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Lay Summary

The Standard Model of particle physics describes how three of the four

fundamental forces in Nature, i.e. the electromagnetic, the weak and the strong

forces, allow for elementary particles of matter, such as quarks and electrons,

to interact with each other via the force-carrier particles. With the discovery

of the Higgs boson in 2012, the Standard Model (SM) is currently known to be

the best theory describing subatomic particles and their forces of interaction.

However, there are limitations to SM as it cannot explain certain phenomena

such as gravitational interactions, dark matter or the abundance of matter over

antimatter in the universe, to name a few. For these reasons, Standard Model is

believed to only be the low energy limit of a more fundamental theory. Searches

for new physics beyond the SM are performed both directly at the high-energy

frontier, such as the LHC experiment at CERN, and indirectly at the precision

frontier, via experiments such as LHCb.

Charge and parity violation, is a lack of symmetry between particles and

antiparticles in the universe which may explain why the universe is made of

matter and not antimatter. The interesting structure of quark interactions in

the SM allows an asymmetry between matter and antimatter and is believed

to contain important information about physics at high energies. One of the

aims of the program in precision physics is to verify, using both theory and

experiment, whether the mechanism explaining this symmetry violation in the

SM is correct. Of particular interest is the heavy quark sector, where there are

possible tensions between SM predictions and the experimental data. Lattice

Quantum Chromodynamics (LQCD) is a major theoretical tool that, amongst

other applications, allows for probing the dynamics of heavy quarks at low
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energies, using numerical simulations.

There are two mains parts to this work. The first part develops better

theoretical techniques for extracting numerical results from the simulations; in

particular with relation to heavy quarks that are nowadays being simulated on

the lattice more easily given the computational technology. The second part

involves measurements of observables such as masses and decay constants of heavy

particles, in order to compare the theoretical predictions with the experimental

results, in search of any possible tensions.
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Abstract

The Standard Model of particle physics is believed to be only the low energy

limit of a more fundamental theory. In order to determine its range of validity,

a major part of theoretical and experimental efforts in physics is dedicated to

precision tests of the Standard Model. Lattice QCD is a non-perturbative, first-

principles approach to Quantum Field Theory. It plays an important role in

flavor physics by providing calculations of non-perturbative strong interaction

contributions to weak processes involving quarks. Measurements of hadronic

quantities can be used to constrain the Standard Model as well as theories Beyond

the Standard Model.

The first part of this thesis contains theoretical developments regarding non-

perturbative renormalization. A new renormalization scheme, RI/mSMOM, for

fermion bilinear operators in QCD at non-vanishing quark mass is presented.

In order to investigate the properties of the mSMOM scheme, an explicit one-

loop computation in perturbation theory using dimensional regularization is

performed. Numerically, vertex functions are generated on the lattice, with an

appropriate projector, based on the RI/SMOM scheme and the renormalization

factors are extracted. Quantities measured include renormalization of the axial

current ZA, required to renormalize the axial current entering the computation

of the decay constant and the renormalization of the bag parameter.

The second part of this report focuses on flavor physics phenomenology on

the lattice. It presents results of the first run of the RBC/UKQCD charm project

with (2+1)-flavor Domain Wall fermions. Observables and matrix elements are

measured on lattices with Iwasaki gauge action. There are two ensembles at the

physical point with inverse lattice spacings 1.73 and 2.36 GeV and a third finer

ensemble at 2.76 GeV as well as four other auxiliary ensembles with smaller

volumes and heavier pion masses which are used to perform the continuum
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extrapolations. The quantities measured in the region of the charm quark mass

are meson masses, decay constants, the matrix element of the OV V+AA operator,

the neutral D-meson mixing parameter B and the SU(3) breaking ratio ξ.
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Chapter 1

Status of the Standard Model

1.1 Introduction

The Standard Model (SM) of particle physics is a description, based on quantum

field theory, of strong and electromagnetic interactions at energies of order 1 TeV.

With the discovery of the Higgs boson in 2012, SM has proved to be a highly

successful theory. However, there are limitations to SM. For example, SM does

not account for dark matter, gravitational interactions, the hierarchy problem or

matter-antimatter asymmetry in the flavor sector. These issues have led us to

believe SM should be viewed as an effective field theory (EFT) at the electroweak

scale. On the other hand, not having observed any significant indications of New

Physics (NP) at high energy colliders, so far, has imposed real challenges in

finding deviations from SM predictions. In the case of the matter-antimatter

asymmetry, the sources of CP violation provided by the SM do not fully explain

the large dominance of matter over antimatter in the universe. CP violation is

one motivation for this thesis and is addressed further in the coming chapters.

Flavor physics plays an important role in probing the limits of SM and

providing constraints for Beyond the Standard Model (BSM) theories. Absence

of deviations from the SM at TeV scale at the high-energy frontier, makes this

role even more prominent. Precision measurements of the flavor sector can give

access to physics at higher energy scales, of order 200 TeV or higher, by indirectly

searching for signatures of NP. Such experiments are complementary to direct

searches at the LHC, which was designed to have maximum collision energy of

14 TeV [1]. Precision, however, is required on both theoretical and experimental
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1.2. Flavor physics and CP-violation in SM

fronts in order to resolve possible tensions between SM predictions and the data

[2–4]. On the theory side, higher order perturbative QCD calculation are being

performed for high energy scales while lattice QCD using dynamical fermions is

being used as non-perturbative, first-principles method for obtaining hadronic

quantities. These quantities include pion, kaon, D- and B-meson masses, decay

constants, form factors and particle-antiparticle mixing parameters which are

then used in determination of CKM matrix elements, allowing to further constrain

SM and BSM theories. Other measurements include, the electric dipole moments,

(g − 2)µ and the strong coupling constant αs [5].

This report focuses mostly on the heavy sector of flavor physics, in particular

D-mesons masses, decay constants and mixing parameters.

1.2 Flavor physics and CP-violation in SM

Before discussing flavor physics experimental and theoretical research currently

being carried out, it is worthwhile recalling the fundamental ingredients of the

flavor sector of the SM. These are required for describing CP-violation within the

SM.

1.2.1 The Standard Model Lagrangian

The gauge interactions in the SM are given by the gauge symmetry group

SU(3)c×SU(2)L×U(1)Y which is spontaneously broken, by the non-zero vacuum

expectation value (VEV) of a Higgs scalar particle, to SU(3)c×U(1)EM. The SM

Lagrangian reads as follows:

LSM = Lkinetic + LHiggs + LYukawa· (1.1)

This is the most general, Lorentz and gauge invariant Lagrangian consistent with

nature in terms of particle content, gauge symmetries and the mechanism for

spontaneous breaking for the symmetry which gives rise to masses for heavy

gauge bosons and fermions. In SM, there are three generations of quarks and

leptons. With regards to electroweak interactions, the left-handed quarks and

2



1.2. Flavor physics and CP-violation in SM

leptons are SU(2)L doublets:

Li =

νe
e


L

,

νµ
µ


L

,

ντ
τ


L

and Qi =

u
d


L

,

c
s


L

,

t
b


L

·

(1.2)

The respective right-handed fermions, uiR = (u, c, t)R and diR = (d, s, b)R,

transform as singlets under SU(2)L and do not couple to the weak interactions.

For example, the kinetic part of the Lagrangian for left-handed quarks takes the

form:

L(QL) = iQ̄Liγµ

(
∂µ +

i

2
gsG

µ
aλa︸ ︷︷ ︸

QCD

+
i

2
gW µ

b σb + ig′YQB
µ︸ ︷︷ ︸

Electroweak

)
δijQLj , (1.3)

where the hypercharge YQ = 1/6 for left-handed quarks, λa/2 are 3 × 3 Gell-

Mann matrices for triplets and σb/2 are 2×2 Pauli matrices for doublets. Gµ
a are

eight gluons, W µ
b are three weak interaction bosons and Bµ is the hypercharge

boson. δij is explicit to emphasise that this term is proportional to the identity

matrix in flavor space i.e. its interactions are flavor universal. A similar equation

holds for left handed leptons, but the main difference is that leptons do not

couple to gluons. Here, we restrict ourselves to terms containing quarks. The

SM Lagrangian is symmetric with respect to CPT , i.e. the combined discrete

symmetry transformations, parity P , time-reversal T and charge conjugation C.

Moreover, the part of the Lagrangian shown in Eq. 1.3 is CP-conserving. The

Higgs potential term,

LHiggs = µ2H†H − λ(H†H)2 , (1.4)

is also CP-conserving, where,

H =

H+

H0

 , (1.5)

3



1.2. Flavor physics and CP-violation in SM

is a complex doublet. On the other hand, the quark Yukawa term,

−LqYukawa = Y d
ijQ̄LiHdRj + Y u

ij Q̄LiH̃uRj + h.c. , (1.6)

is flavor dependent and CP-violating. This is explicitly discussed in the next

section. Note that the indices i and j refer to the 3 different generations, H̃ =

iσ2H
∗ and Yij’s are 3 × 3 Yukawa matrices. LqYukawa is invariant under SU(3) ×

SU(2)× U(1) [6–8].

1.2.2 The CKM matrix

Within the SM, mass for fermions and gauge bosons is generated via spontaneous

breaking of the SU(2)L × U(1)Y symmetry. Minimizing the Higgs potential,

VH = −µ2H†H + λ(H†H)2 , (1.7)

gives, apart from the trivial solution 〈H〉0 = 0, the non-trivial solution

〈H†H〉0 =
v2

2
with v ≡

√
µ2

λ
· (1.8)

Therefore, after symmetry breaking, i.e. when H acquires a vacuum expectation

value

〈H〉0 =

 0

v√
2

+ h(x)

 (1.9)

where h(x) represents fluctuations around the minimum v. Focusing only on the

terms including v, Eq. 1.6 contains the quark mass terms:

−Lm =
v√
2
d̄LY

ddR +
v√
2
ūLY

uuR + h.c. , (1.10)

where the equation is written in matrix form, with the up- and down-type quarks

denoted by uiL/R = (u, c, t)L/R and diL/R = (d, s, b)L/R. These mass terms can be

diagonalized using unitary matrices SuL, S
d
L, S

u
R, S

d
R such that

Md = S†dLYdSdR and Mu = S†uLYuSuR , (1.11)
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where the matrices Md and Mu are diagonal. The states then transform as follows:

uL → SuLuL , uR → SuRuR , dL → SdLdL , dR → SdRdR · (1.12)

Therefore the Lagrangian in Eq. 1.10 in the mass basis reads,

−Lm = d̄LmddR + ūLmuuR + h.c. , (1.13)

where md = v/
√

2Md, mu = v/
√

2Mu. More explicitely,

mu =


mu 0 0

0 mc 0

0 0 mt

 , md =


md 0 0

0 ms 0

0 0 mb

 . (1.14)

This change of basis modifies the kinetic term, Eq. 1.3, for left-handed quarks

that was written in the flavor basis. Note that hypercharge interactions are flavor

diagonal and remain unaffected. On the other hand, the off-diagonal element of

W µ
b σb, i.e. W 1 and W 2 do mix the up- and down-type quarks in the doublets Qi.

Defining,

W± =
W 1 ∓ iW 2

√
2

, (1.15)

the off-diagonal terms can be written as

Q̄Li
g

2
γµ
(
W 1
µσ

1 +W 2
µσ

2
)
δijQLj =

1√
2
g
(
ūLi /W

+
dLi + d̄Li /W

−
uLi

)
. (1.16)

Under transformations in Eq. 1.12, this takes the form,

1√
2
g
(
ūLi
(
S†uLSdL

)ij /W+
dLj + d̄Li

(
S†dLSuL

)ij /W−
uLj

)
(1.17)

=
1√
2
g
(
ūLiV

ij /W
+
dLj + d̄Li(V

†)ij /W
−
uLj

)
, (1.18)
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1.2. Flavor physics and CP-violation in SM

where V = S†uLSdL is the Cabibbo-Koboyashi-Maskawa (CKM) matrix:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.19)

Parameter counting allows us to indicate the source of CP-violation in the SM. A

general unitary matrix has 9 real degrees of freedom. The mass matrices remain

invariant under global U(1)6 transformations similar to Eq. 1.12. More explicitly,

taking SuL = SuR = diag(eiα1 , eiα2 , eiα3) and SdL = SdR = diag(eiβ1 , eiβ2 , eiβ3),

there are 6 independent transformations that leave the mass matrices in Eq. 1.13

invariant. For the kinetic term, if V is redefined as Vij → ei(−αi+βj)Vij, these

transformations can be used to eliminate phases in V . Only five phase differences

−αi + βj are independent, leaving 9 − 5 = 4 degrees of freedom for V . Now,

if V were real, it would have been a rotation matrix O(3), with three degrees

of freedom. Therefore, the matrix V has four degrees of freedom consisting

of: 3 angles, denoted by θ12, θ23, θ13 corresponding to rotations in the ij-flavor

space, and 1 complex phase denoted, by δ [8]. It is precisely this irremovable

phase that allows for CP-violation in the SM. This can be shown more explicitly

by observing the CP-violating term in the kinetic part of the Lagrangian,

ūL /W
+
V dL+ d̄L(V †) /W

−
uL. Under CP , Appendix A, the terms in the Lagrangian

transform as follows:

ūLγ
µdL

CP−−→ −d̄LγµuL, (1.20)

d̄Lγ
µuL

CP−−→ −ūLγµdL,
W+
µ

CP−−→ −W−
µ ,

yielding overall,

ūL /W
+
V dL + d̄L /W

−
(V †)uL

CP−−→ d̄L /W
−
V TuL + ūL /W

+
(V ∗)dL · (1.21)

In other words, CP-invariance requires V ∗ = V , which cannot be the case for

non-vanishing complex phase δ. It turns out that in order to have CP-violation

in the SM, we must have θ12, θ23, θ13 6= 0 or π/2 and δ 6= 0, π.

6



1.2. Flavor physics and CP-violation in SM

The CKM matrix can also be parameterized as follows:

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.22)

where sij = sin(θij) and cij = cos(θij) with sij, cij ≥ 0. The convention, known as

the standard parameterization, is chosen to agree with PDG (2016) [9] and it is

not independent of the phase convention. An alternative way of writing the CKM

matrix, known as the Wolfenstein parameterization can be used by defining four

other parameters λ,A, ρ, η such that:

s12 = λ, s23 = Aλ2, s13e
−iδ = Aλ3(ρ− iη), (1.23)

ρ =
s13

s12s23

cos(δ), η =
s13

s12s23

sin(δ) ·

The reason behind this choice is that experimentally, it was found that s13 �
s23 � s12. In other words, mixing becomes smaller if one moves away from the

diagonal. This hierarchy can be viewed more explicitly by rewriting the CKM

matrix in Eq. 1.22 in terms of parameters in Eq. 1.23 and expanding each element

of the matrix in powers of λ. At order O(λ4) the matrix takes the form:

VCKM =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) · (1.24)

There is another advantage to this parameterization. In its exact form i.e.

without any expansions in λ, the unitarity condition of the matrix can be viewed

graphically as a unitarity triangle in some complex plane. More explicitly,

unitarity implies that the rows and columns of the CKM matrix are orthonormal.

For example, taking the standard choice,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 · (1.25)
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This equation states that three complex numbers are added to give zero. Dividing

through by the best experimental measurement of these quantities, VcdV
∗
cb, we get,

VudV
∗
ub

VcdV ∗cb
+
VcdV

∗
cb

VcdV ∗cb
+ 1 = 0 · (1.26)

Taking ρ̄ and η̄ are a reparameterization of ρ and η in such a way as to ensure

the relation

ρ̄+ iη̄ = −VudV
∗
ub

VcdV ∗cb
, (1.27)

is independent of the phase convention [9], the triangle can be represented on the

ρ̄ − η̄ plane as in Fig. 1 [10], with one side having unit length. Geometrically,

phase transformation correspond to the triangle being rotated in the ρ̄ − η̄

plane. Since the sides and the angles of the triangle remain invariant under

these transformations, they are independent of the phase conventions and hence

correspond to physical observables that can be measured by experiments [11].

α

γ
β

A = (ρ̄, η̄)

B = (1, 0)C = (0, 0)

ρ̄ + iη̄ 1 − ρ̄ − iη̄

Figure 1.1: Unitarity Triangle in the ρ̄− η̄ plane.

1.2.3 Leptonic decay constants

In this section we discuss how certain CKM matrix elements can be extracted,

given experimental measurement of branching fractions and precise theoretical

determinations of hadronic matrix elements. In our case, the focus is on leptonic

decays of D and Ds mesons via charged W -boson exchange. The relevant matrix

elements under consideration are then Vcd and Vcs, which can be use to test the

unitarity of the second row of the CKM matrix.

In the SM, the decay constants fD and fDs are related to the branching ratios

8
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for leptonic decays via:

B
(
D(s) → lvl

)
=
G2
F |Vcq|2τD(s)

8π
f 2
D(s)

m2
l mD(s)

(
1− m2

l

m2
D(s)

)
, (1.28)

where Vcq = Vcd, Vcs for D and Ds mesons respectively, τD(s)
is the D(s) meson

lifetime, and GF is the Fermi coupling. The branching ratios on the left hand side

are measured experimentally, and later combined with results for meson masses

mD(s)
and decay constants fD(s)

from the lattice to extract the matrix elements

Vcd and Vcs. On the lattice, the decays constant fD and fDs are computed using

the axial current matrix element

〈0|Aµcq|Dq(p)〉 = ifDqp
µ
Dq

, (1.29)

with q = d, s and Aµcq = c̄γµγ5q. A major part of Chapter 4 is dedicated to the

lattice computation of D and Ds mesons masses and decay constants.

1.2.4 Neutral meson mixing

This section starts with a general formalism for neutral meson mixing, M0 ↔ M̄0.

Even though the formalism in describing mixing in neutral meson is similar, the

CP-violating phenomenology related to specific systems, i.e. kaon, D- and B-

mesons is very different. This is mainly due to the fact that these systems exhibit

different decay rates and oscillation. The details particular to each system are

discussed in the subsequent sections.

Let H be the effective 2-by-2 Hamiltonian for SM written as:

Heff = HQCD+QED +HW , (1.30)

governing the time-evolution of the two-state system

|ψ(t)〉 =

a(t)

b(t)

 = a(t)|M0〉+ b(t)|M0〉 , (1.31)

which is the superposition of the eigenstates of HQCD+QED, i.e. |M0〉 and |M0〉,

9
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being neutral mesons. In the absence of the electroweak interactions HW , the

Hamiltonian H takes the diagonal form:

H →M =

mM0 0

0 m
M

0

 , (1.32)

with mM0 = m
M

0 and the off-diagonal element being zero to preserve flavor

conservation. However, when electroweak interactions are present, flavor is

no longer conserved and quark mixing can occur. Therefore, the off-diagonal

elements of Heff are no longer zero and are associated with flavor changing

transitions M0 ↔ M̄0. As well as that, weak interactions are responsible for

decays, forcing the Hamiltonian to be non-Hermitian, otherwise Heff can only

take into account oscillations and not decays. Requiring the above properties,

the two-state Hamiltonian Heff can be written as:

Hij = Mij −
i

2
Γij , (1.33)

where both matrices M and Γ are Hermitian. Hence, the time evolution of the

state |ψ〉 is described by:

i
d

dt
|ψ(t)〉 =

(
M− i

2
Γ
)
|ψ(t)〉 , (1.34)

so that,

|ψ(t)〉 = e−iMt− 1
2
Γt|ψ(0)〉 · (1.35)

The effective Hamiltonian Heff in Eq. 1.30, to second order in perturbation theory

can be written as:

HW
ij = mMδij +

〈M0
i |HW |M0

j 〉
2mM

+
1

2mM

∑
n

〈M0
i |HW |n〉〈n|HW |M0

j 〉
m

(0)
M − En + iε

+ · · · ·

(1.36)

The mass-diagonal term, mMδij, corresponds to HQCD+QED part of the Hamilto-

nian, taking into account the fact that M0 and M
0

have the same mass, mM . The

second and third terms contribute to both diagonal and off-diagonal elements and

10
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correspond to the weak part ofHeff. Note that En is the energy of the intermediate

state |n〉. Using Cauchy’s theorem,

1

ω − En + iε
= P

(
1

ω − En

)
︸ ︷︷ ︸

mass term

−i πδ(En − ω)︸ ︷︷ ︸
width term

, (1.37)

where P
(

1
ω−En

)
is the principle value. Then, the off-diagonal elements become,

M12 =
〈M0|H∆F=2

W |M0〉
2mM

+
1

2mM

P
∑
n

〈M0|H∆F=1
W |n〉〈n|H∆F=1

W |M0〉
m

(0)
M − En

+ · · · ,

(1.38)

and

Γ12 =
1

2mM

∑
n

〈M0|HW |n〉〈n|HW |M0〉2πδ(En −mM) , (1.39)

where the first term in Eq. 1.38 describes mixing between M0 and M
0

with

change in flavor ∆F = 2. For example, for kaon mixing the operator would be

∆S = 2 and for B-meson mixing it would be ∆B = 2. If the intermediate states

|n〉 are light, they can lead to long-distance contributions. The structure of the

matrix element 〈M0|H∆F=2
W |M0〉, for the explicit cases of K, D and B mesons,

is discussed in the upcoming sections.

Returning to the Hamiltonian of Eq. 1.33, due to CPT , we have H11 = H22

and H21 = H∗12. This allows us to write M11 = M22 ≡ m and Γ11 = Γ22 ≡ Γ. On

the other hand the hermiticity of M and Γ implies M21 = M∗
12 and Γ21 = Γ∗12.

This gives the general form:

M− i

2
Γ =

A p2

q2 A

 , (1.40)

for complex A, p2, q2. Under CP the state transforms as

CP |M0〉 = ηCP |M0〉, (1.41)
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where ηCP is a phase such that |ηCP |2 = 1 and is allowed to be chosen. Here the

convention is ηCP = −1. If CP-invariance is assumed,

〈M0|HW |M0〉 = 〈M0|(CP )−1CP HW (CP )−1CP |M0〉 = 〈M0|HW |M0〉, (1.42)

which yields p = q. Given then M and Γ are hermitian, it implies M12 and Γ12

are real. However, this is not the case in reality since nature is not CP-invariant.

Therefore, to measure CP-violation one has to take into account the imaginary

parts of M12 and Γ12. Diagonalizing the matrix in Eq. 1.40, the mass eigenstates

are written as,

|M1
2
〉 =

1√
|p|2 + |q|2

(
p|M0〉 ± q|M0〉

)
, (1.43)

and

p

q
=

√
M12 − i

2
Γ12

M∗
12 − i

2
Γ∗12

· (1.44)

For CP-violation, p
q
6= 1. Let us denote the two eigenvalues by m1 − i

2
Γ1 and

m2− i
2
Γ2. Computing the eigenvalues and taking the difference between them we

get:

2pq =(m1 −m2)− i

2
(Γ1 − Γ2) (1.45)

=2

(
M12 −

i

2
Γ12

)1/2(
M∗

12 −
i

2
Γ∗12

)1/2

(1.46)

'2<M12 − i=Γ12 , (1.47)

where the last approximation is valid if CP-violation is small, i.e. =M12 � <M12

and =Γ12 � <Γ12. In other words,

∆m ≡ m1 −m2 ' 2<M12 , ∆Γ ≡ Γ2 − Γ1 ' −2<Γ12 (1.48)

Taking ∆m > 0, |M1〉 should be taken to be heavier than |M2〉. Now, given

Eq. 1.41 with ηCP = −1, we can define the even and the odd CP eigenstates,

12



1.2. Flavor physics and CP-violation in SM

|M0
+〉 and |M0

−〉:

CP |M0
±〉 = ±|M0

±〉 , (1.49)

as a linear combination of the flavor eigenstates |M0〉 and |M0〉 states, i.e.

|M0
±〉 ≡

1√
2

(
|M0〉 ∓ |M0〉

)
· (1.50)

If CP were to be conserved, i.e. (p = q), one would have |M2〉 → |M0
+〉 and

|M1〉 → |M0
−〉 which are defined by,

|M2
1
〉 ' |M0

±〉 ≡
1√
2

(
|M0〉 ∓ |M0〉

)
, (1.51)

and are consistent with Eq. 1.41. In Nature however, |M2
1
〉 are not pure CP-

eigenstates, since it is broken by the weak interactions. Since M0 and M
0

mix

under weak interaction, using Eq. 1.43, Eq. 1.44 and Eq. 1.51 one can write,

|M1
2
〉 =

1√
2
√

1 + |ε̄|2
(

(1 + ε̄)|M0〉 ± (1− ε̄)|M0〉
)

(1.52)

=
1√

1 + |ε̄|2
(
|M0
∓〉+ ε̄|M0±〉

)
, (1.53)

where ε̄ is a small complex parameter such that,

p

q
=

1 + ε̄

1− ε̄ · (1.54)

Solving for ε̄ and using Eq. 1.52, one can derive explicit expressions relating the

physical eigenstates, |M1〉 and |M2〉 to the flavor eigenstates |M0〉 and |M0〉.

M0−M0
mixing can be observed experimentally. To obtain the time evolution

we start by writing the flavor eigenstates in terms of the mass eigenstates using

Eq. 1.43 as:

|M0〉 =

√
|p|2 + |q|2

2p

(
|M1〉+ |M2〉

)
, |M0〉 =

√
|p|2 + |q|2

2q

(
|M1〉 − |M2〉

)
.

(1.55)

13



1.2. Flavor physics and CP-violation in SM

Then, the time-evolution of the flavor eigenstates is written as

|M0(t)〉 =

√
|p|2 + |q|2

2p

(
|M1(t)〉+ |M2(t)〉

)
(1.56)

=

√
|p|2 + |q|2

2p

(
e−im1te−Γ1t|M1〉+ e−im2te−Γ2t|M2〉

)
. (1.57)

Substituting again for |M1
2
〉 using Eq. 1.43 gives,

|M0(t)〉 = g+(t)|M0〉+
q

p
g−(t)|M0〉· (1.58)

Similarly,

|M0
(t)〉 =

p

q
g−(t)|M0〉+ g+(t)|M0〉, (1.59)

with

g± =
1

2

(
e−Γ1t/2e−im1t ± e−Γ2t/2e−im2t

)
. (1.60)

Therefore, the probability amplitude, P (M0(0)→M0(t)), of starting with a pure

|M0〉 state at time t = 0 and being at state M0(t) at some later time t, is equal

to |g+|2. Similarly, the probability amplitude, P (M0(0) → M
0
(t)), of starting

with a pure |M0〉 state at time t = 0 and being at state M
0
(t) at some later time

t, is equal to |g−|2. These probability amplitudes can be written as:

|g±|2 =
e−Γt

2

(
cosh

(
∆Γt

2

)
± cos(∆mt)

)
, (1.61)

where ∆m ≡ m1 −m2, ∆Γ ≡ Γ2 − Γ1, m = (m1 +m2)/2 and Γ = (Γ1 + Γ2)/2.

In general, there are two main types of contributions to mixing. One can

write,

∆mtheory = (∆m)SD
theory + (∆m)LD

theory· (1.62)

14



1.2. Flavor physics and CP-violation in SM

The first term, i.e. the short distance component is

(∆m)SD
theory = 2<〈M0|Hbox

w (µ)|M0〉 · (1.63)

In the equation above, Hbox
w can be written as:

Hbox
w = C(µ)O∆F=2(µ) , (1.64)

where the change in the change in the particular fermion number is equal to two

for M0 −M
0

mixing. C(µ) is the Wilson coefficient at a given order in QCD

perturbation theory, which is specified in the same renormalization scheme as the

operator O∆F=2. The operator O∆F=2, is a local four-quark operator. Specific

cases for kaons, D0 and B0 mesons are discussed in Sec. 1.2.5 and Sec. 1.2.7.

Generically, the short distance contribution (∆m)SD
theory can be represented by

box diagrams similar to Fig. 1.5 and Fig. 1.10. It has been shown in Ref. [12],

that the formal way of integrating out the W bosons explicitly via the path

integral formulation leads to the same answer as writing down a 4-fermi effective

Hamiltonian.

Even though the formalism for meson mixing mentioned above is similar for

all neutral mesons, K0, D0, B0 and B0
s , the different masses and weak coupling

strengths results in very different phenomenology, some of which are discussed in

the following sections. Chapter 4 of this thesis focuses on the lattice computation

of such contributions to meson mixing.

1.2.5 Mixing in kaon systems

In the case of neutral kaons, M0
1 and M0

2 are denoted by KL and KS which stand

for “long” and “short”, referring to their respective lifetimes. The ratio τL/τS '
571. If CP was conserved, KS, being a CP -even state according to Eq. 1.49 and

Eq. 1.51, would only decay to a CP -even state i.e. ππ while KL, being an odd

state, would only decay to the CP -odd state πππ. Since the available phase for

final state of the former process (mK − 2mπ ≈ 220 MeV) is greater than that

of the latter (mK − 3mπ ≈ 80 MeV), KS has a much shorter life-time than KL.

However, KS and KL are not pure CP-eigenstates. Therefore, any observation of

KL ≈ K− + ε̄K+, decaying into a ππ states is a measure of CP-violation. This

15



1.2. Flavor physics and CP-violation in SM

can be seen experimentally in Fig. 1.2 [13], of the decay rate vs time in units of τs,

the life-time of KS. The experiment starts with kaons in K0 and K
0

states, and

a fast decay to ππ corresponding to KS even-state. Given the short lifetime of

KS, waiting long enough will result in KS to have decayed away and one expects

to detect only πππ states corresponding to a pure KL state. However, ππ states

are also detected, which can only corresponding to transitions KL → ππ implying

CP-violation. This is known as indirect CP-violation and was first observed in

1964 by Fitch and Cronin where they observed 45 decays of KL → ππ in a sample

of 22700 kaon decays a long time away from the production time [14].

Figure 1.2: CPLEAR experiment: Decay rate vs time in units of τs. The open
circles correspond to kaon that started as K0, the closed circles correspond to

kaons that started as K
0
.

Eq. 1.56-1.61 can be used to plot the respective probabilities, P (K0(0) →
K0(t)) or P (K0(0)→ K

0
(t)), of starting with a beam in pure |K0〉 state at t = 0

and ending up in either |K0(t)〉 or |K0
(t)〉 at time t. See the left hand plot in

Fig. 1.3, where the probabilities are plotted against time in units of τS, assuming

CP-symmetry. Here, the values for ∆m, ∆Γ and Γ are taken from PDG as an

input to show a comparison between the probabilities. After a few KS life-times,

one would expect all the Ks to have decayed, leaving a KL state which is half

|K0(t)〉 and half |K0
(t)〉. This is indeed observed in the plot, the probabilities

reach an equal value at large t/τs. These probabilities can be used to construct the

asymmetry ratio P (K0→K0)−P (K0→K0
)

P (K0→K0)+P (K0→K0
)
. The probability for the same input values

as above is plotted below, on the right hand side of Fig. 1.3, again assuming no

CP-violation.
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1.2. Flavor physics and CP-violation in SM
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Figure 1.3: The plot on the left shows probability amplitudes P
(
K0(t = 0) →

K0(t)
)

and P
(
K0(t = 0)→ K

0
(t)
)
. The plot on the right, uses these ingredients

to construct the transition probability asymmetry fraction, P (K0→K0)−P (K0→K0
)

P (K0→K0)+P (K0→K0
)
·

Both plots assume no CP violation i.e. p = q ∈ R·

In fact, ∆m is computed experimentally as a fit parameter of data measuring

asymmetries in decay rates as a function of time. The result by CPLEAR allowing

for CP-violation in the fit, are presented below in Fig. 1.4. CP-violation is also

measured experimentally using such asymmetry ratios, with the form chosen in

such as way as to optimize this measurement [15]. It was observed that, at large

times, KL mesons decays more often to π−e+νe than to π+e−νe, with the decay

rate asymmetry of 0.3% [9].

Figure 1.4: CPLEAR experimental results of the asymmetry ratio A vs t in units
of τs. The data is fitted to the theoretical prediction to obtain the value of ∆m,
using CPT only.

17



1.2. Flavor physics and CP-violation in SM

1.2.6 Short-distance contribution to kaon mixing

Returning to the theoretical description of the short-distance component of ∆m,

Eq. 1.63,

(∆m)SD
theory = 2<〈K0|Hbox

W |K
0〉, (1.65)

where to lowest order in electroweak theory, the contributions to K0 − K
0

oscillations arise from box diagrams presented in Fig. 1.5. Calculations regarding

the long-distance contributions i.e. the second term in Eq. 1.38 affecting the

dispersive part M12, and Eq. 1.39 affecting the absorptive part Γ12, are not the

focus of the discussion here but are available in the literature e.g. [16–19]. Fig. 1.6

shows these long-distance contributions via on-shell states.

W

W

W W

s̄

d

d̄ d̄

s s d

s̄

u, c, t u, c, t

ū, c̄, t̄

u, c, t

Figure 1.5: Box diagrams contributing to K0 −K0
mixing.

× ×
HW HW

K0 K̄0π0, η, η′
K0 K̄0

π

π
× ×
HW HW

Figure 1.6: Long-distance contributions to K0 −K0
mixing.

It is more common to write Hbox
W as a ∆S = 2 operator, hence in the form

2mkM
∗
12 = 〈K0|H∆S=2

W |K0〉· (1.66)

The above matrix element is computed using operator product expansion (OPE),

where one can factorize perturbative and non-perturbative effects. At a given

order in QCD perturbations theory, the Wilson coefficient C(µ) is computed using

the same renormalization scheme as the non-perturbative part, hence having the

same scale and number of flavors. Explicitely,

〈K0|H∆S=2
W (µ)|K0〉 = C(µ)〈K0|Q∆S=2(µ)|K0〉, (1.67)
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1.2. Flavor physics and CP-violation in SM

where the operator

Q∆S=2 = [s̄γµ(1− γ5)d][s̄γµ(1− γ5)d] ≡ OVV+AA −OVA+AV , (1.68)

is the four-fermion operator. The matrix element of the operator between the

mesonic statesK0 andK
0
, needs to be computed non-pertubatively on the lattice.

The loop integration for such box diagrams can be computed exactly. In the limit

that external momenta and external quark masses as well as mass of the up quark

go to zero, and µ < mc, the result can be written as [5]:

〈K0|H∆S=2
W |K0〉 =

G2
FM

2
W

16π2

[
λ2
cS0(xc)η1 + λ2

tS0(xt)η2 + 2λcλtS0(xc, xt)η3

]
×

(1.69)(
gR(µ)2

4π

)−γ0/(2β0)

exp

{∫ gR(µ)

0

dg

(
γ(g)

β(g)
+
γ0

β0

)}
〈K0|Q∆S=2

R (µ)|K0〉+ h.c.·

In the above, GF is the Fermi coupling, MW is the W -boson mass and λa = V ∗asVad

with a = c, t. The functions S0(xc), S0(xt) and S0(xc, xt) where xc = m2
c/M

2
W ,

xt = m2
t/M

2
W , are the Inami-Lim functions [20] expressing electroweak loop

corrections without QCD corrections. Note that the most important contribution

to ∆m comes from the c-quark. This is because even though m2
t is large,

the factor |VtsVtd|2 ∼ λ5 according to Eq. 1.24, which is very small whereas

|VcsVcd|2 ∼ λ. The subscript R in gR(µ) and Q∆S=2
R (µ) is written to indicate

these quantities represent the renormalized coupling and the renormalized 4-

fermi operator in a given renormalization scheme. Typically this is chosen to

be the naive dimensional regularization (NDR) of MS [5]. η1, η2, η3 contain QCD

corrections to the diagrams, explicit expressions can be found in [21–23]. The β-

and γ- functions are define in the usual sense

dgR
d lnµ

= β(gR) ,
dQ∆S=2

R

d lnµ
= −γ(gR)Q∆S=2

R (1.70)

β(g) = −β0
g3

(4π)2
− β1

g5

(4π)4
− · · · (1.71)

γ(g) = γ0
g2

(4π)2
+ γ1

g4

(4π)4
+ · · ·
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1.2. Flavor physics and CP-violation in SM

Explicit expression for β0, β1, γ0, γ1 can be found in [5] for different numbers of

flavors Nf . Eq. 1.69 is valid for Nf = 3.

The physical amplitude between the initial and final states cannot depend on

the scale µ. As a result the dependence on the scale, µ, must cancel between the

Wilson coefficient and operator 〈K0|Q∆S=2
R (µ)|K0〉. In lattice computations, it is

more convenient (see Sec. 4.3) to express 〈K0|Q∆S=2
R (µ)|K0〉 in terms of the bag

parameter, BK , defined as,

BK(µ) =
〈K0|Q∆S=2

R (µ)|K0〉
8
3
f 2
Km

2
K

, (1.72)

where fK and mK are the decay constant and mass of kaon respectively,

which can both be determined using lattice computations. The four-quark

operator 〈K0|Q∆S=2
R (µ)|K0〉 is renormalized in some regularization scheme such

as RI/SMOM non-perturbatively. The result is converted, via one- or two-loop

perturbative matching, to more commonly used schemes such as NDR-MS, or the

Renormalization Group Independent (RGI) scheme in which

B̂K =

(
gR(µ)2

4π

)−γ0/(2β0)

exp

{∫ gR(µ)

0

dg

(
γ(g)

β(g)
+
γ0

β0

)}
BK(µ) (1.73)

is independent of the scale. At NLO in perturbation theory,

B̂K =

(
gR(µ)2

4π

)−γ0/(2β0)

exp

{
1 +

gR(µ)2

(4π))2

[
β1γ0 − β0γ1

2β2
0

]}
BK(µ)· (1.74)

The details of the renormalization of operators on the lattice is discussed in

Chapter 2.

The computation of the kaon bag parameter is an ingredient required for the

measurement of CP-violation in K0 −K0
mixing which imposes a constraint on

the apex of the unitarity triangle, shown in green in Fig. 1.7, corresponding to

the approximate hyperbolas shown in green, εK . εK is the indirect CP violation

parameter of the neutral kaon system and receives its dominant contribution from

indirect CP violation via state-mixing. Therefore, computing the bag parameters

is a crucial ingredient in determining εK [24].
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Figure 1.7: CKM unitarity triangle in the ρ̄− η̄ plane, by CKMfitter (2016).

1.2.7 Mixing in D and B systems

Experimentally, B0
d − B

0

d and B0
s − B

0

s mixing were discovered by the Argus

experiment in 1987 [25] and the CDF collaboration in 2006 [26] respectively.

There are many possible decay modes for these systems. As a result Γ is very

large as compared to the kaon system and so ∆Γ/Γ is small. For the B0
d system

[9] we expect mixing via oscillations rather than decays, taking ∆Γ = 0. The

asymmetry between the probabilities P (B0(0) → B0(t)) and P (B0(0) → B
0
(t))

can again be constructed, by writing the probability of starting with a pure |B0〉
state at t = 0 and ending up in either |B0(t)〉 or |B0

(t)〉 states at time t:

P (B0
d → B0

d)− P (B0
d → B

0

d)

P (B0
d → B0

d) + P (B0
d → B

0

d)
= cos(∆mdt)· (1.75)

This corresponds to the plot in Fig. 1.8, which is an oscillatory function such that

∆md is the frequency of oscillation. In fact ∆md is determined experimentally

by measuring the oscillations frequency of the asymmetry ratio. An example

plot below shows the data by the BaBar experiment in 2001 where oscillatory

behaviour is observed and then fitted to determine ∆md [27–29]. The most recent

results by the LHCb collaborations of ∆md obtained using the asymmetry fraction
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-1.0

-0.5
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Figure 1.8: Transition probability asymmetry fraction, P (B0→B0)−P (B0→B0
)

P (B0→B0)+P (B0→B0
)
,

assuming no CP-violation i.e. (p = q) ∈ R.

Figure 1.9: Time-dependent asymmetry for B0 − B0
, fitted to determine ∆md.

The x-axis label |∆t| refers to the time difference between two B-meson decays
inferred from the distance between their decay vertices along the beam line.

similar to Eq. 1.75 can be found in [30]. CP-violation in B-mesons was reported

by Belle and BaBar collaborations in 2001 [31, 32] and the precision has been

improved since, with experiments measuring CP both indirectly via mixing and

directly via decays.

Mixing in Bd and Bs systems is dominated by short-distance contributions.

The reason for this is that the dominant weak coupling of the b quarks is to the

t quarks in the box diagrams, shown in Fig. 1.10, is proportional to the square

of the mass of the intermediate quarks. As a result, B−B0
mixing is dominated

by the top intermediate state.
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W
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W W
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Figure 1.10: Box diagrams contributing to B0 −B0
mixing.

The transition amplitude, in a similar way to Eq. 1.69, can be written as

〈B0

q|H∆B=2
W |B0

q 〉 =
G2
FM

2
W

16π2

(
λ2
tqS0(xt)η2B

)(gR(µ)2

4π

)−γ0/(2β0)

(1.76)

× exp

{∫ gR(µ)

0

dg

(
γ(g)

β(g)
+
γ0

β0

)}
〈B0|Qq

R(µ)|B0〉+ h.c. ,

where Qq
R(µ) is the four-fermi operator and η2B contains short-distance QCD

corrections [21]. Note that λtq = V ∗tqVtb. The other symbols have their usual

meanings. In a similar way to BK in Eq. 1.72, the bag parameter for the B-

system is

BBq(µ) =
〈B0

q|Qq
R(µ)|B0

q 〉
8
3
f 2
Bm

2
B

· (1.77)

Given this definition, the SM prediction for the B0
q mass difference is written as

∆mq =
G2
Fm

2
WmBq

6π2
|λtq|2S0(xt)η2Bf

2
BqB̂Bq , (1.78)

where B̂Bq is the renormalization group invariant (RGI) B parameter, which at

2-loops takes the form

B̂Bq =

(
gR(µ)2

4π

)−γ0/(2β0)
{

1 +
gR(µ)2

(4π)2

[
β1γ0 − β0γ1

2β2
0

]}
BBq(µ)· (1.79)

Given that ∆md(s) are known experimentally from the oscillations frequencies

mentioned above, and the lattice calculation provides measurements of fBq and

BBq , λtq can be determined from Eq. 1.78. Lattice calculations of the flavor
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1.2. Flavor physics and CP-violation in SM

SU(3)-breaking ratio

ξ =
fBs
√
BBs

fBd
√
BBd

, (1.80)

from which |Vtd/Vts| can be extracted due to Eq. 1.76 and λtq = V ∗tqVtb, yields a

more precise result than the individual bag parameters. This ratio also has an

added advantage that for certain lattice fermion formulations, such as the Domain

Wall fermions (DWF), the renormalization factors cancel between the numerator

and the denominator and can be dropped. The determination of |Vtd/Vts| via

this ratio, is used to constrain the apex of the CKM triangle corresponding the

orange circle in Fig. 1.7.

Experimentally, charm D0 − D
0

mixing has been observed in recent years

[33]. However, since short- and long-distance effects presented in Fig. 1.11 and

Fig. 1.12 respectively are of the same order of magnitude, it is difficult to calculate

SM predictions for the mixing parameters ∆mD and ∆Γ. The reason the short-

distance effects in this case are smaller is the following. The mass of the heaviest

quark mb in the box diagram of Fig. 1.11 is not large enough to compensate for

the corresponding CKM matrix elements |VubVcb|2 ∼ (λ5)2 according to Eq. 1.24.

This implies that the light quarks dominate the mixing, which are of order

|VusVcs|2m2
s ∼ λ2m2

s in the box diagram, resulting in small mixing parameters.

Therefore, the purpose of searches for D0−D0
mixing is mostly viewed as a probe

for new physics rather than a method for constraining the CKM parameters. CP-

violation effects within SM are expected to be very small. As a results, observation

of CP-violation in these systems at a higher level than O(10−3) indicates signals

for new physics [9]. There will be a programme dedicated to charm physics in

the upcoming Belle II experiment [34].

W

W

W W

u

c̄

c c

ū ū c̄

u

d, s, b d, s, b

d, s, b

d̄, s̄, b̄

Figure 1.11: Box diagrams contributing to D0 −D0
mixing.

24



1.3. Examples of anomalies in the flavor sector

D0 D̄0
K, (π)

K̄, (π)

× ×
HW HW

Figure 1.12: Long-distance contributions to D0 −D0
mixing.

1.3 Examples of anomalies in the flavor sector

To emphasize the role of probing the flavor sector, in this section we mention

examples of current important anomalies present in this sector, such as Lepton

Flavor Universality (LFU) ratios RD, RD∗ , RK and RK∗ . We do not go into much

detail as these particular anomalies, arising from semi-leptonic decays, are not

the subject of this thesis.

Lepton flavor universality in the SM refers to the equality of the electroweak

couplings of different flavors of leptons. The LFU ratios are defined as

RM [q2
min, q

2
max] =

∫ q2
max

q2
min

dq2 dΓ(B→Mµ+µ−)
dq2∫ q2

max

q2
min

dq2 dΓ(B→Me+e−)
dq2

, (1.81)

where Γ is the q2-dependent partial width of the decay, q2 = m2
ll is the square of

the dilepton mass and M is the meson which is the result of the decay, such as K,

K∗, D or D∗. These semi-leptonic decays are sensitive to contributions from non

SM particles. In the SM, where there is LFU, one expects the ratio in Eq. 1.81 to

be equal to one. However, measurements at the LHCb, Belle and BaBar [35–39]

show deviations from unity. For example, in the case of RK , LHCb results of

RK [1 GeV2, 6 GeV2] = 0.754+0.090
−0.074±0.036 differ from the SM expectation by 2.6σ

[40]. There are also recent results by the LHCb collaboration on RK∗ indicating

2.4-2.5σ deviation from the SM [41].
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1.4 Current research and challenges

This project has involved lattice computation of D- and Ds-meson masses, decay

constants fD(s)
extracted via the axial current matrix element

〈0|Aµcq|Dq(p)〉 = ifDqp
µ
Dq
, (1.82)

with q = d, s and Aµcq = c̄γµγ5q, as well as bag parameters using Domain Wall

Fermion (DWF) formulation. The leptonic decays in the charm sector give

information on CKM matrix elements |Vcd| and |Vcs|. Computing the bag and ξ

parameters in this sector, with the aim of eventually extrapolating the results to

the B-sector using Heavy Quark Effective Theory (HQET), is an ingredient that

provides constraint on the apex of the unitarity triangle via the ratio |Vtd/Vts|,
as discussed in the previous section.

Current research has the mass of the quarks being pushed to higher values, to

reach c and b quarks, making lattice artefacts more visible. For example, lattices

that can be currently simulated have a cut off which is of the same order as the

b-quark mass. As a result, simulating b-quarks directly suffers from large cut-off

effects [42]. Charm physics on the lattice also allows us to gain more insight into

B-physics via direct application of HQET, by making an expansion in inverse

heavy quark mass and extrapolating from the charm to the bottom region.

At this stage, it seems necessary to invest more effort into reducing lattice

artefacts and improve measurements at the level of both resources and formalism.

The former involves e.g. developing better algorithms to be able to simulate

finer lattices with greater volumes, or using efficient averaging methods [43–

45]. The latter involves e.g. varying lattice actions, number of sea flavors and

using different techniques in extracting the observables etc. In terms of testing

a different formalism, a major part of this thesis is dedicated to discussing the

development of a new massive renormalization scheme, denoted by RI/mSMOM.

The aim here is that by using a massive renormalization scheme, some of the

lattice artefacts arising from masses of quarks and appearing as coefficients of

O(a2) terms would be reduced, giving a smoother extrapolation to the continuum

limit. This scheme is discussed in great detail in chapter 3.
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Chapter 2

Non-perturbative formulation of

QCD

The part of this chapter focuses mostly on the theoretical background required

to construct QFT on the lattice. The derivations presented here are done for a

free theory, i.e. not involving gauge fields. An important derivation is that of the

fermion propagator on the lattice. A naive discretisation of the Dirac operator

leads to extra poles that have no continuum analogue. This implies the need for

constructing other types of lattice fermions, such as Wilson, Domain Wall and

Overlap fermions to describe the physics correctly. Domain Wall fermions are the

type used later on in the simulations and are explained in more detail later in

this chapter.

2.1 The Basics

In order to construct QFT on the lattice, one has to perform a Wick rotation from

Minkowski to Euclidean space-time. The conventions, starting from the space-

time 4-vector xµ and including Dirac gamma matrices and Fourier transforms

are written in Appendix B. This section starts with the naive discretization of

the Euclidean action for scalar fields. The propagator is computed as an explicit

example and the result is compared with the usual continuum propagator. A

similar calculation for the naive fermion propagator is then performed and the

problem with the so-called doublers is discussed.
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2.1.1 Free Field Scalar Propagator on the Lattice

In this section, we derive the lattice scalar field propagator starting in momentum

space from the discretized Euclidean action. By integrating the 4th component,

we examine the pole structure and the large time behaviour of the propagator.

We also show the usual continuum dispersion relation is recovered as a→ 0.

The continuum Euclidean action in 4 dimensions for the free scalar field reads

as follows

SE[φ] =

∫
d4x

(
1

2
∂µφ(x)∂µφ(x) +

1

2
m2φ2(x)

)
(2.1)

=
1

2

∫
d4x

(
−φ(x)∂2φ(x) +m2φ2(x)

)
,

Discretizing and taking the Fourier transform, according to the derivation in

App. B.3, the scalar field propagator can be written as

DS(x) = 〈φ(x)φ(0)〉 =

∫ π/a

−π/a

d4k

(2π)4

eik.x

m2a2 +
∑

µ 4 sin2(kµa
2

)

=

∫
d3k

(2π)3

∫
dk4

(2π)

eik.x

m2a2 +
∑

µ(2− 2 cos(kµa))

=

∫
d3k

(2π)3
eik.x

∫
dk4

(2π)

eik4x4

2M(k)2 − 2 cos(k4a)
,

(2.2)

where we have defined 2M(k)2 = m2a2 + 8 −∑i 2 cos(kia) noting that m2a2 +

8 −∑i 2 cos(kia) is a positive quantity. The poles are at the points where the

denominator vanishes:

2M(k)2 − 2 cos(k4a) = 2M(k)2 −
(
eik4a + e−ik4a

)
= 2M(k)2 − z − z−1 = 0 ·

(2.3)

In other words, the integral over k4 can be performed using a contour integration

in the z plane with an anti-clockwise contour, |z| = 1, and the change of variable

z = eik4a so that dk4 = dz
iaz

. The z in the denominator of the latter expression

multiplies Eq. 2.3 which yields,

z2 − 2M2z + 1 = 0 , (2.4)
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and hence,

z = M2 ±
√
M4 − 1 · (2.5)

This quantity is real since M ≥ 1. However, since the contour |z| = 1, is the unit

z
Im

Re1−1

Figure 2.1: z = eik4a contour

circle in the z-plane, only one of the poles i.e. z = M2 −
√
M4 − 1 contributes

while the other one lies outside the unit circle, Fig. 2.1. Because z is real and

positive, one can write z = e−ωa where ω is a positive quantity associated with the

energy, as shown in Eq. 2.10. Indeed, the non-contributing pole can be written

as,

1

M2 −
√
M4 − 1

× M2 +
√
M4 − 1

M2 +
√
M4 − 1

= M2 +
√
M4 − 1 = eωa · (2.6)

Hence the integral in Eq. 2.2 is evaluated∫
d3k

(2π)3
eik.x

2πi

−ia2π

e−ωx4

e−ωa − eωa =
1

a

∫
d3k

(2π)3
eik.x

e−ωx4

2 sinh(ωa)
· (2.7)

Also, from Eq. 2.4 it can readily been seen that,

cosh(ωa) =
1

2
(eωa + e−ωa) = M2 · (2.8)
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Expanding the both sides of the equation above up to order O(a2) yields,

1 +
ω2a2

2
=

1

2

[
m2a2 + 8−

∑
i

2(1− (kia)2

2
)

]
=

1

2

[
m2a2 + 2 + k2a2

]
· (2.9)

Therefore, in the continuum limit am� 1, aki � 1, we recover Lorentz invariance

and the expected dispersion relation:

ω(k)→
√
m2 + k2 , (2.10)

and the expression for the energy in the continuum is recovered. Moreover,

observing Eq. 2.7, which is a sum of exponentials exp(−ωt), implies that for

large t = nta the exponential with the smallest value of ω i.e. ω = m dominates.

Therefore,

Ds → e−m×nta , for t→∞ · (2.11)

This gives the correlation length ξ as:

ξ =
1

am
· (2.12)

This is also true for the interaction theory. Note that we wish the continuum

limit m to remain finite. Comparing the above to the notion of correlation length

in statistical physics, we see that there is a critical point, i.e. a → 0, where the

correlation length ξ diverges. In other words, the continuum limit corresponds to

a second order transition of a statistical system.

2.1.2 Restoration of rotational invariance in 2-dimensions

It would be interesting to see, in a simple example, how rotational invariance is

restored when the continuum limit is taken. We take a 2-dimensional example

for simplicity, and show explicitly discretization effects in the form of O(a2) and

O(a4) terms for this case.

Let us now consider the propagator for the free scalar field in 2-dimensions
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which can be written as follows in lattice units [46],

DF (x) = 〈φ(x)φ(0)〉 =

∫
d2p

(2π)2

eip.x

m2 + 4− 2 cos(p1)− 2 cos(p2)
· (2.13)

Consider two cases: x → ∞ along a lattice direction where x = nt, t → ∞ with

n = (1, 0) or along the diagonal with n = (1, 1)/
√

2:

1. For n = (1, 0) and denoting 2b = m2 + 4− 2 cos(p2), Eq. 2.13 reads

DF =

∫ π

−π

dp2

2π

∫ π

−π

dp1

2π

eip1t

2b− 2 cos(p1)
=

∫ π

−π

dp2

2π

e−ωt

2 sinh(ω)

=

∫ π

−π

dp2

2π

1

2 sinh(ω)
e
−t

[
ln(b(p2)+

√
b(p2)2−1)

]
,

(2.14)

where the first integral is done by finding the relevant pole in exactly

the same way as in the previous section with cosh (ω) = b and ω =

ln
(
b+
√
b2 − 1

)
. For t large, one can use the saddle point method

to evaluate the leading contribution to the integral. To this end, we

need to find the point(s) at which the first derivative of ω (b(p2)) =

ln
(
b(p2) +

√
b(p2)2 − 1

)
with respect to p2 vanishes. Note that in order

to keep the algebra simpler, there is no need to derive an explicit form for

the derivative. It merely suffices to identify the point at which the derivative

vanishes. Taking

dω

db
=
∂ω

∂b

∂b

∂p2

=
1 + 2b(p2)

2
√
b(p2)2−1

b(p2) +
√
b(p2)2 − 1

sin(p2) = 0 · (2.15)

It is clear from the definition of b that b > 1 meaning the fraction in the

above expression is always greater that zero. Hence, within the Brillouin

zone, the solution to the equation corresponds to p2 = 0. This implies

b0 =
m2

2
+ 1 ⇒ cosh(ω) =

m2

2
+ 1 · (2.16)

Eq. 2.14 is then equal to

DF '
1

2 sinh(ω(b))

∣∣∣
b0=m2/2+1

e−tω(b0)

∫
dp2

2π
e−

1
2
tω′′(b0)(b(p2)−b0)2 ∝ e−tω(b0) ·

(2.17)
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The correlation length ξ(n) in direction n is identified by DF ∝ e−t/ξ(n) so

in this case, ξ−1(n) = ω.

2. For n = (1, 1)/
√

2, changing variables to Σ = p1+p2

2
and ∆ = p1−p2

2
, Eq. 2.13

becomes ∫ π

π

dp1dp2

(2π)2

eit(p1+p2)/
√

2

m2 + 4− 4 cos(p1−p2

2
) cos(p1+p2

2
)

∝
∫
dΣd∆

ei
√

2Σt

m2 + 4− 4 cos ∆ cos Σ
∝
∫
d∆g(∆)e−t

√
2ω′

∝
∫
d∆g(∆)e−t

√
2 ln(b(∆)+

√
b2(∆)−1)

(2.18)

where

ω′ = ln(b+
√
b2 − 1) , b =

m2 + 4

4 cos ∆
· (2.19)

Using the same saddle point method as in the previous part, the integral is

dominated by ∆0 such that sin ∆0 = 0 i.e. cos ∆0 = 1 implying

DF ∝ e−t
√

2ω′ , (2.20)

with

cosh(ω′) = b0 = 1 +
m2

4
· (2.21)

In this case, the correlation length, ξ′−1(n) =
√

2ω′.

Taking the ratio of the two correlation lengths,

ξ′

ξ
=

ω√
2ω′

= 1− m2

48
+O(m4) · (2.22)

In non-lattice units m → ma and at this finite lattice spacing, the ratio is

away from unity, with the discretization effects identified explicitly at order

a2. However, ξ′

ξ
→ 1 as ma → 0 which implies the recovery of the rotational

invariance.
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Figure 2.2: 1-D Lattice and Continuum Scalar Propagators

2.1.3 Comparison of Lattice and Continuum Propagators

We now compare the lattice formulation of the scalar propagator to the continuum

in infinite volume. It is known that the continuum scalar field propagator in four

dimensions can be written in terms of the modified Bessel function K1 [47]. Here

we merely quote the results for the continuum case,

DC
F (x, n) =

∫ ∞
−∞

dnp

(2π)n
eipx

m2 + p2
= (2π)−n/2

[
(x2)1/2

m

]1−n/2

K1−n/2
[
m(x2)1/2

]
,

(2.23)

and the lattice case

DL
F (x, n) =

∫ π/a

−π/a

dnp

(2π)n
eipx

m2 + p̂2
=

∫ ∞
0

dα e−m
2α

{
n∏
µ=1

e−
2α
a2 (

1

a
)Ixµ

a

(
2α

a2

)}
,

(2.24)

where

p̂2 =
4

a2

n∑
µ=1

sin2
(pµa

2

)
, (2.25)

and Ixµ
a

is the modified Bessel function of the first kind. The plot in Fig. 2.2

shows the Mathematica [48] implementation of the above propagators in one

dimension for particular values of x. As it can observed, the discretized lattice
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Figure 2.3: Relative difference between lattice and continuum scalar propagators

points, in red, agree with the continuum propagator drawn in blue. Examining

the deviation of the lattice points from the continuum one would be able to

analyse the discretization errors properly and recover the full continuum limit.

In order to discuss continuum physics properly, one has to work in a region where

the physics is insensitive to the cut off (i.e. of order � 1/a). This is better

illustrated with an example: Let us take mx to be fixed at a value say, α = mx,

change the ratio β = x
a

which takes different values over a range, in which case

am = α
β

and then compare the relative difference between lattice and continuum

results. This is presented in the following graph for a particular value of α. As

it can be seen in Fig. 2.3, the relative difference, i.e. the error, decrease as x

increases.

2.1.4 Free Field Naive Fermion Propagator on the Lattice

In this section, we examine the dispersion relation for the case of the naive fermion

propagator in the continuum limit and discuss the problem of “fermion doublers”.

The continuum Euclidean action in four dimensions for the free fermion field

reads as follows:

SE[ψ, ψ̄] =

∫
d4x

(
ψ̄(x)γµ∂µψ(x) +m ¯ψ(x)ψ(x)

)
· (2.26)

The continuum action can be discretized using the Finite Difference Approxima-
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tion for the derivatives discussed in Appendix B. This gives,

SE[ψ, ψ̄] =a4
∑
x

ψ̄(x)

[
γµ
ψ(x+ aµ̂)− ψ(x− aµ̂)

2a

]
+mψ̄(x)ψ(x)

=
a4

(2π)2

∑
x

∫
kk′
e−ikx

{
˜̄ψ(k)γµ

1

2a

[(
eik
′(x+aµ̂) − eik′(x−aµ̂)

)]
ψ̃(k′)

+meikx
′ ˜̄ψ(k)ψ̃(k′)

}

=
a4

(2π)2

∑
x

∫
kk′

˜̄ψ(k)e−ikxγµ
1

2a
eik
′x
(
eik
′
µa − e−ik′µa

)
ψ̃(k′)

+me−ikx+ikx′ ˜̄ψ(k)ψ̃(k′)

=
a4

(2π)

∫
kk′

˜̄ψ(k)δ(k − k′)
(
i

a
γµ sin(k′µa)ψ̃(k′) +m ˜̄ψ(k)ψ̃(k′)

)
=

a4

(2π)

∫
k

˜̄ψ(k)

[
m+ γµ

i sin(kµa)

a

]
ψ̃(k) ,

(2.27)

where x = na and index µ is summed over. Therefore, the lattice fermion

propagator in momentum space is:

D̃F (k) =
1

mI + iγµ
sin(kµa)

a

· (2.28)

In the continuum limit Minkowski space, one must recover the usual fermion

propagator. Therefore in the limit as a→ 0,

D̃F (k)→ 1

m+ iγµkµ

Minkowski−−−−−−→ 1

−(γ0k0 − γ.k −m)
= − 1

/k −m , (2.29)

where we have used the conversion conventions for γ matrices and the momentum

4-vector as spelled out in Appendix B. The results agree with Eq. B.18 as

expected.

In order to examine the dispersion relation, we start by finding the inverse

Fourier transform of the lattice propagator. Note that the integral is over the
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first Brillouin zone and we work in infinite volume.

D̃F = 〈ψ(x)ψ̄(0)〉 =

∫
d4k

(2π)4

eikx

m+ i
a

sin(kµa)γµ
× m− i

a
sin(kµa)γµ

m− i
a

sin(kµa)γµ

=

∫
dk4

2π

d3k

(2π)3

ma2 − ia sin(kµa)γµ
m2a2 +

∑
µ sin2(kµa)

eik4x4eik.x ,

(2.30)

where the µ index is summed, γµγµ = I is used and we have multiplied top and

bottom by a2. Now the relevant poles in the denominator have to be identified.

Note, however, that we are integrating with respect to dk4, so the contour in the

k4 space need to be considered. Because the integral is over the first Brillouin

zone, the real part of k4 must satisfy −π/a < k4 < π/a. Defining z = eik4a the

denominator becomes

m2a2 +
3∑
i=1

sin2(kia)︸ ︷︷ ︸
M2

+
−1

4
(z2 + z−2 − 2) = 0 · (2.31)

The numerator and the denominator are then multiplied by −4z2 and equation

z4 − 2(1 + 2M2)z2 + 1 = 0 , (2.32)

is solved to obtain

z2 = (1 + 2M2)± 2M
√
M2 + 1 = (−M ±

√
1 +M2)2 · (2.33)

Hence the four solutions for z are:

z =



M +
√

1 +M2 = eωa

M −
√

1 +M2 = −e−ωa

−M +
√

1 +M2 = e−ωa

−M −
√

1 +M2 = −eωa ,

(2.34)

where ω is defined such that M +
√

1 +M2 = eωa. The main task now is to

identify the relevant poles. We are changing variables from k → z, which means

that the relevant poles have to be identified in the complex z plane. The limits of

the k integral run from −π/a to π/a which correspond to z running once around
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the unit circle. Note that,

dk =
dz

iaz
· (2.35)

Therefore, using Eq. 2.32 and Eq. 2.35 we have an overall factor of z in the

numerator. Clearly, the only poles that contribute are the ones that lie within

z
Im

Re1−1

Figure 2.4: z = eik4a contour

the unit circle 0 ≤ |z| ≤ 1, i.e. z = ±e−ωa. We now use the residue theorem.

Finding the coefficients for the poles at:

1. z = eik4a = e−wa, the numerator becomes,

− 4z

[
ma2 − ia

3∑
i=1

sin(kia)γi − ia
1

2i

[
e−ωa − eωa

]
γ4

]

=− 4e−ωx4

[
ma2 − ia

3∑
i=1

sin(kia)γi + a sinh(ωa)γ4

]
,

(2.36)

and the denominator,

(z − eωa)(z + e−ωa)(z + eωa) =2e−ωa(e−ωa − eωa)(e−ωa + eωa) (2.37)

=− 4e−ωa sinh(2ωa) · (2.38)
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2. z = eik4a = −e−wa the numerator becomes,

(−)x4/a4e−ωx4

[
ma2 − ia

3∑
i=1

sin(kia)γi − a sinh(ωa)γ4

]
· (2.39)

Note that since eika = −e−ωa, raising both sides to the power of x4/a yields

eikx4 = (−)x4/ae−ωx4 . The denominator reads,

−2e−ωa(e−ωa + eωa)(−e−ωa + eωa) = 4e−ωa sinh(2ωa) · (2.40)

Finally, summing the residues results in

D̃F =

∫
d3k

(2π)3

eik.x−ωx4

sinh(2ωa)

{[
ma− i

3∑
i=1

sin(kia)γi + sinh(ωa)γ4

]
(2.41)

+ (−)x4/a

[
ma− i

3∑
i=1

sin(kia)γi − sinh(ωa)γ4

]}
·

For e−ωa = −M +
√

1 +M2 where M =
√
m2a2 +

∑3
i=1 sin2(kia), expanding

both sides for lattice spacing a→ 0 up to order a2 yields,

1− ωa = −a
√
m2 + k2 +

√
1 + a2(m2 + k2) = −a

√
m2 + k2 + 1 +O(a2) ,

(2.42)

i.e.

ω(k)→
√
m2 + k2 · (2.43)

So far, we have seen that the free naive lattice fermion propagator satisfies the

continuum limit, Eq. 2.29 as well as the seemingly correct dispersion relation.

However, let us observe the denominator of Eq. 2.30, explicitly written in Eq. 2.31.

In the massless limit, the denominator vanishes when ki = niπ/a where ni can

only be either 0 or 1, on the spacial direction as well as k4 = niπ/a for the same

values, given that k ∈ (−π/a, π/a]. This leads to 24 poles, in contrast to the

continuum case where there is a single pole at kµ = (0, 0, 0, 0). Hence the energy

ω is equal to zero at more points than just the rest frame. This is known as the

“fermion doubler problem”. In the next sections we discuss methods to overcome
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this problem.

2.1.5 Free Field Wilson Fermion Propagator

Consider the following lattice action for massless fermions,

S =
∑
x,y

ψ̄(x)D(x− y)ψ(y) · (2.44)

According to the Nielsen-Ninomiya theorem, the properties below cannot hold

simultaneously [49]:

1. D(x) is local i.e. D̃(p) is a periodic, analytic function of pµ.

2. D̃(p) ∝ γµpµ for a|pµ| � 1

3. D̃(p) is invertible for pµ 6= 0

4. {γ5, D̃(p)} = 0

Note that violating locality results in discontinuities in the derivatives of the

propagator. The second and third cases are related to having a single flavor of

Dirac fermions in the continuum limit. We have come across the third case in

our discussion of the doubling problem. Any attempt to solve this issue involves

violation of one of the other conditions. The last point is a statement about chiral

symmetry which will be discussed later on.

There is a simple method by which one can resolve the doubling problem. This

method involves adding a term to the mass. It is clear that introducing a mass

term breaks chiral symmetry. As a result, the Nielsen-Ninomiya theorem still

holds. However, we still need to check that the continuum fermion propagator

and the continuum dispersion relation still hold with the addition of this term.

Let

M(k) = m+
1

a

4∑
µ=1

(1− cos(kµa)) = m+
1

a

3∑
i=1

(1− cos(kia)) +
1

a︸ ︷︷ ︸
Ω(k)

−1

a
cos(k4a) ,

(2.45)

40



2.1. The Basics

where the k4-independent part is denoted by Ω(k). Note that the Wilson term

in position space, found by taking inverse Fourier transform, takes the form:

−a
4∑

µ=1

δx+µ̂,m − 2δx,y + δx−µ̂,y
2a2

, (2.46)

which is a discretization of −(a/2)∂µ∂µ. Therefore, due to the pre-factor a, the

Wilson term goes to zero when the continuum limit a → 0 is taken. Using the

relabelling in Eq. 2.45, one can observe that the form of the propagator is the

same as that in Eq. 2.30 i.e.

D̃F = 〈ψ(x)ψ̄(0)〉 =

∫
dk4

2π

d3k

(2π)3

Ma2 − ia sin(kµa)γµ
M2a2 +

∑
µ sin2(kµa)

eik4x4eik.x · (2.47)

The denominator can be written as follows:

M2a2 +
∑
µ

sin2(kµa) =a2

[
Ω2 − 2

a
Ω cos(k4a) +

1

a2
cos2(k4a)

]
+
∑
i

sin2(kia) + 1− cos2(k4a)

=a2Ω2 − 2aΩ cos(k4a) +
3∑
i=1

sin2(kia) + 1 ,

(2.48)

which vanishes when the right hand side is zero. Therefore,

cos(k4a) =
a2Ω2 +

∑
i sin

2(kia) + 1

2Ωa

=
[ma+

∑
i(1− cos(kia)) + 1]2 + 1 +

∑
i sin

2(kia)

2 [ma+
∑

i(1− cos(kia)) + 1]
≡ cosh(ωa) ·

(2.49)

One can check that with the above identification, the energy ω makes sense

by taking the continuum limit of the above expression (also see Eq. 2.43). Note

however, that the exact relation between ω and k4 is more subtle and is addressed

in detail when the poles are computed below. Expanding the left hand side for

small a gives,

1 +
1

2
(k2 +m2)a2 +O(a4) · (2.50)
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On the other hand the expansion of cosh(ωa) = 1 + ω2a2

2
. Comparing the two

equations implies

ω(k)→
√
m2 + k2 , (2.51)

as required. Now, as before, we start by changing variables to z = eik4a in

Eq. 2.48. Note that the relevant integral is now over a unit circle in the complex

z plane and dk4 = dz
iaz

. The z in the denominator of the measure multiplies the

term in Eq. 2.48 to give

z

(
a2Ω2 − aΩ

(
z + z−1

)
+
∑
i

sin2(kia) + 1

)
= 0

⇒− 2

(
a2Ω2 +

∑
i sin

2(kia) + 1

2aΩ

)
︸ ︷︷ ︸

λ

z + z2 + 1 = 0 ,
(2.52)

which in turn implies,

z = λ±
√
λ2 − 1 · (2.53)

Note that it is important to keep track of the factor −1
ia2Ω

. At this stage, a few

checks need to be made:

1. Because Ω > 0, it immediately implies that λ > 0. For z to be real, we must

have λ ≥ 1. This condition is also satisfied for aΩ > 0 which can be easily

verified by plotting λ as a function of aΩ. This is shown in Fig. 2.5(a).1

2. Only one pole i.e. z = λ −
√
λ2 − 1 lies within the unit circle for λ > 1,

right graph in Fig. 2.5(b).

3. Now, we need to consider how to write z as a function of ω correctly.

z = ±eωa results in a divergent integral for large time due to the term

eik4x4 = eωx4 . Therefore, z 6= ±eωa.

4. The only other possibilities are z = ±e−ωa corresponding to k = iω and

k = iω + π. Since the solution 0 < λ −
√
λ2 − 1 < 1 for λ > 1 (from the

1To plot the graph, λ is merely treated as a mathematical function of aΩ without considering
its dependence on any physical parameter such as m. When ki = 0 or π, sin(kia) in the
numerator for λ vanishes while aΩ takes a minimum or a maximum value respectively.
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Figure 2.5: Plots of λ vs aΩ and z vs λ

plot), z 6= −e−ωa leaving only one possibility: z = e−ωa i.e. k = iω.

Hence, there is only one contributing pole corresponding to z = λ −
√
λ2 − 1 ≡

e−ωa. Substituting back into Eq. 2.47 and using the residue theorem,

D̃F =〈ψ(x)ψ̄(0)〉 (2.54)

=
1

2a2

∫
d3k

(2π)3

Ωa2 − a cosh(ωa)− ia∑3
i=1 sin(kia)γi + aγ4 sinh(ωa)

Ω sinh(ωa)
e−ωx4eik.x ·

(2.55)

The leading contribution to the integral, as x4 = t increases, corresponds to the

lowest possible value of ω.

DF → e−m×nta , for t→∞ · (2.56)

We can explicitly check that the doubling problem has been solved. Observing

Eq. 2.45 and Eq. 2.48, we see that in the massless limit, the denominator only

vanishes for kµ = (0, 0, 0, 0) and there are no doublers. With the mass present,

expanding both sides of e−ωa ≡ z = λ−
√
λ2 − 1 for small a gives,

1− ωa = 1−ma+O(a2) =⇒ ω(k = 0) = m , (2.57)

as expected.
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2.2 Chiral Symmetry and Domain Wall Fermions

2.2.1 Chiral Symmetry

Before discussing what chiral symmetry is, let us recall the representations of the

Lorentz group for spin-1/2 particles. Using the chiral (Weyl) representation of

the gamma matrices in Minkowski space [50]

γµ =

 0 σµ

σ̄µ 0

 , (2.58)

where

σµ ≡ (1, σ) and σ̄µ ≡ (1,−σ) · (2.59)

The generators for infinitesimal boost and rotations are:

σ0i =
i

4
[γ0, γi] =

i

2

−σi 0

0 σi

 =
i

2
γ0γi , (2.60)

σij =
i

4
[γi, γj] = − i

4

2iεijkσk 0

0 2iεijkσk

 =
1

2
εijkΣk · (2.61)

The fact that both of these have a block-diagonal form implies that the Dirac

representations is reducible. Therefore, one can consider each block separately

and form a 2-dimensional representation,

ψ =

ψL
ψR

 , (2.62)

where ψL and ψR are known as left-handed and right-handed Weyl spinors, each

transforming under a separate irreducible representation of the Lorentz group.

Then an invariant Lagrangian can be built, using combinations of spinor fields ψ

and the gamma matrices, from which the Dirac equation can be derived. For the
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case of the massless Dirac equation we have,

(iγµ∂µ)

ψL
ψR

 = 0 ⇒

 0 iσµ∂µ

iσ̄µ∂µ 0


ψL
ψR

 = 0 · (2.63)

In other words,

(E − σ.p)ψR = 0 ⇒ (σ.p)ψR = +EψR ⇒ (σ.p̂)ψR = +ψR , (2.64)

where we have used that fact that for massless particles |p| = E. Similarly,

(σ.p̂)ψL = −ψL , (2.65)

meaning that ψL and ψR are eigenstates of the helicity operator

h =
1

2

σ.p̂ 0

0 σ.p̂,

 , (2.66)

with eigenvalues −1/2 and +1/2 respectively. The existence of a mass term in the

Lagrangian would mix the two components which is the reason the massless case

is being considered here. It is important to note that since massless particles have

no rest frames, if a particle has helicity 1/2 in one frame, it will have the same

value in all frames. Therefore it can be said that for massless particles helicity

(i.e. chirality) is an intrinsic property. This is clearly not the case for massive

particles, since observers in different frames can measure different helicities. It is

also worth mentioning that using the basis in Eq. 2.58 for the gamma matrices

made the reducibility manifest which would not have been the case if we had

chosen a different basis. As well as that, γ5 takes the diagonal form:

γ5 =

−1 0

0 1

 , (2.67)

45



2.2. Chiral Symmetry and Domain Wall Fermions

with the usual relation {γ5, γµ} = 0. We can now construct the projection

operators PR and PL such that:

PR =
1 + γ5

2
=

0 0

0 1

 , (2.68)

PL =
1− γ5

2
=

1 0

0 0

 · (2.69)

It is easy to see,

PR

ψL
ψR

 =

 0

ψR

 , (2.70)

i.e. PR project to the right-handed component. Similarly

PL

ψL
ψR

 =

ψL
0

 , (2.71)

and

γ5

 0

ψR

 =

 0

ψR

 , γ5

ψL
0

 = −

ψL
0

 · (2.72)

The massless Dirac Lagrangian takes the form

L = iψ̄ /Dψ = i

(
ψ†R ψ†L

) 0 σµ∂µ

σ̄µ∂µ 0


ψL
ψR

 = iψ†Rσ
µDµψR + iψ†Lσ̄

µDµψL ·

(2.73)
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However, including a mass term would mix the right- and left-handed parts:

mψ̄ψ = m
(
ψ†RψL + ψ†LψR

)
· (2.74)

The Dirac Lagrangian has an exact U(1) symmetry ψ → eiαψ under which the

left- and right-handed components rotate with the same phase. This is known

as the “vector symmetry”. According to Noether’s theorem, we can associate

to every symmetry a conserved current. In other words for an infinitesimal field

transformation φ→ φ+ εδφ:

Jµ = − ∂L
∂(∂µφ)

δφ and ∂µJ
µ = −δL · (2.75)

In this case ψ → (I + iα)ψ = ψ + iαψ ⇒ δψ = iψ , therefore

Jµ = ψ̄γµψ , ∂µJ
µ = 0 , (2.76)

where we have used the Dirac equation when computing the divergence of J . The

associated conserved charge is of the following form:

Q =

∫
d3x J0 =

∫
d3x ψ†ψ =

∫
d3x (ψ†LψL + ψ†RψR) = (NL − N̄L) + (NR − N̄R)·

(2.77)

Hence,

Q = (NL +NR)− (N̄L + N̄R) · (2.78)

Physically this means that the fermion number is conserved. For the case m =

0, the Lagrangian has yet another symmetry where the left- and right-handed

components rotate with opposite phase ψ → eiαγ5ψ. This is known as “axial

symmetry” U(1)A.

JµA = ψ̄γµγ5ψ , ∂µJ
µ
A = 2imψ̄γ5ψ · (2.79)

The corresponding classically conserved charge is

QA =

∫
d3xψ†γ5ψ =

∫
d3xψ†LψL − ψ†RψR · (2.80)
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Therefore,

QA = (NL − N̄L)− (NR − N̄R) · (2.81)

This implies that when the divergence of J vanishes, the difference in the number

of (unpaired) left- and right-handed fermions remains constant.

2.2.2 The axial anomaly

It is possible to relax the condition for chiral symmetry written in Sec. 2.1.5, i.e.

{D, γ5} = 0, on the lattice according to the Ginsparg-Wilson relation [51]:

{D, γ5} = aDγ5D , (2.82)

for a given Dirac operator D. This condition allows for the recovery of the correct

chiral symmetry in the continuum limit as a→ 0. An example of a lattice Dirac

operator satisfying this relation is discussed in Sec. 2.2.6 in more detail.

The axial transformation on the lattice takes the form:

ψ → exp
(
iαγ5

(
1− a

2
D
))

ψ , ψ̄ → ψ̄ exp
(
iα
(
1− a

2
D
)
γ5

)
· (2.83)

This transformation leaves the Lagrangian for massless fermions, i.e. ψ̄Dψ,

invariant, given Eq. 2.82. Generalizing the above transformation to multiple

flavors with M being the flavor matrix, taking a infinitesimal transformation for

small α and keeping only the leading term in α, we have

ψ →
(
1 + iαMγ5

(
1− a

2
D
))

, ψ̄ → ψ̄
(
1 + iαM

(
1− a

2
D
)
γ5

)
· (2.84)

The flavor matrix M , can be chosen to be the identity 1Nf , representing the

singlet case or one of the generators of SU(Nf ) for the non-singlet case. Noting

that ψ and ψ̄ are Grassmann variables, the fermionic measure in the path integral

transforms as,

D[ψ, ψ̄] → D[ψ, ψ̄] det
[
1 + iαMγ5

(
1− a

2
D
)]

det
[
1 + iαM

(
1− a

2
D
)
γ5

]
(2.85)
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= D[ψ, ψ̄] det
[
1 + iαMγ5

(
1− a

2
D
)]2

· (2.86)

To obtain the second line, we have multiplied the argument of the second

determinant in the first line by 1 = γ2
5 and used the cyclic property of the

determinant. Using the formula det[A] = exp(tr[lnA]), expanding the logarithm

in powers of α and then expanding the exponential to leading order we obtain

det
[
1 + iαMγ5

(
1− a

2
D
)]2

=1 + 2iα tr
[
Mγ5

(
1− a

2
D
)]

+O(α2) (2.87)

=1− 2iα× a

2
trF [M ]tr[γ5D]·

Note that the first trace, over M , is only over flavor indices while the second

is over position, Dirac and color matrices. We have also used trace over the

Dirac indices trD[γ5] = 0 to write the last equation. For the flavor non-singlet

case, where M is one of the SU(Nf ) generators, trF [M ] = 0. However, the flavor-

singlet case M = 1Nf , is non-trivial as the trace does not vanish. Here, we clearly

observe the non-invariant term which makes the transformation of the measure

non-trivial for the flavor-singlet case, making it the source of the axial anomaly.

It can be shown that this term is equivalent to the topological charge [52], which

is the lattice QFT version of the classical charge derived in Eq. 2.81.

2.2.3 Domain Wall: The Model

The following is based on the Shaposhnikov-Rubakov model [53]. Consider a

Minkowski space with four spatial dimensions and one time component with

ordinary particles confined inside a potential-well which is flat in the three spatial

dimensions and very narrow in the extra spatial dimension. The extra dimension

is denoted by the index “5” to avoid confusion. A particle created in a high

energy collision whose energy exceeds the depth of the well can come out of the

well and propagate in the extra direction as well. This particle, however, cannot

be detected by our measuring apparatus since it is sitting inside the well and the

process will seem to violate energy-momentum conservation. Note that the usual

four dimensional space-time plane now acts like a “Domain Wall”, as shown in

Fig. 2.6, splitting the extra dimension into two parts i.e. section above or below

the 4D plane.
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Domain Wall

Figure 2.6: Domain Wall

To understand this model more, consider the following scalar Lagrangian 2:

L =
1

2
∂µφ∂

µφ+
1

2
m2φ2 − λ

4
φ4 , µ = 0, 1, 2, 3, 5 · (2.88)

Note that the potential

V (φ) =
1

2
m2φ2 +

λ

4
φ4 , (2.89)

is the familiar Higgs potential. Suppose that φ(x5) in the extra spatial dimension

x5 is independent of φ at the other three x = (x1, x2, x3). The energy of the

system in the extra direction can then be written as

H =
1

2

(
dφ(x5)

dx5

)2

+
λ

4

(
φ2 − m2

λ

)2

, (2.90)

where we have completed the square and ignored the shift in the energy by

−m2/4λ. Since H is greater than or equal to zero, we can solve a first order

differential equation for φ(x5) to obtain its value at the minimum of H i.e. when

H = 0,

dφ(x5)

dx5
=

√
λ

2

(
φ2 − m2

λ

)
⇒

∫
1

φ2 −m2/λ
dφ =

∫ √
λ

2
dx5 · (2.91)

2Note there is no index “4”, the time direction is indexed by “0” and the extra spatial
dimension is indexed by “5”.
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Hence,

φ(x5) =
m√
λ

tanh

(
mx5

√
2

)
· (2.92)

For sufficiently large m, the above functions takes the form a step function and

H, which involves the first derivative of φ(x5), takes the form of a delta function.

Using the Euler-Lagrange equations, the equation of motion for φ(x5) is

∂2φ(x5)−m2φ(x5) + λφ3(x5) = 0 · (2.93)

Since φ(x5) is the classical solution for the extra independent direction, it is from

now on denoted by φcl so that

φ = φcl + φ′ , (2.94)

where φ′ describes the fluctuations about the classical solutions. The equation of

motion for φ′ now reads:

∂2φ′ −m2φ′(x) + λ
(
φcl
)2
φ′ = 0 , (2.95)

where we have used ∂2φcl −m2φcl + λ(φcl)3 = 0 and kept only first order terms

in φ′ for the cubic part. One can check by substitution that one solution to the

above equation is of the form

φ′(x0,x, x5) =

(
dφcl(x5)

dx5

)
e−ik.x+iEx0

, E2 = k2 · (2.96)

The planewave part of the solution (the massless Klein-Gordon equation),

corresponds to a massless scalar particle living in 3+1-dimensions i.e. confined

to the domain wall. Indeed the derivative of φ(x5) in Eq. 2.92 looks like a

narrow bump at a point in x5 and nearly flat otherwise. At low energies the

particle cannot escape this bump in the 5th direction and remains confined to

3+1-dimensions.

There are two other solutions to Eq. 2.95, one describing massive particles
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which are also confined inside the wall and another which corresponds to massive

particle that are not confined. However, for the purpose of our discussion, we are

only interested in the massless case explained above.

2.2.4 Domain Wall Fermions in Euclidean Space-Time

The model in the previous section can be extended to account for massless

fermions living in 3+1-dimensions [49, 54, 55]. We start by treating the classical

field φcl(x5) = hV (s) as a potential in the extra dimension, calling the coordinate

along the latter s, and writing the Dirac equation as

[
γµDµ + γ5∂s + hV (s)

]
ψ(xµ, s) = 0 · (2.97)

This equation has a solution:

ψ(x0,x, s) = exp

(
−h
∫ s

0

V (s′)ds′
)
× ψ(x4,x) , (2.98)

where h > 0 and so it is normalizable. One can easily check by substitution that

ψ(x4,x, s) satisfies the above equation if and only if ψ(x4,x) is a right-handed

spinor, ψ(x4,x) ≡ ψR(x4,x) satisfying the corresponding massless Dirac equation,

σµDµψR(x0,x) = 0, which is clearly confined to domain wall i.e. the usual 3+1-

dimensions. Note that there is nothing special about ψ(x4,x) being right-handed.

If we had chosen the potential term such that h < 0 then the exponent would

have had an opposite sign, requiring a left-handed massless spinor ψ(x0,x) for

the equation to be satisfied.

The potential can now be taken to be of the form of a step function. Moreover

we can choose it to be a function of mass such that

m(s) =

m s > 0

−m s < 0
(2.99)

where m > 0. Now let ψn(x) be an eigenstate of the covariant derivative operator

/D:

/Dψn = −λnψn · (2.100)
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Then, using Eq. ?? and Eq. ?? one hasσµDµψR,n(x) = −λnψR,n(x) ,

σ̄µDµψL,n(x) = −λnψL,n(x) ·
(2.101)

At this stage, we can expand the right- and left-handed components in 5-

dimensions i.e. ψR(x, s) and ψL(x, s) in the eigenstates of /D and make use

of separation of variables to separate the usual 3+1-dimension from the extra

component s: ψL(x, s) =
∑

n bn(s)ψL,n(x) ,

ψR(x, s) =
∑

n fn(s)ψR,n(x) ·
(2.102)

Eq. 2.97 can now be written out explicitly to give
 0 σµDµ

σ̄µDµ 0

+

−1 0

0 1

 ∂s +

m(s) 0

0 m(s)



ψL(x, s)

ψR(x, s)

 = 0 ,

(2.103)

which implies DµσµψR(x, s) + (−∂s +m(s))ψL(x, s) = 0

Dµσ̄µψL(x, s) + (∂s +m(s))ψR(x, s) = 0
(2.104)

Expanding above in eigenbasis of /D using Eq. 2.102 and separation of variables

yields, [−∂s +m(s)]bn(s) = λnfn(s)

[∂s +m(s)]fn(s) = λnbn(s)
(2.105)

So far it can be said that the spectrum consists of an infinite tower of massive

Dirac fermions with mass of order m. However, the solution when the eigenvalue

λ = 0 is,

f0(s) = N exp

(
−
∫ s

0

m(s′)ds′
)

= Ne−m|s| , (2.106)
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which is localised near s = 0 falling off exponentially on either side. Hence, there

is a single massless right-handed fermion localised near the mass defect (i.e. the

domain wall) as mentioned earlier in Eq. 2.98. Moreover, the other solution,

b0(s) = N exp

(
+

∫ s

0

m(s′)ds′
)
, (2.107)

is of course not normalizable since it grows exponentially in |s| and it is discarded.

Having said that, this is no longer an issue if we consider finite volume with

periodic boundary conditions such that ψ(xµ, s + 2s0) = ψ(xµ, s) where s is

defined to be −s0 < s < s0. The two zero mode solutions are now given by:

f0(s) = Nf exp

(
−
∫ s

−s0
m(s′)ds′

)
, b0(s) = Nb exp

(
+

∫ s

−s0
m(s′)ds′

)
·

(2.108)

Analysing the second equation further, fors < 0 :
∫ s
−s0 −m = −m(s+ s0)⇒ e−m(s+s0) is 1 when s = −s0 ,

s > 0 :
∫ s

0
m = ms⇒ ems is maximum when s = s0 ·

(2.109)

Therefore, we accept both solutions at finite volume.

2.2.5 Domain Wall Fermions on the Lattice

The aim of this section is to use the Domain Wall formalism discussed in Sec. 2.2.3

and Sec. 2.2.4 to construct the theory of Domain Wall Fermions on the lattice

[49]. If the discretization is done naively, one again ends up with doublers just as

in the naive case discussed in Sec. 2.1.4. However, adding a Wilson term r
2
∇∗∇,

as in Eq. 2.46, for each of the dimensions and treating it is as a mass term,

removes the doublers. In this notation, ∇ and ∇∗ are the forward and backward

lattice difference operators respectively. Let the Wilson term be a mass term,

independent of s but dependent on the wavenumber k denoted by ∆m(k). In

other words, ∆m(k) is a k-dependent spatially constant mass which is added to

the step function mass m(s) = mε(s). Thus, for an infinite extra dimension,

f0(s, k) = N exp

(
−
∫ s

0

m(s′)ds′ + ∆m(k)

)
· (2.110)
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2.2. Chiral Symmetry and Domain Wall Fermions

One can check that for |∆m| < m Eq. 2.110 is normalizable for all s. However,

for |∆m| > m and s < 0, the solutions becomes more and more extended in the

extra dimensions until it fails to be normalizable. Let us examine this in more

detail. Using separation of variables, the zero-mode solutions take the form,

ψ(x, s) = eipxφ±(s)ψ±(x) with γ5ψ±(x) = ±ψ(x) , (2.111)

where ψ±(x) are constant 4-component chiral spinors satisfying the usual

massless 4-d Dirac equation. Note that ψ± are eigenstates of γ5 and transform

independently under Lorentz transformations. Then for r = 1 in the Wilson term
r
2
∇∗∇,

/p4
ψ± = 0 and − φ±(s∓ 1) + (meff + 1)φ±(s) = 0 , (2.112)

where meff = mε(s) +
∑

µ(1− cos pµ) ≡ mε(s) +F (p), and F (p) = ∆m, with ε(s)

being the step function. To derive the latter, the Wilson term 1
2
∇∗∇ is added

for each direction. The s dependent part of the equation of motion, together

with the Wilson term in the other four directions in momentum space, takes the

following form:

0 =± 1

2a
[(φ±(s+ µ̂s))− (φ±(s− µ̂s))]

+

[
mε(s) +

−δs+µ̂s,s′ + 2δs,s′ − δs−µ̂s,s′
2a

+
1

a

4∑
µ=1

(1− cos(kia))

]
φ±(s)

= ± 1

2a
[(φ±(s+ µ̂s))− (φ±(s− µ̂s))] +mε(s)φ±(s)

+
−φ±(s+ µ̂s) + 2φ±(s)− φ±(s− µ̂s)

2a
+

1

a

4∑
µ=1

(1− cos(kia))φ±(s)

= −φ±(s∓ 1) + (meff(s) + 1)φ±(s) ,

(2.113)

where the ± is due to the action of γ5 on ψ±. The solutions take the form

φ±(s) = zs± where

z± = (1 +meff(s))∓ = (1 +mε(s) + F (p))± · (2.114)
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2.2. Chiral Symmetry and Domain Wall Fermions

This can be readily seen by substituting for φ±(s) = zs± with z± = (1 +meff(s))∓

in the RHS of Eq. 2.113. The solutions are normalizable if |z|ε(s) < 1 sinceFor s > 0 |z| < 1 so that φ = zs is normalizable.

For s < 0 1
|z| < 1 so that φ = z−|s| is normalizable.

(2.115)

Examining the φ− solution, one can see that for s > 0, |1 + m + F (p)| > 1 and

for s < 0, |1 + m + F (p)| could be less than 1 when F (p) = 0 which implies

φ−(s) is not a valid solutions. The same check shows that the normalizablity

condition is always satisfied for φ+(s) when s > 0. For s < 0, for the solution

to be normalizable, one would need 1
|z| < 1 i.e. |1 −m + F | < 1 resulting in the

following constraint for the value of m:

F (p) < m < 2 + F (p) (2.116)

the case where 0 < m < 2 corresponds to a single right-handed mode at p = 0.

For the details of how the spectrum behaves see chapter 3 of [49].

2.2.6 Overlap fermions

In the continuum, the massless QCD Lagrangian has a global symmetry given

by the transformation ψ → eiαγ5ψ as discussed in an earlier section. This can be

summarized as:

{D, γ5} = 0 , (2.117)

where D = γµ(∂µ + iAµ) is the massless Dirac operator. The corresponding

equation for chiral fermions on the lattice was derived by Ginsparg and Wilson

[51]:

{D, γ5} = aDγ5D , (2.118)

whereD is the massless lattice Dirac operator. Such an operator leads to a chirally

symmetric action in the continuum limit. It was later shown by Neuberger [56]
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2.2. Chiral Symmetry and Domain Wall Fermions

that the solution to the Ginsparg-Wilson Eq. 2.118 is given by

aD =1 + γ5ε(H(−m)) (2.119)

=1 + γ5
H(−m)√
H(−m)2

(2.120)

=1 +
Dw −m√

(Dw −m)†(DW −m)
(2.121)

which is known as the overlap operator. In the above, ε(H(−m)) is the sign-

function and H(−m) = γ5(DW −m) = γ5

(
/D − r

2
D2 −m

)
where Dµ and D2 are

the symmetric covariant derivative and covariant Laplacian Wilson term on the

lattice respectively. The doublers are taken care of by the Wilson term.

It can be checked explicitly that in the continuum limit Eq. 2.121 reduces to

the usual massless continuum Dirac operator as expected. In the case of the free

theory, H(−m) = γ5

(
/∂ − r

2
∂2 −m

)
so that,

Dw −m√
(Dw −m)†(Dw −m)

=
(
/∂ − r

2
∂2 −m

)[(
/∂ − r

2
∂2 −m

)† (
/∂ − r

2
∂2 −m

)]−1/2

≈
(
/∂ − r

2
∂2 −m

) [
−∂2 +m/∂ +

r

2
m∂2 −m/∂ +

r

2
m∂2 +m2

]−1/2

=
1

m

(
/∂ − r

2
∂2 −m

)[
− ∂

2

m2
+

/∂

m
+

r

m
∂2 − /∂

m
+ 1

]−1/2

≈ /∂

m
− 1 + · · · ·

(2.122)

Therefore, the massless overlap operator in continuum limit reduces to the usual

massless Dirac operator:

Dov →
/∂

am
, (2.123)

where am is a finite multiplicative factor. The key point here is that Nielsen-

Ninomiya no-go theorem can be bypassed by taking the chiral transformation

not to have their usual definition of continuum on the lattice as in Eq. 2.117, but

instead a different form as in Eq. 2.118, whilst insisting only on producing the

continuum result when a→ 0 [57]. The locality of the overlap operator, however,

is not immediately obvious due to the inverse square root term. Strict locality
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2.2. Chiral Symmetry and Domain Wall Fermions

condition implies that the non-zero terms in the sum

Dψ(x) = a4
∑
y

D(x, y)ψ(y) , (2.124)

come from the points y in a finite neighbourhood of x, and that the kernel D(x, y)

only depends on the gauge fields variables near x. Due to the form of the overlap

operator Eq. 2.121, containing the inverse square root term, it is clear that the

operator is not local in the above restricted sense. Having said that, this definition

of locality can be generalised. It has been proved in [58], that Dov is local with

exponentially decaying tails. As long as the decay rate can be shown to be

proportional to 1/a, this generalised form of locality is as good as the strict sense

from the point of the continuum limit.

In our simulations, we have used Shamir and Möbius domain wall fermions,

discussed in the next section. It has been demonstrated in [59] that there

exists a regime, in terms of the inverse lattice spacing, such that DWFs have

the acceptable degree of locality. It is also worth mentioning that that the

overlap formulation of lattice fermions can also be derived from the domain wall

formulation [60].

2.2.7 Shamir and Möbius Domain Wall Fermions

The particular type of domain wall fermions used for simulation of the physical

point lattices in the recent RBC/UKQCD charm project is known the Möbius

domain wall fermions [61–63]. This has had the effect of suppressing residual

chiral symmetry breaking whilst reducing the computational cost of having a

large domain wall height Ls. We state some of the key properties in this section.

The details are discussed in [64]. The Möbius kernel is,

HM = γ5
(b+ c)Dw

2
a

+ (b− c)Dw

, (2.125)

with Dw(M) being the usual Wilson matrix

Dw(M) = M + 4− 1

2

(
(1− γµ)Uµ(x)δx+µ,y + (1 + γµ)U †µ(y)δx−µ,y

)
· (2.126)
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2.3. QCD path integral

Then, DMöb is taken to be

DMöb =
1 +m

2
+

1−m
2

γ5
(1 +HM)Ls − (1−HM)Ls

(1 +HM)Ls + (1−HM)Ls
. (2.127)

which is an approximation to the massive overlap operator. Notice that

ε(HM , Ls) =
(1 +HM)Ls − (1−HM)Ls

(1 +HM)Ls + (1−HM)Ls
(2.128)

is an approximation to the sign function, such that

lim
Ls→∞

ε(HM , Ls) = sgn(HM) (2.129)

To see this, one can simply consider the two cases where HM > 0 and HM < 0.

In the former case, we can divide the numerator and denominator by (1+HM)Ls .

Then the ratio (1−HM )Ls

(1+HM )Ls
→ 0 as L → ∞ implying ε(HM) → +1. On the other

hand, if HM < 0, we can divide the numerator and denominator by (1−HM)Ls

so that (1+HM )Ls

(1−HM )Ls
→ 0 as L→∞ implying ε(HM)→ −1, leading to the definition

of the sign function. Another point to note is that changing Möbius parameters

b+ c while fixing b− c = 1, makes the Möbius kernel proportional to the Shamir

kernel [54, 55, 65] used for the non-physical point ensembles in our simulations. In

other words, the two formulations merely differ in their approximation to the sign

function and in the limit where Ls →∞, both Möbius and Shamir formulations

in the action reduce to the action formed using the overlap operator [64]. For a

review of the properties of generalized DWFs with Möbius kernel and the mapping

between such fermions and overlap fermions see Ref. [63].

2.3 QCD path integral

Given the fermionic SF and gauge SG actions, the Euclidean QCD path integral

is written as:

Z =

∫
D[ψ, ψ̄]D[U ]e−SF [ψ,ψ̄,U ]−SG[U ] , (2.130)
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2.3. QCD path integral

where

D[ψ, ψ̄] =
∏
x

∏
f,α,c

dψ(f)(x)α,c dψ̄
(f)(x)α,c , D[U ] =

∏
x

4∏
µ=1

dUµ(x) , (2.131)

with x being the lattice sites, f the fermion flavor, α the spinor index and c the

color index. ψ and ψ̄ are Grassmann variables which are integrated out and end

up as a fermionic determinant. The quark flavors included in the computation

of this determinant are knows as the sea quarks which are interpreted as those

particles that participate in virtual creation and annihilation in the loops. In this

context, we refer to the quark flavors not included in this determinant as valence

quarks, meaning they are too heavy to be generated from the vacuum as particle

anti-particle pairs. The path integral as a function of the gauge fields is now:

Z =
∏
x,µ

∫
dUµ detD[U ]e−SG[U ] , (2.132)

where D is the Dirac matrix. A generic correlator of fields 〈O〉 can be expressed

as,

〈O〉 =
∏
x,µ

∫
dUµ detD[U ]e−SG[U ]O[U ] · (2.133)

The integral can be viewed as a sum over all possible gauge field configurations.

Using a Monte Carlo simulation, the above expression can be approximated by

taking an average over N gauge field configurations Ui, where i = 1, · · · , N

〈O〉 ≈ 1

N

N∑
i=1

O[Ui] (2.134)

with Ui’s drawn according to the Boltzmann probability distribution

P [Ui] = detD[Ui]e
−SG[Ui]. (2.135)

There are different types of Monte Carlo algorithms that can be used for

generating the gauge fields configurations. For the charm project, the exact

hybrid Monte Carlo (HMC) algorithm has been used. Discussing the properties

and techniques used are beyond the scope of the current thesis. For details and
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2.4. RBC/UKQCD charm project - Run I

the choice of parameters, see Ref. [64].

Computing the fermionic determinant in Eq. 2.133 is non-trivial. Setting

the determinant to unity is known as the quenched approximation. Most of

lattice results in the 1980s and 1990s were obtained in this approximation and

predicted the ground state spectrum of hadrons with light quarks [66]. However,

as mentioned before, this approximation ignores the quarks in the sea sector

and there is an unknown systematic error of order 15% empirically [67, 68]. A

simulation which includes the determinant and hence the vacuum structure of

fermions is knowns as a dynamical simulation.

2.4 RBC/UKQCD charm project - Run I

In this section we state the parameters used in our RBC/UKQCD charm project

simulations and list the ensembles used to perform fits of meson masses and bag

parameters.

The gauge field ensembles used are generated with the Iwasaki gauge action

[69, 70]. These ensembles are isospin symmetric and have Nf = 2 + 1 dynamical

flavors. There are three different lattice spacing in the range 0.11 − 0.07 fermi

which we denote by Course, Medium and Fine. As mentioned in Sec. 2.2.7, for

the quark fields we have used domain wall fermion actions with Shamir (SDWF)

or Möbius (MDWF) kernels. Performing the continuum extrapolation whilst

having different actions has been discussed and justified in Ref. [64] in great

detail. For the case of Wilson fermions, the explicit symmetry breaking allows

for a dimension-5 clover term, which introduces O(a) discretization effects. The

equivalent to such a term, in the DWF formulation, is of order O(a2mres) which is

always less than 10−3 or even smaller [71], hence it can be neglected. Furthermore,

the existence of chiral symmetry for DWF, implies all terms containing odd

powers of the lattice spacing can be ignored. Apart from the O(a2) terms that are

explicitly fitted in the global fit ansatz, the next to leading order discretization

effects enter at O(a4), and are shown to be negligible in Ref. [64]. Moreover, in

section II.A of Ref. [64], the equivalence of Shamir and Möbius DWF are discussed

in great detail. Finally, additional numerical evidence for the closeness of Shamir
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2.4. RBC/UKQCD charm project - Run I

Name type L/a T/a a−1[GeV] mπ[MeV] hits/conf confs total

C0 MDWF 48 96 1.7295(38) 139.15(36) 48 88 4224

C1 SDWF 24 64 1.7848(50) 339.789(12) 32 100 3200

C2 SDWF 24 64 1.7848(50) 430.648(14) 32 101 3232

M0 MDWF 64 128 2.3586(70) 139.35(46) 32 80 2560

M1 SDWF 32 64 2.3833(86) 303.248(14) 32 83 2656

M2 SDWF 32 64 2.3833(86) 360.281(16) 16 77 1232

F1 MDWF 48 96 2.774(10) 234.297(10) 48 82 3936

Table 2.1: The parameters used in simulating the Nf = 2+1 ensembles. C stands
for coarse, M for medium and F for fine. Note that amongst the large lattices,
C0 and M0 are at the physical point while F1 is at a heavier pion mass. The
column “hits/conf” gives the number of measurement on each configuration where
“hits” is the number of time planes used as sources, with the quark propagators
computed using Z(2) × Z(2) stochastic wall sources. These measurements are
averaged into one bin before any fits are performed. The label “confs” gives the
total number of configurations. The column “total” is the product of the two.

and Möbius ensembles were found by comparing the renormalization factors of

quark masses Zm and the kaon bag parameter ZBK , computed on both ensembles

with Shamir and Möbius fermions in their action. The difference was observed

to be very small, i.e. , 0.2% or less for Zm and 0.25% for ZBK [64].

Parameters of the ensembles and quarks used in the simulation are presented

in Tables 2.1 and 2.2. The details of parameters and properties for all the stated

ensembles, apart from F1, can be found in Ref. [64], where mπ, mK and mΩ

has been used as experimental input in order to determine the lattice scale and

the physical light-quark masses. More specifically, given a fixed bare coupling,

mu = md and ms are adjusted until mπ/mΩ and mK/mΩ take on their physical

values [64]. The F1 ensemble was generated specifically for the RBC/UKQCD

charm and bottom physics programs, the details of which can be found in Ref. [72].

The quark propagators have all been computed using Z(2)×Z(2) stochastic wall

sources [73].

The simulation parameters in the valence sector for light and strange quarks
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Name DWF M5 Ls amuni
l amuni

s amsim
s amphys

s
∆ms
mphys
s

C0 MDWF 1.8 24 0.00078 0.0362 0.0362 0.03580(16) 0.0112(45)

C1 SDWF 1.8 16 0.005 0.04 0.03224, 0.04 0.03224(18) -

C2 SDWF 1.8 16 0.01 0.04 0.03224 0.03224(18) -

M0 MDWF 1.8 12 0.000678 0.02661 0.02661 0.02539(17) 0.0476(70)

M1 SDWF 1.8 16 0.004 0.03 0.02477, 0.03 0.02477(18) -

M2 SDWF 1.8 16 0.006 0.03 0.02477 0.02477(18) -

F1 MDWF 1.8 12 0.002144 0.02144 0.02144 0.02132(17) -0.0056(80)

Table 2.2: Domain wall parameters for the light and strange quarks of all
ensembles. aml and ams are bare quark masses in lattice units. The suffix
“uni” refers to the sea and valence quark having the same mass.

are presented in Table 2.2, while those for the heavy quarks near the charm

mass region are shown in Table 2.3. The light quarks masses are unitary i.e. sea

quarks and valence quarks have the same mass. For ensembles C1, C2, M1 and

M2 where the value of the physical strange quark mass was known [64] prior

to running the measurements, the simulated strange quark mass was partially

quenched to agree with the physical value. For the other ensembles the unitary

value was chosen. To determine the charm parameters, M5, Ls and the charm

mass range for the simulations, quenched DWF studies were performed [74, 75].

Altering M5, the negative mass parameter in the 4D Wilson operator, changes

the cut-off effects while Ls affects the residual breaking of chiral symmetry. These

studies, which focused on the pseudoscalar heavy-heavy and strange-heavy decay

constants, indicated that the cut-off effects are minimal for M5 ≈ 1.6 while the

residual chiral symmetry breaking effects are suppressed for Ls = 12. Rapid

increase in discretization effects were observed as the mass of the input heavy

quark was increased to values above amh ≈ 0.4. For this reason, all the valence

heavy quark masses are chosen to be mh ≤ 0.4, as it can been seen from Table 2.3.

We state the lattice Ward Identities for DWFs and a measure of chiral

symmetry breaking, known as the residual mass, in Sec. 3.9. After explaining

the RI/SMOM renormalization scheme, we present numerical results of the
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Name M5 Ls ambare
h

C0 1.6 12 0.3, 0.35, 0.4

C1 1.6 12 0.3, 0.35, 0.4

C2 1.6 12 0.3, 0.35, 0.4

M0 1.6 12 0.22, 0.28, 0.34, 0.4

M1 1.6 12 0.22, 0.28, 0.34, 0.4

M2 1.6 12 0.22, 0.28, 0.34, 0.4

F1 1.6 12 0.18, 0.23, 0.28, 0.33, 0.4

Table 2.3: Möbius domain wall parameters for the heavy quarks of all ensembles.
The bare quark masses amh, are in lattice units.

renormalization factors on each ensemble. These renormalization factors are

required for renormalizing matrix elements such as the axial current and the

bag parameter obtained from these simulations in Sec. 3.11. The data analysis

and fitting procedures leading to the predictions for the meson masses and the

decay constants as well as the bag and ξ parameters are presented in Chapter 4.

2.5 Statistical Methods

In this section we discuss statistical techniques used in calculation and propaga-

tion of statistical errors in our fitting analyses. To this end, we use a resampling

method such as jacknife and boostrap. A resampling is a procedure in which

a distribution of N independent raw measurements of a quantity {yi ; i =

1, · · · , N}, is resampled in a particular way to create a new distribution of means

{yi ; i = 1, · · · , N}. For jackknife, we discard one of the original N original

measurements and take an average over the remaining N − 1 measurements. We

repeat this for all the N samples resulting in N = N new sample of averages yi.

The error on this mean is estimated as,

σ2 =
N − 1

N

n∑
i=1

(
yi − 〈y〉

)
· (2.136)
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In bootstrap resampling, we drawN samples from the original raw data, randomly

and allowing for replacement. This process is repeated N = Nboot times, with

Nboot ∼ O(500). To obtain the error on the mean, the {yi; i = 1, · · · , Nboots}
are sorted in ascending order. The 16th and 84th percentiles are then selected

bounding the 68% confidence region.

The fitting procedure for a Green’s function is then as follows:

1. Given that successive gauge field configurations are generally correlated,

groups of such measurements are averaged together, known as binning,

leaving a set of N measurements which are taken to be independent for

the rest of the analysis.

2. Measurement of the Green’s functions are made on each of these configu-

rations.

3. The covariance matrix Mt,t′

Mt,t′ = N
N∑
n=1

(
C(n)(t)− C(t)

) (
C(n)(t′)− C(t′)

)
, (2.137)

is then computed. In our analysis, frozen covariance is used i.e. the

covariance matrix is built once using the binned raw data, for which

N = 1
N(N−1)

in Eq. 2.137, and is then kept fixed and used to perform the fits.

Some analysis codes have the frozen covariance matrix computed using the

bootstrap or jackknife resampled data, after step four below. In such cases,

the normalization factor is N = (N − 1)/N for jackknife, and N = 1/Nboot

for bootstrap resampling. The sums is also over the corresponding sample

number. The average, C(t), in these cases corresponds to jackknife or

boostrap average. Alternatively, if the covariance matrix is recomputed

for every yi, then the matrix is said to be unfrozen or dynamical. This is

not used in any part of our analysis.

4. The binned data are resampled using jackknife or bootstrap procedures

explained above.
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5. The fit is performed by minimizing the χ2 function:

χ2(p1, p2, · · · ) =
∑
t,t′

(
yi(t)− 〈y(t, p1, p2, · · · )〉

)
M−1

t,t′

(
yi(t

′)− 〈y(t′, p1, p2, · · · )〉
)
,

(2.138)

with respect to the parameters of the fit, p1 and p2 etc. and the function

in minimized for every resampled data point yi i.e. N times. This gives

a distribution for parameters p1, p2 etc., from which an estimate of the

average and standard error can be derived using the appropriate formula

for jackknife or bootstrap.

The diagonal elements of the covariance matrix Eq. 2.137 give the variance

Mt,t = σ2
t for each time t. The correlation matrix is then defined as:

M̃t,t′ =
Mt,t′

σtσt′
, (2.139)

which is equal to the covariance matrix normalized by the variances, having unity

for the diagonal elements. A correlated fit is one that takes into account the full

correlation between the time slices fitted in Eq. 2.138 for M−1
t,t′ . If the estimate of

the covariance matrix is poor due to not having sufficient data, then the inversion

will be unstable for correlated fits. For our analyses, we use frozen uncorrelated

fits which implies replacing the correlation matrix with the identity matrix i.e.

ignoring the off-diagonal elements of Mt,t′ .
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Chapter 3

Renormalization

Lattice QCD is a method by which Quantum Field Theory can be regulated

non-perturbatively, with a momentum cut-off that is inversely proportional to

the lattice spacing a. When the continuum limit is eventually taken, one

encounters the usual ultraviolet divergences at high frequencies unless they

have been removed via a certain renormalization scheme. Non-perturbative

renormalization Momentum Subtraction (MOM) schemes have been introduced

in [76, 77] and have been in use for a number of years. These schemes specify

conditions, at the chiral limit of QCD, to determine the renormalization of

the fermions wave function, fermion mass and composite operators such as

the fermions bilinears. In other words, these schemes are mass-independent

implying that the renormalization conditions are independent of the fermion

mass. The renormalization scale µ in MOM schemes should be within the so-

called “renormalization window”:

aΛQCD � aµ� π , (3.1)

where aΛQCD can be thought of as e.g. as the mass of the heaviest quark involved

in the simulations or the corresponding meson mass being measured in lattice

units a. The upper bound exist to guarantee the discretization effects are under

control, by taking µ � π/a, where the inverse lattice spacing a−1 defines the

UV cut-off. The reason for the lower bound is related to the fact that a physical

amplitude A, as a weak matrix element between physical initial and final states,
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|i〉 and |f〉, can be written using operator product expansion (OPE) as,

A = 〈f |HW |i〉 = C

(
µ

MW

)
〈f |OR(µ)|i〉 , (3.2)

where Wilson coefficient C is scale dependent and takes into account the short-

distance processes and are computed in perturbation theory. The second term

in the right hand side of Eq. 3.2 is a long-distance quantity which can be

computed non-perturbatively on the lattice. The subscript R denotes the

fact that the operator O(µ) has been renormalized. The scale dependence

from the renormalized operator must therefore cancel that of the coefficient

C(µ) to render the physical amplitude A independent of scale. An explicit

example of such a quantity was mentioned in Eq. 1.67 for kaon mixing. C(µ)

is a perturbative quantity, which is computed at a scale µ with µ � ΛQCD,

implying the lower bound to the renormalization window in Eq. 3.1. Moreover,

C(µ) has to be computed in the same scheme as the operator OR. Recent

lattice studies have begun investigating the nonperturbative dynamics of heavy

quarks like charm and bottom. In current simulations the mass of the heavy

quarks is often of the same order of magnitude as the UV cutoff, a−1. As

a consequence, it is not possible to reach a regime where there is a clear

separation between the fermion mass, the renormalization scale, and the cutoff.

Therefore, when studying heavy quarks, it may be interesting to introduce a

massive scheme, i.e. a scheme where the renormalization conditions are imposed

at some finite value of the renormalized mass. We have developed such a massive

renormalization scheme, denoted by RI/mSMOM, for fermion bilinear operators

in QCD with non-exceptional momentum kinematics similar to the standard

RI/SMOM scheme. The momenta are said to be non-exceptional if no partial

sum of the incoming momenta pi vanishes [78]. In contrast to RI/SMOM where

the renormalization conditions are imposed at the chiral limit, our scheme allows

for the renormalization conditions to be set at some mass scale m, which we

are free to choose. In the limit where m → 0, our scheme reduces to SMOM.

Using a mass dependent scheme for a theory containing massive quarks has the

benefit of preserving the continuum WI by taking into account terms of order

m/µ, which would otherwise violate the WI when a massless scheme is used.

We have shown that the WI for the case of both degenerate and non-degenerate
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3.1. The kinematics

masses are satisfied non-perturbatively, giving ZV = 1 and ZA = 1. In order

to gain a better understanding of the properties of the mSMOM scheme we

have performed an explicit one-loop computation in perturbation theory using

dimensional regularization. RI/mSMOM can be implemented numerically, in

order to obtain non-perturbative determinations of the renormalization constants

of certain composite operators. The details of the operators are discussed on the

upcoming sections. The massive renormalization constants will automatically

subtract some lattice artefacts O(a2m2), and could potentially lead to smoother

extrapolations to the continuum limit of phenomenologically relevant observables.

However, to verify this statement, a dedicated numerical study is required.

The first part of this chapter starts by summarizing the kinematics and the

form of the vertex functions used. This is followed by presenting the vector and

axial Ward Identities (WI) from which the renormalization conditions for the

RI/mSMOM scheme are derived. Afterwards, some of the important features

of the perturbative calculation using Dimensional Regularization (dim-reg) are

discussed and certain calculations are presented in detail. In the second part of

this chapter, numerical results for the renormalization of vertex functions and the

4-quark operators in the SMOM scheme are presented.

3.1 The kinematics

Let us start by summarizing the kinematics used. Starting with the correlators

of fermion bilinears with two external off-shell fermions in momentum space:

Ga
Γ(p3, p2) = 〈Oa

Γ(q)ψ̄(p3)ψ(p2)〉 , (3.3)

where Oa
Γ = ψ̄Γτaψ is a flavor non-singlet fermion bilinear, and Γ spans all the

elements of the basis of the Clifford algebra, which we denote as Γ = S,P,V,A,T.

Note that τa denotes a generic generator of rotations in flavor space. The

corresponding vertex function in position-space together with conventions for the

propagator, the Fourier transforms and the Dirac gamma matrices are spelled out

in detail in App. C.1. The four dimensional vectors p2 and p3 are respectively

the incoming and outgoing momenta of the external fermions, and momentum

conservation requires q = p2−p3. The kinematics adopted in this work is the one
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3.1. The kinematics

used in Ref. [77]:

p2
2 = p2

3 = q2 = −µ2 . (3.4)

Note that asymmetric or exceptional kinematics where p2
2 = p2

3 = −µ2, p2 = p3

and q = 0, suffers from infrared effect that are substantially suppressed using the

non-exceptional kinematics in Eq. 3.4 [77, 78]. Following the convention in the

paper above, we denote this symmetric point by the shorthand “sym”. These are

presented pictorially in Fig. 3.1.

p2 p3

q

Γ

Figure 3.1: Kinematics used for the correlators of fermion bilinears.

For the purpose of illustration, we can consider the case of a fermion doublet

ψ =

ψ1

ψ2

 , ψ =

(
ψ1 ψ2

)
, (3.5)

with mass matrix

M =

m1 0

0 m2

 . (3.6)

Note that in the mass degenerate case, we simply have M = m1. If we choose

τa = τ+ = σ+

2
= 1

2
(σ1 + iσ2), then the bilinear Oa

Γ = ψ̄Γτaψ takes the form

OΓ = ψ1Γψ2.

The infinitesimal vector and axial non-singlet SU(2) chiral transformation are

as follows

δψ(x) = i
[
αV (x)τa

]
ψ(x) , δψ(x) = −iψ(x)

[
αV (x)τa

]
, (3.7)
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3.2. Vector and axial Ward Identities

and

δψ(x) = i
[
αA(x)τaγ5

]
ψ(x) , δψ(x) = iψ(x)

[
αA(x)τaγ5

]
. (3.8)

In our conventions, bare quantities are written without any suffix, while their

renormalized counterparts are identified by a suffix R. The renormalization

conditions are usually expressed in terms of amputated correlators

Λa
Γ(p2, p3) = S(p3)−1Ga

Γ(p3, p2)S(p2)−1 , (3.9)

where S(p) is the fermion propagator in Minkowski space:

S(p) =
i

6p−m− Σ(p) + iε
. (3.10)

Note that for each leg being amputated, the fermion propagator with the

corresponding flavor needs to be used.

3.2 Vector and axial Ward Identities

We now show, as an example, the derivation of the axial WI for the amputated

vertex function in Minkowski space, under the symmetry transformation Eq. 3.8.

The corresponding computation in the Euclidean space is presented in App. C.3,

as well as Minkowski and Euclidean vector WIs.

Let us consider the Dirac Lagrangian,

L = iψ̄ /Dψ −mψ̄ψ , (3.11)

where the covariant derivative Dµ is:

Dµ = ∂µ + igAµ · (3.12)

We take the probe to be the operator,

O(x3, x2) = ψ(x3)ψ̄(x2), (3.13)
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3.2. Vector and axial Ward Identities

and apply the infinitesimal axial transformations in Eq. 3.8. Under the symmetry

transformation, the change in the expectation value δ〈O(x3, x2)〉 = 0:

0 =
δ

δα(x)
〈O(x3, x2)〉 =

δ

δα(x)

[∫
D[ψ̄, ψ]eiS[L]O(x3, x2)

]

=

∫
D[ψ̄, ψ]eiS[L] δO(x3, x2)

δα(x)
+ i

∫
D[ψ̄, ψ]eiS[L] δS[L]

δα(x)
O(x3, x2) ·

(3.14)

For the variation in the operator we have,

δO(x3, x2)

δα(x)
= iδ(x− x3)γ5ψ(x3)ψ̄(x2) + iδ(x− x2)ψ(x3)ψ̄(x2)γ5 · (3.15)

For the variation of the action,

δ

δα(x)

[∫
d4x′

(
− (ψ̄(x′)δα(x′)γ5)(/∂ + ig /A )ψ(x′)− ψ̄(x′)(/∂ + ig /A )

(
α(x′)γ5ψ(x′)

)

− 2mi δα(x′) ψ̄(x′)γ5ψ(x′)

)]

=− ψ̄(x)γ5γµDµψ(x) +
δ

δα(x)

[∫
d4x′α(x′)∂µA

µ(x′)

]
− ψ̄(x)γµγ5Dµψ(x)

− 2miψ̄(x)γ5ψ(x)

=− ψ̄(x){γ5, γµ}Dµψ(x) + ∂µA
µ − 2miψ̄(x)γ5ψ(x)

= ∂µA
µ − 2miψ̄(x)γ5ψ(x),

(3.16)

where we have denoted the axial operator Aµ(x) = ψ̄(x)γµγ5ψ(x). Note that

in getting to the last line we have assumed {γ5, γµ} = 0 which is true in

4-dimensions. However, using dimensional regularization, the dimensions are

extended to a generic value d which is then set to be d = 4 − 2ε. In this

case, γ5 is ill-defined and must be generalized to d-dimensions. The general

form of γ5 was proposed by ’t Hooft and Veltman [79]. Calculations using

this convention are discussed in detail, later in this chapter. However, since

we are mostly interested in flavor non-singlet quantities, we do not need to worry

about extending the definition of γ5 to arbitrary dimensions [79, 80]. If one were
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3.2. Vector and axial Ward Identities

interested in flavor singlet currents, then a precise definition of γ5 in dimensional

regulation is mandatory.

Therefore, the Minkowski axial WI in position space can be written as:

iδ(x− x3)γ5〈ψ(x3)ψ̄(x2)〉+ iδ(x− x2)〈ψ(x3)ψ̄(x2)〉γ5 (3.17)

=− i∂µ〈Aµ(x)ψ(x3)ψ̄(x2)〉+ 2mi〈ψ̄(x)iγ5ψ(x)ψ(x3)ψ̄(x2)〉 (3.18)

In terms of the quark propagator S(x3 − x2) = 〈ψ(x3)ψ̄(x2)〉 and the vertex

function as in Eq. 3.3, the above reads,

iδ(x− x3)γ5S(x3 − x2) + iδ(x− x2)S(x3 − x2)γ5 (3.19)

=− i∂µGµ
A(x3 − x, x2 − x) + 2miGP(x3 − x, x2 − x) (3.20)

Taking the Fourier transform according to Eq. C.2 and placing the operator

at the origin x = 0, i.e. an implicit
∫
d4xδ(x), the LHS of Eq. 3.19 becomes,∫

d4x2d
4x3

(
iδ(−x3)γ5S(x3 − x2) + iδ(−x2)S(x3 − x2)γ5

)
eip3.x3e−ip2.x2

=

∫
d4x2 iγ

5S(−x2)e−ip2.x2 +

∫
d4x3 iS(x3)γ5eip3.x3

=iγ5S(p2) + iS(p3)γ5 ·
(3.21)

For the first term on the RHS of Eq. 3.19 we have the following, which we evaluate

at x = 0 after differentiation,

− i∂µ
∫
d4x2d

4x3 G
µ
A(x3 − x, x2 − x)eip3.x3e−ip2.x2

=− i∂µ
∫
d4x′2d

4x′3 G
µ
A(x′3, x

′
2)eip3.(x′3+x)e−ip2.(x′2+x)

=− i(ip3 − ip2)µ

∫
d4x′2d

4x′3 G
µ
A(x′3, x

′
2)eip3.x′3e−ip2.x′2

=− q.GA(p3, p2) ,

(3.22)

giving the axial WI in momentum space,

q.GA(p3, p2) = 2miGP(p3, p2)− iγ5S(p2)− iS(p3)γ5 · (3.23)
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3.3. Non-perturbative renormalization

Multiplying on the left by S(p3)−1 and on the right by S(p2)−1, the Ward identity

for the amputated vertex function in momentum space takes the form:

q.ΛA(p2, p3) = 2miΛP(p2, p3)− iS(p3)−1γ5 − iγ5S(p2)−1 · (3.24)

To obtain the vector WI, one starts from the transformations in Eq. C.21

computes the change in the action and the probe, similar to what we have done

above. The result of the amputated vertex function in momentum space reads:

q.ΛV(p2, p3) = iS(p2)−1 − iS(p3)−1 · (3.25)

The explicit computation for both Minkowski and Euclidean spaces are presented

in App. C.2 and App. C.3.

3.3 Non-perturbative renormalization

The vector and axial Ward identities in terms of the fermion propagator and the

amputated vertex function in Euclidean momentum space is repeated below for

clarity:

q · Λa
V = iS(p2)−1 − iS(p3)−1 , (3.26)

q · Λa
A = 2miΛa

P − γ5iS(p2)−1 − iS(p3)−1γ5 . (3.27)

The quark mass breaks chiral symmetry explicitly. This breaking is visible in the

axial WI, Eq. 3.27. Note that the vertex functions are all taken to be non-singlet

for the rest of this discussion, and the flavor index a is suppressed to keep the

notation simple. In this section, all the vertex functions are mass-degenerated

i.e. either both quarks are light (massless) or both are heavy. As a result the

fermions propagators entering the WI in each case are the same in terms of the

quark fields but differ in terms of their momentum associated to each external

legs only. The renormalized quantities are defined as follows:

ψR = Z1/2
q ψ , mR = Zmm, MR = ZMM OΓ,R = ZΓOΓ , (3.28)
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3.3. Non-perturbative renormalization

where m and M denote the masses of the light and heavy quark respectively. The

renormalized propagator and amputated vertex functions are

SR(p) = ZqS(p) , ΛΓ,R(p2, p3) =
ZΓ

Zq
ΛΓ(p2, p3) , (3.29)

where q = l, H for light and heavy quarks respectively. Note that our conventions

for defining the fermion propagator are slightly different from the ones used in

Ref. [77]; using our own conventions, the RI/SMOM conditions are

lim
mR→0

1

12p2
Tr
[
iSR(p)−1 6p

]∣∣∣∣
p2=−µ2

= 1 , (3.30)

lim
mR→0

1

12mR

{
Tr
[
−iSR(p)−1

]∣∣
p2=−µ2 −

1

2
Tr [(q · ΛA,R) γ5]|sym

}
= 1 , (3.31)

lim
mR→0

1

12q2
Tr [(q · ΛV,R) 6q]|sym = 1 , (3.32)

lim
mR→0

1

12q2
Tr [(q · ΛA,R) γ5 6q]|sym = 1 , (3.33)

lim
mR→0

1

12i
Tr [ΛP,Rγ5]|sym = 1 , (3.34)

lim
mR→0

1

12
Tr [ΛS,R]|sym = 1 . (3.35)

There are several important properties to note about these conditions.

Firstly, RI/SMOM is a momentum-subtraction scheme. This means that the

renormalization conditions are set by projecting the vertex functions in such a way

that the renormalization constants satisfy their tree-level value. Take Eq. 3.30 as

an example. At tree-level, using Eq. 3.10,

lim
mR→0

1

12p2
Tr
[
iSR(p)−1 6p

]∣∣∣∣
p2=−µ2

= lim
mR→0

Z−1
q

12p2
Tr
[
iS(p)−1 6p

]∣∣∣∣
p2=−µ2

(3.36)

= lim
mR→0

Z−1
q

12p2
Tr [( 6p−m) 6p]

∣∣∣∣
p2=−µ2

= lim
mR→0

Z−1
q = 1 ,

as expected. Then, for the vector at tree-level we have,

lim
mR→0

1

12q2
Tr [(q · ΛV,R) 6q]|sym = lim

mR→0

1

12q2

Zq
ZV

Tr [(q · ΛV) 6q]|sym (3.37)

= lim
mR→0

1

12q2

Zq
ZV

Tr [ 6q 6q]|sym = lim
mR→0

Zq
ZV

= 1 ,
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3.3. Non-perturbative renormalization

where we have used Λµ
V = γµ at tree-level. Given that Zq = 1 at tree-level, as

shown in Eq. 3.36, it implies that ZV = 1 at tree-level. Similar arguments hold

for all the other conditions.

Secondly, these renormalization conditions ensure that the renormalized

bilinears obey vector and axial renormalized Ward identities like the ones in

Eqs. 3.26, and 3.27, and the renormalization constants satisfy the same properties

as in the MS scheme, namely

ZV = ZA = 1, ZP = ZS, ZmZP = 1 . (3.38)

These properties have been clearly shown in Ref. [77]. Here we present ZA = 1

and the conservation of the renormalized axial WI as examples. Starting from

Eq. 3.27, and writing the bare quantities in terms of the renormalized ones using

Eq. 3.28 gives,

1

ZA
q · ΛA,R =

1

ZmZP

2mRiΛP,R − γ5iSR(p2)−1 − iSR(p3)−1γ5 , (3.39)

where the Zq factors have cancelled from both sides of the equation. Multiplying

both sides by γ5 6q and 1
12q2 , taking the trace yields and the limit mR → 0,

1

12q2

1

ZA
Tr [(q · ΛA,R) γ5 6q]|sym =

1

12q2
Tr
[(
− γ5iSR(p2)−1 − iSR(p3)−1γ5

)
γ5 6q

]∣∣
sym

(3.40)

=
1

12q2
Tr
[(
iSR(p2)−1 − iSR(p3)−1

)
6q
]∣∣

sym

=
1

12q2
Tr
[(
iSR(q)−1) 6q

]∣∣
sym

= 1

where the last equality comes from Eq. 3.30. Therefore, using the renormalization

condition for the axial vertex function Eq. 3.33 for the LHS of Eq. 3.40, we get

ZA = 1. If instead, we multiply Eq. 3.27 by γ5, and apply the same procedure,

we obtain ZmZP = 1 using the condition in Eq. 3.31. Plugging ZA = 1 and

ZmZP = 1 into Eq. 3.39 we see that the renormalized WI is clearly satisfied:

q · ΛA,R = mRiΛP,R − γ5iSR(p2)−1 − iSR(p3)−1γ5 · (3.41)

A similar procedure can be performed to obtain ZV = 1. Starting from the bare
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3.3. Non-perturbative renormalization

vector WI Eq. 3.26, and rewriting the bare quantities in terms of the renormalized

ones we obtain,

1

ZV

q · Λa
V,R = iSR(p2)−1 − iSR(p3)−1 (3.42)

Multiplying the above equation by 6q, taking the trace and using the condition in

Eq. 3.32 we get,

lim
MR→m

1

ZV

1

12q2
Tr [(q · ΛV,R) 6q]|sym = lim

MR→m

1

12q2
Tr
[
iSR(q)−1 6q

]∣∣
sym

= 1 ·

(3.43)

Finally, using the vector renormalization condition in Eq. 3.32, one obtains that

ZV = 1. Again, it can be observed that with ZV = 1, the renormalized vector

WI, Eq. 3.42 is indeed satisfied. All These properties have been checked using a

one-loop calculation in massless continuum perturbation theory in Ref. [77].

While the renormalization conditions in the RI/SMOM scheme are imposed

in the chiral limit, the RI/mSMOM scheme is defined by imposing a similar set

of conditions at some fixed value of a reference renormalized mass that we denote

by m [81]:

lim
MR→m

1

12p2
Tr
[
iSR(p)−1 6p

]∣∣∣∣
p2=−µ2

= 1 , (3.44)

lim
MR→m

1

12MR

{
Tr
[
−iSR(p)−1

]∣∣
p2=−µ2 −

1

2
Tr [(q · ΛA,R) γ5]|sym

}
= 1 , (3.45)

lim
MR→m

1

12q2
Tr [(q · ΛV,R) 6q]|sym = 1 , (3.46)

lim
MR→m

1

12q2
Tr [(q · ΛA,R − 2MRiΛP,R) γ5 6q]|sym = 1 , (3.47)

lim
MR→m

1

12i
Tr [ΛP,Rγ5]|sym = 1 , (3.48)

lim
MR→m

{
1

12
Tr [ΛS,R]− 1

6q2
Tr
[
2iMRΛP,Rγ5/q

]}∣∣∣∣∣
sym

= 1 . (3.49)

Comparing with the SMOM prescription where the renormalization conditions

were imposed at the chiral limit mR → 0, the renormalization conditions in the

77



3.3. Non-perturbative renormalization

mSMOM scheme are imposed at MR → m, a new scale that one is free to choose.

It can be observed that only the renormalization conditions for the axial and

scalar vertex functions have been modified by terms proportional to MR, which

therefore vanish in the chiral limit. Therefore, the mSMOM prescription reduces

to the SMOM one as m is set to zero. As usual the renormalization conditions

are satisfied by the tree-level values of the field correlators. The properties listed

in Eq. 3.38 also hold for the mSMOM scheme. This implies that the renormalized

WIs are satisfied. We now show all of these features in more detail.

Let us first focus on the modified conditions for the axial vertex function,

Eq. 3.47, and check ZA = 1 at tree-level:

lim
MR→m

1

12q2
Tr [(q · ΛA,R − 2MRiΛP,R) γ5 6q]|sym (3.50)

= lim
MR→m

1

12q2
Tr
[(
ZA 6qγ5 + 2ZMZPMγ5

)
γ5 6q

]∣∣
sym

= lim
MR→m

ZA = 1 ,

as required, where we have used Zq = 1, ΛP = iγ5 and ΛA = γµγ5 at tree-level.

We follows the same procedure as Eq. 3.40, but now it is repeated for the massive

scheme. Two independent equations can be obtained by multiplying Eq. 3.39 by

γ5 6 q and by γ5 respectively, taking the trace, and evaluating correlators at the

symmetric point. In the first case, using Eqs. (3.44) and (3.47), we obtain

(ZA − 1) =

(
1− ZA

ZMZP

)
CmP , (3.51)

where

CmP = lim
MR→m

1

12q2
Tr [2iMRΛP,Rγ5 6q]|sym . (3.52)

The second equation instead gives

1

ZA

Tr [(q · ΛA,R) γ5]|sym =
2MR

ZMZP

Tr [(iΛP,R) γ5]|sym (3.53)

− Tr
[
γ5iSR(p2)−1γ5

]∣∣
sym
− Tr

[
iSR(p3)−1

]∣∣
sym
·
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3.3. Non-perturbative renormalization

For the first term on the RHS of Eq. 3.53, we can use the renormalization in

Eq. 3.48 and for the second term, we can use Eq. 3.45 for each propagator. This

yields,

1

ZA

Tr [(q · ΛA,R) γ5]|sym = − 24MR

ZMZP

+ 24MR + Tr [(q · ΛA,R) γ5]|sym · (3.54)

Rearranging gives,

(ZA − 1)CqA = −2ZA

(
1− 1

ZMZP

)
, (3.55)

where we have introduced one more constant

CqA = lim
MR→m

1

12MR

Tr [q · ΛA,Rγ5]|sym . (3.56)

It is easy to verify that ZA = 1, ZMZP = 1 is a solution of the system.

Rearranging for ZA/(ZMZP) in Eq. 3.55 and substituting the result into Eq. 3.51,

gives ZA = 1. Substituting back to any of the two equations results in ZMZP = 1

making the solution unique. Notice that because of the modified renormalization

condition for the renormalization of the axial vertex function, the computation

of ZA and ZMZP are coupled in the mSMOM scheme. The results ZA = 1,

ZMZP = 1 imply that the renormalized axial WI, using the modified condition in

the massive scheme is satisfied. In particular, ZA = 1 implies that ZA does not

depend on the renormalization scale µ.

The renormalization condition for the scalar vertex function ΛS in Eq. 3.49,

however, has been determined by performing a 1-loop computation in pertur-

bation theory, as discussed in Sec. 3.4.9. To prove ZP = ZS we start from the

non-degenerate vector Ward identity, which is an extension of Eq. (3.26) with

m1 6= m2,

q · ΛV = (m1 −m2)ΛS + iSq1(p2,m1)−1 − iSq2(p3,m2)−1, (3.57)

where q1 and q2 refer to two different quark flavors with masses m1 and m2

respectively. Note that since the field renormalization condition is set in the limit

m→ m and the momenta are symmetric, Zq is the same for both quark fields q1
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3.4. Perturbative computation I

and q2. Writing the above equation in terms of the renormalized quantities, we

have

q · Z−1
q ZV ΛV,R =Z−1

q ZMZS(m1,R −m2,R)ΛS,R (3.58)

+iZ−1
q Sq1,R(p2,m1)−1 − iZ−1

q Sq2,R(p3,m2)−1,

where we have used the property that the mass difference (m1 − m2) is

renormalized by ZM , given that it is obtained in the limit m → m for both

quarks, as shown in Ref. [78]. Since it is already shown that ZV = 1 and the

renormalized WI is satisfied, it implies that ZMZS = 1. Using ZMZP = 1,

we finally obtain ZP = ZS. Hence we recover the equality between the two

renormalization constants. This also holds non-perturbatively in the SMOM

scheme (its validity had been previously shown at 1-loop in perturbation theory

in Ref. [77]).

We have showed that mSMOM inherits the good properties of the SMOM

scheme presented in Eq. 3.38, in particular the renormalized WIs at all scales µ

are satisfied.

3.4 Perturbative computation I

In order to understand the details of the RI/mSMOM scheme we present an

explicit one-loop computation of the fermions self-energy and all the bilinear

vertex functions. For simplicity we regularize the theory using dimensional

regularization, and evaluate the relevant diagrams including their dependence

on the bare mass m. Because we are mostly interested in flavor non-singlet

quantities, we do not need to worry about extending the definition of γ5

to arbitrary dimensions [79, 80]. Using the naive definition of γ5 keeps the

computation simpler. However, if one were interested in flavor singlet currents,

then a precise definition of γ5 in dimensional regulation is mandatory. To this

end, we also present a 1-loop calculation using the ’t Hooft-Veltman convention

for γ5 in this chapter. This leads to extra Feynman diagrams that have to be

computed and is discussed in detail.

The 1-loop diagram, Fig. 3.3, in the perturbative calculation of the vertices
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corresponds to the following integral:

Λ
(1)
Γ = −ig2C2(F )

∫
k

γµ[/p3
− /k +m]Γ[/p2

− /k +m]γµ

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
, (3.59)

where Γ = S,P,V,A. The strategy for computing these vertex functions is

k

p2 p3

p2 − k p3 − k

q = p2 − p3

Γ

Figure 3.2: Diagram representing the non-amputated vertex function at 1-loop
in perturbative QCD.

as follows: First, the scalar, vector and tensor parts of the above integral are

extracted and the integrals are written in terms of scalar integrals. Then, all the

scalar master integrals are computed and are used to calculate each vertex Λ
(1)
Γ . It

is important to organize the terms in the numerator with respect to their unique

Dirac structure. The loop integration is a standard computation, performed in

D = 4 − 2ε using dimensional regularization, while for the integration over the

Feynman parameters we have used certain techniques which have been developed

in the past few years, see Ref. [82–84]. We discuss some of the techniques in the

upcoming sections.

3.4.1 The basis integrals

We list the set of scalar basis integrals that are ingredients to the full vertex

function integrals. As discussed later, there are several methods by which one

can compute some of these integrals. As a result this set may not be the minimal

basis, however it is complete. All the other integrals can be written as a linear

combinations of the basis integrals. Observing Eq. 3.59, one of the integrals
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required is

I111 = g2

∫
k

1

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
, (3.60)

which turns out to be the most complex integral to compute and its calculation

is discussed in detail. Let us first explain the notation. In what follows, the

subscripts on each integral IXY Z refer to the power of each propagator present

in the denominator. More explicitly, the first subscript counts the powers of

k2 in the denominator, the second counts that of (p2 − k)2 − m2 and the third

(p3 − k)2 −m2. For example in Eq. 3.60, there is one power of each propagator

in the denominator, hence the notation I111. Powers of the propagator in the

numerator are written in the subscript with a negative sign. The other scalar

integrals required are: I011, I101, I001, I−111, I1−11. It turns out that the last two

integrals can be written as a linear combination of the other 4. Notice also that

I101 = I110 if p3 is relabelled to p2. The same is true for I001 = I010. Hence the

minimal basis would be {I111, I011, I101, I001}. The calculation of the first of these

is discussed in the next section while the rest are standard integrals with the

results shown in App. C.4.

3.4.2 The scalar integral

We wish to compute the integral in Eq. 3.60. Introducing as usual a set of

Feynman parameters x1, x2, x3, the integral can be recast in the following form:

I111 = g2Γ(3)

∫
k

∫ 1

0

(
3∏
i=1

dxi

)
δ

(
1−

3∑
i=1

xi

)
(3.61)

× 1

(x1k2 + x2 [(p2 − k)2 −m2] + x3 [(p3 − k)2 −m2])3 ·

The denominator can be written as a polynomial in k. The coefficients are then

simplified using the symmetric kinematics p2
2 = p2

3 = (p2 − p3)2 = −µ2, implying

also that p2.p3 = −1
2
µ2. Making the change of variable,

l = k − x2p2 + x3p3

x1 + x2 + x3

, (3.62)
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introducing the function,

M2 =

(
x2p2 + x3p3

x1 + x2 + x3

)2

+
x2 + x3

x1 + x2 + x3

(
µ2 +m2

)
, (3.63)

and performing a Wick rotation to Euclidean space yields:

I111 = −ig2Γ(3)

∫ 1

0

(
3∏
i=1

dxi

)
δ

(
1−

3∑
i=1

xi

)
1

(x1 + x2 + x3)3

∫
`

1

(`2 +M2)3 ·

(3.64)

The loop integral can now be performed in closed form in D dimensions. We can

use,

1

(l2 +m2)3
=

1

Γ(3)

∫ ∞
0

dλλ2e−λ(l2+M2) , (3.65)

to first perform the gaussian integral over l and then the integral over λ. In this

particular case the integral is finite, there are no 1/ε singularities as ε→ 0. This

gives,

I111 = −i α
4π

∫ 1

0

(
3∏
i=1

dxi

)
δ

(
1−

3∑
i=1

xi

)
1

(x1 + x2 + x3)3

1

M2
, (3.66)

where we defined g → gµε and α = g2/4π to obtain the previous equation. The

denominator in the integrand can be expressed as

µ2(x1 + x2 + x3)
[
x2x3 + x1x2 + x1x3 + u

(
x1x2 + x1x3 + x2

2 + x2
3 + 2x2x3

)]
,

(3.67)

where we have introduced u = m2/µ2. Using the Cheng-Wu theorem Ref. [82],

applied to the case where we choose the constraint to be δ(1−x3), two integrations

over the Feynman parameters can be easily done, yielding

I111 =− i α
4π

1

µ2
× (3.68)∫ ∞

0

dx2
− log [−u(x2 + 1)2 − x2] + log [−(x2 + 1)(u+ 1)] + log(x2 + 1)

x2(x2 + 1) + 1
·
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Note that this integral can be readily computed numerically for the case where

m = 0. The result of the numerical integration of the above integral is 2.34239

which agrees with the number quoted in Ref. [77].

For our purposes the analytic expression for I111 as a function of the mass

is actually desirable. We find the two roots, d1, d2, of x2 in the denominator

and use the symmetry between the roots i.e. d1 = 1/d2 to reduce the number of

parameters in the integral. This makes the computation easier for Mathematica

and the packages used within. Similarly, the numerator takes the form,

log(x2 + 2x+ 1 +
ω

u
x) + log(−u)− 2 log(x+ 1)− log(−u− 1)

= log(x2 + (2 +
ω

u
)x+ 1)− 2 log(x+ 1) + log(u)− iπ − log(u+ 1) + iπ ,

(3.69)

which is shown not to have any imaginary parts. Defining r = 1/u = µ2/m2, the

roots of the argument of the log are

n1 =
1

2

(
−2− r −

√
r2 + 4r

)
, n2 =

1

2

(
−2− r +

√
r2 + 4r

)
· (3.70)

Again, there is a symmetry between the roots: n1 = 1
n2

. The numerator can

therefore be written as,

log(x− n1) + log(x− n2) = log(x− n1) + log(x− 1

n1

) (3.71)

= log(x− n1) + log(n1x− 1)− log(n1) · (3.72)

The integral becomes, −i α
4π

1
µ2×∫ ∞

0

dx
log(x− n1) + log(n1x− 1)− log(n1)− 2 log(x+ 1) + log(u)− log(u+ 1)

(x− d1)(x− 1
d1

)
·

(3.73)

In order to avoid later complications with the upper limit of the integral being

at infinity, we make the change of variables:

x 7→ y , x =
y

1− y ·
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The problem is then reduced to an integral that can be computed explicitly:

I111 = i α
4π

1
µ2×

∫ 1

0

dy
log( y

1−y − n1) + log(n1
y

1−y − 1)− log(n1)− 2 log( y
1−y + 1) + log(u)− log(u+ 1)

(y + (y − 1)d1)(y + y−1
d1

)
,

(3.74)

where d1 = 1
2

(
−1 + i

√
3
)
, n1 = 1

2

(
−2− 1/u−

√
1/u2 + 4/u

)
. The final result

is a lengthy expression, which we report for completeness,

I111 =
α

4π

1

µ2

1√
3

{
i
π

3
(−2iπ − 2 log(1 + u))

+ log

[
−2u+ 1−

√
1 + 4u

2

]
log

[
4 + (i

√
3− 1)(1−

√
4u+ 1)

4− (i
√

3 + 1)(1−
√

4u+ 1)

]

+ log

[
−(1 +

√
4u+ 1)2

4

]
log

[
4 + (i

√
3− 1)(1 +

√
4u+ 1)

4− (i
√

3 + 1)(1 +
√

4u+ 1)

]

+ 2 Li

[
4u

4u−
(
i
√

3− 1
) (

1 +
√

4u+ 1
)] − Li

[
4u

4u+
(
i
√

3 + 1
) (

1 +
√

4u+ 1
)]

+ Li

[
4u+ 2 + 2

√
4u+ 1

4u+
(
i
√

3 + 1
) (

1 +
√

4u+ 1
)]− Li

[
4u+

(
i
√

3 + 1
) (

1 +
√

4u+ 1
)

4(1 + u)

]}
.

(3.75)

As a partial check of our massive computation, the limit u→ 0 of the expression

above is numerically evaluated, and shown to reproduce again the value 2.34391

from Ref. [77]. Here we denote

I111 = − iα
4π

1

µ2
C0

(
m2

µ2

)
, (3.76)

so that C0|m=0 = 2.34391.

3.4.3 Integral with kµ in the numerator

The integral with kµ in the numerator,

Iµ =g2

∫
k

kµ

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
, (3.77)
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can be reduced to scalar integrals by taking all possible linear combinations and

solving simultaneous equations. The only two scales in the problem with a vector

index are pµ2 and pµ3 . Therefore, we expect Iµ to be of the form

Iµ = Apµ2 +Bpµ3 · (3.78)

Dotting with pµ2 and pµ3 gives the following simultaneous equations:p2µI
µ = µ2

(
−A− 1

2
B
)
,

p3µI
µ = µ2

(
−B − 1

2
A
)
·

(3.79)

One computes the LHS of Eq. 3.79 starting with

p2µI
µ = g2

∫
k

p2.k

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
· (3.80)

Using −2(p2.k) = (p2 − k)2 −m2 − p2
2 − k2 +m2,

p2µI
µ =
−g2

2

∫
1

k2[(p3 − k)2 −m2]
+

µ2 +m2

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]

+
−1

[(p2 − k)2 −m2][(p3 − k)2 −m2]

=− 1

2

(
I101 + (µ2 +m2)I111 − I011

)
·

(3.81)

The second term is the scalar integral computed in Sec. 3.4.2. We also have

the results for the first and the last terms in Appendix C. Due to the symmetry

between p2 and p3 we only need to compute this integral once. Going back to

Eq. 3.79 and solving for A and B gives,

A = B =
2p2µI

µ

−3µ2
=

2p3µI
µ

−3µ2
=⇒ Iµ = A(pµ2 + pµ3) =

2p2νI
ν(pµ2 + pµ3)

−3µ2
· (3.82)

Hence,

Iµ =
(pµ2 + pµ3)

−3µ2

(
−I101 − (µ2 +m2)I111 + I011

)
· (3.83)
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3.4.4 Integral with kµkν in the numerator

Using a similar method to Sec. 3.4.3, the integral

Iµν = g2

∫
k

kµkν

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
(3.84)

can be reduced to scalar integrals by taking all possible linear combinations and

solving simultaneous equations. Knowing the possible scales in the problem, we

expect Iµν to be of the form

Iµν = Agµν +B(pµ2p
ν
2 + pµ3p

ν
3) + C(pµ2p

ν
3 + pµ3p

ν
2) · (3.85)

To obtain the coefficients A,B and C, Eq. 3.85 is contracted with gµν , pµ2p
ν
2

and pµ2p
ν
3. On the LHS, each integral is then written as a linear combination of

the basis integrals which are already computed. This gives three simultaneous

equations with three unknowns, for which we solve. The details of this

computation is presented in App. C.5.

3.4.5 Fermion self-energy

The fermion self energy at 1-loop

−iΣ(1) =− g2C2(F )

∫
k

γα[/p2
− /k +m]γα

k2[(p2 − k)2 −m2]
(3.86)

shown in Fig. 3.3, can be computed directly by using the Feynman parame-

terization, writing the denominator as a polynomial in k and making a change

of variable in the standard way. However, the computation simplifies if one,

k

p p − k p

Figure 3.3: Fermion self-energy at 1-loop in perturbative QCD.

instead, notes that the integrand can be written as a linear combination of the

basis integrals which have already been computed. To this end, the coefficient F
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has to be determined:

g2

∫
k

kµ

k2[(p2 − k)2 −m2]
= Fpµ2 , (3.87)

with pµ2 being the only external scale appearing in the integral that can carry the

index µ. The computation is very similar to that in Sec. 3.4.3, as is not repeated

here. The details are written out App. C.6. Using

γµγµ = d , γµγνγµ = (2− d)γν , (3.88)

The final answer is:

Σ(p) =
α

4π
C2(F )

[
6p
(
−1

ε
− 1 + γE +

m2

µ2
+
m4

µ4
ln

(
m2

m2 + µ2

)
+ ln

(
m2 + µ2

µ̃2

))
+m

(
4

ε
+ 6− 4γE +

4m2

µ2
ln

(
m2

m2 + µ2

)
− 4 ln

(
m2 + µ2

µ̃2

))]
,

(3.89)

where γE is the Euler-Mascheroni constant, we have replaced p2 = −µ2,

and denoted µ̃ the scale introduced by dimensional regularization through the

rescaling of the gauge coupling g → gµ̃ε. This scale can later on be set to equal

µ.

Eq. (3.44) yields the renormalization constant for the fermion field in the

mSMOM scheme:

Zq = 1 +
α

4π
C2(F )

[
1

ε
+ 1− γE −

m̄2

µ2
− m̄4

µ4
ln

(
m̄2

m̄2 + µ2

)
− ln

(
m̄2 + µ2

µ̃2

)]
.

(3.90)

The effect of the change of scheme is a redefinition of the finite part of

the renormalization constant Zq. As expected on dimensional grounds, the

dependence on the reference mass m̄ only enters via the dimensionless ratio m̄/µ.

The limit for m̄ → 0 is well defined and reproduces the result of the massless

scheme [77].
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3.4.6 Vector vertex

Let us now consider the vertex functions, and discuss how the ingredients of the

previous sections are used in this computation. We also discuss in detail the

structure of the vector correlator ΛV. The one-loop contribution to the vertex for

the case of massive fermions is

Λ
(1)σ
V (p2, p3) = −ig2C2(F )

∫
k

γα [ 6p3− 6k +m] γσ [ 6p2− 6k +m] γα

k2
[
(p3 − k)2 −m2

] [
(p2 − k)2 −m2

] . (3.91)

As mentioned before, the first step in the computation of the above vertex

function is to organize the terms in the numerator in such a way that the full

integral can be written in terms of a scalar, a vector and a tensor integral in kµ,

i.e.

Iσ = Kσ(p2, p3)I111 +Kσ,µIµ +Kσ,µν(p2, p3)Iµν · (3.92)

After some manipulations,

Kσ(p2, p3) =

[
− 2pσ2/p3

− 2pσ3/p2
− µ2γσ − 2iερασβγργ

5p3αp2β (3.93)

+ 4mpσ3 + 4mpσ2 − 2m2γσ

]
, (3.94)

Kσ,µ(p2, p3) =

[
(2− 2ε)

[
(pσ2 + pσ3 )γµ + (/p2

+ /p3
)gσµ − (pµ2 + pµ3)γσ

]
+ (−2− 2ε)iερµσαγργ

5(p3α − p2α)− (8− 4ε)mgµσ

]
,

(3.95)

and

Kσ,µν(p2, p3) = (−2 + 2ε) (gµσγν + gσνγµ − gµνγσ) · (3.96)

The integrals I111, Iµ, Iµν have been calculated. See Eq. 3.74, Eq. 3.83 and

Eq. 3.85 together with Eq. C.75-C.77. Putting all the ingredients together, the

integral Eq. 3.91 which transforms as a four-vector under Lorentz transformations
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can be expressed in terms of just five form factors.

Λ
(1)σ
V (p2, p3) =

α

4π
C2(F )

[
AV

1

µ2

(
iεσραβγργ

5p3αp2β

)
+BVγ

σ + CV
1

µ2
(pσ2 6p2 + pσ3 6p3) +

+DV
1

µ2
(pσ2 6p3 + pσ3 6p2) + EV

1

µ
(pσ2 + pσ3 )

]
.

(3.97)

The form factors AV, . . . , EV only depend on the Lorentz invariants, and are

computed analytically. At the symmetric point, they are given by the following

expressions.

AV =
4

3

[(
1

2
− m2

µ2

)
C0

(
m2

µ2

)
+

(
1 +

m2

µ2

)
log

(
m2

m2 + µ2

)

−
√

1 + 4
m2

µ2
log


√

1 + 4m
2

µ2 − 1√
1 + 4m

2

µ2 + 1

] , (3.98)

where the expression for C0

(
m2

µ2

)
can be found in Eq. 3.75 and Eq. 3.76. Although

the last two terms in the expression are separately divergent in the massless limit,

these divergences cancel, yielding a finite expression when m → 0, which agrees

with the results in Ref. [77]. Similarly for the other form factors we find:

BV =
1

ε
− γE +

1

3

[
−C0

(
m2

µ2

)(
1− 4

m2

µ2
− 2

m4

µ4

)
+ 2

(
3− m2

µ2

)
m2

µ2
log

(
m2

m2 + µ2

)
+

(
1− 4

m2

µ2

)
log

(
m2

µ̃2

)
− 4

(
1− m2

µ2

)
log

(
m2 + µ2

µ̃2

)

−
(

1− 2
m2

µ2

)√
1 + 4

m2

µ2
log


√

1 + 4m
2

µ2 − 1√
1 + 4m

2

µ2 + 1

 ; (3.99)

CV = −2

3

[(
1− m2

µ2

)
m2

µ2
log

(
m2

m2 + µ2

)
+

(
1− 2

m2

µ2

)√
1 + 4

m2

µ2

× log


√

1 + 4m
2

µ2 − 1√
1 + 4m

2

µ2 + 1

+

(
2− m2

µ2

)
− 2C0

(
m2

µ2

)
m2

µ2

(
1 +

m2

µ2

)
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−
(

1− 4
m2

µ2

)
log

(
m2

µ̃2

)
+

(
1− 4

m2

µ2

)
log

(
m2 + µ2

µ̃2

)]
; (3.100)

DV =
2

3

[(
1 + C0

(
m2

µ2

))(
1− 2

m2

µ2

)
− 2

(
1 +

m2

µ2

)
m2

µ2
log

(
m2

m2 + µ2

)]
;

(3.101)

EV = −4

3

m

µ

[
C0

(
m2

µ2

)(
1− 2

m2

µ2

)
+ 2 log

(
m2

m2 + µ2

)
+ 2

m2

µ2
log

(
m2

m2 + µ2

)

− 2

√
1 + 4

m2

µ2
log


√

1 + 4m
2

µ2 − 1√
1 + 4m

2

µ2 + 1

] ; (3.102)

which all agree with the results in Ref. [77] when the limit m→ 0 is taken.

3.4.7 Pseudoscalar vertex

For the pseudoscalar vertex function at one-loop we have:

Λ
(1)
P (p2, p3) = g2C2(F )

∫
k

γα [6p3− 6k +m] γ5 [6p2− 6k +m] γα

k2
[
(p3 − k)2 −m2

] [
(p2 − k)2 −m2

] . (3.103)

Decomposing the integral into scalar, vector and tensor parts with respect to the

loop-momentum kµ,

Iσ = K5(p2, p3)I111 +Kµ
5 Iµ +Kµν

5 (p2, p3)Iµν , (3.104)

with

K5(p2, p3) = γ5
[
2(ω − 2)µ2 + (d− 4)/p3/p2

+ (2− d)m(/p3
− /p2

)− dm2
]
, (3.105)

Kµ
5 (p2, p3) = γ5

[
− 4(pµ2 + pµ3)− (d− 4)/p3

γµ − (d− 4)γµ/p2

]
, (3.106)
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and

Kµν
5 (p2, p3) = γ5

(
4gµν + (d− 4)γµγν

)
· (3.107)

Putting the ingredients together and setting d = 4 − 2ε, we see the one-loop

structure of this vertex is simpler as compared to the vector case:

Λ
(1)
P (p2, p3) =

iα

4π
C2(F )

[
BP

(
γ5
)

+ EP
1

µ
(γ5) (6p2− 6p3)

]
. (3.108)

The form factors are:

BP = 4

[
1

ε
− γE +

3

2
− 1

2
C0

(
m2

µ2

)
+
m2

µ2
log

(
m2

m2 + µ2

)
− log

(
m2 + µ2

µ̃2

)]
;

(3.109)

EP = −m
µ

2C0

(
m2

µ2

)
. (3.110)

Using the renormalization condition Eq. (3.48), we have

lim
MR→m

1

12i
Tr [ΛP,Rγ5]|sym = lim

mR→m

1

12i
Tr

[
ZP

Zq
ΛPγ

5

] ∣∣∣∣∣
sym

= 1, (3.111)

giving

ZP =

{
1 +

α

4π
C2(F )

[
− 3

(
1

ε
− γE

)
− 5 + 2C0

(
m2

µ2

)
+ 3 ln

(
m2 + µ2

µ̃2

)

−m
2

µ2

(
1− 4 ln

(
1 +

µ2

m2

)
− m2

µ2
ln

(
1 +

µ2

m2

))]}
.

(3.112)

The above result reduces to Ref. [77] in the massless limit. Note that ZP is

scale dependent; setting µ̃ = µ, we find that the dependence on the scale only

appears through the combination µ/m.
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3.4.8 Axial vertex

The computation of the axial vertex follows very closely the one of the vector

vertex presented above. The starting expression

Λ
(1)σ
A (p2, p3) = −ig2C2(F )

∫
k

γα [ 6p3− 6k +m] γσγ5 [ 6p2− 6k +m] γα

k2
[
(p3 − k)2 −m2

] [
(p2 − k)2 −m2

]
,

(3.113)

It is decomposed as follows:

Iσ = Kσ
5 (p2, p3)I111 +Kσ,µ

5 Iµ +Kσ,µν
5 (p2, p3)Iµν , (3.114)

where, with d = 4− 2ε,

Kσ(p2, p3) =

[
2γ5

(
pσ2/p3

+ pσ3/p2
+
µ2

2
γσ
)
− 2iερασβγρp3αp2β

+ 4mγ5pσ2 − 4mγ5pσ3 − 2m2γ5γσ

]
,

(3.115)

Kσ,µ(p2, p3) =

[
(−2 + 2ε)γ5

(
(pσ2 + pσ3 )γµ + (/p2

+ /p3
)gσµ − (pµ2 + pµ3)γσ

)
− (2 + 2ε)iερµσαγρ(p3α − p2α)− 2εmγ5[γµ, γσ]

]
,

(3.116)

Kσ,µν(p2, p3) = (2− 2ε)γ5 (gµσγν + gσνγµ − gµνγσ) · (3.117)

The integral can again be parametrized in terms of five form factors, which

we denote AA, . . . , EA,

Λ
(1)σ
A (p2, p3) =

α

4π
C2(F )

[
AA

1

µ2

(
iεσραβγρp3αp2β

)
+BAγ

σγ5 + CA
1

µ2
γ5 (pσ2 6p2 + pσ3 6p3)

+DA
1

µ2
γ5 (pσ2 6p3 + pσ3 6p2) + EA

1

µ
γ5 (pσ2 − pσ3 )

]
(3.118)
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All the possible Lorentz structures expected for an axial vertex function are

included such that σ is the free index, unless the form factor turns out to be

zero, e.g. in this case the term proportional to γ5σµν . For the non-zero axial form

factors we find:

AA =
4

3

[(
1

2
− m2

µ2

)
C0

(
m2

µ2

)
+
m2

µ2
log

(
m2

m2 + µ2

)
− log

(
m2 + µ2

µ̃2

)

−
√

1 + 4
m2

µ2
log


√

1 + 4m
2

µ2 − 1√
1 + 4m

2

µ2 + 1

] ;

(3.119)

BA =
1

ε
− γE +

1

3

[
−C0

(
m2

µ2

)(
1 + 8

m2

µ2
− 2

m4

µ4

)
+

(
3− m2

µ2

)
2
m2

µ2
log

(
m2

m2 + µ2

)
+

(
1− 4

m2

µ2

)
log

(
m2

µ̃2

)
− 4

(
1− m2

µ2

)
log

(
m2 + µ2

µ̃2

)

−
(

1− 2
m2

µ2

)√
1 + 4

m2

µ2
log


√

1 + 4m
2

µ2 − 1√
1 + 4m

2

µ2 + 1

 ; (3.120)

CA = −2

3

[(
4− m2

µ2

)
m2

µ2
log

(
m2

m2 + µ2

)
−
(

1− 2
m2

µ2

)√
1 + 4

m2

µ2

× log


√

1 + 4m
2

µ2 − 1√
1 + 4m

2

µ2 + 1

− (2− m2

µ2

)
+ 2C0

(
m2

µ2

)
m2

µ2

(
1 +

m2

µ2

)

+

(
1− 4

m2

µ2

)
log

(
m2

µ̃2

)
−
(

1− 4
m2

µ2

)
log

(
m2 + µ2

µ̃2

)]
; (3.121)

DA = −2

3

[(
1 + C0

(
m2

µ2

))(
1− 2

m2

µ2

)
− 2

(
1 +

m2

µ2

)
m2

µ2
log

(
m2

m2 + µ2

)]
;

(3.122)
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EA =
m

µ
4C0

(
m2

µ2

)
. (3.123)

Again, in the massless limit m → 0, the above coefficients coincide with the

corresponding results in Ref. [77].

3.4.9 Scalar vertex

In this section we discuss the mSMOM renormalization condition for the scalar

vertex.

Λ
(1)
S (p2, p3) = −ig2C2(F )

∫
k

γα [ 6p3− 6k +m] [6p2− 6k +m] γα

k2
[
(p3 − k)2 −m2

] [
(p2 − k)2 −m2

] . (3.124)

Decomposing gives,

Λ
(1)
S (p2, p3) = −ig2C2(F )

[
K(p2, p3)I111 +KµIµ +Kµν(p2, p3)Iµν

]
, (3.125)

where,

K(p2, p3) =
[
2(ω − 2)µ2 + (d− 4)/p3/p2

+ (2− d)m(/p3
+ /p2

) + dm2
]
, (3.126)

Kµ(p2, p3) =

[
− 4(pµ2 + pµ3)− (d− 4)/p3

γµ − (d− 4)γµ/p2
− 2m(2− d)γµ

]
,

(3.127)

Kµν(p2, p3) =
(

4gµν + (d− 4)γµγν
)
· (3.128)

We set d = 4− 2ε. The one-loop structure of this vertex is

Λ
(1)
S (p2, p3) =

α

4π
C2(F )

[
BS + ES

1

µ
( 6p2+ 6p3)

]
. (3.129)

The form factors are:
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BS =4

(
1

ε
− γE

)
+ 6−

(
8
m2

µ2
+ 2

)
C0

(
m2

µ2

)
+

4m2

µ2
ln

(
m2

m2 + µ2

)
− 4 ln

(
m2 + µ2

µ̃2

)
,

(3.130)

ES = −4

3

m

µ

[
C0

(
m2

µ2

)(
−1

2
+
m2

µ2

)
−
(

1 +
m2

µ2

)
log

(
m2

m2 + µ2

)

+

√
1 + 4

m2

µ2
log


√

1 + 4m
2

µ2 − 1√
1 + 4m

2

µ2 + 1

] . (3.131)

Using the renormalization condition Eq. (3.49), and the fact that ZmZP = 1,

yields

lim
mR→m

{
1

12
Tr

[
ZS
Zq

ΛS

]
+

1

6q2
Tr

[
ZmZP

Zq
2imΛPγ5/q

]}∣∣∣∣∣
sym

= lim
mR→m

Z−1
q

{
ZS

(
1 + C2(F )

α

4π

[
4

(
1

ε
− γE

)
+ 6−

(
8
m2

µ2
+ 2

)
C0

(
m2

µ2

)

+
4m2

µ2
ln

(
m2

m2 + µ2

)
− 4 ln

(
m2 + µ2

µ̃2

))
+

8m2

µ2
C0

(
m2

µ2

)]}
= 1 .

(3.132)

After introducing

P = 1 + C2(F )
α

4π

[
4

(
1

ε
− γE

)
+ 6− 2C0

(
m2

µ2

)
+

4m2

µ2
ln

(
m2

m2 + µ2

)

− 4 ln

(
m2 + µ2

µ̃2

)]
,

(3.133)
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we obtain

ZS

(
P − α

4π
C2(F )

8m2

µ2
C0

(
m2

µ2

))
= Zq

(
1− 1

Zq
C2(F )

α

4π

8m2

µ2

)
= Zq

(
1− C2(F )

α

4π

8m2

µ2
+O(α2)

)
·

Hence,

ZS =ZqP−1

(
1− C2(F )

α

4π

8m2

µ2
+O(α2)

)(
1 +

α

4π
C2(F )

8m2

µ2

C0

(
m2

µ2

)
P

)

=ZqP−1

(
1− C2(F )

α

4π

8m2

µ2
+O(α2)

)(
1 +

α

4π
C2(F )

8m2

µ2
C0

(
m2

µ2

)
+O(α2)

)
=ZP .

(3.134)

We can rewrite the above expression explicitly as:

ZS =

{
1 +

α

4π
C2(F )

[
− 3

(
1

ε
− γE

)
− 5 + 2C0

(
m2

µ2

)
+ 3 ln

(
m2 + µ2

µ̃2

)

− m2

µ2

(
1− 4 ln

(
1 +

µ2

m2

)
− m2

µ2
ln

(
1 +

µ2

m2

))]}
=ZP ,

(3.135)

which clearly depends on the ratio m2

µ2 . It is possible to show non-perturbatively

that ZmZS = 1 using the vector WI with a suitable probe. See e.g. Ref. [78] for

a detailed discussion.

3.4.10 Mass Renormalization

The mass renormalization can be computed following the mSMOM prescription:

lim
mR→m

1

12mR

{
Tr

[
− iS−1

R

]
− 1

2
Tr

[
qµΛµ

A,Rγ
5

]} ∣∣∣∣∣
sym

= 1. (3.136)
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We prove that ZmZP has to be equal to 1, i.e.

lim
mR→m

1

12Zmm

{
Tr

[
− iZ−1

q S−1

]
− 1

2
Tr

[
ZAZ

−1
q qµΛµ

A,Rγ
5

]} ∣∣∣∣∣
sym

= lim
mR→m

Z−1
m

12m

{
Z−1
q (12m)(1 + ΣS(p2))− 1

2
ZAZ

−1
q (12)C2(F )

α

4π
4mC0

(
m2

µ2

)} ∣∣∣∣∣
sym

(3.137)

Setting ZA = 1, we have

Zm =Z−1
q

[
1 +

α

4π
C2(F )

(
4

(
1

ε
− γE

)
+ 6 +

4m2

µ2
ln

(
m2

m2 + µ2

)

− 4 ln

(
m2 + µ2

µ̃2

)
− 2C0

(
m2

µ2

))]

=1 +
α

4π
C2(F )

[
3

(
1

ε
− γE

)
+ 5− 2C0

(
m2

µ2

)
+
m2

µ2

(
1 + 4 ln

(
m2

m2 + µ2

)
− m2

µ2
ln

(
m2

m2 + µ2

))
− 3 ln

(
m2 + µ2

µ̃2

)]
= Z−1

P .

(3.138)

3.4.11 Vector Ward identity

The results in the Sec. 3.4.6 and Sec. 3.4.5 need to satisfy the vector Ward identity.

This requirement provides a stringent test of our computations. At one-loop the

Ward identity, Eq. 3.26, becomes

q · Λ(1)
V = Σ(p3)− Σ(p2) . (3.139)

Using the results in Sec. (3.4.6), the LHS of Eq. 3.139 is readily evaluated

α

4π
C2(F ) 6q

{
1

ε
− γE + 1− log

(
m2 + µ2

µ̃2

)

− m2

µ2

(
1− m2

µ2

[
1− m2

µ2
log

(
m2

m2 + µ2

)])}
.

(3.140)
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Likewise, for the RHS of Eq. 3.139, the results in Sec. 3.4.5 yield exactly the same

expression, so that the vector Ward identity is indeed satisfied.

As discussed in the previously, the vector Ward identity implies that ZV =

1. This can be checked explicitly from our one-loop calculation. Using the

renormalization condition Eq. (3.46) yields

lim
MR→m

1

12q2
Tr [(q · ΛV,R) 6q]|sym = lim

mR→m

1

12q2
Tr

[
ZV
Zq

(q · ΛV ) 6q
] ∣∣∣∣∣

sym

= 1,

(3.141)

which, using Eq. (3.90), implies

ZV =Zq

[
1 +

α

4π
C2(F )

(
1

ε
+ 1− γE −

m̄2

µ2
− m̄4

µ4
ln

(
m̄2

m̄2 + µ2

)
− ln

(
m̄2 + µ2

µ̃2

))]−1

=1.

(3.142)

3.4.12 Axial Ward identity

The axial Ward identity also needs to be fulfilled in our check at 1-loop. This

constraint becomes

q · Λ(1)
A = 2miΛP + γ5Σ(p2) + Σ(p3)γ5 (3.143)

Using the results in Sec. (3.4.8), the LHS of Eq. (3.143) can be evaluated

− α

4π
C2(F )γ5

{
/q

[
1

ε
− γE + 1− 4m2

µ2
C0

(
m2

µ2

)
− m2

µ2
− m4

µ4
ln

(
m2

m2 + µ2

)

− ln

(
m2 + µ2

µ̃2

)]
− 4mC0

(
m2

µ2

)}
.

(3.144)

Similarly, for the RHS of Eq. (3.143) , the results in Sec. 3.4.5 and Sec. 3.4.7 yield

exactly the same expression, so that the axial Ward identity is indeed satisfied.

As discussed in the previous section, the axial Ward identity implies that

ZA = 1. This can be checked explicitly from our one-loop calculation. Note that
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the modified renormalization condition Eq. (3.47) is critical to get ZA = 1.

lim
MR→m

1

12q2
Tr [(q · ΛA,R − 2mRiΛP,R) γ5 6q]|sym (3.145)

= lim
MR→m

1

12q2
Tr

[(
ZA

Zq
q · ΛA −

ZPZm
Zq

2imΛP

)
γ5
/q

] ∣∣∣∣∣
sym

= lim
MR→m

1

12q2

1

Zq
Tr

{
ZA

(
q2 +

α

4π
C2(F )q2

[
1

ε
− γE + 1− 4m2

µ2
C0

(
m2

µ2

)
− m2

µ2

− m4

µ4
ln

(
m2

m2 + µ2

)
− ln

(
m2 + µ2

µ̃2

)])

+ C2(F )
α

4π
q2 4m2

µ2
C0

(
m2

µ2

)}∣∣∣∣∣
sym

= 1,

where we have used ZmZP = 1. Substituting Eq. (3.90), yields

ZA = 1 . (3.146)

3.5 Perturbative computation II

The ’t Hooft-Veltman convention for γ5, generalizes this matrix for arbitrary

dimensions d [79]:

{γ5, γ
µ}, if µ = 0, 1, 2, 3, (3.147)

[γ5, γ
µ], otherwise,

(γ5)2 = 1, γ†5 = γ5·

This is only Lorentz invariant for the first four dimensions and not the entire

space, however it also gives the correct axial anomaly. When considering

the flavor-singlet axial current, it is essential to use this convention for γ5.

Even though we have not considered the flavor-singlet case, as a check, we

redo the 1-loop computation for the pseudoscalar and axial vertices using this

convention. Such a 1-loop calculation also gives insight for attempting to extend

the mSMOM renormalization scheme for flavor-singlet operators. Due to the

different commutation and anti-commutation relations depending on whether
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µ ≤ 3 or µ > 3, the axial WI needs to be re-derived and now contains extra

terms corresponding to extra 1-loop diagrams that have to be recomputed.

We follow the notation first introduced by Breitenlohner & Maison in Ref. [80]

and re-expressed in [85]. Dimensions µ ≤ 3 are denoted with a bar and µ > 3 are

denoted with a hat. Explicitly:

ĝµν =

gµν , if µ, ν ≥ 4

0, otherwise;
(3.148)

and

ḡµν =

gµν , if µ, ν < 4,

0, otherwise.
(3.149)

For a vector: p̂µ = ĝµνpν ,

p̄µ = ḡµνpν ·
(3.150)

Furthermore, let

δ̂µν =

δµν , if µ, ν ≥ 4

0, otherwise;
(3.151)

and

δ̄µν =

δµν , if µ, ν < 4

0, otherwise;
(3.152)

Appendix C.7 is dedicated to the manipulation of the γ matrices in this

convention, in particular those that are required in the 1-loop computation of

the pseudoscalar, the axial and other vertices appearing in the axial WI.

3.5.1 Axial WI in the ’t Hooft-Veltman convention

Returning to Sec. 3.2, where we derived the axial WI explicitly starting from the

variation of the action, we see that the term appearing in the line before last in
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Eq. 3.16, i.e.

−ψ̄(x){γ5, γµ}Dµψ(x) + ∂µA
µ − 2miψ̄(x)γ5ψ(x) , (3.153)

contains an anti-commutator term. This term is no longer zero for µ > 3 but

instead equals

−2ψ̄(x)γ5γ̂µDµψ(x) + ∂µA
µ − 2miψ̄(x)γ5ψ(x) · (3.154)

This yields the axial WI:

iδ(x− x3)γ5〈ψ(x3)ψ̄(x2)〉+ iδ(x− x2)〈ψ(x3)ψ̄(x2)〉γ5 (3.155)

=− i∂µ〈Aµ(x)ψ(x3)ψ̄(x2)〉+ 2mi〈ψ̄(x)iγ5ψ(x)ψ(x3)ψ̄(x2)〉
+ i〈ψ̄(x)γ5γ̂µ

(
∂µψ(x)

)
ψ(x3)ψ̄(x2)〉 − i〈

(
∂µψ̄(x)

)
γ5γ̂µψ(x)ψ(x3)ψ̄(x2)〉︸ ︷︷ ︸

−2g〈ψ̄(x)γ5γ̂µAµψ(x)ψ(x3)ψ̄(x2)〉︸ ︷︷ ︸
new Feynman rules needed

·

The terms indicated appear as a result of the ’t Hooft-Veltman convention and

yield new vertices that have to be computed. Let us start with the first term and

perform a Wick contraction,

〈ψ̄(x)γ5γ̂µ
(
∂µψ(x)

)
ψ(x3)ψ̄(x2)〉

= + 〈ψ(x3)ψ̄(x)γ5γ̂µ
(
∂µψ(x)

)
ψ̄(x2)〉 ·

(3.156)

The momentum space value, placing the operator at the origin using a delta

function becomes,∫
d4x δ(x)

∫
d4x2d

4x3 S(x3 − x)γ5γ̂µ
(
∂µS(x− x2)

)
eip3.x3e−ip2.x2

=

∫
d4x δ(x)

[∫
d4x3 S(x3 − x)eip3.x3 γ5γ̂µ × (−)(−)(−ip2)

∫
d4x2 S(x− x2)e−ip2.x2

]
=− ip2µ

∫
d4x3 S(x3)eip3.x3 γ5γ̂µ

∫
d4x2 S(−x2)e−ip2.x2

=− ip2µS(p3) γ5γ̂µ S(p2) ·
(3.157)

102



3.5. Perturbative computation II

This has to be multiplied by an overall factor i in Eq. 3.155, giving,

+p2µS(p3) γ5γ̂µ S(p2) · (3.158)

Following a similar procedure for the other vertex, 〈
(
∂µψ̄(x)

)
γ5γ̂µψ(x)ψ(x3)ψ̄(x2)〉,

gives +ip3µS(p3) γ5γ̂µ S(p2) which will be multiplied by−i according to Eq. 3.155.

After amputation, i.e. multiplying on the left with S(p3)−1 and on the right with

S(p2)−1, the tree-level value for this vertex becomes,

+ (p2 + p3)µγ
5γ̂µ , (3.159)

corresponding to the diagram in Fig. 3.4.

p2 p3

q = p2 − p3

p2 p3

k

p2 − k p3 − k

q = p2 − p3
Figure 3.4: Diagram representing the tree level contribution to the operator
〈ψ̄(x)γ̂µγ5Dµψ(x)〉.

Returning to Eq. 3.155 the contribution to 〈ψ̄(x)γ̂µγ5Dµψ(x)ψ(x3)ψ̄(x2)〉 at

tree-level is in fact zero since in the absence of any poles we can simply take

p̂ = 0. The 1-loop contribution is then expressed as

Λ
(1)
â anom = −ig2C2(F )

∫
k

γα[/p3
− /k +m](/̂p2

+ /̂p3
− 2/̂k)γ5[/p2

− /k +m]γα

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
,

(3.160)

which corresponds to the diagram:
p2 p3

q = p2 − p3

p2 p3

k

p2 − k p3 − k

q = p2 − p3

Figure 3.5: Diagram representing one loop contribution to the operator
〈ψ̄(x)γ̂µγ5Dµψ(x)〉.

The last term in the WI Eq. 3.155 i.e. −2g〈ψ̄(x)γ5γ̂µAµψ(x)ψ(x3)ψ̄(x2)〉, has
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p2 p3

k

p2 − k

q = p2 − p3

p3 − k

q = p2 − p3

p2 p3

k

(b)

p2 p3

k

p2 − k

q = p2 − p3

p3 − k

q = p2 − p3

p2 p3

k
(c)

Figure 3.6: Diagrams representing one loop contribution to the operator
−2g〈ψ̄(x)τaγ5γ̂µAµψ(x)ψ(x3)ψ̄(x2)〉.

its first contribution appearing at 1-loop in the following combination:

(−ig)(−2g)

∫
d4x δ(x) d4x2 e

−ip2.x d4x3 e
ip3.x d4z

ψ̄(z)Aρ(z)γρψ(z)ψ̄(x)γ5γ̂µA (x)µψ(x)ψ(x3)ψ̄(x2) ·
(3.161)

Performing the contractions, setting x = 0 using a delta-function and taking the

Fourier transform, we get,

(2ig2)

∫
p

S(p3)γρS(p3 − p)γ5γ̂µS(p2)∆ρµ(p) · (3.162)

For the details of the computation see App. C.7.3. After amputating the vertex

by multiplying on the left with S(p3)−1 and on the right with S(p2)−1, we have,

Λ
(1)
ĉ anom = (2ig2)(−i)(i)

∫
k

γ̂µ[/p3
− /k +m]γ5γ̂µ

k2[(p3 − k)2 −m2]
· (3.163)

Similarly, for the other equivalent contribution,

Λ
(1)

b̂ anom
= 2ig2C2(F )

∫
k

γ̂µγ
5[/p2
− /k +m]γ̂µ

k2[(p2 − k)2 −m2]
· (3.164)

These vertices are shown in Fig. 3.6. We discuss the computation of these vertices

in the upcoming sections.
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3.5. Perturbative computation II

3.5.2 Axial and pseudoscalar vertices recomputed

The axial current contribution has to be recomputed using the new convention,

Λ
(1)σ
A (p2, p3) = −ig2C2(F )

∫
k

γα [6p3− 6k +m] γ̄σγ5 [ 6p2− 6k +m] γα

k2
[
(p3 − k)2 −m2

] [
(p2 − k)2 −m2

] . (3.165)

Using the previous calculation in the naive case, we know that the coefficients

multiplying the scalar and the vector terms in k, i.e. Kσ
5 and Kσ,µ

5 in Eq. 3.114,

are finite. This implies that there is no need to recompute these using the new

convention since parts proportional to /̂p2
, /̂p3

can be safely set to zero in the

absence of any 1/ε poles. We therefore need to consider the term in the numerator

of the form kµkν . Again, the part of the integral proportional to (p̄σ2 6p2 + p̄σ3 6p3)

and (p̄σ2 6p3 + p̄σ3 6p2) are finite and we can carry forward the result from the naive

case. This shows that we only need to recompute the contribution proportional

to gµν which contains a 1/ε pole. The result is:

Λ
(1)σ
A (p2, p3) =

α

4π
C2(F )

[
AA

1

µ2

(
iεσραβγρp3αp2β

)
+BAγ

σγ5+

+CA
1

µ2
γ5 (pσ2 6p2 + pσ3 6p3) +

+DA
1

µ2
γ5 (pσ2 6p3 + pσ3 6p2) + EA

1

µ
(pσ2 − pσ3 )

]
.

(3.166)

where coefficients AA, CA, DA and EA are the same as in Sec. 3.4.8, while the

coefficient of γ̄σγ5 now becomes,

BA =
1

ε
− γE + 4 +

1

3

[
−C0

(
m2

µ2

)(
1 + 8

m2

µ2
− 2

m4

µ4

)
+

(
3− m2

µ2

)
2m2

µ2
log

(
m2

m2 + µ2

)
+

(
1− 4

m2

µ2

)
log

(
m2

µ̃2

)
− 4

(
1− m2

µ2

)
log

(
m2 + µ2

µ̃2

)

−
(

1− 2
m2

µ2

)√
1 + 4

m2

µ2
log


√

1 + 4m
2

µ2 − 1√
1 + 4m

2

µ2 + 1

 .

(3.167)
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The extra number, “4” above, is the only extra addition to the naive case

Eq. 3.167, which means the change in the convention has had a finite, non-zero

contribution to the integral.

Similar arguments hold for the pseudoscalar integral using the new convention.

The result is similar to Sec. 3.4.7,

Λ
(1)
P (p2, p3) =

iα

4π
C2(F )

[
BP

(
γ5
)

+ EP
1

µ
(γ5)

(
¯6p2 − ¯6p3

)]
, (3.168)

with a different form factor BP as compared to Eq. 3.169,

BP = 4

[
1

ε
− γE +

7

2
− 1

2
C0

(
m2

µ2

)
+
m2

µ2
log

(
m2

m2 + µ2

)
− log

(
m2 + µ2

µ̃2

)]
.

(3.169)

Again, we see a finite contribution that is different compared to the naive case.

3.5.3 Integral Λ
(1)
â anom

One of the main ingredients in computing

Λ
(1)
â anom = −ig2C2(F )

∫
k

γα[/p3
− /k +m](/̂p2

+ /̂p3
− 2/̂k)γ5[/p2

− /k +m]γα

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
,

(3.170)

is the term containing three ks in the numerator,

Iµσν =

∫
k

kµkσkν

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
· (3.171)

This integral is symmetric both under the exchange of p2 ↔ p3 and permutations

of indices µ, σ, ν. Therefore it is expected to be of the form:

Iµσν =A

[
gµσ(pν2 + pν3) + gµν(pσ2 + pσ3 ) + gσν(pµ2 + pµ3)

]
+B

[
pµ2p

σ
2p

ν
2 + pµ3p

σ
3p

ν
3

]
+C

[
(pµ2p

σ
3p

ν
2 + pν2p

µ
3p

σ
2 + pσ2p

ν
3p
µ
2) + (pµ3p

σ
2p

ν
3 + pν3p

µ
2p

σ
3 + pσ3p

ν
2p
µ
3)

]
·

(3.172)
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The constants A,B and C can be determined by appropriately contracting the

indices and solving a set of simultaneous equations in the same spirit as Sec. 3.4.3

and Sec. 3.4.4. The full detail of this computation can be found in App. C.7.4.

The terms containing two k’s in the numerator have a divergent contribution

proportional to gµν as we have seen before, hence have to be computed. The

details of the calculations can be seen in App. C.7.5. The final result of Λ
(1)
â anom

is:

Λ
(1)
â anom =

α

4π
γ5C2(F )

[
3

ε
(/̂p2

+ /̂p3
) + 2(/̄p3

− /̄p2
) + 8m

]
· (3.173)

3.5.4 Integrals Λ
(1)

b̂ anom
and Λ

(1)
ĉ anom

For the integral Λ
(1)

b̂ anom
in Eq. 3.164, we use the results Eq. C.81 computed for

Eq. C.79. Simplifying the numerator,

γ̂µγ
5γ̄σγ̂µ + γ̂µγ

5γ̂σγ̂µ =γ5
(
γ̂µγ̄

σγ̂µ + γ̂µγ̂
σγ̂µ
)

= γ5

(
(4− d)γ̄σ + (6− d)γ̂σ

)
=γ5

(
2εγ̄σ + (2 + 2ε)γ̂σ

)
(3.174)

Therefore, the term in the numerator with /p2
gives

iα

4π
γ5

[
2/̄p2

+
2

ε
/̂p2

]
, (3.175)

where the finite part vanishes as p̂2 → 0. The −/k part gives,

− iα

4π
γ5

[
/̄p2

+
1

ε
/̂p2

]
· (3.176)

The m part gives,

iα

4π
γ5

[
1

ε
+ finite

]
(d− 4)m =

iα

4π
γ5(−2m) · (3.177)
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Putting it all together we obtain,

Λ
(1)

b̂ anom

iC2(F )
= 2

iα

4π
γ5

[
/̄p2

+
1

ε
/̂p2
− 2m

]
· (3.178)

For Λ
(1)
ĉ anom, Eq. 3.163, in the numerator we have the term

γ̂µγ̄
σγ̂µγ5 + γ̂µγ̂

σγ̂µγ5 =γ5
(
− γ̂µγ̄σγ̂µ + γ̂µγ̂

σγ̂µ
)

= γ5

(
− (4− d)γ̄σ + (6− d)γ̂σ

)
=γ5

(
− 2εγ̄σ + (2 + 2ε)γ̂σ

)
·

(3.179)

The /p3
part becomes,

iα

4π
γ5

[
− 2/̄p3

+
2

ε
/̂p3

]
· (3.180)

The −/k part gives

− iα

4π
γ5

[
− /̄p3

+
1

ε
/̂p3

]
, (3.181)

and the m part remains the same as the previous case. Therefore,

Λ
(1)
ĉ anom

iC2(F )
= 2

iα

4π
γ5

[
− /̄p3

+
1

ε
/̂p3
− 2m

]
· (3.182)

Adding the two graphs,

Λ
(1)

b̂ anom
+ Λ

(1)
ĉ anom =

α

4π
C2(F )γ5

[
− 2(/̄p2

− /̄p3
)− 2

ε
(/̂p2

+ /̂p3
) + 8m

]
· (3.183)

3.5.5 Bare axial WI check at 1-loop

The bare axial WI at 1-loop it takes the form

q.Λ
a(1)
A (p1, p2) =2miΛ

a(1)
P (p1, p2) + τaγ5Σ(p2) + Σ(p3)τaγ5

+ Λ
a(1)
â anom + Λ

a(1)

b̂ anom
+ Λ

a(1)
ĉ anom ·

(3.184)
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For the propagator terms at 1-loop we have,

γ5Σ(p2) + Σ(p3)γ5

=
α

4π
γ5C2(F )

[
−/̄q − (/̂p2

+ /̂p3
)

ε

+ /̄q

(
−1 + γE +

m2

µ2
+
m4

µ4
ln

(
m2

m2 + µ2

)
+ ln

(
m2 + µ2

µ̃2

))
+ 2m

(
4

(
1

ε
− γE

)
+ 6 +

4m2

µ2
ln

(
m2

m2 + µ2

)
− 4 ln

(
m2 + µ2

µ̃2

))]
,

(3.185)

and

q̄.Λ
σ̄(1)
A =

α

4π
γ5C2(F )

[
/̄q

(
− 1

ε
+ γE +

4m2

µ2
C0 + log

(
m2 + µ2

µ̃2

)
+
m2

µ2

+
m4 log

(
m2

m2+µ2

)
µ4

− 5

)
+ 4mC0

]
·

(3.186)

Given the ingredients, it is easy to check that the WI, Eq. 3.184, is indeed satisfied.

3.6 The ’t Hooft-Veltman modified renormal-

ization conditions

The renormalization conditions for the axial current and the mass have always

been derived starting from considering the axial WI and multiplying it with an

appropriate projector, i.e. γ5/q and γ5 respectively. Afterwards, simplifications

may be made using the other renormalization conditions such as those for the

field and pseudoscalar vertex. Here, we carry the same logic forward. Firstly, note

that the conditions for the field, vector, pseudoscalar and scalar renormalization

will remain unaltered. However, we have seen that using the ’t Hooft-Veltman γ5

conventions changes the finite part of the pseudoscalar vertex which means that

ZP will be different; explicitly, starting from

lim
MR→m

1

12i
Tr [ΛP,Rγ5]|sym = lim

mR→m

1

12i
Tr

[
ZP

Zq
ΛPγ

5

] ∣∣∣∣∣
sym

= 1, (3.187)
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we obtain

ZP =

{
1 +

α

4π
C2(F )

[
− 3

(
1

ε
− γE

)
− 13 + 2C0

(
m2

µ2

)
− m2

µ2

(
1− 4 ln

(
1 +

µ2

m2

)
− m2

µ2
ln

(
1 +

µ2

m2

))
+ 3 ln

(
m2 + µ2

µ̃2

)]}
. (3.188)

Finally let us write out the new set of renormalization conditions for the mass

and the axial current. For the axial current we have

lim
MR→m

1

12q2
Tr [(q · ΛA,R − 2MRiΛP,R) γ5 6q]|sym

= lim
MR→m

1

12q2
Tr
[(
− γ5iSR(p2)−1 − iSR(p3)−1γ5

)
γ5 6q

]∣∣∣
sym

+ lim
MR→m

1

12q2
Tr
[
Z−1
q

(
Λâ anom + Λb̂ anom + Λĉ anom

)
γ5 6q

]∣∣∣
sym
·

(3.189)

The first term on the right hand side is indeed the term that reduces to unity in the

naive γ5 convention. However, in the ’tHooft-Veltman convention, passing the γ5

through the inverse propagator introduces hatted terms corresponding to γµ with

µ ≥ 4. It is important to note that as far as the usual four dimensional, i.e. barred,

termed are concerned, there is no difference between this condition and what we

previously had for the naive case. The extra terms are purely an artefact of the

definition of γ5. Since we have designed the conditions directly using the bare

WI, the hatted terms arising from commuting the γ5 with the inverse propagator

cancel with the corresponding terms coming from Λâ anom +Λb̂ anom +Λĉ anom order

by order in perturbation theory. Note also that these terms are zero at tree-level.

More explicitly, the left hand side of Eq. 3.189 at 1-loop now reads

lim
MR→m

1

12q2
Tr [(q · ΛA,R − 2mRiΛP,R) γ5 6q]|sym (3.190)

= lim
MR→m

1

12q2
Tr

[(
ZA

Zq
q · ΛA −

ZPZm
Zq

2imΛP

)
γ5
/q

] ∣∣∣∣∣
sym

110



3.6. The ’t Hooft-Veltman modified renormalization conditions

= lim
MR→m

1

12q2

1

Zq
Tr

{
ZA

(
q2 +

α

4π
C2(F )q2

[
1

ε
− γE + 5− 4m2

µ2
C0

(
m2

µ2

)
− m2

µ2

− m4

µ4
ln

(
m2

m2 + µ2

)
− ln

(
m2 + µ2

µ̃2

)])

+ C2(F )
α

4π
q2 4m2

µ2
C0

(
m2

µ2

)}∣∣∣∣∣
sym

, (3.191)

where we have taken ZmZP = 1, checked to be consistent in Eq. 3.193. The right

hand side of Eq. 3.189 takes the form

lim
MR→m

1

12q2
Z−1
q Tr

{
1 +

α

4π
C2(F )

[
+/̄q − (/̂p2

+ /̂p3
)

ε

− /̄q
(
−1 + γE +

m2

µ2
+
m4

µ4
ln

(
m2

m2 + µ2

)
+ ln

(
m2 + µ2

µ̃2

))]

+
α

4π
C2(F )

[
1

ε
(/̂p2

+ /̂p3
) + 4(/̄p2

− /̄p3
) + 16m

]
/̄q

}

= lim
MR→m

Z−1
q

{
1 +

α

4π
C2(F )

[
1

ε
− γE + 5− m2

µ2
− m4

µ4
ln

(
m2

m2 + µ2

)
− ln

(
m2 + µ2

µ̃2

)]
,

(3.192)

where the Z−1
q cancels on both sides of the equation and gives ZA = 1.

Finally, to obtain the mass renormalization and check that ZmZP = 1, we

modify Eq. 3.45 keeping in mind bare WI with a γ5 projector. This gives,

lim
MR→m

1

12

{
Tr [q · ΛA,Rγ5]|q2=−µ2 − 2 Tr [MRiΛP,Rγ5]|sym

}
= lim

MR→m

1

12
Tr
[(
− γ5iSR(p2)−1 − iSR(p3)−1γ5

)
γ5

]∣∣∣
sym

+ lim
MR→m

1

12
Tr
[
Z−1
q

(
Λâ anom + Λb̂ anom + Λĉ anom

)
γ5

]∣∣∣
sym
·

(3.193)
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Using ZA = 1, the LHS of Eq. 3.193 at 1-loop becomes,

lim
MR→m

Z−1
q

{
α

4π
C2(F )

(
4mC0

)

+ 2ZMZP

[
m+

α

4π
m

(
4

(
1

ε
− γE

)
+ 14− 2C0

+ 4
m2

µ2
log

(
m2

m2 + µ2

)
− 4 log

(
m2 + µ2

µ̃2

))]}
·

The RHS of Eq. 3.193 takes the form,

lim
MR→m

Z−1
q

{
2m+

α

4π
C2(F )

[
− /̂p2

+ /̂p3

ε

+ 2m

(
4

(
1

ε
− γE

)
+ 6 + 4

m2

µ2
log

(
m2

m2 + µ2

)
− 4 log

(
m2 + µ2

µ̃2

))]

+
α

4π
C2(F )

[
/̂p2

+ /̂p3

ε
+ 16m

]}
·

(3.194)

Putting them together, Z−1
q on both sides cancels giving ZmZP = 1.

3.7 Mass non-degenerate scheme

We will now consider the renormalization scheme for the case of non-singlet,

mass non-degenerate vertex functions in Minkowski space. Note that according

to Eq. 3.5, we collect the two fermion fields in a flavor doublet:

ψ =

H
l

 , ψ =

(
H l

)
, (3.195)

with the non-degenerate mass matrix

M =

M 0

0 m

 . (3.196)
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In what follows we will be interested in fermion bilinears of the form O+ = HΓl

by choosing the flavor rotation matrix to be τa = τ+ = σ+

2
= 1

2
(σ1 + iσ2). For

clarity, we will leave the flavor index “ + ” explicit in the Ward identities, but

will suppress it for the rest of the section to keep the notation simple. We have

used curly letters (V ,A,P ,S) to denote the heavy-light bilinears. The vector and

axial Ward identities are as follows:

q · Λ+
V = (M −m)Λ+

S + iSH(p2)−1 − iSl(p3)−1. (3.197)

q · Λ+
A = (M +m)iΛ+

P − γ5iSH(p2)−1 − iSl(p3)−1γ5 , (3.198)

where M and m are masses of the heavy and the light quarks respectively.

3.7.1 Modified renormalization conditions

The RI/mSMOM scheme for the heavy-light mixed case is defined by imposing

the following set of conditions at some reference mass m:

lim
mR→0
MR→m

1

12q2
Tr [(q · ΛV,R − (MR −mR)ΛS,R) 6q]|sym (3.199)

= lim
mR→0
MR→m

1

12q2
Tr
[(
iζ−1SH,R(p2)−1 − iζSl,R(p3)−1

)
6q
]
,

lim
mR→0
MR→m

1

12q2
Tr [(q · ΛA,R − (MR +mR)iΛP,R) γ5 6q]|sym

= lim
mR→0
MR→m

1

12q2
Tr
[(
− iγ5ζ−1SH,R(p2)−1 − iζSl,R(p3)−1γ5

)
γ5 6q

]
,

(3.200)

lim
mR→0
MR→m

1

12i
Tr [ΛP,Rγ5]|sym (3.201)

= lim
mR→0
MR→m

{
1

12(MR +mR)

{
Tr
[
−iζ−1SH,R(p)−1

]∣∣
p2=−µ2 −

1

2
Tr [(q · ΛA,R) γ5]|sym

}
+
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1

12(MR +mR)

{
Tr
[
−iζSl,R(p)−1

]∣∣
p2=−µ2 −

1

2
Tr [(q · ΛA,R) γ5]|sym

}}
.

(3.202)

where ζ denotes the ratio of the light to the heavy field renormalizations, i.e.

ζ =
√
Zl√
ZH

. In the degenerate mass, ζ = 1 and the mixed mSMOM prescription

reduces to the mSMOM and SMOM one. The renormalization conditions for

Zl, ZH and Zm remain unaltered as they are independently determined from the

corresponding degenerate, massive and massless schemes of the previous sections.

As usual the renormalization conditions are satisfied by the tree level values of

the field correlators.

3.7.2 Renormalization constants

The properties of the renormalization constants in this scheme are obtained once

again from the Ward identities. We multiply the vector Ward identity Eq. 3.197

by /q, take the trace and write the bare quantities in terms of the renormalized

ones as follows:

Z
1/2
H Z

1/2
l Tr

[
1

ZV
(q · ΛV,R) 6q

]
=Z

1/2
H Z

1/2
l Tr

[(
iζ−1SH,R(p2)−1 − iζSl,R(p3)−1 +

MR

ZM
− mR

Zm

ZS
ΛS,R

)
6q
]
.

(3.203)

Using Eq. C.154 we get(
1

ZV
− 1

)
Tr
[(
iζ−1SH,R(p2)−1 − iζSl,R(p3)−1

)
6q
]

=

(
−(MR −mR)

ZV
+

MR

ZM
− mR

Zm

ZS

)
Tr [ΛS,R 6q] ,

(3.204)

which has a solution when ZV = 1 and

ZS =

MR

ZM
− mR

Zm

MR −mR

. (3.205)

For the axial current we follow a similar procedure, starting from the bare

mixed axial Ward identity Eq. 3.198. Multiplying by γ5 6 q and γ5 respectively
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and taking the trace gives two independent equations. In the first case, we use

Eq. C.156 and obtain

(1− 1

ZA
)Tr
[(
−iγ5ζ−1SH,R(p2)−1 − iζSl,R(p3)−1γ5

)
γ5 6q

]
=

(
MR +mR

ZA
−
(

MR

ZMZP
+

mR

ZmZP

))
Tr
[
(iΛP) γ5 6q

]
.

(3.206)

The latter equation is satisfied by ZA = 1 and

ZP =

MR

ZMZP
+ mR

ZmZP

MR +mR

. (3.207)

Note that in the degenerate mass limit, we recover ZmZP = 1.

In the second case, where we take the trace with γ5, we make use of Eq. C.157,

giving 1

ZA
−

(
MR

ZMZP
+ mR

ZmZP

)
MR +mR

Tr
[
(q · ΛA,R) γ5

]

=

1−

(
MR

ZMZP
+ mR

ZmZP

)
MR +mR

(Tr
[
−iζ−1SH,R(p2)−1 − iζSl,R(p3)−1

])
,

(3.208)

which has solutions ZA = 1 and ZP as in Eq. 3.207. One can easily check that

this solution is unique.

3.7.3 Finiteness of the ζ ratio

We need to show that the ratio ζ is finite since it appears together with the

renormalized propagators on the right hand sides of Eq. C.154 and Eq. C.156

while the left hand sides of these equations only contain renormalized vertices

and mass. For ζ =
√
Zl√
ZH

to be finite, the coefficient of the divergent part ZH has

to be mass independent in order to cancel with the same term in Zl. We will

argue that this has to be the case order by order in perturbation theory.
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3.8. Lattice regularization

The fermion propagator can be written as:

S(p) =
i

/p−m+ iε− Σ(p)
, (3.209)

where the self-energy Σ(p) is decomposed into

Σ(p) = /pΣV (p2) +mΣS(p2) . (3.210)

Assuming that the theory is regulated using dimensional regularization, let us

examine all possible coefficients multiplying the divergent terms that can appear

in the self-energy at any given order in perturbation theory. Note that ΣV (p2)

and ΣS(p2) are dimensionless scalars, which means the terms appearing in the

coefficient of the divergent part can only be a function of ln
(
p2

m2

)
, p2

m2 , m2

p2 or a

number.

As argued in Ref. [86], all UV divergences can be subtracted using local

counter-terms only. In other words, the field renormalization used to remove the

divergences cannot contain terms which are functions of ln
(
p2

m2

)
and m2

p2 , since

these are non-local. The term p2

m2 cannot occur either since it is IR divergent in

the limit m → 0 whereas we had used off-shell conditions from the beginning

and therefore do not expect any IR divergences. The only remaining option is a

coefficient proportional to 1 which has be the same number in both the massive

and massless cases since in the absence of IR divergences ZH to reduces to Zl.

Another way to argue that the divergent part of the massive self-energy has to

be mass independent is the fact that a massless renormalization scheme removes

all the divergences. Therefore ZH and Zl must have the same coefficient for their

divergent terms as argued in Ref. [87].

3.8 Lattice regularization

We start this section by showing that, when dealing with composite operators,

power divergent mixings with lower dimensional operators are independent of

the renormalization scale µ, following Ref. [88]. This is true order-by-order in

perturbation theory. We then discuss the statement in the case of chiral symmetry

being broken by a regulator which appears as part of the axial WI.
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3.8. Lattice regularization

3.8.1 Power divergent operators

Consider a composite operator O(x) which we need to renormalize in order to

make it finite. In this process the operator will mixing with other equal or lower

dimensional operators with the same symmetry properties. For simplicity, we take

an example of an operator O(x) that only mixes with another lower dimensional

operator Õ(x):

OR(x) = ZO

[
O(x) +

Z̃

a
Õ(x)

]
· (3.211)

The coefficients ZO and Z̃ are dimensionless and are chosen such that the Green’s

function

G(OR,n)(x, x1, ..., xn) = [Zφ(g0, aµ)]n/2 〈ORφ0(x1)...φ0(xn)〉 , (3.212)

is finite for a → 0 and a massless theory is assumed. We could then apply

the Callan-Symanzik differential operator, µ d
dµ
|g0,a on both sides of the above

equation. The RHS of Eq. 3.212 gives,

n

2
µ
dZφ
dµ

Z
n/2−1
φ 〈OR(x)φ0(x1)...φ0(xn)〉

+

[
µ
d

dµ
ZO

]
Z−1
O ZOZ

n/2〈O(x)φ0(x1)...φ0(xn)〉

+Z
n/2
φ

ZO
a

[
µ
d

dµ
Z̃

]
〈Õ(x)φ0(x1)...φ0(xn)〉

= (nγφ(g) + γO(g))G(OR,n)(x, x1, ..., xn) + Z
n/2
φ

ZO
a

[
µ
d

dµ
Z̃

]
〈ORφ0(x1)...φ0(xn)〉 ,

(3.213)

where γφ(g) ≡ 1
2
µ d
dµ
|go,a log(Zφ(g0, a)) and γO(g) ≡ µ d

dµ
|go,a log(ZO(g0, a)). The

LHS becomes, (
µ
∂

∂µ
+ β(g)

∂

∂g

)
G(OR,n)(x, x1, ..., xn) , (3.214)

which is a finite quantity. This would imply that the right hand side must also be

finite and so the term proportional to 1/a, which diverges as a→ 0, must vanish:

µ
d

dµ
|g0,a Z̃ = 0 · (3.215)
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3.8. Lattice regularization

Hence, power divergent mixings with lower dimensional operators are independent

of the renormalization scale µ and do not contribute to anomalous dimensions.

3.8.2 Axial WI with operator insertions on the lattice

Continuum chiral symmetry is broken when lattice is used as a regulator. For

Wilson fermions the breaking arises from higher-dimensional operators that are

present in the action [78]. For DWF fermions the breaking corresponds to

finiteness of the fifth dimension and is exponentially suppressed [49]. Generically,

we expect the non-singlet axial WI on the lattice to be of the form:

∇∗µ〈Aaµ(x)ψ(y)ψ̄(z)〉 = 2m〈P a(x)ψ(y)ψ̄(z)〉+ contact terms

+〈Xa(x)ψ(y)ψ̄(z)〉 , (3.216)

such that the chiral symmetry breaking term arising from regularization, Xa(x) =

aO5(x), is at least of order a. The reason for this is that if the lattice discretized

quantities, such as the Dirac operator, are to agree with those in the classical

continuum limit, the chiral symmetry breaking terms due to this discretization

must go to zero as a → 0. The operators appearing in Eq. 3.216 need to be

renormalized. Power divergences arising from mixing of the higher dimensional

operator, O5(x), are required to be subtracted. In this case [88]:

Oa
5R(x) = Z5

[
Oa

5(x) +
m

a
P a(x) +

ZA − 1

a
∇∗µAaµ(x)

]
. (3.217)

As we have seen in Sec. 3.8.1, such power divergences do not depend on the

renormalization scale µ. Hence the axial current renormalization ZA can only

depend on the coupling, the regulator and the mass of the fermions involved,

entering as a dimensionless parameter am, i.e. ,

AaR,µ = ZA (g, am)Aaµ · (3.218)

The same argument holds if we use local currents rather than the conserved one on

the lattice. Again, the local current is expected to be different from the conserved

one by operators appearing at O(a). These operators need to be renormalized as

well but the final results yields a ZA that is independent of µ.
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3.9 WI for domain wall fermions

The non-singlet vector and axial Ward Identities (WI) in domain wall frame work

has been derived for Shamir [55] and Möbius fermions [64]. We are not going to

reproduce all the results here, but merely summarize the main points.

Given the choices of simulation parameters such as the heavy valence quark

masses am, the extent of the fifth dimension Ls, and the negative Wilson mass

M5, we quote the result for the axial WI:

a∆−µ 〈P (x)Acons
µ (y)〉 = 〈P (x)

(
2amP (y) + 2J5q(y)

)
〉, (3.219)

where P (x) = q̄(x)γ5q(x) is the pseudoscalar density, with q(x) being the surface

4-D fields. Acons
µ (y) is the domain wall 5-D conserved axial current, which depends

on the link between the two sites x and x + µ. ∆−µ is the lattice backward

derivative and am is the bare quark mass in lattice units. The quantity J5q is the

pseudoscalar density of the center of the 5th dimensions. Explicit expressions for

these quantities can be found in [55, 89]. The residual mass, which provides an

estimate of residual chiral symmetry breaking due to finite Ls, is defined as:

amres =

∑
x〈J5q(x)P (0)〉∑
x〈P (x)P (0)〉 · (3.220)

We expect the renormalization factors for conserved quantities such as vector

and axial currents satisfying the corresponding WIs, to be independent of scale

µ. More details have been discussed in Sec. 3.8.2. Often, in lattice simulations,

local currents are also simulated and are later used to extract the relevant

renormalization constants. These local currents differ from the conserved ones

by operators appearing at O(a), see for example [78] for Wilson fermions. For

DWF, ZAcons = 1 + O(mres) and the renormalization constant for the local 4-D

current Aaµ = q̄(x)γµγ5τ
aq(x), defined on the lattice sites x can be extracted via

the ratio:

ZAlocal ≈ ZAlocal

ZAcons

=
〈∑xA

cons(x, t)P (0)〉
〈∑xA

local(x, t)P (0)〉 · (3.221)
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3.10. Numerical implementation for mSMOM

The conserved and local current correlation functions,

C

(
t+

1

2

)
= 〈
∑
x
Acons(x, t)P (0)〉 , (3.222)

and

L(t) = 〈
∑
x
Acons(x, t)P (0)〉 , (3.223)

are not defined at the same temporal coordinate, with the former being defined

at the midpoint of the links and the latter and the sites. By taking appropriate

ratios of the two, O(a) terms can be removed, whilst also reducing the error at

O(a2) level [64, 89]:

Z local
A =

1

2

[
C(t− 1/2) + C(t+ 1/2)

2L(t)
+

2C(t+ 1/2)

L(t− 1) + L(t+ 1)

]
· (3.224)

3.10 Numerical implementation for mSMOM

In lattice studies involving D- and B-mesons, the renormalization of the axial

current is of particular importance since it is required to normalize correctly the

matrix element entering the computation of the decay constant. For example,

the decay constants of D-mesons fD and fDs are determined using

〈0|Aµcq|Dq(p)〉 = fDqp
µ
Dq
,

where q = d, s and the axial current Aµcq = c̄γµγ5q has to be renormalized. Since

the quark content contains a heavy and a light quark, we can use the mass-

non-degenerate mSMOM scheme introduced in Sec. 3.7. The renormalization

conditions in Euclidean space are specified in App. C.8. Our aim is to extract

the axial current renormalization ZA for the mixed heavy-light vertex function.

We start by writing all the ingredients needed before giving the final answer.

The field renormalizations Zl and ZH are computed using SMOM and mSMOM

schemes respectively. If the local axial current is simulated on the lattice, the

corresponding renormalization factor, ZAlocal , for the heavy-heavy and light-

light vertex functions can be extracted by taking appropriate ratios of the
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3.10. Numerical implementation for mSMOM

respective local and conserved hadronic expectations values. Note that the

correlations functions of the local and conserved axial currents only differ by

finite contributions which vanish in continuum limit.

Here we will now take the assumption that both quarks are constructed with

chiral fermion actions, for which an explicit representation of their partially

conserved, point split, axial current is available [64, 89]. We will use this to

renormalize the mass degenerate local axial current bilinear operators via the WI

as a component in our numerical strategy to determine the renormalization of

the mixed axial current. For domain wall fermions Z local
A is obtained by fitting

Eq. 3.224 to a constant in the temporal extent. To obtain ZM , we use the

mSMOM renormalization condition Eq. C.149 to write

ZM =
Z−1
H

12M

{
Tr
[
S(p)−1

]∣∣
p2=−µ2 +

1

2
ZA Tr [(iq · ΛA) γ5]|sym

}
. (3.225)

where ZA is the renormalization constant for the heavy-heavy local current, if that

is chosen, and is computed as in Eq. 3.224. The trace of the bare vertex functions

and the propagators with an appropriate projector is numerically evaluated on

the lattice. Similarly for Zm, which is obtained from the SMOM scheme and

the corresponding value of ZA for the light-light current. The renormalization

constant for the mass degenerate pseudoscalar density, ZP which can be obtained

using Eq. C.148 and Eq. C.152 in the mSMOM scheme:

ZP =
i

p2

Tr [iS(p)−1 6p]|p2=µ2

Tr [ΛPγ5]|sym

. (3.226)

Now, we can write down the equation which allows us to extract ZA. Recall

that curly letters refer to heavy-light mixed vertices. From the renormalization

conditions stated in Eq. C.151 and Eq. C.156 we have

(
CA(Mm) + CMmP

∆H−L

)
mixed

= 1 =
(
CA(MM) + CMP

)
CA(mm) , (3.227)

where the numerator of the left hand side contains the heavy-light mixed
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vertex functions

CA(Mm) = lim
mR→0
MR→m̄

1

12q2
Tr [q · ΛA,Rγ5 6q]|sym , (3.228)

CMmP = lim
mR→0
MR→m̄

1

12q2
Tr [(MR +mR)ΛP,Rγ5 6q]|sym , (3.229)

and the difference between the inverse propagators

∆H−L = lim
mR→0
MR→m̄

1

12q2
Tr
[(

+iγ5ζ−1SH,R(p2)−1 + iζSl,R(p3)−1γ5
)
γ5 6q

]
=

1

2

(
ζ−1 + ζ

)
.

(3.230)

On the right hand side of Eq. 3.227 we have the heavy-heavy vertex functions,

CA(MM) = lim
MR→m̄

1

12q2
Tr [q · ΛA,Rγ5 6q]|sym , (3.231)

CMP = lim
MR→m

1

12q2
Tr [2MRΛP,Rγ5 6q]|sym , (3.232)

and the light-light vertex function

CA(mm) = lim
mR→0

1

12q2
Tr [q · ΛA,Rγ5 6q]|sym . (3.233)

The quantity ζ appearing in ∆H−L is computed using the renormalization

conditions for the light and heavy fields Eq. C.148 and taking the ratio:

ζ =

(
Tr [iSl(p)

−1 6p]|p2=µ2

Tr [iSH(p)−1 6p]|p2=µ2

)1/2

. (3.234)

We rewrite the renormalized quantities in terms of the bare ones. Note that the

aim is to extract ZA. On the left hand side of Eq. 3.227 we have

Z
−1/2
H Z

−1/2
l

(
Tr [(ZA q · ΛA + (ZMM + Zmm)ZPΛP) γ5 6q]|sym

)
, (3.235)

with Zl and ZH are already computed using SMOM and mSMOM schemes
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respectively, together with ∆H−L which we have computed using Eq. 3.234.

Let us now focus on the right hand side of Eq. 3.227,

Z−1
H Z−1

l Tr [(ZA q · ΛA + ZMZP 2MΛP) γ5 6q]|sym

∣∣∣
HH

Tr [(ZA q · ΛA,R) γ5 6q]|sym

∣∣∣
ll
.

(3.236)

Therefore, all the quantities appearing in Eq. 3.227 are known apart from two,

ZA which is the main quantity we are looking for and ZP , which are yet to

be extracted. They can both be obtained by solving the set of simultaneous

equations using Eq. 3.227 and the renormalization condition for the pseudoscalar

Eq. C.157: CAZA + CPZP = C ,

C ′AZA + C ′PZP = C ′ ,
(3.237)

with

CA = Z
−1/2
H Z

−1/2
l

(
Tr [(q · ΛA) γ5 6q]|sym

) 2

ζ−1 + ζ
, (3.238)

CP = Z
−1/2
H Z

−1/2
l

(
Tr [((ZMM + Zmm)ZPΛP) γ5 6q]|sym

) 2

ζ−1 + ζ
, (3.239)

C =
(
CA(MM) + CMP

)
CA(mm) . (3.240)

where all the ingredients in C have already been computed. Together with,

C ′A = − Tr [(iq · ΛA) γ5]|sym , (3.241)

C ′P =
1

12i
Tr [ΛPγ5]|sym , (3.242)

C ′ =
1

12(MR +mR)

{
Tr
[
SH(p)−1

]∣∣
p2=−µ2 + Tr

[
Sl(p)

−1
]∣∣
p2=−µ2

}
. (3.243)

Putting then all together, Eq. 3.237 is solved to obtain ZP and ZA.
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3.11 Lattice results for NPR

As mentioned earlier, in order to describe continuum physics, quantities regulated

on the lattice have to be renormalized before the cut-off is removed. One such

quantity, in the case of the charm project, is the axial current matrix element

from which the decay constant is extracted. This can be done using in massless

renormalization scheme, RI/SMOM, conditions if the conserved current is used.

However, since we have simulated the local axial current, we would need to extract

ZA according to Eq. 3.224. The results are shown in Sec. 3.11.1. We then present

results for the amputated bilinear vertex functions, in the RI/SMOM scheme,

and discuss some of their features. Finally, we discuss the renormalization of the

4-quark operator in RI/SMOM and its matching the the MS-bar scheme.

3.11.1 Axial current renormalization

Table 3.1 shows the results for the local light-light axial vertex function

renormalization, for all the ensembles, according to Eq. 3.224. These results are

in agreement with their previous determinations, Ref. [64]. The renormalization

constants are used to renormalize the corresponding axial current matrix element

required to compute the decay constants. An example of a fit to a constant for

ZA(t) in the light-light limit, for the C0 ensemble, is shown in Fig. 3.7. Given

that we have used a mixed action current, in the sense that a different value of

M5 has been used for the light and strange quarks i.e. M5 = 1.8 as compared

with the heavy quarks i.e. M5 = 1.6, the usual domain wall axial Ward identity

Eq. 3.219 is not satisfied. In the free theory, this modification in the action

imposes a modest change, in for example the fermion propagator, appearing at

next to leading order i.e. O(a2). As a result, one might hope that the impact on

the renormalization constants is small. To measure this difference, we compute

the projected amputated axial vertex function, denoted by P [ΛA], in the non-

exceptional RI/SMOM scheme for the following three cases where both legs of

the vertex have M5 = 1.6 or both have M5 = 1.8 or when one side has M5 = 1.6

and the other has M5 = 1.8. We then take the ratio of these. The deviation

from unity is taken has a systematic error associated with the mixed choice in the

action. The details of this measurement are presented in Sec. 3.11.2.
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Ensemble Z ll
A

C0 0.711970(66)
C1 0.71721(12)
C2 0.71790(10)
M0 0.743441(37)
M1 0.744868(85)
M2 0.745190(84)
F1 0.761108(34)

Table 3.1: Axial vertex renormalization factor ZA for all the ensembles. The
results are obtained by fitting time dependence in Eq. 3.224 to a constant. The
fit for the C0 ensemble has been plotted in Fig. 3.7 as an example.
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Figure 3.7: ZA fit on the C0 ensemble. That data is folded with respect to the
middle of the time extent.

3.11.2 Bilinear vertex functions

In this section, we describe the steps involved in generating the projected

amputated vertex functions. We take the axial vertex as a particular example.

The process for the other vertices is similar. We then present the numerical results

for some of the vertex functions and the renormalization constants extracted.

The projected axial vertex functions are generated according to the SMOM

renormalization condition Eq. 3.33:

lim
mR→0

1

12q2
Tr [(q · ΛA,R) γ5 6q]|sym = 1, (3.244)

where ΛA,R is the amputated axial vertex function and the subscript R, as before,
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denotes a renormalizzed quantity. The momentum q out of the vertex satisfies the

symmetric non-exceptional condition p2
2 = p3

2 = q2. The momenta are determined

by

apµ = nµ
2π

Lµ/a
, (3.245)

for every lattice size L such that the magnitude of p is around 2 GeV for an integer

n. Note that in order to reach the intermediate momenta we use twisting [90–92]:

apµ =

(
nµ +

θµ
2

)
2π

Lµ/a
, (3.246)

with some details discussed in App. B.4. Eq. 3.244 can be written in terms of

the bare amputated vertex function, the field renormalization Zq and the axial

operator renormalization ZA as follows,

lim
mR→0

1

12q2

ZA

Zq
Tr
[
(q · ΛA) γ5/q

]∣∣
sym

= 1 · (3.247)

The bare amputated projected vertex:

P [ΛA] ≡ lim
mR→0

1

12q2
Tr
[
(q · ΛA) γ5/q

]∣∣
sym

, (3.248)

is what is computed numerically on the lattice, for equal light quark masses ,

assumed to be sufficiently close to the chiral limit.

In our case, the measurement of P [ΛA] has been taken on each of the ensembles

C2, M1 and F1. Tables 3.2, 3.3 and 3.4 present the ratios of P [ΛA], for different

combinations of actions i.e. (M1
5 ,M

2
5 ) = (1.8, 1.8), (1.6, 1.8), (1.6, 1.6) at around

2 GeV. The data has been generated using ten gauge field configurations which

leads to sufficiently precise results. We see that the ratio P[ΛA](1.8,1.8)
P[ΛA](1.6,1.6)

on each of

the ensembles has the largest deviation from unity as compared to the other ratio

combinations, which is expected since both the quark fields entering the bilinear

have different actions between the numerator and the denominator.

The main feature emerging from this study is that the deviation from unity is

at most of order 0.4% across a range of momenta around 2 GeV. This is negligible

on the scale of our other uncertainties and for the purposes of the present charm
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(ap)2 p [GeV] P[ΛA](1.8,1.8)
P[ΛA](1.6,1.6)

P[ΛA](1.6,1.8)
P[ΛA](1.6,1.6)

P[ΛA](1.8,1.8)
P[ΛA](1.6,1.8)

1.037 1.817 0.996816(35) 0.998149(32) 0.998664(12)
1.133 1.900 0.996878(41) 0.998180(33) 0.998695(14)
1.234 1.982 0.996943(37) 0.998220(29) 0.998721(17)
1.339 2.065 0.997009(31) 0.998263(23) 0.998743(17)
1.448 2.148 0.997084(28) 0.998312(20) 0.998770(15)

Table 3.2: The ratios of projected amputated vertex function for the axial
currents with different actions on the C2 ensemble. The quark mass for both
fields is taken to be aml = 0.01.

(ap)2 p [GeV] P[ΛA](1.8,1.8)
P[ΛA](1.6,1.6)

P[ΛA](1.6,1.8)
P[ΛA](1.6,1.6)

P[ΛA](1.8,1.8)
P[ΛA](1.6,1.8)

0.583 1.820 0.996774(55) 0.998139(53) 0.998508(24)
0.637 1.903 0.996805(66) 0.998132(45) 0.998516(32)
0.694 1.985 0.996773(66) 0.998143(34) 0.998520(28)
0.753 2.068 0.996702(88) 0.998143(28) 0.998522(26)
0.814 2.151 0.996658(85) 0.998138(22) 0.998524(22)

Table 3.3: The ratios of projected amputated vertex function for the axial
currents with different actions on the M1 ensemble. The quark mass for both
fields is taken to be aml = 0.004.

project, we can simply include it as a sub-dominant systematic error.

For completeness, we present some of the other numerical results related to the

vertex function. For SMOM, ZA = ZV and ZS = ZP = 1/Zm in the continuum

limit. This implies that, given the renormalization conditions in Eq. 3.32 to

Eq. 3.35, we expect P [ΛV] = P [ΛA] and P [ΛS] = P [ΛP] at high momenta.

This is confirmed in Fig. 3.8, taking F1 ensemble as an example, where the

projected amputated vertex functions simulated are plotted vs momenta ranging

from around 2 to above 3 GeV. Notice that the vector and axial vertex functions

are almost scale invariant while pseudoscalar and scalar vertices clearly show a

scale dependence. As well as that, we observe that for large values of momentum,

i.e. getting closer to the continuum, P [ΛP] approaches P [ΛS].

3.11.3 4-quark operator renormalization

As already mentioned in Chapter 1, the bare four-quark operator e.g. 〈K0|Q∆S=2
R |K0〉

has to be renormalized in some regularization scheme such as RI/SMOM non-
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3.11. Lattice results for NPR

(ap)2 p [GeV] P[ΛA](1.8,1.8)
P[ΛA](1.6,1.6)

P[ΛA](1.6,1.8)
P[ΛA](1.6,1.6)

P[ΛA](1.8,1.8)
P[ΛA](1.6,1.8)

0.482 1.926 0.996779(23) 0.9982202(85) 0.998555(11)
0.516 1.990 0.996744(26) 0.9982053(99) 0.998539(12)
0.548 2.054 0.996728(24) 0.9981981(91) 0.998525(97)
0.583 2.118 0.996716(19) 0.9981914(85) 0.9985203(79)
0.619 2.183 0.996719(19) 0.998189(10) 0.9985242(64)

Table 3.4: The ratios of projected amputated vertex function for the axial
currents with different actions on the F1 ensemble. The quark mass for both
fields is taken to be aml = 0.002144.
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Figure 3.8: Projected amputated vertex functions on the F1 ensemble plotted
agains momentum in GeV.

perturbatively. The result is then converted, via one- or two-loop perturbative

matching, to a more commonly used schemes such as NDR-MS. In this section,

we first state the renormalization condition for 4-quark operators in RI/SMOM

and then present the corresponding numerical results on the F1 ensemble as well

as the conversion to NDR-MS.

The RI/SMOM renormalization condition for the 4-quark operator, OVV+AA,

in e.g. BK , involves amputating four fermionic fields. We therefore have [24],

lim
mR→0

1

12
Tr

[
P

(A)
αβγδ
ijkl

ΛO,R

]∣∣∣∣∣
sym

= lim
mR→0

1

12
Tr

[
Z−2
q ZOP

(A)
αβγδ
ijkl

ΛO

]∣∣∣∣∣
sym

= 1 , (3.249)

where the projectors onto tree-level value are given in two schemes known as γµ
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3.11. Lattice results for NPR

and /q schemes are as follows:

P
(γµ)
αβγδ
ijkl

=
1

256N(N + 1)

[
(γν)βα(γν)δγ + (γνγ5)βα(γνγ

5)δγ
]
δijδkl , (3.250)

P
(/q)

αβγδ
ijkl

=
1

64q2N(N + 1)

[
(/q)βα(/q)δγ + (/qγ

5)βα(/qγ
5)δγ
]
δijδkl , (3.251)

where N = 3 is the number of colors. The non-exceptional symmetric condition

implies the in and out momenta should satisfy p2
2 = p2

3 = (p2 − p3)2 = q2 where

we take,

d(p2)s(−p3) → d(−p2)s(p3) · (3.252)

In other words having computed the bare projected amputated vertex function

P [ΛO], the relation
ZO

Z2
q

P [ΛO] = 1 , (3.253)

can be used to extract the 4-quark operator renormalization factor ZO, where in

our case O=VV+AA operator discussed in Sec. 1.2.5. We now recall the kaon

bag parameter:

Bbare =
〈K0(∆T )|OVV+AA(t)|K0

(0)〉
8
3
〈K0(∆T − t)|A0(0)〉〈A0(t)|K0

(0)〉
, (3.254)

where ∆T is the time separation between the source and sink operators, see

Sec. 4.4 for the details. The renormalization ZBK is obtained, using RI/SMOM

conditions Eq. 3.249 for the 4-quark operator and Eq. 3.33 for the axial vertex

function, and taking the ratio:

ZBK =
ZV V+AA

Z2
A

=
P [ΛA]2

P [ΛV V+AA]
· (3.255)

Note that the factors of Zq have cancelled between the numerator and the

denominator.

We have generated vertex functions with light quarks on the F1 ensemble with

momenta starting from 2 GeV to more than 3 GeV. Fig. 3.9 shows ZBK for each
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of the momenta simulated.
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Figure 3.9: ZBk for four different values of momenta on the F1 ensemble.

By fitting the last three data point to a line, we determine the value

ZRI
BK

= 0.952766(35) , (3.256)

in RI/SMOM, at precisely 3 GeV on the F1 ensemble. It now remains to obtain

the equivalent value in the more commonly used NDR-MS scheme. The non-

amputated vertex function is renormalized as:

ORI
R = ZRI

O O , (3.257)

where the label “RI” refers to the renormalization in the RI/SMOM scheme. In

a similar way, the renormalization in NDR-MS is generically written as:

OMS
R = ZMS

O O · (3.258)

Taking the ratio of these two equations gives rise to the definition of the conversion

factor between the two schemes, denoted by CB, i.e.

OMS
R (µ) = CB(p2/µ2)ORI

R (p) , CB =
ZMS

O

ZRI
O

· (3.259)

Using the RI/SMOM renormalization condition for the amputated vertex func-
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p ZRI
BK

ZMS
BK

2.56, 3.08, 3.59 0.953680(35) 0.957781(35)
3.08, 3.59 0.952766(35) 0.956864(35)
2.56, 3.59 0.954393(41) 0.958498(41)

Table 3.5: ZBK in RI/SMOM and MS at 3 GeV fitted using different momenta
points.

tion, Eq. 3.253,

P [ΛO,R]RI =
ZRI

O

(ZRI
q )2
P [ΛO] = 1 and P [ΛO,R]MS =

ZMS
O

(ZMS
q )2

P [ΛO] , (3.260)

we obtain

CB = ZMS
O

P [ΛO]

(ZRI
q )2

= P [ΛO,R]MS
(ZMS

q )2

(ZRI
q )2

· (3.261)

Hence,
(Cq)

2

CB
P ij,klΛMS,ij,kl

αβ,γδ = 1 (3.262)

where Cq =
ZMS
q

ZRIq
. At one loop order Cq is known at 1- and 2-loops [24, 77, 93, 94],

therefore, the above equation can be used to compute the matching coefficient

CB. Our final results for ZBk at 3 GeV is therefore,

ZMS
BK

= 0.956864(35) · (3.263)

In order to check the results further, we have examined performing the above

fit and interpolation while taking different momenta points into account. More

specifically, we have performed the interpolation to 3 GeV in three different ways.

First by taking the last three points, resulting in Eq. 3.256 and Eq. 3.263 and

then taking only the last two points into account, as well as taking the two

middle points. Table. 3.5 summarizes the results. As it can be seen, the results

only differ at sub-percent level, implying the final interpolation to be independent

of the momenta chosen to perform the fit.

Finally, it is possible to obtain the Renormalization Group Invariant (RGI)

factors ZRGI
BK

. Following the discussion in Sec. 1.2.6, we can related the ZRGI
BK

renormalization factor to ZA
BK

(µ) in some scheme A, here RI/SMOM, via a
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perturbative factor according to using Eq. 1.73 and Eq. 1.74 which we denote

by ω−1
A (µ) for simplicity. Therefore, we write,

ZRGI
BK

= ω−1
A (µ)ZA

BK
(µ) · (3.264)

Note that the perturbative factor ω−1
A (µ) has to be computed in the same scheme

as ZA
BK

(µ) in order to cancel the µ dependence. ZRGI
BK

has been computed

numerically for the previous momenta, and the result of the interpolation to 3

GeV is marked in red in Fig. 3.10. We observed that the RGI points do not lie on a

completely flat line. This can be due to truncation in the perturbative series or the

fact that perturbation theory breaks down at low energies. The same behaviour is

seen in other analyses, e.g. Ref. [95], where ZBK in different RI/SMOM schemes is

analysed extensively. As the momentum increases, however, the slope is expected

to decrease until it becomes flat, i.e. , independent of scale µ. For more details

see Ref. [95].
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Figure 3.10: The black points denote ZRGI
Bk

for the three values of momenta, used
for interpolation to 3GeV, on the F1 ensemble. The red point is the interpolated
value at 3 GeV.
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Chapter 4

Lattice Phenomenology

For all the ensembles listed in Sec. 2.4, quantities such as meson masses, decay

constants, bag and ξ parameters are extracted. In order to gain a better

understanding of the numerical results, we discuss analytical computations of

meson two-point and three-point functions from which masses and matrix element

can be extracted. We then use these, to describe how the fits over the data points

are performed. Parts of this analysis, including the mesons masses and decay

constants have led to the results in our charm paper, Ref. [72], while the bag and

ξ parameters will potentially appear as part of a future publication.

4.1 Meson Correlator

4.1.1 Numerical simulation of the meson correlator

A two-point correlator CΓΓ′ can be constructed using interpolating operators

OΓ(t,y) and O†Γ′(0,x) as follows:

CΓΓ′(t) =
∑
x,y

〈OΓ(t,y)O†Γ′(0,x)〉 , (4.1)

where,

O(y) = q̄α1
c1

(y)Γα1β1q
′
β1
c1

(y) , (4.2)
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4.1. Meson Correlator

O′†(x) = q̄′α2
c2

(x)Γ′α2β2
qβ2
c2

(x) · (4.3)

In this notation, the Greek subscripts α, β indicate spinor indices while Latin

subscripts c1, c2 correspond to color indices. Γ and Γ′ are chosen to be any

combination of ΓA = γ0γ5 and ΓP = γ5, for our simulations of pseudoscalar

correlators. Let us focus on the expectation value,

〈O(y)O′†(x)〉 =Γα1β1Γ′α2β2
〈q̄α1
c1

(y)q′β1
c1

(y)q̄′α2
c2

(x)qβ2
c2

(x)〉 (4.4)

=− Γα1β1Γ′α2β2
D−1
q (x− y)β2α1

c2c1
D−1
q′ (y − x)β1α2

c1c2

=− tr
[
Γ′D−1

q (x− y)ΓD−1
q′ (y − x)

]
,

where the minus sign is due to Grassmann algebra. In the second equality we

have used the fact that the Wick contraction between quark-antiquark pairs can

only be performed within the same flavor. Hence the fermionic expectation value

factorizes with respect to each flavor q, q′, leading to the two, inverse Dirac

matrices i.e. propagators above. This relation can be simplified further using

γ5 hermiticity for 4D propagators, γ5D−1γ5 = D−1†. Therefore, in numerically

computing the pseudoscalar correlation function Eq. 4.1, we need to compute

quark propagators. The quark propagators are computed with Z(2) × Z(2)

stochastic wall sources [73]. In order to improve the statistics, different number of

time planes are used as sources and the results, on a given gauge configuration, are

averaged into one bin before any fits are performed. The number of time planes

on each configuration is stated in Table. 2.1 with column under the heading

“hits/conf”. In general, the process of inverting the Dirac matrices to obtain

the propagators can have a high numerical cost. In our simulations, light and

strange quark propagator inversions were performed using the HDCD algorithm

[43] while for heavy quarks a CG inverter was used. We will not delve into the

details of these algorithms and their properties, as it is beyond the scope of this

thesis.

4.1.2 Analytical form of the meson correlator

Let us now examine how meson masses and matrix elements can be extracted.

Consider the following two-point function, constructed from interpolating opera-
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4.1. Meson Correlator

tors as in Eq. 4.2 and Eq. 4.3:

〈O(y)O′†(x)〉 = C(x− y) , (4.5)

which is a function of x− y due to translational invariance. So we can write it as

〈O(x)O′†(0)〉 = C(x) · (4.6)

Inserting a complete set of hadronic states gives,

|n〉〈n| :=
∫

d4p

(2π)4
δ(p2 −m2

n)|n, p〉〈n, p| =
∫

d3p

(2π)3

1

2En
|n, p〉〈n, p| · (4.7)

Note that |n〉 are the eigenstates of the Hamiltonian operator, therefore they must

be physical and on-shell. Given that quarks are confined and the observables

are mesons and baryons, these states describe composite particles such as pion,

ρ, η, · · · . Therefore, with zero momentum projection in Minkowski space, we have

∑
n

∫
d3x 〈0|O(x)|n〉〈n|O′†(0)|0〉 =

∑
n

∫
d3x 〈0|eiP.xO(0)e−iP.x|n〉〈n|O′†(0)|0〉

=
∑
n

∫
d3p

(2π)3

1

2E

∫
d3x〈0|O(0)|n, p〉〈n, p|O′†(0)|0〉eipn.xe−iEnt

=
∑
n

1

2En
〈0|O(0)|n,p = 0〉〈n,p = 0|O′†(0)|0〉e−iEnt ·

(4.8)

In order to obtain the third equality, the integral over spatial x is performed to

give a delta function, followed by the integral over d3p leading to the 3-momentum

being p = 0. After performing the Wick rotation, with t = −itE, the Euclidean

space correlator at large t takes the form,

C(t) =
1

2m
〈0|O(0)|n,p = 0〉〈n,p = 0|O′†(0)|0〉e−mtE + · · · = N e−mtE + · · · ,

(4.9)

where the pre-factor A0,

N =
1

2m
〈0|O(0)|n,p = 0〉〈n,p = 0|O′†(0)|0〉 · (4.10)
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4.1. Meson Correlator

In other words, when t becomes large, the major contribution comes from the

lowest energy state E0 = m, where m is the mass of the lightest pseudoscalar

meson given the specific quark structure q, q′.

4.1.3 Pseudoscalar masses and decay constants

As mentioned before in Sec. 4.1, the operators O, Eq. 4.2 and O′†, Eq. 4.3 can

have any combination of Γ,Γ′ = {ΓA,ΓP}. The coefficient, N , of the exponential

decay from which we extract the pseudoscalar meson mass in Eq. 4.9, can be any

of NPP ,NAA,NAP with the generic form stated in Eq. 4.10. Note that Eq. 4.9

could have been also derived directly in Euclidean space, for periodic finite time

extent T , starting from the Euclidean correlator

〈O(x, t)O′†(0)〉T =
1

Z
Tr
[
e−(T−t)ĤO(x)e−tĤO†(0)

]
, (4.11)

where Z = tr
[
e−TH

]
is the partition function and H is the hamiltonian. Inserting

a complete set of states, applying a zero momentum projection as above, pulling

out a factor E−TE0 and expanding the numerator and denominator gives, as a

leading term:

C(t) = NPP,AAe−mt +NPP,AAe−m(T−t) = 2NPP,AAe−mT/2 cosh((T/2− t)m) ,

(4.12)

for PP and AA channels that are symmetric under T reversal. For the AP

channel, which picks up a minus sign under time reflection [66],

C(t) = NAP e−mt −NAP e−m(T−t) = 2NAP e−mT/2 sinh((T/2− t)m) · (4.13)

C(t) is computed numerically as discussed in Sec. 4.1.1. One has to fit this

data a correct fit function to extract the meson mass m and the matrix elements

stated above. For example, in the range where cosh can be approximated by an

exponential, i.e. away from the centre where t ≈ T/2, one can define a quantity

known as the effective mass,

meff = ln
C(t)

C(t+ 1)
, (4.14)
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where the contributions of the excited states are neglected since the fit is taken to

be over an effective mass plateau at meff = E0. Another, perhaps more accurate,

method of extracting the mass is to take into account the periodicity and fit

using hyperbolic cosine for PP and AA channels, or hyperbolic sine for the AP

channel, rather than a logarithm:

meff = cosh−1

[
C(t+ 1) + C(t− 1)

2C(t)

]
· (4.15)

Having extracted the mass the fit code can plug in the numbers and obtain the

coefficients in Eq. 4.12 and Eq. 4.13. In our analysis however, we have directly

fitted the correlator. In the case of a one-state fit, which only takes into account

the ground state meson mass m whilst ignoring the excited states, we fit directly

for two parameters m and the coefficient N with ansatz as stated on the LHS of

Eq. 4.12 and Eq. 4.13. It is also possible to perform simultaneous multi-channel

fits including all PP,AA and AP to improve the statistics. Moreover, instead of

taking the ground state into account only, one can perform a two-state fit which

takes into account the effect of the first excited state. The ansatz, taking into

account the next to leading order term in Eq. 4.8, is expected to be of the form:

C(t) = N (0)e−m0t ±N (0)e−m0(T−t) +N (1)e−m1t ±N (1)e−m1(T−t) + · · · , (4.16)

which would be a four parameter fit. To capture the effect the excited states, the

two-state fit must begin at lower values of tmin. We discuss the details of the fits

in Sec. 4.2 , where we present the numerical results.

In the Standard Model the decay constant for pseudoscalar mesons M0 is

obtained as follows:

fM =
〈0|q̄′γ0γ5q|M(0)〉

mM

· (4.17)

For the particular case of the charmed mesons we are measuring,

fDq =
〈0|c̄γ0γ5q|Dq(0)〉

mDq

, where q = d, s · (4.18)

Therefore, we need to extract the axial matrix elements as well as the meson
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mass to obtain the decay constant. Suppose we have already performed a fit to

extract the matrix element NAA and the meson mass in Eq. 4.12. Then, the decay

constant in lattice units can be computed using

fDq =

√
2NAA
N3 mDq

, (4.19)

where m is the meson mass in lattice units and N = Nx = Ny = Nz is the

number of lattice points in a particular spatial direction. The latter arises due

to the lattice being of a finite volume, Eq. B.33. An equivalent way of extracting

the decay constant is via the ratio

fDq =

√
2N 2

AP

N3 mDqNPP

· (4.20)

Since the pseudoscalar matrix elements N = 1
2mDq
|〈0|c̄γ5q(0)|n,p = 0〉|2 cancel

between the numerator and the denominator, the expression reduces to Eq. 4.20.

4.2 Numerical results for mDq and fDq

In this section, we present numerical results for charmed meson masses and decay

constants on the 7 ensembles listed in Sec. 2.4. These are shown in Table. 4.1 for

heavy-light mesons, and Table. 4.1 for the heavy-strange mesons. Fig. 4.1 shows

an example of the plot of effective mass vs time in lattice units for amh = 0.3 on

the C0 ensemble. Note that it is the two-point correlator that is simultaneously

fitted for AA,PP and AP channels according to fit functions stated in Eq. 4.12

and Eq. 4.13. However we plot the effective mass to demonstrate the plateau

better. The fit range is chosen such that it has tmin away from the excited states,

well within the plateau region, while tmax is away from the center of the lattice

where there is more noise. The behaviour of χ2 is notated not to fluctuate too

much whilst varying tmin and tmax. As mentioned earlier, alternatively, one can

perform a double exponential fit taking into account the effect of the excited

states according to Eq. 4.16. Examples of the excited states contributions in our

cases include e.g. Dl,s + 2π and 2K + π, for more details see Ref. [96]. A double

exponential fit has been plotted in Fig. 4.2 as an example for the heavy-light
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4.2. Numerical results for mDq and fDq

meson with amh = 0.3 on the C0 ensemble. One may wish to perform double

exponential fits, since the data is generally less noisy further away from the center

of the lattice. The result of the double exponential fit in our case, however, was

in good agreement with the single exponential fit without a significant increase

in the precision of the fit result. Therefore, for the rest of the analysis we use

single exponential fits to extract the meson masses. It is also worth noting that

correlated fits were also attempted. However, the correlation matrix turned out

not to be stable for a reliable inversion. The fits presented here are, therefore, all

uncorrelated fits with the correlation matrix assumed to be diagonal.
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Figure 4.1: Heavy-light (left) and heavy-strange (right) effective mass plots, for
heavy quark mass amh = 0.3, on the C0 ensemble. The two-point correlator in
AA,PP and AP channels have been fitted simultaneously.
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Figure 4.2: Heavy-light effective mass plot with amh = 0.3 on the C0 ensemble.
The two-point correlator has been fitted using a double exponential fit form, for
AA, PP and AP channels simultaneously.
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Name [tmin, tmax] amD afbare
D mD (GeV) f ren

D (GeV)

C0
14 - 24 0.82298(74) 0.16260(74) 1.4233(34) 0.2002(10)
14 - 24 0.90023(92) 0.16486(93) 1.5570(37) 0.2030(12)
14 - 24 0.9736(11) 0.1661(11) 1.6838(42) 0.2045(15)

C1
16 - 27 0.83122(95) 0.1686(11) 1.4836(45) 0.2158(15)
16 - 27 0.9077(12) 0.1709(14) 1.6201(50) 0.2188(19)
16 - 27 0.9805(15) 0.1723(18) 1.7498(56) 0.2206(24)

C2
16 - 27 0.84125(69) 0.17466(80) 1.5014(44) 0.2238(12)
16 - 27 0.91700(82) 0.17654(99) 1.6367(48) 0.2262(14)
16 - 27 0.98891(96) 0.1772(13) 1.7650(52) 0.2271(17)

M0

19 - 32 0.63073(66) 0.11482(67) 1.4876(47) 0.2013(13)
19 - 32 0.72602(86) 0.11609(91) 1.7124(55) 0.2036(17)
19 - 32 0.8146(11) 0.1162(12) 1.9213(63) 0.2037(22)
19 - 32 0.8972(14) 0.1153(16) 2.1161(71) 0.2021(29)

M1

17 - 30 0.63756(86) 0.12121(84) 1.5195(59) 0.2152(17)
17 - 30 0.7326(11) 0.1229(11) 1.7460(68) 0.2181(21)
17 - 30 0.8205(14) 0.1229(14) 1.9554(78) 0.2183(25)
17 - 30 0.9020(17) 0.1215(17) 2.1497(88) 0.2157(32)

M2

17 - 30 0.64267(79) 0.12464(75) 1.5317(58) 0.2214(16)
17 - 30 0.73773(93) 0.12651(92) 1.7582(67) 0.2247(18)
17 - 30 0.8258(12) 0.1267(11) 1.9681(77) 0.2251(21)
17 - 30 0.9076(14) 0.1254(14) 2.1631(85) 0.2228(25)

F1

20 - 40 0.53755(48) 0.10000(42) 1.4912(55) 0.2110(12)
20 - 40 0.62004(60) 0.10165(55) 1.7200(64) 0.2146(14)
20 - 40 0.69678(74) 0.10223(73) 1.9329(73) 0.2158(17)
20 - 40 0.76870(90) 0.10194(92) 2.1324(81) 0.2152(21)
20 - 40 0.8618(12) 0.1002(12) 2.3906(92) 0.2115(26)

Table 4.1: Fit results for D meson masses and decay constants on all the
ensembles. The correlator has been fitted simultaneously in the AA,AP and
PP channels with the fit range as indicated. Generally PP shows a later plateau
as compared to the other two channels and so it has its fit range starting at
tmin + 1. The first two columns show results in lattice units. The renormalization
factors used in obtaining the renormalized decay constants, in the last column,
are taken from Table. 3.1.
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4.2. Numerical results for mDq and fDq

Name [tmin, tmax] amDs afDbare
s

mDs (GeV) fDs (GeV)

C0
18 - 32 0.88232(13) 0.18829(15) 1.5260(34) 0.23184(54)
18 - 32 0.95679(15) 0.19100(18) 1.6548(37) 0.23520(56)
18 - 32 1.02780(17) 0.19249(22) 1.7776(39) 0.23703(58)

C1
18 - 30 0.87670(43) 0.18652(52) 1.5647(45) 0.23875(94)
18 - 30 0.95125(47) 0.18924(60) 1.6978(48) 0.2422(10)
18 - 30 1.02230(51) 0.19074(71) 1.8246(52) 0.2442(11)

C2
18 - 30 0.87815(44) 0.18835(55) 1.5673(45) 0.24134(98)
18 - 30 0.95246(50) 0.19080(67) 1.7000(49) 0.2445(11)
18 - 30 1.02322(57) 0.19195(82) 1.8262(52) 0.2459(13)

M0

23 - 40 0.678191(92) 0.13594(12) 1.5996(48) 0.23836(74)
23 - 40 0.77132(11) 0.13833(16) 1.8192(54) 0.24256(78)
23 - 40 0.85820(14) 0.13902(20) 2.0242(60) 0.24376(81)
23 - 40 0.93935(17) 0.13824(27) 2.2156(66) 0.24239(86)

M1

18 - 30 0.67418(37) 0.13568(32) 1.6068(59) 0.2409(10)
18 - 30 0.76724(38) 0.13796(38) 1.8286(67) 0.2449(11)
18 - 30 0.85383(43) 0.13840(46) 2.0349(74) 0.2457(12)
18 - 30 0.93437(51) 0.13717(56) 2.2269(81) 0.2435(13)

M2

18 - 30 0.67496(39) 0.13657(36) 1.6086(59) 0.2425(11)
18 - 30 0.76819(81) 0.13899(41) 1.8308(69) 0.2469(11)
18 - 30 0.85499(47) 0.13960(47) 2.0377(74) 0.2479(12)
18 - 30 0.93576(55) 0.13852(56) 2.2302(82) 0.2460(13)

F1

27 - 42 0.57226(20) 0.11356(21) 1.5874(58) 0.23976(99)
27 - 42 0.65276(24) 0.11562(27) 1.8108(66) 0.2441(11)
27 - 42 0.72801(27) 0.11631(33) 2.0195(73) 0.2456(11)
27 - 42 0.79869(31) 0.11586(41) 2.2156(80) 0.2446(12)
27 - 42 0.89031(39) 0.11350(53) 2.4697(90) 0.2396(14)

Table 4.2: Fit results for Ds meson masses and decay constants on all the
ensembles. The correlator has been fitted simultaneously in the AA,AP and
PP channels with the fit range as indicated. Generally PP shows a later plateau
as compared to the other two channels and so it has its fit range starting at
tmin + 1. The first two columns show results in lattice units. The renormalization
factors used in obtaining the renormalized decay constants, in the last column,
are taken from Table. 3.1.
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4.3. Neutral meson mixing parameter B

It is worth presenting a theoretical argument for the exponential growth in

time of the noise to signal ratio, observed in the above figures. We have previously

derived that the meson correlator goes as C(t) ∼ e−mM t, for meson M . The

variance of the correlator can be written as

σ2
M ∝ 〈

(
O(x)O†(0)

)2〉 − C(t)2 · (4.21)

For charm-light meson correlators, the quarks and anti-quarks produced by the

square of O(x)O†(0) come together in pairs to form an ηc and a pion. Since

the pion mass is small due to chiral symmetry, this combination is much lighter

than 2mD. As a result the noise to signal ratio,
σ2
M

C(t)
grows rapidly with distance.

This also explains why the charm-light meson correlators decay into noise more

quickly than the charm-strange correlators, due to the error on the latter having

the mass of ηc + s̄s in the exponent which is heavier than ηc + π, for more details

see Ref. [97–99].

Before we close this section, we present the final results for the analysis of

the masses and decays constants which were obtained after a global fit was

performed. The global fit ansatz involves a simultaneous fit to the continuum

limit, the pion mass dependence and heavy quark dependence. The ansatz for

this fit, as well as the numerical work has been performed by other members of

the collaboration and is not part of this work. For more details regarding the

global fit see Ref. [72]. However, for completeness we include the final results:

fD = 208.7(2.8)stat

(
+2.1
−1.8

)
sys

MeV and fDs = 246.4(1.3)stat

(
+1.3
−1.9

)
sys

MeV and

fDs/fD = 1.1667(77)stat

(
+60
−46

)
sys

. Fig. 4.3 shows a comparison between our results

and the previous determinations, in including the most recent FLAG report [5].

Our results are in good agreement with the literature.

4.3 Neutral meson mixing parameter B

In the first part of this section, we aim to derive an expression for the meson

bag parameter, taking kaon as an example, from the corresponding three-point

function. The details of this step are necessary to understand the shape of the

numerical data plotted.
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4.3. Neutral meson mixing parameter B
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Figure 4.3: This figure shows our results, indicated by blue circles, as compared
the most recent FLAG report [5].

4.3.1 The 3-point correlator

Using similar steps to Sec. 4.1.2, we can write an expression for the meson 3-point

correlator. Recall that the three-point function in finite volume can be written

as:

〈O(ty)Q(tx)O(0)〉 =
1

Z
Tr
[
e−(T−ty)ĤO(0)e−(ty−tx)ĤQ(0)e−txĤO(0)

]
=

1

Z

∑
n,l,m

〈n|e−(T−ty)ĤO(0)e−(ty−tx)Ĥ |m〉〈m|Q(0)|l〉〈l|−txĤO(0)|n〉

=
1

Z

∑
n,l,m

〈n|O|m〉〈m|Q|l〉〈l|O|n〉e−(T−ty)Ene−(ty−tx)Eme−txEl ·

(4.22)

for some choice of operator O. The lowest order contribution as T becomes large

is when n = 0, l = K0 = ds̄, m = K̄0 = sd̄. The 4-fermi operator QAA+VV has

the following form:

QAA+VV = (s̄γµd)(s̄γµd) + (s̄γµγ5d)(s̄γµγ5d) · (4.23)

Therefore, the the ground state matrix element of the operator Q becomes,

〈K̄0|QAA+VV|K0〉 = 〈K̄0|(s̄γµd)(s̄γµd) + (s̄γµγ5d)(s̄γµγ5d)|K0〉 (4.24)
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4.3. Neutral meson mixing parameter B

One has to choose the creation or annihilation operator O with the correct

quantum numbers such as strangeness. For the kaon the operator O can be

chosen to be

O = d̄γ0γ5s , (4.25)

which has the correct strangeness number, the axial structure is chosen to give

cancellation of matrix elements once the full ratio for the bag parameter is

constructed. As well as that, for the matrix element on the right, i.e. 〈K0|O|0〉,
O must be such that in can create an s̄ and a d when acting on the vacuum.

Similarly for the matrix element on the left hand side, i.e. 〈0|O|K̄0〉.

The leading contribution to the ground state is

〈0|O|K̄0〉〈K̄0|Q|K0〉〈K0|O|0〉e−(ty−tx)EK̄0e−txEK0 · (4.26)

In order to find the bag parameter which is directly related to the matrix element

of the Q operator, Eq. 1.72, the above equation needs to be divided by two two-

point functions. This cancels the exponentials carrying the time dependance for

certain values of time allowing for a constant fit to the plateau to be performed.

Moreover, we choose the two point functions to be in the axial channel since this

combination is what appears in the denominator of Eq. 1.72 or Eq. 1.77 for the

bag parameter. This can be seen if we rewrite the decay constant according to

Eq. 4.17 and cancel the meson mass.

4.3.2 Generic shape of the bag parameter plot

To gain a full understanding of the shape of the plot, we consider all the possible

different time ranges and examine what happens in each region, indicated in

Fig. 4.4.

1. For 0 < tx < ty < T/2 and using translational invariance, we wish to find

the combination,

〈O(ty)Q(tx)O(0)〉
〈O†(ty − tx)O(0)〉〈O†(tx)O(0)〉 (4.27)
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4.3. Neutral meson mixing parameter B

Figure 4.4: Generic shape of a bag parameter vs t plot, for fixed ty, here chosen
to be ty = 28. Here t = tx is the time dependence of the operator Q. The
corresponding regions discussed are labelled 1-4 respectively.

For the ground state, ignoring the contribution of the first excited state, we

have

C(t) =
〈0|O|K̄0〉〈K̄0|Q|K0〉〈K0|O|0〉
|〈K̄0|s̄γ0γ5d|0〉|2 |〈K0|s̄γ0γ5d|0〉|2

× e−(ty−tx)EK̄0e−txEK0(
e−EK̄0 (ty−tx) + e−EK̄0 (T−ty+tx)

) (
e−EK0 tx + e−EK0 (T−tx)

) (4.28)

in the given time range. This is because T � ty − tx, and so in the

denominator of the above expression, the two terms without a T in the

exponent will dominate over the other ones. As a result, all time dependent

terms in the numerator and denominator cancel with each other, resulting

in a plateau in the plot which can be fitted to give the ground state value

for the bag parameter. For example, in the case of the plot above, the time

extend T = 96, ty = 28 is fixed and tx is fitted over the range tx = 10− 18.

The values away from the plateau in region (1) are due to the excited states.

2. Let us now consider the case where 0 < ty < tx < T/2. From this region
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4.4. Numerical results for BDq and ξ

onwards, the time ordering of the three-point function changes. In other

words, we now have

〈Q(tx)O(ty)O(0)〉 =
1

Z

∑
n,l,m

〈n|Qx|m〉〈m|Oy|l〉〈l|O|n〉e−(T−tx)Ene−(tx−ty)Eme−txEl

(4.29)

where the operators are now time independent, and this index is merely to

remind the reader of the associated initial time dependance. Given that

O = d̄γ0γ5s, we now have |n〉 = |K̄0〉 = |d̄s〉 so that it is annihilated by O,

|l〉 = |0〉 and |m〉 = |K0〉 = |ds̄〉. Now, since tx > ty, with the correct time

ordering O†(T − tx + ty), the ratio becomes,

C(t) =
〈K̄0|Q|K0〉〈K0|O|0〉〈0|O|K̄0〉
|〈K̄0|s̄γ0γ5d|0〉|2 |〈K0|s̄γ0γ5d|0〉|2

× e−(T−tx)EK̄0e−(tx−ty)EK0(
e−EK̄0 (T−tx+ty)︸ ︷︷ ︸

a

+ e−EK̄0 (T−T+tx−ty)︸ ︷︷ ︸
b

)(
e−EK0 tx︸ ︷︷ ︸

c

+ e−EK0 (T−tx)︸ ︷︷ ︸
d

)
(4.30)

For this time range, term (b) dominates over (a) while (c) dominates over

(d), in which case the time dependence in the numerator and denominator

will not cancel which each other, as seen in the Fig. 4.4.

3. For 0 < ty < T/2 < tx < T/2+ty, term (b) dominates over (a) however now,

(d) dominates over (c) cancelling the time dependence in the numerator

giving a constant plateau as observed.

4. For 0 < ty < T/2 < T/2 + ty < tx, (a) and (d) dominate and the expression

is not longer time independent which is confirmed by the shape of the plot.

4.4 Numerical results for BDq and ξ

The numerical results of the bare bag parameters,

Bbare =
〈M0(∆T )|OVV+AA(t)|M0

(0)〉
8
3
〈M0(∆T − t)|A0(0)〉〈A0(t)|M0

(0)〉
. (4.31)
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4.4. Numerical results for BDq and ξ

for all the ensembles listed in Sec. 2.4 are presented in Table. 4.3. The notation is

chosen to emphasize the time separation between the source and sink operators,

∆T , which is fixed at a given value, while the time dependence of the OVV+AA

is simply denoted by t, over which a fit is performed. In the previous notation,

these were denoted by ty and tx respectively. The numbers in Table. 4.3 are

bare quantities. Representative plots of the bag parameter vs time for heavy-

light and heavy-strange mesons, with amh = 0.3 on the C0 ensemble have been

shown in Fig. 4.5. These correspond to the region labelled by “1” in Fig. 4.4, i.e.

where the time dependence cancels between the numerator and denominator of

Eq. 4.31. The simulation data contains different values of ∆T from which the bag

parameter can be extracted. For small source-sink separation, ∆T , there may be

not sufficient time for the plateau to be reached, and the fit to a constant may

suffer from the effect of excited states. On the other hand, large ∆T contains less

precise data as the noise grows with time separation, in particular, this is most

visible for the heaviest data points. Therefore, we try to search for a particular

∆T , such that a visible plateau is reached while the statistical error is small. The

plots of bag parameters for different values of ∆T on the larger ensembles can be

seen in Fig. 4.7, Fig. 4.8 and Fig. 4.9. We indeed observed the trend described

above, with the error bars getting larger for large values of ∆T . The particular

choice of ∆T on each ensemble is given in the second column of Table 4.3, chosen

in such a way that a plateau similar to those in Fig. 4.6 are visible on all the

ensembles.
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Figure 4.5: Heavy-light (left) and heavy-strange (right) bag parameter fits, for
heavy quark mass amh = 0.3, on the C0 ensemble.

147



4.4. Numerical results for BDq and ξ

Name ∆T/a [tmin, tmax] Bbare
hl [tmin, tmax] Bbare

hs

C0
24 7 - 17 0.3944(17) 9 - 15 0.404259(71)
24 7 - 17 0.4015(23) 9 - 15 0.411509(81)
24 7 - 17 0.4075(32) 9 - 15 0.417930(96)

C1
24 7 - 17 0.39748(99) 8 - 16 0.40418(27)
24 7 - 17 0.4054(13) 8 - 16 0.41159(30)
24 7 - 17 0.4124(17) 8 - 16 0.41815(35)

C2
24 7 - 17 0.39839(59) 8 - 16 0.39839(59)
24 7 - 17 0.40619(71) 8 - 16 0.40619(71)
24 7 - 17 0.41311(89) 8 - 16 0.41311(89)

M0

28 9 - 19 0.3831(13) 11 - 17 0.393369(77)
28 9 - 19 0.3939(19) 11 - 17 0.404409(88)
28 9 - 19 0.4020(27) 11 - 17 0.41332(11)
28 9 - 19 0.4083(38) 11 - 17 0.42094(14)

M1

28 9 - 19 0.38543(92) 11 - 17 0.39257(25)
28 9 - 19 0.3972(12) 11 - 17 0.40377(27)
28 9 - 19 0.4068(16) 11 - 17 0.41282(30)
28 9 - 19 0.4151(22) 11 - 17 0.42055(36)

M2

28 9 - 19 0.3859(10) 11 - 17 0.39206(24)
28 9 - 19 0.3975(13) 11 - 17 0.40322(40)
28 9 - 19 0.4067(17) 11 - 17 0.41218(47)
28 9 - 19 0.4145(22) 11 - 17 0.41978(59)

F1

34 10 - 24 0.37714(92) 13 - 21 0.38519(15)
34 10 - 24 0.3885(13) 13 - 21 0.39635(17)
34 10 - 24 0.3975(18) 13 - 21 0.40523(20)
34 10 - 24 0.4050(26) 13 - 21 0.41269(25)
34 10 - 24 0.4139(40) 13 - 21 0.42162(35)

Table 4.3: Bag parameters for heavy-light and heavy-strange mesons on all
ensembles for given ∆T .
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Figure 4.6: Heavy-light (left) and heavy-strange (right) bag parameter fits, for
all heavy quark masses, on the C0 ensemble.
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Figure 4.7: Heavy-light (left) and heavy-strange (right) bag parameter for
different values of ∆T on the C0 ensemble. The mesons with the lightest,
amh = 0.3, and heaviest, amh = 0.4, are chosen as representatives.

The results for heavy-light and heavy-strange bag parameters are plotted

against inverse meson masses in lattice units, in Fig. 4.10. As can be observed

from the plots, the bag parameter depends linearly on inverse meson mass,

suggesting that very few terms in an HQET expansion are required to describe

our data at the current, percent scale, precision. Final conclusions are deferred

until we have performed the mass and continuum extrapolations analyses for this

quantity.

Finally, we present the results for the ξ parameter in the charm mass region,

given our evaluation of the meson decay constants and bag parameters. Recall
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4.4. Numerical results for BDq and ξ
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Figure 4.8: Heavy-light (left) and heavy-strange (right) bag parameter for
different values of ∆T on the M0 ensemble. The mesons with the lightest,
amh = 0.22, and heaviest, amh = 0.4, are chosen as representatives.
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Figure 4.9: Heavy-light (left) and heavy-strange (right) bag parameter for
different values of ∆T on the F1 ensemble. The mesons with the lightest,
amh = 0.18, and heaviest, amh = 0.4, are chosen as representatives.
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4.5. Gauge link smearing
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Figure 4.10: Heavy-light (left) and heavy-strange (right) bag parameter vs the
corresponding inverse meson mass, in lattice units, on ensembles C0, M0, F1.
Note that the dotted line is simply drawn to guide the eye and this is not how
we fit the bag parameter in practice.

that the ξ parameter is defined according to Eq. 1.80:

ξ =
fBs
√
BBs

fBd
√
BBd

, (4.32)

As already stated Chapter. 1, this quantity is defined for B-mesons. Given that

our simulations only covers the charm mass region, it is essential for the global

fit to include an anzats for extrapolation to the B mass region, see Sec. 4.5.

Fig. 4.11 summarizes our results so far. Note the insensitivity of ξ to the heavy

quark mass. The largest theoretical uncertainty in ξ to date has arisen from

the chiral extrapolation [100–102]. We emphasize that these small errors have

been obtained directly at physical pion masses which removes the need for such

extrapolation. The dependence on the lattice spacing will be removed by a

continuum extrapolation in a global fit in future work.

4.5 Gauge link smearing

Since the ξ parameter is a quantity which is defined for B mesons, an extrapolation

to the heavy B mesons mass has to be included in a future global fit ansatz. As

it can be observed in Fig. 4.11, this extrapolation is rather far at the moment

which would lead to a less precise result for ξ. Therefore, it would be beneficial

to find the optimal heavy domain wall fermion action that would give access to
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4.5. Gauge link smearing

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

1/M
D

s

(GeV)
-1

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

1.24

1.25

ξ

C0
C1
C2
M0
M1
M2
F1
bottom
charm

Figure 4.11: ξ parameter on all ensembles vs inverse heavy-strange meson mass
in physical units. The solid line represents the value of inverse physics Ds meson
mass, while the dotted line represent the value of inverse physical Bs meson mass.

heavier quark masses i.e. closer to the physical point for B physics studies. In

order to achieve this, we have tested the effect of gauge link smearing on the axial

current renormalization factor ZA with heavy-heavy quarks. The tests involved

generating propagators on a 163 × 32 lattice with a−1 = 1.78 and pion mass

mπ = 430 MeV. Different stout smearing parameter ρ and number of smearing

hits [103] were used as well as altering the domain wall height M5 in the action.

We seek minimum amount of smearing while still maintaining the light quark

mass near its physical point. The simulated heavy quark mass is amh = 0.45.

Fig. 4.12 shows the effect of different number of stout hits, with standard stout

parameter ρ = 0.1. We observe that 3 hits of smearing reduces the residual mass

to per mille level. Furthermore, it allows for simulation of even heavier masses

whilst preserving the chiral properties of the domain wall formulation.

This study was then continued in more detail by other members of our

collaboration to obtain the optimal heavy quark action on each of the ensembles

C0 to F1 with smeared gauge links. Currently the second run of the charm project

is underway with data being analysed in due course.
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4.5. Gauge link smearing
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Figure 4.12: Effect of different number of levels (hits) of stout smearing on the
residual mass with heavy quark input mass amh = 0.45 and M5 = 1.0 on a
163 × 32 lattice with a−1 = 1.78.
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Chapter 5

Conclusions and Outlook

Interest in heavy quark physics as a probe to New Physics beyond the Stan-

dard Model has resulted in lattice QCD simulations to investigate their non-

perturbative dynamics in recent years. Some of the quantities and observables

that can be used to constrain the CKM matrix elements and hence act as probes

to the SM were discussed in Chapter 1 of this thesis. In Chapter 2, we described

some of the previous theoretical works, such as the domain wall formulation

and the choice of parameters, used in the current RBC/UKQCD charm project

simulations.

As discussed earlier, with a heavy quarks masses currently being the same

order as the UV cut-off it is difficult identify the renormalization window

clearly. This led us to develop a massive renormalization scheme to reshuffle

lattice artefacts of O(a2m2) in order to potentially remove some of these

artefacts. In Chapter 3, we presented a mass dependent renormalization

scheme, RI/mSMOM, for fermion bilinear operators in QCD with non-exceptional

momentum kinematics similar to the standard RI/SMOM scheme. In contrast to

RI/SMOM where the renormalization conditions are imposed at the chiral limit,

this scheme allows for the renormalization conditions to be set at some mass scale

m, which we are free to choose. In the limit where m→ 0, our scheme reduces to

SMOM. Using a mass dependent scheme for a theory containing massive quarks

has the benefit of preserving the continuum WI by taking into account terms

of order m/µ, which would otherwise violate the WI when a massless scheme is

used. We have shown that the WIs for the case of both degenerate and non-
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degenerate masses are satisfied non-perturbatively, giving ZV = 1 and ZA = 1.

In order to gain a better understanding of the properties of the mSMOM scheme

we have performed an explicit one-loop computation in perturbation theory using

dimensional regularization. We also reperformed the 1-loop computation using

the ’t Hooft-Veltman convention for γ5. These the results can be particularly

useful for extending the renormalization conditions to the singlet quark flavor.

The programme to generate vertex functions numerically, with an appropriate

projector in the massive scheme, has be written. The vertex functions are now

being generated. The renormalization factors will be extracted in the near future,

in order to examine whether or not the new schemes allows for a smoother

trajectory to the continuum limit.

In Chapter 4, lattice results for meson masses and decays constants as well

as the bag and ξ parameters near D and Ds meson regions were presented. The

global fits for mesons masses and decay constants, in which the continuum limit

dependence, the pion mass dependence and the heavy quark dependence where

simultaneously fitted using an ansatz, were performed by other members of the

collaboration. The details can be found in Ref. [72].

In terms of the future of this project, we have explored changes in the

formulation of the domain wall action, such as gauge link smearing, in order

to increase the reach in the heavy quark mass. An example was given in the last

section of Chapter 4. After completely investigating the reach in heavy-light and

heavy-strange meson masses using the parameters of the adapted action, by other

members of the collaboration, the second large scale run for the RBC/UKQCD is

on the way. This have allowed us to reach mesons heavier than the charm region,

allowing to better constrict the extrapolation to the B sector.
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Appendix A

Charge and Parity symmetries

Charge and parity symmetries are amongst discrete symmetry transformations.

Under parity, the space-time coordinates transform as [104]:

x = (x0,x)→ xP = (x0,−x) · (A.1)

The charged W -boson, under parity, transform as:

W (±)
µ

P−→ W (±)µ(xP ) , (A.2)

and under charge conjugation, C, as:

W (±)
µ

C−→ −W (∓)µ(x) · (A.3)

Putting the two transformations together,

W (±)
µ (x)

CP−−→ −W (∓)µ(xP ) · (A.4)

In the chiral basis,

γµ =

 0 σµ

σ̄µ 0

 , (A.5)
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where

σµ ≡ (1, σ) and σ̄µ ≡ (1,−σ) · (A.6)

Under parity, the Dirac spinor

ψ =

ψL
ψR

 (x)
P−−−→

ψR
ψL

 (xP ) , (A.7)

i.e. ,

ψ(x)
P−→ γ0ψ(xP ) · (A.8)

Under charge conjugation,

ψ(x)
C−→ iγ2γ0ψ̄T (x) , (A.9)

leaving the space-time coordinate unaffected. Therefore, under CP

ψ =

ψL
ψR

 (x)
CP−−−−→

−iσ2ψ∗L

iσ2ψ∗R

 (xP ) · (A.10)
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Appendix B

Conventions

B.1 Minkowski to Euclidean conventions

In this section the conventions for going from Minkowski to Euclidean space are

stated and the fermion propagator is written as an example. Starting with the

space-time 4-vector:

xM
0 = −ixE

4 , xiM = xE
i , (B.1)

which means xi = −xE
i and we do not distinguish between upper and lower indices

in Euclidean space. Similarly for momentum kµ we have

kM
0 = −ikE

4 , kiM = kE
i . (B.2)

The relation for the vector potential becomes

AM
0 = iAE

4 , AiM = −AEi . (B.3)

Therefore the covariant derivative in Minkowski space

Dµ = ∂µ + igAµ , (B.4)

maps to

DM
0 = iDE

4 , DiM = −DE
i , (B.5)

158



B.1. Minkowski to Euclidean conventions

and the Euclidean covariant derivative becomes

DE
µ = ∂E

µ + igA E
µ . (B.6)

The gamma matrices map in the following way:

γM
0 = γE

4 , γ1,2,3 M = iγE
1,2,3 . (B.7)

For convenience we also take

ψM = ψE , ψ
M

= ψ
E
. (B.8)

The fermionic part of the action in Minkowski space is

SM[ψ, ψ] =

∫
d4x ψ

(
iγµDµ −m

)
ψ. (B.9)

Using the maps defined above, the Euclidean action becomes

SE[ψ, ψ] =

∫
d4xE ψ

E
[
γE
µD

E
µ +m

]
ψE, (B.10)

where

iSM = −SE. (B.11)

The inverse Fourier transform in Minkowski space is given by:

f(xM) =

∫
d4pM

(2π)4
e−ipM.xM f̃(pM). (B.12)

The consistent inverse FT in Euclidean space is then

f(xE) =

∫
d4pE

(2π)4
eipE.xE f̃(pE). (B.13)

Therefore, analytics continuation implies that

f̃(pM) = −if̃(pE). (B.14)
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B.2. Fourier transform and derivatives on the lattice

The inverse fermionic propagator at tree-level, using Euclidean FT

f̃(pE) =

∫
d4xE e−ipE.xEf(xE). (B.15)

becomes

S−1
E (p) = (i/pE

+m). (B.16)

One can check that

F
[
〈ψ(x)ψ(0)〉

]
M

= −iF
[
〈ψ(x)ψ(0)〉

]
E
, (B.17)

is satisfied:

i

/pM −m
=

i

−i/pE −m
=

−i
i/pE +m

. (B.18)

B.2 Fourier transform and derivatives on the

lattice

In this section we introduce basic mathematical tools and conventions required

for the formulation of Quantum Field Theory on the lattice.

Given lattice spacing a, the lattice coordinates can be written as:

xµ = nµa n = 0, 1, ... µ = 1, 2, ..., D in D dimensions (B.19)

for finite volume box of size L = Na, n takes the values n = 0, 1, ..., N − 1. For

a smooth function f(x) in D dimensions one has, in the limit a→ 0:

∑
x

f(x) = aD
∑
n

→
∫
dDx f(x) (B.20)

again, for a finite volume lattice of side L, the corresponding integral would range

from 0 to L.
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B.2. Fourier transform and derivatives on the lattice

We define the forward and backward derivatives on the lattice as follows:

∇µφ(x) =
φ(x+ aµ̂)− φ(x)

a
(B.21)

∇∗µφ(x) =
φ(x)− φ(x− aµ̂)

a
(B.22)

so that ∇µ = ∂µ + O(a). In principle, one can increase the accuracy of the

calculations involved by defining derivatives in different ways. The Central

Difference formulation takes the form

∇midφ(x) =
φ(x+ a)− φ(x− a)

2a
+O(a2) (B.23)

which means that the central difference derivative will have smaller discretisation

errors (since it is O(a2)) compared to the forward derivative (O(a)). Therefore,

one can see that there is an ambiguity in the way derivatives can be defined on

the lattice. Having derivative formulations which contain higher orders of a will

naturally increase accuracy. The drawback however, is that it will become more

computationally expensive. For the second derivative we have

φ′′(x) =
φ(x+ a)− 2φ(x) + φ(x− a)

a2
+O(a2) (B.24)

which can be easily proved by taylor expanding both sides up to order a4.Note

that the latter definition of the first derivative i.e. of order O(a2) as in equation

B.23, is the one that is used in Chapter 2 section 2.1.4 when constructing the

fermion propagator. The same is used for the scalar field.

To construct the discretized inverse Fourier transform, let us start with

recalling the integral representation of the Kronecker delta function (i.e. discrete),

δnn′ =
1

2πi

∮
zn

zn′+1
, (B.25)

which is simply due to the residue theorem. Making a change of variables z = eik
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B.2. Fourier transform and derivatives on the lattice

where −π < k < π results in

δnn′ =
1

2π

∫ π

−π
dkeik(n−n′) · (B.26)

Note that the limits make sense because if we set n = n′ on the LHS we get 1

from the delta and on the right hand side 2π
2π

= 1. Making another change of

variable k → ak yields

δnn′ =
a

2π

∫ π/a

−π/a
eika(n−n′)dk · (B.27)

Now consider the discretized Fourier transform which is of the form,

f̃(k) = a
∑
n

f(na)e−ikna · (B.28)

Multiplying both sides of the equation by eikn
′

and integrating with respect to k

from −π/a to π/a gives∫ π/a

−π/a
f̃(k)eikna

′
dk =a

∑
n

∫ π/a

−π/a
e−ika(n−n′)f(na)dk (B.29)

=2π
∑
n

δnn′f(na) = 2πf(n′a) ·

This yields the discretized inverse Fourier transform:

f(na) =

∫ π/a

−π/a

dk

2π
f̃(k)eikan , (B.30)

where we are in fact integrating over the first Brillouin zone. Generalization to

higher dimensions is trivial. In all the above, the volume was considered to be

infinite. If however, we wish to work in a finite volume we would need to impose

certain boundary conditions. For periodic boundary conditions:

f(an+ aN) = f(an) , (B.31)
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B.3. Free scalar field propagator

where there are N points in total. Defining n′ = N + n, we must have

f̃(k) =a
∑
n

f((N + n)a)e−ikna = a
∑
n′

f(n′a)e−ik(n′−N)a (B.32)

=a
∑
n′

f(n′a)e−ikn
′aeikNa ·

meaning eikaN = e2iπm where m is an integer and so k = 2πm
aN

. Going back to

Eq. B.30 and observing the limits, we conclude that m must run from −N
2

+ 1

to N
2

since we cannot have more than N points. Replacing dk by its discretized

equivalent i.e. the “fundamental” unit k which is k = 2π/aN , we get

f(na) =
1

L

N/2∑
m=−N/2+1

f̃(
2πm

L
)e

2πimn
N (B.33)

where we have used L = aN . The above can be easily generalised to d dimensions.

B.3 Free scalar field propagator

The continuum Euclidean action in 4 dimensions for the free scalar field reads as

follows

SE[φ] =

∫
d4x

(
1

2
∂µφ(x)∂µφ(x) +

1

2
m2φ2(x)

)
(B.34)

=
1

2

∫
d4x

(
−φ(x)∂2φ(x) +m2φ2(x)

)
,
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B.4. Twisted boundary conditions

Discretizing space-time and using B.24 for the definition of the derivative we get

SE[φ] =
a4

2

∑
x

(
−φ(x)

∑
µ

φ(x+ aµ̂)− 2φ(x) + φ(x− aµ̂)

a2
+m2φ2(x)

)

=
a4

2

∑
x

{∫
kk′

(
− eikx

a2
φ̃(k)

∑
µ

[
eik
′.(x+aµ̂) − 2eik

′.x + eik
′.(x−aµ̂)

]
φ̃(k′)

+m2φ̃(k)φ̃(k′)ei(k+k′)x
)}

=
a4

2

∑
x

{∫
kk′
ei(k+k′).x

[
−1

a2
φ̃(k)2

∑
µ

cos(k′µa) +

(
m2 +

8

a2

)
φ̃(k)φ̃(k′)

]}

=
1

2

∫
kk′
δ(k + k′)

[
−1

a2
φ̃(k)2

∑
µ

cos(k′µa) +

(
m2 +

8

a2

)
φ̃(k)φ̃(k′)

]

=
1

2

∫
k

[
φ(k)

(
m2 +

1

a2

∑
µ

(2− 2 cos(kµa))

)
φ(k)

]

=
1

2a2

∫
k

[
φ(k)

(
a2m2 +

∑
µ

(2− 2 cos(kµa))

)
φ(k)

]
,

(B.35)

where k.µ̂ = kµ and
∫
kk′

denotes d4kd4k′

(2π)4(2π)4 . In the last line we have changed

variables from k → −k and the integral is over the first Brillouin zone. The

inverse scalar propagator on the lattice, in momentum space, takes the form:

DS(k) =
1

m2 + a−2
∑

µ(2− 2 cos(kµa))
· (B.36)

B.4 Twisted boundary conditions

Here we discuss a different boundary condition for fermions on a finite lattice

which turns out to be very useful [90]. The fact that momentum is quantized on

the lattice, leads to limitations in different phenomenological applications. Take

the 2-body hadron decay as an example. The energies of the decay products

is related to the masses of the particles involved by 4-momentum conservation.

However, they cannot take their physical value unless the masses are consistent

with the momentum quantisation rule. This issue can be resolved by choosing
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B.4. Twisted boundary conditions

different boundary conditions. The momentum quantization rule for periodic

boundary conditions is well-known:

ψ(x+ eiL) = ψ(x) , i = 1, 2, 3 , (B.37)

for spacial directions. Taking the Fourier transform∫
d4p e+ip(x+eiL)ψ̃(p) =

∫
d4p eipxψ̃(p) , i = 1, 2, 3 (B.38)

which implies

eipiL = 1 =⇒ pi =
2πni
L

, i = 1, 2, 3 · (B.39)

Now, define the θ-boundary conditions as

ψ(x+ eiL) = eiθiψ(x) , (B.40)

similar to above, taking the Fourier transform gives

ei(pi−θi/L) = 1 =⇒ pi =
θi
L

+
2πni
L

, i = 1, 2, 3 · (B.41)

In other words, the spacial momenta are still quantised for periodic boundary

condition but also shifted by an arbitrary amount θi/L which is continuous. It is

shown [90] that θ/L does indeed act as a true physical momentum, in particular

the physical energy of the mesonic state can be written as

Eij(θ, a) =

√
M2

ij +

(
θ

L

)2

, (B.42)

where Mij is the mass of the pseudoscalar meson made of an i and a j quark anti-

quark pair. It is also shown that the continuum extrapolation gives the correct

relativistic dispersion relations.
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Appendix C

Renormalization

C.1 Conventions

• The fermion propagator in position space is

S(x3 − x2) = 〈ψ(x3)ψ̄(x2)〉, (C.1)

and the Minkowski Fourier convention we use is

S(p) =

∫
d4xeip.xS(x). (C.2)

The Mikowski fermion propagator in momentum space is written as

S(p) =
i

/p−m+ iε− Σ(p)
, (C.3)

and the fermion self-energy Σ(p) is decomposed into

Σ(p) = /pΣV (p2) +mΣS(p2) . (C.4)

• The gluon propagator in Feynman gauge is

−igµν
k2 + iε

. (C.5)
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C.2. Vector WI in Minkowski space

• Note that the one-loop self-energy Σ(p) in this convention is

− iΣ(p) = −ig2C2(F )

∫
γα(/p− k +m)γα

k2 [(p− k)2 −m2]
. (C.6)

• The basis of the Clifford algebra is chosen to be:

Γ = 1(S), iγ5(P ), γσ(V ), γσγ5(A), σµν =
i

2
[γµ, γν ] (T ) · (C.7)

• The vertex function in position space is

Ga
O(x3 − x, x2 − x) = 〈ψ(x3)Oa

Γ(x)ψ̄(x2)〉 (C.8)

where we have used translational invariance and Oa
Γ = ψ̄Γτaψ is a flavor

non-singlet fermion bilinear operator.

C.2 Vector WI in Minkowski space

To derive the non-singlet vector WI in Minkowski space, we start by applying the

vector transformation on fermions fields,

δψ(x) = i
[
αV (x)τa

]
ψ(x) , δψ(x) = −iψ(x)

[
αV (x)τa

]
· (C.9)

In what follows we suppress the flavor index for simplicity. The Lagrangian under

consideration is,

L = iψ̄ /Dψ −mψ̄ψ , (C.10)

where the covariant derivative is as usual,

Dµ = ∂µ + igAµ · (C.11)

We choose the operator insertion to be

O(x3, x2) = ψ(x3)ψ̄(x2) , (C.12)

and evaluate the change in the expectation value δ〈O(x3, x2)〉 = 0:
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C.2. Vector WI in Minkowski space

0 =
δ

δα(x)
〈O(x3, x2)〉 =

δ

δα(x)

[∫
D[ψ̄, ψ]eiS[L]O(x3, x2)

]

=

∫
D[ψ̄, ψ]eiS[L] δO(x3, x2)

δα(x)
+ i

∫
D[ψ̄, ψ]eiS[L] δS[L]

δα(x)
O(x3, x2) ·

(C.13)

For the variation in the operator we have,

δO(x3, x2)

δα(x)
= iδ(x− x3)ψ(x3)ψ̄(x2)− iδ(x− x2)ψ(x3)ψ̄(x2) · (C.14)

For the variation of the action,

δ

δα(x)

[∫
d4x′(ψ̄(x′)δα(x′))(/∂ + ig /A )ψ(x′)− ψ̄(x′)(/∂ + ig /A )

(
α(x′)ψ(x′)

)]

=ψ̄(x) /Dψ(x)− δ

δα(x)

[∫
d4x′

(
∂µα(x′)

)
ψ̄(x′)γµψ(x′) + α(x′)ψ̄(x′)γµ

(
Dµψ(x′)

)]

=ψ̄(x) /Dψ(x) +
δ

δα(x)

[∫
d4x′α(x′)∂µV

µ(x′)

]
− ψ̄(x) /Dψ(x)

=∂µV
µ(x) ·

(C.15)

The vector WI in Minkowski space then reads:

iδ(x− x3)〈ψ(x3)ψ̄(x2)〉 − iδ(x− x2)〈ψ(x3)ψ̄(x2)〉 = −i∂µGµ
V(x3 − x, x2 − x) ·

(C.16)

Taking the Fourier transform, placing the operator at the origin x = 0, i.e. an

implicit
∫
d4xδ(x), the LHS or Eq. C.16 becomes,∫

d4x2d
4x3

(
iδ(−x3)S(x3 − x2)− iδ(−x2)S(x3 − x2)

)
eip3.x3e−ip2.x2

=

∫
d4x2 iS(−x2)e−ip2.x2 −

∫
d4x3 iS(x3)eip3.x3

=iS(p2)− iS(p3) ·

(C.17)
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C.3. Vector and Axial WI in Euclidean space

For the first term on the RHS of Eq. C.16 we have the following, which we will

evaluate at x = 0 after differentiation,

− i∂µ
∫
d4x2d

4x3 G
µ
V(x3 − x, x2 − x)eip3.x3e−ip2.x2

=− i∂µ
∫
d4x′2d

4x′3 G
µ
V(x′3, x

′
2)eip3.(x′3+x)e−ip2.(x′2+x)

=− i(ip3 − ip2)µ

∫
d4x′2d

4x′3 G
µ
V(x′3, x

′
2)eip3.x′3e−ip2.x′2

=− q.GV(p3, p2) ·

(C.18)

We therefore have,

q.GV(p3, p2) = iS(p3)− iS(p2) · (C.19)

Multiplying on the left with S(p3)−1 and on the right with S(p2)−1, the vector

Ward identity for the amputated vertex function in momentum space becomes,

q.ΛV(p2, p3) = iS(p2)−1 − iS(p3)−1 · (C.20)

C.3 Vector and Axial WI in Euclidean space

Starting with the probe in Eq. C.12 and taking δ〈O(x3, x2)〉 = 0 under the

symmetry transformations under consideration are:

δψ(x) = i
[
αV (x)τa

]
ψ(x) , δψ(x) = −iψ(x)

[
αV (x)τa

]
, (C.21)

and

δψ(x) = i
[
αA(x)τaγ5

]
ψ(x) , δψ(x) = iψ(x)

[
αA(x)τaγ5

]
, (C.22)

one has to compute the variation in the action and the probe in Euclidean space.

In what follows we suppress the flavor index for simplicity. The Lagrangian under

consideration in Euclidean space is:

L = ψ̄ /Dψ +mψ̄ψ · (C.23)
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C.3. Vector and Axial WI in Euclidean space

We have,

0 =
δ

δα(x)
〈O(x3, x2)〉 =

δ

δα(x)

[∫
D[ψ̄, ψ]e−S[L]O(x3, x2)

]

=

∫
D[ψ̄, ψ]e−S[L] δO(x3, x2)

δα(x)
−
∫
D[ψ̄, ψ]e−S[L] δS[L]

δα(x)
O(x3, x2) ·

(C.24)

For the variation in the operator according to Eq. C.21 we have,

δO(x3, x2)

δα(x)
= iδ(x− x3)ψ(x3)ψ̄(x2)− iδ(x− x2)ψ(x3)ψ̄(x2) , (C.25)

and for the variation of the action,

δ

δα(x)

[∫
d4x′ − i(ψ̄(x′)δα(x′))(/∂ + ig /A )ψ(x′) + iψ̄(x′)(/∂ + ig /A )

(
α(x′)ψ(x′)

)]

=− iψ̄(x) /Dψ(x) + i
δ

δα(x)

[∫
d4x′

(
∂µα(x′)

)
ψ̄(x′)γµψ(x′) + α(x′)ψ̄(x′)γµ

(
Dµψ(x′)

)]

=− iψ̄(x) /Dψ(x)− i δ

δα(x)

[∫
d4x′α(x′)∂µV

µ(x′)

]
+ iψ̄(x) /Dψ(x)

=− i∂µV µ(x) ·
(C.26)

The Euclidean Vector WI in position space takes the form,

iδ(x− x3)〈ψ(x3)ψ̄(x2)〉 − iδ(x− x2)〈ψ(x3)ψ̄(x2)〉 = −i∂µGµ
V (x3 − x, x2 − x) ·

(C.27)

Taking the Fourier transform, placing the operator at the origin x = 0, i.e.

inserting
∫
d4xδ(x), the LHS of Eq. C.27 becomes,∫

d4x2d
4x3

(
iδ(−x3)S(x3 − x2)− iδ(−x2)S(x3 − x2)

)
e−ip3.x3eip2.x2

=iS(p2)− iS(p3) ·
(C.28)
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C.3. Vector and Axial WI in Euclidean space

For the first term on the RHS of Eq. C.27, and evaluating at x = 0 after

differentiation, we have the following,

− i∂µ
∫
d4x2d

4x3 G
µ
V(x3 − x, x2 − x)e−ip3.x3eip2.x2

=− i∂µ
∫
d4x′2d

4x′3 G
µ
V(x′3, x

′
2)e−ip3.(x′3+x)e+ip2.(x′2+x)

=i(ip3 − ip2)µ

∫
d4x′2d

4x′3 G
µ
V(x′3, x

′
2)e−ip3.x′3e+ip2.x′2

=q.GV(p3, p2)

(C.29)

Therefore, the vector WI in momentum space can be written as,

q.GV(p3, p2) = iS(p2)− iS(p3) · (C.30)

Multiplying on the left with S(p3)−1 and on the right with S(p2)−1, the vector

Ward identity for the amputated vertex function in Euclidean momentum space

becomes,

q.ΛV(p2, p3) = iS(p3)−1 − iS(p2)−1 · (C.31)

If we now instead choose to vary the fields according to Eq. C.22, for the variation

in the prob we get,

δO(x3, x2)

δα(x)
= iδ(x− x3)γ5ψ(x3)ψ̄(x2) + iδ(x− x2)ψ(x3)ψ̄(x2)γ5 , (C.32)

and for the variation of the action,

δ

δα(x)

[∫
d4x′ i(ψ̄(x′)δα(x′)γ5)(/∂ + ig /A )ψ(x′) + iψ̄(x′)(/∂ + ig /A )

(
α(x′)γ5ψ(x′)

)
(C.33)

+ 2miδα(x′)ψ̄(x′)γ5ψ(x′)

]
=iψ̄(x){γ5, γµ}Dµψ(x)− i∂µAµ + 2miψ̄(x)γ5ψ(x) · (C.34)
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C.3. Vector and Axial WI in Euclidean space

Therefore we have,

iδ(x− x3)γ5〈ψ(x3)ψ̄(x2)〉+ iδ(x− x2)〈ψ(x3)ψ̄(x2)〉γ5 (C.35)

=− i∂µ〈Aµψ(x3)ψ̄(x2)〉+ 2mi〈ψ̄(x)γ5ψ(x)ψ(x3)ψ̄(x2)〉 · (C.36)

In other words, the axial Ward identity in position space reads:

iδ(x− x3)γ5S(x3 − x2) + iδ(x− x2)S(x3 − x2)γ5 (C.37)

=− i∂µGµ
A(x3 − x, x2 − x) + 2mGP(x3 − x, x2 − x) · (C.38)

Taking the Fourier transform, placing the operator at the origin x = 0, i.e.

inserting an implicit
∫
d4xδ(x), the LHS of Eq. C.37 becomes,∫

d4x2d
4x3

(
iδ(−x3)γ5S(x3 − x2) + iδ(−x2)S(x3 − x2)γ5

)
e−ip3.x3eip2.x2

=iγ5S(p2) + iS(p3)γ5 ·
(C.39)

For the first term on the RHS of Eq. C.37, and evaluating at x = 0 after

differentiation, we have the following:

− i∂µ
∫
d4x2d

4x3 G
µ
A(x3 − x, x2 − x)e−ip3.x3eip2.x2

=− i∂µ
∫
d4x′2d

4x′3 G
µ
A(x′3, x

′
2)e−ip3.(x′3+x)e+ip2.(x′2+x)

=i(ip3 − ip2)µ

∫
d4x′2d

4x′3 G
µ
A(x′3, x

′
2)e−ip3.x′3e+ip2.x′2

=q.GA(p3, p2) ·

(C.40)

giving,

−q.GA(p3, p2) = 2mGP(p3, p2)− iγ5S(p2)− iS(p3)γ5 · (C.41)

Multiplying on the left with S(p3)−1 and on the right with S(p2)−1, the Ward

identity for the amputated vertex function in momentum space becomes

−q.ΛA(p2, p3) = 2mΛP(p2, p3)− iS(p3)−1γ5 − iγ5S(p2)−1 · (C.42)
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C.4. Computation of the basis integrals

C.4 Computation of the basis integrals

In the following sections, we use dimensional regularization, setting D = 4 −
2ε. We denote µ̃ the scale introduced by dimensional regularization through the

rescaling of the gauge coupling. g → gµ̃ε.

C.4.1 Integral I001 = I010

For the integral

I001 = g2

∫
k

1

[(p3 − k)2 −m2]
, (C.43)

shifting p3 − k → k gives and Wick rotating gives,

I001 =− ig2

∫
k

1

k2 +m2
=

ig2

(4π)2
Γ(ε− 1)

(
m2
)1−ε

=
ig2

(4π)2

Γ(ε)

ε− 1

(
m2
)1−ε

=
iα

4π
m2

(
1

ε
+ 1− γE

)[
1− ε ln

(
m2

µ̃2

)]
=
iα

4π
m2

[
1

ε
+ 1− γE − ln

(
m2

µ̃2

)]
·

(C.44)

C.4.2 Integral I101 = I110

We wish to compute,

I101 = g2

∫
k

1

k2[(p3 − k)2 −m2]
= g2

∫ 1

0

dxdy

∫
k

δ(1− x− y)

(xk2 + y[(p3 − k)2 −m2])2
,

(C.45)

where we have used Feynman parameterization in the last equality. In the

denominator we have,

(x+ y)k2 − 2y(p3.k)− y(µ2 +m2) · (C.46)
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C.4. Computation of the basis integrals

Changing variables to l = k − yp3

x+y
the denominator can be written as:

(x+ y)

l2−
(

yp

x+ y

)2

− (µ2 +m2)
y

x+ y︸ ︷︷ ︸
−M2

 · (C.47)

The integral then becomes

I101 = g2

∫ 1

0

dxdy
1

(x+ y)2

∫
l

δ(1− x− y)

(l2 −M2)2
· (C.48)

Performing the wick rotation l0 = il0E, with d = 4 − 2ε dimensions and taking

g2 = α2µ̃2ε where µ̃ carries the dimensions,

I101 =ig2

∫ 1

0

dxdy
δ(1− x− y)

(x+ y)2

∫
l

1

(l2E +M2)2

=
iα

4π

Γ(ε)

Γ(2)

∫ 1

0

dxdy
δ(1− x− y)

(x+ y)2

(
M2

µ̃2

)−ε
=
iα

4π

[
1

ε
− γE

] ∫ 1

0

dxdy
δ(1− x− y)

(x+ y)2

[
1− ε ln

(
M2

µ̃2

)]
=
iα

4π

∫ 1

0

dxdy
δ(1− x− y)

(x+ y)2

[
1

ε
− γE − ln

(
M2

µ̃2

)]
=
iα

4π

[(
1

ε
− γE

)
+ 2 +

m2

µ2
ln

(
m2

m2 + µ2

)
− ln

(
m2 + µ2

µ̃2

)]
·

(C.49)

C.4.3 Integral I011

For the integral,

I011 =g2

∫
k

1

[(p2 − k)2 −m2][(p3 − k)2 −m2]

=g2

∫ 1

0

dxdy

∫
k

δ(1− x− y)

(x[(p2 − k)2 −m2] + y[(p3 − k)2 −m2])2
,

(C.50)

in the denominator we have,

(x+ y)k2 − 2k.(xp2 + yp3)− (µ2 +m2)(x+ y) · (C.51)
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C.4. Computation of the basis integrals

Making a change in variables, l = k − xp2+yp3

x+y
, gives

(x+ y)

l2−
(
xp2 + yp3

x+ y

)2

− (µ2 +m2)︸ ︷︷ ︸
−M2

 · (C.52)

The integral then becomes,

g2

∫ 1

0

dxdy
1

(x+ y)2

∫
l

δ(1− x− y)

(l2 −M2)2
cdot (C.53)

Performing the wick rotation l0 = il0E, working in d = 4 − 2ε dimensions and

taking g2 = α2µ̃2ε were µ̃ carries the dimensions, a similar calculation as before

gives

I011 =ig2

∫ 1

0

dxdy
δ(1− x− y)

(x+ y)2

∫
l

1

(l2E +M2)2

=
iα

4π

Γ(ε)

Γ(2)

∫ 1

0

dxdy
δ(1− x− y)

(x+ y)2

(
M2

µ̃2

)−ε
=
iα

4π

[
1

ε
− γE

] ∫ 1

0

dxdy
δ(1− x− y)

(x+ y)2

[
1− ε ln

(
M2

µ̃2

)]
=
iα

4π

∫ 1

0

dxdy
δ(1− x− y)

(x+ y)2

[
1

ε
− γE − ln

(
M2

µ̃2

)]
=
iα

4π

[(
1

ε
− γE

)
−
∫ 1

0

dx ln

(
(x2p2 + (1− x2)p3)2 + µ2 +m2

µ̃2

)]

=
iα

4π

[(
1

ε
− γE

)
−
∫ 1

0

dx ln
(m2 − µ2ω(−1 + x)x

µ̃2

)]

=
iα

4π

[(
1

ε
− γE

)
− ln

(
m2

µ̃2

)
+ 2

− i
√
−4m2 − µ2ω

µ
√
ω

(
ln

(
1− iµ

√
ω√

−4m2 − µ2ω

)
− ln

(
1 +

iµ
√
ω√

−4m2 − µ2ω

))]
·

(C.54)
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C.5. Integral with kµkν in the numerator

C.4.4 Integral I−111 and I1−11

This integral has k2 the numerator, hence the subscript −1:

I−111 = g2

∫
k

k2

[(p2 − k)2 −m2][(p3 − k)2 −m2]
· (C.55)

It can be computed by writing the numerator as a polynomial in k and making

a change of variable in the standard way. However, given that this integral does

not belong to the minimal basis, it can be written as a linear combination of

those in the basis which have already been computed. It is possible to write the

integrand as:

k2 = (p2 − k)2 − p2
2 − 2p2.k = [(p2 − k)2 −m2]− 2p.k + (m2 + µ2) · (C.56)

The first cancels the first propagator in the denominator to give integrals

proportional to I001 and the third term gives I011. Both these integrals have

been computed. The integral proportional to with kµ in the numerator can be

computed by writing it in terms of previously computed scalar integrals, using a

similar method as Sec. 3.4.3. This can be done either by hand or automatically

using Mathematica packages such as Fire-5 [83, 105]. The result is:

I−111 =I001 −
(
−m2 + µ2 − µ2

2

)
I011 · (C.57)

Similarly, the integral I1−11 can be written as,

I1−11 = g2

∫
k

(p2 − k)2 −m2

k2[(p3 − k)2 −m2]
=

1

2
I001 −

1

2
(m2 + µ2)I101 · (C.58)

C.5 Integral with kµkν in the numerator

The integral

Iµν = g2

∫
k

kµkν

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
, (C.59)
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C.5. Integral with kµkν in the numerator

can be written as a linear combinations of the possible scales in the problem,

carrying the indices:

Iµν = Agµν +B(pµ2p
ν
2 + pµ3p

ν
3) + C(pµ2p

ν
3 + pµ3p

ν
2) · (C.60)

1. Contracting with gµν , the RHS of Eq. C.60 becomes,

dA− 2µ2B − µ2C · (C.61)

The LHS becomes g2
∫
k

1
[(p2−k)2−m2][(p3−k)2−m2]

= I011, which we have already

computed. Therefore,

V1 ≡ gµνI
µν = I011 · (C.62)

2. Contracting with pµ2p
ν
2 gives the RHS of Eq. C.60,

−µ2A+
5µ4

4
B + Cµ4 , (C.63)

while the LHS becomes

pµ2p
ν
2Iµν = g2

∫
k

(p2.k)2

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
· (C.64)

Squaring −2(p2.k) =
[
(p2 − k)2 −m2

]
− (p2

2 −m2)− k2 gives,

4(p2.k)2 =
[
(p2 − k)2 −m2

]2

+ (p2
2 −m2)2 + k4

− 2
[
(p2 − k)2 −m2

]
(p2

2 −m2)

− 2
[
(p2 − k)2 −m2

]
k2

+ 2 (p2
2 −m2)k2

(C.65)
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C.5. Integral with kµkν in the numerator

Eq. C.64 takes the form:

pµ2p
ν
2Iµν =

g2

4

∫
k

(p2.k)2

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]

=
g2

4

∫
k

(p2 − k)2 −m2

k2[(p3 − k)2 −m2]
+
g2

4
(p2

2 −m2)2

∫
k

1

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]

+
g2

4

∫
k

k2

[(p2 − k)2 −m2][(p3 − k)2 −m2]
− g2

2
(p2

2 −m2)

∫
k

1

k2[(p3 − k)2 −m2]

−g
2

2

∫
k

1

[(p3 − k)2 −m2]
+
g2

2
(p2

2 −m2)

∫
k

1

[(p2 − k)2 −m2][(p3 − k)2 −m2]
·

(C.66)

All the integrals have already been computed. We have,

V2 ≡ pµ2p
ν
2Iµν =

1

4
I1−11 +

1

4
(m2 + µ2)2I111 +

1

4
I−111 (C.67)

+
1

2
(m2 + µ2)I101 −

1

2
I001 −

1

2
(m2 + µ2)I011 · (C.68)

3. Finally, Contracting with pµ2p
ν
3 gives, for the RHS of Eq. C.60,

−µ2

2
A+ µ4B +

5µ4

4
C · (C.69)

while the LHS gives

pµ2p
ν
3Iµν = g2

∫
k

(p2.k)(p3.k)

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]

=
g2

4

∫
k

[
[(p2 − k)2 −m2]− k2 + (m2 − p2

2)
][

[(p3 − k)2 −m2]− k2 + (m2 − p2
3)
]

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
·

(C.70)

Therefore, using the symmetry between p2 and p3,

V4 ≡ pµ2p
ν
3Iµν =− 1

2
I001 +

1

2
(m2 + µ2)I101 (C.71)

− 1

2
(m2 + µ2)I011 +

1

4
I−111 +

1

4
(m2 + µ2)2I111 · (C.72)
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C.5. Integral with kµkν in the numerator

There for we have to solve for A,B and C, in terms of V1, V2 and V3:
V1 ≡ gµνI

µν = dA− 2µ2B − µ2C ,

V2 ≡ p2µp2νI
µν = −µ2A+ 5µ4

4
B + Cµ4 ,

V3 ≡ p2µp3νI
µν = −µ2

2
A+ µ4B + 5µ4

4
C ·

(C.73)

The answer is 

A = 3µ2V1+8V2−4V3

3(−2+d)µ2 ,

B = 4(3µ2V1+(−2+5d)V2−4(−1+d)V3)
9(−2+d)µ4 ,

C = −2(3µ2V1+8(−1+d)V2+2(8−5d)V3)
9(−2+d)µ4 ·

(C.74)

In terms of the basis integrals:

A =
(1 + ε)

6µ2

[
− 2I001 + I−111 + 2I1−11 + (µ2 − 2m2)I011

+ I111(m2 + µ2)2 + 2I101(m2 + µ2)

]
,

(C.75)

B =
1

3µ4

[(
− 2I001 + I−111 + 3I1−11 − 2I011m

2 + 2(m2 + µ2)I101 + (m2 + µ2)2I111

)
+

2ε

3

(
− 2I001 + I−111 + 2I1−11 + 2(µ2 −m2)I011

+ 2(µ2 +m2)I101 + (m2 + µ2)2I111

)]
,

(C.76)
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C.6. Fermion self-energy

C = − 1

3µ4

[
2I1−11 + I011µ

2

+
ε

3

(
− 2I001 + I−111 + 2I1−11 + I011(−2m2 + µ2)

+ 2(m2 + µ2)I101 + (m2 + µ2)2I111

)]
·

(C.77)

C.6 Fermion self-energy

To compute the fermion self-energy,

−iΣ =− g2C2(F )

∫
k

γα[/p2
− /k +m]γα

k2[(p2 − k)2 −m2]
, (C.78)

at 1-loop in perturbation theory, one can calculate of the coefficient F :

g2

∫
k

kµ

k2[(p2 − k)2 −m2]
= Fpµ2 · (C.79)

which appears as part of the self-energy integral. Multiplying both sides by p2µ

gives, on the left hand side,

g2

∫
k

p2.k

k2[(p2 − k)2 −m2]
=− g2

2

∫
k

[(p2 − k)2 −m2]− p2
2 +m2 − k2

k2[(p2 − k)2 −m2]

=− 1

2
(µ2 +m2)I110 +

1

2
I001 ·

(C.80)

This gives,

F =
1

2

µ2 +m2

µ2
I110 −

1

2µ2
I001 · (C.81)

Putting it all the ingredients to Eq. C.78 together and using

γµγµ = d , γµγνγµ = (2− d)γν , (C.82)
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C.7. ’t Hooft-Veltman convention

yields,

I = −C2(F )

[(
(−2 + 2ε)/p2

+ (4− 2ε)m
)
I110

− /p2
(−1 + ε)

((
1 +

m2

µ2

)
I110 −

1

µ2
I001

)]
·

(C.83)

Therefore,

−iΣ(1) =
−iα
4π

C2(F )

[
−/p2

+ 4m

ε

+ /p2

(
−1 + γE +

m2

µ2
+
m4

µ4
ln

(
m2

m2 + µ2

)
+ ln

(
m2 + µ2

µ̃2

))
+m

(
6− 4γE +

4m2

µ2
ln

(
m2

m2 + µ2

)
− 4 ln

(
m2 + µ2

µ̃2

))]
·

(C.84)

C.7 ’t Hooft-Veltman convention

C.7.1 γ matrices manipulation

We wish to prove the following useful identities:

γ̂µγ̂ν γ̂µ = (6− d)γ̂ν , (C.85)

γ̂µγ̄ν γ̂µ = (4− d)γ̄ν , (C.86)

γ̄µγ̄ν γ̄µ = −2γ̄ν , (C.87)

γ̄µγ̂ν γ̄µ = −4γ̂ν · (C.88)

Before we proceed note that

γ̂αγ̂α = ĝαµĝ
ανγµγν = δ̂νµγ

µγν = (d− 4) , (C.89)

γ̄αγ̄α = ḡαµḡ
ανγµγν = δ̂νµγ

µγν = 4 · (C.90)
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Now,

γ̂µγ̂ν γ̂µ =ĝµαĝνβ ĝµσγαγβγ
σ

=δ̂ασ ĝ
νβ
(
2gαβγ

σ − γβγαγσ
)

=ĝνβ
(
2ĝσβγ

σ − γβγ̂αγ̂α
)

=2δ̂νσγ
σ − (d− 4)γ̂ν

=(6− d)γ̂ν ,

(C.91)

γ̂µγ̄ν γ̂µ =δ̂ασ ḡ
νβ
(
2gαβγ

σ − γβγαγσ
)

=2ḡνβ ĝσβγ
σ − γ̂ν δ̂ασγαγσ

=0− (d− 4)γ̄ν

=(4− d)γ̄ν ,

(C.92)

γ̄µγ̄ν γ̄µ =ḡµαḡνβ ḡµσγαγβγ
σ

=δ̄ασ ḡ
νβ
(
2gαβγ

σ − γβγαγσ
)

=2γ̄ν − 4γ̄ν

=− 2γ̄ν ,

(C.93)

γ̄µγ̂ν γ̄µ =ḡµαĝνβ ḡµσγαγβγ
σ

=δ̄ασ ĝ
νβ
(
2gαβγ

σ − γβγαγσ
)

=2ḡσβ ĝ
νβγσ − γ̂ν δ̄ασγαγσ

=− 4γ̂ν ·

(C.94)

Using the above results we can see that

γαγ̄
µγ5γα =γ̄αγ̄

µγ5γ̄α + γ̂αγ̄
µγ5γ̂α

=γ5γ̄αγ̄
µγ̄α − γ5γ̂αγ̄

µγ̂α

=− 2γ5γ̄µ − γ5(4− d)γ̄µ

=(d− 6)γ5γ̄µ ,

(C.95)

182



C.7. ’t Hooft-Veltman convention

and

γαγ̂
µγ5γα =γ̄αγ̂

µγ5γ̄α + γ̂αγ̂
µγ5γ̂α

=− γ5γ̄αγ̂
µγ̄α + γ5γ̂αγ̂

µγ̂α

=4γ5
(
γ̂µ + (6− d)γ̂µ

)
=(10− d)γ5γ̂µ ·

(C.96)

With four γ matrices:

γ̄αγ̄
µγ̄ν γ̄α =2ḡναγ̄αγ̄

µ − γ̄αγ̄µγαγ̄ν

=2γ̄ν γ̄µ + 2γ̄µγ̄ν

=4ḡµν ,

(C.97)

γ̄αγ̄
µγ̂ν γ̄α =γ̂ν γ̄αγ̄

µγ̄α

=− 2γ̂ν γ̄µ

=2γ̄µγ̂ν ,

(C.98)

γ̄αγ̂
µγ̄ν γ̄α =− γ̂µγ̄αγ̄ν γ̄α

=2γ̂µγ̄ν ,
(C.99)

γ̄αγ̂
µγ̂ν γ̄α =− γ̄αγ̂µγ̄αγ̂ν

=4γ̂µγ̂ν ,
(C.100)

γ̂αγ̄
µγ̄ν γ̂α =− γ̂αγ̄µγ̂αγ̄ν

=(d− 4)γ̄µγ̄ν ,
(C.101)

γ̂αγ̄
µγ̂ν γ̂α =2ĝναγ̂αγ̄

µ − γ̂αγ̄µγ̂αγ̂ν

=− 2γ̄µγ̂ν − (4− d)γ̄µγ̂ν

=(d− 6)γ̄µγ̂ν ,

(C.102)
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γ̂αγ̂
µγ̄ν γ̂α =− γ̂αγ̂µγ̂αγ̄ν

=(d− 6)γ̂µγ̄ν ,
(C.103)

γ̂αγ̂
µγ̂ν γ̂α =2ĝναγ̂αγ̂

µ − γ̂αγ̂µγ̂αγ̂ν

=4ĝµν − 2γ̂µγ̂ν − (6− d)γ̂µγ̂ν

=4ĝµν + (d− 8)γ̂µγ̂ν ·
(C.104)

Finally, we need to consider five γ matrices. For the integrals under

consideration, there two cases that need to be simplified: γαγ
µγ̂σγ5γνγα and

γαγ
µγ̄σγ5γνγα. The former combination appears in integral Λ

(1)
â anom, Eq. 3.160,

and the latter in the re-computation of the axial vertex using the new convention

for γ5.

• γαγµγ̂σγ5γνγα: For the cases we later consider, indices µ, νσ are implicitly

summed with σ ≥ 4. We have,

γαγ
µγ̂σγ5γνγα =γ5

[
γ̄αγ̄

µγ̂σγ̄ν γ̄α + γ̄αγ̄
µγ̂σγ̂ν γ̄α − γ̄αγ̂µγ̂σγ̄ν γ̄α − γ̄αγ̂µγ̂σγ̂ν γ̄α

− γ̂αγ̄µγ̂σγ̄ν γ̂α − γ̂αγ̄µγ̂σγ̂ν γ̂α + γ̂αγ̂
µγ̂σγ̄ν γ̂α + γ̂αγ̂

µγ̂σγ̂ν γ̂α

]

=γ5

[
2γ̄ν γ̄µγ̂σ − 2γ̄µγ̂σγ̄ν − 2γ̄µγ̂σγ̂ν + 2γ̂µγ̂σγ̄ν + 4γ̂µγ̂σγ̂ν

+ (d− 6)γ̄µγ̂σγ̄ν + 4ĝσν γ̄µ + (d− 8)γ̄µγ̂σγ̂ν − 4ĝµσγ̄ν

− (d− 8)γ̂µγ̂σγ̄ν + 2γ̂ν γ̂µγ̂σ − 4ĝµσγ̂ν − (d− 8)γ̂µγ̂σγ̂ν

]

=γ5

[
4ĝσν γ̄µ − 4ĝσν γ̂µ − 4ĝµσγ̄ν − 4ĝµσγ̂ν + 4ḡµν γ̂σ + 4ĝµν γ̂σ

+ (d− 6)γ̄µγ̂σγ̄ν + (d− 10)γ̄µγ̂σγ̂ν − (d− 10)γ̂µγ̂σγ̄ν

− (d− 14)γ̂µγ̂σγ̂ν

]
,

(C.105)
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where in the last line we have used

2γ̄ν γ̄µγ̂σ = 4ḡµν γ̂σ − 2γ̄µγ̄ν γ̂σ = 4ḡµν γ̂σ + 2γ̄µγ̂σγ̄ν , (C.106)

and

2γ̂ν γ̂µγ̂σ =4ĝµν γ̂σ − 2γ̂µγ̂ν γ̂σ

=4ĝµν γ̂σ − 4ĝνσγ̂µ + 2γ̂µγ̂σγ̂ν ·
(C.107)

If the sum over µ and ν is symmetric, such as the case in Sec. C.7.4, the

above simplifies to the following:

γ5

[
− 4ĝσν γ̂µ − 4ĝµσγ̂ν + 4ḡµν γ̂σ + 4ĝµν γ̂σ + (d− 6)γ̄µγ̂σγ̄ν − (d− 14)γ̂µγ̂σγ̂ν

]
·

(C.108)

This can be shown by proving that when µ is barred and ν is hatted, or

vice versa, the sum of these terms vanishes leaving only symmetric sums in

which µ and ν are either both barred or both hatted.

• γαγµγ̄σγ5γνγα: The indices µ, ν, σ are implicitly summed with another

vectors or tensors but σ only contains dimensions σ ≤ 3. For our case

of the axial current, the ε pole part only comes in as a coefficient of gµν ,

so we only need to consider those term with the sum that are either both

barred or hatted in µ and ν i.e.

γ5

[
− γ̄αγ̄µγ̄σγ̄ν γ̄α + γ̄αγ̂

µγ̄σγ̂ν γ̄α + γ̂αγ̄
µγ̄σγ̄ν γ̂α − γ̂αγ̂µγ̄σγ̂ν γ̂α

]

=γ5

[
− 2γ̄ν γ̄µγ̄σ + 4ḡµσγ̄ν − 2γ̂µγ̄σγ̂ν − (d− 4)γ̄µγ̄σγ̄ν − 2γ̂ν γ̂µγ̄σ + (d− 6)γ̂µγ̄σγ̂ν

]

=γ5

[
− 2γ̄ν γ̄µγ̄σ + 4ḡµσγ̄ν + 2γ̂µγ̂ν γ̄σ − (d− 4)

(
2ḡσν γ̄µ − γ̄µγ̄ν γ̄σ

)
− 2γ̂ν γ̂µγ̄σ

− (d− 6)γ̂µγ̂ν γ̄σ

]
·

(C.109)
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When this expression multiplied by gµν , it gives,

γ5

[
− 8 + 4 + 2(d− 4)− 2(d− 4) + 4(d− 4)− 2(d− 4)− (d− 6)(d− 4)

]
γ̄σ

=(−4− 8ε)γ5γ̄σ

(C.110)

C.7.2 Reduction of scalar integrals to the minimal basis

Here we list all the possible scalar integrals required as ingredients to compute

the new terms appearing in the axial WI using the ’t Hooft-Veltman convention.

I−111 = I001 + (m2 − µ2

2
)I011 (C.111)

I1−11 =
1

2
I001 −

1

2
(m2 + µ2)I101 (C.112)

I1−21 =
(4− d)m2 − 3dµ2

4(d− 1)
I001 +

(d− 4)(m2 + µ2)2

4(d− 1)
I101 (C.113)

I−211 =
(−4 + 4d)m2 − 3dµ2

2(d− 1)
I001 +

(−4 + 4d)m4 − (8 + 4d)m2µ2 + (d− 4)µ4

4(d− 1)
I011

(C.114)

I−101 = (m2 − µ2)I001 (C.115)

I−110 = (m2 − µ2)I001 (C.116)

I0−11 = −µ2I001 (C.117)

I1−11 =
1

2
I001 −

1

2
(m2 + µ2)I101 (C.118)

I0−11 = −µ2I001 (C.119)
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C.7.3 Derivation for Λ
(1)

b̂ anom
and Λ

(1)
ĉ anom integrals

The last term in the axial WI Eq. 3.155, i.e. −2g〈ψ̄(x)γ5γ̂µAµψ(x)ψ(x3)ψ̄(x2)〉,
contributes at 1-loop as follows:

(−ig)(−2g)

∫
d4x δ(x) d4x2 e

−ip2.x d4x3 e
ip3.x d4z

ψ̄(z)Aρ(z)γρψ(z)ψ̄(x)γ5γ̂µA (x)µψ(x)ψ(x3)ψ̄(x2)

=(2ig2)

∫
d4x δ(x) d4x2 e

−ip2.x d4x3 e
ip3.x d4z

S(x3 − z)γρS(z − x)γ5γ̂µS(x− x2)∆ρµ(z − x)

=(2ig2)

∫
d4x δ(x) d4x2 d

4x3 e
−ip2.x2+ip3.x3d4z∫

p,k2,l,k1

e−ip.(z−x)e−ik2.(x3−z)e−il.(z−x)e−ik1.(x−x2)S(k2)γρS(l)γ5γ̂µS(k1)∆ρµ(p)

=(2ig2)

∫
d4x2 e

−ip2.x2 d4x3 e
ip3.x3 d4z∫

p

e−ip.z
∫
−k2

e−ik2.(x3−z)
∫
l

e−il.z
∫
k1

eik1.x2S(k2)γρS(l)γ5γ̂µS(k1)∆ρµ(p)

=(2ig2)

∫
p,k2,l,k1

δ(p3 − k2)δ(−p2 + k1)δ(k2 − l − p)S(k2)γρS(l)γµS(k1)∆ρµ(p)

=(2ig2)

∫
p

S(p3)γρS(p3 − p)γ5γ̂µS(p2)∆ρµ(p) ·

(C.120)

C.7.4 Integral Iµσν for Λ
(1)
â anom

We are interested in the divergent part of the integral

Iµσν =

∫
k

kµkσkν

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
, (C.121)

that appears as in ingredient in the computation Λ
(1)
â anom. Note that the finite

part goes to zero as γ̂ → 0 at the end of the calculation. For simplicity, we

denote the propagators in the denominator k2 → [1], [(p2 − k)2 − m2] → [2],

[(p3 − k)2 − m2] → [3]. Note that Eq. C.121 is symmetric under the exchange

p2 ↔ p3 and permutations of indices µ, σ, ν and therefore is expected to be of the
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form:

Iµσν =A

[
gµσ(pν2 + pν3) + gµν(pσ2 + pσ3 ) + gσν(pµ2 + pµ3)

]
+B

[
pµ2p

σ
2p

ν
2 + pµ3p

σ
3p

ν
3

]
+C

[
(pµ2p

σ
3p

ν
2 + pν2p

µ
3p

σ
2 + pσ2p

ν
3p
µ
2) + (pµ3p

σ
2p

ν
3 + pν3p

µ
2p

σ
3 + pσ3p

ν
2p
µ
3)

]
·

(C.122)

We now contract this with gµσp2ν , p2µp2σp2ν and p2µp3σp2ν to reduce to a set of

scalar integrals and solve a set of simultaneous equations in three variables to

obtain coefficients A,B and C.

1. Taking the scalar product with gµσp2ν for the LHS gives∫
k

p2.k

[(p2 − k)2 −m2][(p3 − k)2 −m2]
= −1

2

∫
k

[(p2 − k)2 −m2]− k2 − (p2
2 −m2)

[(p2 − k)2 −m2][(p3 − k)2 −m2]

=− 1

2
I001 +

1

2
I−111 +

1

2
(p2

2 −m2)I011

=− 3µ2

4
I011 ,

(C.123)

since I−111 = I001 + (m2 − µ2

2
)I011. On the RHS we have,

A (d+ 2)(p2
2 + p2.p3) +B

(
(p2

2)2 + p2
3(p2.p3)

)
+ C

(
2(p2.p3)p2

2 + (p2.p3)p2
2 + 2(p2.p3)2 + p2

3p
2
2

)
=− 3µ2

2
(d+ 2) A+

3µ4

2
B + 3µ4C·

(C.124)
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2. The scalar product of p2µp2σp2ν with the LHS of Eq. C.122 gives,∫
k

(p2.k)3

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
=

∫
k

(p2.k)3

[1][2][3]

=

(−1

2

)3 ∫
k

(
[2]− [1]− (p2

2 −m2)

)3

[1][2][3]

=

(−1

2

)3
[

3[1]

[3]
− [1]2

[2][3]
− 3[2]

[3]
+

[2]2

[1][3]
+

6(p2
2 −m2)

[3]
− 3[1](p2

2 −m2)

[2][3]

− 3[2](p2
2 −m2)

[1][3]
+

3(p2
2 −m2)2

[1][3]
− 3(p2

2 −m2)2

[2][3]
− (p2

2 −m2)3

[1][2][3]

]

=

(−1

8

)[
3I−101 − I−211 − 3I0−11 + I1−21 + 6(p2

2 −m2)I001 − 3(p2
2 −m2)I−111

− 3(p2
2 −m2)I1−11 + 3(p2

2 −m2)2I101 − 3(p2
2 −m2)2I011 − (p2

2 −m2)3I111

]
·

(C.125)

Writing the above integrals in therms of the minimal basis, App. C.7.2

yields,

∫
k

(p2.k)3

[1][2][3]
=

(−1

8

)[
(

(12− 9d)m2 + 3dµ2

4(d− 1)
+

3

2
m2 − 3

2
µ2

)
I001

+

(
(4− 4d)m4 + (8 + 4d)m2µ2 − (d− 4)µ4

4(d− 1)
− 9

2
µ2(m2 + µ2)

)
I011

+

(
(d− 4)(m2 + µ2)2

4(d− 1)
+

3

2
(m2 + µ2)2

)
I101

+ (m2 + µ2)3I111

]
·

(C.126)
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The RHS of Eq. C.122 contracted with p2µp2σp2ν gives

3Ap2
2

(
p2

2 + p2.p3

)
+B

(
(p2

2)3 + (p2.p3)3

)
+ 3C

(
(p2

2)2(p2.p3) + p2
2(p2.p3)2

)
=

9µ4

2
A− 9µ6

8
B − 9µ6

4
C

(C.127)

3. The scalar product of p2µp3σp2ν with the LHS of Eq. C.122 gives,∫
k

(p2.k)2(p3.k)

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
=

∫
k

(p2.k)2(p3.k)

[1][2][3]

=

(−1

2

)3 ∫
k

(
[2]− [1]− (p2

2 −m2)

)2(
[3]− [1]− (p2

3 −m2)

)
[1][2][3]

=

(−1

8

)[
− I−211 + (µ2 +m2)3I111 + 3(µ2 +m2)I−111 + (µ2 +m2)I1−11

+ (µ2 +m2)2I110 + I−110 + I1−10 + 2(µ2 +m2)2I101 + 2I−101

− 3(µ2 +m2)2I011 − I0−11 − 6(µ2 +m2)I001

]
·

(C.128)

Writing the above integrals in therms of the minimal basis, App. C.7.2

yields,

−1

8

[(
(4− 4d)m2 + 3dµ2

2(d− 1)
+
m2

2
− 9µ2

2

)
I001 +

(
5

2
(m2 + µ2)2

)
I101

+

(
(4− 4d)m4 + (8 + 4d)m2µ2 − (d− 4)µ4

4(d− 1)
− 9µ2

2
(m2 + µ2)

)
I011

+ (m2 + µ2)3I111

]
·

(C.129)
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The RHS of Eq. C.122 contracted with p2µp3σp2ν gives[
2(p2.p3)(p2

2 + p2.p3) + p2
2(p2.p3 + p2

3)

]
A+

(
p2

2(p2.p3)p2
2 + (p2.p3)p2

3(p2.p3)
)
B

+
(
p2

2p
2
3p

2
2 + p2

2(p2.p3)2 + (p2.p3)2p2
2 + (p2.p3)3 + (p2.p3)p2

2p
2
3 + p2

3p
2
2(p2.p3)

)
C

=3µ4A− 3µ6

4
B − 21µ6

8
C

(C.130)

Now, we use Mathematica to solve the set of simultaneous equations to obtain

the coefficients A,B,C.
V1 ≡ gµσp2νI

µσν = −3µ2

2
(d+ 2) A+ 3µ4

2
B + 3µ4C

V2 ≡ p2µp2σp2νI
µσν = 9µ4

2
A− 9µ6

8
B − 9µ6

4
C

V3 ≡ p2µp3σp2νI
µσν = 3µ4A− 3µ6

4
B − 21µ6

8
C

(C.131)



A = 1
12ε

+ finite;

B = finite;

C = finite ·

(C.132)

Therefore,

Iµσν =
1

12ε

[
gµσ(pν2 + pν3) + gµν(pσ2 + pσ3 ) + gσν(pµ2 + pµ3)

]
+finite B

(
m2

µ2

)[
pµ2p

σ
2p

ν
2 + pµ3p

σ
3p

ν
3

]
+finite C

(
m2

µ2

)[
(pµ2p

σ
3p

ν
2 + pν2p

µ
3p

σ
2 + pσ2p

ν
3p
µ
2) + (pµ3p

σ
2p

ν
3 + pν3p

µ
2p

σ
3 + pσ3p

ν
2p
µ
3)

]
(C.133)

The only term in the above equation that we need to consider, is the divergent
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one, proportional to the g’s. We use Eq. C.108 to obtain:

− 2
iα

4π

γ5

12ε

[
− 4− 4(d− 4) + 4− (d− 14)(d− 4)

− 4(d− 4)− 4 + 4− (d− 14)(d− 4)

− 4− 4 + 16 + 4(d− 4)− 4(d− 6)− (d− 14)(6− d)

]
(/̂p2

+ /̂p3
)

=− 2
iα

4π

γ5

12ε
× 36(/̂p2

+ /̂p3
) = − iα

4π

6

ε
(/̂p2

+ /̂p3
)γ5

(C.134)

C.7.5 Integral Iµν for Λ
(1)
â anom

Having already computed the trip-k contribution to the integral,

Λ
(1)
â anom = −ig2C2(F )

∫
k

γα[/p3
− /k +m](/̂p2

+ /̂p3
− 2/̂k)γ5[/p2

− /k +m]γα

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]
,

(C.135)

in Sec. C.7.4, it remain to collect other terms that could contain divergent parts.

These are parts that would be proportional to gµν . The relevant terms in the

numerator are,

2γα/p3
/̂kγ5/kγα + 2mγα/̂kγ

5/kγα

+2γα/k/̂kγ
5
/p2
γα + 2mγα/k/̂kγ

5γα

+γα/k(/̂p2
+ /̂p3

)γ5/kγα

=
(
γαγ

µγ̂σγ5γνγα
)[

2p3µkσkν + 2kµkσp2ν + kµ(p2σ + p3σ)kν)
]

+2m
[(
γαγ̂

σγ5γµγα
)
kσkµ +

(
γαγ

µγ̂σγ5γα
)
kµkσ

]
·

(C.136)

Let us first consider the term kµ(p2σ + p3σ)kν and use Eq. C.105. We obtain,

iα

4π

γ5

4ε

[
− 8 + 16 + 4(d− 4)− 4(d− 6) + (d− 14)(d− 6)

]
(/̂p2

+ /̂p3
)

=
iα

4π

γ5

4ε
× 36(/̂p2

+ /̂p3
) =

iα

4π

9

ε
(/̂p2

+ /̂p3
)γ5 ·

(C.137)

For
(
2p3µkσkν

)
, since kσ is contracted with γ̂σ, the only terms in Eq. C.105
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that survive are those which have ν hatted as well i.e. ,

γ5

[
4ĝσν γ̄µ−4ĝσν γ̂µ−4ĝµσγ̂ν+4ĝµν γ̂σ+(d−10)γ̄µγ̂σγ̂ν−(d−14)γ̂µγ̂σγ̂ν

]
· (C.138)

We therefore get,

2
iα

4π

1

4ε
γ5

[
4(d− 4)/̄p3

− 4(d− 4)/̂p3
− 4/̂p3

+ 4/̂p3
+ (d− 10)(d− 4)/̄p3

− (d− 14)(d− 4)/̂p3

]

=2
iα

4π

1

4ε
γ5

[
(d− 6)(d− 4)/̄p3

− (d− 4)(d− 10)/̂p3

]

=2
iα

4π

1

4ε
γ5

[
4ε/̄p3
− 12ε/̂p3

]
=
iα

4π
× 2γ5

/̄p3
,

(C.139)

where in the last equality we have used the fact that in the absence of 1/ε poles,

we can safely send /̂p3
→ 0. Similarly for the term

(
2kµkσp2ν

)
, the only terms in

Eq. C.105 that survive are those which have µ hatted i.e. ,

γ5

[
− 4ĝσν γ̂µ − 4ĝµσγ̄ν − 4ĝµσγ̂ν + 4ĝµν γ̂σ − (d− 10)γ̂µγ̂σγ̄ν − (d− 14)γ̂µγ̂σγ̂ν

]
·

(C.140)

This gives,

2
iα

4π

1

4ε
γ5

[
− 4/̂p2

− 4(d− 4)/̄p2
− 4(d− 4)/̂p2

+ 4/̂p2
− (d− 10)(d− 4)/̄p2

− (d− 14)(d− 4)/̂p2

]

=2
iα

4π

1

4ε
γ5

[
− (d− 6)(d− 4)/̄p2

− (d− 4)(d− 10)/̂p2

]

=2
iα

4π

1

4ε
γ5

[
− 4ε/̄p2

− 12ε/̂p2

]
=
iα

4π
× (−2)γ5

/̄p2
,

(C.141)

which, again, in the absence of 1/ε poles, we we have taken /̂p2
→ 0.

For the terms containing masses, we first have 2m
(
γαγ̂

σγ5γµγα
)
kσkµ. Given

that one only need to consider the divergent parts and that these are proportional
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to gσµ, one only needs to choose terms with hatted µ’s i.e.

γ5

[
− γ̄αγ̂σγ̂µγ̄α + γ̂αγ̂

σγ̂µγ̂α

]
= γ5

[
− 4γ̂σγ̂µ + 4ĝσµ + (d− 8)γ̂σγ̂µ

]
· (C.142)

Contracting the coefficient gives,

iα

4π

2m

4ε
γ5

[
− 4(4− d) + 4(4− d) + (d− 8)(d− 4)

]
=
iα

4π

2m

4ε
γ5 × 8ε =

iα

4π
γ54m

(C.143)

Similarly, for 2m
(
γαγ

µγ̂σγ5γα
)
kµkσ, again we only choose hatted µ’s in the

sum over the indices which gives

γ5

[
− γ̄αγ̂µγ̂σγ̄α + γ̂αγ̂

µγ̂σγ̂α

]
= γ5

[
− 4γ̂µγ̂σ + 4ĝµσ + (d− 8)γ̂µγ̂σ

]
· (C.144)

Multiplying the coefficient,

iα

4π

2m

4ε
γ5

[
− 4(4− d) + 4(4− d) + (d− 8)(d− 4)

]
=
iα

4π

2m

4ε
γ5 × 8ε =

iα

4π
γ54m ·

(C.145)

Putting everything together from Sec. C.7.4 and this section, we obtain the

final result for Λ
(1)
â anom:

Λ
(1)
â anom

−iC2(F )
=g2

∫
k

γα[/p3
− /k +m](/̂p2

+ /̂p3
− 2/̂k)γ5[/p2

− /k +m]γα

k2[(p2 − k)2 −m2][(p3 − k)2 −m2]

=
iα

4π
γ5

[
− 6

ε
(/̂p2

+ /̂p3
) +

9

ε
(/̂p2

+ /̂p3
) + 2/̄p3

− 2/̄p2
+ 4m+ 4m

]
·

(C.146)

Therefore,

Λ
(1)
â anom =

α

4π
γ5C2(F )

[
3

ε
(/̂p2

+ /̂p3
) + 2(/̄p3

− /̄p2
) + 8m

]
· (C.147)
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C.8 Minkowski to Euclidean convention for mSMOM

Following the conventions of Sec. B.1, the RI/mSMOM renormalization condition

in Euclidean space are:

lim
MR→m

1

12p2
E

Tr
[
iSE

R(p)−1 6pE
]∣∣∣∣
p2

E=µ2

= −1 , (C.148)

lim
MR→m

1

12MR

{
Tr
[
SE
R(p)−1

]∣∣
p2=µ2 +

1

2
Tr
[(
iq · ΛE

A,R

)
γ5

]∣∣
sym

}
= 1 , (C.149)

lim
MR→m

1

12q2
Tr [(q · ΛV,R) 6q]|sym = 1 , (C.150)

lim
MR→m

1

12q2
Tr [(q · ΛA,R + 2MRΛP,R) γ5 6q]|sym = 1 , (C.151)

lim
MR→m

1

12i
Tr [ΛP,Rγ5]|sym = 1 . (C.152)

The conditions are now defined at the symmetric point,

p2
2 = p2

3 = q2 = µ2. (C.153)

The RI/mSMOM scheme for the heavy-light mixed case in Euclidean space now

reads:

lim
mR→0
MR→m

1

12q2
Tr [(q · ΛV,R + (MR −mR)ΛS,R) 6q]|sym (C.154)

= lim
mR→0
MR→m

1

12q2
Tr
[(
−iζ−1SH,R(p2)−1 + iζSl,R(p3)−1

)
6q
]
, (C.155)

lim
mR→0
MR→m

1

12q2
Tr [(q · ΛA,R + (MR +mR)ΛP,R) γ5 6q]|sym =

lim
mR→0
MR→m

1

12q2
Tr
[(

+ iγ5ζ−1SH,R(p2)−1 + iζSl,R(p3)−1γ5
)
γ5 6q

]
, (C.156)

lim
mR→0
MR→m

1

12i
Tr [ΛP,Rγ5]|sym (C.157)

= lim
mR→0
MR→m

{
1

12(MR +mR)

{
Tr
[
ζ−1SH,R(p)−1

]∣∣
p2=−µ2 +

1

2
Tr [(iq · ΛA,R) γ5]|sym

}
+
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1

12(MR +mR)

{
Tr
[
ζSl,R(p)−1

]∣∣
p2=−µ2 +

1

2
Tr [(iq · ΛA,R) γ5]|sym

}}
.

(C.158)
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