphological constraints on lexical choice.

2.6.3 Blackboard Architecture

The blackboard architecture allows its modules to post information on the blackboard

without knowing which particular module is going to use it next. So, the order of

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 29

module execution is quite unpredictable and subject to execution time circumstances.

Although any system adopting the blackboard architecture would gain its power from
the flexibility of the order in which each module is triggered, there needs to be extra

knowledge to control priorities when more than one knowledge source is triggered. To

the best of our knowledge, the only proposal to use a blackboard architecture to do
revision in NLG is by Wong and Simmons2. However, [Robin 94] states that "they are

not specific about what type of information is to be posted on the blackboard during
revision". He also concludes that the inherent flexibility of such an architecture would

allow manipulations that affect several layers at once. This makes it hard to follow the

propagation of the effects of any single change to the intermediate representation.

2.6.4 Revision-Based Architecture

In a revision-based architecture, the system follows a defined sequence of stages and,

at the end, it decides whether to revise or not; and if yes, where to start the revision

process from. weiveR is a revision-based generator for Japanese [Inui et al. 92]. The

purpose of revision is to solve some surface problems, namely: structural ambiguities

and sentence complexity (such as its length, embedding depth, and modification rela¬

tions). The motivation behind the system is that Japanese allows flexible word order
in some sentences giving rise to ambiguities in interpretation. For example, "John-

ga Poochie-to satteiku Mary-wo miteita" can mean "John looked at (Mary departing
with Poochie)" or "With Poochie, John looked at Mary departing". weiveR revises
to resolve such ambiguities by producing a different surface form free of structural

ambiguities.

The surface realiser is responsible for generating the first draft and the subsequent
surface changes such as word order, punctuation, lexical choice, and syntactic structure.

weiveR requires human assistance to detect the ambiguities. It "repeats the revision

cycle until (it) produce(s) an acceptable text". [Inui et al. 92] acknowledge the fact
that even the slightest surface change introduces new problems of a different nature.

However, they assume that "these can be detected and solved in subsequent cycles" of

revision. What they do not specify clearly is where this guarantee comes from. It seems
2 This paper is no longer available.

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 30

that an acceptable text for them is one which does not contain structural ambiguities
and whose sentences are of a limited number of words. On this assumption, one can

see the revision cycle coming to an end, although there is no guarantee that tackling

one problem at a time might not trigger a series of new problems of a different type
which are not under the system's current consideration. Moreover, they assume the

independence of these surface problems as the revision planner "selects one of the

problems detected by the evaluator" using some heuristics called revision rules. It then
sends the surface generator a message that describes the change required by the chosen
revision rule. When one surface problem is dealt with successfully, the revision planner

turns its attention to another surface problem. So, WEIVER only revises within surface

realisation making it difficult to follow up the implications of the surface amendments
that go beyond the surface level.

[Robin 94] uses the revision approach differently. His approach is an information-

adding one as opposed to the information-preserving kind of revision. The purpose

of the system is to generate summary reports presenting new information in combi¬

nation with related historical information. In STREAK, generation proceeds in two

main steps: draft, and then revision. The initial draft contains only the new facts. In

the second step, the draft is incrementally revised in order to include secondary infor¬

mation such as historical facts. During revision, the system searches for appropriate
insertion points called hook locations. The system then uses these locations to add "as

many ADSS (additional deep semantic specifications) as it can", until it reaches some

predefined constraint such as a maximum number of words or depth of embedding to

ensure a readable text.

2.6.5 Summary

In summary, the above discussion of flexible systems — that allow some sort of re¬

vision of previous decisions — shows that revision is reasonable only under certain

circumstances: when each decision can be considered in isolation from the rest in the

process (e.g. the WEIVER system), when revision always starts from a predefined stage
— whether it is a short or long distance back (e.g. the IGEN system), or when the

system is designed for a specialised application (e.g. the STREAK system). Even

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 31

then, it has to pay the cost in the form of complex intermediate representation and/or
involved control mechanism.

2.7 Stylistics-aware Generation: Promising Directions

Style is created through subtle variation, seemingly minor modulations of

exactly what is said, the words used to say it, and the syntactic construc¬

tions employed, but the resulting effect on communication can be strik¬

ing. [DiMarco & Hirst 93]

In this research, we are concerned with sentence generation. The input is assumed to

be a sentence-sized semantic representation and the output is an utterance that should

have certain surface stylistic requirements. Whether the generated surface form meets

these surface constraints depends on what paradigmatic decisions we have made and
what the syntagmatic consequences of these decisions are. For example, choosing

between active or passive is a paradigmatic choice which has different syntagmatic

consequences: actor being before pred in the active case or actee before pred in the

passive. Now choosing between different applicable lexemes for actor, for instance, is

again a paradigmatic choice with its own syntagmatic consequences since any particular
choice of lexeme constrains and is constrained by what comes before and after it.

[DiMarco &; Hirst 93] identify four parameters that determine the stylistic feel of an
utterance: lexical, syntactic, thematic and semantic aspects. They also, believe that

"together, form and content create style". This togetherness property is reminiscent

of the way the SFL linguistic theory handles lexical, syntax, and semantics. They are

all inter-twined using one knowledge representation language [O'Donnell 94]. In this

respect, the SFL is a plausible formalism for our stylistics-aware approach to NLG.

However, most systemic generators are based on the pipeline architecture which we

think is rigid for our task, especially if anything were to go wrong down the line

which would require us to undo one or more of the early decisions. Therefore, we

need a search mechanism that can perform revision (whether explicitly or implicitly)

efficiently. An AI search technique known as the Assumption-based Truth Maintenance

System (ATMS) claims to be able to pursue multiple solution paths simultaneously

CHAPTER 2. LEXICAL AND LINGUISTIC CHOICE IN NLG 32

without much backtracking [deKleer 86]. This is a direction that is worth exploring.

2.8 Summary and Outlook

In this chapter, we gave an overview of the literature related to the task of lexical choice.

We showed the significant interaction between it, the choice of system architecture,
and the other syntactic and semantic decisions of NLG. We also briefly claimed that
a linguistic theory called SFL is deemed to be appropriate for the kind of holistic

approach to both lexical and syntactic representation. In the next chapter we present

how SFL is used in systemic NLG systems. We pay particular attention to the notion

of paradigmatic syntactic choice. We discuss the shortcomings of the existing systemic

generation algorithms and what needs to be done in order to account for the surface
constraints in the overall process. Our proposal for a new generation architecture is

based on an AI search technique known as the Assumption-based Truth Maintenance

System (ATMS) which is introduced in a subsequent chapter.

Chapter 3

Systemic Functional NLG

This chapter is concerned with systemic NLG. That is, NLG that uses

Systemic Functional Linguistics (SFL) as its theoretical foundation. It first
introduces SFL in general. Then it presents the main concepts of the Sys¬
temic Functional Grammar (SFG) formalism. Next, it discusses how these

grammars are used in text generation. It describes how lexical choice is

approached in traditional systemic generators. It characterises the gener¬

ation algorithms of existing systemic generation systems. It discusses the
limitations of the current implementations with regard to surface stylistic

requirements and proposes a new way of dealing with these limitations.

3.1 Introduction

Although a linguist has much freedom to theorise about the different aspects of lan¬

guage, language is a complex phenomenon and no single theory can capture all its

aspects:

"Present-day linguists believe that there is, and should be, more than one

way of studying language ... [it is] a strength of linguistics that there are

these different approaches to the subject. Controversy is always a healthy

sign. Language is so complex that no one approach can cover all its as¬

pects." ([Berry 75], p.12)

33

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 34

Moreover, the way from theory to implementation (or computational applications) is

long and implementors, under constraints to be explicit, usually make some compro¬

mises and simplifications. Some implementations may even pick only parts of the

theory. Language, being complex, and linguistic theories being vague, it seems very

natural to have many linguistic theories and, for each theory, different implementa-
tional approaches.

Having put things into perspective, we present, in this chapter, both a linguistic theory
and its implementation. We then show that current implementations do not account

for an aspect of language which we call the surface stylistic requirements. We then

point the way towards improving on the current implementations of the theory. In

fact, no other linguistic theory claims to do any better in this regard as the difficulty
with surface stylistic faults is that we do not come to know them all until after we have

generated the actual surface form.

3.2 Systemic Functional Linguistics SFL

Systemic Functional Linguistics (SFL), being a linguistic theory rooted in anthropology
and sociology, views language as a social resource which the speaker and hearer use to
communicate meaningfully. The theory in its current shape was developed by Michael

Halliday in England in the early sixties. It has developed from the scale-and-category

linguistics of that time which, in turn, emerged from the work of Professor J. R.
Firth. Halliday refined the notion of system so that it is centred around the idea of

paradigmatic choice which is motivated by the communicative goal that the speaker is

trying to achieve. The choices that the speaker makes then result in certain syntagmatic

consequences which build the syntactic structure of the utterance.

We do not intend to give a historical background of the theory and the motivation

behind it. We will only present the main concepts that are needed to understand the

computational aspects of it which have been implemented by various NLG systems.

The suitability of SFL for natural language generation is established by the many

successful generation systems using it as their theoretical basis, such as PENMAN,

SLANG, and WAG.

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 35

In the remainder of this chapter, we will introduce the Hallidayan SFL grammar for¬

malism. Then, we show how it is used by NLG systems. We then focus on lexical

choice and discuss how it is dealt with in traditional systemic generators. Towards the
end of this chapter, we discuss the limitations of the current generation algorithms with

respect to our problem: surface stylistic constraints. We also discuss what is needed

to compensate for the limitations of the current implementations of the theory.

3.3 Systemic Functional Grammars SFG

SFL views language as a social resource which the speaker and hearer use to commu¬

nicate meaningfully. Hence, the SFL formalism is concerned with the choices available
for the language user. Therefore, it emphasises the paradigmatic axis of language. The
other axis of language is the syntagmatic (or structural) axis which is represented in
terms of realisation statements.

Our discussion in this section will include two main parts. The first part is concerned

with the paradigmatic axis of SFL. This includes basic notions such as systems, net¬

works, delicacy, and dependency. The second part focuses on the syntagmatic axis.

Related to this axis are the notions of realisation statements, constituency, and rank.

Together the paradigmatic and syntagmatic axes form the grammatical resource of lan¬

guage. It is worth mentioning at this point that Systemic Functional Grammars (SFG)
do include vocabulary (or the lexis) and hence are referred to as lexico-grammars.

3.3.1 The System

The system is the basic means that expresses the paradigmatic choice a language
offers in a particular context. A system is basically a list of choices that are available

in the grammar of the language. A language can have many systems related to each
other in different ways. For example, English has the GENDER system which offers
a choice between masculine, feminine, or neuter. The POLARITY system enables us

to choose between either positive or negative. Both the GENDER and POLARITY

systems are shown diagrammatically in figure 3.1. The choices available in a system

are called features. Sometimes, they are referred to differently in the literature (eg.

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 36

— masculine positive

GENDER
feminine

POLARITY

neuter negative

Figure 3.1: The English GENDER system and the POLARITY system

terms [Berry 75], or classes [Patten 88]).

According to [Berry 75], a system has three characteristics:

• The features of a system are mutually exclusive. So, we can only choose one and

only one feature of a system.

• A system is finite. That is, it has a finite number of features. Therefore, all

the features that are mutually exclusive of each other are available in the system.

Others which do not have this property are not included in that particular system.

• The meaning of a feature in a system is relative to the meanings of the other

features in that very system. For example, plural has a different meaning in the

system (singular, dual, plural) from that in the system (singular, plural).

But how do we arrive at a particular system? In a linguistic context, there are certain

circumstances that must hold before the features of a system (and hence the system it¬

self) become available. This particular set of circumstances is called the entry condition
of the system.

— declarative

indicative
INDICATIVE

wh-
— interrogative

POLARITY

clause
CLAUSE — polar

imperative

Figure 3.2: Related English clause systems

For example, provided that we choose indicative in figure 3.2, the entry condition of

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 37

the next system is satisfied. This way, the system (declarative, interrogative) becomes
enterable. As a matter of fact, it is obligatory to get into a system whose entry

condition has been satisfied [Berry 75].

Delicacy

Related to the notion of system is the notion of delicacy. Generally speaking, delicacy
increases from left to right. A system Y to the right of another one X is more delicate.
In figure 3.2, the CLAUSE system is the least delicate and POLARITY is the most

delicate of all. The scale of delicacy is important from the meaning (or choice) point of
view. As we move from left to right, we make finer and finer distinctions in meaning.
That is why the systems become more and more delicate.

Dependency

Dependency is related to delicacy in that not only is a system to the right more

delicate than one to the left, but also in that it depends on it. A system Y is directly

dependent on another system X if it is immediately to the right of X. If it is more

than one place to the right of X on the scale of delicacy then it is indirectly dependent
on X. For example, the POLARITY system of figure 3.2 is directly dependent on the

INDICATIVE system but indirectly dependent on CLAUSE. Direct dependency can

be either simple or complex. These dependencies correspond to simple and complex

entry conditions respectively. Complex dependency can, in turn, be conjunctive or

disjunctive. This means that entry conditions can be simple and complex and that a

complex entry condition can be either conjunctive or disjunctive.

Simultaneity

Sometimes there are systems that are not dependent on each other (i.e. they are

independent of each other). These are called simultaneous systems. A system is simul¬
taneous with another system if it is independent of the other system but has the same

entry condition as the other one.

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 38

(1) x

a simple system

if a is selected, then either x or y
—

y

(2)
a — X

a system with a disjunctive entry condition

if a or b then either x or y
b —

— y

(3)
a >a

U a system with a conjunctive entry condition

b n—

y
if a and b, then either x or y

(4) x

(S1
y

simultaneous systems
a—

S2
— V if a, then simultaneously the systems (x or y) and (v or w)

— w

Figure 3.3: Different system types and their semantics

System Networks

As mentioned earlier, a language can have many systems related to each other in

different ways depending on the scale of delicacy and dependency relationships. Related

systems connected to each other form what is called a system network.

The basic constructs of a system network are shown in figure 3.3. (1) represents a

simple system with the entry condition a. (2) shows a disjunctive entry condition to

the system and (3) shows a conjunctive entry condition. The systems of (2) and (3)
have complex dependency on the less delicate systems that are to the left of them.

Finally, (4) shows two simultaneous systems SI and S2. Any system network consists

of (some of) these basic building blocks.

Some researchers take the stance that all the lexico-grammatical resources of the

language represent one (large) system network [Tung et al. 88]. Others believe that
there could be many system networks in the lexico-grammar. Accordingly, they de-

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 39

— Question

SI
Personal

S3

• Demonstrative
S4

nonanimate

— subjective

objective

reflexive

possessive

First

Second

— Third

singular

plural

near

distance

gender
I- feminine

masculine

neuter

L far

Figure 3.4: The English pronoun network

fine a system network as "a set of systems which are closely related from a semantic

point of view" [Berry 75]. Hence, there is the MOOD network and the THEME net¬
work for example. Figure 3.4 shows the English PRONOUN network based on that
in [Winograd 83].

3.3.2 Realisation

"The scale of realisation is perhaps the most important scale of all. It

shows how the different levels of language are related to each other; and
within each level it shows how the different categories, such as structure

and system, are related to each other." ([Berry 77], p.18)

The other axis of language is the syntagmatic axis which the SFL accounts for by means

of realisation statements. Simply put, the syntagmatic axis represents the utterance

(or written text in NLG) as it appears in space. That is, a linearised sequence of bits
of language.

A feature in a system network may have attached to it a set of statements called

realisation statements or rules. The operations carried out by the realisation statements

build the syntactic structures. Each realisation statement makes some modification or

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 40

imposes some restriction on the structure being produced. The realisation rules can

be thought of as the structural implications of the features that they are attached

to [Patten 88].

There are three groups of realisation statements: those that build structure by intro¬

ducing/unctions or collapsing them together (e.g. insert, conflate), those that constrain
order of functions (e.g. order, partition), and those that associate features with gram¬

matical functions (e.g. preselect, classify). By repeated use of the structure-building

operations, the grammar is able to construct sets of function bundles [Mann 83a]. This

way the paradigmatic features of the grammar are realised linearly by constituency

structures. These constituents specify the usual linguistic functions such as Subject,

Agent, Actor, Goal and Predicate.

Below, we discuss different realisation statements. Note that we only discuss those

realisation statements that have been implemented in our generation system1. We will

be referring to figure 3.5 in the examples given in relation to each realisation operation.

Insertion

The insertion realisation statement simply inserts or introduces a function into the

structure. In work that uses SFL for parsing and generation, insertion is referred to as

inclusion to avoid biased terminology towards generation [O'Donnell 94]. It is usually
denoted by the symbol For example, the feature clause has the realisation rule

(+ Subj) meaning that clauses have subjects in them.

Conflation

The conflation realisation statement takes two functions. It means that these two

linguistic functions will be represented by one entity in the structure. For example,
the feature modal has the realisation rule (Mod/Fin) meaning that in modal clauses
the Mod and the Fin are the same. Conflation is denoted by the symbol "/" in the
network of figure 3.5.
1 These are the same realisation statements that are implemented by O'Donnell's WAG system since
our grammar is based on that of WAG's

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG

Declarative

Clause

+Subj
+Fin
+Pred

Subj:nom-group
Pred:lexvert>

<

Subj>Finite
FronbSubj

- Interrogative
Finite>Subj

r Modal
+mod
+modc
mod:modal-verb
modc:inl-verb
mod/fin

modc/pred

L Nonmodal

Fin... Pred

41

Wh-
+Quest
Quest:Wh_Type
QuesbFin
Pred>End

L Polar

FronbFinite

r Past-clause

Fin:past-verb

L Present-clause
Fin:present-verb

Figure 3.5: A clause network fragment with realisation rules in boxes

Order

The order realisation statement (Functionl > Function2) requires that the two func¬
tions are realised with immediate adjacency. Figure 3.5, for example, shows that
in declarative clauses Subj precedes Finite as in "John will come". In Interrogative

clauses, however, Finite precedes Subj as in "Will John come?". A special case adja¬

cency is where an item is a leftmost or rightmost constituent and therefore adjacent
to the borders. For example, in SLANG the feature clause has the realisation rule

(((A Theme) meaning that in all clauses Theme is always at the beginning [Patten 88].
To indicate these cases, some systemicists use special realisation rules such as "order-
at-front" and "order-at-back" [Mann 83b]. WAG uses the meta functions Front and
End to indicate that an item is a leftmost (e.g. Front > Subj) or rightmost (e.g.
Pred > End).

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG

Partition

42

The partition realisation statement (Functionl...Function2) constrains Functionl to
be realised to the left of Function2 but not necessarily adjacent to it. For example, at¬

tached to the feature Nonmodal of figure 3.5 is the partition realisation rule Fin ... Pred,

meaning that Fin occurs before Pred in the syntactic structure. Depending on whether

the clause is declarative or interrogative, the Fin function might be adjacent to Pred
or separated from it by the function Subj.

Preselection

The preselection realisation statement is used to interface the different system networks.

It is this realisation statement that makes the grammar recursive since it requires an

inserted function to be filled by a "substructure which itself is licensed by a selection

expression containing the preselected feature" [Henschel 97]. Preselection is usually
denoted by the symbolFor example, in the network of figure 3.5 Subj is preselected
as Nom-group (i.e. Subj:Nom-group). This means that in order to realise the Subj

function, we need to start with a path (in the group rank network) which includes the

Nom-group feature.

Lexification

This realisation rule forces a particular lexical item to be used to realise a function.
This is usually denoted by the symbols '='. For instance, the feature speaker-subject

may be given the realisation statement (Subject ="I").

3.3.3 Rank and Constituency

"If we are concerned with syntagmatic relations, then it is possible to make

a very rough generalisation to the effect that clauses tend to consist of

phrases2 and phrases tend to consist of words - and words tend to con¬

sist of morphemes. In other words, the relation between them is one of

constituency." ([Hudson 71], p.67)
2 That is, groups in the terminology we adopted.

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 43

clause rank

group rank

word rank

Figure 3.6: The rank and constituency relationship

Constituency is defined as "one structure having others as parts" [Winograd 83]. In

general, a sentence (or a clause to use the SFL terminology) is a unit or constituent
which consists of other constituents. The constituents of the clause are usually groups

or words and the group constituents tend to be words. This constituency relationship
is called the rank relationship. Figure 3.6 shows the constituency relationship of the
sentence "Has the elephant been delivered by Macy's?" [Winograd 83].

The rank scale for the English grammatical units that are usually implemented in NLG

systems are:

• clause-complex

• clause-simplex

• group

• word

A complete systemic approach would also represent words in terms of smaller con¬

stituents: morphemes. However, systemic implementations tend to skip this step and

fetch the words directly from the lexicon.

Sometimes, a unit may include among its constituents, a unit of rank equal to or higher
than its rank rather than units of lower ranks only, as mentioned above. This is called

rank-shifting. For example, Deictic in a nominal group is usually of word rank (i.e.
realised by a single word) as in "this idea". However, in "the software engineer's idea"

Has the elephant been delivered by Macy's

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG

Deictic is a nominal group acting as a word.

44

3.4 How the Lexico-grammatical Resource is Used

The system networks together with the realisation statements represent the lexico-

grammatical resource of the language. Traversing a system network from left to right
and getting into any system whose entry conditions are satisfied results in what is
known as a selection expression. A selection expression is a set of features forming a

complete path through the system network. The collection of realisation statements

attached to the features in the selection expression are the syntagmatic consequences

of the paradigmatic choices we have made during traversal.

Recall that the notion of constituency is fundamental in the SFL theory. A sentence is a

unit that consists of several constituents of different ranks which themselves have their

own constituency structure. Using the lexico-grammar to generate sentences draws on

this basic idea. We start with the clause rank and traverse the clause network. The

resulting collection of realisation statements is then carried out to construct the struc¬

ture of the topmost unit (i.e. the sentence or clause). Each of the clause's immediate
constituents that are not of the word rank are realised in exactly the same way. At

any point in this process, if a unit is of the word rank, we just realise it by fetching
the appropriate lexeme from the lexicon.

[Winograd 83] gives the steps of the generation of a single constituent, which are more

or less the same steps followed by most implemented systemic generators. These are

shown in figure 3.7.

Figure 3.8 shows how the sentence "When will John come?" is generated using the
network of figure 3.5 and following the steps of figure 3.7.

3.5 The Semantic and Lexico-grammatical Interface

We showed how a selection expression results in a set of realisation statements which,

if carried out, can construct the syntactic structure and eventually result in a natural

language text. But what guides us in constructing the selection expression in the first

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 45

1. Choose all of the features for the constituent (i.e. construct a selection expres¬
sion).

2. Add to the structure all the functions required by these features (i.e. execute the
insertion realisation statements).

3. Combine functions conflated by the features (i.e. do the conflation operations).

4. Assign features to each function (i.e. as specified by the preselection operations).

5. Fill in the realisation of each function (i.e. recursively generate each function).

6. Order the functions as specified by the order realisation statements.

7. Do any agreement or post-processing required.

Figure 3.7: The steps of realising a constituent

place? In other words, what makes us choose one particular feature from the set of
alternatives offered by an entered system?

[Hudson 71] in his non-computational work uses the term 'semantic factors' to refer to
what influences our choices of features in traversing a system network to realise a unit.
In fact, the semantic and lexico-grammatical interface is part of the SFL theory. In

systemic functional linguistics, systemic choice is meant to be motivated by the social
context or situation:

" If we are to relate the notion 'can do' to the sentences and words and

phrases that the speaker is able to construct in his language - then we need
an intermediary step, where the behaviour potential is as it were converted
into linguistic potential ... There is nothing new in the notion of associating

grammatical categories with higher level categories of a 'socio-' semantic

kind." ([Halliday 73], p.51, 56)

Figure 3.9 shows the mapping between the three levels (or strata to use the SFL

terminology). In an interactive context (say in a dialogue) the features exchanging,

demanding, and information maybe chosen. This selection, in turn, is reflected in the

grammar by certain features being selected (in this case: interrogative from the MOOD

system) [Teich 99].

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 46

Step Operation Result

1 Selection Expression (clause, interrogative, wh, modal)

2 Insert Functions {Subj, Fin, Pred, Mod, Mode, Quest)

3 Conflate Functions {Subj, Fin/Mod, Pred/Mode, Quest)

4 Do Preselection {Subj: nom-group,
Fin/Mod: modal-verb,
Pred/Modc: lex-verb, infinitive,
Quest: wh-type)

5 Fill Constituents Subj: traverse the group network; yielding "john",
Recursively Fin/Mod: get "will" from the lexicon,

Pred/Modc: get "come" from the lexicon,
Quest: get "when" from the lexicon

6 Order Functions Quest > Fin/Mod > Subj > Pred/Modc

7 Postprocessing "When will John come?"

Figure 3.8: The steps of generating a sentence

Implementation wise, different NLG systems may do the inter-stratal mapping dif¬

ferently. Next, we show some of the different approaches for the implementation of

semantic-grammatical interface.

3.5.1 Preselection-based Approach

In this approach, the mapping is done by means of some preselection realisation state¬

ments that are attached to the features of the semantic strata systems. The role of

the preselection operations is to realise the semantic features by preselecting lexico-

grammatical features particularly (but not necessarily) at the clause level.

[Patten 88] takes this approach in his SLANG generation system. He distinguishes this

type of preselections from the lexico-grammar ones by calling them inter-stratal prese¬

lections. For example, the semantic feature stated-cond has realisation rules which pre¬

select the clause-rank features unmarked-declarative-theme and noncondition. Other

semantic features might directly preselect features from the group or word rank. For

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 47

0 field tenor mode

I
(J

(interactive)

LANGUAGE
semantics

\ XV , r demanding
SPEECH-FUNCTION ~[excHanging j [^

<

grammar (-rcr[[r[• ■

< H MOOD >1 interrogative
I r'"

L[t
Figure 3.9: Inter-stratal mapping (from [Teich 99])

instance, the semantic feature child-centred might preselect singular from the nominal

group network.

3.5.2 System-based Approach

The system-based approach attaches enquiry procedures to each system of the gram¬

mar. The task of these procedures is to help choose one of the features of the system

that they are attached to by investigating the conceptual representation details.

The first NLG system to implement this approach was PENMAN. This mapping ap¬

proach is called the chooser-inquiry interface. The chooser starts its work when the

system it is associated with has been entered [Matthiessen 87]. Choosers are explicit

procedures that examine a particular case and raise some questions (or inquiries) to

help them understand that case and hence make the correct systemic choice.

Figure 3.10 shows the MOOD system and the chooser associated with it [Matthiessen 87]
A chooser (or choice expert) may have to go through several enquiries in order to come

to terms with which features to choose. This results in a decision tree (similar to that
of figure 3.11) with each of its leaves nominating the selection of a particular feature.

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 48

ENVIRONMENT

COMMAND

Command Enquiry
SEMANTICS

— clause GRAMMAR

—

group

Figure 3.10: The MOOD TYPE system and its chooser

3.5.3 Feature-based Approach

The feature-based approach is an attempt to declarativise the procedural implementa¬

tion of the chooser-inquiry framework [Kasper h O'Donnell 90]. Instead of attaching
a choice expert to a system, selection constraints are assigned to the features of the

system. [O'Donnell 94] uses this approach for the inter-stratal mapping in his WAG

system:

"In the WAG system, the mapping between two strata is represented by

associating higher-level constraints with features of the lower stratum. Each
feature of a network is assigned a selection constraint. If the feature is to

be chosen, then its selection constraints must be satisfied." ([O'Donnell 94],

According to O'Donnell, this approach has some advantages over the chooser-inquiry

formalism. It is a declarative formalism which allows bidirectionality. That is, the

same formalism can be used for generation and analysis. Moreover, this formalism

has its own constraint language which makes it portable, as opposed to the procedural

implementation of PENMAN's choosers in Lisp.

p.80)

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 49

Choose

Singular

Choose

Plural

Choose

Singular

Figure 3.11: A decision tree for the chooser of a typical Number system
(from [Mann 82])

3.6 Systemic Sentence Generation

There are many NLG systems inspired by the systemic functional theory. Examples of
such systems include PENMAN [Mann 83b], WAG [O'Donnell 94], SLANG [Patten 86],
KPML [Bateman 97a], and KOMET [Teich 95]. PENMAN is one of the earliest and
most comprehensive generators of English sentences. PENMAN was under develop¬
ment from the early 1980s onwards at the Information Sciences Institute, University of

Southern California. It provides a computational environment for generating English

sentences, starting with non-linguistic input representation.

Some aspects of the PENMAN system (i.e. the chooser-inquiry interface) have already
been mentioned in Section 3.5.2. However, we present an overview of it to give an idea

of what constitutes a full sentence generator since it has become a reference model and
later generators tend to compare their architecture with PENMAN's. At a gross level,
PENMAN consists of the following three components:

• The grammatical resource: PENMAN's grammatical resource is called Nigel

which is basically a systemic grammar of English. It is a network of over 700

systems, each representing a single minimal grammatical alternation. Some of

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 50

the Nigel-like systems were shown at different points in this chapter. Nigel also
includes realisation statements which construct the syntactic structure based on

the systemic choice of features.

• The chooser-inquiry Interface: This is one of the most important components

of PENMAN. Its main task is to mediate between the semantic and grammatical

resources. Its importance lies in the fact that any choice made affects the gener¬

ated sentence later on, during the generation process. For a chooser to function

sensibly, it must ask questions about particular entities of the conceptual input.

For example, to choose between singular and plural, the chooser of that system
must be referring to a particular entity in order to know whether it is unitary

or multiple. In the PENMAN generator, choosers have access to the Function

Association Table (FAT) [Mann & Matthiessen 83] which keeps a record of the
associations between the grammatical functions and the corresponding seman¬

tic entities. Additionally, one of the tasks of the choosers is to make such an

association and put it in the Function Association Table for other choosers to

use when answering inquiries. For example, to realise the grammatical function
THING which is associated to say bicycle-x (i.e. a particular semantic entity),
the nominal-group network is traversed. Upon entering the Possessiveness sys¬

tem, say, the chooser of that system must associate the grammatical function

DETERMINER with the conceptual entity representing the possessor (say Tom-

y)-

• The Upper Model (UM): The upper model provides a domain-independent

classification system of the world. It allows domain-dependent applications to use

PENMAN as their text generation component by relating their world's entities

to the objects of the upper model classification [Bateman et al. 90]. Figure 3.12
illustrates this idea diagrammatically. In fact, the choosers of PENMAN refer to
the UM to answer some of their enquiries. Now, all that a new application has

to do is relate its domain objects to the ontology of the UM.

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 51

upper model

Figure 3.12: Different domains using the UM's taxonomy (from [Bateman et al. 90])

3.7 Lexical Choice in Systemic NLG

The design intention of systemic functional linguistics requires that both the lexicon

and the grammar form together to make the lexico-grammatical resource which is used

to realise the input semantic configurations. From an SFL point of view, the lexicon

is regarded as a delicate extension to the grammar. The title of [Hasan 87] " The

grammarian's dream: lexis as most delicate grammar" summarises most systemicists'
view of the lexicon within the whole formalism. Of course, this stance is taken by

Halliday the founder of the SFL theory:

"Within this stratum there is no hard and fast division between vocabulary

and grammar; the guiding principle in language is that the more general

meanings are expressed through the grammar, and the more specific mean-

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG

ings through the vocabulary." ([Halliday & Hasan 76], p.5)

52

Although different PENMAN-like systems follow different lexicalisation techniques,

they have been faithful to the theory with respect to the timing of lexical choice. They
tend to do lexical choice at the end (i.e. at the most delicate systems). During the

expansion or realisation of a constituent, most of the choices made are syntactic. As
soon as the delicacy reaches the word rank, PENMAN, for example, starts performing
choice of a different kind: lexical choice. This state of affairs is described by [Mann 83b]
as follows:

"For every functionally characterised constituent there is the possibility
either (i) of re-entering the system network to make further choices to

determine its internal structure or (ii) of going to the lexicon([Mann 83b],

p.67)

As a result of this systemic viewpoint, lexical choice was not given enough attention.

The notion of a system and its paradigmatic choice has always been in the focus.
Lexical choice is considered a consequence of these early choices.

Therefore, one of the limitations of the traditional systemic approach to lexical choice

is that it can only account for the paradigmatic dimension. Traditionally, lexicalisation
of a function is not considered in relation to the surrounding lexemes and hence the

other dimension (i.e. the syntagmatic dimension) was not accounted for. Lexical choice
in systemic functional generation is done for a unit of word rank in isolation of the
context in which it will appear. In case of a syntagmatic stylistic fault in the surface

form, a conventional systemic generator is likely to reach a dead-end.

Even later work on PENMAN, which specifically addresses lexical choice, restricts

itself to the paradigmatic aspect of the problem. For example, [Sondheimer et al. 89],
in their work on lexical choice within PENMAN, explicitly point out aspects that are

not addressed:

"We discuss only lexical choice based on purely referential (or ideational)
considerations. That is, we do not deal here with the discourse-related

issues surrounding lexical choice, such as: (a) choice between synonyms,

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 53

based on considerations of speech register, style, lexical cohesion, etc. ...

(d) choice based on conventional associations between lexical items (e.g.

collocations)." ([Sondheimer et al. 89], p.2)

Another limitation of the traditional systemic lexical choice is that no bidirectional

interaction between lexical choice and syntactic choice is possible despite the fact that
both the lexis and grammar are intertwined in one formalism. Lexical choice is always

done at the end and it is always constrained by the syntactic choices made earlier. The

"result is that word choice cannot constrain or influence syntactic choice" [Edmonds 95].
A word that best describes a concept but cannot fit into the syntactic structure will be

disregarded. Ideally, it should be allowed to influence the syntactic decisions as well.

Having discussed the problem with the systemic approach to lexical choice, we discuss,

in the next section, the limitations of the systemic generation algorithms in general.

We identify the main problem and suggest a way of compensating for this shortcoming.

3.8 Limitations of Current Generation Algorithms

Current systemic generators are designed to deterministically generate text. As Bate-

man puts it [Bateman 97b]:

"The generation algorithm [...] supports efficient implementations: there
is no backtracking or non-determinism to incur performance overheads.

The traversal of the network directs the generation process precisely as

required by the input specifications. The price for this efficiency is the

reduced range of interactions possible across different structural ranks and

the requirement that choosers always produce a determinate response when

triggered." ([Bateman 97b])

The assumption that the generated text will be of 'adequate quality' explains the

reluctance of the systemic generators to examine the generated text from a stylistic

point of view. Here we identify two problems with these generators that render them

inadequate for dealing with the surface stylistic constraints.

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 54

• On the one hand, SFL is usually driven by the social situation (and in an NLG
context by the semantic input). This suggests that once the situation is ex¬

plained in every detail then finding our way through system networks is almost

deterministic. This approach seems to ignore the surface form and how it, in
some situations, restricts content determination, lexical choice, and syntactic

structures.

• On the other hand, when the semantic input is under-specified, the choosers in

systemic generators resort to selecting arbitrary paths or marking some as default
choices. This entails the danger of unexpected surface problems that might arise
later on.

What makes it hard to account for the surface form constraints in the overall process

is the fact that we do not come to know them all until after the sentence has been

generated. Failing to meet the surface stylistic requirements means that backtracking
is the inevitable expensive alternative in the endeavour of exploring different paths

through the system networks. Needless to say, efficient techniques are necessary in or¬

der to keep the computational costs within an acceptable range. That is, backtracking3
should involve undoing only those decisions that need to be changed and no more.

Even in the early stages of PENMAN development there was an acknowledgement
of the fact that generated texts might need some improvement and hence alternative

paths may need to be explored:

"It is surprising how much progress has been made in text generation based
on generators which do no more than produce "first draft" text ... PEN¬

MAN does not try to anticipate the major determinants of readability in

the text it is producing. Sentence length, levels of clause embedding and

the like are difficult to anticipate but trivial to measure after the text has

been generated. Very simple measures of text quality, including these and
also some comparative measures ... seem to be quite adequate as a basis for

suggesting helpful revisions in text plans ... The improvement Module has
3 In Section 4.10.1 of the next chapter, we discuss the disadvantages of backtracking generation.

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG

not been implemented; its design includes particular critic processes, repair

proposing processes and repair introduction processes." ([Mann 83b], p.8)

55

However, no details were given as to how this improvement might be achieved. Also,
and to the best of our knowledge, such revision modules have never been implemented
within the PENMAN project.

Next, we summarise the limitations of the current SFL implementations with regard to

lexical choice in particular and generation architecture in general. We briefly present

our ideas for enabling a systemic generator to deal with surface stylistic constraints.

3.9 Discussion: Choosing not to Choose

We opt to use SFL as the linguistic formalism for our generation system for many
reasons:

• SFL lends itself very easily to natural language generation.

• There exist a large number of NLG systems inspired by the linguistic theory.

• With the surface stylistic problem in mind, the SFL seems very appealing because

of the way it handles language at different levels in one unified formalism. In

particular, semantics, syntax, and the lexicon can all be represented using system

networks.

However, in the discussion in Sections 3.7 and 3.8, we identified the following limitations

with the current implementations of SFL:

• Determinism: Teich characterises the main task of PENMAN-like systems as

follows:

"The generation question put for PENMAN-style generators is , when
to choose which features from the system network. Or, more precisely,

which functional alternative to choose in a particular context." ([Teich 99],

p.60)

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 56

Therefore the main task of systemic generators is choice. However, this is done
in a deterministic fashion based on input semantics only. Given a semantic input

specification, choosers always produce the same selection expression. Even for

cases where the alternatives are all equally good, they just default on one of the

features.

• One-way Architecture: Later tasks are only influenced by earlier ones. They

are not allowed to contribute to the generation process by feeding their own

constraints. In fact, these later choices are not real choices; they are merely

consequences of earlier choices as Berry points out:

"As we move nearer the surface on the scale we may appear to be

making further decisions but in reality we are simply implementing
earlier decisions. All the choices we make between functions, structures

and classes of formal items are the direct result of the choices we made

between terms [i.e. features] from systems." ([Berry 77], p.43)

• Isolated Syntagmatic Operations: The partial realisation operations are

done in isolation of the context they will appear in. This applies to lexical

choice, ordering operations and syntactic structuring as well.

Making unfortunate choices leading to unwanted consequences is a known problem in

systemic generation. [O'Donnell 94] points out that the solution to this problem is
either: simultaneous generation or backtracking generation which is very expensive

according to his experience in the WAG system. Simultaneous generation means that

multiple paths are pursued simultaneously. When one of them fails, it is taken out of

consideration and the search continues with the remaining promising paths.

The Assumption-based Truth Maintenance System (ATMS) is an AI search technique
that can work in multiple contexts. It claims to be able to pursue multiple solution

paths simultaneously without much backtracking [deKleer 86]. Our idea is to use the
ATMS to enhance the main task of any systemic generator: choice. In case, a chooser

cannot decide between many features, it does not have to choose. The very nature of

the ATMS will then be utilised to pursue the paths emerging from each kept alternative.

CHAPTER 3. SYSTEMIC FUNCTIONAL NLG 57

The proposed ATMS-based architecture is deemed to overcome the limitations of

the traditional pipeline architecture of systemic generators as we will show in sub¬

sequent chapters. By keeping all plausible alternatives, the architecture allows for
non-deterministic generation. The same semantic input may result in the generation
of different paraphrases depending on the surface stylistic constraints.

Although the proposed ATMS framework is not a two-way architecture in the sense

that control is passed back to earlier stages, it does allow for a two-way interaction so

that later stages can influence the decisions of earlier stages. For example, a lexical
choice that results in a problematic syntagmatic arrangement may urge the selection

of a different syntactic structure.

Finally, the syntagmatic dimension of the systemic formalism is given more attention
in our architecture. The realisation rules are compositionally treated in such a way as

to predict any source of surface stylistic faults.

3.10 Summary and Outlook

In this chapter, we discussed systemic functional NLG. We first discussed the gram¬

matical formalism of the SFL theory. This included both the paradigmatic and the

syntagmatic dimension of systemic functional grammars. We showed how the lexico-

grammatical resource is used to generate natural language utterances. We then dis¬

cussed different approaches to the inter-stratal mapping between semantics and lexico-

grammar. We showed what constitutes a typical systemic generator taking PENMAN
as an example. The systemic approach to the lexical choice problem along with its

limitations were also discussed. Finally, we discussed the limitations of the systemic

generation architecture and proposed a new architecture that overcomes these short¬

comings. The next chapter introduces the ATMS framework: what it is, how it works,

and why it is plausible for our generation task.

Chapter 4

The ATMS Framework

This chapter introduces the Assumption-based Truth Maintenance Sys¬
tem (ATMS) formalism. First, it presents the generic notion of truth main¬
tenance and discusses the need for belief revision in AI problem solving.

It presents the families of TMSs and then focuses on the ATMS family. It

discusses some of ATMS's basic concepts such as nodes, justifications, and

label maintenance algorithms. It gives explanatory examples and discusses

the problem of encoding. Different ideas on how to use the ATMS to con¬

struct solutions are also presented. The chapter ends with a discussion of

efficiency considerations.

4.1 Introduction

In the preceding chapters, we argued that in order to satisfy the surface stylistic re¬

quirements in systemic generation, some sort of interaction between lexical choice and

syntactic choice must be allowed. In particular, lexical choice — being done at the

very end— should be allowed to influence earlier NLG decisions. This can be achieved

either through what [O'Donnell 94] calls backtracking generation which was shown (by
O'Donnell himself) to be prohibitively expensive, or through simultaneous generation
which would be just as expensive if all possibilities were generated.

We also pointed out that the ATMS seems plausible for efficient multiple contexts gen¬

eration as it allows common parts to be factored out and built only once, which the

58

CHAPTER 4. THE ATMS FRAMEWORK 59

basic simultaneous generation will not necessarily do. As a matter of fact, our gen¬

eration problem is similar to the type of problems generic truth maintenance systems

(TMS) are designed for:

" A common example is the use of plausible assumptions when reasoning

about an incompletely specified problem. This may lead to difficulties when

it is discovered that some initially plausible choice is, in fact, inconsistent

with what we later find out. Reason Maintenance Systems are intended to

address this problem by providing machinery that allows the consequences

of assumptions to be determined and the set of assumptions revised, if

needed." ([Smith Sz Kelleher 88], p.5)

Our solution to the Surface Stylistic Constraints (SSC) problem involves a new NLG
architecture based on the ATMS framework. But before we present our ideas and

implementations of them (see in particular Chapter 5, 6, and 7), we introduce the basic

concepts of the ATMS and before that the notion of Truth Maintenance in general.

4.2 Truth Maintenance Systems (TMS)

As we will see later on, the ATMS is one type of a group of families of TMS. Before
we focus on the ATMS, we introduce the generic notion of TMS. We discuss the need
for TMS and the advantages that they offer to AI reasoning in general.

A Truth Maintenance System (TMS) is defined as a program that maintains the con¬

sistency of a database. It does so by keeping track of dependencies between items

in the database collection [Shoham 94, Russell &; Norvig 95]. A TMS is always used
within problem solving systems in conjunction with an inference engine (IE) which,
while solving the problem, informs the TMS about the facts or assumptions that can be

stated and the deductions that can be made from them. Figure 4.1 shows how the IE
and TMS are put together to form a problem solving system. This arrangement seems

appealing as it allows each part to focus on certain aspects of the problem solving. The

IE focuses on the particulars of the task at hand and the TMS on the bookkeeping of
beliefs and assumptions [Forbus Sz de Kleer 93]. The IE, being the real problem solver,

CHAPTER 4. THE ATMS FRAMEWORK 60

assumptions
IE TMS

beliefs/

Figure 4.1: Problem solving systems

includes all the domain knowledge and inference procedures. It passes inferences made

during problem solving to the TMS. The job of the TMS is to determine under what
conditions any conclusion holds. The problem solver then interrogates the TMS to

know exactly what holds at any point in time. To this end, problem solving can be

viewed as a "process of accumulating justifications and changing beliefs until some

goal is satisfied" [deKleer 86]. In order for the IE and TMS to communicate, they need
to establish a common vocabulary between them. This communication is expressed

in terms of nodes and justifications. It is worth noting, however, that the TMS does

not know the meaning of nodes and inferences. It does the house-keeping on a purely

syntactic basis1.

Doyle's pioneering work in the late 70s marks the actual emergence of the Truth Main¬

tenance System [Doyle 79]. [Smith k Kelleher 88] traced some of Doyle's ideas in his
first TMS back to the late 60s and early 70s where they were found dispersed vaguely
in different works.

TMSs are referred to differently in the literature. Although Doyle called his first system
a TMS, he then admitted that it was a bit of a misnomer. Consistency maintenance

or belief revision are better names for describing the nature of work such systems do.

Reason(ing) Maintenance Systems (RMS) is also a widely used term for the notion of
TMS.

The motivation behind TMS is the need to perform belief revision. Sometimes we

make assumptions at a certain stage in problem solving, but we might discover later
on that these assumptions were wrong. Deciding what effect this new information has

on the rest of our beliefs and separating the affected beliefs from the intact ones is a

1 Some TMS families have access to the semantics of the problem representation. For example, the
so called Logical-based TMS knows the difference between p and ->p.

CHAPTER 4. THE ATMS FRAMEWORK 61

costly task that needs to be done efficiently.

Belief revision is a common task among many search problems, so why not have a sep¬

arate belief revision component (i.e. TMS) that does the bookkeeping for the problem
solver? The TMS, being a specialist in belief revision, caches expensive inferences in
order to avoid having to redo work that has already been done.

According to [Smith h Kelleher 88], the advantages of having such an architecture

(which was shown in figure 4.1) are as follows:

• Increased design clarity: since the problem solver is now separate from the book¬

keeper.

• Improved search efficiency: the TMS is a specialised reasoning module which can

improve the overall efficiency of the system.

• Decreased redundancy of computation: the TMS can cache some of the inferences

so that it avoids expensive computations further down the line.

• Access to the consequences of choices: the TMS maintains a dependency network

for all that is passed to it by the problem solver. This way, any choice can be

traced to its consequences or antecedents.

Because of these advantages, TMSs have become a common and important piece of

AI problem solving and have been used in many applications. For example, they

are used in fault diagnosis [deKleer & Williams 86], qualitative reasoning [Forbus 87],
uncertainty modelling [Haenni 98], user modelling [Jones & Millington 88], and expert
systems [Morgue &; Chehire 91].

4.3 Families of TMS

There are two main families of TMS exemplified by Doyle's truth maintenance system

and de Kleer's truth maintenance system. Doyle's system is a justification-based TMS

(JTMS), while de Kleer's version is an Assumption-based TMS (ATMS). In JTMS, de¬

pendency between nodes is stored in terms of justifications while in ATMS, dependency

is stored in terms of assumptions.

CHAPTER 4. THE ATMS FRAMEWORK 62

[deKleer 86] gives the following list of TMS families in an increasing order of complex¬
ity:

• Justification-Based Truth Maintenance System (JTMS):
This is a simple TMS where one can examine the consequences of the current

set of assumptions. It operates on a set of nodes (representing beliefs) and

justifications which represent the causal relationship between the nodes. It is

justification-based because of the way it records dependencies between the nodes

(i.e. only the immediate relationship between a node and its cause is recorded).
A JTMS works in a single context, so that if the problem solver needs to switch
between contexts, a JTMS must rederive the database truth assignment for every

context.

• Logical-Based Truth Maintenance System (LTMS):
Like the JTMS, the LTMS reasons with only one set of current assumptions at

a time. It is more powerful than JTMS in that it recognises the propositional

semantics of sentences, i.e. it understands the relations between p and ->p, p and

q and p A q, and so on.

• Assumption-Based Truth Maintenance System (ATMS):
This allows a system to maintain and reason with a number of simultaneous,

possibly incompatible, current sets of assumptions. Otherwise it is similar to

JTMS in that it does not recognise the meaning of sentences. Compared to

the JTMS, the ATMS requires a large computational overhead. However, it can

switch contexts instantaneously and it does not need to backtrack to recover from

inconsistencies.

• Non-Monotonic Justification-Based Truth Maintenance System (NMJTMS):
This is similar to a JTMS except that it accepts non-monotonic2 justifications.

2 This definition of non-monotonicity is de Kleer's own. However, in the non-monotonic reasoning
literature, non-monotonicity is defined as the property where on learning a new fact we may be
forced to change our belief about other facts [Ginsberg 87]; whereas in monotonic reasoning, as the
set of beliefs grows, so does the set of conclusions that can be inferred from them. According to this
widely accepted definition, all families of TMS do some sort of non-monotonic reasoning. In fact,
[Doyle 79] has made it clear that his TMS is trying to provide an efficient framework for default
reasoning which is one type of non-monotonic logic according to [Shoham 87],

CHAPTER 4. THE ATMS FRAMEWORK 63

Non-monotonic TMSs accept justifications of the form "whenever P is true, Q is

likely".

• Clause Management Systems (CMS):
A CMS is similar to an ATMS but can represent any propositional calculus

formula. The concept of a clause management system was first proposed by R.

Reiter as a generalisation of de Kleer's original ATMS [Reiter & deKleer 87].

The last two types of TMS are not in wide use because of their inherent complexities

[Forbus &; de Kleer 93]. In particular, the CMS, which can handle general clauses and
not only Horn clauses, is very expensive [Kohlas et al. 98] and hence not appropriate
for large problems. It is quite important to choose the right truth maintenance system

for the task at hand, as each TMS is designed to answer a particular pattern of questions
more appropriately and efficiently than others.

In this thesis, we adopt de Kleer's version of the truth maintenance system. It is called

the Assumption-based Truth Maintenance System (ATMS), since dependency between
the nodes in a network is recorded in terms of assumptions. In the next section, we

introduce the ATMS basic concepts.

4.4 The ATMS: Basic Concepts

[Shoham 94] differentiates between the ATMS and other simpler types of truth mainte¬

nance systems based on the kind of questions they can answer. Basic TMS answers the

question: "Given the following justifications and premises, is this particular conclusion

warranted?". An ATMS, on the other hand, answers the complementary general ques¬
tion: "Given the following justifications, under what assumptions would the following
conclusion be warranted?". So, an ATMS not only gives a yes/no answer but also
more informative answers in the form of different assumption sets, each independently

warranting the conclusion. To this end, the ATMS can be viewed as a method for

capturing multiple TMSs in a single structure. Below, we introduce the ATMS basic

ideas of nodes, justifications, dependency networks and labels.

CHAPTER 4. THE ATMS FRAMEWORK

4.4.1 Nodes

64

A TMS node holds an important problem solver datum. Implementation-wise, the data

structure for a datum points to the corresponding TMS node, and the data structure

for a node points to the corresponding problem solver datum.

There are various kinds of nodes in an ATMS:

• A premise node holds unconditionally.

• A contradiction node is one that never holds according to the IE.

• An assumption node may or may not hold.

In addition to these basic node types there are derived nodes. A derived node is one

which is neither a premise nor assumption node but which is derivable from collections

of them. A derived node holds unconditionally if it depends solely on premise nodes;

otherwise it may or may not hold.

4.4.2 Justifications

Inferences made by the IE and communicated to the TMS are in the form of justifica¬
tions. Generally speaking, a justification is just an if-then rule describing the causal
relation between a consequent and its antecedents. At any point in time, introducing

a new justification may cause any belief to change. An ATMS justification takes the
form: (antecedents) —> (consequent). For efficiency reasons, ATMS justifications are

restricted to propositional Horn clauses. Hence, the (consequent) is just a single node
c and the (antecedents) part is a conjunction of nodes a\ A ... A an. That justification
can also be written as: ->ai V -><Z2 V ... V ->an V c. If n — 0 then the node c is called a

premise.

4.4.3 Dependency Networks

ATMS nodes and justifications together form a configuration known as the dependency

network of the ATMS. A dependency network encodes the causal relation between

CHAPTER 4. THE ATMS FRAMEWORK 65

the ATMS nodes. Dependency networks are sometimes referred to as causal net¬

works [Haenni 98] or belief networks [Laskey & Lehner 88]. Throughout this thesis,
we will adopt the graphical convention shown in figure 4.2 to represent ATMS depen-

Assumption Node

Derived Node

o Premise Node

Contradiction Node

Justification (ants -> cons)

Figure 4.2: The graphical convention for dependency networks

dency networks. Figure 4.3 is a dependency network that corresponds to the clause

system network shown in figure 4.4. The dependency network states that an utterance

is a clause if it is either indicative or imperative. In turn, a clause is indicative if it

is either declarative or interrogative. The dependency network, additionally, encodes
the fact that a proposing or initiating utterance contradicts with the assumptions in¬

terrogative and imperative.

Figure 4.3: An example dependency network

4.4.4 Labels

A label is used in conjunction with a node to store the ATMS' representation of current

belief in this node. It is a parsimonious description of the consistent contexts in which

CHAPTER 4. THE ATMS FRAMEWORK 66

declarative

— indicative

clause -

— interrogative

— imperative

Figure 4.4: A fragment of the English clause network

the node holds [Forbus k de Kleer 93]. The ATMS precomputes the node labels in
order to be ready to answer the IE queries. As a result, at any point in time, the label

of a node consists of the sets of assumptions under which the node holds.

Next, we present some of the terminology that is related to node labels and which we

will be using in our discussion about label maintenance.

• An environment is defined as a set of assumptions.

• A node holds in an environment if it is logically derivable from that environment

and the justifications provided so far.

• A nogood is an environment in which some contradiction holds.

• A consistent environment is one which is not nogood.

• A context of an environment is the set of nodes that hold in that environment.

In order for the ATMS to answer queries about whether or not a node holds in some

environment, it records in the label of each node all the consistent environments in

which that node holds. In fact, it records the minimal consistent environments in

which a node holds, because if a node follows from an environment then it follows from

any superset of it. Also, nogoods are not included in node labels as such contexts are

usually of no interest. Figure 4.5 shows the same dependency network of figure 4.3

but with the labels shown for each node as they would have been computed by the

ATMS algorithms. In fact, the ATMS would prune out the nogoods. For example, the

label of the INDICATIVE node does not include {interrogative} since it is a nogood
environment (cf. the label of the _L node).

CHAPTER 4. THE ATMS FRAMEWORK 67

{{interrogative},{imperative)} {{declarative})

Figure 4.5: The dependency network of figure 4.3 with computed node labels

An empty label for a node indicates that the node does not hold in any consistent

environment. This case happens either when there is no path from the assumptions

to the node or when all the potential environments are nogood. The case where a

label consists of the empty environment only indicates that the node holds in every

environment. Premise nodes have labels consisting of the empty environment since

every environment is a superset of the empty set. For example, the premise node

Propose in figure 4.5 has a label that consists of the empty environment.

Formally speaking, let the set S stand for the set of ATMS nodes. The set A of

assumptions of an ATMS is a subset of S (i.e. A C S). Let C be the set of clauses of
the ATMS. C consists of premises and justifications asserted so far. An environment

is defined as a subset of the assumptions E C A. Now, for each node n, the ATMS

maintains a label or a set of environments E\,...,Ek such that it has the following

properties:

1. n holds in each E{. This is called the Soundness property.

2. T cannot be derived from any Ei given C. This is called the Consistency property.

3. Every consistent environment E in which n holds is a superset of some Ei. This

is called the Completeness property.

4. No Ei is a proper subset of any other environment. This is called the Minimality

property.

CHAPTER 4. THE ATMS FRAMEWORK 68

r -

r

Figure 4.6: ATMS incremental label update for some node n

4.5 ATMS Algorithms for Label Maintenance

Recall that the job of the ATMS is to record under what sets of assumptions any con¬

clusion holds. For this it attaches to each node a label which is a set of environments

(i.e. a set of sets of assumptions) from which the node follows. If a node leads to a

contradiction, then the ATMS knows that all the environments labelling it lead to a

contradiction. The way the ATMS records this knowledge is by having a special false
node (or T) whose label contains all the contradictory sets of assumptions. Actually,
the false node label contains all the minimal inconsistent sets of assumptions. This

means that all the assumptions in a minimal inconsistent set cannot hold simultane¬

ously but any subset of such a set can.

It is worth mentioning here that the label of each node is minimal in the sense that it

has the fewest disjuncts (i.e. environments) and that each environment has the fewest

conjuncts of assumptions. Therefore, the ATMS needs to constantly check that no

superfluous assumption appears anywhere in a set in any label.

The ATMS operates in an incremental way. At any point in time, it has an access

to a correct set of node labels. Whenever a new justification is added, it uses the

current labels to compute the incremental changes incurred by the addition of that

justification. This is depicted in figure 4.6 which is better viewed in conjunction with

Algorithm 1 shown below.

In general, there are three main ATMS activities for label maintenance: computing a

locally correct label, propagating label changes throughout the dependency network,

CHAPTER 4. THE ATMS FRAMEWORK 69

and pruning nogood environments from all labels. Next, we present these algorithms
in pseudo-code to give an idea of the ATMS internal activities. For detailed and

more efficient versions of these algorithms see [Forbus & de Kleer 93]. We present the

algorithms here because we will need to refer to the details later on when we discuss

efficiency considerations in Section 4.9.

Algorithm 1: Computing a Locally Correct Label for a Node

1. Compute a tentative label L' for the node n. Let L^ be the label of the ith node

of the &th justification for some node n. Then, L' = {(Jj |

2. Remove from this tentative label:

• any set which has another in the label L' as a subset.

• any set which has a nogood environment as a subset.

Algorithm 2: Propagation of Label Changes Throughout the Network

1. If the node (say n) is newly created, compute its label as described in algorithm 1.
This becomes the label of n.

2. If the node already exists (and has its own label), compute a new label for it

using algorithm 1. Then blend the new label with the previous one. That is,

take the union of the two labels and remove from it any set that has another as

a subset. Stop if the label has not changed.

3. If it has changed, then check whether it is a contradiction node. If it is, then call

algorithm 3 (shown next).

4. If the node is not a contradiction node and other nodes depend on it, then

propagate recursively the changes to those nodes, and from them to others; and

so on. That is, call Algorithm 2 for all the consequences of n.

Algorithm 3: Pruning of Nogood Environments

1. Mark as nogood the newly discovered environment found to be inconsistent.

2. Remove it and any superset of it from every label in the network.

CHAPTER 4. THE ATMS FRAMEWORK 70

w
I

(C)

Figure 4.7: Graphical representation of a dependency network

4.6 How the ATMS Works

The ATMS maintains a dependency network consisting of nodes and justifications as

shown in figure 4.7. So, all of al to a5 are assumptions and the nodes A and B are

derived nodes. The dependency network shown in the figure represents graphically the

following justifications:
ul A a2 —^ A

a2, A d5 —y A

al —)■ B

u2 A a3 —y B

a4 -» B

a4 A a5 —y false

To have an idea of how the ATMS works we consider a fragment of an example large

enough to explain the basic notions of the false node and also label maintenance such

as pruning and propagation.

To see what happens when new justifications are added, assume that we have the

CHAPTER 4. THE ATMS FRAMEWORK 71

setting shown in the solid part of figure 4.7 and that the IE is about to add another

justification stating that A and B imply C (i.e. A A B —> C) as shown by the dotted

part of the figure. If it is the first time that C is encountered, a new node for it is

created with an empty label. The ATMS then records the justification and creates a

new label for C from the already existing labels of A and B which are {{al,a2},{a2,a5}}

and{{al},{a2,a3},{a4}} respectively. It does so by proceeding as follows:

• Step 1: Compute a tentative label L' for C as described in Algorithm 1. This

gives the following sets: {al, a2},{al, a2, a3}, {al, a2, a4},{al, a2, a5}, {a2, a3,
a5},{a2, a4, a5}.

• Step 2: Remove any set which has another as a subset (e.g. {al, a2, a3}, {al,

a2, a4},{al, a2, a5}), and all sets having contradictory sets of assumptions (e.g.

{a2, a4, a5}). This yields {{al,a2}, {a2, a3, a5}} as the correct label for C.

There is a set of standard operations that define the interface between the IE and the

ATMS. Although different implementations name these operations differently, what
matters is the kind of service the ATMS offers when each operation is performed. The

following are examples of such operations:

• create an assumption node

• create a derived node

• create a false node

• explain the node or equivalently return its label

• add a new justification

• add a new contradiction

• inquire whether a node is a premise, assumption, or derived node

4.7 The Encoding Problem

Although the interface to the ATMS is simple and is defined through a set of stan¬
dard operations, deciding what and how to tell the ATMS is not a straight for-

CHAPTER 4. THE ATMS FRAMEWORK 72

ward task. In the truth maintenance context, this is known as the encoding prob¬
lem and "experience suggests that providing an appropriate encoding can be very

hard" [Smith & Kelleher 88]. In the case of the ATMS, the encoding problem involves
two main questions:

• What data is going to be recorded in the ATMS, and, for every type of data
what type of node should represent it. In particular, what information should be

represented as ATMS assumptions.

• Having decided on what should be represented as assumptions, premises, and
derived nodes, the other question is how we should connect these nodes in the

ATMS dependency network. That is, which of the problem solver inferences are

to be passed to the ATMS as not all inferences made may need to be reported.

For example, if we are to use the ATMS to reason with systemic grammar networks,
then what should be represented by ATMS nodes: system labels, features and/or real¬
isation statements? And if features are to be represented by assumptions, then should

all features in a network be represented as assumptions or only the features at the

leaves of the network? In some cases, it may be possible to infer the complete path by

knowing only the last feature. Is it cheaper to construct the whole selection expression

starting with the leaves or let the ATMS return the full selection expressions? And how
about realisation statements? Are they to be represented by assumptions, premises or

derived nodes? And if not by any type of nodes then what aspect of their effect is to

be communicated to the ATMS and how?

These are all important questions and answering them is in essence solving the en¬

coding problem which "has a vital bearing on the actual performance of the sys¬

tem" [Smith & Kelleher 88].

4.8 Solution Construction

Part of solving the encoding problem for a specific domain involves defining what consti¬
tutes a solution and how to read off such solutions. Although "the exact definition of a
solution is task specific and is determined by the inference engine" [Forbus & de Kleer 93],

CHAPTER 4. THE ATMS FRAMEWORK 73

Figure 4.8: Solution construction exploiting the nature of ATMS

there are some known methods for constructing solutions. [Forbus &; de Kleer 93] give
two techniques for identifying solutions in an ATMS-based problem solver. They are

both applicable when the task at hand is reducible to the following model: at differ¬
ent stages of problem solving we are faced with choice sets (which we may represent

as assumptions), and any complete solution must pick one and only one choice from
each set. Fortunately, this model fits our generation problem (i.e. traversing systemic

grammar networks).

The first technique, which we elaborate on below, involves the introduction of new goal
nodes and justifications in a prescribed manner. The solution can then be read off

directly from the label of the goal node.

The second technique relies on a specialised solution construction procedure which

takes a set of choice sets and returns a set of environments representing the solutions.
This method produces the same solutions as the first one but without the need to in¬

troduce additional nodes and justifications. To this end, some ATMS implementations

have a utility function (which might be called interpretation) whose job is to return
all possible solutions given a set of choice sets.

CHAPTER 4. THE ATMS FRAMEWORK 74

As an example for the first technique of solution construction, consider the depen¬

dency network in figure 4.8 which shows a case where we have three choice sets {A,B},

{E,F}, and {C,G,D}. Any complete solution should pick one and only one element
from these choice sets. In an NLG context, these choice sets might stand for action
lexemes {destroy, annihilate}, actor lexemes {man, chap}, and global syntactic struc¬

tures {declarative, interrogative, imperative} for instance. The figure also shows some

nodes (Al, A2, A3, GOAL) and justifications (A —» A1,B —► A1,E —>■ A2,F —»

A2, C —>■ A3, G A3, D —» A3) which have nothing to do with the task-specific nodes
and justifications. According to the way the ATMS works, the goal node holds if at
least one assumption of each choice set holds. This means that all of {A,B,E,F,G},

{A,E,C,G,D}, and {A,E,F,C,G,D}, for instance, can be legitimately in the label of the

goal node. However, because of the minimality property of the ATMS labels, the label
of the goal node contains one and only one choice from each choice set which is exactly
what we want since, for example, a sentence cannot be declarative and interrogative

at the same time.

This makes the setup of figure 4.8 an obvious way of constructing solutions. The goal
node label in this case contains all the possible combinations. It is worth mentioning

that the goal node along with its predecessors (Al, A2, A3), which we call pre-goal

nodes, are all dummy nodes which have nothing to do with the task-specific nodes

and justifications. Needless to say, the task-specific justifications would prevent some

environments from appearing in the goal node label, as problem solving usually renders

some environments contradictory. These goal and pre-goal nodes can be constructed

upon request by a specialised procedure which takes the list of choice sets as an argu¬

ment.

4.9 Efficiency Considerations

In this section, we discuss some ATMS efficiency considerations. There are two factors

that influence the overall efficiency of a problem solver: the ATMS internal behaviour,

and the IE decisions as these specify the kind and amount of work to be done by the

ATMS. We discuss these two parts here and how the overall efficiency can be improved.

CHAPTER 4. THE ATMS FRAMEWORK

4.9.1 ATMS Complexity

75

The ATMS performs four basic operations for the inference engine - these are:

• create a new assumption

• create a new derived node

• record a justification

• return a node's label

The key to any ATMS implementation is to perform label updating as efficiently as

possible after any of these operations. Fortunately, some operations require no changes

to the ATMS labels, specifically - the creation of a new derived node and fetching of

a node label.

However, the creation of a new assumption doubles the search space and consequently

the size of each node's label, since the space size is 2n where n is the number of

assumptions. Likewise, the introduction of a new justification affects the behaviour of

the ATMS but in a complex way. The effect of a new justification depends on what
the antecedents and the consequent are. For example, if the consequent label changes

then these changes have to be propagated to each node for which it is an antecedent,

as outlined in Algorithm 2.

[deKleer 86] claims that the ATMS is designed in such a way that even when the number
of assumptions is very large (say n — 1000), it is still practical to use. According to

him, there are two reasons for this efficiency. Firstly, it is only sufficient to record the

smallest environment in which a node holds since it is in every superset context as well.

Secondly, where most environments are nogoods, these inconsistent environments are

usually small subsets of assumptions. Therefore, a great deal of the search space needs
never be checked for consistency.

4.9.2 Implementation Optimisations

The ATMS spends most of its time doing set unions and subset tests. Existing ATMS

implementations use different techniques to speed up processing time. Also, label

CHAPTER 4. THE ATMS FRAMEWORK 76

updating algorithms use many heuristics to improve performance. For example, in one

paper, [deKleer 86] describes many such optimisation methods. For instance, sets can

be represented by using bit-vectors in order to improve both the cost and the number
of set operations. Flash tables can be built using these bit-vectors as keys. The set of
all environments and the set of all nogoods can be organised by length to speed the set

operations. Also, since assumptions consume space resources, he describes a procedure

for garbage collecting assumptions.

When optimisations of serial ATMS implementations had gone to the limit, researchers
started exploiting developments in hardware design. For example, [Dixon &; deKleer 89]
show "how the combination of a conventional serial machine and a massively parallel

processor can dramatically speed up the ATMS algorithms".

Other attempts to improve the efficiency of the ATMS include using a form of best-
first search, for problems that only require approximate solutions. This is done by

assigning weights to assumptions so that only the most likely interpretations are ex¬

plored [Provan 88].

4.9.3 The IE Duty

Having decided to use an ATMS as a basis for a problem solver and whatever the speed

of that ATMS implementation is, there is still something the IE can do to improve the
overall efficiency of the problem solver. As Smith puts it:

"Since the ATMS pays no attention to the meaning of the inferences passed

to it, it is entirely the problem-solver's responsibility to see that they are

both correct and useful. Correctness should be easy to ensure, because the

problem-solver does have access to the meaning of the inferences, but it may
be much more difficult to ensure that the inferences passed to the ATMS

will allow the problem-solver to get useful information back."([Smith 88],

p.159)

For example, in the solution construction network presented in figure 4.8, creating

the goal and pre-goal nodes at the very end of the problem solving process greatly

CHAPTER 4. THE ATMS FRAMEWORK 77

improves the efficiency. There are three reasons why one would do that. Firstly, if
these nodes are created at the outset of the process, then the size of the goal label will

be exponential in the size of the choice sets. That is why it is always better to create

these nodes after most or all of the nogoods have been determined. Secondly, this way,

the IE (the generation part in our case) does not have to know in advance the choice
sets. As a matter of fact, most choice sets would not be known until after some stages

of the generation process take place. Thirdly, the ATMS does not need to waste time

updating (rather shrinking) the goal node label after every task-specific justification is
added but just creates this label once.

Additionally, one can improve on this by controlling how the goal node and its justifi¬
cations are created. For example, providing the individual justifications (A —» Al, B
—>• Al, ...etc) before the GOAL justification (Al A A2 A A3 —>■ GOAL) is more efficient
as the consequent nodes Al, A2, will not be antecedents in any justification recorded

so far and hence there is no need to propagate the change to its consequences. More¬

over, when it comes to the costly justification (Al A A2 A A3 —» GOAL), the order
of the antecedents does matter. As a general observation, nodes representing choice
sets with more of their environments participating in nogoods should come first in
the antecedents' list of a justification. To understand what we mean by ordering the
antecedent nodes, let us consider how the goal node label in figure 4.8 is computed.

Suppose that the environments {F,G} and {F,C} are nogoods. When the justification

(Al A A2 A A3 —> goal) is encountered, then in order to construct the goal node label,
the ATMS needs to perform set unions of Al and A2 first and then the intermediate

result with A3. The first operation results in four environments: {A, E}, {A, F}, {B,

E}, {B, F}. None of them will be crossed out based on the information about nogood
environments. The next operation will union these environments with {C}, {G}, {D}
creating 12 environments which all need to be checked against the nogoods to determine
which one to delete. On the other hand, if (A2 A A3 A Al -> GOAL) is given instead,
the first operation will give rise to six environments; two of which will be crossed out

giving eight environments in the next final step. Therefore, the order of the antecedent

nodes of a justification does have an effect on the amount of work the ATMS must do.

CHAPTER 4. THE ATMS FRAMEWORK 78

Generally speaking, creating the goal node and its justifications at the end of problem

solving, and using the information in the false node label can help improve the efficiency
of the generation process using the ATMS approach.

4.10 ATMS for NLG: why?

Recall that our aim in this work is the efficient generation of sentences that have certain
surface stylistic requirements (SSR). Generating syntactically correct sentences is not

enough though; the sentences have to satisfy the surface requirements or otherwise they
are considered faulty. Therefore, the nature of our generation task requires multiple

path exploration because the generation process is prone to failure, especially given
that choice in current systemic grammars is not motivated by any SSR. Even if it was,
the particular SSR might not be appropriate for a given generation task.

When systemic choice fails to give an acceptable surface form, [O'Donnell 94] suggests
either backtracking generation, or simultaneous generation (such as chart techniques)
to explore other alternatives. In this section, we discuss these two options and compare

them to the ATMS search mechanism. Before that, we summarise the main advantages

of the ATMS which are:

• work needs to be done only once, as inferences valid in several contexts can be

carried out in a single operation. That is, it is sufficient to record only the

smallest environment in which a node holds since it is in every superset context

as well.

• sources of inconsistencies are cached in an economical way (i.e. minimal sets

causing contradictions) so that futile paths are avoided as well as any expensive

computations incurred by them. In cases where most environments are nogoods,

these inconsistent environments are usually small subsets of assumptions. There¬

fore, a great deal of the search space needs never be checked for consistency.

CHAPTER 4. THE ATMS FRAMEWORK

4.10.1 Backtracking Generation

79

A backtracking algorithm proceeds in a depth-first manner as far as possible before
it backtracks to the last choice point and tries the next alternative path. Here, we

compare the behaviour of such an algorithm with that of the ATMS using a simple

generation problem.

Suppose that we have a very simple grammar with one system only having the features

(nontopical, topical). The implication of choosing nontopical is to order Predicate
before Subject. Topical on the other hand orders Subject before Predicate. Suppose

that the lexical choices for Subject are Tom and the-boy, and those for Predicate are

ar- rived and came. Note that the dots here separate the syllables in a function's lexical

realisation. Suppose further that we have the following SSR:

• no sentence ends with the letter e.

• no sentence consists of more than three syllables.

In effect, there are three choice points in this generation problem and the resulting
search space is shown in figure 4.9. The search space has eight possible solutions, only
four of them are stylistically licensed.

*the-boy arrived *arrived the-boy Tom arrived arrived Tom *the-boy came came the-boy *Tom came came Tom

Figure 4.9: The search space for the simple generation task

According to its definition, backtracking generation proceeds to the last point it can

reach and when it discovers that it has made a wrong choice somewhere, it backtracks
to the last choice point and picks the next alternative. This way, it wastes effort by

rediscovering contradictions. For example, although the choices ar-rived and the-boy

are contradictory (since together they form a four-syllable utterance) it still generates

CHAPTER 4. THE ATMS FRAMEWORK 80

"the boy arrived" and "arrived the boy" which both fail. Moreover, when search
reaches (came, the-boy, nontopical) and abandons it because it ends with e, it still
visits (came, Tom, nontopical) although it will fail for the very same reason, since

what is causing the problem is the combination of choices (came, nontopical).

An ATMS instead recognises the sources of inconsistencies and caches that information
for later checking. So before it gets into any search branch it checks its records for
sources of inconsistencies. This way it avoids any unnecessary computations related

to these futile paths. The saving that the ATMS offers in this example is depicted in

figure 4.10, which shows the paths that would be visited by an ATMS-based search

algorithm.

Tom arrived arrived Tom —*the-boy came— came the-boy came Tom

Figure 4.10: The branches of the search space visited by ATMS-based search

The other disadvantage of backtracking generation is that intermediate results are lost
once the algorithm leaves that particular context. For example, the checking of the last

letter of Tom although done for the path (ar-rived, Tom, topical), still has to be done

again for the path (came, Tom, topical). Imagine how efficiency would be affected if
this operation was an expensive one.

The ATMS on the other hand can recognise that the computation of the last letter

depends only on Subject (Tom in this case) and topical. It performs this computation
at this point, and it can use it at later points in the search space, e.g. at (came, Tom,

topical).

CHAPTER 4. THE ATMS FRAMEWORK

4.10.2 Chart Generation

81

A chart-based search algorithm overcomes one of the main advantages of backtracking.
We have already mentioned in the previous section that backtracking is inefficient

because the same pieces of work are redone many times during search. Chart techniques
were first used in parsing for efficient analysis of texts. Completely parsed constituents

once found are stored in the chart, or the well-formed substring table, for later

use. This way, work is done once and only once. In most cases, it is cheaper to

get a value from the chart than to compute it again. The idea of charts has also
been applied to NLG such as in the work of [Kay 96], [Nicolov 99], [Shemtov 98],
and [Haruno et al. 93, Haruno et al. 96].

The main advantage of chart-based search is the notion of memoization which means

that well-formed substrings are stored in the chart so that work related to their con¬

struction is done only once. The noun phrase the boy, for instance, is constructed once

and can be used in any appropriate structure. If the solution Tom came fails, the boy

came is built using the already constructed substrings the boy and came. This solution
fails though because it ends with the letter e.

The ATMS is also motivated by the same idea. Therefore, the phrase the boy is

constructed once. However, the ATMS nodes can cache all sorts of finer level decisions,

such as ordering information and lexical properties. Chart techniques cache results

only at the level of whole phrases. For example, when Tom came fails, the ATMS

can record the reason of failure (e.g. ends-with(came,e) A nontopical —t-L). Now,

although it does not have to construct the boy again, it will not try the path (came,
the boy, nontopical), because this path contains a contradictory combination (i.e. it is
a superset of a nogood).

Another feature of the ATMS is that it can work in multiple contexts. Unlike chart

techniques, an ATMS-based generator can pursue independent subgoals and the com¬

binations of their results with efficient label operations.

We are inclined, at this point, towards the ATMS and not the chart option, because

of the above reasons as well as the following:

CHAPTER 4. THE ATMS FRAMEWORK 82

• The grammar we use (i.e. systemic functional grammar) uses a similar represen¬
tation to the ATMS dependency networks. This makes the ATMS a plausible

option. In the next chapter we explore the logical relation between systemic

networks and ATMS dependency networks. Chart-based techniques are tradi¬

tionally related to context-free grammars and the algorithm details assume such
a linguistic formalism (e.g. the fundamental rule).

• Although the SSR are not part of the lexico-grammatical resources, they can be

represented using the same formalism (i.e. ATMS nodes and justifications) as

we will see in the subsequent chapters. This way they constrain the generation

process and reduce the search space considerably.

• As NLG is still considered in its infancy compared to NL analysis, it is always

beneficial to experiment with new system architectures. As a matter of fact,

"continued development of grammars and generation methods'''' is considered a

longer-term goal by researchers in the field [Hovy 96]. In this project, we develop
an ATMS-based generation architecture to see what advantages it brings to the
NLG field.

4.11 Summary and Outlook

In this chapter, we have presented the ATMS framework. We started with the generic

notion of Truth Maintenance System and the motivation behind such systems. We

then focused on the ATMS: what it is and how it works. We discussed the encoding

problem and presented some ideas on how to construct solutions using the ATMS. We

then shed some light on some efficiency considerations of the ATMS. Towards the end,

we discussed why we think the ATMS is plausible for systemic NLG.

This chapter concludes the first part of this thesis: the background chapters. In the

second part, we start introducing our ideas and their implementations. In the next

chapter, we explore the logical relationship between the Systemic Functional Gram¬

mars (SFG) and the ATMS dependency network representations. Our transformation

algorithm which takes system networks and puts them into ATMS representations

draws upon this logical relation between the two formalisms. In Chapter 6, we take

CHAPTER 4. THE ATMS FRAMEWORK 83

the translation idea further. We show how the translated networks are used in a new

ATMS-based generation architecture.

Chapter 5

From SFG to ATMS

This chapter explores the logical relationship between Systemic Func¬
tional Grammars (SFG) and the ATMS. In particular, it relates the logical

specification of system networks to that of ATMS dependency networks.
This relationship helps us solve the problem of encoding; an essential ques¬

tion that needs to be answered in any application attempting to use the

ATMS as its reasoning engine. We first motivate the idea ofmultiple path

traversal of system networks, and justify the use of the ATMS to do that
kind of network traversal. We then focus on the logical specification of

both formalisms. The chapter culminates with a logically-founded trans¬

lation algorithm that takes general systemic grammar networks and trans¬

forms them into dependency networks, a representation that the ATMS can

reason with.

5.1 Introduction

The ATMS is a common tool for maintaining multiple sets of beliefs efficiently, thus

allowing search in multiple contexts at the same time. We present our ideas of how

to use the ATMS to find all selection expressions of a system network or part of it.

But first, we discuss why one would want to pursue several system network paths

in the first place (Section 5.2) and what implications such an approach might have
on the outcome of the overall process. In an SFG context, following multiple paths

simultaneously raises the issues of determinism and nondeterminism in NLG which we

84

CHAPTER 5. FROM SFG TO ATMS

r- d

85

S2

SI

■— e
S4

SI

S5

S3

m

S6

Figure 5.1: A simple system network

also discuss briefly in Section 5.2 along with a justification for our use of the ATMS
as a search technique. The rest of the chapter (from Section 5.4 onwards) is dedicated
to exploring the connection between SFG network and ATMS dependency network

specifications.

5.2 The Need to Find Multiple Selection Expressions

System networks are used to represent systemic functional grammars. They specify
how combinations of features may imply or be inconsistent with other combinations

[Mellish 88]. They are largely used in linguistic applications, but they can be used in
other applications, as there is nothing intrinsically linguistic in their nature.

To give a better idea of what a system network is, we will show how they are used in

current generation systems. Given a system network such as the one in figure 5.1, to

use this network for generation, one would start from the first feature a, get into the

system 51 for which a is an entry condition, and then choose one of 51's children. If

one has no reason to prefer one over the other, then one chooses randomly or defaults

CHAPTER 5. FROM SFG TO ATMS 86

to the last feature (or the first in some generators). The process of getting into a

system as soon as its entry condition is satisfied and then choosing one of its children

is repeated until no more enterable systems exist. The result of this process is known
as the selection expression. This is a set of features forming a complete path through

the system network.

Each feature may have attached to it a set of realisation statements. Therefore, each
selection expression brings with it an accumulation of realisation statements which if
executed build the syntactic structure and produce the final surface form. Among the

many selection expressions of a given system network, traditional systemic generators

are only interested in one of them. This is due to the simplifying assumption that they

can always choose from alternatives in any generation task. This way of generation is
called deterministic generation.

Generally speaking, deterministic generation always forces a decision to be made at

any point while non-deterministic generation, on the other hand, tries to follow all open

alternatives. Their respective advantages are efficiency and flexibility. Deterministic

generators are efficient mainly because they work quickly and simply. For similar

conceptual inputs, the generator produces the same utterance. There is no need for

backtracking to undo some of the earlier decisions. Nondeterministic generators are

more flexible in that if they discover that they have made a wrong choice, they may

revise earlier decisions. Consequently, for similar conceptual inputs, a nondeterministic

generator can respond differently depending on other non-ideational considerations, e.g.

stylistic aspects.

One limitation of deterministic generation is that "there is not always sufficient infor¬
mation to make the decision available" [O'Donnell 94], Although systemicists argue

that if the grammar is well constructed then choice is always possible, in reality this is

not always the case. There will be situations where we cannot make an informed deci¬

sion as all the choices at that point seem equally good [Bateman 97b, O'Donnell 94].
In such situations, one can only make uninformed decisions (either default or arbitrary

choices). This may lead to dead-ends as choices are sometimes dependent on each other

and if we made the wrong decision at one choice point we might not be able to find

a valid alternative at a later point. Even if no dead-ends are encountered, the quality

CHAPTER 5. FROM SFG TO ATMS 87

of the generated text might be degraded as a result of an uninformed decision taken
earlier.

In systemic functional generation, it cannot be stressed enough that making a wrong

choice has its effect on subsequent choice points that follow from it. One might be

under the illusion that one is still making choices towards the leaves of the system

networks but actually one is not. Most of the later choices one makes are direct results

of earlier decisions [Berry 77].

In this project we value the surface form and we search for an architecture that allows

the surface stylistic requirements to be satisfied, especially since they cannot possibly
be anticipated in earlier choices in the grammar as surface problems do not show clearly
until after the surface form has been generated. To avoid making wrong choices, we

would like to pursue all possibilities until we have good reasons to abandon one path
or another. Considering the network of figure 5.1 again, suppose that Si, S3 and 54
are systems where no choices are obvious. This means that we are going to pursue

paths starting from their children. What we will have then is a reduced version of the

original system network, which is still a system network, albeit a smaller one.

We call this smaller network (e.g. network of figure 5.2) a tailored system network
and the process of removing the irrelevant parts - tailoring the system network. We

would like now to pursue the different paths and see what consequences each one of

them has. That is why we are interested in finding multiple selection expressions (or

equivalently, all the selection expressions of a tailored system network).

The direct result of pursuing multiple paths is a set of selection expressions instead

of just a single one. These selection expressions can result in many surface forms

(i.e. nondeterministic generation) which differ significantly in their surface stylistic
characteristics because of differences in syntax, word order, morphology, appearance

or absence of certain function words, lexical items, ... etc.

In the non-deterministic paradigm, a generator does not have to make a decision when
all the alternatives are equally good. It either follows all alternatives simultaneously,
or follows one path tentatively and when it discovers that it was not the right decision

it backtracks to an earlier choice point (see Section 4.10.1 for a discussion on back-

CHAPTER 5. FROM SFG TO ATMS 88

h

b
S4

e

J

SI
a

r- f

S3
c

■- g o

Figure 5.2: A tailored version of the system network of figure 5.1

tracking). At some stage, WAG attempted the backtrack strategy but, according to

O'Donnell's experience, this generation strategy is very inefficient and as a result he
switched to deterministic generation [O'Donnell 94].

Our work can be considered as non-deterministic simultaneous generation. However,

it uses a new architecture based on the ATMS. The reason for this attempt is the great

similarity between systemic networks and the ATMS dependency networks as we will

see later on in this chapter. In particular, we will show that the logical specifications
of both representations are very similar. This makes the ATMS a plausible tool to

build our generation system on. The second reason is the ability of the ATMS to work

in multiple contexts efficiently, through the revision of only what is necessary and the

early elimination of parts of the search space that will give rise to unfavoured results

further down the line.

5.3 The Organisation of the Rest of the Chapter

In the rest of this chapter, we first present the logical specification of systemic grammar
networks including our interpretation of them. Then, we discuss the logical represen¬
tation of ATMS dependency networks. We then introduce our ideas of translating

systemic grammars into the ATMS representation. Next, we present our translation

CHAPTER 5. FROM SFG TO ATMS 89

GENDER

— feminine

masculine

— neuter

Figure 5.3: An exhaustively labelled system

algorithm which transforms systemic networks into ATMS dependency networks. Fi¬

nally, we discuss the compilation of a complete systemic grammatical resource into an

ATMS-ready representation.

5.4 Logical Interpretation of System Networks

In 1986, Patten pointed out that systemic grammar "has never been rigorously for¬
malised in the way that traditional grammars have" [Patten 86]. [Patten k Ritchie 86]
come up with a formal model for systemic grammars but, as [Patten 86] acknowl¬

edges, this attempt remains exploratory in nature. After a decade, Henschel makes

the observation that "the implementations of systemic grammars remain rather old-

fashioned [...] due to the fact that systemic grammar has not developed its own

logic" [Henschel 97]. Nevertheless, there have been attempts to specify the logical con¬
tent of system networks such as [Mellish 88], [Brew 91], and lately in [Calder 99].

Figure 5.4 shows the basic constructs of systemic networks and their logical interpreta¬
tion as proposed by [Mellish 88]. In practice, these four basic systems can be connected
in any way as long as the resulting network is an acyclic directed graph. In the figure,
AMO stands for "at most one of" meaning that the daughters of a system are mutually

exclusive. We opt to follow [Brew 91]'s exhaustive labelling. Exhaustive labelling is a

labelling scheme in which each line in the system network has some label. However,

we will not be using boolean conjunctions and disjunctions of atomic names as labels.

Instead we will only use atomic values as label edges.

We have given the logical interpretation of isolated systems. Now we consider system

CHAPTER 5. FROM SFG TO ATMS 90

SFG CONFIGURATION LOGICAL INTERPRETATION

(1)

GENDER

a simple s

— feminine

— masculine

— neuter

ystem

GENDER= feminine v masculine v neuter

AMO {feminine,masculine,neuter}

(2)

CLAUSE
—5

simulta

f MOOD

VOICE

V
teous sysitems

CLAUSE = MOOD A VOICE

(3)

imperative —

declarative —

a disjunctive

TAGGING

y entered s}/stem

imperative v declarative = TAGGING

(4)
third —

1 GENDER

singular—-J
a conjunctively entered system

third A singular = GENDER

Figure 5.4: Different systemic configurations and their logical interpretations

networks involving many connected systems. For example, the network of figure 5.5

graphically states that we first choose the feature a and that we also get into the

system Si that is connected1 to it. In turn, Si requires that we either choose b and

the system S2 that is connected to it, or c and the system S3 that is connected to it.

Finally, S2 states that we can choose between d and e, and S3 between / and g. There

are no systems associated with leaf features.

The above intuitive interpretation is logically expressed as follows (where NETWORK
1 In SFL terminology, the feature a is the entry condition of Sr. The general reading would then be:
choose a and get into all the systems that are enterable at this point.

CHAPTER 5. FROM SFG TO ATMS 91

SI

S2

— f

S3

Figure 5.5: An exhaustively labelled network with several connected systems

stands for the logical interpretation of the network as a whole):

NETWORK

51

52

53

a A S\

(bAS2) V (c A S3)

d\l e

fvg

(5.1)

(5.2)

(5.3)

(5.4)

Note that although not mentioned explicitly, we assume that the usual AMO restric¬

tions on features of the same system still hold for the formulae (5.1) to (5.4). Now,

substituting recursively for S\,S2, and S3 into the first formula we get the following

logical proposition:

NETWORK = (a A b A d) V (a A b A e) V (a A c A /) V (a A c A g) (5.5)

Formula (5.5) says that a network configuration is equivalent to Pi V P2 V... V Pn where

Pi to Pn are all the permissible paths in that network. Proposition (5.5) states that
there exists a logical formula for a given system network; which happens to be in DNF

in this case. Interestingly enough, these are all the selection expressions of the system

network. [Calder 99] also presents an algorithm for computing the logical formula of
a whole network in CNF. Note that the above steps of substitution give the DNF of
the formula of the whole network directly, since selection expressions are in fact logical

formulas in DNF. This logical equivalence supports our intuitive interpretation of the

system networks.

CHAPTER 5. FROM SFG TO ATMS

5.5 Logical Specification of the ATMS

92

Having presented the logical specification of systemic networks in the previous section,
we now briefly discuss the logical representation of the ATMS. This is a necessary step

as our goal is to map one representation into the other. A full account of the ATMS

representation and algorithms has been given in Chapter 4.

All families of Truth Maintenance Systems (TMS) can be formulated within prepo¬

sitional calculus and the ATMS is no exception [Forbus & de Kleer 93]. The ATMS
nodes and justifications form a dependency network similar to the one shown in fig¬

ure 5.6.

The only way to seriously communicate with the ATMS (other than node creation mes¬

sages) is via justifications. In essence, a justification specifies that nodes ni, ri2,..., nm

justify or imply node n. This is logically written as the material implication:

Tii A 77-2 A ... A nm —> n

which can also be written as

—*n\ V —'77-2 V ••• V —>nm V n

For efficiency reasons, justifications are not allowed to be arbitrary clauses; they are

restricted to prepositional Horn clauses only [Lamma k Mello 93]. In most ATMS im¬

plementations, a justification takes a fixed format: < antecedents —> consequent >,

where the antecedents part is the conj unction of the nodes ni, n2,..., nm and consequent

is a single node n. This is deemed sufficient to answer the most fundamental question

of whether a node logically follows from a given node configuration.

5.6 From Systemic Grammars to ATMS Representation

In order to be able to use systemic grammars in our ATMS-based generator, we trans¬

late the system networks to a representation which the ATMS can reason with: de¬

pendency networks. Following our logical interpretation of system networks, we show

how each type of system can be re-written as a group of implications. As mentioned

CHAPTER 5. FROM SFG TO ATMS 93

Figure 5.6: An example dependency network

previously, ATMS justifications are in fact material implications written in a specific
format. That should tell us which systems can be mapped directly to ATMS depen¬

dency network fragments and which systems cannot.

For the relation S = a V b where S is a system having the features a and b (see

figure 5.7), we opt for the interpretation: "if exactly one of the features a or b is
chosen then the system S holds". In fact, the interpretation in the other direction is

Figure 5.7: An example simple system

still valid (albeit implicitly) as the ATMS makes a kind of "closed world" assumption
that this is the only way S can be inferred. In other words, it assumes that besides

a and b there are no other causes for S. Logically, this can be expressed through an

implication from the effect to the cause. For example, if it rains then the grass gets

wet (it-rained, —> wet-grass). However, if the grass is wet this does not necessarily
mean that it has rained unless we assume that the only way the grass can get wet is by

rain. In this case, we can safely say wet-grass —» it-rained if we wish to express that

fact explicitly. In the discussion below, although one direction of the equivalence is

CHAPTER 5. FROM SFG TO ATMS 94

considered, we assume that the other direction is implicit because of this closed-world

assumption the ATMS makes.

In the following, we show, whenever possible, how the basic constructs of system net¬

works are represented using ATMS justifications. Our criterion for a possible mapping

is that the labels computed by the ATMS at certain points are the same as the set of
selection expressions computed by the system network.

5.6.1 Simple System Representation

According to our interpretation of system networks (see Section 5.4), a simple system

representation is:

5 = /r V ... V /„

AMO{fi, ..., fn}

where /i,...,/n are features of the system S. For reasons that have to do with the

strict format of the ATMS justifications we will content ourselves with the one way

implication: f\ V ... V /„ —> S without loss of generality as just discussed earlier in

this section. The LHS of that implication is not permissible as the antecedents' part

of an ATMS justification. However, /i V ... V /„ —» S can be written as separate

ATMS justifications of the form: /; —> S. We show next the steps of transforming the

justification f\ V ... V fn-^S into a set of permissible ATMS justifications.

/i V ... V /„ —> S

or ->(/i V ... V /„) V S

or (-1/1 A ... A ~i/n) V 5

or (—./i V S) A ... A (->/„ V S)

or (/l ~* S) A ... A (fn —> S)

Hence, (/iV...V/n —> S) = ((/j —> S)A...A(fn —> S)). Moreover, the AMO constraint
can easily be represented by a set of ATMS justifications as follows:

{fx A fy —■►-L for all sister features fx and fy of the system S }

CHAPTER 5. FROM SFG TO ATMS 95

Figure 5.8: Dependency network representations of simple systems

Graphically, an isolated simple system is represented as shown in part (1) of figure 5.8.
Part (2) shows the case where the system is part of a bigger system network. In this

case, the system S is reachable only through its entry condition e, and its features

/i,...,/n are themselves entry conditions to the systems Si,...,Sn respectively. Note

that if any of /i,...,/n is a leaf (i.e. not an entry condition to any further systems)
then it is simply represented as shown in part (1).

The graphical convention we follow here uses rectangles to represent assumptions and
ovals to represent derived nodes. As far as the mapping from system networks to de¬

pendency networks is concerned, systems are mapped to derived nodes and features
to assumptions. By mapping features into assumptions, we can get all the selection

expressions of a network represented in the label of the root node since the ATMS

calculates a label for each node. The label of a node is the minimal sets of assumptions

from which it logically follows. This corresponds to the disjointness information that

system networks also provide. Note that in the graphical representation of dependency

networks we do not show the AMO justifications. In fact, the AMO constraint on fea¬

tures of the same system is automatically imposed by the minimality property of the

ATMS's labels. This allows us to omit the explicit representation of the AMO justi¬

fications across the systems in the ATMS network representation. Beware, however,

that this indicates a slight difference of interpretation. The minimal representation

in an ATMS label conveys a non-minimal state of affairs since any non-contradictory

environment that subsumes the minimal label of a node will also support that node;

whereas in a systemic network, the mutual exclusivity of features means that the set

CHAPTER 5. FROM SFG TO ATMS 96

means exactly itself and not any subsuming sets.

The only reason we omit the explicit representation of the AMO constraint is to

improve the efficiency of the particular ATMS implementation we are currently using
since the assertion of any justification may trigger a series of label update operations.

Otherwise, the mutual exclusivity requirement can easily be represented as ATMS

justifications as discussed earlier in this section.

5.6.2 Simultaneous Systems Representation

Having presented simple systems with simple entry conditions in ATMS

forms, we now discuss how the other basic systemic constructs can be rep¬

resented using the same form. In this section, we discuss how we can map

the simultaneity configuration to the ATMS representation. In the next

section, we show how the disjunctively entered systems can be mapped to

an ATMS representation. In section 5.6.4, we discuss why the conjunctively

entered systems cannot be mapped directly into an ATMS form.

A simultaneity point in a system network is represented logically as:

S = Si A ... A Sn

In the direction we have chosen, this can be directly written as an ATMS justification:

S\ A ... A Sn —> S which gives the following dependency representation:

Assuming that the labels of the simultaneous systems Si,..., Sn are computed correctly

regardless of what each Si leads to, the label of S is now computed based on the very

justification Si A... ASn —>■ S. That is, the label of S is one that represents the selection

expressions of all possible paths of getting to Si,..., and Sn simultaneously.

CHAPTER 5. FROM SFG TO ATMS

5.6.3 Disjunctively Entered Systems

97

The generic disjunctive entry condition shown in part (1) of figure 5.9 states that
the system 5 is reachable via any of its disjuncts di,...,dn. That is, either d\,d2,-.-,

or dn is a sufficient entry condition to the system 5. In a way, this is nothing but
a representation of simple entry conditions to simple systems which happen to be

equivalent, as shown by part (2) of figure 5.9.

dl

dn —

dl

dn

(1) (2)

Figure 5.9: The meaning of disjunctive entry conditions

Assuming that the disjuncts di,...,dn are features in some systems Di,...,Dn respec¬

tively, this state of affairs can be mapped to the following ATMS representation.

This dependency network representation states that for the system D\, for example,

any of its children features can be selected as usual. However, if d\ is selected then

the system S must be entered because d\ is nothing but an entry condition to 5. The
same applies to the systems of the remaining disjuncts c?2,

CHAPTER 5. FROM SFG TO ATMS

5.6.4 Conjunctively Entered Systems

98

The generic conjunctive entry condition shown in figure 5.10 states that the system

S is reachable only upon getting to (or selecting) all of its entry condition conjuncts

Ci,..., cn. Assuming that the conjuncts ci,..., cn are features in some systems Ci,..., Cn

CI
clrl
clr2

clri
cl—

c2rl
c2r2

c2rj
L c2—

Cn
cnrl
cnr2

cnrk
L cn—

Figure 5.10: A typical conjunctively entered system

respectively, this state of affairs is depicted in figure 5.11. As the figure shows, this
is not a permissible form of ATMS justifications as the figure attempts to show. The

Figure 5.11: An impermissible form of ATMS justifications

permissible form of an ATMS justification is a\ A ... A aj —> c where a conjunction

of antecedents implies one consequent node (and not a conjunction of consequents
as shown in the figure). Therefore, the conjunctive entry condition configuration of

systemic networks cannot be directly mapped to an ATMS dependency network rep¬

resentation.

In subsequent sections (from Section 5.7 onwards) we look into ways of dealing with
the conjunctively entered systems. But before that, let us convince ourselves with more

CHAPTER 5. FROM SFG TO ATMS 99

examples involving parts of real systemic grammars networks (not involving conjunc¬

tively entered systems for obvious reasons).

Example 1

In this example, we apply our mapping strategy to some linguistic and more realistic

system networks. Consider the clause network of figure 5.12 which has simple, simul¬
taneous and disjunctively entered systems. Its dependency network mapping is shown
in figure 5.13. As mentioned earlier, our criteria for correct translation is that labels

computed by the ATMS are exactly the selection expressions licensed by the system

network.

Interrogative

Declarative
- tagged

- untagged

Clause

Indicative-

imperative

r- Active

L Passive

object

no-object

agency

no-agency

Figure 5.12: A simple clause network

The dependency network of figure 5.13 simply says that the NETWORK node holds if
the assumption clause is true and the associated system s-clause is also true. In turn,

the s-clause system holds if both the MOOD and VOICE systems hold simultaneously.

The requirement that MOOD and VOICE must both hold correspond to the fact that

they are simultaneous systems in the given grammar fragment. The rest of the network

can be interpreted in the same way. Note, however, how the disjunctively entered

system TAGGING gets mapped. It should hold when either the feature imperative or

declarative is chosen. Finally note the graphical correspondence between both types

CHAPTER 5. FROM SFG TO ATMS 100

Figure 5.13: The corresponding dependency network of the clause network

of networks.

5.7 Dealing with Conjunctively Entered Systems

The source of difficulty with conjunctively entered systems is that justifications like

S —> Conji A ... A Conji do not follow the permissible form of ATMS justifications.
In this section, we investigate different ways of re-writing a system network with con¬

junctive gates using ATMS justifications.

In the previous sections, we noted that the network as a whole is equivalent to a logical

formula in DNF: NETWORK = P\ V P2 V ... V Pn which can be written as ATMS

justification:

NETWORK <- Pi

NETWORK <- Pn

Each term Pj is a conjunction of features which can also be represented in ATMS

justifications (i.e. the antecedents' part of a justification). Here, we investigate this

CHAPTER 5. FROM SFG TO ATMS 101

direction. We first give an algorithm for computing a DNF formula for the whole

network in Section 5.7.1. Then we discuss what improvements we can make to the

dependency network resulting from applying the justifications implied by the DNF
formula directly (Sections 5.7.2 and 5.7.3).

5.7.1 Logical Formula for the Whole Network

Here we present an algorithm that computes a formula in DNF for the whole network.

Note that according to our interpretation of system networks (see Section 5.4), a net¬

work can be read as follows: start at the root of the network and get into all the

systems enterable at this point. Then, for each system select any (but only one) of its
features and get into any enterable systems at this point. This way, a system S with
features /i,..., fn can be written as:

5 = (/lASi) V...V (fn A Sn)

Note that some features might have no systems attached to them while others might
have more than one system (i.e. simultaneous systems).

A disjunctively entered system is treated like a simple system (i.e. written like a simple

system) except that its name will be mentioned in conjunction with all its entry condi¬

tion disjuncts (i.e. in the representations of other systems). Therefore, a disjunctively
entered system Sd with features (which are themselves entry conditions to

the systems Sai,..., Sam respectively) and entry condition disjuncts d\, ...,dfc is simply
written as:

Sd ee (oiASai) V...V (am A Sam)

The fact that Sd can be entered from any di is already taken care of by the represen¬

tations of the systems of its disjuncts. For example, the system Si of di with sisters

si,sp is represented as:

Si ee (sj A SSi) V ... V (di A Sd) V ... V (sp A SSp)

A conjunctively entered system Sc with features bi,...,br (which themselves are entry

conditions to Sb1,...,Sbr respectively) and conjuncts ci,...,c9 is written as:

ci A ... A cq A Sc = (bi A V...V (br A Sbr)

CHAPTER 5. FROM SFG TO ATMS 102

To compute the logical formula for the network as a whole we follow this algorithm:

1. starting at the root of the network, find all the systems S\,...,Sn enterable at

this point.

2. write down the formula root A S\ A ... A Sn

3. start substituting for the systems Si recursively until no more systems exist in
the formula.

4. put the formula in DNF, if not already.

5. for each conjunctively entered system find each disjunct in the DNF that has all
the conjuncts of that gated system2 and append the DNF formula of the gated

system to it; compute DNF for the newly created formula.

The final formula is of the form:

expri V ... V exprn

where expri,..., exprn are all the selection expressions of the network. This way, we

get rid of the antecedents —> Conji A ... A Conji implications which are problematic
to represent as ATMS justifications.

The resulting formula corresponds to the following ATMS justifications:

expr i -> NETWORK

expr2 —> NETWORK

exprn -> NETWORK

So what we have done is, in effect, to flatten the system network into this repre¬

sentation. This way, we got rid of the awkward implications (e.g. antecedents —>

2 Generally speaking, by a gated system we mean either a system with a conjunctive entry condition
or a system with a disjunctive entry condition. When it is not clear from the context which type of
system we mean, we use, instead, the terms AND-gated system and OR-gated system respectively.

CHAPTER 5. FROM SFG TO ATMS 103

Figure 5.15: A staged dependency network with exactly the same NETWORK label
of that of figure 5.14

CHAPTER 5. FROM SFG TO ATMS 104

Conjx A ... A Conji)-, and now all the implications are representable using the ATMS

justifications. The label of the goal node NETWORK has all the selection expres¬

sions. Figure 5.14 is a flattened dependency network of the system network of figure

5.1. Although the implications of this representation are all valid ATMS justifications,
this solution is not appealing because:

• it does not exploit the ATMS's ability of incremental calculation of node labels.

Normally, the addition of a justification triggers an incremental re-labelling of
involved nodes. For example, in the staged representation of figure 5.15 the

labels of the nodes are computed incrementally as the dependency network gets

constructed (i.e. after each justification is asserted).

• what we did, in effect, was calculate the label of the goal node ourselves under the

guise of computing the DNF formula of the whole network instead of leaving it
to the ATMS to find the selection expressions. Again, the network of figure 5.15

does not require the wiring of the nodes in such a way as to reflect the selection

expressions of the system network. The label updating algorithms take care

of this task. Needless to say, calculating the DNF for real grammars is a lot
of work. For example, the WAG (a medium sized grammar compared to the
NIGEL grammar) clause network, can give rise to more than 152,000 selection

expressions3. That is, a DNF formula with this number of disjuncts4.

5.7.2 Factorising the DNF Formula

The main flaw of the DNF-based solution is that it flattens the whole network and as a

result does not utilise the ATMS or the system network incrementality. Obviously, not
all systems in a network participate, whether directly or indirectly, in conjunctive gates

(e.g. the animacy and case systems in the pronoun network of figure 5.19). These sys¬

tems which are uninvolved in any such gates are also called innocent systems. It would

be nice if there was a way of keeping the uninvolved systems intact. Unfortunately, for

large and complicated system networks, this seems to be a difficult task.
3 This figure is an estimate of the number of selection expressions calculated by hand.
4 When I tried to compute the DNF for the WAG clause network, SICStus Prolog always complained
about insufficient stack memory.

CHAPTER 5. FROM SFG TO ATMS 105

d

r— b
S2

SI e
a

f

S3
c

r— h
S4

g
1

Figure 5.16: A network with simple systems only

One way we have tried to restore most of the original systems is using the idea of

factorising the final DNF formula. Note that the process of factorising the DNF for¬
mula of a whole network relies on consulting the original system network. Features

of systems of the original network are used to factorise the formula and any resultant
sub-formula of it. This way the original systems are preserved and so are the choosers
which are attached to them. Shuffling around the features of a system without re¬

gard to their sister-hood relationships renders the chooser of that system inapplicable.

Therefore, the idea of keeping the systems intact motivates much of the design of a
translation algorithm since the need to preserve semantically-relevant aspects of the

system network is important. By recursively factorising the formula we can recover

the innocent systems and hence get a staged representation which is very similar to

the original network although not exactly.

Example 1

To see what we mean by recursively factorising the DNF formula, let us consider the

simple network shown in figure 5.16.

The DNF formula of this network is

(aAbAd) V (a A 5 A e) V (a Ac A/) V (a A c A g A h) V (a A c A g A i) (5-6)

The formula (5.6) is factorised according to the following ordered criteria:

CHAPTER 5. FROM SFG TO ATMS 106

• Criterion 1: is there a feature / common to all disjuncts of the formula? If so,
then use it to factorise the formula into / A F. F now becomes our new formula
that needs to be factorised further.

• Criterion 2: if not, then is there a system common to all disjuncts of the
formula? If so, then use its features /i,...,/n to factorise the formula into sub-
formulas such as (/i A F\) V ... V (fn A Fn). The whole process now needs to be

repeated for each Ft.

• Criterion 3: if not, then take a system5 from the original network and use it to

factorise the formula or the remaining part of it. Repeat the whole process for
the incurred sub-formulas.

According to the above criteria we get the following result:

a A ((6 Ad) V (b A e) V (cA/) V (c A g A h) V (c A g A ?)) = a A F\ (5.7)

F\ = (b A (d V e)) V (c A (/ V (g A h) V (g A i)) = (b A 52) V (c A F2) (5.8)

F2 = f V (g A (h V i)) = / V (g A SA) (5.9)

where (5.7) above is factorised using criterion 1; and (5.8) and (5.9) are factorised

using criterion 2. This makes F2 = S3 which means that Fi =51. This way, we could

completely restore the original staged network from the DNF formula.

We could have factorised the above formula without having to look at the original

systems of the network. This process might take a feature from a system and put it

underneath another system which in effect changes some of the sister-hood relation¬

ships. From the ATMS point of view, this would not hurt; actually, it might help

depending on how optimal the outcome of the factorisation is. From the systemic

grammar point of view, however, it would not be a good idea since there are usually
choosers associated with systems. Shuffling features around invalidates these choosers.

Therefore, we need to look at the network in order to restore the original systems of
it.

5 It is not clear however which system to choose. One good heuristic is to pick the systems according
to their order in the original network: left to right and top to bottom in the case of simultaneous
systems.

CHAPTER 5. FROM SFG TO ATMS 107

{ S2

S1
/a <

S3

c

d

S4

Figure 5.17: A network with a conjunctively entered system

The above example is for illustration purposes only since there is no point of computing
the DNF and then factorising it to restore the original systems. However, this step is

necessary for networks having conjunctively entered systems. Our idea here is to get

rid of the implications of the form antecedents —> Conj\ A ... A Conji by computing
the DNF formula first and then trying to restore those innocent systems; thus ending

up with a staged dependency network.

Example 2

The network of figure 5.17, although small, cannot be easily mapped to an equivalent

dependency network because of the problematic AND gate preceding 54. We now show
how the idea of factorising the DNF formula helps in getting an equivalent dependency
network that is better than the flattened representation. The sequence of factorisation

is shown below and its corresponding staged dependency network is shown in figure
5.18. Note that the assumptions d and e in the dotted boxes are exactly the same as

the ones of S3. They are duplicated in the figure for the sake of clarity.

(aA6Ad)V(aA6Ae)V(oAcAdA/i)V(oAcAc?Ai)V(aAcAe) (5.10)

a A ((6 A d) V (6 A e) V (c A d A h) V (c A d A i) V (c A e)) = a A F\ (5.11)

Fi = (b A (d V e)) V (c A ((rf A h) V (rf A i) V e)) = (b A S3) V (c A F2) (5.12)

F2 = (dA(/iVi)) Ve = {d A S4) Ve (5.13)

Note that (5.10) is the DNF formula of the whole network. (5.11) is factorised using
criterion 1, (5.12) using criterion 2, and (5.13) using criterion 3.

CHAPTER 5. FROM SFG TO ATMS 108

Figure 5.18: A dependency network corresponding to the network of figure 5.17

— Question

— animate

/ animacy

nonanimate

- subjective

case
— objective

- reflexive

_ possessive

First

Second

S4
.

1

Third]
i-

gender

) L

plural

near

feminine

masculine

neuter

Figure 5.19: The English pronoun network (from [Winograd 83])

Example 3

In this example, we show how the English pronoun network (a famous example having
all sorts of system configurations) can be mapped to a dependency network using
the idea of finding the DNF formula and then factorising it to restore the unaffected

systems. The original pronoun network is shown in figure 5.19 and its corresponding

dependency network in figure 5.20. The label of the root of the dependency network
of figure 5.20 (i.e. the NETWRK node) is exactly all the legal selection expressions of
the original SFG pronoun network.

Note that we can indeed restore all the original systems except for those having features

participating in the conjunctive gate. The system person' for example differs from the

CHAPTER 5. FROM SFG TO ATMS 109

question animacy

subjecti\

objective

reflexivpronoun
NETWR1

possessivj

singular

number:
person'

feminine

masculint

singulardemonstr

number

distance

Figure 5.20: The dependency network of the pronoun network

original one in that it now encodes that if first or second is selected then the original
number system is brought into perspective. However, if third is selected we get into a

different version of the number system. Within the new system number ', if plural is

chosen, that is fine. However, if singular is chosen we get into the AND-gated system

gender since, by that time, we have satisfied all its entry condition requirements.

5.7.3 Pros and Cons of the Factorisation Algorithm

The main feature of the factorisation algorithm is that it is logically-based. Therefore,
it is a theoretically acceptable translation algorithm which succeeds in the following:

1. It solves the problem of the unrepresentable implications caused by the conjunc¬

tive gates.

2. It gives a staged dependency network similar in many ways to the original system
network except, of course, for those parts that are affected by the conjunctive

gates.

3. It is clearly correct and general.

CHAPTER 5. FROM SFG TO ATMS 110

The main disadvantage of the factorisation approach is the need to do expensive in¬

termediate work. As mentioned earlier finding the DNF for a large network is a costly
task both in terms of time and memory.

The good news, however, is that this is a one off task. Like the process of writing the

systemic grammar itself, its ATMS translation is fixed and could be computed once

only. As soon as the staged representation is found the generator can benefit from the
main feature of the ATMS: incrementality.

Next, we look into ways of getting a staged dependency network without having to

compute the DNF formula for the whole network. That is, we try to find more efficient
translation algorithms.

5.8 Creating System Networks without Conjunctive Gates

Despite the fact that the factorisation approach has some disadvantages, it gives us

insights into how gated systems should be handled by the translation algorithm. For

example, note that the conjunctively gated system is hidden behind all its conjuncts.

This ensures that the AND-gated system is brought into perspective only after all the

necessary conditions of it (i.e. its conjunctive entry condition) are satisfied. This goes

well with the intuitive interpretation of such gated systems. The idea then is to reach
this result without having first to compute the DNF formula and then dismantle most

of its parts by factorising it. In effect, we try to answer the question: is it possible

to redraw a staged system network in such a way as to get rid of all the conjunctive

gates? To answer this question we first look again into the meaning of the conjunctive

gate and what implications it has.

5.8.1 Implications of Conjunctive Gates

The conjunctive gate in figure 5.21 means that all Conji, Conj2, ... , and Conji should

be chosen in order to get into the gated system Sg. Moreover, from the way system
networks are specified, all these conjuncts come from different system chains. That is,

by starting from any Conjx and going all the way back to the root of the network, none

CHAPTER 5. FROM SFG TO ATMS 111

Conjl
Conj2 Sg

a

>

Conji
L— b

/

Figure 5.21: A conjunctive gate

of the other conjuncts of that gate can be encountered6. Knowing that each conjunct
comes from a different system chain, there should be at some earlier level a source of

simultaneity parenting all of the system chains. We call this system the common source

of simultaneity. We will define what is meant by a system chain of a feature and the
common source of simultaneity for a set of conjuncts.

Definition: System Chain

A system chain for a feature / of system Sn is a subnetwork consisting of those systems

that are encountered by traversing back starting from Sn to some system Sq. A system

chain must stop at a source of simultaneity (i.e. a left-facing brace '{'). Thus, So is
one of the children of a simultaneous system or the root system. Such a system chain
is represented by the sequence < Sn, Sn~i,..., So >■

Definition: Common Source of Simultaneity

The common source of simultaneity for the conjuncts Ci, ...,cn with the corresponding

system chains Ci,..,Cn of a gated system Sg is the first common system for all the
chains C\,..,Cn.

5.8.2 The meaning of system simultaneity

Figure 5.22 shows two simultaneous systems S\ and 52- This means that choices from
one system can be made independently of the other; or that both systems can be

followed in parallel. It also means that at any choice of Si, the choices offered by the
other system S2 are also available. This is graphically depicted in figure 5.23 part (1)
or more parsimoniously in (2). Note, however, that the parsimonious representation

requires, the additional restriction, that a feature of a given system, when selected, is
6 Because if one conjunct (say Conjy) is in fact on the path then both Conjx and Conjy are repre¬
sented by a single conjunct Conjz.

CHAPTER 5. FROM SFG TO ATMS 112

f SI

S2

Figure 5.22: A network with two simultaneous systems

c si

S2

S2

S2

c
€
r

C si

S2 C

S2 L

(i) (2)

Figure 5.23: System networks equivalent to that of figure 5.22

adhered to wherever that system might appear in the network.

5.8.3 Networks without right-facing braces

In this section, we show how to write system networks without conjunctive gates since

such networks can then be directly mapped into the ATMS dependency networks. First

we define what we mean by a variant of a system. Then we introduce the basic idea

of the translation algorithm. Finally, we give more examples to demonstrate how the

algorithm works.

Definition: Variant System

A variant of the system S has the same choice of features but with at least one addi¬

tional system attached to one or more of its features.

The system S21 in figure 5.24 (2) is a variant of S2. If we keep the restriction that
if a choice of a feature is made in a system then that choice has to be adhered to in

all its variants, then network (1) and (2) are equivalent. Note that network (2) is a

parsimonious representation. This way both ai and 02 are allowed to combine with

CHAPTER 5. FROM SFG TO ATMS 113

— al

c si a2 _ 32
^ c XLb_s2lT ^Ly

<
X

y
< L- d

— c

S2 S2

\ \

(1) (2)

Figure 5.24: A system network and its corresponding braces-free version

S2 independently. However, b, which is one of the conjuncts of the gate, can combine
with a variant of the system S2 since that could be the first step in satisfying the entry
condition requirements. For example, if we choose c of the variant 521, we get into the

gated system Sg since that is all that is needed as an entry condition.

Algorithm for Translation from SFG to ATMS

The idea behind the translation algorithm is to re-arrange the systems of an SFG
network so as to get rid of conjunctive entry conditions. Conjunctive gates cannot be

directly mapped to corresponding ATMS forms (see Section 5.6.4 for a discussion of why

conjunctive gates are awkward to represent). The algorithm attempts to simulate the
factorisation of the DNF approach without having to calculate the DNF formula for the
whole network first and then restore the original systems. Retaining the original system

configuration of the network is essential since each system has a chooser attached to

it. In order for these choosers to function correctly the algorithm must preserve those
semantic aspects of the original network.

Algorithm Idea

For each AND gate with conjuncts Conj1, Conj2, ..., Conji acting as an entry condition
for the system Sg, do the following - starting with the first conjunct Conj\. That is,
make CurrentJConj = Conj 1.

1. at the current conjunct Current-Conj, attach a copy of the system chain con¬

taining the next conjunct7 Next-Conj.
7 The next conjunct is not necessarily the next in order. One good approach is first to order the

CHAPTER 5. FROM SFG TO ATMS 114

Figure 5.25: A braces-free version of the English pronoun network

2. if Next-Conj (in the newly created copy) is not the last conjunct of the entry

condition, make it the current conjunct (i.e. CurrentJConj = Next-Conj) and

repeat step 1.

3. else if Next-Conj is the last conjunct of the gate, then simply attach to it the

gated system itself Sg.

Because whenever a copy of a system is made, another system (or a copy of a system)
is connected to one of its features, these copies become variants of systems in the same

sense of the above definition. In effect, this algorithm attaches system chains deeper

and deeper, starting from the first conjunct to the last one whereby the gated system

itself is connected. The intuition behind the algorithm is to hide the gated system

behind all the conjuncts of its entry condition, and, in order to get to it, one has to

satisfy this condition (i.e. select all the necessary features). This cascading effect can
be seen in the networks of figures 5.24, 5.25 and 5.27.

conjuncts according the size of the system chain they are part of. It is always a better strategy to
attach smaller system chains to larger ones. This reduces the number of variant systems created.

CHAPTER 5. FROM SFG TO ATMS

— h

X SI

S2

S3

S4

— 1 <

■ J

L— k

r S5j- m
— o

S6 P

q

S7

>-
S8 u

w

r

s y
t

115

Figure 5.26: A system network with nested AND gates

r— h
/SL

i— f
S4

S2'

J

— k

-<
S2

r S5 r m
o

i— h
sr

S3

\

S7T
S6 r P ~L~ s

t
q_S6_j—

S2"

S4'

— k
S8 u

w

Figure 5.27: A braces-free version of the network of figure 5.26

More Examples

The network of figure 5.25 is a braces-free version of the English pronoun network of

figure 5.19. We also give a hypothetical network that has nested conjunctive gates in

figure 5.26 and its braces-free version in figure 5.27.

5.9 Compilation of Complete Grammatical Resources

So far, our discussion of the translation process from SFG to ATMS has focussed on the

translation of the bare system networks (i.e. different configurations of systems and
their features only). A complete Systemic Functional Grammar, however, includes,

additionally, realisation statements which are attached to the features of the systems.

Therefore, a complete translation algorithm must involve these realisation statements

CHAPTER 5. FROM SFG TO ATMS 116

in addition to the basic system-feature configuration. In the following, we discuss what

type of realisation statements there are in systemic grammars and how we can map

their effect into some form of ATMS representation.

Mapping of the Realisation Rules

In general, there are three types of realisation operations: structure building, ordering,
and classification. The systemic grammar of WAG, which we use in our implemen¬

tation, uses the insert and conflate realisation statements as its structure building

operations. WAG uses order and partition for the ordering operations and, for the

classification operations, it uses preselect.

Therefore, there are three issues with regard to the mapping of realisation statements

into ATMS form, namely:

• what function bundles there are (i.e. insertion issues)

• what network rank will be used to realise a given function bundle (i.e. classifica¬
tion issues)

• how to retain the ordering constraints on these function bundles (i.e. ordering

issues)

Functions are inserted at different points in a system network. Different network

paths (or selection expressions) conflate functions into various function bundles or

constituents. Moreover, the preselection operations on a given function bundle deter¬
mine the rank of that bundle and hence the system network that should be traversed

as a realisation for it. Certain paths require that the function bundles be linearised in

a particular order. All of this is compiled by the translation algorithm and stored in

what we call here a network snapshot. The details of a network snapshot are discussed

next. We also show what parts of a snapshot are used to answer the three main issues

of mapping the realisation statements into ATMS forms.

CHAPTER 5. FROM SFG TO ATMS

System Network Snapshots

117

The outcome of the compilation process is stored in system network snapshots. By

a system network snapshot we mean the complete product of the translation process,

not only the systems and their features translation as was shown earlier on in this

chapter. Because the re-translation of a system network yields exactly the same ATMS

representation, the translator SNAC pre-compiles the system networks once and saves

snapshots of them. This way, our grammatical resources become these compiled ATMS

dependency networks. The ATMS-based generator no longer uses the conventional

systemic grammar network since the static linguistic information is now put in a new

representation, namely: the ATMS dependency networks.

The purpose of a network snapshot is to tell the generation stage modules the details of
the mapping (e.g. what are the systems, features, function bundles, ... etc.). However,
the general mapping strategy of a particular SFG representation into a specific ATMS
form is hard-wired into the architecture. Here, we show what we need to store in a

snapshot of a network. A snapshot of a network is a structure having the following
slots:

• rank of network

• choosers specification

• features

• systems

• function bundle details (for each)

— function bundle name

— conflated functions

— preselection operations of bundle

• system justifications

• order justifications

CHAPTER 5. FROM SFG TO ATMS 118

The rank slot specifies the rank of the underlying systemic network. This slot can be
filled by either clause or group rank. The choosers slot specifies which chooser is related
to any given system. The features slot simply lists the features of the network. The
next slot (the systems' slot) lists the systems of a network. In ATMS terms, features
will be represented by assumption nodes and systems by derived nodes. Similarly, a

function bundle is represented by an ATMS derived node. The function bundles slot
has three fields: the function bundle name, the conflated functions forming this bundle,
and the accumulation of the preselection operations of the bundle. The function bundle

name is a convenient way of referring to particular bundle. For example, we will refer to
function bundles in a snapshot using the names f(l), f (2) , ... etc. The preselection

information will be used when it is time to expand that particular function bundle.

The system justifications' slot forms the ATMS dependency network. It relates fea¬

tures and function bundles to systems. While the preceding slots specify what node

types there are in a network, this slot specifies how these nodes are connected to each

other. It also specifies where each function bundle is inserted (i.e. to which feature a

function bundle is attached). Finally, the order justifications slot specifies what order
restrictions there are in the network and what features imply these restrictions. For a

complete explanation of the format of a network snapshot refer to appendix A.

To have an idea about the compilation of a system network into a snapshot, con¬

sider the simplified clause network of figure 5.28. Its snapshot compilation is given

in figure 5.29. During generation, the information stored in this snapshot is used to

instantiate an ATMS dependency network representing the underlying systemic clause
network. Figure 5.30 represents a possible dependency network instantiation of the

simplified clause network. Note how function bundles and order realisation rules are

incorporated into the basic ATMS dependency network. In turn, each of these func¬

tion bundle nodes will have its own supporting assumption nodes during generation

time. Note also how the ordering rules are supported by the assumption features. In

the stylistic mode of generation (see Chapter 7 for a detailed discussion), these will
interact in an involved manner with the surface stylistic requirements to filter out any

source of stylistically inept utterances.

This being said, it is clear now what slots of the snapshot answer the three realisation

CHAPTER 5. FROM SFG TO ATMS 119

r- Declarative

Clause

fin/pred
Front>subj

<chooser1> subj>pred

+Subj:nom_group
pred>obj
obj>End r Wh-

Subj:nominative
+Fin:past_verb
+Pred:lexverb

+obj:nom_group
obj:accusative

Interrogative
+quest:wh-type

<chooser2> Front>quest

fin: aux

pred: infinitive

quest>fin, fin>subj
subj>pred, pred>End

L Yes No

Front>fin

fin>subj
subj>pred
pred>obj
obj>End

Figure 5.28: A simplified clause network

issues mentioned above. The function bundle slot tackles the classification issues, the

system justification slot tackles the insertion issues since function bundles are attached
to their proper place in the network via these justifications. Lastly, the ordering issues

are taken care of by the order justifications slot.

5.10 Summary and Outlook

In this chapter, we have given a translation algorithm which takes systemic grammars

and produces equivalent ATMS dependency networks. We first presented the logical

specifications of both the system networks and the ATMS dependency networks. We

then showed how the different systemic configurations can be mapped to ATMS rep¬

resentations. We then explained why the conjunctive entry condition cannot be easily

represented in the ATMS form. The rest of the chapter was then devoted to solving

that problem. We discussed different techniques to handle the awkward conjunctive

gate, namely: computing a formula for the whole network in DNF, computing a DNF

formula and then factorising it to get a staged representation, and simulating the ef¬
fect of factorising a DNF formula. Our generation algorithm, which is based on the
last technique, was then presented. It re-arranges the systems involved in conjunctive

gates without having to compute the DNF formula first and then factorising it. Finally,

we discussed how a complete SFG, including realisation statements, is compiled into

CHAPTER 5. FROM SFG TO ATMS

snapshot(clause, [
7,—choosers of the network

CCc(1),[_,c(2)]]j ,

7»--features of the network

[clause,declarative,interrogative,wh,yes_no],

7,--systems of the network
[s(l) ,s(2) ,s(3)] ,

7.—function bundle details

[[f(1),[[subj],[nom_group,nominative]]],
[f(2),[[obj],[nom_group,accusative]]] ,

[f(3), [[pred],[lexverb,infinitive]]],
[f(4), [[fin,pred],[lexverb,past]]],
[f(5),[[fin],[aux,past]]],
[f(6),[[quest],[wh.type]]]
],

7.—main (system) justifications
[[[clause,s(2),f(l),f(2)] ,s(l)] ,

[[declarative,f(4)],s(2)],
[[interrogative,s(3),f(3),f(5)],s(2)],
[[wh,f(6)] ,s(3)] ,

[[yes_no],s (3)]
],

7.—ordering nodes and justs.
[[[declarative],order(front,subj)],
[[declarative],order(subj,pred)],
[[declarative],order(pred,obj)],
[[declarative],order(obj,end)],
[[wh],order(front,quest)],
[[wh],order(quest,fin)] ,

[[wh],order(fin,subj)],
[[wh] ,order(subj,pred)],
[[wh],order(pred,end)],
[[yes_no].order(front,fin)] ,

[[yes_no].order(fin,subj)],
[[yes_no].order(subj,pred)],
[[yes_no],order(pred,obj)],
[[yes_no],order(obj,end)]

]]))

Figure 5.29: A snapshot compilation of the simplified clause network

CHAPTER 5. FROM SFG TO ATMS 121

order(Front,subj)

(^order(subj,pred)

(^oider(pred,obj)
C^order(obj.End)

order(quest,fin)Clause

order(fin,subj)

order(subj,pred)

order(pred,End)

Interrogative

order(Front,fin)

order(fin,subj)

order(subj,pred)

order(pred,obj)

Declarative

C^order(Front,quest;

Yes_No

Figure 5.30: A possible instantiation of the simplified clause network

ATMS forms.

In the next chapter, we introduce our ATMS-based architecture for NLG. We show how
the outcome of the compilation process is used to generate natural language utterances.
Because what we are aiming for in this project is the generation of sentences that have
certain surface stylistic requirements, we will then show in a subsequent chapter how
the ATMS-based generator can accommodate the specification of these requirements

using the same formalism.

Chapter 6

ATMS-Based NLG

In this chapter we present our ATMS-based NLG architecture. We

show how the systemic grammars and semantic input are presented to the

generation system which then uses them to generate text relying heavily
on the ATMS as its search mechanism.

6.1 Introduction

In the preceding chapter, we specified an algorithm for translating system networks
to ATMS dependency networks. We now introduce the generation procedure that
uses these translated networks. We first introduce the generation algorithm in general

showing the main steps involved. We then discuss the individual steps in more detail.

We then relate all the parts to each other and show the big picture by giving an

overview of the ATMS-based architecture and the different knowledge sources of the

system. Towards the end, we give a complete example showing how the conceptual

input gets mapped to a natural language text.

The aim of this chapter is to show how the ATMS is used to generate natural language

texts. It paves the way for the next chapter which is concerned with the stylistics of

the surface form: representation of stylistic requirements and generation of utterances

satisfying these requirements.

122

CHAPTER 6. ATMS-BASED NLG

6.2 ATMS-Based Generation

123

Our ATMS-based architecture has two main stages: translation and generation. Dur¬

ing translation, systemic grammar networks are transformed into ATMS dependency
networks. These networks will then be used by the generation module to generate

natural language utterances.

Recall that, in general, a typical systemic generator starts with a clause rank network.
After responding to all chooser enquiries, it ends up with a selection expression and a

corresponding collection of realisation statements. Each of the function bundles result¬

ing from the execution of the realisation statements is in turn realised by traversing its
rank network in exactly the same way. Only when a function bundle is of word rank
is it considered completely realised.

In spirit, our generation strategy is similar to that of other systemic generators in that
it starts with the clause rank and uses a stack to hold the unexpanded constituents.

However, in our approach, we are not only interested in one single selection expression
but many at the same time. Consequently, the constituents pushed onto the stack at

each step are not those of a single path through the system network but of multiple

paths.

At a glance, the generation stage goes through the labelled steps of the algorithm shown

in figure 6.1. We have labelled the steps for convenience of reference and we will explain

each one in detail in the following sections. Note that a snapshot of a network (which
we discuss in Section 5.9) simply means a compiled or translated systemic grammar

network.

The items on the stack are simply function bundle names (as discussed in Section 5.9).
The generation algorithm fetches the function bundle which a name represents and

the accumulation of the preselection operations for that bundle from the correspond¬

ing network snapshot. The preselection information helps in determining the rank of
the network that should be traversed next as a realisation for this unit. For exam¬

ple, suppose that the item popped off the stack is f\, which happens to be the name

of the function bundle {subject, actor} having the accumulated preselection opera¬

tions {nom-group, nominative}. These are features of the group network. Hence, the

CHAPTER 6. ATMS-BASED NLG 124

1 PROCEDURE generate()
2 begin
3 start with the snapshot of the clause network;
4 tailor the atms dependency network of the current unit; [tailoring]
5 assert the circumscribed dependency network; [NETWORK INSTANTIATION]
6 repeat (for each function bundle)
7 begin
8 do concept-function association; [CONCEPT-FUNCTION ASSOCIATION]
9 push the unit onto stack;

10 end

11 pop the next element off the stack;
12 if stack is empty then interface-exp-triangles(); [INTERFACING TRIANGLES]
13 elseif current unit is of word rank then

14 begin
15 call lexicalise(current-unit); [FUNCTION BUNDLE LEXICALISATION]
16 goto step 11;
17 end;
18 else get the network snapshot of the current unit and goto step 4;
19 end;

Figure 6.1: The generation algorithm

network to traverse in conjunction with the realisation of this function bundle is the
GROUP network.

6.2.1 Tailoring System Network Snapshots

Before we embark on the mechanics of the tailoring process, we discuss
the notion of choice in our architecture. We argue that regardless of the
choice mechanism applied, the notion of choice in our system remains dif¬
ferent from that of previous systemic generators. Their aim was to come

up with a single selection expression; ours is to pursue all the selection

expressions which are licensed by the conceptual input.

CHAPTER 6. ATMS-BASED NLG

Nature of our Choice Process

125

Although there are many potential selection expressions in a given system network,
traditional systemic generators are interested in only one of them. Choice in such sys¬

tems is deterministic, and the generation process boils down to determining a selection

expression.

Different systems follow different paradigms in determining a selection expression from
a system nework. For example, PENMAN-like systems use the chooser-inquiry formal¬

ism which was discussed in Section 3.5.2. Such systems assume that their choosers can

always choose among alternatives in any generation task. In reality, this is not always
the case. There will be situations where a chooser cannot make an informed decision

as all the choices at a given point seem equally good [Bateman 97b, O'Donnell 94],

Patten's SLANG generator applies a totally different mechanism to determine a selec¬
tion expression and hence generate a surface form. In SLANG, the underlying meaning
is also represented using system networks. Features from the semantic-level network
can preselect1 features anywhere in the syntactic-level networks. SLANG then uses a

production system to efficiently determine a selection expression and execute the rel¬

evant realisation statements. Even in this paradigm, there can be situations where a

preselected feature in a system network may result in more than one selection expres¬

sion. Figure 6.2 shows an example where preselecting one feature in a network results
in more than one legal path from the root of the network to that feature.

So, regardless of the mechanism applied in the choice process, there will be situations

where the conceptual input licenses more than one selection expression. From an NLG

perspective, this means that the conceptual input can be realised by more than one

surface form. Needless to say, each of these surface forms will have its own stylistic

characteristics. In such cases, we would like to pursue all selection expressions until

we have good reasons to abandon one path or another based on our surface stylistic

requirements. Consequently, our choosers are not obliged to choose one particular
feature when they cannot make informed decisions.
1 This is called inter-stratal preselection. See Section 3.5.1 for a discussion of Patten's preselection-
based approach.

CHAPTER 6. ATMS-BASED NLG 126

X
SEMANTICS

GRAMMAR

d

b

e

m
a

n

f

c

g

Figure 6.2: An inter-stratal preselection resulting in multiple selection expressions

In our ATMS-based architecture, we adopt a chooser-inquiry approach. We could have

used another choice strategy (e.g. a preselection-based approach), but the bottom line
remains the same: a non-deterministic notion of choice which can result in more than

just one selection expression for a given semantic input. The aim is to generate —

among the many selection expressions — only those that satisfy the surface stylistic

requirements.

The Tailoring Process

In traversing a complete systemic network, although some choosers will be unable to

make informed choices, others will likely be able to do so. Therefore, the complete

network needs to be 'tailored' so that only the parts of interest are available. The

tailoring algorithm first fires the choosers of the original systemic network as speci¬
fied in the choosers' slot of the snapshot. With the current unit correctly associated

with the semantic piece2, the choosers enquiries are responded to. Note, however,

that our choosers are not obliged to choose one alternative each time they are trig¬

gered when they cannot make informed decisions. Because we are trying to avoid
2 Refer to Section 6.2.3 for a discussion on concept-function association.

CHAPTER 6. ATMS-BASED NLG 127

committing ourselves to paths that may lead to surface stylistic faults further down
the line, a chooser of a system chooses one particular feature only when the conceptual

input does not permit the other features to be selected. For example, the chooser of

the circumstantial-adjunct system selects no-circum-adj only when no circumstantial
information is provided by the conceptual input; otherwise both paths (circum-adj,

no-circum-adj) are kept. Also, if the ACTOR slot is missing from the input then only
the passive voice is selected, otherwise both active and passive are equally good (so far
at least).

So, whenever a chooser cannot make an informed decision, all children of the particular

system are kept; and when it can make a decision only the selected feature is kept.

This state of affairs results in three kinds of features: selected, unselected and unde¬

cided upon. A selected feature of a system renders all its sisters unselected features.
Undecided upon features are all children of a system from which no particular feature

is selected. Only the unselected features are of no interest to the generator. Both

selected and undecided upon are relevant and need to be pursued further.

The tailoring algorithm then takes these lists (of selected and undecided upon) and pro¬

duces a circumscribed version of the dependency network where the irrelevant features,

systems, function bundles, and justifications (both system and order justifications) are
cut out. What we will have then is a reduced version of the original system network

which is still a system network albeit a smaller one. We call this smaller network

(e.g. network of figure 5.2) a tailored system network and the process of removing the
irrelevant parts tailoring the system network.

6.2.2 Creating Instances of a Network

Function bundles popped from the top of the stack may be of any rank: clause, group,
or word. A word rank unit is realised by an applicable lexeme fetched from the lexicon.
A clause or group rank unit is realised by traversing a corresponding system network

(i.e. a clause or group rank system network). For different function bundles we will

have different traversal outcomes (i.e. various sets of selection expressions). We need
some way of recording the traversal of a system network for a given unit. We call
this way the expansion or realisation triangle. From an ATMS viewpoint, a word

CHAPTER 6. ATMS-BASED NLG 128

rank unit is realised by attaching to it an applicable word. A clause or group rank
unit is realised by attaching to it an expansion triangle. An expansion triangle is an

instantiated tailored snapshot of a network that is attached to a function bundle. We

sometimes refer to such triangles as the solution or realisation triangles.

To show what a realisation triangle looks like suppose that we are to realise the con¬

stituent f (1) which refers to the function bundle subject as depicted in figure 5.29.

Suppose further that the tailoring process yielded the dependency network3 shown by

part (1) of figure 6.3. Part (1) of the figure represents what we call a realisation tri¬

angle. In the remainder of the thesis, a realisation triangle will simply be represented
as shown in part (2) of the figure whereby the triangle's features and function bundle
names are placed to the right of the triangle (cf. figure 6.4). The nodes in both tri¬

angles are connected in exactly the same way. We call the leftmost node (i.e. s(l) or

the indexed version of it) the head of the triangle. To assert the fact that this triangle
is realising the function bundle f (1), the head has to be connected, at some point, to
the function bundle node via the justification s(l) —> /(1).

Note that there might be more than one function bundle of the same rank in one

sentence. For example, "the enemy attacked City-X from the air" has three functions
of the group rank: the common group The enemy\ the proper group 'City-X' and
the prepositional phrase ''from the air\ Although the expansion triangles of these
functions are all of the group rank and hence will be using the same rank network

(i.e. group network), they realise different semantic pieces of the input. The selected
features might be different and so are their resulting function bundles and lexical items

attached to them. Each time a function bundle is to be realised, a new instance of its

rank network is created. It is instantiated in such a way as to keep its features, systems,

function bundles, and order nodes separate from similar ones of other instantiations.

Creating an instance of a network means asserting an indexed tailored version of that
network: its features, function bundles, and order nodes. As mentioned earlier, features

are mapped to ATMS assumptions; function bundles, systems, and order restrictions
are mapped to derived nodes. Actually, they are mapped to indexed assumptions

and derived nodes by the network instance creator. We use the convention n(x,i)
3 Refer to figure 6.7 for the group network upon which the tailoring process is based.

CHAPTER 6. ATMS-BASED NLG 129

part (1)

Figure 6.3: A solution triangle for a tailored network

CHAPTER 6. ATMS-BASED NLG 130

to name the nodes of a network instantiation; where x stands for any snapshot node

name and the integer i for the instantiation index. For example, the active node will
be referred to as n(active,0), the function bundle f (8) as n(f (8) ,0) and the order

node order(subj ,pred) as n(order(subj ,pred) ,0) assuming that the instantiation
index is 0.

6.2.3 Concept-Function Association

As discussed in Section 3.5, there are different ways of implementing the semantics-

syntax interface. The chooser-inquiry paradigm is a common approach which is used in
the PENMAN generation system. In our ATMS-based generation architecture we also
take a chooser-inquiry approach. Here we present a particular aspect of the approach:
the association of grammatical functions to entities of the conceptual input.

For each system there is an associated chooser. The chooser represents the semantic

content of the system as it determines the circumstances under which each choice
is appropriate [Mann & Matthiessen 83]. To function sensibly, the chooser must ask

questions about particular entities of the conceptual input. For example, to choose

between singular and plural, the chooser of that system must be referring to a particular

entity in order to know whether it is unitary or multiple.

In the PENMAN generator, choosers have access to the Function Association Ta¬

ble (FAT) [Mann &: Matthiessen 83] which keeps a record of the associations between
the grammatical functions and the corresponding semantic entities. Additionally, one
of the tasks of the choosers is to make such an association and put it in the Function

Association Table for other choosers to use in answering inquiries. For example, to
realise the grammatical function THING which is associated to say bicycle-x (i.e. a

particular semantic entity), the nominal-group network is traversed. Now, upon enter¬

ing the Possessiveness system, for example, the chooser of that system must associate

the grammatical function DETERMINER with the conceptual entity representing the

possessor (say Tom-y).

In our system, the remaining function bundles in the tailored network are associated

with parts of the semantic input representation before they are pushed onto the stack.

CHAPTER 6. ATMS-BASED NLG 131

This association is kept in a table similar to PENMAN's FAT. Entries in that table
relate function bundles to pointers to particular semantic entity representations. For

example, the function bundle finite/predicate is associated with the process part of
the semantic structure. Similarly, the function bundle subject/actor is associated with
the agent of the process. Function bundles for which there are no mapping rules are

pushed onto the stack without any semantic-syntactic association. These functions are

purely syntactic such as the agency-marker function which is a preposition and the
mod function which is a modal verb.

6.2.4 Lexicalisation of Function Bundles

Function bundles popped off the stack are realised by expansion triangles (as shown

earlier) if they are of the clause or group rank. If a function bundle is of the word
rank then the syntactic restrictions implied by the preselection operations and the
denotational restrictions implied by the semantic unit associated with this function

bundle are collectively used to fetch the applicable lexemes from the lexicon. Function

bundles that are purely syntactic have no semantic association in the FAT and hence

only these syntactic restrictions are used to fetch the appropriate lexemes.

It is worth mentioning that lexicalisation or attaching all the applicable lexemes to

a word rank function bundle does not necessarily mean that these will be the final
lexical choices that will appear in the generated surface forms. Similarly, not all the

syntactic choices offered by any tailored network will necessarily show up eventually,

since some may not withstand the stylistic scrutiny. This being said, we differentiate
between lexicalisation and lexical choice, with lexical choice being taken to mean the

process of deciding which words from the lexicon best describe a concept. Therefore
the lexicalisation process simply attaches the result of an initial coarse lexical choice

process to a function bundle. Still, stylistic lexical choice is different in that it is seen

from a final-product point of view. Lexicalising a function bundle does not mean that
all the lexical choices will appear in the final surface forms. Some choices will not

withstand the stylistic constraints. The surviving lexemes represent the result of the

stylistic lexical choice operation.

It is this high interaction between the syntactic and lexical choices that makes the

CHAPTER 6. ATMS-BASED NLG 132

SFL formalism appealing for generation tasks that value surface stylistic properties.

Fortunately, the ATMS architecture can seamlessly deal with this interaction using the

same language of nodes and justifications.

To show how lexicalisation of constituents is carried out, consider the function bundle

finite/pred. Semantics-syntax association relates this function bundle with the process

part of the semantic structure. The preselections incurred by the selection expression

(clause,non-modal,past-clause,active,...), for example, gives the set {lex-verb,pastjuerb}
If the process is kill-concept for example, then the union of the syntactic and de-

notational restrictions is as follows:

syntactic-restrictions U denotational-restrictions = lexemeselectional-restrictions,

or

{lex-verb, past-verb} U {kill_concept, number_large} =

{kill_CONCEPT,NUMBER_LARGE, lex-verb, past-verb}.

Depending on the coverage of the lexicon, the lexicaliser could fetch the following
lexemes: eliminated, annihilated, extinguished, eradicated, ... etc. The lexemes are

then attached to the function bundle by means of ATMS justifications such as:

Iex {eliminated, Ffinite/pred) ^ F'finite/pred
Iex {annihilated, Efinite/pred) ^ E'finite/pred

Purely syntactic function bundles have empty sets of denotational restrictions. For

instance, the function bundle agency-marker is an example of a purely syntactic

constituent having the preselection set {preposition,byjprep}. This results in the
function word by being fetched from the lexicon and attached to the function bun¬
dle agency-marker by the justification lex{by, FagenCy_rnarizer^j y Eagency -marker-

CHAPTER 6. ATMS-BASED NLG 133

Figure 6.4: Interfacing of realisation triangles

6.2.5 Interfacing Expansion Triangles

The realisation of a unit results in what we call an expansion triangle. In turn, each of
this triangle's function bundles is to be realised by its own expansion triangle. After
its creation, an expansion triangle is isolated and it has to be connected to the function

bundle it is realising in order for it to contribute to the overall generation process. The

interfacing process involves connecting a triangle head to the function bundle being
realised. This is depicted graphically in figure 6.4.

To improve the efficiency of the system, we delay connecting the triangle head to the
function bundle it is realising until all of its function bundles are realised and connected
to their own triangles. For this purpose, we have another stack called the delayed-goal-

nodes stack which holds the triangle head information. When all the function bundles

are realised, we start interfacing the solution triangles from lower levels all the way to

the top most solution triangle of the first clause ranked unit. Once a triangle head

(say the node head) is connected to the function bundle it is realising (i.e. the node

function) via the justification head —> function, the label of function is computed

and its contribution to the overall dependency network is propagated to other nodes
for which function is an antecedent.

CHAPTER 6. ATMS-BASED NLG 134

Interfacing the solution triangles in this way minimises the number of propagation

operations. If a lower level triangle is connected to its parent by means of a justification
then every update activity in this triangle or one of its children requires the propagation
of that update across all levels, up to the topmost goal node. This is because the head
node of that triangle appears as an antecedent in other justifications. We avoid all

of this unnecessary work by connecting the realisation triangles from lower to higher

levels, up to the topmost (i.e. in a bottom-up fashion). Only a fully realised function
bundle is connected to its parents; which itself is not connected to its parent until all
of its constituents are also realised.

6.3 The Overall System Architecture

Having introduced the generation algorithm and discussed the steps involved in detail,
it is time now to put things into perspective and relate the different knowledge sources

to each other. The schematic of figure 6.5 provides a high level overview of the ATMS-
based generator.

The grammatical resource is a collection of pre-compiled systemic networks put in

the form of ATMS dependency networks. As mentioned in the previous chapter,

SNAC translates systemic grammar networks into a representation that the genera¬

tor (STylistics-Aware GEnerator, STAGE) can reason with.

The conceptual input is a structure representing what should be generated by the

system. To use the SFL terminology, this is a micro-semantic representation for a single
sentence in terms of ideational, interactional, and textual meaning [O'Donnell 94].

Figure 6.6 gives an example of an ideational part of a conceptual input. It represents

a material process and information about other roles such as the actor, actee,

instrument and some circumstantial details (time, location, manner of process,
... etc.). Any particular conceptual input can have more or less information depending
on the case. Note that we do not regard the semantic representation per se as an

important part of our work in this thesis. It only gives a way of driving the generation

process and providing a basis for choosers to work correctly.

The output of the system is a set of, what we call here, potential sentences. A potential

CHAPTER 6. ATMS-BASED NLG 135

Conceptual Input

Grammatical Resource

Lexicon

STAGE (Generator)

IE ATMS

Potential Sentences

1
Postprocessor

T
Sentence 1

Sentence 2

Sentence n

Stylistically preferred surface forms

Figure 6.5: An overview of the ATMS-based NLG system

lightsaber double-bladedATTR ATTR

obi-wan-kenobi
yesterday

INSTRMNT

NAMETIME

ACTION

kiIl_conceptACTOR personperson

MANNER

NAME ATTR

savagerepublic

LOCATION

ATTR

beard

Galactic ATTR

Figure 6.6: An example semantic input representation

CHAPTER 6. ATMS-BASED NLG 136

sentence is a selection expression and lexical choices for the function bundles incurred

by it. As a matter of fact, this is all that is needed to generate the surface form.

The post processor then executes the order realisation statements of each selection

expression to linearise the lexical choices in syntactically complete utterances.

The lexicon contains, in addition to the usual denotational and syntactic constraints,

stylistic properties for each lexical entry such as the sound pattern, root, ... etc.

The stylistic knowledge source specifies what characteristics the generated text should
or should not have. The task of taking enough measures to ensure the generation of
such texts is STAGE'S responsibility. If no stylistic preferences are given, then the

process is just plain generation, which gives all the possible paraphrases. In the next

chapter, we discuss in detail the internals of the stylistic knowledge source and how

the generator uses this knowledge in order to avoid generating utterances that violate
the surface stylistic constraints.

6.4 Plain vs. Stylistics-aware Generation

Allowing the ATMS to pursue all the available lexical and syntactic choices is called

plain generation since no surface stylistic requirements are allowed to constrain the gen¬

eration process, other than those imposed by the language rules themselves. However,
we are very much interested in stylistics-aware generation. In this case, the required

stylistic properties are presented to the ATMS in the form of justifications. We assume

that it is possible to formalise these requirements in the form of ATMS justifications.

In the next chapter, we will discuss what we mean by the surface stylistic requirements

and show how STAGE generates utterances that satisfy such requirements. Mean¬

while, we will content ourselves with a complete example showing the workings of the

generation system in the plain mode.

6.5 Complete Example

Here, we give an extended example that shows the various stages of the whole process.

To keep the example within limits, we will consider only a fragment of the WAG

CHAPTER 6. ATMS-BASED NLG 137

Active
+Actor

Actor=Subj
+Obj:nom_group,accusatr
Obj=Goal
Fin=Pred

Pred>Obj

- Agency_expressed

Passive
+Pass:be_aux
+PassC:enparticiple
PassC=Pred

+Goal=Subj
Fin=Pass

+Agent:person
Agent=Actor
+Agency_marker.by_prep
PassC>Agency_marker>Agent

Agency_not_expr

NoCircum_adjunct
Front>Subj>Fin
Pred.. End

L Circum_adjunct
+Circum:prep_phrase

r NonThematicCircum
Front>Subj>Fin
Pred.. Circum
Circum>End

- ThematicCircum
Front>Circum>Subj>Fin
Circum.. Pred.. End

- NominalGroup
+Thing
Front.. Thing
Thing.. End

Group—

Nominal

Front>Deictic>Numerator

Numerator>Epithet>Thing
Thing>End

L Pronominal

ProperGroup
Thing:proper-noun
Front>Thing>End

CommonGroup

Thing:pornominal
Front>Thing>End

Nominative

Thing:nominative

Accusative

Thing:accusalive

PrepPhrase —

+Prep
+pp_head:nominal
pp_head:accusative
Front>Prep>pp_head>En<

Client_pp
j Prep:(or_prep j

Location_pp
Prep:in_prep

Time_pp
Prep:on_prep

Thing:common-noun
+Deictic :de(in i te

onep_group

Thing:first_pers

twop group

| Thing:second_pers|
threep_group

Thing:third_pers

Numerated
+Numerator:ordinal_adj

NonNumerated

Epitheted
+Epithet:Nonordinal_adj

- NonEpitheted

Classified
+Classifier:common_noun

Nonclassified

Figure 6.7: Clause and Group network fragments

CHAPTER 6. ATMS-BASED NLG 138

systemic grammar (see figure 6.7). We will show how the networks of this grammar

get translated into ATMS dependency networks. We will give the compiled snapshots of
the translated networks. We will then show how the generation algorithm of figure 6.1

maps a micro-semantic representation, similar to the one in figure 6.6, to natural

language sentences.

6.5.1 Compilation of the Grammar

The compilation of the grammatical resources is not part of the generation stage. We
discuss it here to give a concrete example of how SNAC transforms a systemic grammar

into network snapshots which are then used by the generation stage modules. For

the grammar shown in figure 6.7, SNAC produces the network snapshots depicted in

figure 6.8 and 6.9 for the CLAUSE and GROUP networks respectively.

The first three slots shown act as a declaration section. It tells the module which

will create instances of these networks that the features are to be mapped to ATMS

assumptions. It also tells the instance creator that both the systems and function
bundles are to be mapped to derived nodes. The dependency network itself is con¬

structed by means of the main system justifications of the slot that follows (i.e. the
fourth slot). The order nodes and justifications are asserted based on the information

provided by the ordering-nodes-and-justs slot. Order nodes are ATMS derived nodes

of the form order(fun\, fun?) meaning that fun\ immediately precedes fun?. The

justifications of the ordering slot specify which combination of features imply a partic¬

ular ordering restriction. For example, the justifications active A thematic-circum —>

order (front, circum) and activeAthematic-circum —> order(circum, subj) mean that
an active sentence with a thematic circumstance imposes a restriction that the circum

function comes at the front of an utterance followed by the subj function.

From the clause snapshot specification, we can construct the dependency network of

figure 6.10. A dependency network for the group network can be constructed in the

same way. Note that in the dependency network of figure 6.10, function bundle names

— represented by derived nodes (e.g. f (1) and f (3)) — are not supported by any

assumptions. This is fine during compilation. During generation, however, each of
these function bundles will have its own realisation triangle. This fact is indicated by

CHAPTER 6. ATMS-BASED NLG

snapshot(clause, [

'/,—features of the network

[clause,active,passive,agency_expr,agency_not_expr,
circum_adjunct,non_thematic_circum,thematic_circura,
nocircum_adjunct],

'/,—systems of the network
[s(l),s(2),s(3),s(4),s(5),s(6)],

'/,—function bundle details

[[f(1),[[subject,actor],[nom_group,nominative]]],
[f(2),[[subject,goal],[nom_group,nominative]]],
[f(3),[[finite,pred],[lexverb,past_verb,transitive]]] ,

[f(4),[[finite,pass],[be_aux,past_verb]]],
[f(5),[[pred,passe],[lexverb,transitive,enparticiple]]],
[f(6),[[object,goal],[nom_group,accusative]]] ,

[f(7),[[agency_marker],[by_prep]]] ,

[f(8),[[agent,actor],[nom_group,accusative]]],
[f(9),[[circum],[prep_phrase]]]
],

'/,—main (system) justifications
[[[clause,s(2)],s(l)],
[[s(3),s(4)],s(2)] ,

[[active, f (1) ,f (3) ,f (6)] , s (3)] ,

[[passive,s (5) ,f (2) ,f (4) ,f (5)] ,s (3)] ,

[[agency_expr,f(7),f(8)],s(5)] ,

[[agency_not_expr],s(5)],
[[circum_adjunct,s(6),f(9)],s(4)],
[[non_thematic_circum],s(6)],
[[thematic_circum],s(6)],
[[nocircum_adjunct],s(4)]
].

'/,—ordering nodes and justs
[[[active],order(pred,object)] ,

[[passive],order(pass,passe)] ,

]]))

Figure 6.8: A snapshot of the clause network of figure 6.7

CHAPTER 6. ATMS-BASED NLG 140

snapshot(group, [

'/,—features of the network

[group,nominal_group,prep_phrase,nominal,pronominal,
nominative,accusative,proper_group,common_group,
onep_group,twop_group,threep_group,
numerated,non_numerated,epitheted,nonepitheted,
classified,nonclassified,client_pp,location_pp,time_pp],

%—systems of the network
[s(l),s(2),s(3),s(4),s(5),s(6),s(7),s(8),s(9),s(10),s(ll),s(12)],
'/,—function bundle details

[[f(11),[[thing],[proper_noun]]] ,

[f(12),[[thing],[pronominal,first_pers]]] ,

[f(13),[[thing], [pronominal,second_pers]]],
[f(14),[[thing], [pronominal,third_pers]]],
[f(15),[[thing], [common_noun]]] ,

[f(16), [[deictic],[definite]]] ,

[f(17), [[prep], [client_prep]]],
[f(18), [[prep], [location_prep]]] ,

[f(19), [[prep], [time_prep]]] ,

[f(20),[[numerator],[ordinal_adjective]]] ,

[f(21),[[epithet],[nonordinal_adjective]]],
[f(22),[[classifier],[common_noun]]],
[f(23),[[pp_head],[nominal,accusative]]]],

7,—main (system) justifications
[[[group,s(2)] ,s(l)],
[[nominal_group,s(3)],s(2)],
[[prep_phrase,s(4),f(23)],s(2)],
[[s(5),s(6)],s(3)] ,

[[nominal,s(7)],s(5)],
[[pronominal,s(8)],s(5)],
[[proper_group,f(11)],s(7)],
[[common_group,s(9),f(15),f(16)],s(7)],
[[onep_group,f(12)],s(8)],
[[twop_group,f(13)],s(8)] ,

[[threep_group,f(14)],s(8)],
[[s(10),s(ll),s(12)],s(9)],
[[numerated,f(20)],s(10)],
[[non_numerated],s(10)],
[[epitheted,f(21)],s(ll)] ,

[[nonepitheted],s(ll)],
[[classified,f(22)],s(12)],
[[nonclassified],s(12)],
[[client_pp,f(17)],s(4)],
[[location_pp,f(18)],s(4)],
[[time_pp,f(19)],s(4)]],
/—ordering nodes and justs
[...
[[common_group],order(front.deictic)],
[[common_group,numerated],order(deictic,numerative)],

[[classified],order(classifier,thing)]]]))

Figure 6.9: A snapshot of the group network of figure 6.7

CHAPTER 6. ATMS-BASED NLG 141

No_Circum_adjunct

NonThematicCircum

ThematicCircum

Cord^passc,ag_mr^r^)>y..

Corc^circum,end^.. (

(^der(front^sub)^* • •

(^or^r(pred,^)^>-...
order(pass!ps^

Active

Agency_Expressed

Agency_Not_Expr

Figure 6.10: The dependency network constructed from the clause snapshot

CHAPTER 6. ATMS-BASED NLG 142

a small grey triangle attached to function bundle nodes. Meanwhile, each function
bundle needs to be associated with semantic entities and pushed on the stack for later

expansion. Later on and in place of these grey triangles, each function bundle will have
either a triangle of its own or a set of synonymous lexical items depending on its rank.

Note also how the order nodes are related to the assumption nodes (i.e. the features).
In the plain mode of generation, they are used at the very end to order the lexical
items in linearised surface forms. In the stylistics-aware mode, these order nodes and

justifications play an important role in deciding what selection expressions and/or
lexical items survive the stylistic requirements. They interact in a complex way with

the user-specified surface stylistic constraints, as will be discussed in detail in the next

chapter.

6.5.2 The Generation Procedure

Suppose that we have a micro-semantic input which is more or less similar to the

conceptual representation of figure 6.6. The first step is to associate the clause as a

whole with this representation. This information is recorded in a function association

table similar to that of PENMAN. The clause unit is pushed on the stack and the

generate() procedure is invoked. Now, we show the different stages of the generation

algorithm.

1. Get the top element of the stack and determine its rank4. Initially, the

top of the stack is the topmost unit which is of the clause rank.

2. Tailor its corresponding network. Here, we fetch the clause network snap¬

shot and start firing its choosers. The choosers are relaxed in the sense that

a chooser is not obliged to choose a single feature from a system when it can¬

not make an informed choice. Based on the choosers' responses, we remove the

irrelevant parts and we get a tailored network.

For example, for the simple clause network that we are considering, the semantic

input tolerates choosing active or passive. Therefore, the associated chooser will
4 The preselection operations associated with a function bundle are used to determine the rank of
that constituent. For example, a function bundle with an associated preselection operation that
preselects a feature from the group network means that this function bundle is of the group rank.

CHAPTER 6. ATMS-BASED NLG 143

not choose one of them. Instead, it will keep both of them as undecided upon

features. Also, since the micro-semantic representation has some circumstantial

information, all the paths of the CIRCUMSTANCE system will be maintained.

3. Instantiate a dependency network as a realisation for the current unit.

The tailored network is indexed in order to make it unique from other possible

instantiations of the same network. We get the same dependency network but
with each of its nodes indexed. As mentioned earlier, we use the convention

n(x,i) to name the nodes of a network instantiation; where x stands for any

snapshot node name and the integer i for the instantiation index. For example,
the active node will be referred to as n(active,0), the function bundle f (8) as

n(f (8) ,0) and the order node order(subj ,pred) as n(order(subj ,pred) ,0)

assuming that the instantiation index is 0. So an indexed version of the tailored
network is asserted (i.e. all its remaining features, function bundles, and order

nodes).

4. Associate the Function bundles with Concepts and push them onto

the stack. The PENMAN way of doing the association is via the choosers.
To do this association in our implementation, we use a table which associates a

function with a symbolic label in the conceptual representation. For example, in

the function bundle subject/agent, the function agent, since it is biased towards
the semantics side of the bundle, is used to associate that function bundle to

the ACTOR part of the conceptual representation. Similarly, function bundles

containing predicate or process are associated with the ACTION of the micro-

semantic representation and so on. After the association between the function

bundles and the underlying semantic entities is done, those bundles are then

pushed onto the stack. To proceed with the example, suppose that the top item

of the stack is f (3) and the item below it is f (1).

5. Recursively, generate each constituent on the stack until the stack is

empty. Each unit on the stack needs to be realised in a similar manner to that

which has just been shown. We show, next, the realisation of the function bundle

nodes f (3) and f (1), which represent the bundles f inite/pred and subj/actor

respectively.

CHAPTER 6. ATMS-BASED NLG 144

• Realisation of f (3): Now, the next element popped off the stack is f (3)

(instantiated as n(f (3) ,0)) which is of the word rank (refer to figure 6.8).
Such a function bundle is realised by fetching the applicable words from the

lexicon and attaching them to it. To lexicalise this function bundle, we take

the union of both the grammatical constraints of the function bundle and

the conceptual constraints of its corresponding entity in the FAT-like table.
This results in the following collection of selectional constraints: {lex-verb,

past-verb,transitive, ... KILL-PROCESS, MANNER-RUTHLESS} which
fetches the following lexemes from our small lexicon massacred, annihilated,
exterminated.

• Realisation of f(l): Since f(l) (instantiated as n(f(l),0)) is not of
the word rank, it will need to have its own realisation triangle, which is

achieved by determining its rank, getting the corresponding network snap¬

shot, and moving control to step 4 according to the algorithm of figure 6.1.

This starts the tailoring process for the group network snapshot. Assume
that the choosers' responses were: (Nominal-Group), (Nominal), (Nomi¬

native), (Proper-Group, Common-Group), (Numerated, NonNumerated),

(Epitheted, NonEpitheted), (Classified, Nonclassified). Note that tuples of
more than one feature indicate that the choosers of these systems were un¬

able to make informed choices. Based on the choosers' responses, the group

network is tailored, instantiated, and its remaining function bundles (i.e.
f (11) ,f (15) ,f (16), f (20) ,f (21) ,f (22)) are associated with conceptual

entities and also pushed onto the stack.

6. Interface the expansion triangles. When all the function bundles are realised

completely, this being indicated by an empty stack, we start interfacing the

solution triangles from lower to higher levels in the way shown in figure 6.4. As
the triangles are interfaced, the ATMS computes the labels for the involved nodes

incrementally. In the end, the label of the goal node (i.e. the leftmost triangle

head) contains all the solutions. These are then linearised based on the order

nodes associated with each selection expression.

CHAPTER 6. ATMS-BASED NLG 145

Figure 6.11 gives a sample of the sentences that can be generated in the plain mode.
Remember that no surface stylistic restrictions are specified in this mode. So, the

output is mainly determined by the semantic input, lexicon, and syntactic rules. For
the input we provided, we get a large number of sentences with different syntactic
structures and lexical variations.

Dartmaul annihilated the Jedis.

The last ruthless warrior exterminated the Jedis on Friday.
On Friday, the last ruthless warrior exterminated the Jedis.

The black bearded Jedis were massacred.

The black bearded Jedis were massacred by Dartmaul.
The black bearded Jedis were massacred on Friday.
On Friday, the Jedis were annihilated.
The Jedis were annihilated by the warrior on Friday.
On Friday, the Jedis were annihilated by the last ruthless warrior.

Figure 6.11: Sample sentences with different lexical and syntactic choices

6.6 Summary and Outlook

We have shown how the translated systemic grammars are used under the ATMS-based
architecture to generate natural language utterances. The paraphrases generated are

only constrained by the conceptual input. That is, no surface stylistic requirements are

considered as yet. Although this is not the way we intend to use the generator, it shows
the basic workings of the generation procedure: systemic grammars are represented in
ATMS dependency networks and these are then used to realise the different functional

units of language.

The number of paraphrases generated in this way is large. Both the available syntactic
structures and the applicable lexemes for each word rank constituent affect the number

of paraphrases generated. This is where the surface restrictions come into play. They
constrain which lexeme can neighbour which and in what syntactic structures. This

chapter paves the way for the next one which deals with stylistics-aware generation.

Chapter 7

Stylistics-Aware Generation

In this chapter we demonstrate how the ATMS-based architecture can

be used for stylistics-aware generation. After re-stating what is meant

by surface stylistic constraints (SSC), we discuss how we can tackle them
within the notion of functional constituency. We design a framework for
user-defined stylistic requirements which can be used to parameterise the

generation process described in the previous chapter. We finally demon¬

strate the specification ofsome sets ofsurface stylistic requirements, namely:

word adjacency constraints, poetry metre specification and text size limi¬

tations. For each set of SSC, we show how the specifications work within

the framework.

As NLG technology matures, more and more applications that require computer-human

interaction will incorporate text generation components of some sort. This means that

generators will have to produce not only understandable but also stylistically appealing
texts. These applications may require the generation program to produce text with

certain rhyme, alliteration or even poetic aspects. Such tasks may require redoing

syntactic and lexical choices under constraints from different levels.

Style is generally defined as the choice between the various ways of expressing the
same message. [DiMarco h Hirst 93] in their important work on style in computational

linguistics, give the following definition of style:

146

CHAPTER 7. STYLISTICS-AWARE GENERATION 147

Style is created through subtle variation, seemingly minor modulations of

exactly what is said, the words used to say it, and the syntactic construc¬

tions employed, but the resulting effect on communication can be strik¬

ing. [DiMarco &; Hirst 93]

They identify four parameters that determine the stylistic feel of an utterance: lexical,

syntactic, thematic and semantic aspects. Roughly, we can divide these parameters into

deep (e.g. thematic and semantic) and surface parameters (e.g. lexical and syntactic).
This work is about surface realisation of stylistically preferred sentence-size utterances

and, obviously, what concerns us the most are the lexical and syntactic parameters of

style.

[Nicolov 99] identifies two issues in generating stylistically preferred paraphrases: first,
what does it mean for a realisation to be better than another one? Secondly, how can

we incorporate the notion of betterness in the process? This work tackles the second

issue, as the object of this project is not to come up with the best stylistic rules but to

show that different stylistic requirements can, on the one hand, be expressed using the

ATMS representation language and, on the other hand, be accounted for within the

proposed architecture. It will be left to the user or the application to specify what is

considered stylistically good or bad. As a matter of fact, what is considered a stylistic

problem that should be avoided in one application might be a requirement in another

one. That is why we only provide tools for the specification of stylistic requirements.

The internals, or the meaning of the stylistic nodes and justifications, are left for the
user's own judgement.

7.1 The Other Dimension of the Process

So far, we have been considering one dimension of the generation process: that of

producing grammatical utterances. The other dimension is to generate, in addition
to the grammaticality requirement, only those utterances that possess certain stylistic
characteristics. What we are after is the surface form: how it looks and sounds, and

whether or not it complies with the surface stylistic requirements. Both lexical choices

and syntactic structures shape the final utterances. The lexical choices obviously spec-

CHAPTER 7. STYLISTICS-AWARE GENERATION 148

Figure 7.1: The stylistic dimension of the generation process

ify what words will be available in the generated utterance. The syntactic choices
order these building blocks in a linearised string of text. For most generation tasks
the process ends here. However, for applications that have specific surface stylistic re¬

quirements generators must ensure that these choices do not conflict with the stylistic

requirements.

Figure 7.1 shows how SSC can be used, in conjunction with the usual realisation

triangles, to filter out any source of surface stylistic faults. The lower dependency
network is a realisation triangle (as introduced in Section 6.2.2). The upper dependency
network will be called a stylistic triangle. The similarity between the two triangles is

simply that they are both ATMS networks with distinctive head nodes forming a

triangular configuration. The realisation triangle preserves the dependency relations
between its nodes (e.g. systems, features) as specified by the underlying systemic

grammar networks; whereas the stylistic triangle maintains dependency between a

different set of derived nodes (e.g. realisation nodes and their implications) as specified

by the given surface stylistic requirements. Both triangles in the figure are supported

by the same set of assumptions. This way, both the pure syntactic realisation triangle

and the stylistic triangle together determine the surviving sets of assumptions and
hence the final problem-free utterances. Both triangles work hand in hand to generate

the final utterances. If a node in the stylistic triangle is found to be contradictory
— according to the given stylistic requirements — then the ATMS notes that all the
sets of assumptions labelling it lead to a contradiction (or surface stylistic problem in

CHAPTER 7. STYLISTICS-AWARE GENERATION 149

our case). The ATMS then removes these contradictory sets, which form the seeds
for possible surface problems, and all their supersets from the labels of the remaining

nodes, including the nodes of the lower (syntactic) triangle. This restricts the number
of generated sentences — which can be read off the GOAL node label — to only those
free of surface problems.

An example of work that uses a similar approach is that of [Power 00]. In his con¬

straint satisfaction text planner, Power designed a procedure that can generate all text
structures and, to limit the number of solutions, he applied further constraints in order

to eliminate solutions that are stylistically deficient. However, the problem addressed

in that work is different. Power focuses on generating preferred text structures (TSs)
which realise a given rhetorical structure (RS), as there can be a huge number of them,
some of which may be stylistically better than others. The kinds of (deep) stylistic

problems he is trying to avoid are: whether the nucleus of a particular rhetorical rela¬
tion (e.g. the background relation) precedes its satellite in a TS, whether a sentence

contains more than one text-clause, and whether a TS forms a paragraph with only

one sentence. These are micro-planning issues that do not involve surface problems
due to unfortunate syntactic and/or lexical choices made.

This brings up the possibility of modelling the problem of stylistics-aware generation
as a Constraint Satisfaction Problem (CSP). A CSP is a problem composed of a set of

variables, a domain for each variable, and a set of constraints that restricts the values

the variables can simultaneously have [Poole et al. 98]. A solution to a CSP is an as¬

signment to all variables such that no constraint is violated. Generally speaking, the

problem at hand can be viewed as a CSP since it is a multidimensional selection prob¬

lem. Each selection point can be represented by a variable. At each choice point, the

available options would then represent the domain for each variable. The set of con¬

straints would consist of the syntactic constraints of the underlying lexico-grammatical
resource and the surface stylistic requirements imposed the given application. Follow¬

ing the CSP alternative usually involves answering the difficult question of how many

variables we need to formulate our problem as a CSP [Power 00]. In generating from

systemic grammar networks, we do not know in advance how many choice points we

will hit. It all depends on the path we follow in a given situation.

CHAPTER 7. STYLISTICS-AWARE GENERATION 150

Although other search strategies might have been adopted, we opted for the ATMS
search mechanism to be the core of our NLG architecture because of the similarity

between the representation of the grammatical formalism (i.e. system networks) and
the ATMS representation (i.e. dependency networks). We exploit the logical connec¬
tion between the two representations. We translate the first representation into the

second and let the ATMS do the job it is particularly designed for (i.e. reasoning about

dependency networks).

7.2 Surface Stylistic Constraints

Here we re-state what we mean by surface stylistic constraints (SSC). SSC are those

stylistic requirements that are known beforehand but cannot be tested until after the

utterance or (in some lucky cases) a proper linearised part of it has been generated.

During the linguistic realisation process, different lexical and syntactic choices are made
which impose certain interdependent constraints on the surface form. Consequently,

the final utterance exhibits certain stylistic features. If this surface form does not com¬

ply with the application's stylistic preferences, it is considered unacceptable although
it might be a perfect utterance otherwise. Examples of SSC might be:

1. Inter-lexical Constraints: Due to unfortunate lexical choices the utterance

might be awkward or ambiguous when words are linearised, although each word
is good in isolation. For example, the French pronouns le, la cannot precede

words starting with e. When that happens, both are abbreviated to I'. Now, if

we want to generate (in French) an unambiguous utterance, the choice between
the feminine pronoun la and Sarah depends on the next word [Reiter & Dale 00].

Although simple, this example shows that there are cases where generators cannot

make a final decision on lexical choice until after the surface form has been

linearised and its words inflected. Moreover, the phenomenon of collocations is

another example of inter-lexical constraints as will be discussed in Section 7.9.1.

2. Text Size Constraint: Some lexical choices result in longer utterances because

of the way in which each word packages information. The cumulative effect of

such verbose choices can be longer texts. However, the exact length of text is

CHAPTER 7. STYLISTICS-AWARE GENERATION 151

not known until after the text is generated and only then can it be compared to

the size limit it is allowed to occupy. In the STOP project, Reiter discusses how

even things like punctuation, inflection, and font type can play a role in keeping
the text within the allowed limit [Reiter 00]. Also, [Bouayad-Agha et al. 91]
in their patient information leaflets generation project, regard text length and

lexical choice, for example, as matters of style which "require rewording of the

text". These constraints are imposed by the user (the patients in this case): the

"patients might object that the sentences are too long, or that technical words

[...] are used instead of familiar ones".

3. Poetic Constraints: In poetic writings, issues like metre, rhyme, and allit¬
eration all restrict the words an NLG system can select in relation to what has

already been chosen. Applications that require this kind of text are starting to

appear in the NLG literature such as poetry [Manurung et al. 00], punning rid¬
dles [Binsted & Ritchie 94], and story generation [Bailey 99, Binsted & Ritchie 96]

Current systemic generation algorithms are prone to surface stylistic problems because

they need to make decisions at different choice points before the surface form or part

of it has been built. When there is not enough information to make a decision, cur¬

rent generators resort to one of two strategies: selection of a default or selection of a
random alternative. [Knight & Hatzivassiloglou 95] show that neither strategy guaran¬

tees problem-free surface forms, as "the default choices frequently are not the optimal

ones" and the alternative of randomised decisions entails "the risk of producing some

non-fluent expressions".

The idea of our solution is to discourage both types of choices (i.e. default and ran¬

domised) whenever there is not enough information available, and to encourage the

user to specify his stylistic preferences so that they eventually play a role in the choice

process. This way, sources of surface problems get filtered out and only problem-free
utterances get generated.

CHAPTER 7. STYLISTICS-AWARE GENERATION

7.3 Hard vs. Soft Stylistic Constraints

152

The decision to incorporate surface stylistic constraints in the overall generation process

motivates the basic architecture of our generation system. Another equally important
decision is how to treat these stylistic requirements. Are they absolute hard constraints

or graded soft constraints (i.e. mere preferences)?

Hard constraints can either be satisfied or not. This makes them easy to test for.

However, once they result in more than one solution, there is no way one can use them
to rank the solutions or weigh them against each other. Soft constraints, on the other

hand, can be satisfied to different degrees and hence can be weighed against each other.
The problem with soft constraints is that they are not easy to formulate and evaluate.

Another difficulty with them is that they can conflict with one another. For example,
the preference to have a brief and concise text on the one hand, and to sound "overly

bookish" on the other may not be attainable at the same time [Stede 96b]. Although
soft constraints can, in theory, be used to rank the solutions, ranking natural language

texts is not an easy task. It is usually considered a post-processing task that may

require the help of a human being.

In this project, we chose to have stylistic requirements being hard constraints. In a way,

this concords with the fact that the particular ATMS implementation we use in this

project can only handle true-or-false type of constraints. Another reason for our stance

is that, as a general observation, surface stylistic constraints (e.g. poetry metre) are

more to the side of hard constraints; and deep stylistic constraints (e.g. text formality)
are better represented by soft graded preferences. For example, a sentence rhythmic

sequence either complies with a given poetry metre or not. However, with respect to

deep stylistic constraints, one can talk about the degree of formality or floridity of
a text. In such cases, if we cannot have a totally formal text we can maximise the

degree of formality of the text. If more than one surface form are generated, then we

can weigh them against each other and rank them in a descending order of formality.

Obviously, deep stylistic requirements — which are beyond the scope of this thesis —

are better tackled using soft constraints.

CHAPTER 7. STYLISTICS-AWARE GENERATION 153

Surface Form "The big boy ate two apples at school."

Clause rank

Group rank

Word rank

Subject > Predicate > Object > Circumstance

Deictic > Epithet > Thing

103 I big boy

Numerator > Thing 1 £ Prep > PP_head

iQI i apples a t.

Figure 7.2: The functional constituency of a surface form

7.4 How to Capture Surface Stylistic Properties

Lexical and syntactic choices are highly interdependent. It is not until we lexicalise a

function bundle that we start to know what other lexemes might come before or after

it. Therefore, the lexicalisation process is an important step in our stylistics-aware

architecture. Moreover, a function bundle that has just been lexicalised might be only

one of many function bundles realising a higher level unit which itself is a function

bundle surrounded by others realising yet another syntactic unit.

Therefore, it is necessary that the lexicalisation operation is followed by another process
that propagates the lexeme stylistic consequences to higher levels and across functional
boundaries. During the propagation process, order rules encountered at each level play
an important role in revealing what might be a source of surface problems. They also

govern what stylistic properties can be passed from the current function bundle to its

parent unit. We show next the mechanisms the SFL formalism offers and which we can

exploit to tackle the problem of surface stylistic constraints on lexical and syntactic

choices. This is best understood within the notion of rank and constituency, since

surface requirements must be met both within and across constituents.

7.5 Using Functional Constituency

As discussed in Section 3.3.3, a constituent is part of a structure that has other con¬

stituents as parts. A constituent might be atomic also, e.g. a word can be a constituent
of a phrase. In general, a constituent of the clause rank consists of group rank con-

CHAPTER 7. STYLISTICS-AWARE GENERATION 154

stituents which tend to consist of word rank constituents. This is depicted in figure 7.2.

Note that although the lexemes form the final utterances, they cannot be accessed di¬

rectly at the surface level. They are encapsulated within layers of constituency. Any

ordering operations, for example, must refer to the functions of that level such as

object > circumstance, where fun\ > fun^ means that fun\ immediately precedes

fun%, and not the lexemes realising them such as "two apples" > "at school".

In the following, we present the basic notions within the SFL formalism, that would
enable us to control how the surface form (i.e. lexical and syntactic choice) complies
with the surface stylistic requirements. In the discussion below, we draw upon the

following hypothesis:

The stylistic properties of a constituent of the clause or group rank are

determined by its sub-constituents' stylistic properties; and the stylistic

properties of a constituent of the word rank is determined by the stylistic

properties of the lexeme realising it.

7.5.1 Function Bundle Lexicalisation

A function bundle of the word rank is fully realised by an appropriate lexeme. In our

ATMS-based architecture, lexicalisation1 means the process of attaching a lexeme or

a group of (synonymous) lexemes to a function bundle by means of justifications.

Lexicalisation is an important step in the stylistics-aware mode of generation. It is

here that the just-realised function bundle gets its possible stylistic properties. The

lexicalisation operation represents the seed for the propagation of the lexeme stylistic

properties across different ranks up until the topmost clause rank since a function

bundle of the word rank inherits the stylistic implications of the lexeme realising it.
1 We differentiate between lexicalisation and lexical choice, which is taken to mean the process of
deciding which words from the lexicon best describe a concept. Therefore, the lexicalisation process
simply attaches the result of an initial coarse lexical choice process (as described in Section 6.2.4)
to a function bundle. Nevertheless, stylistic lexical choice is different in that it is seen from a final-
product point of view. Lexicalising a function bundle does not mean that all the lexical choices will
appear in the final surface forms. Some choices will not withstand the stylistic constraints. The
surviving lexemes represent the result of the stylistic lexical choice operation.

CHAPTER 7. STYLISTICS-AWARE GENERATION

For example, suppose that lexicon entries have the following form:

155

Iexicon (lexeme,property\, property2, property3,...)

where Propertyi might stand for the root of the lexeme, property2 for the rhythm
of it, and property3 for the length of the lexical item. Now, if we are interested in

any particular property, we assert a justification which is, more or less, similar to the

following after lexicalising the function bundle Fun:

lex(X, Fun) —> hasjproperty{Fun, Propertyi, Value)

where X's entry in the lexicon looks like: lexicon{X,..., Value,...). This justification

says that the lexeme X realising the function bundle Fun implies that the function

bundle itself has Value for the property Propertyi, which we are interested in. For

example, suppose that the function bundle to realise is Pred and that the initial lexical
choice process has picked two lexemes for this bundle with the following lexical entries:

lexicon{destroy, dst, 1010,1)

lexicon{annihilate, anhlt, 111100,1).

Now, if we are interested in the rhythm property of lexemes, then Pred inherits these

properties from the lexemes realising it. This is done by virtue of the following justifi¬
cations:

lex{destroy, Pred) —» has .property {Pred, rhythm, 1010)

lex{annihilate, Pred) —» has jproperty{Pred, rhythm, 111100)

7.5.2 Border Meta-Functions

The meta functions Front/End determine the border of a function. Within the re¬

alisation triangle of a unit, the order rule order{Front,Fun\) specifies that Fun\ is
the first constituent of the current unit. Similarly, the order rule order(Funn, End)

specifies that the Funn is the last function. Border meta functions are important in

passing the properties of a bordering constituent to its parent. For example, suppose
that we are interested in first and last letters of constituents. As shown in figure 7.2,

Deictic is the first function of Subject (denoted by order {Front, Deictic)), and Thing

CHAPTER 7. STYLISTICS-AWARE GENERATION 156

is at the end of Subject (denoted by order (Thing, End)). The lexicalisation process

for Deictic and Thing should have already resulted in the following nodes:

has ..property (Deictic, firstdetter, t)

has-property (Deictic, last-letter, e)

has-property (Thing, first-letter, b)

has-property (Thing, lastJetter, y)

To pass this border information to a higher level, we use these nodes along with meta

function order rules as follows:

order (Front, Deictic) A has-property (Deictic, firstSetter, t) —>

has-property(Subject, firstJetter, t)

order (Thing, End) A has-property (Thing, lastJetter,y) —>

has-property (Subject, last-letter, y)

This way, not only intra-function stylistic constraints within a constituent are main¬

tained, but also inter-function constraints between the parent and its sisters. Border

meta functions also play a role, together with the order rules, in determining what con¬

stitutes a complete sequence of functions, as we will see below. Complete sequences

help in passing the collective stylistic properties as a single property to the parent

constituent.

7.5.3 Order Rules

There are two kinds of order rules: order and partition. What concerns us here is

the immediate adjacency order rule as it imposes direct restrictions on word order

and hence the final lexical choice. The realisation rule order(Funi, Funr) specifies
that the left function Funi is adjacent to the right function Funr. The special cases:

Funi = Front and Funr = End were discussed in the previous section.

Immediate adjacency rules are useful for ensuring that the surface stylistic requirements

are maintained within a given constituent. For example, if it is required that no two

CHAPTER 7. STYLISTICS-AWARE GENERATION 157

consecutive words share a particular property (say the root property) then this stylistic

requirement can be maintained with the help of the adjacency rule order(Funi, Fun2)
as follows:

order(Fun\, Fun2) A hasjproperty(end(Fun\), root, R) A

has-property(front(Fun2), root, R) -*_L

7.5.4 Complete Sequences

The border functions and a group of order rules determine what complete sequences

there are within any realisation triangle. These have a sequence of the form:
order (Front, Fun\,Fun2, ■■■, Funn-i,Funn, End). A complete sequence is important
in passing the compositional stylistic properties of its function bundle to their par¬

ent. For example, the order rules: order(Front,Deictic), order(Deictic,Epithet), or¬

der(Epithet, Thing), order(Thing,End) form a complete sequence of say the Subject.
Therefore the collective properties of the realisation the ruthless warrior can now be

passed to the Subject function bundle. To give a concrete example, suppose that the

rhythms of the, ruthless, and warrior are '1', '1010', and '1010' respectively and that

the 'the ruthless warrior' is indeed a complete realisation of the function bundle Subj.

Therefore, at a higher level, the rhythm of Subj as a whole becomes '110101010'.

7.5.5 Constituency Level

A constituent is realised by what we call a realisation triangle. The topmost realisation

triangle represents the sentence to be generated. Each of its constituents has its own

realisation triangle which in turn might have lower level realisation triangles. For the
sake of the stylistic requirement specification, we differentiate between the lower level

triangles and the topmost triangle. As we will see later on in Section 7.9, we will

be referring to the topmost triangle using level indexing. The topmost level will be
indicated by level = 0 and any lower level by level ^ 0.

CHAPTER 7. STYLISTICS-AWARE GENERATION

7.6 Situation-Action Framework

158

Since different applications have different stylistic requirements, we provide a frame¬
work that allows an application to specify what its requirements are. The ATMS-based

generator then ensures that these requirements are satisfied throughout the generation

process. The result is a surface form (or a set of surface forms) that meets the appli¬
cation's stylistic needs.

The idea of the situation-action framework is to fire some actions in certain situations.

A situation is a combination of different circumstances that may arise at different

points during generation. For example, a circumstance might be the existence of an
ATMS node that matches a certain pattern or the execution of an NLG operation.

The lexicalisation operation, for instance, can represent a situation on its own. One

might like to execute some actions in relation to this situation.

An action, in this context, is usually one or more justifications that need to be asserted
in response to a particular situation. It can also be the mere introduction of a constraint

or definition of a parameter. It is the action part's responsibility to send any sources

of surface problems to the false node as soon as they arise (cf. figure 7.1). The
intuition behind the approach is summarised in figure 7.3. At different points in the

process, we make assumptions and build on them. As soon as we discover the formation

of a relevant situation, the necessary action (i.e. assertion of justifications) for that
situation is carried out. Note that situation-related nodes are shaded gray in the figure.
An action might send some node(s) to the false node or it might propagate a stylistic

property to higher levels. Eventually, it is up to the ATMS — with its ability to keep

track of causes and effects — to find the surviving utterances that have passed the

stylistic scrutiny. Note that — as the figure attempts to show — at a given stage, a

whole situation might be formed. Alternatively, that stage might only contribute to

the formation of a situation by providing one or more of its circumstances.

Situations at the lexicalisation stage are important as their actions specify the node

patterns the user is interested in through the rest of the steps. It is also here that
we specify which property of the lexical item we are interested in (i.e. root, rhythm,

rhyme, length, ... etc.).

stage n

surface text

Figure 7.3: The process of promoting and demoting surface stylistic properties

7.7 Situation-Action Specification (SAS)

Here, we formally define what NLG operations there are under the ATMS-based ar¬

chitecture and hence what a situation description can be. We use the term Situation-
Action Specification (SAS) to refer to both the situation description part and the action

part.

Definition: Generation — in the work of this thesis — means the reali¬

sation of a unit or function bundle. The realisation of a unit is considered

complete when all its sub-units (or function bundles) have been realised.
A function bundle is fully realised by attaching to it a set of lexemes if it
is of the word rank. This is known as the lexicalisation operation. If a

function bundle is not of the word rank then it is realised by attaching to

it a realisation triangle. We call this operation expansion.

• Lexicalisation SAS: A SAS is either of lexicalisation or expansion type. A

lexicalisation SAS applies immediately after attaching a lexeme to a function
bundle. The situation part of a lexicalisation SAS entry is usually a Prolog

CHAPTER 7. STYLISTICS-AWARE GENERATION

micro-semantic input

TIME

stage 1 assumptions made at this stage

Goal node false node

CHAPTER 7. STYLISTICS-AWARE GENERATION 160

goal which fetches one of the lexeme's properties from the lexicon. The action

part of a lexicalisation SAS asserts the implications or properties of the lexeme

realising the current function bundle. The action part is one or more ATMS

justifications that enable the function bundle to inherit some properties from its

realising lexeme. This is what we denoted in Section 7.5.1 by the justification:

lex(X, Fun) —> has ..property (Fun, Property^ Value)

The antecedent lex(X, Fun) is an assumption node representing the lexeme X

realising the function bundle Fun. The consequent (represented here by the

generic name has-property), which is an ATMS derived node, passes a property

of the lexeme to the function bundle being lexicalised. Note, however, that the

consequent hasjproperty{...) can be replaced by any pattern that makes sense un¬

der the particular set of surface stylistic requirements (cf. tables in Sections 7.9.1,

7.9.2, and 7.9.3). It is this pattern that will form the basic circumstance — along
with order rules — for expansion situations, as we will see next.

• Expansion SAS: An expansion SAS applies immediately after attaching a com¬

plete realisation triangle to a clause or group rank function bundle. The situation

description part of such a SAS entry is a set ATMS derived node patterns (i.e.
order and hasjproperty) and some Prolog goals that must succeed in order for
that situation to hold and fire its actions. The action part is justifications that

either promote or demote properties of this level's function bundles. By demot¬

ing a property we mean sending the situation circumstances (i.e. conjunction of

nodes) to the false node. Alternatively, the action justifications might promote
or pass the properties of this level's function bundles to a higher level function
bundle (i.e. their parent).

Our convention in representing SAS entries will denote Prolog goals using typewriter¬

like fonts and ATMS node patterns using italics. Additionally, assumption nodes will

be enclosed in rectangles to distinguish them from the rest of ATMS nodes.

CHAPTER 7. STYLISTICS-AWARE GENERATION

7.8 Accommodating the Stylistics-Aware Mode

161

Here we show how the generation algorithm of the previous chapter (see figure 6.1)
can easily accommodate the user specified surface stylistic requirements. The idea is

simply to check the applicable situations immediately after the complete realisation of

a constituent (i.e. after lexicalisation or expansion operations). The actions of these
situations are then carried out according to the stylistic knowledge source specifica¬
tions. The actions are generally justifications that promote or demote certain stylistic

features. Note that a function bundle or constituent is fully realised when all of its

immediate constituents are fully realised and that a constituent of word rank is fully

realised by an applicable lexeme.

This way, the original algorithm simply checks the situation-action specification upon

the completion of constituent realisation; and if there are any applicable situations,

then their actions are executed. If no situations are specified in the stylistic knowledge

source or if there is not an applicable situation, then the algorithm carries on as it

would normally do in the plain mode of generation.

7.9 Examples of SSCs

Having presented our idea of situation-action framework for the specification of stylistic

requirements, we now give examples of surface requirements that we might want the

generator to satisfy. The purpose of these examples is two fold - first they show how

different surface stylistic requirements can be formulated using that framework, and

second, they demonstrate the flexibility of the ATMS-based architecture in accommo¬

dating some SSC independently of the micro-semantic input or the lexico-grammatical

resource.

In the first example (Section 7.9.1), we formulate the requirement that an utterance

may not have similar words close to each other, so that we can have interesting utter-

CHAPTER 7. STYLISTICS-AWARE GENERATION 162

ances with diverse lexical choices. In the second example (Section 7.9.2), we have
stricter surface requirements. The generated sentences should follow a prescribed

rhythmic sequence such as in the case of poetry metres. In the last example (Sec¬
tion 7.9.3), we formulate a rather more realistic stylistic requirement. It is that of

imposing a size limit on the generated sentences. As discussed earlier, we are not

suggesting that these are the ultimate stylistic requirements one could aim for; they
are only intended to demonstrate the ability of the framework to express stylistic re¬

quirements and the flexibility of the ATMS-based architecture in accommodating these

requirements.

To proceed with the examples below suppose that an entry in the lexicon looks like

this:

lexicon(lexeme, propertyl, property2, property3, ...)

Assume that property\ = root, property2 = rhythm, and property3 = i where i is the

length of the lexical item. Note that an entry like 'United Kingdom', for example, is
of length 2 although it is represented by one lexical entry in the lexicon.

7.9.1 Word Adjacency Constraints

Two words are collocations if they have a tendency to occur next (or close) to each other
in texts. According to [Matthews 97], a collocational constraint is any restriction on the

collocability2 of a word with another. However, if the existence of a word prohibits or

minimises the chances of another word then these two words are anti-collocations. For

example, although strong and powerful are synonyms, strong and tea are collocations

in 'strong tea' whereas powerful and tea are anti-collocations in 'powerful tea'.

Our word adjacency stylistic requirement is a kind of collocational constraint. We

assume that each word has a property of some kind (e.g. root of the word) and
2 This term is used in [Matthews 97] and we take it to mean the ability of a word to collocate.

CHAPTER 7. STYLISTICS-AWARE GENERATION 163

that two adjacent words having the same (or similar) roots are to be avoided in an

utterance. This would make sense if we were generating Arabic sentences since in

Arabic— as is the case with other Semitic languages — most words are generated from

a limited number of roots [Al-Jabri 97]. Although this is a simple requirement, current

systemic generators cannot test for this until after the surface form has been generated
because the realisation rules are only collected during system traversal and it is not

until the very end that they are executed. Only then can we tell if we have violated the

collocational constraints. Next, we show how these requirements are specified within

the situation-action framework and we give some examples of generated sentences.

i. Situation-Action Specification

The following table represents the SASs for the word adjacency requirements. It has

two types of entries: lexicalisation and expansion entries. In the table, lexicalisa-

tion(X,Fun) means a function bundle Fun being lexicalised by the lexeme X; and

expansion(P) means the expansion of the function bundle P.

The lexicalisation SAS entries are consulted immediately after lexicalising a word

rank function bundle. They define the pattern that we would like to introduce (i.e.

hasjproperty type of node) so that it can be used by the situation description parts

of the expansion SAS entries. The expansion situations, consist of a collection of

ATMS node pattern and Prolog goals. These Prolog goals are utility functions (e.g.

parent (...), submetre (...), children(. . .), etc). The job of these utilities is to

perform a certain task or check that a certain condition holds.

Note that ATMS nodes cannot have variables in them as shown in the table below. In

fact, these situations and actions contain patterns of ATMS nodes. During generation

time, all variables in these patterns will be instantiated and the whole situation de¬

scription will be referring to particular ATMS nodes (i.e. either derived or assumption

nodes).

CHAPTER 7. STYLISTICS-AWARE GENERATION 164

SITUATION ACTION

1 lexicalisation(X,Fun):
lexicon(X,R,_, _, . ..) lex(X, Fun) -» root(front(Fun), R)

lex(X, Fun) —> root(end(Fun),R)
expansion(P):
order (Funi, Funr),
root(end(Funi), R),
root(front(Funr), R),
children![Funl,Funr], P)

order(Funi, Funr)A
root(end(Funi), R) A
root(front(Funr),R) —>-T

expansion(P):
order (Front, Fun),
root(front(Fun), R),
parent(Fun, P),
Level^ 0

order (Front, Fun)A
root(front(Fun), R)
root(front(P), R)

expansion(P):
order(Fun, End),
root(end(Fun),R),
parent(Fun, P),
Leveled

order(Fun, End)A
root(end(Fun),R)
root(end(P), R)

As shown in the table above, the situation part of entry 1 applies upon lexicalising

a function bundle Fun with a lexeme X. The situation holds when the Prolog goal

succeeds in fetching the lexeme's root property from the lexicon. The action to be

taken in this case is to assert two justifications passing the root property of the lexeme

to the function bundle it is realising. The justifications simply state that the root of the

front and the end of a unit being lexicalised inherits the root of the lexeme. The rest

of the table SAS entries are of expansion type. Situation 2 captures any consecutive

lexemes, within the expansion triangle of a function bundle P, sharing the same root

and sends them to the false node. This is a surface problem that this specification is

trying to avoid in this generation task. Situation 3 and 4 have to do with passing the

root information from one level to another; each working on either side of a function
bundle.

ii. Generation Examples

To appreciate the stylistics-aware mode of the generator, we show below the sentences

that are generated when the above constraints are applied to the generation example

CHAPTER 7. STYLISTICS-AWARE GENERATION 165

shown in appendix B. For the sake of this example, we added artificial root properties
in the lexicon for testing purposes (see appendix A, Section A.3). Two consecutive
words share the same property if the second letters are both vowels or both non-

vowels. From the possible 9450 sentences, only those that do not have adjacent words

sharing the same property are generated. Examples of such sentences are:

the first space warrior annihilated jitrax.

the merciless space warrior annihilated jitrax.

the ruthless space warrior annihilated jitrax.

dartmaul annihilated jitrax.

the warrior annihilated jitrax.

In another run, we relaxed the conditions to see what other sentences could be gen¬

erated. We made the exception that the root of was is neither vowel nor non-vowel;
it falls into a third category. The following sentences were generated with new lexical
and syntactic combinations.

jitrax was destroyed.

the submarine was destroyed.

jitrax was annihilated.

the submarine was annihilated.

jitrax was annihilated by the warrior.

jitrax was annihilated by the ruthless space warrior.

jitrax was annihilated by the merciless space warrior.

jitrax was annihilated by the first space warrior.

the submarine was annihilated by the warrior.

the submarine was annihilated by the ruthless space warrior.

the submarine was annihilated by the merciless space warrior.

the submarine was annihilated by the first space warrior.

the first space warrior annihilated jitrax.

CHAPTER 7. STYLISTICS-AWARE GENERATION 166

the merciless space warrior annihilated jitrax.

the ruthless space warrior annihilated jitrax.

dartmaul annihilated jitrax.

the warrior annihilated jitrax.

7.9.2 Poetry Metre Constraints

The regular occurrence of certain properties such as metre and rhyme is one main fea¬
ture of classic poetry. These are obviously surface constraints that impose restrictions

on syntactic structures and lexical choices. [Manurung et al. 00] use strings of w's and
s's to represent syllables with weak and strong stresses respectively. For example, a
limerick can be represented as:

w,s,w,w,s,w,w,s(a)

w,s,w,w,s,w,w,s(a)

w,s,w,w,s(b)

w,s,w,w,s(b)

WjSjW.w.s.w.w.sfa)

The (a)'s and (b)'s at the end of each line represent the rhyme scheme. We use a

similar approach (i.e. a string of 0's and l's) to represent the rhythmic sequence of a
surface form. Note that our aim here is only to show how these poetic constraints are

specified in our situation-action framework. First, we give the situation-action specifi¬
cations and then some examples of generated sentences that respect these constraints.

i. Situation-Action Specification

The following table represents the SASs for the poetry metre requirements. The lexi-
calisation and expansion entries are also shown.

CHAPTER 7. STYLISTICS-AWARE GENERATION 167

SITUATION ACTION

1 lexicalisation(X,Fun):
lexicon(X,Sound,. ..) lex(X, Fun)

rhythm(Fun, Sound)
2 expansion(P):

order(Funx, Funy),
rhythm(Funx, S^),
rhythm(Funy, Sy),
-i submetre![Sx,Sy] Metre),
children![Funx,Funy], P)

order (Funx, Funy)A
rhythm(Funx, Sx)A
rhythm(Funy, Sy)

3 expansion(P):
order (Order),
Order=[Funx,...,Funy],
complete-order(Order),
rhythm(Funx, 5^),
rhythm(Funy, Sy),
submetre([Sx,...,Sy], Metre),
children![Funx,...,Funy], P),
Level 7^ 0

order (Order)A
rhythm(Funx, Sx)A
...A

rhythm(Funy, Sy) —»
rhythm(P, • ... • 5^)

expansion(P):
order (Order),
Order=[Funx,...,Funy],
complete_order(Order),
rhythm(Funx, Sx),...,
rhythm(Funy, 5"^),
-i submetre ([Sx, . . . , Sy] , Metre),

order (Order)A
rhythm(Funx, SX)A
...A

rhythm(Funy, Sy) —>T
children! [Firnx, . • ■ ,Funy] , P)

Situation 1 specifies what action is necessary upon lexicalising a function bundle Fun
with a lexeme X. The action simply states that a function bundle realised by a lexeme

inherits the lexeme's rhythmic sequence. Note that a lexeme with a rhythm that cannot

occur anywhere in the metre is not considered among the lexical choices in the first

place. Situation 2 starts capturing adjacent function bundle rhythms. If any adjacent
function bundles, at any level, form a rhythmic sequence that is not a substring of
the metre, it is sent to the false node. Situation 3 passes the concatenated rhythmic

arrangement of a complete sequence to the parent of that sequence, if it is still a

possible sub-metre. Situation 4 sends any complete rhythmic arrangement that is not

a substring of the metre to false.

CHAPTER 7. STYLISTICS-AWARE GENERATION

ii. Generation Examples

168

We show below the sentences that are generated when the above poetry metre con¬

straints are applied to the generation example shown in appendix B. The exact metre

rhythm is: '1001001111010110110010010100' which is also shown in the Prolog specifi¬
cation of the above situations in appendix C.2. From the possible 9450 sentences only

one sentence was found to follow the target metre which is shown below:

dartmaul annihilated the submarine on friday.

7.9.3 Text Size Constraints

Some applications have size constraints on the generated text. For some applications,
the overall generated text must fit within certain limits without regard to the length
of individual sentences. Other applications might have restrictions on the length of
individual sentences for whatever reason (e.g. readability/comprehension). They might

additionally impose length constraints on the level of embedding or the length of certain
constituents such as noun phrases for the same reasons [Lin 96]. But the size constraint
remains simple: the generated span of text should be of size (or length) of no more

than a given number. We show next how this restriction can be specified using the

situation-action framework. We then give examples of generated sentences that comply
with the size constraint. In these examples, we measure the size of a sentence by the

number of words it contains.

i. Situation-Action Specification

The following table represents the SASs for the sentence size requirements. The lexi-

calisation and expansion entries are also shown.

CHAPTER 7. STYLISTICS-AWARE GENERATION 169

SITUATION ACTION

1 lexicalisation(X,Fun):
lexicon(XLength, ...) ==> lex(X, Fun)

size(Fun, Length)
expansion(P):
order(Funx, Funy),
size(Funx, Lx),
size(Funy, Ly),
Lx+Ly > MaxSize,
children![Funx,Funy], P)

order(Funx, Funy)A
size(Funx, Lx)A
size(Funy, Ly) —>-T

3 expansion(P):
order (Order),
Order=[Funx,...,Funy],
complete_order(Order),
size(Funx, Lx),...,
size(Funy, Ly),
sum([Lx,..., Ly], Sum) < MaxSize
children![Funx,...,Funy], P),
Level 0

order(Order)A
size(Funx, Lx)A
...A

size(Funy, Ly)
size(P, Sum)

expansion (P):
order (Order),
Order=[Funx,...,Funy],
complete_order(Order),
size(Funx, Lx),...,
size(Funy, Ly),
sum![Lx,...,Ly],Sum)> MaxSize,
children![Funx,...,Funy], P)

order(Order)A
size(Funx, Lx)A
...A

size(Funy, Ly) —>-T

Situation 1 asserts the length implication of a lexeme X which realises a function
bundle Fun. A lexeme of size Length realising a function bundle Fun implies that

the size of that function bundle is Length also. Note that we assume here that the

length of a lexical item is not necessarily one (e.g. the proper noun 'United Kingdom'
is of length 2). Situation 2 sends any two function bundles with a total size exceeding
the limit to the false node. Situation 3 passes the size of a complete sequence that is

still within the size constraint to the parent of that sequence. Situation 4 takes care of

any sequences of function bundles that exceed the limit. It sends that combination of

circumstances to the false node.

CHAPTER 7. STYLISTICS-AWARE GENERATION 170

ii. Generation Examples

We show below the sentences that are generated when the above size constraints are

applied to the generation example shown in appendix B. The size limit is set to four,
as shown in the Prolog specification of the above situations in appendix C.3. From the

possible 9450 sentences, only those sentences that are within the size constraints are

generated. These are:

jitrax was destroyed,
the submarine was destroyed,
jitrax was annihilated,
the submarine was annihilated,

dartmaul destroyed jitrax.
dartmaul annihilated jitrax.
the warrior destroyed jitrax.
the warrior annihilated jitrax.
dartmaul destroyed the submarine,
dartmaul annihilated the submarine.

7.10 How the Situation-Action Approach Works

Having presented our situation-action framework for the specification of SASs along
with three example sets of SSC, we now show how the approach works hand in hand

with the usual ATMS nodes representing systems, features, function bundles and or¬

dering restrictions. Here, we give a detailed example that explains how the system

works in the stylistics-aware mode. It also shows when each type of SAS entries is

activated and what effects their actions have on the overall generation process.

To proceed with the example, suppose that the SSC we are considering are those of

collocational constraints between adjacent words (as given in the table of Section 7.9.1).

Also, assume that the lexicon entries for the words we will use are:

lexicon(the,t, . . .)
lexicon(big,b,...)
lexicon(fat,a,...)
lexicon(boy,b,...)
lexicon(lad,a,...)
lexicon(had,a,...)
lexicon(lunch,l,...)

where the root category of a lexeme is represented by a single letter (e.g. t, a, b,

CHAPTER 7. STYLISTICS-AWARE GENERATION 171

lex(the,deictic)

lex(big,epithet

lexffat, epithet.

lex(lad.thingl)

lex(boy, thing1)

Figure 7.4: Plain-mode interfacing of realisation triangles

1, . . .). Assume further that if no stylistic constraints were considered then the plain
mode generation process would result in the realisation triangles shown in figure 7.4.

To keep the diagrams of the figure simple, we do not show the features and how they
are connected to other nodes within a realisation triangle. We show, however, the
order rules of each triangle as they play an important role in combination with the
SAS specifications. The function bundle nodes are numbered to depict the order in

which each bundle is considered fully realised. As discussed earlier, a fully realised

function bundle activates applicable SAS entries: either of lexicalisation type if its of

the word rank or else of expansion type.

In the following, we show the different steps of realising each function bundle and what
situation applies and what actions take place.

1. Deictic Realisation: The deictic function bundle is of the word rank. It is

considered fully realised by attaching to it the applicable lexemes. This is done

CHAPTER 7. STYLISTICS-AWARE GENERATION 172

via the following justification:

lex(the, deictic) —> deictic

At this point, SAS entry 1 (i.e. lexicalisation(the,deictic)) becomes applicable

resulting in the assertion of the following justifications:

Iex (the, deictic) —> root(front(deictic),t)

Iex (the, deictic) —> root(end(deictic),t)

2. Epithet Realisation: The epithet function bundle is of the word rank also.
It is considered fully realised by attaching to it the applicable lexemes. This is
done via the following justification:

lex(big, epithet) —> epithet

At this point, SAS entry 1 (i.e. lexicalisation(big,epithet)) becomes applica¬
ble resulting in the assertion of the following justifications:

Iex (big, epithet) —> root(front(epithet),b)

Iex (big, epithet) —t root(end(epithet),b)

The second lexeme attachment results in the following sequence of justifications:

lex(fat, epithet) —> epithet

lex(fat, epithet) —> root(front(epithet),a)

lex(fat, epithet) —> root(end(epithet),a)

3. Thingl Realisation: The subject's thing function bundle is of the word rank.

It is realised by attaching to it some lexemes. For the first applicable lexeme lad,
we get the following sequence of justifications:

lex(lad,thing1) —»■ thingl

lex(lad, thingl) —> root(front(thingl), a)

lex(lad, thingl) root(end(thingl),a)

CHAPTER 7. STYLISTICS-AWARE GENERATION 173

For the second applicable lexeme boy, the following justification assertions take

place:

lex(boy, thingl) —» thingl

lex(boy, thingl) —» root(front(thingl),b)

Iex (boy, thingl) -» root(end(thingl),b)

4. Subj Realisation: Having realised its sub-constituents, the function bundle

subj is now considered fully realised (or expanded). Since subj is of the group

rank, the expansion(subj) SAS entries are checked for the applicable situations.
When a situation applies, its corresponding actions are carried out. Entry 2

applies and its action part asserts the following justification:

order (epithet, thingl) Aroot(end(epithet),a) A root(front (thingl), a) —»_L

The effect of this implication is to prohibit the words fat and lad to be adjacent

to each other. Entry 2 also applies for another set of instantiations. Its action

part asserts the following justification:

order (epithet, thing 1) Aroot(end(epithet),b) A root(front(thingl),b) —>±

This justification's effect is to ban big and boy to occur next to each other in the

surface form.

The situation of entry 3 applies asserting the justification:

order(front, deictic) A root(front(deictic),t) —> root(front(subj),t)

which makes the function bundle subj inherit the root t as the root of its front.

Entry 4 applies for two different instantiations asserting the following justifica¬
tions:

order(thing 1) Aroot(end(thingl),a) —» root(end(subj),a)

order(thing 1) Aroot(end(thingl),b) —» root(end(subj),b)

5. Pred Realisation: The function bundle pred is of the word rank. So, only the

lexicalisation SAS entries are consulted at this point to see if they apply. This

CHAPTER 7. STYLISTICS-AWARE GENERATION 174

step results in the assertion of the following justifications:

lex(had,pred) -> pred

lex(had,pred) -> root(front(pred), a)

lex(had,pred) -» root(end(pred), a)

6. Thing2 Realisation: thing2 is of the word rank. The SAS lexicalisation entry
results in the following justifications being asserted:

Iex (lunch, thing2) —> thing2

lex(lunch,thing2) —> root(front(thing2),l)

lex(lunch,thing2) —> root(end(thing2),l)

7. Obj Realisation: The function bundle obj is of the group rank. This signals
the completion an expansion operation. Therefore, the expansion (obj) SAS
entries are checked for the applicable situations. Only SAS entries 3 and 4 apply

here resulting in the following instantiations:

order(front,thing2) A root(front(thing2),l) —> root(front(obj),l)

order(thing2, end) Aroot(end(thing2),l) —> root(end(obj),l)

8. Clause Realisation: The function bundle clause is of the clause rank. This

signals the completion of an expansion operation. Note, however, that the level
of this unit is the top most (indicated by level=0). Therefore, SAS entries 3

and 4 do not apply. The situation of entry 2 holds resulting in the instantiations

shown by following justification:

order (subj, pred) Aroot(end(subj),a) A root(front(pred), a) —

The effect of this justification is to ban from the surface form any subj constituent

ending with the root a (e.g. lad) to occur immediately before a pred constituent

starting with the same root (e.g. had).

Figure 7.5 shows the interfaced realisation triangles along with the surface stylistic
constraints imposed by the assertion of SAS's action justifications. As a result, the

ATMS-based generator only produces the surface form:

CHAPTER 7. STYLISTICS-AWARE GENERATION

the fat boy had lunch

175

The other three possible surface forms:

the big*boy had lunch

the big lad*had lunch

the fat*lad*had lunch

would not survive the stylistic constraints. Each (sub)realisation would have been
abandoned at some stage during the generation process. The asterisks indicate the

places where two consecutive words share the same root according to our lexicon.

7.11 Summary and Outlook

In this chapter, we have presented our idea of a situation-action framework in which
the user can specify his own stylistic requirements. Also, we have demonstrated how
various sets of surface stylistic requirements can be specified using the situation-action

framework. This shows that the ATMS-based generation architecture introduced in the

previous chapter can be used easily in a stylistics-aware mode. In the next chapter, we
discuss the implementation details of our prototype generation system that embodies

our ideas discussed in this thesis. We also evaluate the two main stages of the system

implementation: the translation and generation stages.

CHAPTER 7. STYLISTICS-AWARE GENERATION 176

root(front(thing I),a)

root(end(thing I),a)

~(^root(front(deicticjj}^
~(^7oot(end(deicticjj)^)
j^mot(front(epithet

X^root(end(epithetlbJ^X-
f<^7oot(fronl(epithet^a)^

<^root(end(epithetlaj^T

^(^root(front(thinglib)
C^rootfend(thing l),b)

,(^root(front(subjjjj^)
-(^rool(end(subj),aj^y
w(^root(end(subj)^bp^)

root(front(pred), a)

root]end(pred), a)
order(front,deictic)

f(^root(front(obj),
^rder(deictic,epithetj

rool(end(obj),l)
lex(the,deictic) deictic

^rder(epitliet,thing)
order(front.subj)

order(thing.end)
order(subj,pred)

order(pred,obj)

lex(boy, thing1)

lex(had,pred)

,(^root(front(thing2), I)

X^root(end(thing!), I)

order(front,tiling)

order(thing,end)

lex(lunch,thing2)

lexfbig,epithet)

lex(fat,epithet)

lexflad,thing])

order(obj ,end)^)

^clause)

Figure 7.5: Interfacing of realisation triangles in the stylistics-aware mode

Chapter 8

System Implementation and
Evaluation

In this chapter we present the implementation details of the prototype

generation system that demonstrates the ideas introduced in the previous

three chapters. Also, we evaluate the system's two main phases: translation

and generation. We evaluate the translation stage in terms of the grammar
size and the outcome of the translation process. Then, different modes

of generation are compared and the effect of the particular set of stylistic
constraints on the performance of the generator is discussed. The chapter

ends with a discussion of the system's merits and demerits.

8.1 Implementation Notes

The schematic of figure 8.1 which was also shown in Chapter 6 provides an overview of
the ATMS-based generation system. A prototype generator embodying the different
modules and knowledge sources shown in the schematic was implemented in SICStus

Prolog. From an input-output point of view, the system takes a conceptual repre¬
sentation and generates natural language sentences that have certain surface stylistic

requirements. In Chapter 6 and 7, we already discussed how the new generation ar¬

chitecture works and we presented the nature of the knowledge sources involved in the

process. In the following, we give the implementation details to bridge the gap between
the architectural modularisation and the actual implementation.

177

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 178

Conceptual Input

Grammatical Resource

STAGE (Generator)

Lexicon

IE ► ATMS

Potential Sentences

1
Postprocessor

T
Sentence 1

Sentence 2

Sentence n

Stylistically preferred surface forms

Figure 8.1: An overview of the ATMS-based NLG system

8.1.1 SNAC Input/Output

The System Network to ATMS Converter (SNAC) takes systemic grammar networks
and transforms them into network snapshots which form the basis for ATMS depen¬

dency networks (see Section 6.5.1 for examples of system networks and network snap¬

shots). The systemic grammar we use is WAG's dialog grammar. This is the complete

grammar resource of the WAG system. In Section 8.2.1, below, when we evaluate the

translation phase, we discuss the size of the grammar and the outcome of the transla¬

tion process. WAG is written in Lisp and so are its linguistic resources. Because our

system is implemented in Prolog, we have rewritten the WAG's grammar in a Prology

representation. For example, the following Prolog construct represents the GENDER

system which we call here genderSYS.

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 179

system_def(entry_cond(third & singular).genderSYS,
[[feminine, []] ,

[masculine,[]] ,

[neuter, []]
]).

It has the entry condition third A singular. The system has three features feminine,
masculine and neuter. Each of these features may have attached to it a list of reali¬

sation statements which happen to be empty. Examples of realisation statements can

be found in the grammar fragments given in Appendix A. The realisation statements

are represented as a list of single realisation operations. The realisation operations we

consider in our grammar are those found in WAG's: insert, preselect, lexify, order and

partition. As an example of realisation lists, the clause feature may have the following

realisation statements:

[[insert,subject],
[insert,finite],
[insert, pred],
[insert, punct],
[preselect, subject,nominal_group],
[preselect, subject.nominative],
[preselect, pred, lexverb],
[lexify, punct, period],
[order, front, subject],
[order, subject, finite],
[order, punct, end],
[partition, pred, punct]]

SNAC produces a network snapshot for each system network. Network snapshots were

discussed in Section 6.5.1 and the exact format of a snapshot is given in Appendix A.l.

8.1.2 STAGE Input/Output

The generation component of the system takes as an input a micro-semantic represen¬

tation such as the one shown in Appendix B.l and generates surface forms that follow
the stylistic constraints specified in the situation-action repository. STAGE depends

heavily on the ATMS component in generating the required utterances. It only decides
what bits of the problem are to be communicated to the ATMS. The computation of

the surviving selection expressions and lexical choices are delegated for the ATMS to

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 180

handle. In the end, STAGE reads off the label of goal node that represents the top¬

most clause unit and passes it to a post-processor which prints out the actual sentences.

Next, we present the ATMS implementation we use in our generation system.

8.1.3 The ATMS Component

STAGE uses an off-the-shelf ATMS implementation that is not biased towards NLG

applications. The ATMS implementation1 we used in our system is written in Prolog.

We did not intend to extend or modify the ATMS in any way. Rather, the objective

was to show how an existing neutral ATMS implementation can be used as a basis for
a new NLG architecture that is sensitive to SSC.

The ATMS component is a typical implementation providing the following services:

• Node Creation: Assumption, premise and derived nodes can be created using

newassump(Node), newfact (Node) and newderived(Node) respectively.

• Assertion of justifications: This operation is made possible via the predicate

newjust(LHS,RHS) where LHS is a list of antecedents and RHS is a consequent

node. Contradiction justifications can be formulated either by replacing RHS with
false in newjust(LHS,RHS) or directly by newcontradiction(LHS).

• Explanations: An explanation for a given node (i.e. the label of that node) can
be extracted through explain (Node,Exp), or printed out via prlabel(Node).

• Queries: The user can check whether a node (of any type) exists by using
node (X). Alternatively, he can check a specific node type such as as sump (Node) ,

fact(Node) or derived(Node).

Because the ATMS will spend most of the time performing set operations, the specific
ATMS we are using represents sets as bit vectors to improve on the set operations.
1 Chris Mellish kindly provided the ATMS implementation I use in the prototype generator.

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION

8.2 System Evaluation

181

Before getting into the details of the empirical evaluation of our implementation, it is
worth mentioning, at the beginning, that the implementation embodies a new genera¬

tion architecture that succeeds in satisfying the main objective set forth at the start of
this thesis. The objective was to account for the effect of surface stylistic constraints on

earlier linguistic decisions such as syntactic and lexical choice in one unified generation

architecture. We showed in the previous chapter how SSC can seamlessly be incorpo¬

rated into the generation process and how they play a role in deciding what the final
lexical and syntactic choices are. The ability to follow more than one option through

the system network and to fold in constraints that go straight across the structures

produced is in itself an interesting research tool, especially for some applications where

efficiency is not such an issue. Although the main objective has been achieved, we

must nevertheless still evaluate the main stages of our implementation: compilation
and generation. We do this so that we get a clearer idea about the efficiency of the

system and how different factors influence the behaviour of the system. This being

clarified, the implemented generation system can be viewed as a general test-bed for
<

experimenting with different sets of stylistic preferences. For example, it can be used

to experiment with the automatic generation of controlled languages, something that

we have not investigated in this thesis because it is beyond the scope of this work.

8.2.1 Translation Phase

The solution path we followed in this project required that systemic grammar networks

be transformed into dependency networks; a representation that the ATMS can reason

with. The implementation of an automatic procedure for the translation of general

systemic grammars into the ATMS representation has been carried out. SNAC takes

advantage of the fact that the re-translation of a system network yields exactly the
same ATMS representation. Consequently, it pre-compiles the system networks once

and saves snapshots of them. At generation time, the semantic input is used to pick only

those parts of the network that are relevant. The generator cuts away those superfluous
branches along with the corresponding function bundles based on the semantic input.

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 182

SNAC was tested on an existing systemic grammar (WAG's complete grammatical re¬

sources, called the Dialog grammar) that was written without any ATMS dependency
networks in mind. However, these grammars are written in Lisp and we had to put

them, without change, into our Prolog format of system networks (see Section 8.1.1).
The Dialog grammar has 158 systems and 340 features. This grammar is not as com¬

prehensive as the NIGEL grammar (which has around 500 systems and 1500 features),
but it is more comprehensive than the difference in systems and features suggests2.
Appendix A shows all the systems of the WAG grammar on which SNAC was tested.
As is clear from the appendix, some of the syntactic structures that can be generated

by this grammar include:

1. active and passive clauses

2. infinitive and -ing forms

3. declarative, interrogative, and imperative

4. transitive, intransitive, modal and other auxiliary verbs

5. positive and negative clauses

6. wh- constructs such as wh-subject, wh-object, wh-circumstances

7. different verb tenses

8. thematisation of circumstances

9. primary and secondary circumstance constructs

10. different if-complex constructs

11. prepositional phrases

12. adjectival groups

13. nominalisations, etc.
2 According to personal communication with the writer of the WAG grammar, Mick O'Donnell: the
NIGEL grammar makes a lot of distinctions which do not necessarily reflect syntactic differences
but rather lexical differences; WAG systems cover only grammatical distinctions.

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 183

The WAG clause network alone has 75 systems and 170 features. Of the 75 systems,

32 have complex entry conditions. SNAC gives a conjunction-free3 network of 138

systems. The number of features stays exactly the same as assumptions are not allowed

to duplicate in the ATMS. The more AND gates there are in a network, the more

variant systems we have to create. Also, as the number of conjuncts in a single gate

increases, the number of variant systems increases accordingly.

The WAG group network is smaller than the clause network having 36 systems and 76
features. Of these 36 systems, 12 have complex entry conditions. SNAC has produced
a network of 48 systems that is free of conjunctive gates. The translation task is quite

fast as there is no need to compute the DNF formula for the whole network.

The number N of systems involving complex conjunctive entry conditions and the

average number of conjuncts to these gated systems give a good estimate of the size of
the resultant dependency network. For the clause network, the average number Avg of

conjuncts is 3.125 and for the group network it is 2.33. The additional variant systems
we need to create will be Avg — 1 per gate; making the expected size of the translation
of a network of size S equal to S + ((Avg — 1) x N). According to this estimate, the
clause network can be expected to be of size 75 + (2.125 x 32) = 143 and the group

network of size 36 + (1.33 x 12) = 52.

The remaining 47 systems and 94 features belong to the network of the word rank.

However, SNAC does not make use of these word networks since it realises function

bundles of the word rank by attaching to them words that are directly fetched from

the lexicon. These word rank networks are relevant for the sentence analysis side of

the WAG system as it uses the same grammar for sentence generation and analysis.

8.2.2 Generation Phase: Empirical Results

The idea of using the ATMS for processing systemic grammars is new and we need
to know what factors affect the performance of the system. At first, we can think of

many factors that may influence generation time, these might be:
3 By conjunction-free networks we mean networks without explicit and gates. See Chapter 5 for a
discussion of why we need to have such networks, and how the translation algorithm accounts for
their effect in the ATMS dependency networks.

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 184

• the degree of under-specificity of the input.

• the number of open paths incurred by the relaxed choosers.

• the generosity of the lexicalisation process, or the number of available/allowed

synonyms for a give concept.

• the size of the underlying networks.

• the size and complexity of the string to be generated.

Of course some of these factors might be related to others in some way. For example, an

under-specified semantic input might decrease the choosers appetite to select particular

features resulting in many open paths to be explored; hence expanding the search space.

In the following, we take a closer look at these factors from an ATMS standpoint since
what really affects the ATMS performance is the number of assumptions. Therefore,
we will revisit these factors and discuss how they influence the creation of assumption

nodes. Next, we analyse the plain mode of the generation process and then we turn

our attention to the other mode (i.e. stylistics-aware generation) to study how the

system performs under different sets of surface stylistic requirements. In the following

discussion, we will presume that the semantic input is the same as that of the complete

example of Appendix B.

Plain Generation Mode

Although the ATMS-based generation system can deterministically generate a single
sentence for a given semantic input just like classical systemic generators, the way it

usually works is to have its choosers keep many alternative paths active for further

discovery, resulting in many paraphrases for the same input. Table 8.1 shows the cpu

time needed by the ATMS-based generator to deterministically generate one sentence4
on the one hand and nondeterministically many sentences (9450 for the particular

example we tried) on the other hand.

4 The time shown in the table is the average for generating sentences of different lengths and structures.
The sentences were selected in such a way as to give a range of generation times. Six syntactic
structures at the clause level that give rise to sentences ranging from lengths 3 to 8 were selected
pretty much like those shown in Table 8.5.

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 185

Deterministic Nondeterministic

Number of Sentences 1 9450
Generation Time 0.770 sees 125.16 mins
Time per Sentence 0.770 sees 0.794 sees

Table 8.1: Deterministic and nondeterministic runs of the the ATMS-based system

A relevant question at this point is: how does the deterministic behaviour of the ATMS-
based generator compare to traditional systemic generators? To answer this question,
we designed an experiment where the ATMS component was stripped from the gener¬

ator. The generator still works in the same environment (i.e. SicStus Prolog). Also,
it still consults the same lexicon and grammatical networks. Like classical systemic

generators, it ends up with one selection expression and produces one surface form.
The aim is to see how much overhead the ATMS is putting on our generation system.

Table 8.2 compares the generation time for our generator if it worked deterministically

with another version of it where it was stripped from the ATMS component. The table

shows that the ATMS is putting around 45% overhead on the system. The times shown
in the table are the average for generating the same set of sentences. Next, we focus
on the ATMS-based generation architecture. We investigate the factors responsible for
the system performance and the extent to which they are responsible.

Deterministic ATMS-based Classical Systemic
0.770 sec. 0.422 sec.

Table 8.2: Generation times for ATMS-based and traditional generators

The ATMS plays a central role in our generation architecture and its internal oper¬
ations can have great influence on the overall performance of the generation system.

The question then becomes: what does affect the performance of a given ATMS im¬

plementation? The obvious answer is the number of assumptions, as they determine

the size of the search space. Next, we discuss the previous first-impression factors with

respect to the number of assumptions they give rise to.

From a solution-construction viewpoint, the number of assumptions in a solution tri¬

angle depends on the number of features and function bundles which have survived

the tailoring process. Although a function bundle is not directly represented by an

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 186

assumption, it is either realised by lexical items (and hence assumptions) if it is of the
word rank, or else by a fresh realisation triangle which incurs more assumptions to

represent both its features and function bundles. The number of remaining features in

a tailored network is influenced by the tailoring process (i.e. the choosers' responses).
The bigger the part of the original network that remains, the more features and func¬
tion bundles there are in a unit's realisation triangle. The number of lexical items
attached to a word rank constituent depends on the richness of the lexicon. That is,

how many synonymous words there are for a given concept. The more lexical items
attached to a function bundle, the more assumptions are needed to represent them.

Having said that, we now briefly discuss the initial impressions of what might influence
the generator's performance.

1. Semantic input: The size of the semantic input representation, in terms of

the process roles and circumstantial details, influences the number of syntactic

functions that might appear in the surface form to represent these semantic

entities. For example, a process representation with no information about the

time or place of a process is realised by shorter utterances with less functions,

since, for example, the prep and pp-head functions representing the circumstance

function of the clause level will be missing from the surface form.

Also, the level of specificity of the input affects the number of assumptions. The

more specific the input is, the more choosers are able to choose one feature among

alternatives; resulting in a smaller number of features and function bundles. The

extreme case happens when the input is so specific that only the features forming
one selection expression survive tailoring.

2. Network size: The initial size of the network is not influential. What matters

is the size of the remaining part after the tailoring process, as all features and

function bundles of this tailored network are to be represented by assumptions

or realisation triangles respectively. We assume that the tailoring process is fast
and therefore its overhead can be ignored.

3. Choosers behaviour: The more a chooser opts not to choose one particular

feature among alternatives, the more open paths there are to explore and hence

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 187

the more features and function bundles to realise in turn. To simplify things,

we implemented the relaxed version of choosers in such a way as to keep all

alternatives whenever the semantic representation allows it. However, there will

always be cases where choosers can make informed decisions.

4. Lexicon size: The lexicaliser attaches to a function bundle all the applicable

lexemes (i.e. synonymous ones). All of these lexical choices are initially consid¬
ered potential realisations for that given function bundle and hence made into
ATMS assumptions. So, it is not the actual size of the lexicon that affects the

performance but how rich it is in terms of synonymous entries per concept.

5. Output String Length: According to the SFL theory, a word in the surface
form is a realisation of an underlying functional constituent. Longer sentences

have more words and they are more likely to have more open class words each of
which may be replaced by one of the its synonyms. Also, if a function bundle is

not of word rank, then it needs a realisation triangle of its own which means more

assumptions to represent the features which have survived tailoring. Therefore,
the size and complexity of the generated string does affect the generation time.

To investigate what factors affect performance and to what extent, we designed some

experiments that enable us to vary a specific factor while fixing others. We use the
same input of the examples given in Appendix B.l. Without any surface stylistic

requirements, that input results in 9450 sentences using the usual relaxed choosers and

the lexicon of Appendix A.l. We show next how each factor affects performance.

Degree of Nondeterminism: As we have discussed above, the degree of nondeter-

minism might be affected by under-specified input or relaxed choosers. The result is

larger fragments of networks to explore. Table 8.1 compares the generation times of
nondeterministic plain mode and the time it takes when the system generates deter-

ministically. To have the system work deterministically we disable the current choosers
and manually drive the choice process so that one feature at each choice point is se¬

lected. Deterministic manual choice is achieved by having a predetermined list of
features that must be selected by the relevant choosers. This list represents a valid

selection expression. Also, the lexicaliser is restricted to one lexeme per function bun-

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 188

number of additional undecided upon features

Figure 8.2: Effect of nondeterminism on generation time

die. The deterministic time is the average of different runs involving different selection

expressions. Note that the time per sentence for the nondeterministic case is also 0.794

seconds (i.e. 125.16 mins/9450=0.794 seconds per sentence) which is not very different
from the time it takes the system to deterministically generate one sentence.

Although the time per sentence has not changed substantially, the search space has and
one would still have to wait for longer to get many surface forms at once. Figure 8.2

shows how the total generation time increases as larger and larger search spaces need
to be explored. In this figure, the number of lexemes per function bundle is fixed (3
lexemes per function bundle in this particular experiment). The increase in search space

is due to increasing network sizes. In this experiment, we started with a deterministic
manual choice process which resulted in a tailored network of certain size (measured
here by the number of features). To study the effect of nondeterminism on generation

time, we gradually increased the number of undecided upon features5, hence the size

of the remaining part of the network. Note that the number of lexemes is kept fixed
at 3 per function bundle. Table 8.3 reveals more details in addition to the increase in
5 As discussed in Section 6.2.1, there are three kinds of features from the chooser's point of view:
selected, unselected and undecided. Undecided upon features are all the children of a system that
its corresponding chooser opts not to choose.

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 189

the generation time shown in the plot of figure 8.2. It gives an idea of the size of the
network in terms of the number of derived and assumption nodes. It also counts the

number of the primitive union operation. We count this operation because it reflects
the amount of work done by the ATMS. Any activity which requires that a node label
is updated triggers a series of union operations. As discussed in Section 4.5, the union

operation is at the heart of both Algorithm 1 and 2 which perform local and global
label updates respectively.

one two three four five six

Number of Sentences 81 162 189 324 1377 1458
Generation Time (sec) 1.750 3.310 6.370 12.390 152.550 189.900
Time per Sentence (sec) 0.021 0.020 0.034 0.038 0.111 0.130

Union Operations 578 764 1328 1614 4837 5432
Derived Nodes 73 78 121 127 86 133

Assumption Nodes 51 52 87 87 74 109
Label Sizes Sum 357 529 722 993 3622 3921

Table 8.3: Effect of increasing the number of features

Lexicon Richness: To see the effect of the number of lexemes attached to function

bundles, we carried out two experiments: one for deterministic and another for non-

deterministic generation. By deterministic generation we mean a choice process that
ends up with one selection expression (i.e. all choosers choose). In nondeterministic

generation, some choosers do not choose. Hence, the choice process returns multiple

selection expressions (or equivalently, multiple syntactic structures). In each experi¬

ment, we increase the lexicalisation magnitude which we take here as an indication to

the richness of the lexicon. We start with one lexeme per open-class function6 and in¬

crease the number up to six lexemes per function bundle. We only do this for the sake

of experimentation, as in a real situation different function bundles will have different

numbers of synonyms available in the lexicon.

In both cases, Table 8.4 shows that as the lexicalisation process gets richer, more

solutions are generated and a longer time is taken by the ATMS to explore the search

space. In the deterministic case, for example, the number of solutions is nl where n

stands for the lexicalisation limit and i is the number of open-class functions in the
6 That is, function bundles realised by open-class words.

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 190

one

lexeme

two

lexemes

three

lexemes

four

lexemes

five

lexemes

six

lexemes

Determ.

Time (sec) 0.840 1.070 1.890 7.290 37.580 145.320

Time/sent. 0.840 0.067 0.023 0.028 0.060 0.112
Sentences 1 16 81 256 625 1296
Unions 194 315 578 1115 2106 3779

Deriveds 73 73 73 73 73 73

Assumps. 43 47 51 55 59 63
Labels 114 164 276 516 974 1764

Nondet.

Time (sec) 2.110 7.340 124.120 1508.390 10974.230 58389.810

Time/sent. 0.176 0.038 0.115 0.392 1.045 2.414

Sentences 12 192 1080 3840 10500 24192
Unions 500 1500 5151 15281 38394 84390

Deriveds 123 123 123 123 123 123

Assumps. 82 91 100 109 118 127
Labels 240 565 1752 5067 12664 27825

Table 8.4: Lexicalisation richness effect on search space size

surface form.

Sentence Length Effect: To study the effect of the sentence length on the per¬

formance of the ATMS-based generator, we designed an experiment whose results are

summarised in Table 8.5. In this experiment, we fixed both the degree of nondeter-
minism (fixed to 2 undecided upon features, which explains why two sentences — and

not one — are generated for all lengths when only one lexeme per function bundle
is allowed) and the number of lexemes per function bundle (in the upper part of the
table fixed to 1, and in the lower part to 3). Having fixed these two parameters, we

then started varying the number of function bundles from 3 (the shortest sentence the

grammar can generate) up to 8. Table 8.5 shows that the length of sentences (i.e. the
number of function bundles in each surface form) does affect the performance of the

system. Although the search space remained fixed in the case of one lexeme, having

longer sentences requires more time to process the extra function bundles. It also

shows that when an increase in the number of functions in a sentence is combined with

increases in the richness of the lexicon and nondeterminism degree, the search space

expands significantly.

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 191

Lexeme per length length length length length length
Function 3 4 5 6 7 8

Time (sec.) 1.080 1.070 1.600 2.180 2.280 2.350

Time/sent. 0.540 0.535 0.800 1.090 1.140 1.175
Sentences 2 2 2 2 2 2

One
Unions 281 283 377 439 445 451

Deriveds 97 101 129 152 156 160

Assumps. 59 61 81 94 96 98
Labels 156 162 210 246 252 258

Time (sec.) 1.910 5.990 37.860 200.290 1786.610 15501.980

Time/sent. 0.035 0.037 0.078 0.137 0.408 1.181

Sentences 54 162 486 1458 4374 13122
Unions 772 1460 3454 6231 16969 48605

Many Deriveds 97 101 129 152 156 160

Assumps. 71 77 101 116 122 128
Labels 330 612 1382 2410 6460 18304

Table 8.5: Sentence Length effect on search space size

Stylistics-aware Mode

It is necessary to determine how well the stylistics-aware generation mode described
in the previous chapter improves performance and limits the results to only those

utterances that are problem-free, since this is the way we intend to use our ATMS-

based generator.

In our ATMS-based generation architecture, choosers are relaxed so that they may opt

not to choose a single alternative resulting in non-deterministic generation. For a given

semantic input, many selection expressions might arise due to the relaxed nature of
choosers and many solutions or surface forms arise as a result. This has the effect of

creating a much larger search space than with current systemic generators which are

designed to deterministically produce the surface implications of one selection expres¬

sion. To cope with this complexity, the system uses the surface stylistic specifications

to prefer (partial) realisations over others. [Nicolov 99] identifies two issues in gener¬

ating preferred paraphrases: (1) what does it mean for a realisation to be better than
another one, and (2) how to incorporate the notion of betterness in the process. To

this end, our implementation provides the means for the second issue and leaves it to

the user to define what characteristics the better utterance is required to have.

Next, we analyse the system performance with respect to the three different sets of

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 192

stylistic requirements.

No
Constraints

Adjacency
Constraints

Metre

Constraints
Size

Constraints

Number of Sentences 9450 16 1 10

Time (minutes) 125.16 1.222 0.621 13.294
Union operations 27209 7565 4602 24572
Derived Nodes 324 423 387 391

Assumption Nodes 242 242 242 242

Label sizes Sum 10638 1014 1012 4652

Improv. in gen. Time — 99.02% 99.50% 89.38%

Table 8.6: Improvement in generation time for different sets of SSC

Table 8.6 shows the system's performance in the stylistics-aware mode under the three

sets of surface stylistic requirements. It shows a significant improvement over the

generate and test approach, had we chosen to generate the solutions in the plain mode

and then checked which sentences conform to the surface stylistic requirements. This

supports our initial expectation that the ATMS-based generator is best appreciated
when used in the stylistics-aware mode.

It is worth noting here that although the number of sentences generated under size

constraints (which is 4 in this particular case) is less than that in the case of word ad¬

jacency constraints, the time taken is much more. This is because most of the pruning

is done at the top level under the size constraints. The earlier that (sub)realisations
are excluded from the search space the better.

Size One Size Two Size Three Size Four

Number of Sentences 0 0 4 10
Time (minutes) 0.325 0.358 1.051 13.294

Table 8.7: System performance for different sentence size limits

Table 8.7 supports this explanation. In this experiment we tried different size values

starting from 1 to 4. The table shows that for the length constraints 1 and 2 the

system performs very well although it is still discovering the same search space for

that of generating 9450 sentences. However, no sentences were found to withstand

these constraints. This is because, according to our grammar, the shortest sentence is

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 193

of length 3 (e.g. Dartmaul destroyed Jitrax and Jitrax was destroyed). Once the size
limit is increased to 3 the time rises to more than one minute and for size 4 it jumps

to 13.294 minutes . This is because we only have one universal size constraint which

applies to the surface string as well as to its sub-constituents. In effect, all possible
function bundles of size 3 or less are generated without noticing that a constituent

of length 3 cannot be part of a sentence of length 3 along with at least two other
constituents. This suggests that we should probably have two size constraints, one

for the overall surface string and another for function bundles at lower levels. We
conducted several experiments to see how the system would perform under such new

constraints. Table 8.8 summarises the results. In these experiments, we had two size

constraints: a surface size limit, and a function bundle (or sub-constituent) size limit.

Sentence Sentence Sentence Sentence Sentence

size 3 size 4 size 5 size 6 size 7

Constituent Time (mins) 0.303 0.300 0.298 0.300 0.298
Size 1 Sentences 4 4 6 6 6

Constituent Time (mins) 0.465 0.453 0.433 0.407 0.393
Size 2 Sentences 4 16 34 66 94

Table 8.8: Performance results of having two size limits

Although the results shown in Table 8.8 are concerned with the size stylistic require¬

ment, they nevertheless reveal several points:

• the system gives better results with stylistic constraints that apply to partial
realisations as well as to complete surface realisations. This is shown in both the

case of word adjacency constraints and poetry metre.

• for cases where the above is not possible, blending constraint types can improve

performance such as those done with the size constraints when we had two length

limits: one for the overall surface form and one for the functional constituents of

that surface form.

• the flexibility of the situation-action framework is also shown. We could change

our stylistic specifications easily to accommodate the new requirement of having

another sub-constituent size constraint in addition to the universal constraint.

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 194

This suggests that one can probably use the empirical evaluation exercise as a

feedback mechanism to fine-tune the initial stylistic specifications.

8.3 Discussion

Although measuring cpu times is sometimes unreliable as it can be affected by other

system dependent factors such as garbage collection it nevertheless does give a rough
idea of the speed of the generation process for different sentences.

Since the stylistics-aware mode is the normal way we intend to use the system, what
matters is the performance of the system under this mode and we should not be put

off by the generation time taken in the plain mode. The latter mode represents the

generate and test possibility which was considerably outperformed by the stylistics-
aware mode (see the tables 8.6 and 8.8 for the exact figures).

The results show that for generation without stylistics, our system can be competitive

to deterministic SFG generators when the process is less likely to succeed the first
time. The figures of Table 8.2 show that the ATMS overhead will start to pay off
after the first failure. The system's inability to succeed from the first time can be
due to either syntactic (i.e. there is no construct to express the meaning), or lexical

(i.e. no appropriate word in the lexicon) gaps. It may also be due to ill-formed or

under-specified semantic input.

We emphasise here that the ATMS we are currently using is written in an interpreted

high level language. Only a few attempts were made to optimise efficiency (e.g. bit
vector representation of sets). The number of candidate solutions increases exponen¬

tially as both the number of functions in a sentence and the number of lexemes per

function increase. For instance, for 50-word sentence and a lexicalisation magnitude

of 10, the number of solutions is roughly 1050. In practice, the current ATMS is in¬

conceivable to be able to deal with such a complexity. Things even get worse when
there are many 50-word syntactic structures. Although we have not tried it, a serious

ATMS implementation may be able to handle such a problem or a reduced version of

it. [deKleer 86] claims that the ATMS (an optimised one, I would imagine) is designed
in such a way that even when the number of assumptions is very large (say n = 1000),

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 195

it is still practical to use. For a sentence with 50 functions and 10 lexemes per function

bundle, roughly 500 assumptions are needed (plus, of course, other assumptions to

represent other bits of the network).

To this end, if the current system is to be used in the non-deterministic plain mode,

measures must be taken to confine the scale-up behaviour within a predefined process¬

ing time threshold. It is the combinations of open paths and lexicalisation richness
that greatly expands the search space. This behaviour is expected from an ATMS-
based system since more nondeterminism and richer lexicons mean that there are more

assumptions to represent them. However, to keep the scaling up effect within the

given ATMS computational capacity, the generator can limit the magnitude of the
lexicalisation process if the semantic input has already resulted in a high degree of

nondeterminism. Alternatively, it can lift the restrictions on lexicalisation if the non-

determinism degree is low. This way, the system will always explore a search space

that it can handle. Faster ATMS implementations can have their own threshold values.

For deterministic generation, the results show that the ATMS overhead is around 45%

(cf. Table 8.2). This suggests that with faster ATMSs, our system might well be

comparable to traditional deterministic generation. However, tackling the problem of
non-deterministic generation without stylistic constraints (or heuristics of some sort) is
not a difficult task for the ATMS only; it is an inherently complex problem regardless
of how one attempts to optimise the implementation. The results show that using

the ATMS to solve the already intractable problem does not make it any worse. On
the contrary, the ATMS might well help in certain generation tasks as was shown

by the stylistics-aware mode. For example, incorporating SSC greatly improved the
non-deterministic generation time (cf. Table 8.6).

Although the generation time per sentence is small in the stylistics-aware mode, the
ATMS-based generator pursues all solutions in parallel and it, eventually, produces all
the surviving sentences at once. This suggests that, for discovering large search spaces,

the ATMS-based generator be used for real-time generation only in the deterministic

mode. The non-deterministic mode (usually incurring larger search spaces) is more

appropriate for non-interactive applications (e.g. leaflet preparation systems) that
have clear surface stylistic requirements so that they can be used to cut a great deal

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 196

of the search space.

In summary, our evaluation of the current prototype system shows that the new ATMS-
based architecture is promising and extensible. With optimised ATMS components, the

system can be practical for real-time deterministic (or low-degree non-deterministic)

generation. Because of the inherent complexity of non-determinism, the fully non-

deterministic mode (i.e. relaxed choosers, and generous lexicaliser) of the system is
more appropriate for applications that have strict surface stylistic requirements.

8.4 Limitations

In this section we discuss the limitations of our work. While we certainly

cannot provide a complete list of all the things this work is unable to

address, we provide a list of the limitations which we can use as a lead-in

to our discussion on future work in Section 9.2 of the next chapter.

The goal of this work was to account for the effect of surface stylistic constraints on

earlier linguistic decisions, such as syntactic and lexical choice, in one unified generation
architecture. To this end, we were successful in designing a new architecture that relies

heavily on the ATMS to generate natural language utterances that have certain surface

stylistic requirements.

Having said that, we now list the following limitations of the work in this thesis:

• Using an ATMS to generate text from systemic grammars is a new idea and
one primary objective was to see how far we can take the approach, and study

what advantages this architecture brings to NLG. In order to get a prototype

implemented, we made certain simplifying assumptions at the beginning. For

example, the semantic input was intended only to drive the choice process and
hence was not based on a structured ontology or any notion of Upper Model.

• Another limitation of our system — as is the case with any ATMS-based problem

solver — is that it will only be as fast as the underlying ATMS implementation.
This very point may also be seen as an advantage since our system can then

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 197

benefit from any improvements in ATMS implementation (e.g. parallel ATMS).
It is not known, however, how our system's efficiency will improve as faster ATMS

implementations are used. This could be a possible direction for future research.

• Although we evaluated some aspects of the system and characterised how different
factors influence generation time, the system needs to be evaluated in a more

realistic setting with real size lexicons and grammars. The controlled languages
domain may be a plausible choice to test the system in as will be discussed in

the future work section of the next chapter.

• As far as the surface stylistic constraints are concerned, we only deal with hard

constraints here (or as we call them surface stylistic requirements). There is no

such notion as soft constraints or preferences. This is due to the fact that the

ATMS we are using is a standard one: assumptions (nodes in general) are either
true or false.

• Because — in general — traditional systemic generators do not use the ordering

rules until the very end when the lexical items need to be linearised in a sur¬

face form, the grammar that we used did not pay much attention to such rules.
Partition rules are used as a shorthand for several immediate adjacency rules.

However, for our stylistics-aware generator the order rules play an important

role in the whole process. That is why we had to manually expand the partition

rules into sets of order rules. Also, we had to make explicit the border meta

functions which are in some cases missed out in the WAG grammar.

• Currently our generation system does not do any morphology or post-processing.

This means that more lexicon entries are needed, as no inflection is performed.

However, this is helpful to our surface stylistic needs, since immediately after
a word is attached to a function bundle, its stylistic properties are obtainable

from the the very same lexicon entry without the need to do any morphology

processing.

• Due to the nature of the ATMS' processing, one has to wait and then all the

surviving solutions are produced at once. This does not allow an interactive mode

of generation where the complete sentences are presented to the user as soon as

CHAPTER 8. SYSTEM IMPLEMENTATION AND EVALUATION 198

they are constructed. The user may be satisfied with some of the sentences

generated early on and the whole process can then come to an end. This way

(i.e. the interactive mode) allows for acceptable (but not necessarily optimal)
solutions to be generated.

8.5 Summary and Outlook

In this chapter, we have presented the implementation details of the ATMS-based

generation system: the translator SNAC, the generator STAGE and the particular
ATMS implementation we used in this project. We also evaluated the two phases of
the generation process by empirically evaluating the system's performance. Several

experiments were designed to study the factors that influence generation time. Gener¬
ation results under the three sets of surface stylistic requirements were then compared

and their implications discussed. These results show that folding in surface stylistic

constraints, that go straight across the structures produced, significantly improves on

the generate-and-test approach. The chapter ended with a discussion of the limitations
of the prototype generator.

The next chapter closes the thesis by emphasising the contributions made and specu¬

lating on the ways in which this work can be extended in the future.

Chapter 9

Conclusions

This last chapter closes the thesis by revisiting the contributions made

and set forth in the introductory chapter. It emphasises the contributions

by linking them to where they have been made in the thesis. It also discusses

possible extensions to our work.

9.1 Contributions of this Thesis

The main objective of this work was to account for surface stylistic constraints (SSC)
— as defined in this thesis — in the generation process. Because of the high interaction
between SSC and other linguistic decisions such as syntactic and lexical choice, this

goal was viewed from a broader perspective: the system architecture perspective. To

this end, a new generation architecture, that allows later constraints to influence earlier

decisions, was developed.

Along the way, from the initial objective to the final outcome, this thesis has made

several contributions. In the following we highlight these contributions and point out

where they have been addressed in the thesis.

• Identifying the Limitations of Current Systems or Relaxing The No¬

tion of Choice: Because of the high interaction between SSC and syntactic

and lexical choice, we opted for the SFL approach. The SFL formalism inter¬

twines the lexical and syntactic knowledge in one formalism known as the lexico-

grammar (Section 2.7). However, current systemic generators have their own

199

CHAPTER 9. CONCLUSIONS 200

limitations as far as SSC are concerned. In Section 3.8 and 3.9, we concluded

that the rigid deterministic nature of current implementations of choosers is to

blame for this deficiency, as any uninformed choice has its effect on the stylistic

appearance of the surface form. In Chapter 6, we redefined the task of a chooser.

Consequently, a chooser is now relaxed in that it does not have to choose if
it cannot make an informed decision (Section 6.2.1). It is now the generation

algorithm's responsibility to pursue these open paths in an efficient manner.

• Establishing the Logical Relation between System Networks and De¬

pendency Networks: In Chapter 4, we argued that the ATMS is a plausible
search technique for handling the now relaxed nature of choosers since the ATMS
is designed to work in multiple contexts simultaneously. Taking work that inter¬

prets system networks in logic as a starting point (Section 5.4), we took the idea
further (Section 5.5). We devoted the first part of Chapter 5 to establishing the
relation between system networks and ATMS dependency networks. The aim

was to represent SFG as ATMS dependency networks.

• Design of a Translation Algorithm from Systemic Grammars to Equiv¬
alent ATMS Representations: Based on the logical relation between sys¬

tem networks and ATMS dependency networks (established in the first part of

Chapter 5), we designed (in the second part of the chapter) an algorithm for
the automatic translation of systemic grammars to equivalent ATMS represen¬

tations. The translation algorithm takes conventional systemic grammars (i.e.

system networks and realisation statements) and maps them to an equivalent
ATMS representation. The translation algorithm can be used in applications

other than text generation since there is no reason which makes the system

networks framework specific to linguistic applications. System networks simply

specify how combinations of features may imply or be inconsistent with other

combinations. However, applying the translation algorithm to other contexts is

beyond the scope of this thesis.

• Developing an ATMS-based Generation Architecture: Systemic net¬

works are put into what we called network snapshots (Section 5.9). A network

snapshot is the result of the translation of a complete systemic grammar network

CHAPTER 9. CONCLUSIONS 201

(i.e. system features and realisation statements). In Sections 6.2 and 6.3, we

presented the generation algorithm and showed how it uses network snapshots to

generate natural language utterances (Section 6.5). The main thrust of the archi¬
tecture is in its tolerance. It tolerates relaxed choosers which in some cases may

choose not to do their job. It makes up for their laziness by pursuing multiple

paths simultaneously.

• Developing a Framework for the Specification of SSC: Since each appli¬
cation will have its own surface stylistic requirements, we provided a situation-

action framework for the specification of SSC (Section 7.3). We also showed how
different sets of surface stylistic requirements can be encoded within the con¬

fines of the framework provided (Section 7.9). In Section 7.8, we showed that
the ATMS-based architecture can seamlessly accommodate the surface stylistic

specifications by switching to a stylistics-aware mode of generation.

• Implementation and Evaluation of an ATMS-based Generator: In

Chapter 8, we introduced the implementation notes of our generation system:

the STylistics-Aware GEenerator (STAGE). STAGE is a prototype ATMS-based

generation system embodying the ideas presented in this thesis such as:

— relaxed notion of choice,

— translation of system network to ATMS dependency networks,

— an ATMS-based generation architecture,

— incorporation of the effect of SSC on syntactic and lexical choice through

the stylistics-aware mode of generation,

— facilitating the specification of different surface stylistic requirements inde¬

pendently of the micro-semantic input, through a situation-action frame¬
work.

The implemented generation system can be viewed as a general test-bed for

experimenting with different stylistic requirements since the ability to follow more

than one option through the system network and to fold in constraints that go

straight across the structures produced can be a helpful research tool.

CHAPTER 9. CONCLUSIONS 202

In the second part of Chapter 8, we evaluated the two stages: translation and

generation. The translation stage was evaluated in terms of the size of the gram¬

mar used and the size of the result of the translation process (Section 8.2.1).

Then, in evaluating the generation stage, we identified the factors that affect
the system performance and compared the system behaviour with respect to the

three sets of surface stylistic requirements (Section 8.2.2). Finally, we discussed
the limitations of our generation system in Section 8.4.

9.2 Future Directions

The avenues for further research range form minor algorithm tuning to broad areas for

exploration. We can divide the directions for future work into the following categories:

• The Generation Tasks Involved: Currently, we assume that a semantic

input is chunked in such a way as to give a sentence-sized output. Hence, the

generation tasks involved are those at the tactical level. We believe, however, that

linguistic constraints can sometimes affect what one can say and that "language

can feed back to the planning component [...] because a particular language
construction forces [one] to include additional semantic material" [Nicolov 99] or
probably miss some out. Having said that, further work can incorporate other

stages of the generation process such as content determination. This is very much

motivated by the viewpoint that the SFL formalism can actually be thought of
as a general knowledge representation language and not just as a resource for

syntactic structuring [O'Donnell 94],

[Patten 86] for example uses system networks to represent semantics. The same

idea of relaxed choosers can be applied to systems at this level and there will

be concepts that can be represented by more than one path. Each of these

possibilities will then be realised differently at the lexico-grammatical level.

Moreover, involving the strategic planning stages into the generation process

would allow more flexibility in tackling lexical choice, a central issue in this
work. This would allow semantic entities to be packed into lexemes in different

ways. [Elhadad et al. 97] stretch the lexical chooser functionality to cover some

CHAPTER 9. CONCLUSIONS 203

planning tasks, so that more than one semantic entity is fused in one linguistic

unit, which is then realised by one word.

• Stylistics-related Issues: The sets of surface stylistic requirements we used

are meant to demonstrate the functionality of the approach. They are by no

means the ultimate stylistic needs one can aim for. Although the generator

seemed to have done well under these requirements, it will be interesting to

see how well it performs under stylistic requirements that are driven by real

applications. For example, lexical collocational constraints can be extracted from
machine-readable corpora using statistical approaches. Other lexical properties
can come from real size lexicons.

One possibility as a source of real stylistic requirements is in the area of controlled

language specifications. We have already experimented with length constraints
on sentences and constituents within sentences. However, further constraints

that have to do with allowed grammatical structures need to be tested. The

objective would be to test whether our approach represents a practical tool that

can be used in controlled language generation.

The system can be extended to deal with multiple sentence generation. This way,

we will have a better environment in which to test the stylistic sensitivity of the

system (e.g. rhyme constraints in poetic writings and how several sentences are

involved in satisfying the surface constraints).

The situation-action framework interface can be enhanced so that it becomes

more user friendly. Instead of specifying the surface requirements in Prolog, the
user can do so using a high level representation mechanism.

Finally, the inclusion of earlier generation tasks brings with it the possibility

of incorporating deep stylistic constraints. For example, conciseness constraints

can be achieved more easily if planned for early on in the generation process. A
relevant issue here is how to represent deeper stylistic requirements and whether

the situation-action framework, developed to cater for surface constraints, will

be of any use at this level.

• ATMS-related Extensions: We embarked on this research guided solely by
the intuition that the ATMS' ability to keep track of dependencies, between new

CHAPTER 9. CONCLUSIONS 204

information and earlier assumptions, should be beneficially applicable to NLG.

However, we had no details of how this could be accomplished. So, we picked

a simple plain ATMS implementation and started exploring possibilities. We
ended up with an architecture in which the ATMS plays a central role. This
means that the generator efficiency is very much influenced by the ATMS com¬

ponent. It would be revealing, however, to plug in different ATMS implementa¬
tions. Plugging in different ATMS implementations (e.g. parallel, probabilistic,
... etc.) would enable us to test the effect of the particular ATMS on the gener¬

ation speed in conjunction with other factors. For example, [Haenni 98] extends
the ATMS to allow its True-or-False-only assumptions to take different degrees

of certainty ranging from 0 to 1. These would allow the representation of soft

stylistic constraints. This way, any construct or sub-realisation that falls below

a certain threshold value will be sent the false node. Consequently, we will be

talking about stylistic preferences as opposed to crisp stylistic requirements only.

• SNAC-related Extensions: SNAC translates SFG networks to ATMS depen¬

dency networks. Meanwhile, it assumes the systemic networks to be in a Prolog

notation that we defined. Also, on the output side of SNAC, it prepares the

dependency networks so that they can readily be used by the particular ATMS

we are using. Because system networks are written in different formats and us¬

ing different conventions, it would be helpful to have a way of defining a given

convention to SNAC, so that it can then translate any systemic grammar no

matter what notation it uses. Also, to facilitate the idea of plugging in different
ATMS implementations, the same can be done to the other side of the process

(i.e. the output of SNAC). The goal is to have SNAC generate output in the
correct format for any ATMS implementation to consume.

• Linguistic Resources Issues: One possible direction for future work in this

regard is to extend the coverage of the grammar we are currently using. Another

possibility is to use another grammar altogether - one with a broader linguistic

coverage.

CHAPTER 9. CONCLUSIONS

9.3 Concluding Remarks

205

In this thesis, we have brought together a linguistic theory and an AI search technique
and put them into a new NLG system architecture. However, our main objective

was not the development of a "new" architecture as much as the incorporation of the

surface stylistic constraints into the overall generation process. In particular, the pro¬

posed architecture accounts for the interaction between syntactic, lexical, and surface

constraints.

We believe that although our motivation to design the new architecture was the need
to incorporate surface stylistic constraints in the generation process, the solution pre¬

sented in this thesis can also be used to answer the general question: what happens
when a generator makes many decisions during generation and then new circum¬

stances/constraints arise suggesting that it has made — at some unknown point —

the wrong choices? We hope that the essence of our approach remains useful to other

generation tasks especially those at the strategic planning level; and to other domains

using the system network formalism as their representation language.

From an NLG standpoint, this work offers a new ATMS-based generation architecture
to experiment with; while — from the ATMS viewpoint — it can be seen as a new

application using the ATMS which shows the versatility of the ATMS as a search

mechanism.

Bibliography

[Adorni & Zock 96]

[Al-Jabri 97]

[Bailey 99]

[Bateman 97a]

[Bateman 97b]

[Bateman et al. 90]

[Berry 75]

[Berry 77]

[Binsted k Ritchie 94]

Giovanni Adorni and Michael Zock, editors. Trends
in Natural Language Generation: an Artificial Intelli¬
gence Perspective. Springer-Verlag, Germany, 1996.

Saad K. Al-Jabri. Generating Arabic Words from Se¬
mantic Descriptions. Unpublished PhD thesis, Univer¬
sity of Edinburgh, 1997.

Paul Bailey. Searching for storiness: Story-generation
from a reader's perspective. In Proceedings of the 1999
AAAI Fall Symposium Series: Narrative Intelligence
(AAAI-99), 1999.

John A. Bateman. Enabling technology for multilin¬
gual natural language generation: the KPML develop¬
ment environment. Journal of Natural Language En¬
gineering, 3(1): 15—55, 1997.

John A. Bateman. Sentence generation and systemic
grammar: an introduction. In Iwanami Lecture Se¬
ries: Language Sciences, volume 8. Iwanami Shoten
Publishers, Tokyo, Japan, 1997.

John A. Bateman, Robert T. Kasper, Johanna D.
Moore, and Richard A. Whitney. A general organi¬
zation of knowledge for natural language processing:
The Penman upper model. Unpublished technical re¬
port, USC Information Sciences Institute, 1990.

H. Margaret Berry. Introduction to Systemic Linguis¬
tics, volume 1: Structures and Systems. B. T. Batsford
Ltd., London, 1975.

H. Margaret Berry. Introduction to Systemic Linguis¬
tics, volume 2: Levels and Links. B. T. Batsford Ltd.,
London, 1977.

Kim Binsted and Graeme Ritchie. An implemented
model of punning riddles. In Proceedings of the 12th
National Conference on Artificial Intelligence. Volume

206

BIBLIOGRAPHY

[Binsted k Ritchie 96]

[Binsted et al. 95]

[Bouayad-Agha et al. 91]

[Bourbeau et al. 90]

[Brew 91]

[Busemann 93]

[Cahill k Reape 99]

[Cahill et al. 99]

[Calder 99]

207

1, pages 633-638, Menlo Park, CA, USA, July 31-
August 4 1994. AAAI Press.

Kim Binsted and Graeme Ritchie. Speculations on

story puns. In J. Hulstijn and A. Nijholt, editors,
Proceedings of International Workshop on Computa¬
tional Humour (TWLT 12), pages 151-159, University
of Twente, Enschede, Netherlands, September 1996.

K. Binsted, A. Cawsey, and R. Jones. Generating per¬
sonalised patient information using the medical record.
Lecture Notes in Computer Science, 934:29-41, 1995.

N. Bouayad-Agha, D. Scott, and R. Power. Integrating
content and style in documents: a case study of patient
information leaflets. Information Design Journal, 9(2-
3):161—176, 1991.

Laurent Bourbeau, Denis Carcagno, E. Goldberg,
Richard Kittredge, and Alain Polguere. Bilingual gen¬
eration of weather forecasts in an operational environ¬
ment. In Proceedings of the 13th International Con¬
ference on Computational Linguistics (COLING-90),
volume 1, pages 90-92, Helsinki, 1990.

Chris Brew. Systemic classification and its efficiency.
Computational Linguistics, 17(4):375-408, December
1991.

Stephan Busemann. A holistic view of lexical choice.
In Helmut Horacek and Michael Zock, editors, New
concepts in Natural Language Generation: Planning,
Realization, and Systems, pages 302-308. Pinter Pub¬
lishers, New York, 1993.

L. Cahill and M. Reape. Component tasks in ap¬

plied nig systems. Technical Report ITRI-99-05, RAGS
project, 1999.

L. Cahill, C. Doran, R. Evans, C. Mellish, D. Paiva,
M. Reape, D. Scott, and N. Tipper. In search of a
reference architectures for nig systems. In Proceedings
of the 7th European Workshop on Natural Language
Generation, Toulouse, France, 1999.

Jo Calder. The horn subset of systemic networks. In
Proceedings of the 6th Meeting on Mathematics of Lan¬
guage, MOL6, University of Central Florida, Orlando,
Florida, USA, July 23-25, 1999. to appear.

BIBLIOGRAPHY 208

[COLING-88 88]

[Dale et al. 92]

[De Smedt et al. 96]

[deKleer &; Williams 86]

[deKleer 86]

[DiMarco &: Hirst 93]

[DiMarco & Stede 93]

[Dixon &; deKleer 89]

[Doyle 79]

[Edmonds 95]

[Edmonds 97]

Proceedings of the 12th International Conference on

Computational Linguistics (COLING-88), Budapest,
August 22-27, 1988.

Robert Dale, Eduard H. Hovy, Dietmar Rosner, and
Oliviero Stock. Aspects of Automated Natural Lan¬
guage Generation. Lecture Notes in Artificial Intelli¬
gence, 587. Springer-Verlag, Berlin, April 1992.

Koenraad De Smedt, Helmut Horacek, and Michael
Zock. Architectures for natural language genera¬
tion: Problems and perspectives. In Adorni and Zock
[Adorni & Zock 96], pages 17-46.

Johan de Kleer and Brian Williams. Reasoning about
multiple faults. In Tom Kehler and Stan Rosenschein,
editors, Proceedings of the 5th National Conference on

Artificial Intelligence. Volume 1, pages 132-139, Los
Altos, CA, USA, August 1986. Morgan Kaufmann.

Johan de Kleer. An assumption-based TMS. Artificial
Intelligence, 28:127-162, 1986.

Chrysanne DiMarco and Graeme Hirst. A computa¬
tional theory of goal-directed style in syntax. Compu¬
tational Linguistics, 19(3):451-499, 1993.

Chrysanne DiMarco and Manfred Stede. The seman¬
tic and stylistic differentiation of synonyms and near-

synonyms. In Working notes of the AAAI Spring Sym¬
posium on Building Lexicons for Machine Translation,
Stanford University, March 1993.

M. Dixon and J. de Kleer. Massively parallel
assumption-based truth maintenance. In M. Reinfrank,
J. de Kleer, M. L. Ginsberg, and E. Sandewall, edi¬
tors, Non-monotonic reasoning, pages 131-142. Berlin:
Springer-Verlag, 1989. Lecture Notes in Artificial In¬
telligence, 346.

Jon Doyle. A truth maintenance system. Artificial
Intelligence, 12 (3) :231—272, 1979.

Philip Edmonds. Lexical knowledge for natural lan¬
guage generation. PhD qualification paper. Technical
report, Department of Computer Science, University
of Toront, Canada, 1995.

Philip Edmonds. Choosing the word most typical in
context using a lexical co-occurrence network. In Pro¬
ceedings of the 35th Annual Meeting of the Association

BIBLIOGRAPHY 209

[Edmonds 99]

[Elhadad 92]

[Elhadad et al. 97]

[Evelyne &; Pierette 94]

[Forbus &: de Kleer 93]

[Forbus 87]

[Ginsberg 87]

[Goldman 75]

[Granville 84]

[Haenni 98]

for Computational Linguistics (ACL/EACL 97), pages
507-509, Madrid, 1997.

Philip Edmonds. Semantic Representations of Near-
Synonyms for Automatic Lexical Choice. Unpublished
PhD thesis, Department of Computer Science, Univer¬
sity of Toronto, 1999.

Michael Elhadad. Using argumentation to control lex¬
ical choice: A functional unification-based approach.
Unpublished PhD thesis, Computer Science Depart¬
ment, Columbia University, 1992.

Michael Elhadad, Kathleen McKeown, and Jacques
Robin. Floating constraints in lexical choice. Com¬
putational Linguistics, 23(2), 1997.

V. Evelyne and B. Pierette. Semantic lexicons: The
cornerstone for lexical choice in natural language gen¬

eration, 1994.

Kenneth D. Forbus and Johan de Kleer. Building Prob¬
lem Solvers. MIT Press, Cambridge, Massachusetts,
1993.

Kenneth D. Forbus. The qualitative process engine:
A study in assumption-based truth maintenance. In
Qualitative Reasoning Workshop Abstracts. Qualita¬
tive Reasoning Group, University of Illinois at Urbana-
Champaign, 1987.

Matthew L. Ginsberg. Readings in Nonmonotonic Rea¬
soning, chapter 1, pages 1-23. Morgan Kaufmann, Los
Altos, CA, 1987.

Neil M. Goldman. Conceptual generation. In Roger C.
Schank and Christopher K. Riesbeck, editors, Concep¬
tual Information Processing. American Elsevier, New
York, NY, 1975.

Robert Granville. Controlling lexical substitution in
computer text generation. In Proceedings of the Tenth
International Conference on Computational Linguis¬
tics (COLING-84) and the 22nd Annual Meeting of
the ACL, pages 381-384, Stanford University, Stan¬
ford, CA, July 2-6, 1984.

R. Haenni. Modelling uncertainty with propositional
assumption-based systems. Lecture Notes in Computer
Science, 1455:446-??, 1998.

BIBLIOGRAPHY 210

[Halliday h Hasan 76]

[Halliday 73]

[Haruno et al. 93]

[Haruno et al. 96]

[Hasan 87]

[Henschel 97]

[Hovy

[Hovy 96]

[Hudson 71]

[Inui et al. 92]

Michael A. K. Halliday and R. Hasan. Cohesion in
English. Longman, London, 1976.

Michael A. K. Halliday. Explorations in the Functions
of Language. Edward Arnold, London, 1973.

Masahiko Haruno, Makoto Nagao, and Yasuharu Den.
Bidirectional chart generation of natural language
texts. In Proceedings of the 11th National Conference
on Artificial Intelligence (AAAI-93), pages 350-356,
Washington, DC, July 11-15, 1993.

Masahiko Haruno, Yasuharu Den, and Yuji Mat-
sumoto. A chart-based semantic head driven genera¬
tion algorithm. In Giovanni Adorni and Michael Zock,
editors, Proceedings of the fth European Workshop on
Natural Language Generation, volume 1036 of LNAI,
pages 300-313, Berlin, April 1996. Springer Verlag.

Ruqaiya Hasan. The grammarian's dream: lexis as
most delicate grammar. In M. A. K. Halliday and
R. Fawcett, editors, New developments in systemic lin¬
guistics: theory and description. Pinter, London, 1987.

Renate Henschel. Compiling systemic grammar into
feature logic systems. In Suresh Manandhar, editor,
Proceedings of CLNLP. Springer, 1997.

Eduard H. Hovy. Generating Natural Language under
Pragmatic Constraints. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1988. Based on PhD thesis, Yale Uni¬
versity.

E. Hovy. Language generation. In Survey of the
State of the Art in Human Language Technology.
http://cslu.cse.ogi.edu/HLTsurvey/, 1996. A
hardcopy of this document is available from Cambridge
University Press ISBN 0-521-59277-1.

Richard A. Hudson. English Complex Sentences: An
Introduction to Systemic Grammar. North-Holland,
Amsterdam, 1971.

Kentaro Inui, Takenobu Tokunaga, and Hozumi
Tanaka. Text revision: A model and its implementa¬
tion. In Aspects of Automated Natural Language Gen¬
eration [Dale et al. 92], pages 215-230.

[Iordanskaja et al. 88] Lidija Iordanskaja, Richard Kittredge, and Alain
Polguere. Implementing a meaning-text model for lan¬
guage generation. In COLING-88 [COLING-88 88].

BIBLIOGRAPHY 211

[Iordanskaja et al. 91]

[Jacobs 87]

[Jones & Millington 88]

[Kantrowitz h Bates 92]

[Kasper & O'Donnell 90]

[Kay 96]

Lidija Iordanskaja, Richard Kittredge, and Alain
Polguere. Lexical selection and paraphrase in a
meaning-text generation model. In Cecile L. Paris,
William R. Swartout, and William C. Mann, editors,
Natural Language Generation in Artificial Intelligence
and Computational Linguistics, pages 293-312. Kluwer
Academic Publishers, Boston, 1991.

Paul S. Jacobs. Knowledge-intensive natural lan¬
guage generation. Artificial Intelligence, 33(3):325-
378, November 1987.

John Jones and Mark Millington. Modelling Unix users
with an ATMS: Some preliminary findings. In Bar¬
bara M. Smith and Gerald Kelleher, editors, Reason
Maintenance Systems and Their Applications, pages
134-154. Ellis Horwood, Ltd., Chichester, 1988.

Mark Kantrowitz and Joseph Bates. Integrated natural
language generation systems. In Aspects of Automated
Natural Language Generation, Lecture Notes in Arti¬
ficial Intelligence, 587, pages 13-28. Springer-Verlag,
Berlin, April 1992.

R. Kasper and M. O'Donnell. Representing the nigel
grammar and semantics in loom. Technical report,
USC Information Science Institute, Marina del Rey,
CA, 1990.

Martin Kay. Chart generation. In Proceedings of the
34th Annual Meeting of the ACL, pages 200-204, Uni¬
versity of California, Santa Cruz, CA, June 24-27,
1996.

[Knight & Hatzivassiloglou 95] K. Knight and V. Hatzivassiloglou. Two-level, many-
paths generation. In Proceedings of the 33rd Annual
Meeting of the ACL, pages 252-260, MIT, Cambridge,
Massachusetts, June 26-30, 1995.

[Kohlas et al. 98]

[Lamma Sz Mello 93]

J. Kohlas, R. Haenni, and N. Lehmann. Assumption-
based reasoning and probabilistic argumentation sys¬
tems. Accepted for Publication in the final DRUMS
handbook, 1998.

E. Lamma and P. Mello. A rationalisation of the
ATMS in terms of partial evaluation. In Kung-Kiu
Lau and Tim Clement, editors, Proceedings of the In¬
ternational Workshop on Logic Program Synthesis and
Transformation, Workshops in Computing, pages 118—
131, London, July 2-3 1993. Springer Verlag.

BIBLIOGRAPHY 212

[Laskey & Lehner 88]

[Lin 96]

[Mann & Matthiessen 83]

[Mann 82]

[Mann 83a]

[Mann 83b]

[Manurung et al. 00]

[Matthews 97]

[Matthiessen 87]

[McKeown et al. 93]

Kathryn B. Laskey and Paul E. Lehner. Belief main¬
tenance: An integrated approach to uncertainty man¬
agement. In Tom M. Smith, Reid G.; Mitchell, editor,
Proceedings of the 7th National Conference on Artifi¬
cial Intelligence, pages 210-214, St. Paul, MN, August
1988. Morgan Kaufmann.

Dekang Lin. On the structural complexity of natu¬
ral language sentences. In Proceedings of the 16th In¬
ternational Conference on Computational Linguistics
(COLING-96), pages 729-733, Copenhagen, Denmark,
1996.

William C. Mann and Christian Matthiessen. NIGEL:
A systemic grammar for text generation. Technical
Report ISI-RR-83-105, USC Information Sciences In¬
stitute, Marina Del Rey, CA, 1983.

William C. Mann. The anatomy of a systemic choice.
Technical Report ISI/RS-82-104, USC Information Sci¬
ence Institute, Marina del Rey, CA, 1982.

William C. Mann. A linguistic overview of the nigel
text generation grammar. Technical Report ISI/RS-
83-9, USC Information Science Institute, Marina del
Rey, CA, 1983.

William C. Mann. An overview of the Penman text

generation system. Technical Report ISI/RS-83-114,
USC Information Science Institute, Marina del Rey,
CA, 1983.

H. Manurung, G. Ritchie, and H. Thompson. A flexible
integrated architecture for generating poetic texts. In
Proceedings of the Fourth Symposium on Natural Lan¬
guage Processing (SNLP 2000), pages 123-132, Chiang
Mai, Thailand, 10-12 May 2000.

Peter Matthews. The Concise Oxford Dictionary of
Linguistics. Oxford University Press, Oxford, UK,
1997.

Christian Matthiessen. Semantics for a systemic gram¬
mar: the chooser and inquiry framework. Technical Re¬
port RS-87-189, USC Information Sciences Institute,
Marina Del Rey, CA, 1987.

K. McKeown, J. Robin, and M. Tanenblatt. Tailor¬
ing lexical choice to the user's vocabulary in multi¬
media explanation generation. In Proceedings of the

BIBLIOGRAPHY 213

31st Annual Meeting of the Association for Computa¬
tional Linguistics (ACL), pages 226-234, Columbus,
OH, 1993.

[Mellish 88] Chris Mellish. Implementing systemic classification by
unification. Computational Linguistics, 14(1) :40—51,
Winter 1988.

[Mellish 95] Chris Mellish. Natural language generation and tech¬
nical documentation. Saudi Computer Journal, 1 (1):3—
20, November 1995.

[Mel'cuk 88] Igor Mel'cuk. Dependency Syntax: Theory and Prac¬
tice. State University of New York Press, Albany, NY,
1988.

[Morgue & Chehire 91] Genevieve Morgue and Thomas Chehire. Efficiency of
production systems when coupled with an assumption
based truth maintenance system. In Kathleen Dean,
Thomas L.; McKeown, editor, Proceedings of the 9th
National Conference on Artificial Intelligence, pages
268-274. MIT Press, July 1991.

[Nicolov 99] Nicolas N. Nicolov. Approximate text generation from
non-hierarchical representations in a declarative frame¬
work. Unpublished PhD thesis, University of Edin¬
burgh, 1999.

[Nirenburg & Nirenburg 88] Sergei Nirenburg and Irene Nirenburg. A framework
for lexical selection in natural language generation. In
COLING-88 [COLING-88 88], pages 471-475.

J. Nogier and Michael Zock. Lexical choice as pat¬
tern matching. In T. Nagle, J. Nagle, L. Gerholz, and
P. Elklund, editors, Current directions in conceptual
structures research. Springer-Verlag, New York, NY,
1991.

Michael O'Donnell. Sentence Analysis and Generation
- a Systemic Perspective. Unpublished PhD thesis,
Department of Linguistics, University of Sydney, 1994.

Michael O'Donnell. Variable-length on-line docu¬
ment generation. In Proceedings of the 6th European
Workshop on Natural Language Generation, Gerhard-
Mercator University, Duisburg, Germany, 1997.

Michael O'Donnell, Alistair Knott, Jon Oberlander,
and Chris Mellish. Optimising text quality in gen¬
eration from relational databases. In Proceedings of

[Nogier & Zock 91]

[O'Donnell 94]

[O'Donnell 97]

[O'Donnell et al. 00]

BIBLIOGRAPHY 214

the International Natural Language Generation Con¬
ference, INLG'2000, Mitzpe Ramon, Israel, June 2-16
2000.

[Paiva 99] Daniel Paiva. Invistigating nig architectures taking
style into consideration, 1999.

[Patten &; Ritchie 86] Terry Patten and Graeme D. Ritchie. A formal model
of systemic grammar. DAI Research Paper 290, De¬
partment of Artificial Intelligence, University of Edin¬
burgh, 1986.

Terry Patten. Interpreting Systemic Grammar as
a Computational Representation: A Problem Solving
Approach to Text Generation. Unpublished PhD the¬
sis, Edinburgh University, Department of Artificial In¬
telligence, 1986.

Terry Patten. Systemic text generation as problem
solving. Cambridge University Press, New York, 1988.
Based on PhD Thesis.

David Poole, Alan Mackworth, and Randy Goebel.
Computational Intelligence: A Logical Approach. Ox¬
ford University Press, Oxford, 1998.

R. Power. Planning texts by constraint satisfaction.
In Proceedings of the 18th International Conference
on Computational Linguistics (COLING-2000), pages
642-648, Saarbrucken, Germany, 2000.

Gregory M. Provan. A complexity analysis of
assumption-based truth maintenance systems. In Bar¬
bara M. Smith and Gerald Kelleher, editors, Reason
Maintenance Systems and Their Applications, pages
98-113. Ellis Horwood, Ltd., Chichester, 1988.

[Pustejovsky Sz Nirenburg 87] James D. Pustejovsky and Sergei Nirenburg. Lexical
selection in the process of language generation. In Pro¬
ceedings of the 25th Annual Meeting of the ACL, pages
201-206, Stanford University, Stanford, CA, July 6-9,
1987.

[Reiter Sz Dale 00] Ehud Reiter and Robert Dale. Building Natural Lan¬
guage Generation Systems. Cambridge University
Press, Cambridge, UK, 2000.

[Patten 86]

[Patten 88]

[Poole et al. 98]

[Power 00]

[Provan 88]

[Reiter Sz deKleer 87] R. Reiter and J. de Kleer. Foundations of assumption-
based truth maintenance systems. In Proceedings of
AAAI-81, pages 183-188, Seattle, WA, 1987.

BIBLIOGRAPHY

[Reiter 91]

[Reiter 94]

[Reiter 00]

[Robin 90]

[Robin 94]

[Rosner & Stede 94]

[Rubinoff 92]

[Rubinoff 00]

215

Ehud Reiter. A new model of lexical choice for nouns.
Computational Intelligence, 7(4):240-251, November
1991. Also appears as DAI Research Paper 547, De¬
partment of Artificial Intelligence, University of Edin¬
burgh.

Ehud Reiter. Has a consensus on NL generation ap¬

peared, and is it psycholinguistically plausible? In Pro¬
ceedings of the Fifth International Natural Language
Generation Workshop, pages 163-170, 1994.

Ehud Reiter. Pipelines and size constraints. Compu¬
tational Linguistics, 26(2):251-259, 2000.

Jacques Robin. Lexical choice in natural language gen¬
eration. Technical Report CUCS-040-90, Department
of Computer Science, Columbia University, New York,
1990.

Jacques Robin. Revision-Based Generation of Natu¬
ral Language Summaries Providing Historical Back¬
ground: Corpus-Based Analysis, Design, Implementa¬
tion and Evaluation. Unpublished PhD thesis, Com¬
puter Science Department, Columbia University, 1994.

Dietmar Rosner and Manfred Stede. Generating multi¬
lingual documents from a knowledge base: the TECH-
DOC project. In Proceedings of the 15th International
Conference on Computational Linguistics (COLING-
94), volume 1, pages 339-346, Kyoto, Japan, 1994.

Robert Rubinoff. Integrating text planning and linguis¬
tic choice. In Aspects of Automated Natural Language
Generation [Dale et al. 92], pages 45-56.

Robert Rubinoff. Integrating text planning and linguis¬
tic choice without abandoning modularity: The igen
generator. Computational Linguistics, 26(2):107-138,
June 2000.

[Russell & Norvig 95] Stuart Russell and Peter Norvig. Artifical Intelligence:
A Modern Approach,. Prentice-Hall, Englewood Cliffs,
NJ, ISBN 0-13-103805-2, 912 pp., 1995, 1995.

[Shemtov 98] H. Shemtov. A method for preserving ambiguities
in chart generation. In Proceedings of Tabulation in
Parsing and Deduction (TAPD'98), pages 36-43, Paris
(FRANCE), April 1998.

[Shoham 87] Yoav Shoham. A semantical approach to nonmono¬
tonic logics. In Matthew L. Ginsberg, editor, Readings

BIBLIOGRAPHY 216

[Shoham 94]

[Smith &; Kelleher 88]

[Smith 88]

[Sondheimer et al. 89]

[Stede 93]

[Stede 96a]

[Stede 96b]

[Teich 95]

[Teich 99]

[Thompson 77]

in Nonmonotonic Reasoning, pages 227-250. Morgan
Kaufmann, Los Altos, California, 1987.

Yoav Shoham. Artifical Intelligence: Techniques in
Prolog. Morgan-Kauffman, 1994.

Barbara M. Smith and Gerald Kelleher. A brief in¬
troduction to reason maintenance systems. In Bar¬
bara M. Smith and Gerald Kelleher, editors, Reason
Maintenance Systems and Their Applications, pages
4-20. Ellis Horwood, Ltd., Chichester, 1988.

Barbara M. Smith. Forward checking, the ATMS and
search reduction. In Barbara M. Smith and Ger¬
ald Kelleher, editors, Reason Maintenance Systems
and Their Applications, pages 115-168. Ellis Horwood,
Ltd., Chichester, 1988.

Norman K. Sondheimer, Susanna Cumming, and
Robert Albano. How to realize a concept: Lexical
selection and the conceptual network in text genera¬
tion. Technical Report RS-89-248, USC Information
Sciences Institute, 1989.

Manfred Stede. Lexical choice criteria in language gen¬
eration. In Proceedings of the Sixth European Meeting
of the ACL, Utrecht, 1993.

Manfred Stede. Lexical options in multilingual gen¬
eration from a knowledge base. In Adorni and Zock
[Adorni &: Zock 96], pages 222-237.

Manfred Stede. Lexical Semantics and Knowledge Rep¬
resentation in Multilingual Sentence Generation. Un¬
published PhD thesis, University of Toronto, 1996.

Elke Teich. A proposal for dependency in Systemic
Functional Grammar: metasemiosis in Computational
Systemic Functional Linguistics. Unpublished PhD
thesis, University of the Saarland, Saarbriicken, Ger¬
many, 1995.

Elke Teich. Systemic functional grammar in natural
language generation: linguistic description and com¬

putational representation. Cassell, London, 1999.

Henry S. Thompson. Strategy and tactics: A model for
language production. In W. A. Beach, S. E. Fox, and
S. Philosoph, editors, Papers from the 13th Regional
Meeting of the Chicago Linguistics Society, pages 651—
668, Chicago, IL, April 14-16, 1977.

BIBLIOGRAPHY 217

[Tung et al. 88] Yu-Wen Tung, C. Matthiessen, and N. Sondheimer. On
parallelism and the penman natural language genera¬
tion system. Technical Report ISI/RS-88-195, USC In¬
formation Science Institute, Marina del Rey, CA, 1988.

[Winograd 83] Terry Winograd. Language as a Cognitive Process:
Syntax, volume I. Addison-Wesley, Reading, MA, 1983.

Appendix A

The Lexico-grammatical
Resources

A.l The Systemic Grammar Networks

Here we present the complete WAG grammar that SNAC translated into ATMS de¬
pendency networks. Note that because we had to enrich the ordering rules manually,
we only used fragments of these networks in generation.

A. 1.1 Clause Network

system_def(entry_cond(grammatical_unit), g_unit_type,
[clause,
group,
word,

quotation]).

'/, complexity
system_def(entry_cond(clause), clause_complexity,

[clause_simplex,
clause_complex]).

'/, fullness

system_def(entry_cond(clause_simplex), clause_type,
[full,
fragment,
minor]).

system.def(entry_cond(fragment), fragment_type,
[nominal_fragment,
polar_fragment]).

'/, finiteness

system_def(entry_cond(full), dependence,
[finite,
nonfinite]).

218

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES

'/, nonfinite type
system_def(entry_cond(nonfinite), nonfinite_sys,

[infinitive_clause,
ing_forra]).

'/. VOICE: active/passive
system_def(entry_cond(nonrelational_clause), voice,

[active,
passive]).

passive_type
system_def(entry_cond(passive), passive_type,

[medio_passive,
recipio_passive,
addressee_passive,
indirect_agent.passive]).

'/, mood

system_def(entry_cond(finite) , mood,
[indicative,
imperative]).

system_def(entry_cond(indicative k subject.resolved), subj.fin.sys,
[subj.fin,
fin.subj]).

system.def(entry_cond(indicative k subj.fin k nonwh.subject k
(nonwh.object \/ object_not_inserted) k
(nonwh_primary_circumstance \/ no_primary_circumstance)),

declarative.gate,
[declarative]).

system_def(entry.cond(finite k (wh.subject \/ wh.object \/
wh_primary_circumstance \/ fin.subj)), interrogative.gate,

[interrogative]).

'/, minor_fragment_mood
system_def(entry_cond(ec((minor \/ fragment) k sentential)), minor_fragment_mood,

[interrogative.fragment_or_minor,
declarative_fragment_or.minor]).

AUXILARIES:

'/. modality
system_def(entry.cond(indicative), modality,

[modal.or.future,
not.modal.or.future]) .

system.def(entry.cond(ec(not.modal.or.future k no.do.insert)), nomodalordo.gate,
[not.modal_or.do]).

'/, tense

system.def(entry.cond(not.modal.or.future), clause.tense,
[past.clause,
present.clause]).

'/. perfective
system.def(entry.cond(full), perfect,

[perfective,
nonperfective]).

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES 220

'/. progressive
system_def(entry_cond(full), progressive,

[progressive,
nonprogressive]).

'/, do_insertion

system_def(entry_cond(tense_pred ft not_modal_or_future), noaux_system,
[no_auxilaries]).

system_def(entry_cond(negative_imperative \/ declarative_do \/
(no_auxilaries ft nonrelational_clause ft

(negative_clause \/ fin_subj))), do_insert_gate,
[do_insert]).

system_def(entry_cond(no_auxilaries & subj_fin ft positive_clause), subj_fin_do_insert,
[declarative_do,
no_declarative_do]).

system_def(entry_cond(ec(positive_imperative \/ (indicative ft
(no_declarative_do \/ modal_or_future \/
passive \/ perfective \/ progressive \/
relational_clause))), no_do_insert_gate,

[no_do_insert]).

'/, auxiliary agreement
system_def(entry_cond(progressive & active), progpred,

[prog_pred]).

system_def(entry_cond(progressive ft passive), prog_pass,

[prog_pass]) .

system_def(entry_cond(perfective ft progressive), perf_prog,
[perf _prog]) .

system_def(entry_cond(nonperfective ft progressive), tense_prog,
[tense_prog]) .

system_def(entry_cond(perfective ft nonprogressive ft active), perf_pred,
[perf_pred]).

system_def(entry_cond(perfective & nonprogressive ft passive), perf_pass,
[perf_pass]).

system_def(entry_cond(nonperfective & nonprogressive & passive), tense_pass,
[tense_pass]) .

system_def(entry_cond(nonperfective & nonprogressive &
(active \/ relational_clause)), tense_pred,

[tense_pred]) .

'/, subject/finite agreement
system_def(entry_cond(not_modal_or_future & subject_resolved), subject_person,

[first_person_subject,
second_person_subject,
third_person_subject]) .

system_def(entry_cond(not_modal_or_future ft subject_resolved), subject_number,
[singsubj,

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES 221

plursubj]).

'/. clause polarity
system_def(entry_cond(finite), clause_polarity,

[positive.clause,
negative_clause]).

system_def(entry_cond(negative_clause), clause_negation_type,
[negation_in_finite,
negation_separate]).

system_def(entry_cond(modal_or_future & negation_in_finite), neg_mod_or-future_gate,
[negative_modal_clause]).

system_def(entry_cond(not_modal_or_future & negation_in_finite),
neg_notmod_or-future_gate,
[negative_not_modal_or_future_clause]).

system_def(entry_cond(imperative & positive.clause), positive_imperative_gate,
[positive_imperative]).

system_def(entry_cond(imperative & negative_clause), negative-imperative-gate,
[negative_imperative]).

'/. process type
system_def(entry_cond(full), process_typel,

[relational_clause,
nonrelational_clause]).

system.def(entry_cond(nonrelational_clause), nonrelational_clause_type,
[doing_clause,
projecting_clause]).

system_def(entry_cond(relational_clause), relational_clause_type,
[identifying_clause,
attributive_clause,
possessive_clause]).

system_def(entry_cond(attributive_clause), projective_attribution_sys,
[projecting_attributive_clause,
nonprojecting_attributive_clause]).

system_def(entry_cond([or,nonprojecting_attributive_clause,
projecting_attributive_clause,possessive_clause,identifying_clause]),
relational_object_resolution_gate,
[relational_object_resolved]).

system_def(entry_cond([or,nonprojecting_attributive_clause,
projecting_attributive_clause,
possessive.clause,
identifying.clause,
active,
medio.passive,
recipio.passive,
addressee.passive,
indirect_agent_passive]), subject_resolved_gate,

[subject.resolved]).

'/. subject insertion & type

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES 222

system_def(entry_cond(finite & indicative & subject.resolved), subj.whness,
[wh_subject,
nonwh.subject]).

system_def(entry_cond(nonwh_subject),
[nominal_subject,
clausal_subject]).

'/, object insertion & type
system_def(entry_cond(nonrelational_clause & subject_resolved), subj_filler_type,

[nonrelational_object_inserted,
object_not_inserted]).

system_def(entry_cond([or,nonrelational_object_inserted,relational_object_resolved]),
nonrelational_object.insertion,
[object.inserted]).

'/, object whness
system.def(entry_cond(object_inserted), object.insertion,

[wh.object,
nonwh.object]) .

'/, object form
system_def(entry_cond(nonwh_object & nonrelational.clause), obj.filler.type,

[nominal.obj ect,
quoted.obj ect,
clausal.object]) .

'/. agency insertion/form
system.def(entry.cond(passive), agency.insertion,

[explicit.agency,
implicit.agency]).

'/, secondary agency john told mary to eat chocolate
system.def(entry_cond(nonrelational_object_inserted & active), act.ind.agency,

[active.indirect.agent,
no.active.indirect.agent]).

'/, indir.agent whness
system.def(entry.cond(active.indirect.agent), indir.agency.whness,

[wh.indir.agent,
nonwh.indir.agent]).

'/, indir.agent gate
system.def(entry_cond([or, active.indirect.agent, indirect.agent.passive]),

indirect.agen.gate,
[indirect.agent]).

'/, recipiency/addressee expression
system.def(entry_cond(medio_passive \/ (active &

(object.not.inserted \/ no.active.indirect.agent))), recipiency.expr,
[recipiency.expressed,
recipiency.not.expressed]).

system.def(entry.cond(recipiency.expressed), recipiency.foregrounding,
[forground.recipient,
background.recipient]) .

'/. circumstances

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES

system_def(entry_cond(full), beneficiary_choice,
[beneficial,
nonbeneficial]).

system_def(entry_cond(full), primary_circ_sys,
[primary_circumstance,
no_primary_circumstance]).

system_def(entry.cond(primary.circumstance), thematic_primary_circ_sys,
[nonthematic.primary.circumstance,
thematic_primary_circumstance]).

system_def(entry_cond(primary_circumstance), nonwh.primary.circ.type,
[clausal_primary_circumstance,
prepositional_primary_circumstance]).

'/. circ_l wh_ness

system.def(entry_cond(prepositional_primary_circumstance), wh_primary_circ_sys,
[wh_primary_circumstance,
nonwh.primary.circumstance]) .

system_def(entry_cond(nonwh_primary_circumstance & thematic_primary_circumstance),
thematic_nonwh_circ_sys,
[thematic_nonwh_circumstance]).

'/, secondary circumstance
system_def(entry_cond(primary_circumstance), secondary_circ_sys,

[secondary_circumstance,
no_secondary_circumstance]).

system.def(entry_cond(full), clause_adverbial_sys,
[adverbial_modifier,
no_adverbial_modifier]).

'/, clause complex
system_def(entry_cond(clause_complex), complex_type,

[paratactic_clause_complex,
hypotactic_clause_complex]).

system_def(entry_cond(hypotactic_clause_complex), hypotactic_type,
[if.complex]).

system_def(entry_cond(if.complex), if.complex.ordering,
[if .then,
then.if]).

system.def(entry.cond(clause.complex), clause.complex.mood,
[interrogative.complex,
declarative.complex,
imperative.complex]).

•/.— SOME GENERAL CLAUSAL SYSTEMS:
'/, sententiality _ is the unit punctuated?
system.def(entry_cond([or,clause.complex,finite.fragment.minor]), sententiality,

[non.sentential,
sentential]).

system.def(entry_cond(sentential & (declarative.complex \/
declarative \/ declarative.fragment.or.minor)), decl.sent.gate,

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES 224

[declarative_sentence]).

system_def(entry_cond(sentential & (imperative_complex \/ imperative)), imp_sent_gate,
[imperative_sentence]).

system_def(entry_cond(sentential & (interrogative_complex \/
interrogative \/interrogative_fragment_or_minor)), inter_sent_gate,

[interrogative_sentence]).

'/, clause conjunction
system.def(entry_cond(non_sentential), clause.conjunction,

[conjuncted,
non_conjuncted]).

system_def(entry_cond(conjuncted), conjunction_type,
[if.conjunct,
then.conjunct,
that.conjunct,
experiential.conjunct]).

A. 1.2 Group Network

system.def(entry.cond(group), group.type,
[nominal.group,
prep.phrase,
adjectival.group]).

system_def(entry_cond(nominal_group), nom.group.moderation,
[moderated,
non.moderated]).

system_def(entry.cond(nominal.group), nom.group.type,
[nominal,
pronominal]).

system.def(entry.cond(nominal.group), nominal.number,
[sing.group,
plur.group,
substance.group]).

system.def(entry.cond(substance.group & nominal), substance.nominal.gate,
[substance.nominal]).

system.def(entry_cond(nonqualified & (sing.group & nondeixis \/
proper.group)),

classifying.group,
[classifying.group]).

system.def(entry.cond(pronominal \/ proper.group \/ deixis \/
(common.group & (plur.group \/ substance.group))),

participant.group,
[participant.group]).

'/, common vs proper

system.def(entry.cond(nominal), nominal.type,
[common.group,
proper.group]).

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES 225

system_def(entry_cond(common_group), classification,
[classified,
nonclassified]).

system_def(entry_cond(common_group), description,
[epitheted,
nonepitheted]).

system_def(entry_cond(common_group), numeration,
[numerated,
non_numerated]).

'/, deixis

system_def(entry_cond(common_group), deixis,
[deixis,
nondeixis]).

system_def(entry_cond(deixis), deixis_definiteness,
[definite_deixis,
indefinite_deixis]).

system_def(entry_cond(definite_deixis), deixis_possessiveness,
[nonpossesive_deixis,
possesive_deixis]).

system_def(entry_cond(nonpossesive_deixis), nonpossesive_deixis_type,
[proximal_deixis,
nonproximal_deixis]).

system_def(entry_cond((plur_group \/ substance_group) &
(nonpossesive_deixis \/ indefinite_deixis)), plur_deix,

[plur_deixis]) .

system_def(entry_cond(sing_group & (nonpossesive_deixis \/
indefinite_deixis)),

sing_deix,
[sing_deixis]).

'/, case

system_def(entry_cond(nominal_group), nominal_case,
[nominative,
accusative,

genitive]).

system_def(entry_cond(pronominal & nominative), pronom_nominal_group,
[nom_pronom_group]).

system_def(entry_cond(pronominal & accusative), pronom_accusative_group,
[acc_pronom_group]).

system_def(entry_cond(pronominal & genitive), gen_pronom_group,
[gen_pronom_group]).

system_def(entry_cond(nominal & genitive), gentive_nominal_group,
[genitive_nominal_group]).

'/. pronom_group definiteness
system_def(entry_cond(pronominal), pronm_group_definiteness,

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES 226

[definite_pronom_group,
indefinite_pronom_group]).

system_def(entry_cond(definite_pronom_group), pronoun_group_whness,
[nonwh_pronom_group,
wh_pronom_group]).

system_def(entry_cond(nonwh_pronom_group), interactancy,
[interactant_group,
noninteractant_group]).

systera_def(entry_cond(wh_pronom_group & threep_group & sing_group), wh_group_gate,
[wh_group]) .

system_def(entry_cond([or, wh_group, noninteractant_group]), pronom_group_type,
[spatial_group,
temporal_group,
nonhuman_group,
human_group]).

system_def (entry_cond(nomirial_group), nom_group_qualif ied,
[qualified,
nonqualified]).

system_def(entry_cond(qualified), qualification_type,
[pp_qualified,
nonfin_qualified]).

system_def(entry_cond(pronominal), pronom_group_person,
[onep_group,
twop_group,
threep_group]).

'/. PreP phrases
system_def(entry_cond(prep_phrase), prep_phrase_type,

[client_pp,
recipient_pp,
location_pp,
°rigin_pp,
possessor_pp,

accompaniment_pp,
destination_pp,
matter_pp,
duration_pp,
agent_pp,
materials_pp,
other_prep_phrase]).

system_def(entry_cond([or, location_pp, destination_pp, duration_pp]), prep_ellipsis,
[prep_present,
prep_ellipsed]).

system_def(entry_cond(prep_ellipsed), prep_phrase_pronominalisation,
[full_pp,
pronom_pp]) .

system_def(entry_cond(prep_phrase), prep_phrase_whness,
[wh_pp,
nonwh_pp]).

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES 227

'/, adjectival groups

system_def(entry_cond(adjectival_group), projecting_adjectival_group,
[projecting_adjectival_group,
nonprojecting_adjectival_group]).

A.2 SNAC Translations of the Grammar

SNAC translates systemic grammar networks (written in the notation of Section A.l)
into network snapshots. A network snapshot forms the basis for the instantiation
process of a tailored network. It tells the system how an ATMS dependency network is
to be constructed and what should be an assumption, derived node, or a justification
connecting different type of nodes. A snapshot also contains other information that
helps the generator as well such as the accumulated preselection operations for a given
function bundle. In the following, we explain the format of a network snapshot and
how each part of it is used by the generation system. Then we give (in Sections A.2.2
and A.2.3) excerpts from the snapshots of the systemic grammar networks given in
Section A.l.

A.2.1 The Format of a Network Snapshot

SNAC compiles conventional systemic grammars into what we call network snapshots.
They are to be used by STAGE during generation. STAGE expects a snapshot to be
in a certain format so that it can construct dependency networks correctly. A snapshot
has the following format:

snapshot ((rank), {choosers), {features), {systems), {bundles), {system-justs),
{order-justs)).
Next we explain the structure of each slot in a snapshot and how it helps the generator
proceed in the process.

• {rank)
This slot can have one of two values: clause or group. It helps the system pick
the right network to start with in response to the realisation of a new function
just popped off the stack. As we will see below, the information provided by
the preselection operations of a function bundle is used to determine the rank of
the function. Once this bit is determined, the rank slot is used to pick the right
network.

• {choosers)
This slot holds information about what choosers there are in a network and how

they are related. The actual Prolog procedural code is kept separate though.

• {features)
This is a list of features. Initially, it contains all features in a network. After

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES 228

tailoring, however, it contains only those features that have not been cut out
from the network. During the instantiation of a network, these features will be
represented by ATMS assumptions. This is necessary since these features will
be referred to in the justifications slot (as will be shown below) and the ATMS
requires a node to be created before it is used in any justification.

• (systems)
This is a list of system names that are also used in the network justifications.
Therefore they need to be created first. That is why we have this list. Systems
are represented by ATMS derived nodes. Note that initially this list contains all
the systems of a network. During tailoring, the irrelevant systems are removed
from this list.

• (bundles)
The generator also uses this list to create ATMS derived nodes. However, this slot
contains other bits of information that help in the correct realisation of network's
functions. Actually, the slot is a list of lists each containing the following informa¬
tion: [function-name, (conflated-functions), (preselection-operations)] where
function-name is a shorthand for naming the function bundle. The next item:
(conflated-functions) is a list of all conflated functions and which form this bun¬
dle such as the function bundle [f inite ,pass] . (preselection-operations) is also
a list of preselection operations for this function bundle. For example, the bundle
[f inite,pass] may have the preselection operations [be-aux,past-verb]. Ini¬
tially, this slot contains all the function bundles in a network. During tailoring,
some of the function bundles are removed based on the choosers behaviour.

• (system-justs)
This is simply a list of justifications. Each justification is represented by a list
of antecedents and one consequent as is the case with all ATMS justifications.
For example, the list [[active,f (1) ,s(2)] ,s(l)] reprsents the justification
activeA/(l) As(2) -» s(l). The assertion of these justifications forms the depen¬
dency network. Since the system cannot differentiate between node types in a
justification, the previous slots ((features), (systems), and (bundles)) are used
to create the correct node types (i.e. features are mapped to assumptions and
both systems and functions to derived nodes). Initially, this list contains all the
justifications of a network. During tailoring, some may be removed based on the
responses of the choosers.

• (order-justs)
This also is a list of justifications from a set of antecedents to a consequent.
The antecedents are features and the consequent is an order node. So during
network instantiation, the generator creates a derived node (i.e. the order node
if not already created) and then asserts the justification itself. For example, the
list [[agency_expressed,non_thematic_circum] , order (agent, circum)] rep¬
resents the justification

agency-expressed A non-thematic-drcum —t order (agent, circum)

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES 229

A.2.2 The Clause Network Snapshot

The following representation is a fragment of the clause network snapshot. It shows
the different slots explained above.

snapshot(clause, [

'/.—features of the network

[clause,active,passive,agency_expr,agency_not_expr,
circum_adjunct,non_thematic_circum,thematic_circum,
nocircum_adjunct],

'/.—systems of the network
[s(l) ,s(2) ,s(3) ,s(4) ,s(5) ,s(6)] ,

'/.—function bundle details

[[f (1) , [[subject, actor] , [nom_group,nominative]]] ,

[f(2),[[subject,goal],[nom_group.nominative]]],
[f(3),[[finite,pred],[lexverb,past_verb,transitive]]],
[f (4) , [[finite,pass] , [be_aux,past_verb]]] ,

[f(5),[[pred.passc],[lexverb.transitive.enparticiple]]] ,

[f(6),[[object.goal],[nom_group,accusative]]],
[f(7),[[agency_marker],[by_prep]]],
[f(8),[[agent,actor],[nom_group,accusative]]],
[f (9) , [[circum] , [prep_phrase]]]
].

'/.—main (system) justifications
[[[clause,s(2)],s(l)] ,

[[s (3) , s (4)] , s (2)] ,

[[active,f (1) ,f (3) ,f (6)] ,s(3)] ,

[[passive,s(5) ,f (2) ,f (4) ,f (5)] ,s(3)] ,

[[agency_expr,f(7),f (8)],s(5)] ,

[[agency_not_expr],s(5)],
[[circum_adjunct,s(6),f(9)],s(4)],
[[non_thematic_circum],s(6)],
[[thematic_circum],s(6)],
[[nocircum_adjunct],s(4)]
].

'/,—ordering nodes and justs
[[[active],order(pred,object)],
[[passive].order(pass,passc)],

]]))

A.2.3 The Group Network Snapshot

The following representation is a fragment of the group network snapshot. It shows
the different slots explained above.

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES 230

snapshot(group, [

'/,—features of the network

[group,nominal_group,prep_phrase.nominal.pronominal,
nominative,accusative,proper_group,common_group,
onep_group,twop_group,threep_group,
numerated,non_numerated,epitheted.nonepitheted,
classified,nonclassified,client_pp,location.pp,time.pp],
'/,—systems of the network
[s(l) ,s(2) ,s(3) ,s(4) ,s(5) ,s(6) ,s(7) ,s(8) ,s(9) ,s(10) ,s(ll),s(12)],
'/,—function bundle details

[[f(11).[[thing],[proper_noun]]],
[f(12),[[thing],[pronominal,first_pers]]] ,

[f (13) , [[thing] , [pronominal, second_pers]]] ,

[f(14), [[thing],[pronominal,third_pers]]],
[f(15),[[thing],[common_noun]]],
[f(16),[[deictic],[definite]]],
[f(17),[[prep],[client.prep]]],
[f(18),[[prep], [location_prep]]],
[f (19) , [[prep] , [time_prep]]] ,

[f(20),[[numerator],[ordinal_adjective]]],
[f(21),[[epithet],[nonordinal_adjective]]],
[f(22),[[classifier],[common_noun]]],
[f(23), [[pp_head],[nominal,accusative]]]] ,

'/,—main (system) justifications
[[[group,s(2)],s(l)],
[[nominal.group,s(3)],s(2)],
[[prep_phrase,s(4),f(23)],s(2)] ,

[[s(5) ,s(6)] ,s(3)] ,

[[nominal,s(7)],s(5)],
[[pronominal,s(8)],s(5)],
[[proper_group,f(11)],s(7)],
[[common_group,s(9),f(15),f(16)],s(7)],
[[onep_group,f(12)],s(8)],
[[twop_group,f(13)],s(8)],
[[threep_group,f(14)],s(8)],
[[s(10),s(ll),s(12)],s(9)],
[[numerated,f(20)],s(10)],
[[non_numerated],s(10)],
[[epitheted.f(21)],s(ll)],
[[nonepitheted],s(ll)],
[[classified,f(22)],s(12)] ,

[[nonclassified],s(12)],
[[client_pp,f(17)],s(4)],
[[location_pp,f(18)],s(4)],
[[time_pp,f(19)],s(4)]],

'/,—ordering nodes and justs
[...
[[common_group],order(front.deictic)],
[[common_group.numerated],order(deictic.numerative)] ,

[[classified].order(classifier.thing)]]]))

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES 231

A.3 The Lexicon

Here we give examples of the related lexicon entries. As mentioned in Section 7.5.1 an
entry in the lexicon might look like the following:

Iexicon (lexeme, property\, property2, property3,...)

As typical lexical entry, consider the following Prolog representation for the lexeme
annihilate.

lexicon([annihilate,anhlt,[1,1,1,1,0]],[destroy_proc,infinitive,lexverb,
trans_verb]).

It consists of two lists. The first list has the lexeme itself, its root property, and its
sound pattern (e.g. [1,1,1,1,0]). The length of lexical items is assumed here to be
one although it can be any number. The second list contains the selectional restrictions
of the lexeme: both denotational and grammatical restrictions (e.g. [destroy.proc,
sing.verb, third_person, past_verb, lexverb,trans.verb]).

lexicon([will,o,[1,0]],[modal_aux]).
lexicon([be,o,[1,0]],[infinitive,be_aux]).
lexicon([was,o,[1,0]],[sing_verb,third_person,past_verb,be_aux]).
lexicon([is,x,[1,0]],[sing_verb,third_person,present_verb,be_aux]).
lexicon([destroyed,o,[1,0,0,1,0,0]],[destroy_proc,sing_verb,third_person,

past.verb,lexverb,trans.verb]).
lexicon([annihilated.x,[1,1,1,1,0,1,0]],[destroy_proc,sing_verb,third_person,

past_verb,lexverb,trans_verb]).
lexicon([destroyed,o,[1,0,0,1,0,0]],[destroy_proc,lexverb,trans_verb,

enparticiple]).
lexicon([annihilated.x,[1,1,1,1,0,1,0]] ,[destroy_proc.lexverb,trans_verb,

enparticiple]).
lexicon([destroys,o,[1,0,0,1,0,0]],[destroy_proc,sing_verb,third_person,

present_verb,lexverb,trans_verb]).
lexicon([annihilates,x,[1,1,1,1,0,0]] ,[destroy_proc,sing.verb,third_person,

present.verb,lexverb,trans.verb]).
lexicon([destroy,o,[1,0,0,1,0]],[destroy_proc,infinitive.lexverb,

trans_verb]).
lexicon([annihilate,x,[1,1,1,1,0]],[destroy_proc,infinitive,lexverb,

trans_verb]).
lexicon([ruthlessly,o,[1,0,0,1,0,1,0,0]],[ruthless.con,moderating_adverb]) .

lexicon([mercilessly,o,[1,0,1,1,0,1,0,0]],[ruthless_con,moderating_adverb]).
lexicon([peacefully,o,[1,0,0,1,1,0,0]],[peaceful.con,moderating.adverb]).
lexicon([nonviolently,o,[1,0,1,1,1,0,0,1,0,0]],[peaceful.con,

moderating.adverb]).
lexicon([first,o,[1,0,0,0]],[first.ordinal.adjective]).
lexicon([second,o,[1,1,0,0]],[second,ordinal.adjective]).
lexicon([last,o,[1,0,0,0]],[last,ordinal.adjective]).
lexicon([ruthless,o,[1,0,0,1,0]],[ruthless_con,nonordinal_adjective]).
lexicon([merciless,o,[1,0,1,1,0]],[ruthless.con,nonordinal.adjective]).
lexicon([working,o,[1,0,1,0,0]],[working,nonordinal.adjective]).
lexicon([active,x,[1,0,1,0]],[working,nonordinal.adjective]).
lexicon([functioning,o,[1,0,0,1,1,0,0]],[working,nonordinal.adjective]).
lexicon([lustrous,o,[1,0,0,1,0]],[shiny.con,nonordinal.adjective]).
lexicon([shiny,x,[1,0,1,0,0]],[shiny.con,nonordinal.adjective]).

APPENDIX A. THE LEXICO-GRAMMATICAL RESOURCES

lexicon([beautiful,o,[0,1,0,1,1,0]],[beautiful_con,nonordinal_adjective]).
lexicon([gorgeous,o,[1,0,1,0]],[beautiful_con,nonordinal_adjective]).
lexicon([warrior ,o, [1,1,1,0]] , [warrior,common.noun,singular_noun]) .

lexicon([fighter,o,[1,0,1,0]],[warrior,common.noun,singular_noun]).
lexicon([city,o,[1,1,0]],[city,common.noun,singular.noun]).
lexicon([day,o,[1,0]],[day,common_noun,singular_noun]).
lexicon([week,o,[1,0,0]],[week,common.noun]).
lexicon([peace,o,[1,0,0]],[peace,common.noun]).
lexicon([rescue,o,[1,0,0,1]],[rescue,common_noun]).
lexicon ([space,wl ,[0,1,0]], [space , common.noun]) .

lexicon([sky,x,[0,1,0]],[space,common.noun]).
lexicon([submarine,o,[1,0,1,1,0,0]],[submarine,common.noun,

singular.noun]).
lexicon([subaquatic,o,[1,0,1,0,1,1,0]],[submarine,common.noun,

singular.noun]).

lexicon([dartmaul,o,[1,0,0,1,0,0]],[dart.maul.proper.noun]).
lexicon([jitrax,o,[1,0,1,0]],[jitrax.proper.noun]).
lexicon([edinburgh.x,[1,1,0,1,1,0]],[edinburgh,proper_noun]).
lexicon([friday,x,[0,1,0,1,0,0]],[friday,proper.noun]).

lexicon([by,o,[1,0]],[by.prep]).
lexicon([for,o,[1,0]],[preposition,for.prep]).
lexicon([to,o,[1]],[preposition,destination.prep]).
lexicon([in,o,[1,0]],[preposition.location.prep]).
lexicon([from.x,[0,1,0]],[preposition,origin.prep]).
lexicon([with,o,[1,0]],[preposition,accompaniment.prep]).
lexicon([of,x,[1,0]],[preposition,matter_prep]).
lexicon([by,o,[1,0]],[preposition,agent.prep]).
lexicon([on,x,[1,0]],[preposition,on.prep]).

lexicon([i,x,[1,0]],[nominative.pronoun,speaker.pronoun]).
lexicon([me,o,[1,0]],[accusative.pronoun,speaker.pronoun]).
lexicon([you,o,[1,0]],[nominative.pronoun,listener.pronoun]).
lexicon([you,o,[1,0]] ,[accusative.pronoun,listener.pronoun]).
lexicon([he,o,[1,0]],[nominative.pronoun,noninteractant.pronoun]).
lexicon([him,o,[1,0]],[accusative.pronoun,noninteractant.pronoun]).
lexicon([the,x,[1]],[singular,definite.determiner]).
lexiconC[a,x,[1]],[singular,indefinite.determiner]).
lexicon([the,x,[1]],[plural,definite.determiner]).

Appendix B

Generation Examples

This appendix contains a trace of a complete generation example. It shows the steps
that the system would go through. First we give the micro-semantic input in Sec¬
tion B.l. Then the sequence of activities carried out. Finally, we give sample sentences
of the output. Note that the stylistic requirements assumed here are those for poetry
metre as specified in Appendix C.2.

B.l Micro-Semantic Input

The conceptual input is a structure representing the content that should be generated
by the system. The input is a micro-semantic representation for a single sentence in
terms of ideational, interactional, and textual meaning. Below, we show the micro-
semantic input in two forms: as a diagram and as Prolog encoding. The conceptual
input represents a material process and information about other roles such as the ac¬
tor, actee, instrument and some circumstantial details (time, location, manner
of process, ... etc.). Note that we do not regard the semantic representation per se
as an important part of our work in this thesis. It only gives a way of driving the
generation process and providing a basis for choosers to work correctly.

sem(p(l),[process(p(2)),
actor(p(3)),
actee(p(4)),
time(-),
place(p(6)) ,

manner(p(7)) ,

date(p(8)) ,

instrument(p (9)) ,

polarity(+) ,

communic_goal(propose),
voice(none)]).

sem(p(2),[proc_type(material),
is(destroy_proc)]).

233

'/, + future, - past, or 0 present

I + or -

'/, initiate or ask

'/, any voice preference?

APPENDIX B. GENERATION EXAMPLES

sem(p(3),[cname(dart_maul),
is(male),
attrib(none),
category(warrior),
order(first),
description(ruthless_con) , '/,ie ruthless_concept
class(space),
origin(skytrax)]).

sem(p(4) , [cname (jitrax) ,

is(thing) ,

attrib(none),
category(submarine),
order(none) ,

description(shiny_con),
class(rescue),
origin(none)]).

sem(p(6),[cname(edinburgh),
is(thing),
attrib(none),
category(city),
order(second),
description(beautiful_con),
class(peace),
origin(earth)]).

sem(p(7) , [cname(brutal_con) , '/, manner semantic piece
degree (high)]) . '/, {low,medium,high}

sem(p(8),[cname(friday),
is(thing),

APPENDIX B. GENERATION EXAMPLES 235

attrib(none),
category(day),
order(last),
description(working),
class(week),
origin(none)]).

sem(p(9),[cname(sharpenx),
is(thing),
attrib(none),
category(lightsaber),
order(only),
description(double_sided),
class(encounter),
origin(none)]).

B.2 Example Choosers

Given the above systems and semantic input, we now show what some of the choosers
do. We intend to show the relaxed behaviour of our choosers. As we will see next, not
all choosers do not choose; some choosers can take informed decisions. It all depends
on the semantic input and whether or not there are preferences specified by the user

(e.g. preference of active voice over passive).

B.2.1 Clause Network Choosers

Here, we give some of the clause network choosers. Note that these choosers are
encoded in Prolog. They choose with a specific function in mind. They have access to
the syntactic function and the semantic entity it represents. The information of the
concept-function association is stored in a FAT-like table.

• active/passive chooser: The strategy of this chooser is first to check whether
there is any voice preference specified in the input. If there is one, then it chooses
accordingly. Otherwise, if no ACTEE information is provided then the voice must
be active. However, if the ACTOR part is missing, the voice must be passive. If
none of the above applies the chooser concludes that it cannot make an informed
decision as either way is possible. To avoid any unfavoured stylistic consequence
of a single choice, it keeps both paths open (i.e. it does not choose). According
to the above input, this chooser does not choose a particular feature.

• modal/nonmodal chooser: This chooser can always choose. It examines
the time specification of the process. If time is in the future, then it chooses
modal. Otherwise it chooses nonmodal. A subsequent chooser (which we do not
show here), chooses between past and present if this chooser chose nonmodal.
According to the above input, this chooser chooses nonmodal, and the related
chooser chooses past.

APPENDIX B. GENERATION EXAMPLES 236

• circum-adjunct/no-circum-adj chooser: If the input does not contain cir¬
cumstantial information about the process (such as where and when exactly it
took place), this chooser chooses the second feature no-circum-adj. If it chooses
or keeps circum-adjunct a set of related choosers are triggered which we do not
show here such as (secondary-circum/no-secondary-circum), (thematic-primary-
circum/nonthematic-primary-circum), ... etc. They make further choices based
on the input specification.

• adverbial-modifier/nonadverbial-modifier chooser: This chooser exam¬
ines the process part of the input. If the process does not contain information
about the manner of the action, it chooses nonadverbial-modifier; otherwise, it
keeps both.

B.2.2 Group Network Choosers

Below are examples of the group network choosers.

• nominal-group/prep-phrase/adjectival-group chooser: This is an exam¬
ple of choosers that can always choose. The preselection operations related to
the function to be realised dictate what feature to be selected.

• proper-group/common-group chooser: Depending on the details of the
semantic entities, this chooser either chooses common-group if no proper name
is specified or keeps both alternatives (i.e. does not choose).

• count/mass chooser: This chooser can always choose as a semantic entity is
either count or mass. The same applies to choosers of other systems such as the
singular/plural system and definite/indefinite system.

• epitheted/nonepitheted chooser: The strategy followed by this chooser
(and other similar choosers, e.g. numerated-nonnumerated and classified-nonclassified)
is to choose nonepitheted if the semantic input does not contain information
which can be used as epithet for Thing; otherwise, both features of system are
kept.

B.3 Generation Trace

We give here an example trace of the generator in the stylistics-aware mode. Because
of space constraints, we cut those repetitive parts of the output. Where this is done,
we indicate this by "... etc.".

I ?- gen_sem4.

Read off network snapshots ...

Read off translated system networks ...

(system networks can also be translated on the fly)

Associate the semantic input with the head of

APPENDIX B. GENERATION EXAMPLES 237

the rightmost clause-ranked expansion triangle
Get the semantic input

Associate the semantic input with the head of
the rightmost clause-ranked expansion triangle

<<***

<<************ BEGIN: constituent expansion ***********
... Fire choosers associated with systems of this netowrk

to help circumscribe the superflous systems
... choose among: [modal.nonmodal]

selected feature: nonmodal

... choose among: [present_clause,past_clause]
selected feature: past_clause

... choose among: [active.passive]
no choice made, all features kept

... choose among: [agency_expr,agency_not_expr]
no choice made, all features kept

... choose among: [circum_adjunct,nocircum_adjunct]
no choice made, all features kept

... choose among: [thematic_p_circum,non_thematic_p_circum]
no choice made, all features kept

... choose among: [wh_p_circum,nonwh_p_circum]
selected feature: nonwh_p_circum

... choose among: [secondary_circum,nosecondary_circum]
no choice made, all features kept

... System network tailoring ... done

... Put the tailored network in the ATMS representation

f (1)
f (2)
f (4)
f (6)
f (10)
f (11)
f (12)
f (14)
f (15)
f (16)

\
\
\
\
\
\
\ clause

/
/
/
/
/
/
/

For the Function: n(f(l),0)
with the preselections: [nom_group,not_accusative]
and representing the bundle: [subject,actor]
do semantics association (if any), and push on stak

APPENDIX B. GENERATION EXAMPLES 238

... For the Function: n(f(2),0)
with the preselections: [nom.group,not_accusative]
and representing the bundle: [subject,goal]
do semantics association (if any), and push on stak

... For the Function: n(f(4),0)
with the preselections: [sing_verb,third_person,past_verb,be_aux]
and representing the bundle: [finite,pass]
do semantics association (if any), and push on stak

... For the Function: n(f(6),0)
with the preselections: [sing_verb,third_person,past_verb,lexverb,trans_verb]
and representing the bundle: [finite,pred]
do semantics association (if any), and push on stak

... For the Function: n(f(10),0)
with the preselections: [lexverb,trans_verb,enparticiple]
and representing the bundle: [passe,pred]
do semantics association (if any), and push on stak

... For the Function: n(f(ll),0)
with the preselections: [nom_group,not_nominative]
and representing the bundle: [agent,actor]
do semantics association (if any), and push on stak

... For the Function: n(f(12),0)
with the preselections: [by_prep]
and representing the bundle: [agency_marker]
do semantics association (if any), and push on stak

... For the Function: n(f(14),0)
with the preselections: [prep_phrase,nonwh_pp]
and representing the bundle: [circuml]
do semantics association (if any), and push on stak

... For the Function: n(f(15),0)
with the preselections: [prep_phrase]
and representing the bundle: [circum2]
do semantics association (if any), and push on stak

... For the Function: n(f(16),0)
with the preselections: [nom_group,not_nominative]
and representing the bundle: [object,goal]
do semantics association (if any), and push on stak

... The Constituent has been dealt with and its triangle
head is pushed onto the stack of delayed goal nodes

************ END: constituent expansion ************>>
******»***>>

APPENDIX B. GENERATION EXAMPLES 239

Pop next constituent from stack
A constituent of GROUP rank: n(f(16),0)
representing bundle: [object,goal]
with preselections: [nom_group,not.nominative]

<<***

************* BEGIN: constituent expansion ***********
... Fire choosers associated with systems of this netowrk

to help circumscribe the superflous systems
... choose among: [nominal.group,prep_phrase,adjectival.group]

selected feature: nominal.group

... choose among: [moderated,non_moderated]
selected feature: non.moderated

... choose among: [qualified,nonqualified]
selected feature: nonqualified

... choose among: [nominal.pronominal]
selected feature: nominal

... choose among: [proper.group,common.group]
no choice made, all features kept

... choose among: [count,mass]
selected feature: count

... choose among: [singular.plural]
selected feature: singular

... choose among: [deixis.nondeixis]
selected feature: deixis

... choose among: [definite.deixis,indefinite.deixis]
selected feature: definite.deixis

... choose among: [numerated,non.numerated]
selected feature: non.numerated

... choose among: [epitheted.nonepitheted]
no choice made, all features kept

... choose among: [classified,nonclassified]
no choice made, all features kept

... choose among: [onep_group,twop_group,threep_group]
no choice made, all features kept

... choose among: [nominative,accusative]
selected feature: accusative

... choose among: [prep_ellipsed,prep_present]
no choice made, all features kept

... choose among: [pronom_pp,full_pp]
no choice made, all features kept

... choose among: [projecting_adjectival_group,nonprojecting_adjectival_group]
no choice made, all features kept

APPENDIX B. GENERATION EXAMPLES

... System network tailoring ... done

... Put the tailored network in the ATMS representation

\
\
\
\

' n(f(16),0)
/
/
/
/

... For the Function: n(f(35),l)
with the preselections: [nonordinal_adjective]
and representing the bundle: [epithet]
do semantics association (if any), and push on stak

... etc.

... The Constituent has been dealt with and its triangle
head is pushed onto the stack of delayed goal nodes

************ END: constituent expansion ************>>
**>>

Pop next constituent from stack
A constituent of WORD rank: n(f(51),l)
representing bundle: [deictic]
with preselections: [singular,definite_determiner]

... fetch words from lexicon

for the overall restrictions:

[singular,definite_determiner]
applicable lexemes: [[the,wl,[1]]]

.... Assert the lexeme stylistic properties, for: the

Pop next constituent from stack
A constituent of WORD rank: n(f(42),l)
representing bundle: [thing]
with preselections: [common.noun,singular.noun]

... fetch words from lexicon

for the overall restrictions:

[submarine,common_noun,singular_noun]
applicable lexemes: [[submarine,wl_sub,[1,0,1,1,0,0]]]

.... Assert the lexeme stylistic properties, for: submarine

Pop next constituent from stack
A constituent of WORD rank: n(f(41),l)
representing bundle: [thing]
with preselections: [proper_noun]

... fetch words from lexicon

for the overall restrictions:

f (35)
f (36)
f (41)
f (42)
f (51)

APPENDIX B. GENERATION EXAMPLES

[jitrax,proper_noun]
applicable lexemes: [[jitrax ,wl, [1,0,1,0]]]

.... Assert the lexeme stylistic properties, for: jitrax

Pop next constituent from stack
A constituent of WORD rank: n(f(36),l)
representing bundle: [classifier]
with preselections: [common.noun]

... fetch words from lexicon

for the overall restrictions:

[rescue,common_noun]
applicable lexemes: [[rescue,wl, [1,0,0,1]]]

.... Assert the lexeme stylistic properties, for: rescue

Pop next constituent from stack
A constituent of WORD rank: n(f(35),l)
representing bundle: [epithet]
with preselections: [nonordinal_adjective]

... fetch words from lexicon

for the overall restrictions:

[shiny_con,nonordinal_adjective]
applicable lexemes: [[lustrous,wl,[1,0,0,1,0]]]

.... Assert the lexeme stylistic properties, for: lustrous

Pop next constituent from stack
A constituent of GROUP rank: n(f(15),0)
representing bundle: [circum2]
with preselections: [prep_phrase]

**

<<************ BEGIN: constituent expansion ***********
... Fire choosers associated with systems of this netowrk

to help circumscribe the superflous systems
... choose among: [nominal_group,prep_phrase,adjectival_group]

selected feature: prep_phrase

... etc.

... System network tailoring ... done

... Put the tailored network in the ATMS representation

l\
I \

f(28)I \ n(f(15),0)
f(37) I /

I /
1/

... For the Function: n(f(28),2)
with the preselections: [preposition,location_prep]
and representing the bundle: [prep]
do semantics association (if any), and push on stak

APPENDIX B. GENERATION EXAMPLES 242

... For the Function: n(f(37),2)
with the preselections: [accusative,nom_group]
and representing the bundle: [pphead]
do semantics association (if any), and push on stak

... The Constituent has been dealt with and its triangle
head is pushed onto the stack of delayed goal nodes

************ END: constituent expansion ************>>
**>>

Pop next constituent from stack
A constituent of GROUP rank: n(f(37),2)
representing bundle: [pphead]
with preselections: [accusative,nom_group]

<<***

<<************ BEGIN: constituent expansion ***********
... Fire choosers associated with systems of this netowrk

to help circumscribe the superflous systems
... choose among: [nominal_group,prep_phrase,adjectival_group]

selected feature: nominal_group

. .. etc.

... Put the tailored network in the ATMS representation

\
\
\
\
\ n(f (37) ,2)
/
/
/
/
/

... For the Function: n(f(34),3)
with the preselections: [ordinal_adjective]
and representing the bundle: [numerative]
do semantics association (if any), and push on stak

. .. etc.

... The Constituent has been dealt with and its triangle
head is pushed onto the stack of delayed goal nodes

************ END: constituent expansion ************>>
**>>

Pop next constituent from stack
A constituent of WORD rank: n(f(51),3)
representing bundle: [deictic]
with preselections: [singular,definite_determiner]

f (34)
f (35)
f (36)
f (41)
f (42)
f (51)

etc.

APPENDIX B. GENERATION EXAMPLES

Pop next constituent from stack
A constituent of GROUP rank: n(f(14),0)
representing bundle: [circuml]
with preselections: [prep_phrase,nonwh_pp]

**

<<************ BEGIN: constituent expansion ***********
... Fire choosers associated with systems of this netowrk

to help circumscribe the superflous systems
... choose among: [nominal_group,prep_phrase,adjectival_group]

selected feature: prep_phrase

... etc.

... Put the tailored network in the ATMS representation

l\
I \

f(37)I \ n(f(14),0)
f(38) I /

I /
1/

... For the Function: n(f(37),4)
with the preselections: [accusative,nom_group]
and representing the bundle: [pphead]
do semantics association (if any), and push on stak

... For the Function: n(f(38),4)
with the preselections: [preposition,on_prep]
and representing the bundle: [prep]
do semantics association (if any), and push on stak

... The Constituent has been dealt with and its triangle
head is pushed onto the stack of delayed goal nodes

************ END: constituent expansion ************>>
**>>

Pop next constituent from stack
A constituent of WORD rank: n(f(38),4)
representing bundle: [prep]
with preselections: [preposition,on_prep]
...etc.

Pop next constituent from stack
A constituent of GROUP rank: n(f(37),4)
representing bundle: [pphead]
with preselections: [accusative,nom_group]

<<***

<<************ BEGIN: constituent expansion ***********
... Fire choosers associated with systems of this netowrk

to help circumscribe the superflous systems

...etc.

... Put the tailored network in the ATMS representation

APPENDIX B. GENERATION EXAMPLES 244

f (34)
f (35)
f (36)
f (41)
f (42)
f (51)

\
\ n(f (37) ,4)
/
/

... etc.

... The Constituent has been dealt with and its triangle
head is pushed onto the stack of delayed goal nodes

************ END: constituent expansion **♦****+**»*>>
**>>

... etc.

Pop next constituent from stack
A constituent of WORD rank: n(f(35),5)
representing bundle: [epithet]
with preselections: [nonordinal_adjective]

fetch words from lexicon

for the overall restrictions:

[working,nonordinal_adjective]
applicable lexemes: [[working,wl,[1,0,1,0,0]] ,

[active,wl,[1,0,1,0]],
[functioning,wl,[1,0,0,1,1,0,0]]]

Assert the lexeme stylistic properties, for: working
Assert the lexeme stylistic properties, for: active
Assert the lexeme stylistic properties, for: functioning

... etc.

Put the tailored network in the ATMS representation

f (34)
f (35)
f (36)
f (41)
f (42)
f (51)

\
\ n(f(11),0)
/
/

For the Function: n(f(34),6)
with the preselections: [ordinal_adjective]
and representing the bundle: [numerative]
do semantics association (if any), and push on stak

... etc.

APPENDIX B. GENERATION EXAMPLES 245

... The Constituent has been dealt with and its triangle
head is pushed onto the stack of delayed goal nodes

************ END: constituent expansion ************>>
**>>

Pop next constituent from stack
A constituent of WORD rank: n(f(51),6)
representing bundle: [deictic]
with preselections: [singular,definite_determiner]

... etc.

. . . fetch words from lexicon

for the overall restrictions:

[ruthless_con,nonordinal_adjective]
applicable lexemes: [[ruthless,wl,[1,0,0,1,0]] ,

[merciless,wl,[1,0,1,1,0]]]
.... Assert the lexeme stylistic properties, for: ruthless
.... Assert the lexeme stylistic properties, for: merciless

... etc.

<<***

<<************ BEGIN: constituent expansion ***********
... Fire choosers associated with systems of this netowrk

to help circumscribe the superflous systems
... choose among: [nominal_group,prep_phrase,adjectival_group]

selected feature: nominal_group

... etc.

... Put the tailored network in the ATMS representation

\
\
\
\

' n(f(2),0)
/
/
/
/

... For the Function: n(f(35),7)
with the preselections: [nonordinal_adjective]
and representing the bundle: [epithet]
do semantics association (if any), and push on stak

. .. etc.

.. . The Constituent has been dealt with and its triangle
head is pushed onto the stack of delayed goal nodes

************ END: constituent expansion ************>>
**>>

f (35)
f (36)
f (41)
f (42)
f (51)

etc.

APPENDIX B. GENERATION EXAMPLES

Pop next constituent from stack
A constituent of WORD rank: n(f(35),7)
representing bundle: [epithet]
with preselections: [nonordinal_adjective]

. . . fetch words from lexicon

for the overall restrictions:

[shiny_con,nonordinal_adjective]
applicable lexemes: [[lustrous,wl,[1,0,0,1,0]]]

.... Assert the lexeme stylistic properties, for: lustrous

Pop next constituent from stack
A constituent of GROUP rank: n(f(l),0)
representing bundle: [subject,actor]
with preselections: [nom_group,not_accusative]

<<***

<<************ BEGIN: constituent expansion ***********
... Fire choosers associated with systems of this netowrk

to help circumscribe the superflous systems
... choose among: [nominal_group,prep_phrase,adjectival_group]

selected feature: nominal_group

... etc.

... Put the tailored network in the ATMS representation

l\
I \

f(34)I \
f(35)I \
f(36) I \ n(f(l),0)
f(41) I /
f(42) I /
f (51) I /

I /
1/

. . . etc.

... The Constituent has been dealt with and its triangle
head is pushed onto the stack of delayed goal nodes

************ END: constituent expansion ************>>
**>>

. . . etc.

Pop next constituent from stack
A constituent of WORD rank: n(f(34),8)
representing bundle: [numerative]
with preselections: [ordinal_adjective]

. . . fetch words from lexicon

for the overall restrictions:

[first,ordinal_adjective]
applicable lexemes: [[first,wl, [1,0,0,0]]]

.... Assert the lexeme stylistic properties, for: first

APPENDIX B. GENERATION EXAMPLES 247

STACK IS EMPTY, TIME TO INTERFACE TRIANGLES
IN ORDER TO GENERATE THE SURVIVING SENTENCES

III POPPED OUT OF THE GOAL STACK III n(f(l),0)
I I I DO STYLISTIC SIT-ACT FIRST, THEN INTERFACE TO PARENT

situation-action triggered
n(f(35),8) > n(f(42),8) k
pattern(n(f(35),8),[1,0,0,1,0]) k
pattern(n(f (42) ,8) , [1,1,1,0]) —> false

situation-action triggered
n(f (51) ,8) > n(f (34) ,8) k
pattern(n(f(51),8),[1]) k
pattern(n(f(34),8),[1,0,0,0]) —> false

... etc.

situation-action triggered
Sequence([n(f (51) ,8) ,n(f (42) ,8)]) k
patterns : [pattern (n(f (51),8),[1]), [pattern (n(f (42),8),[1,1,1,0])]] k
—> pattern(n(f(1),0),[1,1,1,1,0])

situation-action triggered
Sequence([n(f(41),8)]) k
patterns : [pattern (n(f (41),8),[1,0,0,1,0,0]),[]] &
—> pattern(n(f(1),0),[1,0,0,1,0,0])

III POPPED OUT OF THE GOAL STACK III n(f(2),0)
I I I DO STYLISTIC SIT-ACT FIRST, THEN INTERFACE TO PARENT

situation-action triggered
n(f(35),7) > n(f(42),7) k
pattern(n(f(35),7),[1,0,0,1,0]) k
pattern(n(f(42),7),[1,0,1,1,0,0]) —> false

... etc.

situation-action triggered
Sequence ([n(f(51) ,7) ,n(f (42) , 7)]) k
patterns:[pattern(n(f(51),7),[1]),[pattern(n(f(42),7),[1,0,1,1,0,0])]] k
—> pattern(n(f(2),0),[1,1,0,1,1,0,0])

situation-action triggered
Sequence([n(f(41),7)]) k
patterns : [pattern (n(f (41),7),[1,0,1,0]),[]] k
—> pattern(n(f(2),0),[1,0,1,0])

III POPPED OUT OF THE GOAL STACK III n(f(ll),0)
I I I DO STYLISTIC SIT-ACT FIRST, THEN INTERFACE TO PARENT

APPENDIX B. GENERATION EXAMPLES 248

situation-action triggered
n(f (35),6) > n(f(42),6) &

pattern(n(f(35),6),[1,0,1,1,0]) &
pattern(n(f(42),6),[1,1,1,0]) —> false

... etc.

situation-action triggered
Sequence([n(f(51),6),n(f(42),6)]) ft
patterns : [pattern (n(f (51),6),[1]), [pattern (n(f(42),6),[1,1,1,0])]] ft
—> pattern(n(f(11),0),[1,1,1,1,0])

situation-action triggered
Sequence([n(f(41),6)]) &
patterns : [pattern (n(f (41),6),[1,0,0,1,0,0]),[]] ft
—> pattern(n(f(11),0),[1,0,0,1,0,0])

III POPPED OUT OF THE GOAL STACK III n(f(37),4)
I I I DO STYLISTIC SIT-ACT FIRST, THEN INTERFACE TO PARENT

situation-action triggered
n(f(51),5) > n(f(35),5) ft
pattern(n(f (51) ,5) , [1]) ft
pattern(n(f(35),5),[1,0,1,0,0]) —> false

... etc.

situation-action triggered
n(f(34),5) > n(f(35),5) &
pattern(n(f(34),5),[1,0,0,0]) &
pattern(n(f(35),5),[1,0,0,1,1,0,0]) —> false

... etc.

situation-action triggered
Sequence ([n(f(51),5),n(f(36),5),n(f (42) , 5)]) ft
patterns : [pattern (n(f (51),5),[1]), [pattern (n(f (42),5),[1,0]),
pattern(n(f(36),5),[1,0,0])]] ft
—> pattern(n(f(37),4),[1,1,0,0,1,0])

situation-action triggered
Sequence([n(f(41),5)]) ft
patterns : [pattern(n(f (41) , 5) , [0,1,0,1,0,0]) , []] &
—> pattern(n(f(37),4),[0,1,0,1,0,0])

III POPPED OUT OF THE GOAL STACK III n(f(14),0)
I I I DO STYLISTIC SIT-ACT FIRST, THEN INTERFACE TO PARENT

situation-action triggered
Sequence([n(f(38),4),n(f(37),4)]) ft
patterns : [pattern (n(f (38),4),[1,0]), [pattern (n(f (37),4),[1,1,0])]] &
—> pattern(n(f(14),0),[1,0,1,1,0])

situation-action triggered

APPENDIX B. GENERATION EXAMPLES

Sequence([n(f(38),4),n(f(37),4)]) k
patterns:[pattern (n(f(38),4),[1,0]),[pattern(n(f(37),4),[1,1,0,0,1,0])]]
—> pattern(n(f(14),0),[1,0,1,1,0,0,1,0])

III POPPED OUT OF THE GOAL STACK III n(f(37),2)
I II DO STYLISTIC SIT-ACT FIRST, THEN INTERFACE TO PARENT

... etc.

situation-action triggered
Sequence([n(f(51),3),n(f(42),3)]) k
patterns : [pattern (n(f (51),3),[1]), [pattern (n(f (42),3),[1,1,0])]] k
—> pattern(n(f (37) , 2) , [1,1,1,0])

situation-action triggered
Sequence ([n(f(51) ,3) ,n(f(35) ,3) ,n(f(42) ,3)]) k
patterns : [pattern (n(f (51),3),[1]), [pattern (n(f (42),3),[1,1,0]),
pattern(n(f(35),3),[0,1,0,1,1,0])]] k
—> pattern(n(f(37),2),[1,0,1,0,1,1,0,1,1,0])

...etc.

I I I POPPED OUT OF THE GOAL STACK III n(f(16),0)
I I I DO STYLISTIC SIT-ACT FIRST, THEN INTERFACE TO PARENT

situation-action triggered
n(f(35) , 1) > n(f (42) , 1) k

pattern(n(f(35),1),[1,0,0,1,0]) k
pattern(n(f(42),1),[1,0,1,1,0,0]) —> false

... etc.

situation-action triggered
Sequence([n(f(51),l),n(f(42),l)]) k
patterns : [pattern (n(f (51) ,1) , [1]) , [pattern (n(f (42),1),[1,0,1,1,0,0])]] k
—> pattern(n(f(16),0),[1,1,0,1,1,0,0])

situation-action triggered
Sequence([n(f(41),1)]) k
patterns : [pattern (n(f (41),1),[1,0,1,0]), []] k
--> pattern(n(f(16),0),[1,0,1,0])

I | | POPPED OUT OF THE GOAL STACK I I I topnode
I I I DO STYLISTIC SIT-ACT FIRST, THEN INTERFACE TO PARENT

situation-action triggered
n(f(12),0) > n(f(11),0) k
pattern(n(f(12),0),[1,0]) k
pattern(n(f(11),0),[1,1,1,1,0]) —> false

... etc.

situation-action triggered
n(f(4),0) > n(f(10),0) k

pattern(n(f (4) ,0) , [1,0]) k
pattern(n(f(10),0),[1,0,0,1,0,0]) —> false

APPENDIX B. GENERATION EXAMPLES 250

situation-action triggered
n(f(4),0) > n(f(10),0) k
pattern(n(f (4) ,0), [1,0]) k
pattern(n(f(10),0),[1,1,1,1,0,1,0]) —> false

. .. etc.

situation-action triggered
Sequence([n(f(14),0),n(f(2),0),n(f(4),0),n(f(10),0),n(f(12),0),n(f(11),0)]) k
patterns:[pattern(n(f(14),0),[1,0,1,1,0]),[pattern(n(f(11),0),[1,0,0,1,0,0]),
pattern(n(f(12),0),[1,0]),pattern(n(f(10),0),[1,0,0,1,0,0]),
pattern(n(f(4),0),[1,0]),pattern(n(f(2),0),[1,1,0,1,1,0,0])]] k
—> false

. .. etc.

situation-action triggered
Sequence([n(f(2),0),n(f(4),0),n(f(10),0),n(f(12),0),n(f(11),0),n(f(14),0)]) k
patterns : [pattern (n(f (2),0),[1,0,1,0]), [pattern (n(f(14) ,0) , [1,0,0,1,0,1,0,0]) ,

pattern(n(f(11),0),[1,1,1,1,0]),pattern(n(f(12),0),[1,0]),
pattern (n(f (10) ,0) , [1,0,0,1,0,0]) ,pattern(n(f (4),0),[1,0])]] k
—> false

. .. etc.

situation-action triggered
Sequence ([n(f(l) ,0) ,n(f(6) ,0) ,n(f(16) ,0)]) k
patterns:[pattern(n(f(1),0),[1,0,0,1,0,0]),[pattern(n(f(16),0),[1,0,1,0]),
pattern (n(f (6),0), [1,1,1,1,0,1,0])]] k
—> false

I I I I ALL CONSTITUENTS DEALT WITH ...

I I I I LABEL OF THE T0PN0DE IS

[[lexical(dartmaul,n(f(41),8)),n(nominal_group,8),n(nonqualified,8),n(nominal,8),
n(proper_group,8),n(non_moderated,8),n(nominative,8).lexical(annihilated,n(f(6),0)),
lexical(friday,n(f(41),5)),n(nominal_group,5),n(nonqualified,5),n(nominal,5),
n(proper_group,5),n(non_moderated,5),n(accusative,5),lexical(on,n(f(38),4)),
n(prep_phrase,4),n(other_prep_phrase,4).lexical(submarine,n(f(42),1)),
lexical(the,n(f(51),1)),n(nominal_group,1),n(nonqualified,1),n(nominal,1),
n(common_group,1),n(deixis,1),n(count,1),n(non_moderated,1),n(accusative,1),
n(nonclassified,1),n(nonepitheted,1),n(non_numerated,1),n(singular,1),
n(sing_def_deixis,1),n(definite_deixis,1),n(clause,0),n(nonmodal,0),
n(circum_adjunct,0),n(past_clause,0),n(non_thematic_p_circum,0),n(nonwh_p_circum,0) ,

n(nosecondary_circum,0),n(fin_pred_conf,0),n(active,0)]]

I I I I TIME TO LINEARISE THE SURFACE FORMS . . .

dartmaul annihilated the submarine on friday.
yes
I ?-

Appendix C

Situation-Action Specifications

In this appendix we give the Prolog code of the surface stylistic constraints discussed
in Section 7.9. At a higher level of abstraction they should be considered equivalent to
the specifications given there. Because our objective was to test the incorporation of
these constraints in the generation process and not to provide a user-friendly way of
writing specifications, we encoded the SSC directly in Prolog. They still remain similar
in many ways to the abstract specifications given in chapter 7. We also give the code
for the utilities that these situations are using to check for certain circumstances if
they hold or not.

C.l Word Adjacency Constraints

sit_act (start, '/,— definition SAS entry
'/.— no circumstances at the beginning
[],
'/,— only some definitions
[assert(lexprop(root))]).

sit_act (lexicalise (X ,F) , '/,— lexicalisation SAS entry
I—situation circumstances

[lex_property(X,root,R)],
'/,—corresponding actions
[just([X],root(front(F,R))),
just ([X] .root (end(F,R)))]).

sit_act (order (x.y) , I, _P) '/,— expansion SAS entry
findalKX, (

'/,—situation circumstances

match(complete_seq(Sequence,I)),
match(root(end(X.R))), X=n(_,I),
match(root(front(Y,R))), Y=n(_,I),
sub_seq([X.Y].Sequence),
'/,—corresponding actions
newjust([complete_seq(Sequence,I).root(end(X,R)),

root(front(Y.R))], false)),L),fail.

251

APPENDIX C. SITUATION-ACTION SPECIFICATIONS

sit_act (order (x,y) , I ,P) '/,— expansion SAS entry
'/, second situation:
\+ 1=0,

findall((Xf,Xe),(
'/,—situation circumstances

match(complete_seq(Sequence,I)),
match(root(front(Xf,Rf))), Xf=n(_,I),
match(root(end(Xe,Re))), Xe=n(_,I),
firstelement(Xf,Sequence),
lastelement(Xe,Sequence),
'/.—corresponding actions
just([complete_seq(Sequence,I),root(front(Xf,Rf))],

root(front(P,Rf))),

just([complete_seq(Sequence,1),root(end(Xe,Re))],
root(end(P,Re))),

),L).

C.2 Poetry Metre Constraints

sit_act (start, '/,— definition SAS entry
'/,— no circumstances at the beginning
[] ,

'/,— only some definitions
[assert(lexprop(sound)),
assert(metre([1,0,0,1,0,0,1,1,1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0]))
]).

sit_act (lexicalise (X,F) , '/,— lexicalisation SAS entry
'/,—situation

[lex_property(X,sound,S)],
'/.—actions
[just([X],pattern(F,S))]).

sit_act (order (x ,y) , I, _P) expansion SAS entry
findall(X,(

'/,—situation circumstances

match(complete_seq(Sequence,I)),
match(pattern(X,Px)), X=n(_,I),
match(pattern(Y,Py)), Y=n(_,I),
sub_seq([X,Y].Sequence),
\+ sub_metre([Px,Py]),
'/,—corresponding actions
newjust([complete_seq(Sequence,I),pattern(X,Px),

pattern(Y.Py)], false)),L),fail.

sit_act (order (x,y) , I ,P) '/.— expansion SAS entry
\+ 1=0, '/,ie not the top level
findall((X,Px,Sequence),(

'/,—situation circumstances

match(complete_seq(Sequence,I)),

APPENDIX C. SITUATION-ACTION SPECIFICATIONS 253

firstelement(X,Sequence),
match(pattern(X,Px)),
complete.pattern(Sequence.pattern(X,Px),Pattern,PickedPat terns) ,

sub.metre([Pattern]),
'/,—corresponding actions
just([complete.seq(Sequence,I),pattern(X,Px)IPickedPatterns],

pattern(P,Pattern))),L),fail.

sit.act (order (x ,y) , I, _P) '/,— expansion SAS entry
1=0,
findall((X,Px,Sequence),(

'/,—situation circumstances

match(complete_seq(Sequence,I)) ,

firstelement(X,Sequence),
match(pattern(X,Px)),
complete.pattern(Sequence.pattern(X,Px).Pattern,PickedPatterns),
metre(Metre),
\+ Pattern=Metre,

'/,—corresponding actions
just([complete.seq(Sequence,I).pattern(X.Px)IPickedPatterns],

false)),L).

m.
UTILITIES USED BY THE POETRY SAS ENTRIES.

I
I sub_metre/l takes a list of smaller patterns, concatenates them
'/, into one pattern and checks if they can occur anywhere in the metre.
!
sub.metre(PatternList)

concatenate.patterns(PatternList,[],SinglePattern),
metre(M),
possible.pattern(SinglePattern,M).

concatenate.patterns([],L,L).
concatenate.patterns([LIT],SoFar.Final)

append(SoFar,L,SoFar2),
concatenate.patterns(T,SoFar2.Final).

possible.pattern(Pattern,Metre) :-

prefix(Pattern,Metre).
possible.pattern(Pattern,[_IRemainingOfMetre])

possible_pattern(Pattern,RemainingOfMetre).

complete_pattern/4 takes a complete Sequence of functions
(e.g. [front, deictic, thing, end]) and returns the resulting
Pattern and the subpatterns participating in building it.

complete.pattern(Sequence.pattern(X,Px).Pattern,PickedPatterns) :-

Sequence=[XI Remainder],
form.pattern(Remainder,Px,Pattern,[].PickedPatterns).

form_pattern([],Patt,Patt.Picked,Picked).
form_pattern([Fun IT],SoFar.FinalPattern,SoFarPieked.FinalPieked) : -

APPENDIX C. SITUATION-ACTION SPECIFICATIONS

match(pattern(Fun,Pfun)),
append(SoFar,Pfun,SoFar2),
SoFarPicked2=[pattern(Fun,Pfun)ISoFarPicked],
form_pattern(T,SoFar2.FinalPattern,SoFarPicked2.FinalPicked).

C.3 Text Size Constraints

sit_act (start, '/,— definition SAS entry
'/,— no circumstances at the beginning
□ ,

'/,— only some definitions
[assert(lexprop(size)),
assert(maxsize(4))]).

sit_act (lexicalise (X,F) , '/.— lexicalisation SAS entry
'/.—situation

[lex_property(X,size,S)],
'/,—actions
[just([X],size(F,S))]).

sit_act (order (x,y) , I, _P) '/,— expansion SAS entry
findall(X,(

'/,—situation circumstances

match(complete_seq(Sequence,I)),
matchCsize(X,Sx)), X=n(_,I),
match(size(Y,Sy)), Y=n(_,I),
sub_seq([X,Y].Sequence),
maxsize(Max),
Sum is Sx+Sy,
Sum > Max,

'/,—corresponding actions
newjust([complete_seq(Sequence,I) , size(X, Sx),

size(Y,Sy)], false)),L).

sit_act (order (x,y) , I ,P) '/,— expansion SAS entry
\+ 1=0, '/,ie not the top level
findall((X,Sx,Sequence),(

'/,—situation circumstances

match(complete_seq(Sequence,I)),
firstelement(X,Sequence),
match(size(X,Sx)),
maxsize(Max),
sum.sizes(Sequence,size(X,Sx),Sum.PickedSizes),
Sum =< Max,

'/,—corresponding actions
just([complete_seq(Sequence,1),size(X,Sx)IPickedSizes],

size(P,Sum))),L).

sit.act (order (x,y) , I ,_P) '/,— expansion SAS entry
findall((X,Sx,Sequence),(

'/,—situation circumstances

match(complete_seq(Sequence,I)),

APPENDIX C. SITUATION-ACTION SPECIFICATIONS

firstelement(X,Sequence),
match(size(X,Sx)),
sum_sizes(Sequence,size(X,Sx),Sum,PickedSizes) ,

maxsize(Max),
Sum > Max,
'/,—corresponding actions
just([complete_seq(Sequence,I),size(X,Sx)IPickedSizes],

false)),L).

•/.'/.*/.
UTILITIES TEXT SIZE CONSTRAINTS

•/:/:/.

/%
'/, sum_sizes/4 takes a Sequence of functions (e.g. [front, deictic,
'/. thing, end]) and returns the total Sum of sizes and the size nodes
'/, contributing to Sum so that they can be used in justification
I antecedents.

'/.

sum_sizes(Sequence,size(X,Sx),Sum,PickedSizes)
Sequence=[X I Remainder],
sum.size(Remainder,Sx,Sum,[].PickedSizes).

sum_size([],Sum,Sum,Picked,Picked).
sum_size([Fun IT],SoFar,FinalSum,SoFarPicked,FinalPicked)

match(size(Fun,Sfun)),
SoFar2 is SoFar+Sfun,
SoFarPicked2=[size(Fun,Sfun)ISoFarPicked],
sum_size(T,SoFar2.FinalSum,SoFarPicked2.FinalPicked).

