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11 	A theoretical I vesti Etion was made on (a) the limits and 

duration of response to selection and (b) the properties of lethal 

mutants and their expectation of life in small populations. The prob-

lems were formulated mathematically in terms of transition matrices 

and in some cases in terms of diffusioi approximations. In a few oases 

explicit formulae were obtained by expanding matrices and solving 

differential equations. In most of the oases, however, numerical 

solutions were obtained by evaluating matrix functions on the computer. 

2. 	In the case of selection at a di.- and tn- allelic locus, 

the transition probabilities between the segregating states of a popu-

latpion of :ametes of constant size 2N, determine a Q-matrix. The 

average of the total number of times the ppulatiOXl spends in the dif-

ferent segregating Btatea on the way to fixation, corresponding to 

various initial states are determined by a fundamental matrix (I - 

where I is a unit matrix. The expected change in the gene frequency 
rj 

of a particular allele in the limit and mean and variance of the number 

of generations until fixation of this allele are found to depend on 

the fundamental matrix. The frequency distribution of gene frequency 

at equilibrium between mixtation and selection at a diallello locus 

is also found to depend on the elements of the first row of the 

fundamental matrix. 
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3. 	With binomial transition probabilities and selection, 

the expansion of matrix formulae gave explicit expressions for the 

expected ohange in the gene frequency in the linit, and for the half-

life of the selection process. For large N and small values of 

selective coefficient (a), such that NI is constant, the expression for 

the expected change in the gene frequency in the limit was found to 

be the same as the diffusion approximation formula of the chance of 

fixation expanded in powers of Na. In the case of artificial aelec-

tionbØased on individual measurements the total advance by selection 

for additive genes, is 2N1(1 + c1 i + C2 12),  where I is the gain 

in the first generation, C 1  = N /oe4.  and C2  = 4f2(1 + ri2V/0.94.)/ 
flOg2 S Here C7

9
2  and IA

3g 
 are respectively the variance and the third 

moment (about the origin) of the breeding values. V refers to the 

Variance between the cofltributiona of the n different loci to the 

additive genetic variance of the character. The half-life of the 

selection process was found to be a function of Na only. When Na = I 

and initial gene trequenoy 	half, the half-life is about I .30N but 

for initial gene freqtenoy tending to 0 and 1 2  the half-lives are 

I .58N and I .0311  respectively. It was further proved that the momenta of 

the distribution of time until ;ixation of a gene are independent of 

terms in a. 

4.. 	The diffusion ap1roximation for the variance of time until 

fixation, for a selectively neutral gene and initial gene frequency tend- 
2 

ing to zero, is found to be 1611 
(- 	 - 3) Where Ne  is the effective 

size of the population. With the mean time as 411, this amounts to a 

coefficient of variation of about 54 per cent. 
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5, 	Numerical results on the mean and the ooeffici3nt of variation 

of time until fixation of' a gene, at a diallelio locus, obtained, by the 

use of transition matrices suggested that these are functions of No 

only. Selection decreases the mean and the coefficient of variation 

of time until fixation of a gene with additive effects. With rise in 

the initial gene frequency, the mean decreases but the coefficient of 

variation increases. Selection decreases the mean time until fixation 

of a recessive gene also. For a dominant gene, however, the mean time 

increases when Ns is small, attains a maximum and then decreases. A 

gene takes less time, on an average, to reach fixation when it is reces-

sive than when it is dom1nnt. When there is no selection and the two 

alleles are equally represented in the initial population, the mean 

time until homozygosity is found to be maximum but the coefficient of 

variation of time until homozygosity happens to be iinimum. With sole c-

tion the maximum, in the case of the mean and the minimum, in the case 

of the coefficient of variation, are found to occur at initial gene 

frequencies less than half. As N becomes large and initial gene 

frequency tends to zero, the mean and the coeffioient of rariation of time 

until homozygosity approaches the mean and the coefficient of variation 

of time until loss respectively. 

	

6. 	Numerical restdts on chance of fixation of a particular 

allele A1  at a tri-allelic looua (A1 -A2..A3) obtained by the use of 
depen1ent 

the transition matrices suggested that it is/on Na and NVm 

where 	is the average superiority of A1  over A2  and A3  lumped 

together and V is the variance in superiority (multiple allelic 

variance). The chance of fixation increases as N increases in almost 
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the same manner as in the case of two alleles at a locus. It, however, 

decreases as NVm  increases. The mean time until fixation of A1  

decreases as N"s increases provided N2Vm  1. At higher values of 

N27 it increases with increase in N, attaina a maximum and then 

decreases. The effect of increasing N2Vm  on the mean time is to 

decrease it provided N 	1. 	At higher values of N;, it increases 

with inorease in N2V, attains a maximum and then decreases. The 

mean time until homozyoaity is found to be maximum when there is no 

selection and the three alleles are equally represented in the initial 

population. This maximum is found to be greater than the corresponding 

maximum in the two allele case. 

7. The mean and variance of the distribution of frequencies of 

lethal mutants at equivalent loci in a finite population dependp on the 

mutation rate per locus, the population size and the selective advan-. 

tags/disadvantage of the heterozygotes carrying lethals. Assuming a 

mutation rate of 1075,  the mean and variance declinei as the 

heterozygotes decline# in their fitness from 1.05 to 0.95. At any 

given value of the selective coefficient of the heterozygote in this range 

the mean is larger for a population size of 0 than that of 10, but 

the variance behaves in this manner only if the values of selective 

coefficient between 1.05 to 0.00 are considered. In other cases 

it is smaller for N = 50 than f or N = 10. The mean heterozygosity 

behaves In a similar manner as the mean. 
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8. 	Assuming 500 loot on lethal bearing chromosomes on which 

lethal mutations can occur so that the possibility of the chance of 

alleliam due to recurrent mutation is practically nil and a mutation rate 

of 10 	per locus, the ohanoe of allelisin due to identity of genes 

by oornmon descent have been studied. It is found that it increases as 

the heterozygotes decrease in fitness at a particular population size. 

It is larger for the smaller population size and for very small popu-

lation size it may not depend on the heter'ozygote'e fitness. The 

allelism of lethal genes declines with time. The decline is sharper for 

a smaller population size. Heterotic lethals do not show as rapid a 

decline as the completely or partially reoes8ive isthals. The 

initial rate of decline is found to be about i to 5 per cent for com-

pletely recessive lethala. This rate agrees well with that predicted by 

the formula of rate of decline derived with the help of the distribution 

of lethal genes based on diffusion approximation. For a population of 

size N and a ohromosoznal mutation rate of U. the formula for the 

initial rate of decline is found to be 

2 ff NTJ 
IT 
 / [1 - ,7r + 2j]NUJ. 

9. 	The lethal mutants present in a population at any given time 

have an average age since they first appeared in the population. This 

is equivalent to the average time which these mutants would spend 

before disappearing from the population, in other words, their average 

expectation of life. It depends on the fitness of the heterozygote 
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and is very high for heterotic lethala but declines sharply as the 

heterozygote tends to be neutral and then disadvantageous. The 

expectation of life of a new lethal mutant at its initial occurrence is 

always smaller than its expectation of life at any subsequent time. 



CHAPTER I 

GENERAL INTRODUCTION 

Seleotion changes the genetic make up of a population by changing 

its gene frequenoies. In an infinite population it leads ultimately to 

the fixation of the favoured allele unless there is heterozygote 

advantage. But in a finite population, the gene frequency undergoes a 

random change also from generation to generation. This results in a 

distribution of gene frequencies which can be regarded either as the 

distribution of frequencies at equivalent lool in one population or as 

the distribution of frequencies at a single locus replicated in many 

equivalent populations (Wright 1 931).  As time proceeds this dis-

tribution gets broadened with irreversible fixation (or loss) of gene 

leading to a state of steady decay when the distribution curve attains 

a constant form. The height of the curve then decreases at a constant 

rate and becoi.es zero in the limit. The expected frequency of the 

favoured allele in the limit is the same as the chance of its fixation 

(Kimura 1957, 1962). This chance of fixation can be regarded either 

as the proportion of equivalent loci which would be expected to be 

fixed in the limit in any line or as the proportion of replicate 

selected lines in which an individual gene would be expected to be 

fixed in the limit. The limit of response to selection in a finite 

population is measured by the difference between the chance of fixation 
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of the favoured gene and its initial frequency. The determinRtion of 

the chance of fixation of a gene is therefore the basic problem in 

the study of limits of response to selection in a finite population. 

For a single locus with two alleles Kimura (1957)   gave a formula 

for the chance of fixation, His method was based on Ko].rsogorov' a 

backward diffusion equation. Robertson (1960), 1wens (1963), Allan and 

Robertson (1964), Hill and Robertson (1966), hi].l and Robertson (1968) 

and others used methods based on transition matrices and determined the 

chance of fixation numerically with the help of a computer. In the 

present study a general theory of the transition matrix approach has 

been developed which can give the chance of fixation as well as the 

expected change in the gene frequenoy by a given time in any genetic 

situation. The formulae are, however, in terms of the matrices. For the 

case of single locus with two alleles and binomial transition 

probabilities the matrix formulae have been expanded, giving a formula 

for the chance of fixation expressed as a series. Under the conditions 

in which diffusion approximation holds, this formula reduces to Ximura's 

formula expressed as a series. For the case of single locus with three 

alleles, the chance of fixation of a gene is not known. Using 

trinomial transition probabilities this has been determined on a 

computer and presented in this study. Robertson (personal communication) 

has, however, expanded the matrix formula of the chance of fixation for 

a multi-.allelio locus and given an approximate series formula. His 

formula has been compared with the exact computer results for a 
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tri-allelic locus. 

Since the limit of response to selection is attained 

asymptotically, the time to attain the limit is expressed in ternis of 

half-life i.e. the time by which the expected gene frequency gets half-

way to the limit (Robertson 1960). In the present study, a more 

accurate formula for half-life than known earlier has been developed.. 

The fixation or loss of genes occur after a variable number of 

generations. Ienoe the distribution of time to fixation of a 

particular allele disregarding the oases in which it is lost can des- 

cribe the nature of the life of a gene until it is fixed. In particular, 

the mean and variance of this distribution are of interest. The 

general theory of the transition matrix approach provide with matrix 

formulae for the deterniniition of the mean and variance of time until 

fixation of a gene in any genetic situation. For the case of a sin"le 

locus with two alleles, computer results have been presented for the 

mean and the coefficient of variation of time until fixation of a gene. 

Kimura and Ohta (1968) have recently given formulae for the mean time 

until fixation from the diffusion approach. Their results for a 

selectively neutral single mutant introduced in the population have 

been compared with the computer results. They have, however, not 

derived formula for the variance of the time until fixation. This has 

been done in the present investigation. For the case of ainle locus 

with three alleles, the mean time until fixation of a gene is not known. 

Computer results have, therefore, been presented for this case. 
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The distribution of time until homozygosity i.e. either fixation 

or loss of the gene describes the nature of the life of a gene until 

it is either fixed or lost. When the chance of fixation of a gene is 

very near to unity, the two distributions may coincide. It is therefore 

of soi.e thteret to oopare the mean and variance of time until 

fixation of a gene with those until homozygoaity. For the case of 

single locus with two alleles this comparison has been presented. 

Ewens (1963) gave computer results as well as diffusion approximations 

for the mean time until homozygosity but not the variance of time 

until homozygosity. For the case of single locus with three alleles, 

the Lean time until homozygosity is not known. Computer results for 

the sane have, therefore, been presented. 

Selection with random fluctuation of gene frequencies leads to 

fixation or loss of genes in a population. But reversible mutation or 

migration tends to restore the intermediate gene frequencies. This 

results in a stable distribution of gene frequencies. In any given 

case, a knowledge of the mean and the variance of small changes in gene 

frequency gives this stationary distribution with the help of a general 

formula given by Wright (1938, 1915). This formula is based on 

Ko1mogorcv's forward diffusion equation. However, for the case of 

balance between mutation and selection with random drift, it has been 

proved that the stable distribution can also be given by the means of 

the total number of times the population spends in the different 

transient states on the way to fixation from an initial state in which 
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the mutant individual is represented once only. These means are given 

by the elements of the first row of a function of the transition matrix. 

This approach can therefore be thought of as the transition matrix 

approach for the determination of the stable distribution and their 

properties. iwens (1964), however, described the distribution based on 

the mean time spent in an interval before absorption as a pseudo-

transient distribution. 

If we consider a deleterious gene in a large population, mutation 

opposed by moderately severe seleotion would tend to keep the gene at 

a low equilibrium frequency determined by the mutation rate, selective 

coefficient and the degree of dominance of the gene. But if we take 

small samples from such a population with dominance lacking and the 

same degree of severity of selection is considered, the mean frequency 

of the gene rises to the equilibrium value expected on the basis of 

reversible mutations al'na. If unfavourable mutation is much more 

frequent than the reverse, this may lead to approximate fixation of the 

gene. In the case of a recessive lethal the effect of this bottle- 

neck due to reduction in the population size is, however, a considerable 

decrease in the mean frequency of lethal gene. The distribution of 

lethal gene frequencies is given by Wright (1937) whereas the 

distribution of lethal chromosomes is derived by Nei (1968). In the 

present study the properties of the lethal gene frequency distribution 

has been studied from the transition matrix approach and compared with 

the properties known from the diffusion approach. In the case of 
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hetarotic and partially recessive lethals, however, the present 

approach gives result S which were not known previously. 

In the cass of lethal genes an important probl.m is the deter-

mination of the chance of allelism. This can be regarded as the 

proportion of oroszsa between lethal bearing chromosomes which produce 

lethal zygotes. Allelic rates have been found uaeful in discriminating, 

from experimental data on PrO$QDhj1& populations, whether reoeaaive 

isthala extracted from natural populations have a deleterious effect as 

hsterozygotss or not (Crow and Temin 1964). Dobshan3ky and Wright 

(1941), and Wright, Dobzhan3ky and Hovaniti (1942) gave a formula 

for the dsterlr&tion of a]le]io rates. N.j (1968) modiiied this 

formula. Here 1(.i' a formula has further been modified to doal with an 

infinite number of loci on lethal bearing chromosomes. Aflelic rates 

have been determined using transition matrix approach, in the case of 

heterotio, oomplet.ly recessive and partially recessive lothala. 

Another interesting problem, in the case of lethal genes, is the 

decline of allelisa of recesivs lethala extracted from natural popu... 

lations at different times (Wallace 1966). Wallace suggested a 

functional relationship between the allelio rate and the time Interval 

btwen the sampling of the first and the second not of lethala. Prout 

(1967) proved this relationship to be approximately correct by using 

recurrence relations between the gene frequencies in the successive 

generations subject to systematic and random pressures. Using trans-

ition matrices an alternative way of predicting the decline of 
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allelism with time has been suggested by fiobertson (personal 

communication). On this basis, the decline of a].lelism with time has 

been studied in the present investigation. The initial rate of 

decline has also been worked out with the help of Wright' a equilibrium 

distribution formula. 

The expectations of life of a lethal mutant at its initial 

occurrence as well as at any given time when it is represented in the 

population more than once have further been investigated in this study. 

These do not appear to have been studied previously. 

The plan to be followed in the succeeding chapters is this: a 

general theory of the transition matrix approach for the studr of (a) 

response to aeleotion in a finite population and (b) the gene frequency 

distribution at equilibrium between selection and mutation is given in 

Chapter II. For a single locus with two alleles and binomial transition 

probabilities, matrix formulae are expanded in Chapter III. Diffusion 

approximation for the variance of time until fixation has also been 

discussed in this chapter. This is followed. by Chapter IV dealing with 

numerical results on the mean and the coefficient of variation of time 

until fixation using binomial transition probabilities. The numerical 

results on selection with trinomial transition probabilities are given in 

Chapter V. In the last Chapter, the properties of lethal gene dis-

tribution, allelism, and the expectation of life of a lethal mutant are 

presented. 



CHAPTER II 

THEORY OF TRANSITION MATRIX APPROACH 

In this section the basic theory of the transition matrix 

approach is developed from the first principles. First only selection 

in a finite population is considered. Matrix formulae are developed 

for the fixation probabilities, the expected changes in the gene 

frequency and the moments of the distribution of time to fixation for a 

single locus with two alleles and three alleles. Next mutation at a 

low rate is introduced in the case of single locus with two alleles to 

compensate for the homozygosity due to random elimination. The resul-

ting stable distribution is expressed as the elements of a certain row 

of the fundamental matrix, and the properties of the distribution are 

developed. 

2.1 SELiCTION AND RANDOM DRII'2 

201 DIALLELIC LOCUS 

Consider a finite population of gametes of constant size 2N and 

a single locus with two alleles A1  and A2. Such a population can 

assume (2N + 1) states E0, E1, ... 1N' the ith  state 

representing the state of i A genes and (2N - i) A2  genes. The 

states E and 9 	represent respectively the state of A2  and A1 



9. 

jenia entirely and therefore once the population assuses theae statu, 

it gets tiz.d for either A2  or A 1  nUde. Is M*rkoy ehita 

terninology, such states are known as absorbing states. On the otber 

head, any other stats &IN i - 12, ... (2*..i), represents a 

aixture of A, and A 2  gene. and therefore once the population is in 

this state, it has a posLibility of going out of this state to any 

other state icluling the absorbing ones, In other words, this aesne 

state represents a state segregating for L  and A2  genes with 

proporton q - t/(21) and (I - q1 ) r.spestiv.1y. These are known 

as transient states. Suppose P 	 represents the sonditional 

probability that th•rs are J 11 genes out of 214 genes after one 

generation, given that there were i A 1  genes out of 214 genes 

in the previous generation, Since there we (211 • i) possibilities 

in the previous as well as in this generation, we have (211 + i)z(211 + i) 

Pu 's which can be sonvaniently represented by a natrix P as given 

below, Also, it all the genes are •ither of Li  or  12  types, P0•  

and P ,,, will each be one but P oj aM P, • will each be sero, 

where 3 oa.nharesnyyslusb.tw.en I and (a-i). to 

1 	 0 	.. 	0 	 0 

Pu 
	i,a 

(2.1) 	P 	• S • • • 	. . . . . . . . . . . . . . . . . . . . 

P(.,1),(,1) 	(i)a 

0 	.. 	0 	 1 
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SUppOBe we consider transitions between the transient states only, then 

the transition probability matrix can be represented by Q as given 
IV 

below. 

. . . . . P1 	7 
(2.2) 	Q 	. . . . . 	. a • 	 . . . . 

) 	• • • • • 
	

ni-i ) , ( 2N-.i 

if P', P' 	and 2' denote the row vectors as given below 

(2.3) 	' = [F10, P, . . . 
- 

(2.) 	r' 	= 
ZN 	1,2N' 	• . 

(2.5) 	[o, 0, . . . 01 

then P can be written in a partitioned form as 

(2.6) 	P =0 	f 	Of 

17 

Now suppose we consider the transition probabilities after 

t-generations and denote them by 	with the oorreaponding Q matrix 

as QW. Then we know from the theory of finite Markov chains 
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(K.ne*3v and Snll 1960) that 

(2.7) 	(t) at 

Now sons ider the astrix sun 

(2.) ?(t)-I+Q.Q2. • • 
S  

where I is a unit natrix with nes as the diaoaal slan.ats and siros 

•laswL.r. The slanents i* the ith  row of T(t) gis the sxpest.d 

total nuabir of tines the population spends in the different transient 

states by the tth ien.xation, havinj started Iron the stst• X V  

Suppose 2(t) and (t) danoti the .ol 	vestors of the fixation 

obabiliti.s and the expected ohangss in the sno fr.quenoy of A 1  

r.spestively by the tth  ansration, whereas P 	sad 	danote the 

ooluan yestoxs of the fixation probabilities and the agpected ohan.s in 

the ieee frsquancij of A1  respectively in one step. Now fixation by 

the t 	generation asans that starting from 4., the population anaunu 

the different transient states in the tirt (t 1) •epi end than 

aøhisvss fixation in ons step fros the assuned transient states. This 

alam that the flxatio* probability is the sun of the szpsoted total 

nunber of tines the population spends in the different transient 

stats by the (i 1)th  g.erstion, multiplied by the oorr.sponding 

probability of fixation in one  step. That is, 

(2.9) 2(t) .T(t i) 

Sjsjlsr oonsidarations show that 

(2.10) !(t)  .T(t... i) 
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Since the P_ matrix is a Markov matrix with elements as probabilities, 

it follows from the matrix theory (Fadleeva, 1958) that the roots of 

Q are all positive and lass than unity and therefore the inverse of 

exists i.e. I - 	0. Also we have, then 

(2.11) 	T(t-1)aI+Q+ , . • • 	Qt1 

	

( 	
t) (1 

Hence, we have 

(2.12) 	(t) - (I - Qt) (I 	Q)•l p 

(2.13) 	!(t) 	(I 	Qt ) (  

Moreover, as t - 	, (t 	0, a null matrix with all the elements 

as zeros, so that if U and R denote the vectors of the eventual 

fixation probabilities and the expected changes in the gene frequency 

of A1  in the limit (i.e. the selection limit) respectively, these are 

given by 

(2.1)+) 	. = (I 	Q) 

(2.15) ! 	(1-)-1  

u(t) and R(t) can now, alternatively, be expressed as 

(206) 2(t) 	
(1_Qt) U 

(2.17) 	(t) 	
(1Qt)  R 

The time which a population, with a given initial gene frequency, 

takes to get fixed for this gene is a random variable on the hypothesis 

that fixation for this gene takes place with certainty. It is, therefore, 
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important to investigate the average number of generations taken for 

the fixation of the desirable allele disregarding the cases in whioh 

it is lost. .4noe 

(2.18) 	Lim. T(t) 	I + Q + 	+ . . 
t-0 	'V fV rv 

a (IQ) 1  

aT 
-.1 

it follows that the elements in the ith  row of P are the averages 

of the total number of times the population spends in the different 

transient states on the way to eventual fixation from an initial 

state i 	This is called the fundamental matrix of the absorbing 

Markov chain. The row sums of this matrix give the average time to 

absorption in the absorbing states from various initial states. Here 

it corresponds to the average time to homozygoaity. Expressed in 

vector notations, this is given by 

(2.19) 

where e is a column vector with all the elements as unity. As the 

proportion of times that a population goes from a particular state to 

the fixation of the allele A1  is given by the elements of the vectoz 

U, the vector U given by 

(2.20) 	M(IQ) 1  u 

a ( 	
2 
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gives the mean total number of steps needed for the fixation of the 

allele A1 . The mean time until fixation of A1  is therefore given 

by the ratio of the elements of vectors M and U respectively. 

If we expand (I -Q) 2  in (2.20) we obtain 

(2.21) 	! = (I + 2Q + 3Q + .. . . . ) 
'V 	ø'v 

This shows that we can obtain the various inonients of the distribution 

of time until fixation of the particular allele disregarding the eases 

in which it is lost, by generalizing this formula. For instanoe, the 

second moment is given by the ratio of the eleiAent8 of vectors V and 

respectively where V is given by 

(2.22) I = ( I + 2 2 Q + 3 2 Q +. . • • • 

= [2(1 - Q) 3 	(x - Q) -2 i 
t4 fV 	 fV 

The variance can then be obtained by subtracting the square of the mean 

from it. 

The matrix formulae for the moments of the distribution of time 

until lees of A1  disregarding the oases in which it is fixed, can be 

obtained by substituting P 0  in place of P 	in U, , and V . 

An alternative method of deriving the matrix formulae for j, , 

and I is given in the Appendix. 
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2 • 12 TRI—ALLLIC 14) CUS 

Considr a finite population of ganetis of oonatant size 21 

and a single locus with three alleles A1 , A2  and A3. Such a 

population can assume (N + 1) (2N + i) states. If the population 

oonsists of i1 Al ge,  2 A
2  genes and (21 - i 1  - i2) A3  

genes, the  population is said to be in state I 	with i1  + 
1' 2 

less than or equal to 2N. These states can be grouped into three 

classes depending upon the kind of genes present in the population8 

olass I: 	R 
0,0 	

A
1

,A2  lost i.e. A3  is fixed 

lost i... A2  is fixed 

22(o 	A2 ,A3  lost 1.0. A, is fixed 

Thus there are three absorbing states 

olass 	II: 	3 
1' 	2 	

I 1 1 ,j2 	0 such 	i1  + 12  - 2N9  i.e. 	A 	is lost 

: 11 0 	or a i.e. 	A2  is lost 

2 	
i 12 0 	or 2N i•.. 	A1 ialost 

Thus there are 	3(2N 1) 	states such that exactly 

one of the three genes is lost. 	In these oases the 

population behaves as described in the previous section 
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class III: 	E 	
2 

: i 	 0 and i +2 L. 2N 

Thus there are (N - 1) (2K - i) states such that all 

the three genes are present. 

These states can be geometrically represented by triangular coordinates 

as in Figure 1. The states in class I are represented by the vertices 

of the triangle. The states in class II are represented by the 

interior points of the sides of the triangle. The states in class UI 

are the interior points of the triangle. The totality of transient 

states is the sum of states in class II and class III i.e. 

(N + 2) (2K - 1). There is, however, an important distinction between 

the transient character of the states in class II and class III. If 

the population is in one of the three categories of olasa II states it 

cannot go to the transient states of the other two categories of this 

class as well as to states of class UI and to one of the absorbing 

states, For instance if the transient states of the type E 	are 
1 ,0  

considered the transitions are not possible to states of type L 
1' 2 

of class II, E 	of class III and E 	This simplifies 0,2 	 1'2 	 Oj 

the structure of the transition matrix considerably as will be zbown 

below. But if a state belongs to class III, the transitions are 

possible to all the states of class I, II and III. 

The transition probabilities are of the type P( 12 ) (i1  i2) 

representing the conditional probability that there are j1  A1  genes, 

2 A2  genes out of 2N genes after one generation given that there 



Ei(2Ni) 

E2N ,o 

17. 

E0, 2N 

Fig. I 	A geometric rereentation of the state 
space at a tri—allelic locus. 
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were i1  A genes and 12  A2  genes out of 2N genes in the 

previous generation. Since there are in all (N + 1) (2N + i) 

states, there transition probabilities are arranged in a P of order 
ev 

(N + i) (2N + i) x (N + i) (2N + i) whereas since there 

(N + 2) (2N i) transient states, the Q-rnatrix will be of the 

order (N + 2) (2N - 1) x (N + 2) (2N - i). If we denote by 

P' 00, P' 	and P' 0  row vectors of order (N + 2) (2N - 1)
ot  

as representing the one-step transitions for fixation of A3, A2  and 

A1  genie respectively, the partitioned form of P is given by 
IV 

Ic 1 a a'! 
(2.23) I - 	 I 

1° 0 1 Of 

LPoo P ot P 2Lo 

whire 0' is a nu].l row vector of order (N + 2) (2N - i). The Q -

matrix can further be partitioned as 

2 
Q13  0 0 	I 

(2.24) 	Q - 
tv 

0 0 0 1  
H 3 

[2 13 -p23 
I 

where 912  represents the transition probabilities between states 
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of daBs II i.e. a two-allele situation A - A 

	

1 	2 

Similarly Q 	 is for A1  - A3  and 
23 
 is for A2  - A3  situations

13  

respectively. Q represents the (N - 1) (2N - i) x (N - 1) (2N - 1) 

matrix for transitions between states 1 	of class LTI. D 12 

represents the transition from states of class III to E 	type 
1' 2 

states of class II, D 	represents the transitions from states of 

class III to E 	type states of class II and D 2  represents the 
1,0 	 IV 

transitions from states of class III to E 
O 	

type states of class 
2 

II. 

In view of the well known matrix operations on partitioned 

matrices, the fundamental matrix T introduced, in the previous section 

and equal to (I - 	is now given by 

(2.25) 	T 	

12 	 2 

	

o 	 I3 

2 
I T* D  T 	p*D T 

L 1212 	"-13 '13 

where 

(2.26) !12 = 

(2.27) T = (I - j3J 

(2.28) T2 = ( 	-2) 

(2.29) 	* = (i - 
tNj 	 t1w f_ 

o 	01 
IV 	 -"I 
0 	 0 

T 	 0 
&23 

T*D P 
23v23 
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The vectors of the probability of fixation and the expected change 

in the gene frequency of A1  in the limit are, therefore, given by 

(2.30) U - TP 
,2N.o 

(2.31) 

Now P 	 is a vector of transition probabilities for 

transitions from the transient states to the absorbing state rep-

resenting the vertex 1No  in the triangle in Fig. I in one step. 

It can be represented by a partitioned row vector as 

(2.32) P1 2N,o 	2"2N' ?2N' 	' 	2N 

where 2P'2N  represents the row vector of one—step transitions for the 

fixation of A1  starting from the cases in which A3  is absent. 

3P ' 	is similarly the vector for the case when initially A2  is 

absent, and 	is for the ease when initially all the three genes 

are present. Obviously if initially A1  is absent, there is no 

question of fixation of A1 . Hence there is a null row vector also 

in P 1 0. Now with this partitioning the fixation probability 

vector U1  consists of four component vectors TI 2 , 

r given by 

(2.33) 	
jg = T 	

P 
,12 Z2N 

P (2.;+.) 	
,13 	.32N 
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(2.35) 	U 	= 0 

(2.36) u 	= Te (DU +D 	+ p*) 

Here U12  and U 	 are the usual fixation probability vectors for
13  

two allele A1  - A2  and A1  - A3  situations as discussed in the 

previous section. ' is the fixation probability vector for A 1  

when initially all the three genes exist or in other words the initial 

state is somewhere in the interior of the triangle in Fig. 1. For 

fixation in the vertex B ,0  from such a state, there are three 

possibilities. One poaBibility is that it can go to one side of the 

triangle representing & 	with i + 12  = 2N and then to 
1'2 

The second possibility is that it can go to the side of the triangle 

representing Ej , and then to E 	
,' 

Third possibility is that it 
1' 

can straight go to 	The matrix formula (2.36) derived 

above shows that when the initial state is somewhere in the interior 

of the triangle, the fixation probability is the sum of the 

expected total number of times the population spends in the interior 

states multiplied by the sum of the corresponding one—step probabil-

ities of fixation via the three different paths enumerated above. 

Similar considerations show that if we break down the vector of 

the expected changes in the frequency of A 1  in one step into components 

2 q1 	3L 1, ,A 4q, as 

(2.371 	' 1 = 	2'1' 3'1 0,, 	*q1 ] 
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and the selection limit vector into components R, 

and r we get 

(2.38) 	- 	,2 2L1 

(2.39) 	R 	- ,13 

(2.40) 

r 	T ( 2 12 + 1 3 
	

+ 

This gives a matrix formula for the evaluation of the expected limit 

of response to selection in a single locus three allele situation. 

We have derived above the matrix fornulae for the fixation 

probability and the expected change in the gene frequency for the allele 

A1 . Similar results hold for the alleles A2  and A3 . 

For the mean time until hoinozygosity, we can write, in vector 

notations 

(2.42) 	. 	
= ev 

If in consists of four components in1 , nip, m and . 	corresponding 

to the four initial situations described earlier, we get 

(2.4.3) 	m1  = T1  

(2.IQF) 	m - 
'V 

(2.4.5) 	m 	= T3.  

(2.4.6) 	m* - T [D12  in1  + D13 	1 23 	+ 
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For the second monent of time until homozygosity, we have the 

relation 

(2.7) 	(2T—I) 
b1 	rV 

If v is broken down into four components v1 , v , v and 

f we get 

(2.48) 	v = (2,i_I)mj 

(2.9) 	(2T —I) "2 ,,m2 

(2.50) 	(2T —I) 
'V 

(2.51) v 	T[D v +D v +D y 

	

,121 	132 1. 23 

In order to evaluate the mean time until fixation of the A1  

allele disregarding the cases in which it is lost, we have to evaluate 

(2.52) M 	
2i. 

As usual if we let 

' (2.53) 	= __ 12' IA' 

	

13 	
IA 

	

' 	23' 

we get 

(2.54.) 	M 	 - ,12 !i12 

(2.55) 	IA 	= P 	
-13 

 

(2.56) 	X 	- 
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(2.57) 	
- e3 	1212 	

+u*) 

The required mean time will be given by the ratios of the e1exzents of 

the vectcrs V 	 and U, M-13 and U 	 and M*  and U' respeotively.12  

For the second moment of the diztribution of time until fixation 

of the A1  allele disregarding the cases in which it is lost, we have the 

relation 

(2.58) Y.i = (
2T —3) 

j  

If V1  consists of V, V 1 ,V 	 and 	we get23  

(2.59) V 	(2T 12  12 	•v 	12 

(2.60)= (2T 

(2.61) a Q 

(2.62) r - Z.  12 	+ 13 !i:1 
+ 	2* - u*) 

The required seoond moment will be given by the ratios of the elements 

of the vectors V. 	and U, V 	and. 	and V' and U 

respectively. 

Similarly the moments of the distribution of time until fixation of 

either A2  or A3  disregarding the others can be derived. 



25. 

2.2 MUTATION, SELECTION AND RANDOM DRIFP 

Suppose we consider S loci at each of which there is 

initially one mutant A1  and (2N - i) normal A2  alleles. This 

means that the population is initially in E state. Each locus will 

eventually become homozygous in the absence of further mutation. 

Suppose S is so chosen that on an average one locus becomes homo-

zygous per generation. We can, then introduce a new locus having one 

mutant and (2N - 1) normals each generation to balance this loss. 

This would lead to an equilibrium state with xiean number S1 	of ].oci 

having j mutants, where j can take values 1, 2, ..... (2N - i) 
(a-i) 

and S a Z S 1
J 
 • It follows from the ergodic property of irreducible 

jal  
recurrent Markoy chains that the S 1  's can be obtained by pre-

multiplying the fundamental matrix T by a row veotor V 	(i ,O,O... 0) 

containing unity in the first place and zeros elsewhere and therefore 

(2.63) 	3 =  

This shows that the mean number of loci having j mutants in 

equilibrium is equivalent to the mean number of generations which the 

population spends in the state E on the way to fixation or loss if 

there had been no balancing effect by mutation. Now if the mutation rate 

from A2  to A1  is u (reverse mutation being negligible), there would 

be on an average 2N u new loci each having one mutant and the rest 

normal each generation. Hence there would be required 2N u S looi 
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in.itiaUy instead of S to determine the equilibrium 8tate and the 

mean number of loci having j mutants in equilibrium would be 

2N u S. . The mean and variance of q, the frequency of A1  in 

the equilibrium state are given by 

2N-1 

	

(2.64) 	E(q) 	2N u E S lj (j/2N) 

	

(2.65) 	E[q - E(q)]2 	
2N-1 

 ZN U £ 	(/) 2 	fE(q)J2 
Jul 

The wean frequency of heterozygotea in the equilibrium state can be 

obtained from 

ZN—I 

	

(2.66) 	E[q(i - q)] 	4.N u £ S 	(j12N) (i - j12N)I j  
j1 

This quantity is proportional to the contribution of the loous 

towards the genetic variance of the stable population and shows that it 

is proportional to the population size if N u is small. 



CHAPThR III 

EXPANSION OF 1KATRIX FORMULAE AND 

DIFFUSION APFRuXIMArIoI 

The theory developed in Chapter II can be applied to apeoifio 

genetic models • In this chapter an analytical treatuient of selection 

with random drift and diallelie locus is prezented. In the first part, 

matrix formulae developed in 2.11 are expanded taking into account 

the binomial transition probabilities. The algebraio expressions for 

selection limit, half-life and moments of the distribution of time to 

fixation are discussed. In the second part, the c3.iff'u3ion approxi-

ination for the variance of time until fixation is derived. 

3.1 EXPANSION WITH BINOMIAL TRANSITION PROBABILITY 

If no selective forces are operating and the transition probabilities 

are of the binomial type, the situation is what is often known as Wright' a 

model (Wright 1931).  Here starting with a given frequency qj = V(2N) 

of allele A1  (with I - qi  n frequency of A2) 	in Lna of constant 

breeding size of N individuals, we can oonsider the second generation 

as derived from the first by the sampling of groups of 2N haploid sets, 

the gene frequency in the different groups being distributed binomiafly 

with mean 2Nq and index 2N. The next generation is then the 

repetition of this process, each line giving rise to a group of lines 
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whose gene frequencies are binouiially distributed about the mean of 

the parent line. Now let A1  genes have a selective advantage of 

(1 + /2) over A2  genes with selective advantage unity, so that the 

relative number of offsprings have expectations proportional to 

(i + s./2) and I respectively where s is smalle That is, we 

assume that a large number of offsprings are produced but exactly 2N 

of these survive. Assuming further that the selection operates 

before sampling, the gene frequency in the different groups are dis-

tributed binomially with mean 2Nq' and index 2N, where q'  is 

the gene frequency of A1  after selection and is given by 

(3.1) 	q' 	q + 

= qj + q(i - q)/(i + qj s/2) 

q1  being the change in the mean frequency of I due 

to selection in one step when its frequency in the previous Generation 

is q1. Thus with haploid selection and binomial sampling, we can 

regard the number of A1  genes in any generation as a Markovian 

variate with transition probability P 	 given by 

f2N 
(3.2) 	

P1 =j 	
)(qje)i 

(1 - qj
,  ) 2N-j 

U i 

These probabilities, therefore, determine the P- and Q - tricea 

introduced in 2.11. We can now expand the transition probabilities in 
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powers of 'a' for a given N and utilise the properties of the 

transition probability matrices with no selection, referred to here-

after, as Po  and 	The properties of these matrices, in ternia of 

the eigen-roote and vectors, are discussed in Feller (1951)  and 

Robertson (1952). 

Let 6qj  be approximted by 	(1 - q1) (1 - qj). Then 

can be expressed approximately upto terms in a 2 as 

(3.3) 	Pjj  = P ,,(o) [i + 5 
aij  + 2 bJ 

whore 

/2N)
(3.4) P(o) - I 	q(i - q1)2N 

is the transition probability with no selection and a 	 and.ij  
are given by 

(3.5) 	4ij 	N(q - qj) 

(3.6) b 
	

N2 

7 [qj 2 + (1 + l)q2 - 2qq - 	qj] 

q. being j/(2N). 

In terna of Q, we can write, upto terms involving 
rV 

(3.7) 	Q - Q +i+2QN 
rV 	 0 	0 	 0 

where Q '
0 	 0 

and Q " are (2N - i) x (2N - 1) matrices with I , j 
('.1 
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elements respectively as 

	

(3.8) 	
ajj ij P (o) 

and 

	

(3.9) 	b P(o)ij  

Now we have proved in 2.11 that the vectors R and !(t)  are 

obtained by operating certain functions of Q 0  on to the column vector 

of the change in the mean gene frequency in a single generation. This 

column vector 13 expressible in terms of the right hand eigen.-vectors 

of Q 0 . 	 !ence the expanded form of R and (t) can be determined 
ry 

if we know the operations of certain functions of 	on to these 

vectors. It has been found that we need nine operators and the first 

three vectors of Q. The vectors are 
"I 

	

(3.10) 	X1 = [x11 , x12, . • • . . 	- j)] 	X11  = q1  (i - q1) 

	

(3.11) 	X2 = [x21 , X22 , . • • . . 	- 1) i 	X21 = q1  (i - q)(i - 2q1 ) 

	

(3.12) 	X = [x31 , x32, • • . . . 	- 

= q1(1 - q 1 ) [ 2N-1  - - q(1 - q1)] 

These vectors correspond to the three aigen - roots of Q given by 

	

(3.13) 	= 0 - 112N) 

	

(3.14) 	X 2 	(i - i/a) (i - 2/2N) 

(3.15) 	1\3 = (i - 112K) (i - 212N) 0 - 312K) 
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respectively. he results of performing these operations are given in 

Table 1, where only the 18 operation8 out of the 27 possible are 

given, which are actually needed in the expansion of R and (t). 

3,11 	XPANSION FOR TH. EXPECTED SJLECTION LI1T 

In Chapter II, the selection limit vector has been expressed az 

the operation of (I _)_1  on to Lq,  the vector of expected change 

in the gene frequency in one step. Each of these, when expresed in 

powers of s, upto terms involving 3 
2, 
 are given by 

(3.16) 	(I - 	(I - Q ) 	+ s(I - Q ) 	Q '(I - Q ) 

+ (i - 	71 Q0 '(I  

82 
(3.17) Aq - 	(i-)x 1 +x2  

The item by item operation of the terms in the expansion of the matrix 

on to those in the expansion of the vector has been performed with the 

held of Table 1. The result, expressed as a linear function of the 

three vectors X1 , 
X and 	is given by 

(3.18) 	• 	 + 
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TABLE I 	MATRIX UI7RATURS AND V1CTORS 

2X2 
p..' 

P 	 2N X 	
2N2 	 4R3  

0 

	

1 	
3N - I 	 12N2  - uN + 3 - 

') t 	
X2 

ev 

(1' 0 
Iry 

P Q'T 
00 0 

(Q t )  

3 	N 
Lx 	x) 

3N-I 	f 	 3N-I 	
I2N-I1N+3 - 
	5N-3j. 

- N 	
x ) 

3.j 5N-3 Ii 



.3. 

TI BLE I 	CONTINUED 

1A(6x 	
N x-x2 ) 	 -- 	 - 

i 
ry 

T 
0  Q 0  T 

0 

12N2 	 N 	- N x 	x 	x) 	 - 	- " 	
A1( ld lIN+3 	—3 	3N-1 

(Qt)n 	 ! 	 - 	W1 - 
	- A2 W3 + 	- A )(A - 

'V 	
- A2  

 
N 	- cA1 + ' 2) 2  A  2 

WjX2 5N3  (tAr 	A)AA)W1)h1i 

\ t 	t j A3 N.B. 	 T0 	(i - Q0r1 	
A 

= A - 

Xt_\t 	 AtAt 
(2 	3 ( 	- 	 A2 - 
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where 

N - I 	8N3 -7N+2 

	

(3.19) 	°o 	Na [i - (a/4.) - ( 	- 	3N - 	) 
(2/5) 

 j 

J 

	

(3.20) 	a20 	N22 
[4.N-1 

 (i - 3/2) 
 

	

(3.21) 	a. 	= N333[ 
3(4.N - i) (N - i) (2N - i) 	3N - I 
2(3N_1)(12N2 _11N+3)12N_11N+3 i  

Starting with an initial gene frequency q, the expected selection 

limit or the chance of its eventual fixation u( q) minus the initial 

frequency is then given by 

	

(3.22) 	u(q) - q - a10  q(1 - q) + a20  q(1 - q) (1 - 2q) 

2N - I 
+ C•30  q(1 - q) 1öN - 6 - q(1 - q) 

If N beoomee very large and a beoomea very small such that Na is 

kept constant, we get 

	

(3.23) 	u(q) - q - N30 - Is2/15)  q(1 - q) + N28
2  q(1 - q) (i - 2q) 

+ N38
3  q(i - q) {. - q(1 - q) ] 

= Na q(1 - q) + N23
2  q(f - q) (i - 2q) - N3a3 q2(1 -q)2  

This expression is exactly the same, upto terms involving N33
3, as tU 

expanded form of the formula of chance of fixation obtained by diffusion 

approximAtion and given in Kimura (1964). 
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The ratio cf the expected response in the limit to the initial 

response of . q(1 - q) is given by 

24) u(q) -q 	2N 	+ Ns(1 - 2q) - I NY q(1 - q) I 
•q(I -q) 	

3 

This shows that for cj = , this ratio is 2N(1 - - N28) but for 
12 

q tending to 0 and 1, this tends respectively to 2N(1 	Na) 

and 2N(1 - iNs). 
3 

If we wish to projeot the response, expressed above in terms of 

the gene frequency, on to the underlying quantitative trait, in the case 

of artificial selection, we have to assume the absence of natural 

selection and use the following relation between the selective advantage 

a and the intensity of selection I, imposed artificially, as given 

in Robertson (1960), 

(3.25) 	a 	I a/o 

where 'a' refers to the difference of units on the metric scale between 

the mean of the two homozygotes for the additive locus under consideration 

and o is the phenotypic standard deviation. It may be ntsd that the 

haploid model is a fairly good approximation for the diploid situation 

with additive gene action, the d.iploid genetic variance nerely being 

double that of the haploid genetic variance. 
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Suizming the contributiona of the individual loci and uzing the 

relation between s and 1, the expected change in the limit in the 

character (L) under oonzid.eration is gLven by 

(3.26) 	L 	£ a [u(q) - q] 

Ni - a2  q(I - q) + 
I 

Cr 

•1 

3k;) 

L a3  q(1 - q) (1 - 2q) 

E a4.  q2(1 - 

If a. and .& 	denote the 8tandard deviation and the third moment g 	3g 
(about the mean) of the breeding value3 (Falooner 1960), we havQ 

(3.27) 	a = 	Z a2  q(1 - q) 

= 1 a3 q(1-q)(1-2q) 3g 	4. 

(3.28) 	nV* + 	oil- 	£ a4.  q2(1 - q)
2  

where V refer8 to the varianoe between the contributions of the n 

different loci to the additive genetic variance of the character. 

Hence L is expressed as 
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2 
(3.29) L 	2N[Thcr + - N &

a- 
3 	a- 	g 

g 

n2V* -  
- 	(1 + 	4)(iha) 3 ] 3 	2 	 g 

g 

where h 2  . a- 2/a2 , the heritability of the tra1i, &nce the initial 

change in the character 18 given by 

(3.30) I 	Eaq = Iho 

the limit L can be finally expressed as 

(3.31) 	L 	n(i + c 1 1 + c212 ) 

where 

(3.32) C 	
2 
-N 43g  

8 

2 N2 / 
(3.33) 	C2  = - - 	2 

(\1 

+ 0 4. 
8 J 
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3.12 	ANSION FOR T}L 	CTiD I1AN IN TIL 0 	UCY BY TH 

th G1[iRATION 

The vector of the expected change in the gene frequency of A1  by 

the tth 
 generation has been expreased in 2.11 as the operation of 

the matrix (I - Qt) on to R, the vector of the expected selection 

limit. The former, when exprezzed in powers of a upto tern,s involving 
2 a, isgivenby 

() (I - Qt) 	(I - Qt) - 8 ( Qt ) 	52(t) fl  

'1 

whereas the latl;er has already been expressed as the linear function of 

X1 , X2  and X by (3.11). The item by item operation of terms in 

Qt) on to those in R has been performed with the help of Table 1. 

The result expressed as a linear function of X1 , A2 and X is 

given by 

(3.35) 	(t) = (°1j + °11 )\1t + 0.12 

+ ( 0. + 0. 
At +a 	At 

	

2021 	1 	22 

+(( 	+ 0.31 	+ 0.32 	+ 0.53  X) 



39. 

where 

5
) 
 - (N - i) (2K2  + N - 2) + N(2N - i)t (ç)J (3.36) 	°'ll 	- Ks [i - ( ; 

5K— 3 

(N - 1) (2K - i) 3•) 	12 = (Na )3 8(5N - 3) ON - i) 

(3.38) 	0. 	a - ( Na) 2  [j (i - 5/2) j 

(3.39) 	m 	( ) 2 (2N - i) 0 - 
6/2) ] 

- i) 

- 9N + I (3.40) 	0.3j 	- ( Ns) 3 
4.N(5N - 3) 	3 

2K—I) 
((3-4-1) 0.32 = (Na)3 (

2(314 - i) 

= _(Ns)3[ N __ 73N+7 _ 23N3 
(3.42) 0.33 	4* - i) ON - ) (12N - uN + 3) 

For initial gene frequency q, the expected gene frequency by the 

tth generation, written aa E), is then given by 

(.i) 	= q + ( ao + 011 

4 
'20 + 2j 

+ cL30 + 0.31 

• q(I - q) 

>i + 0. 	>'2) q(1-q) 

f\+0.22 
>t2) 

cj(1 —q) (i —2q) 

+ 032 '2 + 
0.33  

2K-i 
ION-6 - q(1 -)J 
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When N booi*a very large and a VSZ3 ssl such that Na is 

bela oonatant, we get 

(.44) 	 • N6(1 0.2. Ns) sxp( t/2N) 	N2E2 xp(i'2t/21) 
100 	 10 

'1 

+ -- s( ..3t/2N) 
12 

fl22 

do 75 ezp( -6t/2N)J q(i -q) 

+N2 (1 	.p(-t,/2N)+ 1'.zp(..t/a)J 

• q(1 	q) (i 	2q) 

.jN3a3 (1. 2 .xp(.t/2N) 

2 .q ,  1 

The hs1fli%e is the time 	th (in tez'ris of the *ab.r of 

generations) by vhich the expected changp in the gene frequency of A1  

is half that expected in the limit. Hence we have to solve for t in 
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the following equation 

(3.45) 	i(q) - q = (1/2) (u(q) - q) 

after substituting u(q) and E(q) from (3.23) and (3.44) respectively. 

This gives an equation of the sixth order in x exp( - t/2N) 

(3.4.6) Ax 6+B+cx2+Dx+E = 0 

where 

(3.47) 
I 

A 	= 	- - ( ) 2 [1 
- q(1 - q)] 

15 

(3.48) B 	a 	Ns (i - 2q) + 1 (r8)2 [.1 - q(I 	- q)J 

(.49) 
1 

C 	-- (Na) 2 
10 

(3.50) D 	= 	- I - 	Na(1 - 2q) + 2 (rs) 2  [ 	+ q(1 - q)] 

(3.51) 
I 

E 	a 	
I 
- + - 	Na (I - 2q) - 	(Na) 2  q(1 - q) 
26 

Since x0  = j is an approximate solution (Robertson 1960), an 

improved value of x can be obtained by applying Newton - Raphson 

method to the equation. 
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This is given by 

6 + Bx + Cx 2 + Dx + E 
(3.52) 	xx 	 0 	0 	0 

° 6Ax 0  5+3Bx 0 	 0 
2 +2Cx +D 

I + . Ne(1 - 2q) + 

I + Na(1 - 2q) + 

(Ns) 2  (j  - q Ci - q))_.N282q(1 
- q) 

N22 (l( -q))-N2 s2 q(i -q) 

Since th = - 2N Loge  x, it is approxiizately given by 

(•53) 	t 	-[i.4. + I Na(i - 2q) + 1.12 N2 s2  (0.16 - q(1 - q))]N 

For Na = I and q - i, th is found to be 1.30N. For q tending to 

0 or to 1, we have to make use of th - 2N loge x as such, without 

further approxiriating. That is 

(354) 	th = - 2N [Log5 + Loge  [1 + Nz(1 - 2q) + 	N2.2 (1 
- q(1- q)) 

-N2
52  q(l - q)] 

-Log9[1+Nz(1-2q)+ J2 S
2 
 (j-q( 1-q))

20  

_ 2gN2a2 q(i -q) 	] 

For Na = I and q tending to 0, the half-life is found to be 1,5811 

wherOas for q tending to 1, it is found to be 1.03N. The half-lives 
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thus obtained for Ns = I and q = J, q - 0 and q -, I are very 

close to those obtained by matrix iteration method and given in Hill and 

Robertson (1966) (see Fig. II in this paper). The half-life expressions 

diEoussed above pertain to the haploid selection process when stooha.3tio 

variation in the gene frequency due to finite size of the population is 

taken into account. It has, however, a counterpart in the deter-

ministic situation as well when the population size i8 assumed infinite. 

In this case the gene frequency in the t 	 genation Is given by 

(3.55) 	= ( i + s)t 
q / 0+ [( I +) -IJq) 2 

The number of generations required to change the gene frequency by 

(i - q)/2 is 

Log 0 + I/2q) 
(3.56) 	t = 	e 

Log0  (i + s/2) 

For q = 	and positive and small a, this can be approximated by 

(3.59) 	t = 2 Log0  2,"5 

When 5 a 0.002, about 700 generations are required to achieve the 

required change in gene frequency and there is no finite limit for it 

as a - o. In contrast to this, the half-life t 
hP 

apparently, 

approaches the value 1.411 as a tenla to be small. 
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3.14 1CPANSION FOR THE MEAN AND VARIANCE OF TIME tThTIL FIXATION 

In chapter II we have developed matrix formulae for the mean and 

variance of the time until fixation of A1  disregarding the oases in 

which it is lost. However, in order to see the effect of the expansion 

of Q in powers of a on the mean and the variance of the dis- 
".1 

tribution of time to fixation, the probability generating funotion of 

the number of steps needed for fixation of A1  disregarding the oases 

in ihich it is lost, as introduced in the Appendix, is considered. 

The matrix analogue of the probability generating function 

TT  (a) given by 

(3.58) 	T (a) = z D1(I - Q) 1  (I 

can be expressed in terms of the oigen-roots ) j(a) and spectral 

matrices 

(3.59) 	Hj(5) 	 (a) 	() 

i = 1 9  2 1, . . . . . ( 2N - 1) of Q, where x(s)  and Y () are 

respectively the right and left eigen-vectors corresponding to the 

root X(a) and a in the paranthesis indicates that all are functions 

of a. The resulting expression is given by 

2N-1 
(3.60) L (z) 	£ 	( i - a )'(s)Y 1  (1 - A(s))D 1 (a) 3 JU. 

i=1 
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xpanding (3.58) in powers of a and neglecting term3 involving 

and higher powers of a, we get 

(3.61) 	(a) = zD 	(I - Q )_ (I - 	) X + 	 j 

0 

where 

(3.62) 	x
0 	01 = [x , Xo2l. . . 	- j)J X0  = 

qi 

(3.63) 	D 	=d.iag [q1 , q2  • • • ' ( 2N - 
0 

(3.64) 
[d11(z)j 	

- 2Nz[( - sQ0) 	+ D1(I - zQ) 
d3 	° 	

0 
 

	

•' 	D — D Q ) (I — sQl1 — D 	] 

	

ev 0 v.X 	0 0 	O'V 	'V 	'V 	0 

• (x - Q)x 
'-'I 	

(V 

ixpanding (3.61) in terms of roots and vectors of Q 0 , it is found 
ev 

that the coefficient of a vanishes, giving 

2N-1 
(3.65) 	TI (z) = a E [(i - A ) / ( i - 5A )J D 1  H 	e ,x1i'x 

This shows that to the order a, the probability generating function 

is the same as that for no selection case. It is a considerable 

simplification since it shows that all the moments of the distribution 

of time to fixation are independent of terms in a. 
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Differentiating L (z) once with respect to z and setting 

a = 1, we get the veotor for the mean time until fixation as 

2N-1 
(3.66) 	- £ k (i - ) I ) 	D 1  

x 

	

i_I 	 0 

where 

2N-1 
(3.67) k1 	£ Y qj  ij 

being the jth  element or the jth  left-eigen vector Y of Q0 0 

Differentiating iT (z) twice with respect to a and setting 

a = 1, we get the expected value of t(t - i) and adding the 

expected value of t we get the second moment (about the origin) 

vector 112  as 

2N-1 
(3.68) 	- Z 	k1  (i + ,\) ( i - >¼ )..2 if1  x 

i_I 	 I 	 0 - 

These relations show that explicit expressions for the momenta of the 

distribution of time to fixation are expressible only in terms of all 

the roots and eigen-vectors of Q , the evaluation of the latter 
"V0  

requiring the use of computer. Hence the mean and the variance of 

time to fixation have been studied by evaluating the matrix formulae on 

the computer in Chapter IV. 
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3.2 DIFFUSION APPROXIMATION FOR THE VARIAI4CE 

OF TIME UNTIL FIXATION 

The diffusion approximation for the mean time until fixation of 

a. particular allele has recently been given by Kimura and Ohta (1968). 

For a neutral gene and initial gene frequenoy tending to zero, the mean 

time is ahoWTI to be 	where Ne  is the variance effective number 

whioh may differ from the actual population number N if the mating 

is not random or if the distribution of the number of offspring does 

not follow a Poisson distrtbution. The variance effective number of a 

population is defined as the size of an idealised population that would 

have the same amount of random gene frequency drift as the population 

under consideration (Kimura and Crow, 1963). The diffusion approxi-

mation for the variance of the time until fixation has, however, not 

been discussed by Kimura and Ohta (1968). 

Let us oonsider a mutant allele A2  with frequency q (ao that 

the frequency of the normal allele A1  is I - q) in a diploid 

population of N individuals with variance effective number N5 0 Let 

u(q, t) be the probability that A2  gets fixed by the tth  generation 

starting with frequency q at t - o. Let 

oO 

(3.69) 	P1  (q) 

= 	c 	üu (q,t) dt 



(3.70) 	0 (q) * 	
f000 

2 
 

Then 

(3.71) 	N1  (q) 	T1  (q) / u (q) 

(3.72) v1  (q) 	(q) / U (q) 

represent respectively the averacc and the second moment about the 

origin of the length of time until the mutant allele becomes fixed in 

the population excluding the casea in whith it is lost from it. Here 

u (q) is the probability of ultimate fixation such that 

(3.73) 	u (q) 	Lim. 	u (q, t) 

If a. (q) and p (q) represent the mean and the variance of the rate 

of change in the frequency of A2  per generation, then following Kimura 

(1962), u (q, t) eatisfies the Kolmogorov backward equation 

(q,t) 	 u (q,t) 	 r 	(q,t) 
* 	(q) 	 + a. (q) 

'ot q  2 
	 rb C  

Following the technique of Kimura and Ohta (1968), the set of 
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differential equations for P 1 (q)  and  81  (q) are respectively 

given by 

- o 
a2 	q) 	 d P (q) + u 

+ a(q) 	 (q) (3.75) 	j.  (q) 	
dq2 	 dq 

a2  S1  (q) 	 d S1  (q) 
(3.76) 	 + 0. () 	 + Zi'j  (q) n o 

dq 	 dq 

The foriiier differential equation has been derived and solved by 

Kimura and Ohta (1968) with boundary conditions 

(.77) 	Liin. 	(q) a K1  u (q), K1  being a finite quantity 

(3.78) 	(I) - 0 

It is shown by them that 

(3.79) 	K1  a 

(3.80) 	XI  (q) a - 	e (i - 'i) Loge  (i - q) 

For the second moment (about the origin) of the length of time 

until fixation of A2, we proceed to transform (3.76)  into a differen-

tial equation for VI  (q) by differentiating SI  (q) = 
V1  (q).0 (q) 

twice and substituting in (3.76). 
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This givea 

d2  VI  (q) 	 3(q) C (q) 	V1  (q) 
(q) 	2 	+ [a. (q) + - 	 ] 	+ 2M (q) 	0 

dq 	 u(q) 	d.q 

where 

(3.82) 	C (q) = a u () 
 

dq 

The boundary oonditiona to be imposed are 

(3.83) 	Lim. V1  (q) = K2 , 
q.o 

k2  being a finite quantity 

	

(3.84) 	V1  Ci) = 0 

In the case of random drift alone, we have 

	

(3.85) 	a. (q) 	0 

	

(3.86) 	p (cj) 	q(i - q) / 2N e 

	

(3.87) 	u (q) = q 

	

(3.88) 	C (q) = I 
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The differential equation, then reduces to 

d2  V1  (q) +  • 	dV1  (q) + 
	e 

M 1  (q) 
(3.89) 

dq2 	q 	dq 	q(1-) 

The solution of this differential equation after substituting for 

(q) is given by 

(3.90) V1  (q) a B 	- 32N e 2 [(1 - - Log 0  q) Log0  (i 	q) - F (q) i 
q  

where A and B are constants of integration and F (q) is given by 

(3.) 	F(q) = 
I -q 

Using the boundary conditions, we get 

(3.92) 	B = A 
+

32N
O ' 

(3.93) K2  a A - 32N 0  [i 
+ (

1 LoR g dq] 

	

i 	I - q 

£k>. 

, 
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Thus V1  (q) is given by 

I  
( 9) V 1  (q) 	3e 	

LOgS  q 	
(i - .1 - Loge q) Loge  (i - q) J - 

—q 	 q 

+ (1 - ) [ K9 + 
3e 	

(1 Loge  q 
d.q + i) i 

- q 'a 

Henoe if 

Lo q 
(3.95) K2 	_32N e 2(( 	° dq + i) 

J I—q 
0 

we get 

(3.96) V1  (q) 	
3e [ - 	

- 	Log (i - q) + Log 'a  Loge  (i - q) 'a 	e 	 e 

I 
Log'a j  fq  I — 'a 

Now 

(.97) 	(q) 	F (q) - F (i) 

q 1°e q 
dq 

 

1 'a  — I 

is a dilogarithin whose series expansion is given by 
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00 
(3.98) 	f (q) 	Z 	

k (q - 1)k / 
k2  

kal 

and there is a functional relationship betwcnn f ('a) and f (1 - q) 

given by 

(3.99) 	f (q) + f (i - q) = - 	g e 'a 	- q) + 	(i 	'a  >, 0) 
6 

(for these results on Dilogarithm see Abramowitz and Stegun 1965) 

Hence VI  (q) reduces to 

(3.100) V  () - 
3 2 [(1_-_g) Log0  (1 - q) + 	

- 	qk/2j 1  
q 	 6 	Ic-I 

Elm 

(3.101) 	Lim. V1  ('a) = K2  
q 0 

2 
2 (tT 	

- i) 
= 0 	6 

The variance of time until fixation for 'a - o is then given by 

(3.102) V = 	- 

- 16N 2  ( 3  - 3) 

This gives a coefficient of variation of about 53.8%. 
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SELECTION WITH BI11IAL TRANSITION PROBABILITIES 

In this chapter numerical results on selection at a diallello 

locus with binomial transition probabilities are presented. The ratios 

of the response to selection in the limit to the initial response, 

analytically treated in Chapter III in the case of additive genes, are 

obtained exactly (using matrix formula)for additive, recessive and 

dominant genes. For additive genes results are presented for the mean 

and the coefficient of variation of time to fixation. A comparison 

between the timeto fixation, loss and homozygosity is also made in 

this case. For recessive and dominant genes however, only the mean 

tim to fixation are presented. AU numerical values were obtained with 

the help of the KDF9 computer of Edinburgh University. 

1.1 ADDITIVt GENES 

The matrix formulae (2.15), (2.19), (2.20) and (2.22) di3ouased in 

Chapter II and analogous formulae for time to loss and bomozygoaity 

were used for obtaining computer results presented in this section. 

4.01 RATIO OF SELECTION LI}IT 1D INITIAL RESPONSE 

It is shown in Robertson (1960), that the chance of fixation of a 

gene and hence the zelection limit are dependent on Na only so that 

these can be evaluated for a given N at a series of values of a. 
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This would give result a for a series of values of No applicable to 

values of N other than the one used if a is suitably adjusted. 

Hence the ratios have been worked out for N a 8 and N - 0.031  to 

Na a 8.000. Further, the formulae (3.24)  and  (3.31) ahow that these 

ratios can be expressed in terL.s of the population size. The factor 

(ratio / N) has, therefore, been presented in Table 2 for initial gene 

frequencies 0.0625, 0.5000 and 0.9375. It is apparent that for 

q = 0.5000 and 0.9375 it decreases as 14 inoreases. For 

q = 0.0625, it increases as Na increases till Na a 2 after which 

it starts decreasing. When Na is as small as 0.031, the value of 

this factor is greater than 2 when q is less than i but less than 

2 when q is greater than J. At q = j, it is equal to 2. When 

Na is as high as 8.00, it is about 1 .7, 0.5 and 0.1+  for q Z , = 

and 	' 	respectively. It always decreases as gene frequency increases 

at a particular value of Na. 

4.12 }1JAN AND VARIABILITY OF TIM.E TO FIXATION 

The evaluation of matrix formulae on the oomputer depends on the 

population size (N) and the selective coefficient of the gene (s). 

But it is known (Robertson, 1960 and Bill and Robertson, 1966) that, 

under the conditions in which diffusion approximation holds, the time 

scale of the selection process is proportional to N and therefore if 
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TABLE 2: Values of (ratio / N) as oalou2.ated by the 

transition matrix method for different values of N.s 

(aid.itive genes) 

Ns 

INITIAL FRQUNCY 

0.0625 	0.5000 

(q) 

0.9375 

0.031 2.016 2.000 1.984 

0.063 2.031 1.999 1.969 

0.125 2.062 1.997 1.937 

0.250 2.121 1.990 1.873 

0.500 2.233 1.927 1.743 

1.000 2.418 1.854. 1.492 

2.000 2.611 1.535 1.080 

4.000 2.490 0.970 0.648 

8.000 1.692 0.500 0.383 



the time is measured in units of N. the pattern of the selection 

process is determined by the parameter Na at a given initial gene 

frequency. The mean time has, therefore, been expressed in units of 

N. In order to see whether the mean time and the coefficient of 

variation for fixation of a gene, disregarding the oases in which it 

is lost, is a function of Ns, a comparison of these for a few 

population sizes at a particular value of Na is shown in Tables 3 

and ). respectively. There is found to be a fair degree of stability 

in these quantities due to variations in N at a fixed value of Ns. 

The dependence of the mean time and the coefficient of variation on 

Na has, therefore, been graphically shown in Figures 2 and 3 

respectively for initial gene frequencies 0.0312, 0.5000 and 

0.9687. Both the mean and the coefficient of variation decreases as 

Na increases. For a fixed. Na, however, the mean time is highest at 

low initial gene frequency and lowest at high tnitial gene frequency 

whereas the coefficient of variation is highest at high gene frequency 

and lowest at low gene frequency. When Na = I and the Initial gene 

frequency is 0.5,  the mean time is about 2N with a percent 

coefficient of variation of about 70, but for low initial gene 

frequency of 0.0312, the mean rises to about 3N with a percent 

coefficient of variation of about 50. It is interesting to observe 

that genic selection shortens the fixation time but increases the rate 

of steady decay (Kiznura, 1 957). 
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TABLE 3 	The average number of generations / N until 

fixation of a gene wiUi selective value s 

as calculated by the transition matrix 

method for different population sizes (N). 

Initial frequency 
No 	N 

	

0.25 	0.50 	0.75 

16 	16 	o.46 	0.36 	0.27 

8 	16 0.74 0.56 0.40 

8 0.82 0.61 0.43 

4. 	8 1.29 0.94. 0.63 

4 1.4.0 1.02 0.67 

2 	4 2.03 1.51 0.95 

2 2.07 1,55 1.01 
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TABLE 4. 	The coefficient of variation (%) of the 

nuin'ber of generations until fixation of a 

gene with selective value a as calculated 

by the transition matrix method for dif- 

ferent population aises (N). 

Initial frequency 

Na 	N 

	

0.25 	0.50 	0.75 

16 	16 	28.36 	34..25 	43.68 

8 	16 	53.04 	39.23 	50.23 

8 35.33 42.20 54.32 

4 	8 42.59 50.44 64.26 

4 4.5.24. 54.62 69.40 

2 	4. 53.12 65.06 84.26 

2 70 68.25 82.66 
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When there is no selection, the mean increases linearly with N 

and the coefficient of variation is practically steady. However, in 

the case of mean time, the slopes and in the ease or coefficient of 

variation, the average values, vary with initial gene frequency. 

These variations are shown respectively in Figures 4.  and  5. The slope 

increases but the average percent coeffiolent of variation declines as 

the gene frequency decreases from I to 0. extrapolating from these 

graphs it is found that the limiting value of the slope and the 

average percent coefficient of variation are about 4 and 55 

respectively as gene frequency approaches zero, as against the 

diffusion approximation results of 1+ and about 54 respectively. 

4.13 CUMFA&ISONS UF TIiES TO FIXATIJII, IJS3 AND HOMOZYGOSITY 

It is interesting to compare the mean and the variability of 

the time to fixation of a particular allele with those of the time to 

loss and to homozygoslty. As far as diffusion approximation to the 

mean times are ooncerned, the rezulta of Ewens (1964.) and Kimura 

and Ohta. (1968), provide the followinE: expressions for a neutral gene 

with initial frequency q. 



4 
	 63 

LU 
0 

0 
Cn 
-J 

0 	0.25 	050 	0•75 	1•00 

GENE FREQUENCY 

Fig. ). 	Slope of average nunber of ( enerations 
until fixation on population size at 
different values of initial gene 
frequency. 



101 0•25 	0.50 	0.75 	1•00 

6. 

I5C 

4- 

0 

> 
LL- 

0 

1- 

LU  100 

w 
0 

uJ 
> 

50 

GENE FREQUENCY 

Fig. 5. 	Coefficient of variation (%) of number 
of generations until fixation averaged 
over population sizes between 2 to 16 
at different values of initial gene 
frequency. 
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Mean time until fixation -4N 1Lo g e (1-q) Kimura & Ohta 
(1968) 

Mean time until loss - 4N0 	q Log0  q Kimura & Obta 
(1968) 

Mean time until homozygosity 	- 4N0[q Log0  q + ( i - q) Log0  (i - q)] 

Ewens (1964) 

In these formulae N is the variance effeotive number which may 

differ from the actual population number N if the mating is not 

random or if the distribution of the number of offsprings doea not 

follow a Poisson distribution. According to Crow and Morton (1955),  the 

formula oonneo-ting N and N0  is given by 

(.'.i) N e = 
2N 

I - F' + (i + F') V/k 

where F! is Wright' a coefficient of inbreeding used as a measure 
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of the departure from random mating sygotic proportions among the 

parents, iik  and Vk  are the mean and the variance of the number 

of surviving offspring per parent. When q = i/( 2N) and N is very 

large, the wean time until fixation is close to 4N 5  while that until 

lo'a is -
N 
 Log8  2N so that the mean time until homozygoaity should 

approach the value -jr2  Log8  2N. These comparisons, on the basis of 

transition matrix methods, are presented in Figures 6 and 7 for 

Na o and 2 respectively. The dotted lines refer to time until 

fixation and until loss (marked respectively I and 2 in the 

figures) whereas solid line (marked 3 in the figures) refers to time 

until homozygosity. When Na 0 and initial frequency of gene is 

0.5, all the three curves give the same value of about 2.55N  as 

against the difuaion approximation of -4N 0  Log8 	 The 

diffusion approximation, therefore, overestimates the wean time. 

Comparison with the half-life of 1'e' shows that the half-life is 

attained much earlier than the mean time. For initial gene frequencies 

greater than or less than 0.5, the three curves differ and as 

expected the curve 3 always lies between the curves I and 2. 

For q < 0.5 the mean time until homozygosity is more near the mean 

time until loss than that until fixation so that when q z 11(2N), 

the mean time until loss is 0.79N as against that until homozygosity 
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of I .02N. The difference is expected to decrease as the computer 

results from higher values of N are compared. In the limit, these 

should, therefore, be the same as expected from the diffusion 

approximation. For q> 0.5,  the mean time until hoznozygoaity gets 

nearer to the mean time until fixation. When Na a 2, the mean time 

until homozygosity is found to be practically the same as the mean 

time until fixation unless the gene frequency is well below 0.5.  It 

is interesting to observe that, while with no selection, the maximum 

mean time until homozygosity occurs at q = 0.5, with selection 

this maximum shifts and occurs at gene frequency less than 0.5. 

This shift has further been found to increase as selection becomes 

more intense. 

The comparisons of the coefficients of variation are shown in 

Figures 8 and 9  for Na = 0 and 2 respectively. As before dotted 

lines refer to time until fixation (1) and loss (2) whereas solid line 

(3) referto homozygosity. When Na = 0 and initial gene frequency is 

0.5, all the three curves give the same value of about 76%.  For 

q 0.5, the coefficient of variation for time until homozygosity is 

more near the mean time until baa than that until fixation. For 

q '7 0.5, it gets nearer to that until fixation. When Na = 2, the 

coefficients of variation for honiozygosity and fixation are practically 

the same unless q is well below 0.5.  It is interesting to note 

that the coef! icient of variation of time until homozygosity is minimum 

at q = 0.5 with no selection but this minimum shifts to q z1 0.5 

with selection. 
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.2 RECESSIVE AND D0INANT GJNS 

The matrix formulae used in the case of additive genes were also 

used for obtaining results in respect of recessive and dominant genes 

with the difference that the change in the gene frequency in one-step 

was fed in as 

3 

	

 
(1 + 	q 

2 + q(f - qj) (i + 
(.2) 	c 	

i - 	(1 - 2q) + h qj  (i - qj) 2 

where h = - a for recessive genes and h a + a for dominant genes. 

4.21 RATIO uF SELCTIUN LII4IT TO INITIAL RESPONSE 

The factors (ratio / N) are given in Tabl5 and 6 respectively 

for completely recessive and completely dominant genes. In the case of 

reoeasive genes, it is found that for q a  0.5 and 0.9375  the factor 

decreases as Na inoreaes. For q = 0.0625 it increases as Na 

increases till Na = 0.25 after which it starts decreasing. When Na 

is as small as 0.031,  its value is 11.14 for q a  0.0625. This is 

in contrast with the adlitive genes where it is only 2.016. For 

q - 0.5000 and q a 0.9375,  however, the factor is less than their 

corresponding values in the additive case. When Na is as high as 

8.00 it is about 5.10, 0.38 and 0.20 for q 	 and ? 

respectively. In the case of dominant genes, however, it is found that 
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TABLE 5 	Values of (ratio / N) as oaloulated by the 

transition matrix metho& for different values of 

Ns (recessive genes). 

INITIAL FR1QUE1ICY (q) 

Na 

0.0625 	0.5000 	0.9375 

0.031 11.14.1 1.995 1.374 

0.063 11.150 1.989 1.356 

0.125 11 .165 1.977 1 .322 

0.250 11.177 1.950 1.254. 

0.500 11.142 1.884. 1.125 

11000 10.874 1.719 0.900 

2.000 9.920 1.361 0.595 

4.000 7.913 0.829 0.338 

8.000 5.101 0.375 0.196 
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TABLE 6 	Values of (ratio/N) as calculated by the 

transition matrix method for different 

values of Na (dominant genes) 

fl1ITIAL FREQUNCY (q) 

Na 

0.0625 	0.5000 	0.9375 

0.01 1.409 2.005 11.118 

0.063 1.426 2.010 11.105 

0.125 1.1+61 2.018 11.073 

0.250 1.532 2.030 10.994- 

0.500 1.670 2.039 10.763 

1.000 1.918 1.989 10.066 

2.000 2.194- 1.700 8.178 

4,000 2.014- 1.104. 5.270 

8.000 1.184 0.625 3.191 
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for q = 0.9375 the factor decreases as Na increases but for 

q = C. 0625 and 0.5000 it increases initially and then decreases after-

wards with the increase in Na values. When q = 0.5, it increases 

from 2.005 (when Na = 0.031) to 2.039 (when Na = 0.500) and 

decreases thereafter. For q = 0.0625, however, it increases from 

1.409 (when Na = 0.031) to 2.191,.  (when No = 2.000) and deoreasea 

thereafter. When Na = 0.031 the factrr increases as q increases from 

0.0625 to 0.9375.  This trend continues upto Na 1.00 but when 

Na is equal to 2 or greater then 2, it is lowest at q 0.5000 

and highest at q = 0.9375. 

14.22 M1AN TBii' TO FIXATION 

The behav'oira of the mean time until fixation of a recessive and 

dominant gene with variation in Na are shown in Figures 10 and 11 for 

initial gene frequencies 0.0625, 0.5000 and 0.9375.  As found, in the 

case of additive genes, the time to fixation decreases as Na increases, 

as far as a recessive gene is conoerned but for a dominant gene, it 

increases initially for small values of No and then decreases. For a 

gene with low frequency the maximum occurs at a value of Ns I 

whereas for gene frequency as 0.5 it occurs at No = I and for high 

gene frequency it occurs at Na 	I • For a rare dominant gene, therefore, 

the limiting value of the wean time until fixation may well be above 

41 	For gene frequency equal to half (Na = 1) a dominant gene would 

take about 2.7711 generations to fixation. On the other hand a rare 

recessive gene at Na = I takes about 3.1811 generations. It would 
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take 2.1 4N generations if it is as frequent as its alternative 

allele. Thus a gene takes less time to reach fixation when it is 

reoessive than when it is domirunt. It is interesting to compare this 

result with those of Kimura (1957) on the behaviour of the final rate 

of decay for recessive and dom4nnt genes. Seleotion towards &om1nnnts 

decreases the final rate of decay whereas selection against dominants 

increases it. 



CHM'ThR V 

SELECTION WITH TRINOk1AL TRA.NSITION PROBABILITLS 

The theory developed in Chapter II for selection with randni 

drift in the case of single locus with three alleles can be applied to 

specific genetic models. In this section numerieal results on the 

chance of fixation of a particular allele A1 , the average number of 

generations taicen until its fixation and the average time to homo-

zygosity are presented when the transition probabilities are of the 

trinomial type and the relative selective advantages of A1 , A2  and 

A3  alleles are respectively (i + 81/2)11 (1 + 82/2) and 1. 

Suppose first there are no selective forces operating. Then 

starting with a given pair of frequencies qji  = 

q2j i2/(2N) of alleles A1  and A2  respectively (with I - qji 

- q2j frequency of A3 ), in lines of constant breeding size of N 

individuals, we can consider the second generation as derived from the 

first by the sampling of groups of 2N !iaploid sets, the gene frequencies 

in the different groups being distributed trinomia].ly with pairs of means 

211q1  and 2Nq2  and index 2N. The next generation is then the 

repetition of this process, each line giving rise to a group of lines 

whose gene frequencies are trinomially distributed about the ppirs of 

means of the parent line. Now let A 1  genes have a sele otive advantage 

of (I + 34 /2) A, genes have a selective advantage of 0+ 
1 g' 

and A3  genes have a selective advantage of unity where a and 
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are small and iositive.  This means that while the selective advantage 

of A1  over A3  is 0 + 81,12) that of A1  over A2  is 

(i + (a., - 82)12) approximately. Assuming that selection operates 

before sampling of gametes, the gene frequencies of A1  and A2  in 

the different grOUps are distributed tririomially with means 2Nq' 1  

and index 2N, where q' 11 and q 2  are the gene 

frequencies of A1  and A2  after selection and are given by 

(5.1) 	q'jj  o cIjj  

B 

- 	1 (1 •- i j)- - jj q2  
- q1 + 

(i + q1 1  31/2 + q2j 82,12) 

and 

(5.2) 	q'2j 	q21  +;:q2j  

qj (i - q2j ) - 
- 

(1 + q1j 1/2 + q2j 2/2 

fl 	 C respectively. ifere 	ô q 	and Oq 	are the changes in the mean21  

frequencies of A1  and A2  respectively due to selection in one step 

when their frequencies in the previous generations are respectively 

i11() and i2/(2N). Thus with haploid selection and trinomial 
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sampling, the conditional probability that there are j1  A1  genes and 

2 A2  genes out of 2N genes after one generation, given that there 

were i1  A genes and 12  A genes out of 2N in the previous 

generation, P,J 	4 	are given by 
V 	21Vi II 

(5.3) 	P 	i2)(j1  j2) - 

(2N)? 	 ( qt11)1 ( q )2 

j1 • 	j2 	(i - 	- 

. (i - q' 1 j - q' 2j ) 
(2r1 - 	- 

These probabilities, therefore, determine the P, Q and the components 
fV '' 

of Q introduced in section 2 for the case of single locus with three 

alleles. With the help of the matrix formulae (2.33),  (2.34.) and (2.36) 

the chanoe of fixation of A1  can be determined and in addition using 

(2.54), (2.55) and (2.57) gives the average time until its fixation. 

For average time until homozygosity matrix formulae (2.14.3),  (2.1J,.), 

(2.4.5) and (2.1.6) can be used. However, since the fixation of either 

A2  or A3  reduces the problem to that of a locus with two alleles, it 

is sufficient to consider only those situations in which initially 

neither of the A2  and A3  are absent. This means we have to use only 

the relations (2.36), (2.57)  and (2.46). These have been evaluated 

numerically on the KDF9 oomputer of Edinburgh University. The capacity 

of the computer did not permit the use of a population size greater than 

six. Hence all the results presented relate to N m 6. The computer 



programme developed for this purpose made regular use of the KDF9 

matrix pack. 

5.1 CHANCi OF FIXATION OF A 1  

In order to present results in a meaningful way it is desirable to 

e'-mne the dependence of the change in the frequency of A 1  on the 

selective coefficients of the other alleles and the population size. 

First we consider an infinite population and determine the parameters 

which govern the changes in the gene frequency of A1  initially and in 

subsequent generations. Thereafter we examine how these parameters can 

be combined with the population size when a finite population is 

considered. 

Consider three alleles A1 , A2  and A3  with selection coefficients 

(i + 81/2 ), (i + 82/2) and I with frequencies q1 , q and. q3  

respectively. The superiority of A1  over A2  is 	- 82)12 whereas 

that of A1  over A3  is Bi/2.  This gives an average superiority s 

and the variance in superiority Vm  of A1  over A2  and A 3  considered 

together as a group, given by 

(5.4) 	; 	( a - rs) 

1 	 2 
(55) V - Z r (I - r) '2 
where 

(5.6) r - q2  / (q2  + q3). 
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The variance in the selective advantage of the three alleles can 

be partitioned as 

— 

(5.7) V8  = q (i - 	a2 + (q2  + q ) V 
3m 

- 	cr+o 

whereo is the contribution of the locus to the additive genetic 

variance or the genotypes when the three allele system is collapsed 

into two allele system and c is the component of total genetic 

variance due to the multiple aUelio effect. That is the total 

additive genetic variance can be partitioned into two components, one 

reflecting the contribution of the locus with two effective alleles 

A1  and 1 where X refers to the group of A2  and A3  and the 

other emphasising the contribution due to the distinction made between 

the two alleles A2  and A3  on the basis of their different selective 

advantages. This idea of distinguishing multiple alleles on the basis 

of their quantitative effects was first introduced by Narain (1965) 

in connection with the description of gene action in continuous 

variation when multiple alleles are taken into account. A similar 

partitioning was suggested for metric traits for describing the 

components of genetic variance. Thus V can be generalized and 

defined as multiple allelic variance in the selective advantages of the 

genotypes. If 	and q 	are the gene frequency of A1  after the 
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first and the second generation of selection respectively then, 

appro4mte1y 

(5.8) 	q; - q1  + 	q1  (I - q1 ) 

neglecting terms involving powers of a 
2 
 greater than one. 

q'; = q + P q; (i  - 

- q + ( - V) q1 (1 - (11) + 	q1  (i - q1 ) (1 - 2q1 ) 

neglecting terms involving powers of 
a 2 greater than two and 

where 

(5.10) 	' = • (
8 - 

r' 

r[1 + (1 - r) (1 - r 2 --)
2 

 j-J 

(5.12) q(1 - q) 	q1 0 - 91 ) [i + 	(1 - 2q1) - 	( - 

From (5.8) and (5.9) it is clear that, in an infinite population, 

the change in the frequency of A1  depends on 	and V whereas 

in the two allele case it depends only on the superiority in selective 

advantage of one allele over the other. In the present case, when 

V = o, the change in the gene frequency is simply 	q (1 - q1 ) if 
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the term involving 	is neglected and this, in fact, corresponds 

to a two allele situation where A2  and A3  are indistinguishable 

iso-alleles. The allele A1  increases in frequency and eventually gets 

fixed. But when 	= 0, we get 

(5.13) 	q. 

• I ) 	q = q1 	V q (1 - 

Thir shows that in the first generation, the frequenoy of A1  does 

not change and in the second generation it decreases; the decrease 

being _Vm  q1  (i - q 1 ). Under these conditions, it would eventually 

be ellmlnitted from the population. When neither of 	and Vm  are 

zero, then initially the allele would increase in frequency but in the 

subsequent generations it would increase and get eventually fixed when 

the values of , V and q make (q - q) as positive. For 

equal to or less than half, the condition for this to happen is 

When the population is finite we write 4,(q1 , q2, x1 , x2 ; t) for 

the probability density that the frequencies of A and A2  become 

and 	 th at the t 	generation given that their frequencies are 

and q2  at t = o• Using the diffusion model (Kimura, 1964) we 

can write down the process of change with time as 
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(5.15) 	
= 	

jl (1  2; 
x) 	

+ _ 	
X2 (i 	X2) 4,] 

xx 
- 	____ 4, 1 

	

,. ((_t 1  
8 	 8 

 (i 	Xj ) — jx1 x2)#] 

32 
-i 	

[(-x (i 'X2) _L1 x2) 4'] 

This may be rearranged as 

I 	- 

Th(t/N) 	

_
( Xj (i 	x1)cfr] 	 [x2 (1 	x2)4'] 

[x X24] 

r. 

..Ns1 	-(x. 0 _x)4')_x7_ 

— kNa2 --  (x2( 1 x)) . x2 -.  (z+)) 

This shows that, under the oon&itions in which the diffusion approximation 

holds, the pattern of the selection process is entirely governed by 

the parameters Ns1  and No on a time scale (t/N) starting from 

a given initial configuration (q1 , q2 , q3) of the gene frequencies of 

the three alleles. Since the change in the frequency of A1 
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infinite population, is shown to be dependent on 	and V 
ml  the 

parameters Ns1  and Na2  can be transformed to N-s and N2Vm•  In 

order to see whether the chance of fixation of A1  is a function of 

Nis  and N27 only, a comparison of these for population sizes N = 3 

and 6 at particular values of N and N2Vm is shown in Table 7. 

TABLE 7 	The chance of fixation of A1  as calculated by the 

transition matrix method for different population 

sizes (N) 

Initial frequencies (Al . A2 , A3 ) 

N 

(113, 113, 113) 

0.5000 	0.0625 	3 	 0.42033 

6 	 0.42299 

The two values of the chance of fixation of A 1  are quite close, thus 

indicating that the population size N can appear in combination with 

and V at particular initial gene frequencies of A 1 , A2  and A3, 
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The dependence of the chance of fixation of A 1  on N; and 

N2Vm are shown in Figures 12 and 13.  In Figure 12, It is shown against 

es for N2V - 0, 1, 4 and 9 when initial frequencies (A1 , A2 , A3 ) 

are (113, 113, 113). In Figure 13,  it is shown against N2V for 

initial frequencies (A1 , A2 , A3) = ( 1/6, 5/12, 5/12), 0/2, 1/4., 1/4.) 

and (5/6, 1/12, 1/12) when N; = 0. In the latter case, the three 

initial configuration of the gene frequencies have the same value of 

r = 1/2. 

In Figure 12, the curve for NTm  0 gives the same value of the 

chance of fixation of A1  as provided by the formula for two alleles 

given by Kimura (1957) as 

I - exp ( - 2Ns 1 q1 ) 
(5.17) 	u(q1) 

I - exp ( - 2Ns1 ) 

When N2Ym  is greater than zero, the chance of fixation of A1 , at a 

particular value of N;, is reduced. It, however, varies with NI, 

at a particular value of N2V2  in almost the same fashion as when 

N2Vm - 0. But the characteristic feature, in this case, is that it 

becomes lees than the initial frequency of the gene when NI is less 

than a certain value depending upon the particular value of N2Vm  con-

sidered. Thus when N; - I the chance of fixation is reduced from about 

52.% to about 3CO when N2V'm  is increased from 0 to I and the 
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chance of fixation beoomea less than the initial gene frequency. In 

order to have the same chance of fixation at N2Vm  I as that at 

N; = I with N2Vm = 0, N—s is to be increased from I to about 2.2. 

The effect of the multiple allelic variance in reducing the probability 

of fixation of a gene can be compensated by a suitable increase in the 

average selective advantage of the gene. At very high values of 

N 2V 
m t the chance of fixation could be practically zero unless there is 

some average selective advantage of the gene to compensate for this. It 

can be seen from the graph that when N 2Vm  = 9, a neutral gene would 

have as small a chance as 4% but could have the same chance as its 

own initial frequency if it were of as high a selective advantage as 

= 4.5. 

Figure 13 clearly brings out the affect of multiple a].lelio variance 

on the chance of fixation of A1  when it is neutral, on an average, 

with respect to A2  and A3  with variance V. In an infinite 

population, A1  would ultimately be lost due to the effect of V but 

in a finite population, it could get fixed by chance. This chance 

fixation would increase as the population decreases in size. For small 

populations, random drift would predominate over Its being selected 

against and the allele would get fixed but for large populations, 

selective forces acting against it would overcome random drift and the 

allele would have very little chance of getting fixed. Since the 

selective forces acting against A1  are inherent in V,  the chance of 

Its fixation would equal its initial frequency when V = 011 



The total possible change in the frequency of A1  in the limi.t is 

- q1  whereas in a finite population the expected change in the limit 

is u(q1 ) - q1 . This expected change would be negative. For a gene 

with frequency as half, N2V = I can bring dc.wn its expected frequency 

in the limit to about 0.30. It is apparent from figure 13 that a rare 

gene (q = 0.16667) can quickly be eliminated by multiple allelic 

variance but a frequent gene (q1  = 0.8333) can still have some 

chance of getting fixed in spite of the enormous effect of multiple 

alleles to knock it out. 

The results on the chance of fixation of A 1  presented above can 

be compared with a general formula for the chance of fixation of an 

allele in a multiple allelic situation suggested by Robertson (personal 

oommunication). With respect to k alleles A1 , A2, . . . A, with 

respective initial frequencies q 1 , q2, . . .qkand selective 

coefficients S1 , S 
2' 0  • 3k such that 

(5.18) 

(5.19) V5 	E q s2 - 
fl n 

(5.20) 	(çq) 	= 

the chance of fixation u 	of the nth  allele A is given 
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by 

() 2 

	

(5.21) 	it = q + 2N ( 9 q) n + 
3 	

q1f(3 - )2 - 

(2N) 3 	r 
- 3 	

(q)V3 + - - - - - 

For the case of three alleles the chance of fixation of allele A1  

with frequency q1 , which is neutral on an average, with respect to 

A2  and A3  with a variance V between them, this formula reduces 

to 

	

(5.22) 	u1  (ca1) 	= 	q1  - ( )2 q (1 - q1) Vii 

A comparison of (u1  (q1 ) - q1 ) calculated from this formula with that 

obtained from the computer is shown in Table 8 when 
q, = 

 q2 =q3 
The agreement between the two results is quite close. 

5.2 MEAN TIME UNTIL FIXATION OF ALLJLE A1  

When no selective forces are operating, the mean time until 

fixation of A1  is found to be independent of the frequency of alleles 



TABLE 8 Comparative values for the expected change 

in the limit in the frequency of allele A1  

having a mean superiority of = o with 

variance V in a population of size N = 6 
I 

for q1  =q = 	= . 2qj 

NVm  Computer 

0.00000 

Formula 

0.00000 

Difference 

0.00000 0.0000 

0.0144 -0.00376 0.00427 0.00051 

0.0576 -0.01470 -0.01707 0.00237 

0.1296 -0.03183 -0.03840 0,00657 

0.2304 .0.05369 -0.06827 0,01458 

0.3600 -0.07863 -0.10667 0.02804. 
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A2  or A3  and is the same as that given in Chapter IV for two 

alleles with additive gene action. At particular values of Na = 2 
and 1182 1, the mean times are presented in Table 9 corresponding 

to the possible initial configurations of the three alleles in a 

population of also N = 6, when all the three alleles are pre3ent. 

For a fixed value of q2, the mean times can be read vertically down 

for various initial frequencies of A1 . It decreases as the gene 

frequency increases. For instance, when A 2  allele is initially 

present with a frequency 0.5, the time to fixation of A1  with 
frequency 1/12 is 3.2611 whereas when its frequency is 5/12 It is 

2.59N. However, the effect of the frequency of A2  allele on the 

time to fixation of A1  allele Is the reverse. For a given frequency 

of A1  allele, it takes longer for its fixation If the frequency of 

A2  allele is frequent than when it is rare. 

The effect of N and N2V on the tte to fixation of A1  is 

shown in Table 10, for the case when the initial frequency of A1  

allele is 113. When N2Vm = o, the mean time decreases with increase 

in N. So is the oae with N2V = I but at highex' values of 

it increases first with inorease in Ni and decreases thereafter. 
When N 

= o, the effect of multiple alleijo variance is to decrease 

the 'sean time, So is the case at N = I but at higher values of 
N, the mean time increases first with increase in 

N2Vm  but 

decreases thereafter, it is interesting to note that the behavio' 

of the xean time over variations in 9-a for a fixed N2V is almost the 
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TABLE 9 Average number of generationa / N until fixation of A1  (N = 6) 

= 2, Es 2 = 1. 

1 

3.07 

12q1\ 
2 

3.11 

3 

3.15 

4 

3.19 

5 

3.22 

6 

3.26 

7 

3.29 

8 	9 	10 

3.33 	3.36 	3.39 1 

2 2.90 2.94. 2.98 3.02 3.06 3.10 3.14. 3.17 	3.21 

3 2.72 2.76 2.81 2.85 2.90 2.94. 2.98 3.02 

4 2.53 2.58 2.63 2.68 2.72 2.77 2,81 

5 2.33 2.39 2.44 2.4.9 2.54 2,59 

6 2.12 2.18 2.24 2.30 2.36 

7 1,90 1.97 2.03 2.10 

8 1.66 1.74 1.81 

9 1.40 1.48 

10 	1.10 
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TABLE 10 	Average No. of generations until 

fixation of A1  (N = 6) with 

initial freqwny 113. 

\N2,r 
 

0 	1 	4. 

0.0 3.00 2.81 2.45 2.11 

1.0 2.83 2.75 2.51 2.23 

2.0 2.48 2.55 2.54 2.40 

3.0 2.12 2.28 2.44 2.48 

4.0 1.84 2.00 2.24 2.42 

5.0 1.61 1,76 2.01 2.26 

6.0 1.44 1.57 1.79 2.06 

7,0 1.31 1.42 1.61 1.86 

8.0 1,20 1.50 1.4.6 1.68 
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same as that of the meantime over variations in N27 Ii  for a fixed 

N;. 

5.3 MEAN TIME UNTIL MOMOZYGOS ITT 

The results of the mean time until homozygoaity are presented in 

Table 11 and 12. In Table II, the three alleles are neutral and the 

variation of the mean time until homozygosity over the different 

initial gene configurations is shown. At & fixed value of q, the mean 

time increases first with increase in the frequency of A 2 ; attains a 

maximum and decreases thereafter. Sinoe the situation is symmetrical, 

the same is true for variations over the frequency of A1  for a fixed 

q2. Also the distribution is aymmetrioal so that the same mean time is 

obtained for frequencies less than or greater than the irid—point of the 

range. The highest mean time is 3N and 000ure when qj a 2 a 

whereas the lowest is I .66N and 000urs when either 	a 
2 a 
	or 

1 	10 	10 	1 
a r q2  a 	or q a j, q2 - 	In Table 12, the variation in 

the mean time until homozygosity is shown over the different values of 

and Na2  when all the three alleles are at equal frequencies. 

There is a perfect aymetry as far as Na1  and Na2  are concerned. 

For a fixed Na2  (unless it is o), the mean time first increases, 

attains a maximum and then decreases with increase in Na.. The maximum  

shifts to the right side as Na2  increases. For N.2  = C, the maximu* 

is 3N and 000tu's at Na1  a  0, the time for the neutral case. This oan 

be compared with the waximum mean time until homozygosity of 2.55N 
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TABLE 11 Average nuaber of generations / N until houzyosity (N a 6) 

Three neutral allelea at a loous. 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 

1 	1.66 	2.11 	2.4.3 	2.63 	2.73 	2.73 	2,63 	2.43 	2,11 	1.66 

2 	2.11 	2.46 2.70 2.84 2.89 2.84 2.70 2.46 2.11 

3 1 2.43 2.70 2.88 2.96 296 2.88 2.70  2.43 

4 1 2.63 2.84 2.96 3.00 2.96 2.84 2.63 

5 
	

2.73 2.89 2.96 2.96 2.89 2.73 

2.73 2.84 	2.88 2.84. 2.73 

7 1 2.63 2.70 2.70 2.63 

8 	2.4.3 2.46 2.43 

9 	2.11 	2.11 

10 	1.66 
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Table 12 Average nubez' of generations / N until homozygosity (N = 6) 

q1  Z 
I 3, 

No 

1482 

0 1 2 3 4. 56 78 

0 .3.00 2.87 2.55 2.20 1.90 1.66 f .4.8 1 .33 1 .22 

1 2.67 2.90 2.71 2.41 2.10 1 1.83 1.62 1.45 1.311 

2 2.55 2.71 2.73 2.57 il  2.31 2.03 1.79 1.60 1.44. 
li 

3 2.20 2.41 2.57 1  2.61 1 2.48 
1  

2.26 2.01 1.79 1 .60 

I- 4 1.90 2.10 2.31 2.48 2.53 2.44 2.24. 2.01 1.80. 

5 1.66 1.83 2.03 2.26 2.44 2.50 2.42 2.24. 2.03 

6 1.48 1.62 1.79 2.01 2.24 2.42 2.48 2.41 2.25j 

7 1.33 1.4.5 1.60 1.79 2.01 2.24 2.41 2.4.7 2,4.1( 

8 1.22 1.31 1.44 1.60 1.80 2.03 2.25 2.4.1 2,47 
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obtainea in the two allele caae in Chapter IV. It shows that the 

maximum time to homozygosity is increased with the increase in the 

number of alleles and that it occurs when all the alleles are equally 

represented in the initial population, 



CHAPT.R VI 

LTHAL GENES AND ALLELISM IN FINITE POPULATIONS 

In Chapter II, it has been shown that the properties of the 

stationary distribution of gene frequencies realised due to the 

balance between the mutation occurring at a low rate in one d.ireotion 

(reverse mutation being negligible) and selection with random drift 

can be studied with the help of the element of the first row of 

fundamental matrix. In this Chapter, this theory is applied to study 

the population &ynamios of completely lethal genes in finite popu-

lations. It will further be shown how this theory can predict al].elic 

rates and the decline of allelism with time. The determ1ntion of 

ailelic rates is of great importance in experimental investigations with 

natural populations to decide between whether recessive lethals have 

deleterious effect as heterozygotes. This problem has been discussed at 

length by Crow and Teniin (1964) and Wallace (1966). If the heterozygotea 

carrying lethals have reduced fitness, then the mutation from normal to 

lethal allele is more than sufficient to balance their elimination by 

homozygosity and the population suffers from a mutational load. On the 

other hand, if the heterozygotea have enhanced fitness, then the mutation 

is not sufficient to balance the elimltion of lethal genes, and the 

load is said to be aegregational (balanced). Most of the earlier 

experimental investigations on natural populationswith Drosophila like 

those of Dobzhansky and Wright (1941), Wright, Dobzhanaky and Hovanitz 

(19132) and Crow and Temin (1964) give evidence in support of the 
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deleterious effect of lethal genes in the heterozygous condition but 

Wallace (1966) obtains results which show an overdominant effect of 

lethal genes. Nel (1968), however, argues that Wallace's conclusion 

oould be due to the small effective size of the population sampled and 

suggests that the lethal genes are, on the average, slightly deleterious 

in the heterozygous condition. The decline of alleliam of recessive 

lethals with time is another interesting problem invoked by Wallace 

(1966). His conjecture, on the functional relationship between the 

allelio rate and the time interval between the sampling of the first 

and the second set of lethals has been proved as approximately 

correct by Prout (1967). An alternative method, however, based on the 

transition matrix approach is developed in this section on the basis 

of suggestions made by Robertson (personal communication)., 

6.1 DISTRIBUTION OF LETHAL GENES 

Consider a randomly mating population of N adult individuals 

with I heterozygotes and (N - i) homozyotes. This would mean that 

the gene frequenoy of lethal 	a 	isq,1  = i/( 2N) and. that of normal 

A is (1 —.Lq). Let the fitneaze3 of the three po8aible genotypes Alt, 

Aa and aa be 1, 1 - h and 0 respectively. Then after selection, 

the frequency of heterozygotes will be 
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(6.1) 	q,l 	
1(1 . -h) 

I +jq  (I - 42h) 

whereas that of homosygotea will be (i - qj ' ). On sampling N 

adult individuals from such a population will produce j heterozygotea 

and (N - j) hoinozygotes with transition probability 

/ N\ 
(6.2) 	= I' 	\(qjf)i (1 - q)(N - i) 

j) 

Here i goes from 0 to N and j also goes from 0 to N. The 

Markov Chain specified by such probabilities has 0 as the only 

absorbing state. These probabilities determine the Q matrix where 

i and j each go from I to N. If the mutation rate from A to 

a is u per generation, the reverse mutation being negligible, then 

as shown in Chapter II the stable d.istribution of the lethal gene 

frequency is given by 2Nu S 1  where S 1,  is the ith element of 

the first row of (I - Q) 1 . The mean and the variance of the 

frequency of a and the mean frequency of heterozygotes in the stable 

state are given by 

N 

	

(6.3) E(q) 	- 2Nu E S1  (j/(2N)) 
j=I 
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N 
(6.) 	E[q - (q)] 2  = 2Nu E S14 (il(2N))2 - [E (q)J 2  

j=1 	' 

N 
(6.5) 	B[2q (i - q)J = 4Nu E S 1  (j/(2N)) (1 - 

Jul 	' 

These quantities have been evaluated on the computer for population 

aize N = 50 and 10. The results are shown in figures 114., 15 

and 16. A negative value of h means heterotic lethala whereas a 

positive value means partially recessive lethala. h = 0 corresponds 

to completely recessive letha]s. A mutation rate of 1075 has been 

assumed throughout. 

6 . 11 	M1iU GiINJ FRiQUNCY 

From figure 14., it is found that the mean gene frequency declines 

almost linearly for sniaU population sizes cuch as 10 as we pass 

from heterotic lethals through completely reoesive ].ethals to partially 

recessive letha].e. But for large population sizes such as 50, the 

decline is non-linear. 

The mean gene frequency for completely recessive lethals is known 

from Wright's equilibrium distribution formula (Wright, 1937). The 

distribution for small q is given by 
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(6.6) 4' (q) = oont. exp (- 2Nq2) q U - 1) 

Substituting t = q and applying the condition 

1 

(6.7) 	4'(q) d.q a I 

0 

gives 

(6.8) 	conat. a 	
2 	

(2N)2 
[(2Nu) 

The mean and variance of the gene frequency are given by 

(6.9) j - r(2Nu + ) / ( 20 i(2Nu) 

2 	-2 (6.10) 
0q 

= u - q 

For 2Nu > 1, q is close to u i.e. the equilibrium value expected 

in an infinite population. For 2Nu 	1, however, 



I 
(6.11) r(2Nu) 25 

- 

2Nu 

(6.12) r(2N+) 

approxivtely, so that 

(6.13) 	u(21T 

The conditions imposed in the matrix approach require that 2Nu 4 I 

and therefore the mean gene frequency obtained by this appioaoh should 

be compared with u(2 iT N). This comparison is shown in Tible 13. 

Table 13 Comparison of mean lethal frequency as 

osloulated from Wright' a formula and 

transition matrix method for different 

population sites (h = 0, u 

N 	Wright ' s formula I Computer results 

50 	17.72 x 1075 18.18 

10 	7.93 x 1075 	: 	
8.39 x 10 
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The agreement between the two approaches is quite close, Wright's 

formula giving a lower value than the oomputer results. 

For heterotic lethals, the equilibrium gene frequency by Wright' a 

formula is known in only special cases. The ecjuilibrium frequency q 

expected in an infinite population due to the superiority of hetero-

zygotes only is, however, k/(l + k) where k - Ii which is 

approxiv&tely - h for small velues of Ii. The matrix approach, 

therefore, gives the result that in the range q = 0 to q = .05, the 

mean gene frequency decreases linearly as q approaches 0 if N * 10 

but decreases very sharply if N = 50. When 	k = + .05, the mean gene 

frequency is 3.28 x 10-tt 	for N = 50 but only 1.4 x for 

N = 10. This shows that, in order that the equilibrium frequency of 

0.05 is actually realized the population size has to be very very 

large. The gene frequency increases as the population size increases. 

6.12 VARIANCE OF G.E 	U.iNCY 

The variancesof gene frequency for population size N = 10 and 

50 are shown in figure 15. The variance decreases as the reduction 

in the fitness of the heterozygotea rises from - 0.05 through 0 

to + 0.05 for either of the two population sizes. But unlike the 

curves for the mean gene frequency, the curves here intersect. In most 

cases of the heterotio situation, the variance is more for the larger 

population size but for oompletely recessive lethals and partially 

recessive lethals, the variance is smaller for the larger population 

size. For Ii = 0 and N = 50, the variance is found to be 1.08 x 10 
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Fig. 15 Variance of the distribution of 
frequencies of a lethal gene (u = 0.00001). 
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which compares very well with the value of 0.99686 x I O 

obtained from Wright' a variance formula given by (6.10). 

6.13 MEAN TROZYG33ITY AT EUILIBRItJ1 

The curves for the mean heterozygosity for N - 50 and N = 10 

as presented in figure 16 show almost the same pattern as that of the 

maan gene frequency. For overdominant genes, this similarity between 

the mean gene frequency and average heterozygosity was also noted by 

Robertson (1962). For h = 0 and lethal gene, his formula for 

heterozygosity reduces to 2u(2 iT N) which is twice the mean gene 

frequency. It can be verified from figures 14 and 16 that for h = 0, 

the mean heterozygoaity is almost double that of the sean gene fre-

quency. As noted in Chapter 	the mean heterozygosity is proportional 

to the oontribution of the locus towards the genetic variance of the 

stable population. If Nu is small as would usually be the case with 

u = 1075 unless N is very large, the genetic varianoe would increase 

as the size fthe population is increased. 

6.14. PROPCRTION U: PUPULATLNS SJGRiATING- FUR. A GI\TJN LJFLA.L 

FoLowin,g Wright (1931) the proportion F( o) of populations from 

which lethals are ab3ent is such that the frequency 2Nu F(o) of 

reourrence in a population equals the frequency (j) F(N) of lose 

where 
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I 
F(q) - - 4 (q) 

and 4'(q) is given by (6.6). This gives 

(6.15) 	F(o) 

- I - 2Nu lO8e  2N 	approximately 

In the matrix approach, however, if f(o) represents the nean number 

of loci having no mutant at the equilibrium state when, on an average 

one locus becomes homozygous per generation, in the abser...oe of any 

mutation, then 

(6.16) 	2Nu f(o) + 2Nu S • I 

where 

(6.17) 	s 	= 	z SIJ 
j 

This gives the value of F(o) as 

(6.18) 	F(o) 	= 	2Nu f(o) 

1-2Nu S 
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In other words, the proportion of populations segregating for lethals 

is 2Nu S. For a completely recessive lethal with N = 50, the 

proportion of populations from which ].etha].a are absent is, using (6.18), 

found to be 0.994.360  as against the value of 0.995395 obtained by 

Wright's approach [using (6.15)]. 

6.2 CHANCE OF ALLELISM 

In order to study the allelisni in a given sample of lethal bearing 

chromosomes, all the possible heterozygotea between these lethal bearing 

obromosomea are made. If the same lethal gene Is carried on two or 

more chromosomes in the sample, then a lethal zygote will be formed 

everytinie these chromosomes meet. If a lethal gene is represented only 

once in the sample, then the chromosome carrying it will form viable 

heterozygotes with all other lethal chromosomes in the sample. By making 

all possible crosses among strains with lethal chromosomes, the number 

of times various lethal genes are represented as well as the total 

frequency of lethal zygotes formed can be determined.. The ohanoe of 

allelism of lethal chromosomes is then regarded as the proportion of 

crosses between lethal bearing chromosomes which produce lethal sygotea. 

When two lethal chromosomes prove to be allelic, the lethal genes they 

carry are either identical by descent or are different mutations which 

by chance have affected a finite number of equivalent ].00i. The total 

chanoe of alleliam is the sum of the chances of alleliam due to these 



113 

two causes. If the population size is infinite, the alleliszn is due 

to recurrent mutations only whereas if the number of equivalent lad 

is infinite the allelism is due to identity by descent only. 

Apart from the afleliam of lethal bearing chromosomes i0, there 

is also the allelism of random pairs of lethal genes i. Knowing i0  

from experimental data, i can be eve luated. by the formula (Nei 1968) 

( 6 . 1 9) 	1 	
-Log5  (1 - 10 q*2) 

[Log5  (1 - 

where q*  is the frequency of lethal chromosomes. In what follows, 

however, we diouss 1, the chance of allelism of random pairs of lethal 

genes with the help of the properties of lethal gene frequency clis-. 

tribution discussed in the previous section. 

If lethal mutations occur at n out of a large number of loci 

and the proportion of lethals at a. locus to that of all lethals is 

p, then the chance that a second lethal 000urs at the same locus as the 

first is p2. Averaging over the n looi gives the total probability 

as Zp4  that the two ].ethals taken at random from the population will 

be allelic. Since Zp a I and p  is proportional to the frequency q 

of lethal gene, the chanoe of alleliam is (Zq2) / (1q) 2. Following 

Nei (1968)   we take the expectations of the numerator and the denomln*tor 

and obtain n E(q2) and no + n2 2 respectively. This gives the 

chance of allelism i as 
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x 
(6.20) 	i - 

+ x 

where 

E (q2 ) 

-2 nq 

- ( ;2 2)  

is the formula for the chance of aflelism given in Dobzhanky and 

Wright (1941), and Wright, Dobzhanaky and Hovanitz (1942).  In the 

present case it is assumed that the mutation rates are the same for 

all loci so that there is no contribution to the variance of the 

gene frequency due to differences in the mutation rates. When the 

population is infinite, the variance in the gene frequency due to 

random drift vanishes and I reduces to 	But when an infinite 

number of equivlent loci are affected by recurrent mtxtution, 

tends to zero and I reduces to i, given by 

(6.22) 	il,
x  

a  
I +x 
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This is the chance of allelism due to finite size of the 

population only and has been investigated in this section by the 

transition matrix approach. Using (6.3) and (6.) for (q) 

and E(q2) we get the value of x as 

2 
2Nu Z s1,  

(6.23) 	x - 
(2Nu)2n[Z 1. 2 

1 i2N 

	

- 	
'•lj •i 

2NU [z• 	2 

where 

(6.) U - nu 

is the mutation rate for lethal chromosomes. It refers to a very 

large number of looi with very SUA&ll mutation 	per locus such that 

the prod.uot of the two is constant. Taking n - 500 and u = 10 

so that the mutation rate for lethal chromosome is 0.005, the 

computer results on the aflelio ratare shown in figure 17. It 

is apparent that the slope of the curve is more when N - 50 than 

when N - 10. This shows that for very small population sizes, the 
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allelic ratmay practically be independent of the nature of lethal 

genes. But for appreciable population size, the allelic rates are 

lower for heterotio lethals than for partially recoaive lethala. 

For very large population sizes, these rates are solely determined 

by the nature of the loci and can be very siall for heterotia ]ooi. 

As the population size decreases the rates increase. Similar results 

were obtained by Nei (1968), using the properties of Wright's stable 

distribution of gene frequencies. For completely recessive lethals 

(h = 0) and N 10, the chanoe of aUelism is 77% as against Nei's 

result of 76.2% whereas for N = 50, the values obtained by the 

matrix approach and Wright's formula are respectively 0.40 and 0.39. 

6.3 DECLINK OF ALLELIS1 WITH TIME 

Wallace (1966) presented an analysis of the alleliam of recessive 

lethal genes in certain populations of Drosophila melanoazter, His 

main concern was the d.eterinination of the allello rates of lethala 

taken from a natural population at collection sites of varying distance 

apart. He argued that the allelisin between two sets of lethals from a 

given distance apart can be related to the allelisin of two sets of 

lethala taken from the same point in the population but separated by a 

given interval in time. The formula suggested by him for the allelic 

rate iT  and the time interval (t) between the sampling of the 
t 
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first and the second set of letha]5 have the relationahii 

(6.25) 	
1Tt 	

i + i (1 - K)t 

where 

iT  - the allelisin between lethal genes t generations 
t 

apart. 

the a].leliam component of IT  within a generation 
t 

produced by identity by desoent in a finite 

population. 

the alleliszn within a generation of the seine set 

of lethal loci if they were in a population of 

infinite size. 

K 	= a constant related to the rate of turnover of 

lethale within the population. 

Prout (1967)  demonstrated with algebraic details that this functional 

relationship is appro7-imLtely correct. 

If the lethal gene frequency at time t is denoted by q and if 

we assume that the mean gene frequency i does not change appreciably 
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during the time interval t, then the probability of choosing 

one and the same lethal from among lethals of generation 0 and 

from among ].ethals of generation t is Eqq/(n) 2 . The expeo-

tation of this ratio can again, be expressed as 

(6.26) iT 
-  I 

+ 

 
Yt 

 yt 

where 

nE 
(6.27) yt = 	- (n q) 2  

r4u. 
We already know that 	

- A 
E S , (-). The expected value of 

qq has further to be evaluated by the matrix approach. The 

stable gene frequency distribution is given by the elements 

2Nu SU,  j 1, 2 3  . . . . . N. representing the mean number of 
weighted 

looi having j mutants. The/gene frequency vector at time 0 is 

then given by 

(6.28) 	q = 2Nu [S11 	, . . . . . S 	, , . . 6 1 SIN •j 
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For a given number of j  mutants occurring initially, the con-

ditional mean gene frequency column vector at time t is given by 

(t) .2s_ 
k 	2N 

(6.29) 	q* 	J Z p Ct) Ic 
ik jk 	2N 

LI' (t) 
Ic 	2N 

where 
jk 	are the elements of the natrix Qt, The expectation 

rV 

of qqt  Is then given by 

(6.0) 	J(qq) = 2Nu L[(s 2.) (r, p 2.)] 
1 i2N k 

Hence yt  is given by 
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2Nu n Z US 1) (E P (t) k
ij 	 k jk 1 

 Yt  (6.31) 
(2Nu) 2  n2 

(Z S  

jk 2N1  

2U (E S 	
11)2 

I 

Using this formula the computer results were obtained for ITfor 
t 

two population sizes N a 10 and N = 50 and Ii = -.05, 0 and 

+.05 taking U to be 0.005. In each case t was varied from 0 

to 28. The decline of afleliam with time, thus obtained, is shown 

in figures 18, 19 and 20 respectively for h = 0, + 0.05 and - 0.05. 

In each case the decline is sharp for N = 10 as compared. to N = 50 

and for about first twenty generations the allelism is higher for the 

smaller population size. The difference declines with time and beyond 

about twenty generations the allelism for N = 10 is lower than that 

for N = 50. These graphs can be oompared with the sketch of hypo-

thetical data given in Prout (1967). The graphs for N = 50 show 

the same pattern of exponential decline but for N = 10 the pattern 

of decline is non-exponential in the first several generations. 

From figure 20, it appears that for heterotio lethala (ii - 0.05) 

the decline of allelism with time is not so rapid.. This would be so 
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because heterotic lethals are likely to persist longer in the popu-

lation. The limiting value of the allelic rate (i ) is likely to 
I 

be • 	- 0.002 since the chromosomal mutation rate is based on 

500 loci. It is likely to occur well beyond 28 generations. 

For completely recessive lethals (h - 0) an expression of 

initial rate of decline can, however, be obtained using the equilibrium 

distribution of lethal genes 4ven by (6.6). Let q1  be the gene 

frequency of lethals in the next generation and let g q be the change 

in the gene frequency in one generation, then g q is approximately 

- q2  so that 

(6.32) 	E(qq1 ) = B [q (q + q)j 	E (q2) - 

From (6.10), B(q2) is equal to u, I(q 3) is given by 

(6.33) 	.(q3) 	
1 q

3 	(q) 
/ 

0 

2()2NU 	I 

[(2Nu) 
q3  exp (-2Nq2)(l4jfu - i) dq 	eq 

(2 

r(2Nu) 	fo t(U  + ) w (-t) dt = 
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(2N) 2 r(2Nu+) 

r(2N) 

1% -11 	r(2NU + 

r(2NU) 

Using (6.11) and (6.12) we get, approximately 

(6.34) E(q3 ) 	u(4iu + 1) () 

= u (- 

if 	u is so email that the term involving u can be neglected. 

This gives 

n E(qq1 ) 

(6.35) 	y1 = 
	2 

(ni) 

IT 
I — 

2 TTNU 
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and 

n 
(6.36) 	y 0 	()2 

I 

2TNU 

Hence ITand IT  are given by 
1 	0 

r 
L 

(6.37) 	
1T 

[i - (.) + 271NU ) 

(6.38) 	iT
- 	I 

0 	1 +2yIJ 

Both IT  and iT  ahow that the allelic ratea will decrease if the 
0 	 1 

ohromoaomal mutation rate increases. The initial rate of decline r 

is then given by 
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iT  

(6.39) 	r = I _. çt 

21INU (

7r

.) 

- 

[i - () + 2 JrNuJ 

A comparison of the initial rates of decline as predicted from (6.39) 

and as obtained numerically (figure 18) for oompletley recessive 

lethals is shown in Table 14.. 

TABLE 14 Comparison of initial rate of decline 

as predicted from Wright's dis-

tribut ion formula and as obtained by 

the transition matrix method for di. 

ferent population sizes (Ii = 0, U - 0.005) 

N Predicted Ccmouter Difference 

50 0.05606 0.04917 0.00689 

10 0.05576 0.04.04.7 0.01529 

The difference between the two sets of results 18 less marked when 

N = 50 than when N = 10. 
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6.4 EXPECTATION OF LIFE MW AVRACE AGE OF A LETHAL MTYPAI2 

6.41 	EXPECTATION OF LIFE OF A LETHAL MUTANT 

Consider first the case when there is initially one lethal mutant 

a and (2N - i) normal alleles A in a population of size 2N. If 

there is no further mutation from normal to lethal alleles, the lethal 

mutant will ultimately be lost from the population. As shown in 

Chapter II, the mean total number of generations required for the 

elimination of the lethal is given by 

(6.40) 	S 	ES Ij
II 

where S,, represents the mean number of generations which the 

population spends in the state E characterized by j mutants and 

(2N - j) normals on the way to homozygosity. S 1  can be thought of 

as the expectation of life of the new mutant ab its initial occurrence. 

If the lethal mutant a occurs i times and normal allele A 

occurs (2N - i) times initially in a population of size 2N, the 

mean total number of generations required for the elimination of the i 

lethalE is given by 



130. 

(6.41) 	S 	- E S 
1 	i 

where S 	represents the mean munaber of generations which theij 

population spends in the state E before becoming homozygous and 

fj is a row vector with unity in the ith place and zeros elsewhere. 

For population size as N = 8, the computer results for the 

average number of generations until loss of lethals for various initial 

gene frequcncies of mutants and h = -0.5, 0 and +0.5 are shoin in 

Table 15. It may be noted that the initial gene frequency of mutant can 

at most be i  oorreaponding to a population containing only heterozygote8. 

TABLE 15 Average number of generations until loss of 

lethals In a population of size N = 8. 

Initial  
frequency 	h = - 0.5 	Ii = 0 	h = +0.5 

	

0.0625 	19.15 	4.15 	1.77 

	

0.1250 	26.54 	6.02 	2.35 

	

0.1875 	30.02 	7.21 	2.80 

31.87 8.02 3.15 

0.3125 32.96 8.60 3.44 

0.3750 33.64 9.03 3.68 

0.4375 34.10 9.36 3.89 

0.5000 34.43 9.63 4.08 
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It is apparent from Table 15 that heterotic let nala take considerably 

longer time, on an average, to disappear from the population than corn-

pletely or partially recessive lethals. For instance, when the initial 

gene frequency of the mutant is 0.25, heterotlo lethals would persist 

for about 32 generations as against about 8 generations required for 

completely reoeaslve lethals and about 3  generations for partially 

recessive lethals. The effect of the initial gene frequency is also 

to increase the average time until losa. The expectation of life of a 

single mutant, when the population size is N = 8, corresponds to the 

initial gene frequency of (3N) = 0.0625 and is about  19,  l.  and 2 

generations for heterotic, completely recessive and partially recessive 

lethals. 

Consider now the case when the population is in equilibrium due to 

the opposing processes of selection and mutation so that there is no 

change in the gene frequency. The opposition between these centripetal 

processes as a group and the scattering effects of random processes 

determine a frequency distribution of lethal genes. The frequency of 

classes segregating for lethals is given by 2Nu S 1 	for j  a 1, 2, . . N 

whereas that of its absence from the population is F(3) given by (6.18). 

If we consider the frequency distribution of the lethals present at 

any given time disregarding the cases when it is absent, the distribution 

is obtained by taking 	 • This is, therefore, given by 

Sij * 
(6.42) 	S 	- 	for j = 1, 2, . . • . . N 
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and is 3 ,ioh that 

(6.1.3) 	zs 
a 

I 

Now in such an equilibrium population, the proportion of equivalent 

loci at which the lethal is represented with a frequency j/(2N) is 

From this class of loci, the mean time of elimination rjf all 

mutants is Si  • Siinimlng over all possible classes of loci, the 

expectation of life of the lethals present at any given time is, 

therefore 

(6.44) 	L 	ES 
* 	* 

I 

The expectation of life of a lethal tells us how long a mutant lth3l 

is expected to last, on an average. 

The expeotation of life of a new lethal mutant at its initial 

occurrence (si ) and of any lethal (L) were obtained on the coin-

puter for N = 50 and for various values of h. The results are shown 

in figure 21 • It is apparent from the graph that heterotio lethals have 

expectations of life higher than completely recessive lethala whereas the 

latter type of lethals have hi her expectations than partially recessive 

lethals. A completely recessive lethal (h = 0) takes, on an average, 



2C 

N=5O 

v) 
z 
0 

w 
z 
Uj 

I0 

0 

w 

z 

S 2 

-.050 	-•025 	0 	•025 	•050 

H 
Fig. 21 	The expectation of life of a lethal 

mutant (N=50). (i) refers to expec-
tation at any given time, whereas 
(2) refers to expectation at the 
initial occurrence of' the mutant. 
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about 6 generations to disappear from the population since its 

initial occurrence. But in a random sample of completely recessive 

lethals resent at any given time, a lethal takes, on an average, 

about 10 generations before disappearing. Another point worth noting 

is that the decline in the expectation of life from heterotic conditions 

through complete reoesiveneas, to partially recessiveness is more sharp 

in L than in S 1 . The former is, however, always higher than the 

latter. The ratios (I/Si)  for various values of h are shown in 

Table 16. 

TABLE 16 (i/sr) for various values of ii (N = 50). 

L h (L/s1*) 

- 0.05 2.13 

- 0.04 2.06 

- 0.03 1.99 

- 0.02 1.93 

-0.01 1.87 

0.00 1.81 

0.01 1.76 

0.02 1.71 

0.03 1.66 

0.04 1,62 

0.05 1.58 
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The ratio varies between 2.13 to 1.58. For a completely recessive 

lethal it is 1.81, 

;.42 	AVRM AG UP A LiTHJL MUTANT 

The rea].isation of a stable distribution of lethal genes is based 

on regarding the prooesses of gene mutation and selection due to 

lethality as occurring continually through time in a population of 

finite size. A mutation to lethal gene, when ocours at any time, may 

either disappear after its initial occurrence or may exist for several 

generations before disappearing. Suppose a random point is chosen on 

the time axis and a cross section of the then existing population is 

taken. The lethala present at this point of time, might have existed 

for different lent113 of time since their initial occurrences. The mean 

length of time for which they have stayed in the population up to the 

given instant of time proviles with the average Ljre of a lethal mutant. 

Further the letha].e present at this moment of time may have different 

lengths of time till they disappear. The mean length of time till they 

disappear provide with the expectation of life of a lethal mutant. 

We may also argue in terms of the proportion of equivalent ].00i at which 

a Given lethal mutant survives for different number of generations. 

Suppose we start initially with a single mutant in a population of size 

2N genes and suppose i represents the number of equivalent loci at 

which the lethal survives for t generations where t - 0, i, 2 0  . 

with 1 = I • Then the relating frequency of looi, at which the lethal 

survives for t generations is l/El. The average age of the lethal 
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A is, therefora, 

(6.1,.5) 	- 	tlt 

it 

A given mutant at time t occurs in I loci but at time (t + I) 

it occurs in l. + I loci, at time (t + 2) in l + 2 ].00i and so 

on. Hence its expectation of life at time t is given by 

(6.i6) 	Lt 
1t+i + 1t+2 + • 

= 
it 

Summing over time, the average expectation of life is given by 

(6.7) 	L = 
Z lt Lt 

Elt  

But 

(6.43) 	£ 1tLt 	- £(lt + j + 1t+2 + ••• 

= 	iI+12+13+• SS • 

+ 12 + 13  + S • • • 

= Ltlt 
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Hence 

(6.9) L - X 

It is thus shown that the average age of a lethal is the same as the 

average expectation of life. From the matrix approach this can be proved 

as follows. 

It has already been shown that the elements S 	 of the stable 

distribution of the axieting letala are provided by the fundamental 

matrix (i - QY 1 , normalized to unity. If this is expanded, we get 

(6.50) 	
I
—; (I -+ + 

	. S  

Si 	'V 	
'/ 	 SI  

As shown in Chapter II 3 1 	can be obtained from (6.45) by 
to 

premultiplying by f 1 ' - 0 0 0 . . . 0). This means that the terms 

in the above series when preinultiplied by f1  represent successively 

the probability distribution of the existing mutant individuals after 

one generation, two generations, and so on. If, therefore, we oonidet' 

the matrix sum 
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2 

(6.51) 	—(I_Q)_2 
- I+2Q+3Q+.. 

SI 	
• 	 SI 

premultiply it by f1 ' and add the elements of the resulting vector, 

we obtain the average age of a lethal in the stable distribution of 

lethal genes. That is 

(6.52) 1 = 	r' (i — 

f1 ' (I-Q) 1  (I - Q) 	e 
— 'd e1v 	 p 	 — 

	

I 	 a 
= 

SI 

a 	* 
- £S 	S 

	

II 	'' 

Hence 1 = L. 
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DERIVATION OF MAflUX FORMULAE 

(a) Probability of fixation ang exDepted change in the gene trequenoy 

Consider a finite absorbing Markoy chain with (2N + 1) states 

'o' 1' 2' 	 ---2N' the 
ith  state E representing 

the state of i A1  genes and (2N - i) A2  genes in a population of 

2N genes. In other words, a variate X can assume the values 

iJ(2N), for i = 0, 1, ------2N. The ttates B and 

are called absorbing states whereas L, i - 1, 2, - - (2N - 1) are 

called transient states. Let P 3(t1 , t2) be the conditional probabiliy 

that the system is in state E at time t1 , given that it was in state 

at time t2  i.e, it represents the probability of transition from 

to E after a time (t 1  - t2). Mathematically, this means 

Probability [X a X at t1  / X - X at t2i; t1  t2  

Let the process be homogeneous in time i.e. P 1 (t1 , t2) depends only on 

the difference (t 1  - t 2  ) and not on t1  and t2. We can write this 

probability as 	(t), representing the probability that the system is 

in state E at time t + 	t, given that it was in state 
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at time t for zO. This is known as t-step transition 

probability, one step transition probability being written as P. A 

transition from i to j after t-eteps means a transition from i 

to k in one step and then from k to j in (t - 1)-steps, the 

probability of simultaneous realization of these events being 

1c 
V 
 kj 	 for k 	0, i t  - - - - - - , 211. Hence we have, the 

Chapman-Kolmogorov equation (Feller 1951) 

2N 
(A•) 	

(t) - £ 	P P (t-i) 

k-0 	ik kj 

The one-step transition probability matrix has been represented as 

by (2.1). Let the t-atep transition probability matrix be represented 

by P(t). Then the matrix equation corresponding to (A.1) is given by 

(A.2) P(t) - PP(t -1) 

- pt_l p(j)  

t -P 
'V 

The elements of P(t) satisfy the conditions 



(A.3) P (t) > - o 	for all i, jij 

(LA,4) 	for all i 
j-o 

Sinoe P has been partitioned as in (2.6), the partitioning of P(t) 

will be given by 

(A.5) 	P(t) 

where 

o 	JQ 

0 	1 	1? 
, (t) 

Q1j, 
 

L-2 -  

(I - Qt)(1 - 
	P #.-, 	'IV 	_ 

(t) - 	Qt)(1 - Q)_
l  p 

We ehall now show that vectors P (t) 	(t) respectively give 

the probabilities of fixation of A1  and A2  

Let 	(t) be the probability t&at at time t, and not sooner, the 

population with initial gene frequency of A1  as 02N) becomee fixed 
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for A1  and let U 	 be the probability that it has become fixed for 

A1  by the 	tth  generation. 	In other words, we have 

t 
U'' - Lu i 	I i 

Since fixation at t im. t in one generation means that transition from 

initial state to the abaorbing state taea plaoe in one step, we have 

(i) 	(i) -P u 	- Uj 	 i,2N 

Now fixation at time t can tae place in (2K 1) mutually exclusive 

aya, the kth  iay b.ini that the initial gene frequency becomes W( 2K) 

in the first step and then fixation ta*s plac. in (t 1) steps. The 

probability of simultaneous realization of these two independent events 

is P ik Ukt-i) Hence 

CAb) 	1(t) • 	£ 	P 	(t.i) 
]1 

If we denote by V (t) and (t) the column vectors of 	(t) and  
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respectively, we oan writs these re].atjona in matrix notationa 

as 

(t) - Qu (t - i) 

t-1 

Then we have 

(A.12) 2(t) 	(x+Q+Q2+.__+Qt-i) p 

- 	( 1 _ Qt)(1 	)r.f 
D 

- P(t) 

Similarly if 1(t) and (t) denote the corresponding vector of 
fixation probabilities of the other gene A2, we have 
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(A.13) 	(t) 	- (I -Qt) ( - Q)_l  p 

	

-.1 	%I 	V 	, 	0 
= P(t) _0 

If (t) denotes the vector of probabilities that a population with 

Initial frequency of A 1  gene as 1/(2N) is still segregating in tth 

generation, we have 

Qt e 
1110 

We, thus see that the fixation probability veotor (t) and (t) can 

be obtained in two ways either by powering the P_ matrix as in (A.5) 

or as matrix functions of Q_ matrix as proved in (A.12) and (A.1. 
When t -:) , we get 

£ - 2(0) = 	- Q)
-1  P 

j - •(QO) - (i - Qy1  p 

! 
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We thua aee that (A.1 5) provide with an alternative way of proving 

the natrix formula (2.14.). 

Now we give an alternative way of provIng (2.15) as below: 

Let the expected frequency of A1  by the tth generation be 

denoted by q(t) when the initial population has its frequency as 
q(0) 

= I1(2N), and the expected response by the tth generation 

be R(t) - q
(t) - q1(0)• In vector notations, we can put the 

response as !(t) q(t) - q(o). The expected gene frequency by the 

tth generation can be obtained by finding the mean of the variate 

j/(2N) for the distribution given by the ith row of P(t) i.e. 

2N 
(A.18) 	(t) 	E P (t1 

jo 

211-1 
- 	£ P (t) 1 	(t) 

i_I ijj 	i,2N 

In matrix notations, this means 

(A.19) 	(t) 	Qt() 
 +u(t) 

It \ q1  represents the initial change in the mean gene frequency, 

we have 



rim 

P. 

(A.20)q (1) - 	 ( 0) 

211-1 
- £P Xij i_I 	ji2N 

In matrix notation, this beoomea 

(A.21) 	q(1) 	+ 

- Qq(o)+ 

80 that 

(A. 22) (I-Q)q(o) - 
'V IV - 

giving 

(I - Q)12N 	(°) - (I-Q)1\q 
'V V - rV 

(A.23) 
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(A.24) 	R(t) 	(t) — (o) 

- Qtq() +u(t) —q(o) 

- 	(I - Qt) q(o) + (I - Qt) (I - 	P 
'V - 	- 	 ,, .v 	'V 'V 

Qt) 
[(j - Q)1 P2,N —(°)j 'V 	' 

- 4 (i - Qt) (I - 	q 
- 	 'V 

Letting t -'o , this gives the expeoted seleotion limit vector A 
as 

(A.25) A - . -g(°) 

(, 

 

 

 

AC, 

whioh is the same as (2.15) 
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(b) Probability generating function of time until fixation of_A 1 . 

In order to study the distribution of time until fixation of allele 

A1  disregarding the oases in which it is lost, we have to consider 

conditional transition watrix Q°  L iving transition probabilities 
ij 

relative to the hypothesis that the population ends up with the 

fixation of A1 . Following Kemeny and Sne].l (1960), we can define 

P e as 

Pu Ui P ° - 
i 	Ui 

with 

u 	I 

Let 

(A.28) D- dia& (U1 , U2, ------U(1)) 
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Then 

Q °  - 
dIjU 	I(%U 

(I 	QO)_l 	B -.1 	
- Q) 1  

p1? 	 _lU 	'V 	#y 	'V 

In order to derive the probability generating function for the time 

until fixation of A1  relative to the hypothesis that the population 

ends up with the fixation of A1 , bre make use of the probability 

generating funotion of time until homotygoaity given in Watteraon (1961). 

Let T be the time taken to first reach fixation or loss of A1 , 

given the initial population with i A genes and (2N-i) A2  

genes and let 3(t) be the probability that T1  a to Then 

s - P + P io 	i,2N 

and the probability generating function 1T(z) is given by 
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(A.32) iT(z) 	E z • s (t) 
to 

00 4 

= £ LVS 

t1 

fj\ 	O4 
- 2 	/ + £ z S 

t-2 

3 (t + £ i 	I P 	-i) '0 	14 2-1 

t-2 	k=1 ik k 

- 2 	
(i) 

+ z Z Pik 
r:1 2 	

k
t-, 	Ct—i) 

t-2 

- z(P10  + P i, 
2N + 5 z PkTrk 

This can be expresaeA in matrix notations as 

(A.33) 	zQ)(z) 	- 1(1 — Q .2   
'V -  

where s is still a soalar and it(s) is the vector of probability 

generating functions, Menoe 

(A. 4.) 	ff (z) 	z(i — Q) -i (1 — Q) •
ev 

In the conditional case Q and its functions are to be replaced by Q' f%d 
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and its appropriate functions. This gives 

(A) 	O() 	
z (] 	

3Q0).f (0) 
01V 

- zD 1 (I-sQ)D D 1 (I-)D 
evu - 	, 	'U -vU 	, ,.. VU 

- 
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This has been used in (3.58). 

For mean time until fixation of A1 , we differentiate the 

probability generating function once and put z I • This gives 

(A.36) 	(d/dz) 	 - (d/d) D 	( 1r Q) 1  (I - Q)U 

	

gal 	 "-U 	"I 	 Al - 

- D 	2 	
- Qr2  (I - Q) UI OVU ZU1 '' 	 LV ,\l  

- D 1  (I - Q) U 
'V Al 	- 

This can be compared with (2.20). The second factorial noment i.e. 

4 t (t-i ) J is given by 
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(d2/d22) 11O(z)l 	= 2:u1 (-2) s 	(_1  i - Q)_2  (I - Q) 
k.i , - 	-v - 

	

+D 7  (2) 	( 1  - Q) (I - Q)U 

- 	eu1 [(x-Q)2-(I-Q)1Ju 

	

r 	 ^ 11 - 	 - 

? 	(t 2) 	[t (t - 	+ 

- 2D 1  [(I-) 2 -(I) 1 ]u+D'(I_Qyu ,vU 	 - _.wU  

.1.1 [2(I-Q) 2 -(I-Qy 1 Ju 
-v 	iV rv 

which can be compared by (2.22). 
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