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SUMMARY

o A theoretical investigcebtion was made on (a) the limits and
duration of response to selection and (b) the properties of lethal
mitants and their expectation of life in small populations. The prob-
lems were formulated mathematically in terms of transition matrices
and in some cases in terms of diffusioh approximations. In a few cases
explicit formulae were obtained by expanding matrices and solving
differential equations. In most of the cases, however, numerical
solutions were obtained by evaluating matrix functions on the computer.

24 In the case of selection at a di- and tri- allelic locus,
the transition probabilities between the segregating states of a popu=-
latpion of zametes of constant size 2N, determine a Q-matrix., The
average of the total number of times the population spends in the dif-
ferent segregating states on the way to fixation, corresponding to

various initial states are determined by a fundamental metrix (I - 3)'1
where 5 is a unit matrix, The expected change in the gene frequency

of a particular allele in the limit and mean and variance of the number
of generations until fixation of this allele are found to depend on

the fundamental matrix., The frequency distribution of gene frequency
at equilibrium between mutation and selection at a diallelic locus

is also found to depend on the elements of the first row of the

fundamental matrix,



Je With binomial transition probabilities and selection,
the expansion of matrix formulae gave explicit expressions for the
expected change in the gene frequency in the limit, and for the half=-
life of the selection process. For large N and small values of
selective coefficient (s), such that N& is constant, the expression for
the expected change in the gene freguency in the limit was found to
be the same as the diffusion approximation formula of the chance of
fixation expanded in powers of Ns. In the case of artificial selec-
tion bgased on individual measurements the total advance by selection
for additive genes, is 2NI(1 + CI+cC, 12), where I is the gain
in the first generation, C, = §N u)g/o’g"' and C, = -§1¢2(1 + 0 V*/og®)/

no 2. Here o . and “36 are respectively the variance and the third

g g
moment (about the origin) of the breeding values. V* refers to the
‘¥ariance between the coltributions of the n different loci to the
additive genetic variance of the character. The half-life of the
selection process was found to be a function of Ns only, When Ns = 1
and initial gene frequency is half, the half-lifle is about 1.30N but
for initial gene frequency tending to O and 1, the half-lives are
1.58N and 1.03N respectively, It was further proved that the moments of
the distribution of time until fixation of a gene are independent of
terms in s.

b The diffusion apyroximation for the variance of time until
fixation, for a selectively neutral gene and initial gene frequency tend-
ing to zero, is found to be 16N.2(-%2- = 3) where N o 1is the effective
size of the population., With the mean time as hN’, this amounts to a

coefficient of variation of about 54 per cent,



iii

Se Numerical results on the mean and the coefficiant of variation
of time until fixation of a gene, at a diallelic locus, cbtained by the
use of transition matrices suggested that these are functions of Ns
only. Selection decreases the mean and the coefficient of variation
of time until fixation of & gene with additive effects. With rise in
the initial gene frequency, the mean decreases but the coefficient of
variation increases. ©Selection decreases the mean time until fixation
of a recessive gene also, For a dominant gene, however, the mean time
increases when Ns is small, attains a maximum and then decreases., A
gene takes less time, on an average, to reach fixation when it is reces-
sive than when it is dominant. When there is no selection and the two
alleles are equally represented in the initial population, the mean
time until homozygosity is found to be maximum but the coefficient of
variation of time until homozygosity happens to be ninimum, With selec-
tion the maximum, in the case of the mean and the minimum, in the case
of the coefficient of variation, are found to ocour at initial gene
frequencies less than half, As N becomes large and initial gene
frequency tends to zero, the mean and the coefficient of variation of time
until homozygosity approaches the mean and the coefficient of variation
of time until loss respectively,

6. Numerical results on chance of fixation of a particular
allele A, at a tri-allelic locus (A1-A2-A ) obtained by the use of
the transition matrices suggested that it is/ g:penr? en:.nd a OBl

and A

over A 3 lumped

1 2
together and V_ is the variance in superiority, (multiple allelic

where 8 is the average superiority of A

variance). The chance of fixation increases as Ns increases in almost
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the same manner as in the case of two alleles at a locus. It, however,
decreases as NV_ increases. The mean time until fixation of A,
decreases as Ns increases provided szn 41. At higher values of
NA_ it increases with increase in N3, attains a maximum and then
decreases, The effect of increasing szn on the mean time is to
decrease it provided N8 £1. At higher values of Ns, it increases
with inorease in nzvn, attains a maximum and then decreases, The

mean time until homozygosity is found to be maximum when there is no
selection and the three alleles are equally represented in the initial
population., This maximum is found to be greater than the corresponding
maximum in the two allele case.

7« The mean and variance of the distribution of frequencies of
lethal mutants at equivalent loci in a finite population depends on the
mutation rate per locus, the population size and the selective advan-
tage/disadvantage of the heterozygotes carrying lethals, Assuming a
mutation rate of 10-5 s the mean and variance declineg as the
heterozygotes declinep in their fitness from 1.05 to 0.95. At any
given value of the selective coefficient of the heterozygote in this range
the mean is larger for a population size of 50 than that of 10, but
the variance behaves in this manner only if the values of selective
coefficient between 1.05 to 0.00 are considered, In other cases
it is smaller for N = 50 than for N = 10, The mean heterozygosity

behaves in a similar manner as the mean,



8. Assuming 500 loci on lethal bearing chromosomes on which
lethal mutations can occur so that the possibility of the chance of
allelism due to recurrent mutation is practically nil and a mutation rate

of ‘10-6

per locus, the chance of allelism due to identity of genes

by common descent have been studied, It is found that it increases as
the heterozygotes decrease in fitness at a particular population size.
It is larger for the smaller population size and for very small popu=
lation size it may not depend on the heterozygote's fitness, The
allelism of lethal genes declines with time. The decline is sharper for
a smaller population size, Heterotic lethals do not show as rapid a
decline as the completely or partially recessive lethals., The

initial rate of decline is found to be about % to 5 per cent for com=
pletely recessive lethals. This rate agrees well with that predicted by
the formula of rate of decline derived with the help of the distribution
of lethal genes based on diffusion approximation. For a population of
size N and a chromosomal mutation rate of U, the formula for the

initial rate of decline is found to be
2 T W0 (¥ / 11 - (g¥ + 2wl

9 The lethal mutants present in a population at any given time
have an average aze since they first appeared in the population. This
is equivalent to the average time which these mutants would spend
before disappearing from the population, in other words, their average
expectation of life, It depends on the fitness of the heterozygote



and is very high for heterotic lethals but declines sharply as the
heterozygote tends to be neutral and then disadvantageous, The
expectation of life of a new lethal mutant at its initial occurrence is

always smaller than its expectation of life at any subsequent time,



CHAPTER I

GENERAL INTRODUCTION

Selection changes the genetic make up of a population by changing
its gene frequencies. In an infinite population it leads ultimately to
the fixation of the favoured allele unless there is heterozygote
advantage. But in a finite population, the gene frequency undergoes a
random change also from generation to generation. This results in a
distribution of gene frequencies which can be regarded either as the
distribution of frequencies at equivalent loei in one population or as
the distribution of frequencies at a single locus replicated in many
equivalent populations (Wright 1931). As time proceeds this dise
tribution gets broadened with irreversible fixation (or loss) of gene
leading to a state of steady decay when the distribution curve attains
a constant form., The height of the curve then decreases at a constant
rate and becores zero in the limit., The expected freguency of the
favoured allele in the limit is the same as the chance of its fixation
(Kimura 1957, 1962). This chance of fixation can be regarded either
as the proportion of equivalent loei which would be expected to be
fixed in the limit in any line or as the proportion of replicate
selected lines in which an individual gene would be expected to be
fixed in the limit. The limit of response to selection in a finite

population is measured by the difference between the chance of fixation
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of the favoured gene and its initial frequency. The determination of
the chance of fixation of a gene is therefore the basic problem in
the study of limits of response to selection in a finite population,

For a single locus with two alleles Kimura (1957) gave a formula
for the chance of fixation. His method was based on Kolmogorov's
backward diffusion equation. Robertson (1960), Ewens (1963), Allan and
Robertson (1964), Hill and Robertson (1966), Hill and Robertson (1968)
and others used methods based on transition matrices and determined the
chance of fixation numerically with the help of a computer. In the
present study a general theory of the transition matrix approach has
been developed which can give the chance of fixation as well as the
expected change in the gene frequency by a given time in any genetic
situation, The formulae are, however, in terms of the matrices, For the
case of single locus with two alleles and binomial transition
probabilities the matrix formulae have been expanded, giving a formula
for the chance of fixation expressed as a series, Under the conditions
in which diffusion approximation holds, this formula reduces to Kimura's
formula expressed as a series. For the case of single locus with three
alleles, the chance of fixation of a gene is not known, Using
trinomial transition probabilities this has been determined on a
computer and presented in this study. Robertson (personal communication)
has, however, expanded the matrix formula of the chance of fixation for
a multi=allelic locus and given an approximate series formula, His

formula has been compared with the exact computer results for a
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tri-allelic locus,

Since the limit of response to selection is attained
asymptotically, the time to attain the limit is expressed in terms of
half-life i.e. the time by which the expected gene frequency gets half-
way to the limit (Robertson 1960). In the present study, a more
accurate formula for half-life than known earlier has been developed.

The fixation or loss of genes occur after a variable number of
generations. Hence the distribution of time to fixation of a
particular allele disregarding the cases in which it is lost can des-
cribe the nature of the life of a gene until it is fixed, In particular,
the mean and variance of this distribution are of interest. The
general theory of the transition matrix approach provide with matrix
formulae for the determination of the mean and variance of time until
fixation of a gene in any genetie situation., For the case of a single
locus with two alleles, computer results have been presented for the
mean and the coefficient of wvariation of time until fixation of a gene.
Kimura and Ohta (1968) have recently given formulae for the mean time
until fixation from the diffusion approach., Their results for a
selectively neutral single mutant introduced in the population have
been compared with the computer results. They have, however, not
derived formula for the variance of the time until fixation., This has
been done in the present investigation. For the case of single locus
with three alleles, the mean tinme until fixation of a gene is not known.

Computer results have, therefore, been presented for this case.



The distribution of time until homozygosity i.e. either fixation
or loss of the gene describes the nature of the life of a gene until
it is either fixed or lost. When the chance of fixation of a gene is
very near to unity, the two distributions may coinecide, It is therefore
of some interest to compare the mean and variance of time until
fixation of a gene with those until homozygosity. For the case of
single locus with two alleles this comparison has been presented.

Ewens (1963) gave computer results as well as diffusion approximations
for the mean time until homozygosity but not the variance of time
until homozygosity. For the case of single locus with three alleles,
the mean time until homozygosity is not known. Computer results for
the same have, therefore, been presented.

Selection with random fluctuation of gene frequencies leads to
fixation or loss of genes in a population. But reversible mutation or
migration tends to restore the intermediate gene frequencies, This
results in a stable distribution of gene frequencies. In any given
case, a knowledge of the mean and the variance of small changes in gene
frequency gives this stationary distribution with the help of a general
formula given by Wright (1938, 1945). This formula is based on
Kolmogorcv's forward diffusion equation., However, for the case of
balance between mutation and selection with random drift, it has been
proved that the stable distribution can also be given by the means of
the total number of times the population spends in the different

transient states on the way to fixation from an initial state in which
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the mutant individual is represented once only. These means are given
by the elements of the first row of a function of the transition matrix,
This approach can therefore be thought of as the transition matrix
approach for the determination of the stable distribution and their
properties, Ewens (1964), however, described the distribution based on
the mean time spent in an interval before absorption as a pseudo=-
transient distribution.

If we consider a deleterious gene in a large population, mutation
opposed by moderately severe selection would tend to keep the gene at
a low equilibrium frequency determined by the mutation rate, selective
coefficient and the degree of dominance of the gene., But if we take
small samples from such a population with dominance lacking and the
same degree of severity of selection is considered, the mean frequency
of the gene rises to the equilibrium value expected on the basis of
reversible mutations alone, If unfavourable mutation is much more
frequent than the reverse, this may lead to approximate fixation of the
gene, In the case of a recessive lethal the effect of this bottle-
neck due to reduction in the population size is, however, a considerable
decrease in the mean frequency of lethal gene., The distribution of
lethal gene frequencies is given by Wright (1937) whereas the
distribution of lethal chromosomes is derived by Nei (1968). In the
present study the properties of the lethal gene frequency distribution
has been studied from the transition matrix approach and compared with

the properties known from the diffusion approach. In the case of
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heterotic and partially recessive lethals, however, the present
approach gives results which were not known previously,

In the case of lethal genes an important problem is the detere
mination of the chance of' allelism, This can be regarded as the
proportion of eroszes between lethal bearing chromosomes which produce
lethal gygotes. Allelic rates have beem found useful in discriminating,
from experimental data on Dposophila populations, whether recessive
lethals extracted from natural populations have a deleterious effect as
heterozygotes or not (Crow and Teminm 1964), Dobszhansky and Wright
(1941), and Wright, Dobszhansky and Hovanitsz (1942) gave a formula
for the determination of allelic rates. Nei (1968) modirdied this
formula, Here Nei's formula has further beem modified to deal with an
infinite nusber of loei on lethal bearing chromosomes, Allelic rates
have been determined using transition matrix approach, in the case of
heterotic, completely recessive and partially recessive lethals,

Apnother interesting problem, in the case of lethal genes, is the
decline of allelism of reces:ive lethals extracted from natural popu=
lations at different times (Wallace 1966)., Wallace suggested a
functional relationship between the allelie¢ rate and the tinme interval
between the sampling of the first and the second set of lethals, Prout
(1967) proved this relationship to be approximately correct by using
recurrence relations between the gene frequencies in the suocessive
generations subject to systematic and random pressures. Using trans-
ition matrices an alternative way of predicting the decline of
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allelism with time has been suggested by Robertson (personal
communication). On this basis, the decline of alielism with time has
been studied in the present investigation. The initial rate of
decline has also been worked out with the help of Wright's equilibrium
distribution formula.

The expectations of life of a lethal mutant at its initial
ogeurrence as well as at any given time when it is represented in the
population more than once have further been investigated in this study.
These do.not appear to have been studied previously.

The plan to be followed in the succeeding chapters is this: a
general theory of the transition matrix approach for the study of (a)
response to selection in a finite population and (b) the gene frequency
distribution at equilibrium between selection and mutation is given in
Chapter II. For a single locus with two alleles and binomial transition
probabilities, matrix formulae are expanded in Chapter III, Diffusion
approximation for the variance of time until fixation has also been
discussed in this chapter, This is followed by Chapter IV dealing with
numerical results on the mean and the coefficient of variation of time
until fixation using binomial transition probabilities. The numerical
results on selection with trinomial transition probabilities are given in
Chapter V. In the last Chapter, the properties of lethal gene dis~-
tribution, allelism, and the expectation of life of a lethal mutant are

presented.



CHAPTER II
THEORY OF TRANSITION MATRIX APPROACH

In this section the basic theory of the transition matrix
approach is developed from the first principles. First only selection
in a finite population is considered. Matrix formulae are developed
for the fixation probabilities, the expected changes in the gene
frequency and the moments of the distribution of time to fixation for a
single locus with two alleles and three alleles. Next mutation at a
low rate is introduced in the case of single locus with two alleles to
compensate for the homozygosity due to random elimination. The resul-
ting stable distribution is expressed as the elements of a certain row
of the fundamental matrix, and the properties of the distribution abve

developed.
2.1 SELECTION AND RANDOM DRIFT

2.11  DIALLELIC LOCUS

Consider a finite population of gametes of constant size 2N and
a single locus with two alleles A1
assume (2N + 1) states E, By eee By, the 1* state E

and Az. Such a population can
i
representing the state of 1 A, genes and (2N - 1) A, genes. The

states Eo and 321! represent respectively the state of A2 and A1
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genes entirely and therefore once the population assumes these states,
it gets fixed for either A! or A, allele, In Markov chain
terminology, such states are known as absorbing states, On the other
hand, any other state 5,, 4= 1,2, ... (2§1), represents a
mixture of A1 and Ag genes and therefore once the population is in
this state, it has a possibility of going out of this state to any
other state inclulding the absorbing ones, In other words, this means
l‘ state reprosents a state segregating for A, and A! genes with
mpoﬂions‘lli/(ﬂ) and (1 -q‘) respectively, These are knmown
as transient atates. Suppose Pu represents the conditional
probability that there are J A1 genes out of 2N genes after one
generation, given that there were i A' genes out of 2N genes

in the previous gemeration, Since there are (2§ + 1) possibilities
in the previous as well as in this generation, we have (28 + 1)x(2N + 1)
Pu'l which can be conveniently represented by a matrix P as given
below, Also, if all the genes are either of A, or Az types, P“
and Pﬂ,ﬂ will each be one but P°J and Pﬂ,‘ will each be sero,
where J can have any value between 1 and (2§ - 1), S0

1 0 vige 14 0

P P

10 P - - Py (2m) 1,28

(2.1) P = | ® % 8 8 0 00 0690 0606 0600606066690 0608060008 8

Plawe1),0  Flamet), 1o - Plomet),(2met)  P(2e1),2n
0 0 AT [¢] 1
T Sy
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Suppose we consider transitions between the transient states only, then

the transition probability matrix can be represented by 2{ as given

below.
O |
P11 . & & & P1’(w-1)
(2.2) Q = | ® ® & o s s i s s 0000000000
~/
P e *» & 0 0 P
(2n=1),1 (2Ne1),(28-1)
> T N
If f_._q ’ P'g! and Q' denote the row vectors as given below

(2.3) P'g = [Pw' Pogs o » o P(,‘,N_1)’o]

(2.4)  Plog =lPi,om Po,om, + * + Plamer), )
(2.5) 0'=1[0, 0, « « &« 0]

then ’5 can be written in a partitioned form as

1 0 '
P P
-2 2N S

Now suppose we consider the transition probabilities after
t-generations and denote them by ng) with the corresponding Q@ matrix
as Q(t). Then we know from the theory of finite Markov chains

~
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(Ksmeny and Snell 1960) that

(27)  4(s) = ¢

Now comsider the matrix suam

(28) 2A)mTegedfe.,. e

MAII is a unit matrix with ones as the diagomal elements and zeros
elsewlere, The elements in the 1™ row of 2(t) give the expected
total nusber of times the population spends in the different transient
states by the t'® generation, having started from the state By
Suppose U(t) and R(t) demote the column veetors of the fixation
probabilities and the expected changes in the gene frequemcy of A,
respectively by the t°" generation, whereas Foy ama Ag dencte the
column vectors of the fixation probabilities and the expected changes in
the gene frequemey of A, respectively in one step, Now fixation by
the t*® generation means that starting from %y, the population assuses
the different transient states in the first (t = 1) steps and them
achieves fixation in one step from the assumed transient states. This
means that the fixation probability is the sum of the expected total
nusber of times the population spends in the different tramsient

state by the (% = 1)™ generation, multiplied by the corresponding
probability of fixaticn in one step, That is,

(2.9) u(s) = 2(¢ = 1) Fa
Similar considerations show that

(2.10) B(¢) =2t =1) Ag
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Since the P_ matrix is a Markov matrix with elements as probabilities,
it follows from the matrix theory (Faddeeva, 1958) that the roots of
3 are all positive and less than unity and therefore the inverse of

(I-9) exists i.e. [I - Q] # 0. Also we have, then

(2.41) T =1) T +Q+:.c0ss+ o
ad Y ~ oV
Tl e O

Hence, we have
(212) W(e) = (1= ") (1- 07" py
(2.43) R(¢) = (1-9% (1- Q" Ag

Moreover, as t> 0 , 'Qlt — 2,’ a null matrix with all the elements
as zeros, so that if U and R denote the vectors of the eventual

fixation probabilities and the expected changes in the gene frequency

of A, in the limit (i.e. the selection limit) respectively, these are
given by
-1
- U -
(2.14) U=(I-Q) Poy

(215) R=(1-Q7" Ag

U(t) and R(t) can now, alternatively, be expressed as
(216) u(t) =(1-9") u

(217) B(e) = (1-4¢") R

The time which a population, with a given initial gene frequency,
takes to get fixed for this gene is a random variable on the hypothesis

that fixation for this gene takes place with certainty. It is, therefore,
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important to investigate the average number of generations taken for
the fixation of the desirable allele disregarding the cases in which
it is lost. OGince

(2,18) tdm. FS) n T+ Q@+ QR ¢ L h i uis

s " ~
=T
~

it follows that the elememts in the 4i°B

row of 3 are the averages
of the total number of times the population spends in the different
transient states on the way to eventual fixation from an initial
state i, This is called the fundamental matrix of the absorbing
Markov chain. The row sums of this matrix give the average time to
absorption in the absorbing states from various initial states, Here
it corresponds to the average time to homozygosity. Expressed in

vector notations, this is given by

(2.19) m=Tege

where e 1s a column vector with all the elements as unity. As the
proportion of times that a population goes from a particular state to

the fixation of the allele A1 is given by the elements of the vector

U, the vector M given by

(2.20) ¥=(1-97"y

-2
= I - Q P
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gives the mean total number of steps needed for the fixation of the
allele A,, The mean time until fixation of A1 is therefore given
by the ratio of the elements of vectors )} and U respectively.
If we expand (I --‘3)‘2 in (2.20) we obtain

2
(2.21) !-(£+23+52 """')fg

This shows that we can obtain the various moments of the distribution
of time until fixation of the particular allele disregarding the cases
in which it is lost, by generalizing this formula. For instance, the
second moment is given by the ratio of the elewents of vectors ¥V and

U respectively where V is given by

(2.22) 1-(5+2‘?3+3232+. e ove) Py
= [2A1- 97 = (1 - O] By

The variance can then be obtained by subtracting the square of the mean
from it.

The matrix formulae for the moments of the distribution of time
until loss of A

1
obtained by substituting Po in place of .I_’-g in U, M, and V.

disregarding the cases in which it is fixed, can be

An alternative method of deriving the matrix formulae for U, R,

X and ¥V is given in the Appendix,
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2.12 TRI-ALLELIC 10CUS
Consider a finite population of gametes of constant size 2N

and a single locus with three alleles A1, A2 and A}. Such a
population can assume (N + 1) (2§ + 1) states, If the population
consists of 4, A, genes, 1, A, genes and (20 =~ i, = 1)) Ay
genes, the population is said to be in state x“;‘z with 11 + 12
less than or equal to 2N. These states can be grouped into three
classea depending upon the kind of genes present in the population:

elass I: B A1,A2 lost 4.e, AB is fixed
Bo,zl A1,A5 lost 4.e. Az is fixed

AZ’A’ lost i.e. A1 is fixed

Thus there are three absorbing states

elass II: 311’12 ? 11.12 7 0 such 1‘012'2!. i.e. Ajhloat

R11,° : ‘1 *O or 2N i.e. AthOBt
Bo,iz 3 12+0 or 2N i.e. A, is lost

Thus there are 3(2N « 1) states such that exactly
one of the three genes is lost, In these cases the
population behaves as described in the previous section
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class III: 311’12 : 4, #0, 1,40 and 4y +1, L 2N

Thus there are (N - 1) (2N - 1) states such that all

the three genes are present,
These states can be geometrically represented by triangular coordinates
as in Figure 1. The states in class I are represented by the vertices
of the triangle. The states in class II are represented by the
interior points of the sides of the triangle., The states in class III
are the interior points of the triangle, The totality of transient
states is the sum of states in class II and class III i.e.
(N+ 2) (2§ - 1). There is, however, an important distinction between
the transient character of the states in class II and class III, If
the population is in one of the three categories of class II states it
cannot go to the transient states of the other two categories of this
class as well as to states of class III and to one of the absorbing
states, For instance if the transient states of the type 311.0

considered the transitions are not possible to states of type Ei 30
1°°2

E of class II, E of class IITI and E « This simplifies

0,
theiftruoture of the tranaition matrix considerably as will be sbown
below, But if a state belongs to class III, the transitions are
possible to all the states of class I, II and III,
The transition probabilities are of the type (1, 1,) (3, 3,)
representing the conditional probability that there are 31 A1 genes,

32 A2 genes out of 2N genes after one generation given that there
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Fig. 1 A geometric representation of the state
space at a tri-allelic locus,
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were 11 A1 genes and 12 Az genes out of 2N genes in the
previous gemeration. Since there are in all (N + 1) (2N + 1)
states, there transition probabilities are arranged in a £ of order
(N+1) (20+1) x(N+1) (2N + 1). whereas since there

(N +2) (2§ - 1) transient states, the Q- matrix will be of the
order (N+2) (2N~-1) x (N+2) (2N=~1), If we denote by

f'.m’ P_'Sh.g and i‘_g.g row vectors of order (N + 2) (2N -« 1)
as representing the one-step transitions for fixation of Ay Az and

A1 genes respectively, the partitioned form of ’5 is given by

1 0 0 o
0 1 0 '
(2.23) P= 2
i 0 0 1 o'
Pas  Tom  Tme A
[ po it

where Q' is a null row vector of order (N + 2) (2N =« 1), The Q-
matrix can further be partitioned as

e
Y2 o 9 9
0 Q 0 0
(2.21“) Q - ~ ~ 5 Ar ~
~
9 9 %23 »
D42 Dys o3 N 7

where 312 represents the transition probabilities between states
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E of class II i.e. a two-allele situation A, = A_.

Similarly 31 3 is for A1 - A3 and 323 is for A2 - A} situations
respectively, 3‘ represents the (N =1) (2N =1) x (W=~ 1) (20 = 1)

matrix for transitions between states Ei 5 of oclass ITI, D
1°%2 il
represents the transition from states of class III to Ei i type
ety
states of class II, 312 represents the transitions from states of

class III to E type states of class II and 323 represents the

i

1!

transitions from states of class III to Eo " type states of class
e

b ¥
In view of the well known matrix operations on partitioned
matrices, the fundamental matrix 2', introduced in the previous section

and equal to (5 -3).1 is now given by

LA pIE:
T12 hd L 4
0 T 0 0
(2‘25) 3 - ~ ~13 ~ A
9 2 To3 2
& % *
g 1T 0T SO ) 7 e e 2
3, —

-
(2.26) 2,,= (1-3,,)
(2.27) 313 = (I "313)
(2.28) o3 = (I - %23

(2.29) 1* = (2-99"



The vectors of the probability of fixation and the expected change
in the gene frequency of A1 in the limit are, therefore, given by

Now Pﬂ is a vector of transition probabilities for
transitions from the transient states to the absorbing state rep-
resenting the vertex EZH . in the triangle in Fig. 1 in one step.

»

It can be represented by a partitioned row vector as

(2.32) Ploy, =[Plop Plop 9 Pyl

where zP'g! represents the row vector of one-step transitions for the

fixation of A, starting from the cases in which A, is absent.

1 3
JP'g! is similarly the vector for the case when initially A, 1is
absent, and P" is for the case when initially all the three genes

|

are present. Obviously if initially A_' is absent, there is no

question of fixation of A,, Hence there is a null row vector also

in P'ZH o DNow with this partitioning the fixation probability

vector U consists of four co nent vectors U U U and
s | piy =3 R

U* given by
(2.33) Uy = T, Poy
(2.34) _‘_Ju R L ﬁﬂ



(2.35) Upy = 2
@36) = Cudg*2ody

Here ‘Eig and Eil are the usual fixation probability vectors for

two allele A1 - A2 and A1 - AZ situations as discussed in the
previous section. U* is the fixation probability vector for A,

when initially all the three genes exist or in other words the initial
state is somewhere in the interior of the triangle in Fig. 1. For
fixation in the vertex E2N,o from such a state, there are three
possibilities. One possibility is that it can go to one side of the
triangle representing 311,12
The second possibility is that it can go to the side of the triangle

with 11 + 12 = 2N and then to EZN,o'

representing E11,° and then to EZN,O’

can straight go to B, . The matrix formula (2.36) derived
s’

Third possibility is that it

above shows that when the initial state is somewhere in the interior

of the triangle, the fixation probability is the sum of the

expected total number of times the population spends in the interior

states multiplied by the sum of the corresponding one-step probabil=

ities of fixation via the three different paths enumerated above.
Similar considerations show that if we break down the vector of

the expected changes in the frequency of A, 1in one step into components

1
284, Ay, & Aw e

(2.37) A’% » [zA'qa" }A'Q-" 9, A"&]
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and the selection limit vector into components R R R
i ogie b e
and R*, we get

(2.38) Ry = Ty, 504

(2.39) Ry = iy 3Ag,

(2.40) By = 2

(240) B = 2 (B R+ By By + pTy)

This gives a matrix formula for the evaluation of the expected limit
of response to selection in a single locus three allele situation.

We have derived above the matrix formulae for the fixation
probability and the expected change in the gene frequency for the allele
A1. S8imilar results hold for the alleles Aa and. A,.

For the mean time until homozygosity, we can write, in vector

notations
(242) m = Te

If m consists of four components m, , h, 5 and m* corresponding

to the four initial situations described earlier, we get

(2.43) m = ,5 8
(2.44) m, = ’Tvz_-_
(2.45) my = ’1'3_0,
(2.46) 5* = T [D,m +Dym +Dyym 4]
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For the second moment of time until homozygosity, we have the
relation
(2.47) 3y = (27-1)3z

Iif is broken down into four components v v v, and
p 4 12 g! 3
!" we get

(2.08) v, = (22, -1 n
(2.09) v, = (27,-1) By
(2.50) vy = (275-1) m,

(2.51) x* = ™ [,»12_‘_’1*,913:2_*,9253*25"3]

In order to evaluate the mean time until fixation of the A1

allele disregarding the cases in which it is lost, we have to evaluate

(2.52) ﬁ = 3&

As usual if we let

']

ll'2 ’

(2.53) u'y = [0y, W,
we get

(2.54) M, = T,
(2.55)

-
(2056) 21 = 2
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(2057) .!* » 3. (D12 :E "’3135'1 "’H")

~

The required mean time will be given by the ratios of the elements of
the vectors N and U M and U and M* and U* pespectively.
12 3 13 = - * ¥

For the second moment of the distribution of time until fixation

of the A

1 allele disregarding the cases in which it is lost, we have the

relation
(2.58) ¥y = (23-3)ﬁ
v

If _V_t consists of 112, 13 V23

(2.59) v,

o
n
—
N
=)
]
24y
o
=

(2.60)

(2.61)

L
2
b
]
o
|

(2.62) T (D, V * o U*)

A} BLTRET RS R it

g
"

The required second moment will be given by the ratios of the elements

of the vectors Eg and U12, V13 and 015

and V¥ and U*
respectively,
Similarly the moments of the distribution of time until fixation of

either A2 or Aj disregarding the others ean be derived.
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2,2 MUTATION, SELECTION AND RANDOM DRIFT

Suppose we consider S loei at each of which there is

initially one mutant A, and (2N = 1) normal A, alleles, This

means that the population is initially in E1 state, Each locus will

eventually become homozygous in the absence of further mutation,
Suppose S5 is so chosen that on an average one locus becomes homo=
zygous per generation. We can, then introduce a new locus having one
mutent and (2N « 1) normals each generation to balance this loss.

This would lead to an equilibrium state with mean number S 13 of loei

having J mutants, where J can take values 1, 2, sesee (2N = 1)
(2n-1)

and S = IS .
g=1 '

recurrent Markov chains that the S 4 J's can be obtained by pre-

multiplying the fundamental matrix T by a row vestor f', = (1,0,0...0)

It follows from the ergodic property of irreducible

containing unity in the first place and zeros elsewhere and therefore
-1
(2:63) & » ¢4, (1aQ)™ o

This shows that the mean number of loci having J mutants in
equilibrium is eguivalent to the mean number of generations which the

population spends in the state E, on the way to fixation or loss if

J
there had been no balancing effeet by mutation., Now if the mutation rate

1
be on an average 2N u new loci each having one mutant and the rest

from A, to A is u (reverse mutation being negligible), there would

normal each generation., Hence there would be required 2N u 8 loei
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initially instead of S to determine the equilibrium state and the
mean number of loei having j mutants in equilibrium would be

2N u S1 5 The mean and variance of gq, the frequency of A1 in
the equilibrium state are given by

2l~1
(2.68) B(q) = 2§u Z 8, (y/20)
=1

2N-1
(2.65) 5[q-5(g)]® = 2nu I 8y (va® - (o)

The mean frequency of heterozygotes in the equilibrium state can be
obtained from

2N=1
(2.66) E[2(1 = q)] = 4Ny Jz1 84 (¥/2N) (1 - y/2n)
" !
This quantity is proportional to the contribution of the losus
towards the genetic variance of the stable population and shows that it
is proportional to the population size if N u is small,



CHAPTER III

EXPANSION OF MNATRIX FORMULAE AND
DIFFUSION APFPROXIMATIONS

The theory developed in Chapter II can be applied to specific
genetic models, In this chapter an analytical treatment of selection
with random drift and diallelic locus is presented. In the first part,
matrix formulae developed in 2,11 are expanded taking into account
the binomial transition probabilities. The algebraic expressions for
selection limit, half-life and moments of the distribution of time to
fixation are discussed. In the second part, the diffusion approxi-

mation for the variance of time until fixation is derived.

31 EXPANSION WITH BINOMIAL TRANSITION PROBABILITY
If no selective forees are operating and the transition probabilities
are of the binomial type, the situation is what is of'‘ten known as Wright's
model (Wright 1931). Here starting with a given frequency q = i/(2n)

of allele A, (with 1 = q, = frequency of Az) in linss of constant

1
breeding size of N 4individuals, we can consider the second generation
as derived from the first by the sampling of groups of 2N haploid sets,
the gene frequency in the different groups being distributed binomially
with mean 2Nq1 and index 2N, The next generation is then the

repetition of this process, each line giving rise to a group of lines
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whose gene frequencies are binomially distributed about the mean of
the parent line, Now let A1 genes have a selective advantage of

(1 + =/2) over A, genes with selective advantage unity, so that the
relative number of offsprings have expectations proportional to

(1 +s/2) and 1 respectively where s is small, That is, we
assumeé that a large number of offsprings are produced but exactly 2N
of these survive, Assuming further that the selection operates
before sampling, the gene frequency in the different groups are dis-
tributed binomially with mean Zﬂqi' and index 2N, where qi' is

the gene irequency of A1 after selection and is given by

]
(3.1)  q;' = q; + bqy
2 A
= q+3 q1(1 qi)/(1 + qisy/2)
qu being the change in the mean frequency of A1 due
to selection in one step when its frequency in the previous generation
is Qe Thus with haploid selection and binomial sampling, we can

regard the number of A1 genes in any generation as a Markovian

variate with transition probability P 13 given by
2” pem ey
(3.2) Py = (.1 )(qi')" ey )™ =9

These probabilities, therefore, determine the P- and Q- matrices

introduced in 2,11, We can now expand the transition probabilities in
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powers of 's'. for a given N and utilise the properties of the

transition probability matrices with no selection, referred to here-

af'ter, as Po and ,Q\?. The properties of these matrices, in terms of
~

the eigen-roots and vectors, are discussed in Feller (1951) and

Robertson (1952).

Let b be approximated by = (1 =4q,) (1 --'-q )« Then

94 2 4 i B

Pi.i can be expressed approximately upto terms in 52 as

(3.3) Pyg = Pyylo) [1+3a,,+s%b,,]

where
2N —_—
(3es) Py (0) = ( : )qgu- W=

is the transition probability with no selection and a; 3 and bi 3

are given by

(505) ‘15 » N(QJ - qi)

N2 2 Ll 1
(306) bid - ? [qa *(1 "’E)qi ‘ZHQJ-EQJ]v

In terms of Q, we can write, upto terms involving s2,
e

' 2

+ 8 »

(3.7) S'Qo*'?@ Sg

where Q ' and " are (2N -1) x (2§ = 1) matrices with 1 , j

2



elements respectively as

(3.8) 83 Pid(°)
and

Now we have proved in 2.11 that the vectors R and R(t) are
obtained by operating certain funetions of 39 on to the column vector
of the change in the mean gene frequency in a single gemeration, This
column vector is expressible in terms of the right hand eigen-vectors
of Q .  Hence the expanded form of R and R(t) ocan be determined
if w:'know the operations of certain functions of 29 on to these
vectors., It has been found that we need nine operators and the first

three veotors of Qo. The vectors are
~

(5010) ﬁ - [x11, x12) L R ) x."(zu'_ 1)]! x1i. qi (1 peid qi)

(3011) xz = [x21t x22: s e 0. 2,(2“- 1)]: x2i - qi (1 - qi)(‘! - 2(11)

(312) X3 = [Xgp, X0 o0 v 0 o Xy 0y 1)ds

x}i » qi(1 . qi) [122“-16 - q1(1 - ‘11)]

These vectors correspond to the three eigen = roots of Qo given by
~

(3.13) X, = (1 =1/2n)
(Gata) A, = (1 =1/20) (1 - 2/2§)

(3.15) >\5 = (1 =1/2N) (1 = 2/2N) (1 = 3/2N)



.
respectively. The results of performing these operations are given in

Table 1, where only the 18 operations out of the 27 possible are

given, which are actually needed in the expansion of R and R(t).

3.1  EXPANSION FOR THE EXPECTED SELECTION LIMIT

In Chapter II, the selection limit vector has been expressed es
the operation of (5 - Q)"1 on to A q, the vector of expected change
e 4 | ———

in the gene frequency in one step., Zach of these, when expressed in

powers of 8, upto terms involving 12, are given by

(316) (1= = (x-0) +a(x-9)7 g (x-0)"

+ LI -9)7 o)

$A BTN T e & 0 1%
(3.:47) Aq = 5(1 '%)ﬁ’gfa

The item by item operation of the terms in the expansion of the matrix
on to those in the expansion of the vector has been performed with the
help of Table 1., The result, expressed as a linear function of the

three vectors 3(_1_ ’ fﬂ and _Xj is given by

(3.18) R = a



TABLE 1 MATRIX OPERATORS AND VECTORS

% o

Ao %, )\55

2 X L X
3N -1.2 | 12N - 11N + 3 ==

: .

>‘2_x_g >‘3_xj

N .

-5 %)

2N 122 N
o B e o e o 9 o g
i«/\ (6 W, X, - . U}
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TABLE 1 CONTINUED
- 3 £ 3
Q" A(ex 5 31.xz) > %!
4 1282 N N
MR o R AT e g n
A A AR
tyn X 2 & 2 2 Lo o
(?3) 8 "[6(}\2“%5‘”1 )‘l"’\2'3+(>‘1’)‘2)(>‘2'/\3)W2)51
()\ +)\) 2A
t-1 2
R e H EA) then P A
p )\t_/\t
N.B. L woAI=g W, = (T—-T"

Ag<L A
Y - G v = (-/\—2.—;?



where

8113 7N+2

3N -

(3.19) a5 = Ns [1-(./u>-( ) ) (s%/8) ]

(3.20) = Ns? [7———) (1 -8/2) ]

P HM 1) (Kt} iled) = Mo1

(3.21) 2(3N - 1) (121?-111‘-0}) . 1252-111!*}]

Starting with an initial gene frequency q, the expected selection
limit or the chance of its eventual fixation u(g) minus the initial

frequency is then given by

(3.22) u(q) ~q = a,,q(1 =q) +a,;a(1 - q) (1-2q)
e50 a(1 = a) [-1%%'7!3 - q(1 ~q)]

If N becomes very large and s becomes very small such that Ns is

kept constant, we get

(3.23) w(a) -q = Ne(1 - Ws%/15) q(1 = a) + 3 9%6® q(1 = @) (1 - 29)
#3908 q(1 - q) [ - a1 - q) ]

= Ns g(1 -q) + -15 ¥s% q(1 = q) (1 - 2q) --15 Ws? q%1 - )°

This expression is exactly the same, upto terms involving N} 33 s as tre

expanded form of the formula of chance of fixation obtained by diffusion
approximation and given in Kimura (196L).
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The ratio of the expected response in the limit to the initial

response of % q(1 = q) is given by

(3.28) D=9 . oon1+dme(1-20) - ¥22 g1 = @) ]
8 3 3
3 a(1-q)

This shows that for q = &, this ratio is 2N(4 -'£% Nzaa) but for
g tending to O and 1, this tends respectively to 2N(1 +% Ns)
and 2N(1 --;-Na).

If we wish to project the response, expressed above in terms of
the gene frequency, on to the underlying quantitative trait, in the case
of artificial selection, we have to assume the absence of natural
selection and use the following relation between the selective advantage
s and the intensity of selection 1, imposed artificially, as given

in Robertson (1960),
(5025) 8 = I Q/O'

where 'a' refers to the difference of units on the metriec scale between
the mean of the two homozygotes for the additive locus under consideration
and 0 is the phenotypie standard deviation. It may be ncted that the
haploid model is a fairly good approximation for the diploid situation
with additive gene action, the diploid genetic variance merely being
double that of the haploid genetic variance.
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Swmming the contributions of the individual loei and using the
relation between s and 'i, the expected change in the limit in the

character (L) under consideration is given by

(3.26) L = I a[u(lg)~-q]

-\ 2
_%?_z,zq(,-q)+%(%£) 2 e g1 =q) (1=-29)
3
iy | (—'L’) £ a* q2(1 - ¢)?
5 o

If O’G and “38 denote the standard deviation and the third moment

(about the mean) of the breeding values (Falconer 1960), we havé

(3.27) o2 = §2a®q(1-0q)
Hyg = Iza"'q(‘l-q) (1 - 2q)

(3.28) uov* » Jn-o': = -};z o q2(1 - q)2

where V* refers to the variance between the contributions of the n
different loei to the additive genetic variance of the character.

Hence L is expressed as
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2 Hig

(3.29) L = 20 [Ing, +5N —,;(Ihas)z
0'5
2 N2 nZV"' 3
-3 jm?("*-;;r)(lhd‘s)]

where h° = o"z/oz, the heritability of the traif, Since the initial

change in the character is given by

(3.30) I = Eagq = Ihcrs

the limit 1L can be finally expressed as

(3.31) L = 2NI(1 +CI+ c212)

where
2 K
(3.32) C, = =N 2
3 Us
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3.12 ANSION FO i EXPECTED GI g Gl SQUENCY BY THE

£*®  GENERATION

The vector of the expected change in the gene frequency of A, by

1
the tth generation has been expressed in 2,11 as the operation of

the matrix (I - Q%) on to R, the vector of the expected selection
~ ~
limit. The former, when expressed in powers of s upto terms involving

52, is given by

(3.3) (1=0%) = (1=q)) - o(@®) - S2(a%)"

whereas the latier has already been expressed as the linear function of

X, X, and X; by (3.18). The item by item operation of terms in

(I -Q%) on to those in B has been performed with the help of Table 1.
n ~

The result expressed as a linear function of X is

A, and X
given by

(3.35) B(t) = (049 %0 AJ+e, AD X,

B B
+ lagg v ay Af+ay )‘2)3‘3

t t t
+ (°30+°'}1 )\1-&0.32/\2-&0.}3)\})-12



(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

1

12

3

32

33

39.

(N=1) (282 + N« 2) + N(2§¥ = 1)t g2
(=) 1]
5N - 3 8

- ve [1 - () -

(N =-1) (v =-1)

3
() letam - 3) (w - 1)

]

- (§8) [§ (1 = 8/2) ]

(2N - 1) 0§

= (ne)® [t (1= 8/2) ]
bt (N'e)j [12N2 - 9N + 1]
" "4N(sN - 3)
= 8} (2N-1)
(ns) [2(”_1)]

5 48N = W~ 7300 + uNZ - 23N + 3
--(N.a) [
UN(3N = 1) (5N = 3) (120 = 11N + 3)

For initial gene frequency q, the expected gene frequency by the

1;th

generation, written as Eﬁ-‘t), is then given by

(3.43)  E(g,) = a+ (a0+a, Z+a, NE) g(1=g)

+(apy + 0g AT ey, NB) (1 =) (1 - 29)
t t t
+(c150+o,31 >\1+o.52 >\2+a.” 5)

q(1 - q) [-;a-gf-:'-g - q(1~-q)]
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Vhen N Dbecomes very large and s very small such that Ns is
held constant, we get

(3ob)  Slay) = 0+ Hlt = (1 =22 %) axpl = /20) = 22 ey 2v/2m)

.2
01-;-@(-”/3)

®
-fg-w(-wm) g1 - q)
+ 3967 11 =2 (e t/28) + 2 empl < 30/20))
.q{1 = g) (1 - 29)
1 9 1
=300 (1 =2 exp(=t/2M) 4 el = 30/20) = 3 eyl = 60/2)]
.21 - )?

3e13 HALE = LIFE

mmr-w-umtmth(umormmror
generations) by which the expected changs in the gene frequency of A
is half that expected in the limit. Hence we have to solve for ¢ in
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the following equation
(3.45) E(q) =a = (1/2) [u(q) - q]

after substituting u(q) and E(q_t) from (3.23) and (3.44) respectively.
This gives an equation of the sixth order im x = exp( = t/2N)

(3.46) P +BP +0x2 +Dx+ E = 0
where

(3.47) A = --115- (ns)? ['1; - g(1 = q)]

(3.48) B = 2 Ns (1= 20) +5 (5% 7« g1 - Q)]
(3.49) ¢ -=-;15 (s)?

(3:50) D = =1-FNs(1-20) +2 () 5+ o1 - )

(3.51) E = -;-+ Ns (1 - 2q) -% (vs)2 q(1 = q)

o=

Since x = % is an approximate solution (Robertson 1960), an
improved value of x can be obtained by applying Newton - Raphson

methed to the equation,



This is given by

Ax°6 + Bx 3 + Cxoz
(3.52) x=x = -
i 6A:°5 + 33:02 +20x +D

+Dx + E
<]

1+ g Na(1 - 20) + g (8% (3 - q (1 - ) - Fie2q(1 - 0)

)
b 1+§lu(1-2q)+ll252 (-1-q(1-q)) %st a(1 = q)

Since th = = 2N Log' x, it is approximately given by
(3.55) t, = [1.4 +-};xa(1 - 29) + 1,12 §98% (0.16 = q(1 = q))IN

For Ns =1 and q = 3, t, is found to be 1,30N. For q tending to
O or to 1, we have to make use of th = = 2N Zl.oge x as such, without
further approximating. That is

(3.50) 4, = = 2N [Log, # + Logy [1 + 1 Ns(1 ~ 20) + 52 Ws® (§ - a(1- q))
-3 ¥ q(1 - g)]
- Log, [1 +%Ns(1 - 29) + -21-0- Ng? (% - q(1 = q))

__1%“2.2 a1 =q)] ]

For Ns =1 and q tending to 0, the half-life is found to be 1.58N

wheréas for q tending to 1, it is found to be 1,03N. The half-lives
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thus obtained for Ns =1 and g=4, >0 and q>1 are very
close to those obtained by matrix iteration method and given in Hill and
Robertson (1966) (see Fig. 11 in this paper). The half-life expressions
discussed abeve pertain to the haploid selection process when stochastie
variation in the gene frequency due to finite size of the population is
taken into aeccount., It has, however, a counterpart in the deter—
ministic situation as well when the population size is assumed infinite.

In this case the gene frequency in the tth generation is given by
B\t 5.\t
(355) g = (1+D"a/(+[(1+2)%=1]q)

The number of generations required to change the gene frequency by

(1 = q)/2 is
Log, (1 + 1/2q)
Logg (1 + 8/2)

(3.56)
For q =4 and positive and small 8, this can be approximated by
(3.59) t = 2 Log, 2/s

When s = 0,002, about 700 generations are required to achieve the
required change in gene frequency and there is no finite limit for it
as 83 0s In contrast to this, the half-life th, apparently,

approaches the value 1.LN as s tends to be small,



3.14  EXPANSION FO AND VARIANCE OF TIME UNTIL FIXATION

In chapter II we have developed matrix formulae for the mean and
variance of the time until fixation of A1 disregarding the cases in
which it is lost. However, in order to see the effect of the expansion
of 3 in powers of s on the mean and the variance of the dis-
tribution of time to fixation, the probability generating function of
the number of steps needed for fixation of A,' disregarding the cases
in which it is lost, as introduced in the Appendix, is considered.

The matrix analogue of the probability generating function

Il (2) given vy
(3.58) T (s) = 205(1-320)7" (1-Q)

can be expressed in terms of the eigem-roots )\ i(s) and spectral

matrices
(3.59) Hy(s) = X, () ¥, (s)

83,2 ¢« va v iiwt)rop Q, where ﬁ(s) and ﬁ(a) are
respectively the right and left eigen-vectors corresponding to the

root A\ i(a) and s in the paranthesis indicates that all are functions
of 8. The resulting expression is given by

21 -1 -1
(:60) L () = alZ (1= A)™ (1= Aog'E ()1 m
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Expanding (3.58) in powers of s and neglecting terms imvolving s>
and higher powers of s, we get

am(s)

4 g [————t

(3.61) L () = a7 (1-20)7 (1-0) s

X
o ~ NOJ

where

(3062) ig e [1019 102’ . . xo,(m- 1)], xoi = qi

(3.63) Bx = diag [9.1» Uy o » o » ‘1(2”_ 1)]

[¢]

(o) BT o oz - s)™ 4 02 - )

[+]
$(. D_ =D q)(x-.q)"-n%]
‘% ~O NX "’:o T 0 ~x°

. I - x

1= %,

Expanding (3.61) in terms of roots and vectors of Qo' it is found
~

that the coefficient of s vanishes, giving

2N-1
(3:65) L(a) = 8 T 001 =X)/0=sAD12m 070 o
(o] [+]

This shows that to the order s, the probability generating function
is the same as that for no selection case. It is a considerable
simplification since it shows that all the moments of the distribution

of time to fixation are independent of terms in s,
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Differentiating I (2) once with respect to 2z and setting

z =1, we get the vector for the mean time until fixation as

(3.66) 05 SR T 0 1 ,
- = Z k, (1 - D X
. i=1 1 i ~x°
where
2N-1

(3.67) k, = 2 Y, ,q
i 5_113,1

Y,. being the jtB element or the ith left-eigen vector Y, of Q o
—_— ~N

13 3
Differentiating I (z) twice with respect to z and setting

z =1, we get the expected value of t(t = 1) and adding the

expected value of t we get the second moment (about the origin)

vector Hy as

2N-1

e 2 k’_(1+>\1) (1->\1)"2’9;1 X

(3.68) by o "

These relations show that expliecit expressions for the moments of the
distribution of time to fixation are expressible only in terms of all
the roots and eigen~vectors of Qo, the evaluation of the latter
requiring the use of computer, gence the mean and the variance of
time to fixation have been studied by evaluating the matrix formulae on

the computer in Chapter IV,
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3.2 DIFFUSION APPROXIMATION FOR THE VARIANCE

OF TIME UNTIL FIXATION

The diffusion approximation for the mean time until fixation of
e particular allele has recently been given by Kimura and Ohta (1968).
For a neutral gene and initial geme frequency tending to zero, the mean
time is shown to be AR' where H. is the variance effective number
which may differ from the actual population number N if the mating
is not random or if the distribution of the number of offspring does
not follow & Poisson distribution. The variance effective number of a
population is defined as the size of an idealiged population that would
have the same amount of random gene frequency drift as the population
under consideration (Kimura and Crow, 1963). The diffusion approxi-
mation for the variance of the time until fixation has, however, not
been discussed by Kimura and Ohta (1968).

Let us consider a mutant allele A, with frequency q (so that

the frequency of the normal allele A, is 1 = g) in a diploid

1
population of N individuals with variance eff'ective number N.. Let

u(q, t) be the probability that A, gets fixed by the N generation

starting with frequency q at t = o, Let

ol
(3.69) 1, (a) = f t&’%&’ﬂ at

()
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D
2 Dulg,t
(3.70) 8, (a) L t o it
Then
(3e71) ¥, () = 7, (q) /u(q)
(3.72) v, (@) = 8, (a) /ula)

represent respectively the average and the second moment about the
origin of the length of time until the mutant allele becomes fixed in
the population excluding the cases in which it is lost from it. Here

u (q) is the probability of ultimate fixation such that

(3-73) u (Q) = Lim, u (‘b t)

t>-0
If o (q) and B (g) represent the mean and the variance of the rate
of change in the frequency of A2 per generation, then following Kimura

(1962), u (g, t) satisfies the Kolmogorov backward equation

2
TCRCA 1 P SRR G e (7 SRR 1 K1)

Dt > qz Oq

Following the technique of Kimura and Ohta (1968), the set of
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differential equations for T, (g) and 8, (g) are respectively

given by

(q)
(3:79) ¥6 (@ —J-r- + a(q) —-3——‘- + ulg) = o

azs( as, (q)
(3.76) %8B (a) —5 R G e
aq

*a1(Q) = -9

The former differential equation has been derived and solved by

Kimura and Ohta (1968) with boundary conditions

(3.77) lim. T, () = K, u(q), K, being a finite quantity
230

(3.78) T, (1) = o
It is shown by them that

(3.79) K, = N,

(3.80) ¥ (a) = = 4N, Q—;—ﬂ Log, (1 = a)

For the second moment (about the origin) of the length of time

until fixation of A,, we proceed to transform (3.76) into a differen~-

2’
tial equation for V, (g) by differentiating 8, (q) = v, (a).u (q)

twice and substituting in (3.76).



This gives

v, (q) av, (a)
(3.81) 48 (2) —;irq— bt DA 5 L

u (q) dq

where

(3.82) 6 (q) = ild’-q(il

The boundary conditions to be imposed are

(3.83) Lim. V, (g) = K,, K, being a finite quentity
40

(3.84) v, (1) = o

In the case of random drift alone, we have

(3.85) o (q)

n
o

(3.86) p(a) = q(1 =q)/ 20
(3.87) ufq) = g
(3.88) € (q) = 1

+2u (q) =0
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The differential equation, then reduces to

v, ()
aq

av, (a) & M (q)
+ = 0

dq a1 = gq)

2
(3.89) + =
q

The solution of this differential equation after substituting for

N, (g) is given by
(3.90) ¥, (a) = B=2 - 302 [(1 =1~ Log, a) Log, (1 - a) =7 (a) ]

where A and B are constants of integration and F (q) is given by

log q

(3091) F (Q) - ( dq

1=4q
Using the boundary conditions, we get

(3.92) B = A+ 32M2F (1)

1
(3.93) K, = A=3M2[1 +{ l‘if-: aq)
o

—



Thus 7V, (q) 4is given by

1 Logg 4

(3e9) Vv, (q) = Bag2[-jq1 e

dg = (1 =% - Log, ) Log, (1 - a) ]

11
1 2 € 4
+ (1 =) [K, + 320 ( for:’a—dq+1)]

Hence if
1I-og<1

(3.95) K2 = —32N°2 (! ——e-—dq + 1)
1=1q
o

we get

(3.96) v, () = 302[=-(1- f;) Logg (1 = q) + Log, q Log, (1 = q)
1

|

.I:E.E..qu]
'™t

(3.9 £(2) = Pla) -7 (1)

q
g log, q
e

o Sl

is a dilogarithm whose series expansion is given by
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o4
(3.98) £ (q) = & (=)¥(q=-1)%/®
k=1

and there is a functional relationship betwean f (q) and f (1 = q)

given by

2
(3.99) £(a) +£(1-9q) = = log, qLog, (1 =q)+ -";— (12 40

(for these results on Dilogarithm see Abramowitz and Stegun 1965)

Hence V, (g) reduces to
5 4w * i Y
(3.100) Vv, (@) = 3202 [(—=3) Log, (1 - q) + L= - 2 %P
' k=1
Also

(3.101) Lim, v, (¢ = K
q-> o

The variance of time until fixation for gq-> o is then given by

2

2
2
= 16N, (Jg- d. 3

This gives a coefficient of variation of about 53.8%,



CHAPTER IV

SELECTION WITH BINOMIAL TRANSITION PROBABILITIES

In this chapter numerical results on selection at a diallelic
locus with binomial tramsition probabilities are presented. The ratios
of the response to selection in the limit to the initial response,
analytically treated in Chapter III in the case of additive genes, are
obtained exactly(using matrix formula)for additive, recessive and
dominant genes. For additive genes results are presented for the mean
and the coefficient of variation of time to fixation., A comparison
between the timec to fixation, loss and homozygosity is also made in
this case., For recessive and dominant genes however, only the mean
times to fixation are presented., All numerical values were obtained with

the help of the KDF9 computer of Edinburgh University,

4e1 ADDITIVE GENES

The matrix formulae (2.15), @.19), (2.20) and (2,22) discussed in
Chapter II and analogous formulae for time to loss and homozygosity

were used for obtaining computer results presented in this section.

4.11  RATIO OF SELECTION LIKIT TO INITTAL RESPONSE

It is shown in Robertson (1960), that the chance of fixation of a
gene and hence the selection limit are dependent on Ns only so that

these can be evaluated for a given N at a series of values of s,
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This would give results for a series of values of Ns applicable to
values of N other than the one used if s is suitably adjusted.
Hence the ratios have been worked out for N =8 and Ns = 0,031 to
Ns = 8,000, Further, the formulae (3.24) and (3.31) show that these
ratios can be expressed in terus of the population sige. The factor
(ratio / N) has, therefore, been presented in Table 2 for initial gene
frequencies 0.0625, 0.5000 and 0.9375. It is apparent that for

g = 0,5000 and 0.9375 it decreases as Ns increases., For

q = 0,0625, it increases as Ns increases till Ns = 2 after which
it starts decreasing. Whem Ns is as small as 0,031, the value of
this factor is greater than 2 when q is less than % but less than
2 when q i1s greater than 3. At q = &, it is equal to 2, When
Ns is as high as 8,00, it is about 1.7, 0.5 and 0.4 for g Z %, =%
and > % respectively. It always decreases as gene frequency increases

at a particular value of Ns,

4e12  MEAN AND VARIABILITY OF TIME TO FIXATION

The evaluation of matrix formulae on the computer depends on the
population size (N) and the selective coefficient of the gene (s).
But it is known (Robertson, 1960 and Hill and Robertson, 1966) that,
under the conditions in which diffusion approximation holds, the time
scale of the selection process is proportional to N and therefore if
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TABLE 2: Values of (ratic / N) as caleculated by the
transition matrix method for different values of Ns

(additive genes)

INITIAL FREQUENCY (q)

o 0.0625 0.5000 0.9375
0.031 2,016 2,000 1,984
0.063 2.031 1.999 1.969
0.125 2,062 1.997 1,937
0.250 2,121 1.990 1.873
0.500 2,233 1.927 1.743
1.000 2,418 1,854 1.492
2,000 2,611 1.535 1.080

4.000 2,490 0.970 0.648
8.000 1.692 0.500 0.383
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the time is measured in umits of N, the pattern of the selection
process is determined by the parameter Ns at a given initial gene
frequency., The mean time has, therefore, been expressed in units of
N. In order to see whether the mean time and the coefficient of
variation for fixation of a gene, disregarding the cases in which it
is lost, is a function of Ns, a comparison of these for a few
population sizes at a particular value of Ns is shown in Tables 3
and 4 respectively, There is found to be a fair degree of stability
in these quantities due to variations in N at a fixed value of Ns.
The dependence of the mean time and the coefficient of variation on
Ns has, therefore, been graphically shown in Figures 2 and 3
respectively for initial gene frequencies 0.0312, 0,5000 and
0.9687. Both the mean and the coefficient of variation decreases as
Ns increasecs, For a fixed Ns, however, the mean time is highest at
low initial gene frequency and lowest at high initial gene frequency
whereas the coefficient of variation is highest at high gene frequency
and lowest at low gene frequency. When Ns = 1 and the initial gene
frequency is 0.5, the mean time is about 2N with a percent
coefficient of variation of about 70, but for low initial gene
frequency of 0.0312, the mean rises to about 3N with a percent
coefficient of variation of about 50. It is interesting to observe
that genic selection shortens the fixation time but increases the rate
of steady decay (Kimura, 1957).
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TABLE 3 The average nuuber of generations / N until
fixation of a gene with selective value s
as calculated by the transition matrix

method for differemt population sizes (N),

Initial frequency

0025 0050 0075

16 16 .46 0.36 0.27

8 16 0,74 0.56 0.40
8 0.8 0.61 0.43

s 8 1.29 0.94 0.63
L 1.40 1.02 0.67

2 B 205" | 1.5 0.95
2,07 1.55 1,01
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TABLE &4 The goefficient of variation (%) of the
nunber of generations until fixation of a
gene with selective value 8 as calculated
by the transition matrix method for dife

ferent population sizes (N).

Initial frequency

Ns N
0.25 0.50 0.75

16 16 28,36 34425 43.68

8 16 53404 39.25 50423
8 35433 42,20 5he32

4 8 42,59 5044 6L.26
L 45.24 5462 69.40

2 I 53412 65.06 84..26
5470 68.25 82,66
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When there is no selection, the mean increases linearly with N
and the coefficient of variation is practically steady. However, in
the case of mean time, the slopes and in the case of coefficient of
variation, the average values, vary with initial gene frequency.

These variations are shown respectively in Figures , and 5. The slope
inecreases but the average percent coefficient of variation declines as
the gene frequency decreases from 1 to 0. Extrapolating from the:ze
graphs it is found that the limiting value of the slope and the
average percent coefficient of variation are about 4 and 5%
respectively as gene frequency approaches zero, as against the

diffusion approximation results of 4 and about 54 respectively.

4,13 COMPARISONS OF TIMES TO FIXATION, IOS3 AND HOMOZYGOSITY

It is interesting to compare the mean and the variability of
the time to fixation of a particular allele with those of the time to
loss and to homozygosity. As far as diffusion epproximation to the
mean times are concerned, the results of Ewens (1964) and Kimura
and Ohta (1968), provide the following expressions for a neutral gene

with initial frequency gq.
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Mean time until fixation - 4N i log. (1 = q) Kimura & Ohta
e e
q (1968)
Mean time until loss - LN . . Log_gq Kimura & Ohta

Mean time until homozygosity - I;N.[q Loge q+(1-4q) Los. (1 -a)]

Ewens (1964)

In these formulae N g is the variance effective number which may
differ from the actual population number N if the mating is not
random or if the distribution of the number of offsprings does not
follow a Poisson distribution. Agecording to Crow and Morton (1955), the
formula conneecting N and H. is given by

2N
1=F +(1+F)V /u

_(-’4,.1 ) ,Ne =

where F' is Wright's coefficient of inbreeding used as a measure



of the departure from random mating sygotie proportions among the
parents, My and Vk are the mean and the variance of the number

of surviving offspring per parent. When q = 1/(2N) and N is very
large, the mean time until fixation is close to w. while that until
loss is % Log. 2N so that the mean time until homozygosity should
approach the value —N-‘ Log. 2N, These coumparisons, on the basis of
transition matrix methods, are presented in Figures 6 and 7 for

Ns = o and 2 respectively. The dotted lines refer to time until
fixation and until loss (marked respectively 1 and 2 in the
figures) whereas solid line (marked 3 in the figures) refers to time
until homozygosity. When Ns = O and initial frequency of gene is
0.5, all the three curves give the same value of about 2.55N as
against the dif usion approximation of 4N . Iot:ge % = 2.8N o+ The
diffusion approximation, therefore, overestimates the mean time,
Comparison with the half-life of 1.,A\N o shows that the half-life is
attained much earlier than the mean time. For initial gene frequencies
greater than or less than 0.5, the three curves differ and as
expected the curve 3 always lies between the curves 1 and 2,

For q< 0.5 the mean time until homozygosity is more near the mean
time until loss than that until fixation so that when q = 1/(2N),

the mean time until loss is 0,79N as against that until homozygosity
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of 1.02N, The difference is expected to decrease as the computer
results from higher values of N are compared. In the limit, these
should, therefore, be the same as expected from the diffusion
approximation., For q ) 0.5, the mean time until homozygosity gets
nearer to the mean time until fixation, When Ns = 2, the mean time
until homozygosity is found to be practically the same as the mean
time until fixation unless the gene frequency is well below 0.5. It
is interesting to observe that, while with no selection, the maximum
mean time until homozygosity oeccurs at q = 0.5, with selection
this maximum shifts and ocours at gene frequency less than 0.5.
This shift has further been found to increase as selection becomes
more intense.

The comparisons of the coefficients of variation are shown in
Figures Band 9 for Ns = 0 and 2 respectively., As before dotted
lines refer to time until fixation (1) and loss (2) whereas solid line
(3) refersto homozygosity., When Ns = O and initial gene frequency is
0.5, all the three curves give the same value of about 76%. For
q £ 0.5, the coefficient of variation for time until homozygosity is
more near the mean time until loss than that until fixation., For
Q7 0.5, it gets nearer to that until fixation, When Ns = 2, the
coefficients of variation for homozygosity and fixation are practically
the same unless q dis well below 0.5. It is interesting to note
that the coefiicient of variation of time until homozygosity is minimum
at q = 0.5 with no selection but this minimum shifts to q £ 0.5

with selection.
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4,2 RECESSIVE AND DOMINANT GENES

The matrix formulae used in the case of additive genes were also
used for obtaining results in respect of recessive and dominant genes
with the difference that the change in the gene frequency in one-step

was fed in as

2 2 i e
(42) Gqy = A +43)°4 el U503 Bk L
1--2'(1’%1) + hqi(1 "li)

where h = - 38 for recessive genes and h = + 8 for dominant genes.

he21 RATIO OF SELECTION LIMIT TO INITIAL RESPONSE
The factors (ratio / N) are given in Tables5 and 6 respectively

for completely recessive and completely dominant genes., In the case of
recessive genes, it is found that for q = 0,5 and 0.9375 the factor
decreases as Ns increases. For q = 0,0625 it increases as Ns
increases till Ns = 0,25 after which it starts decreasing., VWhen Ns
is as small as 0,031, its value is 11,14 for q = 0,0625. This is
in contrast with the additive genes where it is only 2,016. For

q = 0,5000 and q = 0.,9375, however, the factor is less than their
corresponding values in the additive case., When Ns is as high as
8,00 it is about 5,10, 0.38 and 0.20 for g< %, =% and > %

respectively. In the case of dominant genes, however, it is found that
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TABLE 5 Values of (ratio / N) as calculated by the
transition matrix method for different values of

Ns (recessive genes).

INITIAL FREQUENCY (q)

Ns
0.0625 0.5000 0.9375

0,031 11,144 1,995 1.37%
0.063 114150 1.989 14356
0.125 11,165 1.977 1.322
0.250 1477 1.950 1.254
0.500 11442 1.884 1.125
1.000 10,874 1.719 0.900
2,000 9.920 1.361 0.595
4..000 7.913 0.829 0.338

8.000 5.101 0.375 0.196




The

TABLE 6 Values of (ratio/N) as caleulated by the

transition matrix method for different

values of Ns (dominant genes)

INITIAL FREQUENCY (q)

Ns
0.0625 0,500  0.9375
0,031  1.409 2,005 11,118
0,063  1.426 2,010 11.105
0,125  1.461 2,018 11.073
0,250  1.532 2,030 10,99
0.500 1,670 2,039 10,765
1,000 1,918 1.989 10,066
2,000  2.194 1,700 8,178
4000 2,014 1,104 5.270
8,000 1.184 0.625 3,191
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for q = 0,9375 the factor decreases as Ns increases but for

q = 0,0625 and 0,5000 it increases initially and then decreases after-
wards with the increase in Ns values, When gq = 0,5, it increases
from 2,005 (when Ns = 0,031) to 2,039 (when Ns = 0,500) and
decreases thereafter. For gq = 0,0625, however, it increases from
1,409 (when Ns = 0,031) to 2,194 (when Ns = 2,000) and decreases
thereafter. Whem Ns = 0,031 the factor increases as q increases from
0.0625 to 0.9375. This trend continues upto Ns = 1,00 but when

Ns is equal to 2 or greater then 2, it is lowest at g = 0,5000

and highest at q = 0,9375.

4,22  MEAN TIME TO FIXATION

The behav ours of the mean time until fixation of a recessive and
dominant gene with variation in Ns are shown in Figures 10and 14 for
initial gene frequencies 0,0625, 0.5000 and 0,9375. As found, in the
case of additive genes, the time to fixation decreases as Ns increases,
as far as a recessive gene is concerned but for a dominant gene, it
increases initially for small values of Ns and then decreases. For a
gene with low freguency the maximum occurs at a value of Ns< 1
whereas for gene frequency as 0.5 it occurs at Ns = 1 and for high
gene frequency it occurs at Ns > 1. For a rare dominant gene, therefore,
the limiting value of the mean time until fixation may well be above
“N,‘ For gene frequency equal to half (Ns = 1) a dominant gene would
take about 2,77N generations to fixation. On the other hand a rare

recessive gene at Ns = 1 takes about 3.18N generations. It would
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take 2,14N generations if it is as frequent as its alternative
allele. Thus a gene takes less time to reach fixation when it is
recessive than when it is dominant, It is interesting to compare this
result with those of Kimuwa (1957) on the behaviour of the final rate
of decay for recessive and dominant genes., Selection towards dominants
decreases the final rate of decay whereas selection against dominants

increases it.



CHAPTER V
SELECTION WITH TRINOMIAL TRANSITION PROBABILITIES

The theory developed in Chapter II for selection with random
drift in the case of single locus with three alleles can be applied to
speecific genetic models. In this section numerieal results on the
chance of fixation of a particular allele A1 s the average number of
generations taken until its fixation and the average time to homo-
zygosity are presented when the transition probabilities are of the
trinomial type and the relative selective advantages of A1, Az and

A, alleles are respectively (1 + 8 /2), (1 + 12/2) and 1.

3
Suppose first there are no selective foreces operating. Then
starting with a given pair of frequencies g, = 11/(2N) 2

1
- gy = frequency of Aj), in lines of constant breeding size of N

Gy = 12/(21!) of alleles A, and A, respectively (with 1 - Uy

individuals, we ecan consider the second generation as derived from the
first by the sampling of groups of 2N haploid sets, the gene freguencies
in the different groups being distributed trinomially with pairs of means
2Nq1 " and 2Nq21 and index 2N. The next generation is then the
repetition of this process, each line giving rise to a group of lines
vhose gene frequencies are trinomially distributed about the pairs of
means of the parent line., Now let A1 genes have a selective advantage
of (1 + s /2)) A, genes have a selective advantage of (1 + u2/2)

and A

3 genes have a selective advantage of unity where 5, and s,
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are small and positive. This means that while the selective advantage

of A, over A3 is (1 +-1/e) that of A,

(1 + (51 - 02)/2) approximately., Assuming that selection operates

over A2 is

before sampling of gametes, the gene frequencies of A, and A2 in
the different groups are distributed trinomially with means 2Nq'1i
and 21!«1'21 and index 2N, where q'u and q'2i are the gene
frequencies of A‘l and A2 after selection and are given by

(51) a'yy = 4y *ayy
8

8
. 2
Z u -9 -Fa 0

(14 a8 + a 50)

aq11+

(5.2) aq'py = a5 +§q21

7 (o) -Fuge
(1t a8, + a4 8,/)

Qg *

respectively. Here. 841 i and gqa are the changes in the mean
frequencies of A1 and A2 respectively due to selection in one step
when their frequencies in the previous generations are respectively
11/(21«) and 12/(2N). Thus with haploid selection and trinomial
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sampling, the conditional probability that there are 41 A1 genes and
32 A2 genes out of 2N genes af'ter one generation, given that there
were 11 A1 genes and 12 A2 genes out of 2N in the previous

generation, P are given by
o Tay 1004 3)

3
(a0 (2™ (2,2
(503) P(i 1)( ) .
1 1203 35 41 3] (2!‘-51-32)).

(2v - 3, = 3,)
. (1 ‘q..'i'Q'zi)‘ 2 .

These probabilities, therefore, determine the 5, 3’ and the components
of ,3 introduced in aeofion 2 for the case of single locus with three
alleles, With the help of the matrix formulae (2.33), (2.34) and (2.36)
the chanee of fixation of A1 can be determined and in addition using
(2.54), (2.55) and (2.57) gives the average time until its fixation.

For average time until homozygosity matrix formulae (2.43), (2.44),
(2.45) and (2.46) can be used. However, since the fixation of either
A2 or A) reduces the problem to that of a locus with two alleles, it
is sufficient to consider only those situations in which initially
neither of the A2 and .AL3 are absent, This means we have to use only
the relations (2.36), (2.57) and (2.46). These have been evaluated
num;rioally on the KDF9 computer of Edinburgh University., The capacity
of the computer did not permit the use of a population size greater than

six, Hence all the results presented relate to N = 6, The computer



programme developed for this purpose made regular use of the KDF9

5¢1  CHANCE OF FIXATION OF A,
In order to present results in a meaningful way it is desirable to
examine the dependence of the change in the freguency of A1 on the
selective coefficients of the other alleles and the population size,
First we consider an infinite population and determine the parameters
which govern the changes in the gene frequency of A1 initially and in
subsequent generations. Thereafter we examine how these parameters can
be combined with the population size when a finite population is
considered,
Consider three alleles A1, Az and Aj with selection: coefficients
(1 + 51/2_), (1 + lz/%) and 1 with frequencies gq,, g, and 25
respectively. The superiority of A, over A, is (51 - 32)/2 whereas
that of A, over A; is s, /2 This gives an average superiority &
and the variance in superiority V‘ of A1 over Az and A3 considered

together as a group, given by

(54) 3 = % (8, =rs,)
(5.5) V. * %r (1 =) ng

where

(5.6) r = 9.2/(42"' q})-



The variance in the selective advantage of the three alleles can
be partitioned as

(5.7) V, = q (1=gq)3+(q,+ 15) V,

= *ai-}iai

where Ui is the contribution of the locus to the additive genetic
variance of the genotypes when the three allele system is collapsed
into two allele system and oﬁ is the component of total genetic
variance due to the multiple allelic effect. That is the total
additive genetic varianece can be partitioned into two components, one
reflecting the contribution of the locus with two effective alleles

A, and X, where X, refers to the group of A, and A; and the
other emphasising the contribution due to the distinction made between
the two alleles A2 and A.3 on the basis of their different selective
advantages. This idea of distinguishing multiple alleles on the basis
of their quantitative effects was first introduced by Narain (1965)

in connection with the description of gene action in continuous
variation when multiple alleles are taken into account., A similar
partitioning was suggested for metric traits for deseribing the
components of genetic variance, Thus Vﬁ can be generalized and

defined as multiple allelic variance in the selective advantages of the

genotypes, If q; and q# are the gene fregquency of A1 after the



first and the second generation of selection respectively then,

approximately

(5.8) q} = q, +3q (1~q,)

neglecting terms involving powers of 8, greater than one,

(5.9) qf = g} +3' g} (1=4q)

/

= q;+(;-V-) q1(1-q1)+;2q1 (1-q1) (1-2q1)

neglecting terms involving powers of s, greater than two and
where

(5.10) &' = % (s, = r' 5,)
(5.11) »* = r[1+(1-1r) (1 - r%)-}z-]
(5.12) qj(1 =q}) = q(1=q) [1+5(1-29)=-5q (1=q,)]

From (5.8) and (5.9) it is clear that, in an infinite population,
the change in the frequency of A, depends on 5 and V y Whereas
in the two allele case it depends only on the superiority in selective
advantage of one allele over the other. In the present case, when

V, =0, the change in the gene frequency is simply 3 q (1 - q1) if



85.

the term involving 32 is neglected and this, in fact, corresponds

to a two allele situation where A2 and A}

isoalleles, The allele A, increases in frequency and eventually gets

are indistinguishable -

fixed, But when 8 = 0, we get

(5.13) 4q} = q,
(501&-) 9,'" - ‘11 -vﬂ q.1 (1 . Q1)

This shows that in the first generation, the frequency of A1 does
not change and in the second generation it decreases; the decrease
being -V g, (1 = g,). Under these conditions, it would eventually
be eliminated from the population, When neither of 8 and v, are
zero, then initially the allele would increase in frequency but in the
subsequent generations it would increase and get eventually fixed when
the values of s, Vv, end q, make (q;' - q‘;) as positive. For q,
equal to or less than half, the condition for this to happen is
3> Ve

When the population is finite we write 4;(q1, Qs Xys Xy t) for
the probability density that the frequencies of A and Az become
x, and X, at the tth generation given that thlir frequencies are
qy and q, at t = o, Using the diffusion model (Kimura, 1964) we
can

write down the process of change with time as



> »2  x (1-x) »2 (1 -x,)
) =5 = g P *]**%2[2 2 ]
22 ; s s
'”o:;,axz [d:g4>]',h—£'-[(-§-x.,(1-x,)--23x, x,) ¢ 1
S 8

This may be rearranged as

This shows that, under the conditions in which the diffusion approximation
holds, the pattern of the selection process is entirely governed by

the parameters Ns, amd Ns, on a time scale (t/N) starting from

a given initial configuration (qi, Qs qj) of the gene frequencies of

the three alleles, Since the change in the frequency of A1 in an
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infinite population, is shown to be dependent on s and Vn, the

parameters Ns1 and st can be transformed o Ns and NZV & In
order to see whether the chance of fixation of A, 1is a function of
Ns and NZV. only, a comparison of these for population sizes N = 3

and 6 &t particular values of Ns and NV_ s shown in Table 7.

TABLE 7 The chance of fixation of A1 as calculated by the

transition matrix method for different population

sizes (N)
Initial frequencies (A.,, A,, A})
N3 NV N
(1/3, 1/3, 1/3)
0.5000 0.0625 3 0.42033

6 0.42299

The two values of the chance of fixation of A1 are quite close, thus
indicating that the population size N can appear in combination with

8 and V_ at particular initial gene frequencies of A,, A, and A,
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The dependence of the chance of fixation of A, on Ns and
NV_ are shon in Figures 12 and 13, In Figure 12, it is shown against
N8 for nzv_ = 0,1, 4 and 9 when initial frequencies (A, Ay, As)
are (1/3, 1/3, 1/3). 1In Figure 13, it is shown against NZV- for
initial frequencies (4,, A, Aj) = (1/6, 5/12, 5/12), (1/2, /4y 1/4)
and (5/6, 1/12, 1/12) when N8 = 0. In the latter case, the three
initial configuration of the gene frequencies have the same value of
r=1/2,

In Figure 12, the curve for nzvn = 0 givesthe same value of the
chance of fixation of A

1
given by Kimura (1957) as

as provided by the formula for two alleles

1 -exp(-ZNa1q1)

" ul =
(5417) y) AP Y B

When N°V_ is grester than sero, the chance of fixation of A,, at a
particular value of N8, is reduced. It, however, varies with N%,

at a particular value of sz o in almost the same fashion as when

sz. = 0. But the characteristic feature, in this case, is that it
becomes less than the initial frequency of the gene when NE is less
than a certain value depending upon the particular value of NZV‘ COn=
sidered. Thus when N5 = 1 the chance of fixation is reduced from about

52,56 to about 306 when xzv_ 15 increased from O $o 1 and the
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Fig, 12 The chance of fixation of allele A, at a tri-
allelic locus (q, = 1/3, r = %). % e curves
are drawn for di}ferent values of
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Fig. 13

The chance of fixation of allele A, at a
tri-allelic locus (Ns = O, r = )., The curves
are drawn for different initial freguencies of

A1.



€9.

chance of fixation becomes less than the initial gene frequency. In
order to have the same chance of fixation at NV =1 as that at
N5=1 with NV_=0, Ni 18 to be increased from 1 to about 2.2.
The effect of the multiple allelic variance in reducing the probability
of fixation of a gene can be compensated by a suitable increase in the
average selective advantage of the gene. At very high values of
NZV., the chance of fixation could be practically zero unless there is
some average selective advantage of the gene to compensate for this., It
can be seen from the graph that when NZV. = 9, a neutral gene would
have as small a chance as 4% but could have the same chance as its
own initial frequency if it were of as high a selective advantage as
Ns = 4.5,

Figure 13 clearly brings out the effect of multiple allelic variance
o the chance of fixation of A1 when it is neutral, on an average,
with respect to A, and A, with variance Vm. In an infinite

2 3
population, A, would ultimately be lost due to the effect of Vm but

1
in a finite population, it could get fixed by chance., This chance
fixation would increase as the population deeorcases in size, For small
populations, random drift would predominate over its being selected
against and the allele would get fixed but for large populations,
selective forces acting against it would overcome random drift and the
allele would have very little chance of getting fixed. Since the
selective forees acting against A1 are inherent in Vn, the chance of

its fixation would equal its initial frequency when V- = 0,



The total possible change in the frequency of A1 in the limit is
- q, whereas in a finite population the expected change in the limit
is u(q1) - q,. This expected change would be negative. For a gene
with frequency as half, NZV- = 1 ecan bring down its expected frequency
in the limit to about 0.30. It is apparent from figure 13 t.hat a rare
gene (q1 = 0.,16667) can quickly be eliminated by multiple allelic
variance but a frequent gene (q4 = 0.8333) can still have some
chance of getting fixed in spite of the enormous effect of multiple
alleles to knock it out,

The results on the chance of fixation of A1 presented above can
be compared with a general formula for the chance of fixation of an
allele in a multiple allelic situation suggested by Robertson (personal

communication). With respect to k alleles A, A, o « « A with

1’
respective initial frequencies Qs Qs » + G and selective

coefficients 81, 32. b o Sk such that

(5.18) 8 = ﬁqnsn

(5.19) Vg = ﬁ%sﬁ'sz

(5.20) (fa), = 4q,(s,=5)

th

the chance of fixation w of the n allele An is given



2
(5.21) 9 = qn+2N(£q)n+-(-?-§)— qn[(sn-S)z-vs]

_ (aw)?

% (S, b T

For the case of three alleles the chance of fixation of allele A'
with frequency s which is neutral on an average, with respect to

AzandA

3 with a variance V- between them, this formula reduces

to

2
(5.22) w, (gy) = g-ﬁz‘?)-q,,h-q)v_

A comparison of (u1 (q1) - q1) calculated from this formula with that
obtained from the computer is shown in Table 8 when g, = g, = 4y = L.

The agreement between the two results is quite close,
52  MEAN TIME UNTIL FIXATION OF ALLELE A1

When no selective forces are operating, the mean time until
fixation of A1 is found to be independent of the frequency of alleles



TABLE 8 Comparative values for the expected change
in the limit in the frequency of allele A1
having a mean superiority of 5 = o with
veriance V_ in a population of size N = 6

1
for q1=q2-q3-'3'.
sz‘ Computer Formula Difference
0.0000 - 0.,00000 0.00000 0.00000
0.0144 -0,00376 ~0.00427 0,00051
0.0576 -0,01470 -0.01707 0,00237
0.1296 -0,03183 -0.03840 0.00657
0.2304 -0,05369 -0,06827 0.01458
043600 -0,07863 -0.10667 0.02804
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A2 or A} and is the same as that given in Chapter IV for two
alleles with additive gene action. At particular values of Ns1 =2
and Naz = 1, the mean times are presented in Table 9 corresponding
to the possible initial configurations of the three alleles in a
population of size N = 6, when all the three alleles are present,
For a fixed value of 9y, the mean times can be read vertically down
for various initial frequencies of A1. It decreases as the gene
frequency increases., For instance, when A2 allele is initially
present with a frequency 0.5, the time to fixation of A1 with
frequency 1/12 is 3.26N whereas when its frequency is 5/12 it is
2,59N. However, the effect of the frequency of A2 allele on the

time to fixation of A allele is the reverse, For a given frequency

1

of Aﬂ allele, it takes longer for its fixation if the frequency of
A2 allele is frequent than when it is rare.

The effect of N3 and szm on the time to fixation of A, is

1
shown in Table 10, for the case when the initial frequency of A1
allele is 1/3., When N2V. = 0, the wean time decreases with increase
in Ns. So is the case with NV_ =1 bub at higher values of NV
it increases first with increase in N3 and decreases thereafter,
When N3 = o, the effect of multiple allelic variance is to decrease
the mean time. So is the case at N3 = 4 but at higher values of
Ns, the mean time increases first with increase in NV but
decreases thereafter. It is interesting to note that the behaviour

of the uean time over variatiomnsin Ni for a fixed szm is almost the



TABLE 9 Average number of generations / N until fixation of A, (N = 6)
Ns, =2, Ns, =1,

12,

129) 1 2 3 4 5 6 7 8 9 10

1 3,07 3411 3415 3,19  3.22 3,26 3.29 3.33 3.36 3.39

2 2,90 2,95 2,98 3.02 3.06 3.0 3.4 347 3.2

3 2,72 2,76 2,81 2.85 2.90 2.9% 2,98 3,02

A 2,53 2.58 2.63 2,68 2,72 2,77 2.8

5 2,33 2439 244k 2,49 2,55 2,59

6 2,12 2,18 2.24 2.30 2,36

7 1,90 1.97 2.03 2.10

8 1,66 174 1.81

9 1.40 1,48

10 1.10
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TABLE 10 Average No, of generations until
fixation of A, (N = 6) with
initial freguency 1/3.
NV
0 1 4 .
Ns :
0.0 3,00 .| 2.8 2.45 2.11 |
1.0 2.83 2,75 2.51 2.23 |
|
2.0 2,48 2,55 2,54 2,40 |
3.0 g2 2.28 2.4, 2,48
4.0 1.84 2,00 2.2} 2.42
5.0 1.61 1.76 2,01 2.26
6.0 1.4 1.57 1,79 2,06
7.0 1.31 1.42 1,61 1.86
8.0 1.20 1.30 1,46 1.68
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same as that of the meari$ime over variations in NZV. for a fixed

Ns.

5.3 MEAN TIME UNTIL HOMOZYGOSITY

The results of the mean time until homozygosity are presented in
Table 11 and 12, In Table 11, the three alleles are neutral and the
variation of the mean time until homozygosity over the different
initial gene configurations is shown, At a fixed value of Qs the mean
time increases first with increase in the frequency of AZ ; attains a
maximum and decreases thereafter, Since the situation is symmetrical,
the same is true for variations over the freguency of A1 for a fixed
Ape Also the distribution is symmetrical so that the same mean time is
obtained for frequencies less than or greater than the mid-point of the
range. The highest mean time is 3N and occours when Q= qga-}
whereas the lowest is 1.66N and occurs when either 9 =9 --115 or
9 =15 4, =79 OF 4 =718 9y =7g. In Table 12, the varistion in
the mean time until homozygosity is shown over the different values of
Ns, and Ns, when all the three alleles are at equal frequencies,

There is a perfect symmetry as far as Rs.' and Hsz are concerned,
For a fixed Ns

2
attains a maximum and then decresses with inecrease in Nai. The maximum

(unless it is 0), the mean time first increases,

shifts to the right side as Naz inecreases, For Ns

2
is 3N and occurs at Ns1 = 0, the time for the neutral case, This ecan

= 0, the meximm

be compared with the maximum mean time until homozygosity of 2,55N



e

. TABLE 11  Average number of generations / N until homozygosity (N = 6)

Three neutral alleles at a locus,

Q% 2 L e 6 7 B
12¢

1 1,66 2,91 243 2.63 2,73 2,75 265 243 241 1.66
2 2,1 246 2,70 2,84 2,89 2,8, 2,70 246 2.1

3 2.43 2,70 2.88 2,96 2,96 2,88 2,70 2.43

4 2,63 2.8, 2,96 3.00 2,96 2.8, 2,63

5 2,73 2.89 2,96 2,96 2.89 2.73

6 2,75 2.8, 2,88 2.8, 2.73

7 2.63 2,70 2.70 2.63

8 2,43 2,46 2,43

9 211 2.9

10 1.66
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Table 12 Average number of generations / N until homozygosity (N = 6)

1 1 .3
. S ST Duip CEUER . Snlg

| |
¢
0 ; 1 2 3 L 5 6 ; 7 ‘ 8
: | Ly
. T ! ! T
| 3.00 | 2.87 | 2.55 | 2.20 [1.90 ,21.66 1.48 ‘1.33 ;1.22
; : 3 ‘8 . 4
1 {2.87,‘ 2.90 22.71 2.1 |2.10 1.8 |1.62 1445 {1.}1
: | i | 4 1
| ; . 1 T 1 !
2 2,55 | 2,7 | 2.73 | 2,57 |2, 1203 11,79 11,60 | 1.4
SRS s f
3 | 2,20] 2,1 | 2,57 | 2.6 | 2.8 | 2,26 12,01 (1,79 | 1,60
- — . - 4 5, -
L | 1,9 | 240 | 2,31 | 2,48 | 2,53 "2.44 C2.24 | 2,00 ‘ 1,80
: ; { : ;
5 L } 3 : 1 - i
|5 | 1.66 | 185 | 2,05 | 2.26 | 204 | 2,50 | 2082 | 2024 | 2,03
i ! : I L { lr %
6 b 1,48 | 1062 g 1079 2,01 f 2.24 | 242 [I 20108 : 2.41 : 2+25
: | 4 / : i : i
] : ; ! |
y SIS P T ! 1060 | 1279 | 2,01 | 2.2 | 2.1 | 2,47 | 2,41
l : . : | { 3 = o 7‘
! Y l ; & 3 Y
8 1.22 | 1.3 i 1edde | 1,60 | 1,80 | 2,03 | 2.25 | 2,41 | 2.4
! i ! i L "
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obtained in the two allele case in Chapter IV, It shows that the
maximum time to homozygosity is inereased with the increase in the
nunber of alleles and that it occurs when all the alleles are equally

represented in the initial population,



CHAPTER VI
LETHAL GENES AND ALLELISM IN FINITE POPULATIONS

In Chapter II, it has been shown that the properties of the
stationary distribution of gene frequencies realised due to the
balance between the mutation ocecurring at a low rate in one direction
(reverse mutation being negligible) and selection with random drift
can be studied with the help of the element of the first row of
fundamental matrix., In this Chapter, this theory is applied to study
the population dynamics of completely lethal genes in finite popu-
lations, It will further be shown how this theory can prediet allelic
rates and the decline of allelism with time. The determination of
allelic rates is of great importance in experimental investigations with
natural po;iulatiom to decide between whether recessive lethals have
deleterious effect as heterozygotes. This problem has been discussed at
length by Crow and Temin (1964) and Wallace (1966). If the heterozygotes
carrying lethals have reduced fitness, then the mutation from normal to
lethal allele is more than sufficient to balance their elimination by
homozygosity and the population suffers from a mutational load. On the
other hand, if the heterozygotes have enhanced fitness, then the mutation
is not sufficient to balance the elimination of lethal genes, and the
load is said to be segregational (balanced). Most of the earlier
experimental investigations om natural populationswith Drosophila like
those of Dobzhansky and Wright (1941), Wright, Dobzhansky and Hovanitz
(1942) and Crow and Temin (1964) give evidence in support of the
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deleterious effect of lethal genes in the heterozygous condition but
Wallace (1966) obtains results which show an overdominant effect of
lethal genes., Nei (1968), however, argues that Wallace's conelusion
could be due to the small effective size of the population sampled and
suggests that the lethal genes are, on the average, slightly deleterious
in the heterozygous condition, The decline of allelism of regessive
lethals with time is another interesting problem invoked by Wallace
(1966). His eonjectiure, on the functional relationship between the
allelic rate and the time interval between the sampling of the first
and the second set of lethals has been proved as approximately

correct by Prout (1967). An alternative method, however, based on the
transition matrix approach is developed in this section on the basis |

of suggestions made by Robertson (personal communication).

6.1 DISTRIBUTION OF LETHAL GENES

Consider a randomly mating population of N adult individuals
with i heterozygotes and (N - i) homozysotes, This would mean that
the gene frequency of lethel a  is éqi = i/(2N) and that of normal
A is (4 'iqi)' Let the fitnesses of the three possible gemotypes AA,
Aa and aa be 1, 1 -h and O respectively. Then after selection,

the frequency of heterozygotes will be
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1, (1 = h)
1 +$qi (1 = 2h)

(6.) q,' =

whereas that of homozygotes will be (1 = qi'). On sampling N
adult individuals from such a population will produce j heterozygotes
and (N - j) homozygotes with transition probability

N
(6.2) Py, = (J)(qi')‘ (1 - g, = 9)

Here i goes from O to N and j also goes from O to N. The
Markov Chain specified by such probabilities has O as the only

absorbing state. These probabilities determine the Q matrix where
i and § each go from 1 to N, If the mutation rate from A to
a is u per generation, the reverse mutation being negligible, then
as shown in Chapter II the stable distribution of the lethal gene

where S

frequency is given by 2Nu S1 is the jth element of

J 13
the first row of (I = Q)~™'. The mean and the variance of the

~ ~
frequency of a and the mean frequency of heterozygotes in the stable

state are given by

N
(6.3) ®a) = 2w 3 s (/W)
=1



10’0
2 ¥ 2 2
(6.4) E[q - E(q)]° = mu; 8,4 (¥/(20))” - [E (a)]
N
(6.5) E[2q (1 =q)] = ANu ;1 8,4 (¥/(20)) (1 - y/(2m))

These quantities have been evaluated on the computer for population
size N = 50 and 10, The results are shown in figures 1L, 15
and 16, A negative value of h means heterotic lethals whereas a
positive value means partially recessive lethals. h = 0 corresponds
to completely recessive lethals, A mutation rate of 10" has been

assumed throughout.

6.11  MEAN GENE FREQUENCY

From figure 1k, it is found that the mean gene freguency declines
almost linearly for small population sizes such as 10 as we pass
from heterotic lethals through completely reces:ive lethals to partially
recessive lethals, But for large population sizes such as 50, the
deecline is non-linear.

The mean gene frequency for completely recessive lethals is known
from Wright's equilibrium distribution formula (Wright, 1937). The
distribution for small q is given by
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h

Fig. 14 Mean of the distribution of
frequencies of a lethal gene
(u = 0.00001). The curves are drawn
for different population sizes.
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(6.6) & (a) = const. exp (= 20g%) W= 1)
Substituting ¢ = q> and applying the condition

1
(6.7) y $(a) ag = 1
0

gives

2
[C 2vu)

(6.8) const. = (L’I‘)aml

The mean and variance of the gene frequency are given by

(6.9) T = [awu+ )/ (2m¥ F(aw)

(6010) G'qz = u-Ea

For 2Nu »>1, g is close to ui i.e, the equilibrium value expected

in an infinite population. For 2Nu < 1, however,
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1
(6.11) [(2tu) = —
2Nu
(6.12) M(2Mu+3) = T2
approxintely, so that
(6.13) q@ = w(2TT N)*
The conditions imposed in the matrix approach require that 2Nu Z_1

and therefore the mean gene frequency obtained by this approach should
be compared with wu(2 TT N)'}. This comparison is shown in Table 13,

Table 13 Comparison of mean lethal frequency as
calculated from Wright's formula and
transition matrix method for different

population sizes (h =0, u = 10~2).

N | Weight's formuls ' Computer results

;
50 | 17.72x102 | 18.48=x10° |
10 | 7.93 x 107 ' 8439 x 107
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The agreement between the two approaches is quite close, Wright's
formula giving a lower value than the computer results,

For heterotiec lethals, the equilibrium gene frequency by Wright's
formula is known in only special cases. The equilibrium frequeney gq
expected in an infinite population due to the superiority of hetero-
zygotes only is, however, k/(1 + k) where k = = h which is
approﬁmm tely = h for small velues of h., The matrix approach,
therefore, gives the result that in the range ¢ =0 to ¢ = .05, the
mean gene frequency decreases linearly as q approaches 0O if N = 10
but decreases very sharply if N = 50, When k = + ,05, the mean gene

ol N = 50 but only 1.&-:10'9' for

frequency is 3.28 x 10°
N = 10, This shows that, in order that the equilibrium frequency of
0.05 is actually realized the population size has to be very very

large. The gene frequency increases as the population size inereases,

6.12 VARIANCE OF GENE FREQUENCY

The variancesof gene frequency for population size N = 10 and
50 are shown in figure 15, The variance decreases as the reduction
in the fitness of the heterozygotes rizes from - 0,05 through O
to + 0,05 for either of the two population sizes., But unlike the
curves for the mean gene frequency, the curves here intersect. In most
cases of the heterotic situation, the variance is more for the larger
population size but for completely recessive lethals and partially
recessive lethals, the variance is smaller for the larger population

size, For h=0 and N = 50, the variance is found to be 1.08 x 10~°
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which compares very well with the value of 0,99686 x ‘10-5
obtained from Wright's variance formula given by (6.10).

6.13  MEAN HETEROZYGOSITY AT BQUILIBRTUM

The curves for the mean heterozygosity for N =50 and N = 10
as presented in figure 16 show almost the same pattern as that of the
mean gene frequency. For overdominant genes, this similarity between
the mean gene frequency and average heterozygosity was also noted by
Robertson (1962). For h = O and lethal gene, his formula for
heterozygosity reduces to 2u(27T N)% which is twice the mean gene
frequency. It can be verified from figures 14 and 16 that for h = 0,
the mean heterozygosity is almost double that of the uean gene fre-
quency. As noted in Chapter I the mean heterczygosity is proportional
to the contribution of the locus towards the genetic variance of the
stable population, If Nu is small as would usually be the case with
we 100 .unless. N -4s very large, the genetic variance would increase

as the size d'the population is increased,

614  PROPCRTION OF POFULATIONS SEGREGATING FOR A GIVEN LETHAL

Foliowing Wright (1931) the proportion F(o) of populations from
which lethals are absent is such that the frequemey 2Nu F(o) of
reourrence in a population equals the frequency (%) F(EN) of 1loss

where
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1
6. ¥
(6.14) F(q) o e

and Cb(q) is given by (6.6). This gives

(6.15) Flo) = (an)~2u

= 1 - 2Nu log‘ 2N approximately

In the matrix approach, however, if f(o) represents the wean number
of loci having no mutant at the equilibrium state when, on an average
one locus becomes homozygous per generation, in the absence of any

mutation, then

(6416) 2Nu (o) + 2us8 = 1
where

(6.17) 8 = 3 8

This gives the value of F(o) as

(6.18) #(o) = 2Nu £(o)
= {1 «2Nu 8
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In other words, the proportion of populations segregating for lethals

is 2Nu 8, For a completely recessive lethal with N = 50, the
proportion of populations from which lethals are absent is, using (6.18),
found to be 0.,994360 as against the value of 0,995395 obtained by
Wright's approach [using (6.15)].

6,2 CHANCE OF ALLELISM

In order to study the allelism in a given sample of lethal bearing
chromosomes, all the possible heterozygotes between these lethal bearing
chromosomes are made. If the same lethal gene is earried on two or
more chromosomes in the sample, then a lethal zygote will be formed
everytime these chromosomes meet. If a lethal gene is represented only
once in the sample, then the chromosome carrying it will form viable
heterozygotes with all other lethal chromosomes in the sample, By making
all possible erosses among strains with lethal chromosomes, the number
of times various lethal genes are represented as well as the total
frequency of lethal zygotes formed can be determined. The chance of
allelism of lethal chromosomes is then regarded as the proportion of
crosses between lethal bearing chromosomes which produce lethal sygotes,
When two lethal chromosomes prove to be allelic, the lethal genes they
carry are either identical by descent or are different mutations which
by chance have affected a finite number of equivalent loei. The total

chance of allelism is the sum of the chances of allelism due to these
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two causes, If the population size is infinite, the allelism is due
to recurrent mutations only whereas if the number of eguivalent loci
is infinite the allelism is due to identity by descent only.

Apart from the allelism of lethal bearing chromosomes 10, there
is also the allelism of random pairs of lethal genes i. Knowing 1,
from experimental data, i can be eveluated by the formula (Nei 1968)

~logg (1 - 1, ¢*%)
[Log, (1 - g*) 12

(6.19) i =

where g¢* is the frequency of lethal chromosomes. In what follows,
however, we discuss i, the chance of allelism of random pairs of lethal
genes with the help of the properties of lethal gene frequency dis-
tribution discussed in the previous section,

If lethal mutations occur at n out of a large number of loeci
and the proportion of lethals at a locus to that of all lethals is
P» then the chance that a second lethal ocours at the same locus as the
first is p°. Averaging over the n looi gives the total probability
as ﬁpa that the two lethals taken at random from the population will
be allelic. Since ﬁ? =1 and p 4is proportiomal to the frequency ¢
of lethal gene, the chance of allelism is (Zqz) /'(2q)2. Following
Nei (1968) we take the expectations of the numerator and the denominmator
and obtain n E(¢°) and m': + n° % respectively, This gives the
chance of allelism i as
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(6.20) 41 =
(1-D+x

is the formula for the chance of allelism given in Dobzhansky and
Wright (1941), and Wright, Dobzhansky and Hovanitz (1942). In the
present case it is assumed that the mutation rates are the same for
all loci so that there is no contribution to the variance of the
gene frequency due to differences in the mutation rates. When the
population is infinite, the variance in the gene fregquency due to
random drift vanishes and i reduces to -1;. But when an infinite
number of equivalent loecl are affected by recurrent mutation, -:;

tends to zero and i reduces to 1]. given by

(6022) 51 g

1 +x
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This is the chance of allelism due to finite size of the
population only and has been investigated in this section by the
transition matrix approach. Using (6.3) and (6.4) for E(q)
and E(qz) we get the value of x as

Nu 8, (-:—ﬁ) .
(m) n[ 13 28

J
2813 (3§

]2

B e

2NU [2 S".1

(6.210-) U = nu

is the mutation rate for lethal chromosomes. It refers to a very
large number of loei with very sumall mutation rate per locus such that
the product of the two is comstant., Taking n = 500 and u = 10>
80 that the mutation rate for lethal chromosome is 0,005, the
computer results on the alleli¢ rates are shown in figure 17. It
is apparent that the slope of the curve is more whem N = 50 than

when N = 10, This shows that for very small population sizes, the
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allelic ratesmay practically be independent of the nature of lethal
genes. But for appreciable population size, the allelic rates are
lower for heterotic lethals than for partially recessive lethals.

For very large population sizes, these rates are solely determined
by the nature of the loeci and can be very small for heterotie loei,
As the population size decreases the rates increase, Similar results
were obtained by Nei (1968), using the properties of Wright's stable
distribution of gene frequencies. For completely recessive lethals
(h=0) and N = 10, the chance of allelism is 77% as against Nei's
result of 76.2% whereas for N = 50, the values obtained by the

matrix approach and Wright's formula are respectively 0,40 and 0,39,

6.3 DECLINE OF ALLELISM WITH TIME

Wallace (1966) presented an analysis of the allelism of recessive
lethal genes in certain populations of Drosophila melanogaster. His
main concern was the determination of the allelic rates of lethals
taken from a natural population at collection sites cf varying distance
apart, He argued that the allelism between two sets of lethals from a
given distance apart can be related to the allelism of two sets of
lethals taken from the same point in the population but separated by a
given interval in time, The formula suggested by him for the allelic

rate i, and the time interval (t) between the sampling of the
t
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first and the second set of lethals have the relationshiyp

(625) 3, = 443,01 K)*®

1.1, = the allelism between lethal genes t generations
apart.

:L,, = the allelism component of jTt within a generation
produced by identity by descent in a finite
population.

i = the allelism within a generation of the same set
of lethal loei if they were in a population of
infinite size,

K = a constant related to the rate of turnover of

lethals within the population.

Prout (1967) demonstrated with algebraic details that this functional
relationship is approximately correct.
If the lethal gene frequency at time t is denoted by 9 and if

we assume that the mean gene frequency gq does not change appreciably
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during the time interval ¢, then the probability of choosing
one and the same lethal from among lethals of generation O and
from among lethals of generation t is zqq,t/(ni)z. The expeo=

tation of this ratio can again, be expressed as

(6.26) jT =

nk
(6.27) 3, = —&%‘E—)

ANw
We already know that gq -Ag 8, P (%). The expected value of

9, has further to be evaluated by the matrix approach. The
stable gene frequency distribution is given by the elements

2Nu S1d » d=1,2, « « « + « N, representing the mean number of

weighted
loei having J mutants., The/gene frequency vector at time O is

then given by

1
(6.28) q = ZNU[S'15;QQQQQS1J'£§’ooooos1ni']
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For a given number of J mutants cccurring initially, the con=-
ditional mean gene frequency column veector at time t is given by

(t) Xk
i P1x 2N

Bl

(6.29) g, = ip&(t)

k
zp (t) X
k Nk 2N

—— PR—

where P Jk(t) are the elements of the matrix 'g/t. The expectation
of Qq, is then given by

(6.30) ®(qq,) = 2 :j[(s”g-‘) (2 7y 73]

Hence Yy is given by
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J (¢) X
2Nu n:s;[(s*‘.1 21!) (i P zm)]

(6.31) 3, =

2 8 J\2
(20u)® o (§ 843 -2-1;)

318,39 2y ()]

J.2
25U (g .&31.1 2N)

Using this formula the computer results were obtained for iTt for
two population sizes N =10 and N =50 and h = -,05, 0 and

+.,05 taking U to be 0,005. In each case t was varied from O

to 28, The decline of allelism with time, thus obtained, is shown
in figures 18, 19 and 20 respectively for h=0, + 0,05 and - 0,05.
In each case the decline is sharp for N = 10 as compared to N = 50
and for about first twenty generations the allelism is higher for the
smaller population size., The difference declines with time and beyond
about twenty generations the allelism for N = 10 is lower than that
for N = 50, These graphs can be compared with the sketeh of hypo=
thetical data given in Prout (1967). The graphs for N = 50 show
the same pattern of exponential decline but for N = 10 the pattern
of decline is non-exponential in the first several generations,

From figure 20, it appears that for heterotic lethals (h = = 0,05)
the decline of allelism with time is not so rapid. This would be so
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because heterotic lethals are likely to persist longer in the popu=-
lation. The limiting value of the allelic rate (ip ) is likely to
be —5;—0 = 0,002 since the chromosomal mutation rate is based on
500 loei. It is likely to occur well beyond 28 generations.

For completély recessive lethals (h = 0) an expression of
initial rate of decline can, however, be obtained using the equilibrium
distribution of lethal genes given by (6.6). Let q, be the gene
frequency of lethals in the next generation and let S q be the change
in the gene frequency in one generation, then Sq is approximately

- q2 so that

(6.32) Blag) = Ela(a+ o)) = E(¢®) - &)
From (6.10), E(qz) is equal to wu, E(q’) is given by

1
(6.33) E(¢%) = {o & (v) e

2(zn)@ 4

["(2mu) 0

@® exp (~2MNq

2) q(Mu - 1)d .

2
_ ro J(20 + )
[ (2mu) 0

exp (=-t) dt
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-2
(2) 2 [ (2w + 2)

[ (2mu)

- [(2mu + %)
= (20) 2 (20 + §) ——

[(2wu)

Using (6.11) and (6.12) we get, approximately

i
(6.34) E(¢®) = u(i+1) (D)
= u(%)*

if © u is so small that the term involving u2

This gives
n B(qq, )
(6.35) ¥, = -
(ng)
1- (%)*

can be neglected.
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and
a 8(q%)

(6.36
d k<
S
21T NU

Hence 1.1.1 and jTo are given by

[1 - (%]

(6.37) =
iT’ [1 = cg)* + 2TNU ]

i) 3y e

Both 1.1. and "1‘ show that the allelic rates will decrease if the
0 1
chromosomal mutation rate increases, The initial rate of decline r*

is then given by
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(1 - (%)h 277NV ]

A comparison of the initial rates of decline as predicted from (6.39)
and as obtained numerically (figure 18) for completley recessive

lethals is shown in Table 1kL.

TABLE 1) Comparison of initial rate of decline
as predicted from Wright's dis-
tribution formula and as obtained by
the transition matrix method for dif-

ferent population sizes (h = 0, U = 0,005)

HJ Predicted | Computer = Difference |

3
1

i 1 ,
50 | 0,05606 | 0.04917 | 0,00689
10 | 0.05576 | 0.0LO47 0.01529

The difference between the two sets of results is less marked when

N =50 than when N = 10,
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6.4 EXPECTATION OF LIFE AND AVERAGE AGE OF A LETHAL MUTANT

6ol EXPECTATION OF LIFE OF A MUTANT

Consider first the case when there is initially one lethal mutant
a and (2N - 1) normel alleles A in a population of size 2N, If
there is no further mutation from normal to lethal alleles, the lethal
mutant will ultimately be lost from the population. As shown in
Chapter II, the mean total number of generations required for the
elimination of the lethal is given by

*®

(6.40) 8," = zs”

where 81 3 represents the mean number of generations which the
population spends in the state & 3 characterized by J mutants and

(2N - j) normals on the way to homosygosity. S,* can be thought of

1
as the expectation of lif'e of the new mutant a¢ its initial occurrence.
If the lethal mutant a occurs i times and normal allele A

oceurs (2N - i) times initially in a population of size 2N, the
mean total number of generations required for the elimination of the i

lethals is given by
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(6441) 31' - gs

where S represents the mean mumber of generations which the

i3

population spends in the state E, before becoming homozygous and

J
f: 1is a row vector with unity in the ith place and zeros elsewhere,

" For population size as N = 8, the computer results for the
average number of generations until loss of lethals for various initial
gene frequencies of mutants and h = =0,5, 0 and +0.5 are shown in
Table 15, It may be noted that the initial gene frequency of mutant can

at most be % corresponding to a population containing only heterozygotes,

TABLE 15 Average number of generations until loss of

lethals in a population of size N = 8,

;ﬁtﬁqg h==05 h=0 h=+0.5
i

0.0625 l 19,15 hel5 1.77

0.1250 ’ 26,54 6.02 2,35 |

0.1875 | 30,02 7.21 2.80 |

0.2500 |  31.87 8.02 3.15 ]
| 0.3125 32,96 8,60 3ebk

0.5750 = 33.6h 9.03 3.68

0.4375 | 3410 9.36 3.89

0.5000 | 34.43 9.63 4,08
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It is apparent from Table 15 that heterotic lethals take considerably
longer time, on an average, to disappear from the population than com-
pletely or partially recessive lethals. For instance, when the initial
gene frequency of the mutant is 0.25, heterotic lethals would persist
for about 32 generations as against about 8 generations required for
completely recessive lethals and about 3 generations for partially
recessive lethals. The effect of the initial gene frequency is also

to increase the average time until loss. The expectation of life of a
single mutant, when the population size is N = 8, corresponds to the
initial gene frequency of (#N) = 0,0625 and is about 19, 4L and 2
generations for heterotic, completely recessive and partially recessive
lethals,

Consider now the case when the population is in equilibrium due to
the opposing processes of selection and mutation so that there is no
change in the gene frequency. The opposition between these centripetal
processes as a group and the scattering effects of random processes
determine a frequency distribution of lethal genes., The frequency of

classes segregating for lethals is given by 2Nu S for J=1,2, . « N

13
whereas that of its absence from the population is F(0) given by (6.18).
If we consider the frequency distribution of the lethals present at

any given time disregarding the cases when it is absent, the distribution

is obtained by taking Tﬂ-‘%()-as « This is, therefore, given by

il <
(6.42) 81.1 -;—; for Im8. 2 s o nus B
1
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and is such that

(643) T = 1

Now in such an equilibrium population, the proportion of equivalent

loci at which the lethal is represented with a frequency J/(2N) is

813.. From this class of loci, the mean time of elimination of all
#

mutants is SJ « Summing over all possible classes of loci, the

expectation of life of the lethals present at any given time is,

therefore

The expectation of life of a lethal tells us how long a mutant lethal
is expected to last, on an average.

The expectation of life of a new lethal mutant at its initial
oecurrence (81*) and of any lethal (L) were obtained on the com=
puter for N = 50 and for various values of h. The results are shown
in figure 21, It is apparent from the graph that heterotic lethals have
expectations of life higher than completely recessive lethals whereas the
latter type of lethals have higher expectations than partially recessive

lethals. A completely recessive lethal (h = 0) takes, on an average,
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initial occurrence of the mutant.



13k,

about 6 generations to disappear from the population singe its

initial occurrence. But in a random sample of completely recessive
lethals nresent at any given time, a lethal takes, on an average,

about 10 generations before disappearing. Another point worth noting
is that the decline in the expectation of life from heterotic conditions
through complete reces:siveness, to partially recessiveness is more sharp
in L than in S *. The former is, however, always higher than the
latter, The ratios (I/S;) for various values of h are shown in

Table 1 60

L
TABLE 16 (I/S1 ) for various values of h (N = 50),

h (1/s, e
I R
- 0.04 2,06 5
- 0,03 1.99 |
- 0,02 | 1.93
-0.00 | 1.87

0.00 | 1.81

0.01 1.76

0.02 | 1.7

0,05 | 1.66

0.04 1,62

0,05 | 1.58
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The ratio varies between 2,13 to 1.58. For a completely recessive
lethal it is 1.81,

Aeb2 AVERAGE AGE OF A LETHAL MUTANT

The realisation of a stable distribution of lethal genes is based
on regarding the processes of gene mutation and selection due to
lethslity as occurring continually through time in a population of
finite size, A mutation to lethal gene, when occurs at any time, may
either disappear after its initial occurrence or may exist for several
generations before disappearing, Suppose a random point is chosen on
the time axis and a cross section of the then existing population is
taken, The lethals present at this point of time, might have existed
for different lengths of time since their initial occurrences. The mean
length of time for which they have stayed in the population up to the
given instant of time proviles with the average ase of a lethal mutant.
Further the lethals present at this moment of time may have different
lengths of time till they disappear. The mean length of time till they
disappear provide with the expectation of life of a lethal mutant.

We may also argue in terms of the proportion of equivalent loei at which
a given lethal mutant survives for different number of generations,
Suppose we start initially with a single mutant in a population of size
2N genes and suppose lt represents the number of equivalent loei at
which the lethal survives for t generations where t = B 3.8 % d s
with 1 5 ™ 1. Then the relating frequency of loei at which the lethal
survives for t generations is 1t/1:1 « The average age of the lethal
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A is, therefora,

1y

(6.45) X = 7,

A given mutant at time t oceurs in 1, loci but at time (t + 1)

t

it oeccurs in 1, . 4 loci, at time (t +2) in 1, ., 2

on. Hence its expectation of life at time ¢ is given by

loei and so

T A e - o TL Gl
t 11;

21 L

7y

But

(6.48) zltLt = z(1t+1 * 1t+2 » O...o)

= 114’12*1}"‘.....

+12*1§*0..0.

= X tlf
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Hence

(6.49) L = X

It is thus shown that the average age of a lethal is the same as the
average expectation of life. From the matrix approach this can be proved
as follows,

It has already been shown that the elements 81 .1’ of the stable
distribution of the existing lethals are provided by the fundamental

matrix (I - Q).1, normalized to unity. If this is expanded, we get
~ ~

£

1 - 2 L . I I
(6.50) 's—:(},-g)1 « RIS
1 1

As shown in Chapter 1I 31; can be obtained from (6.45) by
premultiplying by f,' = (1 00. .. 0). This means that the terms
in the above seriea‘when premultiplied by f1 ' represent successively
the probability distribution of the existin; mutant individuvals after
one generation, two generations, and so on. If, therefore, we consider

the matrix sum



(6.51) =—3(1-92 .

%
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2
;+2Q+&+.....
1

%

premultiply it by f1' and add the elements of the resulting vector,

we obtain the average age of a lethal in the stable distribution of

lethal genes,

(6.52) A=

Hence I = L,

That is
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APPENDIX

DERIVATION OF MATRIX FORMULAE

Consider a finite absorbing Markov chain with (2N + 1) states

th

Eo' E1, B, ===« EZFT » EZI' the i state Ri. representing

the state of i A, genes and (2N - i) A, genes in a population of
2N genes, In other words, a variate X can assume the values

11-1/(211), for 1 =20, 1, = = = « = =« 2N, The ctates E  and sz

are called absorbing states whereas Bi,i=1,2, -~ (2N = 1) are
called transient states, Let Py J(t1, tz) be the conditional probability

that the system is in state E, at time ¢ given that if was in state

3 "
i.e. it represents the probability of transition from

B1 at time ¢

hi to E

2

after a time (1:1 -t Mathematically, this means

J 2).

Probability [X = X, at &, /X = X, at t,l t >t

Let the process be homogeneous in time i.e. PiJ(t1, tz) depends only on

9 and t2‘ We can write this

probability as l"1 J(t), representing the probability that the system is

the difference (f:1 - t2) and not on ¢

in state EJ at time ¢t + [ > t, glven that it was in state Ei
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at time T for Z> 0. This is known as t-step transition
probability, one step transition probability being written as P1 3 A
transition from i1 to J after t-steps means a transition from i
to k in one step and then from k to j in (t - 1)-steps, the

probability of simultaneous realisation of these events being

Chapman-Kolmogorov equation (Feller 1951)

(A1) Pu(t) - Eo pnpkj("‘)

The one-step transition probability matrix has been represented as ,13,
by (2.1). Let the t-step transition probability matrix be represented

by ,E(t)° Then the matrix equation corresponding to (A.1) is given by

(4.2) B(t) = PE(s-1)

s P* p4)
i ~

.Pt
A

The elements of P(t) satisfy the conditions
~



(A.3) Pu(") >= 0 forall i, §
-
(A.4) I Pu(t) o) forall 2

Since 5 has been partitioned as in (2.6), the partitioning of ,g(t)
will be given by

1 0 g'- f
(A.5) 3(1:) = 0 1 9
(t) (¢) ¢
P P Q
-2 ~
o o

where

e RS AL AL LX) 3

(¢) _ - 01 o o)
(A7) Py (1 - )1 =9) Poy

We shall mow show that vectors Pm(*) and Po(t) respectively give

— —

the probabilities of fixation of Aﬂ and A2

Let ui(t) be the probability that at time ¢, and not sooner, the

population with initial gene frequency of Ay as 41/(2N) becomes fixed



A
t)
for A' and let 81( be the probability that it has becoume fixed for

Ay by the tu' generation. In other words, we have

(A.8) Ui(t) - %nl(.)

Since fixation at time t in one gemeration means that transitiomn from
initial state to the absorbing state takes place in ome step, we have

Now fixation at tise ¢ can take place in (2§ « 1) mnutually exclusive
vays, the k*® way being that the initial gene frequency becomes k/(2N)
in the first step and then fixation takes place in (t = 1) steps. The
probability of simultaneous realigation of these two independent events

(a10) “‘(t) - 2" P”‘ %(t-‘l)

If we denote by u (t) and U(t) the columm vectors of ui(t) and
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U’_(t) respectively, we can write these relations in matrix notations

(A.11)  u(t) = 3_9 (t =-1)
= 3"’3(1)
t-1
= ’Qv -Pﬂ
Then we have
(A12) T(t) = ({5+3+32*---+3*-') A

Similarly if 1(t) and 1L(t) denote the corresponding vector of
fixation probabilities of the other gene Az. we have



A6

(A.13) L(¢) = (5,-_9,‘) (,{,',?)'1 Fo

= Po(t)

If J(t) denotes the vector of probabilities that a population with
initial frequency of A, gene as i/(2n) 4is still segregating in ;B

generation, we have

(a14) ¥(t) = e

We, thus see that the fixation probability veetors U(t) and L(t) can
be obtained in two ways either by powering the P_ matrix as in (A.5)
or as matrix functions of Q- matrix as proved in (A.12) and (A.13.
Vhen t->0 , we get

(A15) g = ¥0) = (1~
(A16) & = K0) = (2-97 P

(4.17) X = H(e0) = 0
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We thus see that (A.15) provide with an alternative way of proving
the matrix formula (2.14).
Now we give an alternative way of proving (2.15) as below:

Let the expected frequency of A, by the '™ generation be
denoted by qim when the initial population has its frequency as
qi(o) = 1/(2N), and the expected response by the t°B generation
be Ri(t) = qi(t) - qi(°) « In vector notations, we can put the
response as R(t) = g(t) - 4(o)s  The expected gene frequency by the
t™  generation can be cbtained by finding the mean of the variate

Xy = /(&) for the distribution given by the 1*® row of B(t) L.e.

2N
(a18) o . 3 AL X,

J=0

2N-1
= (t) + (t)
Z P“ XJ P

In matrix notations, this means

(A.19) g(t) = gf g(o) + u(t)

Ir Aqi represents the initial change in the mean gene frequency,

we have
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(o) o) o foy 0,

= I P,.X, +P
3_11.13

In matrix notation, this becomes

(A.21) (1) = Zﬁ + q(o)

= 'Sg.(o)'l'-’ﬁ

so that

(A.22) (1-0Q)a(o) = Pyy=Ag

giving

-~

(a23) (1= Py =go) = (1-9"Aq
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(A.24)  R(t) g(t) = g(o)

= 4" a(0) + (t) - glo)

= (Z-8 g) + @-9 (-9 py

—

(2 - 8% (1= 9"y = g(0)]

=4 @-" E-9"Aq

Letting t- , this gives the expected selection limit vector R

(A.25) R = U=~ g(o)

I

which is the same as (2,15)
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(b) Probability generating function of time until fixation of A1.

In order to study the distribution of time until fixation of allele

A1 disregarding the cases in which it is lost, we have to consider

<

conditional transition matrix ,gf giving transition probabilities Py,

g relative to the hypothesis that the population ends up with the

fixation of A1. Following Kemeny and Snell (1960), we can define

c
Pi.i as

| I

ij 73
c
(A.26) Pu = -

with

(A.27) U = 1

(A.28) D, = aug(u1,uz,------u(m_1))
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(430) (1-997" = p™ (1.9 p,

~

In order to derive the probability generating funetion for the time
until fixation of A1 relative to the hypothesis that the population
ends up with the fixation of A1 » Wre make use of the probability
generating function of time until homoRygosity given in Watterson (1961).
Let T1 be the time taken to first reach fixation or loss of A.',

given the initial population with i A, genes and (2N-i) A

2
genes and let si(t) be the probability that T, = t. Then

(4.31) 31“) " Pt h. o

and the probability generating function [ 4(2) 1is given by
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dg lto Si(t)

t=0

(4.32) TN,(2)

o0
z :t S (t)
t=1

z 81(1) - o!? :t 8 (t)
t=2

o) 2N-1
« 810, F & g p. g lt=1)

1 =2 ket 3Kk

o0

3 gt Sk('o--1)
t=2

= 38(1)4'821’

i K ik

x(f»10 + pi' ZN) + ':Pﬂc“ﬂ'k (2)

This can be oxpreasu‘, in matrix notations as

(433) (T -2Q)T(s) = s(1-0) e

where 2 is still a scalar and T[(2) is the veector of probability

generating functions, Hence

(A34) Tr(s) = (1~ '3)-1(»{«'3) e

In the conditional case 3‘ and its functions are to be replaced by Q°
-~
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and its appropriate functions, This gives

(a.35) ) = 2(1-29" (10

~
= 8Dy (I-29)7 ;0™ (I-Q)Dy,

= 21l I- @-9p

This has been used in (3.58).

For mean time until fixation of A1,

probability generating function once and put g = 1, This gives

we differentiate the

(.36)  (Was) 7%a)[ 0y = (W) 2" (s7'g- )" ‘5'3)9, =1

-1 -1
oir- B e i

This can be compared with (2.20). The second factorial moment i.e.
E[t (¢-1)] is given by
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(a.37)  (d%/as?) W°(s)l = o (22 (s 192 (2 o)u]

~

+ nU"' (2 s (' 1-972 (1 - Q)U,
2 W i [

= 27 [E-9F-a-9T

(4.38) < B(t®) = B[t (t =~ 1)] + E(¢)
= 22 [@-97- -9 "W z-0

= o 2@-9%-a-9 Ty

which can be compared by (2,22),
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